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CHAPTER I 
 
 

INTRODUCTION 

 

 
Figure 1: Eastern redcedar, Juniperus virginiana, in an Oklahoma field 

 If a pasture in Oklahoma is allowed to lie out of production, without being 

cultivated, mowed or sprayed, the owner might soon begin to notice the pointed tops of 

little evergreens sticking up past the grasses.  Allowed to continue without interruption, 

the little evergreens will shoot up, and after a few years the owner will only see wisps of 

grass between the trees.  Landowners across Oklahoma have battled this landscape 

phenomenon for years, utilizing pesticides and tree cutting, but the trees continue their 

takeover.  Juniperus virginiana, or eastern redcedar (as shown in Figure 1), is the primary 

source of these trees invading the fallow land of our state. 
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 Eastern redcedar grows in most of the United States east of the Rocky Mountains, 

ranging from South Dakota to southern Texas to southern Georgia to New England 

(Schmidt and Piva, 1996).  A small strip along the Gulf coast and some of the higher 

elevations in the Appalachian Mountain range are the only areas in this range that do not 

have eastern redcedar growth.  Because it is a pioneer invader, the tree is commonly 

found in prairies or oak barrens, old pastures, or limestone hills, often along highways 

and near recent construction sites (Farjon, 2005).  

There are several products made from redcedar, including fenceposts, lumber, 

mulch, and cedar oil.  However, the demand for each of these products is not great 

enough to provide a market for the abundance of eastern redcedar in Oklahoma.  

Converting redcedar to fuel would provide a market for it with inexhaustible demand.  

Gasification is one option for the conversion. 

Gasification is the process of converting a solid, organic feedstock in a high 

temperature, oxygen deficient atmosphere to a mixture of gases, known as producer gas 

or synthesis gas.  Though gasification of wood has been utilized to produce energy for 

decades, gasification of redcedar has been studied very little.  There are few gasifier 

designs that have been published.   

Gasifying redcedar would provide a two-fold benefit to the state of Oklahoma.  

First, there would be an added incentive for landowners to clear land, which would help 

to offset the cost of clearing pastures.  This would mean more useful grazing land for 

decades to come, and that is important to our state where cattle is a big industry.  Second, 

gasification will provide a new source of renewable energy.  Incorporating as many 
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renewable energy sources as possible to offset non-renewable, imported oil is an 

important goal in both Oklahoma and the entire United States of America.   

Gasification of eastern redcedar could have a great impact on the perception of 

redcedar in Oklahoma.  In addition to providing a source of “green” energy, it will add 

value to the currently-considered-nuisance plants taking over the landscape. 

However, existing gasifiers at Oklahoma State University were not available for 

gasification of redcedar because the byproducts of gasifying redcedar were not known 

and could potentially damage the existing gasifiers.  Published designs for gasifiers of the 

type desired for this research were not found.  Therefore, before gasification of redcedar 

can be studied, a new gasifier must be designed and constructed. 

Objectives 

The main goal of this project is to examine the feasibility of gasification of 

redcedar as a means of adding value to the crop.  The two specific objectives are:       

 Provide a detailed design of an updraft gasifier that can be used with a variety of 

feedstocks including eastern redcedar mulch 

 Test the quality and quantity of producer gas produced by the new gasifier using 

eastern redcedar mulch as a feedstock 
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CHAPTER II 

 

REVIEW OF LITERATURE 

Eastern Redcedar 

 Physiology 

To fully understand the feedstock for this research, the physiology of eastern 

redcedar is detailed here.  The scientific classification of eastern redcedar is as follows: 

 Kingdom: Plantae 

 Division: Pinophyta 

 Class: Pinopsida 

 Order: Pinales 

 Family: Cupressaceae 

 Genus: Juniperus 

 Species: J. virginiana 

Juniperus virginiana grows slowly and may never be larger than a dense bush 

when growing in poor soil.  Mature redcedar is five to twenty meters tall and can be as 

tall as thirty meters.  The single trunk is short and thirty to one hundred cm in diameter, 

with large specimens reaching 170 cm in diameter.  The oldest tree, found in Missouri, 

was 795 years old (Wikipedia, 2008).  Individual trees may be male or female and reach 

sexual maturity at about 10 years of age (Redcedar Task Force, 2002). 
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Redcedar seeds are small and brown; and one to four seeds are contained in a 

green to whitish-blue cone appearing like berries on the tree (Redcedar Task Force, 

2002).  These berries occur only on the female trees and are usually found in heavy 

amounts.  Mature trees produce some seeds nearly every year but good crops occur only 

every two to three years (Redcedar Task Force, 2002).  Pollen cones contain three to 

seven pairs or trios of sporophylls.  Each sporophyll has two to eight pollen sacs.  

Globose to ovoid seed cones mature in one year and are similar in size (FNA). 

Redcedar draws its name from its fragrant bright red to dull red heartwood that is 

very resistant to decay.  The sapwood is nearly white and thin (U. S. Forest Products 

Laboratory, 1974).  The U. S. Forest Products Laboratory (1974) describes the wood as 

“moderately heavy, moderately low in strength, hard, and high in shock resistance, but 

low in stiffness.  It has very small shrinkage and stays in place well after seasoning.  The 

texture is fine and uniform.  Grain is usually straight, except where deflected by knots, 

which are numerous.” 

Bark of redcedar is brown with thin strips peeling away from trunk and larger 

branches.  Branches can be pendulous to ascending with branchlets generally erect but 

sometimes lax to flaccid (FNA).   

Like other species of the genus Juniperus, the evergreen leaves of redcedar are 

cylindrical and tapering.  The green leaves can become reddish brown in winter (FNA).  

The branchlets are variously oriented and do not flatten into sprays.  Adult leaves are 

pressed close, divergent, and scale-like (Adams, 1970). 
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 Impact on Oklahoma Rangeland 

The size and growth patterns of eastern redcedar found in Oklahoma make it low-

quality for use as a raw material in the lumber industry, and there is no substantial market 

for it (Bidwell et al, 2000).  This fact has contributed to the fact that eastern redcedar 

often takes over crop and pasture land and becomes a pest in Oklahoma farm and ranch 

land (King and Lewis, 2000).  The decrease in open range also negatively affects wildlife 

species that need this range for habitat (Adams, 1987).  

In a 2004 news release, the Noble Foundation stated that, “Due mainly to fire 

suppression, eastern redcedar and ashe juniper (redcedar) had invaded almost 1.5 million 

acres (6,000 square km) in Oklahoma by 1950, 3.5 million acres (14,000 square km) by 

1985 and 6 million acres (24,000 square km) by 1994. Currently, the Oklahoma Natural 

Resources Conservation Service estimates that Oklahoma is losing 762 acres (3.0 square 

km) of rangeland, one of the state’s most diverse and valuable ecosystems, per day.” 

  The Noble Foundation news release went on to say, “According to research, two 

hundred-fifty redcedar trees per acre (1 tree per 16 square meters) covering 28 square feet 

(2.6 square meters) each (a six-foot (1.9 meters) crown diameter), about one tree every 13 

feet (4.0 meters), would reduce herbaceous production (grasses and forbs) by 50 

percent.”  A 50 percent reduction in grasses would directly correlate to a 50 percent 

reduction in the number of cattle that could graze the acreage.  With cattle being an 

important industry in Oklahoma, this type of reduction only enforces the concept of 

redcedar being a nuisance in Oklahoma.  
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Current Uses of Eastern Redcedar 

While redcedar can be considered a nuisance plant in Oklahoma and other areas, 

it is in commercial production in the southern Appalachian Mountain Range and 

Cumberland Mountain Range (U. S. Forest Products Laboratory, 1974).  It is the hope of 

many to promote commercial production in Oklahoma.  

 Many associations have been created to spread information about eastern 

redcedar.  The Aromatic Cedar Association (formerly the Oklahoma Redcedar 

Association) lists its goals as: “to provide information regarding the management and 

utilization of ‘aromatic cedar’; to connect businesses, individuals and government 

agencies together; and to promote and develop the eastern redcedar industry.”  The 

Aromatic Cedar Association holds annual conventions to promote its goals.  The 

convention objective of the 2008 convention held at the Payne County Expo Center in 

Stillwater, OK, was “to provide a common forum for the discussion of eastern redcedar 

and similar species, with particular emphasis on utilization and product marketing”.  

Topics presented at the convention included biomass energy and carbon credits, wood 

pellets for fuel, adding value to redcedar, how to start and maintain a business, redcedar 

control programs, grant possibilities, and cellulosic ethanol.  This convention’s objective 

and presentations demonstrate the desire of many people to utilize this natural resource so 

that it may be regarded as such instead of as a nuisance plant. 

 There are many products made from redcedar.  Current commercial uses of 

redcedar include: 
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Fenceposts 

Because of its durability, eastern redcedar has long been used for 

fenceposts.  Posts made from redcedar are very resistant to rot after seasoning 

(Ferguson, 1974).  Often, the bark and sapwood will degenerate from the post 

leaving the red heartwood post (Ferguson, 1974).  The wood shrinks very little 

during drying and is not greatly affected by changes in atmospheric moisture 

making it stay well in place after seasoning (Ferguson, 1974).  It is moderately 

hard but very workable with a straight grain except for knots that are harder than 

surrounding wood but usually tight (Ferguson, 1974).  The wood splits easily and 

holds nails reasonably well (Ferguson, 1974).  Many of the nuisance trees in 

Oklahoma are of a size which would be useful for fenceposts, but the demand is 

not great. 

Lumber 

The wood can also be used for lumber and has been valued for its beauty 

and resistance to rot for over 3,000 years (Redcedar Task Force, 2002).  However, 

the lumber is rarely used for its structural strength due to the many knots 

occurring in the wood because of the high number of limbs, but these knots only 

add to the attractiveness of the wood (U. S. Forest Products Laboratory, 1974).  

