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Abstract 

 Interband cascade photovoltaic (IC PV) structures are an attractive alternative to 

the conventional long-absorber diode structures currently used for mid-infrared 

photovoltaic devices.  The unique feature of IC PV devices is that they utilize a 

multiple-stage architecture.  This sort of design is made possible by the type-II broken-

gap alignment between InAs and GaSb.  In a multiple-stage device, electrons must be 

excited several times by above-bandgap photons in order to pass between the device 

contacts.  Although counterintuitive, this transport feature can be beneficial for both 

energy-conversion and infrared detector technology.  In particular, the interband 

cascade approach should be useful for improving the performance of narrow-bandgap 

optoelectronic devices operating at high temperature by ensuring a more efficient usage 

of the incident photons.  The aim of this dissertation is to identify and demonstrate the 

advantages that interband cascade photovoltaic devices offer, both theoretically and 

experimentally. 

 A theoretical framework for studying signal and noise in multiple-stage 

interband photovoltaic devices is presented.  The theory flows from a general picture of 

electrons transitioning between thermalized reservoirs.  Making the assumption of bulk-

like absorbers, we show how the standard semiconductor transport and recombination 

equations can be extended to the case of multiple-stage devices.  The electronic noise 

arising from fluctuations in the transition rates between reservoirs is derived using the 

Shockley-Ramo and Weiner-Khintchine theorems.  This provides a unified noise 

treatment accounting for both the Johnson and shot noise.  In this framework, we derive 
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consistent analytic expressions for the quantum efficiency and thermal noise in terms of 

the design parameters and macroscopic material properties of the absorber.   

 The theory is then applied in order to quantify the potential performance 

improvement that can be gained from the use of multiple stages.  We show that 

multiple-stage detectors can achieve higher sensitivities for applications requiring a 

very fast temporal response.  This is shown by deriving an expression for the optimal 

number of stages in terms of the absorption coefficient and absorber thicknesses for a 

multiple-stage detector with short absorbers.  The multiple-stage architecture may also 

be useful for improving the sensitivity of high operating temperature detectors, if a short 

diffusion length limits the quantum efficiency.  The potential sensitivity improvement 

offered by a multiple-stage architecture can be judged from the product of the 

absorption coefficient, α, and diffusion length, Ln, of the absorber material.  For detector 

designs where the absorber lengths in each of the stages is equal, the multiple-stage 

architecture offers the potential for significant detectivity improvement when αLn ≤ 0.2.  

We also explore the potential of multiple-stage detectors with photocurrent-matched 

absorbers.  In this architecture, the absorbers are designed to absorb and collect an equal 

number of carriers in each stage.  It is shown that for zero-bias operation, this design 

has a higher ultimate detectivity than a single-absorber device.  Such improvements in 

detectivity are significant for material with αLn ≤ 0.5.  Additionally, for photocurrent-

matched detectors, it is shown that when the noise is limited by the inherent fluctuations 

in a strong signal, the detectivity improvement possible scales with the square of the 

improvement in particle conversion efficiency. Using the results derived for general 
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values of αLn, we offer an outlook for multiple-stage detectors that utilize InAs/GaSb 

superlattice absorbers. 

 The experimental characterization of a series of IC PV devices designed for 

radiative energy conversion is presented.  Devices utilizing InAs/GaSb superlattice (SL) 

absorbers and others using InAs/Al0.8In0.2Sb/GaSb/Al0.8In0.2Sb SL absorbers are 

characterized.  In the latter devices, the thin layer of Al0.8In0.2Sb enabled a wider 

absorber bandgap to be realized.  This led to an improved efficiency at high 

temperature.  For both sets of the devices, the power conversion efficiency is found to 

be limited by a low fill factor.  A variable-area analysis of a series of the wider-bandgap 

devices revealed the devices suffered from significant surface shunting effects.  This 

shunting is also shown to limit the open-circuit voltage. 

 An experimental comparison of single- and multiple-stage infrared detectors is 

also detailed.  These detectors utilized absorbers composed of InAs/GaSb superlattices.  

