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Abstract 
 
Resin transfer molded (RTM) composites usually suffer from the formation of flow-

induced defects such as voids.  Detrimental effects of voids on performance of molded 

parts have been studied extensively.  Yet, knowledge of effective void removal strategies, 

along with detailed morphological void distribution within molded composites is very 

limited.  In this investigation, effects of post-fill pressure on void content is investigated 

for random-mat, E-glass/epoxy RTM disks.  Measured void contents agree well with 

results obtained in other studies for similar ranges of modified capillary number values.  

Packing helped significantly reduce void contents in RTM parts.  In addition, voids are 

found to concentrate primarily within or adjacent to the fibers.  Three-dimensional 

features of the formed voids are included in more detailed analyses of morphology 

variations of voids within the composite from both through-the-thickness and planar 

surfaces. 

 
Effects of applying a packing pressure on void morphology are investigated for similar 

composites.  Packing pressures of zero and 570 kPa are applied and voidage is evaluated 

from both through-the-thickness and planar views.  The packed composite is found to 

contain almost 92% less void content than the unpacked composite, accompanied by a 

40% drop in average void size.  Along the flow direction, removal of voids seems to 

depend on their arrangement at the end of the filling stage. 

 
Finally, effect of nanoclay content on void morphology in RTM nanoclay/E-glass/epoxy 

composites are investigated.  Closite®25A nanoclay loads of 0, 2, 5, and 10 wt% are 

mixed with a low-viscosity epoxy resin prior to filling.  Void occurrence is observed to 



 

 xiv

increase considerably with increasing nanoclay content from 2.1% in the composite 

without nanoclay to 5.1 and 8.3% in 5%- and 10%-nanocomposites, respectively.  

However, the composite with 2 wt% nanoclay yields the lowest void content of 0.7%.  

Voids are observed to be smaller after the addition of nanoclay at all concentrations. 
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1 Introduction* 
 

1.1 Polymer Composites 
 

Polymer composites are mixtures of a polymer, which is the major or continuous phase, 

and a filler, which can be either metal, ceramic, or even another polymer.  Both 

thermosetting and thermoplastic resins can be used as the polymer phase; the former has 

the advantage of low viscosity while the latter has the advantage of the possibility of 

recycling and reuse.  Essentially all commercially important polymers have applications 

where the polymer is filled, although certainly some materials are more commonly filled 

then others.  Typically, the reason that a particular polymer is a good or bad candidate for 

use as the continuous phase of a composite is its ability to form strong interactions with a 

particular filler.  Composites are a fast growing segment of the polymer industry; 

composites filled with materials having at least one dimension in the nanometer-size 

range such as nanoclays or nanotubes represent a step change in technology in the 

composites area.  This chapter is an introduction to this rather diverse field.  For more 

information, please refer to one of the excellent monographs on the subject [1-3]. 

1.2 Materials 

1.2.1 Thermoplastics 
 

Global worldwide production of thermoplastics is approximately 200 billion pounds per 

year, or approximately 25 pounds for every person on the planet.  Only a small fraction 

of this amount is filled and used as a composite, but a small fraction of this large number 

                                                           
*Material in this chapter is published in: Encyclopedia of Chemical Processing, Decker Publisher, 2004. 
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is still a significant amount of material.  By far the most important thermoplastic 

composites are made from flexible thermoplastics, i.e. semicrystalline materials with a 

glass transition temperature below room temperature.  One significant exception to this 

generalization is polycarbonate; however these glassy materials are, for a glass, flexible 

at room temperature.  The purpose of adding fillers in these flexible materials is to add 

stiffness, while the cost is typically a reduction in flexibility.  Glassy polymers typically 

do not need more stiffness, while many applications require more stiffness from a 

flexible material.  High-density polyethylene and polypropylene, shown in Fig. 1.1, are 

used very commonly in polymer composites. 

 

 
Figure 1.1:  Common thermoplastic resins used as the matrix phase in polymer 

composites. 
 

These materials are commonly mixed with low-cost fillers such as wood, clay, or glass.  

The decrease in flexibility and toughness caused by the introduction of fillers is large 

because the adhesion between these materials and the fillers is typically poor.  The filler 
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can be coated with a thin layer to improve the filler-polymer interaction; however, this 

coating carries a significant cost.  The cost of the composite, in the absence of a coating, 

can be significantly lower then the cost of the neat resin, which explains the popularity of 

these polymer composites.  Good adhesion between relatively polar polymers and polar 

fillers yields higher performance composites.  The most common polar filler is glass; 

while both polyamides (various types) and polycarbonate, shown in Fig. 1.1, are 

commonly used as polar thermoplastic resins. 

1.2.2 Thermosets 
 

Unlike thermoplastics that are simply melted, thermoset resins chemically react from low 

viscosity liquids to form solid materials during processing, a process called curing.  

Structurally, thermosets differ from thermoplastics because of the presence of crosslinks 

in the former, which means that thermosets cannot be reshaped or recycled once the 

chemical reaction occurs.  One advantage of thermosets over thermoplastics is that 

wetting the filler becomes much easier with a low viscosity material.  By far the most 

common thermoset composite is automobile tires, which consists of a polymer made 

from styrene and butadiene monomers and a carbon-black filler.  The actual recipe used 

is much more complicated, and can include other monomers or polymers, as well as other 

fillers.  In the absence of filler, the cured resin is rubbery at room temperature, which 

makes tires a unique thermosetting composite since most thermosetting composites are 

made with resins that are stiff at room temperature. 

 

Other types of resins commonly used as thermosets include epoxies, polyesters, and vinyl 

esters.  Unlike thermoplastics, these categories are a bit misleading in the sense that 
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various structures are classified under one heading.  For example, approximately ten 

different molecules with the epoxy functionality are important commercial products, and 

each has slightly different mechanical properties and/or environmental stability.  The two 

monomers that typically combine to form an epoxy resin are an epoxide and an amine.  

Polyesters are made with polyester resins containing unsaturation, and styrene.  The 

structure of the polyester and the styrene (or other co-monomer content) is varied in these 

systems.  Finally, vinyl ester is a term used to describe bifunctional monomers with long 

organic structures between acrylic end groups. 

1.3 Manufacturing Methods 
 

The performance of a composite part not only depends on the materials selected, but also 

the process parameters used during manufacturing.  Properties of the polymer matrix, 

quality of fiber-matrix adhesion, as well as composite microstructure and defects are a 

function of manufacturing.  Various processes for manufacturing commercial composite 

parts have been developed during the last 50 years.  While the aerospace, marine, and 

defense industries usually require manufacturing methods yielding high-performance 

composites, automotive and consumer goods industries focus on cost-effective, high-

volume production methods.  The type of manufacturing method also depends largely on 

whether the starting material is a low viscosity uncured thermoset or a high viscosity 

thermoplastic.  This section briefly outlines the different composite manufacturing 

methods currently used in the composites industry. 
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1.3.1 Wet Lay-Up 
 

Wet lay-up consists of placing a layer of dry reinforcement inside a mold and then 

applying an uncured, low viscosity thermoset resin as shown in Fig. 1.2.  Woven glass 

fibers are the prevalent reinforcing preform utilized in lay-up processes, although carbon 

and aramid fibers are also used to a lesser extent [3-5].  Typical fiber volume fraction of 

composites manufactured via wet lay-up range between 30 and 50%.  The resin can be 

poured, sprayed, or brushed on top of the preform layer either by hand or by machine.  

The fiber preform layer is rolled on or pressed after the application of resin to evenly 

distribute the resin and remove air pockets.  Resin is applied on top after each layer of 

fiber mats is properly placed.  This process is repeated until the desired thickness is 

reached.  To provide a smooth surface finish on the mold side, a thin layer of mold 

release is often applied prior to starting the lay-up.  Thereafter, pressure and heat are 

applied to allow the composite to cure.  Pressure can be applied either mechanically or 

pneumatically; for more details on the molding processes, see section 1.3.4. 

 

 

Figure 1.2:  Typical wet lay-up operation. 
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The material may not be cured to a final product; in some cases the material is partially 

cured to yield a product that is still soft, but the resin has enough viscosity to not drip out 

of the material.  This material is termed prepreg, and the prepreg can be shipped from one 

location to another where it is then formed and made into a final product. 

1.3.2 Filament Winding 
 

In the filament winding process, a continuous tape of polymer-impregnated fibers is 

wrapped over a rotating mandrel to form a composite part.  Preform tapes can be either in 

pre-impregnated or impregnated in a thermoset resin bath right before winding.  

Successive layers are added at the same or different winding angles until the desired 

thickness is reached.  The schematic of a typical filament winding process is shown in 

Fig. 1.3. 

 

Figure 1.3:  Typical filament winding process schematic. 
 

Most winding machines operate similar to a lathe; the mandrel is mounted horizontally 

and rotates at a constant speed while the carriage delivering the fibers moves along the 
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length of the composite part.  Typical winding speeds range between 50 and 100 m/min.  

After the winding is complete, the composite part is allowed to cure either at room 

temperature, in an oven, or inside an autoclave.  Steel and aluminum mandrels are usually 

used to facilitate the removal of the fabricated composite part after cure.  However, 

inflatable and collapsible metal mandrels are also used in closed-end products. 

 

Parts with diameters as small as 25 mm and as large as 6 meters are made by filament 

winding.  In addition, a variety of fiber orientations can be achieved, leading to more 

control of design properties of the fabricated composites.  Continuous fibers of glass, 

carbon, and aramid are used in filament winding while glass/polyester systems are more 

widely used because of their lower cost.  The filament winding process can be automated 

yielding cost-effective, high-volume production.  Most shapes fabricated by this 

technique are axisymmetric and include glass-fiber pipes, pressure vessels, rocket motor 

cases, sailboard masts and other similar products. 

1.3.3 Pultrusion 
 

Pultrusion is a low-cost, high-volume process used to manufacture long, constant cross-

section shapes from thermoset resins, and consists of pulling continuous dry fibers 

through a resin bath as shown in Fig. 1.4.  Thereafter, impregnated fibers are pulled 

through a heated die for cure.  The cross-section of the die dictates the final shape of the 

product.  The length and temperature of the die are determined by the pulling speed, the 

dimensions of the part, and the curing characteristics of the resin.  At the exit of the 

heated die, the composite cools rapidly and 2 to 3% volumetric shrinkage is observed.  
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The composite is continuously produced and a moving saw can be used to cut the part at 

the desired length without stopping the production. 

 

 

Figure 1.4:  Schematic of pultrusion process. 
 

Glass, carbon, and aramid fibers are used as unidirectional or fabric mat reinforcements, 

with E-glass/polyester being the most commonly used system [3,6].  The limitation of 

pultrusion is that only constant cross-section parts can be fabricated.  However, a variety 

of hollow and solid profiles of any length can be manufactured. 

1.3.4 Molding Processes 

1.3.4.1 Compression Molding 
 

Compression molding consists of placing a pre-determined amount of composite inside 

matching male and female metal molds.  The mold walls are then heated, closed and 

pressurized mechanically until the composite deforms into the desired shape.  After the 

charge fills the mold cavity, the pressure is released and the molded part is ejected from 

the mold.  A schematic of this process is presented in Fig. 1.5. 
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Figure 1.5:  Schematic of compression molding. 
 

Discontinuous fibers are commonly used in compression molding with fiber contents 

often limited at 30% in order to maximize the surface quality of the final product while 

achieving complete filling of the mold cavity [6-7].  Sheet molding compound (SMC) 

and bulk molding compound (BMC) are the most commonly used materials in 

compression molding.  SMC is obtained by mixing chopped fibers, liquid resin, and 

fillers into a 2 to 5 mm-thick sheet product.  A typical SMC compound contains glass 

fibers, polyester resin, and calcium carbonate [3,6].  Compression molding is also used 

for thermoplastics; however injection molding is preferred unless mats are used.  

Compression molding usually requires a large initial investment and produces semi-

structural parts.  The simplicity of the process minimizes part set-up time, reduces 

secondary finishing, and allows high-volume production with a low scrap rate. 
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1.3.4.2 Autoclave Molding 
 

Instead of using mechanical force to pressurize a composite and force consolidation 

and/or shape, air pressure can be used if a low viscosity thermoset is used as the resin.  

An autoclave is a large pressure vessel that allows the simultaneous application of heat 

and pressure during the manufacture of thermosetting composite laminates.  Internal 

work space of commercial autoclaves can be as large as 10 meters in diameter and 30 

meters in length.  Figure 1.6 depicts a small autoclave with a 90 cm-diameter internal 

work space. 

 

 

Figure 1.6:  Example of a small autoclave. 
 

Typically, prepreg layers are cut to the desired shape and stacked in predefined 

orientations.  Thereafter, the stacked prepregs are placed on a mold die and covered with 

a vacuum bag sealed at the edges.  A vacuum is usually drawn before an external 

pressure of the order of 0.1 to 0.7 MPa is applied to the vacuum bag inside autoclave.  

Simultaneously, the desired temperature profile is applied to ensure the complete cure of 

the composite part.  An example of a temperature profile applied for 24 plies of 

AS4/3501-6 graphite/epoxy prepregs is depicted in Fig.1.7. 
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Figure 1.7: Temperature profile utilized during autoclave curing of 24 plies of AS4/3501-6 
graphite/epoxy prepregs. 

 

During most curing processes, an internal autoclave fan circulates the air inside ensuring 

uniform temperatures aided by convective heating.  The external pressure and vacuum 

inside the bag create sufficient pressure differential to facilitate consolidation of the 

laminate and ensure good bonding between layers.  During cure, the excess resin is 

absorbed by a bleeder placed above the prepregs within the vacuum bag.  The application 

of vacuum also helps remove volatiles and excess air.  Although autoclave processing 

requires high initial and operating costs, high-performance composites suitable for 

aerospace and similar structural applications are typically produced using this technique. 
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1.3.4.3 Injection Molding 
 
Injection molding is a high-volume, low-cost manufacturing process for thermoplastics, 

including thermoplastic composites, and is shown schematically in Fig. 1.8. 

 
Figure 1.8: Schematic of Injection Molding 

 

Mixing of discontinuous fillers with a thermoplastic is the first step; this mixing typically 

occurs in a twin-screw extruder and the material is extruded and chopped into pellets.  

These pellets of thermoplastic resin mixed with chopped fibers or particles are then 

melted in a single-screw extruder, and the molten mixture is injected into a closed mold 

cavity.  The injection pressure must be quite high in order to ensure complete filling and 

compensate for shrinkage due to cooling.  After filling, the mold is then cooled down for 

solidification before the composite part is removed.  Common volume fractions of 
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particles range between 18 to 35%.  Typical cycle times on the order of 30 seconds with 

the largest fraction of the time being spent during the cool down step.   Composites of 

complex geometries are conveniently fabricated to essentially their final shape.  

However, the required operating pressures (i.e. 50-100 MPa) limit injection molding to 

small to medium-sized composite parts [8]. 

1.3.4.4 Liquid Composite Molding 
 

Liquid composite molding (LCM) processes such as resin transfer molding (RTM) have 

been long established in the automotive and aerospace industries as versatile technologies 

for manufacturing medium to large composite parts with complex geometries at low cost 

[9-11].  All LCM processes involve the injection of a liquid resin into a dry fiber 

perform, and is essentially the thermosetting equivalent to injection molding; except that 

the preform is typically placed in the mold prior to injection of the resin.  Because of the 

lower viscosities of thermosets, the high pressures required for injection molding are not 

required for LCM.  However; the cycle times are typically much longer because of the 

prolonged time required for the part to harden, which in turn is due to the much slower 

kinetics of a chemical reaction in LCM vs. cooling in injection molding.  RTM, for 

instance, consists of injecting a reactive thermosetting resin into a closed mold cavity 

preloaded with a fibrous preform as shown in Fig. 1.9. 

 
 

Figure 1.9:  Typical resin transfer molding process. 
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Preforms used in LCM may consist of a 3D braided structure or multiple layers of 2D 

fabrics and mats.  Glass, carbon, and aramid fibers are used as reinforcement, E-glass 

fibers being the most common [3,11].  High-performance carbon/epoxy systems are 

particularly used more often in the aerospace industry [3,8,11].  RTM can produce 

composite parts with volume fractions reaching 60%; however, typical applications may 

contain 25 to 35% fibers by volume.  After the cure reaction is complete, the solidified 

composite part is removed from the mold.  In other variants such as vacuum assisted 

resin transfer molding (VARTM), the impregnation is vacuum-driven, and thus half of 

the mold is often replaced with a vacuum bag.  Since the pressure differential is much 

lower in VARTM, the cost of the mold can be reduced substantially, especially when 

fabricating larger parts. 

1.4 Properties and Applications of Polymer Composites 

1.4.1 Mechanical Properties 
 

An increase in stiffness is probably the single most important reason that fillers are added 

to polymers.  Stiffness is quantified using the modulus, which is the slope of a stress vs. 

strain curve at zero strain.  The modulus, and other mechanical properties such as tensile 

strength and toughness, can be measured using different geometries; the two most 

common for composites are tensile and bending as shown in Fig. 1.10.   

 

Bending studies are typically more informative for fiber-reinforced composites since this 

geometry provides a better test of adhesion between the polymer and the filler, while 

tensile studies are more commonly used for particulate composites, if the matrix is 
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flexible enough to allow tensile tests.  For most systems, an increase in stiffness is 

typically accompanied by an unwanted decrease in flexibility and/or tensile strength; and 

most important commercial fillers for a particular polymer have a lower reduction in 

these properties at a given volume fraction then other fillers.  The applications of 

composites that depend primarily on mechanical property specifications are too 

numerous to list, some examples are airplane and automotive components.  Other 

important mechanical properties that often justify the use of a filled system vs. one 

without any filler are abrasion resistance, e.g. automobile tires, and resistance to creep 

e.g. weight-bearing structural components. 

 
Figure 1.10:  Geometries for testing stress-strain of composites 

 

1.4.2 Electrical and Thermal Conductivity 
 

Another common reason to add fillers to a polymer is to increase either electrical 

conductivity or thermal conductivity.  Polymers typically have electrical conductivity 

from 10-15 S/cm to 10-18 S/cm; through the addition of a moderately conductive filler such 

as carbon black conductivities of 10-2-100 S/cm are possible; highly conductive fillers 

such as silver can raise this value to 101-102 S/cm.  Applications include static dissipative 

devices and surge protectors.  The impact of adding a highly thermally conductive filler 

to a polymer is much smaller at low volume fractions versus the impact of an electrically 

T e n s i l e

B e n d i n g



 

 16

conductive filler on electrical conductivity.  However, if a highly loaded stiff product is 

acceptable, polymer composites are capable of dissipating substantial amounts of heat.  

1.4.3 Gas Diffusion and Fire Retardency 
 

Nanotechnology has been identified as one of the key technologies that will lead to 

important advances in the quality of life, and important advances have been made using 

nanotechnology in the polymer composite area.  The use of nanoclays, which are 

nanometer-thick layered silicates, if exfoliated (i.e. separated apart), have enabled the 

manufacture of polymer-filled materials with vastly improved resistance to burning and 

gas diffusion.  Applications that make use of the unique properties of composites filled 

with exfoliated clays are just beginning to appear.  Manufacture of nanocomposites has 

proven to be quite difficult; since agglomerates of clay platelets must be separated in 

order for the improved resistance to diffusion and flame to occur.  Thermoplastic resins 

with specific clay-polymer interactions, e.g. nylon, have proven to be the most effective 

matrix for nanocomposites.  

1.5 Defects in Polymer Composites 
 

The presence of defects in polymer composites adversely affects their mechanical 

properties and environmental resistance [12-14].  Conversely, environmental factors can 

lead to the worsening of already present defects.  Defects in composites either originate 

during the manufacturing process as a result of incomplete wetting, improper process 

pressure, inadequate heating, or excessive temperature overshoot; or during the service 

life of the composite due to external factors including cyclic loading, low-energy impact, 

moisture, and elevated temperatures.  Poor choice of process parameters leads to voids, 
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inclusions, resin burn out, and dry spots whereas external factors lead to defects such as 

sub-surface damages, ply cracking, and delamination. 

1.5.1 Defects Induced During Fabrication of Composites 

1.5.1.1 Micro Voids and Dry Spots 
 

Depending on the manufacturing method, fiber type and content, and properties of the 

impregnating polymer, various mechanisms lead to the formation of large dry areas, 

called dry spots, and air inclusions or micro voids in the final composite part made with 

thermosetting resins.  The common causes for void formation in polymer composites 

include volatilization of dissolved gases or moisture in the resin during impregnation or 

curing, partial evaporation of mold releasing agent into the preform, and initial air bubble 

content in the resin mixture.  In wet lay-up and pultrusion, uneven application of the resin 

is the primary cause of void and dry spot formation; whereas in autoclave curing of 

composite laminates, voids are mainly caused by entrapped air between layers in 

prepregs.  In LCM processes, on the other hand, voids form during mold filling primarily 

due to mechanical entrapment of air at the advancing flow front [15-19]. 

 

     

Figure 1.11:  Representative microscopic images of voids obtained from a glass/epoxy 
RTM composite. 
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Void presence in composites, even in small amounts, is detrimental to their mechanical 

performance.  Judd and Wright [12] reported that regardless of the manufacturing 

process, void presence induces reduction in interlaminar shear strength, tensile and 

flexural strength and modulus, torsional shear, fatigue resistance, and impact properties 

of a composite part.  Ghiorse [13] indicated, for carbon/epoxy laminates, that each 1% 

increase in void content induced a 10% reduction in flexural and interlaminar shear 

strength, and a 5% reduction in flexural modulus.  Voidage is also known to affect both 

the rate and equilibrium level of moisture absorption in composites [14].  Harper et al. 

[14] reported that an increase from 1 to 5% in void volume fraction induces an increase 

of around 280% in the initial absorption rate, and 50% in the equilibrium mass gain for 

an AS4/3502 graphite/epoxy composite. 

 

Although it is not practically possible to manufacture void-free composites, different 

techniques have been successfully utilized for most manufacturing processes to fabricate 

composite parts with acceptable void content.  Some of the void reduction techniques 

include: (i) degassing the resin mixture prior to impregnation, (ii) utilization of vacuum 

to remove the air entrapped between prepreg layers, (iii) proper selection of fiber/resin 

systems to lower gas emission during impregnation and cure, and (iv) utilization of lower 

viscosity resins at higher temperatures to facilitate the impregnation.  Most industrial 

applications consider 1% void content as a threshold for acceptance of composite parts 

[16,17].  However, in highly structural applications, an acceptance threshold of 0.5% in 

void content is often applied [20]. 
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1.5.1.2 Wrinkling 
 

A number of mechanisms are known to induce wrinkling in continuous-fiber polymer 

composites.  These mechanisms include mismatch in thermal expansion between the 

fiber, matrix, and tool plate materials; the temperature changes experienced by the part 

during processing; and volumetric shrinkage of the matrix [21-24].  The difference 

between thermal expansion coefficients of fiber, matrix, and tool plate can be several 

orders of magnitude.  Thus, residual stresses often develop during the cool-down of the 

part.  Elevated cooling rates can lead to compressive stresses in the laminate surface, 

while slower cooling rates allow time for stresses to relax and avoid significant 

temperature gradients through-the-thickness of the part [21]. 

1.5.1.3 Defects in injection molding 
 

Incomplete filling and weldlines are the most common defects in injection molded 

composites.  High fiber contents and low heating temperatures often lead to highly 

viscous fiber-resin mixtures that require elevated injection pressures.  If adequate 

pressure is not supplied or the solidified composite blocks parts of the injection gate or 

runners, only a fraction of the needed volume is injected into the mold cavity.  This 

problem can usually be solved by using higher melting temperatures to reduce the 

mixture viscosity, and also by enlarging the injection gates.  Another defect encountered 

in most injection molded parts is the formation of weldlines [25].  When a weldline is 

formed by the merging of separate fluid fronts, fibers at both sides do not penetrate 

across the neighboring front, thus forming an unreinforced, structurally weak plane.  This 

problem is often accentuated for parts containing longer fibers and higher fiber contents 
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[4].  Fiber breakage is another defect affecting the performance of injection molded parts.  

The mixing and shearing of the extruder screw often reduces the fiber length yielding a 

composite part molded with reduced mechanical properties.  Low screw speeds and 

injection pressure can be utilized in order to avoid excessive fiber breakage [4]. 

1.5.2 Defects Induced During Service Life of Composites 

1.5.2.1 Matrix Cracks and Fiber Fractures 
 

Although matrix cracks can be induced by residual stresses developed during curing [23], 

most matrix cracks are initiated during the service life of composites.  Given that the 

matrix usually sustains a lower stress before failure compared to the fiber reinforcements, 

micro cracks are often generated in the matrix after the application of high loads.  

Depending on the fiber orientation, content, and the direction of the applied load, 

multiple matrix cracks with different orientations can form inside the composite.  If the 

matrix cracks propagate above a certain limit, fibers start supporting most of the applied 

load before they fail under different mechanisms.  Short fibers frequently fail under pull-

out, i.e. extraction of the fiber from the matrix, while continuous fibers tend to fracture 

under excessive loads.  Depending on the strength of the matrix-fiber adhesion, a 

combination of both mechanisms is usually present in fractured composites [26].  

Environmental effects, such as the infusion of water, can lead to a reduction in matrix-

fiber adhesion which in turn leads to premature failure.  Figure 1.12 shows SEM 

micrographs of failed surfaces of an E-glass/epoxy composite [27].  Fibers failing under 

both pull-out and fracture can be seen in Fig. 5.2. 
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Figure 1.12:  SEM micrographs of failed surfaces of an E-glass/epoxy composite [27]. 
 

1.5.2.2 Delamination 
 

Delamination is the debonding of adjacent composite layers and is one of the most 

prevalent life-limiting defects in thermosetting composite laminates.  Delamination is 

usually induced during service life of the composite from a low-energy impact or fatigue 

loading. However, delamination can also originate from other pre-existing defects such as 

matrix cracks and voids.  In addition to reducing the structural integrity of the material, 

delamination also results in deterioration of long-term performances [28-29].  Non-

destructive evaluation (NDE) methods have been commonly used to detect delaminations 

to prevent their excessive propagation leading to the final failure of the laminate [30].  

Techniques such as X-ray and ultrasonic inspections are widely used, particularly in the 

aircraft industry where structural composite laminates are often used.  NDE tests usually 

help define regular inspection intervals and determine the need for repair. 
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2 Preform Wetting and Void Formation in RTM 
Composites 

 

2.1 Preform Types Used in RTM 
 

The assembly of reinforcing fibers, pre-shaped and oriented for placement in the RTM 

mold cavity to its near-net configuration before injecting the resin is commonly called a 

preform.  Different preform types are available for RTM applications including random 

mats, woven, and non-woven products, as well as 2- and 3-D braidings.  Selection of a 

preform fiber architecture directly affects the processability and mechanical performance 

of the RTM part.  The following is a brief description of common preform types used in 

RTM composites. 

 

Random mats consist of continuous or chopped fibers placed randomly and held loosely 

together by a binder adhesive.  Because of the randomness, random preforms are 

isotropic, and fluid flow is thus relatively easy to predict.  Other advantages of this 

preform include its high permeability yielding a thorough wet-out as well as an easy 

handling for placement in the mold cavity.  However, random preforms can only achieve 

limited fiber volume fractions, have relatively poor stiffness and strength, and lack any 

control on fiber orientation.  Unidirectional preforms, on the other hand, consist of 

parallel fibers held loosely in place by stitches in a plane.  Although this preform type 

often yields high stiffness and strength in the fiber direction, they produce parts with poor 

integrity in other directions.  In addition, fiber wash may occur during resin injection.  

Another preform architecture often used in RTM composites is two-dimensional woven.  
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Two-dimensional fabrics are fabricated from at least two sets of tows that are interwoven.  

Weaves can be classified according to the spacing between the tows: weaves with big 

open spaces between the tows are called open weaves, while weaves with no space 

between the tows are referred to as closed weaves.  Balanced properties in the plane of 

the fabric can be achieved, although there can be some asymmetry depending on the type 

of weave pattern.  Even though composites made with woven preforms exhibit good 

impact resistance, these materials have poor conformability for placement in odd-

geometry molds.  Furthermore, the weave introduces undulation of the yarns that 

degrades the strength and effective stiffness of the composite.  Other fiber forms include 

2- and 3-dimensionally braided preforms used for specialized applications.  In order to 

eliminate the time-consuming lay-up step from the RTM process and ensure uniformity, 

three-dimensional braiding can be utilized to produce 3-D preforms.  However, weaving 

can be costly and once performed, eliminates any possibility of varying the preform 

architecture. 

2.2 Mold Filling in RTM 
 

The flow of resin through the porous fiber preform during mold filling in RTM process is 

similar to that of water infiltration into soil.  In both processes, a wetting fluid flows 

through an unsaturated porous medium; while this dry medium initially contains a non 

wetting phase, i.e. air.  However, there is a basic difference between resin injection in 

RTM, that consists of two types of flow, and water ingress into soil that is a simple 

infiltration flow.  The first type of flow during preform impregnation is a macroflow 

involving the flow in the larger gaps between fiber tows.  The second is a microflow 

involving the infiltration into the small gaps between single fibers inside the fiber tows.  



 

 27

The macroflow is induced by the applied pressure or injection rate and is thus governed 

by viscous forces.  The microflow, on the other hand, is a spontaneous process in which 

the interaction between the liquid and solid phases is the driving force.  Microflow is 

mostly controlled by the capillarity and the surface tension effects.  The difference 

between these two flows is what causes void entrapment in the RTM composites as will 

be developed in the next sections. 

 

Darcy’s law [1], often utilized to model fluid transport through porous media, states that 

the flow velocity is directly proportional to the pressure gradient with a permeability 

tensor as: 

p∇ 1 Ku
µ

−= ,     (2.1) 

 

where u is the average Darcy velocity, µ is the dynamic viscosity, ∇p is the pressure 

gradient, and K is the second-order permeability tensor.  Based on Darcy’s law, the 

permeability tensor is a constant for a particular geometry of the porous medium and is 

independent of flow rate and liquid properties; certain experiments, however, have shown 

otherwise [2-4].  These discrepancies originate from the different rate of advancement of 

the fluid between and within the fiber tows.  Darcy’s law does not take into account the 

capillarity or any of the surface tension effects that govern the flow within the fiber tows 

as described above.  Therefore, Darcy’s law alone cannot predict the overall flow process 

in RTM.  Capillary models such as those proposed by Carman [2] and Gutowsky et al. 

[3] include the fiber radius and porosity in order to predict the permeability more 

accurately.  Yet, several discrepancies with experimental data have been also reported [5-
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8].  Theoretical models have also been developed for different idealized media structures 

[6-8].  Most models may not give accurate prediction of the impregnation process since 

fibrous mats used in RTM are often more complex than the idealized unit cell patterns 

used in theoretical derivations.  In any case, permeability studies focus on the macroscale 

flow and often do not yield good prediction models for porosity and void formation.  In 

the following section, relevant void formation mechanisms in RTM are discussed. 

2.3 Void Formation and Removal in RTM 
 

Reducing void occurrence in RTM composites involves two different steps.  The first 

involves understanding void formation mechanisms during mold filling, while the second 

consists of developing effective methods for void removal.  The following is a 

description of void formation mechanisms as well as removal techniques used in RTM. 

2.3.1 Experimental Studies on Void Formation 
 

Voidage in RTM composites can originate from mechanical entrapment, volatilization of 

dissolved gas in the resin during mold filling or curing, partial evaporation of mold 

releasing agent into the preform, and initial air bubble content in the resin mixture [9].  

Using resin systems involving fewer volatiles during molding, as well as degassing prior 

to injection helps make mechanical air entrapment the primary void formation 

mechanisms in RTM composites [10-12].  As described above, the flow is driven by 

viscous forces at the fiber tow level; while capillary forces drive the flow impregnating 

fiber tows at a single fiber scale.  Depending on the molding parameters, either viscous or 

capillary flow is likely to lead the flow, causing mechanical entrapment of air bubbles.  A 

more detailed analysis of this phenomenon (i.e., fingering) has often been achieved using 
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the capillary number, Ca, defined as the non-dimensional ratio of viscous forces to 

capillary forces [10-13]: 

 

γ
µVCa = ,        (2.2) 

 
where µ, V, and γ are the impregnating resin viscosity, the macroscopic fluid front 

velocity, and the resin surface tension, respectively. 

 

The capillary flow leads at lower capillary number values, hence promoting inter-tow 

void entrapment in the macro-space between fiber tows.  In contrast, viscous flow leads 

at higher values of Ca, thus promoting intra-tow void entrapment within fiber tows [10-

13].  Mahale et al. [10] studied void entrapment during planar radial flow into non-woven 

multifilament glass fiber networks, and reported the existence of a critical capillary 

number value of 2.5 x 10-3, below which void content increases exponentially with 

decreasing capillary number.  Above this critical value, much less void entrapment was 

observed.  However, these critical capillary number values remain specific to the set of 

material used in their experiment. 

 

To avoid dependence on utilized material, a modified capillary number, Ca*, has been 

defined by introducing liquid-fiber contact angle, θ, into the non-dimensional number as 

[11,12]: 

 

θγ
µ
cos

* VCa = .           (2.3) 
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The authors included the contact angle in order to generalize the capillary number 

definition for any type of liquid-fiber system.  Experimental observations of measured 

void contents for various model fluids injected at different velocities supported this 

generalization.  When plotted as a function of modified capillary number, all the 

experimental voidage data followed a single master curve.  This master curve also 

indicated the existence of a preferential range of modified capillary number of micro-

equilibrium between viscous and capillary flows between 2.5 x 10-3 and 2.5 x 10-2, where 

the void content is minimal.  Detailed analysis of these phenomena is performed in the 

following chapter. 

2.3.2 Theoretical and Numerical Models for Void Formation 
 

Numerous researchers [13-19] developed theoretical and numerical models to predict 

void formation during injection.  Chan and Morgan [13] developed a one-dimensional 

model for parallel flow through unidirectional preforms based on Darcy’s law.  This 

model predicts a localized void formation at the resin front region but is undermined by 

the assumption of a simplified fiber arrangement pattern.  Chui et al. [14] proposed a 

theoretical model based on a simple unsaturated flow in porous media, predicting a 

voidage-pressure dependence in RTM processes.  The model of Chui et al. [14] thus 

suggests that increases in local pressure would minimize void occurrence.  This 

dependence of void presence on injection pressure was confirmed experimentally by 

Lundström [15].  Patel and Lee [16,17] also developed a model for void formation in 

LCM processes based on the multi-phase Darcy’s law.  In addition, a criterion for the 

transport of trapped voids based on the local pressure, void size, and contact angle was 

formulated.  Binetruy et al. [18], on the other hand, developed a simple analytical model 
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for tow impregnation when the macroscopic flow is parallel to the fiber direction.  More 

recently, Kang et al. [19] formulated a mathematical model to describe microscopic 

perturbations in the resin flow front that induce void formation during injection. 