Redcedar wood is generally chosen for its beauty and its anti-fungal and anti-

microbial properties, so the presence of the dark, tight or sound knots in its wood 

does not pose a problem (U. S. Forest Products Laboratory, 1974).  Because it 

deters moths, the lumber is often used for chests, wardrobes, or closets (U. S. 

Forest Products Laboratory, 1974).  It is also utilized as flooring, novelties, 
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pencils, scientific instruments and small boats (U. S. Forest Products Laboratory, 

1974).  However, only large trees make good lumber, and makers do not utilize 

trees of the size found in most Oklahoma pastures (Redcedar Task Force, 2002).   

Mulch 

The color, aroma, and insect deterring capability of redcedar mulch make 

it a favorite type of mulch among gardeners and landscapers.  The wood may be 

shredded or chipped, generally after the trees have been allowed to dry for several 

weeks, or may be a by-product of lumber processing.  There are several redcedar 

mulch companies in Oklahoma including Eastern Redcedar Mulch located in 

Stillwater which sells redcedar shavings to wholesalers that supply products to 

Lowe’s and other retailers in the region.  The company describes its product as 

“lightweight, easy to handle, and has an aromatic aroma which is pleasing to 

smell.  It is a natural product free from added coloring or dyes. Its color is best 

described as a mix of several shades of reddish-brown and blonde.  Because of the 

nature of redcedar, this mulch is longer lasting than hardwood bark mulch. It is 

more fibrous, yet it still retains a consistent, fine texture.  Redcedar mulch 

provides good moisture retention and weed control. Also, because it does not 

decompose very quickly, it provides long-lasting, effective erosion control.”  

While this is a product well suited for the redcedar in Oklahoma, as with 

fenceposts, the demand is not great enough to make a dent in the redcedar 

population. 



 10

Cedar Oil 

The heartwood of a mature tree can be processed for the oil content, 

yielding cedar oil, which is used in perfumes as a fixative and is fairly valuable 

(Redcedar Task Force, 2002).  These oils have a distinctive woody odor that may 

change as they dry out and are yellowish or darker in color, viscous, and deposit 

crystals when standing (FAO, 1995).  The oils in the wood are different from the 

oils in the leaves and are more desirable.  Cedar oils are used in a variety of 

fragrance applications such as soap, perfumes, household sprays, floor polishes, 

and insecticides and, in small quantities, as a clearing oil used in microscope work 

(FAO, 1995).    

Oils can be removed from cedar wood by either distillation or extraction 

and are obtained differently depending on if lumber is also to be obtained from 

the timber.  If so, sawdust and waste wood materials from the saw mill are taken 

to the distillery for steam distillation and recovery of oil in a normal manner.  

Sawdust should not be exposed to direct sunlight before distillation, otherwise oil 

yields and quality are diminished (FAO, 1995).  If trees are not of quality suitable 

for lumber milling, whole trees may be cut, chipped, and steam distilled.  

Heartwood and stumps contain the most oil, but stumps are not widely utilized.  

Crude oil may be rectification to obtain fractions with different olfactory 

properties or to isolate individual constituents (FAO, 1995).   

Cedar oils contain compounds such as cedrol and cedrene which 

contribute to the odor of the oil and are also valuable for conversion to other 

chemicals with fragrance applications making the oils useful both directly and as 
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sources of chemical isolates (FAO, 1995).  Oil yields vary broadly, in the range of 

1-5 percent, according to the type of oil produced and whether it is produced from 

sawdust or chips. Heartwood is richer in oil than sapwood and commercial 

distillers of Texas cedarwood oil recognize higher yielding trees to be the older, 

slower growing ones with a strong, central axis (FAO, 1995).  Currently there are 

no cedar oil facilities in Oklahoma, and because only a small percentage of 

Oklahoma redcedar would be of the high-yield type, it is not likely that a facility 

will be started.  

Conventional Methods of Controlling Redcedar 

Herbicides 

Though often cost prohibitive, herbicides can be an effective method of 

controlling redcedar in certain situations.  Bidwell et all (2009) recommends their use in 

treatment areas of less than 160 acres (0.64 square km) where trees are less than six feet 

(1.9 meters) tall and less dense than 250 trees per acre (1 tree per 16 square meters).  

Individual tree treatment with herbicides velpar or picloram is recommended.  The 

average cost per acre for this treatment is expected to be $40, four times the cost to treat 

by burning and twice the cost to treat mechanically (Bidwell et al, 2009).   

Controlled burns 

The most aggressive stands of eastern redcedar tend to be in areas where naturally 

occurring range fires have been suppressed (Strizke and Bidwell, 1998).  

Correspondingly, the prevailing best management practice (BMP) for controlling and 

preventing encroachment of the trees is to use ecosystem maintenance methods, namely 

prescribed fire (Bidwell et al, 2009).  Though no single practice is appropriate for every 
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pasture, prescribed fire is considered a natural, environmentally appropriate, and cost-

effective way to maintain ecosystems in prairies, shrublands, and forests (Bidwell et al, 

2009). 

Cutting 

Bidwell et al describes many types of pastures and the recommended methods for 

controlling eastern redcedar in specific situations.  While controlled burns are generally 

more cost effective, mechanically removing, or cutting, trees is sometimes the 

recommended treatment method, with cost per acre ranging $16-90 (Bidwell et al, 2009).    

The preference to cutting depends on the scale of the target area, the density of trees, and 

the size of trees.  For example, in areas of less than 160 acres (0.64 square km) with trees 

less than six feet (1.9 meters) tall and with less than 250 trees per acre (1 tree per 16 

square meters), cutting by hand is a viable option (Bidwell et al, 2009).   

In larger areas, areas with larger trees, or with 250 trees per acre (1 tree per 16 

square meters) or more, other methods of cutting are recommended.  Where trees are less 

than six feet (1.9 meters) tall and less dense than 250 trees per acre (1 tree per 16 square 

meters), mowing or shredding is appropriate (Bidwell et al, 2009).  Where trees are 

larger, heavier-duty equipment is required.  Recommendations include hydraulic clippers, 

cedar hydraulic saws or bulldozers (Bidwell et al, 2009).  

Eastern Redcedar Product Research 

With a large supply of redcedar in Oklahoma, there has been some research into 

improving current uses or finding new uses for this plant.  Published research includes: 

 Cedar oil extraction processes have been studied at Oklahoma State University 

(Dunford et al, 2007; Payne et al, 1998). 
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 Particleboard production from eastern redcedar has been studied at OSU in 

conjunction with USDA Forest Service, Louisiana State University, and Virginia 

Polytechnic Institute (Cai, 2004).   

 Gold et al explored the market forces at work in the eastern redcedar industry and 

discovered there is little pressure being exerted on the market by either suppliers 

or buyers. (Gold et al, 2005) 

 There are also numerous articles and papers about effectiveness of prescribed 

burning and other methods for controlling eastern redcedar growth. 

Eastern Redcedar Suitability for Gasification 

Because green eastern redcedar, including needles, is about 33 percent moisture 

(Ferguson, 1974), it should be suitable for gasification without pre-drying as prior studies 

have shown gasification of biomass with moisture contents as high as 50 percent in an 

updraft gasification system (VTT, 2002).  No pre-drying will mean a faster, more 

efficient system.  Chipping the wood produces small, fairly uniform shreds, and this will 

be a more energy efficient way of reducing wood particle size than pelleting, which is 

sometimes utilized as a means of reducing feedstock particle size for gasification.  Also, 

oils are very combustible, which should produce high temperatures in the combustion 

zone.  

  Chemical Composition 

Though wood composition varies based on species, growing conditions, etc. all 

wood is essentially composed of cellulose, hemicelluloses, lignin, and extractives 
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(Sjostrom, 1993).  The major chemical composition of some wood species is shown in 

Table 1. 

Table 1:  Chemical composition of some wood species  
(Sjostrom, 1993). 

 
 

 According to Reed and Desrosiers (1979), generic formulas are sufficient for 

many gasification calculations.  Reed and Desrosiers (1979) state that biomass is a 

mixture of ~50% cellulose, 25% hemicellulose and 25% lignin, and all biomass can be 

approximated with CH1.4O0.6.   

Gasification 

 Goal of Gasification 

Gasification is the conversion of solid, organic material to a mixture of 

combustible gases by partial oxidation at elevated temperatures (500-1400˚C) (Rajvanshi, 

1986).  This conversion is caused by combusting the solid material with limited oxygen 

to produce an exhaust gas known as producer gas, or synthesis gas (Richey, 1984).  

Producer gas consists of carbon monoxide, hydrogen, carbon dioxide, methane, traces of 

higher hydrocarbons such as ethane and ethylene, water vapor, nitrogen (if air is the 
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oxidizing agent) and various contaminants such as small char particles, ash, tar and oil.  

This producer gas must contain enough carbon monoxide, hydrogen, acetylene and other 

hydrocarbons to be combustible (Mayer, 1988).  

 History of Gasification 

For the past two centuries, gasifiers have been used in some capacity.  During the 

Industrial Revolution, gasifiers produced town gas for lighting (Mayer, 1988).  This 

combustible gas was produced as a byproduct of the large quantities of coal that were 

coked prior to use in smelting operations.  In 1839, Bischaf patented a simple process for 

gasifying coke, which became the first commercial updraft, fixed bed gasification system.  

Later, gasification producer gas was used to fire internal combustion engines, the first 

attempt occurring in 1881 (Stassen and Knoef, 1993).  During World War II, the German 

military bolted gasifiers on their motor vehicles to produce fuel when oil imports were 

blockaded.  After the War, accessibility of affordable fossil fuels caused decline in the 

producer gas industry (Loewer et al, 1982).   