The cutoff wavelengths of these detectors was in the mid-wave infrared.  Similar to the 

energy-conversion devices, these detectors had dark currents limited by surface leakage 

effects.  For the set of devices studied, it is shown that multiple-stage detectors using 

short absorbers are able to achieve higher values of RoA and have a photoresponse that 

is less sensitive to temperature.  The sensitivity of the multiple-stage devices, as 

characterized by the specific detectivity, exceeds that of the single-stage devices at 

ambient temperatures and above.  This provides direct evidence of the utility of these 

devices for high-temperature detector operation.  
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Chapter 1 : Photovoltaic Conversion and Detection of Radiation 

1.1 Infrared Radiation and Photovoltaic Devices 

 According to the laws of thermodynamics, an object with a temperature higher than that 

of its ambient surroundings will give off heat.  This heat is often given off as radiation.  When 

this is the case, the spectral distribution of the emitted photons is quite similar to that of an 

blackbody source at a temperature equivalent to that of the hot object.  The net photon flux, Jγ, 

between a hot source at temperature Ts, and a detector at ambient temperature Tamb can be 

expressed as: 

 𝐽𝛾 =
2𝜋

ℎ3𝑐2
[∫ 𝑑𝐸 휀(𝐸)

𝐸2
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𝐸2

𝑒𝐸/𝑘𝑏𝑇𝑎𝑚𝑏 − 1

∞

0

∞

0

], (1.1) 

where ε(E) is the spectral emissivity of the object, h is Planck’s constant, c is the speed of light, 

and kb is Boltzmann’s constant.  For a given photon energy, the emissivity is a number between 

zero and unity.  An emissivity of unity represents the pure blackbody limit.  An example of an 

object that gives off heat with a blackbody-like emission spectrum is the Sun.  The temperature 

of the Sun is about ~6000 K.  For this blackbody temperature, most of the emitted photons fall in 

the visible and near-infrared regions of the spectrum.  For terrestrial sources, the source 

temperatures are typically much lower (500 K – 2000 K).  For sources with these temperatures, 

most of the emitted photons will be in the mid-infrared region of the spectrum (3-30 μm).  This 

is shown in Fig. 1.1, which compares the blackbody emission spectrum for sources of different 

temperatures. 
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Figure 1.1: Blackbody emission spectra for sources of different temperatures 

 Due to the prevalence of mid-infrared radiation in the emission spectrum of terrestrial 

sources, the conversion of these photons to electrical current is an important technological issue 

[1-4].  In particular, there is significant interest in converting light with wavelengths that fall 

within the mid-infrared atmospheric transmission windows.  One of these is in the mid-wave 

infrared region (MWIR) of 3-5 μm, another is the long-wave infrared (LWIR) region of 8-12 μm, 

and another is the very-long-wave infrared (VLWIR) region of ≥ 14 μm.  Photons with energies 

in these spectral windows are subject to less loss from absorption and scattering.  For the MWIR 

and LWIR regions, this can be seen in Fig. 1.2, which shows the atmospheric transmittance for 

light at different wavelengths.  In addition, the frequencies for the fundamental rotational and 

vibrational modes of many molecules fall in the mid-infrared.  As such, spectroscopic 

instruments designed to measure the concentration of certain gases can be much more sensitive 

with the use of infrared sources and detectors. 
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Figure 1.2: Infrared atmospheric transmittance spectrum.  Figure is available in public 

domain and was taken from Wikipedia Commons 

 Photons can be efficiently converted to electrical signal using photovoltaic devices.  

Photovoltaic devices utilize a semiconductor structure that converts absorbed light to an 

electrical current and/or voltage that is measured with an external circuit connected to the 

semiconductor at two contacts.  The structure of the semiconductor device is designed so that 

when operated under zero-bias, a photocurrent flows in the external circuit.  When operated at 

zero current, a photovoltage will be observed in the external circuit.  When there is a voltage 

across a PV device, distinct chemical potentials are established for carriers in the conduction 

band and carriers in the valence band for at least some portion of the absorber region.  A good 

PV device is able to maintain a strong chemical potential splitting throughout most of the 

absorber region of the device. 

 PV devices can be used as cells for converting incident light to usable electrical power.  

