# HYDRAULIC PERFORMANCE EVALUATION OF 

 RCC STEPPED SPILLWAYS WITH SLOPED CONVERGING TRAINING WALLSBy<br>RYAN WILLIAM WOOLBRIGHT<br>Bachelor of Science in Biosystems Engineering<br>Oklahoma State University<br>Stillwater, Oklahoma

2006

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE

December, 2008

# HYDRAULIC PERFORMANCE EVALUATION OF RCC STEPPED SPILLWAYS WITH SLOPED CONVERGING TRAINING WALLS 

Thesis Approved:

| Dr Gregory Hanson |
| :---: |
| Thesis Adviser |
| Dr. Glenn Brown |
| Dr. Garey Fox |
| Dr. A. Gordon Emslie |
| Dean of the Graduate College |

## ACKNOWLEDGMENTS

This work was funded by a specific cooperative agreement between the U. S. Department of Agriculture (USDA), Agricultural research Service (ARS), Hydraulic Engineering Research Unit (HERU) and the Department of Biosystems and Agricultural Engineering at Oklahoma State University. I would like to thank the USDA-ARS and the Biosystems and Agricultural Engineering Department for providing the funding and facilities to make this work possible.

I would like to express my sincere gratitude to Dr. Gregory Hanson, my research advisor, for his guidance and encouragement. My gratitude is also extended to Sherry Hunt and Darrel Temple of the ARS for their expertise and advice. Assistance with construction and testing phases of this project provided by Bob Sappington is greatly appreciated. I would also like to thank Dr. Glenn Brown and Dr. Garey Fox for serving on my graduate committee and for their support in my academic pursuits.

Lastly, I would like to thank my family for their love and support. Through all things, their love has kept me going. To my father, I dedicate this thesis to the curiosity and love of knowledge you shared with me.

## TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION, REVIEW, and OBJECTIVES ..... 1
Abstract ..... 1
Introduction ..... 2
Stepped Spillway Modeling ..... 3
Flow Regimes and Energy Dissipation in Stepped Chutes ..... 4
Air Entrained Flow ..... 5
Convergence ..... 6
Objectives ..... 9
References ..... 11
II. PHYSICAL MODEL STUDY of RCC STEPPED SPILLWAYS with SLOPED CONVERGING TRAINING WALLS ..... 14
Abstract ..... 14
Key Words ..... 15
Introduction ..... 15
Physical Modeling ..... 17
Experimental Setup ..... 19
Results and Discussion ..... 21
Stepped Training Wall Run-up ..... 23
Smooth Training Wall Run-up. ..... 27
Example Application ..... 31
Conclusions ..... 32
References ..... 34
III. STEPPED SPILLWAYS WITH SMOOTH SLOPED TRAINING WALLS36
Abstract ..... 36
Introduction ..... 37
Modeling ..... 39
Equation Development ..... 42
Experimental Setup. ..... 46
Chapter ..... Page
Results and Discussion ..... 48
Conclusions ..... 54
References ..... 56
IV. SUMMARY, CONCLUSIONS, and FUTURE RECOMMENDATIONS. ..... 59
Summary ..... 59
Conclusions ..... 60
Future Recommendations ..... 61
APPENDIX A ..... 62

## LIST OF TABLES

Table
Page
2.1 List of unit flow rates, q , and corresponding critical depths, $\mathrm{d}_{\mathrm{c}}$, tested. ............. 20
2.2 Summary of shock wave front angle, $\beta$, for each run. ........................................ 22
3.1 List of unit flow rates, $q$, and corresponding critical depths, $\mathrm{d}_{\mathrm{c}}$, tested .............. 49
A. 1 Centerline water surface data for $1: 1$ smooth training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} \ldots . .63$
A. 2 Run-up water surface data for $1: 1$ smooth training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} . . . . . . . . .65$
A. 3 Cross section water surface data for $1: 1$ smooth training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} 66$
A. 4 Centerline water surface data for $1: 1$ smooth training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s} \ldots . .70$
A. 5 Run-up water surface data for $1: 1$ smooth training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s} . . . . . . . . .71$
A. 6 Cross section water surface data for $1: 1$ smooth training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s} 72$
A. 7 Centerline water surface data for $1: 1$ smooth training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s} \ldots . .75$
A. 8 Run-up water surface data for $1: 1$ smooth training walls $\mathrm{q}=0.052 \mathrm{~m}^{2} / \mathrm{s} . . . . . . . . .77$
A. 9 Cross section water surface data for $1: 1$ smooth training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s} 78$
A. 10 Centerline water surface data for $1: 1$ smooth training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s} \ldots .82$
A. 11 Run-up water surface data for $1: 1$ smooth training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s} . . . . . . .83$
A. 12 Cross section water surface data for $1: 1$ smooth training walls $\mathrm{q}=0.039 \mathrm{~m}^{2} / \mathrm{s} 85$
A. 13 Centerline water surface data for $1: 1$ stepped training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} . . .87$
A. 14 Run-up water surface data for $1: 1$ stepped training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} . . . . . . . .89$
A. 15 Cross section water surface data for $1: 1$ stepped training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} 90$
A. 16 Centerline water surface data for $1: 1$ stepped training walls $\mathrm{q}=0.060 \mathrm{~m}^{2} / \mathrm{s} \ldots . .93$
A. 17 Run-up water surface data for $1: 1$ stepped training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s} \ldots \ldots . . .93$
A. 18 Cross section water surface data for $1: 1$ stepped training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s} .95$
A. 19 Centerline water surface data for $1: 1$ stepped training walls $\mathrm{q}=0.052 \mathrm{~m}^{2} / \mathrm{s} . .98$ A. 20 Run-up water surface data for $1: 1$ stepped training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s} \ldots . . . .98$
A. 21 Cross section water surface data for $1: 1$ stepped training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s} 100$
A. 22 Centerline water surface data for $1: 1$ stepped training walls $\mathrm{q}=0.039 \mathrm{~m}^{2} / \mathrm{s} .102$
A. 23 Run-up water surface data for $1: 1$ stepped training walls $\mathrm{q}=0.039 \mathrm{~m}^{2} / \mathrm{s} \ldots . .103$
A. 24 Cross section water surface data for $1: 1$ stepped training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s} 104$
A. 25 Centerline water surface data for $2: 1$ smooth training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} .107$
A. 26 Run-up water surface data for $2: 1$ smooth training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} . . . . .107$
A. 27 Cross section water surface data for $2: 1$ smooth training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} 108$
A. 28 Centerline water surface data for $2: 1$ smooth training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s} .113$
A. 29 Run-up water surface data for $2: 1$ smooth training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s} . \ldots \ldots .114$
A. 30 Cross section water surface data for $2: 1$ smooth training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s} 115$
A. 31 Centerline water surface data for $2: 1$ smooth training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s} .119$
A. 32 Run-up water surface data for $2: 1$ smooth training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s} . . . . .120$
A. 33 Cross section water surface data for $2: 1$ smooth training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s} 121$
A. 34 Centerline water surface data for $2: 1$ smooth training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s} .125$
A. 35 Run-up water surface data for $2: 1$ smooth training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s} . . . . . .126$
A. 36 Cross section water surface data for $2: 1$ smooth training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s} 127$
A. 37 Centerline water surface data for $2: 1$ stepped training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} . .131$
A. 38 Run-up water surface data for $2: 1$ stepped training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} . . . . .131$
A. 39 Cross section water surface data for $2: 1$ stepped training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} 133$
A. 40 Centerline water surface data for $2: 1$ stepped training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s} . .137$
A. 41 Run-up water surface data for $2: 1$ stepped training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s} . . . . . .138$
A. 42 Cross section water surface data for $2: 1$ stepped training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s} 139$
A. 43 Centerline water surface data for $2: 1$ stepped training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s} .143$
A. 44 Run-up water surface data for $2: 1$ stepped training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s} . . . . .144$
A. 45 Cross section water surface data for $2: 1$ stepped training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s} 145$
A. 46 Centerline water surface data for $2: 1$ stepped training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s} .149$
A. 47 Run-up water surface data for $2: 1$ stepped training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s} . . . . .150$
A. 48 Cross section water surface data for $2: 1$ stepped training walls $\mathrm{q}=0.039 \mathrm{~m}^{2} / \mathrm{s} 151$
A. 49 Centerline water surface data for $3: 1$ smooth training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} .155$
A. 50 Run-up water surface data for $3: 1$ smooth training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} . . . . .155$
A. 51 Cross section water surface data for $3: 1$ smooth training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} 156$
A. 52 Centerline water surface data for $3: 1$ smooth training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s} .161$
A. 53 Run-up water surface data for $3: 1$ smooth training walls $\mathrm{q}=0.060 \mathrm{~m}^{2} / \mathrm{s} . \ldots \ldots .161$
A. 54 Cross section water surface data for $3: 1$ smooth training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s} 163$
A. 55 Centerline water surface data for $3: 1$ smooth training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s} .167$
A. 56 Run-up water surface data for $3: 1$ smooth training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s} . . . . .167$
A. 57 Cross section water surface data for $3: 1$ smooth training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s} 169$
A. 58 Centerline water surface data for $3: 1$ smooth training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s} .173$
A. 59 Run-up water surface data for $3: 1$ smooth training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s} . . . . .173$
A. 60 Cross section water surface data for $3: 1$ smooth training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s} 175$
A. 61 Centerline water surface data for $3: 1$ stepped training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} . .178$
A. 62 Run-up water surface data for $3: 1$ stepped training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} . . . . .178$
A. 63 Cross section water surface data for $3: 1$ stepped training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s} 179$
A. 64 Centerline water surface data for $3: 1$ stepped training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s} . .184$
A. 65 Run-up water surface data for $3: 1$ stepped training walls $\mathrm{q}=0.060 \mathrm{~m}^{2} / \mathrm{s} . . . . . .185$
A. 66 Cross section water surface data for $3: 1$ stepped training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s} 186$
A. 67 Centerline water surface data for $3: 1$ stepped training walls $\mathrm{q}=0.052 \mathrm{~m}^{2} / \mathrm{s} .190$
A. 68 Run-up water surface data for $3: 1$ stepped training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s} \ldots . .191$
A. 69 Cross section water surface data for $3: 1$ stepped training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s} 192$
A. 70 Centerline water surface data for $3: 1$ stepped training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s} .196$
A. 71 Run-up water surface data for $3: 1$ stepped training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s} \ldots . .196$
A. 72 Cross section water surface data for $3: 1$ stepped training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s} 197$
A. 73 Centerline bed surface................................................................................... 202
A. 74 Cross section bed profiles for $1: 1$ smooth training walls............................... 203
A. 75 Cross section bed profiles for $1: 1$ stepped training walls .............................. 207
A. 76 Cross section bed profiles for $2: 1$ smooth training walls............................... 210
A. 77 Cross section bed profiles for $2: 1$ stepped training walls .............................. 214
A. 78 Cross section bed profiles for $3: 1$ smooth training walls............................... 219
A. 79 Cross section bed profiles for 3:1 stepped training walls .............................. 222

## LIST OF FIGURES

Figure Page
1.1 RCC stepped spillway on an embankment dam. ..... 2
2.1 Schematic of converging stepped spillway chute with $3: 1$ sloped stepped training walls set perpendicular to the spillway crest (not to scale) ..... 20
2.2 Small scale stepped spillway model with $1: 1$ smooth training walls ..... 20
2.3 Shockwave along the training wall and the resulting run-up ..... 22
2.4 Cross-section of 2:1 bed and water-surface profiles for smooth training wall non-dimensionalized by critical depth of the flow at the spillway crest ..... 22
2.5 Run-up height and centerline depth vs. station for $d_{c}=0.085 \mathrm{~m}(0.28 \mathrm{ft})$ and multiple convergences with stepped training walls ..... 24
2.6 Photograph of model with $1: 1$ stepped training wall, $\mathrm{d}_{\mathrm{c}}=0.085 \mathrm{~m}(0.28 \mathrm{ft})$ ..... 24
2.7 Photograph of model with1:1 smooth training wall, $\mathrm{d}_{\mathrm{c}}=0.085 \mathrm{~m}(0.28 \mathrm{ft})$ ..... 24
2.8 Non-dimensional plot of $h_{r} / d_{c}$ vs. $X / d_{c}$ for stepped training walls ..... 25
2.9 Run-up height $\left(h_{r} / d_{c}\right)$ vs. convergence angle for six positions on the chute $\mathrm{X} / d_{c}$, for stepped training walls. ..... 26
2.10 Linear regression of stepped training wall $h_{r}$ for $\phi=18^{\circ}, 34^{\circ}$, and $45^{\circ}$ ..... 27
2.11 Comparison of observed $h_{r} / d_{c}$ and values predicted with equation (1) ..... 27
2.12 Run-up height and centerline depth vs. station for $d_{c}=0.085 \mathrm{~m}(0.28 \mathrm{ft})$ and multiple convergences with smooth training walls ..... 28
2.13 Comparison of run-up for smooth and stepped training walls with $\mathrm{dc}=0.085 \mathrm{~m}(0.28 \mathrm{ft})$ and $18^{\circ}$ convergence ..... 29
2.14 Non-dimensional plot of $h_{v} / d_{c}$ vs. $X / d_{c}$ for smooth training walls ..... 30
2.15 Run-up height $\left(h_{r} / d_{c}\right)$ vs. convergence angle for six positions on the chute $\mathrm{X} / d_{c}$, for stepped training walls. ..... 30
3.1 Plan view of stepped spillway with sloped training walls ..... 45
3.2 Stepped spillway cross sections ..... 45
3.3 a. Sloped training wall control volume b. Vertical Training wall control volume ..... 46
3.4 Schematic of converging stepped spillway chute with $3: 1$ smooth sloped training walls set perpendicular to the spillway crest (not to scale) ..... 47
3.5 Small scale stepped spillway model with $1: 1$ smooth training walls ..... 47
3.6 Shockwave along the training wall due to convergence on a $2: 1$ smooth sloped training wall ..... 49
3.7 Froude number $(F)$ vs. relative position $\left(X / d_{c}\right)$. ..... 49
3.8 Cross-section of 2:1 bed and water-surface profiles for smooth sloped training wall non-dimensionalized by critical depth of the flow at the spillway crest ..... 50
3.9 Run-up height and centerline depth vs. station for $\mathrm{d}_{\mathrm{c}}=0.085 \mathrm{~m}$ $(0.28 \mathrm{~m})$ and multiple convergences with smooth training walls ..... 51
3.10 Non-dimensional plot of $h_{r} / d_{c}$ vs. $X / d_{c}$ for smooth training walls ..... 51
3.11 Observed vs. Predicted $h_{r}$ calculated with equation 8 ..... 52
3.12 Predicted vs. Observed $h_{r} / d_{c}$ calculated with equation 11 ..... 54
3.13 Predicted and Observed $h_{r} / d_{c}$ vs. $X / d_{c}$ on smooth training walls ..... 54
A.1. Schematic of converging stepped spillway model with $3: 1$ sloped stepped training walls set perpendicular to the spillway crest (not to scale) ..... 63
A.2. Centerline cross section of stepped spillway model ..... 63

## NOMENCLATURE

| ${ }^{\omega}$ | Area |
| :---: | :---: |
| $d$ | Depth |
| $d_{1}$ | Depth upstream of a hydraulic jump |
| $d_{2}$ | Depth downstream of a hydraulic jump |
| $d_{c}$ | Critical depth |
| $d_{w}$ | Depth at the training wall |
| $F$ | Froude number |
| ${ }_{F}^{\text {w }}$ | Force |
| $F_{f}$ | Friction Force |
| $g$ | Gravity |
| H | Horizontal |
| $h_{r}$ | Height of run-up |
| $H_{w}$ | Height of wall |
| $\mathrm{L}_{\mathrm{r}}$ | Length ratio |
| $P$ | Pressure |
| $Q$ | Volumetric flow rate |
| $q$ | Unit flow rate |
| Re | Reynolds number |
| V | Vertical |
| V | Velocity |
| $v$ | Velocity component |
| We | Weber number |
| $X$ | Distance from crest |
| $z$ | Side slope ratio (H/V) |
| $\beta$ | Wave angle |
| $\gamma$ | Unit weight of water |
| $\phi$ | Convergence angle |
| $\rho$ | Density of water |
| $\theta$ | Chute slope |
| $\psi$ | Angle defined by geometry $=\tan ^{-1}(\sin (\phi) \tan (\theta))$ |
| $\psi_{2}$ | Angle defined by geometry $=\tan ^{-1}(\cos (\phi) \tan (\theta))$ |
| $\psi_{3}$ | Angle defined by geometry $=\tan ^{-1}(\sin (\phi) * 1 / z)$ |

## CHAPTER I

## INTRODUCTION, REVIEW, and OBJECTIVES


#### Abstract

More than 5,500 small watershed dams designed and built with support from the USDA Natural Resources Conservation Service (NRCS) will reach the end of their 50 year planned service life by 2018. Changes in watershed hydrology and hazard classification due to urbanization often require these structures to pass greater flows than were originally intended. Roller compacted concrete (RCC) stepped spillways provide an effective solution to this problem. Increased flow requirements, urban constraints, and valley geometry call for convergent chute sections designed with sloped training walls. There are currently no generalized guidelines for convergent sloped training walls.

A three-dimensional, physical model study was utilized to conduct an investigation of sloped training wall convergence on 3:1 stepped spillway chutes including flow patterns and run-up for both stepped and smooth sloped training walls. Generalized relationships for stepped and smooth sloped training wall dimensions on a 3:1 RCC stepped spillway chute were developed. Results are expected to assist in the development of general design guidelines for stepped spillways.


## Introduction

The United States Department of Agriculture (USDA) - Natural Resources Conservation Service (NRCS) has been involved in the planning and/or construction of over 11,000 small watershed dams beginning in the 1940's with the largest number being built during the 1960's. These small watershed dams were primarily earthen embankment dams built with 50 year planned service lives with the primary purpose of flood protection on agricultural lands. Over half of these dams will reach the end of their planned service life by 2018. Along with the normal problems associated with aging infrastructure, many of these dams are being affected by urban sprawl. Increased urbanization in a watershed provides some unique challenges: 1) urbanization potentially alters the hydrology of the watershed, increasing the runoff, 2) urbanization potentially alters the hazard classification of a dam, and 3) urbanization potentially limits rehabilitation options. Many of these structures are in need of rehabilitation due to factors associated with age and urbanization effects. Dam rehabilitation options generally include: 1) raising the top of the dam, 2) increasing spillway capacity, 3) providing overtopping protection, 4) combinations of the previous options, or 5) decommissioning the structure (Hunt et al., 2005). Increasing spillway capacity and/or providing overtopping protection are often the only viable options.

The use of roller compacted concrete (RCC) in the construction of stepped spillways has proven to be a cost effective and efficient design and construction rehabilitation solution for increasing flow capacity. RCC stepped spillways (figure 1.1)
can safely increase spillway capacity without increasing the size of the dam or depth of the reservoir.


Figure 1.1. RCC stepped spillway on an embankment dam.
Stepped channels and structures have been around for over 3,500 years (Chanson, 2002). Interest in stepped chutes and spillways decreased dramatically during the mid 1900s. However, there has been renewed interest and increased use of stepped spillways since the early 1980s (Rice and Kadavy, 1994). Interest in stepped spillways and channels has been renewed in the past few decades due to their effectiveness in providing overtopping protection, economic viability, and convenience for design and construction. Stepped spillways provide effective energy dissipation and increased spillway capacity without taking up additional land. Another reason for the increasing popularity of stepped spillways has been the evolution of the RCC dam construction technique (Boes and Hager, 2003). Research of flow over stepped structures has mostly focused on scaling effects, flow regimes, energy dissipation, and air entrainment. Yet, the application of RCC stepped spillways for rehabilitation of USDA small watershed dams
in urban settings leads to non-conventional spillway geometries due to water stage and valley constraints imposed. These constraints have led to the need for converging chutes on RCC spillways. Convergence research has been limited, and due to the complexities of flow, little generalized design guidance for converging RCC stepped spillways exists and even less exists for sloped converging training wall applications.

## Stepped Spillway Modeling

Because of relatively large size of spillways, it is difficult, expensive, and impractical to build full scale dam prototypes for modeling purposes. Scaled model studies are a more cost effective and practical way to analyze the performance of a design or compare multiple designs. Models dealing with open channel flows typically use Froude number $(F)$ similarity to scale the flows. Boes and Hager (2003) found that due to the highly air entrained flow on stepped spillways, Weber (We) and Reynolds (Re) numbers should also be considered. At any scale other than $1: 1$, it is not possible to satisfy Froude, Weber, and Reynolds similarity simultaneously. To eliminate scale effects of viscosity and surface tension, Re greater than $10^{5}$ and We greater than 100 are recommended by Boes and Hager (2003) in addition Chanson (2002) recommends using a scale of $10: 1$ or greater.

## Flow Regimes and Energy Dissipation in Stepped Chutes

Flow over stepped spillways is generally divided into two specific regimes: the nappe flow regime and the skimming flow regime (Diez-Cascon et al., 1991). More recent work describes a transition flow regime as well (Chanson, 2002). Chanson (2002) gives a detailed description of the determination and characteristics of each regime. Nappe flow is described as a succession of free falling nappes (Chanson, 1994). Flows in
the nappe regime are the most efficient at energy dissipation (Chanson, 1994). Nappe flows can be modeled as a series of drop structures where energy dissipation takes place as the flow impacts the step (Chanson, 1994). Skimming flow is characterized by a smooth surface with recirculating vortices that develop between the main flow and the steps; this type of flow dissipates energy through the recirculating vortices between the main flow and the steps (Chanson, 1994). Skimming flows tend to occur at higher flow rates which for practical reasons are typically the range for stepped spillway design flows. Transition flows should be avoided due to excessive pressure fluctuations (Chanson, 2002).

## Air Entrained Flow

Due to the nature of the interaction of the steps with the flow in RCC spillways, air entrained flow eventually develops along the chute depending on slope, discharge, step height, and chute length. Air entrained flow in the stepped chutes provide a challenge to modeling if Weber number similarity is not achieved. Additional turbulence caused by the roughness of the steps aerates the flow and makes modeling flows over stepped spillways more difficult especially at smaller scales $\left(\mathrm{L}_{\mathrm{r}}<1: 10\right)$. Much of the recent research on stepped spillway flow has been concerned with air entrainment (Boes and Minor, 2002; Boes and Hager, 2003; Chanson et al. 2005; Chanson and Gonzalez, 2005; Kramer et al., 2006; Pfister et al., 2006). Air entrainment causes flow bulking which is difficult to model at small scales (Boes and Hager, 2003). Reduced friction and energy dissipation is another concern. Boes and Hager (2003) as well as Pfister et al. (2006) have done much to describe the two-phase flow characteristics found in stepped spillways. Chanson (2002) and Boes and Hager (2003) each developed relationships for
determining the inception point or point where the turbulent boundary layer breaks the surface of the flow and air entrainment begins. These equations were developed primarily from data for steep $\left(\theta>22^{\circ}\right)$ chutes, but Hunt and Kadavy (2007) showed that Chanson's relationship also worked well for slopes as flat as 4:1. Hunt et al. (2005) and Hunt and Kadavy (2007) observed that the inception point occurs farther down the spillway in flatter sloped stepped spillway ( $18^{\circ}$ or less) applications anticipated on small watershed dams like those designed and constructed by NRCS. These structures are usually designed for high flow rates and tail water conditions. Under design flow conditions, these chutes are typically not long enough for fully air entrained flow to develop. On NRCS type structures, air entrainment will therefore be of less concern because of the relatively short chute lengths and flat slopes under design flow conditions. Often times the inception point will occur beyond the end of the chute or within the tail water region. This then leads to the conclusion that, air entrainment is not as important a consideration for modeling of these relatively mild sloped small RCC spillways. Thus, air entrainment was not considered an issue in this study and smaller scale modeling was considered appropriate.

## Convergence

Engineers do not typically recommend or design convergent spillways due to the complexities of flow that occurs, but due to the constraints that have been introduced by urbanization and increased discharge capacity requirements, convergent RCC spillways have become a necessity. This leads to the need for the development of generalized design guidance for these structures. One of the flow complexities that occurs in a convergent chute is the formation of an oblique hydraulic jump/shockwave along the
training walls of the spillway. Kindsvater (1944) studied hydraulic jumps in sloping channels, but that work does apply to oblique hydraulic jumps found in converging chutes. Oblique hydraulic jumps also known as standing waves or shockwaves were characterized by Ippen and Dawson (1951) and Ippen and Harleman (1956). These early experiments looked at oblique standing waves in a horizontal channel caused by a convergent vertical deflector wall. Relationships developed from these early studies do not accurately describe the flow in a sloped channel or flows in a channel with sloped training walls. No known theoretical work in this area has been performed for almost 50 years; therefore, there are no readily available design guidelines for converging chutes on slopes. According to the United States Army Corps of Engineers (USACE, 1990) "Hydraulic model studies are usually conducted to verify the design of a convergent chute." Martin Vide et al. (1995) conducted a study on converging overfall spillways. Specific model studies have been conducted to examine the characteristics of a converging stepped spillway (Hanna and Pugh, 1997; Robinson et al. 1998; Hunt and Kadavy, 2006; Frizell, 2006; Hunt et al. 2006b; and Hunt, 2008), but little generalized guidance is available on converging stepped spillways with sloped training walls.

Robinson et al. (1998) and Hanna and Pugh (1997) have investigated the hydraulic performance of converging stepped spillways. Robinson et al. (1998) conducted physical model studies on a steep $(0.7 \mathrm{H}: 1 \mathrm{~V})$ stepped chute with convergence angles ranging from 0 to $32.5^{\circ}$. Findings from this study showed that as the convergence angle of the training wall increased the flow run-up along the wall also increased, but no generalized approach for dimensioning the walls was developed. Flow run-up is defined as the additional amount of water extending up the wall created by flow convergence as
compared to the normal flow depth observed in a non-converging spillway. Hanna and Pugh (1997) conducted research on a 1:40 scale, steep ( $0.8 \mathrm{H}: 1 \mathrm{~V}$ ) spillway with a convergence angle of $16^{\circ}$. Both of these specific model studies were on steep slopes and no generalized guidelines were developed and are, therefore, not applicable to relatively flat sloped RCC stepped spillways with convergent sloped training walls.

In addition to these two model studies, Hunt et al. (2006a) conducted a 1:22 scale physical model study on a relatively flat ( $3 \mathrm{H}: 1 \mathrm{~V}$ ) slope stepped chute where convergence angles of $0^{\circ}, 15^{\circ}, 30^{\circ}, 52^{\circ}$, and $70^{\circ}$ were tested. A $3: 1$ chute slope is consistent with many of the aging USDA-NRCS watershed dams (Hunt and Kadavy, 2006). Generalized design guidance was proposed by Hunt et al. (2006a) for 3:1 sloped converging stepped spillways with vertical training walls, and Hunt (2008) has further refined the design guidance for vertical training walls for converging stepped spillways. However, no generalized guidance was developed for sloped training walls.

It has been suggested that stepped or smooth sloped training walls would be preferred to vertical training walls on stepped spillways in urban areas where large concrete walls could prove to be public safety hazards as well as eyesores. Construction efficiency and cost favor stepped training walls due to the consistency of construction technique between the spillway chute and training walls. Smooth training walls would add an additional step to the construction practice but have potential benefits in flow performance (Hunt et al., 2006b). Stepped spillways with sloping stepped training walls have been investigated by Frizell (2006) and Hunt et al. (2006b). These investigators observed that a significant amount of flow ran out along the stepped training walls beyond the end of the structure. Deflectors and a mid-level end sill were able to reduce
the amount of flow run-out in Frizzel's study. Hunt et al. (2006b) performed research on converging sloped stepped training walls along with converging vertical training walls and observed that converging stepped training walls cause significant amounts of flow run out beyond the end of the structure and smooth sloped training walls significantly reduced the run-up. However, neither of the specific model studies by Frizell (2006) or Hunt et al. (2006b) resulted in generalized design criteria for stepped training walls.

## Objectives

Two objectives are pursued in this research. The first objective is to conduct an in-depth investigation of sloped training wall convergence on 3:1 stepped spillway chutes including flow patterns and run-up for stepped sloped training walls and smooth sloped training walls. The second objective is to develop generalized relationships for describing the run-up on stepped and smooth sloped convergent training walls on a 3:1 stepped spillway chute. The second objective will result in more generalized design guidance in dimensioning training walls. Tasks required to meet the objectives include performing a three-dimensional physical model study of stepped spillways with both stepped and smooth sloped training walls and developing relationships based on experimental data collected.

Chapter II and Chapter III address these two research objectives. Observed flow patterns and run-up for both stepped and smooth sloping training walls as well as the development of a generalized relationship for predicting run-up along stepped sloped training walls are presented in Chapter II. Chapter III presents: 1) a more in-depth investigation of run-up along smooth sloped training walls, 2) an evaluation of the application of the momentum based relationship developed by Hunt (2008) for
convergent vertical walls to smooth slope training walls, and 3) the development and application of a momentum based empirical relationship.

## References

Boes, R., and H. E. Minor. 2002. Hydraulic design of stepped spillways for RCC dams. International Journal on Hydropower and Dams, 9(3), 87-91.

Boes, R. M., and W. H. Hager. 2003. Hydraulic design of stepped spillways. Journal of Hydraulic Engineering, 129(9), 671-679.

Chanson, H. 1994. Hydraulic Design of Stepped Cascades, Channels, Weirs, and Spillways. 1st ed. Tarrytown, NY: Elsevier Science Ltd.

Chanson, H. 2002. The Hydraulics of Stepped Chutes and Spillways. 1st ed. Lisse: Swets \& Zeitlinger B.V.

Chanson, H., Amador, A., Sanchez-Juny, M., Dolz, J., Andre, S., Boillat, J.-L., Schleiss, A. J., Boes, R. M., and Hager, W. H. 2005. Discussion of two-phase flow characteristics of stepped spillways by Robert M. Boes and Willi H. Hager. Journal of Hydraulic Engineering, 131(5), 419-429.

Chanson, H., and C. A. Gonzalez. 2005. Physical modeling and scale effects of air-water flows on stepped spillways. Journal of Zhejiang University: Science, 6 A(3), 243250.

Diez-Cascon, J., J. L. Blanco. J. Revilla. and R. Garcia. 1991. Studies on the hydraulic behaviour of stepped spillways. International Water Power and Dam Construction, 43(9), 22-26.

Frizell, H. K. 2006. Hydraulic Model study of Gwinnett County Georgia Y15 Dam Overtopping Protection. HL-20006-05. Washington, D.C.: U.S. Department of Interior, Bureau of Reclamation.

Hanna, L. J. and C. A. Pugh. 1997. Hydraulic Model Study of Pilar Dam. PAP-752. Denver, Colorado.: U.S. Department of Interior, Bureau of Reclamation.

Hunt, S. L., K. C. Kadavy, S. R. Abt, and D. M. Temple. 2005. Impact of converging chute walls for RCC stepped spillways. In Proc. 2005 World Environmental and water resources Congress. Anchorage, Alaska. : ASCE.

Hunt, S. L., and K. C. Kadavy. 2006. Physical model study of a proposed converging RCC stepped spillway. In Proc. 2006 ASABE Annual International Meeting., CD-ROM. American Portland, Oregon.: ASABE.

Hunt, S. L., K. C. Kadavy. and D. M. Temple. 2006a. Converging RCC stepped spillways. In Proc. 2007 World Environmental and Water Resources Congress. Omaha, Nebraska.: ASCE.

Hunt, S. L., K. C. Kadavy, and D. M. Temple. 2006b. Physical model study of a proposed converging RCC stepped spillway for Big Haynes Creek Watershed Site H-3 in Gwinnett County, Georgia. In Proc. 2006 Association of State Dam Safety Officials Annual Conference. Boston, Massachusetts.: ASDSO.

Hunt, S. L., and K. C. Kadavy. 2007. Renwick dam RCC stepped spillway research. In Proc. 2007 Association of State Dam Safety Officials Annual Conference. Austin, Texas.: ASDSO.

Hunt, S. L. 2008. Design of converging stepped spillways. PhD. diss. Fort Collins, CO.: Colorado State University, Department of Civil and Environmental Engineering.

Ippen, A. T., and J. H. Dawson. 1951. Design of channel contractions. Trans. ASCE, 116, 326-346.

Ippen, A. T., and D. R. F. Harleman. 1956. Verification of theory for oblique standing waves. Trans. ASCE, 121, 678-694.

Kindsvater, C.E. 1944. The hydraulic jump in sloping channels. Trans. ASCE, 109, 1107-1120.

Kramer, K., W. H. Hager, and H. E. Minor. 2006. Development of air concentration on chute spillways. Journal of Hydraulic Engineering, 132(9), 908-915.

Martin Vide, J. P., J. Azlor, and L. Viver. 1995. Design of converging overfall spillways. International Journal on Hydropower \& Dams, 2(6), 87.

Pfister, M., W. H. Hager, and H. E. Minor. 2006. Bottom aeration of stepped spillways. Journal of Hydraulic Engineering, 132(8), 850-853.

Rice, C. E., and Kadavy, K. C. 1994. Energy dissipation for a RCC stepped spillway. In Proc. 1994 Hydraulic Engineering Conference. 548-552. Buffalo, NY.: ASCE.

Robinson, K. M., C. E. Rice, K. C. Kadavy, and J. R. Talbot. 1998. Energy losses on a roller compacted concrete stepped spillway. In Proc. 1998 Water Resources Engineering Conference. 1434-1439. Memphis, TN.: ASCE.

US Army Corps of Engineers. 1990. Engineering and Design - Hydraulic Design of Spillways. Washington, D.C.: USACE.

## CHAPTER II

## PHYSICAL MODEL STUDY of RCC STEPPED SPILLWAYS with SLOPED CONVERGING TRAINING WALLS


#### Abstract

Approximately half of the over 11,000 small watershed dams designed and constructed under the supervision of the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) will reach the end of their planned service life by 2018. Many of these dams have inadequate spillway capacity due to changes in hazard classification and revised dam safety laws. Urbanization of surrounding areas limits the rehabilitation options of these dams. Roller compacted concrete (RCC) stepped spillways provide an effective solution to this problem. Recent years have seen a growth in the research and application of RCC, but there are no readily available generalized guidelines for RCC stepped spillways with stepped or smooth sloped training walls. Research has been performed on converging spillway chutes with vertical training walls. Public safety, aesthetics, and construction efficiency suggest sloped training walls are often a more desirable option.


A generalized study of converging stepped spillways with sloped training walls was conducted at the USDA- Agricultural Research Service (ARS) Hydraulic Engineering Research Unit in Stillwater, Oklahoma. The study utilized a threedimensional small scale physical model. Model configurations consisted of a spillway
chute having a slope of $3(\mathrm{H}): 1(\mathrm{~V})$ and training walls with slopes ranging from $1(\mathrm{H}): 1(\mathrm{~V})$ to $3(\mathrm{H}): 1(\mathrm{~V})$. Water surface profiles and flow information were recorded for each configuration. Run-up along the wall was observed to be the controlling factor for determining necessary dimensions of this type of structure. The objective of this study was to increase the general knowledge of and help develop a generalized equation for stepped sloping training walls.

Keywords: Flood control, Dams, Physical models, RCC, Stepped spillways, Dam rehabilitation

## Introduction

Over 11,000 small watershed dams were designed and constructed with the technical and financial aid of the USDA-NRCS. More than half of these watershed dams will reach the end of their planned service life within the next decade. Many of these dams were originally built to protect agricultural land. Urbanization has affected the hydrology of the watersheds and led to changes in the hazard classification of many structures. The major problem resulting from this change is that many of these dams now have inadequate spillway capacity. In general rehabilitation options include: 1) raising the top of the dam, 2) increasing spillway capacity, 3) providing overtopping protection, 4) combinations of the previous options, or 5) decommissioning the structure (Hunt et al., 2005). Land rights issues of surrounding areas limit the rehabilitation options of these dams. Raising the top of the dam or decommissioning the structure is often not a viable option. RCC stepped spillways have shown to be a cost effective and easily constructed solution for increasing spillway capacity. Stepped spillways can safely pass greater flows without significantly increasing the size of the dam or depth of the reservoir.

While RCC stepped spillways can be an effective rehabilitation option, there are no general design guidelines for stepped or smooth sloped training walls. Stepped spillways often require a large crest section in order to convey the design flow, yet land rights and topography often demand that the spillway constrict down to the width of the downstream channel. Reinauer and Hager (1998) point out that, spillway contractions are generally not used because of a fundamental lack in knowledge related to the hydraulics. Better understanding of the hydraulics of this type of structure will result in designs that are less likely to cause erosion and potentially undermine the structure. A crucial design issue with spillway contractions is the development of a standing shock wave at the converging training walls, which results in significant training wall height requirements to contain the flow. Reinauer and Hager (1998) developed generalized equations for the standing wave heights for flat to slightly sloping smooth chutes with converging vertical walls.

The US Army Corps of Engineers (USACE) recommends utilizing a model study when designing converging RCC stepped spillways (USACE, 1990). Physical model studies are utilized when there is a lack of understanding of a process or event. Model studies are particularly useful in hydraulics research and can lead to a better understanding and mathematical models or equations describing flows or events. Recent studies including Hunt et al. (2005) and Hunt and Kadavy (2006) have provided information on converging vertical training walls for RCC stepped spillways. However, concerns have been raised over public safety and aesthetics of vertical walls in urban areas. These concerns along with cost and construction efficiency have led to interest in design guidelines regarding sloped converging training walls.

## Physical Modeling

Physical models dealing with open channel flow typically use Froude similarity to scale the flows, but modeling hydraulic performance of RCC stepped spillways requires special considerations related to scale. Boes and Hager (2003) found that due to the highly air entrained flow on stepped spillways Weber and Reynolds numbers should also be considered because of the effects of air entrainment on viscosity and surface tension. To minimize scale effects a Re of $10^{5}$ and a We of about 100 are recommended (Boes and Hager 2003). The additional turbulence caused by the roughness of the steps aerates the flow causing flow bulking which is difficult to model at small scales (Boes and Hager, 2003). As a result of aeration scale effects, Chanson (2002) recommends using a scale of $10: 1$ or greater. Boes and Minor (2002), Boes and Hager (2003), Chanson and Gonzales (2005), and Kramer et al. (2006) have conducted research on air entrained flows in stepped spillways. Typical slopes in these studies are greater than $22^{\circ}$. Hunt et al. (2005) and Hunt and Kadavy (2007) observed in their studies on flatter sloped (as small as $14^{\circ}$ ) applications of RCC stepped spillways on small watershed dams like those constructed by NRCS that air entrainment appears to be of less concern if the air entrainment inception point as described by Chanson (2002) occurs near or beyond the end of the chute. Based on these observations, it can be concluded that scale effects are less important on flatter sloped spillways used on these embankment dams, and results from these smaller scaled studies can be evaluated effectively for design purposes.

Design of stepped spillways with sloping stepped training walls has been investigated by Frizell (2006) and Hunt et al. (2006b). Frizell (2006) observed significant flow run-out, flow beyond the end of the structure not confined to the channel,
along the stepped training walls in the converging stepped spillway model. Deflectors and the use of a mid-level end sill controlled the level of run-out observed (Frizell, 2006). Hunt et al. (2006b) conducted preliminary investigations of converging sloped stepped training walls along with hydraulic model studies with converging vertical training walls. Interest in the performance and design of the sloping stepped training walls is due to several issues including safety, aesthetics, design, construction efficiency, and cost. Hunt et al. (2006b) also observed that converging stepped training walls caused significant amounts of run-out flow and smooth sloped training walls reduced the run-out significantly. However, the study by Hunt et al. (2006b) did not result in generalized design criteria for the sloping stepped training walls.

The objective of this study was to conduct a more in-depth investigation of sloped training wall convergence on 3:1 stepped spillway chutes including 1) an investigation of the flow patterns and run-up, and general design requirements for stepped sloped training walls, and 2) an investigation of the flow patterns and run-up, and design requirements for smooth sloped training walls. Run-up height resulting from the standing shockwave will be the controlling factor in determining spillway training wall dimensions. Air entrainment and energy dissipation were not considered for this study because studies by Hunt et al. (2005) and Hunt et al. (2006b) suggested that air entrainment will not affect the design of the training walls for stepped spillways applied on small earthen embankment dams under design flow conditions, since many of these structures have relatively short spillway chute lengths and are expected to have high tailwater.

## Experimental Setup

Hunt et al. (2006a) conducted a three-dimensional small-scale model study of an RCC stepped spillway providing a generalized equation for determining the required vertical training wall dimensions. This same model set-up was used in this study to investigate sloped training walls. The spillway model consisted of a $4.2 \mathrm{~m}(13.6 \mathrm{ft})$ ogee crested weir followed downstream by a $3(\mathrm{H}): 1(\mathrm{~V})$ stepped chute with step heights of $1.4 \mathrm{~cm}(0.55 \mathrm{in})$. Preliminary observations in this study suggested that the type of crest section will had little effect on the results. Elevations of the crest and basin were 0.64 m $(2.1 \mathrm{ft})$ and $0.19 \mathrm{~m}(0.63 \mathrm{ft})$ respectively. Total height from spillway to basin was 0.44 m $(1.5 \mathrm{ft})$. The crest was located at station $0 \mathrm{~m}(0 \mathrm{ft})$. Training walls were set perpendicular to the spillway crest. Chute convergence was due to sloping training walls. Three training wall slopes were tested; $1: 1,2: 1$, and $3: 1(\mathrm{H}: \mathrm{V})$ in both stepped and smooth configurations. These slopes were chosen for testing because these would be likely slopes chosen for construction in the field. Spillway training wall slopes of 1:1, 2:1, and 3:1 result in convergence angles, $\phi$, of $18^{\circ}, 34^{\circ}$, and $45^{\circ}$ respectively. Figure 2.1 shows a schematic of a stepped spillway configuration with a 3:1 chute section and 3:1 training walls. The initial spillway test configuration was set-up with training wall slopes of 1:1. Subsequent configurations involved leaving the left training wall slope at $1: 1$ and altering the right training wall side slope to $2: 1$ and $3: 1$. The right training wall slope was used to test both stepped and smooth configurations. Figure 2.2 is a photograph of the model running in the initial 1:1 configuration with smooth training walls.

Plan
Crest


Cross Section
Crest


Figure 2.1. Schematic of converging stepped spillway chute with $3: 1$ sloped stepped training walls set perpendicular to the spillway crest (not to scale).


Figure 2.2. Small scale stepped spillway model with $1: 1$ smooth training walls.

The ogee crest section was machined out of PVC. Chute steps consisted of polyurethane coated redwood sanded to exact specifications. Smooth training walls consisted of polyurethane coated plywood. Training wall steps were assembled out of pine coated in the same polyurethane.

Flows tested were all within the skimming flow regime as described by Chanson (1994, 2002). Table 2.1 summarizes all the unit discharges and critical depths tested
during the course of the experimental investigation. Critical depths were measured at the spillway crest. Flow was measured with orifice plates and an air-water differential manometer. Water surface and bed elevation data were collected with a manually operated point gauge.

Table 2.1. Summary of unit flow rates, $q$, and corresponding critical depths, $d_{c}$, tested.

| $q\left(\mathrm{~m}^{2} / \mathrm{s}\right)$ | $d_{c}(\mathrm{~m})$ |
| :---: | :---: |
| 0.078 | 0.085 |
| 0.060 | 0.070 |
| 0.052 | 0.065 |
| 0.039 | 0.054 |

## Results and Discussion

A major design issue with converging RCC stepped spillways is containment of the increased flow depth at the training walls due to the standing shock wave that develops (Hunt et al., 2005 and Hunt and Kadavy, 2006). Figure 2.3 shows the model running under the $2: 1$ smooth sloping training wall configuration and the resulting shock wave caused by the convergence of the chute. Run-up height, $h_{r}$, due to the standing shock wave is defined as the elevation the water flows up the training wall relative to the bed at that station. Figure 2.4 presents the depth of flow above the bed surface, $d$, normalized by critical depth at the spillway crest, $d_{c}$, versus the horizontal distance across the spillway chute, $w$, normalized by $d_{c}$. Two important points are defined in this figure and are used throughout the results section to describe the results. The first point is the location of the initiation of the wave front, and the second point is the height of the runup, $h_{r}$, relative to the cross-section bed elevation and normalized by $d_{c}$.


Figure 2.3. Shockwave along the training wall due to convergence and the resulting runup.


Figure 2.4. Cross-section of $2: 1$ bed and water-surface profiles for smooth training wall non-dimensionalized by critical depth of the flow at the spillway crest.

The wave front is an important feature in characterizing the flow in a converging chute. Ippen and Harleman (1956) characterized the shockwave location for relatively mild sloped converging smooth chutes with vertical training walls by the resulting angle $\beta$ of the shockwave front. In order to describe the observed wave front location for the test results in this study the same convention was chosen for describing the observed
wave front. Table 2.2 shows a summary of $\beta$ for each model configuration. Based on an evaluation of the data in table 2.2, $\beta$ appears to be independent of unit discharge, $q$, and $d_{c}$. Additionally $\beta$ does not appear to be affected by the addition of steps to the training walls. For practical purposes $\beta$ is approximately equivalent to $\phi$.

Table 2.2. Summary of shock wave front angle, $\beta$, for each run.

|  | $\phi$ for Stepped |  |  |  | $\phi$ for Smooth |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $18^{\circ}$ | $34^{\circ}$ | $45^{\circ}$ |  | $18^{\circ}$ | $34^{\circ}$ | $45^{\circ}$ |
| $d_{c}$ | $\beta$ | $\beta$ | $\beta$ |  | $\beta$ | $\beta$ | $\beta$ |
| 0.085 | 23.2 | 39.7 | 44.2 |  | 23.8 | 37.1 | 41.1 |
| 0.070 | 23.1 | 37.9 | 44.1 |  | 20.6 | 42.1 | 43.5 |
| 0.065 | 20.9 | 37.8 | 42.4 |  | 18.9 | 36.8 | 41.8 |
| 0.054 | 23.3 | 37.8 | 44.3 |  | 23.8 | 36.0 | 43.0 |

## Stepped Training Wall Run-up

Figure 2.5 shows the contrast of water level elevations at the training walls and centerline for multiple convergences with stepped training walls at a flow with critical depth of $0.085 \mathrm{~m}(0.28 \mathrm{ft})$. From this figure, it is obvious that an increase in convergence angles leads to an increase in $h_{r}$. The actual flow behavior for a test flow with stepped training walls can be observed in figure 2.6, and a similar test with smooth training walls is shown in figure 2.7. Figure 2.6 depicts two items of interest: 1 ) there is a primary flow along the training wall similar to that observed for the smooth condition, and 2) the steps cause a secondary shedding flow resulting in a higher $h_{r}$ than occurs in the smooth condition. It was also noted that small amounts of flow were observed along even higher elevations for stepped training walls, but this tertiary flow was considered minor and of little consequence. The solid line in figure 2.6 on the stepped training wall indicates the top of this secondary flow and the dashed line in figure 2.6 shows the extent of the
primary flow. The dashed line in figure 2.7 also shows the extent of the run-up on the smooth training wall configuration.


Figure 2.5. Run-up height and centerline depth vs. station for $d_{c}=0.085 \mathrm{~m}(0.28 \mathrm{ft})$ and multiple convergences with stepped training walls.


For these data to be useful in a general design sense, they need to be normalized. By dividing the centerline depth $(d)$ and $h_{r}$ by $d_{c}$, dimensionless depths were found.

Centerline depth was defined normal to the plane of the chute. These dimensionless
depths were plotted against the station divided by $d_{c}$. Figure 2.8 shows these normalized depths plotted against the normalized stationing for convergence angles of $0^{\circ}, 18^{\circ}, 34^{\circ}$, and $45^{\circ}$ for step sloped training walls. Figure 2.8 demonstrates that the run-up height data for the four discharges can be collapsed for each convergence based on the dimensionless run-up height term $\left(h_{l} / d_{c}\right)$. The dimensionless run-up height $\left(h_{l} / d_{c}\right)$ for the stepped training wall convergences tested varies linearly to the end of the chute.


Figure 2.8. Non-dimensional plot of $h_{r} / d_{c}$ vs. $X / d_{c}$ for stepped training walls.

Run-up height $\left(h_{r} / d_{c}\right)$ was determined for each run at positions of $0,2,5,10,15$, and $20 \mathrm{X} / d_{c}$ and plotted against convergence angle, $\phi$, in figure 2.9. Averages of the points for each convergence angle were calculated and plotted as curves for each position in figure 2.9.


Figure 2.9. Run-up height $\left(h_{v} / d_{c}\right)$ vs. convergence angle for six positions on the chute $\mathrm{X} / d_{c}$, for stepped training walls.

Figure 2.10 shows the data from figure 2.8 with linear regression lines for each convergence configuration test. The intercept for each line on the $h_{r} / d_{c}$-axis is approximately $5 / 4$. The slope of each regression line varies relative to the square root of the training wall slope ratio, defined as $z=H / V$ (i.e. $z=3$ for the $3(\mathrm{H}): 1(\mathrm{~V})$ training wall side slope). Based on the observations of these results a generalized dimensionless equation was developed relative to the run-up height $h_{r}$, the critical depth $d_{c}$, the horizontal location downstream of the crest $X$, and the training wall slope ratio $z$.

$$
\begin{equation*}
\frac{h_{r}}{d_{c}}=\frac{5}{4}+\frac{1}{7}\left(\frac{X}{d_{c}}\right)\left(z^{1 / 2}\right) \tag{1}
\end{equation*}
$$

This equation generalizes the height of flow run-up for $1: 1$ to $3: 1$ stepped training walls on a 3:1 RCC stepped spillway chute. A comparison of predicted and observed values (figure 2.11) shows that equation (1) is valid within the range of values tested.


Figure 2.10. Linear regression of stepped training wall $h_{r}$ for $\phi=18^{\circ}, 34^{\circ}$, and $45^{\circ}$.


Figure 2.11. Comparison of observed $h_{r} / d_{c}$ and values predicted with equation (1).

## Smooth Training Walls

Hunt et al. (2006b) showed that the use of smooth sloped training walls is a viable alternative to stepped training walls. Smooth training walls dramatically improve the hydraulic performance of the spillway as seen in figures 2.6 and 2.7. Figure 2.12 shows water level elevations at the training walls and centerline for multiple convergences with
smooth training walls at a flow with critical depth of $0.085 \mathrm{~m}(0.28 \mathrm{ft})$. Figure 2.13 compares run-up on stepped and smooth training walls for a single convergence and flow rate. These data show that the secondary flow along the stepped training walls would require significant increases in training wall dimension requirements compared to the smooth training walls, but this secondary flow could possibly be controlled by placing vertical deflector walls at the step elevations equivalent to the run-up anticipated on the smooth training wall configurations. The potential effectiveness and required height of this type of walls will be determined in future studies.


Figure 2.12. Run-up height and centerline depth vs. station for $d_{c}=0.085 \mathrm{~m}(0.28 \mathrm{ft})$ and multiple convergences with smooth training walls.


Figure 2.13. Comparison of run-up for smooth and stepped training walls with $d_{c}=0.085 \mathrm{~m}(0.28 \mathrm{ft})$ and $18^{\circ}$ convergence.

Figure 2.14 contains the same information as figure 2.8 , but for smooth training walls. The smooth run-up data normalized by $d_{c}$ collapses to a single curve for each of the four flow rates tested at each convergence. The values do not increase linearly like the stepped data does but instead appear to approach a maximum for each convergence angle as it moves downstream. Again the run-up depth $\left(h_{p} / d_{c}\right)$ was determined for each smooth training walled run at six stations and plotted against convergence angle, $\phi$, in figure 2.15. Figure 2.15 could be used as a design tool for determining dimensions of smooth sloped training walls for stepped chute spillways at the specific convergences tested.


Figure 2.14. Non-dimensional plot of $h_{r} / d_{c}$ vs. $X / d_{c}$ for smooth training walls.