Since the energy crisis of the 1970’s, gasification has been examined as a means 

of converting biomass to conveniently-usable fuel to offset petroleum usage (Stassen and 

Knoef, 1993).  The chemical energy stored in organic materials can be converted to more 

usable forms through one of three conversion schemes:  biochemical, chemical or 

thermo-chemical.  Biochemical and chemical conversion methods are only possible with 

certain types of biomass material, but most biomass materials can be thermo-chemically 

converted, making it a favorable option (Sims, 2003).  Gasification is a thermo-chemical 

conversion technology which has attracted significant interest because it offers highest 
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efficiency, or most usable energy, as compared to combustion (Sokhansanj et al, 2003; 

Zhou et al, 2003). 

In addition to reducing dependence on petroleum, gasification has been studied 

recently as a value-added process for handling some byproducts.  Byproducts that would 

typically be disposed of by land filling, incineration, or microbial decomposition could be 

gasified as an alternative process to the traditional disposal methods which are sometimes 

unavailable, expensive, or cumbersome (Bowser et al, 2004).   

Gasification provides several possible advantages to direct combustion of 

byproducts (Richey, 1984).  Gasification produces minimal air pollution (Richey, 1984).  

Direct-drying of the product is possible without using a heat exchanger, which increases 

efficiency and reduces equipment expense as compared to combustion (Richey, 1984).  

With 80-90% of heat recovered, gasification provides a more efficient conversion of 

biomass to heat for thermo applications.  Combustion rate can be controlled by regulating 

primary air flow.  Perhaps the most significant advantage of gasification is that in 

addition to the recoverable waste heat generated by direct combustion, gasfiers provide 

usable process fuel (Richey, 1984).   

 Gasification Chemistry 

The mechanism of pyrolysis and gasification is described in Reed (1981).  This 

paper proposes that combining biomass with heat will produce only char, but gasification 

requires a thermodynamic change in the composition of the biomass.  The paper goes on 

to describe the expected reactions at various reaction temperatures.  Drying occurs at 

temperatures less than 120˚C; pyrolysis occurs at 200-800˚C; char is gasified at 800-

1100˚C; finally, char is combusted at 800-1500˚C (Reed, 1981). 
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 Many different chemical reactions are involved in the processes of pyrolysis and 

gasification.  These reactions, which depend on the process parameters and use C6H10O5 

to model biomass, include (D.L. Klass, 1998): 

 

Pyrolysis reactions                                                                                Enthalpy 

C6H10O5 → 5 H2 + 5 CO + C                                                         209 kJ @ 1000K 

C6H10O5 → 3 H2 + 5 CO + CH4                                                     120 kJ @ 1000K 

C6H10O5 → 2 H2 + 4 CO + CH4 + H2O + C                                   -16 kJ @ 1000K 

C6H10O5 → H2 + 3 CO + 2 CH4 + CO2                                        -140 kJ @ 1000K 

C6H10O5 → H2 + 3 CO + CH4 + 2 H2O + 2C                               -152 kJ @ 1000K 

C6H10O5 → 2 CO + 2 CH4 + CO2 + H2O + C                               -276 kJ @ 1000K 

Air gasification reactions                                                                    Enthalpy 

C6H10O5 + 0.5 O2 → 5 H2 + 6 CO                                                  96 kJ @ 1000K 

C6H10O5 + O2 → 4 H2 + 6 CO + H2O                                         -142 kJ @ 1000K 

C6H10O5 + O2 → 5 H2 + 5 CO + CO2                                         -180 kJ @ 1000K 

C6H10O5 + 1.5 O2 → 3 H2 + 6 CO + 2 H2O                                -389 kJ @ 1000K 

C6H10O5 + 1.5 O2 → 5 H2 + 4 CO + 2 CO2                                -464 kJ @ 1000K 

C6H10O5 + 2 O2 → 5 H2 + 3 CO + 3 CO2                                   -745 kJ @ 1000K 

Gasification Technologies 

 Biomass gasification systems are either fixed or fluidized beds.  Fluidized bed 

gasifiers are generally only cost effective in large-scale applications, those that generate 

over 15 MW (VTT, 2002).  Fixed bed systems are more suitable for small-scale heat and 
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power applications and generally feature simple construction (Reed and Das, 1998).  

Characteristics of fixed bed gasification include high carbon conversion, long solid 

residence time, low gas velocity and low ash carry-over (Barker, 1996; Carlos, 2005).  

Tar removal is a chief problem, and progress is being made in thermal and catalytic 

conversion of tar (Riva, 2006).  Before use in many applications, producer gas must be 

cleaned and cooled, generally using a filtration system of cyclones, wet scrubbers and dry 

filters (Demirbas, 2002; Rajvanshi, 1986). 

 Within the categorization of fixed bed gasifiers, there are several reactor designs 

classified according to the path of the gasifying agent through the gasifier.  These include 

updraft, downdraft, crossdraft and two stage gasification systems.  Gasifying agents can 

be air, steam, oxygen, or a mixture of these (Stassen and Knoef, 1995).   Further 

classification may be made based on the function of the producer gas:  thermal 

applications make use of heat gasifiers, and engine applications make use of power 

gasifiers (Reed and Das, 1988).  Classification of the gasification system, operating 

conditions, and type of biomass feedstock all affect the composition and level of 

contamination of the producer gas (Bridgwater et al, 1999).  Due to their relatively simple 

design considerations, only downdraft and updraft fixed bed systems will be relevant to 

this project and examined in this review. 

 Downdraft Gasification 

Downdraft gasifiers may have a throat (Imbert type) or be throat-less (open core 

type).  Imbert systems feature co-current flow of gases and solids (Figure 2) through a 

descending packed bed, which is supported by the constriction of the throat (Reed and 

Das, 1988).  Biomass feedstock enters at the top and is dried and pyrolysed before being 
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partially combusted by the gasifying media.  Maximum mixing of gases occurs in high 

temperature regions due to the constriction at the throat (Clarke, 1981).  This aids in 

cracking tars to primarily carbon monoxide and hydrogen so producer gas from 

downdraft gasifiers has less tar than updraft gasifiers.  However, the throated design 

causes a great sensitivity to particle size and density and is limited to feedstocks with 

uniform, small particle size and operations of less than 500 kW (Chopra and Jain, 2007). 

Throat-less gasifiers also feature co-current flow of gases and solids (see Figure 

2).  This type of downdraft system was developed to overcome the problem of bridging 

and channeling in throated systems (Stassen and Knoef, 1993).  Feedstock and air move 

downward from the open top, which ensures uniform and easily-controlled operation.  

Hot producer gas is drawn out the bottom of the chamber through a grate (Sims, 2003).  

Tar generation is as low as 0.05 kg tar/kg gas (Tiwari et al, 2006).  The design is suitable 

for small-sized feedstocks with ash content of up to 20% (Jain et al, 2000b). 

 
Figure 2:  Schematic of gas and solid movement through a downdraft gasifier. 
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 Updraft Gasification 

Updraft gasifiers are also known as counter-current gasifiers, as biomass 

feedstock flows in the opposite direction to the gasifying agent (Figure 3).  Feedstock 

enters from the top of the reaction chamber and moves slowly downward through the 

drying, pyrolysis, gasification and combustion zones (Figure 4).  Finally ash exits 

downward through the grate and is removed (Reed and Das, 1998).  The gasifying agent 

enters through the grate at the bottom of the chamber, undergoes thermo-chemical 

reactions with feedstock as it moves upward through the zones, and producer gas exits 

through the top of the reaction chamber.  The direct heat exchange from gas to entering 

feedstock produces high thermal efficiency in updraft gasifiers (Stassen and Knoef, 

1993).  Producer gas exits at a relatively low temperature (80-300 ˚C) and contains high 

amounts of oils and tar (10-20%) because the products of the pyrolysis and drying zones 

exit directly with producer gas rather than being decomposed (VTT, 2002).  Dust content 

in producer gas is generally low due to low gas velocities and the filtering effect of the 

upper zones (Carlos, 2005) 
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 Figure 3:  Schematic of updraft gasification reaction chamber. 

 
Due to varying operating and feedstock parameters, efficiency values reported for 

updraft gasifiers also varies greatly.  Rajvanshi (1986) states the average conversion 

efficiency for wood gasification is 60-70%.  FAO (1986) lists expected conversion 

efficiency between 60 and 75% for a mechanical application system and as high as 93% 

for thermal applications, depending on type and design of the gasifier as well as on the 

characteristics of the fuel.  Bowser et al (2005) reported cold gas efficiency values for the 

updraft gasification system using air as the gasifying agent as 58% for wood pellets, 47% 

for meat byproduct sludge, and 60% for a mixture of half wood pellets and half meat 

byproduct sludge.   

Many commercial biomass gasification systems are currently successfully 

utilizing updraft technology.  Examples of these systems are Primenergy, LLC, Tulsa, 

OK; VIDIR Machine, Inc., Clermont, FL; and Carbona Corporation, Atlanta, GA 

(Bowser et al, 2004).   
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Figure 4: Schematic of zones and feedstock and air in an updraft gasification system. 

Comparison of Updraft to Downdraft Gasification Systems 

The oldest and simplest fixed bed gasification system, updraft gasifiers are more 

robust than other types of fixed bed gasifiers (Chopra and Jain, 2007).  Updraft systems 

can handle feedstocks with ash content of up to 15% compared with 5% for Imbert 

downdraft systems.  They can also handle higher moisture content feedstocks, up to 50% 

compared to 20% in downdrafts (VTT, 2002).  Updraft gasifiers are also less sensitive to 

variations in particle size and quality in feedstock.  Downdrafts have lower overall 

efficiency due to the high amount of heat carried out by the hot gas (Clarke, 1981).  

However, downdraft gasifiers are suitable for both thermal and engine applications while 

updraft gasifiers are generally only suitable for thermal applications without considerable 

cleanup of producer gas (Reed and Das, 1988).  

Gasification
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Prior Studies of Gasification of Wood 

A study by the Food and Agriculture Organization (FAO) in 1986 took into 

account several dozen commercial wood gasifiers when publishing a study on using 

producer gas as fuel for an internal combustion engine.  Table 2 gives typical gas 

compositions as obtained from commercial wood gasifiers operated on low to medium 

moisture content fuels (<20 percent).  These numbers will be used as a gauge of the 

quality of producer gas from the system detailed in this document, with considerations for 

the size difference in a commercial gasifier and the pilot-scale gasifier designed for the 

current study. 

