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Chapter 1 
 

Introduction 
 

Background 
 

The main thrust of pollution control over the last 25 years under the Clean Water 

Act (CWA) has been on point sources of pollution through the National Pollutant 

Discharge Elimination System (NPDES) permitting process. Although the quality of 

water has improved under the aforementioned system, the goals of the CWA have not 

been attained in a number of streams and lakes (Sohngen and Yeh, 1999, Bosch, 2003). 

Data from the U.S. EPA indicate that nonpoint sources of pollution are now the major 

cause of water quality impairment of water bodies (U.S. EPA, 1998). In light of this, the 

Total Maximum Daily Load (TMDL) program has shifted the focus of water quality 

management from an effluent-based to an ambient-based system, where the critical issue 

is whether or not the waterbody is meeting its intended uses (Bosch, 2003). Section 

303(d) of the 1972 Clean Water Act requires every state to identify surface waters that do 

not, or tend to not, meet their specified ambient water quality standards even with the 

implementation of the minimum prescribed point source pollution control (Jin et al., 

2005a, Bosch, 2003). For each listed water body, a state must establish a plan to attain a 

TMDL (Total Maximum Daily Load) - the maximum allowable loadings of pollutants 

that can be delivered to the water without impairing the intended uses (Jin et al., 2005a, 

Bosch, 2003).
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The reference stream method as recommended by the Environmental Protection 

Agency (U.S. EPA, 1999a), is certainly the most widely used TMDL method (Jin et al., 

2005a). Under this method, the target sediment load of an impaired stream is the load of 

its reference stream that is defined as a non-disturbed stable stream that has a natural 

sediment transport, similar physiographical properties, and same Rosgen’s stream type 

(Rosgen, 1994) as the impaired stream.  

Knowing the amount of sediment load that enters both the reference and impaired 

streams is very important in the implementation of sediment TMDL (Jin et al., 2005a). 

Different methods have been used by researchers to quantify the sediment load in streams 

with either little or no observed data. In Georgia, for example, Keyes and Radckiffe 

(2002) recommended a 20-30 mg/l sediment concentration in restoring impacted or 

impaired streams. The aforementioned value was based on data gathered from various 

reference streams in baseflow conditions. 

Among the basin wide hydrological models, the Soil and Water Assessment Tool 

(SWAT) is probably the most widely used model in estimating flow and sediment 

loading in the watershed (Jin et al., 2005b; Di Luzio et al., 2002; Duda et al., 2001; 

Mayers et al., 2001). SWAT was developed to predict the effects of different agricultural 

management scenarios on water quality, sediment and pollutant loadings in watersheds 

with different soil types, land use and management conditions over long periods of time 

(Neitsch et al., 2002). It is a long term yield model that computes the major hydrologic 

cycle parameters on a daily time step. 
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While many studies have been focused on sediment loadings as the target in 

reverting impaired streams, less has been done on the differences in habitat between the 

reference and impaired streams (Jin et al., 2005c).  

 
Overview of the SWAT Model 

 

The Soil and Water Assessment Tool (SWAT) is a distributed hydrologic model 

developed by the United States Department of Agriculture – Agricultural Research 

Service (USDA-ARS) (Neitsch, et al., 2002). It results from the merging of the two 

models - the SWRRB (Simulator for Water Resources in Rural Basins) (Williams et al., 

1985; Arnold et al., 1990) and ROTO (Routing Outputs to Outlets) (Arnold, et al., 1995). 

SWAT was developed to overcome the limitations of the SWRRB in terms of area 

coverage and watershed subdivisions. SWRRB can only be utilized for watersheds up to 

a few hundred square kilometers in size and is limited to ten sub-basins (Neitsch, et al., 

2002). With SWAT large watersheds can be modeled. The HUMUS (Hydrologic Unit 

Model for the United States) project used SWAT to model 350 USGS 6-digit watersheds 

in the 18 major river basins in the US (Srinivasan, et al., 1993). Other models that 

contribute to the development of SWAT are CREAMS (Chemicals, Runoff, and Erosion 

from Agricultural Management Systems) (Knisel, 1980), GLEAMS (Groundwater 

Loading Effects on Agricultural Management Systems) (Leonard, et al., 1987), and EPIC 

(Erosion-Productivity and Impact Calculator) (Williams et al., 1984). 

SWAT is highly capable of simulating watershed hydrologic response, erosion, 

sediment and nutrient loading in the watershed. The surface runoff is computed by either 

the SCS runoff curve number method (Soil Conservation Service, 1972, 1985) or by 
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Green-Ampt infiltration equation (Green and Ampt, 1911) and the sediment transport is 

calculated using the Modified Universal Soil Loss Equation (MUSLE) (Williams, 1975). 

For modeling purposes, SWAT approaches a watershed by partitioning it into several 

subwatersheds or subbasins (Neitsch et al., 2002). The subbasins are further subdivided 

into hydrologic response units (HRUs) – lumped land areas within the subbasin that are 

comprised of unique land cover, soil and management combinations (Neitsch et al., 

2002). Processes within a HRU are computed independently, and the total yield for a 

subbasin is the sum of all the HRUs it contains (White, 1999). 

 
Overview of the Yang’s Unit Stream Power Formula 

Stream power theory by Yang (1972) can be used to calculate soil detachment and 

transport by flowing water. Water on the soil surface has potential energy by virtue of its 

elevation above some arbitrary datum. This energy becomes available to detach and 

transport soil particles as the water moves downslope. When flow goes from upstream to 

downstream there is a loss of potential energy. This loss in potential energy (gravitational 

head) may be converted to kinetic energy (increased velocity head), increased pressure 

head or can be used to do work against friction. If the velocity and pressure heads do not 

change, this means the change in potential energy is used to overcome friction. The 

friction force is the shear force or drag used to transport sediment. Yang (1972) defined 

the unit stream power as the channel velocity-slope product. The rate of energy per unit 

weight of water available for transporting water and sediment in an open channel with 

reach length x and total drop of Y (Yang, 2003): 

dY dx dY VSdt dt dx= =  (1) 
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where VS (velocity-slope product) = unit stream power. 
 

Overview of Reference and Impaired Streams 

A reference stream is regarded as a non-disturbed, stable stream that has “natural” 

sediment transport rates and amounts (Jin et al., 2005c) (Simon, et al., 2002), while an 

impaired stream is viewed as a disturbed stream where erosion and sediment transport 

rates and amounts are high enough to affect the biological communities and other 

designated uses of the stream (Simon et al., 1999). Sediment loads in reference streams 

are taken as the target load for restoration of the impaired streams (U.S. EPA, 1999a; 

Kuhnle and Simon, 2000; Hawkins, 2003).  As soon as the sediment load in an impaired 

stream is reduced to the target level, it is hoped that the impaired stream will regain its 

natural condition through time and the instream sedimentation processes in the impaired 

streams will no longer be a problem (Jin et al., 2005c). 

In implementing the reference stream method, the impaired streams are required 

to be the same in physiographical properties, and should be situated in the same 

ecological region (eco-region) as their reference streams (Jin et al., 2005c). Rosgen’s 

system (Rosgen, 1994) is one of the most widely used stream classifications and 

recommended by the EPA in finding the reference stream for the impaired stream. 

However, in the Rosgen’s classification some of the stream types are, by definition, 

unstable as argued by Kuhnle and Simon (2000). These are stream types D, F, and G 

(Rosgen, 1996) which would be expected to produce and transport enhanced amounts of 

sediment and represent “impacted”, if not “impaired” conditions. The channel evolution 

concept, an alternative scheme for sediment TMDL was first proposed by Schumm 

(1984) (later modified by Simon and Hupp, 1986 and Simon, 1989). The process of 
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channel evolution is divided into six stages. The stage I (pre-modified) and stage VI (re-

stabilized) represent the stable stage, while the stages II through V correspond to unstable 

stages. In sediment TMDL analysis, only stages I and VI can be used to represent the true 

“reference” stream conditions to analyze the background or natural transport rates (Simon 

et al., 2002). 

 
Study Areas 

 
Two streams located in the Central Oklahoma/Texas Plains (COTP) Ecoregion of 

Oklahoma State were studied. Upper Black Bear Creek was classified as the reference 

stream, while Quapaw Creek was considered as the impaired stream. The relative 

location of each stream is shown in Figure 1.1. The stream channel main characteristics 

and land use land cover along with soil type in each watershed are presented in Tables 

1.1 and 1.2 respectively. All Topo Maps software at a scale of 1:24,000 was used to 

measure the channel slope with less than 3 cm (0.1 ft) error of measured elevation (Jin et 

al., 2005a). Other measurements were taken on a 400-m stream reach equally divided into 

twenty 20-m segments. The Oklahoma Conservation Commission (OCC) did all the 

measurements according to the EPA Rapid Bioassessment Protocol V (U.S. EPA, 

1999b). All the information in each category shown in Table 1.1 is the average value of 

the twenty measurements. Measurement of water depth was taken at the baseflow 

condition. Channel bank slope and depth are the average values of the left and right 

banks. Visual measurement was used to determine bed materials. It might be inaccurate, 

but considering the fact that this is the standard survey procedure used by engineers in 

stream channel survey (Jin et al., 1995a), the data are being used with the expectation that 

Yang’s equation will work for any river with similar data. The surveyed bed material was 
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categorized into five classes: silt and clay (Si&C) (diameter less than 0.1mm), sand (SND 

(0.1~2.0mm), gravel (GVL) (2~50 mm), cobble (CBL) (50~250 mm), and boulders 

(BLD) (greater than 250mm). Information about land use and soil type for each 

watershed was identified using SWAT from USGS Land Use Land Cover and STATSGO 

soil databases respectively. 

 

#S

#S

Ave. Annual Precip (in)
15 - 20
20 - 26
26 - 31
31 - 36
36 - 42
42 - 47
47 - 52
52 - 58
58 - 63

County
#S Reference  Stream
#S Impaired Stream

Upper Black Bear Creek               

Quapaw Creek
N

Figure 1.1. The relative location of the studied streams 
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Table 1.1. Stream Channel Main Characteristics 

D50 mm (%) 
Name County Channel 

Slope 
(m/m) 

Water 
Width 

(m) 
 

Bank 
Slope 

(ο)
Water 
Depth 
(m)a 0.1< 

(Si&C) 
0.1~2.0 
(SND) 

2~50 
(GVL) 

50~250 
(CBL)

Manning’s 
n

Upper 
Black 
Bear 
Creek 

Noble 0.0003 10.9 58.9 1.0 36.6 2.6 11.1 49.7 0.04 

Quapaw 
Creek 

Lincoln 
0.0001 10.4 79.6 0.1 5.5 90.2 0 4.3 0.03 

aAverage water depth in baseflow condition 

Table 1.2. Land Use Land Cover (%) and Soil Composition (%) 

Name Area 
(km2)

Agri – 
cultural 

Range Pasture Forest Urban Soil Composition 

Upper 
Black Bear 
Creek 

1400 43.8 42.4 9.8 3.8 0.2 

Renfrow, 61.4; 
Grainola, 9.7; Port, 
9.7; Bethany, 8.3; 
Norge, 7.9; Niotaze, 
1.9; Shidler, 0.7; Agra, 
0.4 

Quapaw 
Creek 

1370 1.7 48.1 3.2 38.0 9.0 
Darnell, 81.2; 
Kirkland, 7.0; Zaneis, 
4.8; Keokuk, 3.5; 
Renfrow, 1.8; Eufaula, 
1.7 
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Research Objectives 
 

This paper is aimed at achieving the following objectives: 

1. Estimate the sediment loading from the watershed to the reference and 

impaired streams using the SWAT model. The computed sediment loadings will be 

compared to the sediment transport capacity of the two streams. Yang’s unit stream 

power formula will be used to calculate the sediment transport capacity in both streams.   

