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CHAPTER I 
 

INTRODUCTION 

1.1 Precision Agriculture 

Precision agriculture among agricultural producers has been growing over the past 

decade as producers have realized benefits with regard to increased profitability and 

reduced environmental impact. Studies of economic feasibility and analysis of using 

precision farming equipment have revealed that the benefits obtained from precision 

agriculture adoption have mostly out weighted the initial investment and maintenance on 

the precision agriculture equipment (Godwin et al., 2002). For instance, numerous studies 

have been conducted to improve the use efficiency of nitrogen as a fertilizer in cereal 

production. The driving factors for these studies were that (1) nitrogen fertilizer prices 

have doubled over the past few years and (2) environmental impact of excess or 

misapplied nitrogen fertilizer on cereal crops. According to Raun et al. (1999), a one 

percent increase in the nitrogen use efficiency in cereal production worldwide would save 

around $234,658,462 in nitrogen fertilizer costs. Owing to this saving potential, 

agricultural producers are interested in adopting variable rate technology in their farming 

practice. Moreover, Solie et al. (1996) suggested that nitrogen application using variable 

rate technology should treat the field area in the elemental size of not greater than 1.96 

m2 to reap the benefits of variable rate nitrogen application technology. This puts forth a 

lot of questions and expectations from commercially available variable rate technology 
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equipment such as: “Is the equipment capable of providing enough resolution for 

applying nitrogen at variable rates and at different tractor speeds and / or with different 

spatial variability in agricultural fields? What are the costs involved and is it affordable? 

What are the different components involved in variable rate technology? How can the 

performance of each of the component be evaluated? What is the effect of combining 

these components on the overall system performance? Are there any standards defined to 

evaluate the variable rate technology and its associated equipment?” To answer these 

questions and to see if the expectations are met, much research has been done over the 

past decade on different aspects and applications of variable rate technology. An 

overview of relevant research done in this field of variable rate technology and their 

findings is in the review of literature section. 

 

1.2 Variable Rate Technology (VRT) 

Variable rate fertilizer application can be of three types: geographic information system 

(GIS) map-based or real time sensor-based or a combination of map and sensor-based. 

GIS map-based variable rate application is used where application amounts and rates are 

predetermined based on the historic spatial data such as yield and/or soils maps. The field 

is divided into sections and application rates are fixed for each section in the field. Map-

based VRT system uses a predefined application map (prescription map) to change the 

application rate and rate changes are less often. To achieve variable rate application, 

position coordinates are needed in map-based VRT. In contrast, in the case of sensor-

based and combination variable rate application methods, the input comes from a sensor 

that triggers a change in application rate in real time. In most cases, this application rate 
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change is triggered every second. Plant or soil sensors are needed in a sensor based VRT. 

Both the systems need a flow sensor for fertilizer rate, a ground speed sensor, a rate 

controller, and actuator valves/motors. Application rate is adjusted by a variable rate 

controller, which is at the heart of the VRT system. VRT controllers incorporate 

embedded microcontrollers that accept sensor inputs, GIS prescription data, customized 

user commands through hardware and software interface and calculate the required 

application rate using a formula or an algorithm. The calculated rate is then translated 

into actual fertilizer output through actuators, often via motor controlled flow control 

valves or solenoid controlled nozzles.  

 

Rate controllers are available commercially that interface with different devices using 

standard connectors. Important criteria when selecting rate controller or a VRT control 

system is the response time. A fast responding VRT system is needed to make quick rate 

changes while the applicator moves across the field. A map based VRT system needs a 

programmable look ahead feature capable of providing predictive speed compensation 

that is essential for synchronizing fertilizer rates with changing tractor speeds after 

subtracting inherent system lag times. Sensor based VRT provide up-to-date information 

at the time of the application and the components need to be very fast in order to catch up 

to the rate change commands that come every second. The information from the sensors 

is fed to the VRT controllers in real time and the lag time of sensor based VRT system 

needs to be very small. 

 



 

 4

CHAPTER II 

REVIEW OF LITERATURE 

2.1 Standards for Evaluating Variable Rate Technology Equipment 

Determining the key factors for development of a standard test for evaluating the variable 

rate technology and its equipment has been done by Shearer et al. (2002) where in, they 

have reviewed an existing set of standards in the ASABE framework which have an 

impact on variable rate technology. They found that three existing ASABE standards can 

be used to evaluate a variable rate technology product with slight tailoring needed to 

accommodate for variable application rates. The three standards evaluated were:  

 

1. ASABE S341.3 Feb1999 - Procedure for measuring distribution uniformity and 

calibrating granular broadcast spreaders. 

 

2. ASABE EP371.1 - Jan 2001 - Procedure for calibrating granular applicators. 

 

3. ASABE EP367.2 - Jan 2002 - Guide for preparing field sprayer calibration. 

 
Shearer et al’s (2002) evaluations showed that the test standards should be based on the 

controller response against the product distribution and that a set of procedures to 

evaluate the controller response was not available. Shearer et al. (2002) also suggested 

that for addressing the issue of product distribution, or more so, the inherent delay in



 

 5

 some application systems, the ASABE standards mentioned above needed revision to 

accommodate evaluating the quality for application rate changes in different precision 

farming areas. Moreover, these standards were for steady state systems. Shearer et al. 

(2002) suggested that one approach to evaluate granular application would be to specify a 

2D collection pan arrangement for measure changes in the application rates and criteria 

for evaluating the transport lags from the point of metering the grain to the actual 

application device. This review suggests that the delay times of different components of a 

variable rate system are to be accommodated and based on this, test standards need to be 

developed for different variable rate technology applications.  

 

2.2 Factors Affecting Lag-Time of Inline Injection Sprayers 

Researchers in the field of precision agriculture and more specifically in the field of 

variable rate technology application have tried to evaluate individual components of the 

commercially available variable rate technology equipment. The evaluation was based on 

performance, response time, dynamic characteristics and lag time. Some researchers have 

benchmarked different commercial available variable rate controllers and associated 

components. Zhu et al. (1997) investigated the factors affecting the lag times of inline 

injection sprayer systems for one boom section. The factors considered for investigation 

were the total number of active spray nozzles, size of the boom, changes in ground speed, 

and the product viscosity. They used different liquids with viscosities in ranging from 1 

to 98 mPa s. Most pesticides have viscosities within this range. Pesticide injection 

occurred at the center of the boom and was regulated by a Raven SCS 700 rate controller 

depending on the desired application rate and ground speed. The effluxes from spray 
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nozzles were collected and the concentrations were measured to determine change in 

concentrations at different nozzle locations on the boom section. The tests were 

conducted for two boom section diameters of 1.1 and 2.1 cm, different pesticides 

viscosities, and different number of active nozzles. For every test, two measurements 

were made by fixing a particular set of active nozzles, fixed boom section diameter, and 

fixed pesticide viscosity. The first measurement was made when the ground speed 

changed from 1.6 to 6.4 km/hr in 5 s and the second measurement was made when the 

ground speed changed from 6.4 to 1.6 km/hr in 5 s. These measurements were made to 

determine the influence of speed variation on lag times. Zhu et al. (1997) found that 

viscosity plays a very minor role and does not affect the lag time much though there were 

changes in travel speed, where as the cross sectional diameter of the boom had a great 

impact on the lag time for the end nozzle in the boom. There was a two fold increase in 

lag time for a two fold increase in diameter. This lag time was significantly higher than 

the lag time measured by changing the tractor speed from either 1.6 to 6.4 km/hr in 5 s or 

6.4 to 1.6 km/hr in 5 s. 

 

2.3 Lag-Time and Charge-Time of Inline Injection Sprayers 

In another study, Sumner et al. (2000) said that for variable rate technology to be 

successful for pesticide application, lag and charge times of injection sprayers would be 

important criteria. He defined the lag time as the time between the time of injection of the 

chemical and the time it reaches the nozzle and the charge time as the extra time required 

by the chemical at the nozzle to reach a desired concentration. To measure these times, 

Sumner et al. (2000) developed and used a string collector system and measured the lag 
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and charge times for two spray booms. This system used strings to collect the dye which 

was sprayed from one nozzle of the boom section. The distribution of the dye on the 

string was captured and analyzed by a commercially available string analysis system and 

software to determine the lag and charge times. The lag time ranged from 0.2 s to 4.6 s 

for a one nozzle to eight nozzle boom and charge time ranged from 0.2 s to 0.9 s for the 

same nozzle range. The lag time and the charge time did not vary much with changes in 

flow rate, but increased with the number of nozzles in the boom section. The reason for 

wide range of measured value for lag and charge times were change in number of nozzles 

in the boom. The measured lag times using the string collector system had similar values 

as compared to the theoretically estimated lag times which used flow rate and volume for 

calculating the lag time, thereby establishing the credibility of string collector system for 

measuring lag and charge times. This study showed that as the injection system is close to 

the nozzle and if the flow rates are high enough, then there would be less lag. The focus 

of these studies was on the delay involved in injection sprayer systems but did not 

address variable rate technology equipment used for changing rates of the total volume 

applied. These delays are inherent in the variable rate controller itself. 