Table 2:  Composition of gas from commercial wood and charcoal gasifiers 
 (FAO, 1986). 

 

Component 
Percent of Producer Gas 

(mol %) 
Nitrogen 50 - 54 

Carbon monoxide 17 - 22 
Carbon dioxide 9 - 15 

Hydrogen 12 - 20 
Methane 2 - 3 

 
Depending on type and design of the gasifier as well as on the characteristics of 

the fuel, efficiency may vary between 60 and 75 percent, and, in the case of thermal 

applications, total efficiency can be as high as 93 percent (FAO, 1986).  For wood at 20 

to 25 percent moisture, producer gas lower heating values of 13,000 to 15,000 kJ/kg were 

observed (FAO, 1986). 

Ashes can cause a variety of problems in up or downdraft gasifiers because 

slagging, caused by melting and agglomeration of ashes, can lead to excessive tar 

formation and to air-channelling which can lead to a risk of explosion, especially in 
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updraft gasifiers (FAO, 1986).  Whether or not slagging occurs depends on the ash 

content of the fuel, the melting characteristics of the ash, and the temperature pattern in 

the gasifier (FAO, 1986).  In general, no slagging is observed with fuels having ash 

contents below 5 to 6 percent, and ash content of wood is normally 0.75 to 2.5 percent 

(FAO, 1986). 

For each temperature, in theory, the ratio between the product of the concentration 

of carbon monoxide (CO) and water vapor (H2O) and the product of the concentrations of 

carbon dioxide (CO2) and hydrogen (H2) is fixed by the value of the water gas 

equilibrium constant (KWE) (FAO, 1986). The equilibrium composition of the gas will 

only be reached in cases where the reaction rate and the time for reaction are sufficient, 

and the reaction rate decreases with falling temperature (FAO, 1986). In the case of the 

water gas equilibrium, the reaction rate becomes so low below 700°C that the equilibrium 

is said to be "frozen" and the gas composition then remains unchanged (FAO, 1986).  

Therefore, the hottest part of the gasification chamber should be maintained above 700°C 

to maintain high reaction rates. 

Gaur et al (1998) provides a proximate analysis of many types of wood.  The 

study concluded the composition of the various woods was not different enough to cause 

variation in gasification characteristics, if the wood feedstocks were gasified at similar 

moisture contents (Gaur et al, 1998). 

Prior Studies of Gasification of Redcedar 

The percentages of the three main components of wood are very similar in 

redcedar as in all biomass:  roughly 50% cellulose, 25% hemicellulose and 25% lignin 
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(Reed and Desrosiers, 1979).  However, cedar oils, composed primarily of cedrol and 

cedrene (FAO, 1995), may cause unique circumstances when gasifying redcedar.  

Therefore, prior studies of gasification of redcedar were sought. 

Though gasification of wood has been utilized to produce energy for decades, 

gasification of redcedar has been studied very little.  One study on redcedar gasification 

was carried out at Okayama University.  This study utilized a fairly complicated, double 

bed, catalytic gasification system.    The process also requires wood to be dried and 

homogenized into pellets (Fuel Research, 2008).  The focus of this study was the use of 

iron oxide catalysts to promote catalytic activity in biomass tar decomposition.  The 

researchers concluded, “The activity of the iron oxide catalysts for tar decomposition 

seemed stable with cyclic use but the activity of the catalysts for the water gas shift 

reaction decreased with repeated use (Fuel Research, 2008)."  No information about gas 

composition or conversion efficiency was published.
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CHAPTER III 

UPDRAFT GASIFIER DESIGN 

 The purpose for the design detailed in this chapter was to create a gasifier that 

could be used to test the feasibility of gasification of a mulched eastern redcedar 

feedstock and be useful for testing alternative feedstocks in the future.  Mulching was 

chosen as the method for reducing eastern redcedar particle size because mulching 

requires about one third of the power as pelletizing wood (FAO, 1986).  Because of its 

simplicity and versatility, a fixed bed, updraft configuration was used, as shown in Figure 

5.  To allow for longer steady states when testing various feedstocks a semi-continuous 

feed system was utilized.  

 The sizes of components used for this gasifier design were chosen based on the 

conversion rate desired for the system and the desire to use off-the-shelf sizes for 

components.  The conversion rate of biomass to producer gas per square inch of cross-

sectional area in the gasification chamber was estimated based on the conversion rate in 

the Bowser et al (2005) updraft gasifier.  The estimated conversion rate of 5.9 lb (13 kg) 

per hour was chosen because the volume was manageable and the gasification chamber 

could be constructed of 8-inch (20 cm) diameter pipe. 
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Figure 5:  Fixed bed, updraft gasifier designed for this study. 

 
The basic design of the gasifier was inspired by the work of Bowser et al (2005).  

The Bowser et al gasifier, shown in Figure 6, is an updraft, batch gasifier with the basic 

design inspired by the work of Patil and Rao (1993). Bowser et al made improvements to 

the Patil and Rao gasifier including a motorized scraper blade, improved sensors, off-the-

shelf pipe and pipe fittings for body components, portability and quick disassembly.  The 

gasifier has three basic components: gasifier body, scraper and scraper drive, and support 

frame. The machine was fabricated in the Biosystems and Agricultural Engineering 

machine shop at Oklahoma State University. 
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Figure 6:  Schematic of updraft, batch gasifier designed by Bowser et al (2005).   

Dimensions in meters. 
 

The body of the Bowser et al gasifier is mild steel, 8- and 4-inch  (20 and 10 cm) 

diameter, schedule-40 pipe, with pipe fittings welded or bolted together and insulated 

with a calcium silica insulation blanket (McMaster Carr, Chicago, Ill.).  The upper 

section of the gasifier body provides storage for feedstock, which is loaded through the 

biomass charging port.  The body diameter has a reduction from 8- to 4-inches (20 to 10 

cm) intended to reduce pressure on the lower column during operation and to provide 
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some headspace where the flue pipe attaches to the gasifier body.  However, this 

reduction acts as a bottleneck to feedstock during operation, compressing the biomass as 

it moves down and stopping flow.   

The midsection of the gasifier body includes the combustion chamber, 

thermocouple ports, producer gas exhaust pipe, and access port. The combustion chamber 

was fabricated from a 4-inch (10 cm) Tee with flange ends. The projecting end of the Tee 

was used as an access port. Thermocouple fittings were pass-through, compression 

fittings from Omega Engineering (Stamford, Conn.).   The producer gas exhaust pipe 

included a “dirt leg” to help remove condensed tar.   

The lower portion of the gasifier included an ash grate, rotating motorized scraper 

assembly, ash receptacle, compressed gas inlet, and ash cleanout port.  Ash particles fell 

through the grate and accumulated in the ash receptacle. 

Two type-K thermocouples (Omega Engineering, Stamford, Conn.) were inserted 

radially through the compression fittings into the gasifier body at 4 and 10 inches (10 and 

25 cm) above the surface of the ash grate.  All temperatures were recorded during system 

operation using a data logger (model Hydra 2635A, Fluke Corporation, Everett, Wash.) 

connected to a laptop computer.  

Notable changes to this design include: 

 An air-locked hopper and screw conveyor to deliver feedstock and make the 

system capable of operating as a continuous system for short periods of time 

rather than batch.  This allows for a longer steady-state and more accurate 

analysis of what a pilot-scale system would produce. 

 A larger diameter (8- inch (20 cm) rather than 4- inch (10 cm) inner diameter) 

combustion chamber to reduce the effects of the walls on biomass movement.   
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 No bottlenecks in the gasification chamber.  Removal of the bottlenecks allows 

material to move downward through the system more freely rather than packing 

into the reduced area. 

 An agitator/stir rod that extends to the top of the gasifier and incorporates an 

auger to dislodge any coagulated particles and press biomass down. 

 More thermocouples to monitor temperature gradients inside the gasifier. 

 An insulation shell comprised of a 14-inch (36 cm) diameter pipe, hinged halfway 

around diameter.  The 3-inch (8 cm) space between the shell and the gasification 

chamber is filled with Kaowool “RT” insulation blanket (Thermal Ceramics, 

Augusta, GA).  This method of insulating the gasifier replaces taping insulation to 

the outside of the gasifier. 

 The producer gas outlet is straight, allowing tar to drip back into the gasifier 

rather than collecting in the elbow and causing pressure build-up when producer 

gas cannot escape.  Also, there is no “dirt leg” on the producer gas arm. 

 There is no side access port on the gasifier.  This port was difficult to insulate and 

keep from leaking producer gas.  Instead, the combustion zone is initially lit 

through the ash port. 

 

The gasifier consists of five fundamental components: hopper and feedstock 

auger, gasifier body, agitator and scraper system, support frame, and data collection 

system.  The entire unit was fabricated in the Biosystems and Agricultural Engineering 

Laboratory fabrication shop at Oklahoma State University.  A schematic of the design 

can be seen in Figure 7.   
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Figure 7:  Schematic diagram of gasifier 
 showing vertical section of side view with major features labeled. 
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Figure 8:  Schematic showing gas and feedstock flow through the gasifier 

 and the approximate location of the drying, pyrolysis and combustion zones in the gasification chamber. 
 

Figure 8 is a graphic of gas and solid flow through the gasifier. As feedstock 

passes downward through the body of the gasifier, it passes through drying, pyrolysis, 

and combustion zones.  In the drying zone, moisture is driven off with exiting producer 

gas.  Temperature increases as the biomass moves into the pyrolysis then the combustion 
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zone.  Air meets the biomass in the combustion zone where solids from the pyrolysis 

zone are completely combusted providing heat to fuel pyrolysis reactions, as well as 

carbon dioxide and water vapor from the combustion reactions.  Carbon dioxide, water 

vapor, and heat move upward from the combustion to pyrolysis zone where they react 

with biomass to produce the components of producer gas. 