2. Compare the differences between the impaired and reference streams in terms 

of parameters on the micro-scale habitats (such as substrate, cover, and flow condition), 

macro-scale habitats (such as channel geometry and sediment deposition), and parameters 

evaluating riparian conditions and bank structure (such as bank stability, vegetation, and 

streamside cover).
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Chapter 2 
 

Literature Review 
 

The Use of SWAT Model in Sediment Estimation 
 

SWAT has been used in various studies involving total maximum daily loads 

(TMDLs) because of its capability to estimate nonpoint source pollutants like sediment. 

(Santhi et al., 2001; Kirsch et al., 2002; Storm et al., 2003; Tolson and Shoemaker, 2004). 

In Texas, SWAT was used for the development of the total maximum daily load (TMDL) 

program in North Bosque river watershed where point and nonpoint sources of pollution 

are of a problem. The watershed is 4,277 km2 wherein land use is rangeland and pasture 

for the most part with some cropland in the southern portion.  A total of nearly 40,500 

dairy cattle are in this watershed and the dairy manure from these animals is applied to 

fields that cover about 94.5 km2. Although, the main focus of the study is phosphorous as 

a main pollutant and not sediment, it showed that SWAT could be an important tool for 

studying the impacts of different management scenarios for pollution control from both 

point and nonpoint sources in large watersheds (Santhi et al., 2001). 

The Rock River Basin which lies within the glaciated portion of south central and 

eastern Wisconsin was studied using SWAT by Kirsch et al. (2002) to predict the 

sediment and phosphorous loads. This watershed covers about 9,708 km2 and has nearly 

6,265 total river kilometers, 3,089 km of which are considered as perennial. Agriculture 

is found to be the dominant land use which accounts for 62%, followed by 11% grassland
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and pasture, and 10% forest. The agricultural portion of the watershed is characterized by 

a continuous corn and corn-soybean rotations in the south to a mixed dairy, feeder 

operations, cash cropping and muck farming towards the north. The results of this study 

show that under the existing conditions, 764,000 kg of phosphorous (of which 59% 

comes from nonpoint sources) goes into the Rock River and its tributaries, while 

approximately 160,000 tons of sediment enters the streams and surface water bodies on 

an average annual basis.  

Storm et al. (2003) used SWAT along with Water Erosion Prediction Project 

(WEPP) to estimate the nonpoint pollution source component of the Fort Cobb Basin 

TMDL. Fort Cobb Basin is located in southwestern Oklahoma. It covers an area of about 

804 km2 and encompasses three counties: Caddo, Washita and Custer. In the 1998 

Oklahoma 303(d) list Fort Cobb reservoir, together with the six stream segments in its 

basin, was identified as impaired due to nutrients, pesticides, siltation, suspended solids 

and unknown toxicity. Roads and bar-ditch erosion, which accounted for 2.1%, was 

estimated by WEPP, while sediment loads from upland areas (which are dominated by 

agricultural land use) was predicted using SWAT. The combined sediment loads 

calculated by the two models is 292,000 metric tons annually (Storm et al., 2003).  The 

results of this study based on SWAT simulation indicate that sediment loads would be 

reduced by as much as 55% if no-till practices were adopted, and if all crop land (row 

crop and small grains) would be converted to pasture the sediment loads would be 

lowered by 68%.  

In the study of the Cannonsville Basin located in Upstate New York, SWAT was 

used to identify and quantitatively evaluate the long term effects of numerous sediment 
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and nutrient management options for mitigating loading into the reservoir (Tolson and 

Shoemaker, 2004). The Cannonsville reservoir – a major water supply reservoir for New 

York City has historically experienced water quality problems brought about by sediment 

and nutrient loading, especially phosphorous. The Cannonsville Basin covers an area of 

1178 km2 and is predominantly agriculture and forest while less than 0.5% of the basin is 

urban. The average slope of the lands within the watershed is approximately 19% with an 

elevation of 285 m and 995 m above mean sea level in the lowland areas and hilltops 

respectively. The results of the study show that the SWAT model can reasonably 

represent the temporal and spatial nature of the measured flow and water quality data at 

multiple locations in the basin, which implies that the model in its present form could be 

used to evaluate potential management strategies for reducing sediment and nutrient 

loading in the Cannonsville Basin. 

 
Differences in Reference and Impaired Streams Habitat Characteristics 

While the differences between the reference and impaired streams are usually 

quantified based on their sediment loading and transport capacity; several studies have 

shown that both streams also exhibit significant differences in river morphology and 

aquatic habitat characteristics. In the State of Oklahoma, eight reference streams and ten 

impaired streams west of I-35 were studied by Jin et al. (2005c). The study was 

conducted by comparing parameters on the micro-scale habitats (such as bottom 

substrate, cover, and flow condition), macro-scale habitats (such as channel geometry and 

sediment deposition) as well as parameters defining the riparian conditions and bank 

structure (such as bank stability, vegetation, and streamside cover).  
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They found that reference streams usually have a considerable baseflow depth 

that provides the aquatic life a greater chance to thrive during the dry season. Moreover, 

the bank slopes of the reference streams in general are steeper (over 65 degrees) 

compared to those of the impaired streams (less than 50 degrees). The reference streams’ 

substrates are generally comprised of all size particles ranging from loose silt and clay to 

boulders. The aforementioned combination of substrate materials creates a greater 

diversity of conditions compared to the predominant run habitat and sandy bed in the 

impaired streams, and consequently supports more aquatic life by providing a wide range 

of riffle/pool habitats. More woody debris and undercut banks are observed in reference 

streams than in impaired streams which are positive signs of ample living space and food 

availability for aquatic life. Impaired streams manifest an active bank and bed because 

they have more recently formed point bars than the impaired streams. 

DeWalt (2002) conducted a study on ten reference and ten randomly chosen 

streams in Illinois. The study was done by comparing the reference and randomly chosen 

streams in terms of EPT (Ephemeroptera, Plecoptera, and Tricopthera) taxa richness and 

habitat quality scores. Significant differences were found in habitat quality between the 

two stream reaches. They found out that for the most part (6 out of 10) randomly selected 

streams were channelized, had narrow treed riparian zones, and had considerable bank 

erosion. 

Stranger Creek of Leavenworth County, Kansas was investigated by the Central 

Plains Center for Bioassessment (CPCB) Kansas Biological Survey (2002) with regards 

to ecological integrity. Data on a variety of physical, chemical, and biological attributes 

in the spring, summer and fall of 2001 were collected from three sites along the main 



14

stem of the Stranger Creek. The abovementioned parameters were then compared to the 

data collected from three reference streams (located in the Western Corn Belt Plains eco-

regions) which had been identified previously to have high habitat, water quality and 

biological conditions.  

The habitat analysis showed that the three reference streams scored higher than 

Stranger Creek in a number of near-stream and in-stream variables. One important near-

stream variable is the riparian forest, which is measured in terms of stream shading, 

riparian width and riparian condition. As a whole, the Stranger Creek riparian condition 

appeared to be poorer compared to the reference streams; although, they were similar 

with regards to stream shading and riparian width. This finding was derived from low 

riparian condition values for Stranger Creek, which demonstrate that the existing riparian 

forest at that time was composed of thin and broken canopy and had low species 

diversity. This study also revealed that the amount of active erosion at Stranger Creek 

was slightly higher than the reference streams. This assessment was conducted by 

measuring the length and average height of all areas of active bank erosion and by 

calculating the total area of bank erosion in each of the three sites along the Stranger 

Creek.  

Sentoff (2004) conducted research to determine stream restoration techniques and 

collect pertinent data for restoration of Fairfield Run – a stream identified as impaired in 

the University of Delaware Experimental Watershed.  The researcher selected a reference 

stream for Fairfield Run located in the same ecoregion and investigated the data on water 

quality, habitat and geomorphology. The reference stream received a very good rating in 

the habitat survey while the three sites selected along the main stem of Fairfield Run 
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received a moderate, good and very good. One of the main reasons for the high rating of 

reference stream was the composition of its stream bank vegetation. It had well vegetated 

stream banks with native plants and trees as compared to the Fairfield Run sites which 

had a number of bare, eroded banks with a higher percentage of scrub and non-native 

vegetation. 

 
The Use of Yang’s Equation in Estimating Sediment Transport Capacity 
 

In Oklahoma, a total of eight streams with drainage areas ranging from 50 km2 to 

400 km2 were investigated in terms of transport capacity using Yang’s unit stream power 

formula (Jin et al., 2005a). This study was done for the purpose of developing a sediment 

TMDL endpoint. Three of the streams were identified as reference, while five were 

considered as impaired or impacted. The sediment transport capacity of each of the 

streams was calculated using the formula. The results were then compared to the 

sediment yield from the drainage area using SWAT. 

They found that the reference streams had a larger transport capacity than their 

delivered sediment load, while impaired or impacted streams had transport capacities that 

were less than or approximately equal to the sediment load coming from the watershed.
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Chapter 3 
 

Methods 

Application of the SWAT Model 
 
Data Input 

 
The SWAT model requires three GIS data layers, namely digital elevation model 

(DEM), soils, and Land Use Land Cover, as well as weather data as input. 

 
Digital Elevation Model (DEM) 
 

A 30-m seamless Digital Elevation Model (DEM) was used to define the 

topography of each watershed. United States DEM and related information can be found 

from several sources on-line. The DEM used in this study was taken from 

(http://seamless.usgs.gov/website/seamless/viewer.php), one of the sites that offers a 

seamless DEM coverage of the entire watershed. 

The calculation of sub-basin parameters such as slope and slope length as well as 

the definition of stream network were done using the DEM. The resulting stream network 

was used to delineate the entire watershed into a reasonable number of sub-basins. 

Important stream characteristics like width, length and slope were all derived from the 

DEM (Figures 3.1 and 3.2). 

Four points must be known to get the seamless DEM coverage of the entire 

watershed. These are the extreme north and south latitudes, and the extreme east and west
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longitudes. These coordinates were obtained from another website (www.mapmart.com)

using a known pair of coordinates that defines where the habitat survey was done. Before 

the DEM was used for modeling, it was projected to Universal Transverse Mercator 

(UTM) under appropriate zones. Oklahoma belongs to three UTM zones (Chang, 2004). 

Zone 14 covers most of the state, zone 13 covers a small portion in the western part of the 

panhandle and zone 15 covers some portion of the state near Arkansas.  

 

Elevation (m)
243.4 - 259.5
259.5 - 275.6
275.6 - 291.7
291.7 - 307.8
307.8 - 323.9
323.9 - 339.9
339.9 - 356
356 - 372.1
372.1 - 388.2
No Data

N

Figure 3.1. Seamless digital elevation model (DEM) of the Upper Black Bear Creek 
watershed 
 



18

Elevation (m)
252.5 - 270.2
270.2 - 287.8
287.8 - 305.5
305.5 - 323.1
323.1 - 340.7
340.7 - 358.4
358.4 - 376
376 - 393.7
393.7 - 411.3
No Data

N

Figure 3.2. Seamless digital elevation model (DEM) of the Quapaw Creek watershed 
 

Soils 

Soils data are necessary for SWAT modeling to identify soil types and 

composition in the entire watershed. SWAT uses the STATSGO (State Soil Geographic) 

data to define soil attributes for any given soil. The GIS soil data must have either S5ID 

(Soils5id for USDA soil series) or STMUID (State STATSGO polygon number) to link 

an area anywhere in the watershed to the STATSGO database. In this study, the STMUID 

was used.  

