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1. Introduction

1.1 Pecan [Carya illenoinensis (Wangenh.) K. Koch]

PecanCarya illenoinensis (Wangenh.) K. Koch is a tree nut crop that largely
grows in deciduous forests. United States is the worldye$ producer of pecan
followed by Mexico. Pecan and black walnut are the onlyweatut crops grown in
United States. Pecan is the most important commex@alwith high consumer value.
The commercial significance of black walnut is limitecgnomic Research Service,
USDA, May 2003). Southern and southwestern states suléxas, Georgia and New
Mexico are the leading producer of pecan nuts. The other mrnducers within United
States include Alabama, Louisiana and Oklahoma. The ptimeipal producing
countries are Australia, Brazil, Israel, Peru and Séittica.

Pecan production can be classified into two categanas/e and improved
variety. The improved variety is superior to the native seedlargsrequires intensive
cultivation practices. In year 2002, the total acreageeoén was estimated at over 1.4
million acres. Out of this 60 % were native seedlingdev®% were improved variety
(USDA, 2002). Oklahoma’s pecan industry depends largely ondtiree seedlings with
ninety percent of the total production is native seedlihgsnnual average production is
about 8 million kilograms of the total 104 million kilogna produced in Unites States.
As pecan exhibits alternate bearing, production in an iddaliyear can range from 1

million up to 9 million kilograms with an occasionalayeexceeding 14 million



kilograms. Oklahoma has the third highest number @&fsaplanted to pecans. Its
production, however, ranks about fifth place among otlaéesbecause its crop is
heavily dependent on native seedlings (McCraw, 2004).

Pecans are a favorite choice among consumers becailegr @futstanding taste.
They add flavor, crunch and texture to various foods otksnddiey are most widely
used in bakery, confectionary, chocolate and ice cradaosiries (Saaristo, 2005). The
discarded nuts can be used to extract oils that are wdthin cooking and cosmetics.
Pecan milk is made from the seed that is habitually usesh8na corn cakes and thicken
soups (Facciola, 1990). Pecans also have medicinal vdleg.afe used for the treatment

of ringworms (Moerman, 1998).

1.2 Pecan weevil [Curculio caryae]

There are numerous categories of insects that affeanpeit crop. Aphids, mites
and pecan phylloxera are the most common type of indeaitattack the pecan leaf.
They are generally known as leaf feeders. Shot-hmlerptwig girdler and flat-headed
apple tree borer are referred to as trunk and twig feeBecan weevil, shuck worm,
pecan nut case bearer, stinkbugs and spittlebugs areedetseand directly damage the
pecan nuts (Bessin, 2005).

Pecan weevils are the most serious late season pabisyaaffect the nut. It
attacks both the native and improved varieties. Adulapeeeevils are 1 cm long
brownish beetles with an extremely long beak. Pecavivgrubs have no legs; they are
creamy white with reddish-brown heads. They grow up to Hom(Douce, 2000). The
life cycle of pecan weevil is between two and threesieadult pecan weevils typically

emerge from the soil in the month of August. Emergengecan weevil is usually after



two to three days of heavy rains. Factors such as raisdélmoisture and type of soil
affect the ability of the weevils to emerge from thé @haney, 2005). For example, a
brief period of drought can holdup the emergence of adulinpgeavil. After the nut
kernel hardens, the pecan nut becomes suitable for egg [@mdgemale weevil drills a
hole through the shell using her long snout. It thea &ggs in the developing kernel.
Larvae feed on the developing nut for about 35 days damagimgithafter which they
return to the soil. The figure 1.1 shows the hole dritledhe larvae as it exits the nut.

They remain in larvae stage for about one or two ydees\hich they pupate.

Figure 1.1 Holedrilled by the larvae asit exitsthe nut
Pecan weevils can induce two types of damage depending dagkeo$ nut
development. The adult weevils feed on the nut during #tervgtage prior to nut
hardening. This causes nuts to wither, turn black and ultimdtefy. These damaged

nuts are shown in the figure 1.2.

Figure 1.2 Damaged pecan nuts



This damage is not easy to distinguish and may be confusediartage from
sucking bugs or the shuck worm. Similar damage can alsedredue to a mechanical
injury. The pecan weevil larvae are only seen in dévad shell. If the larvae are seen
prior to shell hardening, then the damage can be poteritiattysome other insect,
probably shuck worm (Douce, 2000). Nuts damaged by the peeauil Wave pin-sized
holes penetrating deep inside the nut.

The other damage is more serious. It is caused by waexdld feeding on
developing kernels. They feed on the kernels for founvtowiieeks, tearing down the
interior of the nut as shown in figure 1.3. Damaged ramsodten be recognized by
circular emergence holes usually 3 mm in diameterutitravhich the grubs exit ( Ellis,

2005).

Figure 1.3 Damaged interior of the nut



1.3 Objectives

The overall objective of this study was to design a ispdctral imaging system
for detecting pecan weevil larvae in pecan nuts during poges$taprocessing.
Hyperspectral data analysis was used to determine thelemgths for selection of
specific band pass filters. The four specific steps tceaehthe objective were as follows:

1. Obtain hyperspectral data of pecan weevil larvae and pedareat using

reflectance and/or transmission spectroscopy (450nm- 1015nm).

2. Analyze the hyperspectral data to detect the pecan waexak in pecan nuts.

a) ldentify two to four wavelengths that can potentiallydiéa selection of
band pass filters.

3. Implement a multispectral imaging system by using thetified wavebands.

4. Develop and test a multispectral imaging algorithm éssify the pecan

weevil larvae in pecan nutmeat.



2. Literature Review

2.1 Introduction

Optical spectroscopy offers fast and nondestructive nteaassess agricultural
commodities for their quality and safety for human comgtion. Optical spectroscopy is
remarkably adaptable and robust analytical technique tbatri;ng popularity due to its
accuracy, efficiency and ease of use (Roberts, WorlandrReeves, 2004). Spectral
sensing techniques are commonly used for inspection of foodhadities. This non-
invasive techniqgue commonly uses spectral regions ranginggihtbe visible (VIS) to
the near infrared (NIR). A number of papers, journal l@giand conference proceedings
have demonstrated the application of this technique to tleetaa of defects in apples
as well as its physical properties such as size and @diter et al., 1998; Upchurch at
al., 1990;Upchurch et al., 1994; Tao, 1997; Throop et al., 1995)raetge analysis
for measuring ripeness of tomatoes (Podler et al., 2008)e kernel maize analysis by
near infrared hyperspectral imaging (Cogdil et al., 2004), aatedrsorting of almonds
with embedded shell by laser transmittance imaging (Bea&tsal., 1995), machine
vision system for automated detection of stained pistaalis (Pearson, 1995) and
detection of internal insect infestation in whole wheahels (Brabec and Schwartz,

2003).



Currently, multispectral imaging is widely used in produceong, meat
inspection and defect detection. Defect detection israptished by imaging at specific
wavelengths where the reflectivity of the good and the dathégsue are different.
Quiality control is achieved by classification of a gautar attribute, like color, which can
determine the grade of the product. The changes in spesfteativity can be used to
detect the presence of toxins in fish and poultry. Intasfdio the above applications,
multispectral imaging is also used in foreign body de&tegcin which the difference in

reflectivity between the product and the foreign bodysisd for detection (Park, 1996).
2.2 Spectr oscopy

Spectroscopy is the interaction of electromagneti@temn with matter. It is a
method used to identify or quantify molecular structureatetect physical properties of
matter by studying and examining interactions of electrowiag radiation with
molecules of the matter.

2.2.1 Visible and near infrared spectr oscopy

The wavelength range of radiation covered in opticattspscopy can be divided
into Ultraviolet (UV), 200 to 400 nm; Visible, 400 to 700nm, Nkdrared (NIR), 700 to
1500 nm, Short-Wave Infrared (SWIR), 1.5um to 3um and Mid-Waivared (MWIR),
3pm to 5.5um. The Long Wave Infrared (LWIR) waveband starégbout 8pm and
extends to about 14pm.

The recent trend of application of NIR spectroscophanfield of food and
agriculture is largely due to the work done by Norrisalef1968). Norris recognized that
food and agriculture material exhibit C-H, N-H and O-Haapgon bands identifiable in

the NIR region of the electromagnetic spectrum. Fewibible region of the spectrum



the term absorbance and reflectance is easy to cheygieThe red color looks red as it
reflects red color and absorbs all the other colors.dliject looks white as it reflects all
wavelengths and looks black as it absorbs all wavelengtisibfe light. The similar
behavior is exhibited by NIR absorption. C-H, O-H and dddorption bands have
specific vibrational frequency that results in distmetNIR response for different
biological materials (Shenk and Workman 2001). As many akbiglogical substances
contains thousands of different types of compounds conggC-H, O-H and N-H
molecular bonds, the absorption spectra in the Néfivneis very complex to interpret.
This complexity is further augmented by the fact thatgpectral information is
crammed in a very small region of the electromagrsgtectrum (Shenk and Workman
2001).

Apart from the chemical composition of biological mi&tks, the physical texture
and surface characteristics of the material also lsignificant role in shaping the
spectral response of the sample. Every biological sabstaas a unique spectral
response. If two samples have similar spectral regpdnsan be concluded that they
have similar physical and chemical compositions. If theye different spectral
responses then the two samples are considered tddrentifphysically or chemically.
Therefore, the NIR absorbance or reflectance spmabiatained from a substance is a
result of the combination of all the chemical and phajsiformation of the biological
material (Roberts, Workman and Reeves, 2004).

2.2.2 Diffuse r eflectance spectr oscopy
An electromagnetic radiation interacts with a skentiprough absorbance,

reflectance and transmission. Some of the radiatiomseturned either by the boundary



of the sample or the interior of the sample. Theyraferred to asurface reflectance and
volume reflectance respectively. Passage of electromagnetic radiatiaugtr the sample
is known as transmission. Radiation that is ndecééd or transmitted is absorbed by the
sample. Absorbance is the ability of a substanceatsform radiant energy into a
different form, usually resulting in rise of temperature.

Mathematically, the interaction of electromagnetidiation with a sample can be
represented as:

lo= I+ I+ |t (2.1)

Where } is incident radiationis absorbed radiation is reflected radiation and
l; is transmitted radiation.