Solar cells are the most common example of this sort of device.  The conventional method for 

obtaining a device with a photovoltaic architecture is to introduce a doping gradient in the 

material.  The variation of the density of the fixed dopants gives rise to a built-in electric field, in 

accordance with the electrostatic Poisson’s equation.  The most common example of this is the p-
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n junction.  The band diagram of a p-n homojunction structure is shown in Fig. 1.3(a).  In this 

structure, the PV effect is enabled by the built-in electric field in the depletion region, which is 

void of freely moving carriers (electrons and holes).  As there are no free carriers in the depletion 

region, there is gradient in the spatial distribution of charge due to the abrupt shift in positively 

charge donors on the n-side to negatively charge acceptors on the p-side.  This gives rise to a 

localized electric field.  A photocurrent at zero-bias arises when this device is illuminated due to 

the diffusion of generated minority carriers to the junction and their subsequent collection.  The 

spatial dependence of the chemical potentials for conduction band carriers, Fn, and valence band 

carriers, Fp are shown.  Note that the more rapid decrease of the chemical potential on the n-side 

of the junction is due to the lower diffusion length of minority holes on that side compared with 

that of the minority electrons on the p-side.  As seen in in Chapter 3, signal is produced in the 

external circuit whenever an electron changes its chemical potential. 

 

Figure 1.3: Band diagrams of two different photovoltaic structures under a forward bias.  

The solid lines indicate the conduction and valence band edges of the material.  (a) Band 

diagram of p-n junction.    In (b) a diagram of a “heterostructure diode” is shown.  In this 

case, rectification is achieved by bringing together materials with different band 

alignments, rather than with doping gradients. 

 The use of p-n junctions to achieve a photovoltaic device is so common that it is 

sometimes believed to be necessary requirement.  A more general definition for a photovoltaic is 
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that it is a two-terminal device, with a structure designed to sweep carriers in the conduction 

band to one contact and to sweep carriers in the valence band to the other contact.  In p-n 

junctions, this is accomplished with the built-in electric field in the transition region near the 

interface of the p and n regions.  PV devices without doping gradients can be realized by using 

semiconductor heterostructures.  This is possible when there are certain band alignments 

between the constituent materials of the heterostructure.  The band diagram of such a 

“heterostructure diode” structure for a hypothetical set of materials is shown in Fig. 1.3(b).  In 

this device, the light-absorbing region of the device (the absorber) is sandwiched between an 

electron barrier region and a hole barrier region.  The barrier regions are designed to block their 

namesake carrier and freely allow the flow of the other carrier type.  These barriers are 

sometimes referred to as membranes in the solar photovoltaic literature [5]. 

 The heterostructure PV design is advantageous for several regions.  Since the bandgaps 

of the barrier regions are larger than that of the absorber material, the light absorption and 

thermal generation and recombination processes are primarily confined to the absorber.  In 

addition, the barrier regions can suppress parasitic tunneling currents.  These can be particularly 

problematic in LWIR and VLWIR infrared detectors due to the very narrow semiconductor 

bandgap [6,7].  However, as alluded to above, there is a very specific requirement for the band 

alignment between the absorber and the electron and hole barriers.  It is difficult to find suitable 

combinations of lattice-matched bulk materials with the band alignments necessary for a 

heterostructure diode.  Using modern epitaxial growth technology, it is possible to create a 

suitable set of materials using superlattices and bandstructure engineering [8-11].  This is the 

approach used for realizing the interband cascade PV structure [8, 12-14], which is the topic of 

this dissertation. 
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1.2 Overview of Infrared Detector Technology 

1.2.1 Semiconductor Infrared Detector Materials 

 In order to be sensitive to long-wavelength light, the absorber material in infrared 

detectors must have a fairly narrow bandgap.  Among the most popular absorber materials for 

infrared detectors are the II-VI material HgCdTe (MCT) and the III-V semiconductors InAs, 

InSb, along with the alloy InAsSb.  The IV-VI material PbSnTe was fairly heavily researched in 

the period of 1960-1980.  Some level of interest in this material continues to this day.  Detectors 

based on the aforementioned materials are all based on interband transitions, which means the 

absorbed photons induce electrons to transition from the valence band of the material to the 

conduction band.  Table 1.1 summarizes the important narrow-bandgap III-V semiconductors.  

Also shown are the bandgaps and corresponding cutoff wavelengths at 77 K and 300 K 

calculated by the band parameters in Ref. 15.  For the alloy InAsSb, the choice of InAs0.91Sb0.09 

corresponds to an alloy that is lattice matched to GaSb, while the choice of InAs0.37Sb0.63 

corresponds to the longest wavelength achievable by this material.  Note that detectors based on 

MCT and PbSnTe can achieve cutoff wavelengths throughout the mid-infrared through variation 

of the relative fractions of the constituent materials in the alloy. 