The soil layer (Figures 3.3 and 3.4) was obtained from the Oklahoma Natural 

Resources Conservation Service (NRCS) database which is available from 

(http://www.ncgc.nrcs.usda.gov). A 200-m resolution Map Information and Display 

System (MIADS) data was used. Basic properties of the soil data used in this study can 

be found in Appendix A. 
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Soils
OK086
OK093
OK106
OK112
OK116
OK117
OK131
OK138
OK148
OK151
TXW

N

Figure 3.3. Soils of the Upper Black Bear Creek watershed by five digit identification 
 

Soils
OK078
OK091
OK094
OK117
OK125
OK126
OK146
OK151
TXW

N

Figure 3.4. Soils of the Quapaw Creek watershed by five digit identification 
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Land Cover 
 

Considering factors such as slope, slope length and others as being similar; land 

cover is the most important factor that affects the amount of sediment yield in a given 

area. Any given rainfall that falls on a completely bare surface will undoubtedly result in 

a higher amount of erosion than a rainfall of the same magnitude and duration that falls 

on a grass-covered surface.  

The land cover layer was derived from the 1992 National Land Cover Dataset 

(NLCD) - a 21-class land cover classification scheme applied consistently over the 

United States. It is derived from the early to mid-1990s Landsat Thematic Mapper 

satellite data (http://seamless.usgs.gov). The processes involved in obtaining the land 

cover data layer to make them compatible with SWAT are the same as the DEM. In this 

study, there are six (6) major types of land cover namely: water, urban, agricultural, 

range, pasture, and forest (Figures 3.5 and 3.6). Table 1.2 presents the percent coverage 

of each of these land cover types.  
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Land  Cover
AGRC
AGRL
AGRR
BERM
FRSD
FRSE
FRST
PAST
RNGB
RNGE
UCOM
URHD
URLD
UTRN
WATR
WETN

N

Figure 3.5. Land cover of the Upper Black Bear Creek watershed derived from U.S. 
Geographic Survey 

Land Cover
AGRC
AGRL
AGRR
BERM
FRSD
FRSE
FRST
PAST
RNGB
RNGE
UCOM
URHD
URLD
UTRN
WATR
WETN

N

Figure 3.6. Land cover of the Quapaw Creek watershed derived from U.S. Geographic 
Survey 
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Weather 

SWAT requires daily values of weather data as an input. These data are 

precipitation, maximum and minimum temperature, solar radiation, relative humidity and 

wind speed. To run SWAT one can either prepare a file that contains observed data or use 

values generated by the model from monthly average data summarized over a number of 

years (Neitsch et al., 2002). 

A combination of both observed and simulated weather data were used in this 

study. Observed weather values from USGS Cooperative Observer Program (COOP) 

were utilized to create files for daily precipitation, minimum and maximum daily 

temperatures. The rest of the weather parameters such as solar radiation, wind speed and 

relative humidity were generated by the SWAT model. COOP weather data can be found 

on National Oceanic and Atmospheric Administration (NOAA) website 

(http://cdo.ncdc.noaa.gov/CDO/cdo). The location and other related information about 

the weather stations used in this study are shown in Appendix B. 

 
Sub-basin Delineation  

SWAT defined the sub-basin layout of each watershed using the DEM, stream 

burn-in layer and an outlet table (in dBase format). The stream burn-in theme which is 

comprised of digitized streams helps the model to define the right stream locations in flat 

topography. Each watershed in this study has different values of stream threshold area. 

The stream threshold area, also known as critical source area, defines the minimum 

drainage area to form the origin of a single stream (Di Luzio et al., 2002). Threshold 

areas of 750 and 765 ha were used for Upper Black Bear Creek and Quapaw Creek, 
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respectively. The smaller the specified number of hectares, the more detailed the drainage 

network delineated by the SWAT interface (Di Luzio, et al., 2002).  

The results of the sub-basin delineation are shown below (Figures 3.7 and 3.8). 

Since this study is focused on getting data on a daily time step, fewer sub-basins were 

desired to simplify the modeling process. It does not mean, however, that the detail of the 

drainage network was being sacrificed. In fact, the stream threshold areas mentioned 

above are at least 50% lower than the recommended model values. 

 

Sub-basin boundaries
Streams

 
Figure 3.7. The Upper Black Bear Creek watershed subdivided into 111 sub-basins 
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Sub-basin boundaries
Streams

 
Figure 3.8. The Quapaw Creek watershed subdivided into 107 sub-basins 
 

HRU Distribution 

Each sub-basin in the entire watershed was subdivided into Hydrologic Response 

Units (HRUs) by SWAT. The land use [%] over sub-basin area threshold was reset to 9% 

from a default value of 20%. This number specifies the minimum percentage of any land 

cover in a sub-basin that will become an HRU (Di Luzio, et al., 2002). Also, the soil class 

[%] over sub-basin area was set to a value of 9% from a default value of 20%. By 

lowering these thresholds, the number of HRUs within a sub-basin was increased 

allowing more spatial detail to be incorporated in the SWAT model. 
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Observed Data 

Observed Stream flow 

Recorded stream flow from USGS stream gage stations (Figures 3.9 and 3.10). 

were used to calibrate the hydrologic portion of the model. This set of information can be 

found on-line (http://cfpub.epa.gov/surf/locate/index.cfm). The gage stations have 

different periods of record (Table 3.1). 

Table 3.1. U.S. Geographic Survey Stream Gage Stations Used to Calibrate the Model 

Location 
Gage Station Latitude Longitude Start Date End Date 

USGS 07153000 36.343611 -96.79917 10/1/1944 Current 

USGS 07242380 35.680896 -97.00836 10/1/1983 Current 

r

Sub-basin boundaries
Streamsr Gage station

N

USGS 07153000

 
Figure 3.9. Active U.S. Geographic Survey stream gage station used to calibrate the 
model for Upper Black Bear Creek 
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r

Sub-basin boundaries
Streamsr Gage station

N

USGS 07242380

 
Figure 3.10. Active U.S. Geographic Survey stream gage station used to calibrate the 
model for Quapaw Creek 
 

Flow Calibration 
 

Surface runoff and baseflow are the two primary sources that contribute to stream 

flow. Baseflow is the flow that comes from ground water contributions (White, 1999). 

Before calibrating the model, the total observed stream flow was split into surface runoff 

and baseflow using the USGS HYSEP sliding interval method. Surface runoff duration 

was computed using the empirical formula:  

N = A0.2  (2)  

where N is the number of days after which surface runoff ceases and A is the drainage 

area in square miles. The interval 2N* used for hydrograph separation is the odd integer 

between 3 and 11 nearest to 2N. The sliding interval method finds the lowest discharge in 

one half the interval minus one day [0.5(2N-1) days] (White, 1999) before and after the 

day being considered and assigns it to that day. The method can be visualized as moving 
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a bar 2N* wide upward until it intersects the hydrograph. The discharge at that point is 

assigned to the median day in the interval. The bar then slides over to the next day, and 

the process is repeated (Figures 3.11 and 3.12). 
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Figure 3.11. Upper Black Bear Creek observed baseflow separation example 

Quapaw Creek Baseflow
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Figure 3.12. Quapaw Creek observed baseflow separation example 
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Table 3.2. Monthly observed average flow, baseflow and surface runoff fractions as 
determined by the HYSEP sliding interval  
 
Gage Station Period Average Flow 

(m3/s) 
Baseflow Surface Runoff 

USGS 07153000 1/88 to 12/02 8.2 30% 70% 

USGS 07242380 1/88 to 12/02 8.1 43% 57% 

The stream flow calibration process was done on a monthly basis. Parameters that 

affect the amount of surface runoff such as Available Water Content (AWC), Soil 

Evaporation Compensation Factor (ESCO); and those that influence the volume of 

baseflow such as Groundwater “revap” Coefficient (GW_REVAP), Threshold Depth of 

Water in the Aquifer for “revap to occur” (REVAPMN), as well as Threshold Depth in 

Shallow Aquifer for baseflow to occur (GWQMN) were adjusted. Values for the 

adjustment of the abovementioned parameters are found in Appendix C at the end of the 

observed and simulated stream flow tables for each stream. 

USGS gage stream flow data from January 1988 to December 2002 were used to 

calibrate both the Upper Black Bear Creek and Quapaw Creek. To compare the simulated 

data to the observed data and to guide the whole calibration process relative error was 

used. 

Relative Error (%) = (Observed – Simulated)/Observed * 100                                        (3)  

 
Nash-Sutcliffe coefficient of efficiency (NSE) (Nash and Sutcliffe, 1970) was 

used to evaluate the calibration on this study. NSE determines the model efficiency as a 

fraction of the measured stream flow variance that is reproduced by the model: 
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( )( )2

2
1

oQQo
QsQoNSE

−Σ
−Σ−= (4) 

where Qo is the observed stream flow, Qs is the simulated stream flow and oQ is the 

observed mean stream flow.  

The closer the NSE value to 1.0 the better is the estimation of the stream flow by the 

model. A NSE ≥ 0.75 is considered to be an excellent estimate, and a NSE between 0.75 

and 0.36, is generally regarded to be satisfactory (Motovilov et al., 1999). 

 
Application of the Yang’s Formula 

Yang (1972) related the total sediment concentration to unit stream power and 

came up with the following sediment transport equation for sand (less than 2 mm in 

diameter) (Yang, 1973): 

*

*

log 5.435 0.286log 0.457 log

1.799 0.409log 0.314log log

ts

cr

d UC
d U VS V S

ω
ν ω

ω
ν ω ω ω

= − − +
   − − −      

(5) 

where Cts is the total sand concentration in ppm by weight; ω is the sediment fall      

velocity; d is the sediment particle diameter; ν is the kinematic viscosity of water; 

U*(= gDS ) is shear velocity; V is average flow velocity; S is water surface energy 

slope; D is depth of flow; g is gravitational acceleration; and Vcr is critical average flow 

velocity at incipient motion. The critical velocity Vcr/ω, a dimensionless quantity is 

calculated using the expression: 

2.5 0.66,log( * / ) 0.06
Vcr

U dω ν= +− if 1.2 < U*d/ν < 70 (6) 
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2.05,Vcr
ω = if 70 ≤ U*d/ν (7) 

Rubey’s formula (Rubey, 1933) is used to compute the sediment fall velocity ω:

( 1)F dg Gω = − (8) 

where, 
1/ 2 1/ 22 2

3 3
2 36 36
3 ( 1) ( 1)F gd G gd G

ν ν   = + −   − −   
(9) 

for 0.0625 < d < 1.0 mm or F = 0.79, for 1 2d≤ ≤ mm; G is the specific gravity of 

sediment which is equal to 2.65. The kinematic viscosity of water, ν, is a function of 

water temperature and is calculated using the formula: 
6

2
1.792 10

1.0 0.0337 0.000221
x

T Tν
−

= + +  (10) 

The water temperature, T, in this study is assumed to be at 10οC.  

When the concentration of the bed material exceeds 100 ppm, equation (1) takes the 

form:  

*

*

log 5.165 0.153log 0.297 log

1.780 0.360log 0.480log log

ts
d UC

d U VS

ω
ν ω

ω
ν ω ω

= − − +
 − −    (11) 

with the same degree of accuracy (Yang, 1979). 

The unit stream power formula can also be used to estimate the concentration of 

gravel with a particle diameter greater than or equal to 2mm (Yang, 1984): 

*log 6.681 0.633log 4.816log
*2.784 0.305log 0.282log log

tg

cr

d UC
V Sd U VS

ω
ν ω

ω
ν ω ω ω

= − − +
  − − −      

(12) 
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where Ctg is the total gravel concentration in ppm by weight. All the other parameters are 

the same as in eq.(5). Equations describing the incipient motion eqs.(6) and (7), and 

kinematic viscosity eq.(10) are still valid for eq.(12). The gravel fall velocity however, 

takes the form: 
1/ 23.32dω = (13) 

Equation (12) was developed for gravel with diameter between 2 and 10 mm, but various 

studies pointed out it may be applied to materials with size coarser than 100 mm (Yang 

and Simoes, 2000). 

