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Abstract 

Most waterfowl that breed in Mongolia, part of the semiarid northern region of 

East Asia, are long distant migrants. They depend on availability of lake, river, and 

wetland habitats on their breeding and wintering grounds and need suitable staging and 

stopover sites along their flight routes to complete their migration. Waterfowl in this 

region have developed important adaptations and strategies to ensure their survival and 

reproductive fitness across generations. I studied the ecology of two goose species 

endemic to this semiarid region, the bar-headed goose (Anser indicus) and swan goose 

(Anser cygnoides), to examine their use of highly-variable, wetland habitats. I studied 

the breeding biology of bar-headed geese across three summers (2009-2011) while 

conducting the first systematic nesting study in the semiarid Khangai Mountains region 

of west-central Mongolia. Bar-headed geese were found nesting on both islands and 

cliffs, but their daily nest survival was higher at cliff nests and ranged from 0.94 to 0.98 

with average nest survival of 42.6% during the incubation period. Information-theoretic 

models indicated that nest survival decreased with nest age and varied annually. 

Waterfowl in this region may be limited by available nest sites, but disturbance and 

depredation also may play a critical role in their population dynamics. I also tracked the 

migration of both species via satellite telemetry from their breeding grounds to 

wintering grounds. Satellite tracking data revealed that swan geese migrated through the 

Yalu River Delta to a wintering area primarily restricted to Eastern China. In contrast, 

bar-headed geese had a much greater wintering area ranging from southern China to the 

southern tip of India. Recently, wintering grounds of both species have had significant 

land cover and land use changes related to global warming and human activities. For the 
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first time, I was able to document unique and narrow migration corridors for both 

species that were related to landscape features. The migration corridor of bar-headed 

geese on the Qinghai-Tibetan Plateau was restricted to one biogeographic biome, while 

swan geese moved across biomes in a loop migration, preferred stopover sites in natural 

landscapes, avoided areas of eastern China with large scale developments and high 

human densities, and wintered in the Yangtze River Basin. Migration of bar-headed 

geese was associated with vegetation green-up as indicated by the Normalized 

Difference Vegetation Index (NDVI), and geese strategically moved between areas with 

peak NDVI values extending from their wintering grounds in India, migration stopover 

areas on the Qinghai-Tibetan Plateau, and breeding grounds in Mongolia. The arrival of 

bar-headed geese at staging areas during the spring migration was correlated with a 

decline of green vegetation biomass on their wintering grounds in India and 

advancement of vegetation green-up in northern latitudes. During the autumn migration, 

snow cover and land surface temperature corresponded well with their southward 

movement. These results will have important implications to improve understanding of 

wild bird biology in this region as well as disease ecology -- waterfowl may contribute 

to gene flow of avian influenza viruses among different geographical populations of 

wild and domestic birds through their long distance migration. Species distributions are 

expected to shift in response to climate change, and swan and bar-headed geese likely 

will alter their distribution and migratory behavior in response but constrained by both 

natural habitat availability and human effects limiting their habitats. 

Keywords: waterfowl, long distance migration, breeding ecology, migration strategy, 

land surface phenology, vegetation index 
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INTRODUCTION 

My dissertation is about breeding and migration strategies of two species of 

geese, the bar-headed goose Anser indicus and swan goose Anser cygnoides, which are 

only found in semi-arid temperate Asia. Both species have very unique distribution 

patterns, ecological niches, and migration routes, and both species have been little 

studied in the wild.  

The swan goose is a globally threatened species (International Union for 

Conservation of Nature (IUCN) category: Vulnerable) with a population size of  

<100,000 individuals that occurs in East Asia (Wetlands International, 2006). The 

current breeding range of the species (Figure 1) includes wetlands on the vast steppe-

grassland habitats across a large portion of eastern Mongolia, northeastern China, and 

parts of the Russian Far East, Amur and Primorye Regions and northern part of 

Sakhalin Islands in Russia. Almost the entire population of the swan goose winters in 

the Yangtze River floodplain in east China; however, some birds overwinter in South 

Korea (Cao et al., 2008; Del Hoyo et al., 2001; Goroshko et al., 2004; Poyarkov, 2001; 

Tseveenmyadag et al., 2007b). Three closely-located wetlands - Poyang Lake, Donting 

Lake, and Fengsha Lake  - support over 95% of its global population (Wetlands 

International, 2006; Zhang et al., 2010). Recent population data from the breeding 

grounds in Mongolia and Russia indicates that swan goose populations may have 

experienced dramatic declines in the region (Goroshko, 2003; Goroshko et al., 2004; 

Tseveenmyadag et al., 2007a). One of the major breeding sites in East China, severe 

decreases in Swan Goose numbers have been documented since 2004 (Zhang et al., 

2011). Causes of the decline have been attributed to drought induced wetland loss, 
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disturbance by livestock on nesting birds, competition for grazing area with livestock, 

illegal hunting, egg collection, reduction in submerged vegetation due to water pollution 

and dam water regulation, and wetland conversion for agriculture and development 

projects (Barter et al., 2005; Cao et al., 2008; Goroshko, 2003, 2004; Poyarkov, 2001; 

Tseveenmyadag et al., 2007a; Zhang et al., 2011). 

 

Figure 1. Distribution of bar-headed goose (in black) and swan goose (in white) in 
Asia. Squares denote summer and breeding range, circles are locations recorded in 

winter period. 

 

In contrast, the bar-headed goose is a species found in mostly high altitude 

wetlands within the Central Asian Flyway (Del Hoyo et al., 2001). It is a monotypic 

species with a global population of <60,000 individuals in the wild (Wetlands 
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International 2006). It makes remarkable high-altitude migrations travelling across the 

Himalayan mountain range (mean altitude 5,000m) from breeding areas as far north as 

Mongolia and southern Russia to wintering areas as far south as southern India (Hawkes 

et al., 2011; Takekawa et al., 2009). In 2005, the largest outbreak of highly pathogenic 

avian influenza (A subtype H5N1) occurred at Qinghai Lake in western China and 

killed 5-10% of the global population of bar-headed geese at the single largest known 

colony of this species (Chen et al., 2005; Liu et al., 2005).  

The majority of the global breeding distribution of both the bar-headed goose 

and swan goose are primarily found within Mongolia and China. However, many 

aspects of the population ecology, distribution, and habitat selection are not well 

studied. For example, although there are many records of their distribution from 

countries within the Central Asian Flyway, no single paper has been written specifically 

describing the bar-headed goose in Mongolia where a significant proportion of the 

world breeding population is found. Many breeding areas in Russia, Mongolia, and 

China are either poorly studied or undocumented because of lack of research capacity 

and remoteness in these areas. The situation is more or less the same for the swan 

goose. Until recently, there were few detailed studies focused on swan goose population 

numbers and distributions (Barter et al., 2006; Cao et al., 2008; Goroshko et al., 2004; 

Tseveenmyadag et al., 2007a; Zhang et al., 2010) and feeding habits (Fox et al., 2011; 

Fox et al., 2008), and no long term population monitoring program exists for both 

species throughout their range, except for some efforts being started in China (swan 

goose only; (Cao et al., 2011).  
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Among species of migratory birds, waterbirds make some of the most dramatic 

long distance migrations. They cover tens of thousands of kilometers during their 

annual migration and connect ecosystem processes to the Arctic Circle in the north and 

the tropical regions in the south. One of the well-known ecosystem services of 

insectivorous migratory birds is their role in reducing insect populations in grasslands 

and forests, thus keeping these ecosystems healthy (Whelan et al., 2008). Similarly, 

migratory waterfowl provide important aquatic ecosystem services through herbivory, 

depredation, ecosystem engineering, dispersing plant seeds, nutrients, invertebrates 

across large geographical areas and at local scale (Green and Elmberg, 2013). In 

addition, waterfowl also carry many kinds of infectious diseases as well (Wobeser, 

1981) and have the potential to introduce infectious diseases such as avian influenza 

viruses from one area to another along the flyway (Olson and Dinerstein, 1998; 

Stallknecht and Brown, 2009). 

Avian influenza viruses are identified into subtypes on the basis of two surface 

proteins, hemagglutinin (HA) and neuraminidase (NA). There are 16 HA subtypes (N1 

to H16) and 9 NA subtypes (N1 to N9) of avian influenza virus. All of them have been 

documented in waterfowl, and they circulate between wild bird populations at wintering 

and breeding grounds through migration (Stallknecht and Brown, 2009). However, not 

all avian influenza viruses are highly pathogenic avian influenza (HPAI) viruses that are 

defined as though highly lethal to chickens. The four types of avian influenza viruses 

known to be highly pathogenic include H5N1, H7N3, H7N7, H7N9, and H7N12 

(Suarez, 2009).  
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Since December 2003, the highly pathogenic avian influenza virus A subtype 

H5N1 intensified and spread to more than 60 countries across three continents including 

Asia, Europe, and Africa. It has caused culling of hundreds of millions of poultry and 

has infected more than 660 people, claiming3 over 375 human lives (57%; WHO, 

2013). Genetic analysis showed that transmission of the H5N1 virus from poultry to 

humans is rare, although humans have frequent contacts with poultry products (Van 

Kerkhove et al., 2011).  H5N1 has continued to mutate, and different strains of the virus 

have shown different effects on different species (Yuan et al., 2013). Future HPAI 

outbreaks may be more lethal than the 1918 Spanish flu that caused a worldwide 

pandemic infecting one third of the world’s human population, killing 50-100 million 

people. The possibility of disease outbreaks in a large worldwide pandemic still exists 

today (Taubenberger and Morens, 2006; Webster and Walker, 2003). 

After the Qinghai Lake H5N1 outbreak, the bar-headed geese unintentionally 

became a species of particular interest because of its presence in close proximate to 

poultry farms outside of the breeding season, high mobility and long flight range during 

its annual migration, and involvement in subsequent H5N1 outbreaks in Mongolia 

where poultry were uncommon and transmission was very unlikely. Around the same 

time, there was a large effort to study waterfowl migration in East Asian and Central 

Asian Flyway (Iverson et al., 2011; Newman et al., 2012; Takekawa et al., 2010; 

Yamaguchi and Higuchi, 2008).  

I was very fortunate to be involved in a unique multinational collaborative 

project that consisted of a team of scientists from the University of Birmingham, UK; 

the University of British Columbia, Canada; the Bombay Natural History Society, 
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India; the Max Planck Institute, Germany; the Wildlife Science and Conservation 

Center of Mongolia, the Mongolian Academy of Sciences; the University of Tasmania, 

Australia; the U.S. Geological Survey, the University of Oklahoma, USA; and the 

United Nations Food and Agricultural Organization.  From 2006-2012, the team sought 

to study HPAI disease transmission, prevalence of HPAI H5N1 in wild bird 

populations, migratory connectivity issues focused on waterfowl in Asia, and high 

altitude flight physiological studies. The overall collaborative effort had several 

different components with several different elements. During the project 

implementation period, the group published over 40 papers in peer-reviewed journals, 

and I co-authored ten papers related to migration, disease ecology, and flight physiology 

of the bar-headed goose, swan goose, and whooper swan (see complete list of 

publication on page 8). 

The fundamental motivation of the collaborative project was to understand how 

the HPAI H5N1 virus transmission occurred between domestic birds in farms and wild 

migratory birds; to determine the potential role of wild birds in transmitting HPAI 

H5N1 across a large geographical area; and to identify potential locations, areas, and 

timing related to wild bird migration and HPAI outbreaks.  

Wild and poultry birds sometimes intermix in significant numbers in many parts 

of Southeast Asia, China, East Asia, and Africa where HPAI H5N1 repeatedly occurred 

and the migratory movements by wild birds between regions of infection occur 

annually. However, it has been determined that not all outbreaks are linked or caused by 

wild bird movements, and outbreaks differed by major flyways (Feare, 2007; Gaidet et 



7 
 

al., 2010; Gilbert et al., 2011; Iverson et al., 2011; Newman et al., 2012; Prosser et al., 

2009; Takekawa et al., 2010).  

Since 2006, our project has marked over 100 birds with satellite transmitters 

including three species in Mongolia alone and many more in China and south Asia to 

track the movements of wild birds across large geographical areas in Asia, Europe, and 

Africa. My contribution to this collaborative effort was to study migration strategies of 

swan goose and bar-headed goose and to document the breeding performance of the 

bar-headed goose in Mongolia. Also, I was responsible for capturing and marking 

swans and geese with satellite transmitters; color bands and collect avian influenza 

samples from eastern and western Mongolia; conduct data analyses; and organize field 

logistics.  The contents of my dissertation are comprised of an Introduction section, 

three chapters dealing with specific subjects, and a Discussion section that is based on 

my work under the umbrella of the avian influenza research project implemented 

between 2006 and 2012.  

Chapter One was about breeding site selection and performance of the bar-

headed goose in west-central Mongolia. Compared to many breeding waterfowl in high-

latitude regions, species in semi-arid regions in the temperate zone have received little 

study. Since the collapse of Soviet-backed economic and political systems in all Central 

Asian counties and Mongolia, the study of waterfowl has suffered from lack of financial 

support from central governments. In this chapter, I present detailed documentation of 

bar-headed geese breeding based on systematic surveys conducted over three years 

which was the first nesting study about bar-headed geese in Mongolia.  
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In Chapter Two of my dissertation, I described the migration strategies of the 

swan goose from northeast Mongolia. I examined satellite tracking data obtained from 

25 swan geese that were captured and marked on three lakes in the steppe region of 

northeast Mongolia. I documented migration timing, stopover and staging areas, two 

different migration routes, and the migratory behavior of the swan geese.  

Chapter Three was about the relationship between the annual migration of bar-

headed geese in relation to changes in land surface phenology represented by the 

seasonal vegetation index, land surface temperature, and snow cover. I used data 

products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

sensors to examine the temporal and spatial variation of environmental conditions in 

relation to stopover, wintering, and breeding locations along latitudinal gradients based 

on bar-headed geese satellite tracking data. I investigated whether migration timing, 

route, and time spent at stopover sites by bar-headed geese were associated with 

environmental conditions represented by vegetation, snow, and land surface 

temperature.  

The list of papers that I authored and co-authored related to my research on bar-headed 

geese and swan geese include: 

1. Batbayar, N., J. Y. Takekawa, T. Natsagdorj, Kyle A. Spragens, and X. Xiao. Site 
Selection and Nest Survival of Waterbirds in Semiarid Central Asia: Bar-headed 
Geese (Anser indicus) on the Mongolian Plateau, submitted to journal Waterbirds.  

2. Batbayar, N., J. Y. Takekawa, S. H. Newman, D. J. Prosser, T. Natsagdorj, and X. 
Xiao. 2011. Migration strategies of Swan Geese Anser cygnoides from northeast 
Mongolia. Wildfowl 61:90-109. 

3. Bourouiba, L., J. H. Wu, S. Newman, J. Takekawa, T. Natdorj, N. Batbayar, C. M. 
Bishop, L. A. Hawkes, P. J. Butler, and M. Wikelski. 2010. Spatial dynamics of bar-
headed geese migration in the context of H5N1. Journal of the Royal Society 
Interface 7:1627-1639. 
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Chapter I. SITE SELECTION AND NEST SURVIVAL OF 

WATERBIRDS IN SEMIARID CENTRAL ASIA: BAR-HEADED 

GEESE (ANSER INDICUS) ON THE MONGOLIAN PLATEAU 

Abstract 

Waterbirds breeding on the Mongolian Plateau in central Asia must find suitable 

wetland areas for nesting in a semiarid region of highly variable water conditions. We 

conducted the first systematic nesting study of a waterbird dependent on this region as 

their breeding grounds -- the Bar-headed Goose (Anser indicus). We estimated daily 

nest survival of 235 nests from eight areas of westcentral Mongolia across three 

summers (2009-2011). Their daily nest survival ranged from 0.94 to 0.98 with an 

average nest survival of 42.6% during incubation. We found that Bar-headed Geese 

nested on islands and cliffs, but daily nest survival was higher for cliff nests than for 

island nests. Information-theoretic models indicated that nest survival decreased with 

nest age and varied annually with changing annual conditions. Our results suggested 

that Bar-headed Geese rely on island sites for nesting, but these sites are less successful 

compared with cliff sites, because islands are affected by disturbance and depredation. 

