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CHAPTER I.
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INTRODUCTION

In the past few years there has been an increasing demand for new technologies to assist 

farmers in making decisions for inputs and to manage variability within fields.  Looking 

at historical data has been suggested to allow for increased accuracy in management 

decisions.  Baier (1979) stated that correct decisions are dependent on timely and 

accurate information.  Crop yield maps are designed to represent the relationship between 

the crops and their environment.  When looking at historical yield to create one of these 

models, there are many causes for error that must be addressed.

Many different variables can be acquired and used to make input decisions.  Larson 

(1986) compared crop yields between soil types and found that managing spatially 

variable fields based on the variability of soil type increased net returns.  What 

information do we need to make an appropriate decision?  Bakhsh, et al. (2000) used a 

statistical approach to characterize the spatio-temporal variability within a field.  They 

found that overall, yield variability was not stable spatially or temporally.  Their 

objective was not to develop a yield model, but they hypothesized that one major cause of 

yield variation was interaction among soil water retention capacity, drainage, and rainfall 

patterns.  Decisions to treat the variability within the field have to be made in-season to 

accurately account for these factors in that particular growing season.  These results 

suggest that decisions based upon historical data are based on probability, rather that 

certainty and that to make deliberate management decisions, information must account 

for the environment within the current crop year of interest.  
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Gopalapillai and Tian (1999) conducted a study using aerial color infrared imagery to 

correlate croip reflectance with yield potential and to identify the spatial yield pattern 

within a field.  This study only used images collected within the growing season 

investigated.  The in-season yield predictions had up to a 91% prediction success.

There have also been studies to show that the spatial variability that occurred in yields 

was based on the slope and aspect.  Timlin et al. (1998) studied the effect of hillslope on 

both spatial and temporal corn grain yield.  They found that the intra-annual differences 

in weather patterns had the largest effect on grain yield in fields with large hillslopes.  

Sloped regions drained better in ghigh rainfall years, and retained less water in drier 

years.

There are many proposed uses for satellite imagery in agriculture.  Much historical data 

can be obtained from satellite imagery archives for past years, but the usefulness of this 

information is not clear.  This study addresses the within-field variability that is detected 

from year to year using satellite imagery and the impact this information may have on use 

of satellite imagery.  
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MATERIALS AND METHODS

A time series of LANDSAT Thematic Mapper (TM) scenes of north-central Oklahoma, 

with radiometric and geometric 

corrections, spanning the period 1991 

to 1999, was obtained from Earth 

Observation Satellites, Inc. (EOSAT).  

Images were georectified to US 

Geological Survey digital 7.5 minutes 

orthophoto quadrangle maps and then 

resampled to a Universal Transverse Mercator grid with a 25 m pixel size using the 

nearest neighbor algorithm.  An example of one of the satellite images is shown in Figure 

1.  The TM scenes were chosen so that, insofar as possible, the satellite overpasses 

occurred at or near the anthesis of winter wheat in the area (mid April to early May).  In 

some years, cloud interference force the selection of an image slightly outside the 

optimum time window, and in the spring of 1995 no acceptable image was found.  In 

1997, clouds in the only useable image obscured some of the fields.  

Six cooperators were located within the scene for the study.  The locations of these fields 

were all in north-central Oklahoma.  They were located near the towns of Red Rock, 

Pond Creek, Tonkawa, Cherokee, and Hitchcock, OK.  Each of the field boundaries was 

mapped using GPS and the program Field Rover (SST Development Group, Stillwater, 

OK).  At all sites, cropping patterns were the same for each year examined.  Those fields 

that were grazed by cattle were grazed each year during the study period.  Sites where N 

Figure 1.  1998 Landsat TM image for north 
central Oklahoma.  Taken in April.
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rates, crops, grazing, and/or tillage change from year to year were not included in this 

analyses.  For each year’s imagery, bands three and four, red and near-infrared 

wavelengths, were calibrated to exoatmospheric reflectance using coefficients provided 

by EOSAT.  These reflectance values were used to calibrate the normalized difference 

vegetative index (NDVI), which were a measure of biomass and a prediction of grain 

yield.  Wheat yields from the Oklahoma State University Wheat Pasture Research Unit 

(which is within the bounds of the satellite image) were compared to the NDVI values 

and a relationship between NDVI and yield was derived.  A yield prediction equation was 

developed to estimate wheat yield of each of the cooperator fields.  As a result, yield data 

was obtained for each 25m x 25m area in each field  

Farmer cooperators’ measured average yields were used to calculate the error in yield 

prediction for the respective fields.  From 1991 to 1999, excluding years with unusable 

images, the yields for four of the fields were calculated using satellite imagery, and these 

yields were normalized based on the field average.  This normalization was crucial for 

across year comparisons due to the error created by not having satellite images at the 

same stage of growth for every year.  By not having the images at the same growth 

stages, normalizing the values by the field averages allowed comparisons to be made 

among years.  The values compared were normalized yields, which represented relative 

yields of each field element compared to the average yield of the entire field for each 

respective year.  Temporal and spatial variability appeared to be random.
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Average yields for all possible combinations of years were calculated, e.g., combinations 

of 2, 3, 4, 5, and 6 years.  Averages were by field element.  There were 120 combinations 

of years, and all combinations were used for error analysis.  Each average of two or more 

years was used as a predictor of all years’ yield not used in the calculation of the average 

value.  The error prediction based on the actual value was then calculated for each 

individual field element.  These errors were then averaged across the entire field and the 

standard deviations were calculated for each prediction combination.  
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RESULTS

1991 1992 1993 1994 1996 1997 1998 1999

Pond Creek
MIN 1.4 0.67 1.27 1.53 0.62 0.82 2.09 1.69
MAX 3.98 1.99 3.31 4.39 2.94 3.62 4.18 4.37
MEAN 2.64 1.08 2.17 2.93 1.17 1.88 3.01 3.36
MEDIAN 2.72 1.01 2.18 2.93 1.07 1.75 2.97 3.45
STDDEV 0.55 0.25 0.38 0.6 0.45 0.63 0.47 0.52