 

Once voids are formed, they are subjected to transport phenomena during filling that 

change their spatial distribution and geometrical morphology.  To understand void 

transport mechanics through fiber reinforcement, bubble motion through constricted 

micro-channels has been investigated by several researchers [16-17,20-21].  Both bubble 

size and the resin-fiber contact angle are reported to affect void mobility [21.22].  

Adhesion force between bubbles and fibers originates from the surface tension and the 

difference between advancing and receding contact angles [21].  In addition, larger voids 

exhibit larger perimeters and thus have larger adhesion force [21,22]. 

2.3.3 Void Removal Studies 
 

Numerous techniques are used to reduce void occurrence in RTM composites [9-14,23-

34].  Lundström et al. [23-24], among others, utilized vacuum assistance to lower void 

content.  The mold cavity is vacuumed prior to injection in order to lower the internal air 

pressure, thus easing void dissolution into the resin, and also enhancing void mobility 

during molding.  The authors reported that increasing the pressure difference between the 

inlet and outlet of the mold cavity from 0.17 to 0.50 MPa resulted in a decrease in void 

content from 6.5 to 3.8%.  Yet, low void contents are only reached when costly, very 

high vacuum levels are used [24]. 
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Degassing the injected resin is also used to reduce voidage in molded composites, since 

high initial bubble content results in elevated void presence [25-28].  However, even with 

a degassed resin, voids will still be mechanically entrapped by the fluid front as described 

earlier.  Another commonly used method for void removal is bleeding, which consists of 

continuing the resin discharge after impregnation is completed in an attempt to purge the 

formed voids [14,23,29].  Bleeding might be useful when the formed voids can be 

transported, i.e. when voids are dominantly inter-tow voids.  However, inter-tow voids 

are formed mostly at slow injection rates not seen in most industrial molding applications 

[9-11].  In addition, intra-tow voids formed in RTM processes with faster impregnation 

rates are found to be very difficult to purge by bleeding [12]. 

 

Another void removal method is compressing the mold walls after resin injection is 

complete [30].  Squeezing the mold walls is anticipated to expel voids and help fabricate 

void-free composites.  The method drives out voids only to the end of the cavity [31], and 

yet requires expensive tooling that might make the molded parts much more expensive.  

Articulated tooling, a variant of compressing mold walls, was recently proposed by Choi 

and Dharan [32].  This technique calls for a segmented articulated mold wall, utilized to 

sequentially impregnate dry preform areas in a step-wise sequential manner.  A five fold 

reduction in mold fill time and reduced void generation were observed [32].  

Nonetheless, like compression, articulated tooling requires higher initial investment, and 

possibly yields undesirable surface marks and defects. 

 

Packing is performed by increasing the pressure after the molding cavity is filled.  This 

method has also been used to reduce void occurrence in RTM composites [23,29,33-34].  
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Forcing more resin into a previously filled mold cavity would shrink the existing voids or 

even dissolve them into the resin matrix.  In an earlier study by Olivero et. al [33], void 

content was found to decrease exponentially with increasing applied packing pressure up 

to 700 kPa for resin transfer molded glass/epoxy composites at 21% fiber content [33].  

Packing facilitates void removal for RTM and similar processes without additional 

tooling or investment.  Hence, packing can be a cost-effective void removal technique 

that might improve most LCM processes.  Concerns with packing reside in the possible 

spatial concentration of voidage or creation of large irregular voids with sharp corners 

that are prone to early failure cracks [31,35].  Effects of packing on void occurrence, 

spatial as well as morphological void distribution are investigated in the following 

chapters. 

2.4 Fiber Wetting in RTM 
 

As described above, fiber wetting and void formation in RTM depend on the equilibrium 

between viscous and capillary flows, which in turn depend to a large degree on the 

physicochemical properties of the resin-fiber system.  The following is a brief description 

of the different relevant characteristics involved in this process. 

2.4.1 Equilibrium Contact Angle 
 

When a liquid is in contact with a solid surface, the equilibrium condition for wetting is 

determined by the three phase of equilibrium: solid, liquid, and air.  As shown in Fig. 2.1, 

the equilibrium point of contact is the intersection of three interfaces:  solid-liquid, 

liquid-gas, and solid-gas.  The equilibrium conditions are given by the Young-Dupré 

equation [36-37] as: 
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θγγγ cosLSLS =− ,         (2.4) 

 
where Sγ  is the solid surface energy, SLγ the solid-liquid interface tension, Lγ the liquid 

surface tension, and θ is the equilibrium contact angle. 

 

 
 

Figure 2.1:  Three-phase equilibrium contact angle. 
 

The contact angle is usually considered a measure of wettability, i.e. degree of wetting.  

Based on the magnitude of the contact angle, the liquid can be classified as:  (i) spreading 

for θ = 0º; (ii) wetting for 0º < θ ≤ 90º, or (iii) non-wetting when θ ≥ 90º.  The higher the 

value of the adhesion tension, θγ cosL , the more readily the wetting proceeds [38].  In 

order to ensure wetting, the liquid phase should have a surface free energy or a surface 

tension lower than the free energy of the solid surface.  Measuring the contact angle with 

liquids of known surface tension also provides means of quantifying the interaction 

between solids and liquids.  The property determining the extent of this interaction is Wa, 

the work of adhesion between the sold and the liquid, defined as [39]: 

 
)cos1( θγ += LaW .           (2.5) 

SLγ  

Lγ  
     Air 

Solid 

Liquid θ  Sγ  
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2.4.2 Dynamic Contact Angle 
 

When the liquid and the solid are in motion with respect to one another, the solid-liquid-

air interface is under transient conditions and a dynamic contact angle develops.  Even at 

very low velocities, the dynamic contact angle is considerably larger than the equilibrium 

value.  The dynamic contact angle can be either advancing or receding depending on 

whether the solid surface is advancing or receding over the liquid.  Usually, the values of 

the advancing and receding contact angles are not the same, except in cases of perfect 

wetting, i.e. cos θ = 1.  Advancing contact angles are normally greater than or equal to 

the receding contact angles.  The difference is called the contact angle hysteresis and is 

well understood in the literature [40-42].  Some of the sources of this hysteresis include 

surface roughness, surface heterogeneity, surface deformation and relaxation effects, and 

increased liquid penetration due to diffusion [40-42].  Since the nature of RTM process is 

to make the resin advance through the fiber preform, advancing contact angles are more 

relevant. 

 

The dynamic contact angle is influenced by the resin viscosity and surface tension.  

Several studies investigated the effects of viscosity and surface tension on the measured 

contact angle using the capillary number, Ca, defined in Eq. (2.2).  The dynamic contact 

angle is observed to remain constant at very low values of the capillary number, and then 

increases with increasing capillary number.  The contact angle dependence on the viscous 

drag was observed in the range of 10-6 < Ca < 10-5 [43]. 
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Elmendrop and During [44] developed a model that explains the physics behind the 

spreading of a liquid over a solid surface.  According to this model, the liquid closest to 

the solid experiences the largest molecular attraction and thus tends to move faster than 

the bulk liquid, which causes a concavity in the liquid surface.  Away from the solid 

surface, the shape of the liquid surface that determines the dynamic contact angle is 

governed by the balance of surface tension and viscous forces.  The authors used their 

model to obtain a correlation between the dynamic contact angle θd, the equilibrium 

contact angle θe, and the capillary number, Ca, as: 

 
Caed ⋅=− 5333 θθ ,        (2.6) 

 
Another correlation for dynamic contact angle for resins with viscosities in the range of 

10 – 1000 x 10-3 Pa·s moving at velocities of the order of 1–100 mm/s is given by the 

Friz equation [45]: 

 
n

d Cam=θtan ,    (2.7) 

 
where m and n are empirical constants. 

 

Contact angle analysis is further complicated by the nature of the resin system and the 

fiber surface.  Resin systems are usually mixtures of different elements, and composition 

gradients as well as chemical reaction and evaporation of volatile chemicals may also 

affect the surface energies and may lead to local changes of the dynamic contact angle.  

In addition, if the fiber sizing interacts either physically or chemically with the resin, 

changes in fiber wettability would occur.  The effect of fiber sizing on contact angle was 

quantified by Larson and Drzal [46], among others.  The authors observed that 
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evaporation of styrene from a vinyl ester resin significantly increased the surface free 

energy of the resin and changed the liquid-fiber interaction from wetting to non-wetting.  

Contamination of glass fibers with styrene vapor and liquid resulted in an increase in 

contact angle, and zones of poor wetting with increased voidage were observed in the 

molded composite [45]. 

2.4.3 Capillary pressure 
 

In addition to the dynamic contact angle, another important parameter to be considered in 

flow through porous media is the capillary pressure, Pc.  In soil mechanics, capillary 

pressure is called suction since it provides the driving force for the liquid to infiltrate the 

porous media.  Capillary pressure is a decreasing function of the wetting phase saturation, 

i.e., the capillary pressure is at the maximum when the fibers are dry, and then decreases 

as the fibers are impregnated.  Assuming that the single fibers inside fiber tows have 

cylindrical capillaries, a simple relationship was obtained for evaluating the capillary 

pressures [47]: 

 

d
Pc

θγ cos4
= ,    (2.8) 

 
where d is a measure of the size of the capillary or the flow channel.  The above equation 

is known as the Young-Laplace equation.  However, it is very difficult to obtain realistic 

estimates for d since a typical fiber preform consists of a large number of capillaries of 

varying shapes and sizes.  One way to estimate d is to utilize the concept of hydraulic 

diameter, Dh. 
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2.5 Contact Angle and Surface Tension Measurements 
 

Surface tension and contact angles play a significant role in characterizing fiber 

wettability and penetration of resin into the fibers.  Almost all the equations mentioned in 

the previous section incorporate these parameters; their accurate determination is thus 

vital.  The next section is hence devoted to describe some of the experimental techniques 

used to measure the contact angle and surface tension. 

2.5.1 Contact Angle Measurement 

2.5.1.1 Sessile Drop Technique 
 

Most of the established experimental techniques for measuring surface wetting properties 

have been developed for flat solid surfaces similar to the one shown in Fig. 2.1.  

Therefore, direct measurements can be performed using a microscope fitted with a 

camera as shown in Fig. 2.2.  Accurate measurement of contact angles using the sessile 

drop technique can be computed via image analysis software.  In this technique, a small 

hole is drilled in the solid using a sharp needle and a drop is grown from the bottom.  

Figure 2.2 shows the schematic of a typical setup for sessile drop measurements.  The 

image of the drop is transmitted through a camera-fitted microscope to a computer for 

image analysis and computation.  Advancing and receding contact angles can also be 

obtained using this method by forming the drop using a motor driven syringe. 
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Figure 2.2:  Schematic of image analysis setup for contact angle measurement using the 
sessile drop technique. 

 

Measuring the contact angles on single fibers or fiber tows requires placing a drop of the 

resin on a horizontally mounted specimen.  The contact angle also needs to be observed 

from a point in the same horizontal plane and perpendicular to the long axis of the 

sample.  These requirements are necessary since certain liquids have the tendency to 

completely surround the single fiber, or fiber tow; while others remain on one side of the 

fiber with a clamshell profile.  Therefore, this approach requires considerable precaution 

to make sure that the observed and measured value is the true contact angle.  For 

composite manufacturing processes, resin-fiber tow contact angle is more relevant than 

that of a single fiber since the resin is in contact with fiber tows during impregnation. 

Similar methods are also utilized to measure contact angles.  In the pendent drop method, 

for instance, the drop of the liquid is hanging from the solid instead of being placed on 

top of a flat surface.  The pendant drop of liquid is then photographed, and its image is 

processed to obtain the dimensions of the drop.  The contact angle as well as the surface 

tension can be obtained by this method. 
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2.5.1.2 Wilhelmy Technique 
 

Due to the inherent difficulties involved in the accurate measurement of contact angles 

using direct methods, an indirect method was developed based on the Wilhelmy 

principle.  Since the development of this technique, it has been applied extensively to 

study the dynamic wetting behavior of fibers for various liquid-fiber systems.  This 

method does not involve direct observation of the shape of the liquid surface on the solid; 

instead, it requires measuring the force that the liquid exerts on the fiber surface.   

 
        rrr BPgMF −+⋅= θγ cos          aaa BPgMF ++⋅−= θγ cos       (2.9) 
 

Figure 2.3:  Concept of the Wilhelmy technique for measuring advancing and receding 
contact angles. 

 

When the perimeter and the surface tension are known, the contact angle can be directly 

obtained from the measured values.  Measuring the involved forces can be performed 

using a microbalance.  Figure 2.3 depicts this concept in terms of the forces acting on the 

fiber in advancing and receding modes. 
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2.5.1.3 Oscillating Jet Method 
 

Another technique used to measure the contact angle is the oscillating liquid jet method.  

When a liquid jet emerges from an elliptical orifice, the surface tension of the liquid 

attempts to restore a circular shape to the jet.  However, overshoots due to liquid inertia 

induce an oscillation around the circular shape.  If the jet is illuminated by parallel beams 

of light perpendicular to the jet axis, the jet acts as a lens and focused patterns of stripes 

appear on the screen at a suitable distance from the jet.  Knowing the parameters of the 

Jet, the contact angle and surface tension can be calculated from any point of the jet [48]. 

2.5.2 Surface Tension Measurement 
 

Surface tension of a liquid is a thermodynamic property, and for a pure liquids depends 

only on temperature with respect to which it shows monotonic decrease [43].  Surface 

tension of polymer resins has been observed to change with the evaporation of volatiles 

[46].  Most of the techniques used to measure the contact angle can be used to measure 

the surface tension of a liquid using a solid with a very high surface energy such as 

platinum.  The following is a description of the common methods for surface tension 

measurement. 

2.5.2.1 Capillary Rise Method 
 

The capillary rise method is based on the measurement of the height of liquid column, h, 

in a capillary of radius r immersed in a liquid.  Since the measurements do not involve 

disturbance of the liquid surface, slow time effects can be followed.  Surface tension is 

then calculated using the densities Lρ and Gρ of the liquid and the gas, respectively, as: 
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θ
ρργ

cos2
)( ghr GL −= ,          (2.10) 

 

In practice, the capillary rise method should only be used when the contact angle is zero 

not to include the uncertainties involved with the contact angle measurements.  A 

variation of this method is to measure the difference in capillary rise, h∆ , for capillaries 

of different sizes (r1 and r2); thus eliminating the reference to the flat liquid surface.  In 

this case, the surface tension is calculated as: 
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=
ρργ ,    (2.11) 

2.5.2.2 Ring Method 
 

In this method, the force required to detach a ring from a liquid surface is measured, 

usually by suspending the ring from the arm of a balance.  The detachment force, F, is 

related to the surface tension by the expression: 

R
F

π
βγ

4
= ,     (2.12) 

 

where R is the mean radius of the ring and β is a correction factor [49].  To ensure a zero 

contact angle, platinum rings should be cleaned with a strong acid, or by flaming.  The 

correction factor accounts for the non-vertical direction of the tension forces as well as 

the complex shape of the liquid supported by the ring at the point of detachment. 
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2.5.2.3 Drop Volume and Drop Weight Method 
 

Drops of liquid are allowed to detach themselves slowly from the tip of a vertically 

mounted narrow tube, and their weight, m, or their volume, V, is measured.  At the point 

of detachment: 

 

r
gV

r
gm

π
ρβ

π
βγ

44
== ,    (2.13) 

 

where r is the drop radius, and β is an empirical correction factor reported to depend on 

the ratio r/V1/3.  This correction is needed since at the point of detachment, the drop does 

not completely leave the tip, and the surface tension forces are rarely vertical. 

2.5.2.4 Wilhelmy Technique 
 

This technique was described earlier as a method of measuring contact angles.  The same 

technique can be utilized to measure surface tension when the immersed rod or plate has 

a zero contact angle.  Often, flamed glass or platinum plates are used since they have 

very high surface energies.  Equation (2.9) is used to calculate the surface tension given 

the perimeter of the plate.  The underlying assumption in this method is that the plate 

makes a zero contact angle with the liquid whose surface tension is to be measured.  The 

Wilhelmy technique is used in this study to measure both the utilized resin surface 

tension and the resin-fiber contact angle; and details of the measurements are given in 

chapter 3. 
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2.6 Void Content Measurement Techniques 
 

Since void presence severely deteriorates the mechanical properties as discussed in 

section 1.5.1.1, several techniques for determining void content in composites have been 

developed.  Most experimental studies on void formation in RTM determine void content 

during mold filling via monitoring flow front progression during mold filling.  Post-cure 

studies, on the other hand, use different methods to estimate void content after fabrication 

of the composite part.  A brief description of the main features of the common void 

content measurement techniques is summarized below. 

2.6.1 Density Measurement Technique 
 

This method is relatively simple to utilize and does not require any sophisticated 

equipment.  Void volume is calculated from the densities of the fiber, resin, and 

composite as well as to the volume fraction of the fiber and the resin by the expression: 
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where V, W, and ρ are respectively the volume, weight, and density; while subscripts c, f, 

and r denote the composite, fibers, and resin, respectively.  Therefore, precise knowledge 

of void content requires accurate determination of various densities as well as the resin 

and fiber weight fractions.  The densities are obtained from either the water buoyancy 

technique described in ASTM D792, or the density gradient technique explained in 

ASTM D1505.  The fiber and resin contents are usually obtained from chemical or 

thermal methods.  The former involves acid digestion of the resin while the latter 

involves removal of the resin by thermal degradation.  Weight changes are monitored in 
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both cases by gravimetry.  A variation of 0.1% in ρc, ρf, ρr, Vf, or Vr induces a 2.5% in the 

calculated void content [50].  The uncertainty of fiber density may introduce an error as 

large as ±0.5%, and this method is known to give negative values of void contents [50-

51].  In addition, this technique can only estimate the overall void content based on small 

samples.  Furthermore, it provides no information on the size, shape, location, or 

distribution of voids. 

2.6.2 Water Absorption 
 

This method is based on the volume absorbed by the composites samples.  It requires the 

determination of the equilibrium water uptake of a composite without voids and the 

composite for which the void content is to be measured.  Void volume is then calculated 

as: 

)(1
0WWV c

w
v −=

ρ
,    (2.15) 

 
where ρ is the density of water, Wc is the weight of the water absorbed by the composite 

and W0 the weight of the water absorbed by the composite not containing any voids.  The 

validity of this method depends on complete saturation of the voids as well as the 

fabrication of a void-free composite.  The accuracy of this technique is estimated to be 

worse than the density measurement method. 

2.6.3 Ultrasonic C-Scan 
 

This method is widely used in the industry for qualitative, non-destructive evaluation of 

defects in composites.  It can be applied by transmitting a short pulse of ultrasonic energy 

through the specimen and measure the attenuation or decibel drop caused by the passage 
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of the ultrasonic pulse.  This technique has the advantage of accessing the whole 

specimen instead of small sections.  Since voids are known to be strong scatterers of 

ultrasonic elastic waves, they cause a dramatic decrease in the amplitude of the 

transmitted signal and an increase in the ultrasonic attenuation.  However, a previous step 

of calibration is necessary with reference to another technique, and also attenuation is 

influenced by other composite parameters such as delaminations, fiber volume fraction, 

and degree of cure.  Hsu [52] showed that void volume fraction in unidirectional and 

woven carbon fiber reinforced epoxy laminates is directly proportional to the slope of the 

attenuation with respect to frequency.  The authors reported that void contents 

determined from attenuation slope compared well with those determined via density 

methods. 

2.6.4 Radiography 
 

Radiographic techniques have also been used in some instances.  The samples are first 

impregnated with molten sulfur and then radiograph images are taken using a tungsten 

target.  A stereo pair of radiographs is taken to facilitate examination of void distribution 

throughout the composite sample.  It has been demonstrated that voids of micron size can 

be detected.  However, the accuracy of this technique is highly dependent on complete 

filling of voids with the molten sulfur [51]. 

2.6.5 Microscopic Image Analysis 
 

Adapted from metallography, this technique involves using a reflecting type microscope 

to analyze the studied specimen.  Usually, a small sample of the composite is cut and 

mounted on a block.  It is then polished sequentially on silicon carbide with decreasing 
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grit size.  The prepared specimen is then scanned by a microscope fitted with camera.  By 

assuming a random distribution of the voids within the composite sample, the voids 

fraction in the studied cross-section is taken as equivalent to the void volume fraction.  

Frames are often obtained at very localized areas that are assumed to represent the whole 

composites.  In spite of all these assumptions, microscopic image analysis is 

demonstrated to be the best method to measure void contents in composite materials [33-

35,51,53].  In addition, this technique provides additional information on void size, 

shape, and distribution.  In this study, microscopic image analysis is utilized over the 

entire cross sections of the studied composites to ensure the most accurate measurement 

of void content.  In addition, all void measurements are conducted manually to eliminate 

errors induced by usage of luminosity threshold; although this practice is commonly used 

and allows faster image processing.  In order to insure that no errors were introduced in 

the current studies by personalized judgment, tow sample regions were entirely processed 

for voids by two operators, and measured void contents were within at most 5% of each 

other for each region. 
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3 Voidage Reduction in Resin Transfer Molded 
Composites 

 

3.1 Abstract 
 

Resin transfer molding (RTM) is regarded as successful process in manufacturing near-

net-shape, geometrically complex composite parts.  High-speed processing is essential to 

achieve lower production cost in the fabrication of fiber-reinforced composites with the 

current RTM practices.  A major consequence of increasing the resin injection velocity is 

the formation of defects such as voids and dry regions that decrease the load-bearing 

capability of molded composites.  Detrimental effects of voids on the structural integrity 

of molded parts have been studied extensively.  In contrast, knowledge of effective void 

removal strategies, along with detailed spatial and morphological void distribution within 

a molded composite is very limited.  In this investigation, various post-fill pressure levels 

are applied to molded disk-shaped random-mat E-glass/epoxy parts as a method to reduce 

their voidage content.  Microscopic image analysis over cross-sections cut from these 

composites revealed that significant changes in voidage concentration take place with the 

packing pressure.  For instance, overall void content dropped more than 88% with the 

application of a post-fill pressure as low as 300 kPa.  In addition, as the packing pressure 

increases, large voids gradually disappear. 
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3.2 Introduction 
 

Liquid molding technologies such as Resin Transfer Molding (RTM), Vacuum Assisted 

Resin Transfer Molding (VARTM), and Resin Infusion, among others, are often regarded 

by composite manufacturers as excellent alternatives to current autoclave-cured 

laminated composites.  In general, these liquid molding processes have lower operational 

costs and higher production rates that make them particularly attractive for high-

throughput industries such as automotive and consumer products.  Some authors even 

predict that high-speed liquid molding will be the mainstream fabrication process for 

aerospace parts in the next decade [1,2].  In resin transfer molding, an uncured liquid 

resin is mechanically injected into a mold containing an inorganic porous or fibrous 

reinforcement.  The resin is expected to displace the air inside the mold, quickly filling 

up all empty spaces within the preform.  In the case of fibrous reinforcements, the 

network of channels for the resin flow is not uniform and contains a wide distribution of 

inter-tow and intra-tow channel spacing as well as a broad range of channel orientations 

(i.e. random fiber preforms).  Such heterogeneous microstructure forms high and low 

permeability zones within the reinforcement; and at the same time, creates an imbalance 

between viscous and surface forces during the flow of the polymeric mixture.  

Permeability variations at the flow front, coupled with non-isothermal effects coming 

from the curing kinetics, are responsible for transient phenomena that decrease 

impregnation quality and ease of spreading of the resin through the inorganic preform, 

thus leading to macroflow- and microflow-driven defects like dry spots and voids.  In 

addition, voids can also originate from nucleation and growth of either dissolved gases or 

low molecular weight by-products formed during the crosslinking reaction [3].  High 
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voidage is one of the major factors inducing a severe degradation of mechanical 

properties in composites [4].  It has been reported that a void content as low as 1% may 

cause reductions between 2 and 10 MPa in the interlaminar shear strength (ILSS) of a 

composite part [5]. 

 

Previous investigations have revealed that void formation during RTM depends primarily 

on process-related factors such as capillary number, contact angle, and orientation of 

fibers with respect to the flow direction [6].  Patel and Lee [7] put forward a simple 

unidirectional model that predicts void formation as the result of the extensive fingering 

at the flow front (i.e. lead-lag behavior).  According to these authors, the lead-lag appears 

when either the inter-tow or primary flow predominates over the flow between fiber 

interstices (i.e. capillary flow), and vice versa.  The manifestation of flow front lead-lag 

is directly related to the impregnation rates.  For instance, at low filling velocity, the flow 

inside the fiber tows or intra-tow flow is dominant.  High capillary pressures cause the 

microflow within the narrow channels formed by parallel fibers inside a tow to move 

ahead of the macroflow, which takes place in the inter-tow spacing.  At high flow 

velocity on the other hand, the situation is reversed: the macroflow moves ahead of the 

microflow.  In this latter case, the capillary effect is very small compared to the 

externally applied pressure, and thus the viscous forces dominate the filling pattern [8]. 

 

In addition to molding speed, other factors are known to change the lead-lag intensity and 

ultimately the quantity and distribution of voids inside a molded part.  One such variable 

is the injection mode.  When the liquid injection is carried out at a constant volume flow 

rate, the front lead-lag should not depend on the distance from the inlet for a constant 
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cross-section, one-dimensional flow.  Consequently, the void fraction along the 

composite should not vary much with respect to the inlet distance (i.e. only if void 

compression and advection are assumed negligible).  In contrast, when the impregnation 

is performed at constant inlet pressure the flow rates would decrease with time, and 

hence, the flow front lead-lag would change as the flow progresses.  In this case, a 

spatially nonuniform void distribution is expected, with increasing number of voids 

present towards the exits [7].  Similar void occurrence dependence on the distance from 

the inlet is also expected when the liquid injection is performed at a constant volume flow 

rate in a constant cross-section mold cavity. 

 

During resin impregnation, and up until the gelling process begins, the entrapped voids 

are in a transient state where changes in size, shape, and location can be easily induced 

by applying external driving forces.  Several authors [6-10] have studied this particular 

phenomenon and suggested mechanisms for void mobilization and reduction in RTM 

composites.  Lundström [10] for example, found that a significant drop in void content 

could be achieved by continuing the resin flow after the reinforcement has been 

completely wet out.  In this way, the resin advects out voids and more time is allowed for 

dissolving any binder or excessive sizing on the fiber surface.  In industrial practice this 

procedure has commonly been referred to as bleeding.  Chen et al. [9] studied the 

physicochemical variables (i.e. surface tension, viscosity and equilibrium contact angle) 

controlling void mobilization and concluded that voids entrapped by a resin with lower 

surface tension are more deformable, and consequently, easier to wash out from the fiber 

bundles.  According to Chen’s study, resin viscosity also appears to have a great 

influence on the momentum transfer mechanism for void mobilization.  Higher 
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viscosities are expected to increase the compressive pressure over the bubbles and help in 

their mobilization.  However, the trade-off is that when the resin viscosity is too high, 

penetration into the inter-fiber channels becomes much more difficult; and molding 

pressures rise to almost impractical levels.  Recent experiments conducted by Balckmore 

et al. [11] on the detachment of bubbles in slit microchannels by shearing flows confirm 

many of the previous observations found in the composite materials literature.  One of 

their major conclusions is that the fluid drag force necessary to move a bubble located in 

contact with both surfaces inside a narrow channel must always be greater than the 

adhesion force that keeps it in place.  The source of this adhesion force is related to the 

bubble liquid-air surface tension and the difference between the advancing and receding 

contact angles as: 

 
)cos(cos2 arca DF θθγ −= ,        (3.1) 

 
where Dc is the bubble contact diameter, γ represents the bubble liquid-air surface 

tension, θr is the receding contact angle, and θa corresponds to the advancing contact 

angle.  From Eq. (3.1), it can be easily inferred that at the same flow condition, a larger 

bubble has a longer perimeter and hence a larger adhesion force.  In contrast, small 

bubbles have lower adhesion forces and therefore become mobile in a straight 

microchannel at lower fluid shear rates.  Analysis of the void size and shape distributions 

within composite parts clearly shows that small and circular voids tend to concentrate in 

regions away from the inlet, which is definitely a consequence of their higher mobility 

[12,13]. 
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Equation (3.1) may also serve as a theoretical explanation to the findings of Chen et al. 

[9] and other authors regarding the effect of surface tension on void mobilization.  

However, no simple generalization can be made in the case of composites liquid molding 

because lower surface tensions may help in void advection, but at the same time, a liquid 

with lower surface tension would exhibit poor wetting on inorganic preforms and 

therefore induce higher void occurrence.  In order to account for the effects of both 

physicochemical and flow-related variables on void migration, the capillary number, Ca, 

defined as the nondimensional ratio of the viscous forces to the capillary forces, has often 

been used [9]: 

 

γ
µVCa = ,     (3.2) 

 
where µ, V, and γ are the polymer viscosity, the macroscopic fluid front velocity, and 

surface tension of the reacting mixture, respectively.  Recently, Patel et al. [6] introduced 

the idea of using a modified capillary number, Ca*, as the nondimensional parameter to 

relate the viscous forces and surface forces during fluid flow with the wettability 

characteristics of the substrates, given by the equilibrium contact angle, θ.  The 

expression for the modified capillary number is given by, 

 

θγ
µ
cos

* VCa = .    (3.3) 

 

When plotting the void area fraction measured in experiments with various model fluids 

injected at different velocities, Patel et al. [6] found that, regardless of the type of fluid or 

solid wettability, all the voidage data collapsed into a single master curve having the 
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modified capillary numbers as the independent variable.  Further experimentation carried 

out by the same authors [7], as well as by Manhale et al. [14], indicate the existence of a 

critical capillary number for void formation lying in the range of 2.5 x 10–3.  Similarly, 

Patel et al. [7] defined a critical capillary number value for void elimination through 

advection that depends on the fiber geometry and is an order of magnitude higher (e.g. 

1.0 to 2.2 x 10–2) than the critical capillary number for void formation.  To attain these 

capillary numbers, injection of liquid must be performed at high flow rates.  Model 

experiments with parallel plate microchannels [11] also showed that for a given channel 

spacing (H), a critical capillary number needs to be reached in order to generate a 

detaching shear force sufficient to mobilize a bubble of a particular contact diameter, Dc.  

This critical capillary number was found to decrease linearly as Dc/H increased, reaching 

a plateau as the channel spacing became smaller.  

 

A substantial decrease of the interlaminar adhesion properties with increasing levels of 

voidage has been long recognized in literature, and empirical correlations of exponential 

type have been put forward to represent the void-property relation [13,15].  In most cases, 

these analytical predictions assume a simple relationship between mechanical 

performance and the bulk or overall void content as the sole independent parameter.  

However, given that voids are likely to originate from different sources during filling, 

other void characteristics such as void shape, size, and spatial distribution must be taken 

into account in composite durability predictions, as these individual parameters will 

contribute to mechanical properties and failure mechanisms in different ways.  For 

instance, Lundström and Gebart [10] report the coexistence of two types of voids formed 

in RTM composites with unidirectional glass fibers: slender cylinders, located 
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preferentially inside the fiber bundles; and, large spherical voids, found in the interstices 

between the fiber bundles.  The authors noted that large bubbles, in particular, aligned 

themselves perpendicularly to the flow direction as a result of the periodic constrictions 

formed by the weave pattern of the reinforcement (i.e. the reinforcement had 5% of the 

fibers perpendicular to the rest of the fibers).  This particular example shows the strong 

dependence of void morphology on parameters such as the reinforcement volume fraction 

and architecture.  Howe et al. [16], on the other hand, characterized the types of voids 

formed in carbon/epoxy composite parts manufactured by two different molding 

schemes: autoclave molding of prepregs and RTM.  They found that, at similar fiber 

volume fractions, voids in the autoclaved laminates were mostly asymmetric and 

exhibited sharper edges; whereas in the RTM parts voidage was predominantly near-

spherical or elliptical.  Comparing the reductions in the interlaminar shear strength 

(ILSS) values caused by voids in each molding scheme, Howe et al. [16] concluded that 

voids with a more circular shape had less effect on reducing the ILSS than asymmetric 

voids.  

 
In terms of the void concentration, Varna et al. [12] indicated that RTM-specimens with 

low void content can achieve high strength levels when tested under uniaxial tension, but 

also argued that the formation of large transverse cracks can make them brittle, thus 

leading to low strain to failure.  Meanwhile, for laminates with slightly more voids, the 

fracture mechanism is initiated with the appearance of many small cracks connecting 

large spherical voids; although, some of these cracks connected small cylindrical voids 

only.  Often times, claim the authors [12], a small crack is arrested at a weft bundle, and 

the crack tip is somewhat displaced with respect to the first crack.  This irregularity in the 
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crack growth mechanism results in a lower stress concentration and stress level at the 

fiber bundles, which in turn explains the nominally higher transverse strain to failure of 

specimens containing slightly more voids.  Very few works in the literature have 

addressed the topic of interlaminar shear strength reduction by discrete voids, or the 

influence of void shapes in the failure initiation mechanisms.  Wisnom et al. [17], for 

example, observed that in glass/epoxy and carbon/epoxy specimens with discrete 

inclusions, longer voids could cause premature failure to initiate from the defect, not only 

by a stress concentration mechanism, but also from the reduction in the load-bearing 

cross-sectional area. 

 

Successive steps of packing and bleeding - among other procedures - have been 

recommended to composite manufacturers as a way to obtain parts with low void content 

[18].  Usually, after the mold is full, the resin injection is stopped and the vents are 

closed.  Thereafter, packing starts by continuing resin injection while keeping the exit 

vents closed.  After the packing is complete, the vents are released to let the resin bleed. 

Although effective removal of macrovoids and significant voidage reductions are attained 

by this method, the packing and bleeding sequence increases the total cycle time as well 

as the fixed costs represented in the wasted resin (ca. US 40 – 50 per pound).  The 

utilization of surfactants in the flow front [9,19], surface waxing of mold walls [20], and 

vibration-assisted RTM [20,21] are also alternatives for void reduction that have been 

implemented with mixed results.  An optimum condition of fluid impregnation wherein 

both micro- and macro-flows are balanced seems imperative for minimizing void 

formation during a given mold filling process.  As described before, experiments with 
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different fiber architectures and model fluids favor the existence of a critical range of 

capillary numbers where lower void contents can be achieved [7,9,22]. 

 

Notwithstanding the physical barriers imposed by the surface and viscous forces, there 

have been successful attempts to overcome void formation at high-speed molding.  

Among such strategies, the change of the inlet location [23,24] and the utilization of 

higher injection pressures [5,25] have demonstrated a significant reduction both in mold 

filling times and void inclusions.  Further, other alternatives that can be readily 

implemented like preheating the preform to remove volatiles from the sizing system prior 

to resin injection [26]; and also, applying a “post-fill” cure pressure or “packing 

pressure” after the mold fill operation, have been also shown to be effective in 

superseding fluid front influences which otherwise would trigger void formation 

[13,26,27]. 