Figure 2.15. Run-up height $\left(h_{r} / d_{c}\right)$ vs. convergence angle for six positions on the chute $X / d_{c}$, for stepped training walls.

## Example Application

An example is presented to illustrate how equation (1) could be applied to assist in designing training walls for a 3:1 stepped spillway chute.

## Example

Compare the stepped training wall height required to contain the run-up in a $3: 1$
stepped spillway chute at the end of the chute section (station $28 \mathrm{~m}, 93 \mathrm{ft}$ ) for $1: 1$ and $3: 1$
stepped and smooth training walls.
$d_{c}$ at $\mathrm{PMF}=1.8 \mathrm{~m}(5.9 \mathrm{ft})$
Crest width $=100 \mathrm{~m}(330 \mathrm{ft})$
Spillway drop $=9.8 \mathrm{~m}(32 \mathrm{ft})$
Chute location $X=28 \mathrm{~m}(93 \mathrm{ft})$
Step height $=0.3 \mathrm{~m}(1 \mathrm{ft})$

- Calculation of $h_{r}$ for $1: 1$ stepped and smooth sloped training walls:

STEPPED
$z(1: 1)=1$
$h_{r}=((5 / 4+1 / 7 *(28 / 1.8) *(\sqrt{ } 1)) * 1.8) \quad$ [Eq. 1]
$h_{r}=6.3 \mathrm{~m}(20.7 \mathrm{ft})$
SMOOTH
$h_{r} / d_{c}=1.4$ [Figure 2.14]
$h_{r}=2.5 \mathrm{~m}(8.3 \mathrm{ft})$

- Calculation of $h_{r}$ for 3:1 stepped and smooth sloped training walls:

STEPPED
$z(3: 1)=3$
$h_{r}=\left((5 / 4+1 / 7 *(28 / 1.8) *(\sqrt{ } 1))^{*} 1.8\right)$
$h_{r}=9.3 \mathrm{~m}(30.4 \mathrm{ft})$

## SMOOTH

$h_{r} / d_{c}=3.2$ [Figure 2.14]
$h_{r}=5.8 \mathrm{~m}(18.9 \mathrm{ft})$
In conclusion for these calculations the stepped and smooth chute training walls at $28 \mathrm{~m}(93 \mathrm{ft})$ downstream of the crest would need to be $3 \mathrm{~m}(10) \mathrm{ft}$ higher in elevation for the $3: 1$ converging training walls than the $1: 1$ converging training walls.

## Conclusions

A generalized relationship for converging stepped training walls on 3:1 RCC stepped spillway chute were developed. The angle of the shock wave front, $\beta$, for this type of chute is approximately equal to the convergence angle, $\phi$, for both smooth and stepped training walls. Visual observations and measured data show that the stepped training walls cause a significant secondary flow that results in a greater run-up height than is observed in the smooth wall condition. The run-up height $\left(h_{r} / d_{c}\right)$ for stepped training walls is between two and three times that of smooth training walls depending on the convergence angle. This does not take into account the minor tertiary flow above the major run-up. Hunt et al. (2006b) observed that the secondary flow can create problems along the edge of the spillway if not properly taken into account. Stepped sloped training walls would therefore need to be much larger than smooth sloped training walls and as a consequence would require significantly more materials for construction than smooth sloped training walls at the same convergence. Also, small vertical deflector walls may be needed to contain the minor tertiary flow that was observed on the converging stepped
training walls. Run-up height $\left(h_{r} / d_{c}\right)$ for the secondary flow is a function of the training wall slope and critical depth and can be accurately calculated for stepped training walls using equation (1). These data should be helpful in determining general design guidelines for 3:1 RCC stepped spillway structures designed with sloped stepped converging training walls. Results are expected to assist in the development of generalized equations for smooth sloped converging training walls. These equations will be based on energy, force, and momentum principles.

## References

Boes, R., and H. E. Minor, 2002. Hydraulic design of stepped spillways for RCC dams. International Journal on Hydropower and Dams, 9(3), 87-91.

Boes, R. M., and W. H. Hager, 2003. Hydraulic design of stepped spillways. Journal of Hydraulic Engineering, 129(9), 671-679.

Chanson, H. 1994. Hydraulic Design of Stepped Cascades, Channels, Weirs, and Spillways. 1st ed. Tarrytown, NY: Elsevier Science Ltd.

Chanson, H. 2002. The Hydraulics of Stepped Chutes and Spillways. 1st ed. Lisse: Swets \& Zeitlinger B.V.

Chanson, H., and C. A. Gonzalez, 2005. Physical modeling and scale effects of air-water flows on stepped spillways. Journal of Zhejiang University: Science, 6 A(3), 243250.

Frizell, H. K. 2006. Hydraulic Model study of Gwinnett County Georgia Y15 Dam Overtopping Protection. HL-20006-05. Washington, D.C.: U.S. Department of Interior, Bureau of Reclamation.

Hunt, S. L., K. C. Kadavy, S. R. Abt, and D. M. Temple. 2005. Impact of Converging Chute Walls for RCC Stepped Spillways. In the Proc. of 2005 World Environmental and water resources Congress. Anchorage, Alaska. : ASCE

Hunt, S. L., and K. C. Kadavy. 2006. Physical Model Study of a Proposed Converging RCC Stepped Spillway. 2006. In Proc. ASABE Annual International Meeting., CD-ROM. American Portland, Oregon.: ASABE

Hunt, S. L., K. C. Kadavy. and D. M. Temple. 2006a. Converging RCC Stepped Spillways. In Proc. of 2007 World Environmental and water resources Congress. Omaha, Nebraska.: ASCE

Hunt, S. L., K. C. Kadavy, and D. M. Temple. 2006b. Physical Model Study of a Proposed Converging RCC Stepped Spillway for Big Haynes Creek Watershed Site H-3 in Gwinnett County, Georgia. In Proc. of the Association of State Dam Safety Officials Annual Conference. Boston, Massachusetts.: ASDSO

Hunt, S. L., and K. C Kadavy. 2007. Renwick dam RCC stepped spillway research. In the Proceedings of the Association of State Dam Safety Officials Annual Conference. Austin, Texas.: ASDSO

Ippen, A. T., and D. R. F. Harleman. 1956. Verification of Theory for Oblique Standing Waves. Trans. ASCE, 121, 678-694.

Kramer, K., W. H. Hager, and H. E. Minor. 2006. Development of air concentration on chute spillways. Journal of Hydraulic Engineering, 132(9), 908-915.

Pfister, M., W. H. Hager, and H. E. Minor. 2006. Bottom aeration of stepped spillways. Journal of Hydraulic Engineering, 132(8), 850-853.

Reinauer, R., and W. H. Hager. 1998. Supercritical flow in chute contraction. Journal of Hydraulic Engineering, 124(1), 55-64.

US Army Corps of Engineers. 1990. Engineering and Design - Hydraulic Design of Spillways. Washington, D.C.: USACE

## CHAPTER III

## STEPPED SPILLWAYS WITH SMOOTH SLOPED TRAINING WALLS


#### Abstract

More than half of the over 11,000 small watershed dams designed and built with support from the USDA Natural Resources Conservation Service (NRCS) will reach the end of their 50 year planned service life by 2018. Changes in watershed hydrology and hazard classification due to urbanization require these structures to safely pass greater flows than were originally intended. Roller compacted concrete (RCC) stepped spillways are a proven rehabilitation option for increasing discharge capacity of these structures. These structures are commonly designed with a wide crest section and convergent training walls along the length of the spillway. Public safety, aesthetics, and construction efficiency suggest sloped training walls may be a preferred option. The research and application of RCC have grown dramatically in recent years, yet no readily available generalized guidelines exist for sloped training walls.

A study of converging stepped spillways with sloped training walls was conducted at the USDA- Agricultural Research Service (ARS) Hydraulic Engineering Research Unit in Stillwater, Oklahoma. A small scale, three-dimensional, physical model was utilized. The model consisted of a $3(\mathrm{H}): 1(\mathrm{~V})$ spillway chute having training walls with slopes ranging from $1: 1$ to $3: 1$. Training wall convergence causes an oblique


hydraulic jump along the sides of the chute. This results in increased flow depths at the walls and is a primary factor in determining required training wall dimensions. Objectives of this study included increasing the general knowledge of flow in stepped spillways with sloped training walls and development of a generalized equation for predicting run-up on smooth sloped training walls.

## Introduction

The USDA - Natural Resources Conservation Service (NRCS) has assisted in the design and/or construction of over 11,000 small watershed dams since the 1940 's. A majority of these dams are small earthen embankments designed to protect agricultural land. In some cases, urbanization and land use changes have dramatically changed the hydrology of the watershed, and as they near the end of their 50 year design life, the dams are in need of rehabilitation. Hazard classification changes due mainly to this urban encroachment require the spillways of these dams to safely pass greater flows than their original design intended. In many cases roller compacted concrete (RCC) stepped spillways are the only viable solution to increased capacity requirements. RCC is a proven, cost effective rehabilitation option, and stepped spillways can safely pass flows equivalent to conventional smooth spillway chutes. Current estimates project that up to $10 \%$ of the 11,000 watershed dams will be rehabilitated with RCC. In some cases these structures will be converging chutes with vertical or sloped training walls conforming to the existing valley.

It is common for these structures to be constructed over the top of the existing earthen dam. In some instances this results in a wide crest section at the top of the spillway that converges at the base of the spillway in order to conform to the existing
valley. Vertical training walls on the sides of the spillway chute provide the most obvious solution for containing the flow along the edges, but public safety, aesthetics, and construction efficiency suggest sloped training walls may be a more desirable option in many cases. The research and application of RCC have grown dramatically in recent years, yet currently no general design guidelines exist for stepped spillways or the required training wall dimensions for converging chutes at common embankment slopes. Designers tend to avoid the use of spillway contractions due to the complexity of flow and resulting fundamental lack in knowledge related to the hydraulics (Reinauer and Hager, 1998). Currently model studies are recommended by the US Army Corps of Engineers (USACE) when designing converging stepped spillways (USACE, 1990).

Physical model studies can be utilized to aid in the understanding of a process or event, and are commonly used in hydraulics research. Recent studies including Hunt et al. (2005), Hunt and Kadavy (2006), and Hunt (2008) have provided information on converging vertical training walls for RCC stepped spillways. Many of these types of structures will be placed in urban areas, and concerns over aesthetics and public safety have been raised. These concerns as well as cost and construction efficiency have sparked interest in alternate designs including sloped stepped or smooth training walls in place of vertical walls. Chapter II investigated stepped and smooth sloped training walls on RCC stepped spillways. Observed flow patterns and run-up for both stepped and smooth sloping training walls as well as the development of a generalized relationship for predicting run-up along stepped sloped training walls were presented. The objective of this chapter is to examine stepped spillways with smooth sloped training walls and develop general design guidelines. Specifically the generalized equations developed for
convergent vertical training walls (Hunt et al., 2006a and Hunt, 2008) are evaluated for applicability to convergent smooth sloped training walls, and a momentum based empirical relationship is also developed and evaluated.

## Modeling

When modeling free surface or open channel flows the Froude number ( $F$ ) is generally used to scale the flow:

$$
\begin{equation*}
F=\frac{V}{\sqrt{g \lambda}} \tag{1}
\end{equation*}
$$

$F$ is a dimensionless term that describes the ratio of inertial to gravitational forces in a flow.

The Reynolds number $(R e)$ is also often considered when working at small scales where viscosity could affect the results. In stepped spillway applications, the additional turbulence caused by the roughness of the steps aerates the flow causing flow bulking which is difficult to model at small scales (Boes and Hager, 2003). Due to the highly air entrained flows found on stepped spillways, it is recommended the Weber number (We) also be taken into consideration. To minimize scale effects, a Re of $10^{5}$ and a We of about 100 are recommended (Boes and Hager, 2003). To prevent aeration scale effects from becoming significant, Chanson (2002) recommends using a scale of 10:1 or greater. Research has been conducted on air entrained flows in stepped spillways by Boes and Minor (2002), Boes and Hager (2003), Chanson and Gonzales (2005), Kramer et al. (2006), Pfister et al. (2006), and Hunt and Kadavy (2007). Typical chute slopes in these studies are greater than $22^{\circ}$ with exception to Hunt and Kadavy (2007), whose study investigated a chute slope of $14^{\circ}$. Hunt et al. (2005), Hunt and Kadavy (2006), and Hunt et al. (2006a) observed that air entrainment is of less concern with flatter sloped (as small
as $14^{\circ}$ ) applications of RCC stepped spillways like those constructed by NRCS because the spillway chute length was relatively short, the design flow was large, and the tail water was significant. As a result, the aerated flow region did not fully develop within the spillway chute. These observations lead to the conclusion that scale effects are less important on flatter sloped spillways like the ones used on NRCS embankment dams. Therefore, results from smaller scaled studies can be evaluated effectively for design purposes when the spillway chute length is relatively short and the design flow is large such that the aerated flow region doesn't become well established.

Few studies have looked at the performance of converging stepped spillways especially converging stepped spillways on flat chutes ( $18^{\circ}$ or less). Robinson et al. (1998) and Hanna and Pugh (1997) investigated the hydraulic performance of steep converging stepped spillways. Robinson et al. (1998) conducted physical model studies on a steep $(0.7 \mathrm{H}: 1 \mathrm{~V})$ stepped chute and Hanna and Pugh (1997) conducted research on a steep ( $0.8 \mathrm{H}: 1 \mathrm{~V}$ ) converging spillway. These two studies were steep sloped model studies and no generalized relationships were developed. In addition to these two model studies Hunt et al. (2006b) and Hunt (2008) presented results from 1:22 scale, three-dimensional physical models on a relatively flat $(3 \mathrm{H}: 1 \mathrm{~V})$ slope stepped chute with vertical training walls at convergence angles of $0^{\circ}, 15^{\circ}, 30^{\circ}, 52^{\circ}$, and $70^{\circ}$ were tested. Hunt et al. (2006b) observed that flow run-up along the vertical training wall increased as the convergence angle of the training wall increased. Flow run-up is defined as the amount of water extending up the wall created by flow convergence. Generalized design guidance was proposed by Hunt et al. (2006a) and Hunt (2008) for converging stepped spillways having vertical training walls.

Design of stepped spillways with sloping stepped training walls has been investigated by Frizell (2006) and Hunt et al. (2006b). The studies by Frizell (2006) and Hunt et al. (2006b) were specific model studies and did not result in generalized design criteria for stepped training walls. Hunt et al. (2006b) conducted a few preliminary investigations of converging sloped stepped training walls while conducting hydraulic model studies with converging vertical training walls. Hunt et al. (2006b) observed that converging sloped stepped training walls caused significant amounts of run-out flow and sloped smooth training walls reduced the run-up significantly. The studies presented in Chapter II and this chapter are an extension of the Hunt et al. (2006b) work with the objective to develop generalized design criteria for $3(\mathrm{H}): 1(\mathrm{~V})$ stepped spillways with stepped and smooth sloped training walls perpendicular to the chute. The study in Chapter II included an in-depth investigation of 1:1, 2:1, 3:1 sloped training wall convergence on 3:1 stepped spillway chutes. Run-up heights resulting from the standing shockwave along the convergence of the chute and training walls was observed to be the controlling factor in determining spillway training wall dimensions for the smooth sloped training wall model configurations. The run-up heights for stepped training walls were also affected by the standing shock wave along the convergence, but in addition run-up was affected by the steps themselves. The work described in Chapter II also resulted in the development of a generalized equation for run-up height on stepped sloped training walls. The work described in this chapter resulted in the development of a generalized equation for smooth sloped training walls.

## Equation Development

Several approaches were evaluated for developing an equation to describe run-up along smooth sloped training walls on stepped spillways. The flow conditions in this type of spillway chute, although complex, can be assumed to be an oblique hydraulic jump in a sloped chute. Oblique hydraulic jumps are commonly referred to as standing waves or shock waves (Chow, 1959).

Flow depth downstream of a hydraulic jump in a horizontal rectangular channel is defined by (Chow, 1959),

$$
\begin{equation*}
d_{2}=d_{1} \times 1 / 2\left(\sqrt{1+8 F^{2}}-1\right) \tag{2}
\end{equation*}
$$

where $d_{1}$ is the depth upstream of the jump, $d_{2}$ is the depth downstream of the jump and $F$ is the Froude number.

For sloped channels, the steeper the slope the less applicable equation (2) becomes. Kindsvater (1944) looked at hydraulic jumps in sloping channels, and developed a similar expression by replacing the Froude number $F$ with a $G$ which accounted for the weight of water in the jump. Chow (1959) describes the $G$ term as a function of the $F$ and the chute slope, $\theta$. Ippen and Harleman (1956) characterized oblique shockwaves for flat sloped converging smooth chutes with vertical training walls with a similar expression accounting for the angle of the oblique shock wave $\beta$ :

$$
\begin{equation*}
d_{2}=d_{1} \times 1 / 2\left(\sqrt{1+8 F^{2} \times \sin ^{2} \beta}-1\right) \tag{3}
\end{equation*}
$$

Their experiments looked at oblique jumps caused by a vertical deflector wall with convergence angles of $\phi=3^{\circ}, 6^{\circ}, 9^{\circ}, 12^{\circ}, 15^{\circ}, 18^{\circ}$, and $21^{\circ}$. The convergence angles resulted in the formation of standing shock waves in the flow at angle $\beta$ to the
same reference as $\phi$. Equation (3) developed by Ippen and Harleman (1956) does not apply to the stepped spillway case because of the effect of the chute slope and the convergence angles tested are greater than $21^{\circ}$.

Equations for hydraulic jumps can be derived from basic momentum (Chow, 1959):

$$
\begin{equation*}
\frac{Q \gamma}{g}\left(\beta_{2} V_{2}-\beta_{1} V_{1}\right)=P_{1}-P_{2}+W \sin \theta-F_{f} \tag{4}
\end{equation*}
$$

where $Q$ is volumetric flow rate, $g$ is gravity, $\gamma$ is the unit weight of water, $\beta_{1}$ and $\beta_{2}$ are momentum transfer coefficients, $V$ is velocity, $P$ is pressure, $W$ is the weight of water in the jump, and $F_{f}$ is resistance due to friction.

The geometry of the system makes utilizing this simplified form of the momentum equation invalid for the converging RCC stepped spillway configuration (Hunt, 2008). Therefore, Hunt (2008) developed an equation for describing the oblique shock wave that develops at the vertical training walls for converging RCC stepped spillways relying on a control volume analysis using equation (4) in a general vector form application (Chow, 1959):

$$
\begin{equation*}
\Sigma{ }^{\omega}=\int_{c s} \rho \stackrel{\stackrel{\omega}{\omega}}{ } \cdot d \stackrel{\omega}{\omega} \tag{5}
\end{equation*}
$$

The equation developed by Hunt (2008) is,

$$
\begin{equation*}
\frac{\gamma d_{w}^{2} \cos \left(\psi_{2}\right) \cos (\psi)}{2}=\frac{\gamma d^{2} \cos \theta}{2}+\rho v^{2} d(\cos (\theta) \cos (\psi) \sin (\phi)+\sin (\theta) \sin (\phi))^{2} \tag{6}
\end{equation*}
$$

where $\psi$ is equivalent to $\tan ^{-1}(\sin (\phi) \tan (\theta)), \psi_{2}$ is equal to $\tan ^{-1}(\cos (\phi) \tan (\theta))$, and $\psi_{3}$ is equal to $\tan ^{-1}(\sin (\phi) * 1 / z)$. This equation was developed by determining a control volume, analyzing the force vectors on the control volume, and applying equation (5).

In the development of equation (6), Hunt (2008) made the following simplifying assumptions:
"1) the velocity distribution on the face of the chute is uniform in the direction implied by the unit vector parallel to the velocity down the chute face, and this is the velocity seen by the face of the control volume away from the wall, 2) velocity direction changes suddenly at the shock within the control volume such that the sides of the control volume have only velocity aligned with the unit vector representing the velocity along the training wall, and 3) the pressure distribution is implied by the assumed velocity vectors and is assumed to be hydrostatic relative to the implied water surfaces at both the training wall and in the undisturbed chute."

Equation (6) can be rearranged to a form similar to equations (2) and (3) containing $F$ :

$$
\begin{equation*}
d_{w}=d \sqrt{\frac{\cos \theta+2 * F^{2}(\cos \theta \cos \psi \sin \phi+\sin \theta \sin \phi)^{2}}{\cos \psi_{2} \cos \psi}} \tag{7}
\end{equation*}
$$

In-order to translate the depth, $d_{w}$, to the minimum height of the vertical wall, $H_{w}$, required along the training wall of the stepped chute, the following equation was used by (Hunt, 2008):

$$
\begin{equation*}
H_{w}=\frac{d_{w}}{\cos \left(\psi_{2}\right)} \tag{8}
\end{equation*}
$$

Even though the geometry and resulting flow conditions for the smooth sloped converging training walls are more complex, as an initial step in evaluation, it was hypothesized that the equation developed by Hunt (2008) for vertical training walls may also be applicable. So a similar control volume was assumed for the smooth sloped
converging training walls. Figure 3.1 shows a plan view of a stepped spillway with three sections of interest: AA is the centerline profile, BB is the section in the plane of the intersection of the training wall and the chute, and CC is perpendicular to the shockwave. Sections AA, BB, and CC are shown in figure 3.2.


Figure 3.1. Plan view of stepped spillway with sloped training walls.


Figure 3.2. Stepped spillway cross sections.
Comparing the vertical wall and sloped wall configurations, one finds that the significant difference occurs in section CC. Control volumes for the different configurations are shown in figure 3.3. Assuming a velocity vector along the boundary is parallel to the boundary, equation (7) can then be applied to stepped spillways with smooth sloped training walls. This means that there is no flow through the control volume boundary.


Figure 3.3. a. Sloped training wall control volume

b. Vertical Training wall control volume.

Looking at section CC (figure 3.2) and assuming the surface of the flow in this cross-section downstream of the shockwave is horizontal, the elevation of the point at which the flow reaches the wall is equal to the elevation calculated by equation (8). From figure 3.1 it can be seen that the $H_{w}$ calculated would actually be located downstream of the step in question. Therefore, for a centerline depth, $d$, at a point downstream of the crest, $X$, equations (7) and (8) could be used to find the minimum training wall height required at a point $X+\Delta X$ downstream of the crest where $\Delta X$ is calculated by the following:

$$
\begin{equation*}
\Delta X=d_{w} \times\left(\frac{\sin \phi}{\tan \psi_{3}}+\sin \psi_{2}\right) \tag{9}
\end{equation*}
$$

## Experimental Setup

Essentially the same small-scale three-dimensional physical model that was used by Hunt et al. (2006b) was used with the exception of differing training wall configurations. The spillway model consisted of a $4.2 \mathrm{~m}(13.6 \mathrm{ft})$ ogee crested weir followed downstream by a $3(\mathrm{H}): 1(\mathrm{~V})$ stepped chute with step heights of $1.4 \mathrm{~cm}(0.55 \mathrm{in})$. Total height from spillway to basin was $0.44 \mathrm{~m}(1.5 \mathrm{ft})$, and elevations of the crest and basin were $0.64 \mathrm{~m}(2.1 \mathrm{ft})$ and $0.19 \mathrm{~m}(0.63 \mathrm{ft})$, respectively. The crest was located at station $0 \mathrm{~m}(0 \mathrm{ft})$. Sloped training walls were normal to the spillway crest. All chute convergence was a result of the sloping training walls. Three training wall slopes were tested: $1: 1,2: 1$, and $3: 1$. Spillway training wall slopes of $1: 1,2: 1$, and $3: 1$ resulted in
convergence angles, $\phi$, of $18^{\circ}, 34^{\circ}$, and $45^{\circ}$ respectively. Figure 3.4 shows a schematic of a stepped spillway configuration with a $3: 1$ chute section and $3: 1$ training walls. The initial spillway test configuration was set-up with training wall slopes of $1: 1$. Subsequent configurations involved leaving the left training wall slope at $1: 1$ and altering the right training wall side slope to $2: 1$ and $3: 1$. Figure 3.5 shows the model running in the initial 1:1 configuration.


Figure 3.4. Schematic of converging stepped spillway chute with $3: 1$ smooth sloped training walls set perpendicular to the spillway crest (not to scale).


Figure 3.5. Small scale stepped spillway model with 1:1 smooth training walls.

The ogee crest section was machined out of a PVC material. Observations from rudimentary tests suggest that the type of crest section would have little effect on the observed run-up along the training walls. Chute steps consisted of polyurethane coated redwood, and training walls were constructed out of polyurethane coated plywood. Flows tested were all within the skimming flow regime as described by Chanson (1994, 2002). Table 3.1 summarizes all the unit discharges and corresponding critical depths tested during the experiment. Orifice plates and an air-water differential manometer were used to measure flows. Water surface and bed elevation data were collected with a manually operated point gauge.

Table 1. Summary of unit flow rates, $q$, and corresponding critical depths, $d_{c}$, tested.

| $q\left(\mathrm{~m}^{2} / \mathrm{s}\right)$ | $d_{c}(\mathrm{~m})$ |
| :---: | :---: |
| 0.078 | 0.085 |
| 0.060 | 0.070 |
| 0.052 | 0.065 |
| 0.039 | 0.054 |

## Results and Discussion

Figure 3.6 shows the model running under the $2: 1$ training wall configuration and the resulting shock wave caused by the convergence of the chute.


Figure 3.6. Shockwave along the training wall due to convergence on a 2:1 smooth sloped training wall.

Centerline depths and flow information were used to calculate $F$ down the chute.
Froude numbers were plotted against relative position $\left(X / d_{c}\right)$ in figure 3.7. The values for $F$ at different discharges appear to collapse into a single curve when compared to relative position with Froude numbers reaching a maximum value of 3 to 4 in this configuration and range of flows.


Figure 3.7. Froude number $(F)$ vs. relative position $\left(X / d_{c}\right)$ with $q$ in $\mathrm{m}^{2} / \mathrm{s}$.

Flow run-up along the training walls is due to the standing shock wave that occurs. Run-up height, $h_{r}$, is defined as the elevation the water flows up the training wall relative to the bed at that downstream station (Figure 3.8). Figure 3.8 presents the depth of flow above the bed surface, $d$, normalized by critical depth at the spillway crest, $d_{c}$, versus the horizontal distance across the spillway chute, w , normalized by $d_{c}$.


Figure 3.8. Cross-section of 2:1 bed and water-surface profiles for smooth sloped training wall non-dimensionalized by critical depth of the flow at the spillway crest.

Figure 3.9 shows water level elevations at the training walls and centerline for all convergences tested at the highest flow with critical depth of $0.085 \mathrm{~m}(0.28 \mathrm{ft})$. Dividing the centerline depth, $d$, and the run-up height, $h_{r}$, by the critical depth, $d_{c}$, resulted in dimensionless depths. The centerline depth was defined normal to the plane of the chute intersecting the end tip of each step. Dimensionless depths were then plotted against the station divided by $d_{c}$. Figure 3.10 shows these normalized depths plotted against the normalized stationing for convergence angles of $0^{\circ}, 18^{\circ}, 34^{\circ}$, and $45^{\circ}$. The $h_{r}$ normalized by $d_{c}$ from each of the four flow rates tested collapses to a single curve for each $\phi$. Figure
3.10 could be used as an empirical design tool for determining dimensions of smooth sloped training walls for stepped chute spillways at the specific convergences tested.


Figure 3.9. Run-up height and centerline depth vs. station for $d_{c}=0.085 \mathrm{~m}(0.28 \mathrm{~m})$ and multiple convergences with smooth training walls.


Figure 3.10. Non-dimensional plot of $h_{l} / d_{c}$ vs. $X / d_{c}$ for smooth training walls.

An example of run-up height calculated with equations (7) and (8) vs. observed run-up is shown in figure 3.11. The relationship developed by Hunt (2008) for vertical training walls tends to underpredict the run-up for sloped training walls. Figure 3.11 shows that the initial hypothesis to use equation (7) does not account for the complexity of flow observed for the smooth sloped training walls. This is most likely due to several reasons including: 1) equation (7) does not account for the impact of the spatially varied flow condition in the sloped training wall setting, 2) the assumption that the predicted depth of flow projected horizontally normal to the convergence angle is too large a simplification, and 3) the assumption that no flow flux leaves the control volume on the opposing face to the front may not be valid.


Figure 3.11. Observed vs. Predicted $h_{r}$ calculated with equation 8 .

It was observed that the values for of $\cos \theta, \cos \psi_{2}$ and $\cos \psi_{2}$, in equation (7) were approximately equal to 1 and $\sin \theta$ for a $3: 1$ spillway chute is 0.31 . Therefore, equation (7) may be simplified to:

$$
\begin{equation*}
d_{2}=d_{1} \times \sqrt{1+3.43 F^{2} \sin ^{2} \phi} \tag{10}
\end{equation*}
$$

with virtually the same results. While equation (10) does not change the results it does give some indication as to a possible form of an equation that could be empirically derived for this set of data.

A dimensionless empirical relationship was developed based on linear regression with the terms; $h_{r} / d_{c}, d_{l} / d_{c}, F, \sin \phi$, and $X / d_{c}$ :

$$
\begin{equation*}
\frac{h_{r}}{d_{c}}=\frac{d_{1}}{d_{c}}\left(1+2 F \sin \phi^{\frac{3}{2}}\left(\frac{X}{d_{c}}\right)^{\frac{1}{6}}\right) \tag{11}
\end{equation*}
$$

The empirical relationship shown by equation (11) was developed for $3: 1$ chutes with training walls ranging in slope from 0 to $3: 1$. Equation (11) is a combination of the form of the theoretical equations based on momentum and the empirical relationship developed in Chapter II for stepped training walls on a $3: 1$ chute. Figure 3.12 shows predicted vs. observed $h_{r} / d_{c}$ as calculated with equation (11). In figure 3.13, predicted values are plotted as solid lines on a plot similar to figure 3.10. Compared with equation (7), equation (11) has the advantages of simplicity, direct calculation of $h_{r}$, and fits the data.


Figure 3.12. Predicted vs. Observed $h_{r} / d_{c}$ calculated with equation 11.


Figure 3.13. Predicted and Observed $h_{r} / d_{c}$ vs. $X / d_{c}$ on smooth training walls.

## Conclusions

Water surface data and visual observations from this study provide useful information for development of generalized relationships for smooth sloped training walls on 3:1 RCC stepped spillway chutes. The data demonstrates that empirical
equation developed can accurately predict the run-up for smooth sloped training walls for the ranges tested. The equations should not be used for training wall slopes greater than 3:1 without further testing. These data should be helpful in determining general design guidelines for 3:1 RCC stepped spillway structures designed with smooth sloped training walls.

## References

Boes, R., and H. E. Minor. 2002. Hydraulic design of stepped spillways for RCC dams. International Journal on Hydropower and Dams, 9(3), 87-91.

Boes, R. M., and W. H. Hager. 2003. Hydraulic design of stepped spillways. Journal of Hydraulic Engineering, 129(9), 671-679.

Chanson, H. 1994. Hydraulic Design of Stepped Cascades, Channels, Weirs, and Spillways, 1st Ed., Elsevier Science Ltd, Tarrytown, NY.

Chanson, H. 2002. The Hydraulics of Stepped Chutes and Spillways, 1st Ed., Swets \& Zeitlinger B.V., Lisse.

Chanson, H., and C. A. Gonzalez. 2005. Physical modelling and scale effects of air-water flows on stepped spillways. Journal of Zhejiang University: Science, 6 A(3), 243-250.

Chow, V. T. 1959. Open Channel Hydraulics. McGraw - Hill, New York, NY.
Frizell, H. K. 2006. Hydraulic Model study of Gwinnett County Georgia Y15 Dam Overtopping Protection. HL-20006-05. Washington, D.C.: U.S. Department of Interior, Bureau of Reclamation.

Hanna, L. J. and C. A. Pugh. 1997. Hydraulic Model Study of Pilar Dam. PAP-752. Denver, Colorado.: U.S. Department of Interior, Bureau of Reclamation.

Hunt, S. L., K. C. Kadavy, S. R. Abt, and D. M. Temple. 2005. Impact of converging chute walls for RCC stepped spillways. In Proc. 2005 World Environmental and Water Resources Congress. Anchorage, Alaska. : ASCE

Hunt, S. L., and K. C. Kadavy. 2006. Physical Model Study of a Proposed Converging RCC Stepped Spillway. 2006. In Proc. 2006 ASABE Annual International Meeting., CD-ROM. American Portland, Oregon.: ASABE

Hunt, S. L., K. C. Kadavy. and D. M. Temple. 2006a. Converging RCC stepped spillways. In Proc. 2007 World Environmental and Water Resources Congress. Omaha, Nebraska.: ASCE

Hunt, S. L., K. C. Kadavy, and D. M. Temple. 2006b. Physical model study of a proposed converging RCC stepped spillway for Big Haynes Creek Watershed Site H-3 in Gwinnett County, Georgia. In Proc. 2006 Association of State Dam Safety Officials Annual Conference. Boston, Massachusetts.: ASDSO

Hunt, S. L., and K. C Kadavy. 2007. Renwick dam RCC stepped spillway research. In Proc. 2007 Association of State Dam Safety Officials Annual Conference. Austin, Texas.: ASDSO

Hunt, S.L. 2008. Design of Converging Stepped Spillways. PhD. diss. Fort Collins, CO.: Colorado State University, Department of Civil and Environmental Engineering.

Ippen, A. T., and D. R. F. Harleman. 1956. Verification of theory for oblique standing waves. Trans. ASCE, 121, 678-694.

Kindsvater, C.E. 1944. The hydraulic jump in sloping channels. Trans. ASCE, 109, 1107-1120.

Kramer, K., W. H., Hager, and H. E. Minor. 2006. Development of air concentration on chute spillways. Journal of Hydraulic Engineering, 132(9), 908-915.

Pfister, M., W. H. Hager, and H. E. Minor. 2006. Bottom aeration of stepped spillways. Journal of Hydraulic Engineering, 132(8), 850-853.

Reinauer, R., and W. H. Hager. 1998. Supercritical flow in chute contraction. Journal of Hydraulic Engineering, 124(1), 55-64.

Robinson, K. M., C. E. Rice, K. C. Kadavy, and J. R. Talbot. 1998. Energy losses on a roller compacted concrete stepped spillway. In Proc. 1998 Water Resources Engineering Conference. 1434-1439. Memphis, TN.: ASCE.

US Army Corps of Engineers. 1990. Engineering and Design - Hydraulic Design of Spillways. Washington, D.C.: USACE

## CHAPTER IV

## SUMMARY, CONCLUSIONS, and FUTURE RECOMMENDATIONS

## Summary

An abundance of aging watershed dams in need of rehabilitation exist in the United States today. RCC stepped spillways provide a cost effective alternative solution to the rehabilitation needs of many of these dams. The application of RCC stepped spillways will require converging chute sections in some cases in order to fit the limitations of the urban setting and valley geometry. Stepped or smooth sloped training walls can provide the needed convergence while also providing public safety, aesthetic, and construction efficiency benefits. To date there had been no general design guidelines for stepped spillways with stepped or smooth sloped training walls. Therefore, a small scale physical model study of stepped and smooth sloped training walls on a 3:1 stepped spillway chute was carried out at the USDA-ARS Hydraulic Engineering Research Unit. The objectives of this study were to conduct an investigation of sloped training wall convergence on 3:1 stepped spillway chutes including flow patterns and run-up for stepped and smooth sloped training walls and develop generalized relationships for describing the resulting run-up. Flow patterns and run-up are examined in Chapter II. An empirical relationship for determining run-up on stepped training walls is also presented in Chapter II. Chapter III presents an empirical relationship for determining run-up on smooth sloped training walls and a comparison to theoretical relationships.

## Conclusions

Generalized relationships were developed for converging stepped and smooth sloped training walls on a 3:1 RCC stepped spillway chute. Visual observations and measured data show that the stepped training walls cause a significant secondary flow that results in a greater run-up height than is observed in the smooth wall condition. A minor tertiary flow also exists above the secondary flow along the stepped training walls. Run-up height $\left(h_{r} / d_{c}\right)$ for stepped training walls is between two and three times that of smooth training walls depending on the convergence angle. This does not take into account the minor tertiary flow above the major run-up. Hunt et al. (2006b) observed that the secondary flow can create problems along the edge of the spillway if not properly taken into account. Stepped sloped training walls would need to be significantly larger than smooth sloped training walls and would require considerably more materials for construction than smooth sloped training walls at the same convergence. Also, small vertical deflector walls may be needed to contain the minor tertiary flow that was observed on the converging stepped training walls.

Relationships for stepped and smooth sloped training wall dimensions were developed in Chapter II and Chapter III. The relationship for stepped training wall dimensions was based on run-up height for the secondary flow and was a function of the training wall slope and critical depth. Theoretical equations for vertical training walls were investigated as a possible solution to predicting run-up height for smooth sloped training walls but were shown to be insufficient. An empirical relationship was developed which accurately predicts the run-up for smooth sloped training walls for the ranges tested. The relationships developed in this study should not be used for training
wall slopes greater than $3: 1$ without further testing. Results are expected to assist in the development of generalized equations for smooth sloped converging training walls.

## Future recommendations

The objectives of this research have been met and are presented in Chapter II and Chapter III. Results presented in Chapter II and Chapter III provide useful information to improve the general knowledge and assist in the design of stepped spillways with stepped and smooth sloped converging training walls. Future studies should attempt to:

1) Expand the generalized equation for stepped training walls on $3: 1$ spillway chutes to the potential range of anticipated field application of $2: 1$ to $4: 1$ chute slopes.
2) Evaluate applicability of generalized equation for smooth training walls on 3:1 spillway chutes to the potential range of anticipated field application of 2:1 to $4: 1$ chute slopes.
3) Evaluate potential structural modifications that might help constrain the flow runout observed on stepped sloped training walls. Specifically, short vertical walls at the run-up level observed on smooth sloped training walls for equivalent flows on the stepped slope training walls should be evaluated.
4) Evaluate freeboard or safety factors to apply to results from the generalized equations for stepped and smooth sloped training walls in the field that are consistent with application requirements.

## APPENDIX A



Figure A.1. Schematic of converging stepped spillway model with $3: 1$ sloped stepped training walls set perpendicular to the spillway crest (not to scale).


Figure A.2. Centerline cross section of stepped spillway model.
Table A.1. Centerline water surface data for $1: 1$ smooth training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s}$.


|  | 12.00 | 75.20 | 2.462 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 14.00 | 75.20 | 2.461 |  |
|  | 16.00 | 75.20 | 2.458 |  |
|  | 18.00 | 75.20 | 2.458 |  |
|  | 20.00 | 75.20 | 2.456 |  |
|  | 22.00 | 75.20 | 2.455 |  |
|  | 23.00 | 75.20 | 2.477 |  |
|  | 24.00 | 75.20 | 2.411 |  |
|  | 24.20 | 75.20 | 2.404 |  |
|  | 24.40 | 75.20 | 2.405 |  |
|  | 24.65 | 75.20 | 2.397 |  |
|  | 24.76 | 75.20 | 2.386 |  |
|  | 24.78 | 75.20 | 2.382 |  |
|  | 24.87 | 75.20 | 2.361 | Crest |
|  | 25.10 | 75.20 | 2.278 |  |
|  | 25.30 | 75.20 | 2.176 |  |
|  | 25.42 | 75.20 | 2.122 |  |
|  | 25.55 | 75.20 | 2.064 |  |
|  | 25.69 | 75.20 | 2.008 |  |
|  | 25.83 | 75.20 | 1.951 |  |
|  | 25.97 | 75.20 | 1.895 |  |
|  | 26.11 | 75.20 | 1.844 |  |
|  | 26.24 | 75.20 | 1.797 |  |
|  | 26.39 | 75.20 | 1.740 |  |
|  | 26.51 | 75.20 | 1.695 |  |
|  | 26.65 | 75.20 | 1.641 |  |
|  | 26.79 | 75.20 | 1.591 |  |
|  | 26.93 | 75.20 | 1.543 |  |
|  | 27.06 | 75.20 | 1.503 |  |
|  | 27.19 | 75.20 | 1.454 |  |
|  | 27.33 | 75.20 | 1.399 |  |
|  | 27.47 | 75.20 | 1.354 |  |
|  | 27.61 | 75.20 | 1.301 |  |
|  | 27.75 | 75.20 | 1.260 |  |
|  | 27.89 | 75.20 | 1.212 |  |
|  | 28.04 | 75.20 | 1.160 |  |
|  | 28.16 | 75.20 | 1.119 |  |
|  | 28.30 | 75.20 | 1.068 |  |
|  | 28.43 | 75.20 | 1.022 |  |


|  | 28.57 | 75.20 | 0.978 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 28.71 | 75.20 | 0.931 |  |
|  | 28.84 | 75.20 | 0.885 |  |
|  | 28.98 | 75.20 | 0.837 |  |
|  | 29.13 | 75.20 | 0.792 |  |
|  | 29.15 | 75.20 | 0.785 |  |
|  | 29.30 | 75.20 | 0.743 |  |
|  | 29.60 | 75.20 | 0.740 |  |
|  | 29.90 | 75.20 | 0.740 |  |
|  | 30.21 | 75.20 | 0.746 |  |

Table A.2. Run-up water surface data for $1: 1$ smooth training walls $\mathrm{q}=0.078 \mathrm{~m}^{2} / \mathrm{s}$.


|  | 26.79 | 68.565 | 1.786 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 26.93 | 68.62 | 1.730 |  |
|  | 27.06 | 68.67 | 1.679 |  |
|  | 27.19 | 67.71 | 1.643 |  |
|  | 27.33 | 68.77 | 1.589 |  |
|  | 27.47 | 68.81 | 1.550 |  |
|  | 27.61 | 68.86 | 1.500 |  |
|  | 27.75 | 68.91 | 1.455 |  |
|  | 27.89 | 68.95 | 1.411 |  |
|  | 28.04 | 69.00 | 1.360 |  |
|  | 28.16 | 69.04 | 1.318 |  |
|  | 28.30 | 69.09 | 1.261 |  |
|  | 28.43 | 69.12 | 1.225 |  |
|  | 28.71 | 69.17 | 69.21 | 1.176 |

Table A.3. Cross section water surface data for $1: 1$ smooth training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s}$.


|  | 24.87 | 68.50 | 2.359 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 24.87 | 68.70 | 2.359 |  |
|  | 24.87 | 69.00 | 2.360 |  |
|  | 24.87 | 70.00 | 2.365 |  |
|  | 24.87 | 71.00 | 2.361 |  |
|  | 24.87 | 73.00 | 2.362 |  |
|  | 24.87 | 75.20 | 2.362 |  |
|  | 24.87 | 77.00 | 2.361 |  |
|  | 24.87 | 79.00 | 2.361 |  |
|  | 24.87 | 80.00 | 2.363 |  |
|  | 24.87 | 81.00 | 2.357 |  |
|  | 24.87 | 81.50 | 2.357 |  |
|  | 24.87 | 81.70 | 2.360 |  |
|  | 24.87 | 81.90 | 2.361 |  |
|  | 24.87 | 82.00 | 2.362 |  |
|  | 24.87 | 82.10 | 2.364 |  |
|  | 24.87 | 82.20 | 2.366 |  |
|  | 24.87 | 82.47 | 2.381 |  |
|  | 25.435 | 68.03 | 2.287 |  |
|  | 25.435 | 68.10 | 2.273 |  |
|  | 25.435 | 68.20 | 2.251 |  |
|  | 25.435 | 68.30 | 2.228 |  |
|  | 25.435 | 68.40 | 2.205 |  |
|  | 25.435 | 68.50 | 2.176 |  |
|  | 25.435 | 68.60 | 2.155 |  |
|  | 25.435 | 69.00 | 2.120 |  |
|  | 25.435 | 71.00 | 2.116 |  |
|  | 25.435 | 73.00 | 2.115 |  |
|  | 25.435 | 75.20 | 2.116 |  |
|  | 25.435 | 77.00 | 2.114 |  |
|  | 25.435 | 79.00 | 2.115 |  |
|  | 25.435 | 81.00 | 2.117 |  |
|  | 25.435 | 81.50 | 2.125 |  |
|  | 25.435 | 81.60 | 2.132 |  |
|  | 25.435 | 81.70 | 2.143 |  |
|  | 25.435 | 81.8 | 2.155 |  |
|  | 25.435 | 81.90 | 2.178 |  |
|  | 25.435 | 82.00 | 2.202 |  |
|  | 25.435 | 82.10 | 2.229 |  |


|  | 25.435 | 82.20 | 2.248 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 25.435 | 82.37 | 2.282 |  |
|  | 26.5 | 68.45 | 1.897 |  |
|  | 26.5 | 68.60 | 1.873 |  |
|  | 26.5 | 68.70 | 1.861 |  |
|  | 26.5 | 68.80 | 1.858 |  |
|  | 26.5 | 68.93 | 1.851 |  |
|  | 26.5 | 69.05 | 1.796 |  |
|  | 26.5 | 69.20 | 1.755 |  |
|  | 26.5 | 70.00 | 1.710 |  |
|  | 26.5 | 73.00 | 1.702 |  |
|  | 26.5 | 75.20 | 1.703 |  |
|  | 26.5 | 77.00 | 1.700 |  |
|  | 26.5 | 79.00 | 1.701 |  |
|  | 26.5 | 81.00 | 1.723 |  |
|  | 26.5 | 81.38 | 1.790 |  |
|  | 26.5 | 81.49 | 1.853 |  |
|  | 26.5 | 81.60 | 1.867 |  |
|  | 26.5 | 81.70 | 1.875 |  |
|  | 26.5 | 81.80 | 1.880 |  |
|  | 26.5 | 81.99 | 1.918 |  |
|  | 27.61 | 68.85 | 1.505 |  |
|  | 27.61 | 69.00 | 1.489 |  |
|  | 27.61 | 69.10 | 1.481 |  |
|  | 27.61 | 69.20 | 1.474 |  |
|  | 27.61 | 69.43 | 1.482 |  |
|  | 27.61 | 69.53 | 1.414 |  |
|  | 27.61 | 69.60 | 1.393 |  |
|  | 27.61 | 69.70 | 1.373 |  |
|  | 27.61 | 70.00 | 1.350 |  |
|  | 27.61 | 73.00 | 1.304 |  |
|  | 27.61 | 77.00 | 1.00 | 1.305 |


|  | 27.61 | 81.60 | 1.518 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 69.21 | 1.139 |  |
|  | 28.69 | 69.40 | 1.109 |  |
|  | 28.69 | 69.61 | 1.096 |  |
|  | 28.69 | 69.85 | 1.085 |  |
|  | 28.69 | 69.93 | 1.048 |  |
|  | 28.69 | 70.10 | 1.024 |  |
|  | 28.69 | 73.00 | 0.941 |  |
|  | 28.69 | 75.20 | 0.940 |  |
|  | 28.69 | 77.00 | 0.938 |  |
|  | 28.69 | 80.00 | 0.986 |  |
|  | 28.69 | 80.46 | 1.039 |  |
|  | 28.69 | 80.67 | 1.098 |  |
|  | 28.69 | 80.84 | 1.094 |  |
|  | 28.69 | 81.00 | 1.107 |  |
|  | 28.69 | 81.27 | 1.162 |  |
|  | 29.115 | 69.34 | 0.995 |  |
|  | 29.115 | 69.50 | 0.973 |  |
|  | 29.115 | 69.73 | 0.959 |  |
|  | 29.115 | 69.84 | 0.940 |  |
|  | 29.115 | 70.09 | 0.914 |  |
|  | 29.115 | 70.20 | 0.901 |  |
|  | 29.115 | 70.30 | 0.895 |  |
|  | 29.115 | 71.00 | 0.844 |  |
|  | 29.115 | 73.00 | 0.796 |  |
|  | 29.115 | 75.20 | 0.800 |  |
|  | 29.115 | 79.00 | 0.815 |  |
|  | 29.115 | 80.20 | 0.889 |  |
|  | 29.115 | 80.37 | 0.915 |  |
|  | 29.115 | 80.55 | 0.932 |  |
|  | 29.115 | 80.80 | 0.964 |  |
|  | 29.115 | 81.00 | 0.980 |  |
|  | 29.115 | 81.13 | 1.011 |  |

Table A.4. Centerline water surface data for $1: 1$ smooth training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s}$.