 Of these aforementioned choices, MCT is generally considered the best material for 

achieving detectors with the highest possible sensitivities.  This is due to the material’s favorable 

absorption and non-radiative properties.  In addition, there have been large investments of time 

and money aimed at bringing detectors based on this material to technological maturity.  

However, detectors based on III-V semiconductors materials are able to remain competitive 

because of lower growth and fabrication costs, as well as the fact that they possess a higher level 
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of material uniformity across epitaxial structures.  The latter property is necessary for the 

fabrication of good focal plane arrays (FPAs) with good uniformity across the pixels.  

Material Eg (77 K) Eg (300 K) λc (77 K) λc (300 K) 

InAs 407 meV 354 meV 3.1 μm 3.5 μm 

InSb 227 meV 174 meV 5.5 μm 7.1 μm 

InAs0.91Sb0.09 336 meV 283 meV 3.7 μm 4.4 μm 

InAs0.37Sb0.63 137 meV 84 meV 9.1 μm 15 μm 

Table 1.1: Bandgaps and corresponding cutoff wavelengths of narrow-gap III-V bulk 

semiconductors at temperatures of 77 K and 300 K.  Calculated from parameters of Ref. 

15. 

 There has not been extensive research into LWIR InAsSb-based detectors.  One reason 

for this is that there is no good lattice-matched substrate for the alloy at the mole fractions 

needed to reach longer wavelengths.  Thus, detectors based on bulk III-V materials have been 

primarily confined to MWIR applications.  In order to extend the cutoff wavelengths of III-V 

infrared detectors, there has been significant research into superlattices (SLs) consisting of III-V 

semiconductors [16].  SLs are man-made materials that consist of alternating thin layers of 

semiconductor materials.  The ability to choose the period of the constituent thin layers provides 

more flexibility for designing absorbers with certain properties such as the bandgap, effective 

mass, and absorption coefficient.   

 Most of the research into narrow-bandgap III-V SLs has been on those composed of 

alternating layers of InAs and GaInSb.  Like MCT, these SLs have the potential to achieve cutoff 

wavelengths throughout the mid-infrared.  This is due to the semi-metallic alignment between 

InAs and GaSb.  In addition to using III-V materials, detectors based on InAs/GaSb SLs have 

also been predicted to be able to achieve sensitivities beyond those achievable by MCT.   This 

possibility is enabled by flexibility to engineer the bandstructure of SLs by manipulating the 

layer widths of the constituent materials.  More specifically, it was predicted that the dark current 
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that arises from electron-electron interband transitions could be made lower than that in MCT 

[17,18].  

 However, despite many years of development, there are still a number of obstacles that 

hinder InAs/GaSb SL from becoming the prominent material for mid-infrared detectors.  The 

most alarming of these is the short lifetime for defect-assisted transitions.  This was established 

by a number of time-resolved experiments [19-22].  The typical measured lifetimes for the 

material are on the order of 10-100 ns.  For MCT, interband lifetimes are typically > 1 μs [20].  

The postulated reason for this is the presence of a native defect in the GaSb layers.  Since the 

short lifetime is caused by the presence of material defects, it is not believed to be an instrinsic 

limitation.  With improved material growth or treatment, the full potential of this material may 

still be realized.  Nevertheless, at the writing of this dissertation, this remains an open issue.   

 Due to the short lifetime of InAs/GaSb SL, there has been renewed interest in detectors 

based on “Ga-free” SLs composed of alternating layers InAs and InAsSb.  This material has been 

shown to have a longer lifetime than InAs/GaSb SLs with similar wavelengths [23,24].  There 

have been some preliminary attempts to fabricate devices from this material, although 

exceptional performance has not yet been observed [25,26]. 