 

To the best of the author’s knowledge, a systematic investigation to discern the effects of 

different post-fill pressure levels on void reduction in RTM composites has not yet been 

undertaken.  In the current work, the extent of processing-induced defect reduction 

attained by applying a post-fill cure pressure at the four different levels: 0, 300, 568 and 

781 kPa is studied.  All composite parts are reinforced with commercial E-glass-fiber 

random-mats, and molded with a high-speed molding setup that allowed the filling of a 

58 cm3 mold at a constant flow rate in an average of less than 10 seconds.  These fill 

times are consistent with current industrial molding cycles for small to medium sized 

RTM parts. 
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3.3 Experimental Studies 

3.3.1 Procedure for Composite Fabrication 
 

Figure 3.1 depicts the major components of the high-speed molding setup used to 

fabricate random-mat E-glass/epoxy RTM composites.  This setup includes a hydraulic 

press and a rectangular aluminum mold containing the fiber preform.  The molding press 

consists of two hollow cylinders, two plungers and a 40-ton hydraulic (ARCAN, Model 

CP402) press that provided the force necessary to inject the reacting mixture into a disk-

shaped mold cavity.  Prior to the injection, EPON 815C epoxy resin (Shell Chemicals) 

and EPICURE 3282 curing agent are separately loaded into two hollow stainless-steel 

cylinders.  These cylinders had inner diameters of 55.5 mm for the resin and 25.5 mm the 

curing agent, such that a mixing ratio of 4.7 to 1 by volume is achieved with the constant 

displacement rate of the plungers.  During mold filling, a linear velocity of 2 x 10-3 m/s of 

the hydraulic ram is maintained through most of the 152.4 mm stroke, which yields an 

injection rate of approximately 5.32 cm3/s. 

 

The resin and curing agent flows merge in a T-connector and thereafter pass through a 

Statomix® inline mixer (ConProTec, Inc.) comprising 32 alternating helical segments 

placed inside a 155 mm-long polypropylene tube with 5 mm inner diameter and 8 mm 

outer diameter.  Transient pressure profiles of the completely mixed polymer (µ = 0.96 

cP) are recorded with a pressure transducer located at the injection port.  The center-gated 

disk-shaped aluminum molds are made of two square walls with dimensions: 228.6 mm x 

228.6 mm x 6.35 mm, separated by a 3.18 mm-thick aluminum spacer plate.   
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Figure 3.1:  Experimental molding setup used to manufacture RTM composite disks. 
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To create the mold cavity, a 152.4 mm diameter disk is cut out of the center of the 

aluminum spacer plate.  Both the top and bottom aluminum parts had a circular groove of 

184 mm in diameter and 0.3 mm in depth carved out to accommodate a 4-mm O-ring 

rubber seal.  Inlet gate and exit vents are drilled and tapped on the top mold wall.  The 

inlet is located in the center of the disk and has either plastic or brass barbed fittings 

connected to the feeding hose (ID=6.2 mm).  The four symmetrical exit vents (ID=1.6 

mm) are positioned 90 degrees apart at a radius of 88.9 mm. 

 

The reinforcement utilized in this study is a randomly-oriented, chopped glass fiber mat 

(FiberGlast part # 250), having a planar density of 0.459 kg/m2.  Among the attractive 

features of this preform are the planar isotropy and relatively low cost.  Four circular 

layers (152.4 mm diameter) of the preform were cut and stacked into the mold cavity, 

which represented a fiber volume fraction of approximately 17.5% in all composite parts 

fabricated.  To impregnate the preform, the resin and curing agent mixture is injected into 

the mold cavity by a constant displacement of the plungers as described above.  On 

average, filling the mold cavity with the preform took less than 10 s, after which the exit 

gates are securely clamped and no resin bleeding is allowed to occur.  Thereafter, the 

hydraulic press is further operated for a few additional seconds until the desired post-fill 

pressure is reached at the inlet. 

 

A total of four post-fill pressures, i.e. 0; 300; 568; and 781 kPa, is used to investigate 

post-fill pressure effects on overall void content as well as the shape, size and spatial 

distribution of voids.  Pressure values presented here are measured with an accuracy of 
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less than ±1 kPa.  In order to prevent anomalies due to imperfect sealing, expansion of 

the hoses, or even the deflection of the mold walls that could cause a significant drop in 

the post-fill pressure, continued monitoring of pressure levels lasts for at least one minute 

before the inlet gate is finally clamped.  Molded disks were cured inside the molds at 

room temperature for 48 hours until the disks reached their “green state”, and then were 

taken out of the molds.  Finally, to ensure complete cross-linking of the resin, the disks 

were left to post-cure at room temperature for a minimum of one month before further 

cutting composite samples and polishing for void analysis. 

3.3.2 Transient and Packing Pressure Measurements 
 

The relationship between volumetric flow rate and fill pressure during liquid composite 

molding is an important design parameter, which is in most cases described by a flow 

through porous media model given by the Darcy’s law.  In the current study, the 

impregnating resin was injected at a constant volumetric rate.  Therefore, given the 

circular geometry of the mold cavity, the filling pressure steadily increased as the flow 

front moved radially outward.  To quantify the transient pressure profiles during filling, 

as well as the post-fill pressure levels, a pressure acquisition and monitoring system was 

installed at the inlet port of the mold as depicted in Fig. 3.1.  The acquisition system 

consisted of a flash diaphragm pressure transducer (Sensotec BP357BR Model S), 

mounted on the hose between the mixer and the mold inlet gate; a custom built signal 

amplification system based on an AD620 in-amp; and an Omega Daqbook acquisition 

software installed on a laptop computer.  During mold filling, the resin flow pressure at 

the mold inlet was converted to a voltage signal by the pressure transducer.  This output 

signal was conditioned for the data acquisition system through the amplifying system, 
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which amplifies the voltage, isolates the signal and lowers the transducer output 

impedance.  Pressure data were recorded at a frequency of 10 Hz.  

3.3.3 Modified Capillary Number Determination 
 

As was mentioned in the introduction, fluid front progression during preform 

impregnation is governed by macro- and micro-scale phenomena that are directly linked 

to void occurrence.  To date, most attempts to understand the mechanics of void 

formation at the flow front have been based on flow visualization experiments performed 

with model fluids over fibrous reinforcements of different architectures.  These studies 

have demonstrated the existence of so-called critical modified capillary numbers for void 

formation and advection, which are assumed to be scalable to actual liquid composite 

molding.  It is not clear from the current literature if these master curves relating void 

area fraction with modified capillary number are directly applicable to RTM molding 

operations involving reacting polymeric systems.  For this reason, herein we investigated 

the range of modified capillary numbers reached with the mold press depicted in Fig. 3.1, 

which will be referred to as high-fill velocity impregnation, and correlated them to the 

overall void volume fraction.  An analogous comparison is established with data from 

previous experiments [13] obtained at lower injection flow rates (i.e. low-fill velocity) in 

a molding system comprising the same polymer, fiber type and fiber volume fraction.  

First, the surface tension of the epoxy, curing agent and the reacting mixture were 

measured in order to calculate the variability limits of the modified capillary number (i.e. 

Ca*) during mold filling with respect to changes in the liquid surface energies.  The 

method followed for these measurements is based on the well-known Wilhelmy equation, 



 

 67

which expresses the force, F, exerted by the tested liquid over a partially immersed solid 

probe, as: 

 
BPWF −+= θγ cos ,    (3.4) 

 
where W and P are the weight and perimeter of the solid probe, respectively; and B is the 

buoyancy force.  This latter parameter is usually neglected if the solid is slightly 

immersed and dimensionally uniform.  All measurements were carried out in a dynamic 

contact angle analyzer (Cahn Instruments, Inc., DCA-322), and the experimental 

procedure followed was very similar to that used for measuring contact angles on fibrous 

reinforcements [28].  First, an approximately 5 mm-long flamed platinum rod with 254 

µm diameter was hung from the arm of a highly sensitive microbalance (i.e. 0.1 µg 

accuracy).  The clean platinum rod has a high surface energy, and thus, it is expected that 

the contact angle of both the monomers and the pre-polymer against the metal surface 

would be zero. Once the experiment started, 3 mm along the platinum rod axis was 

immersed into the liquid at a very slow stage velocity of 12 µm/s.  Force and time data 

generated during each run were automatically recorded on a computer; and with aid of a 

software (WinDCA 1.01), the surface tension was calculated from the most stable force 

reading when the liquid has receded over the platinum rod surface.  Measurements for the 

polymer required a preliminary step consisting of loading the exact volume ratio of resin 

to curing agent into a 60 ml plastic syringe, and then manually injecting the mix through 

a Statomix® inline mixer, similar to the one used during composites molding for further 

mixing.  Surface tension of epoxy polymers is known to vary with the conversion grade 

of the reaction, a.k.a. as the degree of cure.  Thus, the data presented here correspond to 
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the average of measurements taken at approximately the same time interval on at least 

five different batches of resin/curing agent mix.  Reported results for the resin and curing 

agent correspond to the average of individual measurements performed with 4 to 6 fresh 

samples.  

 

Given that the injection is performed at constant volumetric flow rate, the radial 

superficial velocity is an inverse function of the radial distance from the injection port.  

Hence: 
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==

π
,     (3.5) 

 

where Q is the resin flow rate, A is the cross-sectional area of the resin flow at a given 

time; H is the thickness of the mold, r is the radius at which the capillary number is 

calculated, and V f  the fiber volume fraction of the molded composite.  As mentioned 

before, Patel et al. [6] proposed the idea of a modified capillary number to account for the 

effect of contact angle between fiber and resin.  The same approach has been also used 

recently by others [29] to correlate microvoid formation during RTM molding.  In the 

current work, we recurred to single-fiber experiments based on the Wilhelmy technique 

to measure the wettability characteristics of the commercial fiber by the resin.  In this 

case, the liquid probe had a known surface tension and the only parameter to evaluate 

was the contact angle between the glass fiber and the liquid.  Instead of a single 

equilibrium contact angle, θ, this test allows to record both the advancing (θa) and (θr) 

receding contact angles. 
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The fact that the Wilhelmy method provides an estimate of a dynamic contact angle 

constitutes a major advantage when trying to extrapolate the results to a macroscopic 

scale (e.g. moving liquid fronts during composite fabrication imply dynamic contact 

angles).  Therefore, herein all calculations involving the modified capillary number 

include the advancing contact angles measured for the pure epoxy resin and fibers from 

the random-mat preform.  These advancing contact angles have been already presented 

elsewhere [28].  It is worth noting that the fibers were relatively small in diameter (e.g. 

13 µm), and hence bending of the fibers was realized as a source of errors when 

submerging the fibers into test liquids.  In consequence, a stage velocity of 2 µm/s was 

set for all experiments to avoid disturbances in the recorded force coming from viscous 

friction.  For this reason, contact angle measurements with the reacting mixture proved 

impractical, as the necessary experimentation time was much longer than the gelling 

time.  Surface tension, viscosity and other physicochemical parameters of the monomers 

and polymers used in the current study are presented in Table 3.1. 

3.3.4 Voids Characterization 
 

Voidage evaluation in composite materials by means of microscopic image analysis has 

been demonstrated to be among the most accurate methods for measuring the true void 

content [30].  Furthermore, the image analysis technique has the advantage of providing 

detailed information of other important parameters such as voids distribution, shape, and 

size that cannot be assessed by either physical (e.g. relative density) or chemical (e.g. 

acid digestion) methods.  Usually, voidage measurements by microscopic imaging imply 

the random acquisition of pictures over the area of interest followed by the statistical 

averaging of the void areas measured in each picture. 
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In the current work, unlike most previous work, image analysis was performed over the 

entire cross-sections of specimens cut from the center of completely cured disks molded 

at each post-fill pressure.  Hence, all voids that could be identified at the working 

magnification were included in void content calculations.  The specimens had an average 

length and thickness of 75 mm and 3.98 mm, respectively, and were embedded into a 

quick cure acrylic resin (Allied High Tech. Products, part # 170-10000).  Once 

embedded, the samples were polished with a series of polishing pastes (Clover 

Compound) with grits sizes ranging from 180 (e.g. 80 µm average particle diameter) to 

1200 (15 µm) in six successive steps.  After each step, the samples were set for 40 

minutes in an ultrasonic cleaner at moderate sonication (19 W) to completely remove 

residues of the polishing compound. 

 

The microscopic image analysis started by dividing each 75-mm long sample into five 

15-mm long regions along the radial direction.  Each cross-section was then entirely 

scanned at 200x magnification using a MEIJI optical microscope.  At this particular 

magnification, every frame displays approximately 0.71 x 0.53 mm2, which needed the 

capture of eight frames to scan across each sample thickness (i.e. 3.98 mm) at a particular 

radial location.  Each time a void was clearly identified the picture of the region 

containing the void was taken.  A total of approximately 1400 frames containing voids 

were taken from all radial locations in all samples analyzed.  

 

In addition to the image analysis in the radial direction, voidage distribution through the 

specimen thickness was also recorded.  To do that, frames from the top layer (defined as 
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the area within 1.07 mm from the top surface), bottom layer (1.07 mm from the bottom 

surface), or inner layer (intermediate region) of the cross-sections were investigated.  As 

described before, the voids entrapped within a particular cross section were identified and 

their images captured using a PC-based CCD camera attached to the optical microscope. 

Each picture was then processed using the image analysis software UTHSCSA Image 

Tool®, which allowed simultaneous measurements of voids’ area (A) and maximum 

length (Lmax).  Due to the planar randomness of the preform and the shape of the mold, 

the flow is assumed to depend only on the radial location for each disk.  Hence, the void 

volume fraction at each cross section was assumed to be linearly equivalent to the ratio of 

the total void area by the entire area of the cross section [31]. 

 

Figure 3.2 depicts images of composite cross-sections with various voidage levels, as 

well as voids with different sizes and shapes representative of the voids encountered 

within the studied composites.  In these images, the continuous phase (i.e. polymeric 

matrix) appears as a gray background, whereas the white circular and elliptical objects 

correspond to glass fibers oriented perpendicularly and in an angle, respectively, to the 

cross-section.  The groups of fibers observed in close proximity to one another exhibit 

similar orientations and correspond to fiber tows bundled together within the random 

mats. 
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(a)        (b) 

     
(c)      (d) 

  
 

Figure 3.2:  Representative micrographs from composites molded with different post-fill 
pressure specimens at 200x magnification.  (a) Circular voids of different shapes located 

in matrix-rich area; (b) Ellipsoidal void in the inter-tow space; (c) Irregular void engulfing a 
tow of fibers; (d) Example of high voidage area in composites molded without a post-fill 

pressure. 
 

100 µm 
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3.4 Results and Discussion 

3.4.1 Transient Inlet Pressure 
 

Positive displacement of the plungers by the molding press ensured that infusion of the 

reacting polymer through the random-fiber preform would take place at a constant 

volumetric flow rate.  Due to the circular mold geometry, the resin front advances 

through the dry preform and towards the exits; and in most cases, a radial liquid front 

symmetry can be assumed.  Three transient positions of the advancing flow front inside 

the mold are depicted in the top part of Fig. 3.3.  Very close to the entrance, the 

impregnating front moves at high velocities yielding much faster local velocities at the 

mold cavity mid-plane.  Further away from the injection port, the advancing front 

velocity decreases monotonically at radial positions (i.e. bottom part of Fig. 3.3).  The 

total energy of the liquid is reduced due to the mold geometry, together with the 

resistance exerted by the dry preform surface.  This energy dissipation becomes greater 

as the dry surface area opposing the flow increases radially, until the fluid impregnates 

the whole solid and finally reaches the vents. 

 

In order to maintain a constant impregnation rate, the pressure applied to the liquid must 

also increase so sufficient energy is provided to impregnate the solid.  Transient inlet 

pressure readings of four different mold-filling experiments are shown in Fig. 3.4a.  In 

this figure, four different zones that are common to all filling experiments can be 

identified, inter alia, the injection or fill zone, the peak pressure zone, the plateau region 

and the step zone. Within the fill zone, pressure increases at a very steep rate. 
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Figure 3.3:  Advancing fluid front superficial velocity at different radial positions inside the 

mold cavity preloaded with 17.5% E-glass fibers by volume. 
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Note, however, that the change in injection pressure with respect to time was the same for 

all molded composites.  Thus, considering that these parts had the same fiber volume 

fraction, it can be concluded that, independent of random variations in permeability, the 

flow field was approximately the same for all filling operations.  This latter result is 

significant because it precludes the probability of obtaining different voidage levels in 

molded parts due to uncontrolled flow behavior during filling.  After the fill zone, 

pressure readings start showing some discrepancies between different experimental runs. 

Note that although each molding experiment took approximately the same time to reach 

the peak pressure (i.e. 18 s), the peak value was not the same among experiments.  In Fig. 

3.4b, a close-up of the mold vent region illustrates the relative dimensions of the narrow 

opening and the mold cavity.  Narrower flow channels formed between the spacer plate 

and the top mold wall impose greater resistance to flow that translates into higher-

pressure drops.  Thus, peak values recorded in Fig. 3.4a are more suggestive of random 

variations in the constricted channel spacing than to any direct relationship with the 

process variables. 

 

It can be inferred from Fig. 3.4b that channel spacing will depend on the deformability of 

the rubber o-ring utilized to seal the mold.  The applied force and the condition of the o-

ring during mold assembly are believed to affect the thickness of this narrow channel, 

and thus the peak pressure reached in zone II.  Once the resin starts flowing through the 

narrow channel and out to the vents, the molding press is turned off, stopping resin 

injection. This event marks the onset of zone III. 
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Figure 3.4:  (a) Inlet pressure profiles during mold filling of composite disks; (b) Close-up 

of air vent region of the mold. 
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As seen in Fig. 3.4b, between the time injection ceases, and the moment all exit vents are 

securely closed, there is a monotonic decrease in the recorded pressure that is consistent 

with the tendency of the system to attain a balance between inlet and outlet pressures.  

Thereafter, the pressure levels-off to a plateau pressure value, and remains constant until 

the commencement of the step zone (i.e. zone IV).  In the case of experiments with zero 

post-fill pressure, no compressing action took place, and as a consequence, the pressure 

continued decaying asymptotically.  

 

Zone IV began when the resin inside the mold was compressed to the desired post-fill 

pressure level (e.g. step zone).  Two or three minutes after the post-fill pressure is applied 

the injection port was clamped.  The sudden contraction of the mold opening is registered 

in the pressure charts (Fig. 3.4a) as a minute pressure peak (ca. 60 kPa) towards the end 

of the experiment.  In summary, the transient pressure have shown that both the mold 

filling, as well as the establishment of a final post-fill pressure, were adequately 

controlled with the current molding setup and molding procedures. 

3.4.2 Effect of Injection Rate on Void Content of Resin Transfer 
Molded Disks 

 

One of the advantages of RTM over similar composites fabrication techniques lies in the 

possibility of attaining short cycle times.  Therefore, a critical step during RTM molding 

is to impregnate the preform as quickly as possible while minimizing undesirable features 

such as a race-tracking, high void content, or incomplete wet-out that may result in 

premature failure or poor overall performance [32,33].  In an earlier study [13], the effect 

of volume flow rate and post-fill cure pressure on the mechanical properties and overall 
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void content of RTM composites with identical mold geometry, fiber architecture, 

volume fraction and epoxy system, was investigated.  Therein, four different constant 

injection rates of 0.067, 0.2, 0.6 and 1.0 cm3/s representing more than an order of 

magnitude change in fill times were used.  Corresponding fill times for these injection 

rates were: 900, 300, 100 and 60s, respectively.  Tensile strength and stiffness reductions 

on the order of 14 and 13% due to increased fill rates suggested that an injection rate 

increase had detrimental effects possibly associated to increased void formation.  

Conversely, significant improvements in the order of 13 to 15% were observed for the 

strength and elastic modulus when a range of post-fill cure pressures between 228 and 

683 kPa was applied.  With the objective of evaluating to what extent the application of a 

post-fill cure pressure can be regarded as an efficient method to reduce the flow-induced 

voidage in composite materials, data from molding experiments carried out at low-speed 

(i.e. 0.20 cm3/s) in the previous work [13] are compared to analogous RTM experiments 

conducted at injection rates almost thirty times higher (i.e. 5.32 cm3/s).  There is 

approximately a 30-fold reduction in the fill time between the low- and high-speed 

molding schemes, which we consider to be significant in terms of extrapolating these 

results to the industrial fabrication scale.  

 

With the exception of the work by Rohatgi et al. [34], not many of the flow front 

visualization studies presented in the literature have dealt with void formation when the 

impregnation velocity is high.  Figure 3.5 shows data taken from Rohatgi’s work 

corresponding to the trend in area void fraction as a function of liquid injection velocity 

for silicone oil, diphenyl-octyl-phtalate (DOP) and ethylene glycol when flowing axially 

over a unidirectional stitched fiberglass mat (CoFab A108). 
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In the same figure, the range of liquid front velocities inside the molds (i.e. maximum 

velocity at the entrance, and minimum close to the exit ports) has been incorporated 

during the high-fill and low-fill velocity processing of random-fiber/epoxy composites 

(i.e. abscissa); and in the ordinate, we show the overall void content for those parts 

molded without extra packing (post-fill pressure = 0 kPa).  As suspected, the void content 

in the composite part strongly depends on the liquid front velocity.  At low-fill velocity, 

the void content level is below 1%, which in the composites industry is regarded as a 

quality threshold value for parts with good mechanical performance [18].  As long as the 

injection velocity increases, the entrapment of air is more likely to occur and thus the 

void content inside the part reaches an undesirable level of 2.15 %, as observed in the 

current study. 

 

It would be easy to conclude that reducing the injection velocity further below the low-

speed velocity range used herein could completely eliminate the driving forces for void 

formation.  Such an argument has already been proven wrong by studies on air 

entrapment during the impregnation of fibrous reinforcement with model fluids flowing 

at very low velocities.  In this case, the main front velocity lags behind the faster 

capillary flow occurring inside the narrow inter-fiber spacing, and extensive formation of 

macrovoids takes place [7].   
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Figure 3.5:  Effect of injection velocity on void formation in RTM composites. Data for 
model fluids taken from Rohatgi et al. [34]: □ Silicone oil; ∆ DOP oil; ○ Ethylene glycol. 
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The results presented by Rohatgi et al. [34], shown in Fig. 3.6 as data-points, reveal 

another interesting trend.  The area void fraction was - as expected - an increasing 

function of the injection velocity for all test liquids utilized.  However, the major factor 

determining the ultimate level of air entrapment present was the fluid’s physicochemical 

characteristics.  For instance, viscous fluids of relatively low surface tension are more 

prone to engulf air when the flow front advances at a high speed.  When silicone oil 

(viscosity = 193.4 cP, γ = 21.0 x 10-3 N/m) was injected at a velocity of 4 cm/s, the void 

area of air trapped was close to 5%, whereas at the same velocity, only a 1% area void 

fraction was trapped by ethylene glycol (viscosity = 19.8 cP, γ = 19.8 x 10-3 N/m).  These 

results corroborate our data, in the sense that they explain why the effect of molding 

speed on the final void content is so dramatic when using the commercial epoxy polymer.  

As presented earlier, the viscosity of the polymeric mixture used in the current study is 

on the order of 960 cP, which is five times greater than the model silicone fluid used by 

Rohatgi et al.  In addition, these fluids would exhibit different wettability scenarios with 

the preform fibers.  Therefore, it seems reasonable to assume that with a higher-viscosity 

fluid, any increase in the front velocity would lead to more extensive entrapping of air 

than with the silicone oil.  In fact, taking an average value for the injection velocity at the 

two molding schemes (e.g. 0.088 cm/s for the low-speed range and 2.5 cm/s for the high-

speed range), and comparing them to similar injection velocities for the silicone oil; it is 

clear that while for the model fluid there is a five-time increase in area void fraction 

between the low and high injection velocities, a 3-fold change in void content takes place 

with the commercial resin.  Other factors, such as the difference in fiber volume fraction 

(e.g. 20% in the current study vs. 43% in Rohatgi et al.) and the fiber orientation (e.g. 
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random-mat vs. unidirectional) must also be considered in order to explain the slightly 

lower void contents in our samples. 

 

Using the physicochemical data listed in Table 3.1 for the polymer, and the modified 

capillary number Ca* given in Eq. (3.5), we calculated the variability limits of the 

nondimensional modified capillary number for both the high- and low-speed 

impregnation flows. 

 

 

 

 
Table 3.1:  Physicochemical and flow parameters for low- and high-speed RTM processing 

of composites containing 17.5% by volume of randomly-oriented, E-glass fibers. 
 

FLUID VISCOSITY 
µ (cP)  

at 25°C 

SURFACE 
TENSION 
γ (mN/m) at 

25°C 

ADVANCING 
CONTACT 
ANGLE (θ) 

Range of Critical 
Capillary Number 

(Low-speed fill) 
Ref. [13] 

Range of Critical 
Capillary Number 
(High-speed fill) 

 
EPON 815C 

 
500 – 700† 
(Avg. 600) 

 

 
40.6±0.5‡ 

 
34º ± 5‡ 

 

 
0.0025 - 0.036  

 
0.068 - 0.95  

 
EPICURE 

3282 

 
4000 – 4900† 
(Ca based on 

4000 cP) 
 

 
48.0±1‡ 

 
0º 

(assumed) 

 
0.012 - 0.167  

 
0.317 - 4.4  

 
Polymeric 
Mixture 

 
960‡ 

 
36.3±0.8‡ 

 
~ 34º 

(assumed) 

 
0.009 - 0.064  

 
0.12 - 1.7  

† Reported value from manufacturer 
 ‡ Measured. 
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Figure 3.6:  Effect of capillary number on void formation in RTM composites. Data for 
model fluids taken from Rohatgi et al. [34]: □ Silicone oil, macro-voids; ■ Silicone oil, 

micro-voids; ∆ DOP oil, macro-voids; ▲ DOP oil, micro-voids; ○ Ethylene glycol, macro-
voids; ● Ethylene glycol, micro-voids. 

 

Low-fill velocity range
Ref. [13] 

High-fill velocity range
Current study 
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From Rohatgi’s data, it can be inferred that reinforcement impregnation at extremely low 

modified capillary numbers favors extensive voidage accumulation in the parts, primarily 

composed of circular macrovoids.  As the impregnation velocity increases, so does the 

modified capillary number and the macrovoids start to mobilize and void content values 

reduce considerably.  Critical modified capillary numbers for void mobilization are on 

the order of 1.0 to 2.2 x 10-3, as observed in this plot, and also corroborated by other 

studies [7,14] mentioned in the introduction.  Next to the critical modified capillary 

number of void mobilization there is a zone for “optimum” impregnation wherein the 

void content fluctuates around 1%.  According to theoretical calculations [29] relating 

capillary number to the time ratio describing the competition between intra-tow and inter-

tow flow fronts, the range of low void content is located in a region of capillary numbers 

between 6 x 10-3 up to 0.03.  A further increase in the injection velocities leads to higher 

capillary numbers, which triggers the entrapment of air, and hence the void area fraction 

starts augmenting.  The types of voids formed at these high capillary numbers are quite 

distinct, and mostly correspond to ellipsoidal microvoids [34].  

 

Comparing the void area fraction formed at the range of capillary numbers established 

during the molding process at high speed, with the air entrapment levels occurring within 

the low-speed velocity range, the main conclusion that can be drawn is that our data 

matches reasonably well with the trends observed by other authors [9,34].  That is, at 

capillary numbers well above the so-called “optimum” range the void content was 

relatively high (i.e. 2.15% for the high-speed velocity range).  Whereas, for the low-

speed molding, the capillary numbers were all within, or very close to, the “optimum”, 



 

 85

and therefore, the void content was almost negligible (e.g. around 0.7%).  Note that the 

results described so far are only for the overall void content of parts molded at either 

high- or low-speed velocities, but not subjected to a post-fill pressure.  These void 

contents obtained in composites molded without any further packing pressure will later 

be used as the baseline to compare the extent of void reduction achieved when a post-fill 

pressure is applied. 

3.4.3 Effect of Post-Fill Pressure on Void content 
 

As discussed earlier, void contents from composites molded at different post-fill 

pressures are assessed by means of microscopic image analysis.  Figure 3.7 depicts void 

content reduction induced by applying different post-fill pressures.  Void content 

reduction is defined as the ratio of the final void content reached after packing, to the 

baseline void content recorded when no post-fill pressure is applied (i.e. 2.15% baseline 

void content in the current study, and 0.7% for data from reference [13]).  The main trend 

inferred from Fig. 3.7 is that, independent of the injection mode or initial void content 

value, the methodology of applying a post-fill pressure significantly reduces the final 

voidage levels in the composite parts.  For instance, applying a post-fill pressure as low 

as 300 kPa to the part molded at high-fill velocity results in an elevated void content 

reduction of 88.32%.  Similarly, reductions of the order of 91.16 and 97.2 % in voidage 

are registered when post-fill pressures of 568 and 781 kPa are applied, respectively.  

However, lower levels of void content reduction (34 to 57%) were observed in 

composites molded in the prior study [13]. 
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Figure 3.7:  Void content reduction due to different post-fill pressures applied to RTM 

composites molded with different fiber contents at different fill velocities. 
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This difference in void content reduction is believed to originate from the lower baseline 

void content of composites molded at low-fill velocity (i.e. 0.7%).  Applying a high post-

fill pressure is hereby found to be an effective method for void removal in resin transfer 

molded composites. 

3.4.4 Effect of Post-Fill Pressure on Void Size Distribution 
 

Figure 3.4 depicts images of composite cross-sections with various voidage levels, as 

well as voids with different sizes and shapes.  Figure 3.4d exemplifies a high voidage 

area taken from the composite baseline sample molded at zero post-fill pressure.  In order 

to classify the observed differences in void sizes, captured void surface area data, 

measured earlier, are utilized by defining an equivalent diameter, Deq, as: 

 

π
ADeq

4
= ,        (5) 

 
where A is the measured area of the void.  Three different size categories are arbitrarily 

defined.  Large voids are defined as those voids with an equivalent diameter greater than 

100 µm, i.e. Deq > 100 µm; while voids with an equivalent diameter lower than 50 µm are 

regarded as small voids.  Intermediate equivalent diameter values, i.e. 50 µm < Deq ≤ 100 

µm, correspond to medium size voids. 

 
A typical example of large circular voids is presented in Fig. 3.2a.  The void on the left 

end of the picture has a diameter of ca. 130 µm, which is a large size according to the 

classification defined above.  The other void, shown in the same picture, has a diameter 

smaller than four times the fiber diameter (i.e. 50 µm).  Note that these two voids are 
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both located within the matrix area.  Voids that are trapped in the inter-tow spacing are 

forced to conform to the channel geometry.  As it is seen in Fig. 3.2b, they are mostly 

small and elliptical.  In Fig. 3.2c, a couple of small and irregular voids are depicted.  The 

irregular voids were, in most cases, found either inside the intra-tow areas or engulfing a 

group of fibers from a tow.  It appears as if they were originated from rounded bubbles 

that are pushed into the tows by a high shear force during the resin flow.  Figure 3.2d 

exemplifies a high voidage area taken from the composite sample molded without 

applying a post-fill pressure. 

 

Using the size categories herein defined, void size distributions are calculated for the four 

molded composite disks, and the results are presented in figure 3.8.  In this figure, large 

and medium voids are seen to literally disappear as higher post-fill pressure is applied.  

Small voids occurrence, on the other hand, sharply increase from barely 40% in the 

baseline composite to almost 90% in both disks molded at 568 and 781 post-fill pressure.  

These results are expected since there is some evidence in the literature [18,26-27,35] 

suggesting that high molding pressures (0.1-0.9 MPa) may reduce void occurrence in 

composites by a mechanism involving the disruption of void nucleation and growth 

dynamics, as well as by the increase in the driving force for mass transfer taking place 

when the pressure outside the voids is higher than that of the air in their interior [3].  

Lundström and Gebart [10] talk about a compression effect over the voids inside a 

laminate when the cure pressure is increased after filling.  These authors even suggest 

that such an increase in the final pressure could have a similar effect as applying vacuum.  

Some of the mechanisms described above are perhaps contributing to the final void 

content reduction observed within our samples. 
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Figure 3.8:  Void size distributions for RTM composites containing 17.5% fibers by volume 

molded at different post-fill pressures. 
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3.5 Conclusions 
 

The mechanical performance of fiber-reinforced composites is strongly linked to the 

adhesive strength of their interfaces, as well as to the presence of process-induced defects 

such as voids and dry areas.  To date, there is no commercial method capable of 

manufacturing completely void-free parts.  The existing alternatives to reduce voidage, 

either incur high operational costs, or have not been successful at all.  In this study, an 

assessment on the extent of voidage reduction, attained when different post-fill pressure 

levels are applied to the mold after complete filling, has been performed.  The first set of 

results includes the effect of flow front velocities on the formation of voids when post-fill 

pressure is not applied.  Previous data [13], obtained in an RTM setup for low-speed 

processing (e.g. flow rate 0.2 cm3/s), was compared with the current molding procedure 

(e.g. high-speed processing) that was capable of injecting at flow rates in the order of 

5.32 cm3/s.  A 75% increase in the overall void content takes place in the composites 

molded at high-speed compared to the same type of parts molded at lower volume flow 

rates.  Furthermore, overall void area fractions in the composites molded with both 

processing schemes were found to be a function of the modified capillary numbers and 

flow front velocities, in accordance with data presented in the literature for model fluids. 

 

Transient pressure measurements at the injection port revealed that, both the filling 

operation as well as the establishment of a final post-fill pressure was adequately 

controlled with the current molding setup and molding procedures.  The major effect 

observed by applying the extra packing was a reduction of more than 88% in overall void 

content from the baseline level (i.e. 0 kPa) for composites molded with the short fill time 
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setup.  Finally and in terms of the void size, the most striking observation was that small 

voids augment their relative presence with respect to the medium and large voidage as 

the post-fill pressure increases.  This is consistent with the disruption of the pressure 

balance between the air pressure inside the void and the pressure surrounding the void 

(i.e. post-fill pressure). 
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4 Through-The-Thickness Morphological Void 
Distribution of the RTM composite Molded at 

Zero Packing Pressure* 
 

4.1 Abstract 
 

Performance of composite materials usually suffers from process-induced defects such as 

dry spots and microscopic voids.  While effects of void content in molded composites 

have been studied extensively, knowledge of void morphology and spatial distribution of 

voids in composites manufactured by resin transfer molding (RTM) remains limited.  In 

this study, through-the-thickness void distribution for a disk-shaped, E-glass/epoxy 

composite part manufactured by resin transfer molding is investigated.  Microscopic 

image analysis is conducted through-the-thickness of a radial sample obtained from the 

molded composite disk.  Voids are found to concentrate primarily within or adjacent to 

the fiber preforms.  More than 93% of the voids are observed within the preform or in a 

so-called transition zone, next to a fibrous region.  In addition, void content was found to 

fluctuate through-the-thickness of the composite.  Variation up to 17% of the average 

void content of 2.15% is observed through-the-thicknesses of the eight layers studied.  