Hopper and Feedstock Auger  

 The hopper stores feedstock.  The auger feeds feedstock into the top of the 

gasifier during operation.  The hopper is constructed of 0.125-inch (0.32 cm) mild steel.  

The top of the hopper is a removable plate made of the same material that is sealed 

during operation with a rubber gasket and C-clamps (Figure 9).  A Campbell Hausfeld 

pressure gauge (South Pasadena, California) with a 0-20 atmosphere range is located near 

the top of the bin and a pop-off pressure release valve fabricated in the BAE machine 

shop is situated in the top door as safety precautions.  A 14-inch by 16-inch (36 by 41 

cm) secondary door (Figure 9) is situated in the middle of the top door to provide easy 

access to the bin.  

 
Figure 9:  Top view of hopper  

showing secondary door, pressure release valve and C-clamps sealing top to bin during operation. 
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 The end of the hopper is trapezoidal in shape with a trough bottom for the auger.  

The trapezoid is 6 inches (15 cm) wide at the base, 41 inches (104 cm) wide at the top, 

and 30 inches (76 cm) high.  The sidewalls angle out thirty degrees, as shown in Figure 

10.  The bin width is 24 inches (61 cm).  The total volume of the bin is 9.7 cubic feet 

(0.27 kiloliters), nine times the volume of the gasifier.   

 The auger shaft is 1-inch (2.5 cm) diameter steel rod.  The auger flighting was 

manufactured by Replacement Flighting Supply (Aurora, NE) from standard mild steel.  

Auger pitch is 6 inches (15 cm), and flighting diameter is 5.5 inches (14 cm).  The auger 

extends 27 inches (69 cm) to the edge of the gasifier body.  The feedstock auger drive is 

powered by a hand crank wheel located on the outside end of the bin (Figure 10). 

 Due to flow properties of mulched redcedar, an internal agitator was added to the 

bin.  This consists of a 24-inch (0.6 meters) by 24-inch (0.6 meters) section of 2-inch (5 

cm) square metal mesh mounted on two rods as shown in Figure 11.  The mesh is 

positioned vertically along the internal width of the bin above the auger with the rods 

extending through the wall of the bin (Figure 10).  If feedstock flow becomes blocked, 

the rods can be moved to agitate the feedstock in the bin with the mesh and free the flow 

into the auger.  
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Figure 10:  Gasifier bin showing agitator rods extending through side of bin. 

 

 
Figure 11:  Internal view of hopper bin showing agitator. 
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Gasifier Body 

 
Figure 12:  Schematic diagram of gasifier showing dimensions of major features. 

 

 The main body of the gasifier is manufactured of mild steel, 6- and 8- inch (15 

and 20 cm) diameter, schedule-40 pipe.  The 6-inch (15 cm) pipe extends 3 inches (8 cm) 

inside the 8-inch (20 cm) pipe.  A 0.25-inch (0.64 cm) thick, mild steel washer is welded 

at the top of the 8-inch (20 cm) pipe to make the joint air tight.   
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The 24-inch (61 cm) section of 8-inch (20 cm) pipe that is the gasification 

chamber is surrounded by a 14-inch (36 cm) diameter shell of mild steel, schedule-5 pipe.  

The shell is hinged on one side and features snap locks on the opposite side.  The 3-inch 

(8 cm) gap between the shell and the gasification chamber is filled with Kaowool “RT” 

insulation blanket (Thermal Ceramics, Augusta, GA).  Gaskets cut from the same 

insulation were used as heat-resistant seals in bolted joints. 

A bolted flange is located 1.5 inches (3.8 cm) above the ash grate to allow gasifier 

disassembly for cleaning and maintenance (Figure 13).  The flange is forged from mild 

steel and connected with 0.5-inch (1.3 cm) bolts.  The grate is not permanently attached 

to the gasifier body, but rather rests on a steel ledge to allow for further disassembly.   

 

 
Figure 13:  Bottom section of gasifier  

unbolted and removed showing grate and scraper 
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From the bottom of the ash receptacle to the top port is 54 inches (1.4 m).  Both 

the top and ash ports are 6-inch (15 cm) diameter screw-on, mild steel caps.  The screw 

threads seal the openings during operation.   

Fifteen K-type thermocouples (TJ36-CAXL-14U-12, Omega Engineering, 

Stamford, CT) allow temperature monitoring of the gasification chamber.  

Thermocouples pass through holes in the insulation shell and then through 0.25-inch 

(0.63 cm) compression fittings (Omega Engineering, Stamford, CT) into the gasification 

chamber.  Each thermocouple enters the gasifier body radially, and the tips extend 0.5 

inches (1.3 cm) into the gasification chamber.  One thermocouple is positioned 3 inches 

(8 cm) above the point where the 8-inch and 6-inch (20 and 15 cm) pipes join to monitor 

temperature where producer gas exits and feedstock enters.  In the gasification chamber, 

two vertical columns with seven thermocouples in each are positioned 180˚ from each 

other as shown in Figure 14.  The lowest thermocouple position in each column is 3 

inches (8 cm) above the ash grate with each thermocouple spaced 3 inches (8 cm) on 

center from bottom to top to provide information on the gradient of temperatures inside 

the gasification chamber. 
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Figure 14:  Thermocouple placement in gasification chamber 
 and National Instrument chassis module in the background. 

 
The producer gas outlet pipe is fabricated from 2-inch (5 cm) diameter mild steel 

pipe and includes a gas sampling valve.  The sampling valve consists of a 2-inch (5 cm), 

1-inch (2.5 cm) Tee joint with a 1-inch (2.5 cm) ball valve.  The entire producer gas 

outlet is 60 inches (1.5 m) long and allows gas to be flared off during operation. 

The bottom of the gasification chamber is an ash grate made of 0.25-inch (1.3 cm) 

thick carbon steel with 0.125-inch (0.32 cm) diameter circular holes cut through as shown 

in Figure 15.   Ash falls through the grate to the ash receptacle below.  The ash receptacle 

is 12 inches (30 cm) high and a continuation of the 8-inch (20 cm) diameter pipe used for 
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the gasification chamber.  The receptacle can be accessed by removing the cap on the ash 

port. 

                                                  

Figure 15:  Schematic diagram of top view of ash grate and scraper inside gasifier. 

 

 The compressed air inlet is located 2 inches (5 cm) below the ash grate and was a 

hose barb sized to connect to a 0.25-inch (0.64 cm) pneumatic hose.  Just above the air 

inlet, a 1-inch (2.5 cm) by 2-inch (5 cm) piece of 0.25-inch (0.64 cm) thick mild steel is 

welded to the gasifier body to serve as a baffle to incoming air.  The baffle creates a 

turbulent flow of air rather than a jet of air passing through a small section of the ash 

grate. 

Agitator and Scraper System 

 The scraper and grate, shown in Figure 13, were custom fabricated of mild steel.  

The scraper is 1 inch (2.5 cm) high and scrapes the top of the grate.  The scraper is 

rotated on a 1-inch (2.5 cm) steel rod powered by a hand crank that is also custom 

fabricated with a 2:1 gear reduction. 

1”

8” 7” 
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 In order to break up agglomerated biomass in the pyrolysis and combustion zones 

of the gasifier, which cause channeling of air and reduces gasification efficiency, 

agitation of these zones is desired.  An agitator, custom fabricated of mild steel, extends 

from the scraper to the top port.  The top of the 1-inch (2.5 cm) agitator rod fits into a slot 

in the top port to keep the rod centered.  The bottom of the agitator rod is welded to a 

fitting made to fit over the scraper (Figure 16).  The thicker middle section of the scraper 

bar (Figure 13) fits into a gap on the agitator rod fitting.  When the agitator is fitted over 

the scraper, it turns with the scraper.  Corners between the rod and fitting (Figure 16) 

strengthen the part so it can withstand the torque in the high temperatures of the 

gasification chamber. 

 
Figure 16:  Bottom of agitator rod displaying piece that fits over scraper rod. 

 Two agitator designs were fabricated and tested.  Figure 17 shows the first design 

which featured 3-inch (8 cm) by 1-inch (2.5 cm) rectangles mounted at 15˚ angles used to 
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break up coagulations of material in the gasification chamber and push the feedstock 

downward.  However, this design resulted in a bent rod due to the horizontal pressure 

exerted on the rod by forcing the rectangles against the biomass packed in the gasifier.  

Figure 18 shows the second agitator design which features an auger.  The auger 

begins 5 inches (13 cm) from the top end of the auger shaft and extends 18 inches (46 

cm) downward.  The shaft is 1-inch (2.5 cm) diameter from the bottom of the auger 

upward and 1.5-inch (3.8 cm) diameter downward to provide greater strength in the 

hottest part of the gasification chamber.  The flighting diameter and pitch are both 3 

inches (8 cm).  This design pushes the feedstock downward to break up coagulations, 

collapse material bridging, and keep the producer gas outlet free of feedstock. 

    

Figure 17:  Schematic of first agitator design. 
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Figure 18:  Second agitator design. 

Support Frame 

 The support frame for the gasifier system was made of a framework of 1-inch (2.5 

cm) square tubing as shown in Figure 19.  The frame supports the hopper, the gasifier 

body, the scraper/agitator drive hand crank, and provides a shelf for a laptop computer 

and the National Instrument module, which is described below.  Swiveling casters fixed 

to the base of the frame make transport of the system possible.  
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Figure 19:  Gasifier showing support frame 
 fabricated of one-inch (2.5 cm) square tubing. 

Data Collection System 

 Figure 20 shows the air flow meter (Part # 9909K13, McMaster-Carr, Santa Fe 

Springs, CA) and ball valve used to monitor and regulate compressed air flow into the 

gasifier.   
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Figure 20:  Air flow meter and ball valve at air inlet. 

