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CHAPTER I 
 

 

INTRODUCTION 

Precision Agriculture 

Technological advances for different industries have benefited agriculture by their 

incorporation into production systems. The industrial age brought mechanization; the 

technology age offered engineering and automation (Zhang et al., 2002). Precision 

agriculture is a practice that has a set of tools that allows an agriculturist to quantify and 

manage the spatial variability in farm fields (Stombaugh and Shearer, 2000). According 

to Searcy (1997) precision agriculture is based on the optimization of production inputs 

in a field where the soil and crop characteristics are known. In the last few years, a great 

advancement in precision agriculture technology has been developed (Stombaugh and 

Shearer, 2000). Precision agriculture has a base on the spatial and temporal variability of 

soil and crop within a field due to the enlargement of fields and the increase in 

mechanization. Nowadays, the development of revolutionary technologies has become 

necessary to account for within-field variability (Zhang et al., 2002).  
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In addition, many investigations have been conducted regarding variability. 

According to Raun et al. (2005) the time when fertilization could have the greatest 

impact, could be the growth stage where plant variability is at a maximum. Therefore, 

identifying the variability among plant-to-plant spacing within the row is crucial for 

precision farming techniques (Freeman et al., 2007).  

Raun et al. (2005) also suggested that the point where by-plant variability was 

best recognized should theoretically be the same time at which to sense and treat spatial 

variability. In the experiment they measured daily plant growth and spatial variability in 

corn over the entire growth cycle. It was found that 6-leaf growth stage (V6) might be the 

time which treating variability could have the greatest impact, because V6 had the 

greatest spatial variability. 

As well as quantifying variability, research on corn yield prediction has been 

conducted in the past. Work by Teal et al. (2006) predicted accurately the corn yield 

potential using normalized difference vegetation index (NDVI)  at the V8 growth.  

Martin et al. (2010) defined an equation to predict corn grain yield. This 

prediction was related to the linear distance occupied by each plant, the competition 

adjustment factor and the days from planting in-season estimated yield (INSEY). The 

competition factor is dependent of the height of the plant in question, as well as the 

height of the previous two and the following two plants of the plant in question. INSEY 

is calculated using NDVI, and the number of growing degree days (GDD). 

Further work was conducted by Kelly (2011) to improve in-season corn yield 

prediction. He analyzed the relationship between corn stalk diameter, plant height, and 

NDVI with final corn grain yield. The studies were conducted in Lake Carl Blackwell 
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and Efaw near Stillwater, OK, Hassel, OK, and Ciudad Obregon, Mexico. Corn plants 

were at V8, V10, and V12 growth stages at the time of sensing. Correlations were higher 

based on both stalk diameter and plant height with values up to 0.67 for V12. Thus, 

concluding that corn stalk diameter could be a crucial parameter to predict corn grain 

yield. The best prediction results of by-plant grain yield were given by the multiplication 

of stalk diameter and plant height from growth stages V8 to V12.  
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

Stalks and plant population measurement  

A handheld mechanical device to count corn stalks was presented in 1996 

(Easton, 1996). The device sensed plants with a small pivoting arm. In addition, the 

distance was measured with the signals sent by an opto-interrupter that read the teeth of a 

60 tooth disc driven by a one meter circumference wheel. Each pulse sent by the 

microcontroller incremented the distance by approximately 17 mm. The limitation of this 

device was that it only provided general information for the field, such as standard 

deviation of plant spacing, and data for individual plants.  

Plattner et al. (1996) used an optical sensor to measure stalk diameter and plant 

spacing statistics with parameters like skips, doubles, and plant spacing. They mounted a 

photoelectric sensor on a corn combine. It projects a light beam across the row, and the 

corn stalks break the light beam. The distances were calculated using a ground speed 

sensor. To eliminate errors due to leaves in the light path, they used spring-loaded leaf 

retarders. The sensor estimated average plant spacing with an error of ±3.1% at the early 

stage, and ±6.2% of error at harvest stage. Leaves were a major source of interface for 

this sensor.



5 
 

Li et al. (2009) developed a proximity sensor using capacitive technology to detect  

biomass. They simulated, fabricated, and evaluated different capacitive paths in the 

laboratory. After that, the sensor was evaluated for biomass population quantification in 

the field to detect corn stalks. The sensor had less than 5% error on plant population for 

five of the six rows harvested. In addition results showed less than 2% error on the 

average of the six rows. 

Later, research by Lovell et al. (2011) presented a method using the intensity of 

returns from a scanning light detection and ranging system to identify the location and 

measure the diameter of tree stems within a forest. The reflectance of the laser light 

allows detecting trees. The reflectance depends of the range as well as the object’s 

reflectivity. The results showed success in identifying trees, including some that are 

partially obscured from view. The trunk angular span, and diameter estimations were well 

correlated with field measurements, but the accuracy for the diameter estimation 

decreased with range from the scanning position. 

Work has also been presented regarding plant population. Shrestha and Steward 

(2003) developed a machine vision-based corn plant population sensing system to 

measure corn population. Video was acquired when corn plants were at V3 and V4 

stages. Algorithms were developed for the segmentation. The number of plants pixel and 

the median position were extracted from each segment. This approach gave a correlation 

to the manual count of 0.90 in low–weed field conditions. 

Additionally, Shrestha and Steward (2005) continued with the vision-based 

approach and developed an algorithm to count corn plants and to estimate plant location 

with scanned images. Using a chain code they detected the limits of top projected corn 
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plant canopy objects. The system detected plants with a coefficient of determination (R
2
) 

of 0.92. 

Luck et al. (2008) processed the voltage output from infra-red sensors to count 

plants at V7-V9 growth stage. The sensor was on one side of the row, and a plate was 

parallel to the sensor on the next row to eliminate the possibility of sensing the plants on 

the next row. Using an algorithm in MatLab they extracted plant populations. The sensor 

was used on a row crop tractor with constant speed of 3.2 kilometers/hour (km/h) for 

field testing. Overestimation happened due to leaves or other objects on the rows that 

were considered as corn plants. The errors ranged from +0.7% to +4.4% per row. 