Microscopic analysis revealed that average size of voids near the mold surfaces is slightly 

larger than those located at the interior of the composite.   In addition, average size of 

voids that are located within the fiber preform is observed to be smaller than those 

located in other regions of the composite.  Finally, proximity to the surface is found to 

have no apparent effect on shape of voids within the composite. 

                                                           
*Material in this chapter is published in Journal of Engineering Materials and Technology, 2004. 
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4.2 Introduction 
 

Due to its versatility and low cost, resin transfer molding has been a popular method for 

manufacturing near-net-shape, geometrically complex, composite parts.  Although the 

majority of load-bearing structural composite components in aerospace industry are 

fabricated by traditional autoclave process, the automotive industry utilizes RTM for 

structural or semi-structural parts due to lower operational cost and higher production 

rates [1].  Resin transfer molding and its variants consist of injecting a thermosetting 

polymeric resin into a mold cavity preloaded with a multi-layer, fibrous reinforcing 

preform.  During mold filling, the resin wets individual fibers and pushes air out of the 

mold cavity through the exit gates.  As the fluid front impregnates the fibrous preform, 

dry spots and microscopic voids may be formed in or near the fiber tows due to 

incomplete wetting of the preform.  The formation of such microscopic voids during 

resin injection is one of the major barriers to larger scale usage of these molding 

processes. 

 

Detrimental effect of voids on mechanical performance of composites is well established.  

Judd and Wright [2], for example, reported that a void content as low as 1% results in a 

decrease in strength up to 30% in bending, 3% in tension, 9% in torsional shear, and 8% 

in impact.  In a more recent study of voidage effects on mechanical properties, Goodwin 

et al. [3] reported a 7% reduction in interlaminar shear strength per 1% increase in 

voidage up to 10% for a resin transfer molded composites containing 5-harness satin 

preform.  In addition, the authors observed that failure cracks initiate from medium to 

large sized voids with sharp corners, but not from small spherical voids.  Voidage is also 
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known to affect both the rate and equilibrium level of moisture absorption in composite 

parts [4]. 

 

Lowering or totally eliminating voids in RTM parts involves understanding mechanics of 

void formation during filling of the mold cavity.  In resin transfer molded composites, 

voids are reported to originate primarily from mechanical entrapment during mold filling 

[5-8].  In some cases, voids can also emerge from volatilization of dissolved gases in the 

resin, partial evaporation of mold releasing agent into the preform, and initial air bubble 

content in the resin [9].  The mechanical entrapment is believed to arise from the 

presence of alternative paths for resin flow as a result of non-homogeneous preform 

permeabilities.  The non-homogeneity in preform permeability leads to the following two 

different flow fields:  (a) viscous flow through the opening between fiber bundles, and (b) 

capillary flow where resin penetrates into fiber bundles.  At slower injection flow rates, 

the capillary flow within the fiber tows leads the viscous flow and promotes inter-tow 

void entrapment at the interstices of the tow structure.  In contrast, high injection flow 

rates promote intra-tow void entrapment within fiber bundles as viscous flow leads 

capillary flow during preform impregnation.  A comprehensive analysis of this 

phenomenon has often been performed [5-9] using the capillary number, Ca, defined as 

the non-dimensional ratio of the viscous forces to the capillary forces: 

 

γ
µVCa = ,     (4.1) 

 
where µ, V, and γ are the impregnating resin viscosity, the macroscopic fluid front 

velocity, and the resin surface tension, respectively. 
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A correlation between overall void content and capillary number is well-established in 

the literature [5-9].  Mahale et al. [6] reported that below a certain capillary number 

critical value (i.e. Ca < 2.5 x 10-3), void content increases exponentially with decreasing 

capillary number during planar radial flow into non-woven multifilament glass networks.  

Moreover, if capillary number is above this critical value, negligible void entrapment was 

reported.  Incorporating the liquid-fiber-air contact angle into the non-dimensional 

capillary number was found to help generalize the analysis by preventing discrepancies 

caused by material variation.  The resulting modified capillary number, Ca*, has been 

defined by Patel et al. [7] and Rohatgi et al. [8] as: 

 

θγ
µ
cos

* VCa = ,     (4.2) 

 
where θ is the advancing contact angle.  Both references reported the existence of a 

single master curve of void content plotted as a function of the modified capillary 

number.  Experimentally measured data followed this master curve for various model 

fluids injected at different fluid velocities.  The authors also reported the existence of a 

preferential range of modified capillary number between 10-3 and 10-2, within which 

inter-tow macro-voids and intra-tow micro-voids coexist.  Below this preferential range 

(Ca* < 10-3), voids are primarily inter-tow macro-voids, and above the second critical 

value of 10-2, voids are mainly micro-voids trapped inside fiber bundles. 

 

In order to predict void formation during mold filling, a number of authors developed 

theoretical and numerical models [10-15].  Most of the proposed models introduced 
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numerous assumptions, and often considered simplified preform architectures.  For 

instance, Chan and Morgan [10] developed a model that predicts localized void formation 

at the resin front region, but only for unidirectional preforms with parallel flow.  Chui et 

al. [11], on the other hand, proposed a theoretical model predicting a voidage-pressure 

dependence in RTM processes.  Although the model was based on a simple unsaturated 

flow in porous media, the voidage-pressure dependence was confirmed experimentally by 

Lundström [12].  Patel and Lee [13,14] also developed a model for void formation in 

liquid composite molding (LCM) processes based on the multi-phase Darcy’s law.  

Furthermore, a simple analytical model for tow impregnation when the macroscopic flow 

is parallel to the fiber axis was developed by Binetruy et al. [15].  Additionally, several 

researchers [16,17] investigated bubble motion through constricted micro-channels to 

characterize void transport through fiber reinforcement.  Lundström [16] reported that 

voids are more prone to mechanical entrapment within fiber bundles than between 

bundles.  Shih and Lee [17] found that bubble mobility depends on both bubble size and 

the resin-fiber contact angle. 

 

Proposed void reduction methods for RTM composites in the literature include vacuum 

assistance [18], continuing the resin flow after complete wet out [5], compressing mold 

walls during injection [19], and applying a permanent post fill pressure after injection 

[20,21].  Nevertheless, the most effective technique for void reduction cannot be 

established without thorough understanding of the spatial void distribution throughout the 

composite part.  To the best of the authors’ knowledge, such detailed spatial void 

characterization has not yet been available for resin transfer molded composites.  In the 

current work, we study the spatial void distribution and void morphology in a disk-
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shaped, E-glass/epoxy composite fabricated by resin transfer molding.  A radial sample 

from this disk is analyzed through-the-thickness by an optical microscope.  In addition, 

since void size and shape are critical both in failure mechanisms [3] and in void mobility 

during injection [17], their variations in the thickness direction are investigated. 

4.3 Experimental Studies 

4.3.1 Procedure for Composite Manufacturing 
 

An epoxy resin, EPON 815C (Shell Chemicals) is chosen as the molding material.  

Attractive characteristics of this resin include low toxicity and low viscosity, suitable for 

effective preform impregnation and lower injection pressures.  The gel time of about 20 

minutes is obtained by choosing the curing agent EPICURE 3282 (Shell Chemicals).  As 

depicted in Fig. 4.1, the apparatus used to fabricate resin transfer molded disks comprises 

a molding press and a disk-shaped mold cavity.  The molding press contains a 40-ton 

hydraulic press (ARCAN, Model CP402), and two hollow cylinders, designed for resin 

and curing agent, respectively.  The internal diameters of the two stainless steel cylinders 

are machined to 55.47 and 25.53 mm in order to realize the exact mix ratio of 4.7 to 1 by 

volume of resin to curing agent. 

 

When the hydraulic press is activated, the attached plungers progress at a constant linear 

velocity of 2 x 10-3 m/s.  The flows from the two cylinders coalesce through a T-

connector.  Subsequently, the resin and curing agent mixture pass through a Statomix® 

static inline mixer (ConProTec, Inc., 32 segments. L=155 mm, ID= 5 mm, OD= 8mm).  

The mixture is afterwards injected through the center of the disk-shaped cavity at a 

constant injection rate of 5.32 cm3/s. 
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Figure 4.1:  Experimental molding apparatus used to fabricate RTM composite disks. 
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The mold cavity, as shown in Fig. 4.1, is built by placing a 3.18 mm-thick aluminum 

spacer plate between two 12.6 mm-thick aluminum mold walls.  A 152.4 mm diameter 

circle is cut from the center of the spacer plate to form the disk-shaped cavity.  A 

centered inlet gate and four symmetrically positioned vents are placed on the top mold 

wall.  Leakage is prevented by placing 4-mm O-rings into machined grooves in each 

mold wall.  The filling pressure steadily increases as the flow front advances radially 

outward towards the exit vents by impregnating random-fiber preform.  The exit vents 

are intentionally placed at a diameter of 177.8 mm to force the resin into the narrow 

opening between mold walls and spacer plate.  Hence, after the mold cavity is full, the 

pressure increases at a very steep rate as the resin creeps inside this tight space.  The 

pressure reaches a maximum inside the mold, as higher pressure is expected to ensure the 

full impregnation of the dry preform, help reduce voidage [11-12], and facilitate void 

mobility [17]. 

 

Once the pressure reaches a high-enough value, resin starts to come out of the exit vents.  

Resin injection is then immediately stopped, and exit vents are left unclamped to allow 

continued discharge of the resin until the driving pressure gradient becomes zero. The 

reinforcement used in this study is a chopped-strand, randomly-oriented E-glass fiber 

mat, having a planar density of 0.459 kg/m2 (Fiberglast, part #250).  Four layers of 

preform are cut into 152.4 mm diameter circles and placed into the mold cavity preceding 

filling, yielding a fiber volume fraction of 18.1%.  This moderately low fiber content is 

chosen to lower the pressure levels experienced during resin injection.  However, the 

capillary analysis and the obtained results are believed to be applicable to higher fiber 
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contents and even to other liquid molding processes for composite materials where 

similar flow kinematics exists during mold filling.  After resin comes out of all four exit 

vents, the part is left to cure in the mold for 48 hours before demolding.  The part is then 

post cured at room temperature for two extra weeks to achieve total cross-linking.  The 

resulting product is a 3.88 mm-thick resin transfer molded composite disk having 152.4 

mm diameter, with an 18.1% fiber volume fraction.  Because of the planar randomness of 

the preform and the disk axisymmetry, the void morphology within the sample is 

expected to be independent of the angular position. Therefore, spatial void distribution is 

investigated only through-the-thickness, across the radius of a radial specimen from the 

molded disk. 

4.3.2 Capillary Number Determination 
 

As discussed in the introduction, void content is known to correlate well with the 

capillary number [5-8].  In addition, the modified capillary number is helpful in 

understanding the effect of micro-scale flow during fluid front progression.  Determining 

the modified capillary numbers involved in mold filling is needed to identify void 

formation mechanisms, and consequently spatial void distribution within the molded 

disk. 

 

Determining the modified capillary number requires, as described in Eq. (4.2), 

quantifying the resin viscosity, µ, the macroscopic fluid front velocity, Vave , the resin 

surface tension, γ, and the advancing contact angle, θ.  Both the surface tension and the 

advancing contact angle are measured in an earlier study for the same system of resin, 

curing agent, and E-glass-fibers [21].  The respective measured values of the surface 
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tension and advancing contact angle are 36.3 x 10-3 N/m, and 34°.  The viscosity of the 

resin-curing agent mixture is measured using a Brookfield viscometer (Model DV-II +).  

Even though the mixture’s viscosity changes a great deal towards the end of the 20 

minute gel time, its value remains reasonably stable around 0.96 N·s/m2 during the first 

few minutes of mixing.  The macroscopic fluid front velocity can be determined from the 

injection flow rate and the mold geometry as: 

 

)1(2 f
ave VrH

Q
A
QV

−
==

π
,    (4.3) 

 
where Q is the resin flow rate, H is the thickness of the mold, r is the radius at which the 

capillary number is calculated, A is the cross-sectional area of the resin flow at r, and V f  

is the fiber volume fraction.  Substituting Eq. (4.3) in Eq. (4.2), the modified capillary 

number becomes a function of the radial distance from the injection gate: 

 

rVH
QCa

f

1
cos)1(2
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−

=
θπγ

µ .   (4.4) 

 

4.3.3 Void Characterization 
 

Microscopic image analysis is utilized to investigate average void content and spatial 

void distribution through-the-thickness of the composite disk.  Microscopic image 

analysis is chosen since it is believed to be among the most accurate methods for 

measuring the true void content [22].  Moreover, image analysis offers the advantage of 

providing detailed information of other important parameters such as void location and 

void shape and size distribution that cannot be assessed by any other method.  However, 
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voidage measurement by optical imaging is generally performed on limited sample 

surface area.  Statistical averaging is also commonly used from random acquisition of 

pictures over the larger area of interest.  Image analysis in the current work, on the other 

hand, is performed over the entire cross-sections studied, and hence all identifiable voids 

at the working magnification are included in the void analysis. 

 

In order to investigate the void distribution through-the-thickness, a radial specimen is 

cut from the cured composite disk.  The length and thickness of the specimen are 75 and 

3.88 mm, respectively.  Once embedded into a quick cure acrylic resin (Allied High 

Tech. Products, part # 170-10000), the sample is polished in six successive steps with a 

series of polishing pastes (Clover Compound) with grits sizes ranging from 180 (e.g. 80 

µm average particle diameter) to 1200 (15 µm).  After each step, the sample is sonicated 

for 40 minutes in an ultrasonic cleaner (50 kHz) to remove all residues of the polishing 

compound. 

 

The optical image analysis starts by dividing the 3.88 mm-thick specimen into eight 

layers through-the-thickness (seven 0.5 mm-thick layers and one 0.38 mm-thick bottom 

layer).  Frames captured from different 0.5 mm-layers are used to assess the voidage 

distribution through the specimen thickness.  Each layer is then entirely scanned at 200x 

magnification using a MEIJI optical microscope.  At this particular magnification, every 

frame displayed about 0.71 x 0.53 mm2 area.  Hence, scanning across the sample 

thickness at a particular radial location needs the capture of eight frames.  Images of each 

layer containing an identified void are captured using a PC-based CCD camera.  A total 

of approximately 460 frames containing voids are captured during this analysis.  Each 
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picture is processed using the image analysis software UTHSCSA Image Tool®, which 

allows the measurement, for each void, of the area, A, and the maximum length, Lmax.  

Void contents of different layers are then calculated. 

4.4 Results and Discussion 

4.4.1 Location of Voids and Average Void Content 
 

The voids observed in the molded part are located in three different void zones.  First 

zone is defined as those areas that are rich in matrix and not comprising any fiber 

preform.  Voids located in this zone are completely surrounded by the epoxy matrix and 

referred to as matrix voids.  Second zone is defined as fiber rich-region where the area is 

dominantly composed of reinforcing preform.  Voids in this region are situated within 

fiber bundles and are referred to as preform voids.  Finally, transition zone is defined as 

the zone between the two other zones herein defined.  Voids located in this zone are 

referred to as transition voids and are always positioned adjacent to fiber bundles but not 

inside the preform. 

 

Figure 4.2 depicts sample images containing voids obtained from the three defined zones 

at 200x magnification.  In Fig. 4.2a, the continuous polymeric matrix appears as a gray 

background, the white circular and elliptical objects correspond to glass fibers oriented 

perpendicularly and in an angle, respectively, to the cross-section.  The white parallel 

stripes represent glass fibers parallel to the studied cross-section.  Based on the void 

locations defined earlier, the two voids present in Fig. 4.2b are matrix voids.  The five 

voids appearing in Fig. 4.2c, on the other hand, fall into the category of preform voids.  

Finally, the adjacent void to fibers seen in Fig. 4.2d is considered a transition void.
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Figure 4.2:  Representative microscopic images obtained at 200 x magnifications from the 

RTM composite molded without post-fill pressure at 17.5% fiber content depicting 
examples of voids from different zones: (a) typical composite cross-section with different 

fiber orientations; (b) two matrix voids; (c) five preform voids; (d) one transition void. 
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Voids from these three different zones are identified and their respective contributions to 

the overall void content determined in order to investigate likelihood for void mobility.  

In addition, classifying voids based on their proximity to fibers can help estimate their 

primary effect on mechanical properties.  It is known that matrix voids only reduce the 

load-bearing composite cross-section, while preform and transition voids also weaken 

local fiber-matrix adhesion. 

 

Combining all through-the-thickness layers, an average void content of 2.15% is 

calculated.  As depicted in Fig. 4.3, matrix voids make up only 0.15%, thus form only 

6.98% of the total voidage of 2.15%.  On the other hand, most voids formed in the 

composite disk are encountered in the transition and preform locations, contributing with 

1.31 and 0.72%, respectively to the overall void content.  The modified capillary number, 

as discussed in the introduction, can be used to help understand the void formation 

mechanisms involved in the micro-scale flow during fluid front progression leading to 

this specific zone distribution.  Substituting the previously measured values of 36.3 x 10-3 

N/m for surface tension, and 34° for advancing contact angle in Eq. (3.4), the modified 

capillary number is found to vary between 0.13 and 1.15 along the radial distance from 

the injection gate.  Those values suggest that the formed voids should be mostly intra-tow 

micro-voids [7], which is consistent with the results seen on Fig. 4.3.  As Fig. 4.3 

illustrates, preform and transition voids combined represent 93.02% of the total voidage 

formed within the composite part. 
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Figure 4.3:  Void content contributions of different locations (void zones) within the 

composite disk molded without post-fill pressure at 17.5% fiber content. 
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4.4.2 Variation of Void Content Through-The-Thickness 
 

Non-uniformity in voidage through-the-thickness of the composite disk can arise from 

uneven spaces between the preform layers, or between the preform and the mold walls.  It 

can also originate from the possible change in the velocity of fluid front between mid-

plane and other planes.  Another plausible cause can be the poor wettability of the 

aluminum mold walls pretreated with Teflon mold releasing agent.  To quantify the void 

content change through the specimen’s thickness, eight layers are defined as described 

earlier, with the first layer defined as the very top 0.5 mm-thick layer.  Note that the 

eighth layer is only 0.38 mm-thick.  Void contents obtained for these eight different 

layers are shown in Fig. 4.4. 

 

Void contents are found to vary significantly from one layer to another, between a 

maximum of 2.62% in layer 4 and a minimum of 1.25% in the eighth layer.  A standard 

deviation of 0.53% was calculated yielding a 95% confidence interval of 0.37%, which 

represents 17.21% of the average void content.  Consequently, the commonly used 

statistical averaging of void contents calculated from randomly acquired pictures may 

introduce 17% error in the overall void content.  Thus, scanning the whole cross-section 

may be needed in order to obtain an accurate overall void content. 
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Figure 4.4:  Variation in void content through-the-thickness of the composite disk molded 
without post-fill pressure at 17.5% fiber content. 
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For the remaining part of the study, the eight layers are combined into two major layers 

to summarize the results as we focus on other voidage aspects.  The first layer is 

combined with the seventh and eighth layers to define a surface layer, which represents 

the composite regions right next to the mold walls surface.  Voids found within these 

layers are referred to as surface voids.  The second, third, fourth, fifth, and sixth layers 

are combined into an inner layer representing the layers within the composite’s core, 

away from mold walls effects.  Voids encountered within these layers are called inner 

voids. 

4.4.3 Variation of Void Size 
 

Classifying void sizes is essential in the choice of void removal method as size is 

reported to affect void mobility [17].  Larger voids have longer perimeters and thus have 

higher adhesion force; small voids, on the other hand, have lower adhesion force and 

therefore become more mobile.  Captured void surface area data, measured earlier, are 

utilized in order to quantify void sizes.  An equivalent diameter, Deq, is defined to classify 

the void size for each void as: 

 

π
ADeq

4
= ,        (4.5) 

 

where A is the measured area of the void.  Size distributions of inner and surface voids 

based on Deq are shown in Fig. 4.5.  Both distributions are one-tailed distributions, 

contrasting with typical bimodal void distributions observed in fiber reinforced molded 

composites [14], where the first peak represents intra-tow micro-voids and the second 
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inter-tow macro-voids.  As mentioned earlier, the range of modified capillary numbers 

that are calculated as 0.13 to 1.15 implies that the formed voids are primarily intra-tow 

micro-voids [8], which explains the presence of fewer large macro-voids.  However, size 

distributions of inner and surface voids are considerably different.  The size distribution 

of inner voids presents a larger peak, with a higher maximum frequency of 21.96% for 

voids with equivalent diameter between 30 and 40 µm, and a narrower tail, with no voids 

having an equivalent diameter larger than 140 µm.  The size distribution of surface voids 

depicts a maximum frequency of 18.56% for voids with equivalent diameter between 50 

and 60 µm, and existence of voids even larger than 200 µm.  These size distributions 

show clearly that surface layer voids are generally larger than inner voids.  Surface layer 

also contains some very large voids (over 200 µm) in contrast with inner layer that does 

not contain any void with an equivalent diameter larger than 138 µm. 

 

This difference in size distribution of the two layers is compensated by an opposite 

difference in void density.  Inner voids shows a void density of 10.75 voids per mm2, 

while surface voids shows a void density of 9.76 voids per mm2, thus yielding 

comparable average void contents of 2.28 and 2.05% for inner and surface layers, 

respectively.  These results are expected as uneven spaces between the preform and the 

mold walls, and the variation of fluid front velocity between mid-plane and other planes, 

coupled with poor wettability of the aluminum mold wall pretreated with Teflon mold 

releasing agent lead to variation in voidage through-the-thickness of the composite disk. 
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Figure 4.5:  Void size distributions based on equivalent diameter at the surface (next to 
mold walls) and inner layers of the RTM composite molded without post-fill pressure at 

17.5% fiber content. 
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In order to categorize the observed differences in void sizes, three different sizes are 

defined.  Large voids are defined as those voids with an equivalent diameter greater 

than100 µm, i.e. Deq > 100 µm; while voids with an equivalent diameter lower than 50 

µm are regarded as small voids.  Intermediate equivalent diameter values, i.e. 50 µm < 

Deq ≤ 100 µm, correspond to medium size voids.  Figure 4.6 depicts representative small, 

medium, and large voids as defined above. 

 

Figure 4.6a shows an example of a large void with an equivalent diameter of 142 µm.  In 

contrast, Fig. 4.6b depicts two small voids and one barely medium void.  The equivalent 

diameter of the void at the bottom half of Fig. 4.6b is measured as 57 µm, while the other 

two voids are measured as 41 and 35 µm, respectively.  Fig. 4.6c depicts a medium and a 

small void.  The medium void, Deq = 81 µm, is caught between two fiber tows.  It should 

be noted that the void in Fig. 4.6c is also considered a transition void since it is only 

adjacent to fiber bundles.  With an equivalent diameter of only Deq = 23 µm, The small 

void trapped inside the fiber tow located in the bottom of Fig. 4.6c is considered a 

preform void.  The image shown in Fig. 4.6d comprises voids with different sizes 

(equivalent diameters of 31, 123, 123, 69, and 38 µm –from top to bottom). 
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        6(a)       6(b) 

     
        6(c)       6(d) 

     
 
Figure 4.6:  Representative microscopic images obtained at 200 x magnifications from the 
RTM composite molded without post-fill pressure at 17.5% fiber content depicting voids 
with different sizes: (a) example of a large void adjacent to a fiber bundle; (b) two small 

and a barely medium void (from top to bottom); (c) a medium void; (d) voids from different 
size categories. 

100 µm 
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Furthermore, using these three different void sizes, voids from different zones within the 

composite show a substantial difference in size distribution.  This variation in size 

distribution is shown in Fig. 4.7.  The relative percentage of large voids is almost the 

same for all the composite zones.  However, the presence of medium voids in the preform 

zone shows a substantial difference compared to the matrix and transition zones.  

Medium voids form only 28.65% of all voids in preform zone, while they form 61.29 and 

67.13% of all voids in matrix and transition zones, respectively.  At the same time, an 

opposite difference in relative percentage of small voids is registered.  Small voids make 

up 65.99% of all voids observed in the preform, while they form only 33.33 and 24.30% 

of all voids in matrix and transition zones, respectively.  This finding concurs with 

previous studies showing that inter-tow voids are usually larger than the intra-tow voids 

[6,13,14].  However, due to the higher range of modified capillary number in the present 

study, the sizes of observed inter-voids are closer to those observed for intra-tow voids. 

4.4.4 Variation of Void Shape 
 
Since voids with different shapes are known to induce different failure mechanisms [3], 

shape distribution within a load-bearing composite becomes important in predicting a 

part’s performance.  As Figs. 4.2 and 4.6 depict, different void shapes are encountered in 

the composite sample.  Voids shown in Figs. 4.2b, 4.2d, 4.6a, and 4.6b are mostly 

circular. In contrast, the void captured in Fig. 4.6c, and the void caught between fiber 

bundles in Fig. 4.6d are more elliptical.  The small void entrapped within the preform in 

the latter figure and those depicted in Fig. 4.2c present a different asymmetrical 

geometry. 
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Figure 4.7:  Size distributions of voids from different locations (void zones) within the 
composite disk molded without post-fill pressure at 17.5% fiber content. 
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In order to quantify these differences and categorize void shapes, both geometrical and 

quantitative void characteristics are combined.  First, based on the observed shape, voids 

are divided into two groups:  irregular and regular shapes.  Irregular void shapes are 

defined as those presenting a non-convex planar surface area, that is, one can find two 

different points within the void that can be connected in a straight line that goes outside 

the void.  The remaining voids are defined as regular. 

 

A quantitative measure of geometrical circularity of regular voids is introduced to 

distinguish between circular and elliptical voids.  The data obtained from captured voids 

is further processed by introducing the shape ratio, Rs, defined for each void as the 

equivalent diameter obtained from Eq. (5) divided by the maximum measured length 

Lmax, within a void: 

 

maxL
D

R eq
s = .     (4.6) 

 
Since an ideal circle is represented by Rs = 1, only voids with shape ratios above 0.95 

(0.95 < Rs ≤ 1) are considered as circular voids (the void shown in Fig. 4.6a for instance).  

Voids with shape ratios lower than 0.95 comprise a minor axis smaller than the maximum 

length.  The circular symmetry is lost, and they are better classified as elliptical voids.  

For example, the void caught between preform bundles in Fig. 4.6d has a shape ratio of 

0.78.  Relative percentages of voids with different shapes are depicted in Fig. 4.8. 
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Figure 4.8:  Void content contributions of voids with different shapes encountered in the 

RTM composite molded without post-fill pressure at 17.5% fiber content. 
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Considering the overall composite disk, circular and irregular voids have relative 

percentages of 37.65 and 34.75%, respectively.  Elliptical voids, on the other hand, have 

the lowest relative occurrence at 27.60%.  The inner and surface shape distributions are 

also investigated in order to determine any potential difference in shape distribution 

caused by the surface non-uniformity.  Figure 4.8 includes shape distributions of voids 

encountered within the inner and surface layers.  Both layers show a very similar shape 

distribution of voids.  Relative percentages of elliptical voids in inner and surface layers 

are 26.61 and 28.54%, whereas frequency of circular voids in inner and surface layers is 

38.44 and 36.50%, respectively.  These results suggest that proximity to the mold surface 

seem to have no effect on void shape distribution. 

 

Finally, using the shape criteria for voids presented earlier, relative contributions of voids 

with different sizes to circular, elliptical, and irregular shaped voids are calculated.  The 

resulting relative percentage of voids having different sizes based on shape is presented 

in Fig. 4.9.  A distinct difference in size distribution between the three defined void 

geometries is observed.  As the occurrence of large voids is more or less the same for all 

the shapes (around 7%), relative percentage of small void jumps from a low 25.31% for 

circular voids to a high 57.47 % for irregular voids.  Medium voids see an opposite trend 

as their relative percentage goes from a high 67.78% for circular voids to 50.38% for 

elliptical voids, and to even a low 36.00% for irregular voids.  Size distribution of 

elliptical voids is found similar to the overall size distribution shown in Fig. 4.7.  Circular 

and irregular voids, on the other hand, display different size distributions as they are in 

average larger and smaller, respectively, than the overall void size average. 
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Figure 4.9:  Size distribution of voids with different shapes encountered in the RTM 
composite molded without post-fill pressure at 17.5% fiber content. 
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Figure 4.9 also reveals that irregular voids are mostly small, while circular voids are 

mostly medium voids.  These results can be better understood if zone locations of voids 

with different shapes are considered.  Irregular voids are mostly encountered in the 

preform zone.  Therefore, they are expected to be smaller than the circular voids, which 

occur mostly in matrix or preform zones. 
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4.5 Concluding Remarks 
 
Voidage distribution is important for resin transfer molded composites since it dictates 

overall performance of the product.  Microscopic image analysis is utilized to investigate 

through-the-thickness void distribution for a resin transfer molded, disk-shaped, E-

glass/epoxy composite.  The results indicate significant void variation through the 

composite’s thickness.  Void content, for instance, was found to fluctuate through-the-

thickness of the part with a variation as much as 17% of the overall 2.15% void content.  

Primarily, micro-scale voids are encountered since the mold filling is conducted at 

relatively high modified capillary numbers.  Furthermore, voids are found to be mostly 

concentrated within or right next to the preform with more than 93% of voids occurring 

in preform and transition zones.  Voids occurring next to the mold surface are found to be 

larger in average than inner voids, whereas voids within the preform are observed to be 

smaller in average than voids from other composite zones.  Finally, mold walls are found 

to have no apparent effect on shape distribution of voids through-the-thickness of the 

composite. 
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5 Three-Dimensional Features of Void Morphology in 
Resin Transfer Molded Composites* 

 

5.1 Abstract 
 

Detailed analyses of shape, size, and spatial variations of void morphology are presented 

for a disk-shaped, resin transfer molded (RTM), E-glass/epoxy composite.  The disk is 

molded at constant injection rate and contains 17.5% E-glass random fiber mats.  Voids 

throughout the composite are evaluated by microscopic image analysis of through-the-

thickness and planar surfaces obtained from adjacent radial samples of the molded disk.  

The void content of 2.15% is obtained from the analysis of through-the-thickness images 

and believed to be representative of the actual void content in the studied part.  Relatively 

large cylindrical voids are observed in cigar shapes in the planar surfaces, whereas these 

voids only appear as small irregular or elliptical voids on through-the-thickness surfaces.  

Along the radial direction, combined effects of void formation by mechanical entrapment 

and void mobility are shown to yield a complex radial void distribution.  It is shown that 

fewer voids are trapped mechanically with increasing distance from the inlet and most of 

the medium and small voids that are mobile migrate towards the exit during resin 

injection.  These findings are believed to be applicable not only to RTM, but generally to 

liquid composite molding processes with varying fluid front velocities. 

 

 

                                                           
*Material in this chapter was submitted to Composites Science and Technology, 2004. 
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5.2 Introduction 
 

Resin transfer molding (RTM) and structural reaction injection molding (SRIM), among 

other liquid composite molding (LCM) processes, are being used in manufacturing near-

net-shape, geometrically complex composite parts.  These liquid molding processes have 

been regarded in the last decade as successful alternatives to the traditional autoclave-

based composite manufacturing.  In addition to the process versatility and wide range of 

possible molding materials, attractive features of these liquid molding processes are 

lower operational costs, and higher production rates compared to autoclave process [1].  

Resin transfer molding consists of placing a dry fibrous preform composed of multiple 

layers into a mold cavity.  Subsequently, a thermosetting resin mixed with a curing agent 

is injected into that mold cavity.  During injection, the resin displaces air out of the mold 

cavity and impregnates the preform before the curing reaction begins.  One of the current 

obstacles to a larger scale application of this process is the formation of defects such as 

dry spots and voids during resin injection. 

 

Despite several advancements in voidage predictions via modeling and simulations, void 

formation mechanisms in RTM and similar processes are still not fully understood [2].  

This is primarily due to the complexity of the advancing fluid front through intricate 

preform architectures.  Void presence in composites, even in small amounts, is 

detrimental to their mechanical performance.  In an earlier article, Judd and Wright [3] 

summarized adverse effects of voidage on mechanical properties of composites for a 

variety of resins, fibers, and fiber surface treatments.  The authors reported that 

regardless of the utilized materials, void presence induces reduction in mechanical 
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properties of a composite part.  The properties affected include interlaminar shear 

strength, tensile and flexural strength and modulus, torsional shear, fatigue resistance, 

and impact.  Ghiorse [4] indicated, for carbon/epoxy composites, that each 1% increase 

in void content induced a 10% reduction in flexural and interlaminar shear strength, and a 

5% reduction in flexural modulus. 

 

In more recent studies, voidage effects on mechanical properties of resin transfer molded 

composites were investigated.  Olivero et al. [5] reported that doubling the void content 

from 0.35 to 0.72% by volume resulted in a 15% decrease in ultimate tensile strength and 

14% decrease in stiffness for resin transfer molded composites reinforced with randomly-

oriented preforms at 21% fiber volume fraction.  Goodwin et al. [6] reported a 7% 

reduction in interlaminar shear strength per 1% increase in voidage up to 10% for a RTM 

composite containing 57% 5-harness satin preform.  In addition, the authors observed 

that failure cracks initiated from medium to large sized voids with sharp corners, but not 

from small spherical voids.  Voidage is also known to affect both the rate and equilibrium 

level of moisture absorption in composites [7,8].  Harper et al. [7] reported that an 

increase from 1 to 5% in void volume fraction induces an increase of around 280% in the 

initial absorption rate, and 50% in the equilibrium mass gain for an AS4/3502 

graphite/epoxy composite.  Hoppel et al. [8] also reported that minor variations in void 

volume fraction can increase the moisture diffusion rate by a factor of 6.  Consequently, 

controlling void presence in molded parts is very critical to achieve acceptable 

performance. 
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Controlling void presence in resin transfer molded composites involves two different 

steps:  Understanding void formation mechanisms during injection, and developing 

effective methods for void removal.  Possible void formation sources in RTM parts are:  

(a) mechanical entrapment; (b) volatilization of dissolved gas in the resin during mold 

filling or curing; (c) partial evaporation of mold releasing agent into the preform; and (d) 

initial air bubble content in the resin mixture [9].  Most of these void sources can be 

eliminated by choosing adequate resin systems (i.e., involving fewer volatiles during 

molding) and degassing prior to injection, thus leaving mechanical air entrapment as the 

primary cause of void formation in RTM composites [10-12].  On a macro-scale, the 

preform is often treated as a porous medium, and the flow is presumed to follow Darcy’s 

law.  However, on the micro-scale, i.e. fiber scale, the preform is far from regular and 

fingering may occur.  At the fiber tow level (i.e., scale of the spacing between tows), the 

flow is driven by viscous forces.  In contrast, flow impregnating fiber tows is driven by 

capillary forces, which at a single fiber scale, becomes dominant over viscous forces.  