Table A.5. Run-up water surface data for $1: 1$ smooth training walls $\mathrm{q}=0.060 \mathrm{~m}^{2} / \mathrm{s}$.


|  | 28.43 | 69.18 | 1.173 |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 28.57 | 69.22 | 1.130 |  |
|  | 28.71 | 69.26 | 1.086 |  |
|  | 28.85 | 69.31 | 1.038 |  |
|  | 28.98 | 69.35 | 0.991 |  |
|  | 29.13 | 69.41 | 0.935 |  |
|  | 29.16 | 69.41 | 0.930 |  |
|  | 29.30 | 69.45 | 0.883 |  |
|  | 29.60 | 69.53 | 0.788 |  |
|  | 29.90 | 69.58 | 0.746 |  |
|  | 30.21 | 69.58 | 0.789 |  |

Table A.6. Cross section water surface data for $1: 1$ smooth training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s}$.



|  | 26.5 | 81.80 | 1.828 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 26.5 | 81.91 | 1.846 |  |
|  | 27.61 | 68.91 | 1.458 |  |
|  | 27.61 | 69.00 | 1.445 |  |
|  | 27.61 | 69.10 | 1.434 |  |
|  | 27.61 | 69.20 | 1.420 |  |
|  | 27.61 | 69.30 | 1.405 |  |
|  | 27.61 | 69.40 | 1.423 |  |
|  | 27.61 | 69.50 | 2.375 |  |
|  | 27.61 | 69.60 | 1.353 |  |
|  | 27.61 | 70.00 | 1.318 |  |
|  | 27.61 | 71.00 | 1.293 |  |
|  | 27.61 | 73.00 | 1.282 |  |
|  | 27.61 | 75.20 | 1.287 |  |
|  | 27.61 | 77.00 | 1.287 |  |
|  | 27.61 | 79.00 | 1.289 |  |
|  | 27.61 | 80.00 | 1.300 |  |
|  | 27.61 | 80.40 | 1.316 |  |
|  | 27.61 | 80.60 | 1.325 |  |
|  | 27.61 | 80.70 | 1.335 |  |
|  | 27.61 | 80.80 | 1.347 |  |
|  | 27.61 | 80.90 | 1.359 |  |
|  | 27.61 | 81.02 | 1.425 |  |
|  | 27.61 | 81.10 | 1.418 |  |
|  | 27.61 | 81.20 | 1.418 |  |
|  | 27.61 | 81.30 | 1.427 |  |
|  | 27.61 | 81.52 | 1.450 |  |
|  | 28.69 | 69.25 | 1.093 |  |
|  | 28.69 | 69.40 | 1.065 |  |
|  | 28.69 | 69.50 | 1.065 |  |
|  | 28.69 | 69.60 | 1.054 |  |
|  | 28.69 | 69.70 | 1.033 |  |
|  | 28.69 | 69.80 | 1.025 |  |
|  | 28.69 | 69.90 | 1.006 |  |
|  | 28.69 | 70.00 | 1.002 |  |
|  | 28.69 | 71.00 | 0.935 |  |
|  | 28.69 | 73.00 | 0.920 |  |
|  | 28.69 | 75.20 | 0.920 |  |
|  | 28.69 | 77.00 | 0.920 |  |


|  | 28.69 | 79.00 | 0.932 |  |
| :--- | ---: | ---: | ---: | ---: |
|  | 28.69 | 80.20 | 0.975 |  |
|  | 28.69 | 80.30 | 0.986 |  |
|  | 28.69 | 80.40 | 0.998 |  |
|  | 28.69 | 80.50 | 1.005 |  |
|  | 28.69 | 80.60 | 1.018 |  |
|  | 28.69 | 80.70 | 1.032 |  |
|  | 28.69 | 80.80 | 1.030 |  |
|  | 28.69 | 80.90 | 1.058 |  |
|  | 28.69 | 81.00 | 1.064 |  |
|  | 28.69 | 81.22 | 1.113 |  |
|  | 29.115 | 69.39 | 0.947 |  |
|  | 29.115 | 69.50 | 0.932 |  |
|  | 29.115 | 69.60 | 0.932 |  |
|  | 29.115 | 69.70 | 0.918 |  |
|  | 29.115 | 69.80 | 0.906 |  |
|  | 29.115 | 69.90 | 0.890 |  |
|  | 29.115 | 70.00 | 0.873 |  |
|  | 29.115 | 71.00 | 0.818 |  |
|  | 29.115 | 73.00 | 0.776 |  |
|  | 29.115 | 75.20 | 0.783 |  |
|  | 29.115 | 77.00 | 0.786 |  |
|  | 29.115 | 79.00 | 0.798 |  |
|  | 29.115 | 80.10 | 0.849 |  |
|  | 29.115 | 80.20 | 0.862 |  |
|  | 29.115 | 80.36 | 0.877 |  |
|  | 29.115 | 80.40 | 0.877 |  |
|  | 29.115 | 80.50 | 0.884 |  |
|  | 29.115 | 80.60 | 0.885 |  |
|  | 29.115 | 80.70 | 0.908 |  |
|  | 29.115 | 80.80 | 0.925 |  |
|  | 29.115 | 80.90 | 0.928 |  |
|  | 81.09 | 0.977 |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  | 2 |  |  |  |
|  | 2 |  |  |  |

Table A.7. Centerline water surface data for $1: 1$ smooth training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 3 |  | recorder | RW |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| Date | $7 / 6 / 2007$ |  | BM-0 <br> rd. | $x=24.68$ | $y=65.02$ | $z=2.873$ |


| time | $\begin{gathered} \mathrm{X} \\ \mathrm{ft} \end{gathered}$ | $\begin{array}{r} \mathrm{y} \\ \mathrm{ft} \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{z} \\ \mathrm{ft} \\ \hline \end{array}$ | comments |
| :---: | :---: | :---: | :---: | :---: |
|  | 12.00 | 75.20 | 2.376 | Centerline |
|  | 14.00 | 75.20 | 2.375 |  |
|  | 16.00 | 75.20 | 2.375 |  |
|  | 18.00 | 75.20 | 2.375 |  |
|  | 20.00 | 75.20 | 2.374 |  |
|  | 22.00 | 75.20 | 2.373 |  |
|  | 24.00 | 75.20 | 2.345 |  |
|  | 24.20 | 75.20 | 2.345 |  |
|  | 24.40 | 75.20 | 2.343 |  |
|  | 24.65 | 75.20 | 2.333 |  |
|  | 24.76 | 75.20 | 2.322 |  |
|  | 24.78 | 75.20 | 2.318 |  |
|  | 24.87 | 75.20 | 2.296 | Crest |
|  | 25.10 | 75.20 | 2.211 |  |
|  | 25.30 | 75.20 | 2.112 |  |
|  | 25.42 | 75.20 | 2.062 |  |
|  | 25.55 | 75.20 | 2.010 |  |
|  | 25.70 | 75.20 | 1.956 |  |
|  | 25.83 | 75.20 | 1.904 |  |
|  | 25.97 | 75.20 | 1.854 |  |
|  | 26.11 | 75.20 | 1.802 |  |
|  | 26.24 | 75.20 | 1.757 |  |
|  | 26.39 | 75.20 | 1.704 |  |
|  | 26.51 | 75.20 | 1.657 |  |
|  | 26.65 | 75.20 | 1.608 |  |
|  | 26.79 | 75.20 | 1.557 |  |
|  | 26.93 | 75.20 | 1.512 |  |
|  | 27.06 | 75.20 | 1.467 |  |
|  | 27.20 | 75.20 | 1.419 |  |
|  | 27.34 | 75.20 | 1.371 |  |
|  | 27.47 | 75.20 | 1.321 |  |
|  | 27.62 | 75.20 | 1.276 |  |
|  | 27.75 | 75.20 | 1.233 |  |
|  | 27.89 | 75.20 | 1.185 |  |
|  | 28.04 | 75.20 | 1.137 |  |
|  | 28.16 | 75.20 | 1.092 |  |
|  | 28.30 | 75.20 | 1.044 |  |


|  | 28.43 | 75.20 | 1.001 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 28.57 | 75.20 | 0.957 |  |
|  | 28.71 | 75.20 | 0.908 |  |
|  | 28.85 | 75.20 | 0.864 |  |
|  | 28.98 | 75.20 | 0.820 |  |
|  | 29.13 | 75.20 | 0.771 |  |
|  | 29.16 | 75.20 | 0.765 |  |
|  | 29.30 | 75.20 | 0.720 |  |
|  | 29.60 | 75.20 | 0.732 |  |
|  | 29.90 | 75.20 | 0.735 |  |
|  | 30.21 | 75.20 | 0.729 |  |
|  | 30.50 | 75.20 | 0.730 |  |

Table A.8. Run-up water surface data for $1: 1$ smooth training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 3 |  | recorder | RW |  |  |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $7 / 6 / 2007$ |  | BM-0 <br> rd. | $x=24.68$ | $y=65.02$ | $z=2.873$ |


| time | x <br> ft | y <br> ft | z <br> ft |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 23.84 | 67.93 | 2.356 |  |
|  | 24.00 | 67.92 | 2.358 |  |
|  | 24.20 | 67.93 | 2.354 |  |
|  | 24.40 | 67.94 | 2.349 |  |
|  | 24.65 | 67.96 | 2.339 |  |
|  | 24.76 | 67.97 | 2.330 |  |
|  | 24.78 | 67.97 | 2.329 |  |
|  | 24.87 | 67.98 | 2.324 |  |
|  | 25.10 | 68.01 | 2.295 |  |
|  | 25.30 | 68.07 | 2.246 |  |
|  | 25.42 | 68.100 | 2.219 |  |
|  | 25.55 | 68.150 | 2.178 |  |
|  | 25.70 | 68.21 | 2.123 |  |
|  | 25.83 | 68.27 | 2.068 |  |
|  | 25.97 | 68.33 | 2.013 |  |
|  | 26.11 | 68.39 | 1.954 |  |
|  | 26.24 | 68.45 | 1.904 |  |
|  | 26.39 | 68.51 | 1.843 |  |


|  | 26.51 | 68.56 | 1.794 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 26.65 | 68.61 | 1.743 |  |
|  | 26.79 | 68.660 | 1.689 |  |
|  | 26.93 | 68.71 | 1.649 |  |
|  | 27.06 | 68.75 | 1.608 |  |
|  | 27.20 | 68.79 | 1.570 |  |
|  | 27.34 | 68.83 | 1.525 |  |
|  | 27.47 | 68.87 | 1.439 |  |
|  | 27.62 | 68.92 | 1.445 |  |
|  | 27.75 | 68.97 | 1.402 |  |
|  | 27.89 | 69.01 | 1.355 |  |
|  | 28.04 | 69.05 | 1.306 |  |
|  | 28.16 | 69.10 | 1.264 |  |
|  | 28.30 | 69.14 | 1.205 |  |
|  | 28.43 | 69.19 | 1.165 |  |
|  | 28.57 | 69.24 | 1.114 |  |
|  | 28.71 | 69.28 | 1.069 |  |
|  | 28.85 | 69.33 | 1.018 |  |
|  | 29.98 | 69.37 | 0.973 |  |
|  | 29.16 | 69.41 | 0.923 |  |
|  | 29.30 | 69.47 | 0.907 | 0.863 |

Table A.9. Cross section water surface data for $1: 1$ smooth training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 3 |  | recorder |  | RW |  |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| Date | $7 / 6 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | $\mathrm{y}=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  |  | comments |
|  | 24.87 | 67.98 | 2.320 |  |  |  |
|  | 24.87 | 68.10 | 2.312 |  |  |  |
|  | 24.87 | 68.20 | 2.307 |  |  |  |
|  | 24.87 | 68.30 | 2.307 |  |  |  |


|  | 24.87 | 68.60 | 2.298 |
| :---: | :---: | :---: | :---: |
|  | 24.87 | 68.80 | 2.298 |
|  | 24.87 | 69.00 | 2.297 |
|  | 24.87 | 71.00 | 2.297 |
|  | 24.87 | 73.00 | 2.300 |
|  | 24.87 | 75.20 | 2.301 |
|  | 24.87 | 77.00 | 2.300 |
|  | 24.87 | 79.00 | 2.298 |
|  | 24.87 | 81.00 | 2.297 |
|  | 24.87 | 81.40 | 2.297 |
|  | 24.87 | 81.60 | 2.298 |
|  | 24.87 | 81.80 | 2.298 |
|  | 24.87 | 82.00 | 2.302 |
|  | 24.87 | 82.20 | 2.305 |
|  | 24.87 | 82.30 | 2.311 |
|  | 24.87 | 82.41 | 2.321 |
|  | 25.44 | 68.11 | 2.211 |
|  | 25.44 | 68.20 | 2.189 |
|  | 25.435 | 68.40 | 2.145 |
|  | 25.435 | 68.60 | 2.088 |
|  | 25.435 | 68.80 | 2.063 |
|  | 25.435 | 69.00 | 2.057 |
|  | 25.435 | 71.00 | 2.055 |
|  | 25.435 | 73.00 | 2.057 |
|  | 25.435 | 75.20 | 2.056 |
|  | 25.435 | 77.00 | 2.056 |
|  | 25.435 | 79.00 | 2.057 |
|  | 25.435 | 81.00 | 2.060 |
|  | 25.435 | 81.40 | 2.059 |
|  | 25.435 | 81.60 | 2.068 |
|  | 25.435 | 81.80 | 2.092 |
|  | 25.435 | 82.00 | 2.142 |
|  | 25.435 | 82.10 | 2.165 |
|  | 25.435 | 82.20 | 2.188 |
|  | 25.435 | 82.30 | 2.212 |
|  | 26.5 | 68.56 | 1.796 |
|  | 26.5 | 68.70 | 1.786 |
|  | 26.5 | 68.80 | 1.786 |
|  | 26.5 | 68.90 | 1.783 |


|  | 26.5 | 69.00 | 1.766 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 26.5 | 69.10 | 1.718 |  |
|  | 26.5 | 69.30 | 1.704 |  |
|  | 26.5 | 69.50 | 1.678 |  |
|  | 26.5 | 71.00 | 1.664 |  |
|  | 26.5 | 73.00 | 1.662 |  |
|  | 26.5 | 75.20 | 1.663 |  |
|  | 26.5 | 77.00 | 1.664 |  |
|  | 26.5 | 79.00 | 1.665 |  |
|  | 26.5 | 80.60 | 1.671 |  |
|  | 26.5 | 80.80 | 1.675 |  |
|  | 26.5 | 81.00 | 1.683 |  |
|  | 26.5 | 81.20 | 1.697 |  |
|  | 26.5 | 81.30 | 1.709 |  |
|  | 26.5 | 81.40 | 1.746 |  |
|  | 26.5 | 81.50 | 1.797 |  |
|  | 26.5 | 81.60 | 1.795 |  |
|  | 26.5 | 81.70 | 1.797 |  |
|  | 26.5 | 81.88 | 1.818 |  |
|  | 27.61 | 68.92 | 1.447 |  |
|  | 27.61 | 69.00 | 1.436 |  |
|  | 27.61 | 69.10 | 1.420 |  |
|  | 27.61 | 69.20 | 1.405 |  |
|  | 27.61 | 69.30 | 1.385 |  |
|  | 27.61 | 69.40 | 1.400 |  |
|  | 27.61 | 69.50 | 1.367 |  |
|  | 27.61 | 69.60 | 1.340 |  |
|  | 27.61 | 69.70 | 1.327 |  |
|  | 27.61 | 69.89 | 1.322 |  |
|  | 27.61 | 71.00 | 2.282 |  |
|  | 27.61 | 73.00 | 1.277 |  |
|  | 27.61 | 75.20 | 1.278 |  |
|  | 27.61 | 77.00 | 1.278 |  |
|  | 27.61 | 79.00 | 1.277 |  |
|  | 27.61 | 80.60 | 1.317 |  |
|  | 27.61 | 80.70 | 1.324 |  |
|  | 27.61 | 80.80 | 1.334 |  |
|  | 27.61 | 80.90 | 1.349 |  |
|  | 27.61 | 81.00 | 1.387 |  |


|  | 27.61 | 81.10 | 1.396 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 27.61 | 81.25 | 1.399 |  |
|  | 27.61 | 81.30 | 1.410 |  |
|  | 27.61 | 81.52 | 1.451 |  |
|  | 28.69 | 69.27 | 1.075 |  |
|  | 28.69 | 69.40 | 1.058 |  |
|  | 28.69 | 69.50 | 1.050 |  |
|  | 28.69 | 69.60 | 1.042 |  |
|  | 28.69 | 69.70 | 1.039 |  |
|  | 28.69 | 69.80 | 1.010 |  |
|  | 28.69 | 69.90 | 1.000 |  |
|  | 28.69 | 70.00 | 0.987 |  |
|  | 28.69 | 71.00 | 0.928 |  |
|  | 28.69 | 73.00 | 0.915 |  |
|  | 28.69 | 75.20 | 0.914 |  |
|  | 28.69 | 77.00 | 0.909 |  |
|  | 28.69 | 79.00 | 0.920 |  |
|  | 28.69 | 80.00 | 0.946 |  |
|  | 28.69 | 80.20 | 0.960 |  |
|  | 28.69 | 80.40 | 0.992 |  |
|  | 28.69 | 80.50 | 0.997 |  |
|  | 28.69 | 80.60 | 1.000 |  |
|  | 28.69 | 80.70 | 1.016 |  |
|  | 28.69 | 80.80 | 1.015 |  |
|  | 28.69 | 80.90 | 1.041 |  |
|  | 28.69 | 81.00 | 1.057 |  |
|  | 28.69 | 81.20 | 1.100 |  |
|  | 29.115 | 69.41 | 0.928 |  |
|  | 29.115 | 69.60 | 0.910 |  |
|  | 29.115 | 69.70 | 0.908 |  |
|  | 29.115 | 69.80 | 0.879 |  |
|  | 29.115 | 69.90 | 0.867 |  |
|  | 29.115 | 70.00 | 0.864 |  |
|  | 29.115 | 71.00 | 0.806 |  |
|  | 29.115 | 73.00 | 0.778 |  |
|  | 29.115 | 75.20 | 0.777 |  |
|  | 29.115 | 77.00 | 0.779 |  |
|  | 29.115 | 79.00 | 0.789 |  |
|  | 29.115 | 80.00 | 0.822 |  |


|  | 29.115 | 80.20 | 0.840 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 29.115 | 80.40 | 0.855 |  |
|  | 29.115 | 80.60 | 0.860 |  |
|  | 29.115 | 80.70 | 0.888 |  |
|  | 29.115 | 80.8 | 0.908 |  |
|  | 29.115 | 80.95 | 0.916 |  |
|  | 29.115 | 81.07 | 0.955 |  |

Table A.10. Centerline water surface data for $1: 1$ smooth training walls $\mathrm{q}=0.039 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 4 |  | recorder | RW |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | 7/9/2007 |  | $\begin{aligned} & \text { BM-0 } \\ & \text { rd. } \end{aligned}$ | $x=24.68$ | 65.02 | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | $\mathrm{x}$ | y | z |  |  | comments |
| 10:44 | 12.00 | 75.20 | 2.322 | Centerline |  |  |
|  | 14.00 | 75.20 | 2.321 |  |  |  |
|  | 16.00 | 75.20 | 2.321 |  |  |  |
|  | 18.00 | 75.20 | 2.322 |  |  |  |
|  | 20.00 | 75.20 | 2.320 |  |  |  |
|  | 22.00 | 75.20 | 2.318 |  |  |  |
|  | 24.00 | 75.20 | 2.302 |  |  |  |
|  | 24.20 | 75.20 | 2.300 |  |  |  |
|  | 24.40 | 75.20 | 2.300 |  |  |  |
|  | 24.65 | 75.20 | 2.299 |  |  |  |
|  | 24.76 | 75.20 | 2.292 |  |  |  |
|  | 24.78 | 75.20 | 2.282 |  |  |  |
|  | 24.87 | 75.20 | 2.278 | Crest |  |  |
|  | 25.10 | 75.20 | 2.260 |  |  |  |
|  | 25.30 | 75.20 | 2.166 |  |  |  |
|  | 25.42 | 75.20 | 2.074 |  |  |  |
|  | 25.55 | 75.20 | 2.026 |  |  |  |
|  | 25.70 | 75.20 | 1.976 |  |  |  |
|  | 25.83 | 75.20 | 1.924 |  |  |  |
|  | 25.97 | 75.20 | 1.875 |  |  |  |
|  | 26.11 | 75.20 | 1.821 |  |  |  |
|  | 26.24 | 75.20 | 1.773 |  |  |  |
|  | 26.39 | 75.20 | 1.729 |  |  |  |


|  | 26.51 | 75.20 | 1.678 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 26.65 | 75.20 | 1.628 |  |
|  | 26.79 | 75.20 | 1.583 |  |
|  | 26.93 | 75.20 | 1.535 |  |
|  | 27.06 | 75.20 | 1.488 |  |
|  | 27.20 | 75.20 | 1.445 |  |
|  | 27.34 | 75.20 | 1.405 |  |
|  | 27.47 | 75.20 | 1.348 |  |
|  | 27.62 | 75.20 | 1.256 |  |
|  | 27.75 | 75.20 | 1.213 |  |
|  | 27.89 | 75.20 | 1.172 |  |
|  | 28.04 | 75.20 | 1.120 |  |
|  | 28.16 | 75.20 | 1.078 |  |
|  | 28.30 | 75.20 | 1.024 |  |
|  | 28.43 | 75.20 | 0.986 |  |
|  | 28.57 | 75.20 | 0.941 |  |
|  | 28.71 | 75.20 | 0.891 |  |
|  | 28.85 | 75.20 | 0.858 |  |
|  | 28.98 | 75.20 | 0.802 |  |
|  | 29.13 | 75.20 | 0.752 |  |
|  | 29.16 | 75.20 | 0.750 |  |
|  | 29.30 | 75.20 | 0.706 |  |
|  | 29.60 | 75.20 | 0.718 |  |
|  | 29.90 | 75.20 | 0.716 |  |
|  | 30.21 | 75.20 | 0.711 |  |
|  | 30.50 | 75.20 | 0.714 |  |

Table A.11. Run-up water surface data for $1: 1$ smooth training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 4 |  | recorder | RW | AB |  |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| Date | $7 / 9 / 2007$ |  | BM-0 <br> r. | $\mathrm{x}=24.68$ | 65.02 | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  |  | comments |
|  | 23.84 | 67.98 | 2.300 |  |  |  |
|  | 24.00 | 67.97 | 2.319 |  |  |  |
|  | 24.20 | 67.97 | 2.307 |  |  |  |
|  | 24.40 | 67.98 | 2.303 |  |  |  |


| 24.65 | 68.00 | 2.298 |
| :---: | :---: | :---: |
| 24.76 | 68.01 | 2.292 |
| 24.78 | 68.01 | 2.287 |
| 24.87 | 68.02 | 2.282 |
| 25.10 | 68.06 | 2.247 |
| 25.30 | 68.12 | 2.198 |
| 25.42 | 68.160 | 2.163 |
| 25.55 | 68.220 | 2.117 |
| 25.70 | 68.28 | 2.062 |
| 25.83 | 68.34 | 2.007 |
| 25.97 | 68.40 | 1.951 |
| 26.11 | 68.46 | 1.894 |
| 26.24 | 68.51 | 1.843 |
| 26.39 | 68.57 | 1.785 |
| 26.51 | 68.61 | 1.744 |
| 26.65 | 68.66 | 1.700 |
| 26.79 | 68.700 | 1.655 |
| 26.93 | 68.75 | 1.611 |
| 27.06 | 68.79 | 1.576 |
| 27.20 | 68.83 | 1.534 |
| 27.34 | 68.87 | 1.495 |
| 27.47 | 68.90 | 1.461 |
| 27.62 | 68.95 | 1.415 |
| 27.75 | 68.98 | 1.391 |
| 27.89 | 69.02 | 1.347 |
| 28.04 | 69.06 | 1.305 |
| 28.16 | 69.12 | 1.241 |
| 28.30 | 69.16 | 1.191 |
| 28.43 | 69.21 | 1.148 |
| 28.57 | 69.26 | 1.095 |
| 28.71 | 69.30 | 1.046 |
| 28.85 | 69.35 | 0.997 |
| 28.98 | 69.39 | 0.957 |
| 29.13 | 69.42 | 0.913 |
| 29.16 | 69.45 | 0.891 |
| 29.30 | 69.48 | 0.855 |
| 29.60 | 69.56 | 0.759 |
| 29.90 | 69.60 | 0.719 |
| 30.21 | 69.59 | 0.722 |


|  | 30.50 | 69.59 | 0.727 |
| :--- | :--- | :--- | :--- |

Table A.12. Cross section water surface data for $1: 1$ smooth training walls $q=0.039$ $\mathrm{m}^{2} / \mathrm{s}$.

| Run \# | 4 |  | recorder | RW |  |  |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $7 / 9 / 2007$ |  | BM-0 <br> rd. | $x=24.68$ | 65.02 | $\mathrm{z}=2.873$ |


| time | x <br> ft | y <br> ft | z <br> ft |  |
| :---: | :---: | :---: | :---: | :--- |
|  | 24.87 | 68.02 | 2.280 |  |
|  | 24.87 | 68.20 | 2.267 |  |
|  | 24.87 | 68.40 | 2.260 |  |
|  | 24.87 | 68.60 | 2.257 |  |
|  | 24.87 | 68.80 | 2.258 |  |
|  | 24.87 | 69.00 | 2.257 |  |
|  | 24.87 | 71.00 | 2.258 |  |
|  | 24.87 | 73.00 | 2.259 |  |
|  | 24.87 | 75.20 | 2.259 |  |
|  | 24.87 | 77.00 | 2.258 |  |
|  | 24.87 | 79.00 | 2.259 |  |
|  | 24.87 | 81.00 | 2.257 |  |
|  | 24.87 | 81.40 | 2.257 |  |
|  | 24.87 | 81.60 | 2.257 |  |
|  | 24.87 | 81.80 | 2.259 |  |
|  | 24.87 | 82.00 | 2.260 |  |
|  | 24.87 | 82.20 | 2.265 |  |
|  | 24.87 | 82.37 | 2.279 |  |
|  | 24.44 | 68.17 | 2.156 |  |
|  | 24.44 | 68.30 | 2.129 |  |
|  | 24.44 | 68.50 | 2.080 |  |
|  | 24.44 | 68.70 | 2.033 |  |
|  | 24.44 | 68.90 | 2.021 |  |
|  | 24.44 | 69.00 | 2.019 |  |
|  | 24.44 | 71.00 | 2.019 |  |
|  | 24.44 | 73.00 | 2.019 |  |
|  | 24.44 | 75.20 | 2.019 |  |
|  | 24.44 | 77.00 | 2.019 |  |
|  |  |  |  |  |
|  | 2 |  |  |  |
|  | 2 |  |  |  |
|  | 2 |  |  |  |


|  | 24.44 | 79.00 | 2.020 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 24.44 | 81.00 | 2.022 |  |
|  | 24.44 | 81.50 | 2.025 |  |
|  | 24.44 | 81.70 | 2.036 |  |
|  | 24.44 | 81.90 | 2.072 |  |
|  | 24.44 | 82.10 | 2.123 |  |
|  | 24.44 | 82.24 | 2.155 |  |
|  | 26.5 | 68.61 | 1.747 |  |
|  | 26.5 | 68.70 | 1.742 |  |
|  | 26.5 | 68.80 | 1.741 |  |
|  | 26.5 | 68.90 | 1.733 |  |
|  | 26.5 | 69.00 | 1.727 |  |
|  | 26.5 | 69.10 | 1.671 |  |
|  | 26.5 | 69.10 | 1.672 |  |
|  | 26.5 | 71.00 | 1.640 |  |
|  | 26.5 | 73.00 | 1.638 |  |
|  | 26.5 | 75.20 | 1.639 |  |
|  | 26.5 | 77.00 | 1.640 |  |
|  | 26.5 | 79.00 | 1.638 |  |
|  | 26.5 | 81.00 | 1.651 |  |
|  | 26.5 | 81.38 | 1.692 |  |
|  | 26.5 | 81.50 | 1.744 |  |
|  | 26.5 | 81.70 | 1.748 |  |
|  | 26.5 | 81.82 | 1.761 |  |
|  | 27.61 | 68.93 | 1.440 |  |
|  | 27.61 | 68.97 | 1.403 |  |
|  | 27.61 | 69.10 | 1.385 |  |
|  | 27.61 | 69.20 | 1.364 |  |
|  | 27.61 | 69.30 | 1.332 |  |
|  | 27.61 | 69.40 | 1.344 |  |
|  | 27.61 | 69.50 | 1.328 |  |
|  | 27.61 | 71.00 | 1.272 |  |
|  | 27.61 | 73.00 | 1.250 |  |
|  | 27.61 | 75.20 | 1.255 |  |
|  | 27.61 | 77.00 | 1.259 |  |
|  | 27.61 | 79.00 | 1.260 |  |
|  | 27.61 | 80.70 | 1.285 |  |
|  | 27.61 | 80.80 | 1.297 |  |
|  | 27.61 | 80.90 | 1.312 |  |


|  | 27.61 | 81.00 | 1.332 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 27.61 | 81.30 | 1.370 |  |
|  | 27.61 | 81.47 | 1.403 |  |
|  | 29.115 | 69.42 | 0.914 |  |
|  | 29.115 | 69.47 | 0.880 |  |
|  | 29.115 | 69.60 | 0.870 |  |
|  | 29.115 | 69.90 | 0.837 |  |
|  | 29.115 | 70.20 | 0.822 |  |
|  | 29.115 | 70.50 | 0.797 |  |
|  | 29.115 | 71.00 | 0.782 |  |
|  | 29.115 | 73.00 | 0.760 |  |
|  | 29.115 | 75.20 | 0.750 |  |
|  | 29.115 | 77.00 | 0.750 |  |
|  | 29.115 | 79.00 | 0.760 |  |
|  | 29.115 | 80.20 | 0.798 |  |
|  | 29.115 | 80.60 | 0.812 |  |
|  | 29.115 | 80.80 | 0.861 |  |
|  | 29.115 | 81.01 | 0.884 |  |
|  | 29.115 | 81.04 | 0.916 |  |
|  |  |  |  |  |

Table A.13. Centerline water surface data for $1: 1$ stepped training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s}$.


|  | 27.34 | 75.20 | 1.403 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 27.62 | 75.20 | 1.308 |  |
|  | 27.89 | 75.20 | 1.215 |  |
|  | 28.16 | 75.20 | 1.123 |  |
|  | 28.43 | 75.20 | 1.027 |  |
|  | 28.71 | 75.20 | 0.934 |  |
|  | 28.98 | 75.20 | 0.839 |  |
|  | 29.16 | 75.20 | 0.786 |  |
|  | 25.83 | 75.20 | 1.958 |  |
|  | 25.97 | 75.20 | 1.900 |  |
|  | 26.11 | 75.20 | 1.852 |  |
|  | 26.25 | 75.20 | 1.800 |  |
|  | 26.39 | 75.20 | 1.745 |  |
|  | 26.52 | 75.20 | 1.698 |  |
|  | 26.65 | 75.20 | 1.648 |  |
|  | 26.79 | 75.20 | 1.599 |  |
|  | 26.93 | 75.20 | 1.551 |  |
|  | 27.06 | 75.20 | 1.514 |  |
|  | 27.20 | 75.20 | 1.458 |  |
|  | 27.34 | 75.20 | 1.402 |  |
|  | 27.47 | 75.20 | 1.359 |  |
|  | 27.62 | 75.20 | 1.310 |  |
|  | 27.75 | 75.20 | 1.264 |  |
|  | 27.89 | 75.20 | 1.218 |  |
|  | 28.04 | 75.20 | 1.169 |  |
|  | 28.16 | 75.20 | 1.125 |  |
|  | 28.30 | 75.20 | 1.078 |  |
|  | 28.43 | 75.20 | 1.030 |  |
|  | 28.57 | 75.20 | 0.982 |  |
|  | 28.71 | 75.20 | 0.934 |  |
|  | 28.85 | 75.20 | 0.886 |  |
|  | 28.98 | 75.20 | 0.847 |  |
|  | 29.13 | 75.20 | 0.794 |  |
|  | 29.16 | 75.20 | 0.783 |  |
|  | 29.30 | 75.20 | 0.752 |  |
|  | 29.60 | 75.20 | 0.747 |  |
|  | 29.90 | 75.20 | 0.762 |  |
|  | 30.21 | 75.20 | 0.770 |  |
|  | 30.50 | 75.20 | 0.765 |  |

Table A.14. Run-up water surface data for $1: 1$ stepped training walls $\mathrm{q}=0.078 \mathrm{~m}^{2} / \mathrm{s}$.


|  | 28.43 | 68.60 | 1.776 |  |
| :--- | :--- | ---: | ---: | :--- |
|  | 28.57 | 68.60 | 1.772 |  |
|  | 28.71 | 68.65 | 1.722 |  |
|  | 28.85 | 68.68 | 1.684 |  |
|  | 28.98 | 68.68 | 1.685 |  |
|  | 29.13 | 68.73 | 1.635 |  |
|  | 29.16 | 68.73 | 1.638 |  |
|  | 29.30 | 68.77 | 1.587 |  |
|  | 29.60 | 68.82 | 1.546 |  |
|  | 29.90 | 68.91 | 1.453 |  |
|  | 30.21 | 69.00 | 1.361 |  |
|  | 30.50 | 69.09 | 1.275 |  |
|  | 30.21 | 69.55 | 0.767 |  |
|  | 30.50 | 69.55 | 0.767 |  |

Table A.15. Cross section water surface data for $1: 1$ stepped training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 5 |  | recorder | RW |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | 7/24/2007 |  | BM-0 rd. | $\mathrm{x}=24.68$ | 65.02 | $\mathrm{z}=2.873$ |
| time | $\begin{array}{r} \mathrm{x} \\ \mathrm{ft} \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{y} \\ \mathrm{ft} \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{z} \\ \mathrm{ft} \\ \hline \end{array}$ |  |  | comments |
|  | 24.87 | 67.93 | 2.385 |  |  |  |
|  | 24.87 | 68.01 | 2.378 |  |  |  |
|  | 24.87 | 68.06 | 2.376 |  |  |  |
|  | 24.87 | 68.16 | 2.372 |  |  |  |
|  | 24.87 | 68.26 | 2.367 |  |  |  |
|  | 24.87 | 68.40 | 2.362 |  |  |  |
|  | 24.87 | 69.00 | 2.361 |  |  |  |
|  | 24.87 | 71.00 | 2.362 |  |  |  |
|  | 24.87 | 73.00 | 2.363 |  |  |  |
|  | 24.87 | 75.20 | 2.363 |  |  |  |
|  | 24.87 | 77.00 | 2.362 |  |  |  |
|  | 24.87 | 79.00 | 2.364 |  |  |  |
|  | 24.87 | 81.00 | 2.359 |  |  |  |
|  | 24.87 | 81.80 | 2.362 |  |  |  |
|  | 24.87 | 82.00 | 2.362 |  |  |  |
|  | 24.87 | 82.20 | 2.366 |  |  |  |


|  | 24.87 | 82.47 | 2.383 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 25.44 | 67.94 | 2.395 |  |
|  | 25.44 | 68.01 | 2.350 |  |
|  | 25.44 | 68.11 | 2.282 |  |
|  | 25.44 | 68.22 | 2.257 |  |
|  | 25.44 | 68.32 | 2.232 |  |
|  | 25.44 | 68.44 | 2.203 |  |
|  | 25.435 | 68.60 | 2.160 |  |
|  | 25.435 | 68.80 | 2.134 |  |
|  | 25.435 | 69.00 | 2.120 |  |
|  | 25.435 | 71.00 | 2.118 |  |
|  | 25.435 | 73.00 | 2.118 |  |
|  | 25.435 | 75.20 | 2.120 |  |
|  | 25.435 | 77.00 | 2.118 |  |
|  | 25.435 | 79.00 | 2.119 |  |
|  | 25.435 | 81.00 | 2.123 |  |
|  | 25.435 | 81.20 | 2.134 |  |
|  | 25.435 | 81.60 | 2.141 |  |
|  | 25.435 | 81.80 | 2.163 |  |
|  | 25.435 | 82.00 | 2.205 |  |
|  | 25.435 | 82.20 | 2.253 |  |
| 13:59 | 25.435 | 82.36 | 2.387 |  |
| 14:34 | 26.5 | 67.92 | 2.392 |  |
|  | 26.5 | 68.11 | 2.257 |  |
|  | 26.5 | 68.22 | 2.159 |  |
|  | 26.5 | 68.32 | 2.068 |  |
|  | 26.5 | 68.43 | 1.980 |  |
|  | 26.5 | 68.53 | 1.898 |  |
|  | 26.5 | 68.63 | 1.875 |  |
|  | 26.5 | 68.72 | 1.862 |  |
|  | 26.5 | 68.80 | 1.861 |  |
|  | 26.5 | 68.93 | 1.855 |  |
|  | 26.5 | 69.08 | 1.778 |  |
|  | 26.5 | 69.30 | 1.734 |  |
|  | 26.5 | 71.00 | 1.702 |  |
|  | 26.5 | 73.00 | 1.700 |  |
|  | 26.5 | 75.20 | 1.703 |  |
|  | 26.5 | 77.00 | 1.702 |  |
|  | 26.5 | 79.00 | 1.703 |  |


|  | 26.5 | 81.00 | 1.727 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 26.5 | 81.33 | 1.773 |  |
|  | 26.5 | 81.42 | 1.800 |  |
|  | 26.5 | 81.54 | 1.865 |  |
|  | 26.5 | 81.70 | 1.872 |  |
|  | 26.5 | 81.90 | 1.900 |  |
| 14:44 | 26.5 | 82.01 | 1.938 |  |
|  | 27.61 | 67.94 | 2.385 |  |
|  | 27.61 | 68.21 | 2.157 |  |
|  | 27.61 | 68.37 | 2.010 |  |
|  | 27.61 | 68.52 | 1.884 |  |
|  | 27.61 | 68.62 | 1.798 |  |
|  | 27.61 | 68.76 | 1.662 |  |
|  | 27.61 | 68.89 | 1.547 |  |
|  | 27.61 | 68.99 | 1.498 |  |
|  | 27.61 | 69.11 | 1.481 |  |
|  | 27.61 | 69.28 | 1.470 |  |
|  | 27.61 | 69.42 | 1.478 |  |
|  | 27.61 | 69.57 | 1.385 |  |
|  | 27.61 | 69.80 | 1.351 |  |
|  | 27.61 | 71.00 | 1.317 |  |
|  | 27.61 | 73.00 | 1.307 |  |
|  | 27.61 | 75.20 | 1.310 |  |
|  | 27.61 | 77.00 | 1.309 |  |
|  | 27.61 | 79.00 | 1.313 |  |
|  | 27.61 | 80.50 | 1.346 |  |
|  | 27.61 | 80.87 | 1.395 |  |
|  | 27.61 | 81.02 | 1.487 |  |
|  | 27.61 | 81.20 | 1.475 |  |
|  | 27.61 | 81.40 | 1.484 |  |
| 14:56 | 27.61 | 81.60 | 1.520 |  |
|  | 28.69 | 67.96 | 2.378 |  |
|  | 28.69 | 68.16 | 2.194 |  |
|  | 28.69 | 68.36 | 2.004 |  |
|  | 28.69 | 68.55 | 1.823 |  |
|  | 28.69 | 68.64 | 1.732 |  |
|  | 28.69 | 68.74 | 1.658 |  |
|  | 28.69 | 68.83 | 1.555 |  |
|  | 28.69 | 68.94 | 1.464 |  |


|  | 28.69 | 69.03 | 1.367 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 28.69 | 69.17 | 1.246 |  |
|  | 28.69 | 69.28 | 1.176 |  |
|  | 28.69 | 69.47 | 1.126 |  |
|  | 28.69 | 69.70 | 1.083 |  |
|  | 28.69 | 69.94 | 1.065 |  |
|  | 28.69 | 70.10 | 1.013 |  |
|  | 28.69 | 71.00 | 0.955 |  |
|  | 28.69 | 73.00 | 0.938 |  |
|  | 28.69 | 75.20 | 0.941 |  |
|  | 28.69 | 77.00 | 0.943 |  |
|  | 28.69 | 79.00 | 0.955 |  |
|  | 28.69 | 80.00 | 0.993 |  |
|  | 28.69 | 80.30 | 1.019 |  |
|  | 28.69 | 80.63 | 1.092 |  |
|  | 28.69 | 80.90 | 1.098 |  |
|  | 28.69 | 81.10 | 1.117 |  |
| $15: 16$ | 28.69 | 81.27 | 1.163 |  |

Table A.16. Centerline water surface data for $1: 1$ stepped training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 6 |  | recorder | RW |  |  |
| :---: | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $7 / 25 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | y <br> $=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  | comments |  |
|  | 24.87 | 75.20 | 2.317 | Centerline |  |  |
|  | 25.44 | 75.20 | 2.070 |  |  |  |
|  | 26.50 | 75.20 | 1.673 |  |  |  |
|  | 27.61 | 75.20 | 1.282 |  |  |  |
|  | 28.69 | 75.20 | 0.915 |  |  |  |
|  | 29.15 | 75.20 | 0.773 |  |  |  |

Table A.17. Run-up water surface data for $1: 1$ stepped training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 6 |  | recorder | RW |  |  |
| :--- | ---: | ---: | :--- | :--- | ---: | :--- |
| Date | $7 / 25 / 2007$ |  | BM-0 <br> rd. | $x=24.68$ | 65.02 | $\mathrm{z}=2.873$ |


| time | $\begin{gathered} \mathrm{x} \\ \mathrm{ft} \end{gathered}$ | $\begin{array}{r} \mathrm{y} \\ \mathrm{ft} \\ \hline \end{array}$ | $\begin{gathered} \mathrm{z} \\ \mathrm{ft} \end{gathered}$ | comments |
| :---: | :---: | :---: | :---: | :---: |
|  | 24.40 | 67.94 | 2.375 |  |
|  | 24.65 | 67.98 | 2.350 |  |
|  | 24.76 | 67.99 | 2.345 |  |
|  | 24.87 | 68.01 | 2.339 |  |
|  | 25.10 | 68.20 | 2.341 |  |
|  | 25.30 | 68.06 | 2.301 |  |
|  | 25.42 | 68.06 | 2.304 |  |
|  | 25.55 | 68.09 | 2.259 |  |
|  | 25.70 | 68.120 | 2.264 |  |
|  | 25.83 | 68.170 | 2.216 |  |
|  | 25.97 | 68.22 | 2.171 |  |
|  | 26.11 | 68.22 | 2.167 |  |
|  | 26.25 | 68.27 | 2.120 |  |
|  | 26.39 | 68.27 | 2.114 |  |
|  | 26.52 | 68.32 | 2.072 |  |
|  | 26.65 | 68.32 | 2.067 |  |
|  | 26.79 | 68.37 | 2.023 |  |
|  | 26.93 | 68.42 | 1.976 |  |
|  | 27.06 | 68.420 | 1.972 |  |
|  | 27.20 | 68.47 | 1.928 |  |
|  | 27.33 | 68.52 | 1.886 |  |
|  | 27.47 | 68.52 | 1.898 |  |
|  | 27.62 | 68.57 | 1.846 |  |
|  | 27.75 | 68.57 | 1.842 |  |
|  | 27.89 | 68.61 | 1.800 |  |
|  | 28.03 | 68.61 | 1.792 |  |
|  | 28.16 | 68.61 | 1.788 |  |
|  | 28.30 | 68.65 | 1.731 |  |
|  | 28.43 | 68.69 | 1.695 |  |
|  | 28.57 | 68.71 | 1.681 |  |
|  | 28.71 | 68.74 | 1.642 |  |
|  | 28.85 | 68.79 | 1.588 |  |
|  | 28.98 | 68.83 | 1.551 |  |
|  | 29.12 | 68.83 | 1.546 |  |
|  | 29.16 | 68.83 | 1.541 |  |
|  | 29.30 | 68.87 | 1.497 |  |


|  | 29.60 | 68.91 | 1.448 |  |
| ---: | ---: | ---: | ---: | :--- |
|  | 29.90 | 68.96 | 1.400 |  |
|  | 30.21 | 69.00 | 1.353 |  |
|  | 30.50 | 69.07 | 1.285 |  |
|  | 30.8 | 69.19 | 1.17 |  |
|  | 31.10 | 69.28 | 1.084 |  |
|  | 31.40 | 69.37 | 1.002 |  |

Table A.18. Cross section water surface data for $1: 1$ stepped training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s}$.


|  | 25.435 | 68.50 | 2.135 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 25.435 | 68.60 | 2.110 |  |
|  | 25.435 | 68.70 | 2.091 |  |
|  | 25.435 | 69.00 | 2.073 |  |
|  | 25.435 | 71.00 | 2.071 |  |
|  | 25.435 | 73.00 | 2.072 |  |
|  | 25.435 | 75.20 | 2.072 |  |
|  | 25.435 | 77.00 | 2.073 |  |
|  | 25.435 | 79.00 | 2.075 |  |
|  | 25.435 | 81.00 | 2.077 |  |
|  | 25.435 | 81.85 | 2.121 |  |
|  | 25.435 | 82.10 | 2.184 |  |
|  | 25.435 | 82.31 | 2.230 |  |
| 10:03 | 26.5 | 68.01 | 2.347 |  |
|  | 26.5 | 68.22 | 2.160 |  |
|  | 26.5 | 68.27 | 2.112 |  |
|  | 26.5 | 68.43 | 1.978 |  |
|  | 26.5 | 68.59 | 1.845 |  |
|  | 26.5 | 68.70 | 1.804 |  |
|  | 26.5 | 68.80 | 1.804 |  |
|  | 26.5 | 68.90 | 1.797 |  |
|  | 26.5 | 69.00 | 1.798 |  |
|  | 26.5 | 69.10 | 1.725 |  |
|  | 26.5 | 69.20 | 1.704 |  |
|  | 26.5 | 71.00 | 1.673 |  |
|  | 26.5 | 73.00 | 1.670 |  |
|  | 26.5 | 75.20 | 1.672 |  |
|  | 26.5 | 77.00 | 1.671 |  |
|  | 26.5 | 79.00 | 1.674 |  |
|  | 26.5 | 81.00 | 1.691 |  |
|  | 26.5 | 81.40 | 1.760 |  |
|  | 26.5 | 81.55 | 1.814 |  |
|  | 26.5 | 81.70 | 1.820 |  |
|  | 26.5 | 81.92 | 1.857 |  |
| 10:20 | 27.61 | 68.01 | 2.340 |  |
|  | 27.61 | 68.27 | 2.109 |  |
|  | 27.61 | 68.47 | 1.921 |  |
|  | 27.61 | 68.57 | 1.849 |  |
|  | 27.61 | 68.71 | 1.710 |  |


|  | 27.61 | 68.85 | 1.583 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 27.61 | 68.95 | 1.499 |  |
|  | 27.61 | 69.10 | 1.431 |  |
|  | 27.61 | 69.30 | 1.413 |  |
|  | 27.61 | 69.50 | 1.388 |  |
|  | 27.61 | 69.65 | 1.337 |  |
|  | 27.61 | 69.80 | 1.320 |  |
|  | 27.61 | 71.00 | 1.291 |  |
|  | 27.61 | 73.00 | 1.282 |  |
|  | 27.61 | 75.20 | 1.283 | Step 16 Centerline |
|  | 27.61 | 77.00 | 1.284 |  |
|  | 27.61 | 79.00 | 1.290 |  |
|  | 27.61 | 80.70 | 1.337 |  |
|  | 27.61 | 80.90 | 1.358 |  |
|  | 27.61 | 81.07 | 1.428 |  |
|  | 27.61 | 81.30 | 1.428 |  |
|  | 27.61 | 81.55 | 1.475 |  |
| 10:37 | 28.69 | 68.01 | 2.335 |  |
|  | 28.69 | 68.51 | 1.866 |  |
|  | 28.69 | 68.69 | 1.684 |  |
|  | 28.69 | 68.83 | 1.555 |  |
|  | 28.69 | 68.98 | 1.422 |  |
|  | 28.69 | 69.12 | 1.285 |  |
|  | 28.69 | 69.27 | 1.164 |  |
|  | 28.69 | 69.41 | 1.089 |  |
|  | 28.69 | 69.50 | 1.062 |  |
|  | 28.69 | 69.60 | 1.070 |  |
|  | 28.69 | 69.70 | 1.047 |  |
|  | 28.69 | 69.80 | 1.033 |  |
|  | 28.69 | 69.90 | 1.004 |  |
|  | 28.69 | 70.00 | 0.986 |  |
|  | 28.69 | 71.00 | 0.931 |  |
|  | 28.69 | 73.00 | 0.918 |  |
|  | 28.69 | 75.20 | 0.920 |  |
|  | 28.69 | 77.00 | 0.922 |  |
|  | 28.69 | 79.00 | 0.930 |  |
|  | 28.69 | 80.00 | 0.964 |  |
|  | 28.69 | 80.50 | 1.002 |  |
|  | 28.69 | 80.60 | 1.020 |  |


|  | 28.69 | 80.70 | 1.031 |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 28.69 | 80.80 | 1.030 |  |
|  | 28.69 | 80.90 | 1.052 |  |
|  | 28.69 | 81.00 | 1.073 |  |
|  | 28.69 | 81.22 | 1.117 |  |

Table A.19. Centerline water surface data for $1: 1$ stepped training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 7 |  | recorder | RW |  |  |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| Date | $7 / 31 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | 65.02 | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  |  |  |
|  | 14.00 | 75.20 | 2.379 | Centerline |  |  |
|  | 18.00 | 75.20 | 2.380 |  |  |  |
|  | 22.00 | 75.20 | 2.377 |  |  |  |
|  | 24.87 | 75.20 | 2.300 |  |  |  |
|  | 25.44 | 75.20 | 2.054 |  |  |  |
|  | 26.50 | 75.20 | 1.665 |  |  |  |
|  | 27.61 | 75.20 | 1.272 |  |  |  |
|  | 28.69 | 75.20 | 0.907 |  |  |  |
|  | 29.15 | 75.20 | 0.757 |  |  |  |

Table A.20. Run-up water surface data for $1: 1$ stepped training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 7 |  | recorder | RW |  |  |
| :---: | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $7 / 31 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | 65.02 | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  | comments |  |
|  |  |  |  |  |  |  |
|  | 24.40 | 67.98 | 2.345 |  |  |  |
|  | 24.65 | 67.99 | 2.343 |  |  |  |
|  | 24.76 | 68.01 | 2.336 |  |  |  |
|  | 24.87 | 68.05 | 2.314 |  |  |  |
|  | 25.10 | 68.08 | 2.279 |  |  |  |
|  | 25.30 | 68.13 | 2.235 |  |  |  |


|  | 25.42 | 68.16 | 2.211 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 25.55 | 68.16 | 2.212 |  |
|  | 25.70 | 68.21 | 2.173 |  |
|  | 25.83 | 68.220 | 2.165 |  |
|  | 25.97 | 68.220 | 2.160 |  |
|  | 26.11 | 68.26 | 2.118 |  |
|  | 26.25 | 68.32 | 2.075 |  |
|  | 26.39 | 68.32 | 2.068 |  |
|  | 26.52 | 68.37 | 2.021 |  |
|  | 26.65 | 68.37 | 2.020 |  |
|  | 26.79 | 68.37 | 2.014 |  |
|  | 26.93 | 68.41 | 1.970 |  |
|  | 27.06 | 68.46 | 1.921 |  |
|  | 27.20 | 68.460 | 1.920 |  |
|  | 27.33 | 68.51 | 1.883 |  |
|  | 27.47 | 68.51 | 1.875 |  |
|  | 27.62 | 68.56 | 1.833 |  |
|  | 27.75 | 68.56 | 1.829 |  |
|  | 27.89 | 68.60 | 1.785 |  |
|  | 28.03 | 68.60 | 1.783 |  |
|  | 28.16 | 68.64 | 1.738 |  |
|  | 28.30 | 68.68 | 1.688 |  |
|  | 28.43 | 68.68 | 1.685 |  |
|  | 28.57 | 68.73 | 1.643 |  |
|  | 28.71 | 68.77 | 1.595 |  |
|  | 28.85 | 68.77 | 1.588 |  |
|  | 28.98 | 68.82 | 1.540 |  |
|  | 29.12 | 68.86 | 1.492 |  |
|  | 29.16 | 68.91 | 1.463 |  |
|  | 29.30 | 68.91 | 1.448 |  |
|  | 29.60 | 68.96 | 1.402 |  |
|  | 29.90 | 69.05 | 1.306 |  |
|  | 30.20 | 69.14 | 1.221 |  |
|  | 30.50 | 69.23 | 1.129 |  |
|  | 30.80 | 69.28 | 1.085 |  |
|  | 31.1 | 69.37 | 1.003 |  |
|  | 32.00 | 69.65 | 0.725 |  |

Table A.21. Cross section water surface data for $1: 1$ stepped training walls $q=0.052$ $\mathrm{m}^{2} / \mathrm{s}$.