Research has also been conducted related to scale variability. Such research 

discusses whether or not small-scale is better than large. Solie et al. (1999), conducted 

two experiments to determine the semi variance range of plant uptake measurements. The 

results proved that dimensions should be in the meter or sub meter range, because larger 

intervals will miss short distance changes. These results lead to conduct research on a 

smaller range, research to create a by-plant management on the field, instead of a broad 

management using corn population. 

Martin et al. (2010) used plant height to predict corn grain yield, however plant 

height can be difficult to measure for individual plants in production fields. Wind and 

adjacent plants cause interference. Kelly (2011) predicted corn grain yield using stalk 

diameter. While measuring stalk diameter comes with its own challenges (leaves and 

other interfering objects), the sensor used to measure stalk diameter could also measure 

plant location and spacing.  According to the corn grain yield prediction equations, the 
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distance between plants needs to be measured, therefore the same sensor could be used to 

measure stalk diameters. This would eliminate the extra sensor that measures height. 

  

 

Research objective 

Previous work has been done sensing different parameters separately, but this 

research pretends to establish a tool that integrates the advances presented in other 

industries with precision agriculture. In difference with previous studies this research 

pretends to develop a sensor capable of measuring two parameters at the same time. 

The main objectives for this study were: 

1. To develop a sensor capable to locate plants in a field with a photoelectric 

sensor using an algorithm to detect plants. 

2. To electronically measure corn plant diameter of plants correctly located using 

photoelectric sensor and optical encoder data. 



8 
 

CHAPTER III 
 

 

MATERIALS AND METHODS 

Sensor selection 

Initially an ultrasonic sensor was tested to prove the reliability of the 

measurements to the stalk diameter. Although it had good time response and signal 

processing, the cone produced by the sound waves, gave a deviation between the results 

and the actual diameter. And although the error was consistent, that option was 

dismissed. 

 After considering several sensing options, photoelectric technology showed much 

promise for the intended purpose. These sensors can give excellent response time as well 

as background suppression, if needed. But the most important condition was that the light 

used by this sensor does not have signal offset, like the cone on the ultrasonic sensor. 

Therefore, the electronic measurements in the first year of this study were taken using a 

SICK (Minneapolis, MN) photoelectric sensor, model number W9-3 (Figure 1). This 

sensor has a maximum distance sensing range of 2000 mm. It provided a switching 

output of 0 and 12 V. The switching output was programmed with background 

suppression at 50 cm to avoid sensing items beyond the row of corn plants. The sensor 

was placed at 10 cm above the ground to measure at the same height that the manual 

measurements were taken. 
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Figure 1. SICK W9-3 Photoelectric sensor 

 

The digital output of the optical sensor used in 2011 did not perform well. Leaves 

next to a plant resulted in overestimated diameter measurements and the digital output 

made it impossible to differentiate one from the other. Therefore, for the 2012 study the 

system was converted to an analog sensor. A SICK DT-10 photoelectric analog sensor 

was used (Figure 2). This sensor has a programmable range from 5 to 500 mm, and 

provides a 4-20 milliamps (mA) output for the programmed range. Using the teach 

button, the sensor was programmed to ignore anything beyond 25 cm from it.  A 500 

ohms (Ω) resistor was connected between the ground cable, and output signal cable from 

the sensor to convert the output signal to voltage. After the resistor was connected, the 

voltage range of the output signal was 0 – 10 volts.  
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Figure 2. Analog Photoelectric sensor used on the second study 

An optical encoder was placed on one of the wheels to calculate the distance and 

speed of the sensor from the beginning of the row. Rotary encoders convert an angular 

position into an analog or digital signal. The Dynapar (Gurnee, IL) E14 miniature is an 

incremental shafted encoder. It provides 200 pulses per revolution (PPR). Each pulse is 5 

V in magnitude, the same as its excitation voltage. 

 

Figure 3. Optical encoder used to calculate speed mounted on the front wheel 
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System test and calibration 

 The test and calibration of the system was conducted in the Bioystems and 

Agricultural Engineering Laboratory using Polyvinyl chloride (PVC) pipes. Five pipes of 

2.54, 3.81, and 5.08 cm were used. The pipes were placed randomly in a row simulating a 

corn plants. The cart was then pushed alongside the row of pipes. Data were collected 

and analyzed to evaluate the system under optimal conditions.  

 To evaluate the performance of the optical encoder, the cart was pushed through a 

defined distance. Using MatLab, the number of pulses was counted to calculate the 

distance. Results provided enough information to prove the functionality of the sensors. 
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Experiment design 

 

Two locations were selected for the research. During summer 2011 data were 

collected at Lake Carl Blackwell Research Field, on Stillwater, OK using the resources 

available at the Biosystems and Agricultural Engineering laboratory, as well as crop 

fields operated by the Department of Plants and Soils Sciences. Twelve rows of corn 

plants with 50 plants each were selected for the experiment. They were sensed at V8, 

V10 and VT growth stages. Additionally data were collected in the spring of 2012 in 

Ciudad Obregon, Mexico using the resources available at the International Maize and 

Wheat Improvement Center (CIMMYT). Twelve rows with 50 corn plants each were 

selected for the experiment. At the time of sensing, four rows were V8 stage, four V12, 

and four were VT. 

 

 

Manual measurements 

 Each plant was measured individually by hand. The dimensions collected were 

major diameter (D1), minor diameter (D2), cross-section distance (CS), and distance 

between plants (DB) from center to center (Figure 4). Stalk measurements D1, D2, and 

CS were measured using a digital caliper in millimeters (mm) with precision of 0.01, at 

10 cm above the ground in Oklahoma. For the study conducted in Obregon the height for 

the stalk measurements was 20 cm from the bottom of the furrow because corn was 

planted on raised beds. 
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 DB was measured in centimeters (cm) by placing a measuring tape on the ground 

next to the row. The beginning of the tape was placed at the edge of the first wooden 

stake, and the end was placed at the edge of the next wooden stake as it is represented on 

Figure 5. 