Depending on injection pressure, resin viscosity, fluid front velocity, and other molding 

parameters, either viscous or capillary flow is likely to lead the other, causing mechanical 

entrapment of air bubbles.  A more detailed analysis of this phenomenon (i.e., fingering) 

has often been achieved using the capillary number, Ca, defined as the non-dimensional 

ratio of viscous forces to capillary forces [10-13]: 

 

γ
µVCa = ,     (5.1) 

 
where µ, V, and γ are the impregnating resin viscosity, the macroscopic fluid front 

velocity, and the resin surface tension, respectively.  At lower Ca, capillary flow leads, 



 

 131

thus promoting inter-tow void entrapment in the macro-space between fiber tows.  At 

higher Ca, on the other hand, viscous flow leads, thus promoting intra-tow void 

entrapment within fiber tows [10-13]. 

 

Mahale et al. [11] studied void entrapment during planar radial flow into non-woven 

multifilament glass fiber networks, and reported the existence of a critical capillary 

number value of 2.5 x 10-3, below which void content increases exponentially with 

decreasing capillary number.  Above this critical value, much less void entrapment was 

observed.  However, these critical capillary number values remain specific to the set of 

material used in their experiment.  To avoid such dependence on material, a modified 

capillary number, Ca*, has been defined by introducing liquid-fiber contact angle (a 

measure of the wetting between resin and fibers), θ, into the non-dimensional number as 

[12,13]: 

θγ
µ
cos

* VCa = .    (5.2) 

 
The authors argued that the incorporation of the contact angle allowed the generalization 

of the capillary number definition for any type of liquid-fiber system.  They based their 

argument on experimental observations of measured void contents for various model 

fluids injected at different velocities.  When plotted as a function of modified capillary 

number, all the experimental voidage data followed a single master curve.  This master 

curve also indicated the existence of a preferential range of modified capillary number 

between 2.5 x 10-3 and 2.5 x 10-2, within which the void content is minimal (suggesting a 

micro-equilibrium between viscous and capillary flows).  In addition, the authors 
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reported the coexistence of both inter-tow macro-voids and intra-tow micro-voids in this 

preferential range.  For molding processes with Ca* < 2.5 x 10-3, void content increases 

exponentially with decreasing Ca*.  Moreover, voids encountered within this range are 

primarily macro-voids.  And for Ca* > 2.5 x 10-2, void content increases at a slower rate 

with increasing Ca*.  Voids observed at this range, on the other hand, are dominantly 

micro-voids. 

 

The definite correlation between modified capillary number and void content confirms 

that voids originate principally from mechanical entrapment during filling.  Based on this 

finding, a number of authors [14-20] developed theoretical and numerical models, often 

for simplified architectures, to predict void formation during injection, and consequently 

propose techniques for void removal.  Chan and Morgan [14] developed a one-

dimensional model for the impregnation of unidirectional preforms with parallel flow 

based on Darcy’s law.  This model predicts a localized void formation at the resin front 

region but is weakened by the assumption of a simplified fiber arrangement pattern.  Chui 

et al. [15] proposed a theoretical model based on a simple unsaturated flow in porous 

media, predicting a voidage-pressure dependence in RTM processes.  Chui’s model thus 

suggests that increases in local pressure would reduce porosity.  This voidage-pressure 

dependence was confirmed experimentally by Lundström [16], who reported that high 

pressure, high local flow rate, and low initial gas concentration in resin are favorable 

parameters for void dissolution in RTM process.  Patel and Lee [17,18] also developed a 

model for void formation in LCM processes based on the multi-phase Darcy’s law.  In 

addition, they offered a criterion based on the local pressure, void size, and contact angle 

for the movement of trapped voids.  Binetruy et al. [19], on the other hand, developed a 
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simple analytical model for tow impregnation when the macroscopic flow is parallel to 

the fiber axis.  More recently, Kang et al. [20] formulated a mathematical model to 

describe microscopic perturbations in the resin flow front that induce void formation 

during injection. 

 

Once voids are formed, they will be subjected to transport phenomena during filling that 

alter their spatial distribution and geometrical morphology.  To understand void transport 

mechanics through fiber reinforcement, bubble motion through constricted micro-

channels has been investigated by several researchers [17-18,21-22].  Based on his 

theoretical results, Lundström [21] argued that voids are more likely to be trapped within 

fiber bundles than between bundles.  Furthermore, both bubble size and the resin-fiber 

contact angle are reported to affect their mobility [22,23].  Adhesion force between 

bubbles and fibers originates from the surface tension and the difference between 

advancing and receding contact angles [22].  In addition, larger voids exhibit larger 

perimeters and thus have larger adhesion force [22,23]. 

 

Several investigations that suggest ways to reduce void occurrence in RTM composites 

have been presented [10,24-29].  Vacuum assistance has been shown to reduce voidage 

by eventual collapse of formed voids as they have no internal pressure [24].  Resin 

bleeding is also performed at the end of mold filling in order to purge the voids inside the 

composite [10,25].  Another method used to reduce void occurrence is filling the edge 

gap between preform and mold cavity prior to injection, a.k.a. gating [26].  Articulated 

tooling consists of successively compressing parts of mold walls during injection and is 

utilized to minimize voids in RTM composites [27,28].  A different method is packing, 
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which consists on applying a permanent post-fill pressure after injection [5,29].  

However, determining the best method to reduce voidage involves an in-depth 

understanding of spatial distribution and detailed morphological characterization of voids 

throughout the composite.  Very few studies explored such detailed void characterization 

in RTM.  In earlier studies, we investigated different aspects of void occurrence and 

reduction for RTM composites manufactured by procedures similar to the one used in the 

current study [5,29-31].  Spatial void morphology distribution within such composites 

was first investigated by Hamidi et al. [30], and significant spatial variations were 

observed in void content and morphology, correlating well with the local fluid front 

velocity during filling.  Through-the-thickness void distribution for the disk-shaped, E-

glass/epoxy RTM composite used in the current study was also investigated [31].  

Microscopic analysis revealed that average size of voids near the mold surfaces is slightly 

larger than those located at the interior of the composite and that void content fluctuates 

considerably through-the-thickness of the composite.  Note that for Ref. [31], only the 

distribution of void content through the composite thickness was investigated, and no 

assessment of voidage was obtained from the planar view, nor was any information 

obtained on radial distribution of void content and morphology. 

 

Microscopic image analysis was chosen not only because it allows the assessment of void 

location, shape, and size, but also since it has been demonstrated to be among the most 

accurate methods for measuring void contents [32-35].  However, three-dimensionality of 

the voids is an important aspect of void morphology that is often overlooked in the 

literature.  With all the advantages of microscopic image analysis, one can only assess 

void morphology two-dimensionally, which does not fully reveal the actual three-
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dimensional void shapes and sizes.  In the current work, we further investigate the 

morphology and spatial distribution of voids in a disk-shaped, RTM composite based on 

both planar and through-the-thickness cross-sections.  The investigation is performed on 

two adjacent samples cut along a radial line of the composite.  The first sample is 

analyzed through-the-thickness, while the second is utilized to examine the planar 

voidage distribution, thus assessing the three-dimensional features of the void 

morphology.  In addition to contrasting the results obtained from both views, more 

interest is drawn upon radial variation of void content and morphological features of 

voids to help identify dominant void formation mechanisms. 

5.3 Experimental Setup 

5.3.1 Molding Procedure 
 

The experimental molding setup utilized to manufacture resin transfer molded disks is 

depicted in Fig. 5.1.  The apparatus consists of a molding press assembly that injects a 

two-part thermosetting resin at a constant flow rate, and a disk-shaped mold cavity.  The 

entire setup is mounted on a hydraulic press (ARCAN, Model CP402, 80,000 lb), that 

contains two hollow cylinders, designed as reservoirs for resin and curing agent, 

respectively.  Due to its low toxicity and low viscosity, an epoxy resin, EPON 815C 

(Shell Chemicals), is selected as the molding resin.  The low viscosity of 0.96 N·s/m2 

(960 cP) facilitates high injection speeds at moderate pressures.  The adequate gel time of 

about 20 minutes is achieved by selecting EPICURE 3282 (Shell Chemicals) as the 

curing agent.  In order to achieve the appropriate mix ratio (4.7 to 1 by volume of resin to 

curing agent), the inner diameters of the two stainless steel cylinders are machined to 

55.47 and 25.53 mm.  Operating the press moves the attached plungers equal amounts, 
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thus injecting the resin and curing agent out of the cylinders.  The flow coming out of the 

two cylinders merges through a T-connector, and then passes through a Statomix® 

motionless inline mixer (ConProTec, Inc. part # MC-05 32).  Thorough mixing of the two 

fluids is ensured by 32 alternating helical segments inside the 155 mm-long 

polypropylene Statomix® mixer (ID= 5 mm, OD= 8 mm).  The mixture then passes 

through a pressure transducer before being injected into the disk-shaped cavity through 

its center.  The press progresses at a constant linear velocity of 2 x 10-3 m/s, yielding a 

constant injection rate of approximately 5.32 x 10-6 m3 /s. 

 

The mold cavity, as shown in Fig. 5.1, is constructed by placing a 3.18 mm-thick 

aluminum spacer plate between two 12.6 mm-thick aluminum mold walls.  An inlet gate, 

is drilled and tapped for a polypropylene hose fitting (ID=6.2mm) at the center of the top 

mold wall.  Four vents are also drilled on the top mold wall and tapped for hose fittings 

(ID=1.6 mm).  Vents are positioned symmetrically around the cavity at a radius of 88.9 

mm.  A 152.4 mm-diameter circle is cut from the center of the spacer plate to form the 

disk-shaped cavity.  In order to prevent leakage after filling and to seal the mold, 4-mm 

O-rings are placed in previously machined 3 mm-deep grooves in each mold wall.  Note 

that the exit vents are located at R=88.9 mm, before the O-ring grooves (located at 

R=91.3 mm) but further out from the edge of the spacer plate at R=76.2 mm, as 

illustrated in Fig. 5.1. 
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Figure 5.1:  Experimental molding setup used to manufacture the RTM composite disk. 
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Four layers of chopped-strand, E-glass fiber mats having randomly-oriented, planar 

fibers, and a planar density of 0.4356 kg/m2 ± 0.0449 kg/m2 (Fiberglast part #250) are 

utilized in this study.  Preforms are cut into 152.4 mm diameter circles and placed in the 

mold cavity prior to filling.  In order to facilitate demolding, the mold walls are also 

sprayed with Teflon release agent (Miller-Stephenson MS-122DF) prior to filling.  After 

the mold is completely filled, the press is run for a few additional seconds until resin 

creeps inside the narrow gap between spacer plate and mold walls, and comes out of all 

four exit vents.  After injection is complete, the part is left to cure in the mold for 48 

hours before demolding.  The part is then post cured at room temperature for two 

additional weeks to ensure the completion of cross-linking.  The final product is a 3.88 

mm-thick resin transfer molded composite disk having 152.4 mm diameter, with a fiber 

volume fraction of 17.5%. 

5.3.2 Transient Filling Pressure Measurement 
 
During filling, transient inlet pressure is measured using a flush diaphragm, stainless steel 

pressure transducer (Sensotec BP357BR Model S, 100 psi max, 0.1% accuracy) mounted 

inline between the mixer and the mold inlet as shown in Fig. 5.1.  The pressure 

transducer is attached to a custom built signal amplification circuit based on an AD620 

in-amp, which conditions the signal for data acquisition system by amplifying the voltage 

and isolating the signal.  Pressure data is recorded at 10 Hz using an Omega Daqbook 

data acquisition system installed on a laptop computer.  Pressure monitoring is continued 

for a few minutes after the mold cavity is completely full, as the exit hoses are left 

unclamped to allow continued discharge of the resin. 
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5.3.3 Capillary Number Determination 
 

As discussed in the introduction, void content is shown to correlate with modified 

capillary number [10-13].  In addition, capillary number and modified capillary number 

are useful tools in understanding the micro-scale flow during fluid front progression, as 

well as void formation mechanisms.  If modified capillary number changes spatially, one 

might expect to see not only spatial variations in void content within a composite part, 

but also variations in void sizes and shapes.  Therefore, determining the range of 

capillary number involved during an RTM process can be vital to understanding void 

formation mechanisms, and consequently spatial void distribution and void morphology 

throughout the molded part. 

 

As defined in Eq. (5.2), modified capillary number calculation requires quantifying the 

impregnating resin viscosity, µ, the macroscopic fluid front velocity, Vave , the resin 

surface tension, γ, and the advancing contact angle, θ.  The viscosity of the resin-curing 

agent mixture is measured using a Brookfield viscometer (Model DV-II +).  Although the 

mixture’s viscosity increases rapidly at the end of the 20 minute gel time as the cross-

linking starts, its value remains mostly stable around 0.96 N·s/m2 several minutes after 

the mixing.  Both the surface tension and the advancing contact angle were measured in 

an earlier study for the same system of resin, curing agent, and random glass-fibers [29]; 

and their respective values were measured to be 36.3 x 10-3 N/m, and 34°.  These values 

compare well with measured values of similar systems published in the literature [32-34].  

Finally, the macroscopic fluid front velocity can be determined from the injection rate 

and the mold geometry as: 
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where Q is the volumetric resin flow rate, H the thickness of the mold cavity, r the radius 

at which the capillary number is calculated, A the cross-sectional area of the resin flow at 

r, and V f  the fiber volume fraction.  Substituting Equation (3) into Equation (2), the 

modified capillary number becomes a function of the radial distance from the injection 

gate: 
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5.3.4 Void Characterization 
 

Void content in composite materials is measured using a multitude of methods that can 

be classified into three major categories:  (i) density measurement methods such as 

relative density, burn-off, and acid digestion; (ii) non-destructive methods such as water 

absorption, ultrasonic, and radiography; and (iii) optical-microscopy based methods.  

Density measurement methods are simple, standardized, and provide overall void 

contents based on a small sample, but have a low accuracy and give no information on 

size, shape, location, or distribution of voids.  Non-destructive methods are particularly 

attractive since they present the advantage of inspecting the whole composite without 

inducing any adverse effects.  In the C-scan ultrasonic technique for instance, a sound 

wave is transmitted through the composite.  The void content is calculated by measuring 

the attenuation in the sound wave caused by passage through the material [25,33-34].  
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However, to obtain quantitative void content readings calibration is needed by using 

results from another method.  It is believed that the accuracy of ultrasonic void inspection 

methods is not better than ± 0.5% void content [25].  Moreover, attenuation levels are 

influenced by preform architecture, fiber volume fraction, resin degree of cure, and also 

by the fiber/matrix interface [25,33-34].  Thus, ultrasonic measurements are usually used 

for comparison purposes [34]. 

 

Optical image analysis provides detailed information on void size, shape, and location.  

In addition to these important parameters, void contents and areal densities are quantified 

from microscopic images usually conducted on highly localized areas that are assumed to 

be representative of the whole composite.  By assuming an unstructured void pattern 

perpendicular to the image plane, the statistical average of void percentages in the 

processed images is taken as equivalent to the void volume fraction.  The method is so far 

considered the most accurate for measuring the true void content [33-35]. 

 

However, voids can have spatial patterns and non-random distributions due to different 

molding parameters as was observed in our earlier studies [5,29-31].  These spatial 

patterns undermine the assumption of random void distribution throughout the composite, 

thus lowering the accuracy of obtained void contents.  In a study on void content 

measurement in commingled E-glass/polypropylene composites using optical image 

analysis, Santulli et al. [38] correlated the error originating from statistical averaging to 

the number of cross-sections used.  Although optical image analysis offers a compromise 

between adequate accuracy and sufficient resolution, error was observed to steadily 

decrease with increasing number of cross-sections reaching 0.05% only after examining 
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half of the composite.  However, the authors argued that for composites with higher void 

occurrence and due to possible void concentration in a localized part of the composite, 

the entire composite needs to be processed in order to obtain acceptable accuracies. 

 

In the current work, instead of statistically averaging randomly selected images, 

microscopic image analysis is performed over the entire cross-sectional area of the 

composite using a sufficiently high magnification (i.e., 200x), which enables the 

identification of voids as small as the radius of a single fiber.  Consequently, all 

identifiable voids at the working magnification throughout the investigated cross-sections 

are included in the analysis of void content, morphology, and spatial distribution. 

 

Due to the planar isotropy of the preform and axisymmetric shape of the mold, the flow is 

assumed to depend only on the radial location.  In order to fully characterize void 

distribution, two adjacent radial specimens are cut from the fully cured composite disk.  

Figure 5.2 depicts the spatial arrangement of the two investigated samples.  The first 

sample is selected to investigate the planar void distribution (i.e. the θ plane in the 

cylindrical coordinates shown in Fig. 5.2), while the second is used for a more traditional 

through-the-thickness void analysis in the r-z plane.  The two specimens present an 

average length and thickness of 75 and 3.88 mm, respectively, and were separately 

embedded into a quick cure acrylic resin (Allied High Tech. Products, part # 170-10000).  

Once embedded, the planar sample was further machined on a vertical mill to remove a 

thin composite surface layer and avoid surface irregularities.  Then, the two samples were 

polished with a series of polishing pastes (Clover Compound) with grit sizes ranging 

from 180 (e.g. 80 µm average particle diameter) to 1200 (15 µm) in six successive steps.  
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After each step, the samples were sonicated for 40 minutes in an ultrasonic cleaner (50 

kHz) to remove all residues of the polishing compound.  As a result of surface machining 

and subsequent polishing, a total of 0.67 mm-thick layer is removed from the top of the 

first composite sample reserved for planar void analysis. 

 

Microscopic optical image analysis is started by dividing the first 75 mm-long sample 

into five 15 mm-long regions along the radial direction as shown in Fig. 5.2b.  Given that 

the inlet has an outer diameter of 6.2 mm, only a 2 mm-wide strip is investigated.  The 

strip width of 2 mm, as shown in Fig. 5.2a, is chosen to remain within the axisymmetry 

of the disk.  Each 15 mm x 2 mm cross-section is then entirely scanned at 200x 

magnification using a MEIJI optical microscope.  At this particular magnification, every 

frame displays approximately 0.71 mm x 0.53 mm, which requires the capture of four 

image frames to scan across the sample width at a particular radial location.  Images of 

each radial region containing identified voids are captured using a PC-based CCD 

camera. 

 

In addition to planar image analysis, void distribution through-the-thickness of the 

second specimen is also recorded.  To accomplish that, five radial regions, with a surface 

area equivalent to those regions defined for the planar sample, are investigated.  As 

shown in Fig. 5.2c, only 8 mm x 3.88 mm cross-sections located at the center of 

corresponding radial regions are investigated (i.e., 7.5, 22.5, 37.5, 52.5, and 67.5 mm 

radial distance from the injection gate). 
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Figure 5.2:  Spatial arrangement of investigated samples of the RTM composite molded 

without post-fill pressure at 17.5% fiber content:  (a) location of samples within the 
composite disk, (b) First sample partitioned into five 15 mm-long radial regions for planar 

void analysis, (c) Second sample partitioned into five 8 mm-radial regions and eight 
through-the-thickness layers. 
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As described before, the images of voids entrapped at each spatial location are captured 

using a PC-based CCD camera attached to the optical microscope.  At each particular 

radial location, scanning across the full sample thickness requires the capture of eight 

frames.  In addition, voids located at different thickness locations of the sample are 

differentiated to permit void characterization through-the- thickness of the composite.  A 

total of 960 frames are scanned and 826 frames containing voids are stored from the two 

samples analyzed.  Each one of the 826 frames is processed using the image analysis 

software UTHSCSA Image Tool®, which allows the measurement of area, A, and 

maximum length, Lmax, of each void.  Void contents for different radial regions of the two 

samples are then calculated as the ratio of the total void area to the entire scanned area of 

that region.  Furthermore, in order to quantify the change in void content through the 

sample’s thickness, eight layers were defined as described in Fig. 5.2c, with the first layer 

defined as the very top 0.5mm-thick layer, then the second as the adjacent layer, and so 

forth.  Note that the eighth layer is only 0.38 mm-thick. 
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5.4 Results and Discussion 

5.4.1 Inlet Filling Pressure 
 

Impregnation of porous fiber preform during liquid composite molding is usually 

described by a flow through porous media model given by Darcy’s law.  In the present 

study, operating the hydraulic press, as described earlier, ensures that the injection of the 

impregnating resin mixture takes place at a constant volumetric rate at the center of the 

circular mold cavity.  Therefore, the filling pressure steadily increases as the flow front 

advances radially outward through the fiber preform towards the exit vents.  Due to the 

circular mold geometry, and the planar isotropy of the preform, an axisymmetric flow 

front is expected. 

 

The transient inlet pressure profile during molding of the composite disk is shown in Fig. 

5.3.  During mold filling, the pressure increases at a steep rate until all the preform is 

impregnated, reaching 380 kPa in less than 9 seconds.  When the mold cavity is full, the 

pressure increases at a higher rate as the resin creeps inside the tight space between mold 

walls and the spacer plate.  The exit vents were placed intentionally between the spacer 

plate edge and the O-ring seal to force the resin into this narrow opening, hence 

increasing the maximum pressure inside the mold.  The high pressure reached at the inlet 

is expected to ensure complete impregnation of the dry preform, help reduce voidage 

[15,16], and facilitate void mobility [22].  As the resin is forced to creep inside the tight 

opening between spacer plate and mold walls, the pressure attains its highest value of 565 

kPa.  After the resin starts coming out of the four exit vents, injection is immediately 

stopped, and exit vents are left unclamped to allow continued discharge of the resin. 
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Figure 5.3:  Inlet pressure profile during mold filling of the composite disk molded without 

post-fill pressure at 17.5% fiber content. 
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5.4.2 Average Void Content 
 

Most, if not all, void studies characterize void morphology two-dimensionally, which 

limits the understanding of void distribution, formation and mobility mechanisms in 

RTM composites.  Post-cure studies investigating void size and shape often use 

microscopic image analysis only through-the-thickness of the composite [4-

6,20,22,25,29-31,35,38].  While other investigations, with a focus on void formation, 

determine void content, morphology, and distribution during mold filling via monitoring 

flow front progression from the planar view [1,10-13,17-18,26,33-34,36,39].  

Nevertheless, and to the best knowledge of the authors, no study combines the two views 

to assess three-dimensional features of void morphology.  As illustrated by lower 

magnification (i.e., 50x) images shown in Fig. 5.4, fiber orientation distributions and 

fiber clustering for the two views (i.e., planar and through-the-thickness) are 

fundamentally different:  Fibers are seen as more homogeneously distributed through the 

composite thickness (Figs. 5.4a, 5.4c, and 5.4e), while the planar view offers zones with 

very high fiber concentration (Fig. 5.4f), and large matrix-rich regions (Fig. 5.4d).  The 

way successive preform layers are arranged inside the mold cavity prior to mold filling is 

a plausible cause for the observed difference in architecture between the two views of the 

same composite.  Another conceivable source for these architectural discrepancies may 

be related to up to 77% variation in planar densities of the utilized reinforcement.  Planar 

density of utilized preforms was found to vary between 0.3141 to 0.5564 kg/m2, thus 

yielding significant variations of spatial fiber concentration.  These values were 

calculated from more than five hundred circular performs cut from the same randomly-

oriented fiber glass roll used in this study. 
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Figure 5.4:  Representative microscopic images obtained at 50x magnification from 
through-the-thickness (left column) and planar (right column) views of the RTM composite 

molded without post-fill pressure at 17.5% fiber content. 

400 µm 400 µm
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Void contents obtained for the eight through-the-thickness layers depicted in Fig. 5.2c are 

shown in Table 5.1: 
Table 5.1:  Variation in voidage through-the-thickness of the composite disk molded 

without post-fill pressure at 17.5% fiber content. 
 

 

 
Layer 1 

 
Layer 2 

 
Layer 3 

 
Layer 4 

 
Layer 5 

 
Layer 6 

 
Layer 7 

 
Layer 8 

 
Thickness 

(mm) 
 

 
0.50 

 
0.50 

 
0.50 

 
0.50 

 
0.50 

 
0.50 

 
0.50 

 
0.38 

 

Void content 
 

2.30% 
 

2.58% 
 

1.52% 
 

2.62% 
 

2.47% 
 

2.21% 
 

2.61% 
 

 
1.25% 

 
Planar void 

density 
(Void / mm2) 

 

 
10.78 

 
 

11.51 
 
 

9.25 
 
 

11.51 
 
 

10.84 
 
 

10.67 
 
 

12.12 
 
 

6.37 
 
 

 

The void content is found to vary between 1.25 and 2.62% through-the-thickness.  This 

non-uniformity can arise from uneven spaces between the four preform layers, or 

between the preform and the mold walls.  It can also originate from the potential 

variations in the fluid front velocity across the thickness of the mold cavity.  Thus, 

considerable differences in overall void content obtained from the two samples are also 

expected.  After processing all the void data, planar and through-the-thickness average 

void contents of 2.56 and 2.15% are calculated, respectively.  However, average void 

content obtained from the planar view can only be compared to void content in the same 

layer of the composite.  Since a 0.67 mm-thick layer was machined from the top of the 

planar sample; the obtained planar void content of 2.56% should be compared to that of 

2.58% obtained from the second layer (Table 5.1).  The two values are clearly very 

similar; suggesting that void contents obtained from planar views would depend 

primarily on the through-the-thickness location of the plane studied, and thus may vastly 
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vary from one layer to the other.  On the other hand, void contents obtained from 

through-the-thickness view, when the entire composite thickness is examined for voids, 

are not prone to such variations [38].  Consequently, the void content determined from 

through-the-thickness view would be more representative of the actual void content in 

RTM composites. 

5.4.3 Location of Voids 
 

Void proximity to fibers can be assessed differently from planar and through-the-

thickness views.  Voids seen in matrix-rich areas from the planar view can in fact be in 

contact with fibers in other layers below the polished surface.  To study this 

morphological feature, we introduced a classification of voids based on their proximity to 

fibers and analyzed both planar and through-the-thickness sections.  In addition, this 

classification can help estimate possible adverse effects of each void on mechanical 

properties.  Voids located only in the matrix reduce the load bearing cross-section of the 

composite, while those located in contact with fibers are also detrimental to fiber/matrix 

adhesion.  Three void locations are defined:  The first location is defined as areas rich in 

matrix and not comprising any fibers.  Voids encountered in this location are totally 

surrounded by the epoxy matrix and are referred to as matrix voids.  The second location 

is defined as areas rich in fibers, where the area is primarily composed of reinforcing 

preform.  Voids in these locations are situated within fiber bundles (i.e., intra-tow voids) 

and are referred to as preform voids.  Finally, a transition location is defined as the 

remaining locations other than the other two defined above.  Voids found in this location 

are referred to as transition voids and are always positioned adjacent to the preform but 

not inside fiber tows. 
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Figure 5.5:  Representative microscopic images obtained at 200x magnification from the 
RTM composite molded without post-fill pressure at 17.5% fiber content depicting 

examples of voids from different zones: (a) typical composite cross-section with different 
fiber orientations and two transition voids; (b) examples of transition and matrix voids; (c) 

three transition voids and two preform voids; (d) three preform void. 
 

100 µm 
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Figure 5.5 depicts sample images obtained from through-the-thickness view containing 

voids obtained from the three zones defined above at 200x magnification.  In Fig. 5.5a, 

the continuous polymeric matrix appears as a gray background, the white circular and 

elliptical objects correspond to glass fibers oriented at an angle to the cross-section.  

Based on the categories defined earlier, the two adjacent voids to fibers seen in Fig. 5.5a 

are transition voids along with similar voids from Figs. 5.5b and 5.5c.  The two voids 

seen inside fiber tows in Fig. 5.5c and the three voids appearing in Fig. 5.5b, on the other 

hand, are preform voids.  Finally, the void depicted at the right side of Fig. 5.5d is 

considered a matrix void. 

 

Figure 5.6 depicts the contributions of voids encountered within different locations to the 

average void content of the whole composite.  From the planar view, voids seem to be 

concentrated in the matrix rich zone with almost 57.4% to the 2.56% overall void content 

(i.e., 1.5%) located in the matrix.  At the same time, intra-tow voids, located inside the 

preform, do not seem to constitute a significant portion of the voidage of the whole 

composite.  Only 17.6% of the 2.15% overall voidage (i.e., 0.43%) is identified as 

preform voids.  Through-the-thickness voidage distribution, on the other hand, shows a 

different distribution.  While the transition voids showed the highest contribution at 

1.31%, the preform and matrix voids contributed 0.72% and 0.15%, respectively.  Hence 

94.4% of the total voidage is found to be concentrated either inside or right next to the 

preform when through-the-thickness view is used. 
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Figure 5.6:  Planar and through-the-thickness void content contributions of voids located 
at different locations of the composite molded without post-fill pressure at 17.5% fiber 

content. 
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Due to the difference in fiber orientation patterns between planar and through-the-

thickness views described above, classification of void locations based on through-the-

thickness view is believed to better characterize the actual locations of voids throughout 

the composite.  For instance, many voids that are classified as matrix voids in the planar 

view might be in contact with fibers at composite layers above or below the observed 

plane, thus belonging in reality to transition voids category.  As depicted in Figs. 5.4a, 

5.4c, and 5.4e, the stacking of preform layers does not leave adequate space between 

fiber tows to have a significant occurrence of matrix voids. 

 

Utilizing the modified capillary number can help understand formation mechanisms of 

voids involved in the micro-scale flow during fluid front progression.  Using Eq. (5.4) 

and the measured values of resin viscosity, surface tension, and advancing contact angle 

(i.e., 0.96 N·s/m2, 36.3 x 10-3 N/m, and 34 °, respectively), the modified capillary number 

is calculated to change along the radial distance from the injection gate between 0.13 and 

1.15 as depicted in Table 5.2: 

 
Table 5.2:  Modified capillary number variation along the radial flow direction. 
 

Radial distance from the 
injection gate (mm) 

7.5 
 

22.5 
 

37.5 
 

52.5 
 

67.5 
 

Modified capillary number 
( Ca* ) 

1.150 
 

0.382
 

0.229
 

0.164 
 

0.127
 

 

These high values of modified capillary number suggest that voids formed during filling 

should be mostly intra-tow, micro-voids [12,13].  As predicted for this range of modified 
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capillary numbers [12,13], through-the-thickness view incidentally describes the voids as 

primarily intra-tow voids, thus affirming through-the-thickness view as a better 

representation of actual void locations with respect to the fibers. 

5.4.4 Variation of Void Size 
 

Void size is reported to affect void mobility [22], such that larger voids have longer 

perimeters and thus yielding larger adhesion forces.  Small voids, on the other hand, have 

lower adhesion forces and therefore become more mobile.  Consequently, identifying 

void size distribution can prove useful in the choice of void removal methods.  To 

quantify void sizes, the surface area, A, of each captured void is measured using the 

image analysis software UTHSCSA Image Tool®.  An equivalent diameter, Deq, is 

defined to classify void sizes as: 

π
ADeq

4
= ,     (5.3) 

 
where A is the measured area of the void.  

 

Planar and through-the-thickness size distributions based on Deq are represented in Fig. 

5.7.  Both are lognormal distributions with only one peak, unlike typical bi-modal void 

distributions in fiber reinforced composites that exhibit two peaks [18].  The first peak 

often represents intra-tow micro-voids while the second inter-tow macro-voids.  As 

discussed previously, the calculated range of modified capillary numbers of 0.13 to 1.15 

implies that the formed voids are primarily intra-tow micro-voids [12,13], which explains 

why only few large macro-voids were encountered within the composite. 
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Figure 5.7:  Planar and through-the-thickness size distributions based on equivalent 
diameter of voids encountered in the RTM composite molded without post-fill pressure at 

17.5% fiber content. 
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Although the standard deviations of both distributions appear comparable, a slight “shift” 

of the distribution towards smaller voids is observed from the planar to the through-the-

thickness view.  The two size distributions present different mean values of 59 µm for the 

through-the-thickness view and 66 µm for the planar view, but have very the same 

standard deviations of 27 µm.  This variation in the size distribution viewed from two 

planes is compensated by an opposite variation in areal void density.  Through-the-

thickness view showed a void density of 9.83 voids/mm2, while the planar view showed 

only 6.33 voids/mm2 in areal void density.  In short, voids are seen in average slightly 

fewer but larger in the planar view.  The observed difference in void size distribution 

when seen from the two views, especially the mean equivalent diameter, can be explained 

by the existence of long cigar-shaped intra-tow voids inside fiber bundles (Fig. 5.8b and 

5.8d).  The preform is mostly planar, thus these cigar-shaped voids are seen only as small 

intra-tow voids when observed from through-the-thickness view, but are seen in full in 

the planar view. 

 

In order to categorize void sizes, three different size ranges are defined.  Large voids are 

defined as those voids with an equivalent diameter greater than 100 µm, i.e. Deq > 100 

µm; while voids with an equivalent diameter lower than 50 µm are regarded as small 

voids.  Intermediate equivalent diameter values, i.e. 50 µm < Deq ≤ 100 µm, correspond 

to medium size voids.  Using these categories, concise planar and through-the-thickness 

void size distributions are obtained as shown in Fig. 5.9.  Void size distributions for the 

whole composite and for the preform voids only are presented in Fig. 5.9 for both 

samples. 
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8(e)      8(f) 

   
 

Figure 5.8:  Representative microscopic images obtained at 200x magnifications from the 
through-the-thickness view (left column), and planar view (right column) samples of the 

RTM composite molded without post-fill pressure at 17.5% fiber content. 
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The decrease in average void size from the planar view to through-the-thickness view for 

the whole composite, presented earlier in detail, can still be seen as the relative 

percentage of small voids increases from 28.4 to 41.7% between planar and through-the-

thickness distributions. 

 

The relative percentages of matrix and transition voids are found to remain mostly 

similar for planar and through-the-thickness views.  Therefore only size distributions of 

preform voids are shown in Fig. 5.9.  Small voids encountered within the preform rise 

from a 40% of the total voids for the planar view to more than 66% for through-the-

thickness view.  This steep increase in relative percentage of small voids found within the 

preform combined with almost no change in matrix and transition voids size distributions 

confirms that only preform voids cause the change in average void size between the two 

views, yielding the 13% increase in average void size observed in Fig. 5.7.  Based on 

these findings, the actual void size distribution seems to be revealed better by the planar 

view as some of the larger voids are not fully seen in through-the-thickness-view. 
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Figure 5.9:  Size distribution of voids obtained from planar and through-the-thickness 
views of the RTM composite molded without post-fill pressure at 17.5% fiber content 

when: (a) considering the whole composite; (b) considering only preform voids. 
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5.4.5 Variation in Void Shape 
 

In a study on void induced reduction in interlaminar shear strength, Wisnom et al. [40] 

reported that the commonly observed void induced decrease in interlaminar shear 

strength of glass fiber and carbon fiber/epoxy composites is due to a combination of two 

phenomena: (i) reduction of cross-sectional area from the overall voidage; and (ii) 

initiation of failure from larger elongated voids.  Similar results were reported by 

Goodwin et al., who identified larger voids with sharper corners as inducers of early 

crack formation [6].  Thus, shape distribution of voids becomes essential in predicting 

structural integrity of a composite part.  As Figs. 5.4, 5.5 and 5.8 depict, different void 

shapes are encountered in the two views of the composite.  Voids shown in Figs. 5.4b, 

5.4d, at the bottom of 5.5a, and at the right of 5.5b, and those seen at the bottom of 5.8b 

and top of 5.8d are mostly circular.  In contrast, voids trapped between fiber bundles at 

the bottom of Fig. 5.5c, and in Figs. 5.8b, and 5.8d, and the void captured in Fig. 5.8f are 

more elongated.  Voids entrapped within the preform in Figs. 5.8a and 5.8c present a 

different asymmetrical geometry. 