CV 20.76 23.2 17.29 20.5 38.31 33.69 15.74 15.53

Pond Creek East
MIN 0.91 0.83 2.54 0.63 0.98 2.54 2.49
MAX 2.67 1.67 4.93 4.64 2.8 5.02 4.7
MEAN 1.78 1.18 3.89 3.67 2.03 4.09 3.85
MEDIAN 1.79 1.18 3.92 3.96 2.05 4.14 3.92
STDDEV 0.45 0.14 0.51 0.81 0.39 0.46 0.44

CV 25.12 11.74 13.01 21.91 19.04 11.16 11.37

Pond Creek West
MIN 1.24 1.3 1.5 1.49 0.68 2.22 2.07
MAX 2.58 2.07 4.71 3.97 2.3 4.9 4.93
MEAN 1.84 1.71 3.65 3.26 1.64 3.94 3.65
MEDIAN 1.81 1.7 3.78 3.34 1.69 4.01 3.66
STDDEV 0.27 0.13 0.59 0.4 0.27 0.48 0.59

CV 14.86 7.49 16.18 12.4 16.7 12.24 16.12

Tonkawa West
MIN 0.29 0.74 1.51 1.12 2.13 1.13
MAX 1.04 2.41 4.06 2.44 4.38 2.53
MEAN 0.5 1.52 3.02 1.83 3.42 1.72
MEDIAN 0.47 1.45 3.09 1.86 3.45 1.67
STDDEV 0.13 0.27 0.42 0.23 0.37 0.27

CV 24.97 17.88 13.93 12.63 10.81 15.68

Cherokee
MIN 1.35 1.89 1.53 1.35 0.83 1.33 1.32
MAX 3.78 4.63 2.8 3.05 3.3 4.76 4.57
MEAN 2.49 3.69 2.16 2.43 2.38 3.91 3.39
MEDIAN 2.44 3.7 2.2 2.47 2.43 4.07 3.48
STDDEV 0.46 0.35 0.24 0.28 0.33 0.55 0.57

CV 18.34 9.5 11.09 11.51 13.97 14.11 16.66

Hitchcock
MIN 0.62 0.44 1.01 0.78 0.71 1.1 0.5
MAX 3.15 1.49 3.56 3.92 2.9 3.92 2.41
MEAN 1.99 1.02 2.24 2.48 1.84 1.75 1.14
MEDIAN 2.02 1.08 2.24 2.52 1.85 1.6 1.13
STDDEV 0.36 0.26 0.46 0.51 0.35 0.55 0.35
CV 17.98 25.58 20.71 20.61 19.22 31.21 30.84

Yearly Statistics for Each Field

mg/ha

Table 1.  Statistics estimated yield values using NDVI collected from LANDSAT
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Figure 2.  Mean yield plot for all fields.

Figure 3.  Error calculated by predicted yields with average years of historical data.
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DISCUSSION

Coefficients of variation ranged between 16-38, 11-25, 7-17, 11-25, 10-18, and 18-31, at 

Red Rock, Pond Creek East, Pond Creek West, Tonkawa, Cherokee, and Hitchcock, 

respectively (Table 1).  At each of these sites, the range in CV’s almost doubled between 

the low to high values.  A range of CV’s this wide from the same fields (Figure 2.) where 

yield data was collected in consecutive years suggests two things.  First, it says that the 

spatial variability was a function of the environment in which wheat was grown.  In other 

words, the expression of spatial variability depended on the climatic conditions for the 

year in which the wheat was grown.  This assumes that management did not vary from 

year to year for a specific location, which was true for each site.  The only thing that 

changed from year to year was climate, planting date, harvest date and possible wheat 

variety.    

Secondly, the wide range in CVs for wheat grain yield at each site implied that 

homogeneity in yield changed greatly from year to year.  This raises the question, how 

could a field that was managed the same, fertilized the same, and harvested the same 

result in homogeneity one year and heterogeneity the next year?  The wide range in CVs 

implied that the magnitude of the yields did not simply shift from year to year, but that 

the pattern of yield within a field changed from year to year.

The wide range in CVs can be partly explained by changed in average grain yield.  

Taylor et al., (1999) reported that as mean wheat grain yields increased, CV’s decreased 

when observing data from 362 published wheat field experiments.  When this analysis 
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was performed on the data for this study, the same conclusion could be made (Figure 1.), 

at least for lower yield.

In examining the prediction errors using historical data, it was apparent there were large 

differences in error based on the different combinations of years used for the prediction.  

As the number of years averaged for the prediction increased, the range of error 

decreased, but even after seven years of data was included, there was still an error range 

of 12 to 60% (Figure 2.).  This showed that prediction errors could not be improved by 

averaging more years of historical data.

There are many factors that could have affected the variability in the fields from year to 

year, causing such a large range of CVs for each of the fields.  Perhaps the most 

important of these is weather interaction with soil type and land aspect.  Weather 

interacts in a complex way with topography and soil class to affect crop yields because of 

the relationships between soil relief, root growth, water retention, and nitrogen 

mineralization.  Other factors that could affect variability are fertilizer nutrients, pH, and 

tillage.  
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CONCLUSIONS

What does this mean for Precision Agriculture?  If the CV of a field ranges between 16 

and 38%, precision agriculture technologies will have to be weather and site specific.  For 

example, if we knew that the range of obtainable yields was 2000 to 3000 kg/ha in one 

year, and 2500 to 5500 kg/ha in an ensuing year, and that the distribution of that 

variability was spatial in nature, then management decisions relative to imputs could be 

drastically different from year to year.  Thus, if we had an idea of how variable a site was 

likely to be in a given year, it would alter both actual rates and ranges of inputs very 

similar to that noted for the estimated yield CV.  Using the CV measured during the 

growing season for a specific field may assist in determining the potential yield response 

to added nutrients (Mullen et al. 2001).  Furthermore, knowledge of NDVI CV mid-

season for a particular field could be equated to a fertilizer response index, which various 

researchers have used to determine topdress fertilizer needs.  
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CHAPTER II.
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INTRODUCTION

Production agriculture has been greatly impacted by technology in the past few years, and 

farmers are looking at changing the way they are managing their land.  Farmers have 

always looked at their land and managed it at different levels.  Since the early 1930’s, 

farmers have created management plans to participate in government programs showing 

what they were going to do with their land and incorporating their management practices 

to the land.    