Absorbance, reflectance and transmission depend on wgte|golarization and
geometric distribution of the incident radiation. Ref#sce can further be classified into
specular reflectance and diffuse reflectance. If tigailar distribution of the reflected
energy is independent of the incident angle of razhait is known as diffuse
reflectance. Therefore, only that part of radiatioat is scattered inside the sample and
reflected or the radiations that are reflected fromowagh surface are measured to be
diffuse reflectance radiations. The sample may ek diffuse and specular reflectance
(Roberts, Workman and Reeves, 2004).

2.2.3 Parameter s effecting spectral measur ements

There are various factors that have significant efiadthe strength and noise of

the measured spectral signal. Integration time, dynaw@cage of samples, average of

pixels, dark current and offset are some of the majdiofs.



The signal that is displayed is proportional to the bemof photons that strike
the detector. A longentegration time can be used to increase the signal intensity level to
a sufficient count. The integration time of the spactieter is analogous to the shutter
speed of a camera. The higher the value specified fontidgration time, the longer the
detector collects the incoming photons. If the intensitthe acquired spectra is too low,
the integration time needs to be increased and iftleasity level of the spectra is close
to the saturation level then the integration time néed® reduced. However, the
influence of noise increases with the integratioretim

One of the important parameters that needs to be adijsstieenumber of sample
scansto be dynamically averaged. Each spectrum is collected and the running average is
calculated. The signal to noise ratio (S: N) will iroye by the square root of number of
scans averaged. The advantage of higher S: N ratim lestraded with the amount of
time required to scan. In most of the real-time appbns, the number of scans that has
to be averaged must be minimized. Identifying the appropriatger of scans is an
important task.

Another important parameter that is thenber of pixels (adjacent detector
elements) that have to be averaged. The greater this value, the smoother the data and the
higher the S: N ratio. However, if the value enteradashigh it results in the loss of
spectral resolution. As a consequence the averagipigeds should be done after the
identification of wavebands. The loss of spectralltggm is higher in non-weighted
averaging techniques than in weighted averaging techniques.

One of the weighted averaging techniques that is mceh afied is called

Savitzky- Golay averaging (Press et al., 2005). It ischdigia FIR low pass filter and

10



can be used with frequency or spectroscopic data. Thécteats of this filter are
determined by performing an unweighted linear least squarsirfiy a polynomial of a
given degree. It is used to determine the smoothed valeadbrdata point by
performing polynomial regression and hence is also knovandagital smoothing
polynomial filter. A higher level of smoothing withoutenuation of data can be
achieved when a higher degree of polynomial is taken. Aréifit polynomial is applied
to the data surrounding each data point. The values shtbhethed points are calculated
by replacing each data point with that of its fittedypoimial. A linear filter is usually
used for calculating the coefficients of the polynor(itakess et al., 2005).

Thedark current is the signal that is present without any light inputsTié
typically very small. The dark current comes from theedr itself i.e. it is inherent in
the detector. As a consequence it contributes to thaldgyvel of the measured pixel
(Bolton, 2002). Cooling the detector array is the mdsicéfe way to reduce the dark

current signal.
2.3 Noise and dynamicsin spectral measurements

Different pixel elements of the CCD array respondedéntly to the same light
intensity. This results in noise that varies aboutesaominal value. In order to minimize
the instrument noise, the measurements should be madaftanlthe instrument is fully
warmed up. It is necessary to ensure that the tempesatitiee instrument and the
detector do not fluctuate.

There are two main categories of sources, which geneo&e in a line array,

Fixed pattern noise (FPN) and Random noise.

11



Fixed pattern noise (FPN) is the variation in output pixel values, under uniform
illumination. It results from different sensitivity tight (this includes differences in
signal collection, amplification and digitalizatiofoy different detector elements. When
the read out conditions are set and the integratiomismot changed the FPN is
unvarying. FPN can be removed completely by subtractingdise from the measured
signal.

Random noise is the response variation for the same pixel. priarily due to
the fluctuations in sensitivity of the same pixel undanying light intensities. The idea is
to subtract the fixed pattern noise from the total ndibe. secondary resultant noise is
the random noise that determines the lower limit osgstem dynamic range (Holtzman,
2005).

The dynamic range is the ratio of the highest signarexposure level) to the
lowest signal (darkest) that a detector array can reddwe highest signal corresponds to
the brightest signal level just below saturation lewel the darkest signal refers to the
level below which no detail is perceived. The highest sigr@asurable is limited by the
saturation level of the detector pixel elements andotiest signal by the random noise
of the spectroscopic system.

The one other source of noise or error in spectrosecopasurement gray light.

It refers to the radiation of the wrong wavelength 8tekes the pixel. Stray light is
responsible for most errors in low light measureme®tsirces of stray light can be
ambient lightimperfections of the grating, dust, scattering of lightrf imperfect optical
components or reflections of non-optical componemts ss the spectrometer housing

(Avantes, 2004).

12



Stray light influences the precision of the systema aritical way. It causes non-
linearity of the signal at lower power levels and thost$ the measuring range of the
system. One of the ways to overcome stray lighgena to limit the light to the region of
the spectra. A more robust approach is to determinedrtnelght correction constant.
This constant compensates for the total amount of kgylatyin the spectrometer. Both
the approaches should be used in combination to overcenefitience of the stray
light.

2.4 Spectral data analysis

The goal of spectral data analysis is to identify tiawebands that capture
maximum variance between pecan nutmeat and pecan waeaiel These wavebands
are later used in designing a multispectral imaging system.

2.4.1 Multivariate statistical analysis

Multivariate statistical analysis is a powerful spem data analysis tool. It
provides a quantitative and robust method to simultaneanslyze high dimensional
spectral data (Anderson, 2005). There are numerous standtirdds of multivariate
statistical analysis. Some of the widely used methodarialyzing spectral data are
multiple (linear) regression, factor analysis, prifeipomponents analysis (PCA),
discriminant analysis and cluster analysis.

Principal component and factor analysis are primasiduto reduce the number
of variables in the data set or to classify variableddigcting the structural relationships
between variables (StatSoft Inc., 2003). These are osédehtifying patterns in data
and expressing the data so as to highlight their sinidargtnd differences. Principal

component analysis has a wide range of applicatiorsuled in image and data

13



compression, noise filtering, color representatiorisual interpretation with multi-band
data,classification and recognition problems, computer sciandebiomedical signal
processing (Japan Association of Remote Sensing, 1996).

Principle component analysis is a procedure of forrndatew variables by
using the information from the old variables. These wariables capture the maximum
variance in the data set. The principle componethteidinear combination of variables
such that it extracts the maximum variance from #réables. This forms the first
principle componentPC1). The second principle compondRC2) is the second linear
combination of the variables that extracts the maxirpusportion from the remaining
variance. Thé?C1 andPC2 form the major and minor axis for the new set of dateese
components are orthogonal as they are uncorrelatedP@handPC2 provide two-
dimensional visualization of the multidimensional dsga(M&M Backgrounder Winter,
2005).

2.4.2 Derivative analysis

Derivatives of the spectral data are used to removeadgtant background
signals and improve the visual resolution of the speamsaata. The weak peaks that
are not easily visible in the original spectral dataeasily be identified by using the
derivatives of the spectral data.

The first derivative of the spectrum is the slopehefspectrum. As the slope of a
constant is zero, the first derivative effectivedymoves the constant background signals
that offset the spectral data. The second derivativieeo$pectrum is the measure of the
curvature of the spectrum. As the curvature of the liskgoe is zero, the second

derivative effectively removes the linear tilt of thgectral data. However, the second
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derivative is sometimes hard to interpret as it charfgesixima into minima and vice
versa (Siesler, Ozaki, Kawata and Heise, 2002).

There are several methods of calculating the deresif the spectral data. The
commonly used methods are Fourier transform, Savit@kyay and finite difference
method (Williams and Norris, 2001). The derivative graphsaneetimes hard to
interpret; however the derivative analysis can sonegtigive excellent results. The point
at which the derivative changes sign is usually the pdimterest as it indicates
maximum variability between the spectral data sets.

2.5 Imaging techniques

Imaging techniques can be classified into 4 methodologies.

1. Conventional imaging: A single broadband filter with either B/W or a coioraging
technology can be used.

2. Spectral imaging: A single waveband is used and is typically impleme g using
single camera and a narrow band pass interferenee filt

3. Multispectral imaging: It uses 2 — 20 wavebands and is implemented by using a
single camera and a filter wheel or multiple cameriis an individual narrow band
pass interference filter.

4. Hyperspectral imaging: It uses from one hundred to a few hundred spectra and is
implemented by using hyperspectral imagers or imaging spestemsnA single
camera coupled with liquid crystal tunable filter (LCT&gpustic- optic tunable filter
(AOTF) or a circular variable filter (CVF) is nornhalised (Park and Lawrence,
2005). In hyperspectral imaging, full spectral profile is codipigh each image

pixel. As a consequence the resultant data quantigesxaessively large. Substantial
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amount of time is required to acquire hyperspectral imaggscaanalyze huge
amounts of data. This makes the online implementatiomeotiyperspectral imaging
system almost impossible (Mehl, Chao, Kim and Chen).

2.5.1 Multispectral imaging

Multispectral imaging is not a new concept. It has dansively used over the
years. The RGB images are the most common multisdeciages. They contain three
spectral color planesed, green and blue. All the three spectral planes lie in visible
portion of the electromagnetic spectrum. Another gdaraf multispectral images are the
CMYK (Cyan, magenta, yellow and black) images of color printing. When working with
real time processing and inspection systems, speed requoiseimpose rigorous
constraints on hardware for the imaging and opticdaesys. As a result, the
hyperspectral system cannot be directly implemented amspaction or a processing
line. Under these circumstances, the multispectragjing technology becomes a
favorable approach. Multispectral image analysis isgefdechnique as it is based on
discrete spectral data analysis at a few selectedlevegtbs as opposed to the continuous
spectral data analysis performed by hyperspectral imagsigray.