| Run \# | 7 |  | recorder | RW |  |  |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $7 / 27 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | 65.02 | $\mathrm{z}=2.873$ |


| time | $\begin{array}{r} \mathrm{x} \\ \mathrm{ft} \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{y} \\ \mathrm{ft} \\ \hline \end{array}$ | $\begin{gathered} \mathrm{z} \\ \mathrm{ft} \\ \hline \end{gathered}$ | comments |
| :---: | :---: | :---: | :---: | :---: |
| 9:25 | 24.87 | 67.98 | 2.343 |  |
|  | 24.87 | 68.10 | 2.311 |  |
|  | 24.87 | 68.20 | 2.308 |  |
|  | 24.87 | 68.30 | 2.305 |  |
|  | 24.87 | 68.40 | 2.304 |  |
|  | 24.87 | 68.50 | 2.300 |  |
|  | 24.87 | 69.00 | 2.299 |  |
|  | 24.87 | 71.00 | 2.299 |  |
|  | 24.87 | 73.00 | 2.301 |  |
|  | 24.87 | 75.20 | 2.301 |  |
|  | 24.87 | 77.00 | 2.300 |  |
|  | 24.87 | 79.00 | 2.300 |  |
|  | 24.87 | 81.00 | 2.299 |  |
|  | 24.87 | 81.80 | 2.301 |  |
|  | 24.87 | 81.90 | 2.301 |  |
|  | 24.87 | 82.00 | 2.302 |  |
|  | 24.87 | 82.10 | 2.305 |  |
|  | 24.87 | 82.20 | 2.306 |  |
|  | 24.87 | 82.41 | 2.318 |  |
| 9:38 | 25.44 | 68.12 | 2.260 |  |
|  | 25.44 | 68.22 | 2.194 |  |
|  | 25.435 | 68.33 | 2.170 |  |
|  | 25.435 | 68.44 | 2.141 |  |
|  | 25.435 | 68.55 | 2.103 |  |
|  | 25.435 | 68.70 | 2.075 |  |
|  | 25.435 | 68.80 | 2.066 |  |
|  | 25.435 | 69.00 | 2.058 |  |
|  | 25.435 | 71.00 | 2.057 |  |
|  | 25.435 | 73.00 | 2.058 |  |


|  | 25.435 | 75.20 | 2.058 |  |
| :--- | ---: | ---: | ---: | ---: |
|  | 25.435 | 77.00 | 2.057 |  |
|  | 25.435 | 79.00 | 2.058 |  |
|  | 25.435 | 81.00 | 2.061 |  |
|  | 25.435 | 81.95 | 2.132 |  |
|  | 25.435 | 82.29 | 2.211 |  |
| $10: 03$ | 26.5 | 68.26 | 2.113 |  |
|  | 26.5 | 68.42 | 1.977 |  |
|  | 26.5 | 68.57 | 1.856 |  |
|  | 26.5 | 68.71 | 1.782 |  |
|  | 26.5 | 68.87 | 1.778 |  |
|  | 26.5 | 68.98 | 1.770 |  |
|  | 26.5 | 69.09 | 1.712 |  |
|  | 26.5 | 71.00 | 1.663 |  |
|  | 26.5 | 73.00 | 1.660 |  |
|  | 26.5 | 75.20 | 1.661 |  |
|  | 26.5 | 77.00 | 1.663 |  |
|  | 26.5 | 79.00 | 1.662 |  |
|  | 26.5 | 81.00 | 1.678 |  |
|  | 26.5 | 81.38 | 1.728 |  |
|  | 26.5 | 81.50 | 1.795 |  |
|  | 27.5 | 81.70 | 1.795 |  |
|  | 26.5 | 81.89 | 1.818 |  |
|  | 27.61 | 75.20 | 1.277 |  |
|  | 27.00 | 1.278 |  |  |
|  | 27.61 | 68.52 | 1.877 |  |
|  | 27.61 | 68.66 | 1.751 |  |
|  | 27.61 | 68.81 | 1.622 |  |
|  | 27.61 | 68.95 | 1.493 |  |
|  | 27.61 | 69.09 | 1.417 |  |
|  | 69.20 | 1.409 |  |  |
|  | 27.61 | 69.30 | 1.392 |  |
|  | 69.45 | 1.381 |  |  |
|  | 69.58 | 1.337 |  |  |
|  | 69.70 | 1.306 |  |  |
|  | 70.80 | 1.308 |  |  |
|  | 27.00 | 1.300 |  |  |
|  | 27.00 | 1.285 |  |  |
|  | 27.60 | 1.276 |  |  |
|  | 27.61 |  |  |  |


|  | 27.61 | 79.00 | 1.280 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 27.61 | 80.80 | 1.340 |  |
|  | 27.61 | 80.91 | 1.350 |  |
|  | 27.61 | 81.08 | 1.399 |  |
|  | 27.61 | 81.20 | 1.397 |  |
|  | 27.61 | 81.40 | 1.415 |  |
|  | 27.61 | 81.52 | 1.457 |  |
| $10: 37$ | 28.69 | 68.74 | 1.643 |  |
|  | 28.69 | 68.89 | 1.503 |  |
|  | 28.69 | 69.02 | 1.386 |  |
|  | 28.69 | 69.17 | 1.245 |  |
|  | 28.69 | 69.31 | 1.121 |  |
|  | 28.69 | 69.42 | 1.072 |  |
|  | 28.69 | 69.55 | 1.053 |  |
|  | 28.69 | 69.65 | 1.041 |  |
|  | 28.69 | 69.75 | 1.012 |  |
|  | 28.69 | 69.89 | 0.978 |  |
|  | 28.69 | 70.00 | 0.975 |  |
|  | 28.69 | 71.00 | 0.917 |  |
|  | 28.69 | 73.00 | 0.913 |  |
|  | 28.69 | 75.20 | 0.911 |  |
|  | 28.69 | 77.00 | 0.905 |  |
|  | 28.69 | 79.00 | 0.919 |  |
|  | 28.69 | 80.00 | 0.953 |  |
|  | 28.69 | 80.40 | 0.980 |  |
|  | 28.69 | 80.50 | 0.996 |  |
|  | 28.69 | 80.60 | 0.998 |  |
|  | 28.69 | 80.70 | 1.016 |  |
|  | 28.69 | 80.80 | 1.008 |  |
|  | 28.69 | 80.90 | 1.037 |  |
|  | 28.69 | 81.00 | 1.055 |  |
|  | 28.69 | 81.10 | 1.059 |  |
|  | 81.20 | 1.101 |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  | 2 |  |  |  |

Table A.22. Centerline water surface data for $1: 1$ stepped training walls $\mathrm{q}=0.039 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 8 |  | recorder | RW |  |  |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $8 / 3 / 2007$ |  | BM-0 <br> rd. | $x=24.68$ | 65.02 | $z=2.873$ |


| time | x <br> ft | y <br> ft | z <br> ft |  |
| :---: | :---: | :---: | :---: | :--- |
|  | 14.00 | 75.20 | 2.322 | Centerline |
|  | 18.00 | 75.20 | 2.322 |  |
|  | 22.00 | 75.20 | 2.320 |  |
|  | 24.87 | 75.20 | 2.261 |  |
|  | 25.44 | 75.20 | 2.015 |  |
|  | 26.52 | 75.20 | 1.627 |  |
|  | 27.61 | 75.20 | 1.258 |  |
|  | 28.69 | 75.20 | 0.889 |  |
|  | 29.16 | 75.20 | 0.737 |  |
|  |  |  |  |  |

Table A.23. Run-up water surface data for $1: 1$ stepped training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s}$.


|  | 27.06 | 68.48 | 1.918 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 27.20 | 68.53 | 1.877 |  |
|  | 27.33 | 68.530 | 1.877 |  |
|  | 27.47 | 68.57 | 1.838 |  |
|  | 27.62 | 68.57 | 1.832 |  |
|  | 27.75 | 68.62 | 1.787 |  |
|  | 27.89 | 68.66 | 1.736 |  |
|  | 28.03 | 68.71 | 1.694 |  |
|  | 28.16 | 68.71 | 1.689 |  |
|  | 28.30 | 68.75 | 1.644 |  |
|  | 28.43 | 68.75 | 1.645 |  |
|  | 28.57 | 68.79 | 1.596 |  |
|  | 28.71 | 68.79 | 1.591 |  |
|  | 28.85 | 68.83 | 1.545 |  |
|  | 28.98 | 68.88 | 1.496 |  |
|  | 29.12 | 68.88 | 1.492 |  |
|  | 29.16 | 68.92 | 1.450 |  |
|  | 29.30 | 68.97 | 1.401 |  |
|  | 29.90 | 69.10 | 1.276 |  |
|  | 30.50 | 69.24 | 1.131 |  |
|  | 31.10 | 69.47 | 0.909 |  |
|  | 31.70 | 69.61 | 0.768 |  |
|  | 29.60 | 69.56 | 0.759 |  |
|  | 29.90 | 69.60 | 0.719 |  |
|  | 30.21 | 69.59 | 0.722 |  |
|  | 30.50 | 69.59 | 0.727 |  |

Table A.24. Cross section water surface data for $1: 1$ stepped training walls $q=0.039$ $\mathrm{m}^{2} / \mathrm{s}$.

| Run \# | 8 |  | recorder | RW |  |  |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| Date | $8 / 3 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | 65.02 | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x | y | z |  | comments |  |
|  | ft | ft | ft |  |  |  |
|  | 24.87 | 68.03 | 2.291 |  |  |  |
|  | 24.87 | 68.16 | 2.267 |  |  |  |
|  | 24.87 | 68.26 | 2.263 |  |  |  |


|  | 24.87 | 68.40 | 2.259 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 24.87 | 68.50 | 2.256 |  |
|  | 24.87 | 69.00 | 2.254 |  |
|  | 24.87 | 71.00 | 2.255 |  |
|  | 24.87 | 73.00 | 2.256 |  |
|  | 24.87 | 75.20 | 2.256 |  |
|  | 24.87 | 77.00 | 2.255 |  |
|  | 24.87 | 79.00 | 2.255 |  |
|  | 24.87 | 81.00 | 2.254 |  |
|  | 24.87 | 81.80 | 2.253 |  |
|  | 24.87 | 82.00 | 2.257 |  |
|  | 24.87 | 82.20 | 2.263 |  |
|  | 24.87 | 82.37 | 2.277 |  |
|  | 25.44 | 68.09 | 2.266 |  |
|  | 25.44 | 68.22 | 2.171 |  |
|  | 25.44 | 68.32 | 2.127 |  |
|  | 25.44 | 68.43 | 2.101 |  |
|  | 25.44 | 68.54 | 2.065 |  |
|  | 25.44 | 68.65 | 2.036 |  |
|  | 25.44 | 68.80 | 2.022 |  |
|  | 25.44 | 69.00 | 2.015 |  |
|  | 25.44 | 71.00 | 2.016 |  |
|  | 25.44 | 73.00 | 2.015 |  |
|  | 25.44 | 75.20 | 2.016 |  |
|  | 25.44 | 77.00 | 2.015 |  |
|  | 25.44 | 79.00 | 2.017 |  |
|  | 25.44 | 81.00 | 2.020 |  |
|  | 25.44 | 81.50 | 2.021 |  |
|  | 25.44 | 81.85 | 2.058 |  |
|  | 25.44 | 82.00 | 2.103 |  |
|  | 25.44 | 82.10 | 2.122 |  |
|  | 25.435 | 82.23 | 2.149 |  |
|  | 26.5 | 68.09 | 2.265 |  |
|  | 26.5 | 68.33 | 2.070 |  |
|  | 26.5 | 68.43 | 1.981 |  |
|  | 26.5 | 68.53 | 1.887 |  |
|  | 26.5 | 68.63 | 1.815 |  |
|  | 26.5 | 68.73 | 1.737 |  |
|  | 26.5 | 68.81 | 1.733 |  |


|  | 26.5 | 68.90 | 1.728 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 26.5 | 69.00 | 1.731 |  |
|  | 26.5 | 69.10 | 1.669 |  |
|  | 26.5 | 69.20 | 1.658 |  |
|  | 26.5 | 71.00 | 1.635 |  |
|  | 26.5 | 73.00 | 1.633 |  |
|  | 26.5 | 75.20 | 1.633 |  |
|  | 26.5 | 77.00 | 1.634 |  |
|  | 26.5 | 79.00 | 1.636 |  |
|  | 26.5 | 81.00 | 1.649 |  |
|  | 26.5 | 81.35 | 1.681 |  |
|  | 26.5 | 81.50 | 1.743 |  |
|  | 26.5 | 81.60 | 1.742 |  |
|  | 26.5 | 81.70 | 1.745 |  |
|  | 26.5 | 81.83 | 1.764 |  |
|  | 27.61 | 68.08 | 2.260 |  |
|  | 27.61 | 68.61 | 1.793 |  |
|  | 27.61 | 68.76 | 1.668 |  |
|  | 27.61 | 68.90 | 1.537 |  |
|  | 27.61 | 68.99 | 1.447 |  |
|  | 27.61 | 69.10 | 1.397 |  |
|  | 27.61 | 69.20 | 1.375 |  |
|  | 27.61 | 69.30 | 1.350 |  |
|  | 27.61 | 69.40 | 1.336 |  |
|  | 27.61 | 69.50 | 1.311 |  |
|  | 27.61 | 69.60 | 1.296 |  |
|  | 27.61 | 69.70 | 1.285 |  |
|  | 27.61 | 70.00 | 1.275 |  |
|  | 27.61 | 71.00 | 1.262 |  |
|  | 27.61 | 73.00 | 1.253 |  |
|  | 27.61 | 75.20 | 1.252 |  |
|  | 27.61 | 77.00 | 1.255 |  |
|  | 27.61 | 79.00 | 1.258 |  |
|  | 27.61 | 80.00 | 1.270 |  |
|  | 27.61 | 80.50 | 1.277 |  |
|  | 27.61 | 80.80 | 1.301 |  |
|  | 27.61 | 80.90 | 1.312 |  |
|  | 27.61 | 81.00 | 1.325 |  |
|  | 27.61 | 81.10 | 1.341 |  |


|  | 27.61 | 81.20 | 1.355 |  |
| :--- | :--- | ---: | ---: | :--- |
|  | 27.61 | 81.30 | 1.365 |  |
|  | 27.61 | 81.49 | 1.416 |  |

Table A.25. Centerline water surface data for $2: 1$ smooth training walls $\mathrm{q}=0.078 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 9 |  |  | recorder | RW |  |  |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- | :---: |
| Date | $8 / 31 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | 65.02 | $\mathrm{z}=2.873$ |  |
|  |  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  | comments |  |  |
| $13: 39$ | 12.00 | 75.20 | 2.467 | Centerline |  |  |  |
|  | 16.00 | 75.20 | 2.466 |  |  |  |  |
|  | 20.00 | 75.20 | 2.465 |  |  |  |  |
|  | 24.00 | 75.20 | 2.411 |  |  |  |  |
|  | 24.87 | 75.20 | 2.356 |  |  |  |  |
|  | 25.44 | 75.20 | 2.117 |  |  |  |  |
|  | 26.50 | 75.20 | 1.701 |  |  |  |  |
|  | 27.61 | 75.20 | 1.304 |  |  |  |  |
|  | 28.69 | 75.20 | 0.933 |  |  |  |  |
|  | 29.16 | 75.20 | 0.778 |  |  |  |  |
| $13: 43$ | 29.30 | 75.20 | 0.746 |  |  |  |  |

Table A.26. Run-up water surface data for $2: 1$ smooth training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 9 |  | recorder | BS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | 8/31/2007 |  | BM-0 rd. | $x=24.68$ | 65.02 | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | $\mathrm{x}$ | $\begin{array}{r} \mathrm{y} \\ \mathrm{ft} \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{z} \\ \mathrm{ft} \\ \hline \end{array}$ | comments |  |  |
| 13:11 | 24.00 | 68.41 | 2.377 |  |  |  |
|  | 24.40 | 68.39 | 2.384 |  |  |  |
|  | 24.76 | 68.39 | 2.382 |  |  |  |
|  | 24.87 | 68.40 | 2.376 |  |  |  |
|  | 25.10 | 68.43 | 2.357 |  |  |  |
|  | 25.30 | 68.47 | 2.337 |  |  |  |
|  | 25.42 | 68.50 | 2.325 |  |  |  |


|  | 25.55 | 68.54 | 2.306 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 25.69 | 68.58 | 2.284 |  |
|  | 25.83 | 68.62 | 2.261 |  |
|  | 25.97 | 68.680 | 2.235 |  |
|  | 26.11 | 68.740 | 2.207 |  |
|  | 26.24 | 68.80 | 2.179 |  |
|  | 26.39 | 68.86 | 2.147 |  |
|  | 26.51 | 68.93 | 2.115 |  |
|  | 26.65 | 69.01 | 2.078 |  |
|  | 26.79 | 69.09 | 2.041 |  |
|  | 26.93 | 69.17 | 1.996 |  |
|  | 27.06 | 69.26 | 1.955 |  |
|  | 27.20 | 69.34 | 1.914 |  |
|  | 27.34 | 69.440 | 1.865 |  |
|  | 27.47 | 69.57 | 1.823 |  |
| 13:23 | 27.61 | 69.61 | 1.778 |  |
|  | 27.75 | 69.69 | 1.773 |  |
|  | 27.89 | 69.78 | 1.690 |  |
|  | 28.04 | 69.87 | 1.644 |  |
|  | 28.16 | 69.94 | 1.608 |  |
|  | 28.30 | 70.03 | 1.566 |  |
|  | 28.43 | 70.08 | 1.537 |  |
|  | 28.57 | 70.18 | 1.488 |  |
|  | 28.71 | 70.25 | 1.452 |  |
|  | 28.85 | 70.33 | 1.412 |  |
|  | 28.89 | 70.36 | 1.378 |  |
|  | 29.13 | 70.49 | 1.331 |  |
|  | 29.16 | 70.51 | 1.323 |  |
|  | 29.30 | 70.59 | 1.283 |  |
|  | 29.60 | 70.76 | 1.201 |  |
|  | 29.90 | 70.93 | 1.117 |  |
| 13:32 | 30.20 | 71.00 | 1.084 |  |
|  | 31.38 | 71.82 | 0.068 |  |
|  | 30.21 | 69.00 | 1.361 |  |
|  | 30.50 | 69.09 | 1.275 |  |
|  | 30.21 | 69.55 | 0.767 |  |
|  | 30.50 | 69.55 | 0.767 |  |

Table A.27. Cross section water surface data for $2: 1$ smooth training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 9 |  | recorder | RW |  |  |
| :--- | ---: | ---: | :--- | :--- | ---: | :--- |
| Date | $8 / 31 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | 65.02 | $\mathrm{z}=2.873$ |


| time | $\begin{aligned} & \mathrm{x} \\ & \mathrm{ft} \end{aligned}$ | $\begin{aligned} & \mathrm{y} \\ & \mathrm{ft} \\ & \hline \end{aligned}$ | $\begin{gathered} \mathrm{z} \\ \mathrm{ft} \end{gathered}$ | comments |
| :---: | :---: | :---: | :---: | :---: |
| 10:12 | 24.87 | 68.41 | 2.377 |  |
|  | 24.87 | 68.50 | 2.378 |  |
|  | 24.87 | 68.60 | 2.374 |  |
|  | 24.87 | 68.70 | 2.370 |  |
|  | 24.87 | 68.80 | 2.367 |  |
|  | 24.87 | 68.90 | 2.367 |  |
|  | 24.87 | 69.00 | 2.360 |  |
|  | 24.87 | 69.50 | 2.359 |  |
|  | 24.87 | 71.00 | 2.365 |  |
|  | 24.87 | 73.00 | 2.365 |  |
|  | 24.87 | 75.20 | 2.364 |  |
|  | 24.87 | 77.00 | 2.364 |  |
|  | 24.87 | 79.00 | 2.362 |  |
|  | 24.87 | 81.00 | 2.358 |  |
|  | 24.87 | 81.50 | 2.360 |  |
|  | 24.87 | 81.80 | 2.362 |  |
|  | 24.87 | 81.90 | 2.363 |  |
|  | 24.87 | 82.00 | 2.365 |  |
|  | 24.87 | 82.10 | 2.368 |  |
|  | 24.87 | 82.20 | 2.367 |  |
|  | 24.87 | 82.30 | 2.374 |  |
|  | 24.87 | 82.47 | 2.386 |  |
| 10:33 | 25.435 | 68.50 | 2.324 |  |
|  | 25.435 | 68.60 | 2.318 |  |
|  | 25.435 | 68.70 | 2.310 |  |
|  | 25.435 | 68.80 | 2.300 |  |
|  | 25.435 | 68.90 | 2.283 |  |
|  | 25.435 | 69.00 | 2.277 |  |
|  | 25.435 | 69.10 | 2.245 |  |
|  | 25.435 | 69.20 | 2.223 |  |
|  | 25.435 | 69.30 | 2.187 |  |
|  | 25.435 | 69.40 | 2.162 |  |
|  | 25.435 | 69.50 | 2.146 |  |
|  | 25.435 | 69.60 | 2.133 |  |


|  | 25.435 | 71.00 | 2.117 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 25.435 | 73.00 | 2.118 |  |
|  | 25.435 | 75.20 | 2.120 |  |
|  | 25.435 | 77.00 | 2.117 |  |
|  | 25.435 | 79 | 2.118 |  |
|  | 25.435 | 81.00 | 2.122 |  |
|  | 25.435 | 81.50 | 2.132 |  |
|  | 25.435 | 81.60 | 2.136 |  |
|  | 25.435 | 81.70 | 2.148 |  |
|  | 25.435 | 81.80 | 2.162 |  |
|  | 25.435 | 81.90 | 2.179 |  |
|  | 25.435 | 82.00 | 2.208 |  |
|  | 25.435 | 82.10 | 2.230 |  |
|  | 25.435 | 82.20 | 2.252 |  |
|  | 25.435 | 82.38 | 2.292 |  |
| 11:00 | 26.5 | 68.92 | 2.123 |  |
|  | 26.5 | 69.10 | 2.088 |  |
|  | 26.5 | 69.20 | 2.069 |  |
|  | 26.5 | 69.30 | 2.050 |  |
|  | 26.5 | 69.40 | 2.034 |  |
|  | 26.5 | 69.50 | 2.014 |  |
|  | 26.5 | 69.60 | 1.995 |  |
|  | 26.5 | 69.70 | 1.980 |  |
|  | 26.5 | 69.80 | 1.970 |  |
|  | 26.5 | 69.90 | 1.952 |  |
|  | 26.5 | 70.00 | 1.847 |  |
|  | 26.5 | 70.10 | 1.788 |  |
|  | 26.5 | 70.20 | 1.760 |  |
|  | 26.5 | 70.50 | 1.725 |  |
|  | 26.5 | 71.00 | 1.713 |  |
|  | 26.5 | 73.00 | 1.702 |  |
|  | 26.5 | 75.20 | 1.703 |  |
|  | 26.5 | 77.00 | 1.705 |  |
|  | 26.5 | 79.00 | 1.703 |  |
|  | 26.5 | 80.50 | 1.711 |  |
|  | 26.5 | 81.00 | 1.724 |  |
|  | 26.5 | 81.10 | 1.730 |  |
|  | 26.5 | 81.20 | 1.745 |  |
|  | 26.5 | 81.30 | 1.762 |  |


|  | 26.5 | 81.40 | 1.798 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 26.5 | 81.50 | 1.857 |  |
|  | 26.5 | 81.60 | 1.864 |  |
|  | 26.5 | 81.70 | 1.866 |  |
|  | 26.5 | 82.01 | 1.938 |  |
| 11:50 | 27.61 | 69.61 | 1.780 |  |
|  | 27.61 | 69.80 | 1.751 |  |
|  | 27.61 | 70.00 | 1.721 |  |
|  | 27.61 | 70.20 | 1.692 |  |
|  | 27.61 | 70.30 | 1.676 |  |
|  | 27.61 | 70.40 | 1.659 |  |
|  | 27.61 | 70.50 | 1.647 |  |
|  | 27.61 | 70.60 | 1.640 |  |
|  | 27.61 | 70.70 | 1.613 |  |
|  | 27.61 | 70.80 | 1.563 |  |
|  | 27.61 | 70.90 | 1.405 |  |
|  | 27.61 | 71.00 | 1.383 |  |
|  | 27.61 | 71.10 | 1.375 |  |
|  | 27.61 | 71.20 | 1.363 |  |
|  | 27.61 | 71.30 | 1.356 |  |
|  | 27.61 | 71.40 | 1.346 |  |
|  | 27.61 | 72.00 | 1.321 |  |
|  | 27.61 | 73.00 | 1.305 |  |
|  | 27.61 | 75.20 | 1.305 |  |
|  | 27.61 | 77.00 | 1.306 |  |
|  | 27.61 | 79.00 | 1.311 |  |
|  | 27.61 | 80.00 | 1.325 |  |
|  | 27.61 | 80.50 | 1.345 |  |
|  | 27.61 | 80.90 | 1.400 |  |
|  | 27.61 | 81.00 | 1.481 |  |
|  | 27.61 | 81.10 | 1.465 |  |
|  | 27.61 | 81.30 | 1.475 |  |
|  | 27.61 | 81.40 | 1.478 |  |
|  | 27.61 | 81.59 | 1.517 |  |
|  | 28.69 | 70.24 | 1.460 |  |
|  | 28.69 | 70.40 | 1.432 |  |
|  | 28.69 | 70.60 | 1.405 |  |
|  | 28.69 | 70.70 | 1.391 |  |
|  | 28.69 | 70.80 | 1.375 |  |


|  | 28.69 | 70.90 | 1.363 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 71.00 | 1.347 |  |
|  | 28.69 | 71.10 | 1.332 |  |
|  | 28.69 | 71.20 | 1.325 |  |
|  | 28.69 | 71.30 | 1.313 |  |
|  | 28.69 | 71.40 | 1.269 |  |
|  | 28.69 | 71.50 | 1.260 |  |
|  | 28.69 | 71.60 | 1.227 |  |
|  | 28.69 | 71.70 | 1.164 |  |
|  | 28.69 | 71.80 | 1.078 |  |
|  | 28.69 | 71.90 | 1.061 |  |
|  | 28.69 | 72.00 | 1.010 |  |
|  | 28.69 | 72.20 | 0.996 |  |
|  | 28.69 | 72.40 | 0.981 |  |
|  | 28.69 | 73.00 | 0.950 |  |
|  | 28.69 | 75.20 | 0.937 |  |
|  | 28.69 | 77 | 0.936 |  |
|  | 28.69 | 79 | 0.947 |  |
|  | 28.69 | 80 | 0.987 |  |
|  | 28.69 | 80.2 | 1.004 |  |
|  | 28.69 | 80.3 | 1.015 |  |
|  | 28.69 | 80.4 | 1.024 |  |
|  | 28.69 | 80.5 | 1.03 |  |
|  | 28.69 | 80.6 | 1.087 |  |
|  | 28.69 | 80.7 | 1.086 |  |
|  | 28.69 | 80.8 | 1.078 |  |
|  | 28.69 | 80.9 | 1.1 |  |
|  | 28.69 | 81 | 1.108 |  |
|  | 28.69 | 81.27 | 1.162 |  |
|  | 29.155 | 70.51 | 1.325 |  |
|  | 29.155 | 70.7 | 1.284 |  |
|  | 29.155 | 70.9 | 1.26 |  |
|  | 29.155 | 71 | 1.241 |  |
|  | 29.155 | 71.1 | 1.226 |  |
|  | 29.155 | 71.2 | 1.211 |  |
|  | 29.155 | 71.3 | 1.194 |  |
|  | 29.155 | 71.4 | 1.188 |  |
|  | 29.155 | 71.5 | 1.178 |  |
|  | 29.155 | 71.6 | 1.16 |  |


|  | 29.155 | 71.7 | 1.127 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 29.155 | 71.8 | 1.08 |  |
|  | 29.155 | 71.9 | 1.036 |  |
|  | 29.155 | 72 | 0.973 |  |
|  | 29.155 | 72.1 | 0.963 |  |
|  | 29.155 | 72.3 | 0.889 |  |
|  | 29.155 | 72.5 | 0.869 |  |
|  | 29.155 | 73 | 0.8823 |  |
|  | 29.155 | 75.2 | 0.784 |  |
|  | 29.155 | 77 | 0.782 |  |
|  | 29.155 | 79 | 0.798 |  |
|  | 29.155 | 79.5 | 0.822 |  |
|  | 29.155 | 80 | 0.853 |  |
|  | 29.155 | 80.2 | 0.88 |  |
|  | 29.155 | 80.3 | 0.885 |  |
|  | 29.155 | 80.4 | 0.914 |  |
|  | 29.155 | 80.5 | 0.929 |  |
|  | 29.155 | 80.6 | 0.913 |  |
|  | 29.155 | 80.7 | 0.94 |  |
|  | 29.155 | 80.9 | 0.954 |  |
|  | 29.155 | 81 | 0.962 |  |
|  | 29.155 | 81.14 | 1.019 |  |

Table A.28. Centerline water surface data for $2: 1$ smooth training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 10 |  | recorder | RW |  |  |
| :---: | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $9 / 4 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | y <br> =65.02 | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  |  | comments |
|  | 12.00 | 75.20 | 2.405 | Centerline |  |  |
|  | 16.00 | 75.20 | 2.404 |  |  |  |
|  | 20.00 | 75.20 | 2.403 |  |  |  |
|  | 24.00 | 75.20 | 2.364 |  |  |  |
|  | 24.87 | 75.20 | 2.315 |  |  |  |
|  | 25.44 | 75.20 | 2.069 |  |  |  |
|  | 26.50 | 75.20 | 1.671 |  |  |  |
|  | 27.61 | 75.20 | 1.275 |  |  |  |


|  | 28.69 | 75.20 | 0.917 |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 29.16 | 75.20 | 0.759 |  |
|  | 29.30 | 75.20 | 0.724 |  |

Table A.29. Run-up water surface data for $2: 1$ smooth training walls $\mathrm{q}=0.060 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 10 |  | recorder | RW |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | 9/4/2007 |  | $\begin{aligned} & \hline \text { BM-0 } \\ & \text { rd. } \\ & \hline \end{aligned}$ | $x=24.68$ | 65.02 | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | $\begin{array}{r} \mathrm{x} \\ \mathrm{ft} \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{y} \\ \mathrm{ft} \end{array}$ | $\begin{array}{r} \mathrm{z} \\ \mathrm{ft} \\ \hline \end{array}$ |  |  | comments |
|  | 24.40 | 68.47 | 2.348 |  |  |  |
|  | 24.76 | 68.48 | 2.342 |  |  |  |
|  | 24.87 | 68.50 | 2.331 |  |  |  |
|  | 25.10 | 68.54 | 2.314 |  |  |  |
|  | 25.30 | 68.58 | 2.290 |  |  |  |
|  | 25.42 | 68.61 | 2.274 |  |  |  |
|  | 25.55 | 68.65 | 2.254 |  |  |  |
|  | 25.69 | 68.71 | 2.227 |  |  |  |
|  | 25.83 | 68.750 | 2.205 |  |  |  |
|  | 25.97 | 68.810 | 2.177 |  |  |  |
|  | 26.11 | 68.88 | 2.144 |  |  |  |
|  | 26.24 | 68.94 | 2.113 |  |  |  |
|  | 26.39 | 69.03 | 2.072 |  |  |  |
|  | 26.51 | 69.10 | 2.037 |  |  |  |
|  | 26.65 | 69.18 | 1.996 |  |  |  |
|  | 26.79 | 69.28 | 1.945 |  |  |  |
|  | 26.93 | 69.36 | 1.905 |  |  |  |
|  | 27.06 | 69.45 | 1.866 |  |  |  |
|  | 27.19 | 69.520 | 1.825 |  |  |  |
|  | 27.34 | 69.62 | 1.777 |  |  |  |
|  | 27.47 | 69.69 | 1.737 |  |  |  |
|  | 27.61 | 69.79 | 1.699 |  |  |  |
|  | 27.75 | 69.87 | 1.648 |  |  |  |
|  | 27.89 | 69.95 | 1.605 |  |  |  |
|  | 28.04 | 70.03 | 1.566 |  |  |  |
|  | 28.16 | 70.11 | 1.529 |  |  |  |
|  | 28.30 | 70.18 | 1.491 |  |  |  |


|  | 28.43 | 70.25 | 1.455 |  |
| ---: | ---: | ---: | ---: | ---: |
|  | 28.58 | 70.35 | 1.410 |  |
|  | 28.71 | 70.41 | 1.375 |  |
|  | 28.85 | 70.49 | 1.334 |  |
|  | 28.98 | 70.57 | 1.298 |  |
|  | 29.13 | 70.65 | 1.255 |  |
|  | 29.16 | 70.67 | 1.245 |  |
|  | 29.30 | 70.75 | 1.208 |  |
|  | 29.60 | 70.92 | 1.119 |  |
|  | 29.90 | 71.10 | 1.033 |  |
|  | 30.20 | 71.29 | 0.941 |  |
|  | 31.05 | 71.84 | 0.676 |  |
|  | 30.50 | 69.07 | 1.285 |  |
|  | 30.8 | 69.19 | 1.17 |  |
|  | 31.10 | 69.28 | 1.084 |  |
|  | 31.40 | 69.37 | 1.002 |  |

Table A.30. Cross section water surface data for $2: 1$ smooth training walls $\mathrm{q}=0.060 \mathrm{~m}^{2} / \mathrm{s}$.


|  | 24.87 | 81.90 | 2.320 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 24.87 | 82.00 | 2.321 |  |
|  | 24.87 | 82.10 | 2.323 |  |
|  | 24.87 | 82.20 | 2.324 |  |
|  | 24.87 | 82.30 | 2.330 |  |
|  | 24.87 | 82.42 | 2.336 |  |
| 10:02 | 25.44 | 68.61 | 2.271 |  |
|  | 25.435 | 68.80 | 2.256 |  |
|  | 25.435 | 69.00 | 2.227 |  |
|  | 25.435 | 69.10 | 2.208 |  |
|  | 25.435 | 69.20 | 2.182 |  |
|  | 25.435 | 69.30 | 2.145 |  |
|  | 25.435 | 69.40 | 2.117 |  |
|  | 25.435 | 69.50 | 2.096 |  |
|  | 25.435 | 69.60 | 2.085 |  |
|  | 25.435 | 69.70 | 2.078 |  |
|  | 25.435 | 69.80 | 2.072 |  |
|  | 25.435 | 69.90 | 2.071 |  |
|  | 25.435 | 70.00 | 2.071 |  |
|  | 25.435 | 71.00 | 2.067 |  |
|  | 25.435 | 73.00 | 2.070 |  |
|  | 25.435 | 75.20 | 2.071 |  |
|  | 25.435 | 77.00 | 2.070 |  |
|  | 25.435 | 79.00 | 2.072 |  |
|  | 25.435 | 81.00 | 2.076 |  |
|  | 25.435 | 81.50 | 2.079 |  |
|  | 25.435 | 81.70 | 2.095 |  |
|  | 25.435 | 81.80 | 2.110 |  |
|  | 25.435 | 81.90 | 2.130 |  |
|  | 25.435 | 82.00 | 2.164 |  |
|  | 25.435 | 82.10 | 2.185 |  |
|  | 25.435 | 82.20 | 2.207 |  |
|  | 25.435 | 82.31 | 2.229 |  |
| 10:30 | 26.5 | 69.09 | 2.043 |  |
|  | 26.5 | 69.30 | 2.003 |  |
|  | 26.5 | 69.50 | 1.965 |  |
|  | 26.5 | 69.60 | 1.946 |  |
|  | 26.5 | 69.70 | 1.930 |  |
|  | 26.5 | 69.80 | 1.916 |  |


|  | 26.5 | 69.90 | 1.912 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 26.5 | 70.00 | 1.886 |  |
|  | 26.5 | 70.10 | 1.740 |  |
|  | 26.5 | 70.20 | 1.721 |  |
|  | 26.5 | 70.30 | 1.711 |  |
|  | 26.5 | 70.40 | 1.700 |  |
|  | 26.5 | 70.50 | 1.694 |  |
|  | 26.5 | 71.00 | 1.682 |  |
|  | 26.5 | 73.00 | 1.670 |  |
|  | 26.5 | 75.20 | 1.672 |  |
|  | 26.5 | 77.00 | 1.672 |  |
|  | 26.5 | 79.00 | 1.672 |  |
|  | 26.5 | 80.50 | 1.672 |  |
|  | 26.5 | 81.00 | 1.689 |  |
|  | 26.5 | 81.10 | 1.697 |  |
|  | 26.5 | 81.20 | 1.705 |  |
|  | 26.5 | 81.30 | 1.719 |  |
|  | 26.5 | 81.40 | 1.761 |  |
|  | 26.5 | 81.50 | 1.813 |  |
|  | 26.5 | 81.70 | 1.811 |  |
|  | 26.5 | 81.80 | 1.826 |  |
|  | 26.5 | 81.92 | 1.849 |  |
|  | 27.61 | 69.78 | 1.693 |  |
|  | 27.61 | 70.00 | 1.661 |  |
|  | 27.61 | 70.20 | 1.633 |  |
|  | 27.61 | 70.40 | 1.606 |  |
|  | 27.61 | 70.50 | 1.597 |  |
|  | 27.61 | 70.60 | 1.582 |  |
|  | 27.61 | 70.70 | 1.559 |  |
|  | 27.61 | 70.80 | 1.487 |  |
|  | 27.61 | 70.90 | 1.503 |  |
|  | 27.61 | 71.00 | 1.390 |  |
|  | 27.61 | 71.10 | 1.347 |  |
|  | 27.61 | 71.20 | 1.334 |  |
|  | 27.61 | 71.30 | 1.324 |  |
|  | 27.61 | 71.50 | 1.310 |  |
|  | 27.61 | 73.00 | 1.278 |  |
|  | 27.61 | 75.20 | 1.278 |  |
|  | 27.61 | 77.00 | 1.280 |  |


|  | 27.61 | 79.00 | 1.285 |  |
| :--- | ---: | ---: | ---: | ---: |
|  | 27.61 | 80.00 | 1.298 |  |
|  | 27.61 | 80.50 | 1.315 |  |
|  | 27.61 | 80.60 | 1.322 |  |
|  | 27.61 | 80.70 | 1.330 |  |
|  | 27.61 | 80.80 | 1.344 |  |
|  | 27.61 | 80.90 | 1.358 |  |
|  | 27.61 | 81.00 | 1.411 |  |
|  | 27.61 | 81.10 | 1.415 |  |
|  | 27.61 | 81.20 | 1.412 |  |
|  | 27.61 | 81.30 | 1.421 |  |
|  | 27.61 | 81.50 | 1.426 |  |
|  | 27.61 | 81.55 | 1.473 |  |
|  | 28.69 | 70.40 | 1.381 |  |
|  | 28.69 | 70.60 | 1.340 |  |
|  | 28.69 | 70.80 | 1.311 |  |
|  | 28.69 | 70.90 | 1.294 |  |
|  | 28.69 | 71.00 | 1.275 |  |
|  | 28.69 | 71.10 | 1.263 |  |
|  | 28.69 | 71.20 | 1.254 |  |
|  | 28.69 | 71.30 | 1.249 |  |
|  | 28.69 | 71.40 | 1.221 |  |
|  | 28.69 | 80.4 | 0.996 |  |
|  | 28.69 | 71.50 | 1.175 |  |
|  | 28.69 | 71.60 | 1.147 |  |
|  | 28.69 | 71.70 | 1.065 |  |
|  | 28.69 | 71.80 | 1.038 |  |
|  | 28.69 | 71.90 | 0.998 |  |
|  | 28.69 | 72.00 | 0.982 |  |
|  | 28.69 | 72.10 | 0.972 |  |
|  | 28.69 | 72.50 | 0.950 |  |
|  | 28.69 | 73 | 0.932 |  |
|  | 28.69 | 75.2 | 0.914 |  |
|  | 77 | 0.915 |  |  |
|  | 28.69 | 79 | 80 | 0.959 |


|  | 28.69 | 80.6 | 1.023 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 80.7 | 1.034 |  |
|  | 28.69 | 80.8 | 1.025 |  |
|  | 28.69 | 80.9 | 1.058 |  |
|  | 28.69 | 81 | 1.066 |  |
|  | 28.69 | 81.1 | 1.078 |  |
|  | 28.69 | 81.22 | 1.121 |  |
|  | 29.155 | 70.66 | 1.248 |  |
|  | 29.155 | 70.8 | 1.212 |  |
|  | 29.155 | 71 | 1.179 |  |
|  | 29.155 | 71.2 | 1.138 |  |
|  | 29.155 | 71.3 | 1.126 |  |
|  | 29.155 | 71.4 | 1.117 |  |
|  | 29.155 | 71.5 | 1.115 |  |
|  | 29.155 | 71.6 | 1.097 |  |
|  | 29.155 | 71.7 | 1.066 |  |
|  | 29.155 | 71.8 | 1.036 |  |
|  | 29.155 | 71.9 | 1.005 |  |
|  | 29.155 | 72 | 0.97 |  |
|  | 29.155 | 72.1 | 0.94 |  |
|  | 29.155 | 72.2 | 0.884 |  |
|  | 29.155 | 72.3 | 0.868 |  |
|  | 29.155 | 72.4 | 0.849 |  |
|  | 29.155 | 72.5 | 0.844 |  |
|  | 29.155 | 73 | 0.796 |  |
|  | 29.155 | 75.2 | 0.757 |  |
|  | 29.155 | 77 | 0.763 |  |
|  | 29.155 | 79 | 0.773 |  |
|  | 29.155 | 80 | 0.815 |  |
|  | 29.155 | 80.2 | 0.838 |  |
|  | 29.155 | 80.3 | 0.848 |  |
|  | 29.155 | 80.4 | 0.85 |  |
|  | 29.155 | 80.5 | 0.861 |  |
|  | 29.155 | 80.6 | 0.867 |  |
|  | 29.155 | 80.7 | 0.884 |  |
|  | 29.155 | 80.8 | 0.903 |  |
|  | 29.155 | 80.9 | 0.915 |  |
|  | 29.155 | 81 | 0.921 |  |
|  | 29.155 | 81.08 | 0.963 |  |

Table A.31. Centerline water surface data for $2: 1$ smooth training walls $\mathrm{q}=0.052 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 11 |  | recorder | RW |  |  |  |
| :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | $9 / 7 / 2007$ |  | $\begin{array}{l}\text { BM-0 } \\ \text { rd. }\end{array}$ | $\mathrm{x}=24.68$ | 65.02 | $\mathrm{z}=2.873$ |  |
|  |  |  |  |  |  |  |  |
| time | $\begin{array}{c}\mathrm{x} \\ \mathrm{ft}\end{array}$ | $\begin{array}{c}\mathrm{y} \\ \mathrm{ft}\end{array}$ | $\begin{array}{c}\mathrm{z} \\ \mathrm{ft}\end{array}$ |  |  | Bed |  | \(\left.\begin{array}{c}Vertical <br>

Depth\end{array}\right]\)

Table A.32. Run-up water surface data for $2: 1$ smooth training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 11 |  | recorder | RW |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | 9/7/2007 |  | $\begin{aligned} & \text { BM-0 } \\ & \text { rd. } \\ & \hline \end{aligned}$ | $\mathrm{x}=24.68$ | 65.02 | $\mathrm{z}=2.873$ |
| time | $\begin{array}{r} \mathrm{x} \\ \mathrm{ft} \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{y} \\ \mathrm{ft} \end{array}$ | $\begin{array}{r} \mathrm{z} \\ \mathrm{ft} \\ \hline \end{array}$ |  |  | comments |
| 13:48 | 24.40 | 68.50 | 2.334 |  |  |  |
|  | 24.76 | 68.52 | 2.323 |  |  |  |
|  | 24.87 | 68.54 | 2.314 |  |  |  |
|  | 25.10 | 68.58 | 2.295 |  |  |  |
|  | 25.30 | 68.62 | 2.270 |  |  |  |
|  | 25.42 | 68.65 | 2.255 |  |  |  |
|  | 25.55 | 68.70 | 2.233 |  |  |  |
|  | 25.69 | 68.75 | 2.208 |  |  |  |
|  | 25.83 | 68.80 | 2.184 |  |  |  |
|  | 25.97 | 68.86 | 2.152 |  |  |  |
|  | 26.11 | 68.930 | 2.119 |  |  |  |
|  | 26.24 | 69.000 | 2.084 |  |  |  |
|  | 26.39 | 69.09 | 2.042 |  |  |  |
|  | 26.51 | 69.17 | 2.002 |  |  |  |
|  | 26.65 | 69.26 | 1.957 |  |  |  |
|  | 26.79 | 69.35 | 1.916 |  |  |  |
|  | 26.93 | 69.43 | 1.874 |  |  |  |


|  | 27.06 | 69.51 | 1.833 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 27.19 | 69.59 | 1.790 |  |
|  | 27.34 | 69.68 | 1.747 |  |
|  | 27.47 | 69.760 | 1.705 |  |
|  | 27.61 | 69.85 | 1.662 |  |
|  | 27.75 | 69.93 | 1.621 |  |
|  | 27.89 | 70.00 | 1.582 |  |
|  | 28.04 | 70.10 | 1.533 |  |
|  | 28.16 | 70.16 | 1.501 |  |
|  | 28.30 | 70.25 | 1.459 |  |
|  | 28.43 | 70.32 | 1.423 |  |
|  | 28.58 | 70.41 | 1.379 |  |
|  | 28.71 | 70.48 | 1.346 |  |
|  | 28.85 | 70.56 | 1.307 |  |
|  | 28.98 | 70.64 | 1.266 |  |
|  | 29.13 | 70.73 | 1.220 |  |
|  | 29.16 | 70.74 | 1.215 |  |
|  | 29.30 | 70.81 | 1.177 |  |
|  | 29.60 | 70.99 | 1.086 |  |
|  | 29.90 | 71.18 | 0.993 |  |
|  | 30.20 | 71.37 | 0.904 |  |
|  | 30.89 | 71.83 | 0.679 |  |
|  | 30.20 | 69.14 | 1.221 |  |
|  | 30.50 | 69.23 | 1.129 |  |
|  | 30.80 | 69.28 | 1.085 |  |
|  | 31.1 | 69.37 | 1.003 |  |
|  | 32.00 | 69.65 | 0.725 |  |

Table A. 33 . Cross section water surface data for $2: 1$ smooth training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 15 |  | recorder | RW |  |  |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $9 / 7 / 2007$ |  | BM-0 <br> rd. | $x=24.68$ | 65.02 | $\mathrm{z}=2.873$ |


| time | x <br> ft | y <br> ft | z <br> ft | comments |
| :---: | :---: | :---: | :---: | :--- |
| $10: 00$ | 24.87 | 68.53 | 2.316 |  |
|  | 24.87 | 68.70 | 2.313 |  |
|  | 24.87 | 68.80 | 2.309 |  |


|  | 24.87 | 68.90 | 2.305 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 24.87 | 69.00 | 2.299 |  |
|  | 24.87 | 69.10 | 2.299 |  |
|  | 24.87 | 69.20 | 2.302 |  |
|  | 24.87 | 69.30 | 2.297 |  |
|  | 24.87 | 69.50 | 2.298 |  |
|  | 24.87 | 70.00 | 2.297 |  |
|  | 24.87 | 71.00 | 2.298 |  |
|  | 24.87 | 73.00 | 2.300 |  |
|  | 24.87 | 75.20 | 2.301 |  |
|  | 24.87 | 77.00 | 2.301 |  |
|  | 24.87 | 79.00 | 2.300 |  |
|  | 24.87 | 81.00 | 2.301 |  |
|  | 24.87 | 81.50 | 2.301 |  |
|  | 24.87 | 81.80 | 2.302 |  |
|  | 24.87 | 82.00 | 2.303 |  |
|  | 24.87 | 82.10 | 2.306 |  |
|  | 24.87 | 82.20 | 2.309 |  |
|  | 24.87 | 82.30 | 2.314 |  |
|  | 24.87 | 82.41 | 2.317 |  |
|  | 25.435 | 68.65 | 2.252 |  |
|  | 25.435 | 68.80 | 2.241 |  |
|  | 25.435 | 68.90 | 2.226 |  |
|  | 25.435 | 69.00 | 2.210 |  |
|  | 25.435 | 69.10 | 2.193 |  |
|  | 25.435 | 69.20 | 2.170 |  |
|  | 25.435 | 69.30 | 2.132 |  |
|  | 25.435 | 69.40 | 2.099 |  |
|  | 25.435 | 69.50 | 2.078 |  |
|  | 25.435 | 69.60 | 2.065 |  |
|  | 25.435 | 69.70 | 2.058 |  |
|  | 25.435 | 70.00 | 2.052 |  |
|  | 25.435 | 71.00 | 2.054 |  |
|  | 25.435 | 73.00 | 2.055 |  |
|  | 25.435 | 75.20 | 2.056 |  |
|  | 25.435 | 77.00 | 2.055 |  |
|  | 25.435 | 79.00 | 2.057 |  |
|  | 25.435 | 81.00 | 2.061 |  |
|  | 25.435 | 81.50 | 2.066 |  |


|  | 25.435 | 81.80 | 2.092 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 25.435 | 81.90 | 2.115 |  |
|  | 25.435 | 82.00 | 2.144 |  |
|  | 25.435 | 82.10 | 2.168 |  |
|  | 25.435 | 82.30 | 2.210 |  |
|  | 26.5 | 69.15 | 2.007 |  |
|  | 26.5 | 69.30 | 1.983 |  |
|  | 26.5 | 69.40 | 1.963 |  |
|  | 26.5 | 69.50 | 1.946 |  |
|  | 26.5 | 69.60 | 1.927 |  |
|  | 26.5 | 69.70 | 1.911 |  |
|  | 26.5 | 69.80 | 1.896 |  |
|  | 26.5 | 69.90 | 1.885 |  |
|  | 26.5 | 70.00 | 1.872 |  |
|  | 26.5 | 70.10 | 1.720 |  |
|  | 26.5 | 70.20 | 1.707 |  |
|  | 26.5 | 70.30 | 1.694 |  |
|  | 26.5 | 70.40 | 1.685 |  |
|  | 26.5 | 70.50 | 1.679 |  |
|  | 26.5 | 71.00 | 1.668 |  |
|  | 26.5 | 73.00 | 1.657 |  |
|  | 26.5 | 75.20 | 1.658 |  |
|  | 26.5 | 77.00 | 1.659 |  |
|  | 26.5 | 79.00 | 1.658 |  |
|  | 26.5 | 81.00 | 1.675 |  |
|  | 26.5 | 81.20 | 1.693 |  |
|  | 26.5 | 81.30 | 1.705 |  |
|  | 26.5 | 81.40 | 1.733 |  |
|  | 26.5 | 81.50 | 1.787 |  |
|  | 26.5 | 81.60 | 1.794 |  |
|  | 26.5 | 81.70 | 1.798 |  |
|  | 26.5 | 81.89 | 1.820 |  |
| 11:22 | 27.61 | 69.83 | 1.655 |  |
|  | 27.61 | 70.00 | 1.634 |  |
|  | 27.61 | 70.20 | 1.607 |  |
|  | 27.61 | 70.30 | 1.596 |  |
|  | 27.61 | 70.40 | 1.585 |  |
|  | 27.61 | 70.50 | 1.572 |  |
|  | 27.61 | 70.60 | 1.557 |  |


|  | 27.61 | 70.70 | 1.528 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 27.61 | 70.80 | 1.463 |  |
|  | 27.61 | 70.90 | 1.450 |  |
|  | 27.61 | 71.00 | 1.386 |  |
|  | 27.61 | 71.10 | 1.333 |  |
|  | 27.61 | 71.20 | 1.322 |  |
|  | 27.61 | 71.30 | 1.314 |  |
|  | 27.61 | 71.40 | 1.308 |  |
|  | 27.61 | 71.50 | 1.302 |  |
|  | 27.61 | 72.00 | 1.279 |  |
|  | 27.61 | 73.00 | 1.272 |  |
|  | 27.61 | 75.20 | 1.273 |  |
|  | 27.61 | 77.00 | 1.274 |  |
|  | 27.61 | 79.00 | 1.277 |  |
|  | 27.61 | 80.50 | 1.304 |  |
|  | 27.61 | 80.70 | 1.317 |  |
|  | 27.61 | 80.80 | 1.331 |  |
|  | 27.61 | 80.90 | 1.343 |  |
|  | 27.61 | 81.00 | 1.385 |  |
|  | 27.61 | 81.10 | 1.392 |  |
|  | 27.61 | 81.20 | 1.390 |  |
|  | 27.61 | 81.30 | 1.410 |  |
|  | 27.61 | 81.53 | 1.455 |  |
|  | 28.69 | 70.46 | 1.351 |  |
|  | 28.69 | 70.60 | 1.318 |  |
|  | 28.69 | 70.80 | 1.278 |  |
|  | 28.69 | 71.00 | 1.253 |  |
|  | 28.69 | 71.10 | 1.236 |  |
|  | 28.69 | 71.20 | 1.227 |  |
|  | 28.69 | 71.30 | 1.217 |  |
|  | 28.69 | 71.4 | 1.189 |  |
|  | 28.69 | 71.5 | 1.148 |  |
|  | 28.69 | 71.6 | 1.118 |  |
|  | 28.69 | 71.7 | 1.086 |  |
|  | 28.69 | 71.8 | 1.014 |  |
|  | 28.69 | 71.9 | 0.992 |  |
|  | 28.69 | 72 | 0.981 |  |
|  | 28.69 | 72.5 | 0.935 |  |
|  | 28.69 | 73 | 0.919 |  |


|  | 28.69 | 75.2 | 0.908 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 77 | 0.905 |  |
|  | 28.69 | 79 | 0.91 |  |
|  | 28.69 | 80 | 0.943 |  |
|  | 28.69 | 80.5 | 0.988 |  |
|  | 28.69 | 80.7 | 1.006 |  |
|  | 28.69 | 80.8 | 1.006 |  |
|  | 28.69 | 80.9 | 1.033 |  |
|  | 28.69 | 81 | 1.047 |  |
|  | 28.69 | 81.1 | 1.056 |  |
|  | 28.69 | 81.21 | 1.105 |  |
|  | 29.155 | 70.72 | 1.215 |  |
|  | 29.155 | 71 | 1.152 |  |
|  | 29.155 | 71.2 | 1.114 |  |
|  | 29.155 | 71.4 | 1.085 |  |
|  | 29.155 | 71.5 | 1.086 |  |
|  | 29.155 | 71.6 | 1.062 |  |
|  | 29.155 | 71.7 | 1.028 |  |
|  | 29.155 | 71.8 | 1.002 |  |
|  | 29.155 | 71.9 | 0.981 |  |
|  | 29.155 | 72 | 0.95 |  |
|  | 29.155 | 72.1 | 0.885 |  |
|  | 29.155 | 72.3 | 0.843 |  |
|  | 29.155 | 72.5 | 0.823 |  |
|  | 29.155 | 73 | 0.782 |  |
|  | 29.155 | 75.2 | 0.753 |  |
|  | 29.155 | 77 | 0.751 |  |
|  | 29.155 | 79 | 0.763 |  |
|  | 29.155 | 80 | 0.799 |  |
|  | 29.155 | 80.5 | 0.834 |  |
|  | 29.155 | 80.6 | 0.855 |  |
|  | 29.155 | 80.7 | 0.873 |  |
|  | 29.155 | 80.8 | 0.885 |  |
|  | 29.155 | 80.9 | 0.896 |  |
|  | 29.155 | 81.07 | 0.954 |  |