Another popular type of mid-infrared detector is the quantum well infrared detector 

(QWIP) [27].  In contrast to the narrow-bandgap materials listed above, QWIPs use intersubband 

optical transitions.  There are several fundamental disadvantages associated with detectors based 

on intersubband transitions.  First, special light-coupling schemes must be used, since transitions 

between quantum well energy levels cannot be induced by normal-incidence light.  In addition, 

these transitions have higher thermal generation rates associated with them.  This means they 

require more cooling to reach background-limited operation than interband detectors sensitive to 
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the same wavelengths.  Also, for classical photoconductive QWIPs, the higher thermal 

generation rates result in higher values of dark current, which can saturate the read-out integrated 

circuit (ROIC) when the integration time is too long.  Photovoltaic devices based on 

intersubband transitions in GaAs QWs, referred to as quantum cascade detectors (QCDs), have 

also been demonstrated [28].  These devices are able to operate with lower bias voltages, so there 

is less saturation of the ROIC, however, they still have the fundamental disadvantages of 

forbidden normal-incidence transitions and high thermal generation rate.   

 Despite the fundamental disadvantages, QWIPs are able to capture some market share 

because they utilize GaAs/AlGaAs QWs and are grown on GaAs substrates.  Because of the 

technological maturity of this material system, the growth and device fabrication is much more 

mature than for narrow-bandgap III-V devices and in particular devices that use the II-VI and 

IV-VI materials.  In addition to lower cost, the higher material quality ensures better uniformity 

across an epitaxial structure, making it a good candidate for large-area FPAs.  In addition, 

QWIPs have been demonstrated to have very fast response times (~1 ps) making them the 

optimal choice for applications such as heterodyne detection that require high-speed detectors 

[29]. 

1.2.2 Advanced Semiconductor Infrared Detector Device Structures 

 For detectors that utilize p-n junction structures, the fundamental dark (i.e. non-radiative) 

current flow is typically separated into two sources.  The first source is the generation of 

minority carriers in either of the quasi-neutral regions and their subsequent diffusion across the 

junction to the side where they are majority carriers.  This generation can occur through either 

impact ionization, or can be assisted by defects [30].  Impact ionization occurs due to the 

electron-electron interaction.  For defect-assisted generation, electrons are first excited from the 
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valence band to mid-gap defects, and then excited again to the conduction band.  Thus, defects 

enable interband generation to occur through lower-energy processes such as phonon scattering 

[31].  Regardless of the specific microscopic excitation process, this sort of current is referred to 

as diffusion current.  To first approximation, the temperature dependence of this current scales as 

~ni
2, where ni is the intrinsic carrier concentration.  The other source of current is the generation 

of carriers in the depletion region, and their subsequent collection.  This is often referred to as 

the generation-recombination (g-r) current.  Current in the depletion region only arises from 

defect-assisted generation, since the depletion region is void of the free carriers needed for 

impact ionization.  The temperature-dependence of this current scales as ~ni to first-order 

approximation [32].  Note that the current flow in the heterostructure diode of Fig 1.3(b) is 

diffusion current only, since there is no depletion region in the structure. 

 As stated earlier, semiconductor heterostructures can be used to establish a photovoltaic 

architecture without introducing doping gradients.  This requires finding appropriate materials 

that can act as selective barriers for establishing a preferred direction of current flow.  This is 

often not possible in detectors that only utilize bulk materials.  However, heterostructures with a 

single barrier layer can also be used to control the current flow mechanisms in a detector.  The 

potential for this sort of control is particularly present in the Sb-based III-V materials.  Examples 

of this sort of detector include the nBn [33], which uses an InAs absorber and substrate, and the 

XBn, which uses InAs0.91Sb0.09 absorber and is grown on a GaSb substrate [34].  It is shown in 

Ref. 35 that the basic physics of these single-barrier detectors is the same.  As in a p-n junction, a 

doping gradient between the contact and absorber layers is used to achieve a photovoltaic effect.  

However, in the region near the junction a wider-bandgap barrier material is inserted.  In order to 

achieve a working detector, the barrier material must not inhibit the flow of the photocarriers 
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from the absorber to the contact.  For InAs and GaSb-based detectors, the bulk material AlAsSb 

can be used as a barrier, since it has a valence band edge higher than that of the absorber.  Thus, 

minority holes can freely pass through the barrier layer.   The mole fraction for the AlAsSb alloy 

is chosen so that the barrier material is lattice-matched to the substrate.  The thickness of the 

wide-bandgap layer is typically hundreds of nanometers [33]. 