 

 

 

 

For the corn grain yield prediction algorithm only CS and DB are needed, 

therefore only those were measured by the sensor. D1 and D2 were measured to continue 

the research on the relationship between stalk diameters and yield. 

 

 

Figure 4. Dimensions measured by hand on each corn plant 

Figure 5. Representation of the tape measurement lying next to the row between the 

two wooden stakes 
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Data acquisition 

 For the 2011 study the main goal of the data acquisition was to collect the elapsed 

time during a signal of the photoelectric sensor. Additionally, the encoder data was used 

to calculate speed.  

The device used to collect data was an Arduino UNO (Chiasso, Switzerland) 

microcontroller. This microcontroller uses software based on C++. The board is based on 

ATmega328. It has 14 digital input/output pins, 6 analog inputs, a 16 MHz crystal 

oscillator, a USB connection, a power jack, an ICSP header, and a reset button. A shield 

(accessory) of this microcontroller was also bought to store the data on a SD card. The 

shield provided portability because data was automatically saved on the SD card. Data 

were saved in a new comma delimited text file every pass. The Arduino UNO and the 

shield (Figure 5) were powered with a single 9 V battery. 

The equipment was mounted on a four-wheel cart built at the Biosystems and 

Agricultural Engineering laboratory. The sensor was placed on one side of the cart 

between the wheels to reach the desired height. 

 Figure 5. Arduino UNO board, and Arduino Data Logging Shield, used to log data from the sensors into an SD card. 
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 The Arduino code, counted the elapsed time in microseconds (µs) between a 

rising and a falling edge from the sensor signal, and vice versa, as shown on Figure 6. 

The data were saved as a comma delimited text file on the SD card. Speed was calculated 

using the encoder signal. The stalk cross-section distance (CS), and the distance between 

plants (DB) was calculated using Microsoft Excel with time and speed values for each 

parameter. 

 

 

 

Figure 6. Description of data collected by Arduino from the photoelectric sensor 

  

For the study conducted in 2012 the data were recorded using a USB – 1208 

Measurement Computing (Norton, MA) Data Acquisition system (DAQ). The device 

features up to 8 analog inputs of 13-bit resolution, 16 digital I/O lines, two 32-bit 

counters, one 32-bit PWM timer output, USB-bus powered, and 1 mega samples/second 

(MS/s). One analog channel was used to measure the voltage of the photoelectric sensor, 

and another channel to measure the signal from the rotary encoder. The analog channels 

were configured as single ended using InstaCal, software provided by Measurement 

Computing. Using InstaCal the channels were configured to a 0 to 10 V range. Both 

signals were recorded at 10 kHz. The main reasons for the change in the system between 
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2011 and 2012 were the resolution and the sampling rate. Although the system lost the 

stand alone capability, the USB-1208 provided more reliable features in order to reach 

our objectives. 

 

 

 

Figure 7. Data Acquisition system used for the second study 

 

 

Mounting vehicle 

 The sensors were mounted on a small golf cart. The cart is a Sun Mountain 

(Missoula, MT) Micro Cart. The light weight, and folding feature, made this cart a 

suitable option to mount the devices on. 

The cart supported a 12 V battery, a laptop, an enclosure box with the DAQ, the 

rotary encoder, and the photoelectric sensor. The photoelectric sensor was mounted on 

one of the side tubes of the cart as shown on Figure 8. The rotary encoder was attached to 

a mounting plate attached to one of the center tubes of the cart. In addition, as shown on 

Figure 9, the encoder shaft was attached to a Slim-Tread Drive Roller of 4.1275 cm 
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diameter. The roller made contact with the inside area of the left front wheel, causing 

than the encoder to move as the wheel moves. Figure 10 shows a picture of the cart with 

all the devices on it. 

      

Figure 8. Photoelectric sensor mounted on one side of the cart 

 

 

 

 

Figure 9. Roller of the encoder making contact with front wheel  
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Figure 10. Picture of the cart with all devices on it 

 

Data collection 

Wooden stakes were place before the first plant measured, and after the last plant 

to indicate the beginning and end of the 50 plants. The cart was then pushed inside the 

row right before the first wooden stake, making sure the photoelectric sensor light did not 

indicate that was sensing something. The cart was then pushed through the row trying to 

maintain a constant speed until the next stake was reached. 

To begin data collection using the USB-1208, the MatLab code was run and the 

message “ADC ready… Starting” needed to appear on the computer’s screen before the 

cart was pushed through the row. To stop data collection the command “stop(allmcc)” 

was typed. 
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Data processing and analysis 

Data Logging 

The data were logged with a program developed in MatLab. The DAQ was 

connected to the computer by its USB interface. The program configured and read data 

from two analog channels. The sampling rate was set at 10,000 Hz; and a time limit of 6 

minutes. Data were saved on MatLab’s Data Acquisition Toolbox files (.daq). A new file 

was created every pass. The name of the file included the location, date, and time stamp. 

Analysis of optical encoder signal 

The purpose of the encoder signal was to measure the location of the cart as it 

moved along the row. The equivalent distance of each encoder pulse was calculated using 

the ratio between the roller and the wheel and PPR. The value was 0.82 mm per pulse. 

 

Figure 11. Plot of the encoder signal from the analog channel 
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The encoder signal was logged using an analog channel resulting in data like that 

shown on Figure 11; therefore the counts needed to be detected.  

 Encoder data were analyzed using two approaches to count the number of pulses. 

The first was using Discrete Fourier Transform (DFT). The DFT was applied to the 

signal using overlapping windows. Each window had 256 points with steps of 128 points 

for the overlapping. This value produced an overlapping window from the center. The 

output from this function is a vector with the frequencies found in the data. A first order 

low pass filter with filter coefficients equal to 1/100 was applied to the output vector to 

smooth the signal. The angular frequencies were converted to distance using the ratio 

between the encoder roller and the inside circumference of the cart wheel, and the outside 

circumference of the cart wheel. At the end the vector included the speed for every time 

unit on the data as shown in Figure 12. The vector was used to calculate the average 

speed of the pass. 