There is a tremendous amount of variability that can occur just in one farm.  Certain 

fields may have trouble with drainage during the winter causing those fields to be unable 

to handle cattle grazing the wheat during the winter.  Other fields may have soil that is 

very low in fertility creating a need for the farmer to supplement the soil nutrient level 

with fertilizers.  There are many times that farmers have sections in a field that have pH 

levels that are unsuitable for crops and just those areas need treated to bring the pH back 

to a suitable level.  Many problems like these are ones that the farmers need to 

understand to manage their land in the most economical fashion.  These problems create 

a need for the farmer to look at managing smaller and smaller areas as separate entities.  

Precision Farming

Precision farming is also sometimes called “site specific farming”, “prescription farming, 

and even “variable rate application technology”.  All of these descriptions pertain to the 

tailoring of soil and crop management to match conditions at every location in a field.  
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The size of the locations which are treated differently depends on the particular 

application.    

 Two main components are needed for a precision agriculture system, the equipment and 

information.  Some equipment typically used in precision agriculture include yield 

monitors, variable rate applicators, and location tracking devices (Global Positioning 

Systems, GPS).  Information needed to build a quality precision agriculture system might 

include soils data, yield maps, remotely sensed data, and topographic data.  Once this 

information is gathered, finding a relationship between these factors is key.    

Management Zones

The main incentive for site-specific management is to optimize yields and economic 

gains for the farmer.  At any location, inter-annual yield variability can also be 

substantial, especially under dryland farming conditions.  Factors influencing yield 

variability include weather, topography, soil characteristics, fertility status, insect and 

disease pressure, cultivar selection, and agronomic practices.  When all of the 

information is obtained, a system is needed to process and analyze the data and to display 

it in a meaningful fashion.  

Management zones are a spatial delineation of areas that have similar soil characteristics 

or produce similar crop growth.  It is complicated to correctly delineate management 

zones because there are so many factors that interact with one another to produce yield. 
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The purpose of management zones is to improve the profitability of agricultural 

producers by increasing the return on crop inputs by applying them where they will be 

used to optimize yields.   Many studies have been conducted that look at the possibility of 

using management zones for on-farm decisions, as well as the process of delineating 

those management zones.  Stafford, et al (1999) used yield maps to develop management 

zones while McCann, et al (1996) used black and white aerial photographs to visually 

delineate management zones.  Sudduth, et al (1996) looked at the effects of soil and 

landscape attributes on crop yield.  They found the correlation of crop yield to soil 

attributes was improved by using management zones to divide the fields.  These 

management zones were determined by analyzing topsoil depth and elevation.  Fridger, et 

al (2000) investigated the variability of soil and landscape attributes between sub-field 

management zones.  They found that using within field management zones for input 

decisions could reduce the variability of soil and landscape properties in a field over time.  

Kitchen, et al (1998) created management zones based on either a map overlay approach 

or by simple traditional soil surveys.  They then used these management zones to 

correlate soil test parameters with yield.  No measurable benefit was reported from this 

study.

Colvin, et al (1997) may have one of the most informative studies on the delineation of 

management zones and the use of historical data for on-farm decision making.  They 

suggested that areas with consistent yield patterns could create management zones based 

on low, medium or high yield.  In order to accomplish this, they used a ranking system, 

ranking each pixel in the field compared to the other pixels, from lowest to highest.  Each 
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additional year’s data was averaged in, and the pixels were then re-ranked.  With each 

additional year of data, the change in rank for each individual pixel was calculated, and 

then summed.  The overall changes in rank decreased exponentially as additional years’ 

data was averaged in but with the trend never reaching zero.  Colvin came to the 

conclusion that historical data is useful if the CV is low.  After collecting six years of 

data, no stable patterns emerged for the whole field.  

One of the major obstacles to the incorporation of management zones in on-farm decision 

making is the economic return.  Farmers want to see a return on their investment, whether 

that is in improved yields or decreased input cost.  Miller, et al (1999) lists three major 

issues that must be addressed in order for the use of management zones to be justified.  

They are 1.) that significant with-in field spatial variability of yield affecting variables 

must exist, 2.) that the variability can be identified and measured, and 3.) that the 

variability information can be used to alter management practices to increase economic 

return.

Remote Sensing

Researchers have developed several vegetation indices using plant reflectance.  The most 

widely used of these indices is the normalized difference vegetative index (NDVI), 

(Tucker, et al 1979).  NDVI is a combination of reflectance in two major portions of the 

spectrum, red and NIR.  Red light has a low reflectance value on green vegetation 

because the red light is absorbed by chlorophyll in the plant for photosynthetic energy.  

NIR, on the other hand, is highly reflected off green vegetation due to the internal cell 
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structure of vegetation.  NDVI is a good indicator of overall plant health. In order to look 

at management zones in this project, the crop reflectance was analyzed using NDVI.

The objective of this study was to attempt to harness available satellite imagery to create 

management zones to assist in making more accurate and timely on-farm management 

decisions.
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METHODS AND PROCEDURE

TToo ccrreeaattee mmaannaaggeemmeenntt zzoonneess ffrroomm hhiissttoorriiccaall ddaattaa,, wwee nneeeeddeedd aa ssttrroonngg GGIISS ppaacckkaaggee ttoo

ppeerrffoorrmm oouurr aannaallyyssiiss.. TThhee ssooffttwwaarree uusseedd oonn tthhiiss pprroojjeecctt wwaass aa GGIISS ppaacckkaaggee ddeessiiggnneedd

ssppeecciiffiiccaallllyy ffoorr pprreecciissiioonn aaggrriiccuullttuurree aapppplliiccaattiioonnss.. SSSSTToooollbbooxx11 iiss aa ppaacckkaaggee uusseedd bbyy ccrroopp

ccoonnssuullttaannttss,, ffeerrttiilliizzeerr ddeeaalleerrss,, eedduuccaattoorrss,, rreesseeaarrcchheerrss aanndd ffaarrmm mmaannaaggeerrss..