 One advantage of this single-barrier diode design is that the electric fields are confined to 

wide-bandgap material.  This suppresses generation-recombination current, which is 

fundamental in p-n homojunctions, by suppressing any generation and recombination events in 

that part of the structure.  This is useful as a means of ensuring diffusion-limited transport at 

lower temperatures.  Since the temperature scaling of the diffusion dark current is as ni
2, this 

current will typically be orders of magnitude lower than the generation-recombination current at 

low temperature.  This is a favorable choice for many infrared detector applications where 

cryogenic cooling is used.  However, this design will not always be more favorable at higher 

temperatures (i.e. > 200 K).  Due to the different temperature-scaling of diffusion and g-r 

currents, it is expected that for a given material there is some threshold temperature, above which 

g-r dark current is lower than diffusion current.   

 A fruitful outcome of research into the single-barrier heterostructure detectors is that it 

has impelled a rethinking in the approach to mid-infrared FPA fabrication.  The constituent 

detectors in FPAs must be very small, with typical dimensions of < 50 μm.  Due to the small 

size, a major issue in mid-infrared FPA fabrication is dealing with the non-idealities related to 

the device surface.  To fabricate the FPA, the individual pixels are formed by etching through the 

epi-layers to the buffer layer of the epitaxial structure.  The exposed surface then must be 

passivated to prevent oxidation of the sidewalls and eliminate mid-gap surface states.  Typically, 
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this is done by depositing of a layer of a dielectric material such as SiO2 or Si3N4.  However, 

even with several years of refinement of the passivation techniques there are still noticeable 

surface effects [36].  This is especially true for LWIR detectors.  In addition, the etching process 

becomes more difficult when the epitaxial material is very thick. 

 In the original nBn paper, it was shown that the barrier layer can provide self-passivation 

of the surface [33].  In this sort of FPA, only a shallow-etch through the top contact is performed 

to isolate the pixels.  With this arrangement, a special passivation treatment is not needed, since 

the wide-bandgap barrier region isolates the electrons in the narrow-gap region from the device 

surface.  This prevents the formation of leakage channels along the surface.  Notably, it has been 

shown to limit 1/f noise above 1 Hz in InAs-based detectors under a strong reverse bias [37].  In 

recent years, the shallow-etch FPA design has also been applied to double-barrier heterostructure 

diodes [38,39].  However, the adoption of this FPA design requires a material with a fairly low 

lateral diffusion length, so as to prevent cross-talk.  This is not a problem in deep-etched devices, 

since the dielectric layers deposited for passivation prevent the lateral flow of carriers between 

individual devices on an array. 

For high-temperature detector operation, the major obstacle for detectors based on MCT 

(and many other materials) is the high rate of interband transitions based on electron-electron 

interactions (interband generation is referred to as impact ionization and recombination is 

referred to as Auger recombination).  One design introduced by Elliott and White is the so-called 

“non-equilibrium” design [40-42].  The structure is essentially a standard p-i-n structure.  The p 

and n regions are referred to as extraction and exclusion junctions.  The absorber doping is kept 

as low as possible so that in equilibrium the material is intrinsic.  The product of free electron 

and free hole concentrations is given by   



13 

 

 𝑛𝑝 = 𝑛𝑖
2𝑒𝑒𝑉/𝑘𝑏𝑇 , (1.2) 

where V is the applied bias and T is the temperature.  Under application of reverse bias, the noise 

due to recombination is quenched and the absorber is depleted of free carriers.  In the limit of 

zero background doping, this also eliminates impact ionization (and hence all the effects of 

interband electron-electron effects).  Thus, non-radiative generation is solely due to defect-

assisted effects, and thus is only determined by the density of recombination-assisting defects of 

the absorber material.   

Research into this sort of device has been ongoing since its initial proposal in 1985.  Both 

negative luminescence [43] and negative differential resistance [44-45] in these devices has been 

observed.  The former validates the suppression of recombination under reverse bias (light 

emission is due to radiative recombination).  The latter phenomenon confirms the transition of 

dominant current from electron-electron effects near equilibrium to defect-assisted effects under 

strong negative bias.  Both of these observations provide confirmation that the absorber is 

depleted of free carriers.  However, the expected improvement in detector sensitivity has not yet 

been established.  The primary reason that has been identified for this is a large 1/f noise that is 

present in these detectors under the strong reverse bias needed to suppress the Auger effects.  