Thus, conservation efforts for waterbirds in the semi-arid region should be focused on 

conserving their nesting islands and protecting them from disturbance, especially in 

light of reductions in availability of undisturbed nest sites in areas of high livestock 

densities experiencing a rapidly warming climate.  
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Introduction 

The Mongolian Plateau is an extensive area located in eastern Central Asia 

which stretches from the Gobi Desert in the south to the Siberian Taiga Forest in the 

north. The landscape is dominated by grassland ecosystems that receive little summer 

precipitation and frequently experience drought (Batima and Dagvadorj 1998). In this 

semiarid region, breeding waterbirds must search for suitable nesting areas under highly 

variable water conditions. Wetlands in the Mongolian Plateau support nesting of many 

species including several ducks, three cranes, two swans, and three true geese (tribe 

Anserini). The Bar-headed Goose (Anser indicus) and Swan Goose (Anser cygnoides) 

are species of conservation concern that nest in this region. Their populations are 

threatened by rapid climate change in their steppe breeding grounds (Kirilyuk et al. 

2012) and by habitat conversion in their migration and wintering areas (Batbayar et al. 

2011; Iwamura et al. 2013; MacKinnon et al. 2012; Murray and Fuller 2012). 

Most true geese migrate several thousand kilometers from southern wintering 

areas to northern latitudes for breeding. However, the Bar-headed Goose is unique as it 

winters on the Indian subcontinent or in southwestern China and crosses the Himalaya 

and migrates short distances to breed (Bishop et al. 2011; Hawkes et al. 2011; 

Takekawa et al. 2009). Its primary breeding areas are in high altitude wetlands of the 

Qinghai-Tibetan Plateau in western China, western Mongolia, and in small numbers in 

southeastern Kazakhstan, southern Kyrgyzstan, Pakistan, and northern India (Del Hoyo 

et al., 2001; Köppen et al., 2010; Prins and Wieren, 2004). The global population is 

estimated at <60,000 individuals (Wetlands International, 2006), 
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Although the population trend has been decreasing due to land use change, 

hunting, egg collection, and habitat loss, this species is not considered threatened by the 

International Union for the Conservation of Nature (IUCN), because it has an extensive 

breeding range and meets the threshold for breeding adults (BirdLife International, 

2009). However, there are several new and emerging threats related to this species. In 

2005, more than 3000 Bar-headed Geese were found dead at Qinghai Lake in western 

China, the largest known breeding colony for this species, due to infection of highly 

pathogenic avian influenza H5N1 virus (Chen et al., 2005). This disease remains 

endemic in the region, although dispersal probability is thought to be relatively low 

(Gaidet et al., 2011; Iverson et al., 2011; Liu et al., 2005). In addition, Bar-headed 

Geese have suffered extensive loss of breeding habitats, because the species nest in 

semiarid temperate regions subject to decreased rainfall and loss of wetlands with rapid 

global warming since the beginning of the 20th century (Bridge et al., 2013). 

Concomitant melting of glaciers in the Himalaya have affected the extent of wetland 

nesting areas in China and India (Xu et al., 2009). Furthermore, land use change in 

India (Contina et al., 2013) and the southeast Tibetan Plateau (Bridge et al., 2011) are 

dramatically changing their wintering habitats.  

Breeding success, nest, egg, and nestling survival are all integral parts of the 

critical information required to understand population dynamics and population trends 

of migratory waterbirds (Newton, 1998). Though the reproductive and population 

biology of most Anserini has been well described, little has been reported about the 

breeding biology and ecology of geese breeding in semiarid regions. Nesting 

requirements and reproduction of Bar-headed Geese are different compared to species 
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that breed in wetter and greener Arctic environments. For example, the vegetation 

growth season in the Arctic is relatively short, and any delay in their nest initiation has 

serious negative effects in decreasing reproductive fitness and survival of both adults 

and young geese (Black et al., 2007; Newton, 1998).  

We conducted field surveys for Bar-headed Geese during three breeding seasons 

(from early May to early June) between 2009 and 2011 in westcentral Mongolia. This 

area supports a significant proportion of the global population of Bar-headed Geese. 

However, little has been reported in the literature about the breeding biology and 

nesting ecology of Bar-headed Geese in Mongolia, and published breeding data for this 

species was very limited.  

Thus, this study aimed to document the breeding biology of Bar-headed Geese 

on the Mongolian Plateau, examine their nesting habitats and reproductive success, and 

assess potential threats or risks that may adversely affect their reproduction. We tested 

three hypotheses to explain variation in their breeding success. First, we hypothesized 

that depredation by native Mongolian Gulls (Larus mongolicus) had a negative effect on 

nest survival during the incubation period. Second, nest disturbances by humans, cattle, 

and ground predators such as foxes, wolves, and domestic dogs had direct negative 

effects on their nest survival. Finally, nests on undisturbed cliff sites had better nest 

survival than nests on island sites that are regularly disturbed. 
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Methods 

Study Area 

Bar-headed Geese breeding habitats in westcentral Mongolia are restricted to 

lakes and river valleys in mountainous areas in the central, north, and west (Fomin and 

Bold, 1991; Gombobaatar and Monks, 2011). Our study was conducted at eight sites 

located in the northern part of Khangai Mountain Range (hereafter Khangai region) 

extending between Arkhangai and Zavkhan provinces in west-central Mongolia (Figure 

1-1). Geographically, much of Mongolia is located in the temperate semi-arid zone of 

the Eastern Palearctic. The study area is elevated between 1800 and 3900 meters above 

sea level, and the region is characterized by forested mountains with short grass steppe 

distributed at lower elevations in the river valleys between the mountains with well-

developed river and lake systems. Several of Mongolia’s large rivers originate in the 

Khangai Mountains, and several large freshwater lakes are found in this region 

including Terkhiin Tsagaan (6100 ha), Sangiin Dalai (16500 ha), Telmen (19400 ha), 

and Khar Lakes (8450 ha). However, most other lakes are small in size and with 

mesotrophic saline or low mineralized water quality (Tserensodnom, 2000).  

The main climate of the Khangai mountain region is continental semiarid. The 

region has long and cold winters, short summers, and large annual and seasonal air 

temperature fluctuations. The average annual precipitation is above 350 mm which falls 

within the highest precipitation levels of this semiarid region (Tsegmid, 1968). In some 

wet years, precipitation reaches 400-500 mm; January is the coldest month and average 

air temperatures range between -20oC to -24oC. The warmest month is July, and average 

air temperatures range from 10oC to 15oC. In the spring and the summer, average daily 
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air temperature is usually lower compared to adjacent geographical regions, and rapid 

air temperature drops in the summer are observed annually (Dagvadorj et al., 2009; 

Jambaajamts, 1989). Conditions with cold winds are observed on a daily basis, and 

occasional light snow and hail events have been recorded in May and June.  

The primary land use in the Khangai region is livestock herding; the region is in 

a relatively undisturbed area without large agricultural fields, mines, or major cities or 

towns. The human population of the nearest towns numbered around 600; otherwise, the 

landscape was sparsely inhabited by nomadic livestock-herding families. The major 

sources of human-related disturbances were access from dirt roads and nomadic 

livestock herding.  

Field Observations of Bird Nests and Eggs 

Fieldwork was conducted during 2009 (11 May to 11 June), 2010 (20 May to 10 

June) and 2011 (23 May to 11 June). Because available descriptions of Bar-headed 

Geese breeding ecology indicated selection for nesting islands within lakes, we initially 

focused efforts towards searching lakes in the region. However, during transitions 

between lakes we visited, we unexpectedly encountered several geese nesting on cliffs 

and included them into the study design.  

Upon discovering nests at island or cliff sites, we initiated a nest monitoring 

protocol to determine their fate until the nest failed or the eggs hatched. Nests were 

revisited one to three times during the incubation period at 4-7 days intervals to obtain 

information on nest fate. During each nest visit, we recorded GPS location, clutch size, 

nest site habitat, number of livestock, distance to closest herder-families, and we 
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determined the incubation stage and weighed and measured the width and length of the 

eggs. Eggs were marked with black permanent marker to facilitate the checks to be 

made during the next visits. The incubation stage of each egg was evaluated by standard 

candling techniques which allowed assessment of the growth of embryo development. 

The method and criteria for determination of the development stage were adapted from 

standard protocols (Klett et al., 1986; Reiter and Andersen, 2008; Weller, 1956).  

We left the nests covered with nesting materials to avoid the exposure of eggs to 

avian predators and wind-chill. However, we cannot entirely rule out the possibility that 

nest depredation by gulls and ravens may have occurred related to our visits, although 

we took precautions to avoid spending unnecessary time at the nest site. We took notes 

on the evidence of egg and nest depredation by recording factors such as broken egg 

shells and fresh footprints of cattle, dogs, or other carnivorous animals. Fresh cattle 

dung also was used as an evidence of possible nest disturbance on the nesting islands. 

The number of gulls and ravens present on the island and near the nest site were noted 

as well, as an indicator of potential avian depredation. 

Statistical Analysis  

Differences among means were tested with one-way ANOVA tests, and any 

differences between means were analyzed with protected t-tests (Zar, 1999). 

Differences in nest initiation time and clutch size across three years were examined with 

a non-parametric Kruskal–Wallis test. We used the year as a group variable and the 

standardized nest initiation date and clutch size as the measurement variables. Two-way 

analysis of variance was used to examine differences in the mean clutch size among 
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years and habitat types. Test statistics were reported as significant when P<0.05. All 

analyses were performed using the R v.2.14.0 programming environment (R 

Development Core Team, 2013). 

Modeling Nest Survival  

Because Bar-headed Goose nests in this study were found at several ages, 

commonly used logistic regression models (Aebischer, 1999) and apparent nest success 

estimators (Mayfield, 1975) were inappropriate for calculating nesting success. Instead, 

we used the daily nest survival (DNS) module in Program MARK (White and Burnham, 

1999) to examine variations in DNS rates and estimate overall nest survival (Dinsmore 

and Dinsmore, 2007). The assumptions of the DNS model were that: 1) nests were 

correctly aged when they are first found, 2) nest fates were correctly determined, 3) nest 

visits did not influence the survival of nests, 3) fates were independent, and 4) nest 

survival rate was homogenous (Dinsmore and Dinsmore, 2007; Rotella et al., 2004). To 

use the DNS model, at each nest we recorded:  1) k, the day the nest was found, 2) l, the 

last day the nest was checked alive, 3) m, the last check date, 4) the fate of the nest 

where 0 = successful or 1 = failed, and 5) the number of nests with same encounter 

history (Dinsmore and Dinsmore, 2007; Dinsmore et al., 2002; Rotella et al., 2004).  

We considered a nest successful if the nest produced at least one successfully 

hatched chick. We also assumed a nest was successful if we observed eggs pipping, egg 

shells had large pieces of inner membranes that remained intact but were detached from 

the shell, and if chicks were making sounds inside the eggs (Klett et al., 1986). We used 

28 days as the incubation period based on averaging the incubation period of eight eggs 
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with known history from the start (N = 8, x̄ = 28.4 d, range = 28-29 d). Nests without 

repeated visits were not included for the DNS analysis. We standardized 11 May as Day 

1 and numbered all nest check dates sequentially thereafter. Most geese do not start 

incubation until the clutch is complete (Black et al., 2007); therefore, the nest age was 

determined by adding the incubation stage and number of eggs in the nest. The nest age 

was used to estimate the nest initiation and hatch dates. All calendar dates (e.g. 5 May 

2009) were converted to Julian Dates (e.g. 125) and used for calculations (Klett et al., 

1986). 

The number of Mongolian Gulls, breeding and non-breeding, at or near the nest 

site was used as an indication of potential nest depredation. If no gull was nesting on the 

same nest site or island or their number was <10, the effect of gull depredation on nest 

survival was coded as 0, while nests with adjacent nesting gulls and >10 individuals 

were coded 1. If we found evidence of nest depredation by mammals, the nest site also 

was coded 1. Evidence of ground predators was based on sign of fresh tracks or scats of 

dogs, wolves, foxes, and cattle; nests apparently disturbed by mammals; signs and 

tracks of animals crossing channels separating islands from shore; or presence of fresh 

cattle dung. If no evidence of disturbance was present, the nest site was given a code of 

0. 

We initially calculated overall DNS for the model without any explanatory 

variables. A series of separate DNS rates were calculated between sites with high and 

low gull depredation, accessible and inaccessible nests, and island and cliff-nesting 

areas. Then, variation in DNS rates were examined across years. We did not address 

observer effects on nesting geese due to the lack of observer associated data, but we 
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assumed this affected groups in each comparison similarly. We used an information-

theoretic approach for model selection (Burnham and Anderson 2002) to investigate 

additive and interactive effects of the year, habitat, gull depredation, and accessibility 

levels on DNS. Model selection was based on rankings by Akaike’s Information 

Criterion corrected for small sample size (AICc) and the model with the lowest AICc 

value was considered best fit model and compared to intercept only (S(.)) models 

(Burnham and Anderson, 1998). Models with less than two AICc values were 

considered as competing models, and Akaike’s weights (ω) were used to examine the 

relative strength of those competing models (Dinsmore and Dinsmore, 2007). We 

obtained the probability of the nest success estimate by raising the estimated daily 

survival rate (DSR) to a power equal to the incubation periods (28 days) (Dinsmore and 

Dinsmore, 2007). 

Results 

We monitored a total of 345 nests: 323 nests on islands and 22 nests on cliffs 

found at eight different locations in the Khangai region during the three years of study. 

These nests included: (a) 29 nests were recorded at Khag Lake, (b) 152 nests at Angirt 

Lake (c) 34 at Telmen Lake, (d) 31 nests at Shivert Lake, (e) 21 nests at Khanan Khad 

Cliff, (f) two nests at Kholboo Lake, (g) one nest in a cliff just north of Tariat town, and 

(h) 75 nests at Khunt Lake. A cliff nest at Ogii Lake (i) and nests on the island at 

Terkhiin Tsagaan Lake (j) nests were not included in the analysis because they were 

checked only once.  

Bar-headed Geese nested in small colonies (range = 2-81 nests across all years) 

on the islands of freshwater and saline lakes or nested alone or in small colonies on 
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rocky cliffs (range = 1-14 nests). Two island colonies had the largest numbers of 

nesting pairs: Angirt Lake (66-81) and Khunt Lake (19-56). At Khanan Khad Cliff, the 

number of nesting pairs significantly increased over 3 years from one pair in 2009 to 14 

pairs in 2011.  

Nest and egg-related data were collected from 156 nests in 2009, 65 nests in 

2010, and 124 nests in 2011 (Table 1-1). The nests of Bar-headed Geese on islands 

were round in shape, made with mostly goose down, and located on shallow cups in dirt 

and sand. Nests on cliffs were either placed on rock ledges or in nests previously built 

by upland buzzards (Buteo hemilasius) or ravens (Corvus corax). Size of the nests was 

10-40 cm (mean = 20 ± 5.2 cm, n = 173) in width and 4-15 cm in depth (mean = 7.6 ± 

1.6 cm, n=171). Egg length averaged 81.3 mm, ranging from 70.1 to 91.2 mm (N=670). 

Egg width averaged 54.6 mm, ranging from 50.4 to 58.8 mm (N=667). Weight of the 

eggs ranged from 83 g to 162 g (N=1016), and the mean weight decreased gradually 

towards the hatch date (Figure 1-2). Clutch size ranged from one to eight eggs that they 

incubated for 28-29 days. The mean clutch size was 3.2 eggs (SD ± 1.6), but nests with 

2-4 eggs were most common (N=328, Table 1-2, Figure 1-3).  We encountered two 

nests with more than ten eggs (n = 11, 14) that were more likely parasitized and were 

excluded from further analyses. 

Clutch size of nests located on rock cliffs were 3.9 on average (N=20), whereas 

for nests on the islands, it was 2.9 eggs (N=306). Average clutch size was 3.4 eggs 

(N=155) in 2009, 2.6 eggs (N=65) in 2010, and 2.6 eggs (N=106) in 2011. Mean clutch 

size across years (F(2,326) = 8.5, P < 0.0001) and between cliff and island habitat types 

(F(1,326) = 14.6, P < 0.004) were significantly different. 
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We found two sites with apparent nest parasitism which is the laying of one’s 

eggs in the another pair’s nest (Davies, 2000). One nest in the Khunt Lake colony had 

14 eggs with similar embryo development. Ten eggs hatched successfully while three 

eggs were infertile and one egg was depredated by gulls. Another nest on a cliff ledge at 

Ogii Lake had 11 eggs. Seven eggs had similar embryonic development, but the other 

four eggs were fresh. In these cases, it is likely that the nests were parasitized which is 

known to occur in this species (Weigmann and Lamprecht, 1991). Actual nest 

parasitism could be higher, because our nest revisit interval was not constant, nests were 

found at various incubation stages, and we did not do systematic observations on nest 

parasitism. However, this is the first report of nest parasitism for this species in the 

wild.   