SSSSTToooollbbooxx iiss aa ssiittee--ssppeecciiffiicc ssooffttwwaarree tthhaatt ssuuppppoorrttss pprreecciissiioonn ffaarrmmiinngg aanndd aaggrriibbuussiinneessss

ddeecciissiioonn mmaakkiinngg.. TThheessee ssooffttwwaarree pprroodduuccttss aallllooww uusseerrss ttoo iinntteeggrraattee vvaarriioouuss ccoommppoonneennttss

ooff pprreecciissiioonn ffaarrmmiinngg tteecchhnnoollooggiieess ffoorr aannaallyyssiiss aanndd ddeecciissiioonn mmaakkiinngg ccaappaabbiilliittiieess..

SSSSTToooollbbooxx rruunnss oonn aa hhiieerraarrcchhyy ooff ddaattaa ssttoorraaggee.. TThhee uusseerr iinntteerrffaaccee ooff tthhee pprrooggrraamm iiss vveerryy

ccoonndduucciivvee ttoo aaggrriiccuullttuurraall uusseerrss bbeeccaauussee tthheerree iiss aa lliinnee ooff ccoommmmaanndd tthhaatt ggooeess ffrroomm CClliieenntt,,

ttoo FFaarrmm,, FFiieelldd aanndd YYeeaarr.. TThhiiss aalllloowwss tthhee uusseerr ttoo ssttoorree ddaattaa eeaassiillyy ffoorr mmuullttiippllee ffaarrmmss,,

ffiieellddss wwiitthhiinn tthhoossee ffaarrmmss,, aanndd iinnddiivviidduuaall yyeeaarrss ffoorr eeaacchh ffiieelldd.. OOnnccee tthhee ddaattaa iiss ssttoorreedd,,

mmaannaaggeemmeenntt ddeecciissiioonnss aanndd iinnppuutt ccaallccuullaattiioonnss ccaann bbee bbaasseedd oonn aann aarreeaa wwiitthhiinn tthhee ffiieelldd,, tthhee

wwhhoollee ffiieelldd,, oorr tthhee wwhhoollee ffaarrmm.. PPrroodduucceerrss ccaann llooookk aatt tthheeiirr ttoottaall iinnppuutt aanndd ttoottaall oouuttppuutt ffoorr

tthheeiirr eennttiirree bbuussiinneessss.. TThhee pprrooggrraamm uuttiilliizzeess AArrccVViieeww VV33..22 aass tthhee mmaaiinn GGIISS ppllaattffoorrmm,,

wwhhiillee uussiinngg SSuurrffeerr ssooffttwwaarree ((GGoollddeenn SSooffttwwaarree,, GGoollddeenn,, CCOO)) ttoo aallllooww rraasstteerr//vveeccttoorr

ccoonnvveerrssiioonnss.. ((SSSSTT DDeevveellooppmmeenntt GGrroouupp 22000000,, SSttiillllwwaatteerr,, OOKK))

The following is a list of procedural steps that had to be performed to acquire a final 

product that was meaningful to the producer:
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1. Obtain georeferenced field boundaries.

Use GPS integrated in Field Rover Software, created by SST Development Group, to 

acquire a vector polygon file that is representative of the field boundary in question.  By

using a software that allows the user to define vertices using GPS input and then creates a 

polygon with these indices, a shapefile is created that can be imported into ArcView 

based software.  Field Rover would also allow the user to create scouting and sampling 

operations.

2. Satellite Data was obtained for each year for each field.

A time series of LANDSAT Thematic Mapper (T.M.) scenes of north-central Oklahoma, 

spanning the period 1991 to 1999 (Figure 4.), were obtained from EOSAT, now Space 

Imagery, with radiometric and geometric corrections.  (Table 2)

Figure 4.  1998 Landsat TM image for north central Oklahoma.  Taken on April 23

Year 1991 1992 1993 1994 1996 1997 1998 1999
Scene 
Date

April 4 May 9 April 25 March 27 April 2 April 20 April 23 May 12

Table 2.  Dates of the Landsat Thematic Mapper scenes used in the study.

1 SSToolbox, Version 3.2, Site Specific Technologies, Stillwater, OK
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The images were georectified with US Geological Survey digital 7.5 minutes orthophoto 

quadrangle maps and then resampled to a Universal Tranverse Mercator grid, with a 25 m 

pixel size using the nearest neighbor resampling algorithm.  An example of one of the 

satellite images is shown in Figure 2.  The TM scenes were chosen so that, insofar as 

possible, the satellite overpasses occurred at or near the heading stage of winter wheat in 

the area (mid April to early May).  In some years, cloud interference force the selection 

of an image slightly outside the optimum time window, and in the spring of 1995 no 

acceptable image was found.

3. Convert satellite raster data to vector point data for calculation purposes.

The satellite data had to be converted from a digital raster grid format to vector point data 

using a function within SSToolbox.   There is an option within toolbox that handles 

image files and will convert image files to point data.  Using this method, the digital 

numbers are extracted from the image for only the area within the field boundary.  

(Figure 5.) This decreases the amount of data that must be stored for each image.  

Figure 5.  Satellite image for OSU Wheat Pasture research center before and after raster to vector 
conversion process.
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4. Create buffer zones for each field.

A buffer zone was created inside the field boundary and around known non-cropped 

areas within the fields (oilwells, tanks, etc.) with a width of one pixel (25 meters).  Using 

masking techniques, only the point data within the field excluding points contained 

within the buffer zone were selected.  Only these selected points were used for yield 

calculations.  This decreased interference due to edges of the field and georeferencing 

error within the satellite image.

5. Calculate reflectance value for red and near infrared wavelengths.   

TToo ccaallccuullaattee tthhee rreefflleeccttaannccee vvaalluueess,, tthhee ddiiggiittaall nnuummbbeerrss ffoorr tthhee rreedd aanndd NNIIRR bbaannddss wweerree

ccoorrrreecctteedd ffoorr nnoonn--ssuurrffaaccee ffaaccttoorrss ssuucchh aass sseennssoorr ddeetteeccttoorr ccaalliibbrraattiioonn aanndd ggeeoommeettrryy,, ssuunn

aannggllee aanndd eeaarrtthh--ssuunn ddiissttaannccee.. II ppeerrffoorrmmeedd tthhiiss ttaasskk wwiitthhiinn SSSSTToooollbbooxx ssooffttwwaarree.. TThheessee

ccoorrrreecctteedd tthhee ppiixxeell vvaalluueess ttoo eexxooaattmmoosspphheerriicc rreefflleeccttaannccee vvaalluueess..