 

2.4 Static and Dynamic Response Time of Variable Rate Controllers 

Yang (2000) studied a commercially available variable rate controller and found 

interesting results with respect to the static and dynamic response times when being used 

for a variable rate application for two liquid fertilizers. He used a FALCON controller 

system along with the other variable rate application equipment. This controller provided 

feasibility to tune proportional, integral and derivative parameters to get optimal initial 
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and steady state responses for a desired change in the input rate. Once the parameters 

were fixed, response time was measured for different application rates and priming 

conditions. Here, priming is a preparation process that involves cleaning and running the 

system with the same liquid chemical and at desired flow rate before it could be used for 

collecting data with actual experiments there by reducing measurement errors. Priming 

with desired application rate was done before each test that needed a change in 

application rate. Tests were done with different application rate changes from 0 to 150 

l/ha, 0 to 300 l/ha and 0 to 450 l/ha. With each change in application rate, the system was 

primed to the desired rate before the test. The dynamic response time of the controller 

was around 0.5 s and the controller took around 2 s to stabilize at the required rate. In 

another test, the target rate was fixed to 360 l/ha and the priming was done at different 

levels for each test. Yang (2000), observed that when the priming rate was above the 

desired rate, the overshoot was almost 100% and the time taken for stabilizing was 4.5 s 

as compared to 1 s when the priming rate and the desired rates were almost same. For a 

test where the priming rate was 240 l/ha and application rate changed from 240 l/ha to 

480 l/ha, the rise-time increased proportionally between 1 s to 4.5 s but with no 

overshoot. In a similar test, where the priming was done at 480 l/ha and the rate varied 

from 480 l/ha to 240 l/ha, it was seen that there were large overshoots and it took a lot of 

time to stabilize at the desired rate when it was low. Yang (2000) observed that, in 

general there was a 1 s delay when a rate changed and remained constant for 4 s, 

irrespective of whether the rate was changing in the upward or downward direction. All 

the tests indicated that the dynamic controller response time delay was around 1s. 

Additionally, Yang (2000) also observed that the delay in GPS positioning did have an 
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effect on the application accuracy in case of map based prescribed variable rate 

application. 

 

2.5 Time-Delay in Pressure Based Variable Rate Application 

As discussed earlier the application accuracy of variable rate technology equipment could 

depend on the GPS response time and its accuracy. Much research has been done to 

determine the effect of inherent delays in GPS and the delays in flow control valves used 

for variable rate application. The main aim of the research was to find the quantitative 

error between the desired and actual application rates. According to Anglund and Ayers 

(2002), the agricultural industry’s use of variable rate technology is ahead of scientific 

research and that there exists no verification of the accuracy of the variable rate 

technology system as a whole. Much field research has been done to determine the yield 

differences with and without use of variable rate technology equipment under the 

assumption that variable rate technology equipment works properly. Anglund and Ayers 

(2002) found that there was a need for an extensive performance testing of a variable rate 

sprayer system with respect to the spraying amount and location which could lead to 

standard test procedures for evaluating commercially available variable rate sprayer 

system. Anglund and Ayer (2002) found that in the case of pressure based variable rate 

application of liquid chemicals; there was an average of 0.5 s GPS lag and around 1.5 s of 

control valve lag. So a total of 2 s lag was compensated by a pre-programmed “look-

ahead” time in the controller in case of map based variable rate technology equipment. 

Anglund and Ayer (2002) conducted field tests of commercially available variable rate 

technology equipment consisting of a Raven SCS 750 spray controller, a control program 
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from MapInfo Corp to determine the desired application rate based on a map and current 

position, a Trimble AgGPS 132 GPS receiver, a Raven speed sensor, and a Raven RFM 

200 flow meter as controller sensor inputs. They used a Campbell Scientific 2X micro-

logger to log the data from sensors which indicated the change in application rates at 

different times and positions. The GPS position data and the logged data from the 

Campbell Scientific 2X micro-logger were brought to a common time base and analyzed. 

The analysis found that the application rates were within 2.25% of the desired rates 

which is reasonable. The delay involved in GPS was around 0.5 s and the delay because 

of the control valve was 1.5 s. The software used allowed for the setting of a “look-

ahead” time for compensating the delays involved. This compensation would be 

reasonable if the same components were used to build the variable rate technology 

equipment. Practically this would not be possible to effectively use variable rate 

technology equipment if the compensation time has to be found and set by conducting 

experiments for each variable rate controller. Moreover, the idea of a “look-ahead” time 

makes sense only if it is a map based variable rate application. In real-time sensor based 

variable rate application, the concept of “look-ahead” time compensation cannot be used 

though one could place the sensors ahead of application point. Though the GPS time lag 

would not exist in these systems the demand for a control valve with a low response time 

is real so that the application errors are within reasonable limits. 

 

2.6 Variable Rate Technology in Agricultural Applications 

Variable rate technology equipment and variable rate application is being practiced in 

different agricultural fields. Some of the common agricultural areas where variable rate 
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technology application is being used, are in granular fertilizer applications using spinner 

spreaders and pneumatic applicators, liquid chemical and fertilizer application, site 

specific weed management application, and variable rate single tree fertilizer application 

for citrus groves. Researchers have developed different techniques to evaluate and find 

the response time of rate controllers in different agricultural applications. Sui et al. (2003) 

developed an optical method to determine the time delay of spray system used in the field 

of variable rate liquid chemical application, where three different chemicals were being 

applied at different rates at the same time. To simulate this situation, three different 

colored dyes were used for application. The dye solution flowing out of the nozzles 

during the tests were collected into 10 ml cuvettes. Spectral analysis was done to 

determine the concentration of the dyes obtained from different nozzles. The 

concentrations of the dyes were related to the time required for the dyes to reach the 

nozzles when the flow rate changed. 

 

In another application, Fulton et al. (2005) studied the rate response of the variable rate 

technology equipment for granular application. They used two spinner disc spreaders and 

two pneumatic applicators. Each applicator was fitted with different controllers and 

drives. Pan tests were conducted in the field using the modified ASABE standard S341.2 

test protocol for variable rate application using the variable rate technology equipment. 

Different variable rate technology equipment yielded different results and different 

response times. Fulton et al. (2005) observed that in case of granular applications, there 

were cases where the rate transition times were quite high which in turn dictated the 

spatial resolution. Fulton et al. (2005) predicted that higher ground speed could be an 
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issue in case of granular applications and should be reduced to reduce application errors. 

Because of the variable response times in different applicators tested, and with varying 

agricultural applications using the variable rate technology equipment, Fulton et al. 

(2005) suggested that the manufacturers of the variable rate technology equipment 

specify the transition and delay times to the end users. This also highlighted the need for 

having a standard procedure for determining and specifying these values. 

 

2.7 Dynamic Performance Benchmarking in VRT Equipment 

The research experiment results from Anglund and Ayer (2002) showed that the time 

delays for components in a variable rate technology system are different. A majority of 

the delay was caused by the control valve which was around 1.5 s as measured by 

Anglund and Ayer (2002) in their application. Over time, researchers became interested 

in studying the technology used in the existing variable rate technology equipment and to 

see if the components used were optimal for the application. Numerous studies and 

benchmarking of components used in variable rate technology equipment were made. 

One study on the butterfly control valves used in the variable rate technology equipment 

is of particular interest. Cugati et al. (2006) conducted a research on the steady state 

response and the dynamic response of two different types of control valves used with 

commercially available variable rate technology equipment. One of the control valves 

was a hydraulic flow control valve which was DC motor driven and the other was a 

solenoid flow control valve. These valves were used for tests in the variable rate 

technology equipment used for variable rate application in citrus groves. Cugati et al. 

(2006) concluded that the dynamic behavior of the valves and other components in the 
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variable rate technology equipment had a very high impact on the performance and 

accuracy of the variable rate technology equipment thus affecting the spread pattern of 

the granular fertilizer on citrus groves. Cugati et al. (2006) experiments measured the 

steady state response times and the dynamic response time for the two types of valves 

selected. The DC motor controlled valve was rotated to a pre-determined angle of 1.5 

degrees by applying a voltage to the DC motor and the flow rate changes were recorded. 

Tests were repeated for different angles or valve positions. Similar tests were performed 

on the solenoid control valve. The results showed that the steady state behavior for both 

valves was linear, but there was no flow observed from the starting point of 0 degree to 3 

degree angle in case of the DC motor controlled valve. It was also observed that the 

hysteresis of the DC motor controlled valve was higher than that of the solenoid valve. 