Table A.34. Centerline water surface data for $2: 1$ smooth training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 12 | recorder | RW |  |
| :--- | :--- | :--- | :--- | :--- |



Table A.35. Run-up water surface data for $2: 1$ smooth training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s}$.


|  | 26.51 | 69.34 | 1.917 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 26.65 | 69.43 | 1.872 |  |
|  | 26.79 | 69.52 | 1.825 |  |
|  | 26.93 | 69.61 | 1.785 |  |
|  | 27.06 | 69.68 | 1.745 |  |
|  | 27.20 | 69.710 | 1.706 |  |
|  | 27.34 | 69.85 | 1.663 |  |
|  | 27.47 | 69.93 | 1.621 |  |
|  | 27.61 | 70.00 | 1.582 |  |
|  | 27.75 | 70.09 | 1.536 |  |
|  | 27.89 | 70.17 | 1.497 |  |
|  | 28.04 | 70.26 | 1.448 |  |
|  | 28.16 | 70.34 | 1.412 |  |
|  | 28.30 | 70.42 | 1.373 |  |
|  | 28.43 | 70.48 | 1.337 |  |
|  | 28.57 | 70.57 | 1.298 |  |
|  | 28.71 | 70.65 | 1.258 |  |
|  | 28.85 | 70.73 | 1.215 |  |
|  | 28.98 | 70.77 | 1.199 |  |
|  | 29.13 | 70.93 | 1.118 |  |
|  | 29.16 | 70.93 | 1.115 |  |
|  | 29.30 | 71.02 | 1.072 |  |
|  | 29.60 | 71.21 | 0.978 |  |
|  | 29.90 | 71.39 | 0.885 |  |
|  | 30.20 | 71.59 | 0.791 |  |
|  | 30.63 | 71.84 | 0.671 |  |

Table A.36. Cross section water surface data for $2: 1$ smooth training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 12 |  | recorder | RW |  |  |
| :---: | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $8 / 27 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | 65.02 | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x | y | z |  | comments |  |
|  | ft | ft | ft |  |  |  |
| $9: 30$ | 24.87 | 68.61 | 2.272 |  |  |  |
|  | 24.87 | 68.70 | 2.273 |  |  |  |
|  | 24.87 | 68.80 | 2.269 |  |  |  |
|  | 24.87 | 68.90 | 2.264 |  |  |  |


|  | 24.87 | 69.00 | 2.260 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 24.87 | 69.20 | 2.257 |  |
|  | 24.87 | 71.00 | 2.256 |  |
|  | 24.87 | 73.00 | 2.258 |  |
|  | 24.87 | 75.20 | 2.258 |  |
|  | 24.87 | 77.00 | 2.257 |  |
|  | 24.87 | 79.00 | 2.258 |  |
|  | 24.87 | 81.00 | 2.258 |  |
|  | 24.87 | 81.50 | 2.257 |  |
|  | 24.87 | 82.00 | 2.261 |  |
|  | 24.87 | 82.10 | 2.263 |  |
|  | 24.87 | 82.20 | 2.266 |  |
|  | 24.87 | 82.30 | 2.272 |  |
|  | 24.87 | 82.37 | 2.281 |  |
| 9:45 | 25.44 | 68.75 | 2.203 |  |
|  | 25.44 | 68.90 | 2.189 |  |
|  | 25.44 | 69.00 | 2.171 |  |
|  | 25.44 | 69.10 | 2.154 |  |
|  | 25.44 | 69.20 | 2.133 |  |
|  | 25.44 | 69.30 | 2.098 |  |
|  | 25.44 | 69.40 | 2.057 |  |
|  | 25.44 | 69.50 | 2.033 |  |
|  | 25.44 | 69.60 | 2.023 |  |
|  | 25.44 | 71.00 | 2.017 |  |
|  | 25.44 | 73.00 | 2.017 |  |
|  | 25.44 | 75.20 | 2.017 |  |
|  | 25.44 | 77.00 | 2.017 |  |
|  | 25.44 | 79.00 | 2.018 |  |
|  | 25.44 | 81.00 | 2.020 |  |
|  | 25.44 | 81.50 | 2.023 |  |
|  | 25.435 | 81.70 | 2.034 |  |
|  | 25.435 | 81.80 | 2.046 |  |
|  | 25.435 | 81.90 | 2.072 |  |
|  | 25.435 | 82.00 | 2.105 |  |
|  | 25.435 | 82.10 | 2.122 |  |
|  | 25.435 | 82.24 | 2.156 |  |
| 10:02 | 26.5 | 69.33 | 1.922 |  |
|  | 26.5 | 69.50 | 1.896 |  |
|  | 26.5 | 69.60 | 1.879 |  |


|  | 26.5 | 69.70 | 1.864 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 26.5 | 69.80 | 1.848 |  |
|  | 26.5 | 69.90 | 1.831 |  |
|  | 26.5 | 70.00 | 1.814 |  |
|  | 26.5 | 70.15 | 1.690 |  |
|  | 26.5 | 70.20 | 1.677 |  |
|  | 26.5 | 70.30 | 1.671 |  |
|  | 26.5 | 71.00 | 1.643 |  |
|  | 26.5 | 73.00 | 1.633 |  |
|  | 26.5 | 75.20 | 1.634 |  |
|  | 26.5 | 77.00 | 1.634 |  |
|  | 26.5 | 79.00 | 1.634 |  |
|  | 26.5 | 81.00 | 1.650 |  |
|  | 26.5 | 81.20 | 1.663 |  |
|  | 26.5 | 81.38 | 1.684 |  |
|  | 26.5 | 81.56 | 1.736 |  |
|  | 26.5 | 81.70 | 1.745 |  |
|  | 26.5 | 81.83 | 1.768 |  |
| 10:33 | 27.61 | 70.01 | 1.579 |  |
|  | 27.61 | 70.10 | 1.565 |  |
|  | 27.61 | 70.20 | 1.551 |  |
|  | 27.61 | 70.30 | 1.534 |  |
|  | 27.61 | 70.40 | 1.523 |  |
|  | 27.61 | 70.50 | 1.508 |  |
|  | 27.61 | 70.60 | 1.495 |  |
|  | 27.61 | 70.80 | 1.426 |  |
|  | 27.61 | 71.00 | 1.342 |  |
|  | 27.61 | 71.50 | 1.277 |  |
|  | 27.61 | 73.00 | 1.256 |  |
|  | 27.61 | 75.20 | 1.253 |  |
|  | 27.61 | 77.00 | 1.255 |  |
|  | 27.61 | 79.00 | 1.257 |  |
|  | 27.61 | 80.80 | 1.305 |  |
|  | 27.61 | 80.90 | 1.316 |  |
|  | 27.61 | 81.00 | 1.331 |  |
|  | 27.61 | 81.10 | 1.344 |  |
|  | 27.61 | 81.20 | 1.350 |  |
|  | 27.61 | 81.30 | 1.366 |  |
|  | 27.61 | 81.49 | 1.417 |  |


| 10:53 | 28.69 | 70.65 | 1.260 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 70.70 | 1.242 |  |
|  | 28.69 | 70.80 | 1.223 |  |
|  | 28.69 | 70.90 | 1.206 |  |
|  | 28.69 | 71.00 | 1.187 |  |
|  | 28.69 | 71.10 | 1.173 |  |
|  | 28.69 | 71.20 | 1.159 |  |
|  | 28.69 | 71.30 | 1.150 |  |
|  | 28.69 | 71.40 | 1.121 |  |
|  | 28.69 | 71.50 | 1.090 |  |
|  | 28.69 | 71.60 | 1.078 |  |
|  | 28.69 | 71.70 | 1.050 |  |
|  | 28.69 | 71.80 | 0.992 |  |
|  | 28.69 | 72.00 | 0.953 |  |
|  | 28.69 | 73.00 | 0.897 |  |
|  | 28.69 | 75.20 | 0.890 |  |
|  | 28.69 | 77.00 | 0.890 |  |
|  | 28.69 | 79.00 | 0.892 |  |
|  | 28.69 | 80.50 | 0.955 |  |
|  | 28.69 | 80.60 | 0.964 |  |
|  | 28.69 | 80.70 | 0.963 |  |
|  | 28.69 | 80.80 | 0.958 |  |
|  | 28.69 | 80.90 | 1.004 |  |
|  | 28.69 | 81.00 | 1.011 |  |
|  | 28.69 | 81.10 | 1.018 |  |
|  | 28.69 | 81.17 | 1.062 |  |
| 11:10 | 29.155 | 70.93 | 1.114 |  |
|  | 29.155 | 71.10 | 1.074 |  |
|  | 29.155 | 71.20 | 1.055 |  |
|  | 29.155 | 71.30 | 1.041 |  |
|  | 29.155 | 71.40 | 1.028 |  |
|  | 29.155 | 71.5 | 1.012 |  |
|  | 29.155 | 71.6 | 0.994 |  |
|  | 29.155 | 71.7 | 0.961 |  |
|  | 29.155 | 71.8 | 0.946 |  |
|  | 29.155 | 71.9 | 0.93 |  |
|  | 29.155 | 72 | 0.913 |  |
|  | 29.155 | 72.1 | 0.866 |  |
|  | 29.155 | 72.2 | 0.84 |  |


|  | 29.155 | 72.3 | 0.821 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 29.155 | 73 | 0.766 |  |
|  | 29.155 | 75.2 | 0.736 |  |
|  | 29.155 | 77 | 0.738 |  |
|  | 29.155 | 79 | 0.738 |  |
|  | 29.155 | 80.3 | 0.796 |  |
|  | 29.155 | 80.4 | 0.801 |  |
|  | 29.155 | 80.5 | 0.805 |  |
|  | 29.155 | 80.6 | 0.801 |  |
|  | 29.155 | 80.7 | 0.823 |  |
|  | 29.155 | 80.8 | 0.849 |  |
|  | 29.155 | 80.9 | 0.856 |  |
|  | 29.155 | 80.98 | 0.879 |  |

Table A37. Centerline water surface data for $2: 1$ stepped training walls $\mathrm{q}=0.078 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 13 |  | recorder | RW |  |  |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $9 / 18 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | 65.02 | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  | comments |  |
| $13: 39$ | 24.87 | 75.2 | 2.362 | Centerline |  |  |
|  | 25.435 | 75.2 | 2.113 |  |  |  |
|  | 26.5 | 75.2 | 1.692 |  |  |  |
|  | 27.61 | 75.2 | 1.302 |  |  |  |
|  | 28.69 | 75.2 | 0.932 |  |  |  |
|  | 29.155 | 75.2 | 0.781 |  |  |  |

Table A.38. Run-up water surface data for $2: 1$ stepped training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 13 |  | recorder | RW AB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | 9/18/2007 |  | $\begin{aligned} & \hline \text { BM-0 } \\ & \text { rd. } \\ & \hline \end{aligned}$ | $\mathrm{x}=24.68$ | $y=65.02$ | $\mathrm{z}=2.873$ |
| time | $\begin{aligned} & \mathrm{x} \\ & \mathrm{ft} \end{aligned}$ | $\begin{array}{r} \mathrm{y} \\ \mathrm{ft} \\ \hline \end{array}$ | $\begin{gathered} \mathrm{z} \\ \mathrm{ft} \end{gathered}$ | comments |  |  |
|  | 24.40 | 68.52 | 2.378 |  |  |  |
|  | 24.76 | 68.51 | 2.386 |  |  |  |



|  | 31.40 | 70.25 | 1.514 |  |
| ---: | ---: | ---: | ---: | :--- |
|  | 31.7 | 70.44 | 1.416 |  |
|  | 32.00 | 70.54 | 1.375 |  |
|  | 32.30 | 70.71 | 1.281 |  |
|  | 32.60 | 70.82 | 1.231 |  |
| $15: 36$ | 32.94 | 70.92 | 1.185 |  |

Table A.39. Cross section water surface data for $2: 1$ stepped training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s}$.


|  | 25.44 | 69.52 | 2.152 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 25.44 | 69.70 | 2.131 |  |
|  | 25.44 | 70.00 | 2.114 |  |
|  | 25.44 | 71.00 | 2.114 |  |
|  | 25.44 | 73.00 | 2.114 |  |
|  | 25.44 | 75.20 | 2.113 |  |
|  | 25.44 | 77.00 | 2.112 |  |
|  | 25.44 | 79.00 | 2.112 |  |
|  | 25.44 | 81.00 | 2.120 |  |
|  | 25.44 | 81.50 | 2.125 |  |
|  | 25.44 | 81.70 | 2.141 |  |
|  | 25.44 | 81.90 | 2.177 |  |
|  | 25.44 | 82.00 | 2.207 |  |
|  | 25.44 | 82.20 | 2.248 |  |
|  | 25.44 | 82.37 | 2.288 |  |
|  | 26.50 | 68.34 | 2.420 |  |
|  | 26.50 | 68.60 | 2.333 |  |
|  | 26.50 | 68.77 | 2.249 |  |
|  | 26.50 | 68.95 | 2.168 |  |
|  | 26.50 | 69.14 | 2.100 |  |
|  | 26.50 | 69.32 | 2.062 |  |
|  | 26.50 | 69.51 | 2.015 |  |
|  | 26.61 | 68.75 | 2.250 |  |
|  | 26.50 | 69.69 | 1.983 |  |
|  | 26.50 | 82.01 | 1.936 |  |
|  | 26.50 | 69.88 | 1.962 |  |
|  | 26.50 |  |  |  |
|  | 26.50 |  |  |  |
|  | 26.50 | 80.06 | 1.875 |  |
|  | 26.50 | 81.50 | 70.20 | 1.763 |


|  | 27.61 | 68.95 | 2.169 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 27.61 | 69.14 | 2.074 |  |
|  | 27.61 | 69.32 | 1.994 |  |
|  | 27.61 | 69.51 | 1.894 |  |
|  | 27.61 | 69.70 | 1.810 |  |
|  | 27.61 | 69.89 | 1.742 |  |
|  | 27.61 | 70.07 | 1.724 |  |
|  | 27.61 | 70.26 | 1.693 |  |
|  | 27.61 | 70.45 | 1.654 |  |
|  | 27.61 | 70.63 | 1.633 |  |
|  | 27.61 | 70.82 | 1.608 |  |
|  | 27.61 | 71.05 | 1.400 |  |
|  | 27.61 | 71.20 | 1.338 |  |
|  | 27.61 | 71.50 | 1.327 |  |
|  | 27.61 | 73.00 | 1.303 |  |
|  | 27.61 | 75.20 | 1.302 |  |
|  | 27.61 | 77.00 | 1.304 |  |
|  | 27.61 | 79.00 | 1.308 |  |
|  | 27.61 | 80.50 | 1.345 |  |
|  | 27.61 | 80.80 | 1.373 |  |
|  | 27.61 | 81.00 | 1.477 |  |
|  | 27.61 | 81.20 | 1.465 |  |
|  | 27.61 | 81.40 | 1.473 |  |
| 16:10 | 27.61 | 81.60 | 1.517 |  |
| 3:21 | 28.69 | 68.60 | 2.329 |  |
|  | 28.69 | 68.77 | 2.244 |  |
|  | 28.69 | 68.95 | 2.160 |  |
|  | 28.69 | 69.14 | 2.068 |  |
|  | 28.69 | 69.32 | 1.980 |  |
|  | 28.69 | 69.51 | 1.886 |  |
|  | 28.69 | 69.70 | 1.798 |  |
|  | 28.69 | 69.89 | 1.708 |  |
|  | 28.69 | 70.07 | 1.629 |  |
|  | 28.69 | 70.26 | 1.543 |  |
|  | 28.69 | 70.43 | 1.455 |  |
|  | 28.69 | 70.63 | 1.410 |  |
|  | 28.69 | 70.82 | 1.378 |  |
|  | 28.69 | 70.98 | 1.361 |  |
|  | 28.69 | 71.18 | 1.333 |  |


|  | 28.69 | 71.36 | 1.309 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 71.60 | 1.169 |  |
|  | 28.69 | 71.80 | 1.145 |  |
|  | 28.69 | 72.00 | 1.037 |  |
|  | 28.69 | 72.50 | 0.955 |  |
|  | 28.69 | 73.00 | 0.938 |  |
|  | 28.69 | 75.20 | 0.932 |  |
|  | 28.69 | 77.00 | 0.930 |  |
|  | 28.69 | 79.00 | 0.938 |  |
|  | 28.69 | 80.00 | 0.984 |  |
|  | 28.69 | 80.40 | 1.015 |  |
|  | 28.69 | 80.70 | 1.084 |  |
|  | 28.69 | 81.00 | 1.097 |  |
| 16:30 | 28.69 | 81.27 | 1.167 |  |
| 16:58 | 29.16 | 68.60 | 2.322 |  |
|  | 29.16 | 68.77 | 2.243 |  |
|  | 29.16 | 68.95 | 2.152 |  |
|  | 29.16 | 69.14 | 2.066 |  |
|  | 29.16 | 69.32 | 1.978 |  |
|  | 29.16 | 69.51 | 1.886 |  |
|  | 29.16 | 69.70 | 1.790 |  |
|  | 29.16 | 69.89 | 1.700 |  |
|  | 29.16 | 70.07 | 1.619 |  |
|  | 29.16 | 70.25 | 1.527 |  |
|  | 29.16 | 70.43 | 1.448 |  |
|  | 29.16 | 70.63 | 1.361 |  |
|  | 29.16 | 70.82 | 1.291 |  |
|  | 29.16 | 70.98 | 1.258 |  |
|  | 29.16 | 71.17 | 1.225 |  |
|  | 29.16 | 71.36 | 1.205 |  |
|  | 29.16 | 71.55 | 1.186 |  |
|  | 29.16 | 71.75 | 1.148 |  |
|  | 29.16 | 71.93 | 1.037 |  |
|  | 29.16 | 72.00 | 1.052 |  |
|  | 29.16 | 72.20 | 0.998 |  |
|  | 29.16 | 72.40 | 0.880 |  |
|  | 29.16 | 72.60 | 0.815 |  |
|  | 29.16 | 72.80 | 0.808 |  |
|  | 29.16 | 73.00 | 0.796 |  |


|  | 29.16 | 75.20 | 0.781 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 29.16 | 77.00 | 0.785 |  |
|  | 29.16 | 79.00 | 0.799 |  |
|  | 29.16 | 80.00 | 0.848 |  |
|  | 29.16 | 80.35 | 0.881 |  |
|  | 29.16 | 80.50 | 0.911 |  |
|  | 29.16 | 80.70 | 0.922 |  |
|  | 29.16 | 80.80 | 0.949 |  |
|  | 29.16 | 80.90 | 0.950 |  |
|  | 29.16 | 81.13 | 1.009 |  |
|  | 29.155 | 72.3 | 0.889 |  |
|  | 29.155 | 72.5 | 0.869 |  |
|  | 29.155 | 73 | 0.8823 |  |
|  | 29.155 | 75.2 | 0.784 |  |
|  | 29.155 | 77 | 0.782 |  |
|  | 29.155 | 79 | 0.798 |  |
|  | 29.155 | 79.5 | 0.822 |  |
|  | 29.155 | 80 | 0.853 |  |
|  | 29.155 | 80.2 | 0.88 |  |
|  | 29.155 | 80.3 | 0.885 |  |
|  | 29.155 | 80.4 | 0.914 |  |
|  | 29.155 | 80.5 | 0.929 |  |
|  | 29.155 | 80.6 | 0.913 |  |
|  | 29.155 | 80.7 | 0.94 |  |
|  | 29.155 | 80.9 | 0.954 |  |
|  | 29.155 | 81 | 0.962 |  |
|  | 29.155 | 81.14 | 1.019 |  |

Table A.40. Centerline water surface data for $2: 1$ stepped training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 14 |  | recorder | RW |  |  |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| Date | $9 / 21 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | $\mathrm{y}=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x | y | z |  | comments |  |
|  | ft | ft | ft |  |  |  |
|  | 24.87 | 75.20 | 2.315 | Centerline |  |  |
|  | 25.44 | 75.20 | 2.072 |  |  |  |
|  | 26.50 | 75.20 | 1.659 |  |  |  |


|  | 27.61 | 75.20 | 1.282 |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 28.69 | 75.20 | 0.916 |  |
|  | 29.16 | 75.20 | 0.765 |  |

Table A.41. Run-up water surface data for $2: 1$ stepped training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s}$.


|  | 28.43 | 69.42 | 1.929 |  |
| ---: | ---: | ---: | ---: | :--- |
|  | 28.58 | 69.51 | 1.889 |  |
|  | 28.71 | 69.51 | 1.887 |  |
|  | 28.85 | 69.51 | 1.887 |  |
|  | 28.98 | 69.61 | 1.845 |  |
|  | 29.13 | 69.61 | 1.840 |  |
|  | 29.16 | 69.61 | 1.838 |  |
|  | 29.30 | 69.70 | 1.801 |  |
|  | 29.60 | 69.80 | 1.743 |  |
|  | 29.90 | 69.89 | 1.696 |  |
|  | 30.20 | 69.98 | 1.645 |  |
|  | 30.50 | 70.08 | 1.609 |  |
|  | 30.80 | 70.16 | 1.572 |  |
|  | 31.1 | 70.25 | 1.519 |  |
|  | 31.40 | 70.35 | 1.471 |  |
|  | 32.00 | 70.44 | 1.414 |  |
|  | 32.30 | 70.72 | 1.330 | 1.280 |
|  |  |  |  |  |
|  | 32.6 | 70.81 | 1.238 |  |
|  | 32.94 | 70.92 | 1.18 |  |
|  |  |  |  |  |

Table A.42. Cross section water surface data for $2: 1$ stepped training walls $\mathrm{q}=0.060 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 14 |  | recorder | RW |  |  |
| :---: | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $9 / 21 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | 65.02 | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  | comments |  |
|  | 24.87 | 68.61 | 2.339 |  |  |  |
|  | 24.87 | 68.79 | 2.332 |  |  |  |
|  | 24.87 | 68.95 | 2.321 |  |  |  |
|  | 24.87 | 69.10 | 2.312 |  |  |  |
|  | 24.87 | 69.50 | 2.314 |  |  |  |
|  | 24.87 | 70.00 | 2.313 |  |  |  |
|  | 24.87 | 71.00 | 2.313 |  |  |  |
|  | 24.87 | 73.00 | 2.314 |  |  |  |
|  | 24.87 | 75.20 | 2.315 |  |  |  |
|  | 24.87 | 77.00 | 2.314 |  |  |  |


|  | 24.87 | 79.00 | 2.315 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 24.87 | 81.00 | 2.314 |  |
|  | 24.87 | 81.50 | 2.315 |  |
|  | 24.87 | 82.00 | 2.322 |  |
|  | 24.87 | 82.43 | 2.341 |  |
|  | 25.44 | 68.61 | 2.332 |  |
|  | 25.44 | 68.79 | 2.276 |  |
|  | 25.44 | 68.95 | 2.251 |  |
|  | 25.435 | 69.14 | 2.214 |  |
|  | 25.435 | 69.32 | 2.165 |  |
|  | 25.435 | 69.51 | 2.109 |  |
|  | 25.435 | 69.70 | 2.082 |  |
|  | 25.435 | 70.00 | 2.073 |  |
|  | 25.435 | 71.00 | 2.072 |  |
|  | 25.435 | 73.00 | 2.072 |  |
|  | 25.435 | 75.20 | 2.072 |  |
|  | 25.435 | 77.00 | 2.073 |  |
|  | 25.435 | 79.00 | 2.075 |  |
|  | 25.435 | 81.00 | 2.079 |  |
|  | 25.435 | 81.50 | 2.085 |  |
|  | 25.435 | 81.80 | 2.113 |  |
|  | 25.435 | 82.00 | 2.164 |  |
|  | 25.435 | 82.20 | 2.212 |  |
|  | 25.435 | 82.33 | 2.239 |  |
|  | 26.5 | 68.60 | 2.335 |  |
|  | 26.5 | 68.78 | 2.249 |  |
|  | 26.5 | 68.95 | 2.170 |  |
|  | 26.5 | 69.14 | 2.085 |  |
|  | 26.5 | 69.32 | 2.027 |  |
|  | 26.5 | 69.51 | 1.978 |  |
|  | 26.5 | 69.70 | 1.947 |  |
|  | 26.5 | 69.89 | 1.913 |  |
|  | 26.5 | 70.07 | 1.896 |  |
|  | 26.5 | 70.25 | 1.710 |  |
|  | 26.5 | 70.43 | 1.691 |  |
|  | 26.5 | 70.63 | 1.685 |  |
|  | 26.5 | 71.00 | 1.677 |  |
|  | 26.5 | 73.00 | 1.669 |  |
|  | 26.5 | 75.20 | 1.659 |  |


|  | 26.5 | 77.00 | 1.673 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 26.5 | 79.00 | 1.671 |  |
|  | 26.5 | 81.00 | 1.687 |  |
|  | 26.5 | 81.20 | 1.706 |  |
|  | 26.5 | 81.40 | 1.755 |  |
|  | 26.5 | 81.60 | 1.815 |  |
|  | 26.5 | 81.80 | 1.830 |  |
|  | 26.5 | 81.93 | 1.862 |  |
|  | 27.61 | 68.60 | 2.329 |  |
|  | 27.61 | 68.77 | 2.246 |  |
|  | 27.61 | 68.95 | 2.160 |  |
|  | 27.61 | 69.14 | 2.072 |  |
|  | 27.61 | 69.32 | 1.993 |  |
|  | 27.61 | 69.51 | 1.898 |  |
|  | 27.61 | 69.70 | 1.803 |  |
|  | 27.61 | 69.89 | 1.718 |  |
|  | 27.61 | 70.07 | 1.670 |  |
|  | 27.61 | 70.25 | 1.640 |  |
|  | 27.61 | 70.43 | 1.617 |  |
|  | 27.61 | 70.63 | 1.588 |  |
|  | 27.61 | 70.82 | 1.540 |  |
|  | 27.61 | 70.98 | 1.415 |  |
|  | 27.61 | 71.20 | 1.315 |  |
|  | 27.69 | 69.51 | 1.887 |  |
|  | 27.61 | 71.50 | 1.298 |  |
|  | 27.61 | 73.00 | 1.279 |  |
|  | 27.61 | 75.20 | 1.282 |  |
|  | 27.61 | 77.00 | 1.281 |  |
|  | 27.61 | 79.00 | 1.283 |  |
|  | 27.61 | 80.50 | 1.318 |  |
|  | 27.61 | 80.90 | 1.354 |  |
|  | 27.61 | 81.05 | 1.430 |  |
|  | 81.20 | 1.414 |  |  |
|  | 28.69 | 68.59 | 68.77 | 2.244 |


|  | 28.69 | 69.71 | 1.798 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 69.89 | 1.704 |  |
|  | 28.69 | 70.07 | 1.625 |  |
|  | 28.69 | 70.25 | 1.541 |  |
|  | 28.69 | 70.43 | 1.453 |  |
|  | 28.69 | 70.63 | 1.383 |  |
|  | 28.69 | 70.82 | 1.330 |  |
|  | 28.69 | 70.98 | 1.298 |  |
|  | 28.69 | 71.17 | 1.274 |  |
|  | 28.69 | 71.36 | 1.250 |  |
|  | 28.69 | 71.55 | 1.185 |  |
|  | 28.69 | 71.75 | 1.116 |  |
|  | 28.69 | 71.93 | 1.007 |  |
|  | 28.69 | 72.00 | 0.962 |  |
|  | 28.69 | 73.00 | 0.918 |  |
|  | 28.69 | 75.20 | 0.916 |  |
|  | 28.69 | 77.00 | 0.917 |  |
|  | 28.69 | 79.00 | 0.922 |  |
|  | 28.69 | 80.00 | 0.953 |  |
|  | 28.69 | 80.50 | 0.998 |  |
|  | 28.69 | 80.75 | 1.028 |  |
|  | 28.69 | 81.00 | 1.121 |  |
|  | 28.69 | 81.24 | 1.134 |  |
| 15:54 | 29.155 | 68.59 | 2.325 |  |
|  | 29.155 | 68.77 | 2.239 |  |
|  | 29.155 | 68.95 | 2.157 |  |
|  | 29.155 | 69.13 | 2.068 |  |
|  | 29.155 | 69.32 | 1.977 |  |
|  | 29.155 | 69.51 | 1.881 |  |
|  | 29.155 | 69.7 | 1.791 |  |
|  | 29.155 | 69.89 | 1.7 |  |
|  | 29.155 | 70.07 | 1.622 |  |
|  | 29.155 | 70.25 | 1.531 |  |
|  | 29.155 | 70.43 | 1.446 |  |
|  | 29.155 | 70.63 | 1.352 |  |
|  | 29.155 | 70.82 | 1.269 |  |
|  | 29.155 | 70.98 | 1.213 |  |
|  | 29.155 | 71.17 | 1.167 |  |
|  | 29.155 | 71.36 | 1.134 |  |


|  | 29.155 | 71.55 | 1.106 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 29.155 | 71.75 | 1.076 |  |
|  | 29.155 | 71.93 | 1.012 |  |
|  | 29.155 | 72 | 0.985 |  |
|  | 29.155 | 72.2 | 0.933 |  |
|  | 29.155 | 72.4 | 0.8 |  |
|  | 29.155 | 72.6 | 0.792 |  |
|  | 29.155 | 73 | 0.777 |  |
|  | 29.155 | 75.2 | 0.765 |  |
|  | 29.155 | 77 | 0.766 |  |
|  | 29.155 | 79 | 0.775 |  |
|  | 29.155 | 80 | 0.817 |  |
|  | 29.155 | 80.5 | 0.867 |  |
|  | 29.155 | 81 | 0.924 |  |
|  | 29.155 | 81.09 | 0.974 |  |
|  | 29.155 | 72.2 | 0.884 |  |
|  | 29.155 | 72.3 | 0.868 |  |
|  | 29.155 | 72.4 | 0.849 |  |
|  | 29.155 | 72.5 | 0.844 |  |
|  | 29.155 | 73 | 0.796 |  |
|  | 29.155 | 75.2 | 0.757 |  |
|  | 29.155 | 77 | 0.763 |  |
|  | 29.155 | 79 | 0.773 |  |
|  | 29.155 | 80 | 0.815 |  |
|  | 29.155 | 80.2 | 0.838 |  |
|  | 29.155 | 80.3 | 0.848 |  |
|  | 29.155 | 80.4 | 0.85 |  |
|  | 29.155 | 80.5 | 0.861 |  |
|  | 29.155 | 80.6 | 0.867 |  |
|  | 29.155 | 80.7 | 0.884 |  |
|  | 29.155 | 80.8 | 0.903 |  |
|  | 29.155 | 80.9 | 0.915 |  |
|  | 29.155 | 81 | 0.921 |  |
|  | 29.155 | 81.08 | 0.963 |  |

Table A.43. Centerline water surface data for $2: 1$ stepped training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 15 |  | recorder | RW |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| Date | $9 / 28 / 2007$ |  | BM-0 | $x=24.68$ | $y=65.02$ | $\mathrm{z}=2.873$ |


|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| time | X | y | z |  |
|  | ft | ft | ft |  |
|  | 24.87 | 75.20 | 2.301 |  |
|  | 25.44 | 75.20 | 2.056 |  |
|  | 26.50 | 75.20 | 1.661 |  |
|  | 27.61 | 75.20 | 1.274 |  |
|  | 28.69 | 75.20 | 0.910 |  |
|  | 29.16 | 75.20 | 0.756 |  |

Table A.44. Run-up water surface data for $2: 1$ stepped training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 15 |  | recorder | RW |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | 9/28/2007 |  | $\begin{array}{\|l\|} \hline \text { BM-0 } \\ \text { rd. } \end{array}$ | $\mathrm{x}=24.68$ | $y=65.02$ | $\mathrm{z}=2.873$ |
| time | $\begin{gathered} \mathrm{x} \\ \mathrm{ft} \\ \hline \end{gathered}$ | $\begin{aligned} & \mathrm{y} \\ & \mathrm{ft} \end{aligned}$ | $\begin{gathered} \mathrm{z} \\ \mathrm{ft} \end{gathered}$ |  |  | comments |
| 9:36 | 24.40 | 68.61 | 2.341 |  |  |  |
|  | 24.76 | 68.61 | 2.339 |  |  |  |
|  | 24.87 | 68.61 | 2.332 |  |  |  |
|  | 25.10 | 68.61 | 2.330 |  |  |  |
|  | 25.30 | 68.61 | 2.330 |  |  |  |
|  | 25.42 | 68.71 | 2.291 |  |  |  |
|  | 25.55 | 68.71 | 2.288 |  |  |  |
|  | 25.69 | 68.71 | 2.285 |  |  |  |
|  | 25.83 | 68.71 | 2.287 |  |  |  |
|  | 25.97 | 68.78 | 2.248 |  |  |  |
|  | 26.11 | 68.780 | 2.242 |  |  |  |
|  | 26.24 | 68.880 | 2.209 |  |  |  |
|  | 26.39 | 68.88 | 2.210 |  |  |  |
|  | 25.51 | 68.96 | 2.164 |  |  |  |
|  | 26.65 | 68.96 | 2.161 |  |  |  |
|  | 26.79 | 68.96 | 2.167 |  |  |  |
| 9:57 | 26.93 | 69.05 | 2.126 |  |  |  |
| 10:11 | 27.06 | 69.05 | 2.121 |  |  |  |
|  | 27.19 | 69.14 | 2.075 |  |  |  |
|  | 27.34 | 69.14 | 2.072 |  |  |  |


|  | 27.47 | 69.240 | 2.039 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 27.61 | 69.24 | 2.037 |  |
|  | 27.75 | 69.32 | 1.989 |  |
|  | 27.89 | 69.32 | 1.986 |  |
|  | 28.04 | 69.42 | 1.933 |  |
|  | 28.16 | 69.42 | 1.932 |  |
|  | 28.30 | 69.42 | 1.929 |  |
|  | 28.43 | 69.42 | 1.933 |  |
|  | 28.58 | 69.51 | 1.888 |  |
|  | 28.71 | 69.51 | 1.889 |  |
|  | 28.85 | 69.61 | 1.841 |  |
|  | 28.98 | 69.61 | 1.840 |  |
|  | 29.13 | 69.61 | 1.841 |  |
|  | 29.16 | 69.61 | 1.841 |  |
|  | 29.30 | 69.70 | 1.789 |  |
|  | 29.60 | 69.80 | 1.743 |  |
|  | 29.90 | 69.89 | 1.700 |  |
|  | 30.20 | 70.07 | 1.612 |  |
|  | 30.50 | 70.16 | 1.563 |  |
|  | 30.80 | 70.25 | 1.518 |  |
|  | 31.10 | 70.35 | 1.472 |  |
|  | 31.40 | 70.54 | 1.380 |  |
|  | 31.7 | 70.63 | 1.333 |  |
|  | 32.00 | 70.82 | 1.236 |  |
|  | 32.30 | 70.92 | 1.191 |  |
|  | 32.60 | 71.02 | 1.140 |  |
| 10:56 | 32.94 | 71.10 | 1.093 |  |

Table A.45. Cross section water surface data for $2: 1$ stepped training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 15 |  | recorder | RW |  |  |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $9 / 27 / 2007$ |  | BM-0 <br> rd. | $x=24.68$ | $y=65.02$ | $z=2.873$ |


| time | x <br> ft | y <br> ft | z <br> ft | comments |
| :---: | :--- | :---: | :---: | :--- |
| $14: 05$ | 24.87 | 68.61 | 2.331 |  |
|  | 24.87 | 68.79 | 2.316 |  |
|  | 24.87 | 68.95 | 2.315 |  |


|  | 24.87 | 69.10 | 2.307 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 24.87 | 69.50 | 2.299 |  |
|  | 24.87 | 71.00 | 2.297 |  |
|  | 24.87 | 73.00 | 2.299 |  |
|  | 24.87 | 75.20 | 2.301 |  |
|  | 24.87 | 77.00 | 2.299 |  |
|  | 24.87 | 79.00 | 2.300 |  |
|  | 24.87 | 81.00 | 2.300 |  |
|  | 24.87 | 81.50 | 2.298 |  |
|  | 24.87 | 82.00 | 2.304 |  |
|  | 24.87 | 82.20 | 2.308 |  |
| 14:16 | 24.87 | 82.42 | 2.325 |  |
|  | 25.44 | 68.61 | 2.329 |  |
|  | 25.44 | 68.79 | 2.259 |  |
|  | 25.44 | 68.95 | 2.233 |  |
|  | 25.44 | 69.14 | 2.194 |  |
|  | 25.44 | 69.32 | 2.150 |  |
|  | 25.435 | 69.51 | 2.091 |  |
|  | 25.435 | 69.70 | 2.064 |  |
|  | 25.435 | 70.00 | 2.056 |  |
|  | 25.435 | 71.00 | 2.055 |  |
|  | 25.435 | 73.00 | 2.055 |  |
|  | 25.435 | 75.20 | 2.056 |  |
|  | 25.435 | 77.00 | 2.055 |  |
|  | 25.435 | 79.00 | 2.058 |  |
|  | 25.435 | 81.00 | 2.062 |  |
|  | 25.435 | 81.50 | 2.066 |  |
|  | 25.435 | 81.75 | 2.085 |  |
|  | 25.435 | 82.00 | 2.147 |  |
| 14:32 | 25.435 | 82.30 | 2.216 |  |
| 14:35 | 26.5 | 68.60 | 2.334 |  |
|  | 26.5 | 68.78 | 2.252 |  |
|  | 26.5 | 68.95 | 2.169 |  |
|  | 26.5 | 69.14 | 2.080 |  |
|  | 26.5 | 69.32 | 2.007 |  |
|  | 26.5 | 69.51 | 1.958 |  |
|  | 26.5 | 69.70 | 1.926 |  |
|  | 26.5 | 69.89 | 1.893 |  |
|  | 26.5 | 70.07 | 1.871 |  |


|  | 26.5 | 70.25 | 1.695 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 26.5 | 70.43 | 1.677 |  |
|  | 26.5 | 70.63 | 1.674 |  |
|  | 26.5 | 71.00 | 1.665 |  |
|  | 26.5 | 73.00 | 1.658 |  |
|  | 26.5 | 75.20 | 1.661 |  |
|  | 26.5 | 77.00 | 1.662 |  |
|  | 26.5 | 79.00 | 1.661 |  |
|  | 26.5 | 81.00 | 1.677 |  |
|  | 26.5 | 81.40 | 1.740 |  |
|  | 26.5 | 81.50 | 1.794 |  |
|  | 26.5 | 81.70 | 1.797 |  |
|  | 26.5 | 81.89 | 1.824 |  |
|  | 27.61 | 68.60 | 2.332 |  |
|  | 27.61 | 68.77 | 2.252 |  |
|  | 27.61 | 68.95 | 2.162 |  |
|  | 27.61 | 69.14 | 2.070 |  |
|  | 27.61 | 69.32 | 1.993 |  |
|  | 27.61 | 69.51 | 1.895 |  |
|  | 27.61 | 69.70 | 1.807 |  |
|  | 27.61 | 69.89 | 1.716 |  |
|  | 27.61 | 70.07 | 1.661 |  |
|  | 27.61 | 70.25 | 1.618 |  |
|  | 27.61 | 70.43 | 1.590 |  |
|  | 27.61 | 81.40 | 1.413 |  |
|  | 27.61 | 70.63 | 1.560 |  |
|  | 27.61 | 70.82 | 1.516 |  |
|  | 27.61 | 70.98 | 1.442 |  |
|  | 27.61 | 71.17 | 1.400 |  |
|  | 27.61 | 73.00 | 1.291 | 1.271 |


|  | 28.69 | 69.14 | 2.068 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 69.32 | 1.984 |  |
|  | 28.69 | 69.51 | 1.883 |  |
|  | 28.69 | 69.70 | 1.790 |  |
|  | 28.69 | 69.89 | 1.701 |  |
|  | 28.69 | 70.07 | 1.623 |  |
|  | 28.69 | 70.25 | 1.537 |  |
|  | 28.69 | 70.43 | 1.449 |  |
|  | 28.69 | 70.63 | 1.368 |  |
|  | 28.69 | 70.82 | 1.318 |  |
|  | 28.69 | 70.98 | 1.273 |  |
|  | 28.69 | 71.17 | 1.245 |  |
|  | 28.69 | 71.36 | 1.219 |  |
|  | 28.69 | 71.55 | 1.168 |  |
|  | 28.69 | 71.75 | 1.092 |  |
|  | 28.69 | 71.93 | 0.938 |  |
|  | 28.69 | 72.00 | 0.945 |  |
|  | 28.69 | 73.00 | 0.905 |  |
|  | 28.69 | 75.20 | 0.910 |  |
|  | 28.69 | 77.00 | 0.909 |  |
|  | 28.69 | 79.00 | 0.915 |  |
|  | 28.69 | 80.50 | 0.990 |  |
|  | 28.69 | 80.70 | 1.017 |  |
|  | 28.69 | 81 | 1.058 |  |
| 15:58 | 28.69 | 81.21 | 1.108 |  |
|  | 29.155 | 69.13 | 2.066 |  |
|  | 29.155 | 69.32 | 1.973 |  |
|  | 29.155 | 69.51 | 1.883 |  |
|  | 29.155 | 69.7 | 1.783 |  |
|  | 29.155 | 69.89 | 1.705 |  |
|  | 29.155 | 70.07 | 1.622 |  |
|  | 29.155 | 70.25 | 1.528 |  |
|  | 29.155 | 70.43 | 1.435 |  |
|  | 29.155 | 70.63 | 1.351 |  |
|  | 29.155 | 70.82 | 1.265 |  |
|  | 29.155 | 70.98 | 1.203 |  |
|  | 29.155 | 71.17 | 1.153 |  |
|  | 29.155 | 71.36 | 1.105 |  |
|  | 29.155 | 71.55 | 1.087 |  |


|  | 29.155 | 71.75 | 1.054 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 29.155 | 71.93 | 0.982 |  |
|  | 29.155 | 72.1 | 0.924 |  |
|  | 29.155 | 72.5 | 0.787 |  |
|  | 29.155 | 73 | 0.763 |  |
|  | 29.155 | 75.2 | 0.756 |  |
|  | 29.155 | 77 | 0.752 |  |
|  | 29.155 | 79 | 0.774 |  |
|  | 29.155 | 80 | 0.81 |  |
|  | 29.155 | 80.5 | 0.845 |  |
|  | 29.155 | 80.75 | 0.885 |  |
|  | 29.155 | 81 | 0.906 |  |
| $16: 17$ | 29.155 | 81.07 | 0.945 |  |
|  | 29.155 | 73 | 0.782 |  |
|  | 29.155 | 75.2 | 0.753 |  |
|  | 29.155 | 77 | 0.751 |  |
|  | 29.155 | 79 | 0.763 |  |
|  | 29.155 | 80 | 0.799 |  |
|  | 29.155 | 80.5 | 0.834 |  |
|  | 29.155 | 80.6 | 0.855 |  |
|  | 29.155 | 80.7 | 0.873 |  |
|  | 29.155 | 80.8 | 0.885 |  |
|  | 29.155 | 80.9 | 0.896 |  |
|  | 29.155 | 81.07 | 0.954 |  |

Table A.46. Centerline water surface data for $2: 1$ stepped training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 16 |  | recorder |  | RW |  |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| Date | $10 / 3 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | $\mathrm{y}=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  |  | comments |
|  | 24.87 | 75.20 | 2.258 |  |  |  |
|  | 25.44 | 75.20 | 2.018 |  |  |  |
|  | 26.50 | 75.20 | 1.634 |  |  |  |
|  | 27.61 | 75.20 | 1.252 |  |  |  |
|  | 28.69 | 75.20 | 0.890 |  |  |  |
|  | 29.16 | 75.20 | 0.730 |  |  |  |

Table A.47. Run-up water surface data for $2: 1$ stepped training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 16 |  | recorder | $\begin{array}{\|l} \hline \text { RW, } \\ \text { BS } \\ \hline \end{array}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | 10/3/2007 |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | $y=65.02$ | $\mathrm{z}=2.873$ |
| time | $\begin{gathered} \mathrm{x} \\ \mathrm{ft} \end{gathered}$ | $\begin{aligned} & \mathrm{y} \\ & \mathrm{ft} \end{aligned}$ | $\begin{gathered} \mathrm{z} \\ \mathrm{ft} \end{gathered}$ |  |  | comments |
| 9:04 | 24.40 | 68.71 | 2.295 |  |  |  |
|  | 24.76 | 68.71 | 2.292 |  |  |  |
|  | 24.87 | 68.71 | 2.290 |  |  |  |
|  | 25.10 | 68.78 | 2.253 |  |  |  |
|  | 25.30 | 68.78 | 2.245 |  |  |  |
|  | 25.42 | 68.78 | 2.243 |  |  |  |
| 9:07 | 25.55 | 68.88 | 2.211 |  |  |  |
|  | 25.69 | 68.88 | 2.209 |  |  |  |
|  | 25.83 | 68.88 | 2.210 |  |  |  |
|  | 25.97 | 68.95 | 2.167 |  |  |  |
|  | 26.11 | 68.950 | 2.166 |  |  |  |
|  | 26.24 | 69.050 | 2.121 |  |  |  |
|  | 26.39 | 69.05 | 2.120 |  |  |  |
|  | 26.51 | 69.05 | 2.124 |  |  |  |
| 9:12 | 26.65 | 69.05 | 2.118 |  |  |  |
|  | 26.79 | 69.14 | 2.082 |  |  |  |
|  | 26.93 | 69.14 | 2.073 |  |  |  |
|  | 27.06 | 69.24 | 2.039 |  |  |  |
|  | 27.19 | 69.24 | 2.033 |  |  |  |
|  | 27.34 | 69.32 | 1.994 |  |  |  |
|  | 27.47 | 69.320 | 1.987 |  |  |  |
| 9:16 | 27.61 | 69.42 | 1.935 |  |  |  |
|  | 27.75 | 69.42 | 1.934 |  |  |  |
|  | 27.89 | 69.42 | 1.928 |  |  |  |
|  | 28.04 | 69.51 | 1.888 |  |  |  |
|  | 28.16 | 69.51 | 1.886 |  |  |  |
|  | 28.30 | 69.51 | 1.889 |  |  |  |
|  | 28.43 | 69.61 | 1.846 |  |  |  |
|  | 28.58 | 69.61 | 1.842 |  |  |  |
|  | 28.71 | 69.70 | 1.794 |  |  |  |
|  | 28.85 | 69.70 | 1.789 |  |  |  |


|  | 28.98 | 69.70 | 1.784 |  |
| ---: | ---: | ---: | ---: | :--- |
|  | 29.13 | 69.80 | 1.744 |  |
|  | 29.16 | 69.80 | 1.741 |  |
|  | 29.30 | 69.89 | 1.698 |  |
|  | 29.60 | 69.98 | 1.645 |  |
| $9: 26$ | 29.90 | 70.08 | 1.610 |  |
|  | 30.20 | 70.25 | 1.518 |  |
|  | 30.50 | 70.34 | 1.468 |  |
|  | 30.80 | 70.43 | 1.423 |  |
|  | 31.10 | 70.53 | 1.377 |  |
|  | 31.40 | 70.72 | 1.284 |  |
|  | 31.7 | 70.81 | 1.231 |  |
|  | 32.00 | 71.00 | 1.142 |  |
|  | 32.30 | 71.10 | 1.095 |  |
|  | 32.60 | 71.19 | 1.050 |  |
| $9: 34$ | 32.90 | 71.28 | 1.005 |  |