The earliest nest initiation date was 22 April (observed only in 2009) and the 

latest date was 5 June (Table 1-3). The observed mean nest initiation date was 9 May 

(SD ±10.3 d) in 2009, 19 May (SD ±8.6 d) in 2010, and 17 May (SD ±8.5 d) in 2011. 

The observed mean nest initiation date across three years was 13 May (SD±10.5 d), and 

the mean nest initiation date was significantly different across the three years (H = 39.0, 

df = 2, P < 0.001). We found no differences in nest initiation date between island and 

cliff nests (F(1,279) = 0.11, P >0.74).  

We documented a total of 21 nests (15 on islands and six on cliffs) with eggs 

depredated by Mongolian Gulls, and nine nests (four on islands and five on cliffs) with 

eggs depredated by ravens. Also, tracks of a large canine (dog or wolf) and smaller dogs 

were documented at the Khunt Lake where we lost most of the colony in 2010. Actual 

egg depredation is likely much higher, because we were unable to visit these widely 
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dispersed frequently enough to have a detailed record of egg fate. Goose colonies 

nesting near large gull colonies apparently suffered the most depredation and may have 

lower nest survival during incubation and before hatch. On one occasion, a pair of 

ravens depredated all six newly-hatched chicks from a cliff nest; however, we do not 

have detailed data to determine if complete clutch loss caused by ravens is common.  

Nest survival during the incubation period was estimated on the basis of 235 

nests with known fate and at least one exposure period. The overall DNS rate for the 

incubation period was 0.97 (CI: 0.96-0.98) with the lowest rate in 2010 (0.94, CI: 0.88-

0.97) compared to 2009 (0.98, CI: 0.97-0.98) and 2011 (0.97, CI: 0.95-0.98).  

For the three years combined, the estimated probability of nest survival during 

incubation period was 44.4% (N=235). Nest survival did vary among years (χ2 = 10.31, 

P = 0.0058) which was 56.8% in 2009, 17.7% in 2010, and 42.6% in 2011 (Figure 1-4).  

There was a difference in nest survival between the island and cliff-nesting 

geese (χ2 = 3.71, df = 1, p-value = 0.05), and it was consistent across years. However, 

we found no significant differences in DNS between the accessible and inaccessible 

nests (χ2 = 0.14, df = 1, p-value = 0.706) and between nests with low and high gull 

depredation (χ2 = 0.05, df = 1, p-value = 0.823). The pattern of differences between 

habitat types, depredation levels, and accessibility was consistent across years (Figure 

1-5).  

The best-supported model contained nest age variable (ΔAICc = 0, wi = 0.25), 

indicating that the DNS varied with nest age during the incubation period. There was no 

support for the null model that assumed constant survival throughout incubation period 
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(ΔAICc = 23.4, wi = 0). The best-supported model indicated that DSR decreased with 

nest age, since the slope estimate of the best model was negative (βnestAge = -0.052, SE - 

0.01, 95% LCI = -0.073, 95% UCI = -0.031) (Figure 1-6). The second-best model 

indicated that the DNS rate decreased with nest age and varied by study year (ΔAICc = 

1.13, wi = 0.14) (Table 1-4). In general, all top models with ΔAICc<2 included nest age 

and indicated that nests were more vulnerable nearer towards their hatch date. Also, all 

models that included a constant DNS rate varying by habitat type were not supported, 

and the ΔAICc for these models were 22 units away from the top model (wi = 0).  

 Discussion 

For the first time, we documented the nesting ecology and breeding biology of 

the Bar-headed Goose on the Mongolian Plateau. We found that Bar-headed Geese in 

westcentral Mongolia nested at both island and cliff sites. Nests in cliffs were solitary or 

few in number, similar to what had been reported for a few cases in northern India 

(Gole, 1982) and southern Russia (Baranov, 1991). Colony sizes on islands based on 

our small sample size seem to be related to the size of the islands and the number of 

other birds sharing the island. The smallest island where they nested was about 22 m 

long and 5 m wide (0.011 ha), and the geese shared this tiny island with over 100 

Mongolia gulls and 20 great cormorants (Phalacrocorax carbo). Published sources 

from India, China, and Russia indicated that it was common to see small colonies of 

Bar-headed Geese nesting on relatively small barren islands (Baranov, 1991; Gole, 

1982; Ma and Cai, 1997). The largest island known to have a large colony of Bar-

headed Geese was reported at the Qinghai Lake National Nature Reserve (36° 59' 

19.01" N, 99° 51' 15.24" E) on the Qinghai-Tibetan Plateau, China (Cui et al., 2011). In 
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addition, we found two adjacent Bar-headed Geese nesting in trees during 2009 in 

central Mongolia. These trees were elm (Ulmus spp.) about ~7 meters tall located 3.7 

km away from the nearest river with no lakes present in the area. Both nests were 

known to be previously used by Saker falcons (Falco cherrug), upland buzzards, and 

ravens interchangeably. Tree nesting by Bar-headed Geese was previously reported 

from the Tuva region in southern Russia (Baranov, 1991).  

Although we found Bar-headed Geese nesting at island sites and cliff sites, their 

breeding sites were mainly within lakes on islands spanning a wide range of sizes. 

Availability of suitable, protected nest locations may be one of the main limiting factors 

for this species in westcentral Mongolia. In the Khangai region, most lakes lacked 

suitable islands where Bar-headed Geese could nest. Several lakes formerly had islands 

depicted on maps, but they were not present in the years of our study due to insufficient 

precipitation in recent years. Also, we found Bar-headed Geese nesting on temporally 

exposed sand bars among gull nests. In a few cases, we found their eggs in gull nests 

being incubated by Mongolian Gulls which might have been indicative of a shortage of 

suitable nest sites. Possible nest parasitism previously had been documented in 

Bayinbuluke Lake in northern China (Ma and Cai, 1997) and in the Tuva region of 

southern Russia (Baranov, 1991), but the total numbers of nests in these areas were not 

reported. 

Bar-headed Goose nest survival was best explained by nest age and year. DNS 

was not constant during the incubation period with survival decreasing in older nests -- 

the top two explanatory models included nest age and gull depredation. In general, 

waterfowl produce more eggs when environmental and safety conditions are better, and 
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the environmental conditions during early stages of nesting control the size of clutches 

(Haywood and Perrins, 1992). Egg laying dates in geese are controlled by several 

factors such as lack of nesting sites, fitness cost associated with early nesting, and 

limited food resources en route to the breeding grounds (Black et al. 2007). In general, 

the Bar-headed Goose lays eggs between the last week of April and the last week of 

May (Jensen et al., 2008). Ming et al. (1997) reported that they start nesting at the end 

of April and early May right after returning from spring migration in Xinjiang, China. 

Bar-headed Geese started laying eggs during the first week of May in Ladakh region in 

India (Gole, 1982; Prins and Wieren, 2004), while in Tuva of southern Russia, the first 

eggs were observed on 26 April (Baranov, 1991). Nest initiation and egg laying dates 

observed in Mongolia were very similar to the above-mentioned reports. All of these 

reports suggest that this species has asynchronous nest initiation and hatching dates that 

can span up to one month throughout their geographical range. Also, compared with 

Arctic nesting geese (Roweling, 1978), the nest initiation date of was 7-21 days earlier. 

We speculate that this might be related to the differences in vegetation green-up timing 

(Cargill and Jefferies, 1984; MacInnes and Dunn, 1988; Madsen et al., 1989) and 

possibly spring temperature (MacInnes and Dunn, 1988) in different parts of this semi-

arid region along a latitudinal gradient.  

The range of clutch sizes was consistent with the numbers reported elsewhere 

for this species (Baranov, 1991; Gole, 1982; Lamprecht, 1986; Ma and Cai, 1997; Prins 

and Wieren, 2004). The frequency of clutch sizes for nests in Khangai region of 

Mongolia and the Bayinbuluke Lake of the Tianshan Mountains in northwestern China 

(Ma and Cai, 1997) was similar; however, the average clutch size for Bar-headed Geese 



30 
 

was smaller (3.2±1.6), and smaller clutches of  one to four eggs were more frequent. In 

contrast, the average clutch size at Bayinbuluke Lake was 4.47±2.2 and nests with 3-5 

eggs were more frequent (Ma and Cai, 1997). In southern Russia, the average clutch 

size was 3.6 eggs (Baranov, 1991). The lower clutch size observed in our study may be 

related to higher depredation pressure and nest site limitations in Mongolia compared to 

geese breeding in northwestern China and Russia. The clutch size of Bar-headed Geese 

at cliff sites was greater than clutch sizes at island sites, and geese at cliff sites 

consistently had better DNS rates than at island sites. Either cliff sites provided better 

protection from inclement weather and depredation, or island sites were in lakes often 

frozen until June and were not available for early nesting compared with cliff sites.  

Furthermore, we observed a general negative relationship between egg laying 

date and clutch size which suggests that the early nesting birds may have had more eggs 

(R2=0.39), but that relationship could be affected by yearly variation in nest initiation 

dates. That pattern is similar to what has been reported for Canada Geese (Branta 

canadensis) and Brant Geese (Branta leucopsis) that nest at northern latitudes 

(Lindholm et al., 1994; Roweling, 1978; Sedinger and Raveling, 1986). 

Annual variation in nesting success of waterfowl has often been related to onset 

of snow melt on breeding ground, weather condition, depredation, and competition for 

food during brood rearing (Black et al., 2007). Earlier nest initiation in 2009 was 

probably related to warmer temperatures in the spring and less snow. The warmest year 

of the study was in 2009, and lakes were clear of ice by the middle of May. The spring 

of 2011 was colder compared to 2009 and 2010. Lake ice was still partially present until 

the beginning of June in 2010 and 2011.  
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During nest searching, we noticed that Bar-headed Geese have the tendency to 

avoid lakes with full or partial ice coverage. They generally preferred completely ice-

free lakes. However, our nest monitoring data indicated that many geese may have 

started laying eggs when the lakes still were ice-covered. It is highly likely that most 

geese wait to lay eggs until the ice becomes very thin or fragile and it is risky for 

ground predators to approach nesting islands. It has been suggested that the delay 

between arrival and initiation of egg laying date causes reduced clutch sizes in Canada 

Geese (Branta canadensis) nesting in Arctic regions (MacInnes and Dunn, 1988). 

Therefore, the year effect could be a reflection of the delay in nest initiation because of 

lower air temperatures, since 2010 and 2011 were colder years than 2009.  

Many nests in our study sites were depredated by Mongolian Gulls, ravens, and 

dogs, or trampled by livestock. Also, we have seen White-tailed Eagles (Haliaeetus 

albicilla) and Golden Eagle (Aquila chrysaetos) predating on adult molting geese in the 

same region. Nearly every lake we visited was occupied by gulls in large numbers, and 

they nested on same islands where the geese nested. However, comparison of DNS rates 

between sites with high and low densities of Mongolian Gulls was not significant. Gull 

depredation may increase towards hatch date which is also similar to the hatching date 

of the geese.  

Many species of large gulls are known as top predators for geese (Black et al., 

2007; Merow et al., 2013), and the Mongolian Gulls are known to steal eggs and chicks 

from other birds when given the opportunity. Nest depredation by gulls, Black Kites 

(Milvus migrans), and ravens on Bar-headed Geese also was observed in India, China 

and Russia (Baranov, 1991; Gole, 1982; Ma and Cai, 1997). We observed Mongolian 
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Gulls carrying out coordinated attacks to separate goslings from parents; unfortunately, 

we were unable to systematically quantify the success rate and frequency of these 

infrequent attacks. Gulls likely were most responsible for nest failures on inaccessible 

islands (which are often ideal places for gull nesting), whereas dogs and other mammals 

likely were related to nest failures on accessible islands.  

Nests on islands were more vulnerable and had fewer eggs compared to nests on 

cliffs. However, nest accessibility and depredation covariates did not provide additional 

explanation of these differences (ΔAICc = 2.5). In contrast, accessibility to nest sites 

combined with nest age (ΔAICc = 1.52) may have influence on the DNS rates. We 

presumed nests potentially vulnerable to ground mammals such as dogs and foxes 

would be less successful compared to nests inaccessible to such predators. But, we did 

not find significant differences in nest survival between these locations. In both habitat 

types, the nest survival showed similar patterns of declined throughout incubation 

period and varied between years.  

It should be noted that egg collection, which has been a significant threat in 

northern India (Gole, 1982) and northwest China (Ma and Cai, 1997), was not a serious 

threat in Mongolia. Bird nests and eggs are traditionally not touched by nomadic people 

in Mongolia. Perhaps interaction of poor foraging conditions in later incubation period 

and livestock grazing pressure acted together to result in poor waterbird nesting success. 

We observed significant variability in lake water levels during our study. In 

2010, the water level at Khunt Lake was very low, and carnivores and cattle that 

trampled nests were able to reach the nesting islands in the late spring. Similar 
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increased depredation due to water level change was observed at Angirt Lake in 2011. 

In both cases, the water level was reduced as the season progressed in the late spring 

and the early summer.  

The spring air temperature has increased by 1.4◦ C from 1990-2006 throughout 

Mongolia, and water evaporation has increased by 10-15% in the Khangai region 

resulting in disappearance of many small and shallow lakes and streams (Dagvadorj et 

al., 2009). These landscape level changes may negatively affect the nesting of Bar-

headed Geese and other waterbirds, because their nesting is highly dependent on islands 

and lakes. If water levels continue to drop in this region during the spring, accessibility 

of island nest sites to mammalian predators and drying of lakes will likely increase. 

Also, we have seen larger numbers of non-breeding Bar-headed Geese in the same 

region when they molt in July. We estimate that the non-breeding population of Bar-

headed Geese in Khangai region is at least 15,000 individuals, but the full extent of 

their breeding grounds is not well known.  

Recent studies indicate that the warming climate is expected to be most obvious 

at northern latitudes (Mitchell et al., 1990), and during the spring, climatic variation has 

been documented to explain nearly 50% of variation in reproductive phenology of some 

Arctic nesting geese (Dickey et al., 2008). Similarly, it will be critical to understand the 

future effects of climate change on water levels of lakes and wetlands on Mongolian 

grassland steppe to predict future nesting success and conservation of Bar-headed 

Goose populations.  
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Mongolia has experienced the most rapid rise in temperatures in the past decade 

outside of the Arctic regions. In the semiarid grassland steppe, wetlands already have 

been affected by water use demands of local communities. If the warming climate 

results in drying of lakes and reduction of protected areas available for nesting 

waterbirds, rapid reductions in their populations may occur in the near future.  

For future studies of waterbirds nesting on the semiarid steppe, researchers 

should attempt to use standardized nest-visit intervals for improved statistical power 

and collect additional island habitat features, climate variables, and nest site and forage 

availability. For Bar-headed Geese, increasing sample sizes of nests on cliff sites, 

identifying conditions resulting in increased Mongolian Gull depredation, and 

comparing characteristics of islands with and without nests would provide support to 

better understand which islands were best for reproductive success and warranted for 

greatest future conservation efforts. We have uploaded the photos of the nest sites into 

the geo-referenced field photo library of the Earth Observation and Monitoring Facility 

at the University of Oklahoma which may be used in the future to allow visual 

comparison of changing habitat conditions. 
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Tables and Figures 

Table 1 - 1. Measurements of eggs and nests of Bar-headed Geese (Anser indicus) 
in westcentral Mongolia. 

Variables  N Mean SD Median Min Max 

Egg length (mm) 670 81.3 3.3 81.4 70.1 91.2 

Egg width (mm) 667 54.6 1.6 54.5 50.4 58.8 

Egg weight* (g) 1016 125.1 12.2 125.0 83.0 162.0 

Nest diameter (cm) 403 13.7 8.3 14.0 8.0 40.0 

Nest depth (cm) 173 15.6 8.0 18.0 4.0 31.0 

Nest height (cm) 82 19.8 2.6 19.8 14.0 26.0 

* During inclement weather condition some eggs were only weighed without 
taking other measurements, and also some eggs were measured twice during 
incubation period. 
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Table 1 - 2. Clutch size and number of nests of Bar-headed Geese nesting on 
islands and cliffs in westcentral Mongolia. 