With the data acquired from the experiments, the time delay was calculated for both the 

control valves. This time delay was the time from issuing a rate change command to the 

time when the flow rate changed because of the movement of the valve. For both the 

valves, the dynamic behavior was linear. The response for both valves was modeled as a 

first order transfer function. Interestingly, the delay time and the time constant measured 

for both the valves were different. The delay time and the time constant in case of the DC 

motor controlled control valve were 0.08 s and 0.04 s respectively whereas the delay time 

and the time constant in case of the solenoid valve were 0.04 s and 0.02 s respectively. 

Cugati et al. (2006) suggested that the valve with smaller time constant and smaller delay 

time would aid in a better closed loop control and thus suggested that use of solenoid 

control valve was better than the DC motor controlled valve in case of a variable rate 

application system. 
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Another experiment conducted by Cugati et al. (2006) tried to benchmark the dynamic 

performance of a commercially available variable rate controller and associated 

components for variable rate fertilizer application in citrus groves. The bench-marking as 

done earlier with respect to two different types of commercially available valves, was 

repeated with the other components of the variable rate equipment. In his experiments, 

the triggering modes of variable rate technology equipment were changed for a desired 

rate change and the dynamic performance was evaluated. Cugati et al. (2006) found that 

the performance of the variable rate technology equipment triggered by real-time sensors 

was better as compared to the variable rate technology equipment triggered by GPS. This 

implied that the GPS delay does affect the dynamic performance of the variable rate 

technology equipment. With all these results, Cugati et al. (2006) concluded that the 

selection of components that are used to build variable rate technology system have an 

impact on the overall performance of the variable rate technology equipment. From the 

experimental results, Cugati et al. (2006) concluded that the variable rate technology 

equipment which had solenoid valve for flow control, a high resolution encoder and a 

system triggered by real-time sensors for a rate change had the best overall performance 

in the variable rate application and in particular for variable rate application for citrus 

groves. 

 

2.8 Research Focus 

As technology advances faster than ever, so do the applications based on these 

technologies. The present commercially available variable rate technology equipment is 

complex with many different components. Moreover, the functioning of each of the 
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components depends on the response of other components or to be more specific the 

“response time” of the other components. This ultimately determines the ability of 

variable rate technology equipment to perform at the desired scale. Typically a variable 

rate application system is based on a sensor input or based on a prescription map. This 

involves various components of the variable rate technology equipment like plant vigor 

sensors, flow sensors, pressure transducers, GPS sensors, ground speed sensors, wiring 

harness, rate controller, flow control valves, injection sprayers, junction box / interface 

modules, console / virtual terminal, on-board computer running the control program etc. 

All of the components involved operate on the inputs from the other. This means that 

there is a high level of interdependency among the components and that there is a time 

delay involved due to the inherent characteristic of the component, time delay due to the 

dependency on the other component or because of certain other limitations. Much 

research has been done to determine the response times of individual components that 

make up the variable rate technology equipment. That is, individual research on injection 

sprayers, flow control valves and to a certain extent on rate-controllers in different areas 

of variable rate technology applications has been conducted. There have been no specific 

studies or measurements done in the area of application of liquid nitrogen fertilizer using 

commercially available real time sensor based variable rate technology equipment. 

Moreover, not much research has been done to measure the delay involved in each of the 

individual components and also the overall VRT system, especially when all the 

individual components of VRT system work together to achieve a real time variable rate 

application as desired, with set spatial resolution. Owing to the enormous saving potential 

both economically and environmentally with regard to the efficient use of nitrogen as a 
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fertilizer, the performance expectation and demand on variable rate technology 

equipment used for nitrogen application becomes extremely important. 

 

As seen in previous sections, one of the important factors affecting performance of 

variable rate technology equipment used for nitrogen application is the response time. 

Measuring the response time of variable rate technology equipment used for nitrogen 

application involves, measuring individual delay times which add up to the overall 

response time of the variable rate equipment, starting from the time when real time sensor 

senses a change in plant characteristics to the time when change in rate is actually 

achieved. This involves measuring: 

 

1. Time between a change in sensor signal (which demands a rate change) and the 

time it takes to reach the program running on an on-board computer responsible 

for triggering a rate change. 

 

2. Time taken by the on-board computer program to trigger the rate controller for a 

desired rate change. 

 

3. Time required by the rate controller to change the desired flow rate. 

  

4. Time required for the actual flow rate to match the desired flow rate. 
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Time required by the rate controller to change to the desired flow rate depends on type of 

controller and options available on the controller to change control speed or response 

time of the controller itself. Depending on the measured total response time of the 

variable rate technology equipment, it is possible to determine if this time is small 

enough to satisfy the set spatial resolution for variable rate nitrogen application in turn 

determining the maximum application speed. 

 

2.9 Research Objective 

The objectives of this research are: 

1. To measure the response time of a commercially available rate controller with two 

different control valve configurations: pulse width modulated technology with 

fixed orifice nozzles and a fast-close valve with variable orifice nozzles. 

2. To determine the optimum rate-controller parameter setting that results in a 

minimum response time for the two applicator configurations. 

 

3. To measure overall response time for the two applicator configurations using the 

determined optimum controller setting when used in a sensor based VRT system. 
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CHAPTER III 
 

MATERIALS & METHODS 

3.1 VRT System Components 

A VRT system consists of several different components like flow sensors, ground speed 

sensors, hand-held computer that converts sensor value to fertilizer application rate, rate 

controller, pressure transducers, spray nozzles, etc with the application rate controller 

being at the heart of VRT system.   

 

A test sprayer was equipped with a VRT system using two different applicator 

configurations at different times.  A Raven SCS 440 (Raven Industries, Sioux Falls, SD) 

rate controller (figure 1) was used to control rate changes to the applicator systems.  

 
 

Figure 1 Raven SCS-440 application rate controller console.
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Two different applicator configurations were used on the test sprayer to determine 

performance by measuring response time. The first applicator configuration (PWM-

Applicator) consisted of a Synchro System (Capstan Ag Systems, Topeka, KS) pulse 

width modulation (PWM) flow technology that adjusted nozzle solenoid duty cycle with 

fixed orifice nozzles (StreamJet SJ3-04, TeeJet Spraying Systems Company, Wheaton, 

IL) (figure 2). 

 

 
 

Figure 2 TeeJet StreamJet SJ3-04 fixed orifice nozzle and Capstan solenoid valve. 

 

The second applicator configuration (FC-Applicator) consisted of a fast close (FC) valve 

(Raven Industries, Sioux Falls, SD - P/N 1-063-0172-170) (figure 3) with variable orifice 

nozzles (TurboDrop Variable Rate – TDVR02, GreenLeaf Technologies; Covington, LA) 

(figure 4). 
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Figure 3 Raven fast close (FC) valve. 

 
 

Figure 4 TurboDrop TDVR02 variable orifice nozzle (yellow) for metering with an 

oversized StreamJet nozzle (blue) to generate a pattern. 
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The system had a RFM 60P (1-60 GPM Poly) flow-meter (Raven Industries Inc, Sioux 

Falls, SD – P/N 1-063-0171-793) (figure 5) to measure flow in the boom and provide 

feedback to rate controller.  

 

Figure 5 Raven flow meter RFM 60P. 

 

An optional pressure transducer from Raven (Raven Industries Inc, Sioux Falls, ND) 

(figure 6) with range of 0 to 700 kPa (0-100 psi) measured the pressure in the boom for 

display on rate controller console. 

 
 

Figure 6 Raven pressure transducer. 
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3.2 Raven SCS 440 Rate Controller 

A Raven SCS 440 rate controller (Raven Industries Inc, Sioux Falls, SD) was selected for 

performance evaluation (figure 1). It provided precise automatic rate control and could be 

pre-programmed with two separate application rates as well as accept application rates 

from a serial input (Raven Part #: 016-0159-822). The Raven controller used four 

parameters of control valve that directly affected response time called VALVCAL 

number consisting of 4 digits. Parameters that could be controlled by changing the digits 

were: 

 

Digit1: Valve Backlash – Controls the time of the first correction pulse after a change in 

the correction direction is detected. Range: 1 to 9 (1 – Short Pulse, 9 – Long Pulse). 

 

Digit2: Valve Speed – Controls the response time of control valve motor. Range: 0 to 9 

(0 – Fast, 9 – Slow for FC Valve and 0 – Slow, 9 – Fast for Standard Valve). 

 

Digit3: Brake Point – Sets the point at which control valve motor begins braking, so as 

not to over shoot the desired rate. The digit is the percent away from the target rate. 

Range: 0 to 9 (0 = 5%, 1 = 10%, 9 = 90%). 

 

Digit4: Dead Band – It is the allowable difference between the target and actual 

application rate, where the rate correction is not performed. Range: 1 to 9 (1= 1%, 9 = 

9%). 



 

 23

The rate controller accepts the target volume per area to be sprayed either directly from 

the console or from a software command via serial interface and automatically maintains 

the flow regardless of vehicle speed or gear selection by controlling a motorized control 

valve. Actual volume per area being applied is displayed at all times on the console. The 

SCS 440 also functions as an area monitor, speed monitor, and volume totalizer.  