6. Calculate NDVI for all pixels in each field.

NNDDVVII hhaass bbeeeenn wwiiddeellyy uusseedd aass aann iinnddiirreecctt mmeeaassuurree ooff ccrroopp bbiioommaassss aanndd yyiieelldd.. NNDDVVII iiss

ccaallccuullaatteedd ffrroomm tthhee rreefflleeccttaannccee vvaalluueess ooff tthhee rreedd aanndd nneeaarr iinnffrraarreedd ((NNIIRR)) wwaavveelleennggtthh

bbaannddss,, uussiinngg tthhee ffoolllloowwiinngg eeqquuaattiioonn::

)Re(

)Re(

dNIR

dNIR
NDVI +

−= Equation 1.  NDVI Calculation

Any relationship between vegetation index and yield is based on the assumption that the 

vegetation index measures crop parameters directly linked with the yield.  NDVI utilizes 
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the large spectral difference in the red and near infrared band reflectance of living 

vegetation.  As the green biomass of the canopy increases, reflectance in the red band 

portion of the spectrum decreases, due to the absorbance for photosynthesis, while that in 

the near infrared band increases due to the internal structure of the leaves.  The 

accumulated dry matter of a given crop at a given stage of growth is the result of the crop 

carbon dioxide intake, soil moisture uptake and net photosynthetic assimilation.  Since 

the NDVI is a measure of the photosynthetic potential of the vegetation, it is indirectly 

related to the crop yield and thus is suitable for yield estimation.  

In order to calculate the NDVI, the theme table for the point data from the satellite 

imagery reflectance measurements was used.  The table was then opened for editing and 

the calculate field function was used to complete the calculation of NDVI for each field.  

7. Calculate predicted yield

The predicted yield was calculated by using a model developed by Itenfisu, et al (1999).   

In order to create this model, four cloud-free 

TM images from 1993, 1997, 1998 and 1999 

were analyzed over the Oklahoma State 

University Wheat Pasture Research Unit 

located near Marshall, Oklahoma (Figure 6.).  

The Wheat Pasture Research Unit was divided 

Figure 6.  Satellite image of OSU Wheat 
Pasture Research Center with paddock 
boundaries.
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into paddocks that were planted to hard red winter wheat (Triticum aestivum L.).  

Average winter wheat grain yield for each paddock in the research farm were measured 

for those years.  Average yield was determined by measuring yield from 2 passes of a 3 

meter wide plot combine extending the length of the paddock.  For a given year, the 

average NDVI within a paddock was calculated by carefully selecting the pixels that fell 

within the harvested area.  A scatter plot of the average NDVI for each paddock against 

the corresponding average grain yield for the four years data indicated that a simple 

exponential model could be used to define the relationship between grain yield and 

average reflectance NDVI.  Since there were no significant differences among the four 

years of NDVI and grain yield data, a single exponential calibration equation was fitted 

to the four years of data.  The exponential equation follows: 

Y=165.9e4.0443NDVI Equation 2.  Exponential Yield Prediction Equation

Y is wheat grain yield in kg ha-1 .  (Figure 7.)The adjusted R2  for the fitted equation was 

0.78.  This equation was then used for each respective field for each year to calculate 

predicted yield.  The curve was fitted with Table Curve 2D version 4 (SPSS software).
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Figure 7.  The correlation between the satellite image NDVI and the predicted yield.

8. Normalize each pixel by field average.

The predicted yield values for each of the pixels were normalized to the field average so 

that the pixel values would be a reference to the relative value of that pixel compared to 

the average of the field.  The normalization was calculated by dividing the individual 

pixel value by the average of the values throughout the field.  This allowed cross-

comparisons across multiple years. The normalized NDVI maps provide the farmers a 

quantitative tool to understand how the field is performing.  Likewise, the normalization 

by average yield enabled us to remove the effects of rainfall and other factors on the 

magnitude of the biomass and subsequent grain yield, while enabling us to focus on the 

relative effects of those factors.  Another factor that could be eliminated by normalizing 

the yield across the fields was the differences in satellite imagery acquisition.
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9. Convert vector point data to raster grid surface.

The vector point data for each year was converted into a raster surface using an interface 

with Surfer software.  To convert from the vector model to a raster grid surface, an 

interpolation method, nearest neighbor, was used to assign values to each grid cell.  The 

method that was used for this study was a nearest neighbor interpolation with a search 

radius equal to the original satellite resolution of 25 m.  

10. Create megasurface of all normalized yield data.

After raster surfaces were created for each year, the normalized yield for each year was 

merged into one megasurface.  The yields were normalized due to variances in conditions 

and timing of the satellite imagery each year.  This megasurface allowed for calculations 

and comparisons to be made for each location in the field across years.   

11.  Perform calculations on normalized yields.

Normalized yields for each year were averaged to create a surface of average normalized 

yields across years.  This gives a historical look at how the field has performed.  In order 

to represent the temporal variability for each position in the field, the coefficient of 

variation and the standard deviation were calculated for each pixel across the eight years 

of data.

12.  Create management zones using established criteria.

Management zones were created within each field using multiple criteria.  In researching 

which criteria should be chosen, many different ones were attempted before a final 
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criteria was determined.  Criteria using standard deviations, natural breaks, equal 

intervals, as well as many others were used before the following criteria was chosen as 

not only one that fit most fields most accurately, but it was also a simple criteria that 

could be understood by the majority of producers.  The criteria that fit most fields was the 

following:

Area Above Average Field Yield
CV < 0.3
Average Normalized Yield > 110%

Area Average
CV < 0.3
Average Normalized Yield < 100% and > 90%

Area Below Average Field Yield
CV < 0.3
Average Normalized Yield < 90%

Area Inconsistent (No determination made)
CV > 0.3

This was performed using Boolean operations within the query of the megasurface data 

table.  The desired areas were selected then assigned a value of 1 to 4 respectively.  These 

values were then used to create a map of the surface showing the management zones.  