Year 
 

2009 
 

2010 
 

2011 
 

Total 

Clutch 
size 

 
island cliff 

 
island cliff 

 
island cliff 

 
island cliff 

1  15 
 

 19 
 

 19 1  53 1 

2  34 1  11 1  35 2  80 4 

3  38 
 

 16 
 

 20 3  74 3 

4  36 
 

 10 2  15 3  61 5 

5  17 
 

 3 3  4 2  24 5 

6  9 
 

 
  

 1 1  10 1 

7  3 
 

 
  

 
  

 3 
 

8  1 1  
  

 
  

 1 1 

total  153 2  59 6  94 12  306 20 
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Table 1 - 4. Akaike Information Criterion model selection results for Bar-headed 
Goose Anser indicus nesting in westcentral Mongolia from 2009-2011. Models are 
ordered according to ascending ΔAICc values. 

Model AICc ΔAICc w Model 
Likelihood K Deviance 

Nest Age 253.96 0 0.25 1 2 249.95 

Nest Age + Year 255.08 1.13 0.14 0.57 4 247.06 

Nest Age + Depredation 255.41 1.45 0.12 0.48 3 249.40 

Nest Age + Accessibility 255.47 1.52 0.12 0.47 3 249.46 

Nest Age + Habitat 255.96 2.01 0.09 0.37 3 249.95 

Constant + Year 274.89 20.93 0.00 0 3 268.88 

Constant + Habitat + Year 275.96 22.01 0 0 4 267.94 

Constant + Accessibility 276.50 22.55 0 0 2 272.50 

Constant + Accessibility + Year 276.84 22.88 0 0 4 268.82 

Constant + Depredation + Year 276.86 22.90 0 0 4 268.84 

Constant  277.32 23.36 0 0 1 275.32 

Constant + Depredation + 
Accessibility + Habitat 277.32 23.37 0 0 4 269.30 

Constant + Habitat + 
Accessibility 277.49 23.54 0 0 3 271.48 

Constant + Depredation + 
Accessibility 277.96 24.01 0 0 3 271.95 

Constant + Depredation 279.24 25.28 0 0 2 275.23 

Constant + Habitat 279.31 25.35 0 0 2 275.30 

Constant + Habitat + Depredation 281.24 27.28 0 0 3 275.23 
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Figure 1 - 1. Map of the study area in westcentral Mongolia. Gray circles show 
locations of Bar-headed Geese (Anser indicus) observed during spring and summer 
surveys. Bold (+) symbols show locations of island nests, and “X” symbols show 
nest locations oin cliffs. Dashed lines indicate the survey route used during the 
study period. The inset map shows the location of the study areas (black circles) in 
westcentral Mongolia. 
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Figure 1 - 2. Decreasing egg weights for Bar-headed Geese (Anser indicus) during 
the incubation period. 
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Figure 1 - 3. Proportions of Bar-headed Goose (Anser indicus) nests with different 
clutch sizes at island and cliff sites. 
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Figure 1 - 4. Bar-headed Geese (Anser indicus) daily nest survival (DNS) with 95% 
confidence intervals from westcentral Mongolia in 2009, 2010, and 2011.   
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Figure 1 - 6. Daily survival rate (DSR) of Bar-headed Geese (Anser indicus) nests 
in relation to nest age (days since egg laying) in westcentral Mongolia from 2009-
2011. The logistic-exposure model curve and 95% confidence limits are shown. 
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Chapter II. MIGRATION STRATEGIES OF SWAN GEESE (ANSER 

CYGNOIDES) FROM NORTHEAST MONGOLIA 

Abstract 

In 2006–2008, 25 Swan Geese Anser cygnoides were marked with solar-

powered GPS satellite transmitters in northeast Mongolia to examine the timing and 

pathways of their migration. Most geese began their autumn migration in August, flying 

southeast toward a staging area at the Yalu River Estuary on the China-North Korea 

border. After staging for several weeks, the Swan Geese continued to their wintering 

grounds at wetlands along the Yangtze River Basin of eastern China in December. 

Spring migration commenced in late February, and the birds following either a same-

route or loop migration to arrive at the breeding grounds in mid April. Swan Geese used 

a larger number of staging areas for a longer duration when they were north of 42°N 

latitude; they seemed to avoid staging for extended periods in the highly urbanised areas 

of eastern China.  
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Introduction 

Understanding local movements and migration across large landscapes is critical 

for identifying the factors that influence the survival of migratory birds and for devising 

effective conservation strategies (Berger 2004; Newton 2007). Migration data provide 

insights into specific areas used, migratory connectivity, timing, stopover sites, 

migratory behaviour and physiology (Berthold et al. 2003; Robinson et al. 2010). In 

addition, use of satellite tracking data has improved our understanding of the ecology of 

diseases such as avian influenza and the connectivity between outbreak areas and wild 

bird locations (Gaidet et al. 2010; Newman et al. 2009; Takekawa et al. 2010).  

The Swan Goose Anser cygnoides is a globally threatened species listed as 

“vulnerable" in the latest Red List of Threatened Species of the International Union for 

Conservation of Nature and only occurs in East Asia (BirdLife International 2009). 

Recent counts made both at the breeding grounds in Mongolia and Russia (Goroshko 

2003; Goroshko et al. 2004; Tseveenmyadag et al. 2007) and at wintering sites in China 

(Zhang et al. 2010) indicate a dramatic decline in numbers which has been attributed to: 

drought-induced wetland loss, disturbance of nesting birds by livestock, competition 

with livestock for grazing areas, illegal hunting, egg collection, reduction in the 

abundance of submerged vegetation (i.e. the birds’ food supply) due to water pollution 

and dam water regulation, and wetland conversion for agriculture and development 

projects (Goroshko 2003; Goroshko et al. 2004; Poyarkov 2001; Poyarkov 2006; 

Tseveenmyadag et al. 2007; Zhang et al. 2010; Fox et al. 2011). The decreasing 

population size may also be related to habitat change or degradation at stopover sites 

along the migration flyway. Furthermore, the highly pathogenic avian influenza H5N1 
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virus, which has been reported across the Swan Goose wintering range, poses a 

significant threat to this species.  

In 2006 and 2008, moulting geese were fitted with satellite transmitters and 

tracked from their breeding sites on the Mongol Daguur in northeast Mongolia to their 

wintering grounds in the Yangtze River Basin of eastern China. Global positioning 

system (GPS) location data were used to describe their annual migration in detail, 

including identifying stopover and wintering sites, documenting the timing of 

migration, and delineating migration corridors along the East Asian Flyway. In addition 

to providing the first documentation of the complete migration cycle of the Swan 

Goose, a major focus of this study was to determine how the birds used the landscape in 

relation to human populations. We hope that the greater knowledge and understanding 

of how Swan Geese use the landscape, provided by tracking the movements of 

individual birds, will help to improve the prospects of conservation efforts directed at 

this species. 

Study area and methods 

The Mongol Daguur is a temperate region characterised by vast grassland 

steppes, low mountains and rolling hills, and with numerous small and medium sized 

steppe lakes and wetlands. Nomadic herders and their livestock are the main 

populations in the area. Mosts lakes in this region are fed by rain water; only a few are 

fed by running streams. The lake and wetland steppe landscape extends north into 

neighbouring Russia and east into China; this border region of the three countries is an 

important area for the Swan Goose and many other wetland-dependent species in 

northeast Asia (BirdLife International 2005).  
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Swan Geese were captured during their moulting period by herding them into a 

drive-trap or by capturing them in dip-nets from boats. A total of 25 Swan Geese were 

caught at the Khaichiin Tsagaan Lake (49.683°N, 114.684°E) in the Mongol Daguur of 

northeast Mongolia in July 2006, and a further 41 geese at Khaichiin Tsagaan Lake, 

Khorin Tsagaan Lake (49.661°N, 114.606°E), and Khokh Lake (49.540°N, 115.585°E), 

in the same region of northeast Mongolia, in 2008. All captured geese were tested for 

the avian influenza virus, but none were found to be positive (authors’ unpubl. data). 

Geese were measured and marked with aluminium metal leg rings and plastic neck 

collars for individual identification, using orange neck collars with black alphanumeric 

codes (with one letter and two numbers) in 2006 and green neck collars with white 

alphanumeric codes in 2008.  

We fitted 45 g or 70 g solar-powered Argos-GPS platform transmitter terminals 

(PTTs: Microwave Telemetry, Inc., Columbia, MD, USA) to the backs of selected 

adults, using a teflon-ribbon harness (Bally Ribbon Mills, Bally, PA, USA). Ten 70 g 

transmitters were fitted in 2006 and fifteen 45 g transmitters in 2008. Backpack 

harnesses for the transmitters were reinforced to prevent loss, because Swan Geese have 

very strong bills and their lower mandibles are serrated for cutting plants and grasses. 

The weight of the transmitter and harness was < 3% of the birds’ body mass. Birds were 

released as soon as possible after marking, typically within an hour, near their capture 

locations. Procedures for capture, handling and marking were reviewed and approved 

by the U.S. Geological Survey Patuxent Wildlife Research Center Animal Care and Use 

Committee and University of Maryland Baltimore County Institutional ACUC (Protocol 

EE070200710). Transmitters were programmed to record GPS locations every 2 h and 
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Argos locations downloaded every 2–3 days. Only geese that had complete migration 

routes were included in analyses, and only GPS data were used, which are typically 

accurate to distances of < 100 m. 

The annual cycle of the Swan Goose was divided into five different periods: 1) 

autumn (southbound) migration, 2) wintering, 3) spring (northbound) migration, 4) 

breeding season, and 5) moulting or post-breeding. We examined the location data and 

used specific areas, duration of stay, and scale of movements to estimate the duration of 

these periods. Movement from the moulting and wintering areas was used to indicate 

the onset of migration. Geese were classified as breeding if the GPS fixes were found to 

be in very close proximity to each other at a site over more than a one-week period 

during the breeding season (Ely et al. 2007). The arrival time was defined as the first 

date that swan geese were detected on the breeding grounds. Swan Geese prefer to use 

larger lakes for moulting because they provide more safety when flightless (authors’ 

pers. obs.). We assumed that movements of several kilometres from breeding areas on 

smaller lakes to larger lakes indicated that the birds had moved to moulting grounds. 

Staging areas, where migrating birds store fuel for migration, were identified as sites 

where birds remained in the vicinity (i.e. no large-scale movements to or from the site 

occurred) over a period of ≥ 7 days during the migration period (Warnock 2010). Visual 

inspection of locations in close proximity and limited movements at the southern end of 

the migration were used as cut-off dates for the fall migration and to determine the 

arrival at wintering grounds (Oppel et al. 2008).  

Various factors such as food supply, local environment, weather, proximity to 

main wintering areas, and hunting pressure may disturb and eventually influence the 
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timing of bird migration (Berthold et al. 2003). In this study, the linear distance from 

stopover locations to the nearest urban area was used as an indicator of potential 

disturbance to Swan Geese along the migration route (Benitez-Lopez et al. 2010). 

Furthermore, we examined the flight speeds and distances travelled by birds between 

consecutive locations to see whether flights north and south of 42°N differed 

significantly, with the density of urban areas in the Swan Goose flyway generally being 

higher south of this latitude. Mean flight duration and distances are given with s.d. 

values throughout. 

The European Space Agency’s GlobCover land cover map with 300 m spatial 

resolution (Bicheron et al. 2008) produced for the period December 2004 – June 2006 

was used to determine land cover types at stopover and staging locations along the 

Swan Goose migration route in East Asia and for calculating distances between towns 

or villages and stopover locations. Location data were plotted within ArcGIS 9.3 (ESRI 

2008) to determine the migration route and stopover sites, and to calculate the flight 

distances of Swan Geese. The 50%, 95% and 99% fixed kernel home ranges were 

calculated using Hawth's Analysis Tools (Beyer 2004) in ArcGIS 9.3 to determine the 

areas used by Swan Geese at the Yalu River Estuary and Poyang Lake and to define the 

boundaries of movements by individual geese in these areas.  

Results 

Ten geese were fitted with satellite transmitters in 2006 and 15 geese in 2008. 

Overall, 17 (68%) birds provided satellite tracking data useful for evaluating migration. 

Fourteen of the useful tracks were from the 2008 deployment, but only three of 10 geese 

from 2006 yielded data (Table 2-1). Although the other seven birds appeared normal 
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upon release, they did not swim well, and five were recaptured by the next day. We 

found that they had been adversely affected by capture myopathy, because for short 

periods they had entangled their wings or feet in the small-mesh fishing net used as a 

holding pen that year (a different type of holding pen was used in subsequent years). A 

total of 15,458 GPS fixes were obtained with an average of 858 locations per individual, 

ranging from 14–2,420 locations per bird. Such large individual variation was 

influenced primarily by the duration over which signals were received (range = 29–489 

days). Departure from the post-breeding area was documented for 17 birds, five of 

which provided complete autumn and spring migration histories, and twelve birds had 

partial migration histories. Two geese with working transmitters made autumn 

migrations in the second year after capture. All birds migrated within the East Asian 

Flyway (Figure 2-1). 

Autumn migration 

The route and timing of the autumn migration was documented for six male and 

eleven female geese. Autumn migration started between 3 August and 16 September 

(median date = 8 August, n = 19). Most birds started their migration in August, but two 

birds (transmitter numbers 82103 and 82108) started in September in 2008. Signals for 

five birds (#67578, 82104, 82110, 82114 and 82115) that started their autumn migration 

ended before reaching the Hinggan Mountains in Inner Mongolia, China. Ten Swan 

Geese progressed across eastern Mongolia and the Manchurian Plain to the Yalu River 

Estuary on the border of China and North Korea, but from here they flew southwest to 

wintering areas in East China. Two Swan Geese migrated to areas at the same latitude 
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as the Yalu River Estuary but flew directly south to the wintering grounds (#67585, 

82113).  

The Yalu River Estuary on the border between China and North Korea was a 

key staging area for Swan Geese (Figs. 1 and 2a). Two birds tracked in 2006 arrived 

after mid October, whereas five birds tracked in 2008 arrived at the end of September, 

and two arrived around at the end of October. All birds stayed at this staging area until 

the end of December when air temperatures sharply decreased and freezing conditions 

likely reduced availability of food resources. The 99% fixed kernel home ranges for 

Swan Geese in this location during the autumn and spring migration were 176 km2 and 

190 km2, respectively.  

Swan Geese arrived at the wintering grounds in December, although one bird 

arrived on 1 January (Table 2-2). Five birds (#67585, 82105, 82107, 82108, and 82111) 

that successfully completed the southbound migration travelled 2,580–3,170 km (mean 

= 2,900 ± 272 km, n = 5) to reach their wintering grounds in eastern China. Autumn 

migration for these birds took 74–146 days (mean = 107 ± 29 days, n = 5). Individual 

variation in the autumn migration period was largely due to the different length of time 

geese spent at the staging areas.  

Wintering  

Poyang Lake (29.217°N, 115.960°E), located in the Jiangxi Province along the 

Yangtze River and the largest freshwater lake in China, was an important wintering area 

for the Swan Geese tracked from northeast Mongolia (Figure 2b). Four geese (#67585, 

82105, 82107 and 82111) arrived first at the northwest region of the lake. Later, geese 
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moved to the south of the lake for most of the remaining wintering period and returned 

to the northwest just before the spring migration began. Another goose (#82108) spent 

the winter at Fengsha Lake (30.927°N, 117.630°E) in Anhui Province located within the 

Yangtze River Basin 240 km northeast of Poyang Lake and known to be another 

important wintering site for Swan Geese (Fox et al. 2008). Arrival dates at wintering 

areas ranged from 23 October to 1 January with a median date of 7 December (n = 5). 

Swan geese spent 56–155 days (mean = 104 ± 37 days) at the wintering grounds. The 

50%, 95%, and 99% fixed kernel home range of Swan Geese in this location during 

their winter stay were of 60 km2, 370 km2 and 580 km2, respectively. 