Table A.48. Cross section water surface data for $2: 1$ stepped training walls $\mathrm{q}=0.039 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 16 |  | recorder | RW |  |  |
| :---: | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $10 / 2 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | $\mathrm{y}=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  |  | comments |
|  | 24.87 | 68.78 | 2.268 |  |  |  |
|  | 24.87 | 68.95 | 2.267 |  |  |  |
|  | 24.87 | 69.14 | 2.263 |  |  |  |
|  | 24.87 | 69.50 | 2.256 |  |  |  |
|  | 24.87 | 71.00 | 2.258 |  |  |  |
|  | 24.87 | 73.00 | 2.257 |  |  |  |
|  | 24.87 | 75.20 | 2.258 |  |  |  |
|  | 24.87 | 77.00 | 2.258 |  |  |  |
|  | 24.87 | 79.00 | 2.259 |  |  |  |
|  | 24.87 | 81.00 | 2.258 |  |  |  |
|  | 24.87 | 82.00 | 2.262 |  |  |  |


|  | 24.87 | 82.20 | 2.267 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 24.87 | 82.37 | 2.279 |  |
|  | 25.44 | 68.78 | 2.242 |  |
|  | 25.44 | 68.95 | 2.194 |  |
|  | 25.44 | 69.14 | 2.156 |  |
|  | 25.44 | 69.32 | 2.110 |  |
|  | 25.44 | 69.51 | 2.043 |  |
|  | 25.44 | 70.00 | 2.017 |  |
|  | 25.44 | 71.00 | 2.017 |  |
|  | 25.44 | 73.00 | 2.018 |  |
|  | 25.44 | 75.20 | 2.018 |  |
|  | 25.44 | 77.00 | 2.017 |  |
|  | 25.44 | 79.00 | 2.020 |  |
|  | 25.44 | 81.00 | 2.023 |  |
|  | 25.44 | 81.50 | 2.024 |  |
|  | 25.44 | 82.00 | 2.105 |  |
|  | 26.5 | 68.78 | 2.250 |  |
|  | 26.5 | 68.95 | 2.167 |  |
|  | 26.5 | 69.14 | 2.079 |  |
|  | 26.5 | 69.32 | 1.995 |  |
|  | 26.5 | 69.51 | 1.913 |  |
|  | 26.5 | 69.70 | 1.880 |  |
|  | 26.5 | 69.89 | 1.844 |  |
|  | 26.5 | 70.07 | 1.814 |  |
|  | 26.5 | 70.25 | 1.663 |  |
|  | 26.5 | 70.43 | 1.646 |  |
|  | 26.5 | 70.63 | 1.641 |  |
|  | 26.5 | 71.00 | 1.637 |  |
|  | 26.5 | 73.00 | 1.633 |  |
|  | 26.5 | 75.20 | 1.634 |  |
|  | 26.5 | 77.00 | 1.634 |  |
|  | 26.5 | 79.00 | 1.637 |  |
|  | 26.5 | 80.00 | 1.636 |  |
|  | 26.5 | 80.50 | 1.642 |  |
|  | 26.5 | 81.30 | 1.669 |  |
|  | 26.5 | 81.50 | 1.740 |  |
|  | 26.5 | 81.84 | 1.771 |  |
|  | 27.61 | 68.72 | 2.255 |  |
|  | 27.61 | 68.95 | 2.165 |  |


|  | 27.61 | 69.14 | 2.076 |  |
| :--- | :--- | :--- | :--- | :--- |
|  | 27.61 | 69.32 | 1.988 |  |
|  | 27.61 | 69.51 | 1.896 |  |
|  | 27.61 | 69.70 | 1.798 |  |
|  | 27.61 | 69.89 | 1.714 |  |
|  | 27.61 | 70.07 | 1.636 |  |
|  | 27.61 | 70.25 | 1.579 |  |
|  | 27.61 | 70.43 | 1.533 |  |
|  | 27.61 | 70.63 | 1.501 |  |
|  | 27.61 | 70.82 | 1.455 |  |
|  | 27.61 | 70.98 | 1.392 |  |
|  | 27.61 | 71.17 | 1.279 |  |
|  | 27.61 | 71.50 | 1.257 |  |
|  | 27.61 | 73.00 | 1.249 |  |
|  | 27.61 | 75.20 | 1.252 |  |
|  | 27.61 | 77.00 | 1.252 |  |
|  | 27.61 | 79.00 | 1.253 |  |
|  | 27.61 | 80.00 | 1.262 |  |
|  | 27.61 | 80.50 | 1.275 |  |
|  | 27.61 | 81.00 | 1.323 |  |
|  | 27.61 | 81.30 | 1.366 |  |
|  | 27.61 | 81.50 | 1.415 |  |
|  | 28.69 | 68.77 | 2.247 |  |
|  | 28.69 | 68.95 | 2.163 |  |
|  | 28.69 | 71.75 | 1.041 |  |
|  | 289.14 | 2.070 |  |  |
|  | 2899 | 69.32 | 1.987 |  |
|  | 28.69 | 69.51 | 1.883 |  |
|  | 28.69 | 69.70 | 1.789 |  |
|  | 28.69 | 70.07 | 1.69 | 70.25 |
|  | 28.69 | 70.43 | 1.528 | 1.440 |


|  | 28.69 | 71.93 | 0.970 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 72.20 | 0.905 |  |
|  | 28.69 | 73.00 | 0.890 |  |
|  | 28.69 | 75.20 | 0.890 |  |
|  | 28.69 | 77.00 | 0.890 |  |
|  | 28.69 | 79.00 | 0.895 |  |
|  | 28.69 | 80.00 | 0.917 |  |
|  | 28.69 | 80.50 | 0.954 |  |
|  | 28.69 | 81.00 | 1.017 |  |
|  | 28.69 | 81.16 | 1.063 |  |
| 10:40 | 29.155 | 68.77 | 2.245 |  |
|  | 29.155 | 68.95 | 2.163 |  |
|  | 29.155 | 69.13 | 2.067 |  |
|  | 29.155 | 69.32 | 1.981 |  |
|  | 29.155 | 69.51 | 1.882 |  |
|  | 29.155 | 69.7 | 1.786 |  |
|  | 29.155 | 69.89 | 1.698 |  |
|  | 29.155 | 70.07 | 1.614 |  |
|  | 29.155 | 70.25 | 1.533 |  |
|  | 29.155 | 70.48 | 1.439 |  |
|  | 29.155 | 70.63 | 1.347 |  |
|  | 29.155 | 70.82 | 1.257 |  |
|  | 29.155 | 70.98 | 1.182 |  |
|  | 29.155 | 71.17 | 1.118 |  |
|  | 29.155 | 71.36 | 1.052 |  |
|  | 29.155 | 71.55 | 1.017 |  |
|  | 29.155 | 71.75 | 0.972 |  |
|  | 29.155 | 71.93 | 0.934 |  |
|  | 29.155 | 72.1 | 0.89 |  |
|  | 29.155 | 72.35 | 0.764 |  |
|  | 29.155 | 73 | 0.734 |  |
|  | 29.155 | 75.2 | 0.73 |  |
|  | 29.155 | 77 | 0.73 |  |
|  | 29.155 | 79 | 0.74 |  |
|  | 29.155 | 80 | 0.764 |  |
|  | 29.155 | 80.5 | 0.804 |  |
| 10:53 | 29.155 | 81 | 0.888 |  |

Table A.49. Centerline water surface data for $3: 1$ smooth training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 17 |  | recorder | RW |  |  |
| :---: | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $10 / 26 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | $\mathrm{y}=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  | comments |  |
|  | 24.87 | 75.21 | 2.363 | Centerline |  |  |
|  | 25.435 | 75.21 | 2.114 |  |  |  |
|  | 26.5 | 75.21 | 1.7 |  |  |  |
|  | 27.61 | 75.21 | 1.303 |  |  |  |
|  | 28.69 | 75.21 | 0.93 |  |  |  |
|  | 29.155 | 75.21 | 0.779 |  |  |  |

Table A.50. Run-up water surface data for $3: 1$ smooth training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s}$.


|  | 26.79 | 69.33 | 2.172 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 26.93 | 69.41 | 2.143 |  |
|  | 27.06 | 69.48 | 2.118 |  |
|  | 27.20 | 69.56 | 2.089 |  |
|  | 27.34 | 69.690 | 2.055 |  |
|  | 27.47 | 69.74 | 2.021 |  |
|  | 27.61 | 69.84 | 1.983 |  |
|  | 27.75 | 69.94 | 1.946 |  |
| 15:27 | 27.89 | 70.06 | 1.908 |  |
| 15:37 | 28.04 | 70.17 | 1.872 |  |
|  | 28.16 | 70.25 | 1.848 |  |
|  | 28.30 | 70.38 | 1.805 |  |
|  | 28.43 | 70.48 | 1.772 |  |
|  | 28.58 | 70.59 | 1.734 |  |
|  | 28.71 | 70.69 | 1.703 |  |
|  | 28.85 | 70.80 | 1.667 |  |
|  | 28.89 | 70.83 | 1.660 |  |
|  | 29.13 | 71.01 | 1.600 |  |
|  | 29.16 | 71.04 | 1.591 |  |
|  | 29.50 | 71.30 | 1.508 |  |
| 15:52 | 30.00 | 71.67 | 1.388 |  |
|  | 30.50 | 72.02 | 1.273 |  |
|  | 31.00 | 72.35 | 1.164 |  |
|  | 31.50 | 72.71 | 1.046 |  |
|  | 32.00 | 73.07 | 0.922 |  |
|  | 32.92 | 73.79 | 0.691 |  |
|  | 31.7 | 70.44 | 1.416 |  |
|  | 32.00 | 70.54 | 1.375 |  |
|  | 32.30 | 70.71 | 1.281 |  |
|  | 32.60 | 70.82 | 1.231 |  |
| 15:36 | 32.94 | 70.92 | 1.185 |  |

Table A.51. Cross section water surface data for $3: 1$ smooth training walls $\mathrm{q}=0.078 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 17 |  | recorder | RW |  |  |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| Date | $10 / 26 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | $\mathrm{y}=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  | comments |


|  | ft | ft | ft |  |
| :---: | :---: | :---: | :---: | :--- |
| $12: 52$ | 24.87 | 68.78 | 2.368 |  |
|  | 24.87 | 69.00 | 2.372 |  |
|  | 24.87 | 69.20 | 2.368 |  |
|  | 24.87 | 69.40 | 2.366 |  |
|  | 24.87 | 69.60 | 2.364 |  |
|  | 24.87 | 69.80 | 2.361 |  |
|  | 24.87 | 70.00 | 2.358 |  |
|  | 24.87 | 71.00 | 2.359 |  |
|  | 24.87 | 73.00 | 2.363 |  |
|  | 24.87 | 75.20 | 2.363 |  |
|  | 24.87 | 77.00 | 2.360 |  |
|  | 24.87 | 79.00 | 2.357 |  |
|  | 24.87 | 81.00 | 2.356 |  |
|  | 24.87 | 81.50 | 2.358 |  |
|  | 24.87 | 82.00 | 2.362 |  |
| $13: 00$ | 24.87 | 82.47 | 2.385 |  |
| $13: 00$ | 25.44 | 68.86 | 2.342 |  |
|  | 25.44 | 69.20 | 2.328 |  |
|  | 25.44 | 69.40 | 2.314 |  |
|  | 25.44 | 69.60 | 2.288 |  |
|  | 26.44 | 69.80 | 2.255 |  |
|  | 26.50 | 70.20 | 2.066 |  |
|  | 26.44 | 70.00 | 2.215 |  |
|  | 26.54 | 71.00 | 2.114 |  |
|  | 25.50 | 69.60 | 69.80 | 2.136 |


|  | 26.50 | 70.40 | 2.037 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 26.50 | 70.60 | 2.011 |  |
|  | 26.50 | 70.80 | 1.966 |  |
|  | 26.50 | 71.00 | 1.816 |  |
|  | 26.50 | 71.20 | 1.749 |  |
|  | 26.50 | 71.40 | 1.733 |  |
|  | 26.50 | 72.00 | 1.710 |  |
|  | 26.50 | 73.00 | 1.703 |  |
|  | 26.50 | 75.20 | 1.700 |  |
|  | 26.50 | 77.00 | 1.703 |  |
|  | 26.50 | 79.00 | 1.700 |  |
|  | 26.50 | 81.00 | 1.720 |  |
|  | 26.50 | 81.30 | 1.761 |  |
| $13: 47$ | 26.50 | 81.60 | 1.867 |  |
| $13: 47$ | 27.50 | 82.01 | 1.933 |  |
|  | 27.61 | 69.84 | 1.988 |  |
|  | 27.61 | 70.00 | 1.960 | 1.920 |


|  | 28.69 | 71.00 | 1.664 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 71.20 | 1.640 |  |
|  | 28.69 | 71.40 | 1.624 |  |
|  | 28.69 | 71.60 | 1.582 |  |
|  | 28.69 | 71.80 | 1.565 |  |
|  | 28.69 | 72.00 | 1.514 |  |
|  | 28.69 | 72.20 | 1.463 |  |
|  | 28.69 | 72.40 | 1.504 |  |
|  | 28.69 | 72.60 | 1.481 |  |
|  | 28.69 | 72.80 | 1.359 |  |
|  | 28.69 | 73.00 | 1.231 |  |
|  | 28.69 | 73.20 | 1.133 |  |
|  | 28.69 | 73.40 | 0.986 |  |
|  | 28.69 | 73.60 | 0.966 |  |
|  | 28.69 | 73.80 | 0.959 |  |
|  | 28.69 | 74.00 | 0.946 |  |
|  | 28.69 | 75.20 | 0.930 |  |
|  | 28.69 | 77.00 | 0.930 |  |
|  | 28.69 | 79.00 | 0.938 |  |
|  | 28.69 | 80.00 | 0.973 |  |
|  | 28.69 | 80.40 | 1.012 |  |
|  | 28.69 | 80.60 | 1.078 |  |
|  | 28.69 | 80.80 | 1.075 |  |
|  | 28.69 | 81.00 | 1.101 |  |
| 14:38 | 28.69 | 81.28 | 1.172 |  |
| 14:42 | 29.155 | 71.02 | 1.595 |  |
|  | 29.155 | 71.20 | 1.567 |  |
|  | 29.155 | 71.40 | 1.548 |  |
|  | 29.155 | 71.60 | 1.534 |  |
|  | 29.155 | 71.80 | 1.503 |  |
|  | 29.155 | 72.00 | 1.467 |  |
|  | 29.155 | 72.20 | 1.437 |  |
|  | 29.155 | 72.40 | 1.398 |  |
|  | 29.155 | 72.60 | 1.364 |  |
|  | 29.16 | 72.80 | 1.399 |  |
|  | 29.16 | 73.00 | 1.364 |  |
|  | 29.16 | 73.20 | 1.244 |  |
|  | 29.16 | 73.40 | 1.168 |  |
|  | 29.16 | 73.60 | 0.962 |  |


|  | 29.16 | 73.80 | 0.837 |  |
| ---: | ---: | ---: | ---: | ---: |
|  | 29.16 | 74.00 | 0.823 |  |
|  | 29.16 | 74.50 | 0.804 |  |
|  | 29.16 | 75.20 | 0.779 |  |
|  | 29.16 | 76.00 | 0.778 |  |
|  | 29.16 | 77.00 | 0.780 |  |
|  | 29.16 | 79.00 | 0.795 |  |
|  | 29.16 | 80.00 | 0.850 |  |
|  | 29.16 | 80.30 | 0.866 |  |
|  | 29.16 | 80.60 | 0.914 |  |
|  | 29.16 | 80.90 | 0.955 |  |
| 14.56 | 29.16 | 81.13 | 1.010 |  |
|  | 29.16 | 71.75 | 1.148 |  |
|  | 29.16 | 71.93 | 1.037 |  |
|  | 29.16 | 72.00 | 1.052 |  |
|  | 29.16 | 72.20 | 0.998 |  |
|  | 29.16 | 72.40 | 0.880 |  |
|  | 29.16 | 72.60 | 0.815 |  |
|  | 29.16 | 72.80 | 0.808 |  |
|  | 29.16 | 73.00 | 0.796 |  |
|  | 29.16 | 75.20 | 0.781 |  |
|  | 29.16 | 77.00 | 0.785 |  |
|  | 29.16 | 79.00 | 0.799 |  |
|  | 29.16 | 80.00 | 0.848 |  |
|  | 29.16 | 80.35 | 0.881 |  |
|  | 29.16 | 80.50 | 0.911 |  |
|  | 29.16 | 80.70 | 0.922 |  |
|  | 29.16 | 80.80 | 0.949 |  |
|  | 29.16 | 80.90 | 0.950 |  |
|  | 89.13 | 72.3 | 1.009 | 0.889 |


|  | 29.155 | 80.3 | 0.885 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 29.155 | 80.4 | 0.914 |  |
|  | 29.155 | 80.5 | 0.929 |  |
|  | 29.155 | 80.6 | 0.913 |  |
|  | 29.155 | 80.7 | 0.94 |  |
|  | 29.155 | 80.9 | 0.954 |  |
|  | 29.155 | 81 | 0.962 |  |
|  | 29.155 | 81.14 | 1.019 |  |

Table A.52. Centerline water surface data for $3: 1$ smooth training walls $\mathrm{q}=0.060 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 18 |  | recorder |  | RW |  |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $10 / 25 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | y <br> $=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  | comments |  |
|  | 24.87 | 75.21 | 2.316 | Centerline |  |  |
|  | 25.44 | 75.21 | 2.075 |  |  |  |
|  | 26.50 | 75.21 | 1.672 |  |  |  |
|  | 27.61 | 75.21 | 1.279 |  |  |  |
|  | 28.69 | 75.21 | 0.908 |  |  |  |
|  | 29.16 | 75.21 | 0.758 |  |  |  |

Table A.53. Run-up water surface data for $3: 1$ smooth training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 18 |  | recorder | RW |  |  |
| :---: | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $10 / 25 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | $\mathrm{y}=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  |  | comments |
|  |  |  |  |  |  |  |
|  | 24.40 | 68.84 | 2.352 |  |  |  |
|  | 24.76 | 68.90 | 2.330 |  |  |  |
|  | 24.87 | 68.92 | 2.324 |  |  |  |
|  | 25.10 | 68.93 | 2.319 |  |  |  |
|  | 25.30 | 68.97 | 2.306 |  |  |  |
|  | 25.42 | 68.98 | 2.301 |  |  |  |
|  |  |  |  |  |  |  |


|  | 25.55 | 69.01 | 2.291 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 25.69 | 69.050 | 2.280 |  |
|  | 25.83 | 69.090 | 2.264 |  |
|  | 25.97 | 69.14 | 2.248 |  |
|  | 26.11 | 69.19 | 2.230 |  |
|  | 26.24 | 69.25 | 2.209 |  |
|  | 26.39 | 69.32 | 2.184 |  |
|  | 26.51 | 69.38 | 2.162 |  |
|  | 26.65 | 69.45 | 2.135 |  |
|  | 26.79 | 69.54 | 2.106 |  |
|  | 26.93 | 69.62 | 2.073 |  |
|  | 27.06 | 69.720 | 2.038 |  |
|  | 27.20 | 69.80 | 2.007 |  |
|  | 27.34 | 69.91 | 1.966 |  |
|  | 27.47 | 70.01 | 1.929 |  |
|  | 27.61 | 70.12 | 1.888 |  |
|  | 27.75 | 70.23 | 1.847 |  |
|  | 27.89 | 70.35 | 1.808 |  |
|  | 28.04 | 70.46 | 1.773 |  |
|  | 28.16 | 70.53 | 1.749 |  |
|  | 28.30 | 70.66 | 1.706 |  |
|  | 28.43 | 70.76 | 1.674 |  |
|  | 28.58 | 70.88 | 1.635 |  |
|  | 28.71 | 70.97 | 1.604 |  |
|  | 28.85 | 71.08 | 1.569 |  |
|  | 28.89 | 71.12 | 1.558 |  |
|  | 29.13 | 71.30 | 1.501 |  |
|  | 29.16 | 71.33 | 1.493 |  |
|  | 29.50 | 71.59 | 1.411 |  |
|  | 30.00 | 71.93 | 1.299 |  |
|  | 30.50 | 72.28 | 1.186 |  |
|  | 31.00 | 72.64 | 1.065 |  |
|  | 31.50 | 73.03 | 0.936 |  |
|  | 32 | 73.43 | 0.803 |  |
|  | 31.40 | 70.35 | 1.471 |  |
|  | 31.70 | 70.44 | 1.414 |  |
|  | 32.00 | 70.63 | 1.330 |  |
|  | 32.30 | 70.72 | 1.280 |  |
|  | 32.6 | 70.81 | 1.238 |  |


|  | 32.94 | 70.92 | 1.18 |
| :--- | :--- | :--- | :--- |

Table A.54. Cross section water surface data for $3: 1$ smooth training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 18 |  | recorder | RW |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | 10/25/2007 |  | $\begin{aligned} & \text { BM-0 } \\ & \text { rd. } \\ & \hline \end{aligned}$ | $\mathrm{x}=24.68$ | $y=65.02$ | $\mathrm{z}=2.873$ |
| time | $\begin{gathered} \mathrm{x} \\ \mathrm{ft} \end{gathered}$ | $\begin{aligned} & \mathrm{y} \\ & \mathrm{ft} \end{aligned}$ | $\begin{gathered} \mathrm{z} \\ \mathrm{ft} \end{gathered}$ |  |  | comments |
| 14:53 | 24.87 | 68.91 | 2.326 |  |  |  |
|  | 24.87 | 69.20 | 2.331 |  |  |  |
|  | 24.87 | 69.40 | 2.327 |  |  |  |
|  | 24.87 | 69.60 | 2.326 |  |  |  |
|  | 24.87 | 69.80 | 2.322 |  |  |  |
|  | 24.87 | 70.00 | 2.318 |  |  |  |
|  | 24.87 | 71.00 | 2.317 |  |  |  |
|  | 24.87 | 73.00 | 2.317 |  |  |  |
|  | 24.87 | 75.20 | 2.316 |  |  |  |
|  | 24.87 | 77.00 | 2.317 |  |  |  |
|  | 24.87 | 79.00 | 2.317 |  |  |  |
|  | 24.87 | 81.00 | 2.318 |  |  |  |
|  | 24.87 | 81.50 | 2.320 |  |  |  |
|  | 24.87 | 82.00 | 2.325 |  |  |  |
| 14:58 | 24.87 | 82.43 | 2.344 |  |  |  |
| 15:13 | 25.44 | 68.98 | 2.303 |  |  |  |
|  | 25.44 | 69.20 | 2.294 |  |  |  |
|  | 25.44 | 69.40 | 2.285 |  |  |  |
|  | 25.44 | 69.60 | 2.252 |  |  |  |
|  | 25.435 | 69.80 | 2.219 |  |  |  |
|  | 25.435 | 70.00 | 2.177 |  |  |  |
|  | 25.435 | 70.20 | 2.122 |  |  |  |
|  | 25.435 | 70.50 | 2.082 |  |  |  |
|  | 25.435 | 71.00 | 2.073 |  |  |  |
|  | 25.435 | 73.00 | 2.075 |  |  |  |
|  | 25.435 | 75.20 | 2.075 |  |  |  |
|  | 25.435 | 77.00 | 2.074 |  |  |  |
|  | 25.435 | 79.00 | 2.077 |  |  |  |
|  | 25.435 | 81.00 | 2.082 |  |  |  |


|  | 25.435 | 81.50 | 2.087 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 25.435 | 82.00 | 2.168 |  |
| 15:22 | 25.435 | 82.33 | 2.237 |  |
| 15:25 | 26.5 | 69.38 | 2.164 |  |
|  | 26.5 | 69.60 | 2.134 |  |
|  | 26.5 | 69.80 | 2.099 |  |
|  | 26.5 | 70.00 | 2.067 |  |
|  | 26.5 | 70.20 | 2.030 |  |
|  | 26.5 | 70.40 | 1.997 |  |
|  | 26.5 | 70.60 | 1.972 |  |
|  | 26.5 | 70.80 | 1.951 |  |
|  | 26.5 | 71.00 | 1.773 |  |
|  | 26.5 | 71.20 | 1.715 |  |
|  | 26.5 | 71.40 | 1.700 |  |
|  | 26.5 | 71.60 | 1.690 |  |
|  | 26.5 | 71.80 | 1.686 |  |
|  | 26.5 | 72.00 | 1.678 |  |
|  | 26.5 | 73.00 | 1.670 |  |
|  | 26.5 | 75.20 | 1.672 |  |
|  | 26.5 | 77.00 | 1.672 |  |
|  | 26.5 | 79.00 | 1.672 |  |
|  | 26.5 | 80.50 | 1.679 |  |
|  | 26.5 | 81.00 | 1.690 |  |
|  | 26.5 | 81.40 | 1.763 |  |
|  | 26.5 | 81.60 | 1.815 |  |
|  | 26.5 | 81.80 | 1.831 |  |
| 15:35 | 26.5 | 81.92 | 1.847 |  |
| 15:40 | 27.61 | 70.11 | 1.891 |  |
|  | 27.61 | 70.40 | 1.845 |  |
|  | 27.61 | 70.60 | 1.806 |  |
|  | 27.61 | 70.80 | 1.774 |  |
|  | 27.61 | 71.00 | 1.744 |  |
|  | 27.61 | 71.20 | 1.712 |  |
|  | 27.61 | 71.40 | 1.676 |  |
|  | 27.61 | 71.60 | 1.677 |  |
|  | 27.61 | 71.80 | 1.624 |  |
|  | 27.61 | 72.00 | 1.492 |  |
|  | 27.61 | 72.20 | 1.338 |  |
|  | 27.61 | 72.40 | 1.312 |  |


|  | 27.61 | 72.60 | 1.301 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 27.61 | 72.80 | 1.296 |  |
|  | 27.61 | 73.00 | 1.290 |  |
|  | 27.61 | 75.20 | 1.279 |  |
|  | 27.61 | 77.00 | 1.281 |  |
|  | 27.61 | 79.00 | 1.282 |  |
|  | 27.61 | 80.50 | 1.315 |  |
|  | 27.61 | 80.90 | 1.350 |  |
|  | 27.61 | 81.00 | 1.425 |  |
|  | 27.61 | 81.30 | 1.406 |  |
|  | 27.61 | 81.54 | 1.463 |  |
| 15:47 | 27.61 | 81.56 | 1.478 |  |
| 10:05 | 28.69 | 70.95 | 1.614 |  |
|  | 28.69 | 71.20 | 1.579 |  |
|  | 28.69 | 71.40 | 1.560 |  |
|  | 28.69 | 71.60 | 1.533 |  |
|  | 28.69 | 71.80 | 1.500 |  |
|  | 28.69 | 72.00 | 1.467 |  |
|  | 28.69 | 72.20 | 1.417 |  |
|  | 28.69 | 72.40 | 1.417 |  |
|  | 28.69 | 72.60 | 1.406 |  |
|  | 28.69 | 72.80 | 1.377 |  |
|  | 28.69 | 73.00 | 1.186 |  |
|  | 28.69 | 73.20 | 1.023 |  |
|  | 28.69 | 73.40 | 0.964 |  |
|  | 28.69 | 73.60 | 0.942 |  |
|  | 28.69 | 74.00 | 0.925 |  |
|  | 28.69 | 75.20 | 0.908 |  |
|  | 28.69 | 77.00 | 0.914 |  |
|  | 28.69 | 79.00 | 0.922 |  |
|  | 28.69 | 80.50 | 0.993 |  |
| 10:24 | 28.69 | 80.70 | 1.032 |  |
|  | 28.69 | 81.00 | 1.073 |  |
|  | 28.69 | 81.24 | 1.134 |  |
| 10:27 | 29.155 | 71.31 | 1.502 |  |
|  | 29.155 | 71.60 | 1.460 |  |
|  | 29.155 | 71.80 | 1.445 |  |
|  | 29.155 | 72.00 | 1.417 |  |
|  | 29.155 | 72.20 | 1.381 |  |


|  | 29.155 | 72.40 | 1.350 |  |
| :--- | ---: | ---: | ---: | ---: |
|  | 29.155 | 72.60 | 1.302 |  |
|  | 29.155 | 72.80 | 1.304 |  |
|  | 29.155 | 73.00 | 1.295 |  |
|  | 29.155 | 73.2 | 1.25 |  |
|  | 29.155 | 73.4 | 1.11 |  |
|  | 29.155 | 73.6 | 1.012 |  |
|  | 29.155 | 73.8 | 0.84 |  |
|  | 29.155 | 74 | 0.796 |  |
|  | 29.155 | 74.5 | 0.775 |  |
|  | 29.155 | 75.2 | 0.758 |  |
|  | 29.155 | 76 | 0.755 |  |
|  | 29.155 | 77 | 0.755 |  |
|  | 29.155 | 79 | 0.77 |  |
|  | 29.155 | 80 | 0.819 |  |
|  | 29.155 | 80.5 | 0.858 |  |
|  | 29.155 | 80.7 | 0.884 |  |
|  | 29.155 | 81 | 0.922 |  |
|  | 29.155 | 81.08 | 0.963 |  |
|  | 29.155 | 71.75 | 1.076 |  |
|  | 29.155 | 71.93 | 1.012 |  |
|  | 29.155 | 72 | 0.985 |  |
|  | 29.155 | 75.2 | 0.757 |  |
|  | 29.155 | 72.2 | 0.933 |  |
|  | 29.155 | 72.4 | 0.8 |  |
|  | 29.155 | 72.6 | 0.792 |  |
|  | 29.155 | 73 | 0.777 |  |
|  | 29.155 | 75.2 | 0.765 |  |
|  | 29.155 | 77 | 0.766 |  |
|  | 29.155 | 79 | 0.775 |  |
|  | 29.155 | 80 | 0.817 |  |
|  | 29.155 | 80.5 | 0.867 |  |
|  | 29.155 | 81 | 0.924 |  |
|  | 29.155 | 81.09 | 0.974 |  |
|  | 72.2 | 0.884 |  |  |
|  | 72.155 | 72.3 | 0.868 |  |
|  | 72.4 | 0.849 |  |  |
|  | 72.5 | 0.844 |  |  |
|  |  |  |  |  |
|  | 29.196 |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  | 29.1 |  |  |  |


|  | 29.155 | 77 | 0.763 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 29.155 | 79 | 0.773 |  |
|  | 29.155 | 80 | 0.815 |  |
|  | 29.155 | 80.2 | 0.838 |  |
|  | 29.155 | 80.3 | 0.848 |  |
|  | 29.155 | 80.4 | 0.85 |  |
|  | 29.155 | 80.5 | 0.861 |  |
|  | 29.155 | 80.6 | 0.867 |  |
|  | 29.155 | 80.7 | 0.884 |  |
|  | 29.155 | 80.8 | 0.903 |  |
|  | 29.155 | 80.9 | 0.915 |  |
|  | 29.155 | 81 | 0.921 |  |
|  | 29.155 | 81.08 | 0.963 |  |

Table A.55. Centerline water surface data for $3: 1$ smooth training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 19 |  | recorder | RW |  |  |
| :--- | ---: | ---: | :---: | :--- | :--- | :--- |
| Date | $10 / 24 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | $\mathrm{y}=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  |  |  |
|  | 12.00 | 75.21 | 2.381 |  |  |  |
|  | 16.00 | 75.21 | 2.381 |  |  |  |
|  | 20.00 | 75.21 | 2.381 |  |  |  |
|  | 24.87 | 75.21 | 2.300 |  |  |  |
|  | 25.44 | 75.21 | 2.058 |  |  |  |
|  | 26.50 | 75.21 | 1.661 |  |  |  |
|  | 27.61 | 75.21 | 1.293 |  |  |  |
|  | 28.69 | 75.21 | 0.902 |  |  |  |
|  | 29.16 | 75.21 | 0.747 |  |  |  |

Table A.56. Run-up water surface data for $3: 1$ smooth training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 19 |  | recorder |  | RW |  |
| :---: | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $10 / 24 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | $\mathrm{y}=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x | y | z |  | comments |  |


|  | ft | ft | ft |  |
| :--- | :--- | :--- | :--- | :--- |
| $14: 18$ | 24.40 | 68.88 | 2.334 |  |
|  | 24.76 | 68.95 | 2.313 |  |
|  | 24.87 | 68.96 | 2.310 |  |
|  | 25.10 | 68.98 | 2.302 |  |
|  | 25.30 | 69.02 | 2.290 |  |
|  | 25.42 | 69.04 | 2.284 |  |
|  | 25.55 | 69.07 | 2.274 |  |
|  | 25.69 | 69.11 | 2.258 |  |
|  | 25.83 | 69.16 | 2.241 |  |
|  | 25.97 | 69.21 | 2.222 |  |
|  | 26.11 | 69.27 | 2.202 |  |
|  | 26.24 | 69.33 | 2.181 |  |
|  | 26.39 | 69.41 | 2.154 |  |
|  | 26.51 | 69.48 | 2.128 |  |
|  | 26.65 | 69.56 | 2.099 |  |
|  | 26.79 | 69.64 | 2.067 |  |
|  | 27.06 | 69.74 | 2.035 |  |
|  | 27.20 | 69.84 | 1.998 |  |
|  | 27.34 | 70.04 | 1.961 |  |
|  | 27.921 |  |  |  |
|  | 27.00 | 72.78 | 70.14 | 1.883 |


|  | 31.50 | 73.17 | 0.888 |  |
| ---: | ---: | ---: | ---: | :--- |
|  | 32.36 | 73.87 | 0.665 |  |
|  | 31.40 | 70.54 | 1.380 |  |
|  | 31.7 | 70.63 | 1.333 |  |
|  | 32.00 | 70.82 | 1.236 |  |
|  | 32.30 | 70.92 | 1.191 |  |
|  | 32.60 | 71.02 | 1.140 |  |
| $10: 56$ | 32.94 | 71.10 | 1.093 |  |

Table A.57. Cross section water surface data for $3: 1$ smooth training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 19 |  | recorder | RW |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | 10/24/2007 |  | $\begin{aligned} & \text { BM-0 } \\ & \text { rd. } \\ & \hline \end{aligned}$ | $\mathrm{x}=24.68$ | $y=65.02$ | $\mathrm{z}=2.873$ |
| time | $\begin{aligned} & \mathrm{x} \\ & \mathrm{ft} \end{aligned}$ | $\begin{array}{r} \mathrm{y} \\ \mathrm{ft} \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{z} \\ \mathrm{ft} \\ \hline \end{array}$ |  |  | comments |
| 14:10 | 24.87 | 68.96 | 2.312 |  |  |  |
|  | 24.87 | 69.20 | 2.314 |  |  |  |
|  | 24.87 | 69.40 | 2.314 |  |  |  |
|  | 24.87 | 69.60 | 2.308 |  |  |  |
|  | 24.87 | 70.00 | 2.301 |  |  |  |
|  | 24.87 | 71.00 | 2.298 |  |  |  |
|  | 24.87 | 73.00 | 2.297 |  |  |  |
|  | 24.87 | 75.20 | 2.300 |  |  |  |
|  | 24.87 | 77.00 | 2.299 |  |  |  |
|  | 24.87 | 79.00 | 2.300 |  |  |  |
|  | 24.87 | 81.00 | 2.300 |  |  |  |
|  | 24.87 | 81.50 | 2.299 |  |  |  |
|  | 24.87 | 82.00 | 2.303 |  |  |  |
|  | 24.87 | 82.20 | 2.308 |  |  |  |
| 14:17 | 24.87 | 82.41 | 2.321 |  |  |  |
| 9:55 | 25.44 | 69.04 | 2.284 |  |  |  |
|  | 25.44 | 69.30 | 2.268 |  |  |  |
|  | 25.44 | 69.50 | 2.249 |  |  |  |
|  | 25.44 | 69.70 | 2.219 |  |  |  |
|  | 25.435 | 69.90 | 2.185 |  |  |  |
|  | 25.435 | 70.10 | 2.136 |  |  |  |
|  | 25.435 | 70.30 | 2.083 |  |  |  |


|  | 25.435 | 70.50 | 2.064 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 25.435 | 71.00 | 2.057 |  |
|  | 25.435 | 73.00 | 2.058 |  |
|  | 25.435 | 75.20 | 2.058 |  |
|  | 25.435 | 77.00 | 2.057 |  |
|  | 25.435 | 79.00 | 2.060 |  |
|  | 25.435 | 81.00 | 2.065 |  |
|  | 25.435 | 81.50 | 2.068 |  |
|  | 25.435 | 82.00 | 2.148 |  |
|  | 25.435 | 82.30 | 2.211 |  |
| 10:10 | 26.5 | 69.45 | 2.136 |  |
|  | 26.5 | 69.70 | 2.100 |  |
|  | 26.5 | 69.90 | 2.068 |  |
|  | 26.5 | 70.10 | 2.033 |  |
|  | 26.5 | 70.30 | 1.997 |  |
|  | 26.5 | 70.50 | 1.963 |  |
|  | 26.5 | 70.70 | 1.944 |  |
|  | 26.5 | 70.90 | 1.910 |  |
|  | 26.5 | 71.10 | 1.719 |  |
|  | 26.5 | 71.30 | 1.691 |  |
|  | 26.5 | 71.50 | 1.682 |  |
|  | 26.5 | 72.00 | 1.669 |  |
|  | 26.5 | 73.00 | 1.659 |  |
|  | 26.5 | 75.20 | 1.661 |  |
|  | 26.5 | 77.00 | 1.660 |  |
|  | 26.5 | 79.00 | 1.661 |  |
|  | 26.5 | 81.00 | 1.677 |  |
| 10:22 | 26.5 | 81.40 | 1.743 |  |
|  | 26.5 | 81.50 | 1.795 |  |
|  | 26.5 | 81.70 | 1.797 |  |
|  | 26.5 | 81.89 | 1.822 |  |
| 10:25 | 27.61 | 70.25 | 1.847 |  |
|  | 27.61 | 70.50 | 1.807 |  |
|  | 27.61 | 70.90 | 1.740 |  |
|  | 27.61 | 71.10 | 1.711 |  |
|  | 27.61 | 71.30 | 1.677 |  |
|  | 27.61 | 71.50 | 1.651 |  |
|  | 27.61 | 71.70 | 1.665 |  |
|  | 27.61 | 71.90 | 1.508 |  |


|  | 27.61 | 72.10 | 1.432 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 27.61 | 72.30 | 1.307 |  |
|  | 27.61 | 72.50 | 1.293 |  |
|  | 27.61 | 73.00 | 1.276 |  |
|  | 27.61 | 75.20 | 1.271 |  |
|  | 27.61 | 77.00 | 1.270 |  |
|  | 27.61 | 79.00 | 1.275 |  |
|  | 27.61 | 80.50 | 1.298 |  |
|  | 27.61 | 80.90 | 1.339 |  |
|  | 27.61 | 81.00 | 1.385 |  |
|  | 27.61 | 81.20 | 1.398 |  |
|  | 27.61 | 81.52 | 1.445 |  |
| 10:43 | 28.69 | 71.07 | 1.573 |  |
|  | 28.69 | 71.30 | 1.545 |  |
|  | 28.69 | 71.50 | 1.521 |  |
|  | 28.69 | 71.70 | 1.494 |  |
|  | 28.69 | 71.90 | 1.462 |  |
|  | 28.69 | 72.10 | 1.426 |  |
|  | 28.69 | 72.30 | 1.375 |  |
|  | 28.69 | 72.50 | 1.386 |  |
|  | 28.69 | 72.70 | 1.352 |  |
|  | 28.69 | 72.90 | 1.266 |  |
|  | 28.69 | 73.10 | 1.100 |  |
|  | 28.69 | 73.30 | 0.950 |  |
|  | 28.69 | 73.50 | 0.942 |  |
|  | 28.69 | 74.00 | 0.909 |  |
|  | 28.69 | 75.20 | 0.902 |  |
|  | 28.69 | 77.00 | 0.903 |  |
|  | 28.69 | 79.00 | 0.915 |  |
|  | 28.69 | 80.00 | 0.939 |  |
|  | 28.69 | 80.50 | 0.982 |  |
|  | 28.69 | 81.00 | 1.053 |  |
|  | 28.69 | 81.22 | 1.112 |  |
| 10:58 | 29.155 | 71.45 | 1.457 |  |
|  | 29.155 | 71.90 | 1.405 |  |
|  | 29.155 | 72.10 | 1.376 |  |
|  | 29.155 | 72.30 | 1.344 |  |
|  | 29.155 | 72.50 | 1.313 |  |
|  | 29.155 | 72.70 | 1.270 |  |


|  | 29.155 | 72.90 | 1.271 |  |
| ---: | ---: | ---: | ---: | ---: |
|  | 29.155 | 73.10 | 1.233 |  |
|  | 29.155 | 73.3 | 1.149 |  |
|  | 29.155 | 73.5 | 1.026 |  |
|  | 29.155 | 73.7 | 0.957 |  |
|  | 29.155 | 73.9 | 0.799 |  |
|  | 29.155 | 74.1 | 0.778 |  |
|  | 29.155 | 74.3 | 0.77 |  |
|  | 29.155 | 74.5 | 0.768 |  |
|  | 29.155 | 75.2 | 0.747 |  |
|  | 29.155 | 77 | 0.751 |  |
|  | 29.155 | 78 | 0.757 |  |
|  | 29.155 | 79 | 0.764 |  |
|  | 29.155 | 80 | 0.805 |  |
|  | 29.155 | 80.5 | 0.833 |  |
|  | 29.155 | 80.7 | 0.877 |  |
| $11: 09$ | 29.155 | 81.07 | 0.954 |  |
|  | 29.155 | 70.98 | 1.203 |  |
|  | 29.155 | 71.17 | 1.153 |  |
|  | 29.155 | 71.36 | 1.105 |  |
|  | 29.155 | 71.55 | 1.087 |  |
|  | 29.155 | 71.75 | 1.054 |  |
|  | 29.155 | 71.93 | 0.982 |  |
|  | 29.155 | 79 | 80 | 0.799 |
|  | 29.155 | 72.1 | 0.924 |  |
|  | 29.155 | 72.5 | 0.787 |  |
|  | 29.155 | 73 | 0.763 |  |
|  | 29.155 | 75.2 | 0.756 |  |
|  | 29.155 | 77 | 0.752 |  |
|  | 29.155 | 79 | 0.774 |  |
|  | 29.155 | 80 | 0.81 |  |
|  | 29.155 | 80.5 | 0.845 |  |
|  | 29.155 | 80.75 | 0.885 |  |
|  | 81 | 0.906 |  |  |
|  |  |  |  |  |
|  | 29.155 | 73 | 0.2 | 0.753 |


|  | 29.155 | 80.5 | 0.834 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 29.155 | 80.6 | 0.855 |  |
|  | 29.155 | 80.7 | 0.873 |  |
|  | 29.155 | 80.8 | 0.885 |  |
|  | 29.155 | 80.9 | 0.896 |  |
|  | 29.155 | 81.07 | 0.954 |  |

Table A.58. Centerline water surface data for $3: 1$ smooth training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s}$.


Table A.59. Run-up water surface data for $3: 1$ smooth training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 20 |  | recorder | $\begin{array}{\|l} \hline \text { RW, } \\ \text { BS } \\ \hline \end{array}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | 8/31/2007 |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | $y=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | $\begin{array}{r} \mathrm{x} \\ \mathrm{ft} \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{y} \\ & \mathrm{ft} \end{aligned}$ | $\begin{gathered} \mathrm{z} \\ \mathrm{ft} \end{gathered}$ |  |  | comments |
| 13:11 | 24.40 | 69.01 | 2.290 |  |  |  |
|  | 24.76 | 69.07 | 2.275 |  |  |  |
|  | 24.87 | 69.09 | 2.269 |  |  |  |
|  | 25.10 | 69.12 | 2.258 |  |  |  |
|  | 25.30 | 69.16 | 2.245 |  |  |  |
|  | 25.42 | 69.19 | 2.235 |  |  |  |
|  | 25.55 | 69.23 | 2.222 |  |  |  |
|  | 25.69 | 69.28 | 2.204 |  |  |  |
|  | 25.83 | 69.34 | 2.185 |  |  |  |


|  | 25.97 | 69.41 | 2.159 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 26.11 | 69.480 | 2.135 |  |
|  | 26.24 | 69.550 | 2.109 |  |
|  | 26.39 | 69.65 | 2.073 |  |
|  | 26.51 | 69.73 | 2.043 |  |
|  | 26.65 | 69.82 | 2.010 |  |
|  | 26.79 | 69.93 | 1.971 |  |
|  | 26.93 | 70.03 | 1.936 |  |
|  | 27.06 | 70.12 | 1.901 |  |
|  | 27.20 | 70.21 | 1.866 |  |
|  | 27.34 | 70.33 | 1.823 |  |
|  | 27.47 | 70.430 | 1.785 |  |
| 13:10 | 27.61 | 70.53 | 1.748 |  |
| 13:29 | 27.75 | 70.64 | 1.706 |  |
|  | 27.89 | 70.74 | 1.671 |  |
|  | 28.04 | 70.86 | 1.632 |  |
|  | 28.16 | 70.94 | 1.609 |  |
|  | 28.30 | 71.08 | 1.565 |  |
|  | 28.43 | 71.18 | 1.532 |  |
|  | 28.58 | 71.29 | 1.495 |  |
|  | 28.71 | 71.40 | 1.463 |  |
|  | 28.85 | 71.50 | 1.430 |  |
|  | 28.89 | 71.54 | 1.417 |  |
|  | 29.13 | 71.71 | 1.366 |  |
|  | 29.16 | 71.72 | 1.363 |  |
|  | 29.30 | 71.83 | 1.326 |  |
|  | 29.60 | 72.03 | 1.264 |  |
|  | 29.90 | 72.28 | 1.183 |  |
|  | 30.50 | 72.74 | 1.034 |  |
|  | 31.10 | 73.21 | 0.877 |  |
|  | 31.70 | 73.75 | 0.695 |  |
| 13:47 | 31.93 | 73.93 | 0.633 |  |
|  | 31.40 | 70.72 | 1.284 |  |
|  | 31.7 | 70.81 | 1.231 |  |
|  | 32.00 | 71.00 | 1.142 |  |
|  | 32.30 | 71.10 | 1.095 |  |
|  | 32.60 | 71.19 | 1.050 |  |
| 9:34 | 32.90 | 71.28 | 1.005 |  |

Table A.60. Cross section water surface data for $3: 1$ smooth training walls $\mathrm{q}=0.039 \mathrm{~m}^{2} / \mathrm{s}$.


|  | 26.5 | 69.90 | 2.023 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 26.5 | 70.10 | 1.990 |  |
|  | 26.5 | 70.20 | 1.954 |  |
|  | 26.5 | 70.50 | 1.921 |  |
|  | 26.5 | 70.70 | 1.889 |  |
|  | 26.5 | 70.90 | 1.876 |  |
|  | 26.5 | 71.00 | 1.830 |  |
|  | 26.5 | 71.10 | 1.679 |  |
|  | 26.5 | 71.30 | 1.660 |  |
|  | 26.5 | 71.50 | 1.650 |  |
|  | 26.5 | 73.00 | 1.635 |  |
|  | 26.5 | 75.20 | 1.634 |  |
|  | 26.5 | 77.00 | 1.634 |  |
|  | 26.5 | 79.00 | 1.635 |  |
|  | 26.5 | 81.00 | 1.647 |  |
|  | 26.5 | 81.30 | 1.668 |  |
|  | 26.5 | 81.50 | 1.742 |  |
|  | 26.5 | 81.83 | 1.764 |  |
| 11:12 | 27.61 | 70.53 | 1.748 |  |
|  | 27.61 | 70.80 | 1.715 |  |
|  | 27.61 | 71.00 | 1.675 |  |
|  | 27.61 | 71.20 | 1.643 |  |
|  | 27.61 | 71.40 | 1.610 |  |
|  | 27.61 | 71.60 | 1.588 |  |
|  | 27.61 | 71.80 | 1.552 |  |
|  | 27.61 | 72.00 | 1.450 |  |
|  | 27.61 | 72.20 | 1.339 |  |
|  | 27.61 | 72.40 | 1.267 |  |
|  | 27.61 | 72.60 | 1.257 |  |
|  | 27.61 | 73.00 | 1.254 |  |
|  | 27.61 | 75.20 | 1.248 |  |
|  | 27.61 | 77.00 | 1.252 |  |
|  | 27.61 | 79.00 | 1.252 |  |
|  | 27.61 | 80.50 | 1.272 |  |
|  | 27.61 | 81.00 | 1.323 |  |
|  | 27.61 | 81.20 | 1.340 |  |
|  | 27.61 | 81.49 | 1.412 |  |
| 11:29 | 28.69 | 71.38 | 1.467 |  |
|  | 28.69 | 71.60 | 1.442 |  |


|  | 28.69 | 71.80 | 1.415 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 72.00 | 1.384 |  |
|  | 28.69 | 72.20 | 1.348 |  |
|  | 28.69 | 72.40 | 1.304 |  |
|  | 28.69 | 72.60 | 1.293 |  |
|  | 28.69 | 72.80 | 1.248 |  |
|  | 28.69 | 73.00 | 1.133 |  |
|  | 28.69 | 73.20 | 1.071 |  |
|  | 28.69 | 73.40 | 0.940 |  |
|  | 28.69 | 73.60 | 0.908 |  |
|  | 28.69 | 75.20 | 0.883 |  |
|  | 28.69 | 77.00 | 0.884 |  |
|  | 28.69 | 79.00 | 0.894 |  |
|  | 28.69 | 80.50 | 0.947 |  |
|  | 28.69 | 81.00 | 1.012 |  |
|  | 28.69 | 81.16 | 1.055 |  |
|  | 29.155 | 71.73 | 1.358 |  |
|  | 29.155 | 72.00 | 1.326 |  |
|  | 29.155 | 72.20 | 1.296 |  |
|  | 29.155 | 72.40 | 1.263 |  |
|  | 29.155 | 72.60 | 1.220 |  |
|  | 29.155 | 72.80 | 1.188 |  |
|  | 29.155 | 73.00 | 1.168 |  |
|  | 29.155 | 73.20 | 1.126 |  |
|  | 29.155 | 73.40 | 1.038 |  |
|  | 29.155 | 73.60 | 0.978 |  |
|  | 29.155 | 73.80 | 0.867 |  |
|  | 29.155 | 74.00 | 0.751 |  |
|  | 29.155 | 74.50 | 0.741 |  |
|  | 29.155 | 75.2 | 0.729 |  |
|  | 29.155 | 77 | 0.733 |  |
|  | 29.155 | 79 | 0.741 |  |
| 11:52 | 29.155 | 80.5 | 0.804 |  |
|  | 29.155 | 81.03 | 0.912 |  |
|  | 29.155 | 70.25 | 1.533 |  |
|  | 29.155 | 70.48 | 1.439 |  |
|  | 29.155 | 70.63 | 1.347 |  |
|  | 29.155 | 70.82 | 1.257 |  |
|  | 29.155 | 70.98 | 1.182 |  |


|  | 29.155 | 71.17 | 1.118 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 29.155 | 71.36 | 1.052 |  |
|  | 29.155 | 71.55 | 1.017 |  |
|  | 29.155 | 71.75 | 0.972 |  |
|  | 29.155 | 71.93 | 0.934 |  |
|  | 29.155 | 72.1 | 0.89 |  |
|  | 29.155 | 72.35 | 0.764 |  |
|  | 29.155 | 73 | 0.734 |  |
|  | 29.155 | 75.2 | 0.73 |  |
|  | 29.155 | 77 | 0.73 |  |
|  | 29.155 | 79 | 0.74 |  |
|  | 29.155 | 80 | 0.764 |  |
|  | 29.155 | 80.5 | 0.804 |  |
| $10: 53$ | 29.155 | 81 | 0.888 |  |

Table A.61. Centerline water surface data for $3: 1$ stepped training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 21 |  | recorder | BS |  |  |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $11 / 13 / 2007$ |  | BM-0 <br> rd. | x=24.68 | 65.02 | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  | comments |  |
|  | 24.87 | 75.21 | 2.363 | Centerline |  |  |
|  | 25.435 | 75.21 | 2.114 |  |  |  |
|  | 26.5 | 75.21 | 1.7 |  |  |  |
|  | 27.61 | 75.21 | 1.303 |  |  |  |
|  | 28.69 | 75.21 | 0.93 |  |  |  |
|  | 29.155 | 75.21 | 0.779 |  |  |  |

Table A.62. Run-up water surface data for $3: 1$ stepped training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 21 |  | recorder | BS |  |  |
| :---: | :---: | :---: | :--- | :--- | :--- | :--- |
| Date | $11 / 13 / 2007$ |  | $\mathrm{BM}-0$ <br> rd. | $\mathrm{x}=24.68$ | $\mathrm{y}=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  |  | comments |
|  | 24.87 | 68.74 | 2.402 |  |  |  |
| $11: 43$ | 24 |  |  |  |  |  |


|  | 25.10 | 68.86 | 2.396 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 25.30 | 68.86 | 2.304 |  |
|  | 25.42 | 69.02 | 2.354 |  |
|  | 25.69 | 69.02 | 2.349 |  |
|  | 25.97 | 69.02 | 2.345 |  |
|  | 26.24 | 69.02 | 2.342 |  |
|  | 26.51 | 69.02 | 2.339 |  |
|  | 26.79 | 69.02 | 2.334 |  |
|  | 27.06 | 69.020 | 2.328 |  |
|  | 27.34 | 69.150 | 2.286 |  |
|  | 27.61 | 69.15 | 2.285 |  |
|  | 27.89 | 69.29 | 2.235 |  |
|  | 28.13 | 69.45 | 2.183 |  |
|  | 28.43 | 69.58 | 2.132 |  |
|  | 28.71 | 69.86 | 2.052 |  |
|  | 28.89 | 68.86 | 2.047 |  |
|  | 29.16 | 69.98 | 2.010 |  |
|  | 29.30 | 69.98 | 2.010 |  |
|  | 29.60 | 70.130 | 1.971 |  |
|  | 29.90 | 70.26 | 1.923 |  |
|  | 30.20 | 70.26 | 1.922 |  |
|  | 30.50 | 70.55 | 1.837 |  |
|  | 30.80 | 70.68 | 1.790 |  |
|  | 31.10 | 70.68 | 1.788 |  |
|  | 31.40 | 70.82 | 1.736 |  |
|  | 31.70 | 71.09 | 1.654 |  |
|  | 32.00 | 71.22 | 1.609 |  |
|  | 32.30 | 71.35 | 1.555 |  |
|  | 32.60 | 71.49 | 1.514 |  |
| 12:08 | 32.93 | 71.62 | 1.463 |  |