 

In order to quantify these differences and categorize void shapes, both geometrical and 

quantitative void characteristics are combined.  First, based on the observed shape, the 

voids are divided into three groups:  Irregular, cylindrical, and spherical voids.  Irregular 

voids are defined as those presenting a non-convex planar surface area, that is, one can 

find two different points within the void that can be connected by a straight line that 

leaves the void boundary.  Additionally, cylindrical voids are defined as cigar-shaped 

voids, observed almost exclusively inside fiber tows when seen from the planar view 
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(Figs. 5.8b and 5.8d).  Excluding those two categories, remaining voids are mostly 

spherical (Figs. 5.8e and 5.8f), although some of them do not present a perfect circular 

symmetry (Fig. 5.8f). 

 

To classify this variation in voids’ roundness, a quantitative measure of geometrical 

circularity of voids is used.  The data obtained from captured voids is further processed 

by introducing the shape ratio, R s, defined for each void as the equivalent diameter 

obtained from Equation (3) divided by the measured maximum length, L max, within a 

void:  

maxL
D

R eq
s = .     (4) 

 

Using this shape ratio, spherical voids are divided into two categories: circular voids, and 

elliptical voids.  Since an ideal circle is represented by R s = 1, only voids with shape 

ratios above 0.95 (0.95 < R s ≤ 1) are considered circular voids (bottom of Fig. 5.8b).  

Voids with shape ratios lower than 0.95 comprise a minor axis that could be significantly 

smaller than the maximum length.  Thus, the circular symmetry is lost, the voids appear 

as ellipses, and are defined as elliptical voids (Fig. 5.8f).  Typical examples of small 

irregular voids are presented in Figs. 5.8a and 5.8c, with equivalent diameters raging 

between 17 and 50 µm.  Similar intra-tow voids are seen as cylindrical voids in the planar 

view as shown in Figs. 5.8b and 5.8d.  A large circular void is seen at the bottom of Fig. 

5.5a (Deq = 119 µm and Rs = 0.96), and medium circular voids are depicted at the right of 

Fig. 5.5d (Deq = 95 µm and Rs = 0.98), and at the bottom of figure 8(b) (Deq = 85 µm and 

Rs = 0.99).  Finally, figure 8(f) exemplifies a large elliptical void exhibiting an equivalent 

diameter of 250 µm and a 0.91 shape ratio. 
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As voids with different shapes are known to affect the mechanical performance of the 

composite differently [6,40], the number of voids having a detrimental shape is more 

important than their contribution to the void content obtained for the whole composite.  

Therefore, areal void density is used here to present planar and through-the-thickness 

shape distributions.  The resulting shape-voidage distribution is presented in Fig. 5.10. 

 

Areal void densities obtained from the two samples are considerably different.  The areal 

void density of 6.33 voids/mm2 in the planar view is only 64.4% of the through-the-

thickness areal void density of 9.83 voids/mm2.  As shown in Fig. 5.10, cylindrical voids 

are not observed through the composite thickness.  Since the sample used for through-

the-thickness analysis is cut at an angle to most fiber bundles - potential beds for 

cylindrical voids - all cylindrical voids are truncated at an angle with respect to their 

longitudinal axis, and are seen as either small irregular, or small elliptical voids.  This can 

explain the considerable increase in areal void density of elliptical voids from 7.58 to 

29.60% of the planar to through-the-thickness elliptical void density obtained for the 

whole composite, respectively.  In addition, irregular areal void density jumps from 0.25 

voids/mm2 in the planar view to 3.48 voids/mm2 in through-the-thickness view.  This 

increase can also be explained, in addition to the presence of cylindrical voids, by the 

difference in fiber placement and orientation patterns for the two views illustrated in Fig. 

5.4. 
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Figure 5.10:  Planar and through-the-thickness areal void density distributions for different 
void shapes encountered in the RTM composite molded without post-fill pressure at 17.5% 

fiber content. 
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As argued earlier, many voids that are seen in the matrix in a particular planar view are in 

reality in contact with fiber tows at composite layers above or below the observed plane.  

Therefore, even if the planar view of a void is circular, the void may in fact present an 

irregularity where it comes in contact with fiber bundles, and is seen as an irregular void 

through-the-thickness.  This latter fact can also explains the drop in circular areal void 

density from 4.75 in planar view to 3.50 voids/mm2 in through-the-thickness view.  

These findings imply that neither planar nor through-the-thickness views can fully 

represent the actual void shape distribution.  A combination of the two must be 

incorporated in order to fully assess the three-dimensional shape morphology of the 

voids. 

 

Voids with different shapes are expected to have different planar and through-the-

thickness size distributions.  However, planar and through-the-thickness size distributions 

of both circular and elliptical voids are found almost identical.  In addition, through-the-

thickness view did not comprise any cylindrical voids.  The size distribution of different 

void shapes is given in Fig. 5.11.  In this figure, relative size distributions for all void 

shape categories observed in the planar view, and size distribution of irregular voids 

observed in through-the-thickness view are depicted.  In the planar view, circular and 

cylindrical voids are observed as mostly medium size.  Elliptical voids are observed to be 

slightly smaller since 45.59% of the total elliptical voids encountered are small.  

Nevertheless, small and medium size voids together represent 90% or more of the 

circular, elliptical, and cylindrical voids. 
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Figure 5.11:  Average planar and through-the-thickness size distributions of voids with 
different shapes encountered in the RTM composite molded without post-fill pressure at 

17.5% fiber content. 
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Consequently, size distributions of voids from these three shape categories remain 

consistent with the size distribution for the whole composite presented in Fig. 5.9.  

Irregular voids, on the other hand, display different size distribution profiles when 

analyzed using planar and through-the-thickness views.  The majority of irregular voids 

shift from medium or large size in the planar view to small or medium size if viewed 

through the part’s thickness.  The increase in average void size is 13%, which is an 

additional proof for the analysis argued earlier, that states the difference in cylindrical 

voids seen in planar and through-the-thickness views as the reason of the difference in 

average void size observed in Fig. 5.7. 

5.4.6 Voidage Variation Along the Radius of the Molded Disk 
 

In addition to molding speed, other factors are known to change void content and 

distribution inside a molded composite part.  When resin injection is performed at a 

constant volume flow rate through a constant mold cross-section, the fluid front velocity, 

and subsequently the capillary number, does not depend on the distance from the 

injection inlet.  Consequently, the voidage along the composite part may not vary much 

with respect to the inlet distance.  In contrast, the impregnation in the current case is 

carried out at constant volume flow rate for a center-gated disk-shaped cavity.  Hence, as 

formulated in Eqs. (5.3) and (5.4), the fluid front velocity and the capillary number 

change as the flow progresses.  This change in capillary number is likely to yield a 

radially non-uniform void distribution.  This latter case is not the only configuration 

where spatially non-uniform void distribution is expected, constant inlet pressure 
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molding, a commonly used RTM method, is also carried out at decreasing fluid front 

velocity.  Thus similar void distribution trends are expected in such composites. 

 

In a previous study [29], packing effects on void contents and spatial void distribution 

were investigated in composites molded under parameters similar to those utilized in this 

study.  Radial void distribution was also investigated.  Packing was found to induce void 

migration along the radius of the composite.  This void migration was believed to result 

from several transport mechanisms such as shearing forces and void compression and 

dissolution.  This behavior contrasted with that encountered in composites molded 

without packing, where the voids preferentially concentrated at the center of the part.  

However, radial distribution of voids and void morphology prior to the application of any 

void reduction method has not been available.  Hence, detailed radial void distribution 

and void morphology characterization are believed to be the key to understanding void 

formation and migration mechanisms, as well as assessing the effectiveness of various 

void reduction methods. 

 

To determine the effect of radial distance on voidage and void morphology, five 

equivalent radial regions were defined as shown in Fig. 5.2 for both samples studied.  

Figure 5.12 depicts planar and through-the-thickness void content distributions along the 

radial direction (i.e., the direction of the flow during mold filling).  Each radial region is 

referred to using the radial distance from the injection gate to its center.  The modified 

capillary numbers are calculated for each region and the resulting values are shown in 

Table 5.2.  At this range, (i.e., Ca* > 2.5 x 10-2), void content is expected to increase 

moderately with increasing modified capillary number [12,13].  Accordingly, void 
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content is predicted to decrease with increasing radial distance from the injection gate.  

Moreover, at longer distances from the injection gate (i.e., lower capillary number), 

slower moving fluid front is expected to trap smaller, more circular, and fewer voids [30].  

Nevertheless, both planar and through-the-thickness void content radial distributions, 

given in Fig. 5.12, do not show any clear trend.  It even appears that void content 

increases with increasing radial distance.  The absence of a clear trend in radial void 

content distribution can be the result of different factors with contrasting influences on 

void formation during filling. 

 

To understand the mechanisms behind this radial distribution, void contents from 

different void locations (i.e., matrix, transition, and preform voids) are segregated.  Since 

through-the-thickness view is believed to better represent the actual location distribution 

of voids, only through-the-thickness results are utilized here.  Figure 5.13 depicts radial 

distribution of matrix, transition, and preform voids taken from through-the-thickness 

view.  As seen in Fig. 5.13, radial distance does not seem to have an effect on the 

distribution of matrix voids.  However, clear trends are observed for the relative content 

of transition and preform voids, especially from the third radial region outward.  The 

relative contribution of preform voids (voids within a fiber tow) to the overall void 

content decreases from 47.23% in the third region to 14.55% in the fifth region.  In 

contrast, contribution of transition voids (voids right next to fibers but not inside fiber 

tows) increases from 37.50% in the third region to 77.40% in the fifth region. 
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Figure 5.12:  Planar and through-the-thickness radial distributions of void content within 
the RTM composite molded without post-fill pressure at 17.5% fiber content. 
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Figure 5.13:  Through-the-thickness radial voidage distribution for different void locations 
in the RTM composite molded without post-fill pressure at 17.5% fiber content. 
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Reduction in preform void content along the flow direction is in agreement with the 

predicted void behavior based on capillary number analysis discussed earlier.  On the 

other hand, higher pressure inside the mold would force the voids the shrink or even 

dissolve into the resin [36,37].  Therefore, void sizes during mold filling - where pressure 

levels reach 500 to 600 kPa - and after the pressure inside the mold cavity dropped to 

atmospheric levels at the end of mold filling would be different.  Hence, voids would 

have been much smaller during mold filling and expand to larger sizes as the pressure 

drops after filling is complete.  Unlike preform voids that are trapped inside fiber tows, 

transition and matrix voids are relatively free to move during mold filling, particularly if 

they are sufficiently small [22,23].  Consequently, there is an elevated probability of their 

transport towards the exit vents.  Moreover, closer to the injection gate, voids experience 

flow and are subject to shear deformation as well as increasing pressure for longer 

durations.  Therefore, although matrix and transition voids may have formed as predicted 

by the capillary number analysis, their radial distribution might have been rearranged 

during mold filling. 

 

To better understand this phenomenon, a closer look at the radial distribution of preform 

voids can be of great assistance.  If the void formation mechanisms follow the capillary 

number analysis, one can expect “immobile” voids trapped within the preform to show 

the expected trend, hence becoming smaller with increasing radial distance from the 

injection gate.  Figure 5.14 illustrates planar size distribution of preform voids in the 

radial direction.  Planar view is used here since cylindrical voids with very different sizes 
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would appear the same when sectioned by through-the-thickness view, hence giving a 

misleading representation of the investigated morphological feature. 

 

The faster moving fluid front in the first radial region, led by viscous flow, is expected to 

trap larger preform voids.  As the radial distance from the injection gate increases, slower 

fluid fronts are anticipated to capture fewer and smaller preform voids, yielding lower 

void contents at higher radial distances from the injection gate.  In figure 5.14, the 

gradual shift towards smaller trapped intra-tow voids is obvious as the relative percentage 

of small preform voids increases - almost linearly - from 31.03 to 46.34% between the 

first and fifth radial regions, registering almost 50% increase.  The increase in the 

contribution of small preform voids with increasing radial distance from the injection 

gate is balanced by an opposite trend seen in the contribution of medium preform voids.  

Medium preform void relative percentage sees a 34.97% decrease between the second 

and fifth radial regions (i.e., 60 to 39 %).  The observed change in radial size distribution 

of preform voids is accompanied by a decrease in average preform void size from 69 µm 

in the first radial region to 61 µm in the fifth.  In addition, figure 5.15 shows the planar 

preform voidage variation along the flow direction.  Clear trends of decreasing preform 

void content as well as preform void areal density away from the inlet verifying the 

formation by mechanical entrapment of fewer preform voids at higher radial distances 

from the injection gate.  These definite trends prove that voids - at least at the formation 

stage - correlate well with the predictions based on the capillary number analysis. 
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Figure 5.14:  Planar preform void size distribution along the flow direction in the RTM 
composite molded without post-fill pressure at 17.5% fiber content. 
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Figure 5.15:  Planar preform void content and void areal density variation along the flow 
direction in the RTM composite molded without post-fill pressure at 17.5% fiber content. 
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However, once voids are formed at a radial location, they are subjected to increasing 

pressures and shear stresses during filling, making them prone to become smaller and 

move radially away from the inlet.  Preform voids cannot move since they are trapped 

inside fiber bundles.  Hence, only matrix and transition voids are potential mobile voids.  

Radial size distributions of matrix and transition voids are investigated to characterize 

the behavior of mobile voids in the flow direction.  Combined matrix and transition areal 

void densities along the flow direction are depicted in Fig. 5.16. 

 

Large voids are less likely to move during resin injection since they have higher adhesion 

force caused by their longer perimeters [22,23].  Therefore, large voids, even in few 

numbers, tend to resist transport and stay where they were initially formed.  Hence, radial 

distribution of large mobile voids would be another good indicator of void formation 

mechanisms.  Considering the five radial regions combined, the average areal density of 

large mobile voids is at almost 0.5 voids/mm2.  However, the areal density of large 

mobile voids is observed to decrease steadily with increasing distance from the injection 

gate, from 0.67 to 0.22 voids/mm2 between the first and fifth radial region.  The observed 

trend of decreasing large mobile voids with increasing radial distance from the inlet (i.e., 

with decreasing modified capillary number) confirms the effect of capillary number on 

void formation. 
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Figure 5.16:  Areal density of different-sized mobile voids (i.e., combined matrix and 
transition) along the flow direction based on through-the-thickness view of the RTM 

composite molded without post-fill pressure at 17.5% fiber content. 
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Contrary to the radial distribution of large mobile voids, medium and small mobile voids 

show an opposite trend, that is, their respective contributions augment away from the 

inlet.  Small and medium mobile areal void densities increase both steadily along the 

flow from 1.87 and 1.83 voids/mm2 at 7.5 mm from the injection gate, respectively, to 

2.80 and 4.33 voids/mm2 at 67.5 mm from the injection gate.  However, the contribution 

of medium mobile voids shows a higher increase of almost 140%, while small mobile 

voids showed a more modest 50% increase between the first and fifth radial regions.  

Therefore, spatial distributions of medium and small mobile voids in a molded composite 

are essentially dictated by their mobility.  In summary, most voids encountered in RTM 

composites are formed according to the local capillary number, and a large number of 

potential mobile voids (i.e., matrix and transition voids) are then transported during mold 

filling leading to a complex spatial distribution. 

 

Finally, since large irregular voids are more likely to induce failure cracks [6], irregular 

void size distribution is investigated along the radial flow direction.  Contribution of 

irregular voids to the overall through-the-thickness void content is 29.30%.  Due to their 

non-convexity, any void classified as irregular presents a potential weakening location 

for the composite as failure cracks are known to initiate from medium to large irregular 

voids with sharp corners [6].  As discussed earlier, voids seen in the planar view as 

cylindrical, circular, or elliptical shaped voids can present an irregularity when they come 

in contact with a preform layer.  Therefore, through-the-thickness void size distribution is 

used at this point.  Figure 5.17 represents size distribution of irregular voids along the 

flow direction determined from through-the-thickness view. 
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Combining all radial regions, the average irregular void size distribution obtained from 

through-the-thickness view has been presented in Fig. 5.11.  Almost 58% of the irregular 

voids are made of small voids with an equivalent diameter less than 50 µm.  Moreover, 

almost 36% of the irregular voids encountered have an equivalent diameter between 50 

and 100 µm.  However, size distribution of irregular voids shows clear radial trends.  

While relative percentage of large irregular voids barely reaches 12% in the third radial 

region, small and medium irregular voids show differing trends along the radial flow 

direction.  Contribution of small voids sees a 38% decrease from 72.45% at 22.5 mm 

from the injection gate to 45.16% at 67.5 mm, whereas medium voids show a 90% 

increase over the same radial distance, passing from 25.51 to 48.39%.  These radial 

distributions imply that irregular voids become larger away from the injection gate. 

 
These results must be interpreted in conjunction with those results presented in Figs. 

5.14, 5.15, and 5.16.  Preform void sizes are seen to decrease with increasing distance 

from the injection gate, while matrix and transition void sizes are observed to increase 

over the same range.  Thus, preform irregular voids are not contributing to the size 

enlargement depicted in Fig. 5.17, and only mobile irregular voids are responsible for this 

phenomenon.  A plausible explanation can be based on void mobility during resin 

injection.  As matrix and transition voids are compressed under injection pressure, they 

become mobile and are thought to be moved radially as inter-tow voids.  As the injection 

is completed, the pressure drops to zero allowing these voids to expand to their original 

size.  These voids become irregular during expansion because of geometrical constraints.  

As a result, the molded composite presents a higher risk of failure away from the inlet as 

the concentration of larger, irregular voids increases radially outward. 
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Figure 5.17:  Irregular void size distribution along the flow direction, determined from 
through-the-thickness view of the RTM composite molded without post-fill pressure at 

17.5% fiber content. 
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5.5 Conclusions 
 
Three-dimensional features of void morphology in resin transfer molded composites are 

investigated.  Voids are assessed via microscopic image analysis from both planar and 

through-the-thickness surfaces of a disk-shaped, E-glass/epoxy composite with a fiber 

content of 17.5%.  A 2.15% void content is obtained from the through-the-thickness 

surface and is believed to be representative of the actual void content in the studied part.  

The planar void content of 2.56%, on the other hand, compares well with the 2.58% void 

content obtained from the corresponding through-the-thickness layer.  The two 

investigated views also revealed differences in void morphology.  Relatively large 

cylindrical voids, observed in cigar shapes in the planar surface, appear only as small 

irregular or elliptical voids on through-the-thickness surface.  These observed differences 

in void morphology led to a 13% decrease in the average void size from planar to 

through-the-thickness views.  Moreover, in the planar view, 57.4% of the voidage is 

observed to be surrounded completely by the matrix; whereas 94.4% of the total voidage 

in through-the-thickness surface is found to be either inside or right next to fiber tows.  

Along the radial direction, combined effects of void formation by mechanical entrapment 

and void mobility formed a complex radial void distribution.  33% fewer inter-tow voids 

are observed to be trapped mechanically near the exit compared to the inlet region.  Most 

of the medium and small mobile voids (i.e., matrix and transition voids) seem to migrate 

towards the exit during resin injection, thus yielding a 93% increase of such voids near 

the exit.  These findings are believed to be applicable not only to RTM, but generally to 

other composites manufactured by liquid molding processes with similar flow 

kinematics. 
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6 Effect of Packing on Void Morphology in Resin 
Transfer Molded E-Glass/Epoxy Composites* 

 

6.1 Abstract 
 

Effects of applying a packing pressure on void content, void morphology, and void 

spatial distribution are investigated for resin transfer molded (RTM) E-glass/epoxy 

composites.  Packing pressures of zero and 570 kPa are respectively applied to center-

gated composites containing 17.5% randomly-oriented, E-glass fiber preform.  Radial 

samples of these disk-shaped composites are utilized to evaluate voidage via microscopic 

image analysis.  Two adjacent surfaces are cut from each molded disk in order to 

evaluate void presence from both through-the-thickness and planar views.  The packed 

composite is found to contain almost 92% less void content than the unpacked composite.  

While void fractions of 2.2 and 2.6% are measured respectively from the through-the-

thickness and planar surfaces of the unpacked composite, only 0.2% void content is 

observed in the packed composite from both surfaces.  Digital images obtained from 

through-the-thickness surface showed that average void size dropped from 59.3 µm in the 

unpacked composite to 31.7 µm in the packed composite.  A similar reduction in average 

void size from 66.7 to 41.1 µm is observed from the planar surfaces.  Circular voids are 

found to experience higher removal rates at 99%, followed by cylindrical and elliptical 

voids at 83 and 81%, respectively; while irregular voids show slightly lower void 

removal rates at 67%.  Void proximity to fiber bundles is also observed to affect void 

reduction as voids located inside fiber tows experience lower void reduction rates.  Along 

                                                           
*Material in this chapter was submitted to Polymer Composites, 2004. 
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the radial direction of the molded disks, removal of voids with different proximities to 

fibers seems to depend on their arrangement at the end of the filling stage.  These 

findings are believed to ascertain packing as an effective void removal method for RTM 

and similar liquid composite molding processes. 

6.2 Introduction 
 

Liquid composite molding (LCM) processes such as RTM have been established in the 

automotive and aerospace industries as versatile technologies for manufacturing medium 

to large composite parts with complex geometries [1-3].  RTM consists on injecting a 

reactive liquid resin into a closed mold cavity pre-loaded with layers of fibrous preform.  

After cure reaction is complete, the solidified composite part is removed from the mold.  

The relatively high occurrence of process-induced defects such as poor wet-out and voids 

during mold filling often limits the increased use of LCM and RTM in composites 

industry.  Presence of void is known to shorten the service life of composites by reducing 

their thermo-mechanical performance [4-12] and adversely affecting their response to 

environmental effects [13-14].  Despite the importance of voids, methods of void 

removal and their effectiveness are not fully established for LCM and RTM processes [3-

6,8,12,15-26]. 

 

Voids in RTM are primarily formed by the impregnation mechanisms of the unsaturated 

fibrous media during mold filling.  Although the preform impregnation at macro-scale is 

commonly described by a Darcy flow [27,28], two different flows develop at different 

scales:  (i) a viscous flow between fiber tows; and (ii) a capillary flow inside each fiber 

bundle, driven by capillary forces.  When these two flows are advancing at disparate 
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front velocities, voids form by so-called mechanical entrapment [18-26].  At higher fill 

rates, the viscous flow leads the impregnation, and voids are mostly formed inside fiber 

tows via fingering or lead-lag phenomena, resulting in microscopic intra-tow voids.  In 

contrast, at slower injection velocities, the capillary flow leads the impregnation, and 

macroscopic inter-tow voids are formed between fiber tows.  A minimum void 

occurrence can be obtained when both flows are advancing at comparable front 

velocities.  Numerous researchers used flow visualization to monitor air entrapment 

during filling and documented this micro-scale flow behavior in detail [18-22]. 

 

In order to analyze the equilibrium between these two flows, Mahale et al. [19] used the 

capillary number, defined as the ratio of viscous to capillary forces.  The authors reported 

that if the filling is performed at a capillary number of 2.5 x 10-3, void formation will be 

minimal.  Patel et al. [21], and Rohatgi et al. [22] generalized the non-dimensional 

capillary number by introducing the liquid-fiber contact angle.  Several researchers 

explained their experimental void formation data with the modified capillary number 

[24,29,31], thus establishing the capillary number analysis as an available method for 

predicting void formation in RTM and LCM composites.  Other theoretical and 

numerical models have been offered for predicting void occurrence in liquid injection 

processes [32-37].  Yet, these models have limited range of application as they are 

generally developed for simplified preform architectures. 

 

Although acceptable void levels can be achieved at optimum capillary numbers [8,17-

22], attaining such values often requires a range of injection rates slower than those used 

in the industry [29].  Slow injection rates increase mold filling time, and hence reduce 
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RTM applicability to large scale production.  Thus, there is a need for effective void 

reduction or removal methods suitable for RTM processes involving fast injection rates. 

 

Numerous techniques have been used to reduce void presence in composites 

manufactured by RTM and its variants [3,8,18-22,25-29,39-42].  Lunsdstrom et al. 

[25,26], among others, utilized vacuum assistance to lower void content.  Mold cavity is 

vacuumed before injection to lower the internal air pressure, hence facilitating void 

dissolution into the resin, and also enhancing void mobility during molding.  Increasing 

the pressure difference between the inlet and outlet of the mold cavity from 0.17 to 0.50 

MPa resulted in a decrease in void content from 6.5 to 3.8%.  Yet, low void contents are 

only reached when costly, very high vacuum levels are used [25]. 

 

Degassing the injected resin is also used to reduce voidage in molded composites, since 

high initial bubble content results in elevated void presence [3,4,12,39].  However, resin 

degassing does not address entrapment by the fluid front, the primary cause of void 

formation for these processes.  Another commonly used method for void removal is 

bleeding, which consists of continuing resin discharge after impregnation is completed to 

purge formed voids [18,25,40].  Bleeding might be useful when the formed voids are 

transportable, i.e. when voids are dominantly inter-tow voids.  However, inter-tow voids 

are formed mostly at slow injection rates not seen in most industrial molding applications 

[19-22].  In addition, intra-tow voids formed in RTM processes with faster impregnation 

rates are found very difficult to purge by bleeding [22]. 
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Another void removal method is compression, which consists on compressing mold walls 

after resin injection is complete [41].  Squeezing mold walls is anticipated to expel voids 

and help fabricate void-free composites.  The method drives out voids only to the end of 

the cavity [11], and yet requires expensive tooling that might make the molded parts 

much more expensive.  Articulated tooling, a variant of compressing mold walls, was 

recently proposed by Choi and Dharan [42].  This technique calls for a segmented 

articulated mold wall, utilized to sequentially impregnate dry preform areas in a step-wise 

sequential manner.  A five fold reduction in mold fill time and reduced void generation 

were observed [42].  Nonetheless, like compression, articulated tooling requires higher 

initial investment, and possibly yields undesirable surface marks and defects. 

 

Packing is performed by a sudden increase in pressure after the molding cavity is filled.  

This method has also been used to reduce void occurrence in RTM composites 

[8,18,25,29].  Forcing more resin into a previously filled mold cavity would shrink the 

existing voids or even dissolve them into the resin matrix.  In an earlier study by Olivero 

et. al [8], void content was found to decrease exponentially with increasing applied 

packing pressure up to 700 kPa for resin transfer molded glass/epoxy composites at 21% 

fiber content [8].  In a different study performed at higher injection rates [29], applying a 

packing  pressure as low as 300 kPa resulted in a drop of more than 70% in void content.  

Packing facilitates void removal for RTM and similar processes without additional 

tooling or investment.  Hence, packing can be a cost-effective void removal technique 

that might improve most LCM processes.  Concerns with packing reside in the possible 

spatial concentration of voidage or creation of large irregular voids with sharp corners 

that are prone to early failure cracks [11,13].  To address this issue, a thorough 
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investigation of the effects of packing on void morphology is needed.  To the best of the 

authors’ knowledge, no such study is available in the literature. 

 

There are primarily two types of void studies relevant to molded polymeric composites:  

(a) post-cure studies, conducted on actual molded composites; and (b) void formation 

studies, conducted by monitoring flow front progression during impregnation process.  

Investigation of voids in molded composites can be conducted by a multitude of methods.  

However, void morphology is usually assessed by microscopic image analysis.  Although 

microscopic image analysis is reported as one of the best methods to measure void 

contents [8,43,44], the obtained void morphology is only two-dimensional as void data 

are generally collected from a polished through-the-thickness surface of the composite 

[7-9,24,28-30,43,44].  On the other hand, most studies on the mechanisms of void 

formation are conducted by monitoring flow front progression from the planar view 

[1,2,19,21-23,33,35].  In addition, filling process is usually carried out by using model 

fluids such as glycerine, ethylene glycol, and silicone and diphenyl-octyl-phthalate 

(DOP) oils.  Although this technique provides valuable insight on void formation 

mechanisms such as fingering and led-lag, it only captures two-dimensional features of 

voids.  Furthermore, model fluids do not cure and continue micro-scale impregnation due 

to capillary forces even after complete mold filling.  Thus, the obtained void morphology 

might be affected by phenomena that are not present in curing resin mixtures. 

 

In the current study, effects of applying a 570 kPa packing pressure on void content, void 

morphology, and void spatial distribution are investigated for resin transfer molded E-

glass/epoxy composites.  Voidage is assessed by microscopic image analysis of planar 
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and through-the-thickness surfaces of the studied composites.  Difference in void content 

and void areal density between the molded composites is evaluated.  In addition, changes 

in void morphology (i.e. size and shape) due to packing are investigated.  Furthermore, 

radial variations in void content are examined, as well as changes in reduction rates based 

on void proximity to fibers. 

6.3 Experimental Setup 

6.3.1 Molding Procedure 
 

The composite disks used in this study are fabricated by a custom made experimental 

molding setup composed of a hydraulic press; two reservoirs for resin and curing agent; a 

static mixer; and a disk-shaped mold cavity.  Operating the molding press forces the 

EPON 815C resin and EPICURE 3282 (Shell Chemicals) curing agent out of the 

reservoirs into the mold cavity at a constant flow rate.  Thorough mixing of these fluids is 

ensured by the 32 alternating helical segments of a static mixer, yielding a gel time of 

approximately 20 minutes.  Preforms placed in the mold cavity prior to filling are 

composed of four layers of the randomly-oriented, chopped-strand, E-glass fiber mats 

with a planar density of 0.4356 kg/m2 ± 0.0449 kg/m2 (Fiberglast part #250).  The details 

of the molding procedure and experimental setup are described in detail elsewhere [28-

31].  The first resin transfer molded disk is manufactured without applying any packing 

pressure, and is referred to as the unpacked composite.  The second disk, referred to as 

the packed composite, is manufactured by applying a 570 kPa post-fill pressure.  The 

packing process forces additional resin into the mold cavity and induces a 2% increase in 

average composite thickness from 3.88 mm in the unpacked composite to 3.96 mm in the 

packed one.  Both composites have around 17.5% fiber content by volume. 
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6.3.2 Sample Preparation for Microscopic Image Analysis 
 

The planar isotropy of the fibrous preform and the mold axisymmetry simplify the 

impregnation into a purely radial flow.  Hence, the molded composite disks are examined 

along their radii.  In order to prepare specimens for microscopic image analysis, two 

adjacent radial strips are cut from each disk.  One of the strips is utilized for voidage 

assessment using its planar surface, and the other is used for void analysis based on its 

through-the-thickness surface.  Figure 6.1 illustrates the spatial arrangement of these two 

strips obtained from both packed and unpacked composites.  The first 2 mm-wide 

samples (Fig. 6.1b) are selected to investigate voidage from a planar surface, while the 

second ones (Fig. 6.1c) are utilized for void analysis from the through-the-thickness 

surface.  All samples are 75 mm-long, while the unpacked and packed composites have 

an average thickness of 3.88 and 3.96 mm, respectively.  Radial variation of voidage is 

assessed by dividing each 75 mm-long sample into five 15 mm-long regions along the 

radial direction as shown in Figs. 6.1b and 6.1c.  Composite strips are embedded 

separately into a quick cure acrylic resin (Allied High Tech. Products, part # 170).  The 

samples containing the planar composite surfaces are machined on a vertical mill to 

remove a thin layer and eliminate near-surface non-uniformities.  For polishing, a series 

of polishing pastes is applied (Clover Compound) with grit sizes ranging from 180 (i.e. 

80 µm average particle diameter) to 1200 (15 µm) in six successive steps.  To remove 

paste residues after each step, 40 minutes of subsequent cleaning periods are performed 

in an ultrasonic bath at 50 kHz.  After all polishing steps are completed, a 0.67 mm-thick 

layer is removed from the top of both planar composite samples.  At the end of polishing 

and cleaning, the samples become ready for microscopic image analysis. 



 

 195

 

 

Figure 6.1:  Spatial arrangement of investigated samples for both packed and unpacked 
composite disks:  (a) sample locations within the composite disk, (b) Planar sample 

partitions of five 15 mm-long radial regions, (c) Through-the-thickness sample partitions of 
five 15 mm-long radial regions. 
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6.3.3 Void Characterization 
 

Microscopic image analysis is considered among the most precise methods for measuring 

void contents [8,29,43,44].  In addition, this technique provides detailed information on 

other vital parameters such as void location, shape, and size that cannot be assessed by 

other methods.  Often, microscopic image analysis is used by averaging randomly 

selected images [43,44].  In the current investigation however, the entire studied 

composite cross-sections are scanned in order to accurately estimate void content, 

morphology, and their spatial variations.  Voidage features are obtained from images 

acquired at 200x magnification using a PC-based CCD camera mounted on a MEIJI 

optical microscope.  At this particular magnification, every frame displays approximately 

a 0.71 mm x 0.53 mm area.  The selected magnification of 200x enables the assessment 

of voids as small as the radius of a single fiber of 7 µm.  Consequently, all identifiable 

voids throughout the entire composite samples are included in the analysis of void 

content and morphology.  Each captured frame is processed using the image analysis 

software UTHSCSA Image Tool®, which allows the measurement of voids’ area, A, and 

maximum length, Lmax. 

6.4 Results and Discussion 

6.4.1 Inlet Mold Filling Pressure 
 

Temporal variation of molding pressure is monitored with a flush diaphragm pressure 

transducer (Sensotec® BP357BR Model S, 0.1% accuracy), attached between the static 

mixer and the mold inlet.  Due to the circular mold geometry and the preform planar 

isotropy, the resin front has a circular shape and advances radially through the preform.  
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Molding takes place at a constant flow rate, thus closer to the injection gate, the resin 

front moves at higher velocities.  The constant flow rate forces the inlet pressure to 

increase in order to impregnate a larger preform area as the flow front moves radially 

outward.  Inlet pressure data recorded during filling of both packed and unpacked 

composite disks are shown in Fig. 6.2. 

 

During the first 9 seconds of mold filling, the inlet pressures increase at similar rates for 

unpacked and packed composites.  Thereafter, pressure readings show minor 

discrepancies due to slight variations in the constricted channel spacing between mold 

walls and spacer plates.  Once the resin reaches the exit vents, the molding press is turned 

off, stopping resin injection.  As seen in Fig. 6.2, when the injection is stopped, a 

monotonic decrease in pressure is recorded.  This decrease is consistent with the natural 

pre-disposition of the system to reach a balance between inlet and outlet pressures.  In the 

case of unpacked composite, exit vents are left open, and hence the pressure continues 

decaying asymptotically to atmospheric pressure during 100 seconds.  The same behavior 

is observed for the packed composite during the 4 seconds between the time injection is 

stopped and all vents are securely closed, thus sealing the mold.  Thereafter, the pressure 

is monitored for 60 seconds.  The pressure levels-off to a plateau of 370 kPa, and remains 

constant until packing. 