 
Fifteen K-type thermocouples (TJ36-CAXL-14U-12, Omega Engineering, 

Stamford, CT) are attached to a sixteen-channel thermocouple module (NI 9213 16-ch 

TC, 24-bit C Series module, National Instruments, Austin, TX) in a National Instruments 

chassis (cDAQ-9172 8-slot USB 2.0 Chassis for CompactDAQ, National Instruments, 

Austin, TX).  The chassis is connected to the USB port on a laptop (Dell Inspiron 15, 

Dell Inc, Round Rock, TX) with a LabVIEW software package (National Instruments, 

Austin, TX).  The custom LabVIEW virtual instrument was designed by the author to 

record the thermocouple measurements in a Microsoft Excel file.   

Samples of producer gas are taken through the ball valve in the producer gas 

outlet (see Figure 21) where the flow is reduced to a 0.25-inch (0.64 cm) opening.  For 

sampling, an 18-inch (46 cm) length of rubber tubing is connected from the reduced 

opening to a gas sampling bag (Chemware Tedlar PVF Gas Sampling Bags, 

VWR#32310-309, VWR International, LLC, West Chester, PA). 
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Figure 21:  Producer gas outlet with sampling port.
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CHAPTER IV 

 

EXPERIMENTAL SETUP 

Eastern Redcedar for Study 

 
Figure 22:  Eastern redcedar mulch used as feedstock in this study 

 The mulched eastern redcedar used for this study (Figure 22) was obtained from 

Eastern Redcedar Mulch Company.  This was the only company in Oklahoma 

commercially producing mulch from eastern redcedar in 2009.  All mulch used in this 

study was produced from mature trees cut in February 2009 and allowed to dry before 

being mulched in late October 2009.  According to Aaron Newton of Eastern Redcedar 

Mulch Company (Rowland, 2009), an 8-9 month drying period reduces the power 
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required to mulch by 1/3 as compared to a 4 month drying period.  Trees dried for two 

months or less generally contain enough sap for particles to stick to the moving parts of 

the mulcher (Rowland, 2009).   

Mulching was accomplished with a Rotochopper MC 166 (Rotochopper, Inc., St. 

Martin, MN) with a 2.5 inch (6.4 cm) screen.  The results of an analysis performed to 

determine particle size distribution of the mulch are reported in Table 3.  Sieves were 

U.S. Standard Sieve Series made by Fisher Scientific Company, Pittsburg, PA.  Stacked 

sieves with sample were shaken horizontally 100 times, and then the weight of particles 

retained in each sieve was recorded. 

Results show that 81% of the particles were too large to pass through a #4 

Standard Sieve.  These particles ranged in size from 0.25 inches by 0.25 inches by 0.1 

inches to 1 inch by 3 inches by 1 inch.  Particles remaining in pan were smaller than 0.13 

inches by 0.13 inches by 0.1 inches.  Particles remaining in the #7 Standard Sieve were 

between 0.13 inches by 0.13 inches by 0.1 inches and 0.25 inches by 0.25 inches by 0.1 

inches. 

Table 3:  Results of particle size analysis. 

Standard Sieve Mesh Size (in.) Percent of Total 
# 4 0.187 81.1% 
# 7 0.111 8.9% 

Pan   9.9% 
 

Moisture content of the mulch was determined using ASTM Standard 1775-01.  

The mulch was found to have 15.7 ± 4.3% moisture content (wet basis) during three 

moisture content tests conducted during the period when gasification tests were 

performed.  Energy content of mulch was found to be 18.99 ± 0.02 kJ/g using a bomb 

calorimeter (Model 1261 ISOPERIBOL, Parr Instrument Company, Moline, IL) using the 
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procedure described in the operator’s manual.  This high heating value is less than that 

reported for other woods by Gaur et al (1998), Table 5. 

Midwest Laboratories in Omaha, NE, provided the proximate analysis, shown in 

Table 4.  The dry matter is higher than that reported for other woods by Gaur et al (1998), 

Table 5.  The ash content is comparable to ash contents reported by Gaur et al (1998). 

Table 4:  Proximate analysis of eastern redcedar for this study  
provided by Midwest Laboratories. 

 
Moisture (%) 11.38 
Dry Matter (%) 88.62 
Ash (%) 1.37 
Sulfur (%) 0.02 
Phosphorus (%) 0.02 
Potassium (%) 0.06 
Magnesium (%) 0.02 
Calcium (%) 0.43 
Sodium (%) <0.01 
Iron (ppm) 30 
Manganese (ppm) 86 
Copper (ppm) 2 

Zinc (ppm) 5 
 

Table 5:  Proximate analysis of various woods 
 (Gaur et al, 1998). 

 

Wood Name Volatiles Ash Sulfur High Heating Value 

  % % % kJ/g 

Black Locust 80.94 0.80 0.01 19.71 
Douglas Fir 81.50 0.80 0.00 21.05 
Hickory - 0.73 0.00 20.17 
Maple - 1.35 0.00 19.96 
Ponderosa Pine 82.54 0.29 0.03 20.02 
Poplar - 0.65 0.00 20.75 
Red Alder 87.10 0.40 0.07 19.30 
Redwood 83.50 0.40 0.00 21.03 
Western Hemlock 84.80 2.20 0.10 20.05 
Yellow Pine - 1.31 0.00 22.30 
White Fir 83.17 0.25 0.01 19.95 
White Oak 81.28 1.52 0.01 19.42 

Mango Wood 85.64 2.98   19.17 
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Gasifier Startup and Operation 

 A large part of the process involved in testing a new gasifier design is determining 

the appropriate operating procedures for the new system and a given feedstock.  After 

preliminary testing, the following standard system startup and operation procedures were 

adopted for testing mulched eastern redcedar feedstock in this gasifier: 

1. The hopper was filled and sealed.   

2. Top port was sealed.  Ash/startup port left open. 

3. The LabVIEW data logger virtual instrument was initialized and temperature 

recording began. 

4. Seven revolutions of the feedstock auger were loaded into the gasification 

chamber for a bed depth of approximately 7 inches (18 cm).  Throughout 

operation, the scraper/agitator was operated in conjunction with the feedstock 

auger to ensure that feedstock moved downward appropriately in the gasification 

chamber.  Both the stirrer and the auger were operated counter clockwise. 

5. Airflow was set to 4 SCFM (0.11 m3/min).  

6. A weed burner type, 50,000 BTU propane torch with a 15” angled handle was 

inserted through the ash/startup port and operated just below grate.  The torch 

burned there for 3-5 minutes until the two lowest thermocouples read 

temperatures of about 40˚C and smoke began to come out of the producer gas 

outlet. 

7. When the feedstock in the gasification chamber was obviously lit, the torch was 

removed and the port was sealed with the cap. 
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8. Feedstock was augered in until the scraper/agitator met acute resistance, 

signifying the gasification chamber was full of feedstock. 

9. Air flow was adjusted to the flow being tested at that time.  Airflows tested in this 

study ranged from 4.5 to 8.0 SCFM (0.13 to 0.23 m3/min). 

10. Throughout operation, the scraper/agitator was rotated 1-2 revolutions every 2-3 

minutes, in addition to when feedstock was augered in, to keep the feedstock 

moving downward through the gasifier. 

11. Feedstock was augered in as often as necessary to maintain resistance for the 

scraper/agitator signifying a full gasification chamber. 

12. Hopper agitator was used when necessary to maintain flow in the feedstock auger. 

13. The flare was ignited when possible. 

14. Gas samples were taken when the bed temperature stabilized and the flare 

appeared largest and most consistent. 

15. When all samples for a day had been collected, the gasifier was allowed to cool 

before being cleaned or moved. 

16. The amount of biomass remaining in the hopper was measured to establish a 

rough flow rate for the completed gasification session. 

 

When collecting samples, the test pattern consisted of setting the air flow to the 

desired equivalence ratio, achieving a steady temperature profile (as shown in Figure 23), 

then collecting three gas samples.  Samples were collected in 5-minute increments.  A set 

of 3 gas samples at the given ER is referred to as a test run.  After completing a test run, 

the air flow could be adjusted to the next ER to be tested or the feedstock remaining in 
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the gasifier could be converted before the gasifier was allowed to cool off and be stored 

until the next test run.  When adjusting to the next ER, the gasifier would operate at the 

new ER for at least 15 minutes before samples were collected. 

Feedstock residence time in the gasification chamber was calculated based on the 

average feed rate.  The average feed rate was 0.5 auger revolutions per minute, or 0.027 

lb/min (0.06 kg/min).  The density of the redcedar mulch was calculated to be 9.4 lb/ft3 

(0.15 g/cm3).  This gives an average residence time of 22 minutes inside the gasification 

chamber.  

Testing occurred between October 2009 and March 2010.  The weather was cool (35-

55˚F) and clear (50-85% relative humidity) on testing days.   

Gas Sampling and Analysis 

Gas samples were collected in gas sampling bags (Chemware Tedlar PVF Gas 

Sampling Bags, VWR#32310-309, VWR International, LLC, West Chester, PA).  

Samples were collected regardless of when biomass was added because sampling just 

before, just after, or several minutes from when biomass was augered in did not affect gas 

composition.  After the temperature profile in the gasifier stabilized to less than 10% 

variation in temperature at each thermocouple over 3 minutes, the sampling valve was 

opened, and the producer gas outlet was covered, forcing producer gas out of the valve 

and into the sampling bag until the bag’s capacity was reached.  Three gas samples were 

obtained at each air flow tested.  Gas samples were allowed to cool in the bag to 

condense water and vapors from the gas onto the walls of the gas bags.  Gas-tight 

syringes (Cole Parmer, Vernon Hills, Ill.) were used to remove a volume of producer gas 

from each bag through a septum.  The producer gas was then injected into the gas 
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chromatograph (model CP-3800, Varian, Inc., Palo Alto, CA) for analysis with the 

instrument setup reported by Cateni et al (2003).  Repeated gas chromatograph injections 

taken from the same gas sample had results with deviations of 0-4.3% for each gas 

component which is less than 5%, the accuracy reported by the manufacturer for this gas 

chromatograph. 