The analysis of spectroscopic or hyperspectral data tedtle selection of band
pass interference filters. However transferring thiesalts to multispectral equipment is
limited to the spectral range of each channel availalilee different cameras.
2.5.1.1 Instrumentation for multispectral imaging system

There are various factors that influence the seledi@digital camera. Some of

the important factors are spatial resolution, speotsgonsivity, quantum efficiency,
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frame rate, shutter speed, availability of gain contnbgrnal memory, data transfer rate,
type of digital interface and the availability of extal trigger.

The spectral sensitivity and quantum efficiency aregwteimportant factors that
must be considered while selecting a digital camerantdtispectral applications.
Spectral sensitivity is the relative response of igjiet lsensitive element (CCD) to
various wavelengths in the electromagnetic spectrunewguiintum efficiency is the
effectiveness of the CCD to convert the incoming phatoelectrical signal at a
particular wavelength. Both spectral sensitivity and quamfiiciency are dependent on
the material of the CCD elements. The choice ofavaitvand pass interference filter
(waveband) that is used for acquiring images usually goveenseiection of CCD
material. For example, if a filter with wavebandfe IR region of an electromagnetic
spectrum is used then Indium Gallium Arsenide (InGaAsp @€tectors are needed.
InGaAs detectors are extremely sensitive to lighhewavelengths from 900 nm to
1700 nm. On the other hand, the silicon CCD is sensititieeivisible region of 400 nm
to 700 nm and low NIR wavelength region of 700 nm to 1100 nm cdlémromagnetic
spectrum.

Once the definite wavebands are identified through sgetdta analysis, the
band passinterference filters are selected. The band pass interference filters traasmi
particular band of frequencies while rejecting all the otipper and lower frequencies of
an electromagnetic spectrum. The band pass interiefédtecs can be classified as
narrow band pass andbroad band pass interferencefilters. The broad band pass
interference filters pass a broadband of light. Faaimse, they transmit light from

375nm to 425 nm while blocking all the other wavebands. Onbttier hand, the narrow
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band pass interference filter transmits a narrow lodtight as little as 1 nm (Turner
designs, 2005). The quality of a narrow band pass interieféter depends on various
factors such as peak transmittance at central wavealeRddHM (full-width half-
maximum) and upper and lower cut-off frequencies.
2.6 Image processing

Image segmentation and object recognition are the mpsiriant components of
an image processing application. The principle behind thmesetation is to eliminate
the useless or less useful information from an inagkehighlighting the useful features
of an image. In segmentation, the pixels that hawdasi features are treated as a
common class. There are two popular approaches to iseggmeentation. One of the
most widely used methods is K-means segmentation arsttioad is Expectation
Maximization (EM) algorithm.
Image segmentation algorithms falls under 4 categories.
2.6.1 Threshold techniques

The most primitive method of image segmentation wastbasehresholding
techniques. The basic idea behind this technique was thgikéie whose value (gray
intensity, color or other) is between two valueshoésholds belong to one region. The
values of the thresholds were derived from the histogfduis. method did not take into
consideration, any spatial information of the imageer&fore it failed to cope up with
noise as well as with blurred edges of the image.
2.6.2 Edge-based methods

In the early 1990s, people came up with several algoritlagsdoon edge based

image segmentation. These algorithms are considetsz powerful as they use the
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method that closely corresponds to the human visuarsysh this method, we find the
places of rapid transition from one region to the othgion of different brightness or
color value. Gradient operators are convolved withritege. Various gradient operators
such as Sobel, Herwitt and Roberts were developed durmgehbd. Canny edge
detector became very popular and is widely used even.tdtaybasic drawback of this
method is that the edges have to be linked to form closeddaries of the regions. To
go from image edges to the image boundaries is very diftasi, which has been
studied a lot. The Canny edge detector is implemented iregesarch. The detailed
description of the Canny edge detector is presented in ct&apter
2.6.3 Region based methods

In the late 1990s, several region based image segnoenddgiorithms were
introduced. In this method the pixels of the same oilairrightness or color are
grouped together to the regions according to the givemiaraEhomogeneity. The
seeded region growing (SRG) is the most popular and witkelg method. In this
method, seed points are set up and the neighboring fine¢leave properties similar to
the seed point are appended to it. The criterion is bassdma threshold value. The
choice of threshold is problematic, as selecting a thyleshold is usually very difficult.
2.6.4 Mixed methods that combine edge and region based methods

In the year 2000, researchers such as Jianbo Shi and Jitémldcacame up with
more robust hybrid methods that used combination of edge dade@gion based
methods. Various methods such as Morphological watesstggdentation, Variable
surface fitting and graph based methods such as NormalagdMin - cut, Max - cut

based image segmentation became popular during this timesegimentation method
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used in this research falls under this category andasstied in detail in the next

section.
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3. Materialsand M ethods

Native varieties of pecan nuts were obtained during 2004-2008dtexy season
from research farms at Oklahoma State University amdral commercial pecan growers
in Oklahoma. Nuts were stored and preserved in cold chamimntained at 5 °C. The
live pecan weevil larvae were obtained by directly bregkipen the pecan nut. Some of
the live weevil larvae were preserved in 95 % ethandufiire use. The diffuse
reflectance measurements were performed on the deadnlivereserved weevil larvae.

One hundred nuts were randomly chosen from each @ila¥ars and numbered.
Out of these, two groups of 50 randomly chosen nuts wemeth Group | was used for

training and group Il was used for testing and validation.
3.1 Diffuse r eflectance measur ement

VIS/NIR spectroscopy was used to measure relative rafleetor absorbance
rather than absolute reflectance or absorbance.ni¢asurement was referenced to a
white lambertian surface diffuse reflectance measurestandardThe white
Spectralon® panel from Labsphere, North Sutton, NH, haatr@ction factor of 0.99 in
the UV/VIS/NIR spectral region. However, it was asga to be 1.0 for simplification.
Reflectance can either be expressed as a percentagediRe to the reflection from a

standard surface or as a factor between 0 and 1.
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The reflectance measurement (% R) is given by:

%R = (%) *100% (3.1)

Where,

S, = Sample intensity of each wavelength,
D, = Dark intensity of each wavelength

R, = Reference intensity of each wavelength
A= at each wavelength

The reflectance data can be linearized by taking IdgR{Hruschka, 2001) as

shown in the equation below:
A =log= (32)
= :

Where A = apparent absorbance or optical density in refleetamade

As the sample and reflectance standard were satisfg¢hick enough and
opaque, none of the incident radiation passed througb theStransmitted radiation

0. Equation (2.1) can now be written as:

lo = I+ 1 (3.3)

So, now the equation (3.2) becomes:

A = Iog% = Iog:—0 =log(l, —logl,) (3.4)

r
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The absorbance or optical density is a dimensionlesp&uand has no units.
The positioning of the sample and reference relativeganitident light source has
significant effect on theA, measurement (Roberts et al., 2004). Therefore, it islatary
that the optical light source, sample and refererar@dsird be absolutely stable. Any dirt,
moisture or oil on the reference standard would restlftarmeasurement of erroneous
absorptions. Therefore, it is also required that thereete standard be clean. A typical

reflectance experiment configuration is shown in figufe 3.

Light source
lllumination fiber <

T =<J}—» Micrometer
Read fiber — | | | screw

7 | —
_— Spectrometer
- ——

—_— Ty

Computer

ly Pecan sample

Variable Stainless steel
Fixed Stainless steel tube

Figure 3.1 A typical configuration for areflection experiment
The VIS/NIR Labspec Pro spectrometer from Analytispéctral Devices Inc.,
Boulder, CO, was used to obtain the diffuse reflectameasurements of the pecan

weevil larvae and nutmeat. Specifications for the spewter are listed in table 3.1.
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Table 3.1 Specifications of L abspec Pro spectrometer

Spectral Range 350-2500 nm

3nm @ 700 nm
Spectral Resolution
10 nm @ 1400/2100 nm

1.4 nm @ 350 - 1050 nm
Sampling Interval
2nm @ 1000 - 2500 nm

One 512 element Si photodiode array 350 - 1000 nm

Detectors
Two TE cooled, InGaAs photodiodes 1000 - 2500{nm
Scanning Time 100 milliseconds
Photometric Linearity Less than 1%
Wavelength Accuracy +0.8 nm

+ 0.02 nm

<

Wavelength Repeatabilit

3.2 Analyzing spectral measurement data

The spectral locatiofmanometers), amplitude(intensity) and the width
(bandwidth) of the peak comprehensively define the physical and chesticature of
the sample. It is therefore necessary that the spesagnal has minimum noise and have
sufficient strength (Roberts et al., 2004).

The signal-to-noise ratio (SNR) of the reflectadeéa is influenced by the
integration time, dynamic average of samples, avevgdjacent pixels and dark
current. The influence of noise increases withitibegration time. The SNR improves by
the square root of number of scans averaged. The advaiitsigeer SNR has to be

traded with the amount of time required to scan. Aegrdtion time of 100 ms was used
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in this research. Each spectrum was collected and thenguawerage was calculated.
Ten sample scans were averaged for this applicationndin@er ofadjacent pixel
elements to be averaged was set to zero (no averaging) as highesVead to loss of
spectral resolution. This averaging was applied after mieterg the potential
wavebands. As the loss of spectral resolution is higheon-weighted averaging
techniques, a weighteghvitzky- Golay averaging was performed after determining the
spectral wavebands.

Dark current introduces variation in noise behavior @setion of integration
time and operating temperature (McFee, 2005). Thereforeattemeasurements were
conducted at the same integration time that was use¢bdd@pectrum measurement with
the light source switched off. The difference in viadue between reference level and
data level ranges from 20 to 70 mV. As a consequencentiserected dark current
reduces the system dynamic range (Barn, 2005). In ordeeasure the dark current,
same operating modes and environmental conditions wereTUseéntire data set was
corrected by subtraction of the averaged dark currentpaxe&by-pixel basis.

3.2.1 Principal component analysis (PCA) and derivative analysis

Principal component analysis is a data reduction technigaagh which the
information from different wavebands is condensed afew principal components. It is
used to reduce the dimensionality of the data while mianig loss of information. In
this research PCA was used to capture the maximum vabaheeen pecan weevil
larvae reflectance and nutmeat reflectance.