These management zones are the final product for the producer to use.

To begin the process of using this data set as a management tool for farmers, farmers 

participating in the study were approached and introduced to the idea of using satellite 

images to detect variability occurring in each field.  The farmers were presented with 

satellite images from each year for their respective field, map of each year’s normalized 

NDVI and predicted yields, and an averaged normalized NDVI map for all years 
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combined.  (These maps and images can be found in the appendix AA - AE.)  Even 

though all of this information was gathered and analyzed, conclusions as to what was 

happening in each field could not be determined without the interaction with the farmer.  

Some other tools that were utilized in the analysis of these images were soils surveys, 

aerial photographs, and field historical management information from the farmers.   By 

looking at the soil surveys, we could see some distinct patterns in yield variability that 

could be attributed to changes in soil type.  Another piece of information that was crucial 

to deciding if the management zones were useful for decision-making was the field 

historical management information.  
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RESULTS AND DISCUSSION

When we normalized the estimated yields (divided the yield for each pixel by the average 

estimated yield for the farm), we discovered that the farm where the yield patterns 

persisted across years exhibited large differences between regions of high yield and 

regions of low yields.  The region with high yield was a creek bottom and the soil was a 

Port silt loam.  The region with the consistently low yield was also associated with a soil 

type, but the soil type was misclassified as Port silt loam.  That soil was obviously poor.  

The intermediate yielding soils also had some areas of low yielding soil, but these areas 

were small enough that they were not designated on the soil map.  This and similar farms 

could be divided into management zones based on normalized yields, averaged over five 

to six years.  Each region can be soil sampled and managed differently from its 

neighbors.

By Field Analysis

To begin the process of using this data set as a management tool for farmers, the farmers 

participating in the study were approached and introduced to the idea of using satellite 

images to detect variability occurring in each field.  The farmers were presented with 

satellite images from each year for their respective field, maps of each year’s normalized 

NDVI and predicted yields, and an average normalized NDVI map for all years 

combined.  Other tools utilized in management decision making were soil surveys, aerial 

photographs, and field historical management information.  Even though all of this 

information was gathered and analyzed, conclusions as to what was happening in each 

field could not be determined without the input from the farmer.  
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Tonkawa West Farm

The Tonkawa West farm was a 151 acre field that was split into two sections by a 

drainage ditch.  As shown in the aerial photo in Figure 8., the east portion of the field was 

inaccessible from the west part of the field because of a drainage ditch.  The cooperating 

farmer described management decisions made for the years of interest.  Yield on the east 

portion of the field was consistently lower, even with the same management practices.  

That area had greater slope and was more eroded than the west part 

Figure 8. Tonkawa West farm aerial imagery and average normalized yields over six year period.

of the field, although the soils had the same classification.  After considering different 

options, the farmer decided to split the field into two smaller fields (management units) 
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using the drainage way through the northeast portion of the field as the dividing line.  The 

field used two different management zones to try to maximize the yield in the economic 

returns for the area.  The farmer practiced this for the next year and reported later that he 

believed he had better overall returns on the field as a whole due to this change in 

management practice.  

Figure 9.  Tonkawa West farm 1993 corrected yield.

Another benefit of the satellite imagery is the ability to see the effect of management 

decision.  In 1993, the Tonkawa West farm was treated for cheat, a highly competitive 

weed in wheat, with herbicide applied to the west portion of the field but not to the east 

portion of the field.  By looking at the satellite imagery for that year (Figure 9.), the 



33

benefit of the herbicide application was visually evident with a dramatic increase in yield 

(35 bu/ac to 50 bu/ac).      

Red Rock Farm

The Red Rock farm was a 58 acre field that displayed persistent NDVI patterns over the 

years examined (Figure 10.).  When normalized NDVI averaged over years was paired 

with the soil survey and the aerial photograph, it was found that there were some distinct 

patterns related to the soils and terraces in the field.  The northwest corner of the field 

consistently yielded higher than the whole field.  Yield varied between years because the 

area flooded with heavy rains due to poor drainage from the county road.  The farmer 

might be able to his economic returns by treating the southern area of the field differently 

than the northern area of the field, to treat the area around the waterway as a lower 

yielding area, and to intensify the management inputs in the higher yielding area.  
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Figure 10.  Red Rock farm aerial imagery and normalized average estimated yields.

The southern corner of the field was misclassified as a class I soil type that is similar to 

the northwest corner of the field.  This area consistently yielded lower than the rest of the 

field as indicated by NDVI.  The farmer is considering not fertilizing this area because of 

its low yield potential.  Although the one area was misclassified, the average NDVI maps 

closely corresponded to the soils map. (Figure 11)  In this case, managing by soil classes 

is a useful practice.  The management decision that could be implemented on this farm 

would be to split the high yielding areas and treat them differently than the low yielding 

areas.  The farmer could look at the normalized NDVI map and the soils map to see the 

best way to separate the field into three management zones, high, average, and low 

yielding.  It would be possible that the best decision would be to plant the southern end of 

the field to grass and not crop that area.  
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Figure 11.  Correspondence of Red Rock farm soils map to average normalized yield over years.

Hitchcock Farm

One of the interesting farms studied was in Hitchcock, Oklahoma.  The soils map showed 

the same soils in most of the east and west fields (Figure 12.).  The west field has 

Consistently higher normalized NDVI values from year to year. 
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Figure 12.  Hitchcock farm average normalized yield over six years of data.

Figure 13.  Hitchcock farm soil classification illustration.

The farmer informed us that the west field was broken out of its prairie state in the early

1970’s while the east field was farmed since the late 1890’s.  There was about 75 years 

more depletion of organic matter and nutrients in the west field.  The average normalized 

NDVI yields for the seven years quantified this problem for the farmer.  He had known 
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that the east field had become relatively lower yielding than the west field.  However, 

interpreting satellite images gave a visual and quantitative measure of the variability 

occurring in the fields.  Strategic soil sampling was planned by Roger Gribble, OSU 

Northwest Area Extension Agronomist, to check the organic matter content and the pH of 

the soils in both fields to diagnose the causes of the lower yields in the east field.  