Table A.63. Cross section water surface data for $3: 1$ stepped training walls $q=0.078 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 21 |  | recorder | BS |  |
| :---: | :---: | :---: | :--- | :--- | :--- |
| Date | $11 / 13 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | $\mathrm{y}=65.02$ | $\mathrm{z=2.873}$| comments |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| time | x <br> ft | y <br> ft | z <br> ft |  |  |  |
|  |  |  |  |  |  |  |


| 8:44 | 24.87 | 68.74 | 2.402 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 24.87 | 68.87 | 2.398 |  |
|  | 24.87 | 69.01 | 2.379 |  |
|  | 24.87 | 69.20 | 2.376 |  |
|  | 24.87 | 69.40 | 2.372 |  |
|  | 24.87 | 69.60 | 2.366 |  |
|  | 24.87 | 69.80 | 2.367 |  |
|  | 24.87 | 70.00 | 2.366 |  |
|  | 24.87 | 71.00 | 2.365 |  |
|  | 24.87 | 73.00 | 2.368 |  |
|  | 24.87 | 75.20 | 2.365 |  |
|  | 24.87 | 77.00 | 2.364 |  |
|  | 24.87 | 79.00 | 2.363 |  |
|  | 24.87 | 81.00 | 2.360 |  |
|  | 24.87 | 81.50 | 2.358 |  |
|  | 24.87 | 82.00 | 2.365 |  |
| 8:51 | 24.87 | 82.46 | 2.382 |  |
| 8:55 | 25.44 | 68.74 | 2.400 |  |
|  | 25.44 | 68.87 | 2.394 |  |
|  | 25.44 | 68.88 | 2.363 |  |
|  | 25.44 | 69.01 | 2.354 |  |
|  | 25.44 | 69.03 | 2.349 |  |
|  | 25.44 | 69.14 | 2.343 |  |
|  | 25.44 | 69.20 | 2.338 |  |
|  | 25.44 | 69.40 | 2.325 |  |
|  | 25.44 | 69.60 | 2.304 |  |
|  | 25.44 | 69.80 | 2.274 |  |
|  | 25.44 | 70.00 | 2.230 |  |
|  | 25.44 | 71.00 | 2.122 |  |
|  | 25.44 | 73.00 | 2.128 |  |
|  | 25.44 | 75.20 | 2.121 |  |
|  | 25.44 | 77.00 | 2.121 |  |
|  | 25.44 | 79.00 | 2.121 |  |
|  | 25.44 | 81.00 | 2.123 |  |
|  | 25.44 | 81.50 | 2.134 |  |
|  | 25.44 | 81.75 | 2.155 |  |
|  | 25.44 | 82.00 | 2.210 |  |
| 9:07 | 25.44 | 82.36 | 2.286 |  |
| 9:13 | 26.50 | 68.89 | 2.349 |  |


|  | 26.50 | 69.00 | 2.345 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 26.50 | 69.03 | 2.301 |  |
|  | 26.50 | 69.15 | 2.301 |  |
|  | 26.50 | 69.17 | 2.252 |  |
|  | 26.50 | 69.30 | 2.256 |  |
|  | 26.50 | 69.40 | 2.221 |  |
|  | 26.50 | 69.60 | 2.189 |  |
|  | 26.50 | 69.80 | 2.156 |  |
|  | 26.50 | 70.00 | 2.121 |  |
|  | 26.50 | 70.20 | 2.085 |  |
|  | 26.50 | 70.40 | 2.050 |  |
|  | 26.50 | 70.60 | 2.026 |  |
|  | 26.50 | 70.80 | 1.988 |  |
|  | 26.50 | 71.00 | 1.883 |  |
|  | 26.50 | 71.20 | 1.773 |  |
|  | 26.50 | 71.40 | 1.735 |  |
|  | 26.50 | 71.60 | 1.723 |  |
|  | 26.5 | 71.80 | 1.719 |  |
|  | 26.5 | 72.00 | 1.712 |  |
|  | 26.5 | 73.00 | 1.705 |  |
|  | 26.5 | 75.20 | 1.704 |  |
|  | 26.5 | 77.00 | 1.705 |  |
|  | 26.5 | 79.00 | 1.704 |  |
|  | 26.5 | 81.00 | 1.728 |  |
|  | 26.5 | 81.30 | 1.769 |  |
|  | 26.5 | 81.60 | 1.868 |  |
| 9:22 | 26.5 | 81.97 | 1.917 |  |
| 9:24 | 27.61 | 68.89 | 2.336 |  |
|  | 27.61 | 69.00 | 2.332 |  |
|  | 27.61 | 69.03 | 2.292 |  |
|  | 27.61 | 69.15 | 2.283 |  |
|  | 27.61 | 69.17 | 2.242 |  |
|  | 27.61 | 69.30 | 2.234 |  |
|  | 27.61 | 69.32 | 2.187 |  |
|  | 27.61 | 69.44 | 2.190 |  |
|  | 27.61 | 69.47 | 2.141 |  |
|  | 27.61 | 69.58 | 2.144 |  |
|  | 27.61 | 69.60 | 2.138 |  |
|  | 27.61 | 69.80 | 2.067 |  |


|  | 27.61 | 70.00 | 2.008 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 27.61 | 70.20 | 1.959 |  |
|  | 27.61 | 70.40 | 1.914 |  |
|  | 27.61 | 70.60 | 1.877 |  |
|  | 27.61 | 70.80 | 1.838 |  |
|  | 27.61 | 71.00 | 1.807 |  |
|  | 27.61 | 71.20 | 1.772 |  |
|  | 27.61 | 71.40 | 1.746 |  |
|  | 27.61 | 71.60 | 1.745 |  |
|  | 27.61 | 71.80 | 1.732 |  |
|  | 27.61 | 71.90 | 1.683 |  |
|  | 27.61 | 72.00 | 1.443 |  |
|  | 27.61 | 72.20 | 1.373 |  |
|  | 27.61 | 72.40 | 1.342 |  |
|  | 27.61 | 72.60 | 1.330 |  |
|  | 27.61 | 72.80 | 1.319 |  |
|  | 27.61 | 73.00 | 1.318 |  |
|  | 27.61 | 75.20 | 1.309 |  |
|  | 27.61 | 77.00 | 1.312 |  |
|  | 27.61 | 79.00 | 1.312 |  |
|  | 27.61 | 80.50 | 1.351 |  |
|  | 27.61 | 80.90 | 1.406 |  |
|  | 27.61 | 81.00 | 1.485 |  |
|  | 27.61 | 81.30 | 1.481 |  |
| 9:43 | 27.61 | 81.56 | 1.492 |  |
| 10:19 | 28.69 | 69.44 | 2.141 |  |
|  | 28.69 | 69.57 | 2.138 |  |
|  | 28.69 | 69.60 | 2.100 |  |
|  | 28.69 | 69.72 | 2.096 |  |
|  | 28.69 | 69.75 | 2.072 |  |
|  | 28.69 | 69.85 | 2.066 |  |
|  | 28.69 | 70.00 | 2.014 |  |
|  | 28.69 | 70.20 | 1.946 |  |
|  | 28.69 | 70.40 | 1.885 |  |
|  | 28.69 | 70.60 | 1.838 |  |
|  | 28.69 | 70.80 | 1.751 |  |
|  | 28.69 | 71.00 | 1.691 |  |
|  | 28.69 | 71.20 | 1.656 |  |
|  | 28.69 | 71.40 | 1.629 |  |


|  | 28.69 | 71.60 | 1.603 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 71.80 | 1.575 |  |
|  | 28.69 | 72.00 | 1.539 |  |
|  | 28.69 | 72.20 | 1.481 |  |
|  | 28.69 | 72.40 | 1.473 |  |
|  | 28.69 | 72.60 | 1.488 |  |
|  | 28.69 | 72.80 | 1.446 |  |
|  | 28.69 | 72.90 | 1.347 |  |
|  | 28.69 | 73.00 | 1.272 |  |
|  | 28.69 | 73.20 | 1.141 |  |
|  | 28.69 | 73.40 | 1.004 |  |
|  | 28.69 | 73.60 | 0.957 |  |
|  | 28.69 | 73.80 | 0.946 |  |
|  | 28.69 | 74.00 | 0.943 |  |
|  | 28.69 | 75.20 | 0.934 |  |
|  | 28.69 | 77.00 | 0.934 |  |
|  | 28.69 | 79.00 | 0.944 |  |
|  | 28.69 | 80.00 | 0.981 |  |
|  | 28.69 | 80.40 | 1.021 |  |
|  | 28.69 | 80.60 | 1.082 |  |
|  | 28.69 | 80.80 | 1.085 |  |
|  | 28.69 | 81.00 | 1.109 |  |
| 10:35 | 28.69 | 81.22 | 1.134 |  |
| 10:38 | 29.16 | 69.75 | 2.063 |  |
|  | 29.155 | 69.85 | 2.059 |  |
|  | 29.155 | 69.87 | 2.015 |  |
|  | 29.155 | 69.97 | 2.012 |  |
|  | 29.155 | 70.01 | 1.982 |  |
|  | 29.155 | 70.11 | 1.967 |  |
|  | 29.155 | 70.2 | 1.934 |  |
|  | 29.155 | 70.4 | 1.879 |  |
|  | 29.155 | 70.6 | 1.827 |  |
|  | 29.155 | 70.8 | 1.758 |  |
|  | 29.155 | 71 | 1.695 |  |
|  | 29.155 | 71.2 | 1.647 |  |
|  | 29.155 | 71.4 | 1.588 |  |
|  | 29.155 | 71.6 | 1.546 |  |
|  | 29.155 | 71.8 | 1.525 |  |
|  | 29.155 | 72 | 1.498 |  |


|  | 29.155 | 72.2 | 1.458 |  |
| :--- | ---: | ---: | ---: | ---: |
|  | 29.155 | 72.4 | 1.423 |  |
|  | 29.155 | 72.6 | 1.373 |  |
|  | 29.155 | 72.8 | 1.391 |  |
|  | 29.155 | 73 | 1.396 |  |
|  | 29.155 | 73.1 | 1.361 |  |
|  | 29.155 | 73.2 | 1.312 |  |
|  | 29.155 | 73.4 | 1.147 |  |
|  | 29.155 | 73.6 | 1.123 |  |
|  | 29.155 | 73.8 | 0.904 |  |
|  | 29.155 | 74 | 0.819 |  |
|  | 29.155 | 74.5 | 0.789 |  |
|  | 29.155 | 75.2 | 0.78 |  |
|  | 29.155 | 76 | 0.784 |  |
|  | 29.155 | 77 | 0.785 |  |
|  | 29.155 | 79 | 0.801 |  |
|  | 29.155 | 80 | 0.857 |  |
|  | 29.155 | 80.5 | 0.925 |  |
|  | 29.155 | 80.6 | 0.925 |  |
|  | 29.155 | 80.9 | 0.964 |  |
| $10: 43$ | 29.155 | 81.09 | 0.985 |  |

Table A.64. Centerline water surface data for $3: 1$ stepped training walls $q=0.060 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 22 |  | recorder | BS |  |  |
| :---: | ---: | ---: | ---: | :--- | :--- | :--- |
| Date | $11 / 9 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | y <br> $=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  | comments |  |
| $14: 53$ | 12.00 | 75.20 | 2.409 | Centerline |  |  |
|  | 16.00 | 75.20 | 2.409 |  |  |  |
|  | 20.00 | 75.20 | 2.406 |  |  |  |
|  | 24.00 | 75.20 | 2.367 |  |  |  |
|  | 24.87 | 75.20 | 2.318 |  |  |  |
|  | 25.44 | 75.20 | 2.072 |  |  |  |
|  | 26.50 | 75.20 | 1.677 |  |  |  |
|  | 27.61 | 75.20 | 1.283 |  |  |  |
|  | 28.69 | 75.20 | 0.909 |  |  |  |


|  | 29.16 | 75.20 | 0.756 |  |
| :--- | :--- | :--- | :--- | :--- |
| $15: 02$ | 29.30 | 75.20 | 0.725 |  |

Table A.65. Run-up water surface data for $3: 1$ stepped training walls $\mathrm{q}=0.060 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 22 |  | recorder | BS |  |  |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $11 / 9 / 2007$ |  | BM-0 <br> rd. | $x=24.68$ | $y=65.02$ | $z=2.873$ |


| time | x <br> ft | y <br> ft | z <br> ft |  |
| :--- | ---: | ---: | ---: | :--- |
| $9: 53$ | 24.87 | 69.15 | 2.332 |  |
|  | 25.10 | 69.15 | 2.324 |  |
|  | 25.30 | 69.15 | 2.313 |  |
|  | 25.42 | 69.15 | 2.308 |  |
|  | 25.69 | 69.15 | 2.305 |  |
|  | 25.97 | 69.15 | 2.302 |  |
|  | 26.24 | 69.15 | 2.295 |  |
|  | 26.51 | 69.15 | 2.292 |  |
|  | 26.79 | 69.150 | 2.287 |  |
|  | 27.06 | 69.150 | 2.278 |  |
|  | 27.34 | 69.29 | 2.235 |  |
|  | 27.61 | 69.44 | 2.185 |  |
|  | 27.89 | 69.58 | 2.139 |  |
|  | 28.13 | 69.58 | 2.126 |  |
|  | 28.43 | 69.86 | 2.044 |  |
|  | 28.71 | 69.98 | 2.009 |  |
|  | 28.89 | 70.13 | 1.960 |  |
|  | 29.16 | 70.26 | 1.919 |  |
|  | 29.30 | 70.260 | 1.915 |  |
|  | 29.60 | 70.40 | 1.876 |  |
|  | 29.90 | 70.54 | 1.837 |  |
|  | 30.20 | 70.54 | 1.830 |  |
|  | 30.50 | 70.68 | 1.789 |  |
|  | 30.80 | 70.82 | 1.739 |  |
|  | 31.10 | 71.08 | 1.650 |  |
|  | 31.40 | 71.22 | 1.607 |  |
|  | 31.70 | 71.35 | 1.560 |  |
|  | 32.00 | 71.49 | 1.509 |  |
|  |  |  |  |  |
|  |  |  |  |  |


|  | 32.30 | 71.76 | 1.422 |  |
| :--- | :--- | ---: | ---: | :--- |
|  | 32.60 | 71.91 | 1.374 |  |
|  | 32.92 | 71.98 | 1.326 |  |

Table A.66. Cross section water surface data for $3: 1$ stepped training walls $\mathrm{q}=0.060 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 22 |  | recorder | BS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | 11/9/2007 |  | BM-0 rd. | $\mathrm{x}=24.68$ | 65.02 | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | $\begin{array}{r} \mathrm{x} \\ \mathrm{ft} \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{y} \\ \mathrm{ft} \\ \hline \end{array}$ | z |  |  | comments |
| 11:32 | 24.87 | 68.90 | 2.355 |  |  |  |
|  | 24.87 | 69.02 | 2.351 |  |  |  |
|  | 24.87 | 69.16 | 2.332 |  |  |  |
|  | 24.87 | 69.40 | 2.330 |  |  |  |
|  | 24.87 | 69.60 | 2.329 |  |  |  |
|  | 24.87 | 69.80 | 2.322 |  |  |  |
|  | 24.87 | 70.00 | 2.319 |  |  |  |
|  | 24.87 | 71.00 | 2.316 |  |  |  |
|  | 24.87 | 73.00 | 2.318 |  |  |  |
|  | 24.87 | 75.20 | 2.318 |  |  |  |
|  | 24.87 | 77.00 | 2.317 |  |  |  |
|  | 24.87 | 79.00 | 2.317 |  |  |  |
|  | 24.87 | 81.00 | 2.318 |  |  |  |
|  | 24.87 | 81.50 | 2.318 |  |  |  |
|  | 24.87 | 82.00 | 2.324 |  |  |  |
| 11:39 | 24.87 | 82.41 | 2.336 |  |  |  |
| 11:39 | 25.44 | 68.90 | 2.354 |  |  |  |
|  | 25.44 | 69.02 | 2.348 |  |  |  |
|  | 25.435 | 69.16 | 2.307 |  |  |  |
|  | 25.435 | 69.40 | 2.286 |  |  |  |
|  | 25.435 | 69.60 | 2.263 |  |  |  |
|  | 25.435 | 69.80 | 2.232 |  |  |  |
|  | 25.435 | 70.00 | 2.194 |  |  |  |
|  | 25.435 | 70.50 | 2.089 |  |  |  |
|  | 25.435 | 71.00 | 2.075 |  |  |  |
|  | 25.435 | 73.00 | 2.071 |  |  |  |
|  | 25.435 | 75.20 | 2.073 |  |  |  |


|  | 25.435 | 77.00 | 2.071 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 25.435 | 79.00 | 2.076 |  |
|  | 25.435 | 81.00 | 2.080 |  |
|  | 25.435 | 81.50 | 2.086 |  |
|  | 25.435 | 82.00 | 2.115 |  |
| 11:48 | 25.435 | 82.30 | 2.227 |  |
| 13:02 | 26.5 | 68.90 | 2.343 |  |
|  | 26.5 | 69.02 | 2.339 |  |
|  | 26.5 | 69.16 | 2.287 |  |
|  | 26.5 | 69.30 | 2.245 |  |
|  | 26.5 | 69.45 | 2.210 |  |
|  | 26.5 | 69.50 | 2.175 |  |
|  | 26.5 | 69.60 | 2.165 |  |
|  | 26.5 | 69.74 | 2.128 |  |
|  | 26.5 | 69.80 | 2.122 |  |
|  | 26.5 | 70.00 | 2.084 |  |
|  | 26.5 | 70.20 | 2.046 |  |
|  | 26.5 | 70.40 | 2.011 |  |
|  | 26.5 | 70.60 | 1.981 |  |
|  | 26.5 | 70.80 | 1.962 |  |
|  | 26.5 | 70.93 | 1.925 |  |
|  | 26.5 | 71.00 | 1.847 |  |
|  | 26.5 | 71.20 | 1.730 |  |
|  | 26.5 | 71.40 | 1.696 |  |
|  | 26.5 | 71.60 | 1.689 |  |
|  | 26.5 | 71.80 | 1.682 |  |
|  | 26.5 | 72.00 | 1.678 |  |
|  | 26.5 | 73.00 | 1.672 |  |
|  | 26.5 | 75.20 | 1.673 |  |
|  | 26.5 | 77.00 | 1.674 |  |
|  | 26.5 | 79.00 | 1.674 |  |
|  | 26.5 | 80.50 | 1.681 |  |
|  | 26.5 | 81.00 | 1.691 |  |
|  | 26.5 | 81.40 | 1.765 |  |
|  | 26.5 | 81.60 | 1.816 |  |
|  | 26.5 | 81.80 | 1.830 |  |
| 13:18 | 26.5 | 81.90 | 1.842 |  |
| 13:23 | 27.61 | 68.90 | 2.335 |  |
|  | 27.61 | 69.00 | 2.333 |  |


|  | 27.61 | 69.14 | 2.284 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 27.61 | 69.29 | 2.234 |  |
|  | 27.61 | 69.44 | 2.184 |  |
|  | 27.61 | 69.58 | 2.137 |  |
|  | 27.61 | 69.73 | 2.091 |  |
|  | 27.61 | 69.87 | 2.040 |  |
|  | 27.61 | 70.00 | 2.003 |  |
|  | 27.61 | 70.20 | 1.946 |  |
|  | 27.61 | 70.40 | 1.883 |  |
|  | 27.61 | 70.60 | 1.836 |  |
|  | 27.61 | 70.80 | 1.797 |  |
|  | 27.61 | 71.00 | 1.763 |  |
|  | 27.61 | 71.20 | 1.728 |  |
|  | 27.61 | 71.40 | 1.696 |  |
|  | 27.61 | 71.60 | 1.677 |  |
|  | 27.61 | 71.80 | 1.675 |  |
|  | 27.61 | 71.90 | 1.649 |  |
|  | 27.61 | 72.00 | 1.551 |  |
|  | 27.61 | 72.20 | 1.374 |  |
|  | 27.61 | 72.40 | 1.303 |  |
|  | 27.61 | 72.60 | 1.293 |  |
|  | 27.61 | 72.80 | 1.287 |  |
|  | 27.61 | 73.00 | 1.284 |  |
|  | 27.61 | 75.20 | 1.280 |  |
|  | 27.61 | 77.00 | 1.283 |  |
|  | 27.61 | 79.00 | 1.287 |  |
|  | 27.61 | 80.50 | 1.314 |  |
|  | 27.61 | 80.90 | 1.360 |  |
|  | 27.61 | 81.00 | 1.427 |  |
|  | 27.61 | 81.30 | 1.427 |  |
| 13:41 | 27.61 | 81.52 | 1.447 |  |
| 13:47 | 28.69 | 69.31 | 2.194 |  |
|  | 28.69 | 69.42 | 2.191 |  |
|  | 28.69 | 69.57 | 2.140 |  |
|  | 28.69 | 69.72 | 2.093 |  |
|  | 28.69 | 69.84 | 2.045 |  |
|  | 28.69 | 69.98 | 2.013 |  |
|  | 28.69 | 70.12 | 1.963 |  |
|  | 28.69 | 70.20 | 1.932 |  |


|  | 28.69 | 70.40 | 1.873 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 70.60 | 1.825 |  |
|  | 28.69 | 70.8 | 1.758 |  |
|  | 28.69 | 71 | 1.683 |  |
|  | 28.69 | 71.2 | 1.622 |  |
|  | 28.69 | 71.4 | 1.572 |  |
|  | 28.69 | 71.6 | 1.548 |  |
|  | 28.69 | 71.8 | 1.523 |  |
|  | 28.69 | 72 | 1.484 |  |
|  | 28.69 | 72.2 | 1.446 |  |
|  | 28.69 | 72.4 | 1.4 |  |
|  | 28.69 | 72.6 | 1.411 |  |
|  | 28.69 | 72.8 | 1.353 |  |
|  | 28.69 | 73 | 1.306 |  |
|  | 28.69 | 73.2 | 1.15 |  |
|  | 28.69 | 73.4 | 0.957 |  |
|  | 28.69 | 73.6 | 0.933 |  |
|  | 28.69 | 73.8 | 0.92 |  |
|  | 28.69 | 74 | 0.917 |  |
|  | 28.69 | 75.2 | 0.913 |  |
|  | 28.69 | 77 | 0.913 |  |
|  | 28.69 | 79 | 0.924 |  |
|  | 28.69 | 80.5 | 0.996 |  |
|  | 28.69 | 80.7 | 1.032 |  |
|  | 28.69 | 81 | 1.072 |  |
| 14:04 | 28.69 | 81.18 | 1.087 |  |
| 14:33 | 29.155 | 70.01 | 1.958 |  |
|  | 29.155 | 70.12 | 1.959 |  |
|  | 29.155 | 70.26 | 1.91 |  |
|  | 29.155 | 70.4 | 1.875 |  |
|  | 29.155 | 70.54 | 1.834 |  |
|  | 29.155 | 70.6 | 1.817 |  |
|  | 29.155 | 70.8 | 1.753 |  |
|  | 29.155 | 71 | 1.688 |  |
|  | 29.155 | 71.2 | 1.636 |  |
|  | 29.155 | 71.4 | 1.574 |  |
|  | 29.155 | 71.6 | 1.519 |  |
|  | 29.155 | 71.8 | 1.461 |  |
|  | 29.155 | 72 | 1.441 |  |


|  | 29.155 | 72.2 | 1.404 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 29.155 | 72.4 | 1.361 |  |
|  | 29.155 | 72.6 | 1.336 |  |
|  | 29.155 | 72.8 | 1.31 |  |
|  | 29.155 | 73 | 1.3 |  |
|  | 29.155 | 73.2 | 1.222 |  |
|  | 29.155 | 73.4 | 1.136 |  |
|  | 29.155 | 73.6 | 1.004 |  |
|  | 29.155 | 73.8 | 0.873 |  |
|  | 29.155 | 74 | 0.786 |  |
|  | 29.155 | 74.5 | 0.764 |  |
|  | 29.155 | 75.2 | 0.759 |  |
|  | 29.155 | 76 | 0.76 |  |
|  | 29.155 | 77 | 0.76 |  |
|  | 29.155 | 79 | 0.772 |  |
|  | 29.155 | 80 | 0.819 |  |
|  | 29.155 | 80.5 | 0.868 |  |
|  | 29.155 | 80.7 | 0.885 |  |
|  | 29.155 | 81 | 0.928 |  |
| $14: 49$ | 29.155 | 81.04 | 0.937 |  |

Table A.67. Centerline water surface data for $3: 1$ stepped training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 22 |  | recorder | BS |  |  |
| :---: | ---: | :---: | :--- | :--- | :--- | :--- |
| Date | $11 / 8 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | $\mathrm{y}=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  |  |  |
|  | 12.00 | 75.20 | 2.385 |  |  |  |
|  | 16.00 | 75.20 | 2.385 |  |  |  |
|  | 20.00 | 75.20 | 2.383 |  |  |  |
|  | 24.00 | 75.20 | 2.348 |  |  |  |
|  | 24.87 | 75.20 | 2.302 |  |  |  |
|  | 25.44 | 75.20 | 2.054 |  |  |  |
|  | 26.50 | 75.20 | 1.660 |  |  |  |
|  | 27.61 | 75.20 | 1.273 |  |  |  |
|  | 28.69 | 75.20 | 0.901 |  |  |  |
|  | 29.16 | 75.20 | 0.749 |  |  |  |

Table A.68. Run-up water surface data for $3: 1$ stepped training walls $q=0.052 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 22 |  | recorder | BS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | 11/8/2007 |  | $\begin{aligned} & \hline \text { BM-0 } \\ & \text { rd. } \\ & \hline \end{aligned}$ | $x=24.68$ | $y=65.02$ | $\mathrm{z}=2.873$ |
| time | $\begin{aligned} & \mathrm{x} \\ & \mathrm{ft} \end{aligned}$ | $\begin{array}{r} \mathrm{y} \\ \mathrm{ft} \\ \hline \end{array}$ | $\begin{gathered} \mathrm{z} \\ \mathrm{ft} \\ \hline \end{gathered}$ |  |  | comments |
| 8:47 | 24.87 | 69.03 | 2.317 |  |  |  |
|  | 25.10 | 69.16 | 2.309 |  |  |  |
|  | 25.30 | 69.16 | 2.305 |  |  |  |
|  | 25.42 | 69.16 | 2.305 |  |  |  |
|  | 25.69 | 69.16 | 2.300 |  |  |  |
|  | 25.97 | 69.31 | 2.257 |  |  |  |
|  | 26.24 | 69.31 | 2.252 |  |  |  |
|  | 26.51 | 69.31 | 2.245 |  |  |  |
|  | 26.79 | 69.31 | 2.239 |  |  |  |
|  | 27.06 | 69.45 | 2.196 |  |  |  |
|  | 27.34 | 69.45 | 2.189 |  |  |  |
|  | 27.61 | 69.58 | 2.134 |  |  |  |
|  | 27.89 | 69.58 | 2.133 |  |  |  |
|  | 28.13 | 69.73 | 2.085 |  |  |  |
|  | 28.43 | 69.73 | 2.084 |  |  |  |
|  | 28.71 | 69.85 | 2.046 |  |  |  |
|  | 28.89 | 70.13 | 1.960 |  |  |  |
|  | 29.16 | 70.27 | 1.915 |  |  |  |
|  | 29.30 | 70.41 | 1.874 |  |  |  |
|  | 29.60 | 70.55 | 1.831 |  |  |  |
|  | 29.90 | 70.68 | 1.787 |  |  |  |
|  | 30.20 | 70.68 | 1.785 |  |  |  |
|  | 30.50 | 70.82 | 1.743 |  |  |  |
|  | 30.80 | 70.95 | 1.696 |  |  |  |
|  | 31.10 | 71.21 | 1.609 |  |  |  |
|  | 31.40 | 71.21 | 1.610 |  |  |  |


|  | 31.70 | 71.35 | 1.558 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 32.00 | 71.62 | 1.470 |  |
|  | 32.30 | 71.77 | 1.421 |  |
|  | 32.60 | 71.91 | 1.376 |  |
|  | 32.92 | 72.10 | 1.282 |  |

Table A.69. Cross section water surface data for $3: 1$ stepped training walls $\mathrm{q}=0.052 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 22 |  | recorder | BS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | 11/8/2007 |  | BM-0 rd. | $\mathrm{x}=24.68$ | $y=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | $\begin{array}{r} \mathrm{x} \\ \mathrm{ft} \end{array}$ | $\begin{array}{r} \mathrm{y} \\ \mathrm{ft} \\ \hline \end{array}$ | $\begin{gathered} \mathrm{z} \\ \mathrm{ft} \end{gathered}$ |  |  | comments |
| 9:00 | 24.87 | 69.04 | 2.318 |  |  |  |
|  | 24.87 | 69.20 | 2.314 |  |  |  |
|  | 24.87 | 69.40 | 2.314 |  |  |  |
|  | 24.87 | 69.60 | 2.312 |  |  |  |
|  | 24.87 | 70.00 | 2.303 |  |  |  |
|  | 24.87 | 71.00 | 2.299 |  |  |  |
|  | 24.87 | 73.00 | 2.300 |  |  |  |
|  | 24.87 | 75.20 | 2.303 |  |  |  |
|  | 24.87 | 77.00 | 2.302 |  |  |  |
|  | 24.87 | 79.00 | 2.303 |  |  |  |
|  | 24.87 | 81.00 | 2.304 |  |  |  |
|  | 24.87 | 81.50 | 2.304 |  |  |  |
| 9:06 | 24.87 | 82.40 | 2.322 |  |  |  |
| 9:10 | 25.44 | 69.03 | 2.306 |  |  |  |
|  | 25.44 | 69.16 | 2.303 |  |  |  |
|  | 25.44 | 69.30 | 2.277 |  |  |  |
|  | 25.44 | 69.45 | 2.265 |  |  |  |
|  | 25.44 | 69.60 | 2.248 |  |  |  |
|  | 25.435 | 69.80 | 2.218 |  |  |  |
|  | 25.435 | 70.00 | 2.176 |  |  |  |
|  | 25.435 | 70.25 | 2.111 |  |  |  |
|  | 25.435 | 70.50 | 2.070 |  |  |  |
|  | 25.435 | 70.75 | 2.059 |  |  |  |
|  | 25.435 | 71.00 | 2.057 |  |  |  |
|  | 25.435 | 73.00 | 2.056 |  |  |  |


|  | 25.435 | 75.20 | 2.058 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 25.435 | 77.00 | 2.059 |  |
|  | 25.435 | 79.00 | 2.063 |  |
|  | 25.435 | 81.00 | 2.067 |  |
|  | 25.435 | 81.50 | 2.071 |  |
|  | 25.435 | 81.90 | 2.121 |  |
| 9:18 | 25.435 | 82.27 | 2.080 |  |
| 9:24 | 26.5 | 69.04 | 2.301 |  |
|  | 26.5 | 69.15 | 2.296 |  |
|  | 26.5 | 69.30 | 2.244 |  |
|  | 26.5 | 69.45 | 2.202 |  |
|  | 26.5 | 69.59 | 2.160 |  |
|  | 26.5 | 69.74 | 2.118 |  |
|  | 26.5 | 69.88 | 2.092 |  |
|  | 26.5 | 70.00 | 2.066 |  |
|  | 26.5 | 70.20 | 2.021 |  |
|  | 26.5 | 70.40 | 1.994 |  |
|  | 26.5 | 70.60 | 1.965 |  |
|  | 26.5 | 70.80 | 1.947 |  |
|  | 26.5 | 70.93 | 1.922 |  |
|  | 26.5 | 71.07 | 1.773 |  |
|  | 26.5 | 71.20 | 1.711 |  |
|  | 26.5 | 71.40 | 1.682 |  |
|  | 26.5 | 71.60 | 1.675 |  |
|  | 26.5 | 71.80 | 1.669 |  |
|  | 26.5 | 72.00 | 1.666 |  |
|  | 26.5 | 73.00 | 1.660 |  |
|  | 26.5 | 75.20 | 1.661 |  |
|  | 26.5 | 77.00 | 1.662 |  |
|  | 26.5 | 79.00 | 1.663 |  |
|  | 26.5 | 80.50 | 1.663 |  |
|  | 26.5 | 81.00 | 1.679 |  |
|  | 26.5 | 81.50 | 1.798 |  |
| 9:33 | 26.5 | 81.87 | 1.814 |  |
| 9:35 | 27.61 | 69.03 | 2.287 |  |
|  | 27.61 | 69.14 | 2.302 |  |
|  | 27.61 | 69.29 | 2.227 |  |
|  | 27.61 | 69.44 | 2.182 |  |
|  | 27.61 | 69.58 | 2.136 |  |


|  | 27.61 | 69.73 | 2.084 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 27.61 | 69.87 | 2.040 |  |
|  | 27.61 | 70.00 | 2.001 |  |
|  | 27.61 | 70.13 | 1.957 |  |
|  | 27.61 | 70.27 | 1.913 |  |
|  | 27.61 | 70.41 | 1.868 |  |
|  | 27.61 | 70.60 | 1.822 |  |
|  | 27.61 | 70.80 | 1.774 |  |
|  | 27.61 | 71.00 | 1.746 |  |
|  | 27.61 | 71.20 | 1.711 |  |
|  | 27.61 | 71.40 | 1.678 |  |
|  | 27.61 | 71.60 | 1.653 |  |
|  | 27.61 | 71.80 | 1.658 |  |
|  | 27.61 | 71.95 | 1.596 |  |
|  | 27.61 | 72.00 | 1.517 |  |
|  | 27.61 | 72.20 | 1.387 |  |
|  | 27.61 | 72.40 | 1.287 |  |
|  | 27.61 | 72.60 | 1.280 |  |
|  | 27.61 | 72.80 | 1.275 |  |
|  | 27.61 | 73.00 | 1.273 |  |
|  | 27.61 | 75.20 | 1.272 |  |
|  | 27.61 | 77.00 | 1.272 |  |
|  | 27.61 | 79.00 | 1.275 |  |
|  | 27.61 | 80.00 | 1.289 |  |
|  | 27.61 | 80.50 | 1.303 |  |
|  | 27.61 | 80.80 | 1.331 |  |
|  | 27.61 | 81.00 | 1.394 |  |
| 9:49 | 27.61 | 81.49 | 1.426 |  |
| 9:51 | 28.69 | 69.88 | 2.007 |  |
|  | 28.69 | 69.98 | 2.005 |  |
|  | 28.69 | 70.12 | 1.957 |  |
|  | 28.69 | 70.26 | 1.920 |  |
|  | 28.69 | 70.41 | 1.873 |  |
|  | 28.69 | 70.60 | 1.821 |  |
|  | 28.69 | 70.8 | 1.764 |  |
|  | 28.69 | 71 | 1.682 |  |
|  | 28.69 | 71.2 | 1.622 |  |
|  | 28.69 | 71.4 | 1.565 |  |
|  | 28.69 | 71.6 | 1.521 |  |


|  | 28.69 | 71.8 | 1.498 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 72 | 1.465 |  |
|  | 28.69 | 72.2 | 1.437 |  |
|  | 28.69 | 72.4 | 1.377 |  |
|  | 28.69 | 72.6 | 1.376 |  |
|  | 28.69 | 72.8 | 1.317 |  |
|  | 28.69 | 73 | 1.225 |  |
|  | 28.69 | 73.2 | 1.073 |  |
|  | 28.69 | 73.4 | 0.935 |  |
|  | 28.69 | 73.6 | 0.918 |  |
|  | 28.69 | 73.8 | 0.907 |  |
|  | 28.69 | 74 | 0.905 |  |
|  | 28.69 | 75.2 | 0.9 |  |
|  | 28.69 | 77 | 0.902 |  |
|  | 28.69 | 79 | 0.913 |  |
|  | 28.69 | 80 | 0.94 |  |
|  | 28.69 | 80.5 | 0.984 |  |
| 10:03 | 28.69 | 81.15 | 1.071 |  |
| 10:51 | 29.155 | 70 | 1.968 |  |
|  | 29.155 | 70.11 | 1.963 |  |
|  | 29.155 | 70.27 | 1.914 |  |
|  | 29.155 | 70.4 | 1.872 |  |
|  | 29.155 | 70.6 | 1.815 |  |
|  | 29.155 | 70.8 | 1.744 |  |
|  | 29.155 | 71 | 1.685 |  |
|  | 29.155 | 71.2 | 1.621 |  |
|  | 29.155 | 71.4 | 1.566 |  |
|  | 29.155 | 71.6 | 1.513 |  |
|  | 29.155 | 71.8 | 1.457 |  |
|  | 29.155 | 72 | 1.423 |  |
|  | 29.155 | 72.2 | 1.381 |  |
|  | 29.155 | 72.4 | 1.337 |  |
|  | 29.155 | 72.6 | 1.314 |  |
|  | 29.155 | 72.8 | 1.275 |  |
|  | 29.155 | 73 | 1.261 |  |
|  | 29.155 | 73.2 | 1.196 |  |
|  | 29.155 | 73.4 | 1.092 |  |
|  | 29.155 | 73.6 | 0.99 |  |
|  | 29.155 | 73.8 | 0.864 |  |


|  | 29.155 | 74 | 0.77 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 29.155 | 75.2 | 0.746 |  |
|  | 29.155 | 77 | 0.752 |  |
|  | 29.155 | 79 | 0.761 |  |
|  | 29.155 | 80 | 0.803 |  |
|  | 29.155 | 80.5 | 0.836 |  |
| $11: 09$ | 29.155 | 81.02 | 0.92 |  |

Table A.70. Centerline water surface data for $3: 1$ stepped training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 24 |  | recorder | RW |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | 11/13/2007 |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | $y=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x | y | z |  |  |  |
|  | ft | ft | ft |  |  | comments |
| 11:00 | 12 | 75.2 | 2.324 |  |  |  |
|  | 16.00 | 75.20 | 2.324 |  |  |  |
|  | 20.00 | 75.20 | 2.322 |  |  |  |
|  | 24.00 | 75.20 | 2.298 |  |  |  |
|  | 24.87 | 75.20 | 2.260 |  |  |  |
|  | 25.44 | 75.20 | 2.015 |  |  |  |
|  | 26.50 | 75.20 | 1.634 |  |  |  |
|  | 27.61 | 75.20 | 1.254 |  |  |  |
|  | 28.69 | 75.20 | 0.880 |  |  |  |
|  | 29.16 | 75.20 | 0.721 |  |  |  |
| 11:08 | 29.30 | 75.20 | 0.688 |  |  |  |

Table A.71. Run-up water surface data for $3: 1$ stepped training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 24 |  | recorder | RW |  |  |
| :---: | ---: | ---: | :--- | :--- | :--- | :--- |
| Date | $11 / 13 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | $\mathrm{y}=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x <br> ft | y <br> ft | z <br> ft |  |  | comments |
| $14: 58$ | 24.87 | 69.17 | 2.281 |  |  |  |
|  | 25.10 | 69.17 | 2.274 |  |  |  |
|  | 25.30 | 69.17 | 2.265 |  |  |  |


|  | 25.42 | 69.31 | 2.254 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 25.69 | 69.31 | 2.247 |  |
|  | 25.97 | 69.31 | 2.211 |  |
|  | 26.24 | 69.46 | 2.189 |  |
|  | 26.51 | 69.60 | 2.152 |  |
|  | 26.79 | 69.60 | 2.147 |  |
|  | 27.06 | 69.74 | 2.096 |  |
|  | 27.34 | 69.880 | 2.039 |  |
|  | 27.61 | 70.000 | 1.997 |  |
|  | 27.89 | 70.00 | 1.996 |  |
|  | 28.13 | 70.00 | 1.996 |  |
|  | 28.43 | 70.14 | 1.953 |  |
|  | 28.71 | 70.28 | 1.906 |  |
|  | 28.89 | 70.42 | 1.859 |  |
|  | 29.16 | 70.55 | 1.828 |  |
|  | 29.30 | 70.55 | 1.826 |  |
|  | 29.60 | 70.69 | 1.780 |  |
|  | 29.90 | 70.820 | 1.736 |  |
|  | 30.20 | 70.95 | 1.694 |  |
|  | 30.50 | 71.21 | 1.610 |  |
|  | 30.80 | 71.35 | 1.564 |  |
|  | 31.10 | 71.35 | 1.562 |  |
|  | 31.40 | 71.61 | 1.472 |  |
|  | 31.70 | 71.76 | 1.421 |  |
|  | 32.00 | 71.90 | 1.378 |  |
|  | 32.30 | 72.04 | 1.327 |  |
|  | 32.60 | 72.17 | 1.283 |  |
| 15:25 | 32.92 | 72.33 | 1.233 |  |

Table A.72. Cross section water surface data for $3: 1$ stepped training walls $q=0.039 \mathrm{~m}^{2} / \mathrm{s}$.

| Run \# | 24 |  | recorder | RW |  |  |
| :---: | ---: | :---: | :--- | :--- | :--- | :--- |
| Date | $11 / 13 / 2007$ |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | $\mathrm{y}=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
| time | x | y | z |  |  | comments |
|  | ft | ft | ft |  |  |  |
| $11: 48$ | 24.87 | 69.18 | 2.278 |  |  |  |
|  | 24.87 | 69.30 | 2.275 |  |  |  |


|  | 24.87 | 69.50 | 2.271 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 24.87 | 70.00 | 2.258 |  |
|  | 24.87 | 71.00 | 2.257 |  |
|  | 24.87 | 73.00 | 2.259 |  |
|  | 24.87 | 75.20 | 2.258 |  |
|  | 24.87 | 77.00 | 2.258 |  |
|  | 24.87 | 79.00 | 2.261 |  |
|  | 24.87 | 81.00 | 2.260 |  |
|  | 24.87 | 82.00 | 2.264 |  |
| 11:52 | 24.87 | 82.36 | 2.276 |  |
| 11:55 | 25.44 | 69.18 | 2.258 |  |
|  | 25.44 | 69.31 | 2.256 |  |
|  | 25.44 | 69.34 | 2.232 |  |
|  | 25.44 | 69.50 | 2.216 |  |
|  | 25.44 | 69.70 | 2.194 |  |
|  | 25.44 | 69.90 | 2.165 |  |
|  | 25.44 | 70.10 | 2.117 |  |
|  | 25.44 | 70.50 | 2.023 |  |
|  | 25.44 | 71.00 | 2.015 |  |
|  | 25.44 | 73.00 | 2.016 |  |
|  | 25.44 | 75.20 | 2.016 |  |
|  | 25.44 | 77.00 | 2.015 |  |
|  | 25.44 | 79.00 | 2.019 |  |
|  | 25.435 | 81.00 | 2.023 |  |
|  | 25.435 | 81.50 | 2.023 |  |
|  | 25.435 | 82.00 | 2.104 |  |
| 12:03 | 25.435 | 82.23 | 2.147 |  |
| 12:58 | 26.5 | 69.18 | 2.251 |  |
|  | 26.5 | 69.30 | 2.248 |  |
|  | 26.5 | 69.33 | 2.205 |  |
|  | 26.5 | 69.45 | 2.202 |  |
|  | 26.5 | 69.48 | 2.158 |  |
|  | 26.5 | 69.60 | 2.151 |  |
|  | 26.5 | 69.63 | 2.113 |  |
|  | 26.5 | 69.75 | 2.108 |  |
|  | 26.5 | 69.80 | 2.089 |  |
|  | 26.5 | 70.00 | 2.034 |  |
|  | 26.5 | 70.20 | 1.995 |  |
|  | 26.5 | 70.40 | 1.955 |  |


|  | 26.5 | 70.60 | 1.921 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 26.5 | 70.80 | 1.894 |  |
|  | 26.5 | 71.00 | 1.874 |  |
|  | 26.5 | 71.06 | 1.846 |  |
|  | 26.5 | 71.12 | 1.699 |  |
|  | 26.5 | 71.20 | 1.675 |  |
|  | 26.5 | 71.40 | 1.651 |  |
|  | 26.5 | 71.60 | 1.647 |  |
|  | 26.5 | 71.80 | 1.642 |  |
|  | 26.5 | 72.00 | 1.641 |  |
|  | 26.5 | 73.00 | 1.635 |  |
|  | 26.5 | 75.20 | 1.636 |  |
|  | 26.5 | 77.00 | 1.638 |  |
|  | 26.5 | 79.00 | 1.639 |  |
|  | 26.5 | 80.00 | 1.641 |  |
|  | 26.5 | 81.00 | 1.651 |  |
|  | 26.5 | 81.50 | 1.738 |  |
|  | 26.5 | 81.70 | 1.746 |  |
| 13:16 | 26.5 | 81.81 | 1.755 |  |
| 13:16 | 27.61 | 69.16 | 2.240 |  |
|  | 27.61 | 69.29 | 2.234 |  |
|  | 27.61 | 69.31 | 2.191 |  |
|  | 27.61 | 69.43 | 2.190 |  |
|  | 27.61 | 69.46 | 2.139 |  |
|  | 27.61 | 69.58 | 2.137 |  |
|  | 27.61 | 69.61 | 2.088 |  |
|  | 27.61 | 69.72 | 2.084 |  |
|  | 27.61 | 69.75 | 2.038 |  |
|  | 27.61 | 69.86 | 2.035 |  |
|  | 27.61 | 69.89 | 1.997 |  |
|  | 27.61 | 69.99 | 1.996 |  |
|  | 27.61 | 70.02 | 1.983 |  |
|  | 27.61 | 70.14 | 1.959 |  |
|  | 27.61 | 70.20 | 1.923 |  |
|  | 27.61 | 70.40 | 1.863 |  |
|  | 27.61 | 70.60 | 1.810 |  |
|  | 27.61 | 70.80 | 1.735 |  |
|  | 27.61 | 71.00 | 1.696 |  |
|  | 27.61 | 71.20 | 1.666 |  |


|  | 27.61 | 71.40 | 1.631 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 27.61 | 71.60 | 1.597 |  |
|  | 27.61 | 71.80 | 1.586 |  |
|  | 27.61 | 72.00 | 1.473 |  |
|  | 27.61 | 72.20 | 1.377 |  |
|  | 27.61 | 72.40 | 1.266 |  |
|  | 27.61 | 72.60 | 1.262 |  |
|  | 27.61 | 72.80 | 1.254 |  |
|  | 27.61 | 73.00 | 1.253 |  |
|  | 27.61 | 75.20 | 1.251 |  |
|  | 27.61 | 77.00 | 1.254 |  |
|  | 27.61 | 79.00 | 1.256 |  |
|  | 27.61 | 80.00 | 1.268 |  |
|  | 27.61 | 80.50 | 1.283 |  |
|  | 27.61 | 81 | 1.331 |  |
| 13:38 | 27.61 | 81.45 | 1.392 |  |
| 13:43 | 28.69 | 69.46 | 2.14 |  |
|  | 28.69 | 69.57 | 2.14 |  |
|  | 28.69 | 69.6 | 2.094 |  |
|  | 28.69 | 69.72 | 2.087 |  |
|  | 28.69 | 69.74 | 2.052 |  |
|  | 28.69 | 69.85 | 2.05 |  |
|  | 28.69 | 69.88 | 2.005 |  |
|  | 28.69 | 69.98 | 2.006 |  |
|  | 28.69 | 70 | 1.964 |  |
|  | 28.69 | 70.12 | 1.961 |  |
|  | 28.69 | 70.15 | 1.918 |  |
|  | 28.69 | 70.27 | 1.916 |  |
|  | 28.69 | 70.31 | 1.89 |  |
|  | 28.69 | 70.4 | 1.87 |  |
|  | 28.69 | 70.6 | 1.809 |  |
|  | 28.69 | 70.8 | 1.741 |  |
|  | 28.69 | 71 | 1.688 |  |
|  | 28.69 | 71.2 | 1.618 |  |
|  | 28.69 | 71.4 | 1.556 |  |
|  | 28.69 | 71.6 | 1.486 |  |
|  | 28.69 | 71.8 | 1.441 |  |
|  | 28.69 | 72 | 1.414 |  |
|  | 28.69 | 72.2 | 1.361 |  |


|  | 28.69 | 72.4 | 1.326 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 72.6 | 1.293 |  |
|  | 28.69 | 72.8 | 1.245 |  |
|  | 28.69 | 73 | 1.194 |  |
|  | 28.69 | 73.2 | 1.068 |  |
|  | 28.69 | 73.4 | 0.953 |  |
|  | 28.69 | 73.6 | 0.894 |  |
|  | 28.69 | 73.8 | 0.891 |  |
|  | 28.69 | 74 | 0.886 |  |
|  | 28.69 | 75.2 | 0.883 |  |
|  | 28.69 | 77 | 0.881 |  |
|  | 28.69 | 79 | 0.887 |  |
|  | 28.69 | 80 | 0.915 |  |
|  | 28.69 | 80.5 | 0.954 |  |
|  | 28.69 | 81 | 1.014 |  |
| 14:04 | 28.69 | 81.12 | 1.03 |  |
| 14:04 | 29.155 | 70.29 | 1.871 |  |
|  | 29.155 | 70.41 | 1.868 |  |
|  | 29.155 | 70.43 | 1.826 |  |
|  | 29.155 | 70.54 | 1.829 |  |
|  | 29.155 | 70.58 | 1.808 |  |
|  | 29.155 | 70.8 | 1.74 |  |
|  | 29.155 | 71 | 1.676 |  |
|  | 29.155 | 71.2 | 1.617 |  |
|  | 29.155 | 71.4 | 1.556 |  |
|  | 29.155 | 71.6 | 1.494 |  |
|  | 29.155 | 71.8 | 1.441 |  |
|  | 29.155 | 72 | 1.396 |  |
|  | 29.155 | 72.2 | 1.322 |  |
|  | 29.155 | 72.4 | 1.284 |  |
|  | 29.155 | 72.6 | 1.242 |  |
|  | 29.155 | 72.8 | 1.216 |  |
|  | 29.155 | 73 | 1.171 |  |
|  | 29.155 | 73.2 | 1.117 |  |
|  | 29.155 | 73.4 | 1.043 |  |
|  | 29.155 | 73.6 | 0.982 |  |
|  | 29.155 | 73.8 | 0.859 |  |
|  | 29.155 | 74 | 0.764 |  |
|  | 29.155 | 74.2 | 0.735 |  |


|  | 29.155 | 74.4 | 0.734 |  |
| :--- | ---: | ---: | ---: | :--- |
|  | 29.155 | 74.6 | 0.731 |  |
|  | 29.155 | 74.8 | 0.73 |  |
|  | 29.155 | 75 | 0.731 |  |
|  | 29.155 | 75.2 | 0.73 |  |
|  | 29.155 | 77 | 0.732 |  |
|  | 29.155 | 79 | 0.74 |  |
|  | 29.155 | 80 | 0.767 |  |
|  | 29.155 | 80.5 | 0.805 |  |
| $14: 18$ | 29.155 | 80.97 | 0.872 |  |

Table A.73. Centerline bed surface.

| Bed data |  |  | recorder | RW |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \text { BM-0 } \\ & \text { rd. } \\ & \hline \end{aligned}$ | $\mathrm{x}=24.68$ | $y=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
|  | x | y | z |  |  | comments |
|  | ft | ft | ft |  |  |  |
|  | 23.84 | 75.21 | 1.922 | Centerline |  |  |
|  | 24.00 | 75.21 | 1.918 |  |  |  |
|  | 24.20 | 75.21 | 1.916 |  |  |  |
|  | 24.40 | 75.21 | 1.909 |  |  |  |
|  | 24.65 | 75.21 | 1.907 |  |  |  |
|  | 24.76 | 75.21 | 1.908 |  |  |  |
|  | 24.78 | 75.21 | 2.041 |  |  |  |
|  | 24.87 | 75.21 | 2.076 | crest |  |  |
|  | 25.10 | 75.21 | 2.016 | crest |  |  |
|  | 25.30 | 75.21 | 1.952 |  |  |  |
|  | 25.42 | 75.21 | 1.916 |  |  |  |
|  | 25.55 | 75.21 | 1.868 |  |  |  |
|  | 25.70 | 75.21 | 1.819 |  |  |  |
|  | 25.83 | 75.21 | 1.774 |  |  |  |
|  | 25.97 | 75.21 | 1.729 |  |  |  |
|  | 26.11 | 75.21 | 1.684 |  |  |  |
|  | 26.25 | 75.21 | 1.639 |  |  |  |
|  | 26.39 | 75.21 | 1.591 |  |  |  |
|  | 26.52 | 75.21 | 1.545 |  |  |  |
|  | 26.65 | 75.21 | 1.499 |  |  |  |


|  | 26.79 | 75.21 | 1.455 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 26.93 | 75.21 | 1.408 |  |
|  | 27.06 | 75.21 | 1.362 |  |
|  | 27.20 | 75.21 | 1.316 |  |
|  | 27.34 | 75.21 | 1.269 |  |
|  | 27.47 | 75.21 | 1.223 |  |
|  | 27.62 | 75.21 | 1.178 |  |
|  | 27.75 | 75.21 | 1.133 |  |
|  | 27.89 | 75.21 | 1.089 |  |
|  | 28.04 | 75.21 | 1.041 |  |
|  | 28.16 | 75.21 | 0.995 |  |
|  | 28.30 | 75.21 | 0.951 |  |
|  | 28.43 | 75.21 | 0.904 |  |
|  | 28.57 | 75.21 | 0.858 |  |
|  | 28.71 | 75.21 | 0.811 |  |
|  | 28.85 | 75.21 | 0.765 |  |
|  | 28.98 | 75.21 | 0.718 |  |
|  | 29.13 | 75.21 | 0.668 |  |
|  | 29.16 | 75.21 | 0.622 |  |
|  | 29.30 | 75.21 | 0.624 |  |
|  | 29.60 | 75.21 | 0.626 |  |
|  | 29.90 | 75.21 | 0.627 |  |
|  | 30.21 | 75.21 | 0.632 |  |