PCA analysis involved five basic steps. The first step iwanean center the

data. That was to construct the data with zero mean.Wés done by subtracting the
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average from the original data set across each dinrenEie second step involved
calculating thecovariance matrix. The covariance matrix defines the variability in the
data set. The covariance, between the two dimensions(X and Y) in the data set was

calculated by following equation:

> (Xi=X)(Yi-Y)

cov(X,Y F —

(3.5)

The resulting ¢y value would be positive X andY tend to increase together,
negative if they tend to decrease together and 0 if tieeipndependent. The third step
involved calculating theigenvectors and eigenvalues of the covariance matrix. The
eigenvalue gives us the magnitude of variance and eigenassiociated with that
eigenvalue gives us the direction of the variance. Tgsmectors of the covariance
matrix are orthogonal to each other. Next step oA R@s forming thdeature vector.
Once the eigenvectors were found from the covariantexyide next step was to order
them by looking at their eigenvalues. The eigenvector theéHargest eigenvalue is the
first principle componentRC1). The eigenvector with second largest eigenvalue is the
PC2 and so on. This defines the order of significance. Takiegigenvectors of
importance and forming a matrix with these eigenvectarsplumns of the matrix would
construct the feature vector.

Feature vector = (eigl, eig2, €ig3...........ccevvennn) (3.6)

The last step in PCA waeriving the new data set. This step was the most
important step in PCA. In this step matrix multiplioatof the feature vector with the
original mean centered data set was performed to geethaelata set. This new data set

was expressed witPC1 as its axis.
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Derivative analysis uses the derivatives of a spectoucharacterize the spectral
data. The original spectrum may have hundreds of datasjaherefore by extracting
important features from the data, it can be represeassdédiously. The derivative of a
spectrum also improves the visual interpretation of the. da

Thefinite difference method is the simplest method that estimates theadme
by calculating the difference between two adjacenttpoil' his method is not generally
used as it enhances noise in the spectrum. Therefereotinier transform was used to
calculate the derivative in the frequency domain. It usesrformation in the
neighborhood (data points on either side) of a pdatiamavelength to calculate the
derivative rather than the difference between adjagdata points. This avoids the
problem of noise enhancement. The size of the neighbdream important factor. If the
size of the neighborhood is too small it would approxinfiatee difference method and
if it is too large it would smooth out the importantarrhation. Thus the size of the

neighborhood becomes a critical factor when using-tueier transform.

3.3 Selection of narrow band-passinterferencefilter and NIR enhanced

camera

Narrow band pass interference filters are widely usddad inspection and
processing lines (Williams and Norris, 2001). The quality adrrow band pass
interference filter depends on various factors sugieak transmittance at central
wavelength, FWHM (full-width half- maximum) and upper andédo cut-off
frequencies. According to William and Norris, the peakgnaittance at the central

wavelength should be at least 40 % and the filter showid R&/HM between 10 nm to
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20 nm for it to be suitable as a narrow band-pass intaderidter for NIR
instrumentation.

The interference filters are designed to operatesipegific temperature range.
The operating temperature for a typical filter rangemf-40°C to 70 C and the
maximum allowable change in temperature is 5€1@er minute. The central wavelength
shifts linearly in the direction of the temperaturendg® This change is usually from
0.01 to 0.03 nm pec. Operation beyond the specified temperature range real e
irreversible shift in central wavelength (Oriel, 2005)eTdeak transmittance and the
bandwidth may also change with temperature. A slow idrfentral wavelength may
result due to aging and high humidity. Good quality filnmes hermetically sealed to
prevent negative effects of aging.

Various hardware instruments sucHi#ter wheel, adapters or step-up, step-down
rings can be used to mount and hold filters. The filter ceectly be mounted on the
camera lens or it can be held discretely from timera and lens unit. Two different
types of settings are possible in principle. The fittem either be mounted on front of the
lens or rear end of the lens.

Mounting the filter in front of the lens poses sev@rablems. The filters are
coated to reduce the flare, resulting in the reductidiglotf that passes through the lens.
The light also requires passing through two additional fitefaces prior to entering the
lens that can degrade the quality of an image. Therdfwdilter was mounted at the
rear end of the lens

The major disadvantage of mounting the filter ontoléins is that only one filter

can be mounted at a time. Some applications may reitpeingse of a single camera with
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multiple filters. In such a situation, filter whesla suitable choice. The filter wheel
allows us to mount 6 to 12 filters. Computer controlledrfitbeels are available that
allow us to take images at different wavebands in a alledrmanner without human
intervention.

Four narrow band-pass interference filters between 850hdrd&0 nm were
purchased from Edmund Optics, Barrington, NJ. The detsgedifications for the filters

are listed in table 3.2. The characteristic of the Huhaptics filters is shown in figure

3.2.
Table 3.2 Specifications of narrow band-pass interference filter
Center Wavelength Tolerance +3.0nm
FWHM Tolerance 855nm, 905nm, 940nm and 980nm: +2.5nm
Min. Transmission at CWL 40% to 50%
Blocking <= 0.005% from 200 to 3500nm (excluding band pass)
Clear Aperture 25mm Dia: 0.825" £0.005"
Mount Thickness 5.5mm nominal
Surface Quality 80-50
Operating Temperature -20°C to 75°C (-4°F to 167°F)
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Figure 3.2 Narrow band passinterferencefilter from Edmund optics

The images were taken with a NIR enhanced camera, AMphih F 145-B from
Allied Vision Technologies, Newburyport, MA. It is a machrome IEEE 1394 SXGA+
C-Mount camera, equipped with a mega pixel SONY 2/3” type pssgre CCD-array.
Specifications for the camera are listed in table 3@ gpectral response of the AVT
Dolphin camera is shown in figure 3.4. Figure 3.3 showspketral response of a
typical silicon CCD. The enhanced silicon CCD of AD®lphin camera shows about 20
percent spectral sensitivity at around 900 nm as comparepdcént sensitivity of an
ordinary silicon CCD. The higher spectral sensitivitgfi€ritical importance as the

images were acquired in NIR waveband between 850nm to 980nm.
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Table 3.3 Specifications of AVT Dolphin camera

Image Device | 2/3 Type progressive scan b/w SONY Silicob CC

Resolution 1392 (H) x 1040 (V)
Lens Mount C-Mount
ADC 12 Bit
Data Path 8 Bit or 10 Bit
Frame Rates 1,875 fps - 15 fps; External Trigger
Gain Control Manual 0 — 30 dB (0,035 dB/step)

Shutter Speed Time base 1, 2, 5, 20, 50, 100, 200, 50044000

Transfer Rate 400 Mb/s

Digital Interface IEEE 1394; DCAM V1.3

Relative Response
o O O O O O © o o =
P N w s 00 vh 9 0 W O

500 600 700 800 900 1000
Wavelength (nm)

[
o
o

Figure 3.3 Spectral response of a typical silicon CCD
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Figure 3.4 Spectral response of the AVT Dolphin 145-B camera
3.4 Acquiring and processing an image
3.4.1 Components of an image pr ocessing system
The most important component of an image processingmyistthe computer.
The Pentium(R) 4 CPU, 512 MB RAM, with processing speetl®{GHz was used for
acquiring and processing images. Another important compdntrd image processing
software. MATLAB was used in processing the acquired imaggpical diagram of an

image processing system is shown in figure 3.5.
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Figure 3.5 Components of image processing system

IR Lamp (EKE-IR) from Illumination Technologies, In&€ast Syracuse, NY, was
used as the lighting source. The output of this lamp whareed and limited within the
800nm to 1.hm spectral range. Due to the lower sensitivity of siliGCD in NIR
waveband (fig 3.4), the images were acquired with a highfgeiar of 200. The noise in
the image increases with the gain. As the additioramdomly distributed noise variables
is a Gaussian function, the noise was assumed toeh@aeissian distribution. The
histogram analysis of the acquired image revealed noishife DC component and
noise with a unit standard deviation. Therefore, a stan@aussian low pass filter with a

zero mean and unit variance was used to eliminate iBe.no
3.5 Image Segmentation

The acquired images were segmented by using two methoddifferent

approaches of segmentation was used to aid comparis@adibibinal method of masking
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followed by morphological processing to a novel active@onbased snake energy
minimization algorithm. The detailed description of the twethods is presented below.
3.5.1 Method 1

The first method was a popular approach where the Gauddteed images are
threshloded and processed by binary morphological operatfysr&ning images and
fifty testing were acquired under constant illuminatomditions, shutter speed and f-
stop. A Gaussian low pass filter with zero mean and animce was used to restore the
image. A threshold was determined for each of the traimiages in the database
individually. The images were then processed by using mtrgical cleaning followed
by morphological closing with a disk of size 3.

The morphological cleaning operation involves removinggb&ied pixels (1's
surrounded by 0's). The morphological closing can be defindibdisn followed by
erosion. An average threshold value for 50 training imagesdetermined and applied to
50 test images. The Gaussian filtered images were edgoenited by Canny edge
detector. The Canny edge detection method is explained/bel
3.5.1.1 Canny edge detector

Canny edge detector is often referred to as an optimaldsdgetor. The several
criteria considered by Mr. Canny to optimize the edge deteatgorithm are as follows:
1. Signal tonoiseratio: The filter should respond more strongly to the edge=di x

than to noise.
2. EdgeLocalization: The filter response should reach a maximum close=ta That

means the filter should give maximum response at thetbegedo noise.
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3. Low false positives. There should be only one maximum of the response in a
reasonable neighborhoad0. That means that the filter should have signal respon
to single edge unlike LoG where the filter has multiglgponses to a single edge.