Spring migration 

Swan Geese departed for their spring migration between 25 February and 5 

April (median = 14 March, n = 5 birds). Northbound travel lasted for 30–66 days with 

an average of 52 days (s.d. = 15 days). The spring migration routes for three of the 

Swan Geese were similar to those taken during the autumn migration. Two geese 

followed different routes, flying directly to the north without staging at the Yalu River 

Estuary. Geese which followed a same-route spring migration took 30–66 days to reach 

the breeding grounds, with many shorter stopovers between staging areas, whereas the 

two geese following a loop migration travelled for 43 and 60 days respectively, 

differing from geese following the same-route migration by having longer non-stop 

flights with fewer staging periods. The five geese completed the spring migration after 

travelling 2,570–2,700 km (mean = 2,630 ± 54 km) to reach the breeding grounds in 

northeast Mongolia.  
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Arrival at breeding and post-breeding areas 

The first bird arrived at the breeding grounds on 13 April and the last arrived on 

4 June (median = 9 May, n = 5). The geese stayed on the breeding grounds for 43–70 

days (mean = 53 ± 15 days). Four birds arrived at the same area where they were 

captured in the previous year, the fifth (#82105) probably bred at Tsagaan Lake 

(47.911°N, 119.604°E) in China. Swan Geese arrived at their moulting sites between 

16–22 June. Post-breeding areas where geese typically moult were on lakes with grassy 

meadows. Swan Geese remained at these post-breeding areas for two months prior to 

the beginning of autumn migration in August. Two birds were tracked on a second 

autumn migration beginning on 23 August 2007 (#67585) and on 18 August 2009 

(#82105). Migration routes of these birds were similar to the previous year up to the 

time their transmitter signals ended in mid migration.  

Staging areas 

A total of 54 staging areas were used by the 17 Swan Geese after they left the 

breeding and moulting grounds. Five female Swan Geese that had complete migration 

cycles had similar numbers of stopover areas during the migration (ANOVA test: F4, 49 

= 0.17, P = 0.95). The number of staging areas where birds spent on average more than 

10 days ranged from 4 to 9 sites per bird. Birds were spending 8–70 days per site (mean 

= 23 days; 95% UCI = 41, LCI =4). We also obtained detailed information on location 

and habitat for selected major staging and stopover sites (Table 2-3). 

The Yalu River Estuary was a key staging area or pre-wintering area. Eight 

Swan Geese spent 16–70 days there (mean = 34 days) from 16 September to 20 
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December. The Swan Geese did not use adjacent agriculture fields to forage during this 

period. Instead, they used mostly mudflat areas and habitats along the coastline (Figure 

2a). 

In general, the number of stopover and staging areas and the duration Swan 

Geese spent at important staging areas were greater when geese were north of 42°N. 

There was some preliminary evidence that the distance from a stopover location to 

urban areas decreased as the birds flew south, with the smallest distances involved 

being close to the wintering grounds (Figure 2-3). Few Swan Geese used Buir Lake 

which is one of the largest lakes in the region as a stopover site where over 24,000 

Swan Geese have been recorded (Goroshko 2004). Only one of our marked geese 

stopped at this lake for 1–2 days during their autumn migration. 

 There were 78 flight paths which were useful to estimate flight speeds and 

successive distances during migration. Of this total, 38 flight paths belonged to the 

autumn migration, and 40 were for spring migration. Overall, the swan geese migrated 

at an average of 31±1.8 km (N=78) per hour with the range for individual flight speed 

of 11-77 km/h. During autumn migration, the swan geese migrated at an average speed 

of 31±2.2 km/h (N=38) with individual flight speeds ranged from 12 to 66 km/h. During 

spring migration, the swan geese travelled at an average speed of 32±2.8 km/h (N=40) 

and it ranged from 11-77 km/h. There was no apparent difference in average flight 

speed during the autumn and spring migrations, and the average distance traveled by 

individual birds did not differ in both autumn and spring seasons (Figure 2-4). 

Maximum duration of nonstop flights over 24 hours was observed for three occasions. 

Goose #82105, #82107 and # 82111 flew for 26, 29 and 30 hours, respectively, in 
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September and December of 2008. During these flights, they effectively covered 977, 

1053, and 1395 km at speeds of 38, 36, and 47 km/h, respectively. 

Discussion  

Two distinct flight paths were used during autumn migration by the Swan Geese 

tracked in our study: 1) an indirect flight between Mongol Daguur in northeast 

Mongolia and Poyang Lake in eastern China through the Yalu River Estuary on the 

China-North Korean border, and 2) a direct flight between the Mongol Daguur and the 

Poyang Lake. Geese flying through the Yalu River Estuary during their migration flew 

more than 300 km farther than those flying straight from the Mongol Daguur to Poyang 

Lake, but more marked geese used this route. In terms of maximising energy and 

minimising time, migration along this pathway appears more costly than the direct 

flight. Many migratory species make detours to avoid hazardous and inhospitable land 

masses or water bodies, and thus reduce the risks encountered during migration 

(Newton 2007). However, there are no major physical barriers such as a large mountain 

range or body of water that would prevent Swan Geese flying directly south to Poyang 

Lake from Mongolia. In fact, geese flying to the Yalu River Estuary must cross Bohai 

Bay en route to the Yangtze River Basin.  

One possible explanation for the intensive use of this estuary by Swan Geese is 

that weather and climate patterns influenced their migration (Gordo 2007). Prevailing 

winds and favourable conditions may favour stopovers by migratory birds along the 

Yellow Sea (van de Kam 2010). Alternatively, the Swan Geese may have been avoiding 

interior areas with highest densities of human, agriculture, and infrastructure 

development while exploiting natural areas as much as possible before arriving at 



62 
 

Poyang Lake. Furthermore, flying via Yalu River could be a traditional migration route 

to Japan and South Korea where Swan Geese commonly used to winter (Brazil 1991).  

Swan Goose migration between the Yalu River Estuary and Poyang Lake was 

brief, with fewer stopovers compared to flights between Mongol Daguur and the Yalu 

River Estuary. In general, we did not see major changes in average flight speed and 

distance throughout the migration along the direct route. Although, there were some 

remarkable maximum groundspeed and flight distances of Swan Geese until the geese 

reached the Yalu River Estuary during fall migration. It was demonstrated that marked 

Swan Geese can cover about 1400 km within 30 hours. But what ecological and 

environmental factors may have influenced such flights is unknown.  

Availability of stopover sites and duration of stay are important parts of the 

annual cycle and influence birds’ migration strategies (Berthold et al. 2003; Newton 

2007). Marked Swan Geese made more stopovers in the areas north of 42°N latitude, 

which may indicate the presence of more suitable sites in the north that were primarily 

natural wetlands. There are currently few large human concentrations in the areas 

intersecting northeast Mongolia, Russia, and China where Swan Geese breed and moult. 

Thus, the region is mostly undisturbed or underdeveloped. Swan Geese exhibited longer 

stopover durations in the north of 42°N latitude during both the autumn and spring 

migration. Furthermore, our data suggests that the proximate distance from a stopover 

location to urban areas decreased as birds flew south, and the distance was least near the 

wintering area. Swan Geese may prefer to use landscapes with lower human densities 

and less urbanisation while exploiting areas with rich in food supply. 
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The scale of urbanization in eastern China, home to 10% of the world’s 

population (van de Kam 2010) and the majority of the population in China, is very 

intensive. As a result, human development has dramatically changed land cover and 

land use practices in eastern China (Deng et al. 2008). Avian species often respond 

dramatically to urbanization and development depending on spatial scales and local 

food, available habitats, and disturbance levels (Clergeau et al. 1998; Garaffa et al. 

2009; Klein 1993; Marzluff 2001; Traut & Hostetler 2003). Large scale changes at a 

landscape level in East China may have affected migratory behaviour of the Swan 

Geese historically, but there are too few historical data available to analyse this 

hypothesis.  

Nonetheless, eastern China is the most important wintering area for the Swan 

Goose, and nearly 95–100% of the geese from the Dauria region are found wintering 

there (Cao et al. 2008a; Zhang et al. 2010). In the last four decades, the wintering range 

of Swan Geese has gradually contracted coincident with a decline in their populations 

likely related to increased poaching, water-level control for irrigation and industrial use, 

habitat degradation of coastal and inland wetlands, and pollution (Barter et al. 2007; 

Cao et al. 2010; Quan et al. 2002; Zhang et al. 2010). Expansion of urbanization and 

economic development in East Asia has caused large-scale change in ecosystems of the 

region. Also, degradation of wetlands in eastern China has contributed to distribution 

range shifts, contraction, and northward expansion for many waterbird species (Cao et 

al. 2008b; Cao et al. 2010; de Boer et al. 2011).  

Extensive use of mudflats by Swan Geese has been document during the non-

breeding season. Swan Geese were commonly observed grubbing on underground 
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rhizomes of Vallisneria asiatica in mud flat habitats at wintering sites in Shengjin Lake 

(Fox et al. 2008; Zhang & Lu 1999) and in Han River Estuary (Han et al. 2003). It is 

unclear what constitutes the main food supply for staging Swan Geese in the Yalu River 

Estuary mudflats and why geese do not use grassland habitats and agricultural fields. 

However, it could be related to available foraging habitats in that region and easy access 

to food rich in nutrition food.  

In addition, Poyang Lake is one of the major wintering areas for the Swan 

Goose and many other waterbirds but has been called the potential 64rbanized of HPAI 

H5N1 (Cao et al. 2008a; Prosser et al. 2009; Takekawa et al. 2010). Outbreaks of 

highly pathogenic avian influenza H5N1 have occurred along the migration route from 

northeast Mongolia through the Yalu River Estuary to Poyang Lake (Sakoda et al. 

2010; Takekawa et al. 2010). The density of wetlands along this migration route is 

sparse in northern compared to southern regions where man-made wetlands are 

abundant (Bicheron et al. 2008). Thus, Swan Geese may have greater chances of 

interactions in stopover areas north of 42°N with waterbirds originating from different 

parts of South and East Asia increasing the potential for H5N1 transmission. 

Consequently, potential spread and persistence of HPAI H5N1 in this region may pose a 

threat to the Swan Goose population. 

It remains unclear whether the migratory pathway we documented through the 

Yalu River Estuary is a historical or recently-developed route that arose in response to 

land use and land cover changes in eastern China. However, Takekawa et al. (2010) 

documented that several different duck species migrated from Poyang Lake to northeast 

China and eastern Russia in the spring and made extensive use of the region as a staging 
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area as do many shorebirds (van de Kam 2010). Thus, if we wish to conserve stopover 

areas along routes for migratory bird species in East Asia, obtaining a better 

understanding of the effects of urban area expansion and development at key stopover 

sites such as the Yalu River Estuary is crucial. Those impacts may be most visible for 

species with larger body size and narrow habitat niches such as the Swan Goose.  
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Figure 2 – 1. Migration paths, locations, and important stopover sites of Swan 
Geese marked with satellite transmitters in northeast Mongolia. Swan Geese were 
captured at the Mongol Daguur, and many used the Yalu River Estuary as a 
major stopover site. Poyang Lake, China was the main wintering area along the 
Yangtze River Basin. White circles = major stopover locations; black shading = 
Urbanized areas. 
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Figure 2 – 2. Foraging and roosting locations of Swan Geese at major staging and 
wintering areas. Contours represent 99% fixed kernel home ranges in three 
different seasons. Yellow contours show areas used during autumn migration 
(September – December), red contours indicate spring migration locations (March 
– April), and green contours show wintering locations (January – February). Blue 
dots shown are locations for five birds that made a complete migration cycle. A. 
Yalu River Estuary at the border area between China and North Korea. B. Poyang 
Lake, Jiangsu Province, China. 
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Figure 2 – 3. Changes in linear distance from stopover sites to the nearest urban 
area in relation to latitude (n = 5 birds). Size of the circles indicates the duration of 
stay (in days) at stopover sites,; each circle represents a location and duration is 
illustrated in the legend 
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Figure 2 – 4. Consecutive flight distance and groundspeed of migration for Swan 
Geese relative to breeding and wintering locations (latitude). Latitude represents 
the midpoint of 4 degree intervals. Outliers indicate capability of some individuals 
to cover long flight distances at rapid speeds during non-stop flights. 
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Chapter III. BAR-HEADED GOOSE (ANSER INDICUS) MIGRATION 

PATTERNS AND PHENOLOGY RELATED TO ENVIRONMENTAL 

CONDITIONS DETERMINED FROM REMOTELY SENSED 

IMAGERY 

Abstract: 

We described migration timing, duration, and distribution of stopover locations 

of bar-headed geese with satellite telemetry data and land surface phenology data. We 

used MODIS-derived monthly normalized difference vegetation index (NDVI), snow 

cover, and land surface temperature products with 0.05 degree (~5600 km) spatial 

resolution. The bar-headed geese migration was associated with NDVI, because these 

areas probably provided the highest forage quality and quantity. The geese strategically 

moved between peak green areas at the wintering grounds in India, the staging grounds 

on the Qinghai-Tibetan Plateau, the breeding grounds in Mongolia, and during both 

spring and autumn migration. Arrival at staging and breeding grounds were related to 

the decline of vegetation biomass at the wintering ground in India and advancement of 

vegetation green-up in northern latitudes.  Snow cover and land surface temperature 

corresponded well with southward movement of bar-headed geese. The Qinghai-

Tibetan Plateau was the most important staging ground for the species during both 

spring and autumn migrations.  
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Introduction 

The decision to start a long distance migration, choosing the travel route, and 

deciding on the amount of time to spend during migration are often influenced by the 

fitness of migratory individuals, food and environmental conditions at stopover sites, 

and the distance to their destination (Berthold et al., 2003; Newton, 2007). Migrating 

birds experience different ecological and climate conditions and land surface types at 

different latitudes along their  migration flyways which often forces them to use more 

than one stopover or staging sites for refueling (Mansson and Hamalainen, 2012; 

Newton and Dale, 1996).  

Understanding the influence of environmental conditions on long distance 

migrants is an important part of migration ecology studies. Changes in environmental 

conditions along the flyways can have significant influence on the timing and duration 

of long distance migration (Newton 2004). We examined the temporal and spatial 

variation of environmental conditions in relation to stopover, wintering, and breeding 

locations along latitudinal gradients based on bar-headed goose (Anser indicus) satellite 

tracking data. The bar-headed goose is a long distance migrant that spends the summer 

in cooler northern temperate regions of Kazakhstan, Kirgizstan, southeastern Russia, 

Mongolia, and western China. They winter in tropical and subtropical regions in the 

Indian subcontinent and along the Yarlung Zangbo River, Lhasa River, Penbo River, 

and Niang River valleys in southern Tibet (Bishop et al., 1997; Takekawa et al., 2009; 

Zhang et al., 2013). The majority of the breeding bar-headed geese are found in western 

China and Mongolia. A large portion of the wintering and summering range of the 

species is separated by the Himalayan Mountain Range (Hawkes et al., 2011; Takekawa 
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et al., 2009). Areas south from the Himalayan Mountain Range are mostly lowlands and 

have much higher precipitation and vegetation biomass compared to cooler semi-arid 

grassland steppe environments in western China and Mongolia (Justice et al., 1985). 

Between the two extreme wintering and breeding grounds, bar-headed geese travel 

through a variety of environments during the migration period, and almost half of their 

travel goes through high altitude deserts and grasslands where forage conditions are 

often poor.  

During their long journey, bar-headed geese have to find the most suitable 

habitats and locations for refueling and resting en route to their wintering or breeding 

areas. Because bar-headed geese forage mostly on aboveground green parts of plants, 

they have to find places that have grasses with high quality and quantity. When geese 

start migrating to the breeding grounds in the early spring, vegetation biomass is often 

not at its best condition; therefore, geese move between the areas with peak vegetation 

biomass where they can obtain he highest quality plant matter during their northward 

migration (Justice et al., 1985; Owen, 1980). Therefore, deciding on the timing needed 

to arrive at the right moment, when forage quality and quantity are at their best, is often 

critical for individuals to successfully reproduce. However, grassland conditions along 

the migration flyway are not uniform and markedly different in several major biomes 

found along the latitudinal gradient from northern Mongolia to southern India (Morgner 

et al., 2010; Olson et al., 2004). 

In the last two decades, studies of long distance migrants have greatly advanced 

due to the satellite-borne remotely-sensed imagery and the development of satellite and 

cellular tracking technologies that allows collection of high-accuracy, bird movement 
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data throughout the flyway. Large birds such as waterfowl are ideal subjects for satellite 

tracking studies (Bridge et al., 2011; Gaidet et al., 2010). Global and regional scale 

satellite derived land surface phenology data such as vegetation indices, snow cover and 

temperature, are freely available via several online satellite data warehouses (Sellers et 

al., 1995). Combining high accuracy satellite tracking data with the global scale land 

surface phenology data provides critical knowledge on the ecology of long distance 

migrants (Gottschalk et al., 2005).  