Table A.74. Cross section bed profiles for $1: 1$ smooth training walls.

| Bed <br> data |  |  | recorder | RW |  |  |
| :--- | :---: | :---: | :---: | :--- | :--- | :--- |
|  |  |  | BM-0 <br> rd. | $\mathrm{x}=24.68$ | $\mathrm{y}=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |  |
|  | x <br> ft | y <br> ft | z <br> ft |  |  | comments |
|  | 24.00 | 67.45 | 2.836 |  |  |  |
|  | 24.00 | 68.00 | 2.279 |  |  |  |
|  | 24.00 | 68.39 | 1.905 | int |  |  |
|  | 24.00 | 69.00 | 1.905 |  |  |  |
|  | 24.00 | 70.00 | 1.907 |  |  |  |
|  | 24.00 | 71.00 | 1.906 |  |  |  |
|  | 24.00 | 72.00 | 1.908 |  |  |  |


|  | 24.00 | 73.00 | 1.910 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 24.00 | 74.00 | 1.912 |  |
|  | 24.00 | 75.00 | 1.915 |  |
|  | 24.00 | 75.21 | 1.918 | CL |
|  | 24.00 | 76.00 | 1.914 |  |
|  | 24.00 | 77.00 | 1.914 |  |
|  | 24.00 | 78.00 | 1.912 |  |
|  | 24.00 | 79.00 | 1.915 |  |
|  | 24.00 | 80.00 | 1.911 |  |
|  | 24.00 | 81.00 | 1.908 |  |
|  | 24.00 | 82.00 | 1.908 |  |
|  | 24.00 | 82.01 | 1.908 |  |
|  | 24.00 | 83.01 | 2.932 |  |
|  | 24.87 | 67.45 | 2.839 |  |
|  | 24.87 | 68.00 | 2.298 |  |
|  | 24.87 | 68.24 | 2.075 | int |
|  | 24.87 | 69.00 | 2.075 |  |
|  | 24.87 | 70.00 | 2.076 |  |
|  | 24.87 | 71.00 | 2.076 |  |
|  | 24.87 | 72.00 | 2.076 |  |
|  | 24.87 | 73.00 | 2.077 |  |
|  | 24.87 | 74.00 | 2.075 |  |
|  | 24.87 | 75.00 | 2.075 |  |
|  | 24.87 | 75.21 | 2.075 | CL |
|  | 24.87 | 76.00 | 2.077 |  |
|  | 24.87 | 77.00 | 2.078 |  |
|  | 24.87 | 78.00 | 2.077 |  |
|  | 24.87 | 79.00 | 2.078 |  |
|  | 24.87 | 80.00 | 2.078 |  |
|  | 24.87 | 81.00 | 2.077 |  |
|  | 24.87 | 82.00 | 2.076 |  |
|  | 24.87 | 82.16 | 2.076 | int |
|  | 24.87 | 83.10 | 2.924 |  |
|  | 25.55 | 67.44 | 2.845 | Step 1 |
|  | 25.55 | 68.00 | 2.313 |  |
|  | 25.55 | 68.49 | 1.865 | int |
|  | 25.55 | 69.00 | 1.868 |  |
|  | 25.55 | 70.00 | 1.867 |  |
|  | 25.55 | 71.00 | 1.867 |  |


|  | 25.55 | 72.00 | 1.869 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 25.55 | 73.00 | 1.868 |  |
|  | 25.55 | 74.00 | 1.868 |  |
|  | 25.55 | 75.00 | 1.868 |  |
|  | 25.55 | 75.21 | 1.867 | cl |
|  | 25.55 | 76.00 | 1.869 |  |
|  | 25.55 | 78.00 | 1.870 |  |
|  | 25.55 | 79.00 | 1.871 |  |
|  | 25.55 | 80.00 | 1.871 |  |
|  | 25.55 | 81.00 | 1.873 |  |
|  | 25.55 | 81.95 | 1.869 | int |
|  | 25.55 | 83.02 | 2.920 |  |
|  | 25.97 | 67.43 | 2.845 | Step 4 |
|  | 25.97 | 68.00 | 2.319 |  |
|  | 25.97 | 68.64 | 1.728 | + |
|  | 25.97 | 69.00 | 1.727 |  |
|  | 25.97 | 70.00 | 1.726 |  |
|  | 25.97 | 71.00 | 1.727 |  |
|  | 25.97 | 72.00 | 1.728 |  |
|  | 25.97 | 73.00 | 1.729 |  |
|  | 25.97 | 74.00 | 1.729 |  |
|  | 25.97 | 75.00 | 1.729 |  |
|  | 25.97 | 75.21 | 1.729 | cl |
|  | 25.97 | 76.00 | 1.728 |  |
|  | 25.97 | 77.00 | 1.729 |  |
|  | 25.97 | 78.00 | 1.729 |  |
|  | 25.97 | 79.00 | 1.728 |  |
|  | 25.97 | 80.00 | 1.733 |  |
|  | 25.97 | 81.00 | 1.730 |  |
|  | 25.97 | 81.79 | 1.728 |  |
|  | 25.97 | 82.00 | 1.925 |  |
|  | 25.97 | 83.01 | 2.927 |  |
|  | 26.50 | 67.44 | 2.839 | Step 8 |
|  | 26.50 | 68.00 | 2.312 |  |
|  | 26.50 | 68.82 | 1.546 | + |
|  | 26.50 | 69.00 | 1.547 |  |
|  | 26.50 | 71.00 | 1.545 |  |
|  | 26.50 | 73.00 | 1.545 |  |
|  | 26.50 | 75.00 | 1.545 |  |



| 28.15 | 75.21 | 0.996 |  |
| :---: | :---: | :---: | :---: |
| 28.15 | 77.00 | 0.996 |  |
| 28.15 | 79.00 | 0.999 |  |
| 28.15 | 81.08 | 0.996 |  |
| 28.15 | 82.00 | 1.903 |  |
| 28.15 | 83.01 | 2.920 |  |
| 28.69 | 67.41 | 2.859 | 24 |
| 28.69 | 68.00 | 2.302 |  |
| 28.69 | 69.00 | 1.337 |  |
| 28.69 | 69.54 | 0.813 |  |
| 28.69 | 71.00 | 0.812 |  |
| 28.69 | 73.00 | 0.811 |  |
| 28.69 | 75.00 | 0.812 |  |
| 28.69 | 75.21 | 0.812 |  |
| 28.69 | 77.00 | 0.813 |  |
| 28.69 | 79.00 | 0.815 |  |
| 28.69 | 80.92 | 0.814 |  |
| 28.69 | 82.00 | 1.900 |  |
| 28.69 | 83.01 | 2.911 |  |
| 29.115 | 67.41 | 2.858 | 27 |
| 29.115 | 68.00 | 2.295 |  |
| 29.115 | 69.00 | 1.322 |  |
| 29.115 | 69.68 | 0.674 |  |
| 29.115 | 71.00 | 0.675 |  |
| 29.115 | 73.00 | 0.668 |  |
| 29.115 | 75.00 | 0.667 |  |
| 29.115 | 75.21 | 0.668 |  |
| 29.115 | 77.00 | 0.671 |  |
| 29.115 | 79.00 | 0.670 |  |
| 29.115 | 80.79 | 0.671 |  |
| 29.115 | 82.00 | 1.892 |  |
| 29.115 | 83.01 | 2.914 |  |

Table A.75. Cross section bed profiles for $1: 1$ stepped training walls.

| Bed data |  |  | recorder | RW |  |
| :---: | :---: | :---: | :---: | :--- | :--- |
|  |  |  | BM-0 rd. | $\mathrm{x}=24.68$ | $\mathrm{y}=65.02$ |
| $\mathrm{~g}=2.873$ |  |  |  |  |  |
|  |  |  |  |  |  |
|  | x | y | z |  | comment |


|  | ft | ft | ft | s |
| :---: | :---: | :---: | :---: | :---: |
|  | 24.87 | 67.50 | 2.780 |  |
|  | 24.87 | 67.55 | 2.781 |  |
|  | 24.87 | 67.60 | 2.737 |  |
|  | 24.87 | 67.64 | 2.698 |  |
|  | 24.87 | 67.69 | 2.645 |  |
|  | 24.87 | 67.74 | 2.601 |  |
|  | 24.87 | 67.78 | 2.556 |  |
|  | 24.87 | 67.83 | 2.515 |  |
|  | 24.87 | 67.88 | 2.467 |  |
|  | 24.87 | 67.92 | 2.422 |  |
|  | 24.87 | 67.97 | 2.376 |  |
|  | 24.87 | 68.02 | 2.334 |  |
|  | 24.87 | 68.06 | 2.289 |  |
|  | 24.87 | 68.11 | 2.245 |  |
|  | 24.87 | 68.16 | 2.194 |  |
|  | 24.87 | 68.22 | 2.147 |  |
|  | 24.87 | 68.26 | 2.096 |  |
|  | 24.87 | 68.28 | 2.078 |  |
|  | 24.87 | 68.50 | 2.077 |  |
|  | 24.87 | 69.00 | 2.078 |  |
|  | 24.87 | 75.20 | 2.078 |  |
|  | 25.44 | 68.03 | 2.287 |  |
|  | 25.44 | 68.10 | 2.273 |  |
|  | 25.44 | 68.20 | 2.251 |  |
|  | 25.44 | 68.30 | 2.228 |  |
|  | 25.44 | 68.40 | 2.205 |  |
|  | 25.44 | 68.50 | 2.176 |  |
|  | 25.44 | 68.60 | 2.155 |  |
|  | 25.44 | 69.00 | 2.120 |  |
|  | 25.44 | 71.00 | 2.116 |  |
|  | 25.44 | 73.00 | 2.115 |  |
|  | 25.44 | 75.20 | 2.116 |  |
|  | 25.44 | 77.00 | 2.114 |  |
|  | 25.44 | 79.00 | 2.115 |  |
|  | 25.44 | 81.00 | 2.117 |  |
|  | 25.44 | 81.50 | 2.125 |  |
|  | 25.44 | 81.60 | 2.132 |  |
|  | 25.44 | 81.70 | 2.143 |  |


|  | 25.44 | 81.80 | 2.155 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 25.44 | 81.90 | 2.178 |  |
|  | 25.44 | 82.00 | 2.202 |  |
|  | 25.44 | 82.10 | 2.229 |  |
|  | 25.44 | 82.20 | 2.248 |  |
|  | 25.44 | 82.37 | 2.282 |  |
|  | 26.50 | 68.45 | 1.897 |  |
|  | 26.50 | 68.60 | 1.873 |  |
|  | 26.50 | 68.70 | 1.861 |  |
|  | 26.50 | 68.80 | 1.858 |  |
|  | 26.50 | 68.93 | 1.851 |  |
|  | 26.50 | 69.05 | 1.796 |  |
|  | 26.50 | 69.20 | 1.755 |  |
|  | 26.50 | 70.00 | 1.710 |  |
|  | 26.50 | 73.00 | 1.702 |  |
|  | 26.50 | 75.20 | 1.703 |  |
|  | 26.50 | 77.00 | 1.700 |  |
|  | 26.50 | 79.00 | 1.701 |  |
|  | 26.50 | 81.00 | 1.723 |  |
|  | 26.50 | 81.38 | 1.790 |  |
|  | 26.50 | 81.49 | 1.853 |  |
|  | 26.50 | 81.60 | 1.867 |  |
|  | 26.50 | 81.70 | 1.875 |  |
|  | 26.50 | 81.80 | 1.880 |  |
|  | 26.50 | 81.99 | 1.918 |  |
|  | 27.61 | 68.85 | 1.505 |  |
|  | 27.61 | 69.00 | 1.489 |  |
|  | 27.61 | 69.10 | 1.481 |  |
|  | 27.61 | 69.20 | 1.474 |  |
|  | 27.61 | 69.43 | 1.482 |  |
|  | 27.61 | 69.53 | 1.414 |  |
|  | 27.61 | 69.60 | 1.393 |  |
|  | 27.61 | 69.70 | 1.373 |  |
|  | 27.61 | 70.00 | 1.350 |  |
|  | 27.61 | 73.00 | 1.304 |  |
|  | 27.61 | 75.20 | 1.305 |  |
|  | 27.61 | 77.00 | 1.306 |  |
|  | 27.61 | 79.00 | 1.309 |  |
|  | 27.61 | 80.00 | 1.323 |  |
|  | 27.61 | 80.70 | 1.360 |  |


|  | 27.61 | 80.93 | 1.398 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 27.61 | 81.00 | 1.477 |  |
|  | 27.61 | 81.20 | 1.469 |  |
|  | 27.61 | 81.60 | 1.518 |  |
|  | 28.69 | 69.21 | 1.139 |  |
|  | 28.69 | 69.40 | 1.109 |  |
|  | 28.69 | 69.61 | 1.096 |  |
|  | 28.69 | 69.85 | 1.085 |  |
|  | 28.69 | 69.93 | 1.048 |  |
|  | 28.69 | 70.10 | 1.024 |  |
|  | 28.69 | 73.00 | 0.941 |  |
|  | 28.69 | 75.20 | 0.940 |  |
|  | 28.69 | 77.00 | 0.938 |  |
|  | 28.69 | 80.00 | 0.986 |  |
|  | 28.69 | 80.46 | 1.039 |  |
|  | 28.69 | 80.67 | 1.098 |  |
|  | 28.69 | 80.84 | 1.094 |  |
|  | 28.69 | 81.00 | 1.107 |  |
|  | 28.69 | 81.27 | 1.162 |  |
|  | 29.115 | 69.34 | 0.995 |  |
|  | 29.115 | 69.50 | 0.973 |  |
|  | 29.115 | 69.73 | 0.959 |  |
|  | 29.115 | 69.84 | 0.94 |  |
|  | 29.115 | 70.09 | 0.914 |  |
|  | 29.115 | 70.2 | 0.901 |  |
|  | 29.115 | 70.3 | 0.895 |  |
|  | 29.115 | 71 | 0.844 |  |
|  | 29.115 | 73 | 0.796 |  |
|  | 29.115 | 75.2 | 0.8 |  |
|  | 29.115 | 79 | 0.815 |  |
|  | 29.115 | 80.2 | 0.889 |  |
|  | 29.115 | 80.37 | 0.915 |  |
|  | 29.115 | 80.55 | 0.932 |  |
|  | 29.115 | 80.8 | 0.964 |  |
|  | 29.115 | 81 | 0.98 |  |
|  | 29.115 | 81.125 | 1.011 |  |

Table A.76. Cross section bed profiles for 2:1 smooth training walls.

| Bed data |  |  | recorder |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | BM-0 rd. | $x=24.68$ y=65.02 | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |
|  | $\begin{aligned} & \mathrm{X} \\ & \mathrm{ft} \end{aligned}$ | $\begin{aligned} & \mathrm{y} \\ & \mathrm{ft} \end{aligned}$ | $\begin{gathered} \mathrm{z} \\ \mathrm{ft} \end{gathered}$ |  | comments |
|  | 24.87 | 68.00 | 2.637 |  |  |
|  | 24.87 | 68.30 | 2.479 |  |  |
|  | 24.87 | 68.41 | 2.377 |  |  |
|  | 24.87 | 68.60 | 2.302 |  |  |
|  | 24.87 | 68.80 | 2.227 |  |  |
|  | 24.87 | 69.00 | 2.126 |  |  |
|  | 24.87 | 69.10 | 2.075 |  |  |
|  | 24.87 | 70.00 | 2.075 |  |  |
|  | 24.87 | 69.10 | 2.075 |  |  |
|  | 24.87 | 69.50 | 2.076 |  |  |
|  | 24.87 | 70.00 | 2.075 |  |  |
|  | 24.87 | 71.00 | 2.076 |  |  |
|  | 24.87 | 72.00 | 2.076 |  |  |
|  | 24.87 | 73.00 | 2.077 |  |  |
|  | 24.87 | 74.00 | 2.075 |  |  |
|  | 24.87 | 75.00 | 2.075 |  |  |
|  | 24.87 | 75.21 | 2.075 |  |  |
|  | 24.87 | 76.00 | 2.077 |  |  |
|  | 24.87 | 77.00 | 2.078 |  |  |
|  | 24.87 | 78.00 | 2.077 |  |  |
|  | 24.87 | 79.00 | 2.078 |  |  |
|  | 24.87 | 80.00 | 2.078 |  |  |
|  | 24.87 | 81.00 | 2.077 |  |  |
|  | 24.87 | 82.00 | 2.076 |  |  |
|  | 24.87 | 82.16 | 2.076 |  |  |
|  | 24.87 | 83.10 | 2.924 |  |  |
|  | 25.44 | 68.20 | 2.525 |  |  |
|  | 25.44 | 68.30 | 2.495 |  |  |
|  | 25.44 | 68.50 | 2.324 |  |  |
|  | 25.44 | 68.61 | 2.271 |  |  |
|  | 25.44 | 68.80 | 2.210 |  |  |
|  | 25.44 | 69.00 | 2.109 |  |  |
|  | 25.44 | 69.20 | 2.025 |  |  |
|  | 25.44 | 69.30 | 1.974 |  |  |


|  | 25.44 | 69.40 | 1.924 |
| :---: | :---: | :---: | :---: |
|  | 25.44 | 69.51 | 1.869 |
|  | 25.44 | 70.00 | 1.867 |
|  | 25.44 | 71.00 | 1.867 |
|  | 25.44 | 72.00 | 1.869 |
|  | 25.44 | 73.00 | 1.868 |
|  | 25.44 | 74.00 | 1.868 |
|  | 25.44 | 75.00 | 1.868 |
|  | 25.44 | 75.21 | 1.867 |
|  | 25.44 | 76.00 | 1.869 |
|  | 25.44 | 78.00 | 1.870 |
|  | 25.44 | 79.00 | 1.871 |
|  | 25.44 | 80.00 | 1.871 |
|  | 25.44 | 81.00 | 1.873 |
|  | 25.44 | 81.95 | 1.869 |
|  | 25.44 | 83.02 | 2.920 |
|  | 26.50 | 68.20 | 2.525 |
|  | 26.50 | 68.80 | 2.210 |
|  | 26.50 | 69.09 | 2.043 |
|  | 26.50 | 69.20 | 2.025 |
|  | 26.50 | 69.40 | 1.924 |
|  | 26.50 | 69.80 | 1.722 |
|  | 26.50 | 70.15 | 1.545 |
|  | 26.50 | 71.00 | 1.545 |
|  | 26.50 | 73.00 | 1.545 |
|  | 26.50 | 75.00 | 1.545 |
|  | 26.50 | 75.21 | 1.546 |
|  | 26.50 | 77.00 | 1.547 |
|  | 26.50 | 79.00 | 1.549 |
|  | 26.50 | 81.00 | 1.548 |
|  | 26.50 | 81.61 | 1.548 |
|  | 26.50 | 82.00 | 1.928 |
|  | 26.50 | 83.01 | 2.915 |
|  | 27.61 | 68.20 | 2.525 |
|  | 27.61 | 68.40 | 2.428 |
|  | 27.61 | 68.60 | 2.327 |
|  | 27.61 | 69.20 | 2.043 |
|  | 27.61 | 69.78 | 1.693 |
|  | 27.61 | 70.50 | 1.369 |


|  | 27.61 | 71.00 | 1.182 |
| :---: | :---: | :---: | :---: |
|  | 27.61 | 73.00 | 1.176 |
|  | 27.61 | 75.00 | 1.178 |
|  | 27.61 | 75.21 | 1.179 |
|  | 27.61 | 77.00 | 1.180 |
|  | 27.61 | 79.00 | 1.183 |
|  | 27.61 | 81.00 | 1.182 |
|  | 27.61 | 81.25 | 1.181 |
|  | 27.61 | 82.00 | 1.913 |
|  | 27.61 | 83.01 | 2.917 |
|  | 28.69 | 68.20 | 2.525 |
|  | 28.69 | 68.40 | 2.428 |
|  | 28.69 | 68.60 | 2.327 |
|  | 28.69 | 69.20 | 2.043 |
|  | 28.69 | 69.78 | 1.693 |
|  | 28.69 | 70.40 | 1.387 |
|  | 28.69 | 71.00 | 1.116 |
|  | 28.69 | 71.60 | 0.812 |
|  | 28.69 | 73.00 | 0.811 |
|  | 28.69 | 75.00 | 0.812 |
|  | 28.69 | 75.21 | 0.812 |
|  | 28.69 | 77.00 | 0.813 |
|  | 28.69 | 79.00 | 0.815 |
|  | 28.69 | 80.92 | 0.814 |
|  | 28.69 | 82.00 | 1.9 |
|  | 28.69 | 83.01 | 2.911 |
|  | 29.115 | 68.20 | 2.525 |
|  | 29.115 | 68.60 | 2.327 |
|  | 29.115 | 69.20 | 2.043 |
|  | 29.115 | 69.78 | 1.693 |
|  | 29.115 | 70.40 | 1.387 |
|  | 29.115 | 71.00 | 1.116 |
|  | 29.115 | 71.50 | 0.864 |
|  | 29.115 | 71.89 | 0.667 |
|  | 29.115 | 73.00 | 0.668 |
|  | 29.115 | 75.00 | 0.667 |
|  | 29.115 | 75.21 | 0.668 |
|  | 29.115 | 77.00 | 0.671 |
|  | 29.115 | 79.00 | 0.67 |


|  | 29.115 | 80.79 | 0.671 |  |
| :--- | ---: | ---: | ---: | ---: |
|  | 29.115 | 82.00 | 1.892 |  |
|  | 29.115 | 83.01 | 2.914 |  |

Table A.77. Cross section bed profiles for 2:1 stepped training walls.

| Bed data |  |  | recorder | RW |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | BM-0 rd. | $\mathrm{x}=24.68 \quad \mathrm{y}=65.02$ | $\mathrm{z}=2.873$ |
|  |  |  |  |  |  |
|  |  | y |  |  | $\begin{gathered} \text { comment } \\ \mathrm{s} \end{gathered}$ |
|  | ft | ft | ft |  |  |
|  | 24.87 | 68.31 | 2.462 |  |  |
|  | 24.87 | 68.40 | 2.415 |  |  |
|  | 24.87 | 68.50 | 2.372 |  |  |
|  | 24.87 | 68.59 | 2.319 |  |  |
|  | 24.87 | 68.69 | 2.285 |  |  |
|  | 24.87 | 68.77 | 2.239 |  |  |
|  | 24.87 | 68.87 | 2.197 |  |  |
|  | 24.87 | 68.95 | 2.153 |  |  |
|  | 24.87 | 69.05 | 2.108 |  |  |
|  | 24.87 | 69.14 | 2.075 |  |  |
|  | 24.87 | 70.00 | 2.075 |  |  |
|  | 24.87 | 69.10 | 2.075 |  |  |
|  | 24.87 | 69.50 | 2.076 |  |  |
|  | 24.87 | 70.00 | 2.075 |  |  |
|  | 24.87 | 71.00 | 2.076 |  |  |
|  | 24.87 | 72.00 | 2.076 |  |  |
|  | 24.87 | 73.00 | 2.077 |  |  |
|  | 24.87 | 74.00 | 2.075 |  |  |
|  | 24.87 | 75.00 | 2.075 |  |  |
|  | 24.87 | 75.21 | 2.075 |  |  |
|  | 24.87 | 76.00 | 2.077 |  |  |
|  | 24.87 | 77.00 | 2.078 |  |  |
|  | 24.87 | 78.00 | 2.077 |  |  |
|  | 24.87 | 79.00 | 2.078 |  |  |
|  | 24.87 | 80.00 | 2.078 |  |  |
|  | 24.87 | 81.00 | 2.077 |  |  |
|  | 24.87 | 82.00 | 2.076 |  |  |
|  | 24.87 | 82.16 | 2.076 |  |  |


|  | 24.87 | 83.10 | 2.924 |  |
| :--- | ---: | ---: | ---: | ---: |
|  | 25.44 | 68.31 | 2.462 |  |
|  | 25.44 | 68.40 | 2.415 |  |
|  | 25.44 | 68.50 | 2.372 |  |
|  | 25.44 | 68.59 | 2.319 |  |
|  | 25.44 | 68.69 | 2.285 |  |
|  | 25.44 | 68.77 | 2.239 |  |
|  | 25.44 | 68.87 | 2.197 |  |
|  | 25.44 | 68.95 | 2.153 |  |
|  | 25.44 | 69.05 | 2.108 |  |
|  | 25.44 | 69.14 | 2.062 |  |
|  | 25.44 | 69.25 | 2.027 |  |
|  | 25.44 | 69.32 | 1.974 |  |
|  | 25.44 | 69.42 | 1.922 |  |
|  | 25.44 | 69.51 | 1.869 |  |
|  | 25.44 | 70.00 | 1.867 |  |
|  | 25.44 | 71.00 | 1.867 |  |
|  | 25.44 | 72.00 | 1.869 |  |
|  | 25.44 | 73.00 | 1.868 |  |
|  | 25.44 | 74.00 | 1.868 |  |
|  | 25.44 | 75.00 | 1.868 |  |
|  | 25.44 | 75.21 | 1.867 |  |
|  | 26.50 | 69.25 | 2.027 |  |
|  |  |  |  |  |
|  | 26.44 | 76.00 | 1.869 |  |
|  | 25.44 | 78.00 | 1.870 |  |
|  | 25.44 | 79.00 | 1.871 |  |
|  | 25.44 | 80.00 | 1.871 |  |
|  | 25.44 | 81.00 | 1.873 |  |
|  | 25.44 | 81.95 | 1.869 |  |
|  | 25.44 | 83.02 | 2.920 |  |
|  | 26.50 | 68.31 | 2.462 |  |
|  | 26.50 | 68.40 | 2.415 |  |
|  | 68.50 | 2.372 |  |  |
|  | 26.50 | 680 | 68.69 | 2.285 |


|  | 26.50 | 69.32 | 1.974 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 26.50 | 69.42 | 1.922 |  |
|  | 26.50 | 69.51 | 1.877 |  |
|  | 26.50 | 69.61 | 1.830 |  |
|  | 26.50 | 69.71 | 1.778 |  |
|  | 26.50 | 69.80 | 1.733 |  |
|  | 26.50 | 69.89 | 1.687 |  |
|  | 26.50 | 69.99 | 1.636 |  |
|  | 26.50 | 70.07 | 1.605 |  |
|  | 26.50 | 70.15 | 1.545 |  |
|  | 26.50 | 71.00 | 1.545 |  |
|  | 26.50 | 73.00 | 1.545 |  |
|  | 26.50 | 75.00 | 1.545 |  |
|  | 26.50 | 75.21 | 1.546 |  |
|  | 26.50 | 77.00 | 1.547 |  |
|  | 26.50 | 79.00 | 1.549 |  |
|  | 26.50 | 81.00 | 1.548 |  |
|  | 26.50 | 81.61 | 1.548 |  |
|  | 26.50 | 82.00 | 1.928 |  |
|  | 26.50 | 83.01 | 2.915 |  |
|  | 27.61 | 68.31 | 2.462 |  |
|  | 27.61 | 68.40 | 2.415 |  |
|  | 27.61 | 68.50 | 2.372 |  |
|  | 27.61 | 68.59 | 2.319 |  |
|  | 27.61 | 68.69 | 2.285 |  |
|  | 27.61 | 68.77 | 2.239 |  |
|  | 27.61 | 68.87 | 2.197 |  |
|  | 27.61 | 68.95 | 2.153 |  |
|  | 27.61 | 69.05 | 2.108 |  |
|  | 27.61 | 69.14 | 2.062 |  |
|  | 27.61 | 69.25 | 2.027 |  |
|  | 27.61 | 69.32 | 1.974 |  |
|  | 27.61 | 69.42 | 1.922 |  |
|  | 27.61 | 69.51 | 1.877 |  |
|  | 27.61 | 69.61 | 1.830 |  |
|  | 27.61 | 69.71 | 1.778 |  |
|  | 27.61 | 69.80 | 1.733 |  |
|  | 27.61 | 69.89 | 1.687 |  |
|  | 27.61 | 69.99 | 1.636 |  |
|  | 27.61 | 70.07 | 1.605 |  |


|  | 27.61 | 70.15 | 1.554 |  |
| :--- | ---: | ---: | ---: | ---: |
|  | 27.61 | 70.25 | 1.510 |  |
|  | 27.61 | 70.35 | 1.464 |  |
|  | 27.61 | 70.44 | 1.412 |  |
|  | 27.61 | 70.54 | 1.367 |  |
|  | 27.61 | 70.63 | 1.320 |  |
|  | 27.61 | 70.72 | 1.269 |  |
|  | 27.61 | 70.82 | 1.232 |  |
|  | 27.61 | 70.90 | 1.186 |  |
|  | 27.61 | 71.00 | 1.179 |  |
|  | 27.61 | 73.00 | 1.176 |  |
|  | 27.61 | 75.00 | 1.178 |  |
|  | 27.61 | 75.21 | 1.179 |  |
|  | 27.61 | 77.00 | 1.180 |  |
|  | 27.61 | 79.00 | 1.183 |  |
|  | 27.61 | 81.00 | 1.182 |  |
|  | 27.61 | 81.25 | 1.181 |  |
|  | 27.61 | 82.00 | 1.913 |  |
|  | 27.61 | 83.01 | 2.917 |  |
|  | 28.69 | 68.31 | 2.462 |  |
|  | 28.69 | 68.40 | 2.415 |  |
|  | 28.69 | 68.50 | 2.372 |  |
|  | 28.69 | 68.59 | 2.319 |  |
|  | 28.69 | 68.69 | 2.285 |  |
|  | 28.69 | 68.77 | 2.239 |  |
|  | 28.69 | 68.87 | 2.197 |  |
|  | 28.69 | 68.95 | 2.153 |  |
|  | 28.69 | 69.05 | 2.108 |  |
|  | 28.69 | 69.14 | 2.062 |  |
|  | 28.69 | 69.25 | 2.027 |  |
|  | 28.69 | 69.32 | 1.974 |  |
|  | 28.69 | 69.42 | 1.922 |  |
|  | 28.69 | 69.51 | 1.877 |  |
|  | 28.69 | 69.61 | 1.830 |  |
|  | 69.71 | 1.778 |  |  |
|  | 69.80 | 1.733 |  |  |
|  | 69.89 | 1.687 |  |  |
|  | 28.69 | 1.636 |  |  |
|  | 1.605 |  |  |  |
|  | 2054 |  |  |  |
|  | 2 |  |  |  |
|  | 2 |  |  |  |
|  | 20.6 |  |  |  |


|  | 28.69 | 70.25 | 1.510 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 70.35 | 1.464 |  |
|  | 28.69 | 70.44 | 1.412 |  |
|  | 28.69 | 70.54 | 1.367 |  |
|  | 28.69 | 70.63 | 1.320 |  |
|  | 28.69 | 70.72 | 1.269 |  |
|  | 28.69 | 70.82 | 1.232 |  |
|  | 28.69 | 70.90 | 1.186 |  |
|  | 28.69 | 70.99 | 1.139 |  |
|  | 28.69 | 71.08 | 1.094 |  |
|  | 28.69 | 71.17 | 1.050 |  |
|  | 28.69 | 71.27 | 1.000 |  |
|  | 28.69 | 71.36 | 0.951 |  |
|  | 28.69 | 71.47 | 0.901 |  |
|  | 28.69 | 71.55 | 0.853 |  |
|  | 28.69 | 71.60 | 0.812 |  |
|  | 28.69 | 73.00 | 0.811 |  |
|  | 28.69 | 75.00 | 0.812 |  |
|  | 28.69 | 75.21 | 0.812 |  |
|  | 28.69 | 77.00 | 0.813 |  |
|  | 28.69 | 79.00 | 0.815 |  |
|  | 28.69 | 80.92 | 0.814 |  |
|  | 28.69 | 82.00 | 1.900 |  |
|  | 28.69 | 83.01 | 2.911 |  |
|  | 29.115 | 68.31 | 2.462 |  |
|  | 29.115 | 68.40 | 2.415 |  |
|  | 29.115 | 68.50 | 2.372 |  |
|  | 29.115 | 68.59 | 2.319 |  |
|  | 29.115 | 68.69 | 2.285 |  |
|  | 29.115 | 68.77 | 2.239 |  |
|  | 29.115 | 68.87 | 2.197 |  |
|  | 29.115 | 68.95 | 2.153 |  |
|  | 29.115 | 69.05 | 2.108 |  |
|  | 29.115 | 69.14 | 2.062 |  |
|  | 29.115 | 69.25 | 2.027 |  |
|  | 29.115 | 69.32 | 1.974 |  |
|  | 29.115 | 69.42 | 1.922 |  |
|  | 29.115 | 69.51 | 1.877 |  |
|  | 29.115 | 69.61 | 1.830 |  |
|  | 29.115 | 69.71 | 1.778 |  |


|  | 29.115 | 69.80 | 1.733 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 29.115 | 69.89 | 1.687 |  |
|  | 29.115 | 69.99 | 1.636 |  |
|  | 29.115 | 70.07 | 1.605 |  |
|  | 29.115 | 70.15 | 1.554 |  |
|  | 29.115 | 70.25 | 1.510 |  |
|  | 29.115 | 70.35 | 1.464 |  |
|  | 29.115 | 70.44 | 1.412 |  |
|  | 29.115 | 70.54 | 1.367 |  |
|  | 29.115 | 70.63 | 1.320 |  |
|  | 29.115 | 70.72 | 1.269 |  |
|  | 29.115 | 70.82 | 1.232 |  |
|  | 29.115 | 70.90 | 1.186 |  |
|  | 29.115 | 70.99 | 1.139 |  |
|  | 29.115 | 71.08 | 1.094 |  |
|  | 29.115 | 71.17 | 1.050 |  |
|  | 29.115 | 71.27 | 1.000 |  |
|  | 29.115 | 71.36 | 0.951 |  |
|  | 29.115 | 71.47 | 0.901 |  |
|  | 29.115 | 71.55 | 0.853 |  |
|  | 29.115 | 71.65 | 0.807 |  |
|  | 29.115 | 71.74 | 0.768 |  |
|  | 29.115 | 71.81 | 0.723 |  |
|  | 29.115 | 71.91 | 0.675 |  |
|  | 29.115 | 73.00 | 0.668 |  |
|  | 29.115 | 75.00 | 0.667 |  |
|  | 29.115 | 75.21 | 0.668 |  |
|  | 29.115 | 77.00 | 0.671 |  |
|  | 29.115 | 79.00 | 0.670 |  |
|  | 29.115 | 80.79 | 0.671 |  |
|  | 29.115 | 82.00 | 1.892 |  |
|  | 29.115 | 83.01 | 2.914 |  |

Table A.78. Cross section bed profiles for 3:1 smooth training walls.

| Bed data |  |  | recorder | RW |  |
| :---: | :---: | :---: | :---: | :--- | :--- |
|  |  |  | BM-0 rd. | $\mathrm{x}=24.68$ | $\mathrm{y}=65.02$ |
| $\mathrm{z}=2.873$ |  |  |  |  |  |
|  | x | y | z |  |  |
|  | ft | ft | ft |  | comments |
|  | 24.87 | 68.00 | 2.637 |  |  |
|  |  |  |  |  |  |


|  | 24.87 | 68.30 | 2.530 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 24.87 | 68.41 | 2.492 |  |
|  | 24.87 | 68.60 | 2.427 |  |
|  | 24.87 | 68.80 | 2.358 |  |
|  | 24.87 | 69.00 | 2.289 |  |
|  | 24.87 | 69.50 | 2.117 |  |
|  | 24.87 | 69.62 | 2.076 |  |
|  | 24.87 | 70.00 | 2.075 |  |
|  | 24.87 | 71.00 | 2.076 |  |
|  | 24.87 | 72.00 | 2.076 |  |
|  | 24.87 | 73.00 | 2.077 |  |
|  | 24.87 | 74.00 | 2.075 |  |
|  | 24.87 | 75.00 | 2.075 |  |
|  | 24.87 | 75.21 | 2.075 |  |
|  | 24.87 | 76.00 | 2.077 |  |
|  | 24.87 | 77.00 | 2.078 |  |
|  | 24.87 | 78.00 | 2.077 |  |
|  | 24.87 | 79.00 | 2.078 |  |
|  | 24.87 | 80.00 | 2.078 |  |
|  | 24.87 | 81.00 | 2.077 |  |
|  | 24.87 | 82.00 | 2.076 |  |
|  | 24.87 | 82.16 | 2.076 |  |
|  | 24.87 | 83.10 | 2.924 |  |
|  | 25.44 | 68.20 | 2.565 |  |
|  | 25.44 | 68.30 | 2.530 |  |
|  | 25.44 | 68.50 | 2.461 |  |
|  | 25.44 | 68.80 | 2.358 |  |
|  | 25.44 | 69.00 | 2.289 |  |
|  | 25.44 | 69.20 | 2.221 |  |
|  | 25.44 | 69.40 | 2.152 |  |
|  | 25.44 | 69.51 | 2.114 |  |
|  | 25.44 | 70.00 | 1.946 |  |
|  | 25.44 | 70.22 | 1.869 |  |
|  | 25.44 | 72.00 | 1.869 |  |
|  | 25.44 | 73.00 | 1.868 |  |
|  | 25.44 | 74.00 | 1.868 |  |
|  | 25.44 | 75.00 | 1.868 |  |
|  | 25.44 | 75.21 | 1.867 |  |
|  | 25.44 | 76.00 | 1.869 |  |
|  | 25.44 | 78.00 | 1.870 |  |


|  | 25.44 | 79.00 | 1.871 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 25.44 | 80.00 | 1.871 |  |
|  | 25.44 | 81.00 | 1.873 |  |
|  | 25.44 | 81.95 | 1.869 |  |
|  | 25.44 | 83.02 | 2.920 |  |
|  | 26.5 | 68.20 | 2.565 |  |
|  | 26.5 | 68.60 | 2.427 |  |
|  | 26.5 | 69.00 | 2.289 |  |
|  | 26.5 | 69.20 | 2.221 |  |
|  | 26.5 | 69.40 | 2.152 |  |
|  | 26.5 | 69.80 | 2.014 |  |
|  | 26.5 | 70.00 | 1.946 |  |
|  | 26.5 | 71.00 | 1.602 |  |
|  | 26.5 | 71.16 | 1.547 |  |
|  | 26.5 | 73.00 | 1.545 |  |
|  | 26.5 | 75.00 | 1.545 |  |
|  | 26.5 | 75.21 | 1.546 |  |
|  | 26.5 | 77.00 | 1.547 |  |
|  | 26.5 | 79.00 | 1.549 |  |
|  | 26.5 | 81.00 | 1.548 |  |
|  | 26.5 | 81.61 | 1.548 |  |
|  | 26.5 | 82.00 | 1.928 |  |
|  | 26.5 | 83.01 | 2.915 |  |
|  | 27.61 | 68.20 | 2.565 |  |
|  | 27.61 | 68.40 | 2.496 |  |
|  | 27.61 | 68.60 | 2.427 |  |
|  | 27.61 | 69.20 | 2.221 |  |
|  | 27.61 | 69.78 | 2.021 |  |
|  | 27.61 | 70.50 | 1.774 |  |
|  | 27.61 | 71.00 | 1.602 |  |
|  | 27.61 | 72.00 | 1.258 |  |
|  | 27.61 | 72.23 | 1.178 |  |
|  | 27.61 | 73.00 | 1.176 |  |
|  | 27.61 | 75.00 | 1.178 |  |
|  | 27.61 | 75.21 | 1.179 |  |
|  | 27.61 | 77.00 | 1.180 |  |
|  | 27.61 | 79.00 | 1.183 |  |
|  | 27.61 | 81.00 | 1.182 |  |
|  | 27.61 | 81.25 | 1.181 |  |
|  | 27.61 | 82.00 | 1.913 |  |


|  | 27.61 | 83.01 | 2.917 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 68.20 | 2.565 |  |
|  | 28.69 | 68.40 | 2.496 |  |
|  | 28.69 | 68.60 | 2.427 |  |
|  | 28.69 | 69.20 | 2.221 |  |
|  | 28.69 | 69.80 | 2.014 |  |
|  | 28.69 | 70.40 | 1.808 |  |
|  | 28.69 | 71.00 | 1.602 |  |
|  | 28.69 | 72.00 | 1.258 |  |
|  | 28.69 | 73.00 | 0.914 |  |
|  | 28.69 | 73.29 | 0.814 |  |
|  | 28.69 | 74.00 | 0.812 |  |
|  | 28.69 | 75.00 | 0.812 |  |
|  | 28.69 | 75.21 | 0.812 |  |
|  | 28.69 | 77.00 | 0.813 |  |
|  | 28.69 | 79.00 | 0.815 |  |
|  | 28.69 | 80.92 | 0.814 |  |
|  | 28.69 | 82.00 | 1.900 |  |
|  | 28.69 | 83.01 | 2.911 |  |
|  | 29.115 | 68.20 | 2.565 |  |
|  | 29.115 | 68.60 | 2.427 |  |
|  | 29.115 | 69.20 | 2.221 |  |
|  | 29.115 | 69.78 | 2.021 |  |
|  | 29.115 | 70.40 | 1.808 |  |
|  | 29.115 | 71.00 | 1.602 |  |
|  | 29.115 | 72.00 | 1.258 |  |
|  | 29.115 | 73.00 | 0.914 |  |
|  | 29.115 | 73.71 | 0.669 |  |
|  | 29.115 | 74.00 | 0.668 |  |
|  | 29.115 | 75.00 | 0.667 |  |
|  | 29.115 | 75.21 | 0.668 |  |
|  | 29.115 | 77.00 | 0.671 |  |
|  | 29.115 | 79.00 | 0.670 |  |
|  | 29.115 | 80.79 | 0.671 |  |
|  | 29.115 | 82.00 | 1.892 |  |
|  | 29.115 | 83.01 | 2.914 |  |

Table A.78. Cross section bed profiles for 3:1 stepped training walls.


|  | 26.5 | 70.96 | 1.685 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 26.5 | 71.07 | 1.641 |  |
|  | 26.5 | 71.20 | 1.600 |  |
|  | 27.61 | 68.71 | 2.421 |  |
|  | 27.61 | 68.86 | 2.377 |  |
|  | 27.61 | 69.01 | 2.322 |  |
|  | 27.61 | 69.15 | 2.276 |  |
|  | 27.61 | 69.30 | 2.225 |  |
|  | 27.61 | 69.44 | 2.177 |  |
|  | 27.61 | 69.59 | 2.125 |  |
|  | 27.61 | 69.74 | 2.075 |  |
|  | 27.61 | 69.89 | 2.027 |  |
|  | 27.61 | 70.00 | 1.985 |  |
|  | 27.61 | 70.14 | 1.940 |  |
|  | 27.61 | 70.28 | 1.890 |  |
|  | 27.61 | 70.42 | 1.839 |  |
|  | 27.61 | 70.56 | 1.794 |  |
|  | 27.61 | 70.69 | 1.746 |  |
|  | 27.61 | 70.82 | 1.698 |  |
|  | 27.61 | 70.95 | 1.657 |  |
|  | 27.61 | 71.07 | 1.613 |  |
|  | 27.61 | 71.20 | 1.570 |  |
|  | 27.61 | 71.33 | 1.525 |  |
|  | 27.61 | 71.46 | 1.484 |  |
|  | 27.61 | 71.58 | 1.446 |  |
|  | 27.61 | 71.71 | 1.401 |  |
|  | 27.61 | 71.84 | 1.357 |  |
|  | 27.61 | 71.95 | 1.308 |  |
|  | 27.61 | 72.07 | 1.265 |  |
|  | 27.61 | 72.19 | 1.219 |  |
|  | 28.69 | 68.71 | 2.423 |  |
|  | 28.69 | 68.85 | 2.375 |  |
|  | 28.69 | 69.00 | 2.325 |  |
|  | 28.69 | 69.14 | 2.279 |  |
|  | 28.69 | 69.28 | 2.228 |  |
|  | 28.69 | 69.44 | 2.181 |  |
|  | 28.69 | 69.58 | 2.127 |  |
|  | 28.69 | 69.72 | 2.081 |  |
|  | 28.69 | 69.86 | 2.036 |  |
|  | 28.69 | 69.99 | 1.994 |  |


|  | 28.69 | 70.13 | 1.944 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 28.69 | 70.27 | 1.897 |  |
|  | 28.69 | 70.41 | 1.848 |  |
|  | 28.69 | 70.55 | 1.805 |  |
|  | 28.69 | 70.69 | 1.755 |  |
|  | 28.69 | 70.82 | 1.708 |  |
|  | 28.69 | 70.94 | 1.666 |  |
|  | 28.69 | 71.07 | 1.622 |  |
|  | 28.69 | 71.21 | 1.578 |  |
|  | 28.69 | 71.34 | 1.531 |  |
|  | 28.69 | 71.47 | 1.489 |  |
|  | 28.69 | 71.59 | 1.444 |  |
|  | 28.69 | 71.73 | 1.405 |  |
|  | 28.69 | 71.86 | 1.359 |  |
|  | 28.69 | 71.98 | 1.318 |  |
|  | 28.69 | 72.10 | 1.276 |  |
|  | 28.69 | 72.22 | 1.227 |  |
|  | 28.69 | 72.36 | 1.183 |  |
|  | 28.69 | 72.49 | 1.142 |  |
|  | 28.69 | 72.62 | 1.101 |  |
|  | 28.69 | 72.77 | 1.053 |  |
|  | 28.69 | 72.89 | 1.006 |  |
|  | 28.69 | 73.04 | 0.956 |  |
|  | 28.69 | 73.19 | 0.903 |  |
|  | 28.69 | 73.33 | 0.856 |  |
|  | 29.115 | 68.71 | 2.425 |  |
|  | 29.115 | 68.85 | 2.377 |  |
|  | 29.115 | 69.00 | 2.328 |  |
|  | 29.115 | 69.14 | 2.282 |  |
|  | 29.115 | 69.28 | 2.232 |  |
|  | 29.115 | 69.44 | 2.182 |  |
|  | 29.115 | 69.58 | 2.134 |  |
|  | 29.115 | 69.72 | 2.087 |  |
|  | 29.115 | 69.86 | 2.043 |  |
|  | 29.115 | 69.99 | 1.999 |  |
|  | 29.115 | 70.13 | 1.950 |  |
|  | 29.115 | 70.28 | 1.903 |  |
|  | 29.115 | 70.41 | 1.855 |  |
|  | 29.115 | 70.55 | 1.812 |  |
|  | 29.115 | 70.69 | 1.762 |  |


|  | 29.115 | 70.82 | 1.715 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 29.115 | 70.94 | 1.672 |  |
|  | 29.115 | 71.07 | 1.631 |  |
|  | 29.115 | 71.21 | 1.586 |  |
|  | 29.115 | 71.34 | 1.54 |  |
|  | 29.115 | 71.47 | 1.495 |  |
|  | 29.115 | 71.60 | 1.452 |  |
|  | 29.115 | 71.73 | 1.413 |  |
|  | 29.115 | 71.86 | 1.367 |  |
|  | 29.115 | 71.99 | 1.328 |  |
|  | 29.115 | 72.11 | 1.283 |  |
|  | 29.115 | 72.23 | 1.237 |  |
|  | 29.115 | 72.38 | 1.19 |  |
|  | 29.115 | 72.50 | 1.149 |  |
|  | 29.115 | 72.64 | 1.109 |  |
|  | 29.115 | 72.78 | 1.061 |  |
|  | 29.115 | 72.91 | 1.014 |  |
|  | 29.115 | 73.06 | 0.965 |  |
|  | 29.115 | 73.20 | 0.913 |  |
|  | 29.115 | 73.34 | 0.866 |  |
|  | 29.115 | 73.48 | 0.817 |  |
|  | 29.115 | 73.64 | 0.766 |  |
|  | 29.115 | 73.77 | 0.721 |  |
|  | 29.115 | 73.93 | 0.668 |  |

## VITA

Ryan William Woolbright
Candidate for the Degree of
Master of Science

## Thesis: HYDRAULIC PERFORMANCE EVALUATION OF RCC STEPPED SPILLWAYS WITH SLOPED CONVERGING TRAINING WALLS

Major Field: Biosystems Engineering
Biographical:

Personal Data: Born in Lawton, Oklahoma on May 1, 1983, the son of Randy and Dianna Woolbright.

Education: Graduate of Altus High School, Altus, Oklahoma in 2002; received Bachelor of Science degree in Biosystems Engineering from Oklahoma State University, Stillwater, Oklahoma in 2006. Completed the requirements for the Master of Science in Biosystems Engineering at Oklahoma State University, Stillwater, Oklahoma in December, 2008.

Experience: Graduate Research Assistant for the Oklahoma State University Biosystems and Agricultural Engineering Department, January, 2007 to present. Research Assistant for the USDA-ARS Hydraulic Engineering Research Unit, May, 2006 to August, 2006. Teaching Assistant for Oklahoma State University Biosystems and Agricultural Engineering Department, August, 2005 to May, 2007.

Professional Memberships: Oklahoma State Board of Registration for Professional Engineers and Land Surveyors, certified Engineer Intern (EI No. 13661), Alpha Epsilon Agricultural Engineering Honor Society, American Society of Agricultural and Biological Engineers, Association of State Dam Safety Officials.

# of Study: HYDRAULIC PERFORMANCE EVALUATION OF RCC STEPPED SPILLWAYS WITH SLOPED CONVERGING TRAINING WALLS 

Pages in Study: 226
Candidate for the Degree of Master of Science
Major Field: Biosystems Engineering
Scope and Method of Study: A three-dimensional, physical model study based on Froude number scaling was utilized to conduct an investigation of sloped training wall convergence on 3:1 stepped spillway chutes including flow patterns and run-up for stepped and smooth sloped training walls. Flow measurements were taken with an air-water differential manometer and orifice plates. Water surface data was measured with a point gage. Data were evaluated and used to determine relationships for stepped and smooth sloped training wall dimensions on a 3:1 stepped spillway chute.

Findings and Conclusions: Generalized relationships were developed for converging stepped and smooth sloped training walls on a 3:1 RCC stepped spillway chute. Visual observations and measured data show that the stepped training walls cause a significant secondary flow that results in a greater run-up height than is observed in the smooth wall condition. Stepped training walls would need to be significantly larger than smooth sloped training walls at the same convergence. Also, small vertical deflector walls may be needed to contain the minor tertiary flow that was observed on the converging stepped training walls. Relationships for stepped and smooth sloped training wall dimensions were developed in Chapter II and Chapter III, respectively. Theoretical equations for vertical training walls were investigated as a possible solution to predicting run-up height for smooth sloped training walls but were shown to be insufficient. The relationships developed in this study should not be used for training wall slopes greater than 3:1 without further testing. Results are expected to assist in the development of generalized equations for smooth sloped converging training walls