Keeping in mind the above three criteria Canny deriveeldgie detector that
satisfies all the above three criteria to the maximuhe first step of the Canny edge
detector is to take the first derivative of the Gaussia

The first order derivative along x and y direction eateulated separately. The first order

derivative along x — direction is given by:

of _

f =— =K **( G ** O.G)** | 3.7
X 6X Ox ( g ) :( X ) ( )
Where,
—x x2+y2
0G. = expl — 3.8
7 20t p( 202} (3.8)

The first order derivative along y — direction is gin®n

of

fy :a—y: KDy**( G**) A DyG)** A (3.9)
Where,
_y X2+y2
0G, = expl — .13
y~o 2770.4 Xp( 272 } :( )

After computing the gradient magnitude along the tivections, the combined

gradient magnitude is written as:

|Of (x, y)| =/ £ + {7 = rate of change df X(y, (3.11)

The direction of the gradient response is given by:
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f
O0f (x,y) = tan‘l(f—y] = orientation of change bfx(y, (3.12)

The gradient magnitude image is thresholded to get thespbiet are potentially
the edge points. After thresholding the gradient magnitudgemwe perform non-
maximal suppression. Non-maximal suppression is the pro€dsisning where a
potential edge pixel is checked for local maxima alongthdient direction. The
gradient direction is perpendicular to the edge direction.
3.5.2Method 2

In the second method, an active contour based snakgyenarimization
algorithm (Ying et al., 2005) was used to segment out the ileexae from nutmeat.
This method is a combination of edge-based method and sesg@d growing (SRG).
Edge detection was performed by using gray scale morphalatjiation residue edge
detector. Before the dilation residue edge detectqpbeal, the images were first closed
to remove the noise after which the contrast enhandenanperformed by using top hat
transformation.

The seeds points were deployed in the edge-detected imé&gegaon growing
was performed by using an active contour based snake emariyization algorithm
(Ying et al., 2005). The detailed description of the algoritmmow presented.
3.5.2.1 Active contour based snake energy minimization algorithm

Grayscale morphology is simply a generalization of lyimaorphology to images
with multiple bits per pixel, where thidax andMin operations are used in place of the
OR and AND operations. Grayscale erosions and dilapoyguce results identical to the
nonlinear minimum and maximum filters. The significan€@onlinear operations, as

opposed to linear operations, is thatlinear operations can be used directly for making
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decisions about regions of theimage. Nonlinear operations are therefore of particular use
in image analysis. The structuring element used here is a 3D structuring elanieere

the first two dimensions give the neighborhood informatwbiie the third dimension

gives the gray scale magnitude.

The structuring element used for the project is shovigume 3.6.

H B

Figure 3.6 Structuring element

The figure 3.7 shows the flowchart of the complete a@lgaorthat was used to
segment out the pecan weevil larvae from the nutmdéag as active contour based

snake energy function.
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Figure 3.7 Complete Algorithm Flowchart
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The gray scale morphological contrast enhancemenaopemwas performed by

the following enhancement operator:

K™ =F +WTH (F)-BTH (F) 13)
Where

WTH (F) = F —(F - B) (White top hat transformation) (3.14)

BTH(F) =(F « B)-F (Black top hat transformation) (3.15)

This combined contrast enhancement operator wdgedpigratively to enhance the
bright and dark regions of the image.

Gray scale morphological edge detection can bepedd by using either
erosion residue edge detector or dilation residige eletector. The dilation residue edge
detector was used in this research. Mathematidakydilation residue edge detector is
defined as:

E,(F)=(FOB)-F (3.16)
3.5.2.2 Region growing

The goal of region growing is to divide the domRinf the imagéd- into sub

regions Ri, i = 1, 2, m} so that

RZQP‘ (3.17)
R R =01 # |

Seeded region growing (SRG)

Seeded region growing algorithm (SRG) is a new @ggr where instead of
controlling region growing by fine-tuning homogeygarameters, SRG is controlled by
choosing a small number of pixels, known as seBasse seed pixels are chosen by user

according to his own opinion what should be regimnsxtract on the image. The basic
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idea of region growing is to have a set of seed pointappdnd to it the neighboring
pixels that have got property similar to seed points.régen is grown in such a way
that the homogeneity is preserved in each reBion

Firstly, the seeds were grouped into n sets: C1, C2.AiGrach step of the
algorithm one pixel was added to some of the sets Ci, w1Consider, the state of sets
Ci, after n steps. Let Y be the set of unallocatedlpiwhich borders at least one of the
regions, which means that Y is the set of all pixdigctv are on the borders of the

regions that are formed until now. The set Y caddmribed as:
Y{xDUCi‘M(x)mUCi ¢o} (3.18)
i=1 i=1

Where M(x) is the set of immediate neighbors ofgihel| x. For this research, 8-

connectivity i.e. 8 neighbors surrounding each pixel [gemented.

3.5.2.3 Problem with traditional seeded region growing (SRG) and solution

For this hybrid method of image segmentation, the edgadbatrmation was
combined with the seeded region growing algorithm. The regiiowing process was
performed on edge extracted image. The edges extractethoterievays continuous.
The morphological dilation residue edge detector do produces ¢aiggeare relatively
continuous than Canny edge detector, however still soroerdisuity exist in the edge
extracted image. This results in the traditional regyawing algorithm to grow through
the gap of the edge in an uncontrolled fashion.

To overcome this problem a constraint similar to snakeggnfunction was

introduced. The boundary condition is different fromshake energy approach because
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the first one controls the growing process of eacloregnd the last one controls the
reaching process of an edge vector (Ying et al., 2005).
The idea of this function is to grow region in such a wsyo minimize the

energy function. The Cost energy function is given as
N - -
Ewost = 2 (E() + E (i) (3.19)
i=1

Where,

E.(i) is the edge shape cost

E (i) is the reached edge cost
The edge shape cost and reached edge cost cafiresl des:

E)=als -5, +B 5125 +s.,[ (3.20)

E (i) =-|255-F(s))/255| (3.21)

F(s): Pixel value of the edge extracted image at [mski
The equation (3.20) defines the edge shape. Tlearneder alpha defines the spacing
between the control points i.e. the smoothnesBeofbntour and the parameter beta
defines the curvature that can be allowed for gaehmed edge. The equation (3.21) takes
into the consideration the gray level informatidnie region. The region growing
process stops when it reaches the edge boundBhniesegion growing process can be
controlled by setting up the parameters alpha atal. bn equation (3.19), N represents
the number of boundary point and the order of thendary points is counterclockwise
along the contour of the regios. is the coordinate of the ith boundary.

By minimizing the boundary conditidfy  , the region is attracted to grow to the

boundary with the lowest cost, such as edge lines.
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3.5.2.4 Region merging

Region merging is performed to combine two regions thatgiedatively small
boundary length. Region merging is usually performed tonaati® the image
segmentation process. Here, the seed points are randemip and the regions that have
relatively small boundary length between them are nter@ee of the ways to perform
the region merging is to set a threshold and merge ghensewhere the number of edge
points in the boundary falls below the threshold.
3.5.2.5 The problem faced with thisalgorithm

The contour points were taken in the counter clockaastion along the
contour of the region. The minimum distance criteneas used to find the next point in
counter clockwise direction from the current point.sTiminimum distance criterion does

not always work. For example consider the figure 3.8 shioslow:

N N-1

37

$ 0

15
16 17

Figure 3.8a Rectangular boundary Figure 3.8b Random boundary
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The figure 3.8a shows the contour extracted from thamgalar region grown.

S1 was chosen as the starting point. Then, the previons$®and next point S2 were
determined. Proceeding in the counter clockwise direcB@nyas assigned as the current
point and S1 as the previous point. The next point wasechsuch that it was at the
shortest distance from S2 in the 8-neighborhood and wyashpreviously unallocated.
This algorithm worked well for the object with rectangludaundaries.

However the region can grow in any shape as dictaté¢debgdges. Consider the
figure 3.8b where the region has grown to a shape as shtexa for the pixel 34, 37 is
the closest point instead of 35. So the algorithm woulg@$y as its next point missing
out pixels 35 and 36. These unaccounted pixels may add up agitegrows up to a
significant amount. This may give a wrong value for thergy function. It may create a
problem in extreme cases and region may grow out ofayapseyond control.

However, for the images that were used, this problermeasncountered as the number
pixels missed out are not high enough to change thgeralue by a significant

amount.
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4. Results and discussons

4.1 Diffuse r eflectance measur ements

The figures 4.1, 4.2 and 4.3 show the diffuse reflectanesumements of pecan
nutmeat and weevil larvae. The reflectance data wasnalok for live weevil larvae, dead

weevil larvae and weevil larvae preserved in 95% ethanol.

WVieavil larnvae and nutmeat reflectance

12

08

06

Reflectance

0.4 4

02

0 500 1000 1500 2000 2500 3000
Wavelength (nmy

Figure 4.1 Diffuse reflectance measurements of pecan weevil larvae and nutmeat
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1.2

Vieenudl larvae and nutmeat reflectance
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Figure 4.2 Diffuse reflectance measurements of pecan weevil larvae and nutmeat
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Weanil larvae and nutmeat reflctance
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Figure 4.3 Diffuse reflectance measurement of pecan weevil larvae and nutmeat
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Visual analysis of figures 4.1, 4.2 and 4.3 show the higgflactance of nutmeat.

The average reflectance of weevil larvae (both dead agddnd nutmeat are shown in

figure 4.4.
Average reflectance spectra
1
Nutmeat
0.8 r‘ﬁ‘
o Weevil larvae
c 0.6
E Preserved
= 0.4 / M weevil larvae
4
0.2 // \/L\A
0+—— .
0 1000 2000 3000
Wavelength (nm)

Figure 4.4 Average Diffuse reflectance measurement of weevil larvae, weevil larvae
preserved in 95 % ethanol and pecan nutmeat
4.2 Data Analysis
The wavelength from 800 nm and 2500 nm showed a large variangeeheihe
pecan nutmeat and the weevil larvae. Principal compomahisas was performed to
capture the variance distribution between the weewiaaand nutmeat. A single
principal component (PC1) was sufficient to describevén@nce. The figure 4.5 shows

the result of PCA.
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Principal Component: PC1
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Figure 4.5 Principal component analysis (PC1)

Analyzing figure 4.5, the maximum variance was found tot4880 nm.
However, it was outside the spectral response rangesiiton CCD. The range 850 nm
to 985 nm showed a considerable amount of variance with maxiatance at 982 nm.
This wavelength was exploited to design a low cost spéitral imaging system.