 

3.3 PWM-Applicator (PWM Control with fixed orifice nozzles) 

PWM-Applicator consisted of a Synchro System (Capstan Ag Systems, Topeka, KS) 

pulse width modulation (PWM) flow technology that received a rate signal from the rate 

controller and determined a pulse duty cycle (DC) necessary to apply the desired rate 

(figure 7). The system orifice was sized so that a 100% DC provided the largest rate 

requirement. Lower rates were then achieved, not by closing a valve, but by an automatic 

adjustment of the solenoid duty cycle with fixed orifice nozzles (figure 2) (StreamJet 

SJ3-04 TeeJet Spraying Systems Company, Wheaton, IL). All plumbing components of 

PWM-Applicator were of 5.1 cm (2 in) diameter. The sprayer had a hydraulically 

powered centrifugal pump capable of producing pressures up to 700kPa (100 psi). 

Eighteen fixed orifice nozzles were mounted on 0.51 m (20 inch) spacing over a 9.14 m 

(30 feet) wide boom. The controller was plumbed into the system along with an 

independent flow meter and an optional pressure transducer (figure 7). Liquid flow into 

the boom was controlled as desired by installing a manual 3-way regulator valve after the 

pump. The flow meter provided information to the Raven controller about the flow rate in 

the boom by generating pulses. The chosen flow meter generated 72 pulses per gallon. 

The Raven controller then calculated and controlled the duty cycle of the signal that 
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controlled the opening and closing of solenoid controlled nozzles depending on the 

desired flow rate trigger, the flow rate measured from flow meter and the ground speed. 

The ground speed input to the Raven controller was set inside the Raven controller by the 

speed simulation feature. Water was used in place of nitrogen fertilizer for all tests. 
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Figure 7 PWM-Applicator (Capstan PWM control with TeeJet fixed orifice nozzles).
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3.4 FC-Applicator (FC Valve with variable orifice nozzles) 

FC-Applicator consisted of a fast close (FC) valve (Raven Industries, Sioux Falls, SD - 

P/N 1-063-0172-170) with variable orifice nozzles (TurboDrop Variable Rate – 

TDVR02, GreenLeaf Technologies; Covington, LA) mounted on the boom (figure 8). All 

plumbing components of FC-Applicator also were of 5.1 cm (2 in) diameter and the 

sprayer had the same hydraulically powered centrifugal pump capable of producing 

pressures up to 700kPa (100 psi). Eighteen TurboDrop Variable Rate – TDVR02 variable 

orifice nozzles were mounted on 0.51 m (20 inch) spacing over a 9.14 m (30 feet) wide 

boom in a similar fashion as PWM-Applicator. The controller was plumbed into the 

system along with an independent flow meter and an optional pressure transducer (figure 

8). Liquid flow into the boom was controlled as desired by installing a manual 3-way 

regulator valve after the pump. The flow meter provided information to the Raven 

controller about the flow rate in the boom by generating pulses. The chosen flow meter 

generated 72 pulses per gallon. The Raven controller then calculated and controlled 

position of the Raven fast close (FC) valve depending on the desired flow rate trigger, the 

flow rate measured from flow meter and the ground speed. The ground speed input to the 

Raven controller was set inside the Raven controller by the ground speed simulation 

feature for both applicator configurations. 
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Figure 8 FC-Applicator (Raven FC Valve with TurboDrop variable orifice nozzles).
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3.5 Data Acquisition System 

The main aim of the data acquisition system was to measure response time of the rate 

controller for the two applicator configurations seen in figure 7 and figure 8. In order to 

measure the response time, the data acquisition system had to capture the application rate 

change trigger command coming to the rate controller via serial interface and also the 

actual application flow rate in the boom which was a square wave frequency output from 

a flow meter along with time stamps at 10 Hz. Response time was the time between a rate 

change trigger command and the time when the application rate in the boom stabilized to 

within 1 % of the desired rate. The data acquisition system had to acquire the application 

flow rate data at 10 Hz so that measurement of response time was accurate to 0.1 s. 

Additionally, pressures at start of boom section and at the end of boom were measured 

from an analog voltage output from pressure transducers mounted on the boom plumbing. 

A National Instruments USB-6210 (National Instruments Corp, Austin, TX) data 

acquisition (DAQ) device (figure 9) was used to acquire data from the pressure 

transducers and from flow-meter. A looped program developed in LabVIEW software 

(National Instruments Corp, Austin, TX), was used for logging pressure transducer and 

flow meter data at 10 Hz acquired by USB6210 device through USB port and also to 

capture the application rate change command to Raven controller via serial interface. The 

software program was developed in such a way that it captured all signals along with 

time stamp which made response time analysis easy. 
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3.5.1 Hardware 

The USB6210 features up to 32 analog input (AI) channels with 16 bit resolution and 

aggregate sampling of 250 KS/s, up to two analog output (AO) channels, up to eight lines 

of digital input (DI), up to eight lines of digital output (DO), and two 32 bit counters. One 

counter was used to measure application flow rate by measuring the duty cycle of square 

wave frequency output coming from flow meter. Two analog input channels were used to 

measure the pressures at the inlet and end of boom. 

 

Figure 9 USB 6210 Data acquisition system.  

 

To measure application flow rate in the boom, a higher resolution turbine flow meter 

from Racine Federated Inc (Blancett Model 1100, Racine Federated Inc, Racine, WI) was 

used (figure 10(a)) that generated a 5V square wave at 238 Hz per liter (901 Hz per 

gallon) of fertilizer flow. The measurement range of the flow meter was 3.8 to 190 l/min 

(1 to 50 GPM). The output of flow meter was interfaced to DAQ USB6210 counter to 
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measure period of square wave and there by measuring actual application flow rate. 

 

 (a)                                          (b) 

Figure 10 (a) Blancett flow meter (b) MSP300 pressure transducer. 

 

Two pressure transducer MSP300 (Measurement Specialties Inc, Hampton, VA) with 

range of 0 to 700 kPa (0-100 psi) (figure 10(b)) measured pressure at the inlet and end of 

boom. 

 

3.5.2 Software 

Acquired data from DAQ USB6210 device were logged by a program developed in 

LabVIEW running on a laptop through USB interface. The program is a while loop that 

iterates every 0.1 s and reads off the values from DAQ and also scans the serial port to 

see if a rate change command was sent to rate controller and logs these values 

synchronously along with time stamp in a data file. The program also converted raw 

values in hertz and volts read from DAQ device for flow meter output and pressure into 

physical values as l/min and kPa respectively before logging into the data file. Trigger 
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command for application rate change that was sent to Raven controller according to the 

specified format via serial interface was tapped by a serial data tap (figure 11) and was 

captured by the running LabVIEW program through laptop’s serial interface.  

 

Figure 11 RS 232 Serial port data tap. 

 
LabVIEW data file was opened by MS Excel application for further data analysis. Data 

acquisition program developed in LabVIEW with its front panel and block diagram is 

shown in Appendix A and Appendix B respectively. Figure 12 shows data acquisition 

system installed with FC-Applicator VRT system. One pressure transducer is installed 

after the pump and at the inlet to the sprayer boom and another is installed at one end of 

the boom. Blancett flow meter was plumbed in between Raven flow meter and Raven FC 

valve (figure 12). All signals were wired to appropriate channels on DAQ device using 

shielded cables to reduce signal noise. DAQ device had a USB interface to the laptop 

running LabVIEW software program. 