When using the Yang’s equation, the channel cross-section is assumed to be 

trapezoidal in shape (Jin et al., 2005a). In a given stream, the flow velocity and depth can 

be computed using Manning’s equation (Haan et al., 1994): 

2/13/21 SRnV = (14)             

and the continuity equation: 

))(tan( βDWVDVAQ +== (15) 

where Q is the stream flow, V is the flow velocity, D is the depth of flow, S is the channel 

slope, W is the width of water in baseflow, n is Manning’s roughness coefficient, and β is 

the bank slope in degrees. 

Cowan (1956) presented a method of calculating the Manning’s roughness as 

shown below: 

n = (nb+n1+n2+n3+n4)m (16) 

where nb represents the base value for a straight, uniform, and smooth channel; n1, n2, n3

and n4 are the correction factors that account for the effects of surface irregularity, 
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variation in shape and size of cross section, obstruction, as well as vegetation and flow 

conditions respectively; while m accounts for the effect of channel meandering. 

The value of each factor used in this study was based on the work done by Arcement and 

Schneider (1989). 

Yang’s sediment transport equations such as equations (5), (11) and (12) were 

derived for uniform bed materials. In natural rivers whose bed materials are not uniform 

with particle sizes ranging from sand to gravel, equations (5) and (12) or (11) and (12) 

should be combined together using the relationship by Yang (1996): 

∑
=

=
N

i
iit CpC

1
(17) 

where Ct is the total carrying capacity for a particular river section; pi is the percentage of 

material size fraction i available in the bed; Ci is carrying capacity for each size fraction 

computed using equations (5), (11) or (12); and N is the number of size fractions.  

For size fractions that have minimum and maximum particle size diameters dmin and dmax,

the mean diameter dmean or d50 is calculated by the formula used by Jin, et al., 2005(a) in 

their study: 

maxmin ddd mean ∗= (18) 

The daily sediment load or transport capacity of each stream was computed by the 

formula: 
610*24*60*60** −= ppmws CQQ (19) 

where Qs is the sediment load in metric tons/day, Qw is the flow discharge in m3/s, Cppm is 

the sediment concentration in parts per million by weight. 

 



33

Habitat Characteristics Comparison 

The physical characteristics of the streams used in this study were all obtained 

from the results of the Oklahoma Conservation Commission survey. A 400-m reach in 

each surveyed stream divided into twenty 20-m segments was evaluated. The parameters 

of interest include: 

• Cross-section Geometry – this encompasses water width and depth as well as 

bank in every cross section during low flow season. Water depth measurement 

was done at the left ¼, right ¼, and at the cross section center. Measurement 

of the bank width was taken at the normal high waterline where well-

established perennial vegetation is found just above it.  

• Instream Cover Area – this is expressed in percent which comprises undercut 

banks, woody debris (includes large and small, and submerged tree rootwads), 

stone (gravel, cobble and boulder), and vegetation. 

• Habitat Type – this is represented by four categories: riffle, pool, run, and dry 

habitat. 

• Substrate Material – this is expressed in percent and includes eight (8) 

subcategories. These are: loose silt and clay, sand or rock (0.1~2.0 mm in 

diameter), gravel (2~50 mm), cobble (50~250 mm), boulder (>250 mm), 

bedrock, particulate organic matter (rotten leaves and fragments of sticks and 

logs), and hardpan clay. 

• Embeddedness – as the term implies, this refers to the extent by which fine 

sediment surrounds gravel, cobble and boulders. This is indicative of the 

suitability of the stream substrate as habitat. This is rated from 0% (no fine 
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material surrounding the gravel, cobble and boulders) to 100% (gravel, cobble 

and boulders well surrounded by fine material). 

• Canopy Cover – this describes the density of trees that are growing over the 

channel. This is expressed in percent, in which 0% denotes no canopy cover 

over the stream segment of interest, while 100% signifies full cover. 

• Point Bars – this refers to the currently formed bars which have little or no 

vegetation at all. 

• Bank Vegetative Cover and Dominant Vegetation Type – this includes the 

estimate of area of the bank on both sides of the stream that is covered by 

well-established, perennial vegetation. Dominant vegetation type is 

categorized as tree, shrub, grass, or a combination of the three. 

• Bank Erosion Status – this accounts for the average percentage that is actively 

eroding on both left and right banks of the stream segment, and the height of 

erosion, as well. Left bank and right bank are the left side and right of the 

stream banks when looking in the direction of flow. 

• Bank Slope – this refers to the average bank slope expressed in degrees. 

• Cattle Management – this term indicates whether or not cattle are excluded 

from entering the stream channel.  

The descriptions of the stream parameters shown above were adapted from the research 

done by Jin et al. (2005c).
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Chapter 4 
 

Results and Discussion 
 

Calibration 
 

With the calibration, relative errors for the total flow, surface and baseflow were 

reduced to less than 10% (Tables 4.1 and 4.2). Simulated total stream flow matched the 

observed total stream flow fairly well as shown by the scatter plots (Figures 4.1 and 4.3) 

and by the total flow time series (Figures 4.2 and 4.4). 

 
Table 4.1. Calibration average monthly flow (units are m3/s) and relative differences of 
Upper Black Bear Creek (USGS 07153000) 
 

Observed Simulated 
Total Surface Baseflow Total Surface Baseflow 

Average 8.25 5.74 2.50 8.51 6.09 2.42 
Relative Error (R.E.) -3.19% -6.04% 3.34%    

100*.. Observed
SimulatedObservedER −=
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Observed vs. Simulated flow
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Figure 4.1. Monthly observed stream flow (USGS 07153000) vs. simulated of Upper 
Black Bear Creek (1988 to 2002) 
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Figure 4.2. Upper Black Bear Creek monthly total flow time series (USGS 07153000) 
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Table 4.2. Calibration average monthly flow (units are m3/s) and relative differences of 
Quapaw Creek (USGS 07242380) 
 

Observed Simulated 
Total Surface Baseflow Total Surface Baseflow 

Average 8.13 4.61 3.52 8.68 4.89 3.79 
Relative Error -6.78% -5.94% -7.89%    

100*.. Observed
SimulatedObservedER −=

Observed vs. Simulated flow

y = 0.7665x + 2.4491
R2 = 0.6321
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Figure 4.3. Monthly observed stream flow (USGS 07242380) vs. simulated of Quapaw 
Creek (1988 to 2002) 
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Total Flow Time Series
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Figure 4.4. Quapaw Creek monthly total flow time series (USGS 07242380) 
 

The flow simulation for the reference stream is considered to be excellent with a 

Nash-Sutcliffe coefficient of Efficiency (NSE) value of 0.84 (Table 4.3). With a NSE 

value of 0.60, flow simulation for the impaired stream is considered to be satisfactory. 

Surface runoff simulations for the watersheds are considered to be excellent and 

satisfactory with NSE value of 0.81 and 0.38 for reference and impaired streams 

respectively. However, for baseflow simulations, only the impaired stream exhibits a 

satisfactory result with a NSE of 0.39, while the reference stream is considered to be 

below satisfactory with a NSE of 0.21. But, at any rate, since the NSE results are all 

positive, this is an indication that the model performance is acceptable as far as flow 

estimation is concerned. The observed annual precipitation and stream flow variation for 

the reference is shown in Figures 4.5 a and b, while the annual precipitation and stream 

flow variation for the impaired stream is shown if Figures 4.6 a and b. In Upper Black 
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Bear Creek, the average observed precipitation is 973.7 mm, while in Quapaw Creek, the 

average observed annual precipitation is 1009.4 mm.   

 
Table 4.3. Values of Nash-Sutcliffe coefficient of efficiency (NSE) for the two streams 
 

Nash-Sutcliffe Coefficient of Efficiency (NSE) 

Total Surface Baseflow 

Black Bear Creek: Upper 0.84 0.81 0.21 

Quapaw Creek 0.60 0.38 0.39 
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Figure 4.5 a. Observed annual precipitation variation in Upper Black Bear Creek (1988-
2002) 
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Figure 4.5 b. Observed annual stream flow variation in Upper Black Bear Creek (1988-
2002) 
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Quapaw Creek Annual Precipitation
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Figure 4.6 a. Observed annual precipitation variation in Quapaw Creek (1988-2002) 
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Figure 4.6 b. Observed annual stream flow variation in Quapaw Creek (1988-2002) 

 
Sediment Load and Transport Capacity Comparison 

Sediment concentration in Upper Black Bear Creek (reference stream) is higher 

than in Quapaw Creek (impaired stream) (Figure 4.7). Since slope plays an important role 

in sediment transport, it is not surprising that the reference stream has a higher 
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concentration, because it is steeper (0.027% slope) than the impaired stream (0.011% 

slope). 

 

0

500

1000

1500

2000

2500

3000

0 200 400 600 800
SWAT Predicted Daily Stream Flow (m3/s)

Ya
ng

Pr
ed

ict
ed

Se
dim

en
t

Co
nc

en
tra

tio
n(

pp
m)

Reference
Impaired

Figure 4.7. Sediment transport capacity based on Yang’s Equation versus SWAT 
predicted daily stream flow  
 

Calculated stream sediment transport capacity and sediment loading from the 

watersheds for each stream are presented in Figures 4.8 and 4.9. The reference stream has 

higher transport capacity (Figure 4.8) than the impaired stream (Figure 4.9).  

At low stream flow (less than 15.3 x 106 m3/day) in Upper Black Bear Creek 

(reference stream), there are no significant differences between the sediment load and 

transport capacity (Figure 4.8). In this case, the stream bed may undergo an alternative 

process of erosion and deposition (Jin et al., 2005a). When the daily flow exceeds 15.3 x 

106 m3, sediment transport capacity becomes higher than the sediment yield from the 

watershed. At this point, the total amount of sediment (delivered from the watershed plus 

that deposited during lower flows) is transported out of the stream. 

In terms of drainage area, Quapaw Creek (impaired stream) is 30 km2 less than 

Upper Black Bear Creek. But, its transport capacity is lower than the amount of sediment 
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coming from the basin (Figure 4.9). Deposition is expected to be the main process that 

happens in the stream. In this case, the channel bed would have more sand bars than the 

reference stream (Jin et al., 2005c). 
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Figure 4.8. Comparison between watershed sediment loading estimated by SWAT and 
the stream sediment transport capacity computed by Yang’s Equation in Upper Black 
Bear Creek (1988-2002). 
 

Quapaw Creek (1988-2002)
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Figure 4.9. Comparison between watershed sediment loading estimated by SWAT and 
the stream sediment transport capacity computed by Yang’s Equation in Quapaw Creek 
(1988-2002). 
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The Land Use Land Cover (LULC) of the Quapaw Creek is dominated by 48% 

rangeland and 38% forest, while Upper Black Bear Creek is dominated by 44% 

agriculture and 42% range. Considering all other factors being equal, the amount of 

sediment yield from rangeland is expected to be lower than that from agriculture. In fact, 

the study done by Storm et al. (2003) to estimate the nonpoint pollution source 

component of the Fort Cobb Basin TMDL shows that the sediment loads will be lowered 

by as much as 68% if all crop land (row crop and small grains) would be converted to 

pasture.  

The abovementioned information suggests the idea that excessive sediment yield 

coming from the watershed is not the reason why the transport capacity of Quapaw Creek 

(impaired stream) is much lower than its sediment loading (Figure 4.9), but because its 

(Quapaw Creek) riparian zone by itself is unstable and disturbed. One important fact that 

would support this claim is bank erosion status presented in Figures 4.22 a and b. 

Although, there are no data about the cattle being excluded from entering the stream as 

far as the OCC survey results are concerned, it is highly possible that cattle have been 

allowed to enter into the stream which contributes to bank erosion. Bank erosion and 

widened streambed could lead to the stream’s shallow depth which has significantly 

reduced its transport capacity. 