Matlab function “findpeaks()”  was also used to locate peaks in the data. The 

function was configured with a threshold of 0.1 V. The function then recognizes as a 

peak every value greater than its neighbors by at least 0.1 V. The function output was a 

vector with the time at which each encoder pulse occurred. 
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Figure 12. Plot of the speed of the cart over time 

 

Analysis of photoelectric sensor signal 

The data collected from the photoelectric sensor was an array of voltages. It had 

an element for every 1/10000 s. Figure 13 shows a plot of the raw data from the 

photoelectric sensor. On Figure 13, the line at 4.7 V defines the background suppression. 

The voltage represents the distance from the sensor. A lower voltage means the object is 

closer, thus voltage drops when the sensor detects a plant or other object. The 

photoelectric data were to find the time elapsed between plants and during the sensing of 

a plant. Therefore, with the known speed at that specific time the distance (DB) and 

diameter (CS) were calculated. 
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Figure 13. Plot of the raw data from the photoelectric sensor 

 

The algorithm used information previously known from the field, specifically 

plant spacing and expected minimum diameter. The targeted planting distance used at 

CIMMYT was 12.5 cm, and the average minimum stalk diameter was defined as 20 mm. 

Those values were defined in the program and converted to time in each pass using the 

average speed calculated with DFT. By doing this, each pass had the average time 

required to push the cart through 12.5 cm and 20 mm.  

The time lapse between the rising and falling edges of the photoelectric signal 

was calculated for every object detected by the sensor. The location and cross section of 

every object detected was evaluated. 

The program evaluated if the time between edges of the object sensed met the 

criterion of average minimum stalk diameter in time. If it did not meet the criterion, the 
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voltage value of the signals between the edges was changed to 4.7 V, which is the value 

when nothing was sensed. If it met the criterion, the position of the object was evaluated.  

Position was evaluated using the targeted plant spacing. Every object detected 

must be 12.5 cm away from the previous object detected. First, the data were evaluated 

using ±20% tolerance of the targeted location. Therefore the object needed to be from 10 

to 15 cm away from the previous object detected.  Data were also evaluated using ±40% 

tolerance of the targeted location. Therefore the object needed to be from 7.5 to 17.5 cm 

away from the previous object detected. If the position criterion was not met for the 

object, the signal voltage is changed to 4.7 to indicate that nothing was sensed. 

After the object was evaluated, the number encoder pulses between the edges 

were counted, and multiplied by 0.082 mm to calculate cross section (CS) distance. The 

distance was calculated for every object detected. The same process was used to calculate 

the distance between plants. Once a falling edge was detected, the program calculated the 

distance to the next rising edge. The program then created a vector with the values of CS 

and DB for every plant detected. 

A MathCad® 13 (Mathsoft Engineering & Education, Inc) program was used to 

calculate the error, as well as count misses, multiples, and good measurements by the 

sensor. For every sensed plant, the program determined which of the actual plants it was 

closest to by calculating the minimum distance to actual plants. Once these minimum 

distances were determined, the matrix of minimum distances was queried for each actual 

plant to determine which of the sensed plants was closest to it. If more than one sensed 
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plant was deemed closest to the actual plant, only the closest plant was considered a good 

measurement. Others were considered multiple.  

On the other hand, if no sensed plant was closest to the actual plant, then it was 

counted as a miss.  

Therefore, the term “misses” refers to the number of existing plants that were not 

detected by the sensor and “multiples” refers to the number of objects detected by the 

sensor that were not actual plants.  

The term “good measurements” refers to the number of plants located correctly in 

the row. The number of good measurements was calculated by subtracting the number of 

misses and the number of multiples to 50 as defined on Equation 1 

 

      (           )                                                  ( ) 
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 “ABS Error” refers to the absolute error calculated only for the good 

measurements. For every plant located right, the difference between the sensed  

 

          |     |                                           ( ) 

       

                                           (  ) 

                      (  ) 

                      (  ) 

 

The difference between manual and sensed cross section was calculated for each 

of the good measurements. The next step was to detect the number of plants that were 

measured with 10, 20, and 30 mm of absolute difference. 
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CHAPTER IV 
 

 

RESULTS AND DISCUSSION 

 

Fist study 

 Data for the first study were processed using Microsoft Excel® 2010. Every 

comma delimited file consisted of a sensing time for every object detected, and the time 

between two objects detected (Figure 6). In addition, one column indicated the elapsed 

time of the current pass for each object. All times were expressed in microseconds (µS). 

Speed was calculated by multiplying the time values by the pulses received from the 

optical encoder. Each pulse was equivalent to 0.1 mm.   

Results for the study conducted in 2011 showed that the sensor performed better 

at earlier growth stages. The absolute error was as low as 2.9 cm for V8 and as high as 

6.7 cm when the corn plant was in tassel stage (Table 1). The average error was less than 

5 cm.  

For the first study, the results showed that the growth stage affected the 

performance of the system with an increase of the absolute error and the decrease in the 

number of good measurements for late growth stages. For V8 the number of plants 

located right was as high as 82% but, for VT the number of plants detected was as low as 

40%. One reason for this might have been the increase of plant residue on the ground. 

Rows with plants in late growth stages might have dried leaves hanging from the plant or 

on the ground. The sensor possibly detected those leaves as plants resulting in 
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measurement errors. This was evident as the number of multiples increased with growth 

stage (Table 1). For example, rows 1-3 went from an average of a little over 1 multiple at 

V8 to an average of over 8 when the plant was tasseled. 

Another observation was how the number of misses always exceeded the number 

of multiples even though the number of misses did not increase as considerably as 

multiples for some of the rows.  