There are many studies that have use  satellite derived data products such as the 

vegetation index, soil moisture index, land cover, land surface temperature, and snow 

cover data to study bird migration and migration phenology (Balbontin et al., 2009; 

Papes et al., 2012; Robson and Barriocanal, 2011; Tombre et al., 2008; Xiao et al., 

2007). Green vegetation biomass is a good indicator of habitat quality for geese (Bos et 

al., 2005), and generally, there is a positive relationship between the magnitude of better 

habitat quality and quantity and the higher normalized difference vegetation index 

(NDVI) values (Santin-Janin et al., 2009). NDVI is a measure of land surface primary 

productivity based on recorded photosynthetic activity of vegetation, and it has been 

demonstrated that such satellite derived vegetation index can be used in variety of 

studies that traditionally required ground measures (Pettorelli et al., 2011).  

We investigated whether migration timing, routes, and time spent at stopover 

sites by bar-headed geese were associated with environmental conditions represented by 

vegetation, snow, and land surface temperature. The objectives of the study were to: 1) 

determine the timings of migration departure and arrival, and 2) understand associations 
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between changing environmental conditions along the migration route and movements 

of satellite-marked bar-headed geese. 

Methods 

Capture and marking 

The capture of bar-headed geese took place at both breeding and wintering 

grounds. Geese were captured during moult by herding them into a drive-trap at the 

Terkhiin Tsagaan Lake in westcentral Mongolia (N48.1478, E99.5768). Also, geese 

were captured with leg nooses, consisting of monofilament loops attached to wooden 

sticks connected with nylon cord in lines of 50–100 nooses, at two wintering locations 

in India (Chilika Lake in east India, N19.6948, E85.3078; Koonthankulum Bird 

Sanctuary in south India, N8.4728, E77.7058). Upon capture, geese were kept in a 

corral comprised of a capture fence layered with fabric for a visual barrier, and they 

were processed to take morphological measurements and record their sex, age, and 

weight. We selected apparently-healthy-looking individuals and marked them with 30-

70 g battery or solar-powered Platform Terminal Transmitters (PTTs: Microwave 

Telemetry, Inc., Columbia, MD, USA) attached with Teflon harnesses (Bally Ribbon 

Mills, Bally, PA, USA). Birds were released as soon as possible after marking, typically 

within an hour, near their capture locations. In Mongolia, some birds were kept in the 

holding pen for about 4 hours and released with other captured birds at same time. All 

captured geese were tested for avian influenza virus, by real-time quantitative PCR 

using matrix gene primers and probes, but none were found to be positive (authors’ 

unpubl. Data). Geese were measured and marked with aluminium metal leg rings and 

green plastic neck collars for individual identification. Procedures for capture, handling 
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and marking were reviewed and approved by the U.S. Geological Survey Patuxent 

Wildlife Research Center Animal Care and Use Committee and University of Maryland 

Baltimore County Institutional ACUC (Protocol EE070200710). 

Transmitters were programmed to obtain 12-24 locations each day, and data 

were uploaded every 2-3 day to the Argos satellite tracking system (CLS America Inc., 

Largo, MD, USA). Data were recovered via receivers aboard polar-orbiting weather 

satellites. CLS calculated PTT locations from the perceived Doppler-effect shifts in 

transmission frequency during a satellite overpass. The accuracy of each Doppler-

derived location was rated by CLS and assigned a location class. Standard and 

conventional location classes 0, 1, 2, and 3 indicated that the location was derived from 

≥ 4 transmissions and possessed 1-sigma error radii with accuracy of > 1,000 m, 350– 

1,000 m, 150–350 m, and ≤ 150 m, respectively. CLS does not attribute accuracy 

estimates for the auxiliary location classes A (3 transmissions) and B (2 transmissions). 

Only high accuracy GPS locations and Argos fixes with location classes of 1-3 were 

used in the analysis.  

Tracking analysis 

Data from geese that had complete seasonal migrations were used to calculate 

migration distance, duration, and identify stopover/staging sites. In addition, selected 

locations from incomplete migrations were used to identify stopover sites and time 

spent at stopover locations. Significant departure, in most cases the travels more than 

100 km within a day, from the post moulting and wintering areas was used to indicate 

the onset of migration. Geese were classified as breeding if the GPS fixes were found to 
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be in very close proximity to each other at a site over more than a one-week period 

during the breeding season (Ely et al. 2007). The arrival time was defined as the first 

date that bar-headed geese were detected on the breeding grounds. Sites were identified 

as stopover sites if the birds remained in the vicinity for more than 2 days during the 

migration period. Mean flight duration and distances were given with median and range 

values throughout. Total migration distance was defined as connecting major stopover 

locations between breeding locations and wintering sites. Tracking data were roughly 

grouped into four seasons a) summering (June, July, August), b) autumn migration 

(September, October, November), c) winter (December, January, February), and spring 

migration (March, April, May) based on majority of the point locations of the marked 

geese. 

MODIS normalized difference vegetation index, land surface temperature, and snow 

cover data 

The Moderate Resolution Imaging Spectroradiometer (MODIS) satellite 

provided a global coverage of imagery every one to two days at the moderate 

resolutions (250 m, 500 m, and 1 km), and the images were available to the public via 

several online archives at no cost. We downloaded monthly snow cover (MOD10CM), 

monthly night time land surface temperature (MOD11C3), and normalized vegetation 

difference index data (MOD13C2) from the USGS’s LP DAAC data warehouse 

(https://lpdaac.usgs.gov). Downloaded MODIS data was collected from July 2009 to 

December 2010 for analyses. The MODIS/Terra snow cover monthly global data set 

contains snow cover values calculated based on daily global products. The normalized 

vegetation difference index data are produced from cloud-free spatial composites of the 
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gridded 16-day 1-kilometer MOD13A2 and are provided as a monthly product. Cloud-

free global coverage is achieved by replacing clouds with the historical MODIS time 

series climatology record. The global land surface and emissivity product is a level-3 

monthly composited average, derived from the MOD11C1 daily global product and 

stored as clear-sky land surface temperature values. These data are available in 0.05 

degree (~5600 km) spatial resolution and offer comparable measures of ecological 

conditions globally and between regions. This data is especially very useful when 

ground-based meteorological station data sets are not available across the region. In 

addition, the Digital Terrain Elevation Model with ~ 80 meters spatial resolution was 

downloaded from USGS EROS Data Center and used in the study. 

We re-sampled satellite tracking data ( >92,900 points) to reduce bias related to 

spatial autocorrelation by randomly selecting single location per cell over a grid with 

0.05 degree spatial resolution. This spatial filtering resulted in 3404 non-overlapping 

point locations, and these were used to extract corresponding snow cover, night time 

land surface temperature, and NDVI values (observed values) from the MODIS 

products. We also generated one dissolved buffer along the center line of the migration 

route using 300 km radius buffer along the center line of the flight route. Within this 

one giant polygon we randomly generated 10000 random points with minimum distance 

of 1 km between points and then used them to extract background land surface 

phenology values.  

Satellite derived data were visually examined by plotting the bar-headed geese 

satellite tracking data over corresponding monthly NDVI, snow cover, and land surface 

temperature maps. A non-parametric and distribution-free Wilcoxon test was used to 
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compare the medians between observed and background values (Zar, 1999). Test 

statistics were reported as significant when P<0.05. All analyses were performed with 

the R v.2.14.0 programming environment (R Development Core Team, 2013). ArcMap 

10.1 software (Environmental Systems Research Institute, Redlands, CA) was used for 

spatial analyzing raster and vector data and mapping migration routes and distributions.  

Results 

A total of 25 bar-headed geese were captured and marked at two wintering sites 

in India in December 2008 (Chilika Lake, n=15; Koonthankulum Bird Sanctuary, 

n=10), and 37 geese were captured at the breeding and moulting site Terkhiin Tsagaan 

Lake in Mongolia in July 2008 and July 2009. Fifty-three bar-headed geese were 

tracked for 55-726 days, and a total of 92,930 locations were obtained – most of them 

were on the Qinghai-Tibetan Plateau. Eight transmitters stopped working soon after 

deployment and did not provide any useful data. We documented the southward 

migration of 24 geese and the northward migration of 23 geese (Table 3-1). All birds 

migrated within the Central Asian Flyway (Figure 3-1).  

Migration timing 

Spring migration 

During northward migration, the median start date for spring migration was 16 

Mar (ranging from 6 Feb to 22 Apr, N=23), and the median arrival date at the wintering 

ground was 28 Nov (ranged from 10 Nov to 20 Dec). The spring migration was 

completed within 52 days (ranging from 14 to 93). Mean distance travelled during the 

autumn migration was 2846 km (ranged from 982 to 5515). We identified 57 stops 
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along the northbound migration routes. Maximum speed for non-stop flights during 

spring migration was 54-84 km per hour. They crossed the Himalaya on median date of 

24 Mar (range: 15 Mar to 6 May).   

Breeding and summering 

Median arrival date at breeding sites was 9 May (ranged from 16 Mar to 13 Jun). 

They spend the summer and breed at several locations in Khovsgol, Khangai, Mongol 

Altai, Zavkhan River and the Tuul River valleys in Mongolia. Also, bar-headed geese 

bred and spent the summer at Hujir Ulaan Lake, Chigo Co Lake, Maququ, Danghe 

River, Jianghe wetland, Zhaling-Eling Lakes, and Qinghai Lake on the Qinghai-Tibetan 

Plateau. Bar-headed geese stayed in the pre-moulting grounds until the end of June, 

then they moved to moulting areas starting in early July. In general, bar-headed geese 

completed their moult in 3-4 weeks and finished at the end of July, then they moved to 

nearby locations for grazing and moult.  

Fall migration 

All bar-headed geese migrated from Mongolia following similar routes across 

the Qinghai-Tibetan Plateau and Himalayan Mountains to arrive at their wintering 

grounds. Ther median departure date from the breeding grounds in Mongolia and 

Qinghai-Tibetan Plateau in China was 9 Sep (ranged from 19 Aug to 10 Nov, N=24), 

and the median date when they arrived to the breeding grounds was 9 May (ranged from 

16 Mar to 13 Jun). They spent 68 days (range from 15 to 119 d) during the autumn 

migration. Mean distance travelled from the breeding grounds to wintering grounds was 

2255 km (range 933 to 5720 km) during the autumn migration. We were able to identify 
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101 stopover sites along the southward migration routes. Maximum speed for non-stop 

flights during the autumn was 59-98 km per hour. Bar-headed geese crossed the 

Himalaya on the median date of 20 Nov (ranging from 10 Nov to 19 Dec).  

Wintering 

Their median arrival date at wintering locations was 28 Nov (ranged from 10 

Nov to 20 Dec). Bar-headed geese wintered in Chilika Lake, Koonthankulum Bird 

Sanctuary, Anekere Lake, Almatti Reservoir, Singur Dam Reservoir, Tilaiya Dam 

Reservoir, Bahadurpur, Karnataka, Odisha, Jharkhand, and Bhagalbur in India. Also, 

some geese wintered in Dochen tso Lake, Nyang Qu River, Chigu Lake, and the 

Yarlung Zangbo River on the southern Tibetan Plateau where daily mean temperature 

remained above 0oC despite an elevation of nearly 3500 meters (Zhang et al., 2011).  

Staging and stopover sites 

Within Mongolia, bar-headed geese used Khovd River, Boon Tsagaan Lake and 

Galuut Lake at the upper Baidrag River as major stopover sites. Once they left 

Mongolia, the Qinghai-Tibetan Plateau was the most important staging and stopover 

area during both their autumn and spring migrations.  

The number of stopover sites used greatly varied by individual geese. Some 

birds used few stopover sites, while other birds stopped frequently. During spring 

migration, individual bar-headed geese spent on average 15 days (ranged from 2 to 110) 

at stopover sites. In contrast, they spent 11 days (ranged from 5 to 48) at stopover sites 

during the autumn migration. In general, individuals that made more stops arrived later 

at both breeding and wintering areas. 
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Geese migration and timing of environmental conditions 

Ecological conditions significantly influenced the different stages of the long 

distance migration by bar-headed geese. Most bar-headed geese departed around the 

median departure date (16 March) regardless of their final destination for northbound 

migration; however, those geese that started migrating earlier tended to travel farther 

during the southbound migration (Figure 3-2). Longer migration length resulted in late 

arrival at both breeding and wintering areas (Figure 3-3).  

Regardless of their departure date, the number of stopover sites used for the 

northbound migration was similar; however, on their southbound migration, geese that 

started earlier tended to use more stopover sites. Late arriving birds travelled farther 

compared to early arriving geese during both south and northbound migrations. 

NDVI  

NDIV values were highest (0.5-0.6) only during summer months of June, July, 

and August at the breeding grounds in Mongolia and Qinghai-Tibetan Plateau and 0.5-

0.7 in August during the winter months in December, and January in India (Figure 3-4 

and 3-5).  

Mean and max NDVI values at stopover sites during the autumn migration were 

higher compared with the spring migration periods. Bar-headed geese started migrating 

southward when NDVI values started dropping below 0.3 at the breeding grounds in 

September. Foraging condition on bigger lakes of the Qinghai-Tibetan Plateau were 

highlyvariable in October. During this period, geese mostly used areas away from the 
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main lake body where better forage condition can be found along rivers and streams 

supported by geothermal activities.  

Land surface temperature 

Observed minimum and maximum land surface temperature ranges in 

December, January, February, July, and August were most narrow because geese are 

more sedentary during these times. Whereas rest of the year, temperature range was 

variable. Breeding grounds in Mongolia (mean LST = 24-36) was warmer compared to 

Qinghai-Tibetan Plateau (mean LST = 13-21) (Figure 3-6).  

Minimum land surface temperature below 0oC degrees seemed to be a good 

indicator of departure timing for their southbound migration. Temperatures started 

dropping below 0oC starting in September in areas of northern Mongolia and Siberia. 

Cold temperature slowly advanced, and by November and December, the entire 

northern region was already frozen and remained that way until April. However, neither 

mean, minimum, nor maximum land surface temperature was a good indicator of 

northbound spring migration. 

During the summer, geese stayed in cooler areas on Qinghai-Tibetan Plateau and 

Khangai, Khovsgol, and Altai Mountain regions in Mongolia where average summer 

temperature is around 20oC. Areas south of the Himalaya and the Gobi desert in 

northern China and Mongolia were hotter during the summer.  

Snow cover 
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Snow cover data were obtained for the Himalaya Mountains and areas farther 

north. The first signs of snow started in September in Siberia and Mongolia. High 

elevation areas of the Himalayan Mountains have snow year around (Figure 3-7).  

In general, there was a subjective link between the migration movements of bar-

headed geese and the advancement of snow from Siberia during the autumn as the snow 

retreats back to the north in the spring. Bar-headed geese initiated migration before the 

snow arrived at the most breeding locations. They moved to the south 2-4 weeks ahead 

of the snow. It seemed that snow cover in the north pushed birds farther south. 

However, the eastern and central Tibetan Plateau received snow in October when many 

geese were still in migration. However, snow cover and goose locations were not 

overlapping. 

Northbound migration in the spring followed the retreat of snow, but the 

relationship between migration ecology of bar-headed geese and snow cover in the 

spring remained unclear. When birds arrived at the breeding grounds, many places still 

had snow cover of up to 70%. In high elevation areas, 1-4% of the snow cover remained 

until June.  

Discussion 

For long distance migratory birds, the ecological conditions along the flyway 

significantly influenced timing of their migration (Bety et al., 2003; Robson and 

Barriocanal, 2011), duration of migration (Tottrup et al., 2008), arrival dates at breeding 

and wintering sites (Saino et al., 2004; Tottrup et al., 2010), breeding performance in 

the spring (Black et al., 2007; Trinder et al., 2009), population dynamics (Ambrosini et 
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al., 2011; Black et al., 2007), survival during and after the migration (Norris and Taylor, 

2006), and physiological fitness of individual birds (Blums et al., 2005; Norris and 

Taylor, 2006).  