However, interest in this design has contributed to be strong due to its potential for realizing 

good high-temperature performance. 

1.3 Overview of Infrared Photovoltaic Energy Conversion 

 Photovoltaic devices provide a means for directly converting radiation into electrical 

power.  The devices are essentially heat engines that take advantage of the natural flow of 

radiation from hot sources to the lower-temperature cells.  For blackbody-like radiation, the 
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transfer of radiation is described by Eq. 1.1.  For a general heat engine, the fundamental limiting 

efficiency is the Carnot efficiency:  

 𝐸𝐹𝐹 = 1 −
𝑇𝑠

𝑇𝑐𝑒𝑙𝑙
, (1.3) 

which is about 95% for solar energy conversion.  However, the PV concept is not limited to solar 

energy conversion.  It can be used to convert energy from virtually any source that emits 

radiation.  There is interest in using these cells to convert the energy emitted by nuclear sources.  

Another application for PV cells is as a supplement to conventional fossil-fuel-burning power 

systems.  The cells can augment the efficiency of these systems by reclaiming some of the lost 

energy given off as “waste heat” during the combustion process.  However, the development of 

commercial PV cells for non-solar applications has been inhibited by the high material cost.  In 

addition, the efficiency of these systems will be inherently lower.  The temperatures for 

terrestrial sources are typically in the range of 500-1500 K.  For a 1500 K source, the Carnot 

efficiency is 80%, while for a 500 K source the efficiency is as low as 50%. 

 Systems designed to convert primarily infrared light are typically referred to as 

thermophotovoltaic (TPV) systems.  TPV systems often utilize spectral shaping technology to 

alter the spectral distribution of the radiative energy to one that can be converted by the cell with 

a higher efficiency [4].  The spectral shaping component could be a filter that reflects and passes 

light with certain wavelengths, or a selective emitter that, when heated, emits light over a very 

narrow range of photon energies.  Selective emitters with emission near the cell bandgap would 

be the “ultimate” spectral shaping component, since it would mitigate losses due to both 

thermalization and below-bandgap light transmission.  These are the most significant intrinsic 

losses in PV conversion. 
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Figure 1.4: Schematic of a TPV conversion system that incorporates spectral shaping 

components. 

 A schematic of typical a TPV system is shown in Fig. 1.4.  The radiation from the 

thermal source (can be any source of heat) is used to heat an intermediate radiator.  The light 

from this radiator is then converted to electrical power by the converter cell.  In an ideal system, 

the filter between the radiator and the converter cell would transmit photons above the bandgap 

of the converter cell and reflect photons with energies below the bandgap. 

 For solar cells, the common absorber materials include Si (Eg ~1.1 eV) and GaAs (Eg~1.4 

eV).  These are appropriate bandgaps for solar energy conversion, as much of the available 

energy is in the optical and near-infrared regions of the spectrum.  For lower energy sources, 

where more energy is concentrated in the mid-infrared, research has been focused on cells that 

employ InGaAs, GaSb, or some other variant of the GaInAsSbP alloy as the absorber material 

[46-48].  The bandgaps of these materials have generally been in the range of ~0.50 eV.  

However, for blackbody-like sources with temperatures ≤ 1500 K, cells that use these absorber 

materials still have inherently low efficiencies due to large losses from the transmission of 

below-bandgap photons.  Low source temperatures are preferable for many applications, as they 

are easier to integrate into systems [4].  Thus, there is interest in exploring cells with narrower 

bandgap absorbers.  In addition, there has been some promising research into metamaterials that 
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may be useful as selective emitters in the mid-infrared [49,50].  Another potential application is 

optical power beaming systems.  Transporting energy over mid-infrared wavelengths may reduce 

the significant atmospheric absorption and scattering losses that can occur at shorter 

wavelengths. 