The wiring diagram and configuration of data acquisition system USB6210 interfaced 

with flow meter and pressure transducers is shown in Appendix C. 
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Figure 12 USB 6210 Data acquisition system installation with FC-Applicator VRT system.
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3.6 Rate Controller Inputs 

Application rate change commands were triggered via serial interface to the rate 

controller from a programmable interface controller (PIC) that was programmed to send 

commands in specified format. The chosen PIC was 18F4520 (Microchip Technology 

Inc, Chandler, Arizona, USA) that had a RS 232 serial interface. It was programmed in C 

language to send different step rate changes to rate controller. Rate changes were chosen 

based on expected rate changes observed in as applied data files collected while variably 

applying fertilizer using an RT200 VRT system. Two types of rate change commands 

were sent to the controller. These changes simulated map and sensor based VRT 

applications. The map based simulation consisted of a single rate change command with a 

step change of 47 liters per hectare (l/ha) (5 GPA). The rate command alternately stepped 

up and down every 20 seconds between 141 and 188 l/ha (15 and 20 GPA). In the 

simulated sensor based VRT system the rate change command was sent every second 

with rate changes in smaller steps than 47 l/ha (5 GPA) for around 240 seconds. The data 

for this were obtained from an as-applied output file from an actual sensor-based VRT 

system. The target application rate ranged from 103 l/ha (11 GPA) to 206 l/ha (22 GPA) 

with an average of 168 l/ha (18 GPA). The maximum rate change while stepping up was 

45 l/ha (4.8 GPA) and while stepping down was 44 l/ha (4.7 GPA). Format for rate 

change command sent via serial interface is shown in Appendix D. PIC program for 

simulating map based step input is shown in Appendix E and program that simulates 

sensor based variable rate input is shown in Appendix F. 
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3.7 Data Collection 

Two types of rate change commands were sent to both applicator configurations and data 

was collected using LabVIEW program for each applicator configuration and each type 

of rate change input. Data were collected for different rate controller parameter settings 

as discussed in section 3.2 that determined response time for the two applicator 

configurations. For each step test, the sprayer system was made to run at a known 

application rate. A rate change command for a desired application was triggered from the 

PIC to the rate controller and synchronously data logging from pressure transducers and 

flow meter was done using LabVIEW program for 20 s and then another rate change 

command was triggered which brought back the application rate to original value and 

data was logged for another 20 s. The above procedure was repeated for different 

VALVCAL settings on the Raven rate controller that controlled response time and 

stability of the controller. The rate change command for step input changed between 141 

and 188 l/ha (15 and 20 GPA). In the second type of input, a sensor based VRT system 

was simulated where the rate change command was sent every second from PIC with rate 

changes in smaller steps than 47 l/ha (5 GPA) for around 240 seconds and data from flow 

meter and pressure transducers was logged synchronously using LabVIEW program. This 

VRT input test was also repeated for different VALVCAL setting on the Raven rate 

controller. For both types of inputs and for both applicator configurations, data 

measurements and logging was done with a fixed set of VALCAL parameters. Valve 

backlash digit was set to 0 and dead band digit was set to 1 for all measurements. First set 

of measurements was made by keeping the valve speed digit at 2 and varying the brake 

point digit from 0 to 9. The next set of measurements was made by keeping brake point 
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digit at 2 and varying the valve speed digit from 0 to 9. Every measurement in both 

applicator configurations was done for the step input rate change of 47 l/ha (5 GPA) and 

also for variable rate inputs that varied every second with smaller step size. Sprayer 

ground speed was simulated at 9.7 km/h (6 mph) in the rate controller using its self test 

feature for all tests. An optimum controller setting that resulted in a minimum response 

time for both applicator configurations and for both types of rate change inputs was found 

by analyzing the data log files. Response time was the time between a set point rate 

change trigger and when actual flow rate in the boom reached and stabilized to within the 

dead band. Measurements were done once for every VALVCAL setting and for each 

applicator configuration resulting in one data file for each measurement. 

 

3.8 Overall Response Time Measurement 

This section describes a method to measure the overall response time for FC-Applicator 

setup. The setup uses a fast close valve with variable orifice nozzles with optimum 

controller setting which was determined that resulted in a minimum response time. FC-

Applicator system (figure 12) is extended with a sensor based VRT system. Application 

rate changes triggered by PIC are replaced by application rate changes triggered by actual 

real-time on the go sensors (figure 13). Sensors used are the green seeker sensors from 

actual RT200 VRT system (NTech Industries Inc Ukiah, CA). A roller platform with two 

different colored clothing on top of platform is rolled under green seeker sensors of 

RT200 system to simulate a trigger for application rate change. The instant (time stamp) 

at which green seeker sensors sensed a change in color was a trigger for rate change and 

is captured by digital input channel of USB6210 DAQ device with the help of a 
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mechanical push button switch. Data from the green seeker sensor is converted to a 

desired rate by an algorithm running on a Recon hand held PC (figure 13). The Recon 

sends a rate change command to Raven rate controller via serial interface in the specified 

format which was earlier simulated by PIC after it received a change in color indication 

from green seeker sensors. This command is synchronously captured by LabVIEW 

program along with the time stamp by scanning the serial port. The delay time between 

green seeker sensor sensing a color change and time when a rate change command was 

sent to rate controller, is measured by calculating the difference in time stamps between 

the two events after analyzing the data log file. Overall response time is the sum total of 

this delay time and the response time of rate controller measured in previous steps for the 

two applicator configurations. 
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Figure 13 Overall response time measurement with FC-Applicator VRT System.
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CHAPTER IV 
 

RESULTS & DISCUSSION 

4.1 Controller Response Time for PWM-Applicator System for Step Input 

Table-1 shows controller response time for the PWM-Applicator system consisting of 

pulse width modulation (PWM) flow technology with fixed orifice nozzles measured for 

different VALVCAL settings. These results are for a step input rate change command. 

 

VALVCAL Digit Response Time, s 

Backlash Speed Brake-Point Dead-Band Step-Up Step-Down 

0 0 2 1 1.7 1.7 
0 1 2 1 1.4 1.5 
0 2 2 1 1.7 1.6 
0 3 2 1 1.7 1.9 
0 4 2 1 2.0 2.3 
0 5 2 1 3.1 4.5 
0 6 2 1 4.2 6.1 
0 7 2 1 6.4 7.4 
0 8 2 1 9.0 12.0 
0 2 0 1 1.6 1.9 
0 2 1 1 1.7 1.8 
0 2 2 1 1.7 1.6 
0 2 3 1 2.0 9.0 
0 2 4 1 13.4 15.7 
0 2 5 1 22.0 25.0 

 

Table 1 Controller response time for PWM-Applicator system for step input.
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Response times for speed digit 9 and for brake point greater than 5 were very high and 

are not shown in table 1. The best response time for step input rate change command with 

PWM-Applicator was 1.5 s for VALVCAL number 0121 (table 1).  For lower numbers of 

valve speed and brake point digits, the step-up and step-down time were almost same. 

But for higher numbers of valve speed and brake point digits, the step-up and step-down 

times were quite different. As seen in table 1, in most cases for higher numbers, the step-

down time was higher compared to step-up time. A sample of data collected using data 

acquisition system for response time measurement for step input with VALVCAL 0121 is 

shown in figure 14. 

 

  

Figure 14 Controller response for step input to PWM-Applicator with VALVCAL 0121. 
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The actual application rate displayed a high frequency component with PWM-Applicator 

(figure 14). As a result, response time for PWM-Applicator configuration for step input 

was measured by a curve fitting technique on measured flow rate in l/ha that used a 5 

point moving average function (figure 15). This smoothing function used a moving 

average method where each smoothed value was determined by neighboring data points 

defined within the span that was 5 points. The smoothing process was weighted because a 

regression weight function was defined for the data points contained within the span. The 

regression weights for each data point in the span were calculated by the tri-cube function 

shown below. 

 

x was the predictor value associated with the response value to be smoothed, xi were the 

nearest neighbors of x as defined by the span and d(x) was the distance along the abscissa 

from x to the most distant predictor value within the span. The data point to be smoothed 

had the largest weight and the most influence on the fit. Data points outside the span had 

zero weight and no influence on the fit. A weighted linear least squares regression was 

performed. Response time was the time between a set point rate change trigger and when 

actual flow rate in the boom reached and stabilized to within 1% of set point value. 
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Figure 15 Controller response time measurement with 5 point moving average on actual 

application rate. 

 

4.2 Controller Response Time for PWM-Applicator System for VRT Input 

Table 2 shows controller response time for the PWM-Applicator system consisting of 

pulse width modulation (PWM) flow technology with fixed orifice nozzles measured for 

different VALVCAL settings. These results are for variable rate input with the rate 

change command sent every second.  

VALVCAL Digit Response Time, s 

Backlash Speed Brake-Point Dead-Band  

0 0 2 1 0.5 
0 1 2 1 0.5 
0 2 2 1 0.6 
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0 3 2 1 0.6 
0 4 2 1 0.6 
0 5 2 1 0.8 
0 6 2 1 0.9 
0 7 2 1 1.0 
0 8 2 1 1.6 
0 9 2 1 2.7 
0 2 0 1 0.5 
0 2 1 1 0.6 
0 2 2 1 0.6 
0 2 3 1 0.6 
0 2 4 1 1.8 
0 2 5 1 2.3 
0 2 6 1 2.7 
0 2 7 1 3.1 
0 2 8 1 3.2 
0 2 9 1 3.7 

 
Table 2 Controller response time for PWM-Applicator system for variable rate input. 