The derivative analysis was used in conjunction withPThe point at which the
derivative changes sign is of significant importance esveals the maximum variance
between pecan weevil larvae and the nutmeat. Thealérstatives graphs of the nutmeat,
weevil larvae and preserved weevil larvae are showmyindi4.6, 4.7 and 4.8
respectively. Figure 4.9 shows the derivative graphs superighfpasanalysis. Three
potential wavebands at 856 nm, 940 nm and 982 nm were identifisdléztion of

narrow band pass interference filters. The images a&gaired at 855 nm, 940 nm and
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980 nm. However, only the images at 980 nm showed signifacamtast difference
between weevil larvae and nutmeat. This is due to thefdugher variance at 980 nm

than at 940 or 850 nm as revealed in figure 4.5.
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Figure 4.6 First derivative of nutmeat
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Figure 4.7 First derivative of weevil larvae
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Figure 4.8 First derivative of preserved pecan weevil larvae
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Figure 4.9 Derivative graphs superimposed
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By studying the results of the principal component amabsd the derivate
analysis, four wavebands that captured the maximumneaibetween nutmeat and
weevil larvae were determined. The wavelengths are giverder of maximum variance
between pecan weevil larvae and pecan nutmeat.

1. 981 nm
2. 940 nm
3. 902 nm

4. 855 nm
4.3 Image acquisition and Canny edge detection

The figure 4.10 shows an image acquired at 980 nm of the pataeat
interspersed with weevil larvae before Gaussian filterT he figure 4.11 shows the
denoising result of the acquired image. The figure 4.12 shmvwsegmentation result
using Canny edge detector. A variable threshold of 0.15-0.4 wsadadle standard
deviation of 5 — 41 were used to perform the Canny edge detémtieach of the 50
images in the training database.

The section 4.4 shows the segmentation result foraifirig images by using
method 1. In this method, thresholding was performed fekbiay morphological
cleaning and closing with a disk as a structuring elememtinihges were acquired at
980 nm. These images were filtered by a Gaussian filteerof mean and unit variance.
The threshold value used for the 50 images in the trainitaipase is shown in figure
4.14. Average threshold was calculated to be 108. This tideafas used on the 50 test
images with 74 percent correct classification. The type@ was determined to be 0

percent.
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Image: 1

Figure 4.10 Example image acquired at 980 nm

Figure 4.11 Gaussan filtered image
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Edge Detection of Image: 1

Figure 4.12 Result of Canny edge detection
4.4 Segmentation resultsfor training images using method 1
The segmentation using Method | was performed on all then&@es in the
training database. The figure 4.13 illustrate the segmentadsults obtained for five
images at 980 nm. The classification accuracy for thegming images is shown in

table 4.1.
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Figure 4.13: Segmentation results for training images using method 1

Gaussian filtered image 1 Segmented image 1

Gaussan filtered image 2 Segmented image 2
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Gaussian filtered image 3 Segmented image 3

Gaussian filtered image 4 Segmented image 4
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Gaussian filtered image 5 Segmented image 5

The threshold used for the 50 training images is shown irefiguird. The

average threshold of 108 is superimposed on the graph ter tsualization. This

threshold is later used on the 50 test images.
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Figure4.14: Figure showsthe value of threshold used for each imagein thetraining

database. The average threshold value of 108 is superimposed on thefigure.

The table 4.1 shows the classification accuracy of dtethon 50 training images

Table 4.1: Segmentation resultsfor 50 training images

Sample Detection of weevil larvae Classification

1 Complete Correct
2 Complete Correct
3 Partial Correct
4 Complete Correct
5 Complete Correct
6 Complete Correct
7 None Wrong

8 Complete Correct
9 Complete Correct
10 Complete Correct
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Sample Detection of weevil larvae Classification

11 Complete Correct
12 Complete Correct
13 Complete Correct
14 None Wrong
15 Complete Correct
16 Complete Correct
17 Complete Correct
18 Complete Correct
19 None Wrong
20 Complete Correct
21 Complete Correct
22 Complete Correct
23 Partial Correct
24 Partial Correct
25 Complete Correct
26 None Wrong
27 Partial Correct
28 Complete Correct
29 Complete Correct
30 Complete Correct
31 Complete Correct
32 None Wrong
33 None Wrong
34 Complete Correct
35 Complete Correct
36 Complete Correct
37 Complete Correct
38 None Wrong
39 Complete Correct
40 Complete Correct
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Sample Detection of weevil larvae Classification

41 Complete Correct
42 Complete Correct
43 Partial Correct
44 None Wrong
45 Complete Correct
46 Complete Correct
47 Partial Correct
48 Complete Correct
49 Complete Correct
50 Partial Correct

4.5 Segmentation results. Type2error

The type 2 error is the error in which parts of the pexameat are mistakenly
classified as pecan weevil larvae. Fifty images wetaioéd to determine the type 2
error. The segmentation results for five imagesshoavn below for illustration. The

classification accuracy for the 50 training images is shiovtable 4.2.

58



Figure 4.15: Segmentation results: Type 2 error

Final Image after tresholding 1

Gaussian filtered image 1 Segmented image 1

Final Image after tresholding 2

Gaussian filtered image 2 Segmented image 2
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Final Image after tresholding 3

Gaussian filtered image 3 Segmented image 3

Final Image after tresholding 4

Gaussian filtered image 4 Segmented image 4
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Final Image after tresholding 5

Gaussan filtered image 5 Segmented image 5
The table 4.2 shows the Classification accuracy in datergithe type 2 error

Table 4.2: Segmentation resultsdetermining Type 2 error

Sample Detection of weevil larvae Classification

1 None Correct
2 None Correct
3 None Correct
4 None Correct
5 None Correct
6 None Correct
7 None Correct
8 None Correct
9 None Correct
10 None Correct
11 None Correct
12 None Correct
13 None Correct
14 None Correct
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Sample Detection of weevil larvae Classification

15 None Correct
16 None Correct
17 None Correct
18 None Correct
19 None Correct
20 None Correct
21 None Correct
22 None Correct
23 None Correct
24 None Correct
25 None Correct
26 None Correct
27 None Correct
28 None Correct
29 None Correct
30 None Correct
31 None Correct
32 None Correct
33 None Correct
34 None Correct
35 None Correct
36 None Correct
37 None Correct
38 None Correct
39 None Correct
40 None Correct
41 None Correct
42 None Correct
43 None Correct
44 None Correct
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Sample Detection of weevil larvae Classification

45 None Correct
46 None Correct
47 None Correct
48 None Correct
49 None Correct
50 None Correct

4.6 Segmentation resultsfor testing images using Method 1

The segmentation using Method | was performed on all then&@es in the
testing database. The average threshold of 108 was ussghterst the 50 testing
images. The figures 4.16 illustrate the segmentationtsesidained for five images at
980 nm. The classification accuracy for the 50 testing @nagshown in table 4.3.

Figure 4.16 Segmentation resultsfor testing imagesusing method 1

Gaussian filtered image 1 Segmented image 1
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Gaussian filtered image 2 Segmented image 2

Gaussian filtered image 3 Segmented image 3
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Gaussian filtered image 4 Segmented image 4

Gaussian filtered image 5 Segmented image 5

The table 4.3 shows the classification accuracy of dtethon 50 testing images
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Table 4.3: Segmentation resultsfor 50 testing I mages

Sample Detection of weevil larvae Classification

1 Partial Correct
2 Complete Correct
3 Complete Correct
4 Partial Correct
5 None Wrong

6 Complete Correct
7 Partial Correct
8 Complete Correct
9 Complete Correct
10 None Wrong
11 Complete Correct
12 Partial Correct
13 Partial Correct
14 Complete Correct
15 Complete Correct
16 Partial Correct
17 None Wrong
18 Partial Correct
19 None Wrong
20 Complete Correct
21 Complete Correct
22 Partial Correct
23 None Wrong
24 Complete Correct
25 None Wrong
26 Partial Correct
27 Complete Correct
28 None Wrong
29 Complete Correct
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Sample Detection of weevil larvae Classification

30 None Wrong
31 Complete Correct
32 Complete Correct
33 Complete Correct
34 None Wrong
35 Partial Correct
36 Complete Correct
37 Partial Correct
38 None Wrong
39 Partial Correct
40 Complete Correct
41 None Wrong
42 Complete Correct
43 Complete Correct
44 Complete Correct
45 Complete Correct
46 Complete Correct
47 None Wrong
48 Partial Correct
49 None Wrong
50 Partial Correct
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4.7 Segmentation result using method 2
The result of segmentation using the active contaget energy minimization
algorithm is shown in figure 4.19. The parameters set to 1 ang3 is set to 0.5. The

figure 4.17 shows the result of dilation residue edge aetaad figure 4.18 shows the

seed point that was deployed to extract out the weevddar
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Figure4.17: Dilation residue edge detector
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Region Growing, Iteration: 1
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Figure 4.18 Deployment of a Seed point
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Figure 4.19 Region growing iteration 10 to 60

Region Growing, Iteration: 10

Region growing, iteration 10

Region Growing, Iteration: 20

—

Region growing, iteration 20
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Region Growing, lteration: 30

Region growing, iteration 30

Region Growing, Iteration: 40

Region growing, iteration 40
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Region Growing, Iteration: 50

Region growing, iteration 50

Region Growing, Iteration: 60

Region growing, iteration 60
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Energy Minimization

-500 s
-1000 -
-1500 s
-2000 -
Energy

-2500 —
-3000 s

-3500 —

-4000 F -

_AEDD 1 1 L 1 1 1
] 10 20 30 40 50 G0 o

Region Growing lteration

Figure 4.20 Energy minimization

The figure 4.20 shows the convergence of the algorithm tmianonm energy
value. The energy of the system decreases as tlmrggiws. The global minimum is
achieved at iteration 57. The boundaries of the object thevminimum energy so the
region is attracted to grow towards the edges of the bfjais algorithm is robust to
local minima as we can see in the figure. At iteraB0 the algorithm forced itself out of
the local minima and algorithm converged to a global minih@ energy units are just

for reference and holds physical significance.
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5. Conclusions and futurework

This research describes the design and testing of edsetimultispectral imaging
system to segment out weevil larvae from pecan nutfbatVIS/NIR Labspec Pro
spectrometer from Analytical Spectral Devices Inc., Baul@®, was used to obtain the
diffuse reflectance measurements of the pecan weevdé and nutmeat. The reflectance
measurements were obtained from 400nm to 2500nm.