Migratory waterfowl spend parts of their annual life cycle at different places 

along the migration route for certain periods, and this phenomenon is usually linked to 

many spatial and temporal environmental factors and their interactions. The ‘green 

wave hypothesis’ (Drent et al. 1978; Owen 1980) predicted that waterfowl follow green 

vegetation emergence and early growth along their spring migration route, suggesting 

that primary productivity was the main force driving their northward migration (van der 

Graaf et al., 2006). Similarly, the weather, especially temperature and snow, triggered 

southward migration in some waterfowl species (Newton, 2007). Xiao et al (2007) 

showed how low land surface temperatures represented by nighttime frost events 

triggered the southward migration of waterfowl in northern territories of Europe. 

Results from our study on bar-headed geese agreed with these previous studies.  

In the northern breeding grounds of bar-headed geese, the semiarid steppe of 

Mongolia is mostly dominated by perennials (Hilbig, 1995). The average onset date of 

vegetation green-up in Mongolia is significantly related to day length, temperature, and 

precipitation gradients (Lee et al., 2002; Madsen et al., 1989), and vegetation biomass 

reached its maximum in July (Hilbig, 1995; Reed et al., 1994). Bar-headed geese breed 

and molt in high altitude wetlands in western and northern Mongolia, and their molting 

season took place during the period with the highest vegetation biomass. When the 

forage quality decreased in August and September and cold air fronts approached from 



92 
 

Siberia, bar-headed geese started migrating to the south starting at the end of August 

and September. 

Bar-headed geese migrated within the Central Asia Flyway which connected 

South Asia and India through western China, Kazakhstan, Kirgizstan, Russia, and 

Mongolia. Our satellite marked geese migrated through a relatively narrow migration 

corridor to reach their wintering grounds in India. They made frequent and lengthy 

stops at the Qinghai-Tibetan Plateau until continuing their migration both during the 

southbound and northbound migrations.  

The Qinghai-Tibetan Plateau was the most important stopover and staging 

grounds for bar-headed geese en route to the wintering grounds. It is the largest high 

altitude plateau on earth and has a wide range of alpine grasslands and meadow habitats 

suitable for waterbirds to breed. The distribution of precipitation and vegetation is 

markedly variable along the northwest to southeast gradient and gradually increases 

from the northwest to south on the plateau. The peak NDVI value was attained during 

the growing season from July to September on the Qinghai-Tibetan Plateau, and the 

growing season was usually shorter in the northern and southern parts of the region 

(Ding et al., 2007).  

During the northbound migration, bar-headed geese extensively used many 

locations on the Qinghai-Tibetan Plateau, probably because they had available 

emerging vegetation biomass and vegetation conditions rapidly deteriorate in India 

during this period. In the highly dynamic lowland agricultural regions of India where 

bar-headed geese spend the winter, the vegetation index is highest in August-September 
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due to monsoonal rainfall but then declines during October, increases in December, and 

then declines again in February before reaching its lowest point in March (Dubey and 

Pranuthi, 2012; Nigam et al., 2011). Therefore, the emergence of fresh green grass on 

the Qinghai-Tibetan Plateau probably attracts geese in the spring and provides much 

needed nutrients before the breeding season, thus making the Plateau the most 

important staging grounds for bar-headed geese. In western China, the vegetation green-

up gradually moves northward starting in March, and dormancy is observed southward 

from late September (Zhang et al., 2004).  

Timing of migration by individual birds was found to be correlated with specific 

nesting latitudes in long distance migrants (Conklin et al., 2010).  Bar-headed geese 

nesting in northern latitudes departed earlier after spending significant amounts of time 

on the Qinghai-Tibetan Plateau. However, they arrived at same time or earlier than 

short distance migrating geese on the breeding grounds. Generally, early arriving birds 

have higher chances to be negatively affected by locally unstable bad weathers in the 

spring (Shen et al., 2011). Although this strategy might be more energetically expensive 

in short run, it may be advantageous for the geese to increase their fitness and secure 

better nesting areas.  

In general, geese are capital breeders that use stored energy reserves for 

reproduction in the spring. They obtain these energy reserves at staging and stopover 

sites along the flyway (Arzel et al., 2006; Black et al., 2007; Owen, 1980). Although the 

number of stopover sites used by individual geese vary greatly because of individual 

fitness differences, geese spend significant amounts of time at numerous locations along 

the Qinghai-Tibetan Plateau compared to few stopover locations used for less time in 
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Mongolia and India. These results suggest that bar-headed geese refuel on the Qinghai-

Tibet Plateau before they continue their migration northward and southward. Therefore, 

the number of days they spend at each stopover location during the spring and autumn 

migrations most likely have positive relationships with suitable grazing conditions 

during the migration period.  

Local temperature is a good indicator of migration phenology in birds (Shen et 

al., 2011). In the region where bar-headed geese are found during the summer, the 

vegetation green-up starts in early May (Yu et al., 2003). Grassland conditions in the 

northern breeding grounds become better (NDVI > 0.4) due to increased air 

temperatures and moisture. When bar-headed geese arrive at the breeding grounds in 

late April and early May, the forage conditions are still not good, and night time air 

temperatures are often below 0oC with many areas still covered with snow. But within 

1-2 weeks, the vegetation growing season starts. However, a small amount of snow 

cover and low night-time temperatures will not cause a delay in nesting. Some geese 

forage little and invest most of their energy to lay and tend their eggs securing the best 

nest sites at the beginning of breeding season (Black et al., 2007). Bar-headed geese 

may have similar strategies, but we do not have data from the early nesting period to 

test that hypothesis. 

Reduced forage quality and abundance and decreasing air temperatures may 

trigger the southward migration. Towards the end of September, forage quality and 

conditions in Mongolia become very poor, and the night time temperature becomes 

colder. The first snow starts in the middle of September, and the first night time frost is 

observed in the first to second week of September in northern Mongolia. In general, 
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advancement of low air temperatures and snow cover from Siberia and the southward 

movement of bar-headed geese correspond well with each other.  However, because of 

the spatial and temporal scale of the data used in this study, we were not able to define 

in fine scale which factor determines the onset of migration in the autumn season.  

The Qinghai Tibetan Plateau is the closest stopover areas during the southbound 

migration with abundant grass and water for geese to refuel after crossing the vast, dry 

Gobi Desert where water and feeding ground is scarce. However, the bar-headed geese 

from Mongolia overlap with different populations in the western part of the plateau 

where more than 35,000 individuals spend the winter (Bishop and Tsamchu 2007, 

Takekawa et al. 2009). Our satellite tracking data showed that bar-headed geese make 

extensive use of rivers and stream beds that are most likely linked to geothermal 

activities in this region (Figure 3-8) -- the central and southern regions of the Qinghai-

Tibetan Plateau have very active geothermal activity (Hochstein and Regenauer-Lieb, 

1998). In this area, many wetlands and river valleys remain open and attract many 

waterfowl, since they sustain forage conditions longer in this high altitude region.  Food 

availability and abundance might be higher at these places where geothermal activity is 

high. Therefore, river valleys and lakes in southern Tibet could be major wintering 

ground areas with potentially higher competition for resources.  

In general, the migration corridor of bar-headed geese was narrow despite their 

lengthy travel distances. Especially on the Qinghai-Tibetan Plateau, the migration route 

was basically confined within the Tibetan Plateau alpine steppe and scrubland and 

meadow environment which is a narrow strip between the Central Tibetan Plateau 
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alpine steppe and Southeast Tibetan Plateau scrubland and meadow environments 

(Olson et al., 2004) (Figure 3-9). 

Although the combination of satellite telemetry data and the land surface 

phenology data based on satellite remote sensing images provide a unique opportunity 

to further our understanding of migration ecology of bar-headed geese, two major 

concerns with our results still exist. First, the overall duration of the study was relatively 

short, and second, most birds were tracked for one or two seasons. These issues may 

have influenced the process of adequately revealing the variability of stopover habitat 

use and migratory strategies by bar-headed geese. Furthermore, the decision to migrate, 

time to spend on migration, and usage of stopover or staging sites could be particularly 

complex for species like the bar-headed goose which migrate though extreme 

landscapes and elevations.  It would be desirable to compare satellite-derived 

vegetation, soil moisture, and land surface temperature phenological estimates with data 

measured on their breeding grounds.  

Acknowledgments  

Primary funding support was provided by the United Nations Food and 

Agriculture Organization, the U.S. Geological Survey, Western Ecological and Patuxent 

Wildlife Research Centers and Avian Influenza Program, and the University of 

Oklahoma.  We are grateful to Shane Heath, David Douglas, William Perry, Asad 

Rahmani, Diann Prosser, Baoping Yan, Yuansheng Hou, Peter Frappell, Bill Milsom, 

Graham Scott, K. Spragens, and Eric Palm for their help in executing the project. 

Satellite tracking work was part of a project funded through a grant awarded to Dr. 

Charles Bishop and Dr. Peter Butler (grant no. BB/F015615/1) from the British 



97 
 

Biotechnology and Biological Sciences Research Council, from the NSERC of Canada 

to W.K.M., and from the Max Planck Institute for Ornithology. Support was also 

provided by The Ministry of Environment and Forests, Chief Wildlife Wardens of 

Tamil Nadu and Orissa in India, and the Ministry of Nature, Environment, and Tourism 

and the Khorgo-Terkhiin Tsagaan National Park Administration granted the work 

permissions at capture sites. The data analysis was supported by a grant from the U. S. 

National Science Foundation EPSCoR program (NSF-0919466) and from the NIH 

Fogarty International Center through the NSF/NIH Ecology of Infectious Diseases 

program (R01-TW007869). Protocols for the bird study were reviewed by a U. S. 

Geological Survey Animal Care and Use Committee and the Institute of Biology, 

Mongolian Academy of Sciences. Any use of trade, product, or firm names in this 

publication is for descriptive purposes only and does not imply endorsement by the U.S. 

government. 

  



98 
 

 

References 

Ambrosini, R., Orioli, V., Massimino, D., Bani, L., 2011. Identification of Putative 
Wintering Areas and Ecological Determinants of Population Dynamics of 
Common House-Martin (Delichon urbicum) and Common Swift (Apus apus) 
Breeding in Northern Italy. Avian Conserv Ecol 6. 

Arzel, C., Elmberg, J., Guillemain, M., 2006. Ecology of spring-migrating Anatidae: a 
review. Journal of Ornithology 147, 167-184. 

Balbontin, J., Moller, A.P., Hermosell, I.G., Marzal, A., Reviriego, M., de Lope, F., 
2009. Individual responses in spring arrival date to ecological conditions during 
winter and migration in a migratory bird. J Anim Ecol 78, 981-989. 

Berthold, P., Gwinner, E., Sonnenschein, E. 2003. Avian Migration (Berlin, Springer). 

Bety, J., Gauthier, G., Giroux, J.F., 2003. Body condition, migration, and timing of 
reproduction in snow geese: A test of the condition-dependent model of optimal 
clutch size. Am Nat 162, 110-121. 

Bishop, M.A., Yanling, S., Zhouma, C., Binyuan, G., 1997. Bar-headed Geese Anser 
indicus wintering in south-central Tibet. Wildfowl 48, 118-126. 

Black, J.M., Prop, J., Larsson, K., 2007. Wild goose dilemmas: population 
consequences of individual decisions in barnacle geese. Branta Press, Groningen, 
i-x, 1-254 pp. 

Blums, P., Nichols, J.D., Hines, J.E., Lindberg, M.S., Mednis, A., 2005. Individual 
quality, survival variation and patterns of phenotypic selection on body condition 
and timing of nesting in birds. Oecologia 143, 365-376. 

Bos, D., Drent, R.H., Rubinigg, M., Stahl, J., 2005. The relative importance of food 
biomass and quality for patch and habitat choice in Brent Geese Branta bernicla. 
Ardea 93, 5-16. 

Bridge, E.S., Thorup, K., Bowlin, M.S., Chilson, P.B., Diehl, R.H., Fleron, R.W., Hartl, 
P., Kays, R., Kelly, J.F., Robinson, W.D., Wikelski, M., 2011. Technology on the 
Move: Recent and Forthcoming Innovations for Tracking Migratory Birds. 
Bioscience 61, 689-698. 

Conklin, J.R., Battley, P.F., Potter, M.A., Fox, J.W., 2010. Breeding latitude drives 
individual schedules in a trans-hemispheric migrant bird. Nat Commun 1. 



99 
 

Ding, M.J., Zhang, Y.L., Liu, L.S., Zhang, W., Wang, Z.F., Bai, W.Q., 2007. The 
relationship between NDVI and precipitation on the Tibetan Plateau. J Geogr Sci 
17, 259-268. 

Dubey, S.K., Pranuthi, G., 2012. Assessing the Relation Between NDVI and Rainfall 
over India. International Journal of Water Resources and Arid Environments 2, 
108-144. 

Gaidet, N., Cappelle, J., Takekawa, J.Y., Prosser, D.J., Iverson, S.A., Douglas, D.C., 
Perry, W.M., Mundkur, T., Newman, S.H., 2010. Potential spread of highly 
pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates 
determined from large-scale satellite telemetry. Journal of Applied Ecology 47, 
1147-1157. 

Gottschalk, T.K., Huettmann, F., Ehlers, M., 2005. Thirty years of analysing and 
modelling avian habitat relationships using satellite imagery data: a review. Int J 
Remote Sens 26, 2631-2656. 

Hawkes, L.A., Balachandran, S., Batbayar, N., Butler, P.J., Frappell, P.B., Milsom, 
W.K., Tseveenmyadag, N., Newman, S.H., Scott, G.R., Sathiyaselvam, P., 
Takekawa, J.Y., Wikelski, M., Bishop, C.M., 2011. The trans-Himalayan flights 
of bar-headed geese (Anser indicus). Proceedings of the National Academy of 
Sciences of the United States of America 108, 9516-9519. 

Hilbig, W., 1995. The vegetation of Mongolia. SPB Academic Publisher, Amsterdam. 

Hochstein, M.P., Regenauer-Lieb, K., 1998. Heat generation associated with collision 
of two plates: the Himalayan geothermal belt. J Volcanol Geoth Res 83, 75-92. 

Justice, C.O., Townshend, J.R.G., Holben, B.N., Tucker, C.J., 1985. Analysis of the 
Phenology of Global Vegetation Using Meteorological Satellite Data. Int J 
Remote Sens 6, 1271-1318. 

Lee, R., Yu, F., Price, K.P., Ellis, J., Shi, P., 2002. Evaluating vegetation phenological 
patterns in Inner Mongolia using NDVI time-series analysis. Int J Remote Sens 
23, 2505-2512. 

Madsen, J., Bregnballe, T., Mehlum, F., 1989. Study of the breeding ecology and 
behaviour of the Svalbard population of Light-bellied Brent Goose Branta bernicla 
hrota*. Polar Research 7, 1-21. 

Mansson, J., Hamalainen, L., 2012. Spring stopover patterns of migrating Whooper 
Swans (Cygnus cygnus): temperature as a predictor over a 10-year period. Journal 
of Ornithology 153, 477-483. 

Morgner, E., Elberling, B., Strebel, D., Cooper, E.J., 2010. The importance of winter in 
annual ecosystem respiration in the High Arctic: effects of snow depth in two 
vegetation types. Polar Research 29, 58-74. 



100 
 

Newton, I., 2007. The migration ecology of birds. Academic Press. 

Newton, I., Dale, L.C., 1996. Bird migration at different latitudes in eastern North 
America. Auk 113, 626-635. 

Nigam, R., Bhattacharya, B.K., Gunjal, K.R., Padmanabhan, N., Patel, N.K., 2011. 
Continental scale vegetation index from Indian geostationary satellite: algorithm 
definition and validation. Curr Sci India 100, 1184-1192. 

Norris, D.R., Taylor, C.M., 2006. Predicting the consequences of carry-over effects for 
migratory populations. Biology Letters 2, 148-151. 

Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., 
Underwood, E.C., D'Amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, 
C.J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., 
Hedao, P., Kassem, K.R., 2004. Terrestrial Ecoregions of the World: A New Map 
of Life on Earth Bioscience 51, 933-938. 

Owen, M., 1980. Wild geese of the world: their life history and ecology. Batsford. 

Papes, M., Peterson, A.T., Powell, G.V.N., 2012. Vegetation dynamics and avian 
seasonal migration: clues from remotely sensed vegetation indices and ecological 
niche modelling. J Biogeogr 39, 652-664. 

Pettorelli, N., Ryan, S., Mueller, T., Bunnefeld, N., Jedrzejewska, B., Lima, M., 
Kausrud, K., 2011. The Normalized Difference Vegetation Index (NDVI): 
unforeseen successes in animal ecology. Clim Res 46, 15-27. 