 

The best response time for PWM-Applicator with variable rate input command was 0.5 s 

for VALVCAL number 0121 (table 2) which was also the best VALVCAL number for 

step input rate change (table 1).  A VALVCAL number of 0201 also resulted in response 

time of 0.5 s (table 2). A sample of the data collected using the data acquisition system 

for response time measurement with variable rate input for VALVCAL 0121 is shown in 

figure 16. In this case, response time was the time between a set point rate change trigger 

and when actual flow rate in the boom reached the set point value. The method used to 

measure controller response time for variable rate input (figure 16) was different 

compared to method used to measure controller response time for step input. As the data 

for measured flow rate were collected at 10 Hz, this data of measured flow rate as seen in 

figure 16 was shifted back (lagged) by 0.1 s and correlated with set point data. The 

number of shifts that resulted in a maximum correlation was considered to be the 
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response time. This time was then calculated in seconds by multiplying the number of 

shifts by 0.1 to get controller response time in seconds. This was the response time where 

error between the target and actual application rate was at the minimum and the 

correlation between the target and actual application rate was at the maximum. Figure 17 

shows actual application rate graphed as a function of the set point application rate with 

no lag for variable rate  input sent every second to PWM-Applicator with VALVCAL – 

0121. Simply lagging the actual application rate by 0.5 second improved the regression 

results (figure 18). Actual application error was calculated by comparing the root mean 

square error of actual application rates against set-point application rate for all data points 

collected. The actual application error with no lag was 15.5 l/ha (1.7 GPA) whereas the 

application error with 0.5 s lag was 13.2 l/ha (1.4 GPA). 
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Figure 16 Controller response for variable rate  input sent every second to PWM-Applicator with VALVCAL 0121. 



 

 45

 

Figure 17 Actual application rate v.s. set point application rate with no lag for variable 

rate  input to PWM-applicator with VALVCAL 0121. 

 

Figure 18 Actual application rate v.s. set point application rate with 0.5 s lag for variable 

rate  input to PWM-Applicator with VALVCAL 0121. 
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4.3 Controller Response Time for FC-Applicator System for Step Input 

Table 3 shows controller response time for the FC-Applicator system consisting of the 

Raven fast close (FC) valve with TurboDrop TDVR02 variable orifice nozzles measured 

for different VALVCAL settings. These results are for a step input rate change command.  

 

VALVCAL Digit Response Time, s 

Backlash Speed Brake-Point Dead-Band  

0 0 2 1 OSC* 
0 1 2 1 OSC 
0 2 2 1 OSC 
0 3 2 1 OSC 
0 4 2 1 OSC 
0 5 2 1 OSC 
0 6 2 1 OSC 
0 7 2 1 2.1 
0 8 2 1 3.6 
0 9 2 1 5.1 
0 2 0 1 OSC 
0 2 1 1 OSC 
0 2 2 1 OSC 
0 2 3 1 OSC 
0 2 4 1 2.5 
0 2 5 1 2.8 
0 2 6 1 - 
0 2 7 1 - 
0 2 8 1 - 
0 2 9 1 - 

 

Table 3 Controller response time for FC-Applicator system for step input. 

* OSC indicates oscillating flow 
 

As seen in table 3, for most of lower valve speed and brake point digits, the Raven FC 

valve was unstable and flow to the boom oscillated. These situations are depicted as 

‘OSC’ in the ‘Response Time’ column of table 3. Though the flow was unstable with 

faster valve speeds (<6), increasing the brake point helped stabilize the system as seen in 
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table 3 for VALVCALs 0241 and 0251. The best response time for FC-Applicator was 

2.1 s for VALVCAL number 0721 for step input rate change command (table 3). A 

sample of data collected using data acquisition system for response time measurement for 

step input with VALVCAL 0721 is shown in figure 19. The high brake point was too 

much compensation for fast valve speeds.  Controller response time for VALVCAL 

numbers with higher brake point digits 0261, 0271, 0281 and 0291 was very high for rate 

change command that stepped from high to low and was not considered. 

  

Figure 19 Controller response for step input to FC-Applicator with VALVCAL  0721. 

 

A sample of oscillating flow rate in the boom for step input rate change command for an 

aggressive VALVCAL number of 0021 for FC-Applicator is shown in figure 20. The 

frequency of oscillation was 1 Hz in all the ‘OSC’ situations. 
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Figure 20 Oscillating controller response for FC-Applicator step input with 

VALVCAL 0021. 

 

In case of FC-Applicator configuration too, response time was the time between a set 

point rate change trigger and when actual flow rate in the boom reached and stabilized to 

within 1% of set point value. Response time was directly measured from the collected 

data as there was no noise induced as in case of PWM-Applicator system that used PWM 

technology and there was no need to use any curve fitting technique. As compared to the 

PWM-Applicator, response time for FC-Applicator while stepping up and while stepping 

down was the same. 
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4.4 Controller Response Time for FC-Applicator System for VRT Input 

Table 4 shows controller response time for the FC-Applicator system consisting of the 

Raven fast close (FC) valve with TurboDrop TDVR02 variable orifice nozzles measured 

for different VALVCAL settings. These results are for variable rate input with the rate 

change command sent every second.  

 

VALVCAL Digit Response Time, s 

Backlash Speed Brake-Point Dead-Band  

0 0 2 1   OSC*   
0 1 2 1 OSC 
0 2 2 1 OSC 
0 3 2 1 OSC 
0 4 2 1 OSC 
0 5 2 1 OSC 
0 6 2 1 OSC 
0 7 2 1 0.6 
0 8 2 1 0.9 
0 9 2 1 1.6 
0 2 0 1 OSC 
0 2 1 1 OSC 
0 2 2 1 OSC 
0 2 3 1 OSC 
0 2 4 1 OSC 
0 2 5 1 1.4 
0 2 6 1 2.8 
0 2 7 1 2.8 
0 2 8 1 2.9 
0 2 9 1 3.9 

 

Table 4 Controller response time for FC-Applicator system for variable rate input. 

* OSC indicates oscillating flow 

As seen in table 4, for most of the lower numbers of valve speed digit and brake point 

digit, the Raven FC valve was unstable and flow to the boom oscillated. These situations 

are depicted as ‘OSC’ in ‘Response Time’ column of table 4. The best response time for 
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FC-Applicator with variable rate input command was 0.6 s for VALVCAL number 0721 

(table 4) which was also the best VALVCAL number for step input rate change (table 3). 

A sample of the data collected using data acquisition system for response time 

measurement with variable rate input for VALVCAL 0721 is shown in figure 21. Even in 

this case, the response time was the time between a set point rate change trigger and 

when actual flow rate in the boom reached the set point value. The method used to 

measure controller response time for variable rate input for FC-Applicator system (figure 

21) was similar to the method used to measure controller response time for variable rate 

input for PWM-Applicator. As the data for measured flow rate were collected at 10 Hz, 

this data of measured flow rate as seen in figure 21 was shifted back (lagged) by 0.1 s and 

correlated with set point data. The number of shifts that resulted in a maximum 

correlation was considered to be the response time. This time was then calculated in 

seconds by multiplying the number of shifts by 0.1 to get controller response time in 

seconds. 

This was the response time where error between the target and actual application rate was 

at the minimum and the correlation between the target and actual application rate was at 

the maximum. Figure 22 shows actual application rate graphed as a function of the set 

point application rate with no lag for variable rate input sent every second to FC-

Applicator with VALVCAL 0721. Simply lagging the actual application rate by 0.6 

second improved the regression results (figure 23). The actual application error with no 

lag was 12 l/ha (1.3 GPA) whereas the application error with 0.6 s lag was 8.5 l/ha (0.9 

GPA).
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Figure 21 Controller response for variable rate  input sent every second to FC-Applicator with VALVCAL 0721.
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Figure 22 Actual application rate v.s. set point application rate with no lag for variable 

rate  input to FC-Applicator with VALVCAL 0721. 

 
Figure 23 Actual application rate v.s. set point application rate with 0.6 s lag for variable 

rate  input to FC-Applicator with VALVCAL 0721. 
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4.5 Controller Response Time Comparison 

The response time for a step input of 47 l/ha (5 GPA) was greater than the response time 

for variable rate input where the steps were smaller than 47 l/ha (5 GPA) for both PWM-

Applicator and FC-Applicator. The VALVCAL digits that resulted in a minimum 

response time were quite different for both applicator configurations. For PWM-

Applicator configuration, the minimum controller response time occurred at lower valve 

speed digits with fixed brake point digit of 2. For FC-Applicator, the minimum response 

time of controller was at higher valve speed digits with a fixed brake point digit of 2. 

Table 5 shows the VALVCAL number and minimum response times for both types of 

inputs for PWM-Applicator that consisted of Capstan pulse width modulation (PWM) 

flow technology with fixed orifice nozzles and FC-Applicator that consisted of Raven 

fast close (FC) valve with TurboDrop TDVR02 variable orifice nozzles. 

 

Applicator Input 
VALVCAL 

Digit 

Response 
Time, 

s 

 Application 
Error, 
l/ha 

  Backlsh Spd Brake-Pt Dead-Bnd  

PWM 

 

Step 0 1 2 1 1.5 12.0 

Variable 0 1 2 1 0.5 13.0 

FC 

 

Step 0 7 2 1 2.1 7.0 

Variable 0 7 2 1 0.6 8.5 

 

Table 5 Minimum controller response time for PWM-Applicator and FC-Applicator 

systems with step and variable input and respective VALVCAL digits. 