Cold Gas Efficiency 

 Cold gas efficiency was calculated at each air flow as the output energy (heating 

value of the producer gas) divided by the input energy (heating value of the biomass).  

Heating value of biomass was determined by bomb calorimetry.  A bomb calorimeter 

(Model 1261 ISOPERIBOL, Parr Instrument Company, Moline, IL) was used to measure 

the heating value of the mulched redcedar using the procedure described in the operator’s 

manual.    Composition of producer gas samples was obtained by gas chromatography.  

Since the nitrogen component of the producer gas originates with the air, its weight 

percentage is not included in cold gas efficiency calculations.  The heating value of the 

sample was calculated as the sum of the chemical energy contents of each component.    

The cold gas efficiency is expressed on a weight basis.  The method for calculating cold 

gas efficiency is: (heating value of the producer gas in kJ/kg) / (heating value of the 

biomass in kJ/kg). 
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CHAPTER V 

 
RESULTS AND DISCUSSION 

 After design and construction of the new gasifier, the next goal was to test its 

operation using redcedar mulch as the feedstock.   

Equivalence Ratio 

Equivalence ratio (ER) is the ratio of oxygen supplied to oxygen required for 

complete combustion of biomass.  Stoichiometric calculations using standard air 

composition and documented biomass composition (Reed and Desrosiers, 1979) gives 

equivalence ratios for these airflow rates as shown in Table 6. Equivalence ratios were 

calculated by: 

 Combustion O2 demand as given by Reed and Desrosiers (1979) for 
chopped evergreen wood is 249 SCFM O2/lb wood (3.2 m3/min O2/kg 
wood).   

 Feed rate of mulched redcedar into gasifier was approximately 0.5 auger 
revolutions per minute for all tests.  Each auger revolution fed in 0.054 lb 
(0.12 kg) mulch giving a feed rate of 0.027 lb/min (0.06 kg/min) and a 
combustion O2 demand of 6.8 SCFM (0.19 m3/min).   

 Inlet airflow was converted to inlet O2 flow by multiplying by 21%.   
 The inlet O2  flow was divided by the combustion O2 demand to give ER. 
 Example: ER = (4.50 SCFM air * 21%) / (6.8 SCFM O2) = 0.138 

 
Reed and Desrosiers (1979) list 0.25 as the ER for gasification, 0.0 as the ER for 

pure pyrolysis and anything between as producing mixed pyrolysis and gasification.  

According to these calculations, the 5.75-7.0 SCFM (0.16 to 0.20 m3/min) air flows used 
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in this study provided for mixed pyrolysis and gasification, with more gasification than 

pyrolysis. 

Table 6:  Given air flow rate and corresponding equivalence ratio. 

Airflow 
(SCFM) 

Equivalence 
Ratio 

4.50 0.138 
5.00 0.154 
5.75 0.177 
6.50 0.200 
7.00 0.215 
8.00 0.246 

Operating Temperature 

Airflow rates ranging from 4.5 to 8.0 SCFM (0.13 to 0.23 m3/min) were tested.  

This range was chosen based on the temperature profile in the gasification chamber.  

Below 4.5 SCFM (0.13 m3/min), temperatures in the combustion zone were below 550˚C, 

which is not high enough in the combustion zone to allow for proper gasification.  Above 

8.0 SCFM  (0.23 m3/min), the temperatures climbed and fell rapidly due to turbulence in 

the gasification chamber and a steady-state could not be obtained. Stable performance of 

the gasification system was demonstrated for airflows ranging from 5.75 to 7.0 SCFM 

(0.16 to 0.20 m3/min), and therefore 9 samples were collected at flow rates in this range 

as opposed to 3 samples collected at tested flow rates outside this range as shown in 

Appendix A.  An example of temperatures at various heights above the ash grate is 

shown in Figure 23 with 1 sample point every second. 

 Figure 24 shows the average temperature of the 2 lowest thermocouples, located 

in the combustion zone of the gasification chamber, as ER was varied from 0.138 to 

0.246.  The standard deviation of temperature at each sample point during sampling at 

each equivalence ratio is shown by the error bars.  Higher air flows allowed the 
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combustion zone to be maintained at temperatures averaging about 150 ˚C above 

temperatures at lower air flows.  At an ER of 0.154, the temperature was 575 ˚C, and as 

the ER was increased to 0.200, the temperature increased to 775 ˚C.   Above ER of 0.200, 

the temperature of the combustion zone did not change noticeably as ER was varied. 

Example Temperature Profile Inside Gasification Chamber
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Figure 23:  Example temperature profile inside the gasifier during a gasification test. 
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Figure 24:  Average gasification temperature in the combustion zone 

 at given equivalence ratios.  Standard deviations are shown by error bars. N=9 for ER=0.177-0.215, and 
N=3 elsewhere. 
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Tar and Water Production 

Tar production was minimal, with no noticeable tar build up in the system.  

Weight of gas in gas bags including tar and water was recorded for samples at 5.75, 6.5, 

and 7.0 SCFM (0.16, 0.18, and 0.20 m3/min) and is shown in Table 7.  The method of 

collecting samples does not allow separation of tar and water because evaporation of the 

water would also vaporize many of the known components, such as benzene, in gasifier 

tar.  Statistical t-test shows no statistical relationship between sample weight and ER.   

If the entire weight of the tar and water collected is taken to be tar, the amount of 

tar in the gas would be in the range of 1-160 g/Nm3 reported by Milne et al (1998) for 

updraft gasifiers.  These values are also very near the 100,000 mg/m3 average tar content 

for updraft gasification reported by Neeft et al (1999).  The reported values for Milne et 

al (1998) and Neeft et al (1999) were dry tar, and the values reported for this research 

include water weight. 

Ash recovery was not consistent because ash was lost with producer gas during 

periods of very turbulent air/gas flow.  Therefore, ash recovery weights were not 

reported. 

Table 7:  Average weight of gas, tar, and water collected in 1.6 L gas bag.   

Airflow 
(SCFM) 

Airflow 
(m3/min) 

Tar + Water  
(g/m3gas) 

5.75 0.16 83 
6.50 0.18 125 

7.00 0.20 83 

Producer Gas Composition 

 Gas analysis at tested ERs is summarized in Figure 25 through Figure 30.  Each 

point represents the average mole percentage of that component in analyzed samples 

which included nitrogen.  Nitrogen (N2) does not react during the gasification process 
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and, therefore, can be viewed as a tracer gas in the compressed air.   Error bars show 

standard deviation.   

 Figure 25 displays hydrogen percentage in producer gas at given ERs.  Hydrogen 

is at its highest percentage of gas at 0.200 ER.  The standard deviations at the extreme 

ERs tested demonstrate the variation experienced at those airflow rates.  Since hydrogen 

is a high energy component desirable in producer gas, the trend in hydrogen shows most 

favorable production about 0.2 ER. 
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Figure 25:  Percentage of hydrogen in producer gas at given ERs. 

Error bars show standard deviation.  N=9 for ER=0.177-0.215, and N=3 elsewhere. 
 
 

Figure 26 displays methane percentage in producer gas at given ERs.  Methane 

shows little trend over the range of ERs tested.   
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Figure 26:  Percentage of methane in producer gas at given ERs. 

Error bars show standard deviation.  N=9 for ER=0.177-0.215, and N=3 elsewhere. 
 

Figure 27 displays carbon monoxide percentage in producer gas at given ERs.  

Carbon monoxide is at its highest percentage of gas at 0.177 ER.  Since carbon monoxide 

is a high energy component desirable in producer gas, the trend shows most favorable 

production about 0.177 ER. 
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Figure 27:  Percentage of carbon monoxide in producer gas at given ERs. 

Error bars show standard deviation.  N=9 for ER=0.177-0.215, and N=3 elsewhere. 
 

Figure 28 displays carbon dioxide percentage in producer gas at given 

equivalence ratios.  Carbon dioxide shows very little trend.  Carbon dioxide is a low 
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energy, undesirable compound in producer gas, and, therefore, lower quantities are more 

desirable. 
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Figure 28:  Percentage of carbon dioxide in producer gas at given ERs. 

Error bars show standard deviation.  N=9 for ER=0.177-0.215, and N=3 elsewhere. 
 

Figure 29 displays the percentages of the higher carbon compounds acetylene, 

ethylene and ethane in producer gas at given ERs.  None of the three components show a 

trend over the range of ERs tested.   
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Figure 29:  Percentage of higher carbon compounds in producer gas at given ERs. 

Error bars show standard deviation.  N=9 for ER=0.177-0.215, and N=3 elsewhere. 
 

 

Figure 30 displays the average percentage of nitrogen at each equivalence ratio.  

The lowest percentage of nitrogen is at 0.2 ER.  Since nitrogen is inert during the 
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gasification reactions, it can be viewed as a tracer.   Since the percentage of nitrogen 

entering the gasifier remains constant, the lower nitrogen percentages in producer gas 

mean there is higher production of other producer gas components at those ERs.  This 

trend points toward more efficient producer gas production at about 0.2 ER. 
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Figure 30: Nitrogen content in producer gas at various equivalence ratios.  

Error bars show standard deviation.  N=9 for ER=0.177-0.215, and N=3 elsewhere. 
 

 Statistically significant differences between producer gas percentages at different 

ERs as calculated using a t-test are shown in Table 8.  Different letter superscripts within 

a row denote statistically different groups in each component.  There is no pattern of 

significant difference for any of the component gases at the equivalence ratios tested. 
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Table 8:  Average percentages of each component of producer gas 
 at each tested equivalence ratio.   

Letters denote statistically similar measurements (α=0.05) for each component.  N=9 for ER=0.177-0.215, 
and N=3 elsewhere. 