 



 

 198

 

 

 

 

 

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160
Time (sec)

In
le

t P
re

ss
ur

e 
(k

Pa
)

 
Figure 6.2:  Inlet pressure profiles during mold filling of the unpacked and packed 

composite disks containing 17.5% fiber content by volume. 
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Applying the desired post-fill pressure of 570 kPa is achieved by forcing additional resin 

into the mold cavity, which requires operating the molding press for 3 additional seconds.  

Inlet pressure is again monitored for 60 seconds to ensure that no leaking occurs.  Several 

minutes after the post-fill pressure is applied, the injection port is securely clamped, and 

the composite is allowed to cure at the desired packing pressure.  The slight pressure 

difference observed during filling of packed and unpacked composites is not likely to 

affect void morphology at the end of the filling stage.  However, the application of the 

570 kPa packing pressure is expected to reduce void content, and induce major changes 

in void morphology and spatial distribution. 

6.4.2 Assessment of Void Removal 
 

Void contents from both unpacked and packed composites are assessed via microscopic 

image analysis.  Representative images obtained at 200x magnification from both planar 

and through-the-thickness views of the unpacked and packed composites are depicted in 

Fig. 6.3.  The continuous gray background in Fig. 6.3 represents the epoxy matrix; while 

the white circular and elliptical objects are glass fibers oriented perpendicularly and at an 

angle, respectively, to the cross-section.  The single white parallel stripe in Fig. 6.3c and 

all others in Fig. 6.3d represent glass fibers parallel to the investigated cross-section.  

Figuress 6.3a through 6.3d also depict the basic difference in fiber orientation and 

clustering observed on planar and through-the-thickness surfaces of an RTM composite.   
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Figure 6.3:  Representative image of voids in different composite locations obtained at 
200x magnification from through-the-thickness (left column) and planar (right column) 

views of the unpacked (top row) and packed (bottom row) composite disks. 
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Fibers are seen as more homogeneously distributed through the composite thickness; 

while the planar view offers large matrix-rich regions and other zones with high fiber 

concentration.  Hence, different morphological features of voids are expected to become 

prominent when observed on these two orthogonal planes. 

 

Void contents and void areal densities of the unpacked and packed composites are shown 

in Fig. 6.4.  Results obtained from both planar and through-the-thickness views of each 

composite disk are presented.  Analysis of through-the-thickness surfaces reveals that 

applying a 570 kPa post-fill pressure resulted in 91.2% reduction in the void content 

dropping from 2.2 to 0.2%.  When the void contents obtained from planar surfaces are 

compared, a similar 91.8% decrease from 2.6 to 0.2% is observed.  This reduction in void 

content is accompanied with more than 83 and 97% reduction in void areal density when 

assessed from the through-the-thickness and planar views, respectively.  This large 

diminution in voidage is attributed primarily to void shrinkage and dissolution due to 

pressure differential between the resin and air trapped inside the voids.  Packing is hereby 

ascertained as an efficient void reduction technique that removes the majority of voids 

formed during impregnation in liquid injection processes.  Additional investigation is 

needed in order to understand relevant removal mechanisms, as well as the effects of 

packing on void morphology. 
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Figure 6.4:  Through-the-thickness and planar void contents and void areal densities for 
the unpacked and packed composite parts. 
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6.4.3 Effect of Packing on Void Location 
 

As illustrated in Fig. 6.3, voids are seen at three different locations within the molded 

composites.  First location is defined as areas rich in matrix away from fibers.  Voids 

encountered in this location are completely surrounded by the epoxy matrix and are 

referred to as matrix voids.  Second location is defined as areas rich in preform, where 

the area is primarily composed of reinforcing fibers.  Voids in this region are intra-tow 

voids situated within fiber bundles and are referred to as preform voids.  Finally, the third 

location is defined as the transitional areas between the two other locations herein 

defined.  Voids in this location are referred to as transition voids and are always 

positioned next to fiber bundles but not within the fiber preform.  Based on the locations 

defined above, all voids present in Fig. 6.3a are preform voids.  The two voids appearing 

in the left half of Fig. 6.3b are considered transition voids.  Finally, the remaining two 

voids seen in the right of Fig. 6.3b are categorized as matrix void.  Voids from these three 

different locations in the four composite samples are identified and their respective 

contributions to the total void content determined. 

 

Figure 6.5 shows reduction in void content in different locations of the packed composite, 

including results from both planar and through-the-thickness views.  When assessed from 

the planar view, the 91.8% reduction in overall composite void content presented in Fig. 

6.4 is not equally distributed among voids from the three locations defined above.  Matrix 

and preform voids seem to experience higher reduction rates of 96.6 and 93.3%, 

respectively; while only a 79.4% reduction is observed for transition voids.  The 

percentage reduction in void content observed through-the-thickness is also different 
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among the three void locations.  Both matrix and transition voids are reduced at a slightly 

higher rate of 93.3 and 94.7%, respectively.  In contrast, preform voids are reduced only 

by 84.7%. 

 

This difference in perceived reduction of voids from different locations is believed to 

originate from the difference in void location distribution between planar and through-

the-thickness views of the unpacked composite.  Due to the planar architecture of the 

reinforcing preform, many voids that are classified as matrix voids in the planar view 

might be in contact with fibers at composite layers above or below the observed plane, 

belonging in fact to transition voids as shown in Fig. 6.5b.  Therefore, distribution of void 

location based on through-the-thickness surface is believed to be more representative of 

the actual distribution.  Hence, the actual locations of voids throughout the composite 

would be better characterized from the through-the-thickness view.  In addition, location 

of voids based on the through-the-thickness view reveals that voids are concentrated 

either inside or right next to fiber bundles, as predicted for the local capillary number 

values [30-31].  On the contrary, location distribution of voids based on the planar view 

depicts voids as mainly inter-tow, matrix voids. 
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Figure 6.5:  Contributions from voids in different locations within the composite disks to 
the void contents of unpacked and packed parts viewed from: (a) the planar view, and (b) 

the through-the-thickness view. 
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In terms of void areal density, the void content reduction rates seen in Fig. 6.5b translate 

to 84.9 and 86.6% removal rates for matrix and transition voids, respectively; while 

preform voids are removed slightly less at 78.8%.  This is expected since intra-tow 

preform voids, once formed, are known to be more difficult to eliminate than inter-tow 

voids [10,18,22,29], as they are trapped in the constricted narrow spacing within fiber 

bundles.  As a result, preform voids see more than a 70% jump in their relative 

contribution to the total void content due to packing, increasing from 33.5 to 57.9% of 

the total voids. 

6.4.4 Effect of Packing on Void Size 
 

To classify void sizes, an equivalent diameter, Deq , is defined for each void as: 

π
ADeq

4
= ,     (6.1) 

 
where A is the void area measured via image analysis software UTHSCSA Image Tool®.  

Similar methods are commonly used to characterize grain size in a multitude of materials 

such as metals [45,46], ceramics [47-50], and polycrystalline materials [51,52]. 

 

Figure 6.6a, obtained from images of the planar surface, illustrates void size distributions 

based on Deq for both unpacked and packed composites.  As a result of applying the 570 

kPa packing pressure, the size distribution of voids is significantly changed.  A large shift 

in void size distribution is observed as average void size is reduced from 67 µm in the 

unpacked composite to 41 µm in the packed composite.  The highest void occurrence 

frequency changed from 16.2% for voids with Deq between 60 and 70 µm in the 
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unpacked composite to 25.3% for voids with Deq between 20 and 30 µm in the packed 

composite. 

 

Similarly, void size distributions obtained from the through-the-thickness view for both 

unpacked and packed composites are represented in Fig. 6.6b.  Compared to Fig. 6.6a, a 

larger shift in void size distribution is observed as average void size decreases from 59 to 

32 µm.  The highest void occurrence frequency changed from 17.0% for voids with Deq 

between 40 and 50 µm in the unpacked composite to 30.6% for voids with Deq less then 

20 µm in the packed composite. 

 

In order to focus on other aspects of void size distributions, three different size ranges are 

defined.  Large voids are defined as those with an equivalent diameter greater than 100 

µm, i.e. Deq > 100 µm; while voids with an equivalent diameter lower than 50 µm are 

regarded as small voids.  Intermediate equivalent diameter values, i.e. 50 µm < Deq ≤ 100 

µm, correspond to medium size voids.  Data obtained from voids in different composite 

locations are reprocessed using these three void sizes to quantify the effects of packing 

on size distribution of voids encountered in each composite location.  Size distributions 

of matrix, transition, and preform voids obtained from planar surface data of unpacked 

and packed composites are presented in Fig. 6.7a.  Likewise, size distributions of matrix, 

transition, and preform voids obtained from through-the-thickness surface data of 

unpacked and packed composites are presented in Fig. 6.7b. 
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Figure 6.6:  Void size distributions for the unpacked and packed composite disks from: (a) 

the planar view; and (b) the through-the-thickness view. 
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When assessed from the planar view, i.e. Fig. 6.7a, small voids encountered within the 

matrix increase from 21.0% in the unpacked composite to more than 58% in the packed 

composite, while medium voids see their contribution reduced from 69.6 to 25.0%.  This 

77.4% increase in relative percentage of small voids found within the matrix along with 

the 64.0% decrease in medium matrix voids is a direct result of void shrinkage.  From 

through-the-thickness view, i.e. Fig. 6.7b, an even accentuated trend is observed as small 

matrix voids augment from a relative frequency of 33.3% in the unpacked composite to 

almost 97% in the packed one.  Medium matrix void contribution is dramatically reduced 

due to packing from 61.3 to merely 3.0%; while large matrix voids completely 

disappeared in the packed composite. 

 

As shown in Fig. 6.7a, size distribution of preform voids show a similar trend due to 

packing.  Relative contribution of small preform voids, obtained from the planar view, 

depict a considerable increase from 40.4 to 68.0%.  An opposite trend is observed for 

both medium and large voids, whose relative percentages drop from 49.2 and 10.4% to 

28.0 and 4.0%, respectively.  A decrease in average size of preform voids is also 

observed from through-the-thickness view in Fig. 6.7b.  Small intra-tow voids exhibit a 

30.0% increase from 66.0% in the unpacked composite to 86.0% in the packed 

composite. Medium and large voids contributions, however, are decreased from 28.7 and 

5.4% to 10.0 and 4.1%, respectively.   
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Figure 6.7:  (a) Planar and (b) through-the-thickness size distributions of voids observed in 
different locations in the unpacked and packed composite disks. 
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This relatively smaller reduction in size of preform voids as compared to that of matrix 

voids seen from both views can be expected since since intra-tow voids are physically 

trapped inside fiber tows, and hence might not be fully subjected to the higher packing 

pressure. 

 

The difference between planar size distributions of transition voids of unpacked and 

packed composites, depicted in Fig. 6.7a, is the most interesting.  Unexpectedly, large 

void frequency is observed to increase from merely 9.7% to 36.0%.  At the same time, 

medium voids occurrence is reduced from 58.1% to 28.0% and small void contribution is 

modestly increased from 32.3 to 36.0%.  A more reasonable decrease in contribution of 

transition voids is observed from through-the-thickness view, i.e. Fig. 6.7b.  Small 

transition voids augmented from 24.3% in the unpacked composite to 88.4% after 

packing.  Medium transition voids contribution is considerably reduced from 67.1 to 

11.6%; while no large transition voids are encountered in the through-the-thickness 

surface of the packed composite.  These findings suggest that large voids trapped right 

next to the fiber bundles are more difficult to remove by packing then matrix voids, and 

maybe that some transition voids consolidate together between planar preform layers into 

larger elongated voids.  Although no explanation is found for this phenomenon solely 

based on Figs. 6.7a and 6.7b, a more careful look into the captured microscopic images of 

the packed composite shows that indeed most large transition voids - seen from the 

planar view - are deformed into irregular shapes, while no large transition voids are 

observed from through-the-thickness view.  Nevertheless, these voids only sum up to less 

then 0.003% void content, which is by all means an insignificant occurrence that is not 
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likely to alter the composite’s mechanical performance.  In summary, the investigation of 

void size distributions in both packed and unpacked composites shows that voids 

encountered in different composite locations do not respond equally to packing, but more 

importantly, that no critical adverse effect is introduced by applying a packing pressure. 

6.4.5 Effect of Packing on Void Shape 
 

Due to variations in void sizes and locations, a variety of void shapes are encountered in 

RTM composites [4,20-25].  Howe et al. [4] reported the existence of two major void 

shapes for RTM woven carbon/epoxy composites at 59% fiber content.  The first 

comprises spherical to elliptical voids with a diameter of 100 to 200 µm, and the second 

represents larger voids confined to the preform.  These irregularly-shaped voids have a 

height of 150 to 400 µm and a length of 250 µm to 4 mm.  Patel and Lee [20] 

investigated effects of fiber architecture on void formation in LCM by monitoring the 

mold filling from a planar plane using model fluids.  Although no quantifications were 

given, they reported the formation of voids with different shapes for both bidirectional 

stitched fiberglass and 4-harness woven fiberglass preforms.  These different void shapes 

observed in RTM and LCM composites can originate from different wetting mechanisms 

for different preform architectures.  For instance, a fast flow impregnating unidirectional 

fiber tows in the transverse direction is expected to trap cylindrical intra-tow voids; while 

voids trapped around a preform stitch by a slow impregnating flow are reported to be 

mostly irregular [22-25]. 
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Figure 6.8:  Representative image of voids with different shapes obtained at 200x 
magnification from through-the-thickness (left column) and planar (right column) views of 

the unpacked composite disk molded without post-fill pressure at 17.5% fiber content. 
 

 
100 µm 
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Figure 6.8 depicts representative images of different shapes of voids encountered in the 

unpacked composite obtained at 200x magnification from through-the-thickness and 

planar views.  Voids seen in Fig. 6.3b and top left of Fig. 6.8d are mostly circular.  In 

contrast, voids trapped between fiber bundles in bottom of Fig. 6.8a and top of Fig. 6.8c 

are more elliptical.  Voids entrapped within the preform in Fig. 6.3a and bottom of Fig. 

6.8c present a different irregular geometry.  Another void shape is large, cigar-shaped, 

preform voids observed only in the planar view as seen in Figs. 6.8b and 6.8d.  These 

cylindrical voids appear only as smaller truncated voids when observed from a through-

the-thickness surface. 

 

First, based on the observed shapes, voids are separated into three groups:  Irregular, 

cylindrical, and spherical voids.  Irregular voids are defined as those presenting a non-

convex planar surface area, that is, two different points exist within the void that can be 

connected by a straight line that intersects the void boundary.  Cylindrical voids are 

defined as cigar-shaped voids, found exclusively inside fiber bundles (Figs. 6.8b and 

6.8d).  Excluding those two categories, remaining voids are mostly spherical, even 

though most of them do not present a perfect circular symmetry.  To classify this 

variation in voids’ roundness, void data is further processed by introducing the shape 

ratio, R s, defined for each void as the equivalent diameter obtained from Eq. (1) divided 

by the maximum measured length, L max, within a void:  

 

maxL
D

R eq
s = .     (6.2) 
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Note that ideal circles are represented by R s = 1, and as the shape ratio gets smaller, voids 

become more elongated.  Using this shape ratio, spherical voids are further segregated 

into two categories:  Circular voids with shape ratios above 0.95 (0.95 < R s ≤ 1), and 

elliptical voids with shape ratios lower than 0.95.  Different shape parameters are utilized 

for roundness measurement of voids in composites [8,28-31], or pores in both ceramics 

[47,50] and metals [53]. 

 

Using the criteria defined above, contributions to void content from voids with different 

shapes are calculated.  The resulting shape distributions of voids observed in unpacked 

and packed composites are presented in Figs. 6.9a and 6.9b.  Shape distributions based on 

void areal densities obtained from both planar and through-the-thickness surfaces are 

simultaneously analyzed in order to assess the accurate void morphology.  Circular voids 

are almost completely removed with a 99.2% reduction in void areal density when 

assessed from the planar views.  An equally high, void removal rate of 98.0% is observed 

for circular voids when evaluated using the through-the-thickness view.  Cylindrical 

voids can only be seen in the planar view as through-the-thickness sample is cut 

perpendicularly to most fiber bundles - potential beds for cylindrical voids.  Packing is 

found to reduce the void areal density of cylindrical voids from 0.86 to 0.14 voids/mm2, 

registering an 83.0% reduction rate. 
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Figure 6.9:  (a) Planar and (b) through-the-thickness void shape distributions for the 
unpacked and packed composite disks. 
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Elliptical and irregular voids both show a slightly different percentage reduction in void 

areal densities.  Contribution of elliptical voids to planar void areal density decreases 

from 0.9 voids/mm2 in the unpacked composite to 0.2 voids/mm2 in the packed 

composite, while its through-the-thickness counterpart drops from 2.9 to 0.6 voids/mm2.  

These reductions of 66.7 and 81.1% are significant voidage removal levels even if they 

are lower than those observed for circular and cylindrical voids.  Likewise, although areal 

densities of irregular voids assessed from both surfaces drop considerably (i.e. 37.5% in 

the planar surface and 70.3% in the through-the-thickness view), these removal rates do 

not reach the reduction levels of circular and cylindrical voids.  These findings show that 

voids with different shapes do not have the same likelihood of removal under packing.  

Irregular and elliptical voids are found to be less sensitive to packing than cylindrical and 

circular voids. 

 

Data of irregular voids obtained from all four samples are further processed to obtain 

their size distribution.  The resulting size distributions of irregular voids in unpacked and 

packed composites are depicted in Fig. 6.10.  Based on through-the-thickness data, all 

irregular voids with different sizes are observed to decrease.  As a result of packing, 

irregular small voids dropped from 2.0 to 0.9 voids/mm2.  Medium and large voids 

experienced even higher removal rates, decreasing respectively from 1.3 and 0.2 

voids/mm2 to 0.1 and 0.03 voids/mm2, which corresponds to 81.6 and 76.9% reductions. 
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Figure 6.10:  Through-the-thickness and planar size distributions of irregular voids 
obtained from the unpacked and packed composite disks. 
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The very low planar areal densities of irregular voids are also depicted in Fig. 6.10 to 

ascertain that no increase in large irregular voids occurs in the packed composite.  These 

results show that insignificant occurrences of large irregular voids are present in the 

packed composite, and in any case, their incidence level is significantly lower than those 

experienced in the unpacked composite. 

 

The shape ratio defined earlier can help monitor void elongation due to shear induced by 

packing.  An analysis using the shape ratio is undertaken to shed some light on the size 

distribution of transition voids depicted in Fig. 6.7.  Using planar data of all voids from 

both unpacked and packed composites, average shape ratios of both total and transition 

voids are calculated and presented in Table 6.1, along with their respective 95% 

confidence intervals and standard deviations.  Packing is found to produce in average 

more elongated voids, as the average shape ratio dropped from 0.84 to 0.67, given that 

circular voids with the highest shape ratios are almost entirely eliminated as shown in 

Fig. 6.9.  Transition voids see a more accentuated elongation due to packing since their 

average shape ratio is reduced from 0.98 to 0.66, possibly due to shear deformation of the 

voids restrained by the neighboring fibers. 

Table 6.1:  Effect of applying a 570 kPa post-fill pressure on shape ratio distribution for the 
overall composite and for transition voids. 

 

 
Overall voids 

 
Transition voids 

 

Unpacked 
composite 

 

Average shape ratio:  0.8347 ± 0.0097 
Standard deviation:    0.1798 
 

Average shape ratio:  0.9778 ± 0.0063 
Standard deviation:    0.0487 
 

Packed 
composite 

 

Average shape ratio:  0.6658 ± 0.0174 
Standard deviation:    0.2031 
 

Average shape ratio:  0.6577 ± 0.0724 
Standard deviation:    0.1847 
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6.4.6 Effect of Packing on Radial Voidage Variation 
 

Variation of void content in the radial direction in both composites is examined to assess 

packing effects on spatial void distribution, and ensure that anomalies in void 

concentration are not formed.  Five radial regions of equal length, covering the entire 

composite samples, are defined as shown in Figs. 6.2b and 6.2c for both the planar and 

through-the-thickness surfaces, respectively.  Figure 6.11 illustrates the variation of void 

content in the radial direction obtained from planar and through-the-thickness surfaces 

for the unpacked and packed composites.  The radial variation of void content of the 

unpacked composite seems to show a very slight increase in the voidage away from the 

injection gate.  Concurrently, the packed composite depicts different radial trends of void 

content from both views.  From the planar view, void content in the packed composite 

slightly increases through the first three radial regions from 0.3 to 0.4%, and than drops 

dramatically in the last two regions.  In contrast, from through-the-thickness view, void 

content in the packed composite, with the exception of the first radial region, is observed 

to increase almost linearly with radial distance from the injection gate, doubling from 0.1 

to 0.2% between the second and fifth region.  We submit that the spatial variation of 

voidage in the packed composite can be attributed to the voids’ existing pre-dispositions 

to removal before packing, influenced by their proximity to fibers.  Note that proximity 

to fibers was classified based on the location of voids earlier in this paper.  Still, voidage 

levels are very low in all radial regions of the packed composite and voids do not seem to 

concentrate radially at any particular region and a structurally weak radial position is not 

expected. 
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Figure 6.11:  Radial variation of void content in the unpacked and packed composite disks:  (a) 

obtained from the planar surface, and (b) obtained from the through-the-thickness surface. 
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To further investigate the radial variation of void content in the packed composite, 

contribution of voids from different locations to the overall void content is considered.  

As discussed earlier in this paper, through-the-thickness surface is likely to better 

represent the distribution of void locations.  Thus, only through-the-thickness void data 

are utilized in the following analysis.  The effect of location of voids on reduction rates in 

each radial region can be studied by introducing a conformity parameter, Ci,l , defined as: 

 

i

ili
li R

RR
C

−
= ,

, ,        (6.3) 

 
where Ri is the reduction rate for all voids at the radial region i, and Ri,l the reduction rate 

for voids formed at a particular location l.  Note that there are five regions, i = 1 to 5, and 

three void locations, l = matrix, transition, or preform.  A positive conformity parameter 

means that voids at that particular location have experienced a higher reduction rate than 

the reduction rate experienced by all voids combined in that radial region, and vice versa.  

Figure 6.12 depicts radial variations of conformity parameter for matrix, transition, and 

preform voids obtained from the through-the-thickness surface.  The first observation is 

that void content reduction rates of voids formed in different locations, depicted in Fig. 

6.5b, are not uniform at a particular region or along the radius of the composite.  Voids in 

different locations of the composite respond differently to packing.  For instance, in the 

second radial region, transition voids are more prone to removal by packing than matrix 

and preform voids.  In addition to voids’ proximity to fibers, their radial position seems 

to affect the reduction rates.  Unlike the first region, matrix voids have a much higher 

reduction rate than transition and preform voids in the fourth and fifth regions. 
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Figure 6.12:  Through-the-thickness radial variation of conformity parameter from average 

void content reduction rates due to the application of 570 kPa post-fill pressure. 
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Figure 6.12 depicts radial variations of conformity parameter for matrix, transition, and 

preform voids obtained from the through-the-thickness surface.  The first observation is 

that void content reduction rates of voids formed in different locations, depicted in Fig. 

6.5b, are not uniform at a particular region or along the radius of the composite.  Voids in 

different locations of the composite respond differently to packing.  For instance, in the 

second radial region, transition voids are more prone to removal by packing than matrix 

and preform voids.  In addition to voids’ proximity to fibers, their radial position seems 

to affect the reduction rates.  Unlike the first region, matrix voids have a much higher 

reduction rate than transition and preform voids in the fourth and fifth regions. 

 

Conformity parameter of matrix voids shows a steady increase from a -18.1% in the first 

radial region, to a high of 11.6% in the fifth.  Matrix voids experience a considerably 

lower reduction rate than transition and preform voids in the first radial region.  Along 

the radial direction, matrix voids gradually see their reduction rate increase reaching a 

much higher rate than transition and preform voids in the fifth region.  This monotonic 

raise is attributed to pre-existing voidage arrangement in the composite disk prior to 

packing.  Data collected from the unpacked composite show that matrix voids become 

smaller away from the injection gate.  Smaller matrix voids, in turn, are easier to dissolve 

under pressure.  Therefore, more matrix voids might be dissolved into the matrix near the 

exit vents.  One should keep in mind, nonetheless, that matrix voids are a very small 

portion (less than 7%) of all voids existing in the unpacked composite. 
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Preform voids show negative values of conformity parameter in all radial regions; while 

transition voids are observed to have solely positive values.  As seen in Fig. 6.5b, 

preform voids are less prone to removal by packing.  Therefore, negative values of 

preform conformity parameter are expected.  Transition voids are also anticipated to be 

more susceptible to pressure induced shrinkage or removal than preform voids since they 

are directly subjected to the higher packing pressure.  The highest negative conformity 

parameter for preform voids, i.e. 15.2%, is observed at 67.5 mm away from the injection 

gate.  Region five has the lowest occurrence of preform voids prior to packing with 

mostly small voids.  Small preform voids, situated well inside fiber tows, might be more 

difficult to remove since they are shielded from the packing pressure.  In contrast, large 

preform voids often wrap around a large part of the fiber tow making them more 

susceptible to the packing pressure.  Incidentally, preform voids show their lowest 

conformity parameter in the first radial region, which experiences the highest fluid front 

velocity during injection, and thus has the maximum occurrence of large preform voids.  

A similar analysis can be conducted on transition voids for all radial regions.  In short, 

the levels of removal of voids with different proximities to fibers, although comparable, 

are governed by their pre-existing arrangement at the end of the filling stage, i.e. prior to 

packing.  This finding further stresses the importance of understanding spatial void 

morphology in LCM composites in order to implement proper void removal methods. 
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6.5 Conclusions 
 

Effects of applying a post-fill pressure on void content, void morphology, and void 

spatial distribution are presented for RTM E-glass/epoxy composites containing 17.5% 

fibers.  The composite molded with a 570 kPa packing pressure showed almost 92% drop 

in void content compared to an unpacked composite.  Microscopic image analysis was 

utilized to examine voidage from both through-the-thickness and planar surfaces of the 

two molded disks.  Only 0.2% void content was registered in the packed composite, 

whereas the unpacked composite showed void contents of 2.2 and 2.6% in the through-

the-thickness and planar surfaces, respectively.  In addition, the average void size was 

observed to decrease from 59.3 µm in the unpacked composite to 31.7 µm in the packed 

composite when observed from through-the-thickness surface.  A comparable reduction 

rate was observed on the planar surface from 66.7 to 41.1 µm in average void size.  

Furthermore, reduction rates of voids appear to be affected by their shapes.  While 

circular voids experienced the highest removal rate of 99%, cylindrical and elliptical 

voids registered lower but still significant reduction rates of 83 and 81%, respectively.  

Irregular voids, on the other hand, showed a slightly lower void removal rate at 67%.  

Proximity of voids to fiber bundles was also observed to affect their removal rates as 

voids located inside fiber tows sustained slightly lower reduction rates.  Along the radial 

direction, removal of voids with different proximities to fibers seems to depend on their 

arrangement at the end of the filling stage.  These findings are believed to be relevant to 

RTM and LCM processes with similar flow kinetics.  Finally, packing did not induce any 

spatial void concentration or other adverse effects, thus validating packing as an effective 

void removal method. 
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7 Effect of Nanoclay Content on Void Morphology 
in Resin Transfer Molded Composites 

 

7.1 Abstract 
 

Effect of nanoclay content on morphology and spatial distribution of voids in resin 

transfer molded nanoclay/E-glass/epoxy composite disks are investigated.  Closite®25A 

nanoclay loads of 2, 5, and 10 wt% are mixed by sonication with a low-viscosity epoxy 

resin prior to filling the mold cavity containing 13.6% E-glass preform by volume.  A 

disk without nanoclay is also molded.  Once the molded composites are cured, voids are 

evaluated via microscopic image analysis of radial samples.  The addition of nanoclay is 

found to result in a significant increase in the apparent viscosity of the clay-epoxy 

mixture, thus increasing the molding pressure.  Void occurrence is observed to increase 

considerably with increasing nanoclay content from 2.1% in the composite without 

nanoclay to 5.1 and 8.3% in the composites molded with 5 and 10 wt% nanoclay, 

respectively.  However, the composite with 2 wt% nanoclay yields the lowest void 

content of 0.7%.  Voids are observed to be, in average, smaller after the addition of 

nanoclay at all nanoclay concentrations.  Presence of nanoclay in the impregnating resin 

induces at least 60% reduction in voids located inside fiber tows, which are trapped by 

the fluid front motion during impregnation.  Irregularly shaped voids are also observed to 

decrease with increasing nanoclay content.  A nonuniform void content and morphology 

is observed radially, which seems to be affected by the flow kinematics as well as 

possible breakdown and filtration of clay clusters. 
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7.2 Introduction 
 

In recent years, usage of nanoscale fillers in polymers and fiber-reinforced composites 

has attracted considerable interest.  Such nanoscale fillers frequently exhibit larger 

surface area per unit volume and thus enhance the performance of the fabricated 

composite.  One of the most promising of these nanoscale particles is the abundantly 

available layered silicate, a.k.a. nanoclay.  Individual nanoclay particles are silicate 

platelets that typically range from 1 to 10 nm in thickness and 1 to 13 µm in length [1].  

Although nanoclay was first introduced to reinforce thermoplastics such as nylon 6 [2-7], 

its utilization has been expanded to reinforce thermosetting resins due to their wider 

industrial usage, higher strength, and lower viscosity [8].  Nanoscale fillers have been 

also added to fiber-reinforced composites with well established manufacturing processes 

in order to improve the mechanical and barrier properties. 

 

Researchers from Toyota [2-7] pioneered the utilization of nanoclay in thermoplastics.  

They studied effects of adding uniformly-dispersed nanoclay into nylon 6 on the 

mechanical and thermal properties, flame retardancy, as well as water absorption and gas 

permeability resistance.  Usuki et al. reported that the addition of 4 wt% nanoclay 

induced a 100% increase in stiffness and 50% in strength [5].  A 40% reduction in 

maximum water absorption was reported for similar nanocomposites [6].  Kojima et al. 

[7] also reported an increase in glass transition temperature, Tg, of nylon 6 containing 4.7 

wt% nanoclay. 

 

Improved properties are obtained only when nanoclay is intercalated and/or exfoliated 

into the polymeric matrix [2-4].  When the clay is well mixed with the polymer matrix, 
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the polymer swells the spacing between platelets and the nanocomposite is called 

intercalated.  When individual clay layers are further dispersed as single platelets into the 

polymeric matrix, the nanocomposite is called exfoliated.  Alexandre and Dubois [9], for 

instance, showed that mechanical and barrier properties, transparency, and toughness are 

directly proportional to the degree of exfoliation.  Nanoclay dispersion into epoxies also 

induces significant enhancements in mechanical properties.  For example, Advani and 

Shonaike [10] observed more than 100 and 120% increase in tensile modulus and 

strength respectively after the addition of 5 wt% nanoclay into an epoxy adhesive.  

Furthermore, Shah et al. [11] reported a reduction in moisture absorption diffusivity after 

the introduction of Closite®10A nanoclay into a molded Derkane epoxy part.  A nanoclay 

load as low as 0.5 wt% reduced moisture diffusivity by more than 50%, while a 5 wt% 

clay load resulted in an 86.4% reduction in moisture diffusivity.  Increases in Tg and 

tensile modulus with increasing nanoclay contents were also reported [11].  Kinloch and 

Taylor [12] studied Tg improvements in an epoxy due to the introduction of 10 wt% of 

nanoclay.  The authors reported a small improvement from 78 to 79°C for exfoliated 

Nanomer®I30E, and a higher Tg of 85°C for intercalated Closite®25A. 

 

Akkapeddi [13], on the other hand, studied both short and continuous glass-fiber-

reinforced clay-polyamide 6 nanocomposites manufactured by a melt compounding 

technique.  The author reported improved flexural modulus, strength, and heat distortion 

temperature under load as well as improved moisture resistance at 2 and 5 wt% nanoclay 

contents.  Haque et al. [14] reported significant improvements in mechanical and thermal 

properties of S2-glass/epoxy composites with low nanoclay contents manufactured by 

vacuum assisted resin infusion molding (VARIM).  The authors observed that dispersing 
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1 wt% clay resulted in a 26°C increase in Tg as well as 44, 24, and 23% improvement in 

interlaminar shear strength, flexural strength, and fracture toughness, respectively.  

Hussain and Dean [15] utilized the VARIM process to fabricate a series of S2-

glass/vinylester nanocomposites containing 0.5, 1, 2, 5 and 10 wt% clay.  They reported 

significant improvements in Tg, interlaminar shear strength, flexural strength, flexural 

modulus, and fracture toughness [15].  Becker et al. [16] investigated intercalated clay-

epoxy nanocomposites reinforced with 49% unidirectional carbon fibers.  The addition of 

layered silicate to the prepregs resulted in tougher composites with more than 50% 

increase in fracture energy reported for composites containing 2.5, 5, and 7.5 wt% 

nanoclay. 

 

Based on the recent results, one can conclude that the addition of nanoclay into a 

polymeric matrix often yields significant improvements in the mechanical and thermal 

properties while enhancing moisture resistance.  A similar statement can be made for the 

case of conventional, fiber-reinforced composites; however, the extent of improvements 

still remains uncertain in commercial applications.  The effectiveness of using nanoclay-

polymer mixtures in current fabrication methods for conventional composites needs to be 

investigated.  For example, the addition of nanoclay increases the bulk viscosity of the 

polymer, which might require excessive injection pressure for molded composites.  For 

higher nanoclay contents, adequate dispersion and purging of air pockets embedded in 

clay clusters might not be achieved, even for low viscosity epoxy resins commonly used 

in liquid composite molding (LCM) processes. 
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The successful resolution of such fabrication difficulties would facilitate the wider use of 

nanoclay in both thermosetting and thermoplastic composites.  Of particular interest is 

the resin transfer molding (RTM) process due to the possibility of achieving improved 

performance at a reduced cost.  Resin transfer molding is a well established, versatile 

process for manufacturing near-net-shape, geometrically complex composite parts.  RTM 

typically involves injecting a reacting polymeric resin into a closed mold containing a dry 

fiber preform.  Although large spatial variations in fluid velocity are not observed at the 

macroscale, local microscale velocities can be very different.  Wide disparities between 

local permeabilities and local capillary pressures within the preform often lead to a non-

uniform impregnation inside and outside the fiber bundles.  This non-uniform velocity 

field with large spatial variations of velocity gradients leads to the formation of voids in 

the fabricated composites [17-19].  At higher front velocities, resin flow outside fiber 

tows is much faster than inside, and voids are primarily formed inside the fiber bundles, 

a.k.a. intra-tow voids.  At slower filling rates, on the other hand, capillary flow inside 

fiber tows leads the impregnation and most of the voids are inter-tow voids formed 

outside the fiber bundles.  Various researchers reported the existence of an optimum resin 

velocity at which void formation is minimal and both inter- and intra-tow voids coexist 

[17-23].  In addition to the described void formation by mechanical entrapment, other 

void formation mechanisms in RTM composites include initial air bubble content in the 

resin mixture, volatilization of dissolved gas in the resin during mold filling or curing, 

and partial evaporation of mold releasing agent into the preform [24].  While mechanical 

entrapment is inevitable in RTM, the remaining sources of void formation can be 

eliminated by degassing and proper selection of the resin/preform systems.  With the 
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addition of nanoclay however, initial void content in the resin might be augmented due to 

the presence of air pockets inside larger clay clusters. 