 

 54

Even though we deemed 0.5 s and 0.6 s as the response time to a VRT input for PWM-

Applicator and FC-Applicator systems respectively, (table 5), both systems did not 

actually hit the desired rate and there was an application rate error of about 5-8% on an 

average in both configurations. The response time for simulated sensor based variable 

rate changes was 0.5 s for 0121 VALVCAL number with PWM-Applicator configuration 

(table 5). The root mean square application error was 13 l/ha (1.4 GPA). Similarly, 

response time for simulated sensor based variable rate change for FC-Applicator 

configuration was 0.6 s and the corresponding VALVCAL number being 0721. In this 

case, the root mean square application error was 8.5 l/ha (0.9 GPA). It is seen that though 

PWM-Applicator consisting of Capstan pulse width modulation (PWM) flow technology 

with fixed orifice nozzles had a slightly lower response time than FC-Applicator that 

consisted of Raven fast close (FC) valve with TurboDrop TDVR02 variable orifice 

nozzles, flow rate and pressure were more stable in FC-Applicator and the root mean 

square error was less by 4.5 l/ha (0.5 GPA). The result shows that FC-Applicator 

configuration is better suited for sensor based variable rate fertilizer applications where a 

rate change is triggered every second with  rates changing in smaller steps than 47 l/ha (5 

GPA) between 103 l/ha (11 GPA) to 206 l/ha (22 GPA).  

 

From table 5 it is seen that there was a big difference in response time for step input of 47 

l/ha (5 GPA) for both applicator configurations. PWM-Applicator performed well with a 

response time of 1.5 s as compared to FC-Applicator with response time of 2.1 s. The 

root mean square application error for PWM-Applicator was 12 l/ha (1.3 GPA) where as 

the root mean square application error for FC-Applicator was 7 l/ha (0.8 GPA). This 



 

 55

showed that PWM-Applicator had a smaller response time but larger application error 

where as FC-Applicator had a larger response time but smaller application error. This 

result of higher RMS application error with lower response time in PWM-Applicator 

could be attributed to the fact that PWM-Applicator displayed a high frequency 

component in flow rate and pressure in the boom that contributed to higher application 

error. 

4.6 Boom Pressures in PWM-Applicator System 

Pressures at inlet of the boom and at one of the ends of the boom for PWM-Applicator 

system were captured by the data acquisition system and analyzed (figure 24), for the 

determined optimum VALVCAL number of 0121. 

 
 

Figure 24 Boom pressures in PWM-Applicator system. 
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Pressures at inlet and end of the boom displayed a high frequency component for PWM-

Applicator system. We believe this high frequency component was due to the alternating 

pulses with PWM signal that controlled solenoid valves. However, we were not sampling 

fast enough to verify this. There was an average pressure drop of 20 kPa (3 psi) from the 

inlet to end of boom. 

4.7 Boom Pressures in FC-Applicator System 

Pressures at inlet of the boom and at one of the ends of the boom for FC-Applicator 

system were also captured by the data acquisition system and analyzed (figure 25), for 

the determined optimum VALVCAL number of 0721. 

 

Figure 25 Boom pressures in FC-Applicator system. 
 



 

 57

Pressure at inlet of the boom did display a high frequency component for FC-Applicator 

system but did not vary much, as compared to the PWM-Applicator. Pressure at end of 

the boom was much stable and did not display a high frequency component. There was an 

average pressure drop of 40 kPa (6 psi) from inlet to the end of boom which was double 

as compared to PWM-Applicator. We believe this was because of the pressure drop in FC 

valve. 
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CHAPTER V 

CONCLUSION 

Response time of commercially available real-time sensor based VRT equipment with a 

Raven SCS 440 rate controller was evaluated with two applicator configurations: 

Applicator equipped with Capstan PWM technology with fixed orifice nozzles and an 

applicator equipped with Raven FC-Valve with variable orifice nozzles. Pressure, flow 

rate, controller input from the sensor system were measured and logged along with time 

stamps using a data acquisition system. The logged data were analyzed to determine if 

the applied rate correctly followed the desired set-point rates or if there was any delay in 

overall response time of VRT equipment for different settings of the rate-controller. 

Results also showed that rate controller settings were different for both applicator 

configurations for achieving minimum response time of around 0.5 – 0.6 s for variable 

rate input. It was seen that though PWM-Applicator consisting of Capstan pulse width 

modulation (PWM) flow technology with fixed orifice nozzles had a slightly lower 

response time than FC-Applicator that consisted of Raven fast close (FC) valve with 

TurboDrop TDVR02 variable orifice nozzles, flow rate and pressure were more stable in 

FC-Applicator and the root mean square error was less by 4.5 l/ha (0.5 GPA). Results 

implied that controller settings varied with the type of applicator configurations used and 

corresponding minimum response time had to be determined for each configuration for 

optimum performance of VRT equipment. Results showed that FC-Applicator 

configuration was better suited for sensor based variable rate fertilizer applications where 

a rate change is triggered every second. There was a big difference in response time for 

step input of 47 l/ha (5 GPA) for both applicator configurations, where PWM-Applicator 
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performed well with a response time of 1.5 s as compared to FC-Applicator with 

response time of 2.1 s. This showed that PWM-Applicator configuration was better suited 

for map based variable rate fertilizer applications where a rate change was triggered less 

often in bigger steps. This work would aid in determining minimum spatial resolution 

achievable for variable rate application using commercial VRT equipment. 
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CHAPTER VI 

FUTURE WORK 

This research evaluated the response time of rate controller when used with two different 

applicator configurations. These applicator configurations are commonly used in map 

based and sensor based VRT equipment, where rate change inputs to controller come 

frequently and with different magnitudes. This research did not evaluate the total 

response time of real-time sensor based VRT equipment from ‘Sense’ to ‘Spray’. Future 

researchers in this area could evaluate the overall response time of this real-time sensor 

based VRT equipment. A brief methodology to evaluate this was discussed in section 3.8.     

With the results of my research as baseline, future research and tests could be conducted 

with different and faster components of the applicator system. The tests could be 

conducted by using faster valves, newer technology nozzles and other advanced VRT 

equipment and bench mark the response times measured. The rate controller used for my 

test was a SCS440 Raven controller. Researchers could also use rate controllers from 

different vendors which provide more user control options for controlling the response 

time and perform tests to find out combinations of VRT components that result in lower 

overall response time. Another area of interest would be to sample the flow and pressure 

in the boom at a much higher rate for PWM-Applicator as compared to this research so 

that one could better analyze the flow and pressure dynamics in the PWM Applicator 

system that used Capstan PWM flow technology. 



 

 61

REFERENCES 

Anglund, E.A., P.D. Ayers. 2003. Field evaluation of response times for a variable rate 
(pressure based and injection) liquid chemical applicator. ASAE Paper Number: 
001157. St. Joseph, Mich.: ASABE. 

 
Cugati, S.A., W.M. Miller, J.K. Schueller, A.W. Schumann. 2006. Dynamic 

characteristics of two commercial hydraulic flow-control valves for a variable-
rate granular fertilizer spreader. ASAE Paper Number: 061071, Portland, Oregon 

 
Cugati, S.A., W.M. Miller, J.K. Schueller, A.W. Schumann, S.M. Buchanon, H. K. 

Hostler. 2006. Benchmarking the dynamic performance of two commercial 
variable-rate controllers and components. Transactions of the ASABE. 50(3): 
795−802. 

 
Fulton, J.P., S.A. Shearer, S.F. Higgins, M.J. Darr, T.S. Stombaugh. 2005. Rate response 

assessment from various granular VRT applicators. Transactions of the ASAE. 
48(6): 2095−2103 

 
Godwin, R.J., T.E. Richards, G.A. Wood, J.P. Welsh, S. Knight. 2002. Economic 

analysis of precision farming systems. ASAE Paper Number: 02-1019, Chicago, 
IL. 

 
Raun, W.R., G.V. Johnson. 1999. Improving nitrogen use efficiency for cereal 

production. Agronomy journal. 91(3): 357-363. 
 
Shearer, S.A., T.S. Stombaugh, J.P. Fulton and T.G. Mueller. 2002. Considerations for 

development of variable-rate controller test standard. ASAE Paper Number: 
021191, Chicago, IL. 

 
Shoukat Choudhury, M.A.A., N.F. Thornhill, and S.L. Shah. 2005. Modelling valve 

stiction.  Control Engineering Practice 13(2005):641-658 
 
Solie, J.B., W.R. Raun, R.W. Whitney, M.L. Stone and J.D. Ringer. 1996. Optical sensor 

based field element size and sensing strategy for nitrogen application. 
Transactions of the ASAE.  39: 1983-1992. 

 
Sui, R.J., Alex Thomasson, Jeffrey L. Willers, F. Paul Lee, Rui Wang. 2003. Variable-

rate spray system dynamic evaluation. ASAE Paper Number: 031128, Las Vegas, 
Nevada.