The reflectance data was analyzed using PCA and deeatalysis. The
maximum variance between pecan nutmeat and weevil laraa@at 1380nm. However,
1380 nm is beyond the spectral sensitivity of silicon CTle four potential
wavelengths in the spectral range of silicon CCD waeatified as 855nm, 902nm,
940nm and 981 nm.

The images were taken at 855nm, 905nm, 940nm and 980nm with a NIR
enhanced camera, AVT Dolphin F 145-B from Allied Vision Ar@logies,

Newburyport, MA. However, only the images acquired at 988howed significant gray
scale contrast between pecan nutmeat and weevil larkieewas the result of higher
reflectance variance between weevil larvae and nutageavident in the PCA graph.

Two segmentation methods were successfully implerddntsegment out pecan
weevil larvae from the nutmeat. The first method wasgps and used thresholding
followed by morphological cleaning and closing. The seconthedeused a hybrid
approach that combined region growing with gray scale mérglwal edge detection. It

is a robust method and can segment out regions with mexdges.
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The segmentation results for training and testing imagesummarized in table
5.1. The classification accuracy of 84% was obtainedh®training images and 74% for
the testing images. The lower classification accufacyraining and testing images was
as a result of insufficient lighting. The heat genatdigthe IR lamp limited the
maximum power and hence the light from the IR bulb. ifeges were acquired over a
period of 30 days. The ambient lighting conditions mafedifom day to day. The
variable ambient lighting was also a major factordarer classification accuracy. The
type 2 error (wrongly classifying nutmeat as weevil larvaa$ determined to be 0% for

both testing and training images.

Table 5.1 Classification results

Summary Table

Training (50 images)
Correctly Classified  Percentage Accuracy
Type 1 error 42 84

Type 2 error 50 100

Testing (50 images)
Correctly Classified  Percentage Accuracy
Type 1 error 37 74

Type 2 error 50 100

The higher classification accuracy can be obtaineanpjementing multiple
multispectral imaging systems in series along the gameelt. The pecan weevil larvae
that have not been detected by the first imaging sydtento disorientation can be

segregated by the second imaging system.
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This project may be viewed as a preliminary work to idemégan weevil larvae
from the nut meat. A more robust system can be dewlbpacquiring images at
1380nm using IR camera with InGaAs image sensor. A more ralggsithm such as an
active contour based snake energy minimization algomttmold be used instead of
simple masking operation to yield better results. Thisogetan also be extended to

detect other insects affecting pecan nutmeat.

76



6. References

Anderson, 1.M.2005. Multivariate statistical methodsdaantitative analysis of series of
spectra and images. Available lttp://www.ornl.gov/sci/share/msad4micro.html

Avantes. 2004. Stray light and second order effects. aviailat:
http://www.avantes.com

Badhwar, G.D., Carnes, J.G., and Austin, W.W. 1982. Ukamlsat-derived temporal
profiles for corn-soybean feature extraction and dlaaton. Remote Sensing of
Environment.12 (1): 57-59.

Barn, E. 2005. Analog Dialog. Available at:
http://www.analog.com/library/analogDialogue/archives/32givs_pro.html

Bessin, R. 2005. Extension Entomologist Nut Weevils Unityeos Kentucky College of
Agriculture. Available at:
http://www.uky.edu/Agriculture/Entomology/entfacts/pdfs/aA@7.pdf

Bessin, R. 2005. Extension Entomologist Nut Weevils Unityeos Kentucky College of
Agriculture. Available at:
http://www.uky.edu/Ag/Entomology/entfacts/fruit/ef210.htm

Bolton, J. 2002. Center for airborne remote sensing amhddogy and applications
development. Available at:

http://carstad.gsfc.nasa.gov/topics/CALIBRATION/erim99Eman. html

77



Brabec, D.L., and Schwartz, C.R. 2003. Detection ofmatiensect infestation in whole-
wheat kernels using a Perten SKCS 4I0@nsactions of the ASAE. 19(6): 727-
733.

Cardinal, S. 2002. Secrets of spectroscopy revealed. iditywef Rochester. Available
at: http://www.sla.org/division/dche/sue.pdf

Chaney, S. 2005. Pecan weevils can be disastrous pestsrecord news. Available at:
http://gardening.timesrecordnews.com/reader.cfm?cat=hdiéefecanweevils

Choudhary, R. 2004. Rapid estimation of lycopene concemtratiwatermelon and
tomato samples by fiber optic visible spectroscopy, Anmiatnational Meeting
of the ASAE.

Cogdill, R.P., Hurburgh, C.R., Rippke, G.R. 2004. Single Klenmaize analysis by near
infrared hyperspectral imaging, 47(1): 311-320.

Douce, K.G. 2000. The University of Georgia, Departmentrwd&ology.Pecan pest
Management Handbook. Available at:
http://www.gaipm.org/pecan/scout/html/weevil.html

Economic Research Service. 2003. USPBAJit and Tree Nuts Outlook/FTS 304.

Ellis, H.C., Tifton, and Horton, D.L. 2005. Available &ttp://www.bugwood.org

Facciola, S. 1990Cornucopia-a source book of edible plants. Kampong Publications.

Gamal A. E., Fowler, B., Min, H., Liu, X. 199Blodeling and estimation of FPN
components in CMOS image sensors. Information syslemsatory, Stanford
University. Available athttp://www-

isl.stanford.edu/~abbas/group/papers_and_pub/fpn_spie_98.pdf

78



Gat, N., and Subramaniam, S. 1997. Spectral image: Tedyahd applications
Hyperspectrum News Letter 3(1) Optoknowledge, Systems, Inc. Torrance, Calif.

Gonzales, R.C., and Woods, R.E. 2002. Digital image primgessecond ed. Published
by: Prentice Hall, New Jersey.

Halarick, R.M., Hlavka, C.A., Yokoyama, R., and Carly#eM. 1980. Spectral-temporal
classification using vegetation phenolotiyEE Trans. Geoscience and remote
sensing GE-18: 167-174.

HDTV-source, 2004. HDTV glossary of terms. Availablettp://www.hdtv-
source.com/hdtv-terms.php

Heitschmidt, J., Lanoue, M., Mao, C., and May, G. 1998. Hygestral analysis of fecal
contamination: a case study of poultPyoc. SPIE 3544: 134-137.

Holtzman, J. 2005. New Mexico state university. Dept. ttbasmy. Basic principles
and properties of CCDs. Available at:
http://ganymede.nmsu.edu/holtz/a535/ay535notes/node35.html

Hornsey, R.l. 2005. University of Waterloo. Noise in geaensors. Available at:
http://www.imse.cnm.es/~linan/MESPI/Downloads/Tema3/ldepiCMOS_3.pd
f

Hruschka, W.R. 2001. Chapter 3: Data Analysis: Wavelend#dti&s Methods. In:
Near Infrared Technology in the Agricultural and Food Industries 39-58.P.
Williams and Norris, eds. St. Pal, MN. American Asaton of Cereal Chemists,
Inc.2001.

Japan Association of Remote Sensing. 1996. Available at:

http://www.profc.udec.cl/~gabriel/tutoriales/rsnote/cp10/cpl®r8.h

79



Jervis, B. 2004Horticultural Diseases and Pests Tulsa County Extension Horticulturist.
Available at:http://www.tulsamastergardeners.org/plant_pathology/mgghitrsl

Kim, M.S., Chen Y.R., Mehl, P.M. 2001. Hyperspectraleetnce and fluorescence
imaging system for food quality and safetyans. ASAE Vol. 44(3): 721-729.

Kim, M.S., Chen, Y.R., and Kong, S.G. 2004. Detectioskiri tumors on chicken
carcasses using hyperspectral fluorescence imagiagsactions of the ASAE.
47(5): 1785 — 1792.

Kim, M.S., Lefcourt, A.M., Chen, Y.R. 2003. Multispedtlaser-induced fluorescence
imaging systemAppl. Opt. 42:3927-3934.

Kim, M.S., Lefcourt, A.M., Chen, Y.R., Kim, I., ChaK., and Chan, D. 2002
Multispectral detection of fecal contamination on apflased on hyperspectral
imagery. Il. Application of fluorescence imagimgans. ASAE 45: 2027-2038.

Kim, M.S., Lefcourt, A.M., Chen, Y.R., Kim, I. 2002. Migpectral detection of fecal
contamination on apples based on hyperspectral imagdyplication of
visible—near infrared reflectance imagifigans. ASAE 45:2017-2026.

Kotwaliwale, N. 2003. Feasibility of physical properties aoft x-rays attenuation
properties for non-destructive determination of qualitputimeat in in-shell
pecans. Oklahoma State University.

Lighting Design Knowledge bases. 2005. Available at:
http://www.schorsch.com/base/glossary/reflectano®. ht

Lu, R., and Chen, Y.R. 1998. Hyperspectral imaging for gafepection of food and

agriculture productsroc. SPIE 3544: 121-133.

80



Lu, R., Chen, Y.R., Park, B., and Choi, K.H. 1999. Hypaspéimaging for detecting
bruises in appleASAE Paper No. 993120. St. Joseph, Mich.: ASAE.

M&M Backgrounder Winter, 2005. PCA Supplement. Understandingcipal
Components and the MBH98 Resullwailable at:
http://www.uoguelph.ca/~rmckitri/research/PCnotes.pdf

Marshall, P. 2005. Using telephoto lenses. Available at:
http://photography.about.com/od/basics/a/bptelephoto.htm

Mathematica Information center .2005. Wolfram ReselrchAvailable at:
http://library.wolfram.com/infocenter/MathSource

McCraw.2002. Professor/Extension Tree Fruit & Pecanigi¢c Oklahoma State
University, Stillwater. Managing native pecdngure Farms 2002: A
Supermarket of Ideas.

McFee, C. 2005. Noise sources in a CCD. Available at:
http://www.mssl.ucl.ac.uk/www_detector/optheory/darkcurtemnl

Mehl, P.M., Chao, K., Kim, M. Chen, Y.R. 2002. Detegtaf defects on selected apple
cultivars using hyperspectral and multispectral image aisalgpplied
engineering in agriculture. Vol 18(2): 219-226.