Carrier Farm

The farm in Carrier, OK, gave a unique perspective of how the normalized NDVI images 

would be able to help determine the loss due to natural disasters.  The Carrier farm was 

divided into smaller fields for the purpose of producing seed wheat for sale. (Figure 14.)  

This created a situation where different wheat varieties were planted in each field in each 

year. 

Figure 14.  Aerial image of Carrier farm’s fields.



38

Figure 15.  Carrier farm average normalized yields after 7 years of data.

Figure 16.  1992 Carrier farm yield surface.
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In 1992, there was an outbreak of disease in the wheat; the wheat in the large southwest 

field was not a disease resistant variety and the wheat in the large southeast field was 

resistant.  (Figure 16.) In mid-season, the loss of yield could be seen by a drastic lag in 

the yield values in the non-resistant field.  

Figure 17.  Carrier farm illustration of hail damage line from 1999 storm.

In 1999, there was another natural disaster that reduced the yield in some fields. (Figure 

17)  A hailstorm came through the area and one could see the distinct edge of the storm 

as it moved through the fields.  With the satellite image and the NDVI map, a more 

accurate assessment of the loss could be made.  One could see the damage incurred by 

the hail earlier in the season would not have to wait until harvest to determine the 

economic loss.  
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CONCLUSIONS

The satellite imagery is a tool that can be utilized by farmers to enhance their 

management decision.  By normalizing the NDVI data by the field average, comparisons 

can be made across years to create a historical reference of the field’s performance for the 

farmer to visualize.  

There are many things that a producer should consider before making a decision to use a 

new technology.  There are cases when management at smaller than field scale can be 

justified.  In these cases, tools such as soil maps and satellite imagery can be useful, but 

one must consider the cost benefit of each technology.  The fields that are high yielding 

with class I soils should be managed on the farm level, because smaller than field scale 

management would not make enough difference to pay for itself.  With the current 

condition of wheat prices, many of these technologies may not be economical due to the 

data analysis that would need to occur to come to a decision.  Higher value crops may 

benefit more from this technology.  

The degree of variability in crop productivity within a farm can be incredibly diverse.  

Assessment of crop productivity variability requires two things: the knowledge of the 

production level and the area under production.  Information on the status of crops within 

a farm is spatial in nature.  A farmer’s traditional method of assessing crop conditions is 

through experience and knowledge of topography, soils and weeds, and therefore tends to 

lack systematic organization and to be more qualitative than quantitative.  Therefore, this 
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approach to assessment is limited in its content and lacks precision, especially for farms 

of relatively large size.

SSaatteelllliittee rreemmoottee sseennssiinngg ddaattaa,, ssuucchh aass LLaannddssaatt TTMM iimmaaggeerryy,, iiss aa ttooooll tthhaatt ccaann bbee uusseedd

ttooddaayy,, bbyy ffaarrmmeerrss ttoo aasssseess tthhee ccrroopp ccoonnddiittiioonn iinn sseeaassoonn aanndd iinn aa rreellaattiivveellyy ttiimmeellyy ffaasshhiioonn..

TThhee LLaannddssaatt TTMM iimmaaggeerryy aalllloowwss aa ffaarrmmeerr ttoo sseeee tthhee vvaarriiaabbiilliittyy iinn tthhee ccoonnddiittiioonn ooff tthhee

ffiieelldd uussiinngg NNDDVVII aass aa mmeeaassuurree ooff tthhee vvaarriiaabbiilliittyy ooff tthhee ffiieelldd.. TThhee ffaarrmmeerr,, uussiinngg tthhiiss

iinnffoorrmmaattiioonn,, iiss aabbllee ttoo ccoommppaarree ddiiffffeerreenncceess iinn pprroodduuccttiivviittyy iinn ddiiffffeerreenntt aarreeaass ooff tthhee ffiieelldd..

WWhheenn ffaarrmmeerrss aarree pprreesseenntteedd wwiitthh iimmaaggeess aanndd mmaappss ooff tthheeiirr ffaarrmmss,, tthheeiirr oowwnn kknnoowwlleeddggee

ooff tthhee pprroodduuccttiioonn ooff tthhee ffiieelldd ffrreeqquueennttllyy pprroovviiddeess iinnssiigghhtt oorr iiddeennttiiffiieess ttrreennddss aanndd

aannoommaalliieess iinn tthhee ssaatteelllliittee iimmaaggee.. TThhee iinnssiigghhtt ffrroomm tthhee ffaarrmmeerr aalllloowwss pprroobbaabbllee ccaauusseess ooff

vvaarriiaabbiilliittyy ttoo bbee iiddeennttiiffiieedd mmoorree rreeaaddiillyy.. IItt aallssoo aalllloowwss tthhee ffaarrmmeerr ttoo sseeee tthhee iimmppaacctt ooff tthhee

vvaarriiaabbiilliittyy aanndd tthhee mmaaggnniittuuddee ooff iimmppaacctt tthhaatt tthhee vvaarriiaabbiilliittyy oonn ppeerrffoorrmmaannccee ooff tthhee ccrroopp iinn

tthhee ffiieelldd.. WWhheenn mmuullttiippllee yyeeaarrss ooff ddaattaa aarree ccoommbbiinneedd,, hhiissttoorriiccaall qquuaannttiiffiiccaattiioonn ooff tthhee lleevveell

ooff pprroodduuccttiivviittyy iinn aarreeaass wwiitthhiinn aa ffaarrmm,, aalloonngg wwiitthh tthhee ssppaattiiaall vvaarriiaabbiilliittyy,, ccaann bbee aa vveerryy

ssttrroonngg iinnffoorrmmaattiioonnaall ttooooll..