 Also, while LULC gives the extent of land use areas, it does not make any 

qualitative assessment of the condition of the land cover. A seriously overgrazed 

rangeland area on a sandy loam soil can experience significant soil detachment and 

delivery to a stream channel by overland flow. 
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Habitat Characteristics Comparison 

Water depth in baseflow conditions in Upper Black Bear Creek (reference stream) 

is greater than in Quapaw Creek (impaired stream) (Figure 4.10). Over the twenty 20-m 

segments, the observed water depth in the reference stream on the average, ranges from 

0.50 to 1.47 m as compared to a depth of 0.10 to 0.30 m in the impaired stream. This 

shows that the reference stream has the capacity to support more aquatic life than the 

impaired one. The deeper the water in the stream, the greater the chance for the fish and 

other aquatic organisms to survive especially during prolonged periods of drought (Jin et 

al., 2005c).  
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Figure 4.10. Baseflow water depth in the reference and impaired streams 

 
In both baseflow and bankfull flow conditions, the reference stream has a smaller 

width to depth ratio (Figures 4.11 and 4.12). It has a value of less than twenty in all the 

stream segments. On the other hand, the impaired stream has larger width to depth ratio 

in both flow conditions with values as high as 150.  
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The above information shows that the reference stream is more stable than the 

impaired one. A high ratio of width to depth is indicative of high bank erosion which 

would eventually cause the stream to be over-widened and gradually lose its capacity to 

transport sediment (Jin et al., 2005c). 
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Figure 4.11. Ratio of water width to depth in baseflow conditions 
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Figure 4.12. Ratio of bank width to water depth  
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Figure 4.13. Left side bank slope 
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Figure 4.14. Right side bank slope 
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Research done by Jin et al. (2005c) shows that the reference streams generally 

have steeper bank slopes than the impaired streams. Reference streams have bank slopes 

of over 65ο, while the impaired ones have less than 50ο. In this study, however, the result 

is different. The impaired stream has steeper bank slope compared to the reference stream 

(Figures 4.13 and 4.14). On the average the impaired stream has 80ο and 79ο left and right 

side and left side bank slopes respectively, while the reference stream has only a 59ο

slope on both sides. 

Substrate materials of the reference stream are composed of 37% of loose silt and 

clay, 3% sand, 11% gravel, 1/2% cobble, 14% bedrock, 1% particulate organic matter, 

and 35% hardpan clay (Figure 4.15). On the other hand, the impaired stream substrate 

material composition is dominated by 90% sand and the rest are comprised of 6% loose 

silt and clay, 1/2% particulate organic matter, and 4% hardpan clay. 

Based on the aforementioned information, the reference stream should support 

more aquatic life. This is due to the fact that large particles such as gravel, cobbles and 

boulders form more pools which are beneficial to the aquatic organisms (Jin et al., 

2005c). 
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Figure 4.15. Stream substrate materials composition  
 

The observed habitat types in reference and impaired streams are quite different 

(Figure 4.16). Throughout the twenty segments in the reference stream, seventeen pool 

and four run habitat types are observed. On the other hand, the impaired stream is 

dominated by sixteen run and only six pool habitat types.  

The riffle habitat type supports more aquatic life than either pools or runs. Its 

bottom is comprised primarily of larger particles (gravel and rocks) that provide a wide 

range of living spaces, stable conditions, and large surface areas for the attachment of 

aquatic organisms. Moreover, it serves as storage for food that is carried in by flowing 

water (Jin et al, 2005c). For these reasons, riffles are more capable of supporting a wide 

variety of benthic invertebrates and are thus important food-producing areas for fish 

(Gordon et al., 1992). 

Neither of the streams have the riffle habitat type. The reference stream is 

dominated by pools, while the impaired stream is dominated by the run habitat (Figure 

4.16). The pool habitat serves as an important living space for fish, since it is usually 
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located under overhanging banks or vegetation which not only provide protection from 

aerial predators but also maintain a cooler environment (Torgersen et al., 1995). It is also 

an important food-producing area for fish, because it often has large number of 

burrowing worms and dipteran (true flies) larvae in the substrate (Jin et al., 2005c). 

Unlike riffles and pools, runs do not provide the same living conditions for aquatic 

organisms and are not stable. There is a greater chance that they (the runs) will be moved 

downstream along with organisms living in them by higher flows in the spring and after 

storm events.   
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Figure 4.16. Habitat type 

There are more woody debris, undercut banks, and the combination of gravel, 

cobble and boulder in the reference stream than in the impaired stream (Figure 4.17 a, b, 

c, and d).  

Research over the past 20 years indicated that woody debris plays an important 

role in the healthy functioning of rivers (see Managing Woody Debris in Rivers). In 
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active river channels, large woody debris (LWD) can help to reduce bank and bed erosion 

by slowing down the flow during major flood events. According to the fact sheet 

Managing Woody Debris in Rivers, a number of high-energy streams have suffered from 

major erosion events with incision of beds and subsequent collapse of banks due to 

extensive de-snagging. Woody debris helps in creating pools in the channel bed system 

which is very essential for aquatic life during periods of low flow. Water flowing over 

and around debris becomes aerated and has wide range of flow rates (slow in deep pools, 

fast around obstructing wood) which is essential for the plant and animal life required for 

healthy rivers. Woody debris also has many important ecological benefits. It provides 

surfaces on which microscopic plants (algae) can grow, and ample living space and 

conditions for aquatic invertebrates such as insect larvae and snails.  It also plays an 

important role in the survival and growth of many fish species. It gives them refuge from 

predators, while hollow logs serve as an important spawning habitat. The fact sheet 

Managing Woody Debris Rivers stresses the special importance of large woody debris 

(LWD) in sandy rivers which do not provide a good aquatic life habitat in light of their 

constantly-moving bed material. Research has shown that in situations like this, the 

presence of the LWD is the most important determining factor for the occurrence and 

diversity of invertebrates and fish populations. 

Undercuts, also known as vertical banks because of their overhanging nature, are 

considered to be an important feature of a healthy stream because they generally provide 

good shelter for macroinvertebrates and fish (Horan et al., 2000; U.S. EPA, 1997). It is 

also resistant to erosion, although, if seriously undercut, they might become vulnerable to 

collapse.  
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Figure 4.17 a. Instream cover: Undercut banks 
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Figure 4.17 b. Instream cover: Cobble, boulder and gravel combination  
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Small Woody Debris
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Figure 4.17 c. Instream cover: Small woody debris 
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Figure 4.17 d. Instream Cover: Large woody debris  
 

The canopy cover in the reference stream is as high as 40% and only one segment 

out of twenty that has no canopy cover (Figure 4.18). On the other hand, the impaired 
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stream has 20% canopy cover as its highest with nine out of twenty segments that have 

no canopy cover at all.  

Canopy cover is a measurement of the quality and extent of the riparian zone 

vegetation (Jin et al., 2005c; U.S. EPA, 1997). Good canopy cover such as trees, bushes 

and tall grass provides shade and cover for fish and other stream wildlife, which keeps 

the water temperature at a comfortable level. It also provides the stream with the needed 

organic input such as leaves and twigs. 
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Figure 4.18. Canopy Cover 
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Figure 4.19. Recently Formed Point Bars 
 

The impaired stream has nine recently formed bars, while the reference stream 

has only three (Figure 4.19). 

Point bars are a function of flashy flow and large width-depth ratios. They are 

formed by sediment deposition generally at bends of meandering rivers. This is because 

during high flow, a large mass of sediment is emplaced in the channel bend where flow 

expansion causes deposition. Further deposition takes place by vertical accretion as flows 

continue to overtop the bar. Subsequent low flows cause erosion of the bar by thalweg 

meandering and chute channel development, and deposition of fine material takes place 

in chute channels and on the bar margin. The number of recently formed point bars is an 

indication of active meandering and bank erosion. (Goodwin and Steidtmann, 1981; Jin et 

al., 2005c).  

The impaired stream has a greater bank vegetation cover rate (Figure 4.20) with a 

uniform cover of mixed vegetation all throughout, while the reference stream is 
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dominated by mixed vegetation (75%), grass (20%), and tree and shrub (5%) (Figure 

4.21). 
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Figure 4.20. Percentage of bank vegetation cover 
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Figure 4.21. Dominant stream bank vegetation 
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Streambank vegetation is a good indication of stream bank stability which has an 

indirect influence on the type of habitats available within a stream (Jin et al., 2005c). 

Vegetation protects the bank from excessive erosion by absorbing the energy of falling 

raindrops, binding soil particles together, and by slowing overland flow. The mixture of 

grass, shrubs and trees provides a triple layer of bank protection against raindrop splash, 

more so, than any of the three alone. Trees and shrubs bind soil particles together better 

than grass. Trees and shrubs grow on stable stream banks, while grass thrives on 

frequently moving banks.  
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Figure 4.22 a. Percent of bank eroded: Right bank  
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Figure 4.22 b. Percent of bank eroded: Left bank  
 
Bank erosion is a stream’s natural way of dissipating the energy of flowing water 

(see River Dynamics and Erosion). However, excessive erosion can have a detrimental 

effect on the stream’s habitat. When banks erode, pore spaces within gravel and cobble 

streambeds will be filled by sediment, reducing the living and feeding area of 

macroinvertebrates such as insect larvae. Stream bank erosion can be accelerated by three 

major factors: land use change, building of dams, and straightening of streams (see 

Protecting Streambanks from Erosion). 

Both the left and right sides of the impaired streambank have a higher percentage 

of bank erosion than the reference stream (Figures 4.22 a and b). On the average, the 

impaired stream has a bank erosion of 25% and 21% on the left and right sides 

respectively, while the reference stream has only 6% on both sides.
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CHAPTER 5 
 

Conclusion 
 

Comparing the sediment loading from the watersheds estimated by SWAT and 

the stream sediment transport capacity as predicted by Yang’s Equation shows that: 

1. The reference stream is able to transport the amount of sediment entering in the 

channel because its transport capacity is equal to or greater than the sediment load. In 

short, sediment transport is supply limited. 

2.  The impaired stream is unable to transport the amount of sediment entering in 

the channel because its transport capacity is less than the sediment load. In short, 

sediment transport is capacity limited. Deposition becomes the dominant process in the 

stream channel. Due to over-supply of sediment caused by deposition, the stream channel 

widens and become shallower. 

A number of differences were found by comparing the habitat characteristics, 

bank vegetation, and channel geometry of the reference and impaired streams: 

1. The reference stream has greater water depth and smaller width/depth ratio in 

both baseflow and bankfull flow conditions. These features indicate that the reference 

stream provides more favorable conditions for the aquatic life to thrive, especially during 

dry season. 

2. The reference stream’s substrate materials composition is comprised of all sizes 

of particles: loose sand and silt, clay, gravel, and boulders; while the impaired stream is
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dominated by sand. The substrates of the reference stream provide more riffle/pool 

habitats, and allow a wider range of diversity than the predominantly run habitat and 

sandy bed of the impaired stream.  

3. The reference stream has more woody debris and undercut banks which are 

good signs of ample living space and food supply.  

4. The impaired stream contains more recently-formed point bars, which is an 

indication of active bank erosion. 

5. The impaired stream has a higher percentage of bank erosion. 

There are two findings in this study that are worthy of comment in terms of the 

habitat characteristics comparison:  

1. The bank slope of the impaired stream is steeper than the bank slope of the 

reference stream. Jin et al. (2005c) report that the opposite is true. 

 2) The bank vegetation cover of the impaired stream is higher than the reference 

stream. 

The impaired stream substrate materials are predominantly sand, while the 

reference stream has 35% clay, 37% loose silt and clay. However, while these materials 

are eroded from the stream channel, they may not have necessarily come from the habitat 

assessment zone.   The combination of clay and sandy soil materials would make a more 

stable bank. The alternate cutting/collapse of sandy banks may account for the steeper 

bank slopes in the impaired stream.  