Mehl, P.M., Kim, M.S., Lefcourt, A.M., Chen, Y.R., i I., Chao, K. 2002. Detection of
contamination on selected apple cultivars using hyperspeaciamnultispectral
image analysisApplied Eng. In Agric. 18(2): 219 —226.

Miller, W.M., Throop, J.A., and Upchurch, B.L. 1998. Patteecognition models for
spectral evaluation of apple blemishBgstharvest Biology and Technology 14:

11-20.

81



MIR, 2000. Depth of Field: One of the most important eles@nphotography.
Malaysian internet resources. Available at:
http://www.mir.com.my/rb/photography/fototech/htmis/deptimih

Moerman, D. 1998 Native American ethnobotany. Timber Press, Oregon.

Moerman, D.E. 1999Native American ethnobotany database: Foods, drugs, dyes and
fibers of native North American peoples. The University of Michigan-Dearborn.
Available at: http://www.umd.umich.edu/cgi-bin/herb

Ocean optics. 2005. Overview: Ocean Optics Light Sources.

Available at:http://www.oceanoptics.com/Products/spectraloutput.asp

Oliver, J. 2004. CCD observing full well, noise, ADUs, agdamic range. Available at:
http://www.astro.ufl.edu/~oliver/ast3722/lectures/CCDImagi@Dénaging.htm

Oriel Instruments, 2005. Filter characteristics. Avadaat:http://ece-
www.colorado.edu/~ecen5606/Labs/10030.pdf

Park, B. and Lawrence, K.C. 2005. Hyperspectral and multispétiaging. ASAE
International meeting, Tampa, Florida.

Park, B., et. al. 1996. Characterizing Multispectral Imag&aumorous, Bruised, Skin-
Torn, and Wholesome Poultry Carcas3eans. ASAE, Vol 39(5): pg.1933-1941.

Pearson, T. 1995.Machine vision system for automated aetexftstained Pistachio
Nuts American chemical society S0021-8561 (98) 00218-0

Pearson, T., and Young, R. 2002. Automated sorting of Aimaitdisembedded shell by
laser transmittance imagingransactions of the ASAE. 18(5): 637-641.

Photographytips, 2005. Lens selection. Available at:

http://photographytips.com/page.cfm/468

82



Polder, G., Heijden, Young. 2002. Spectral Image Analysismeasuring ripeness of
Tomatoeslransactions of the ASAE. 45(4): 1155-1161.

Press, W.H., Flannery, B.P., Teukolsky, S.A., andeviatg, W.T. 2005. Numerical
Recipes in C : The Art of Scientific Computing. Availalait:
http://www.library.cornell.edu/nr/bookcpdf/c14-8.pdf

Roberts, C.A., Workman, J., Reeves, J.B. 2004. Neardafrf@pectroscopyigronomy
No. 44.

Ryan, L. 2005. How scanning systems which acquire remosingettata work.
Available at:http://www.geo.utep.edu/pub/keller/Resolution/Resolution.html

Saaristo, T. 2005. Pecans. Available at: http://toms@acom/pecans.html.

Schneider, K.S. 2005. Chapter 2, the fiber optic data comations for the premises
environment, Available ahttp://www.telebyteusa.com/foprimer/fofull.htm

Shearer, S.A., Payne, F.A. 1990. Color and Defect SavfiBgll Peppers using Machine
Vision. Trans ASAE, Vol. 33(6): pg. 2045-2050.

Shenk, J.S., Workman, J.J. 2001. Application of NIR spemtpysto agriculture
products. Pg. 419-474. In Burns, D. and Ciurczak (ed.). Neareafranalysis.
Marcel Dekker, New York.

Shi, J., Malik, M. 2000. Normalized Cuts and Image SegmentadifE transactions on
pattern analysis and machine vision. 22(8)

Siesler, H.W., Ozaki, Y., Kawata, S., Heise, H.M. 200&ar infrared spectroscopy,
principles, instruments, applications.

Smith, L.I. 2002.Tutorial on Principal Component AnalySlsapter 3. Available at:

http://www.cs.otago.ac.nz/cosc453/student_tutorials/principatponents. pdf

83



Spectroscopy. 2008entronic. Available at: http://getspec.com

StatSoft Inc., 2003. Principal Components and Factoty&rsaElectronic textbook.
Available at:http://www.statsoft.com/textbook/stfacan.html#index

Super Eska, SH4001, Mitsubishi Rayon Co Ltd, Tokyo, Japan

Tao. 1997. Closed—loop search method for on—line autonaiiications of multi—
camera inspection systenfsans. ASAE 41(5): 1549-1555.

Throop, D. J., Aneshansley, and Upchurch, B.L. 1995. An imageepsing algorithm to
find new and old bruise#pplied Eng. in Agric. 11(5): 751-757.

Tissue, B.M. 1996. Spectroscoszience hypermedia homepage. Available at:
http://elchem.kaist.ac.kr/vt/chem-ed/spec/spectros.htm

Turner designs, 2005. Overview of optical filters. Avaiaat:
http://www.turnerdesigns.com/t2/instruments/accessopésal_filters.html

Upchurch, Affeldt, H.A., Hruschka, W.R., Norris, K.HndaThroop, J.A. 1990.
Spectrophotometric study of bruises on whole Red @eitcapplesTrans. ASAE
33(2): 585-589.

Upchurch, Throop, J.A., and Aneshansley, D.J. 1994. Influeitt@e, bruise type, and
severity on near—infrared reflectance from apple seddor automatic bruise
detectionTrans. ASAE 37(5): 1571-1575.

USDA. 2002. Available at: http://www.uga.edu/fruit/pecan.htm

Vane. 1987. Airborne visible/infrared imaging spectromet&IAS). JPL Publication
87-38. Pasadena, Cal.: Jet Propulsion Laboratory.

Williams, P. and Norris, K. 2001. Near infrared technoldggcond ed. Published by:

American association of cereal chemists, Inc. Mint&so

84



Willoughby, T., Folkman, M.A., and Figueroa, M.A. 1996. Apation of hyperspectral
imaging spectrometer systems to industrial inspecRooc SPIE 2599: 264-272.

Wills, K. 2004. Lens. Available ahttp://www.scphoto.com/html/lens.html

Yang, C., Greenberg, S.M., Everitt, J.H., Sappingtov.Tand Norman, J.W. 2003.
Evaluation of Cotton Defoliation using airborne multigpaicimagery.
Transactions of the ASAE. 46(3): 869-876.

Ying, H.T., Cheng, L.C., Jiang, A.J, and Cheng, C.C. 20050Atour based Image

segmentation algorithm using morphological edge deted#d transaction

85



VITA
Chaital P. Shah
Candidate for the Degree of

Master of Science

Thesis: DETECTION OF PECAN WEEVIL LARVAE IN PEQANUTMEAT
USING MULTISPECTRAL IMAGING SYSTEM

Major Field: Biosystems Engineering
Biographical:

Personal Data: Born in Nadiad, India on November 19, 1880sdn of Upama
and Pankaj Shah.

Education: Higher secondary school certificate fromaya Vidya Bhavan,
Vadodara, Gujarat, India in June 1998; received Bachelor of
Engineering in Machatronics Engineering from Sardar Rhatelersity,
Vallabh Vidyanagar, Gujarat, India in June 2002; compléte
requirements for the Master of Science with a maydiosystems
Engineering at Oklahoma State University in July 2006.

Experience: Worked with Asea Brown Boveri (ABB), Vadajdsujarat, India
as an Intern Engineer, 2001; worked with Rotex Automatiited,
Vadodara, Gujarat, India as Research Engineer, 2002-2003; wasked
Graduate Research Associate at ‘Biosystems and Agnieult
Engineering Department’, Machine Vision Laboratory, Gkima State
University, Stillwater, OK, 2004-2006. Presently working in di@xs,
Denton, TX as a Factory Automation Specialist.

Professional Memberships: American Society of Agrizeitand Biological
Engineering (ASABE), Alpha Epsilon, Gamma Sigma Phi.



Name: Chaital Shah Date of Degredy,Ja2006
Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: DETECTION OF PECAN WEEVIL LARVAE INIPCAN NUTMEAT
USING MULTISPECTRAL IMAGING

Pages in Study: 83 Candidatetfeiiegree of Master of Science
Major Field: Biosystems Engineering

Scope and Method of Study: The food industry has zeratalerfor pecan weevils,
Curculio caryae or their larvae It is inevitable that some pecan weevil larvae will
be interspersed with pecan nutmeat during processing. ohereis required to
separate the weevil larvae from the nutmeat. This grajdizes multispectral
imaging techniques to detect and identify pecan weevil lanvpecan nutmeat.
Diffuse reflectance measurements were obtained fdr fitan weevil larvae and
pecan nutmeat using a spectrometer sensitive to visidleear infrared light.
Principle component analysis (PCA) and derivative arglysis performed to
identify the spectral wavelengths that best differeatigiecan nutmeat from
pecan weevil larvae. Four spectral wavelengths were sfatigsdentified using
these procedures. Multispectral images of pecan weevikantarspersed with
pecan nutmeat using the selected band pass interferkece\viiere obtained. The
images were taken with a NIR enhanced camera, AVT Dolpli#5-B from
Allied Vision Technologies, Newburyport, MA. The imagesre then processed
using various morphological image processing algorithriberifig, masking and
thresholding techniques. This method was compared to a &actigd contour
based image segmentation algorithm.

Findings and Conclusions: The maximum variance betweem petemeat and weevil
larvae was at 1380nm. The four potential wavelengths isgéetral range of
silicon CCD were identified as 855nm, 902nm, 940nm and 981 nm usiadg PC
and derivative analysis. The images acquired at 980nm shagveficant gray
scale contrast between pecan nutmeat and weevil larkiaeclassification
accuracy of 84% was obtained for the training images and @d%ed testing
images. An active contour based snake energy minimizatgorithm was robust
to broken edges and should be used instead of simple maskiagiap® yield
better results. Acquiring images at 1380nm using IR cameran@hAs image
sensor can develop a more robust system.

ADVISER’'S APPROVAL: Dr. Paul Weckler