 

Unfortunately, void presence in composites always yields severe degradation of the 

mechanical properties [23-26] and resistance to moisture absorption [27-28].  For 

instance, Ghiorse [25] reported that each 1% increase in void content induces a 10% 

reduction in flexural and interlaminar shear strength, and a 5% reduction in flexural 

modulus for carbon/epoxy composites.  Goodwin et al. [26] also reported a 7% reduction 

in interlaminar shear strength per 1% increase in voidage up to 10% for RTM composites 

containing 57% 5-harness satin preform.  In addition, even a minor variation in void 

content is reported to increase the moisture diffusion rate by a factor of 6 [28].  

Consequently, void occurrence in RTM composites can be critical in predicting their 

mechanical performance. 

 

The effect of adding nanoscale fillers on void formation in RTM composites has not yet 

been studied.  In a recent study, Chisholm et al. [29] investigated property enhancement 

due to the introduction of nanosized SiC fillers into a carbon/epoxy vacuum assisted resin 

transfer molded composite.  The authors reported qualitatively that nanoparticles tend to 

reduce void content of the fabricated composites.  However, no information on void 

morphology or spatial void distribution was offered.  Understanding void occurrence, 

morphology, and distribution within the resin transfer molded nanoclay/E-glass/epoxy 

composites is believed to be the first step in developing fabrication procedures yielding 

lower void occurrences in such composites.  To the best of the authors’ knowledge, no 

such investigation is available in the literature. 
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In the current study, we investigate the effect of nanoclay on void content, morphology, 

and spatial void distribution in resin transfer molded, nanoclay/E-glass/epoxy 

composites.  The composite disks containing 13.6% E-glass preform by volume and 2, 5, 

and 10% Closite®25A nanoclay by weight are fabricated.  A composite disk containing 

only 13.6% E-glass preform is also molded.  In addition to comparing the void contents 

obtained at different nanoclay loads, more interest is drawn upon morphological features 

and radial variation of voids to help identify dominant void formation mechanisms. 

7.3 Experimental 

7.3.1 Materials 
 

The nanoclay used in this study is Closite®25A supplied by Southern Clay Products, Inc.  

Closite®25A is a natural montmorillonite modified with a quaternary ammonium salt in 

order to increase the organophilicity of its gallery region, thus improving its dispersion in 

various types of resins.  Typical particle sizes range from 1 to 13 µm in length and 1 to 

10 nm in thickness, and its specific gravity is reported as 1.87 kg/m3[1].  The low 

viscosity epoxy resin EPON 815C is utilized together with the EPICURE 3282 curing 

agent commercialized by Shell Chemicals.  Preforms used in this study are layers of 

randomly-oriented, chopped-strand, E-glass fibers with a planar density of 0.21 ± 0.015 

kg/m2 supplied by Fiberglast (part #248). 

7.3.2 Preparation of the Clay-Epoxy Mixtures 
 

Prior to the RTM process, the EPON 815C epoxy resin is mixed with the desired amount 

of Closite®25A nanoclay.  The stochastic ratio of 5 to 1 of resin to curing agent by weight 
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is considered in order to achieve exact contents of 2, 5, and 10 wt% of nanoclay in 

epoxy-curing agent system.  Initially, clay-epoxy blends are prepared by sonication.  

Closite®25A is first gradually added to the epoxy at room temperature while stirring with 

a glass rod in a beaker for 5 minutes.  Thereafter, thorough mixing of the blend is 

performed at 60°C in an ultrasonic bath at a frequency of 42 KHz.  After 60 minutes, no 

visual change in the clay-epoxy mixture is observed and the sonication is stopped.  The 

high mixing temperature is selected as higher temperatures normally yield lower 

viscosities, and thus a better dispersion of the nanoclay.  After sonication, the mixture is 

degassed at room temperature for one additional hour to remove a thin bubble layer 

formed at top surface.  Note that before molding of the composite disk without clay, the 

epoxy resin is subjected to the same sonication process to ensure identical pre-molding 

conditions for all molded composites.  After degassing, the viscosity of each clay-epoxy 

mixture is measured at 26°C using a Brookfield viscometer (Model DV-II+).  Note that 

for clay-epoxy mixtures with 5 and 10 wt% nanoclay, one hour degassing did not 

eliminate all micro air bubbles at the top.  In order to minimize sedimentation of clay 

clusters, additional degassing time was not allowed. 

7.3.3 Molding Procedure 
 
Nanocomposite disks used in this study are fabricated by a custom-made experimental 

molding setup composed of a hydraulic press; two reservoirs for clay-epoxy mixture and 

curing agent; a static mixer; and a center-gated, disk-shaped mold cavity.  Operating the 

molding press forces the clay-epoxy blend and the curing agent out of the reservoirs into 

the mold cavity at a constant flow rate.  Thorough mixing of these fluids is ensured by a 

disposable static mixer, yielding a gel time of about 20 minutes.  Six layers of fiber 
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preform are placed in the 3-mm thick mold cavity prior to filling for all disks 

manufactured in this study.  The details of the molding procedure and experimental setup 

are described in detail elsewhere [21-22].  At the end of mold filling, resin injection is 

stopped and no further post-fill operations are performed in order not to alter void 

morphology or spatial distribution formed during filling.  Molded composite parts are 

then cured for 48 hours at room temperature before demolding, and sequentially oven-

cured for 24 hours at 40°C.  The final molded parts are four composite disks loaded with 

0, 2, 5, and 10 wt% Closite®25A nanoclay, and each containing 13.6% E-glass fibers by 

volume.  Average thickness and radius of the composite disks are 3.1 and 75.0 mm, 

respectively. 

7.3.4 Microscopic Image Analysis 
 
The preform planar isotropy and mold axisymmetry simplify the impregnation into a 

purely radial flow.  Consequently, only radial composite samples are examined.  A radial 

specimen is cut from each disk for voidage assessment.  Radial variation is assessed by 

dividing each 75-mm long sample into five 15-mm long regions along the radial direction 

as shown in Fig. 7.1. 

 

Figure 7.1:  Spatial arrangement of nanocomposite samples into five radial regions for 
microscopic analysis. 

R= 7.5 mm R= 22.5 mm R= 27.5 mm R= 42.5 mm R= 67.5 mm 

Total length= 75 mm 

3.1 mm  

15 mm 

Radial region 1 Radial region 2 Radial region 3 Radial region 4 Radial region 5 

Inlet gate location 
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Microscopic image analysis is considered among the most precise methods for measuring 

void contents [21-25,30-31].  In addition, this technique provides detailed information on 

other important parameters such as void location, shape, and size that cannot be assessed 

by other methods.  Often, microscopic image analysis is used by averaging randomly 

selected images [30-31].  In the current investigation, however, the studied composite 

cross-sections are entirely scanned in order to accurately assess void content and 

morphology.  Voidage features are obtained from images acquired at 200x magnification 

using a PC-based CCD camera mounted on a MEIJI optical microscope.  At this 

particular magnification, every frame displays approximately 0.71 mm x 0.53 mm.  

Hence, 720 frames are captured for each composite sample:  6 frames through the 

thickness and 120 across the length.  The selected magnification of 200x enables the 

assessment of voids as small as the radius of a single fiber, i.e. 7 µm.  Consequently, all 

visually identifiable voids throughout the entire composite samples are included in the 

analysis of void content and morphology.  A total of 15,250 voids are captured manually 

from the four studied composite samples.  Each captured frame is manually processed 

using the image analysis software Image Tool®, which allows the measurement of the 

area, A, and the maximum length, Lmax for each void. 

7.4 Results and Discussion 

7.4.1 Effect of Nanoclay Content on Mold Filling Parameters 
 

Figure 7.2 depicts the effect of nanoclay content on the viscosity of the epoxy.  Both 

nanoclay volume fraction and relative viscosity values are shown with their respective 

95% confidence intervals.  The apparent dynamic viscosity increases moderately from 
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0.65 Pa·s for the neat resin to 1.12 Pa·s for the 5 wt% nanoclay suspension.  A much 

steeper increase is observed for concentrated blends.  For instance, the viscosity of the 

mixture reaches 3.69 Pa·s at 10 wt% clay content.  For low clay concentrations (i.e. φ up 

to 5%), the relative viscosity, 0/ µµ , shows linear behavior consistent with the Einstein 

regime: 

 

φη
µ
µ ][1

0

+= ,     (7.1) 

 
where µ  is the suspension apparent viscosity, 0µ  the viscosity of the liquid resin, and φ  

the filler content.  A linear fit to the data yields a value of ][η =8.7, significantly higher 

than the value for spheres of 2.5, which indicates that the nanoclay cluster sizes are quite 

irregular [33]. 

 

As the nanoclay concentration rises, additional dissipative effects are introduced during 

the flow yielding an increase in the apparent viscosity of the suspension.  Suspensions 

with elevated filler contents are reported in the literature to exhibit non-Newtonian 

behavior and yield higher viscosities [32-35].  Several methods extending the Einstein 

description into the nonlinear, concentrated regime can be used to predict the relative 

viscosity of resin-filler blends.  A popular choice is the semi-empirical Krieger and 

Dougherty model, used recently by different researchers for nanoclay fillers [32-34]: 
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where the relative viscosity, 0/ µµ ,diverges asymptotically as the maximum filler content 

maxφ  is approached.  Rather than fitting the data simultaneously with a two parameter 

nonlinear procedure, the value of ][η  was taken as that obtained earlier, then a single-

parameter nonlinear fit was performed to obtain maxφ .  The solid line in Fig. 7.2 

represents the best fit to the data, which yields maxφ =65%. 

 

The significant increase in apparent bulk viscosity shown in Fig. 7.2 will affect the 

injection pressure.  Knowing that the injection pressure is directly proportional with the 

apparent viscosity [36], one might expect more than two fold increase in molding 

pressure for the resin containing 5 wt% nanoclay.  This increase will be as high as 6- to 

10-fold if in excess of 10 wt% clay is added.  Such substantial increases in injection 

pressure may facilitate the formation of smaller voids throughout the composite.  

However, effective degassing of a highly viscous clay-polymer suspension poses a 

serious problem.  In higher clay loadings, breaking down clay clusters, removing micro-

air pockets, and achieving full dispersion might not be possible by mechanical mixing or 

sonication.  Hence, addition of nanoclay above a critical level may adversely affect the 

final void content in a molded composite. 
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Figure 7.2:  Effect of nanoclay volume fraction on the viscosity of the clay-epoxy mixture. 

Epoxy viscosity, µ0= 0.65 Pa⋅s. 
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The apparent viscosity is not the only parameter affected by filler content, the surface 

tension, γ, of the clay-epoxy mixture and the contact angle, θ, between fiber and clay-

epoxy mixture are affected as well [33-35].  Surface tension and contact angle will 

change the modified capillary number, θγµ cosVCa*= , during molding [17-22].  

Furthermore, the change in Ca* will dictate the dominant void morphology.  For 

example, increase in the viscosity will increase Ca*, thus fostering the presence of intra-

tow voids inside fiber tows [17-19].  However, increases in surface tension and contact 

angle can counterbalance these effects and facilitate the formation of larger inter-tow 

voids. 

7.4.2 Effect of Nanoclay Content on Void Occurrence  
 

Void occurrence of the composites loaded with different nanoclay contents are assessed 

by microscopic image analysis.  Figure 7.3a depicts a microscopic image obtained at 50x 

magnification from the composite molded without nanoclay.  In order to illustrate 

differences in nanoclay contents, scanning electron microscope (SEM) images obtained 

at 50x magnification from the 2%-, 5%-, and 10%-nanocomposites are shown in Figs. 

7.3b, 7.3c, and 7.3d, respectively.  Dispersed nanoclay clusters appear as light grey 

objects of various sizes in Figs. 7.3b, 7.3c, and 7.3d. 

 

Resulting void contents and void areal densities of all molded composites are presented 

in Fig. 7.4.  Void occurrence is observed to increase significantly with increasing 

nanoclay content.  In the composite without nanoclay, 2.1% void content is obtained; 

whereas with 5 and 10 wt% nanoclay, void contents are increased to 5.1 and 8.3%, 
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respectively.  However, void content is observed to decrease to 0.7% in the composite 

with 2 wt% nanoclay.  This initial reduction in void occurrence suggests that the addition 

of 2 wt% nanoclay possibly shifts the modified capillary number to a more favorable 

range, thus helping reduce the void fraction.  As discussed in the introduction, 

impregnation performed at a higher modified capillary number range is known to 

augment formation of intra-tow microvoids [17-22].  Reducing void formation in these 

cases can only be attained by lowering the modified capillary number, which implies a 

balance between the viscous flows outside fiber tows and the capillary flow inside fiber 

tows.  If such a favorable balance is achieved, then the fluid front inside and between 

fiber tows progress at the same rate, thus minimizing entrapment of voids by the 

advancing fluid front.  Above 2 wt% nanoclay however, void content increases 

significantly.  In addition, void areal densities of 16.6 and 41.6 voids/mm2 attained in the 

composites containing 5 and 10 wt% nanoclay, respectively, are sharp increases from the 

5.2 voids/mm2 registered in the composite molded without nanoclay.  These steep 

increases in void occurrence might be a result of the initial bubble content or the 

formation of additional voids via mechanical entrapment.  Detailed analysis of void 

morphology might help understand dominant void formation mechanisms for each 

nanoclay concentration. 
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(3a) composite molded without nanoclay (3b) 2%-nanocomposite 

    
(3c) 5%-nanocomposite   (3d) 10%-nanocomposite 

     
 

Figure 7.3:  (a) A representative microscopic image obtained at 50x from the composite 
molded without nanoclay at 13.6% fiber content by volume; and representative SEM 
images obtained at 50x from nanocomposites with (b) 2, (c) 5, and (d) 10% nanoclay 

content by weight. 
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7.4.3 Effect of Nanoclay Content on Void Location 
 

Proximity of voids to fiber tows can help understand their formation mechanisms as 

discussed in the introduction.  Three different void locations are thus introduced in order 

to classify observed voids in the molded parts.  First location is defined as areas primarily 

composed of reinforcing fibers.  Voids in this region are intra-tow voids situated within 

fiber bundles and are referred to as preform voids.  Second location is defined as areas 

rich in matrix without fibers.  Voids encountered in this location are totally surrounded 

by the clay-epoxy blend and are referred to as matrix voids.  The third location is defined 

as the transitional areas between the two other locations defined here.  Voids situated in 

this location are referred to as transition voids and are always positioned adjacent to, but 

not within fiber bundles. 

 

Figure 7.5 depicts contributions from voids encountered at different locations to the total 

voidage of the composites molded with different clay contents.  Matrix voids are 

negligible in both the 0%- and the 2%-nanocomposite as they contribute with almost 

0.1% to their respective void content.  However, matrix voids are observed to increase 

significantly above 2 wt% clay content reaching 1.59% and 5.81% for the composites 

containing 5 and 10 wt% nanoclay, respectively.  Similar trends are observed for void 

areal densities.  This exponential increase in matrix voids occurrence at higher clay 

concentration can only be explained by elevated initial air bubble levels prior to injection 

since matrix voids are not likely to form by mechanical entrapment.  Apparently, 

mechanical mixing followed by sonication and degassing were not effective in removing 

the micro-air pockets within clay clusters when the clay content exceeded 5 wt%.  On the 
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other hand, sonication and 60 minutes of degassing led to almost void free resins 

containing 0 and 2 wt% clay content. 

 

Preform voids, entirely formed by mechanical entrapment, show a different trend.  The 

addition of clay seems to induce a large reduction in void content originating from 

preform voids.  Preform void content is observed to drop from 0.83% in the composite 

without clay to 0.20, 0.30 and 0.34%, in the 2%-, 5%-, and 10%-nanocomposites, 

respectively.  Simultaneously, preform void areal density slightly increases from 2.49 to 

2.61, 5.34, and 5.12 voids/mm2.  These large drops (more than 60%) in preform void 

content after the addition of nanoclay to the resin, coupled with slight increases in void 

areal density indicate that preform voids became significantly smaller at higher clay 

concentrations.  This reduction in the average size of preform voids is likely due to the 

increased molding pressure experienced during impregnation.  One can also deduce that 

adding nanoclay to the resin helps reduce voids formed by mechanical entrapment due to 

a lower range of modified capillary number as discussed earlier. 
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Figure 7.4:  Void contents and void areal densities of composites with different clay 
contents molded with 13.6% volume fraction of E-glass fibers. 
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Figure 7.5:  Contributions from voids encountered at different locations to overall voidage 

in nanocomposites with different clay contents: (a) void content, (b) void areal density. 
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7.4.4 Effect of Nanoclay Content on Void Size 
 

In order to investigate void size distributions within the molded composites and verify the 

explanations elaborated above, an equivalent diameter, Deq, is introduced using the 

measured void area, A: 

 

π
ADeq

4
= .     (7.3) 

 

The void size distributions for the different composites are presented in Fig. 7.6.  The 

composite molded without nanoclay has an average void size of 60 µm with a standard 

deviation of 39 µm; and the highest frequency of 17.70% is registered for voids with 

equivalent diameters between 30 and 40 µm.  The composite with 2% nanoclay has a 

lower average void size of 39 µm with a standard deviation of 23 µm, and registered the 

highest frequency of 21.76% for voids with equivalent diameters between 20 and 30 µm.  

The 5%-nanocomposite, on the other hand, has an average void size of 50 µm with a 

standard deviation of 37 µm.  The highest frequency of 18.24% is registered for voids 

with equivalent diameters between 20 and 30 µm.  The 10%-nanocomposite has an 

average void size of 44 µm with a standard deviation of 21 µm.  The highest frequency of 

24.77% occurs for voids with equivalent diameters between 40 and 50 µm. 

 

Voids are observed to be, in average, smaller after the addition of nanoclay at all 

concentration levels.  This finding is expected since higher clay content would result in 

higher viscosity and thus a proportionally higher molding pressure.  A higher molding 

pressure is in turn known to shrink formed voids, leading to smaller voids [20-22].  The 
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apparent viscosity of the impregnating resin increased by 17.37, 72.37, and 467.54% after 

the addition of 2, 5, and 10 wt% nanoclay, respectively, which would translate into the 

same increases in molding pressure.  However, average size of voids formed in the 2%-

nanocomposite are found to be considerably smaller than those formed in the 5%- and 

10%-nanocomposites.  To investigate this further, the size distributions of voids 

encountered at different locations need to be studied.  Figure 7.7 depicts average sizes of 

voids encountered in different location of each composite, along with their standard 

deviations.  First, note that preform voids are always smaller, in average, than transition 

and matrix voids.  In addition, preform void size is observed to decrease with increasing 

clay content as described earlier.  However, matrix and transition voids do not exhibit a 

similar steep reduction.  For instance, the average void sizes calculated for voids from the 

matrix and transition locations of the 5%-nanocomposite are very similar to those 

calculated for the composite molded without nanoclay.  Therefore, higher average void 

sizes observed in the 5%- and 10%-nanocomposites are attributed to much higher 

occurrences of matrix and transition voids, which are on average much larger than 

preform voids. 
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Figure 7.6:  Void size distributions for the composites containing different nanoclay 
contents molded with 13.6% volume fraction of E-glass fibers. 
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Figure 7.7:  Effect of nanoclay content on average void sizes and on their respective 
standard deviation for voids encountered in different location of all nanocomposites 

molded with 13.6% volume fraction of E-glass fibers. 
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7.4.5 Effect of Nanoclay Content on Void Shape 
 

Figure 7.8 shows representative microscopic images of different voids encountered 

within the molded composites obtained at 200x magnification.  As seen in Fig. 7.8, 

different void shapes are observed within the studied composites.  For example, Fig. 7.8a, 

obtained from the composite molded without nanoclay, depicts a mostly circular matrix 

void and an irregularly shaped preform void.  Figure 7.8b, obtained from the 2%-

nanocomposite, depicts a circular transition void and a medium elongated transition void.  

Void shapes are quantitatively analyzed by categorizing them into two groups:  irregular 

and spherical voids.  Irregular voids are defined as those within which there exist two 

different points that can be connected in a straight line that intersects the void boundary.  

The remaining voids are mostly spherical, although most of them do not present a perfect 

circular symmetry.  To classify this variation in roundness, a shape ratio, Rs, is introduced 

for each void as the equivalent diameter obtained from Eq. 3 divided by the maximum 

measured length, L max, within a void: 

 

maxL
D

R eq
s = .          (7.4) 

 
Note that sR = 1 represents ideal circles, and as the shape ratio decreases, voids become 

more elongated.  Using this shape ratio, spherical voids are further divided into two 

categories:  circular voids with shape ratios above 0.95 (0.95 < sR ≤ 1), and elliptical 

voids with shape ratios lower than 0.95.  For instance, the elongated transition void in 

Fig. 7.8b and the top large elongated transition void in Fig. 7.8c both present an sR = 

0.76, while the smaller elongated void shown in Fig. 7.8c has an sR = 0.91. 
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Figure 7.8:  Representative images obtained at 200x magnification of different voids 
encountered within the composite molded with 13.6% volume fraction of E-glass fibers 

and containing:  (a): 0%; (b): 2%; (c): 5%, and (d): 10% nanoclay by weight. 
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Using the shape classification defined above, contributions to void content from voids 

with different shapes are calculated.  The resulting shape distributions of voids 

encountered within the studied composites are presented in Fig. 7.9.  Circular and 

elliptical void content are observed to increase considerably with increasing nanoclay 

content; conversely, irregular void content is observed to decrease. 

 

For the composite molded without nanoclay, circular and elliptical voids contribute 

respectively 0.48 and 0.45% to the total void content.  Circular voids increase 

dramatically reaching 2.56% in the 5%-nanocomposite and 5.90% in the 10%-

nanocomposite, while elliptical void content increases only to 2.21 and 2.16%.  Further 

analysis of void data indicates that in the 5%-nanocomposite, more than 95% of circular 

voids are encountered within the matrix or transition locations (45.74% and 49.61% 

respectively).  Similarly, more than 75% elliptical voids in the 5%-nanocomposite are 

concentrated in the matrix or transition regions.  Even a higher percentage of circular and 

elliptical voids found within the 10 wt%-nanocomposite are categorized as matrix or 

transition voids.  More than 98% of circular voids and 92% of elliptical voids are 

encountered within the matrix or transition locations.  Since the vast majority of circular 

and elliptical voids in both 5%- and 10%-nanocomposites are located in matrix or 

transition regions, one can conclude that the voidage increases experienced by voids with 

both circular and elliptical voids shown in Fig. 7.9 originate from the micro-air pockets 

embedded in larger nanoclay clusters, which are transported by the clay epoxy mixture 

during impregnation. 
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Figure 7.9:  Contributions to void content from voids with different shapes as a function of 

nanoclay content. 
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On the other hand, irregular voids contribute with 1.24% to the total void content of the 

composite molded without nanoclay, i.e. more than 50% of the total void content.  After 

the addition of 2, 5, and 10 wt% nanoclay, the contribution of irregular voids to the total 

void content drops significantly to 0.17, 0. 33 and 0.29%, respectively.  These observed 

drops can be attributed to the changes induced in preform voids since most preform voids 

are confined to the narrow spacing between single fibers and thus present irregular 

geometries.  As observed earlier in Fig. 7.5, preform voids become much smaller after 

the addition of nanoclay, thus representing a smaller percentage of the total voids.  Most 

likely, the increase in molding pressure at higher clay levels also contributes to the 

formation of more circular voids as the void deformation induced by flow is 

counterbalanced by pressure. 

7.4.6 Effect of Nanoclay Content on Radial Voidage Variation 
 

Radial variation of voidage in the molded composites is examined in order to assess the 

effect of nanoclay content on spatial void arrangements.  Each composite sample is 

divided into five 15 mm-long radial regions as shown in Fig. 7.2, and void content in 

each region is calculated.  Figure 7.10 depicts radial variations of void content in the 

molded composites.  Void contents in the composites containing nanoclay do not seem to 

show clear radial trends.  However, radial void contents of the composite molded without 

nanoclay appear to follow predictions of the capillary analysis [17-22,37-38].  Because 

the mold filling is performed at a constant injection rate, the fluid front velocity decreases 

with increasing distance from injection gate.  For the range of modified capillary number, 

Ca*, of the composite molded without nanoclay, the viscous flow leads the capillary flow 
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[21-22].  Thus, slower fluid front velocity is expected to trap fewer and smaller voids 

inside fiber bundles towards the outer edges of the disk [37-38].  This latter fact might 

explain the sharp decrease of void content from 3.96 to 1.26% between the first and third 

radial regions of the composite molded without nanoclay.  Matrix and transition voids 

formed during mold filling are relatively free to move and might be transported to the last 

two radial regions by the flow yielding slightly higher void contents of 1.55 and 1.70% in 

the fourth and fifth regions, respectively.  The 2%-nanocomposite, on the other hand, 

exhibits lower void contents limited between a minimum of 0.51% at the third radial 

region and a maximum of 0.88% in the fourth.  These comparable low void occurrences 

are consistent with an equilibrium between the viscous and capillary flows during mold 

filling as suggested earlier.  Finally, no clear radial trend in void content could be 

detected for the 5%- and 10%-nanocomposites since the air bubbles embedded in clay 

clusters dominate the void morphology, as well as size and location distributions. 

 

In order to investigate the radial variation of voids formed during the impregnation 

process, only those voids formed by mechanical entrapment by the fluid front are 

utilized.  Hence, the effect of pre-existing voids embedded in or trapped by the larger 

clay clusters is eliminated.  This is achieved by considering the radial variation of only 

preform voids as presented in Fig 7.11.  Preform void content for the composite molded 

without nanoclay is observed to decrease gradually from 2.09% in the first region to 

0.35% in the fifth as predicted by the capillary number analysis.  For the 2%-

nanocomposite, preform void content is also observed to decrease from 0.30 to 0.16% 

between the first and fifth regions.  The much lower void occurrences corroborate that a 

certain equilibrium is reached between viscous and capillary forces as suggested earlier.
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Figure 7.10: Radial variation of void content in the composites molded with 13.6% volume 

fraction of E-glass fibers and containing 0, 2, 5, and 10% nanoclay. 
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According to the capillary number analysis, void content of voids formed by mechanical 

entrapment (i.e. preform voids) is expected to decrease with decreasing fluid front 

velocity, i.e. away from the inlet [21-22,37-38].  Yet, radial variations of the preform 

void content obtained form both 5%- and 10%-nanocomposites show a slight increase 

with increasing radial distance.  Preform voids gradually increase from 0.24 to 0.38% 

along the five radial regions of the 5%-nanocomposite, while a similar 45% increase 

from 0.27 to 0.39% is observed for the 10%-nanocomposite.  Again, the low occurrence 

of preform voids implies the existence of an equilibrium between viscous and capillary 

flows.  However, the radial increases can be a result of changes in the bulk properties of 

the impregnating fluid such as the apparent viscosity, contact angle, and surface tension 

yielding higher voids entrapment inside the preform.  Breakdown of nanoclay cluster in 

the radial direction has been reported for similar composite disks [39], which would 

contribute to the variation of bulk fluid properties during mold filling.  Clay filtration is 

also probable, especially for 5 and 10 wt% nanoclay content, yielding lower 

concentrations of clay in the impregnating fluid towards the outer edge of the molded 

disks.  Thus, nonuniform values of apparent viscosity, surface tension, and contact angle 

are expected at the fluid front during mold filling.  These changes in bulk fluid properties 

and the radially decreasing fluid front velocity slightly augment mechanical entrapment 

of voids at higher clay concentrations as shown in Fig. 7.11. 
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Figure 7.11:  Radial variation of preform void content in the composites molded with 13.6% 

volume fraction of E-glass fibers and containing 0, 2, 5, and 10% nanoclay. 
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7.5 Conclusions 
 

Effect of adding nanoclay on the formation, morphology, and spatial distribution of voids 

in resin transfer molded nanoclay/E-glass/epoxy composite disks are presented.  Mixing 

of Closite®25A nanoclay with the low viscosity EPON 815C resin leads to a significant 

increase in the resin viscosity, and thus in the injection pressure.  Almost six-fold 

increase in the injection pressure is estimated for the resin containing 10 wt% nanoclay.  

Overall void content is observed to increase from 2.1% in the composite disk molded 

without nanoclay to 5.1 and 8.3% in the composites containing 5 and 10 wt% nanoclay, 

respectively.  The addition of 2 wt% nanoclay yields the lowest void content at 0.7%.  

The increased void content in composites molded with 5 and 10 wt% clay is due to the 

pre-existence of air pockets embedded in clay clusters, which could not be removed by 

mechanical mixing, sonication, or degassing.  These air pockets usually appear as 40- to 

60-µm, circular voids surrounded by the epoxy resin, thus forming bulk of so-called 

matrix voids.  Voids are observed to be smaller on average after the addition of nanoclay 

at all concentrations.  Presence of nanoclay in the resin induced at least 60% reduction in 

voids located within the fiber preform.  Irregularly shaped voids are also observed to 

decrease with increasing nanoclay content.  Along the radial direction of the molded 

disks, an increase in preform voids, which are formed by mechanical entrapment, is 

observed at higher nanoclay levels. 
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8  Conclusions and Recommendations 
 

RTM is a successful process in manufacturing near-net-shape, geometrically complex 

composite parts.  However, RTM composites usually suffer from the formation of flow-

induced defects such as voids and dry regions.  Voids are formed during mold filling step 

of RTM and similar LCM processes because of two simultaneous competing flows.  One 

is the flow through the larger gaps between fiber tows, and the second in the capillary 

penetration of the resin inside fiber tows.  For these LCM processes to reach full 

potential, better and faster molding cycles must be developed and the quality of molded 

composites must be improved.  In this study, a systematic analysis has been performed on 

void formation and removal in such composites.  In addition, in light of the reported 

performance enhancements in polymers modified with clay silicates, nanoclay effects on 

void formation are investigated.  It is hoped that this study would provide useful 

guidelines for the development of the optimal molding process.  Results obtained in this 

study are believed to be general in nature and are applicable to the other LCM processes 

with similar flow kinematics.  Major conclusions that can be drawn from this study are 

presented henceforth. 

• Analysis of flow-induced voids through modified capillary number: 

The formation of flow-induced voids in RTM composites was studied for different 

injection rates through the modified capillary number analysis.  Void contents presented 

in chapter 3 agree well with results given in other studies for the same values of modified 

capillary number.  In addition, more than 93% of the voids formed in the composite 

studied in chapter 4 are observed within the preform or next to a fibrous region, 

corroborating expected results from the modified capillary number analysis.  Therefore, 
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modified capillary number analysis reveals to be a powerful tool in predicting void 

formation by mechanical entrapment. 

• Establishing packing as an effective void reduction technique for molded 

composites: 

Packing, i.e. applying a post-fill pressure, helped significantly reduce void contents.  For 

instance, overall void content dropped more than 92% with the application of a post-fill 

pressure as low as 570 kPa.  In addition, packing helped reduce average void size from 

59.3 µm in the unpacked composite to 31.7 µm in the packed composite.  Irregular void 

occurrence was also reduced considerably after applying the 570 kPa post-fill pressure.  

Thus, packing not only reduces the overall void content, but also reduces considerably 

the occurrence of large irregular voids, potential inducers of early crack growth.  In 

addition, applying higher packing pressures resulted in lower void occurrence as 

presented in chapter 3, although an optimum post-fill pressure should exist before drastic 

measures would be needed to ensure mold sealing.  These results establish packing as an 

effective method for void reduction in molded composites. 

• Complexity of spatial void distribution: 

During mold filling, void formation and transport mechanisms often interact resulting in 

complex void spatial distributions.  Along the flow direction of the studied composites, 

combined effects of void formation by mechanical entrapment and void mobility are 

shown to yield a complex radial void distribution.  It is shown that fewer voids are 

trapped mechanically with increasing distance from the inlet and most of the medium and 

small voids that are mobile migrate towards the exit during resin injection.  In addition, 

Variation up to 17% of the average void content of 2.15% is observed through-the-
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thicknesses of the studied RTM composite.  These results underline the importance of 

considering both void formation and transport mechanisms in predicting void spatial 

arrangement within molded composites.  

• Importance of void three-dimensionality: 

Voids are often considered two-dimensional since most void measurement techniques 

that allow assessment of void size, shape, and spatial distribution only use specimen 

surfaces.  However, this simplification is found to critically affect our perception of void 

actual morphology distributions.  Features of void three-dimensionality were assessed by 

considering both through-the-thickness and planar adjacent surfaces of studied 

composites.  Analyzing void distributions from both views allowed a better 

understanding of void actual morphology and arrangements.  For instance, relatively 

large cylindrical voids were observed in cigar shapes in the planar surfaces, whereas 

these voids only appear as small irregular or elliptical voids on through-the-thickness 

surfaces.  These findings underscore the importance of developing adequate methods for 

considering void three-dimensionality, especially when correlating void occurrence with 

the composite performance. 

• Addition of nanoclay up to 10 wt% is found to result in the formation of fewer 

voids by mechanical entrapment: 

Addition of nanoclay to the impregnating liquid significantly increases its viscosity, 

yielding higher molding pressures, which in turn results in the formation of smaller voids, 

and facilitates void shrinkage and transport.  Nanoclay addition is also believed to lower 

the range of modified capillary number values experienced during molding, thus leading 

to the formation of fewer voids by mechanical entrapment.  However, the overall void 
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content increased at higher clay concentrations due to preexisting air bubbles in the clay-

epoxy mixture that can be eliminated by developing better mixing techniques.  Thus, 

nanoclay addition is believed to help reduce void formation by mechanical entrapment in 

molded composites, in addition to its potential performance enhancement reported in the 

literature. 

 

Understanding the effects of different parameters on void formation in RTM and LCM 

composites can help develop powerful predicting tools, and ultimately help develop the 

optimal molding process.  In order to accomplish this latter goal, the following studies, 

among others, are recommended for future work: 

• Investigate the effect of other parameters such as fiber content and preform 

architecture on void formation and morphology in RTM composites. 

• Study the effect of exit vents placement on void morphology within the same 

molded composite. 

• Characterize actual three-dimensional void morphology distribution in RTM 

composites. 

• Correlate void morphology distribution to composite properties such as stiffness, 

moisture absorption, and others through finite element analysis. 

• Compare packing to other popular void reduction techniques such as bleeding. 

• Investigate nanoclay filtration along the flow direction in RTM clay/fiber/epoxy 

composites and its effect on void morphology distribution. 