Though the percentage of vegetation cover is greater in the impaired stream, 

neither habitat assessment indicated the presence or exclusion of cattle in the riparian 
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area. Even with good riparian vegetation in the assessment area, cattle movement into the 

stream bed maybe a contributing factor to the impaired stream condition. 

 
Suggestions for Future Work 

In any modeling work, the quality of the input data is considered to be extremely 

important because of its tremendous impact on the results. The quality of land use data in 

SWAT plays a very significant role as far as watershed sediment estimation is concerned. 

Among the input data, land use is perhaps the most important to consider because it 

changes dramatically with time, unlike soils and topography. In this study, the land cover 

data used were taken from 1992 USGS National Land Cover Dataset. This land use 

information was used because this was the only available data that worked during the 

time the study was conducted and of the inability of the author to generate more recent 

data using other means. In future studies related to this work, substantial effort must be 

taken to incorporate the most recent information about the land use land cover. 

Land use land cover data layer does not indicate the quality of land cover. By 

default agricultural land use would yield more sediment than rangeland/pasture under any 

given rainfall considering all other factors the same. However, a severely overgrazed 

rangeland/pasture in a highly erodible soil could also yield a considerable amount of 

sediment. A visual assessment of the study area to get an idea of the quality of land cover 

may help draw a better conclusion on sediment yield estimation. 

Despite a higher percentage of bank vegetation cover in Quapaw Creek (impaired 

stream), its percentage of bank erosion is significantly higher than the Upper Black Bear 

Creek (reference stream). In this case, identifying the soil type and composition of the 

bank and information on whether or not cattle are excluded from entering the stream, 
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especially in areas which are predominantly pasture and rangeland, would allow more 

accurate conclusions regarding bank erosion. 
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Appendix A: Basic Soil Properties of the Watersheds 
 

Table A1.1. Some Basic Soil Properties for Upper Black Bear Creek watershed (Excerpt 
from SWAT database file “sol.dbf”) 
 
SNAM STMUID HYDGRP USLEK Z1 BD1 AWC1 K1 CLAY1 SILT1 SAND1 ROCK1 
GRAINOLA OK086 D 0.37 203.2 1.45 0.17 10.00 31.00 33.55 35.45 10.00 
BETHANY OK093 C 0.43 355.6 1.40 0.21 8.70 17.5 53.35 29.15 0.00 
NORGE OK106 B 0.37 304.8 1.40 0.25 1.9 20.5 68.14 11.36 0.00 
RENFROW OK116 D 0.49 228.6 1.42 0.22 6.10 22.00 52.07 25.93 0.00 
AGRA OK131 D 0.49 279.4 1.42 0.23 3.30 18.00 54.74 27.26 0.00 
SHIDLER OK138 D 0.32 177.8 1.45 0.20 1.60 31.00 49.00 20.00 14.35 
NIOTAZE OK148 C 0.37 254.0 1.35 0.16 18.00 18.5 38.54 42.96 13.49 

Table A1.2. Some Basic Soil Properties for Quapaw Creek watershed (Excerpt from 
SWAT database file “sol.dbf”) 
 
SNAM STMUID HYDGRP USLEK Z1 BD1 AWC1 K1 CLAY1 SILT1 SAND1 ROCK1 
KEOKUK OK091 B 0.37 304.8 1.42 0.24 3.30 14.00 71.84 14.16 0.00 
KIRKLAND OK094 B 0.49 254.0 1.40 0.22 6.7 19.5 53.74 26.76 0.00 
RENFROW OK116 D 0.49 228.6 1.42 0.22 6.10 22.00 52.07 25.93 0.00 
ZANEIS OK125 B 0.37 279.4 1.45 0.19 21.00 20.50 37.59 41.91 0.55 
EUFAULA 0K146 A 0.15 1016.0 1.42 0.11 280.00 5.00 0.61 94.39 0.54 
DARNELL OK151 C 0.20 127.0 1.48 0.14 58.00 15.00 19.67 65.53 7.71 
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Appendix B: Weather Stations Used in the Study 
 

Table B1.1. Information on Cooperative Observations (COOP) Stations from the 
National Oceanic and Atmospheric Administration (NOAA) for the Upper Black Bear 
Creek watershed. 
 

ID NAME X COORDINATE Y-COORDINATE ELEVATION 
1 OK6940_P 697420 4024815 255 
2 OK7012_P 652678 4016477 313 
3 OK7390_P 703042 4041596 252 
4 OK8501_P 671003 3998396 273 
5 OK7505_P 664236 4037108 262 
6 OK0755_P 638760 4043984 305 
7 OK5540_P 708187 4013966 288 

Projection: UTM Zone 14 
Units: Meters 
 

Table B1.2. Information on Cooperative Observations (COOP) Stations from the 
National Oceanic and Atmospheric Administration (NOAA) for the Quapaw Creek 
watershed 
 

ID NAME X COORDINATE Y-COORDINATE ELEVATION 
1 OK3821_P 644547 3964596 314 
2 OK1684_P 691539 3952541 291 
3 OK5779_P 682945 3930165 282 
4 OK6661_P 627161 3916219 390 
5 OK8501_P 671004 3998360 273 
6 OK2318_P 701345 3984202 290 
7 OK7003_P 677344 3981343 274 

Projection: UTM Zone 14 
Units: Meters 
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Appendix C: Stream flow data 
 

Table C1.1. Monthly observed and simulated flow (m3/s) at Upper Black Bear Creek  
(USGS 07153000) 

Date Observed Simulated 
Total Flow Surface Baseflow Total flow Surface  Baseflow 

Jan-88 7.86 5.24 2.62 5.94 5.43 0.50 
Feb-88 1.48 0.23 1.25 0.96 0.58 0.38 
Mar-88 25.19 18.65 6.54 7.98 7.19 0.79 
Apr-88 36.43 27.43 9.00 23.19 21.09 2.10 
May-88 3.45 1.68 1.77 5.14 2.58 2.56 
Jun-88 0.77 0.10 0.67 1.89 0.40 1.48 
Jul-88 2.33 1.58 0.75 5.97 4.88 1.09 
Aug-88 0.23 0.05 0.18 0.46 0.00 0.45 
Sep-88 11.06 8.79 2.27 10.17 9.78 0.39 
Oct-88 0.91 0.39 0.52 1.24 0.39 0.84 
Nov-88 2.50 1.74 0.76 4.21 3.34 0.86 
Dec-88 0.56 0.10 0.46 0.78 0.03 0.75 
Jan-89 1.69 1.17 0.53 0.74 0.31 0.43 
Feb-89 1.76 1.06 0.69 3.84 3.52 0.33 
Mar-89 11.81 10.18 1.62 4.26 4.05 0.21 
Apr-89 4.78 2.58 2.21 4.43 0.30 4.14 
May-89 7.49 5.67 1.81 6.72 6.22 0.50 
Jun-89 15.02 11.47 3.55 12.15 11.17 0.98 
Jul-89 1.80 0.57 1.22 4.61 3.06 1.55 
Aug-89 3.83 2.64 1.19 9.40 8.36 1.03 
Sep-89 5.92 4.91 1.01 11.77 10.66 1.11 
Oct-89 1.04 0.66 0.38 4.82 4.00 0.81 
Nov-89 0.75 0.24 0.51 2.05 0.04 2.01 
Dec-89 0.51 0.09 0.41 0.54 0.27 0.28 
Jan-90 1.01 0.45 0.56 3.17 2.99 0.17 
Feb-90 4.23 3.13 1.11 2.58 2.50 0.08 
Mar-90 45.50 32.05 13.45 23.14 21.31 1.83 
Apr-90 18.13 11.43 6.70 15.91 10.02 5.89 
May-90 16.26 10.55 5.71 15.04 7.98 7.06 
Jun-90 1.26 0.47 0.79 6.32 0.24 6.08 
Jul-90 0.22 0.05 0.17 3.05 0.06 2.99 
Aug-90 0.60 0.33 0.27 1.79 0.49 1.31 
Sep-90 1.09 0.99 0.10 2.25 1.69 0.56 
Oct-90 0.58 0.45 0.13 1.28 0.75 0.53 
Nov-90 0.23 0.07 0.16 1.05 0.63 0.42 
Dec-90 0.25 0.07 0.19 0.25 0.01 0.23 
Jan-91 0.39 0.07 0.32 1.95 1.81 0.14 
Feb-91 0.37 0.02 0.34 0.02 0.00 0.02 
Mar-91 0.49 0.09 0.40 0.04 0.02 0.02 
Apr-91 1.11 0.73 0.38 1.63 1.58 0.05 
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Table C1.1. Monthly observed and simulated flow (m3/s) at Upper Black Bear Creek  
(USGS 07153000) (continued) 

Date Observed Simulated 
Total Flow Surface Baseflow Total flow Surface  Baseflow 

May-91 3.99 3.27 0.72 1.81 1.71 0.10 
Jun-91 2.41 1.68 0.73 2.38 2.10 0.29 
Jul-91 0.18 0.11 0.06 0.71 0.51 0.20 
Aug-91 0.00 0.00 0.00 0.03 0.00 0.03 
Sep-91 0.14 0.11 0.03 0.95 0.86 0.10 
Oct-91 0.20 0.15 0.05 1.35 1.27 0.08 
Nov-91 2.03 1.68 0.34 2.62 2.14 0.48 
Dec-91 12.09 10.45 1.63 10.91 9.47 1.44 
Jan-92 0.85 0.17 0.69 2.67 0.02 2.65 
Feb-92 0.59 0.18 0.42 2.03 0.05 1.98 
Mar-92 1.37 0.94 0.43 3.62 2.63 0.99 
Apr-92 0.78 0.40 0.38 0.90 0.66 0.23 
May-92 0.45 0.20 0.25 1.33 0.91 0.42 
Jun-92 15.84 11.46 4.37 7.01 6.83 0.17 
Jul-92 6.37 5.02 1.35 7.16 6.42 0.73 
Aug-92 45.08 33.20 11.88 33.61 31.65 1.96 
Sep-92 10.66 6.14 4.52 8.32 5.28 3.04 
Oct-92 0.72 0.18 0.54 2.68 0.64 2.03 
Nov-92 25.85 18.44 7.41 25.54 23.90 1.64 
Dec-92 20.24 12.32 7.91 15.25 7.78 7.47 
Jan-93 16.85 10.42 6.42 23.70 13.15 10.55 
Feb-93 13.43 6.71 6.73 14.87 6.75 8.12 
Mar-93 7.13 2.77 4.36 8.03 1.99 6.05 
Apr-93 26.99 21.12 5.87 12.69 10.62 2.07 
May-93 83.06 46.80 36.26 78.47 67.92 10.55 
Jun-93 9.12 4.48 4.64 15.82 1.54 14.28 
Jul-93 4.06 1.82 2.24 11.43 2.48 8.95 
Aug-93 5.19 4.35 0.84 14.38 10.29 4.09 
Sep-93 5.67 4.61 1.06 9.71 7.55 2.17 
Oct-93 0.53 0.07 0.46 1.14 0.04 1.10 
Nov-93 1.37 0.63 0.74 1.81 1.22 0.59 
Dec-93 1.62 0.63 0.99 0.72 0.18 0.54 
Jan-94 0.74 0.10 0.64 0.48 0.05 0.43 
Feb-94 1.70 0.93 0.77 1.91 1.67 0.24 
Mar-94 7.02 4.89 2.13 4.06 3.15 0.91 
Apr-94 37.01 29.78 7.23 25.30 24.23 1.07 
May-94 24.24 14.55 9.68 30.09 20.27 9.82 
Jun-94 1.27 0.56 0.71 5.33 0.58 4.75 
Jul-94 0.44 0.22 0.22 2.56 0.28 2.28 
Aug-94 0.27 0.13 0.14 1.99 1.09 0.90 
Sep-94 0.22 0.10 0.12 0.79 0.20 0.58 
Oct-94 0.37 0.14 0.23 0.15 0.01 0.14 
Nov-94 6.60 5.28 1.32 6.23 6.01 0.22 
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Table C1.1. Monthly observed and simulated flow (m3/s) at Upper Black Bear Creek  
(USGS 07153000) (continued) 