R Development Core Team 2013. R: A Language and Environment for Statistical 
Computing (Vienna, Austria, R Foundation for Statistical Computing). 

Reed, B.C., Brown, J.F., Vanderzee, D., Loveland, T.R., Merchant, J.W., Ohlen, D.O., 
1994. Measuring Phenological Variability from Satellite Imagery. J Veg Sci 5, 
703-714. 

Robson, D., Barriocanal, C., 2011. Ecological conditions in wintering and passage areas 
as determinants of timing of spring migration in trans-Saharan migratory birds. J 
Anim Ecol 80, 320-331. 

Saino, N., Szep, T., Romano, M., Rubolini, D., Spina, F., Moller, A.P., 2004. 
Ecological conditions during winter predict arrival date at the breeding quarters in 
a trans-Saharan migratory bird. Ecol Lett 7, 21-25. 

Santin-Janin, H., Garel, M., Chapuis, J.L., Pontier, D., 2009. Assessing the performance 
of NDVI as a proxy for plant biomass using non-linear models: a case study on the 
Kerguelen archipelago. Polar Biology 32, 861-871. 



101 
 

Sellers, P.J., Meeson, B.W., Hall, F.G., Asrar, G., Murphy, R.E., Schiffer, R.A., 
Bretherton, F.P., Dickinson, R.E., Ellingson, R.G., Field, C.B., Huemmrich, K.F., 
Justice, C.O., Melack, J.M., Roulet, N.T., Schimel, D.S., Try, P.D., 1995. Remote-
Sensing of the Land-Surface for Studies of Global Change - Models, Algorithms, 
Experiments. Remote Sens Environ 51, 3-26. 

Shen, M.G., Tang, Y.H., Chen, J., Zhu, X.L., Zheng, Y.H., 2011. Influences of 
temperature and precipitation before the growing season on spring phenology in 
grasslands of the central and eastern Qinghai-Tibetan Plateau. Agr Forest 
Meteorol 151, 1711-1722. 

Takekawa, J.Y., Heath, S.R., Douglas, D.C., Perry, W.M., Javed, S., Newman, S.H., 
Suwal, R.N., Rahmani, A.R., Choudhury, B.C., Prosser, D.J., Yan, B., Hou, Y., 
Batbayar, N., Natsagdorj, T., Bishop, C.M., Butler, P.J., Frappell, P.B., Milsom, 
W.K., Scott, G.R., Hawkes, L.A., Wikelski, M., 2009. Geographic variation in 
Bar-headed Geese Anser indicus: connectivity of wintering areas and breeding 
grounds across a broad front. Wildfowl 59, 102-125. 

Tombre, I.M., Hogda, K.A., Madsen, J., Griffin, L.R., Kuijken, E., Shimmings, P., 
Rees, E., Verscheure, C., 2008. The onset of spring and timing of migration in two 
arctic nesting goose populations: the pink-footed goose Anser bachyrhynchus and 
the barnacle goose Branta leucopsis. Journal of Avian Biology 39, 691-703. 

Tottrup, A.P., Rainio, K., Coppack, T., Lehikoinen, E., Rahbek, C., Thorup, K., 2010. 
Local Temperature Fine-Tunes the Timing of Spring Migration in Birds. Integr 
Comp Biol 50, 293-304. 

Tottrup, A.P., Thorup, K., Rainio, K., Yosef, R., Lehikoinen, E., Rahbek, C., 2008. 
Avian migrants adjust migration in response to environmental conditions en route. 
Biology Letters 4, 685-688. 

Trinder, M.N., Hassell, D., Votier, S., 2009. Reproductive performance in arctic-nesting 
geese is influenced by environmental conditions during the wintering, breeding 
and migration seasons. Oikos 118, 1093-1101. 

van der Graaf, S.A.J., Stahl, J., Klimkowska, A., Bakker, J.P., Drent, R.H., 2006. 
Surfing on a green wave - how plant growth drives spring migration in the 
Barnacle Goose Branta leucopsis. Ardea 94, 567-577. 

Xiao, X.M., Gilbert, M., Slingenbergh, J., Lei, F., Boles, S., 2007. Remote sensing, 
ecological variables, and wild bird migration related to outbreaks of highly 
pathogenic H5N1 avian influenza. J Wildlife Dis 43, S40-S46. 

Yu, F.F., Price, K.P., Ellis, J., Shi, P.J., 2003. Response of seasonal vegetation 
development to climatic variations in eastern central Asia. Remote Sens Environ 
87, 42-54. 



102 
 

Zar, J.H., 1999. Biostatistical analysis, 4th Edition. Prentice Hall, Upper Saddle River, 
N.J., 1 v. (various pagings) p. 

Zhang, B., Wu, Y.H., Lei, L.P., Li, J.S., Liu, L.L., Chen, D.M., Wang, J.B., 2013. 
Monitoring changes of snow cover, lake and vegetation phenology in Nam Co 
Lake Basin (Tibetan Plateau) using remote SENSING (2000-2009). J Great Lakes 
Res 39, 224-233. 

Zhang, X., Friedl, M., Schaaf, C., Strahler, A., 2004. Climate controls on vegetation 
phenological patterns in northern mid- and high latitudes inferred from MODIS 
data. Global Change Biol 10, 1133-1145. 

Zhang, Y., Hao, M., Takekawa, J.Y., Lei, F., Yan, B., Prosser, D.J., Douglas, D.C., 
Xing, Z., Newman, S.H., 2011. Tracking the autumn migration of the bar-headed 
goose (Anser indicus) with satellite telemetry and relationship to environmental 
conditions. International Journal of Zoology 2011, 1-10. 

  



103 
 

Tables and figures 

Table 3 - 1. Summary of marked bar-headed geese with satellite telemetry  

Migration information 
Autumn 

migration 
Spring migration 

Number of birds tracked 24 23 

Total number of days tracked 813 702 

Median departure date 9 Sep 16 Mar 

Departure date range 19 Aug – 10 Nov 6 Feb – 22 Apr 

Median arrival date 28 Nov 9 May 

Arrival date range 10 Nov – 20 Dec 16 Mar – 13 Jun 

Mean duration 68 54 

Median duration 73 52 

Duration range 15-119 14-93 

Mean distance travelled 2255 2846 

Range of distance travelled 933-5720 982-5515 

Average number of stop over sites per bird 5 5 

Number of stop over sites 101 57 

Average number of days spent at stop over sites 11 15 

Range of days spent at stop over sites 2-58 2-110 
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Figure 3 - 1. Locations of bar-headed geese during spring and autumn migration. 
Map shows the importance of the Qinghai-Tibet Plateau for bar-headed geese 
during migration. Red squares are locations where the bar-headed geese are found 
breeding and blue squares are location where they spend the winter. 
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Figure 3 - 2. Relationship in departure dates from a) wintering grounds and b) 
breeding areas and migration distances between these areas. The horizontal axis 
shows the Julian Date and the vertical axis shows the distance travelled per season 
during the migration by bar-headed geese. Most bar-headed geese departed near 
the median departure date regardless of their final destination for the northbound 
migration, whereas those that started earlier tended to travel farther during the 
southbound migration. The median departure Julian date in the spring was day 
75, and day 252 in the autumn. 
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Figure 3 - 3. The relationship between arrival date at a) wintering and b) summer 
areas and the distance travelled during migration. Horizontal axis shows the 
Julian date and vertical axis shows the distance travelled. Late arriving birds have 
travelled farther compared to early arrivers during both south and northbound 
migrations. Median arrival julian date in spring is 129 and 332 in autumn. 
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Figure 3 - 4. Spatial patterns of normalized difference vegetation index and bar-
headed geese movements in different months representing different migration 
seasons. Maps show the advancing and retreating of green vegetation in the 
wintering grounds to the south and in the breeding grounds to the north. 
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Figure 3 - 5. Summer, fall, winter, and spring season changes in the normalized 
difference vegetation index (different months shown as colored lines) along the 
elevation (shaded gray area) and latitudinal gradients. Vegetation index (NDVI) 
values are on the left y-axis and the elevation values are on the right y-axis. Black 
bars are locations of bar-headed geese in relation to latitude.  
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Figure 3 - 6. Summer, fall, winter, and spring season changes in the night time 
land surface temperature (different months shown as colored lines) along the 
elevation (shaded gray area) and latitudinal gradients. Land surface temperature 
values are on the left y-axis and the elevation values are on the right y-axis. Black 
bars are locations of bar-headed geese in relation to the latitude. 
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Figure 3 - 7. Summer, fall, winter, and spring season changes in the snow cover 
(different months shown as colored lines) along the elevation (shaded gray area) 
and latitudinal gradients. Snow cover percentage values are on the left y-axis and 
the elevation values are on the right y-axis. Black bars are locations of bar-headed 
geese in relation to latitude. 
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Figure 3 - 8. Major stopover locations of bar-headed geese on the Qinghai-Tibetan 
Plateau. Details of selected locations in yellow squares are shown in the bottom 
row.  
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Figure 3 - 9. Bar-headed geese migration corridor on the Qinghai-Tibetan Plateau. 
The migration route was basically confined within the Tibetan Plateau alpine 
shrublands and meadow biome which is a narrow strip between the Central 
Tibetan Plateau alpine steppe and Southeast Tibetan Plateau scrublands and 
meadow biomes.  
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SUMMARY AND CONCLUSION 

Human influences on natural ecosystems have become a major ecosystem 

regulating force due to magnitude of our activities and resultant footprint on the Earth’s 

surface (Muhly et al., 2013). We see many examples of large scale catastrophic effects 

on ecosystems and biodiversity caused by the human society, and birds and their 

habitats are no exception. Studies have shown that the normal migrations of many 

species have been interrupted due to some anthropogenic causes and many crucial 

phenomenon related to annual migrations are changing their traditional course.  In some 

cases, the magnitude of migration, in terms of abundance, is declining at significant rate 

(Wilcove and Wikelski, 2008).  

Bar-headed geese and swan geese satellite tracking data show that the migration 

ecology of these two species may already have been severely affected by urban area 

expansion, agriculture, infrastructure and industrial developments. Because many 

stopover sites used by these geese are in man-made landscapes, there are signs of 

possible changes in traditional migration routes and staging grounds.  

China, India, and southern Asia are very important regions for the wintering 

waterbirds that breed during the summer in the Arctic, Siberia, Mongolia, and northern 

China. Anthropogenic factors affecting waterbirds in this wintering ground region are 

probably most dramatic and dynamic because these regions have the highest density of 

human population and rapidly developing economy and infrastructure networks in the 

world (Hvistendahl, 2011; Yue et al., 2005). Thus, pressures from the development and 

human activities in these regions present challenges and severe threats to waterbirds.  
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Since the 1990s, China has converted far more grasslands and forestlands into 

agriculture compared to other countries in the world (Gao and Liu, 2011; Liu et al., 

2005). Consequently, within the historical swan goose breeding and wintering ranges, 

much has been changed in the past several decades. Alarmingly, the wintering 

distribution of swan geese in China is now restricted to Yangtze River valley which is 

the home of one-third of human population in China (Yue et al., 2005). In addition, the 

main winter congregation of swan geese is located at Poyang Lake which was once the 

largest freshwater lake in China (Liu et al., 2013). Therefore, possible negative effect of 

human and economic development on major wintering grounds of the swan geese may 

be inevitable in this region (Zhang et al., 2011). Situations in South Asia and on the 

Indian subcontinent are no better. India is developing its economy at steady rate. It has 

been projected that the human population size of India will surpass China by 2025 

(Hvistendahl, 2011). Today, most bar-headed geese wintering in India depend on river 

valleys where agricultural activity dominates almost everything else. In contrast to the 

restricted winter range of swan geese in East China, the winter locations of bar-headed 

geese in India are widely disbursed. Also there is a large number of geese winter in 

southern part of the Tibetan Plateau in China. Furthermore, because bar-headed geese 

occupy wide winter range and distributed across large area and different ecological 

conditions, they may have more flexibility to survive compared to the swan geese. It is 

also supported by the fact that migration corridor of swan geese is narrower and the 

number of stopover sites they use is fewer than bar-headed geese. 

Today, the wildlife population monitoring may have become more important 

and urgent because of increased loss of habitats and mortality throughout the 
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distribution range. The most crucial and heavily impacting threats are changes in human 

land use, alterations in livelihood, and climate change. The Daurian Steppe, comprising 

the Daurian forest steppe and Mongolian-Manchurian grassland of Russia, Mongolia, 

and China, is the largest intact steppe ecosystem remaining in the Palearctic (Olson and 

Dinerstein, 1998).  In this semiarid region, the populations of large number of 

waterbirds including swan geese depend on finding suitable breeding areas under highly 

variable water and wetland conditions. Unfortunately, due to combined effects of 

climate change and large scale wetland conversions to agricultural lands,  swan geese 

populations are disappearing from most of northeast China (Zhang et al., 2011).  

In Mongolia, wetland habitat loss due to climate change and livestock impact 

has increased in the last several decades (Batima and Dagvadorj, 1998). However, 

because of lack of population data, it has been impossible to elaborate the effects on 

breeding populations of bar-headed geese in Mongolia. We conducted a systematic 

study to understand breeding habitat requirements and nest survival of the species for 

the first time. We found that bar-headed geese nests are located sporadically throughout 

western Mongolia. Also, despite a far greater number of non-breeding individuals, there 

were very few locations suitable for post-breeding molt. We observed that the bar-

headed geese nests and eggs were often depredated by gulls, and the increased gull 

numbers may have significant impact on nesting waterbirds. However, no work has 

been performed to date to look at gull depredation rates on nesting waterbirds including 

the bar-headed geese. The situation for bar-headed geese in China may well be same or 

similar (Ma and Cai, 1997).  
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Today, the data accuracy and collection frequency of GPS PTTs have much 

improved and there are several options of adding specific sensors available from 

selected manufacturers (Bridge et al., 2011). Therefore, flyway scale migration ecology 

studies can be greatly benefited by the use of latest satellite and cellular tracking 

technologies. It is known that most large waterfowl can carry radio transmitters with 

varying weight and migrate long distances; thus making them suitable candidates for 

complex migration ecology, habitat selection, disease transmission, and climate change 

impact studies across large geographical areas and along migration routes.  

Modelling the spread and transmission of infectious disease agents can be done 

using high accuracy locations collected at short time interval. For example, the swan 

geese can be an excellent model because the highly pathogenic avian influenza 

outbreaks occurred repeatedly at Poyang Lake, which is the East Asian hub for 

wintering migratory waterbirds.  In the worst case, an outbreak of avian influenza or 

other pathogenic diseases can have devastating impact not only on swan geese, but also 

on many species of other waterbirds.  

Furthermore, the impact of expansion of urban areas on migratory waterbirds 

and swan geese in Asia needs to be monitored. Because the development between 

Poyang Lake and Beijing  continues to expand, the network of natural wetlands will 

probably not be sufficient to support the wintering population and their migration.  

Increased water and wetland pollution from runoff of cities and agricultural lands are 

additional conservation challenges.  
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A comparative study to understand how climate change might affect these 

geographically distinct species of geese in long run might be an intriguing idea.  It is 

known that the climate change is having significant impacts on wetlands where 

waterbirds occur. For example, an increase in runoff from glaciers has resulted in 

numerous small transitional wetlands on the Tibetan-Qinghai Plateau, and the many 

years of drought and lack of precipitation have caused drying of numerous lakes in 

Mongolia and northern India (Batima et al. 2005; Xu et al. 2008). As a result, many 

potential nesting habitats and areas could be lost forever because of changes in 

precipitation patterns and temperature increases.  Nevertheless, species distributions are 

expected to shift in response to climate change (Wilson et al. 2005), and swan geese 

and bar-headed geese may alter their breeding and wintering distributions and migratory 

behavior given their narrow migration corridor and habitat alterations in western China 

and northern India. However, it is most likely that they may respond differently because 

of their spatial extent and the restricted location of their wintering areas. Here, a species 

distribution modelling exercise may be useful. Models that predict distributions of 

species by combining known occurrence records with digital layers of environmental 

variables have great potential for application in conservation and management (Peterson 

2001; Pearson 2007). In addition, MODIS based land surface and vegetation phenology 

data can greatly facilitate the understating of climate change impacts on bar-headed 

geese and swan geese in Asia.   
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