Average Gas Composition 
Equivalence Ratio 0.138 0.154 0.177 0.200 0.215 0.246 
H2 3.14a 4.50a 4.32a 4.72a 4.45a 4.08a 

N2 64.88c 63.03c 61.84c 60.48b 62.74c 64.94c 

CO 23.04ef 20.22e 24.34f 22.80f 22.80f 16.77d 

CH4 1.24g 1.64g 0.99h 1.55g 1.09gh 1.08g 
CO2 7.66i 10.26ijk 8.10i 10.18j 8.54i 11.84k 

C2H2 0.00l 0.01l 0.02l 0.03l 0.05l 0.99l 

C2H4 0.01m 0.28m 0.26m 0.12m 0.22m 0.08m 

C2H6 0.03n 0.06no 0.13o 0.12o 0.10o 0.23o 

 
 Comparing the producer gas at 20% equivalence ratio (Table 8) to the average 

producer gas from commercial wood gasifiers reported in the FAO (1986) report shows 

several similarities and differences.  Nitrogen (60.48%) is higher than the nitrogen range 

reported in FAO (50 – 54%).  Carbon monoxide (22.80%) is at the high end of the range 

reported (17 – 22%).  Carbon dioxide (10.18%) is in the range reported (9 – 15%).  

Hydrogen (4.72%) is much lower than the range reported (12 – 20%).  Methane (1.55%) 

is lower than the range reported (2 – 3%).  

Heating Value 

 The heating value of the producer gas is calculated as the sum of the percentage 

of each component multiplied by the pure gas heating value of that component.  One 

heating value is reported for each test, reporting the average of the three samples taken in 

that test.  Figure 31 displays the average high heating value of producer gas at various 

airflows.  This graph clearly shows the producer gas contains more energy in the 0.177-

0.215 ER range. 
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Figure 31:  Average high heating value in kJ/kg of producer gas at each ER.    

Error bars show standard deviation.  N=9 for ER=0.177-0.215, and N=3 elsewhere. 

 

Reed and Desrosiers (1979) reported an average high heating value for biomass of 

22,200 kJ/kg.  Rao (2004) reported high heating values for the updraft gasification 

system using air as the gasifying agent as 10,800 kJ/kg for wood pellets, 10,900 kJ/kg for 

meat byproduct sludge, and 12,000 kJ/kg for a mixture of half wood pellets and half meat 

byproduct sludge.   

Cold Gas Efficiency 

 The cold gas efficiency is calculated as the heating value in the producer gas 

divided by the heating value of the biomass on a per weight basis.  Since the nitrogen 

component of the producer gas originates with the air, its percentage is omitted for cold 

gas efficiency calculations.  The cold gas efficiency ranges from 43% to 47% and follows 

the same trend as the heating value, as shown in Figure 32.  This graph shows that the 

highest conversion efficiency is obtained at 0.177-0.215 ER for this gasifier. 
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Figure 32:  Cold gas efficiency based on producer gas samples 

 collected at various ERs.  Error bars show standard deviation.  N=9 for ER=0.177-0.215, and N=3 
elsewhere. 

 

 
 The t-test performed on high heating value and cold gas efficiency data revealed 

no statistically significant difference (=.05) in either HHV or cold gas efficiency for any 

of the samples at the different equivalence ratios. 

Reed and Desrosiers (1979) reported conversion efficiencies of 60-93% for wood 

feedstock.  Bowser et al (2005) reported cold gas efficiency values for the updraft 

gasification system using air as the gasifying agent as 58% for wood pellets, 47% for 

meat byproduct sludge, and 60% for a mixture of half wood pellets and half meat 

byproduct sludge.   
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CHAPTER VI 
 

CONCLUSIONS & RECOMMENDATIONS 

 An 8-inch (20 cm) diameter, updraft gasifier was designed and built for 

gasification of eastern redcedar mulch commercially available in Oklahoma.  Unique 

features of the gasifier include: 

 A simple design that can be used to test feedstocks with a variety of particle sizes,  

moisture contents, and ash contents  

 A scraper/agitator system which deters air channeling as demonstrated by a stable 

temperature gradient and consistent combustion zone temperatures 

 A feedstock hopper and auger which allows semi-continuous feedstock feed rate 

 

 Testing of the new gasifier with eastern redcedar mulch commercially available in 

Oklahoma was also completed.  Specific findings include: 

 Moisture content, ash content, and particle size suitable for gasification in this 

system without pretreatment. 

 Tar production is below the level expected for an updraft gasifier.  Though actual 

tar content of producer gas was not measured, the combination of tar and water 

weight in producer gas was measured.  The weight of tar and water in producer 

gas averaged 83-125 g/m3. 
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 Highest quality producer gas produced with equivalence ratio in the range of 

0.177 to 0.215: 

 Hydrogen mole percentage averaged 4.32-4.72%. 

 Carbon monoxide mole percentage averaged 22.80-24.34%. 

 High heating value averaged 8486-8911 kJ/kg. 

 Cold gas efficiency averaged 45-47%. 

 

The testing of this gasification system provides evidence that eastern redcedar can 

be utilized as a feedstock for gasification. 

Suggestions for future research 

 Several design considerations can be made to improve the effectiveness of using 

this gasifier to test potential feedstocks: 

 Operation of the system requires constant operator attention.  Operation intensity 

could be reduced by the addition of motors to turn the auger and scraper/agitator. 

 The addition of a continuous gas composition monitor would provide more 

information about the quality of gas being produced. 

 A study of producer gas contaminants and ways to reduce them. 

 Tar analysis should be performed. 
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Further consideration should be given to the energy balance required to prepare 

eastern redcedar for gasification: 

 A study of power required to reduce redcedar particle size with a mulcher versus 

other particle reduction techniques. 

 Cost analysis of gasification versus other methods of redcedar removal. 
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APPENDIX A:  Producer Gas Sample Data 

Equivalence Ratio 0.138 0.154 0.177 0.200 0.215 0.246 

Airflow (SCFM) 4.5 5 5.75 6.5 7 8 

Test Repetitions 1 1 3 3 3 1 

Total Data Points 3 3 9 9 9 3 

Raw HHV (kJ/kg)   18990         

Averages 

Bed Temperature 660 573 734 777 754 737 

HHV (kJ/kg) w/o N2% 8488 8432 8911 8486 8752 8196 

HHV (kJ/kg) 3032 3169 3415 3389 3288 3001 

H2 3.14 4.5 4.32 4.72 4.45 4.08 

N2 64.88 63.03 61.84 60.48 62.74 64.94 

CO 23.04 20.22 24.34 22.8 22.8 16.77 

CH4 1.24 1.64 0.99 1.55 1.09 1.08 

CO2 7.66 10.26 8.1 10.18 8.54 11.84 

C2H2 0 0.01 0.02 0.03 0.05 0.99 

C2H4 0.01 0.28 0.26 0.12 0.22 0.08 

C2H6 0.03 0.06 0.13 0.12 0.1 0.23 

Cold Gas Efficiency 16% 17% 18% 18% 17% 16% 

Cold Gas Efficiency w/o N2% 45% 44% 47% 45% 46% 43% 

              

Standard Deviations 

Bed Temperature 26 55 39 57 46 35 

HHV (kJ/kg) w/o N2%     524 441 1333   

HHV     277 64 596   

H2 3.31 1.54 1.88 1.59 1.38 4.11 

N2 6.59 5.12 4.84 4.21 3.35 10.31 

O2 0 0 0 0 0 0 

CO 6.19 3.14 4.62 4.08 5.35 4.23 

CH4 1.09 1.06 0.88 0.86 0.58 1.4 

CO2 2.86 1.58 2.63 3.83 3.47 2.07 

C2H2 0 0.02 0.04 0.04 0.07 1.7 

C2H4 0.01 0.38 0.33 0.1 0.12 0.12 

C2H6 0.05 0.11 0.11 0.08 0.07 0.35 

Cold Gas Efficiency     1.5% 0.3% 3.1%   

Cold Gas Efficiency w/o N2%     2.8% 2.3% 7.0%   



 73

 

APPENDIX B:  Eastern Redcedar Analysis 
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Scope and Method of Study 
 

Eastern redcedar is considered a nuisance by many people in Oklahoma where the 
plant is taking over approximately 762 acres (3.0 square km) of rangeland per day.  
Gasification of eastern redcedar is one alternative for providing a market by converting 
the trees to fuel.   

There were two objectives of this research:  (1) Provide a detailed design of an 
updraft gasifier that can be used with a variety of feedstocks including eastern redcedar 
mulch and (2) Test the viability of eastern redcedar mulch as a feedstock for gasification 

The design aspect included drawing gasifier components, fabrication, testing, 
redesign, and retesting.  Parts were fabricated in the Biosystems and Agricultural 
Engineering Laboratory.  Operating procedures for the new design were established and 
used throughout the testing phase. 

Mulched eastern redcedar was used as the feedstock for gasification.  Optimal airflow 
was established based on consistent gasifier operation.   
 
Findings and Conclusions 
 

An updraft gasifier was designed for gasification of eastern redcedar mulch.  Unique 
features of the design included:  a simple design useful for testing feedstocks with a 
variety of particle sizes and moisture and ash contents, a scraper/agitator system which 
deters air channeling as demonstrated by a stable temperature gradient and consistent 
combustion zone temperatures, and a feedstock hopper and auger which allows semi-
continuous feedstock feed rate. 

Testing with eastern redcedar mulch resulted in best operation in the ER range of 
0.177 to 0.215 for the 8-inch (20 cm) diameter gasification chamber as evidenced by 
HHV and cold gas efficiency.  Moisture and ash content and particle size are suitable for 
gasification in this system without pretreatment.  Gasification was complete, with no 
noticeable tar buildup in the gasifier.  The testing of this gasification system provides 
evidence that eastern redcedar can be utilized as a feedstock for gasification. The design 
is original and provides a tool for future experimentation at Oklahoma State University 
and future construction of gasifiers of this type. 