Date Observed Simulated 
Total Flow Surface Baseflow Total flow Surface  Baseflow 

Dec-94 0.69 0.09 0.60 0.44 0.00 0.43 
Jan-95 0.61 0.07 0.54 0.72 0.38 0.33 
Feb-95 0.71 0.23 0.48 0.12 0.01 0.11 
Mar-95 15.77 13.54 2.23 5.21 4.90 0.31 
Apr-95 5.61 3.87 1.74 3.71 3.03 0.69 
May-95 23.37 17.72 5.65 11.52 9.63 1.89 
Jun-95 54.29 29.55 24.74 36.55 31.29 5.26 
Jul-95 2.42 1.25 1.16 11.47 3.72 7.75 
Aug-95 16.94 11.55 5.38 13.61 9.49 4.12 
Sep-95 1.19 0.61 0.58 9.29 6.77 2.52 
Oct-95 0.32 0.05 0.26 2.26 0.33 1.93 
Nov-95 0.33 0.03 0.30 1.12 0.00 1.12 
Dec-95 0.64 0.17 0.47 0.98 0.44 0.54 
Jan-96 0.50 0.10 0.40 0.20 0.00 0.19 
Feb-96 0.42 0.11 0.31 0.35 0.25 0.10 
Mar-96 0.37 0.06 0.31 0.03 0.01 0.02 
Apr-96 2.84 2.37 0.47 2.97 2.93 0.04 
May-96 0.41 0.11 0.30 0.07 0.05 0.02 
Jun-96 0.56 0.38 0.19 0.15 0.13 0.02 
Jul-96 0.70 0.56 0.14 0.35 0.34 0.02 
Aug-96 7.28 5.40 1.87 4.45 4.35 0.10 
Sep-96 12.87 11.58 1.30 10.89 10.59 0.30 
Oct-96 2.80 1.68 1.12 3.93 2.51 1.42 
Nov-96 9.81 8.11 1.70 14.03 11.68 2.35 
Dec-96 2.92 1.47 1.45 5.41 0.53 4.88 
Jan-97 0.76 0.09 0.67 5.46 1.97 3.49 
Feb-97 19.04 15.44 3.60 18.96 17.10 1.86 
Mar-97 3.06 0.97 2.09 3.48 0.40 3.09 
Apr-97 24.46 18.16 6.30 23.34 20.01 3.33 
May-97 17.52 13.36 4.17 17.42 12.56 4.86 
Jun-97 3.08 2.05 1.03 5.61 3.23 2.38 
Jul-97 26.90 22.22 4.68 20.63 17.84 2.79 
Aug-97 3.24 1.97 1.28 8.74 6.63 2.10 
Sep-97 5.02 4.39 0.63 15.99 14.23 1.76 
Oct-97 4.49 3.64 0.84 6.18 4.03 2.15 
Nov-97 0.49 0.07 0.42 2.34 0.05 2.28 
Dec-97 11.03 8.45 2.58 9.40 7.80 1.61 
Jan-98 13.84 10.13 3.71 10.54 5.71 4.83 
Feb-98 2.93 0.67 2.25 7.21 1.35 5.86 
Mar-98 42.87 31.12 11.75 29.28 24.96 4.32 
Apr-98 18.70 15.34 3.35 23.40 17.17 6.23 
May-98 14.89 8.85 6.04 18.48 7.77 10.71 
Jun-98 1.02 0.40 0.62 8.03 0.54 7.49 
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Table C1.1. Monthly observed and simulated flow (m3/s) at Upper Black Bear Creek  
(USGS 07153000) (continued) 

Date Observed Simulated 
Total Flow Surface Baseflow Total flow Surface  Baseflow 

Jul-98 3.16 2.79 0.38 7.55 3.51 4.04 
Aug-98 0.15 0.02 0.13 1.83 0.03 1.80 
Sep-98 0.11 0.03 0.08 1.68 0.92 0.76 
Oct-98 30.37 25.22 5.15 39.66 38.63 1.03 
Nov-98 29.98 22.22 7.75 32.15 26.94 5.21 
Dec-98 6.62 3.41 3.20 11.78 3.23 8.55 
Jan-99 7.80 6.50 1.29 9.16 5.81 3.35 
Feb-99 10.38 6.20 4.17 16.63 4.87 11.76 
Mar-99 27.47 18.46 9.00 20.47 13.42 7.05 
Apr-99 44.82 35.30 9.53 39.99 31.37 8.62 
May-99 34.36 19.16 15.20 36.16 24.26 11.90 
Jun-99 27.26 19.50 7.76 29.47 19.06 10.41 
Jul-99 24.62 18.76 5.86 27.57 11.87 15.70 
Aug-99 1.84 1.12 0.72 8.47 1.95 6.52 
Sep-99 11.48 8.38 3.09 13.61 10.38 3.23 
Oct-99 1.67 1.21 0.46 4.70 3.72 0.98 
Nov-99 0.95 0.35 0.61 6.69 0.36 6.33 
Dec-99 20.38 15.60 4.78 17.99 15.19 2.80 
Jan-00 1.20 0.10 1.10 5.62 0.91 4.72 
Feb-00 3.31 1.74 1.57 8.53 4.73 3.80 
Mar-00 16.06 10.37 5.69 9.78 6.66 3.12 
Apr-00 7.58 4.49 3.09 10.76 3.88 6.88 
May-00 17.36 14.70 2.67 24.96 18.45 6.51 
Jun-00 13.45 8.03 5.42 12.59 7.50 5.09 
Jul-00 9.81 7.46 2.35 9.37 6.03 3.34 
Aug-00 1.20 0.55 0.65 3.91 0.05 3.86 
Sep-00 0.11 0.01 0.10 1.05 0.00 1.05 
Oct-00 2.51 2.15 0.36 6.00 5.47 0.53 
Nov-00 3.09 2.21 0.88 2.27 1.71 0.56 
Dec-00 0.65 0.11 0.54 2.30 1.74 0.56 
Jan-01 4.62 3.35 1.27 15.79 15.50 0.29 
Feb-01 21.03 16.73 4.30 13.74 13.35 0.39 
Mar-01 7.06 2.19 4.87 4.18 1.01 3.18 
Apr-01 1.40 0.22 1.17 2.60 0.19 2.41 
May-01 23.54 20.77 2.77 16.11 15.10 1.01 
Jun-01 7.19 4.23 2.96 7.75 2.47 5.28 
Jul-01 0.37 0.13 0.24 2.65 0.88 1.78 
Aug-01 0.12 0.02 0.10 1.24 0.29 0.95 
Sep-01 0.26 0.15 0.11 1.04 0.59 0.45 
Oct-01 0.06 0.01 0.05 0.07 0.00 0.07 
Nov-01 0.92 0.76 0.16 3.63 3.46 0.16 
Dec-01 0.20 0.03 0.17 0.07 0.00 0.07 
Jan-02 0.81 0.66 0.15 0.16 0.10 0.06 



76

Table C1.1. Monthly observed and simulated flow (m3/s) at Upper Black Bear Creek  
(USGS 07153000) (continued) 

Date Observed Simulated 
Total Flow Surface Baseflow Total flow Surface  Baseflow 

Feb-02 0.86 0.50 0.36 3.31 3.02 0.28 
Mar-02 0.29 0.05 0.23 0.77 0.43 0.34 
Apr-02 1.58 1.12 0.46 1.88 1.61 0.27 
May-02 2.19 1.61 0.58 4.16 3.60 0.56 
Jun-02 6.05 5.03 1.02 3.07 2.43 0.63 
Jul-02 0.61 0.35 0.27 1.79 1.43 0.36 
Aug-02 1.78 1.46 0.32 4.84 4.51 0.33 
Sep-02 8.71 7.29 1.42 17.66 17.19 0.47 
Oct-02 2.40 1.43 0.97 2.89 1.96 0.92 
Nov-02 1.16 0.40 0.76 1.93 0.01 1.93 
Average 8.25 5.74 2.50 8.51 6.09 2.40 

Calibration parameter adjustments for the Black Bear Creek: Upper area: 
 
ESCO = 0.98 
Curve Number = -5.4 
Available Water Content = +0.035 
Revap Coefficient = 0.05 
Minimum Depth of Water in Shallow Aquifer for Revap to Occur = 310 
Minimum Depth of Water in Shallow Aquifer for Baseflow to occur = 305 
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Table C1.2. Monthly observed and simulated flow (m3/s) at Quapaw Creek  
(USGS 07242380) 

Date Observed Simulated 
Total Flow Surface Baseflow Total flow Surface  Baseflow 

Jan-88 2.88 1.51 1.37 6.78 6.71 0.07 
Feb-88 1.33 0.36 0.97 1.56 1.47 0.09 
Mar-88 16.53 12.79 3.74 8.18 6.06 2.11 
Apr-88 25.69 15.80 9.90 9.12 6.01 3.12 
May-88 3.25 0.96 2.29 1.06 0.14 0.92 
Jun-88 2.00 0.96 1.03 1.17 0.86 0.31 
Jul-88 3.12 1.71 1.42 1.56 0.72 0.84 
Aug-88 0.88 0.41 0.47 0.63 0.38 0.25 
Sep-88 4.01 2.32 1.69 6.15 4.58 1.56 
Oct-88 3.66 1.60 2.06 2.30 1.20 1.10 
Nov-88 5.32 2.75 2.57 4.10 3.15 0.95 
Dec-88 1.72 0.15 1.57 1.05 0.56 0.49 
Jan-89 2.21 0.62 1.58 1.01 0.57 0.44 
Feb-89 3.95 1.50 2.45 14.09 13.55 0.54 
Mar-89 5.26 3.05 2.21 2.58 1.76 0.82 
Apr-89 2.86 0.88 1.98 0.34 0.00 0.34 
May-89 9.27 6.10 3.17 5.61 4.28 1.33 
Jun-89 38.79 25.53 13.26 18.61 14.39 4.22 
Jul-89 7.39 3.10 4.29 2.72 0.36 2.36 
Aug-89 17.85 12.86 5.00 8.77 6.18 2.59 
Sep-89 43.24 32.42 10.82 13.59 10.88 2.71 
Oct-89 4.78 2.95 1.84 4.19 3.02 1.17 
Nov-89 4.00 0.63 3.38 2.02 0.01 2.00 
Dec-89 4.73 1.26 3.47 0.40 0.17 0.23 
Jan-90 5.42 1.69 3.73 2.69 2.22 0.47 
Feb-90 12.49 7.12 5.37 3.83 3.14 0.69 
Mar-90 34.53 22.12 12.40 48.60 36.38 12.22 
Apr-90 40.64 24.88 15.76 30.43 12.77 17.66 
May-90 44.65 24.47 20.17 24.03 10.68 13.35 
Jun-90 5.65 1.77 3.88 6.38 0.26 6.12 
Jul-90 0.88 0.08 0.81 2.81 0.49 2.32 
Aug-90 1.40 0.72 0.68 2.12 0.88 1.23 
Sep-90 4.84 3.78 1.06 11.15 9.57 1.58 
Oct-90 2.13 0.75 1.38 2.28 0.44 1.83 
Nov-90 1.93 0.72 1.21 3.82 1.95 1.87 
Dec-90 2.06 0.75 1.32 1.36 0.32 1.04 
Jan-91 2.03 0.49 1.55 4.08 3.77 0.31 
Feb-91 1.49 0.26 1.23 0.09 0.00 0.08 
Mar-91 1.68 0.43 1.25 0.63 0.39 0.24 
Apr-91 3.39 2.28 1.11 1.08 0.53 0.54 
May-91 12.05 8.41 3.63 3.48 2.28 1.20 
Jun-91 6.90 2.34 4.56 3.53 1.86 1.66 
Jul-91 1.91 0.90 1.02 1.45 0.47 0.98 
Aug-91 0.70 0.12 0.57 0.85 0.52 0.32 
Sep-91 4.07 2.33 1.73 13.48 9.97 3.51 
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Table C1.2. Monthly observed and simulated flow (m3/s) at Quapaw Creek  
(USGS 07242380) (continued) 