AA pprriinncciippaall ggooaall ooff pprreecciissiioonn aaggrriiccuullttuurree iiss ttoo sseelleecctt pprraaccttiiccaall aaggrriiccuullttuurraall mmaannaaggeemmeenntt

pprraaccttiicceess tthhaatt ttrreeaatt eeaacchh uunniitt aarreeaa ooff tthhee ffaarrmm bbaasseedd oonn iittss nneeeeddss ssoo tthhaatt rreettuurrnnss aarree

mmaaxxiimmiizzeedd iinn aann eennvviirroonnmmeennttaallllyy ffrriieennddllyy mmaannnneerr.. LLaannddssaatt iimmaaggeerryy ddaattaa ccaann ppllaayy aa kkeeyy

rroollee iinn tthhee aatttteemmpptt ttoo uunnddeerrssttaanndd ccrroopp pprroodduuccttiioonn vvaarriiaabbiilliittyy wwiitthhiinn aa ggiivveenn ffaarrmm aanndd

ccoommee uupp wwiitthh ffaarrmm mmaannaaggeemmeenntt aalltteerrnnaattiivveess tthhaatt ccoonnssiiddeerr tthhee vvaarriiaabbiilliittyy..
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Farmers are knowledgeable about the variability occurring within their fields.  With the 

introduction of normalized NDVI maps, though, the farmer can observe the magnitude of 

that variability and how it occurs spatially. When yield predictions were attempted, there 

was a very large spread in the data and the accuracy was moderate.  

There were many years the yield predictions were very close to the average, but there 

were also many years when the predictions were inaccurate.  In years that drought stress 

occurred early in the season and timely rains occurred right at flowering, there was a very 

large grain yield in spite of low plant biomass.  There were years when the prediction was 

too high due to factors occurring late in the growing season.  NDVI is a very good 

predictor of plant biomass and may be a better indicator of plant nutrient need and 

variability, as opposed to yield prediction.  By normalizing the NDVI data by the field 

average, comparisons can be made across years to create a historical reference of the 

field’s performance for the farmer to visualize.  
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APPENDIX A

CARRIER FARM
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Figure 18.  Example of satellite imagery of Carrier farm, accquisition date of April 23, 1998.
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Figure 19.  Carrier farm 1991 predicted yield (bu/ac) surface.  Effects of grazing can be seen in lower yield prediction areas.
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Figure 20.  Carrier farm 1992 predicted yield (bu/ac) surface.  Disease affected the yield predictions in three of the 
fields.



49

Figure 21.  Carrier farm 1993 predicted yield (bu/ac) surface.  Standing water lowered yield potential in southern areas of the 
farm. 
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Figure 22.  Carrier farm 1994 predicted yield (bu/ac) surface
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Figure 23.  Carrier farm 1996 predicted yield (bu/ac) surface
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Figure 24.  Carrier farm 1998 predicted yield (bu/ac) surface.  One field was not planted.
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Figure 25.  Carrier farm 1999 predicted yield (bu/ac) surface.  Effects of hail damage can be seen in the northern fields.
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Figure 26.  Carrier farm average normalized yield raster surface
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APPENDIX B

CHEROKEE FARM
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Figure 28.  Cherokee farm 1991 predicted yield (bu/ac) raster surface.
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Figure 29.  Cherokee farm 1993 predicted yield (bu/ac) raster surface.
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Figure 30.  Cherokee farm 1994 predicted yield (bu/ac) raster surface.
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Figure 31.  Cherokee farm 1996 predicted yield (bu/ac) raster surface.
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Figure 32.  Cherokee farm 1997 predicted yield (bu/ac) raster surface.
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Figure 33.  Cherokee farm 1998 predicted yield (bu/ac) raster surface.
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Figure 34.  Cherokee Farm 1999 predicted yield (bu/ac) raster surface.
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Figure 35.  Cherokee farm average normalized yields divided into management 
zones.
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APPENDIX C

HITCHCOCK FARM
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Figure 36.  Hitchcock farm 1992 predicted yield (bu/ac) raster surface.



67

Figure 37.  Hitchcock farm 1993 predicted yield (bu/ac) raster surface.
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Figure 38.  Hitchcock farm 1994 predicted yield (bu/ac) raster surface.
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Figure 39.  Hitchcock farm 1996 predicted yield (bu/ac) raster surface
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Figure 40.  Hitchcock farm 1998 predicted yield (bu/ac) raster surface.
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Figure 41.  Hitchcock farm 1999 predicted yield (bu/ac) raster surface.
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Figure 42.  Hitchcock farm average normalized yield, from six years of data, 
divided into management zones.



73

APPENDIX D

RED ROCK FARM
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Figure 43.  Example of Red Rock farm satellite imagery, acquired on April 28, 1998.
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Figure 44.  Red Rock farm 1991 predicted yield (bu/ac) raster surface.
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Figure 45.  Red Rock farm 1992 predicted yield (bu/ac) raster surface.
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Figure 46.  Red Rock farm 1993 predicted yield (bu/ac) raster surface.
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Figure 47.  Red Rock farm 1994 predicted yield (bu/ac) raster surface.
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Figure 48.  Red Rock farm 1996 predicted yield (bu/ac) raster surface.
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Figure 49.  Red Rock farm 1997 predicted yield (bu/ac) raster surface.
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Figure 50.  Red Rock farm 1998 predicted yield (bu/ac) raster surface.
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Figure 51.  Red Rock farm 1999 predicted yield (bu/ac) raster surface.



83

Figure 52.  Red Rock farm average normalized yield surface, divided into 
management zones. 
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APPENDIX E

TONKAWA WEST FARM
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Figure 53.  Example of  Tonkawa West farm satellite imagery, 
acquired April 28, 1998.
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Figure 54.  Tonkawa West 1991 predicted yield surface (bu/ac) raster surface.
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Figure 55.  Tonkawa West farm 1992 predicted yield (bu/ac) raster surface.
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Figure 56.  Tonkawa West 1993 predicted yield (bu/ac) raster surface.
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Figure 57.  Tonkawa West farm 1996 predicted yield (bu/ac) raster surface.
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Figure 58.  Tonkawa West farm 1997 predicted yield (bu/ac) raster surface.
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Figure 59.  Tonkawa West farm 1998 predicted yield (bu/ac) raster surface.
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Figure 60.  Tonkawa West farm 1999 predicted yield (bu/ac) raster surface.
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Figure 61.  Tonkawa West farm average normalized yield surface, divided into 
management zones.
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