For the most part the results were similar between different passes in the same 

row indicate consistency for the system. Some differences were found but not enough to 

be consider as a problem. 
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Table 1. Results from the study conducted in summer 2011 

SUMMER 2011 

Pass 1 Pass 2 Pass 3 

  Row 

Good Multiple Miss 
ABS 

Error 

(mm) 

Good Multiple Miss 

ABS 

Error 

(mm) 

Good Multiple Miss 

ABS 

Error 

(mm) 

V8 

Row 1 38 1 11 4.1 38 0 12 3.6 41 0 9 2.9 

Row 2 36 1 13 3.3 29 3 18 3.8 29 4 17 5.0 

Row 3 38 1 11 3.7 39 1 10 4.0 31 2 17 3.8 

Row 4 32 1 17 3.6 30 2 18 3.5 35 1 14 3.6 

Row 5 26 9 15 6.6 30 6 14 5.5 25 7 18 4.4 

Row 6 29 5 16 6.9 22 11 17 7.9 27 10 13 7.1 

V10 Row 1 20 11 19 9.3 25 7 18 6.4 24 4 22 4.8 

VT 

Row 1 34 7 9 5.4 36 6 8 4.0 35 6 9 4.4 

Row 2 31 6 13 6.1 24 9 17 6.9 30 8 12 5.9 

Row 3 28 11 11 5.3 20 14 16 8.3 24 10 16 6.7 
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Second study 

The data were processed using MatLab to detect corn plants and remove other 

objects. The threshold for minimum plant diameter was defined as 20 mm. Data less than 

that were removed. In addition, plant spacing was defined as 12.5 cm. Figure 14 shows a 

fragment of the photoelectric sensor data, and the filtered data are shown in Figure 15.  

                          Figure 14. Fragment of the photoelectric sensor raw data for a V8 row 

 

The same MathCad® 13 (Mathsoft Engineering & Education, Inc) program was 

used to calculate the error, misses, multiples, and good measurements by the sensor. The 

same method of detection was used for the 2012 study. 

The results for the study conducted in 2012 showed that the performance of the 

system was better for the V12 stage than for V8 (Tables 2 and 3). This was likely caused 

by the planting methods. Table 4 provides information about the mean plant spacing and 
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standard deviation for the two growth stages. Note that two different locations were used 

to obtain plants at two growth stages.  

 

 

Figure 15. Fragment of the filtered photoelectric sensor data 

 

Table 2 shows the results using ±20% tolerance for plant location, and results in 

Table 3 provide information using ±40%. Results using ±40% tolerance were improved 

when plants were at V8, but worse for plants at V12. Thus increasing the tolerance for 

expected plant location did not consistently improve sensor accuracy and is not expected 

to be a solution for poor field performance. 
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Table 2. Results from the study conducted in spring 2012 using ±20% tolerance 

 

 

 

 

 

  

SPRING 2012 

    Pass1       Pass2 Pass3 

    Good Multiple Miss 

ABS 

Error 

(mm) Good Multiple Miss 

ABS 

Error 

(mm) Good Multiple Miss 

ABS 

Error 

(mm) 

V8 

Row 1 9 4 37 14.1 8 4 38 14.7 8 5 37 9.5 

Row 2 12 7 31 6.6 13 8 29 7.5 10 6 34 9.7 

Row 3 15 5 30 10.6 17 5 28 9.5 19 8 23 7.7 

Row 4 12 4 34 7.4 15 5 30 6.2 19 5 26 6.3 

V12 

Row 1 33 12 5 4.3 31 11 8 4.4 31 9 10 4.8 

Row 2 27 11 12 5.5 30 9 11 6.4 37 6 7 4.3 

Row 3 28 10 12 6.1 30 9 11 5.8 32 5 13 5.5 

Row 4 16 17 17 10.1 18 15 17 7.3 16 16 18 9.1 
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Table 3. Results from the study conducted in spring 2012 using ±40% tolerance 

   
    PASS 1 PASS 2 PASS 3 

    Good  Misses Multiple 

ABS 

Error 

(mm) Good  Misses Multiple 

ABS 

Error 

(mm) Good  Misses Multiple 

ABS 

Error 

(mm) 

V8 

Row 
1 29 14 7 3.3 37 8 5 3.6 26 17 7 3 

Row 
2 25 13 12 5.1 29 11 10 4.9 23 18 9 4.2 

Row 
3 20 17 13 7.1 27 13 10 4.9 24 17 9 6 

Row 
4 23 19 8 7.6 16 27 7 8.3 23 19 8 7.6 

V12 

Row 
1 27 13 10 5.1 23 14 13 4.2 31 10 9 5.3 

Row 
2 26 13 11 5.6 32 10 8 6.6 34 9 7 4.2 

Row 
3 30 11 9 6.1 27 13 10 6.1 30 14 6 5 

Row 
4 11 21 18 12 19 17 14 7.7 18 16 16 7.9 
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Table 4. Standard deviation of plant spacing for study conducted in spring 2012 

  V8 V12 

 

Standard 

deviation Mean 

Standard 

deviation Mean 

Row 1 5.0 12.0 15.8 24.0 

Row 2 4.6 13.4 13.8 22.0 

Row 3 12.1 18.6 13.2 21.6 

Row 4 17.6 21.8 13.8 22.2 

 

 

 

 

Unfortunately plants at CIMMYT were not planted using precision planting 

methods, thus increasing the standard deviation of plant spacing. As previously stated, 

the detection of plants in the raw data was aided using the mean spacing targeted by 

CIMMYT. Therefore, the program was not able to detect plants out of the range, causing 

a poor performance of the algorithm for the plots without precision planting techniques. 

Table 4 shows the values of mean and standard deviation of plant spacing at CIMMYT. 

Mean plant spacing for V12 plants was constantly out of the range having an average 

value of 22.45 cm, almost 10 cm greater than the target spacing (Figure 16). Some of the 

planting problems could be solved by changing planting techniques. It would be highly 

recommended to do so before trying to solve problems less relevant. Technology that 

could improve nutrient management like presented in this research should be utilized 

after such problems have been removed from the fields. 
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                Figure 16. V8 Row planted without precision planting techniques 

 

In addition to the errors caused by deficient planting techniques, another possible 

problem for this study’s result could have been the same as 2011. This problem is that of 

leaves and plant residue that may have been in the sensor’s path thus creating errors. 

As in the 2011 study, the number of multiples also increased with the growth 

stage. The average number of plants located correctly on Table 2 was 13.08 for V8, and 

goes up to 27.42 for V12.  
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In contrast the absolute error is considerably smaller for plants in V12 than those 

in V8 growth stage. The only exception was row number 4, which showed an absolute 

error greater than 10 cm. 