Date Observed Simulated 
Total Flow Surface Baseflow Total flow Surface  Baseflow 

Oct-91 4.73 3.88 0.85 10.16 5.73 4.43 
Nov-91 6.92 4.86 2.06 15.58 6.58 9.00 
Dec-91 14.70 10.09 4.61 28.95 16.61 12.34 
Jan-92 7.23 2.28 4.95 14.00 0.57 13.43 
Feb-92 3.15 0.29 2.85 6.02 0.37 5.65 
Mar-92 3.48 0.80 2.68 3.84 0.73 3.11 
Apr-92 6.22 3.32 2.90 3.22 1.43 1.79 
May-92 5.69 1.98 3.71 5.43 3.13 2.31 
Jun-92 22.75 15.30 7.44 19.74 11.36 8.38 
Jul-92 9.29 5.41 3.89 9.39 1.01 8.38 
Aug-92 4.84 3.73 1.11 6.26 2.39 3.88 
Sep-92 5.73 3.34 2.39 2.81 1.06 1.75 
Oct-92 1.32 0.07 1.25 0.72 0.21 0.51 
Nov-92 9.83 6.22 3.61 23.11 17.08 6.03 
Dec-92 19.34 11.26 8.09 27.85 9.25 18.60 
Jan-93 8.16 1.88 6.29 32.26 13.70 18.56 
Feb-93 14.62 6.20 8.42 17.25 6.17 11.08 
Mar-93 13.62 5.76 7.86 7.51 2.17 5.34 
Apr-93 20.78 12.82 7.96 12.66 8.59 4.07 
May-93 70.64 36.11 34.52 81.07 61.01 20.06 
Jun-93 22.32 6.39 15.92 16.79 1.33 15.46 
Jul-93 2.86 0.83 2.02 5.46 0.19 5.27 
Aug-93 1.21 0.41 0.80 2.57 0.57 2.00 
Sep-93 7.65 4.61 3.04 19.13 15.01 4.12 
Oct-93 1.54 0.19 1.36 3.18 0.05 3.13 
Nov-93 2.26 0.51 1.75 1.81 0.31 1.49 
Dec-93 3.43 0.97 2.46 1.98 0.39 1.59 
Jan-94 1.86 0.29 1.58 0.93 0.00 0.93 
Feb-94 7.27 3.92 3.35 1.36 0.74 0.62 
Mar-94 14.74 9.07 5.67 6.50 3.31 3.19 
Apr-94 5.97 3.29 2.68 7.23 3.94 3.29 
May-94 11.99 7.72 4.28 9.38 5.30 4.09 
Jun-94 4.60 1.80 2.80 4.32 2.34 1.98 
Jul-94 1.88 1.10 0.79 2.12 0.85 1.27 
Aug-94 0.70 0.22 0.48 1.20 0.55 0.65 
Sep-94 1.89 1.08 0.80 3.42 2.17 1.25 
Oct-94 2.42 1.21 1.20 1.81 0.98 0.83 
Nov-94 12.27 7.08 5.19 22.96 17.70 5.26 
Dec-94 3.75 1.37 2.38 6.31 0.06 6.25 
Jan-95 2.79 0.77 2.02 2.85 0.45 2.39 
Feb-95 2.47 1.03 1.44 1.47 0.48 0.99 
Mar-95 9.12 6.23 2.89 8.81 5.72 3.08 
Apr-95 11.57 6.86 4.71 6.25 2.65 3.59 
May-95 34.04 22.31 11.72 28.29 20.40 7.89 
Jun-95 84.35 46.62 37.73 61.55 40.06 21.49 
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Table C1.2. Monthly observed and simulated flow (m3/s) at Quapaw Creek  
(USGS 07242380) (continued) 

Date Observed Simulated 
Total Flow Surface Baseflow Total flow Surface  Baseflow 

Jul-95 20.91 6.36 14.55 14.88 0.45 14.43 
Aug-95 8.56 5.62 2.94 8.30 2.42 5.88 
Sep-95 2.82 0.64 2.17 5.33 1.46 3.87 
Oct-95 2.57 1.14 1.43 8.26 3.57 4.69 
Nov-95 1.84 0.09 1.75 2.02 0.01 2.02 
Dec-95 2.97 1.15 1.82 2.85 1.78 1.07 
Jan-96 2.31 0.71 1.60 0.33 0.00 0.33 
Feb-96 1.33 0.06 1.27 0.08 0.00 0.08 
Mar-96 1.80 0.55 1.25 0.33 0.19 0.14 
Apr-96 5.18 3.79 1.39 1.06 0.72 0.34 
May-96 1.60 0.36 1.23 0.80 0.64 0.16 
Jun-96 3.81 2.09 1.72 2.11 1.44 0.67 
Jul-96 13.48 9.97 3.51 10.71 8.85 1.86 
Aug-96 14.52 6.90 7.62 13.66 9.09 4.57 
Sep-96 6.13 2.86 3.27 11.29 6.51 4.78 
Oct-96 2.50 1.18 1.31 6.99 0.73 6.25 
Nov-96 15.26 8.87 6.39 21.12 15.44 5.68 
Dec-96 3.41 1.13 2.28 8.36 0.00 8.36 
Jan-97 1.58 0.24 1.34 2.48 0.23 2.25 
Feb-97 4.97 3.53 1.44 3.53 2.06 1.47 
Mar-97 3.07 1.02 2.05 1.02 0.25 0.76 
Apr-97 13.01 6.77 6.24 8.55 6.32 2.23 
May-97 7.91 4.30 3.60 3.12 1.29 1.84 
Jun-97 2.42 0.99 1.43 1.66 0.78 0.88 
Jul-97 9.21 7.47 1.74 5.65 4.14 1.50 
Aug-97 3.19 1.55 1.64 2.13 1.00 1.12 
Sep-97 1.55 1.18 0.37 4.07 3.12 0.95 
Oct-97 16.74 11.66 5.07 13.31 10.76 2.55 
Nov-97 1.88 0.71 1.17 2.70 0.25 2.44 
Dec-97 8.77 6.07 2.70 9.57 7.16 2.40 
Jan-98 19.79 10.92 8.87 16.97 8.57 8.40 
Feb-98 7.37 4.06 3.31 12.67 5.40 7.27 
Mar-98 35.36 21.86 13.50 27.42 22.95 4.47 
Apr-98 15.53 10.62 4.91 11.92 6.68 5.24 
May-98 15.77 6.43 9.34 10.78 5.95 4.83 
Jun-98 4.94 3.07 1.86 3.87 1.03 2.85 
Jul-98 0.98 0.10 0.89 0.87 0.01 0.86 
Aug-98 0.64 0.06 0.58 0.32 0.03 0.29 
Sep-98 1.12 0.59 0.53 2.14 1.48 0.66 
Oct-98 7.91 6.39 1.52 44.75 39.61 5.14 
Nov-98 10.62 6.43 4.20 25.72 7.22 18.50 
Dec-98 3.33 1.03 2.30 8.83 1.21 7.62 
Jan-99 2.57 0.68 1.89 4.19 2.12 2.07 
Feb-99 3.07 1.23 1.84 2.53 0.90 1.63 
Mar-99 8.77 5.40 3.37 5.43 3.12 2.32 
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Table C1.2. Monthly observed and simulated flow (m3/s) at Quapaw Creek  
(USGS 07242380) (continued) 

Date Observed Simulated 
Total Flow Surface Baseflow Total flow Surface  Baseflow 

Apr-99 20.08 17.22 2.86 17.24 13.11 4.13 
May-99 15.84 10.59 5.25 20.36 9.18 11.18 
Jun-99 16.01 12.01 4.00 18.56 9.81 8.75 
Jul-99 4.16 2.09 2.07 10.44 1.05 9.39 
Aug-99 0.71 0.02 0.69 3.54 0.28 3.26 
Sep-99 1.31 0.60 0.71 9.62 6.18 3.43 
Oct-99 0.73 0.10 0.63 2.36 1.00 1.36 
Nov-99 0.90 0.07 0.83 4.91 2.24 2.67 
Dec-99 2.54 1.48 1.07 5.65 3.18 2.47 
Jan-00 1.04 0.09 0.95 1.36 0.12 1.24 
Feb-00 1.65 0.73 0.92 3.24 2.57 0.66 
Mar-00 2.21 1.13 1.08 1.37 0.68 0.69 
Apr-00 2.50 1.79 0.71 0.77 0.66 0.11 
May-00 6.98 5.07 1.91 9.15 6.98 2.17 
Jun-00 3.33 2.07 1.26 8.30 5.51 2.78 
Jul-00 3.40 2.51 0.89 7.47 2.82 4.65 
Aug-00 0.47 0.05 0.42 1.96 0.00 1.96 
Sep-00 0.33 0.04 0.29 1.41 0.58 0.84 
Oct-00 8.78 7.23 1.55 27.76 23.89 3.87 
Nov-00 9.67 4.96 4.70 15.90 1.91 13.99 
Dec-00 3.49 1.44 2.04 17.13 4.69 12.44 
Jan-01 8.00 4.68 3.32 20.02 16.01 4.01 
Feb-01 9.71 5.11 4.60 13.89 11.85 2.04 
Mar-01 5.25 1.64 3.61 1.56 0.28 1.29 
Apr-01 3.80 1.70 2.09 0.83 0.18 0.64 
May-01 10.40 8.44 1.96 10.09 9.06 1.03 
Jun-01 7.94 4.72 3.22 12.25 1.39 10.86 
Jul-01 0.99 0.29 0.70 3.74 1.08 2.66 
Aug-01 1.63 0.98 0.65 1.97 0.60 1.38 
Sep-01 13.97 10.54 3.43 25.67 20.77 4.90 
Oct-01 1.85 0.88 0.97 12.77 4.22 8.55 
Nov-01 0.93 0.08 0.85 5.07 0.36 4.70 
Dec-01 1.40 0.39 1.00 2.11 0.15 1.96 
Jan-02 3.92 2.84 1.07 1.25 0.59 0.66 
Feb-02 4.91 1.67 3.24 6.43 5.75 0.68 
Mar-02 2.10 0.96 1.14 2.73 2.13 0.60 
Apr-02 11.18 6.33 4.85 6.79 4.71 2.08 
May-02 7.24 5.14 2.11 6.67 4.46 2.21 
Jun-02 5.98 4.19 1.79 6.61 3.76 2.85 
Jul-02 2.09 1.03 1.05 5.46 3.15 2.31 
Aug-02 2.12 1.42 0.71 5.39 3.35 2.04 
Sep-02 1.92 1.08 0.84 4.21 2.10 2.11 
Oct-02 3.14 1.74 1.40 6.97 4.60 2.37 
Nov-02 1.79 0.59 1.21 6.81 0.17 6.64 
Average 8.13 4.61 3.52 8.68 4.89 3.79 
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Calibration parameter adjustments for the Quapaw Creek area: 
 
ESCO = 0.68 
Curve Number = -5.6 
Available Water Content = +0.042 
Revap Coefficient = 0.054 
Minimum Depth of Water in Shallow Aquifer for Revap to Occur = 307 
Minimum Depth of Water in Shallow Aquifer for Baseflow to occur = 307 
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