 

 62

Sumner, H.R., G.C. Rains, P.E. Sumner. 2000. String collectors to determine lag time of 
injection sprayers. Applied Engineering in Agriculture. 16(5): 471-476. 

 
Yang, C. 2000. A variable rate applicator for controlling rates of two liquid fertilizers. 

Applied Engineering in Agriculture. 17(3): 409–417. 
 
Zhu, H., R.D. Fox, H.E. Ozkan, R.D. Brazee, R.C. Derksen. 1997. Time delay for 

injection sprayers. Transactions of the ASAE.  41(3): 525-530.



 

 63

APPENDICES 

Appendix A: Front Panel of LabVIEW Data Acquisition Program 
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Appendix B: Block Diagram of LabVIEW Data Acquisition Program 
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Appendix C: Wiring Diagram of NI USB-6210 Data Acquisition System 
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Appendix D: Raven Controller Rate Change Command Serial Data Format 

  
For changing RATE1 CAL on SCS 440 Raven Controller by remote computer, through 

RS-232 serial interface, following needs to be done. 

 

Configuration:  

                         Baud Rate: 1200 or 9600 

                         Parity:  NO 

                         Data Bits:  8 

                         Stop Bits: 2 

 

Data stream from Remote Computer to Raven Console: 

All request strings have to begin with $R, to indicate a Raven communication string in 

the format shown below 

                          $R, RC, <rate_1_cal> <CR> <LF> 

For example to change RATE 1 in Raven Controller to 123.4 following string has to be 

sent 

                         $R, RC, 1234 <CR> <LF> 

Here <CR> and <LF> are carriage return and line feed commands respectively. The unit 

for RATE1 is pre-selected by Raven Controller Console. 
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Appendix E: PIC Program for Simulating MAP Based Step Input 

 

#include<18f4520.h> 

#device ICD=true 

#fuses HS, NOLVP, NOWDT, PUT 

#use delay (clock=20000000) 

#use rs232 (baud=9600, parity=N,STOP=2,xmit=PIN_C6,rcv=PIN_C7) 

 

void main() 

{ 

   int i; 

  unsigned int16 des_val[256] = { 200 150 };  // Desired Application Rate 

 WHILE (TRUE) 

 { 

    for (i=0;i<2;i++) 

    { 

    delay_ms(20000); 

    printf ("$R,RC,%ld\x0D\x0A",des_val[i]); 

    } 

  } 

}   
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Appendix F: PIC Program for Simulating Sensor Based Variable Rate Input 

 
 
#include <18f4520.h> 

#device ICD = true 

#fuses HS, NOLVP, NOWDT, PUT 

#use delay (clock=20000000) 

#use rs232 (baud=9600,parity=N,STOP=2,xmit=PIN_C6,rcv=PIN_C7) 

 void main() 

{ 

 int i; 

unsigned int16 des_val[256] = { 220   201   216   196   196   196   177   196   181   196   

181   177   177   177   181   155   140   144   164   172   172   168   186   196   191   191   

172   181   172   181   177   177   159   159   172   177   191   181   168   168   177   181   

186   159   148   151   159   181   181   186   191   172   172   155   168   168   172   168   

168   177   181   164   151   137   151   172   172   177   172   177   177   177   164   151   

148   130   137   140   140   148   151   168   196   201   159   181   217   217   211   211   

196   168   177   196   181   177   196   206   206   186   172   177   177   186   186   177   

164   144   144   159   151   164   172   168   159   164   181   201   201   211   206   211   

201   201   211   217   209   209   196   191   201   191   191   191   186   168   159   164   

151   159   164   172   186   196   217   209   155   163   209   217   217   217   217   217   

201   201   186   186   196   177   206   220   155   217   211   186   181   186   181   181   

186   206   194   179   179   217   206   191   191   168   164   168   181   181   168   164   
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151   168   186   181   191   186   191   196   186   191   181   164   177   177   164   164   

151   159   159   168   181   172   168   159   151   177   191   186   168   155   151   137   

133   144   159   172   172   159   151   172   186   181   159   164   196   206   196   196   

217   209   202   216   220   206   177   220   201   186   164   148   140   137   133   130   

130   137   151   159   164   168};                   // Desired Application Rate  

  

WHILE (TRUE) 

 { 

    for (i=0;i<256;i++) 

    { 

    delay_ms (1000); 

    printf ("$R,RC,%ld\x0D\x0A",des_val[i]); 

    } 

   } 

} 
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Appendix G: MATLAB Program for frequency analysis using FFT 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Flowmeter Signal analysis using FFT to determine frequency component  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
Fs = 10;                   % Sampling frequency  
T = 1/Fs;                  % Sample time  
L = 1414;                  % Length of signal  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Actual Flow Rate GPA  
  
Aa = xlsread( 'sample' ,4);  
Aa= Aa(:,1);  
Aa = Aa((1:L),1);  
  
t = (0:L-1)*T;                % Time vector  
figure(1);  
% Plot the signal in time domain  
subplot(2,1,1);  
plot(t(1:L),Aa(1:L));  
title( 'Flowmeter Signal' );  
xlabel( 'Time (seconds)' );  
ylabel( 'Flow Rate (GPA)around Desired Rate' );  
  
NFFT = 2^nextpow2(L); % Next power of 2 from length of y  
Y = fft(Aa,NFFT)/L;  
f = Fs/2*linspace(0,1,NFFT/2);  
  
% Plot single-sided amplitude spectrum.  
subplot(2,1,2);  
plot(f,abs(Y(1:NFFT/2)));  
title( 'Single-Sided Amplitude Spectrum of Flowmeter Signa l' );  
xlabel( 'Frequency (Hz)' );  
ylabel( '|Flow|' );  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Pressure P1  
 
Aa = xlsread( 'sample' ,5);  
Aa= Aa(:,1);  
Aa = Aa((1:L),1);  
  
t = (0:L-1)*T;                % Time vector  
figure(2);  
% Plot the signal in time domain  
subplot(2,1,1);  
plot(t(1:L),Aa(1:L));  
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title( 'Pressure Signal P1' );  
xlabel( 'Time (seconds)' );  
ylabel( 'Pressure P1 psi' );  
  
NFFT = 2^nextpow2(L); % Next power of 2 from length of y  
Y = fft(Aa,NFFT)/L;  
f = Fs/2*linspace(0,1,NFFT/2);  
  
% Plot single-sided amplitude spectrum.  
subplot(2,1,2);  
plot(f,abs(Y(1:NFFT/2)));  
title( 'Single-Sided Amplitude Spectrum of Pressure P1 Sig nal' );  
xlabel( 'Frequency (Hz)' );  
ylabel( '|P1|' );  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Pressure P2  
 
Aa = xlsread( 'sample' ,6);  
Aa= Aa(:,1);  
Aa = Aa((1:L),1);  
  
t = (0:L-1)*T;                % Time vector  
figure(3);  
% Plot the signal in time domain  
subplot(2,1,1);  
plot(t(1:L),Aa(1:L));  
title( 'Pressure Signal P2' );  
xlabel( 'Time (seconds)' );  
ylabel( 'Pressure P2 psi' );  
  
NFFT = 2^nextpow2(L); % Next power of 2 from length of y  
Y = fft(Aa,NFFT)/L;  
f = Fs/2*linspace(0,1,NFFT/2);  
  
% Plot single-sided amplitude spectrum.  
subplot(2,1,2);  
plot(f,abs(Y(1:NFFT/2)));  
title( 'Single-Sided Amplitude Spectrum of Pressure P2 Sig nal' );  
xlabel( 'Frequency (Hz)' );  
ylabel( '|P2|' );  
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Abstract: 

 Real-time sensor based variable rate technology (VRT) equipment is complex 

with many different components working together to achieve a desired output. The 

equipment provides rate- controller set-point every second creating more challenges in 

terms of functioning of each component and its response time to achieve a variable rate 

application with existing rate-controllers, valves and nozzles. All components involved 

operate on inputs from the other thereby inducing a time delay. This time delay among 

components questions the credibility on performance of sensor based commercially 

available VRT equipment and its overall response time. Response time of commercially 

available real-time sensor based VRT system was evaluated with two applicator 

configurations: Applicator equipped with Capstan PWM technology with fixed orifice 

nozzles and an applicator equipped with Raven FC-Valve with variable orifice nozzles. 

Parameters pressure, flow rate, controller input from the sensor system were measured 

and logged using a data acquisition system. The data were analyzed to determine if the 

applied rate correctly follows the desired set-point rates or if there is any delay in overall 

response time of VRT equipment for different settings of the rate-controller. Results 

showed that rate-controller settings were different for both applicator configurations for 

achieving minimum response time of around 0.5 s. This work will aid in determining the 

spatial resolution for variable rate application using commercially VRT equipment.  