Tables 5 and 6 contain the slope, intercept, and the coefficient of determination 

(R
2
) for each of the passes for sensed diameter as a function of measured diameter. 

Results showed that the system is still in need for improvements. The slope shows that 

the system overestimated stalk diameter for most of the passes, going up to five times the 

actual dimensions foe one of the passes. In addition, there was not much correlation 

between the measurements with the greatest R
2 

being 0.3154.  

Table 5. V8 Stalk diameter results 

STAGE ROWS PASS INTERCEPT SLOPE R-SQUARE 

V8  

ROW 1 

PASS 1 59.221 0.5701 0.0117 

PASS 2 118.45 -1.8958 0.2401 

PASS 3 35 0.9423 0.0178 

ROW 2 

PASS 1 36.798 0.5775 0.0161 

PASS 2 69.649 -0.1396 0.0002 

PASS 3 123.23 -1.6978 0.0271 

ROW 3 

PASS 1 14.692 1.2209 0.0282 

PASS 2 12.916 1.2901 0.0622 

PASS 3 54.142 -0.2468 0.0035 

ROW 4 

PASS 1 159.18 -3.2954 0.1155 

PASS 2 118.21 5.8631 0.3154 

PASS 3 53.852 0.12 0.0005 
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Table 6. V12 Stalk diameter results 

STAGE ROWS PASS INTERCEPT SLOPE R-SQUARE 

V12 

ROW 1 

PASS 1 64.197 0.0041 7.00E-07 

PASS 2 7.5597 1.8429 0.0758 

PASS 3 84.426 -0.786 0.0203 

ROW 2 

PASS 1 63.923 -0.4476 0.005 

PASS 2 34.383 0.7138 0.0091 

PASS 3 39.11 0.4633 0.0103 

ROW 3 

PASS 1 17.07 1.6885 0.0159 

PASS 2 58.617 -0.0962 9.00E-05 

PASS 3 59.933 -0.1377 9.00E-05 

ROW 4 

PASS 1 21.337 1.242 0.0204 

PASS 2 62.144 0.1425 0.0003 

PASS 3 99.471 -1.5428 0.0393 

 

 

 Figures 17 and 18 show graphs with the greatest correlation for V12 and V8 

respectively. The graphs show each manual measurement with the corresponding sensed 

measurement. Results show that even though plants were correctly located, the diameter 

was not accurately measured. One reason could be leaves or plant residue next to the 

plant. 
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Figure 17. Graph of the pass with the best correlation for plants on V12 

 

 

Figure 18. Graph of the pass with the best correlation for plants on V8 
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CHAPTER V 
 

 

CONCLUSION 

 

Different problems were detected during data analysis. Some were problems in 

the system and others correspond to field practices. 

Practice problems were present in the second study at Obregon. The V8 plots in 

Obregon were not planted using precision planting techniques causing difficulties for the 

algorithm to detect plants. Results for plant location were as high as 78% for one of the 

rows in V8 in Oklahoma, but decreased to 16% the next year in Obregon. In addition, 33 

plants were located right for V12 in Obregon in comparison with only 8 for V8. This 

system is meant to provide an improvement of by-plant management after greater 

problems were solved in the field. But when a plot presents problems like weeds, or poor 

plant spacing the use of this system will not provide the extra aid for plant management. 

In addition problems were encountered when counting multiples and misses. 

Plants in late growth stages usually have dried leaves hanging from the stalk, or on the 

ground. The sensor did not function correctly when this condition was present. The same 

problem was present in diameter measurements. Correlation between manual and sensed 

measurement did not showed the expected results. Correlations were constantly low, 

being 0.34154 the greatest. Diameter was constantly overestimated even when the plant 

was located right, meaning that objects were present to the plant and the system was not 

able to differentiate them.  
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 Solving problems that make plant detection difficult would highly improve the 

system’s performance. Good measurements varied between each stage, but this study 

provided information to say that the optimal stage to sense is V8. 
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CHAPTER VI 
 

 

FUTURE WORK 

 

The system did not provide the expected optimal performance. There is much to 

be done before the system can provide the tools for a better nutrient management. 

Photoelectric technology proved to be a reliable approach for this study, but 

further research should be conducted using other technologies that could provide better 

results. 

In addition, as stated before, dried leaves and plant residues were a problem when 

trying to detect plants. Therefore, research should be conducted to develop a solution to 

this problem that has been present in other studies with similar objectives. 

There is much to be done before this system can reach the optimal performance. 

More research should be conducted regarding the sensor to be used. In addition, an 

improvement in the algorithm is needed to eliminate objects present in the row that are 

not plants. 



41 
 

 

REFERENCES 
 

 

Birrell, S., and K. Sudduth. 1995. Corn Population Sensor for Precision Farming. ASAE Paper No. 

951334, Am. Soc. of Agric. Engineers, St. Joseph, MI 

 

Easton, D. 1996. Corn population and plant spacing variability: the next mapping layer. In Third 

International Conference on Precision Agriculture. Minneapolis, MN. 

 

Freeman, K. W., K. Girma, D. B. Arnall, R. W. Mullen, K. L. Martin, R. K. Teal, and W. R. Raun. 

2007. By-plant prediction of corn forage biomass and nitrogen uptake at various growth stages 

using remote sensing and plant height. Agronomy Journal 99(2):530-536. 

 

Kelly, J. P. 2011. By-Plant Prediction of Corn (Zea mays L.) Grain Yield Using Height and Stalk 

Diameter. M.S. Thesis, Plant and Soil Sciences, Oklahoma State University, OK. 

 

Li, H., S. K. Worley, and J. B. Wilkerson. 2009. Design and Optimization of a Biomass Proximity 

Sensor. Transactions of the ASABE 52(5):1441-1452. 

 

Lovell, J. L., D. L. B. Jupp, G. J. Newnham, and D. S. Culvenor. 2011. Measuring tree stem 

diameters using intensity profiles from ground-based scanning lidar from a fixed viewpoint. Isprs 

Journal of Photogrammetry and Remote Sensing 66(1):46-55. 

 



42 
 

Luck, J. D., S. K. Pitla, and S. A. Shearer. 2008. Sensor Ranging Technique for Determining Corn 

Plant Population. ASABE Paper No. 084573. In 2008 ASABE Annual International Meeting. 

Providence, Rhode Island ASABE. 

 

Martin, K., W. Raun, and J. Solie. 2010. By-plant prediction of corn grain yield using optical 

sensor readings and measured plant height. Journal of Plant Nutrition. 

 

Plattner, C. E., and J. W. Hummel. 1996. Corn plant population sensor for precision agriculture. 

In Third International Conference on Precision Agriculture. Minneapolis, MN. 

 

Raun, W. R., J. B. Solie, K. L. Martin, K. W. Freeman, M. L. Stone, G. V. Johnson, and R. W. 

Mullen. 2005. Growth stage, development, and spatial variability in corn evaluated using optical 

sensor readings. Journal of Plant Nutrition 28(1):173-182. 

 

Searcy, S. W. 1997. Precision Farming: A New Approach to Crop Management. In Texas 

Agricultural Extension Service publication. College Station, TX. 

Retrieved fom: http://lubbock.tamu.edu/files/2011/10/precisionfarm_1.pdf.   

Shrestha, D. S., and B. L. Steward. 2003. Automatic corn plant population measurement using 

machine vision. Transactions of the ASAE 46(2):559-565. 

 

Shrestha, D. S., and B. L. Steward. 2005. Shape and size analysis of corn plant canopies for plant 

population and spacing sensing. Applied Engineering in Agriculture 21(2):295-303. 

 



43 
 

Solie, J. B., W. R. Raun, and M. L. Stone. 1999. Submeter Spatial Variability of Selected Soil and 

Plant Variables. Soil Sciences Society of America Journal 63:1724-1733. 

 

Stombaugh, T. S., and S. Shearer. 2000. Equipment technologies for precision agriculture. 

Journal of Soil and Water Conservation 55(1):6-11. 

 

Teal, R. K., B. Tubana, K. Girma, K. W. Freeman, D. B. Arnall, O. Walsh, and W. R. Raun. 2006. In-

season prediction of corn grain yield potential using normalized difference vegetation index. 

Agronomy Journal 98(6):1488-1494. 

 

Zhang, N. Q., M. H. Wang, and N. Wang. 2002. Precision agriculture - a worldwide overview. 

Computers and Electronics in Agriculture 36(2-3):113-132. 



44 
 

APPENDICES 
 

 

 

Appendix A: Matlab Program 

 

 

clc 
clear all 
fd_id=0; 
flag=0; 
d1_ind=0; 
d1_idx=0; 
counts=0; 
d1=daqread('2012_3_4_17_14_50_Obregon.daq'); 
l=length(d1); 

  
i=0; 
j=0; 
k=0; 
sen_sig=0; 
plant_id=0; 
edge_id=1; 
plant_idx=0; 
edge_idx=1; 
plant_id2=0; 
edge_id2=1; 
plant_idx2=0; 
edge_idx2=1; 
plant_id3=0; 
edge_id3=1; 
plant_idx3=0; 
edge_idx3=1; 
last_val=0; 
same_val=0; 
same_ini=0; 
flag_same=0; 
bandera=0; 
avg_temp=0; 
avg_bet=0; 

  

  

  

  

  
% %Indexing all the data times(1 every 10,000 of second) 
% %d1_ind stores the index numbers from 1 to the number of datapoints 
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d1_l=length(d1); 
d1_ind=1:1:d1_l; 

  
%Attach the index to each datapoint 
%e.g. 1 8.92 4.25 
%     2 8.91 4.25 
d1_ind=d1_ind'; 
d1_idx=horzcat(d1_ind,d1); 

  

  

  
%Create vector with optical sensor data 
sen_sig=d1_idx(:,2); 
sen_sig_bu=sen_sig; 

  

  
%Get speed values from encoder signal 
speed=enc_post(d1); 

  
%Calculates speed mean value 
speed_pro=mean(speed); 

  

  
%Distance bet plants (In theory) [cm] 
dbp=(12.5/100); 
t_dbp=dbp/speed_pro; 
%p_dbp is the number of pulses of the average distance between plants, 

using the 
%average speed of the pass 
p_dbp=t_dbp/(1/10000); 

  

  
%Stalk diameter (Average) [mm] 
sd=(20/1000); 
t_sd=sd/speed_pro; 
%p_sd is the number of pulses of the average stalk diameter, using the 
%average speed of the pass 
p_sd=t_sd/(1/10000); 

  

  

  
%Detect the edges of plants 
%plant_id is a vector that contains the id of every dge 
%flag is equal to 1 when an leading edge has been detected, and returns 

to 
%0 when the end of the plant is detected 
i=1; 
while i<=length(sen_sig) 
    if sen_sig(i)<4.5 
        plant_id(edge_id)=i; 
        edge_id=edge_id+1; 
        flag=1; 
        j=i; 
        while flag==1&&j<=length(sen_sig) 
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            %j=j+1; 
            if sen_sig(j)>4.5 
                flag=0; 
                plant_idx(edge_idx)=j;  
                edge_idx=edge_idx+1; 
            end 
            j=j+1; 
        end 
        i=j; 
    else 
        i=i+1; 
    end     
end 

  
if length(plant_id)>length(plant_idx) 
    plant_id(end)=[]; 
end 

  

  
%Delete (change value to 4.7284) the detected objects that have less 

than 
%500 datapoints of width 
ii=1; 
width_dif=0; 
while ii<length(plant_id) 
    width_dif=plant_idx(ii)-plant_id(ii); 
    if width_dif<p_sd 
        jj=plant_id(ii); 
        while jj<plant_idx(ii) 
            sen_sig(jj)=4.7284; 
            jj=jj+1; 
        end 
    end 
    ii=ii+1; 
end 

  

  
%Detect the edges of plants again 
%plant_id2 is a vector that contains the id of every dge 
%flag is equal to 1 when an leading edge has been detected, and returns 

to 
%0 when the end of the plant is detected 
i=1; 
j=0; 
while i<=length(sen_sig) 
    if sen_sig(i)<4.5 
        plant_id2(edge_id2)=i; 
        edge_id2=edge_id2+1; 
        flag=1; 
        j=i; 
        while flag==1&&j<=length(sen_sig) 
            %j=j+1; 
            if sen_sig(j)>4.5 
                flag=0; 
                plant_idx2(edge_idx2)=j;  
                edge_idx2=edge_idx2+1; 
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            end 
            j=j+1; 
        end 
        i=j; 
    else 
        i=i+1; 
    end     
end 

  
if length(plant_id2)>length(plant_idx2) 
    plant_id2(end)=[]; 
end 

  

  
dbp_index=p_dbp; 
dbp_in=p_dbp-(p_dbp*0.4); 
dbp_out=p_dbp+(p_dbp*0.4); 
%Find center and compare location 
ii=1; 
width_dif=0; 
while ii<length(plant_id2) 
    location=plant_id2+((plant_idx2(ii)-plant_id2(ii))/2); 
    if dbp_index-dbp_in<location<dbp_index+dbp_out 

  
    else 
        jj=plant_id2(ii); 
        while jj<plant_idx2(ii) 
            sen_sig(jj)=4.7284; 
            jj=jj+1; 
        end        

         
    end 
    ii=ii+1; 
    dbp_index=dbp_index+p_dbp; 
end 

  

  
%Detect the edges of plants again 
%plant_id3 is a vector that contains the id of every dge 
%flag is equal to 1 when an leading edge has been detected, and returns 

to 
%0 when the end of the plant is detected 
i=1; 
j=0; 
while i<=length(sen_sig) 
    if sen_sig(i)<4.5 
        plant_id3(edge_id3)=i; 
        edge_id3=edge_id3+1; 
        flag=1; 
        j=i; 
        while flag==1&&j<=length(sen_sig) 
            %j=j+1; 
            if sen_sig(j)>4.5 
                flag=0; 
                plant_idx3(edge_idx3)=j;  
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                edge_idx3=edge_idx3+1; 
            end 
            j=j+1; 
        end 
        i=j; 
    else 
        i=i+1; 
    end     
end 

  
if length(plant_id3)>length(plant_idx3) 
    plant_id3(end)=[]; 
end 

  
[values,location]=findp(d1); 

  
pulsesdiam=zeros(length(plant_id3),1); 
for index=1:length(plant_id3) 
   for index2=2:length(location) 
      if location(index2)>plant_id3(index) 
         if location(index2)<plant_idx3(index) 
             pulsesdiam(index)=pulsesdiam(index)+1; 
         end 
      end 
   end 
end 

  
val_zeros=length(plant_id3)-1; 
pulsesbet=zeros(val_zeros,1); 
for index=1:length(plant_id3)-1 
   for index2=2:length(location) 
      if location(index2)>plant_idx3(index) 
         if location(index2)<plant_id3(index+1) 
             pulsesbet(index)=pulsesbet(index)+1; 
         end 
      end 
   end 
end 

  
total=0; 
for hh=1:length(pulsesdiam) 
   total=total+pulsesdiam(hh);  
end 

  
for hh=1:length(pulsesbet) 
   total=total+pulsesbet(hh);  
end 

   
for ll=1:length(pulsesdiam) 
    pulsesdiam(ll)=pulsesdiam(ll)*0.81643; 
end 

  
for ll=1:length(pulsesbet) 
    pulsesbet(ll)=pulsesbet(ll)*0.081643; 
end 



49 
 

 function [picos,pos] = findp(data) 

  
clc 
encsig=data(:,2); 
picos=0; 
pos=0; 
i=1; 
j=1; 
k=0; 
inc=0; 
resolution=15; 

  

  
while i<length(encsig) 
    inc=inc+1; 
    res=length(encsig)-i; 
    if res>=resolution 

         
            j=j+resolution; 
            if j-i>2 
                [pic,loc]=findpeaks(data(i:j,2),'THRESHOLD',.1); 
            end 
            i=i+resolution; 

         
    else 

         
            j=j+res; 
            if j-i>2 
                [pic,loc]=findpeaks(data(i:j,2),'THRESHOLD',.1); 
            end 
            i=i+res; 

        
    end 

     

     
    for ii=1:length(loc) 
        loc(ii)=((inc-1)*15)+loc(ii); 
    end     

     

     
    if i<resolution+1 
        picos=pic; 
        pos=loc; 
    else 
        picos=[picos;pic];         
        pos=[pos;loc]; 
    end     
end 
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function velfps = enc_post(data) 
clc 
encsig=data(:,2); 
step=128; 
Fs=10000; 
windowsize=256; 
encppr = 200;        
gearratio = (7.5*0.0254)/(1.625*0.0254);  
circum = ((8.5*0.0254)*pi);  
timepad = 1000;       

  
N = length(encsig); 
NFFT = 2^nextpow2(windowsize);  
f = Fs/2*linspace(0,1,NFFT/2+1); 

  
velProf = []; 
pt = []; 
for i = 1:step:N 
    if i + windowsize < N 
        endidx = i+windowsize-1; 
        Y = fft(encsig(i:endidx),NFFT)/windowsize; 
        Y(1) = []; 
        P = 2*(abs(Y(1:NFFT/2+1))).^2; 
        [val, idx] = max(P); 
        pt = [i, f(idx), val]; 
        for j = 1:step 
            velProf = [velProf; pt]; 
        end 
    else 
        for k = i:N 
            velProf = [velProf; pt]; 
        end 
        break; 
    end      
end 

  
maxP = max(velProf(:,3)); 
for i = 1:length(velProf(:,3)) 
    if velProf(i,3)/maxP < 0.1 
        velProf(i,2) = 0; 
    end 
end 

  

  
smoothvel = smooth(velProf(:,2),4*windowsize); 

  
velfps = ((smoothvel./encppr)/gearratio)*circum; 
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