 If the PV cell is being utilized for converting radiation with a blackbody-like distribution, 

one way to estimate the optimal bandgap for a given source temperature is to utilize the theory of 

detailed balance [51, 52].  The detailed balance limit imposes a more stringent upper limit on the 

efficiency than the Carnot limit, since it also accounts for the power losses from below-bandgap 

photon transmission and the thermalization of carriers excited by above-bandgap photons.  In the 

detailed-balance theory the cell is treated as a thermal “greybody” radiator.  This represents the 

limit where all the generation and recombination in the absorber is radiative.  In the greybody 

limit, the cell is able to absorb and emit photons with energies above the bandgap, Eg, as a 

blackbody at the cell temperature would, but does not absorb or emit photons with energies less 

than the bandgap.  When the cell is placed under a bias of V, the cell will emit light as a 

greybody with a chemical potential of eV [53].  In the detailed balance limit, the current flowing 

under a certain bias voltage in the cell is given as: 

 𝐽𝑐𝑒𝑙𝑙(𝑉) = −𝑒
2𝜋

ℎ3𝑐2
∫ 𝑑𝐸 [

𝐸2

𝑒
𝐸

𝑘𝑏𝑇𝑠
−1

−
𝐸2

𝑒
(𝐸−𝑒𝑉)
𝑘𝑏𝑇𝑐𝑒𝑙𝑙

−1
] ,

∞

𝐸𝑔

 (1.4) 

where Ts is the source temperature and Tcell is the cell temperature.  The first term in the 

integrand represents the reverse cell current that arises due to electron absorption of photons.  

The second term represents the forward cell current that arises due to the recombination of 

electrons.  Note that an ideal photovoltaic device is a perfect absorber under strong reverse bias 

(|𝑒𝑉| ≫ 𝑘𝑏𝑇).  This is the negative luminescence effect described earlier. 
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Figure 1.5: Detailed balance calculation showing the upper conversion limit for different 

blackbody source temperatures for a cell with a certain bandgap. 

 From Eq. 1.3, the cell power in the detailed balance limit can be calculated for a given Ts 

and Eg.  This was done by calculating the J-V characteristics, and finding the maximum cell 

power, given by: 𝑃𝑜𝑢𝑡 = −𝐽𝑉.  The results are shown in Fig. 1.5 for source temperatures of 1700 

K, 1200 K, and 1000 K.  It is seen that for this range of source temperatures, the bandgap at 

which the cell power density is maximized ranges from 200-300 meV.  This is well less than the 

~500 meV cell bandgaps currently used.  Note that the detailed balance limit is a very idealized 

limit.  In realistic narrow-bandgap devices, Auger and defect-assisted recombination tend to 

dominate over radiative recombination.  Inclusion of the non-radiative recombination in the 

analysis will widen the optimal bandgap for a given temperature.  However, the point remains 

that there is great potential in further development of PV cells with bandgaps less than 400 meV. 

1.4 Dissertation Introduction 

 This chapter has given an introduction to the PV conversion of infrared radiation and 

relevant technological applications.  Aside from the intersubband QWIPs, all the device designs 

utilize a structure with a single, thick (> 2 μm), absorber region.  Such a thick absorber is 
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necessary in order to absorb most of the incident light.  Typically, the absorption coefficient at 

energies near the bandgap becomes smaller for materials with narrower bandgaps.  Thus, for 

applications such as the photodetection of radiation in the LWIR region of the spectrum, very 

thick absorbers are required.  For MCT detectors, a general rule of thumb is that the absorber 

thickness should be roughly equal to the cutoff wavelength [54].  However, making the absorber 

thicker does not guarantee that all the photons will be used efficiently, even if they are absorbed.  

This is because when the absorbers are very thick, only those carriers that are able to diffuse to 

the collection point before recombining produce photocurrent.  This limitation to the 

photocurrent in single-absorber devices can be particularly apparent at higher temperatures, 

where the minority carrier diffusion length is often shorter.  In addition, narrow-bandgap 

optoelectronic devices tend to be more susceptible to series resistance effects [55].  This is an 

especially detrimental effect for energy-conversion applications, because the currents tend to be 

quite high. 

The issues of inefficient photon usage and large series resistance power loss can be 

partially mitigated by using an alternative type of photovoltaic architecture based on interband 

cascade structures.  In these structures, the absorption and collection process is distributed across 

multiple discrete stages.  The stages are electrically connected together by designing the structure 

so that electrons in the conduction band of one stage can tunnel to the valence band of the next 

stage in the series via fast, low-energy scattering processes.  If the inter-stage connection can be 

made efficiently, with minimal extraneous absorption or additional resistance, this enables a 

multiple-stage device where the absorbers can be kept fairly short to ensure good carrier 

collection.  This arrangement reduces the operating current in the device, which is limited to the 

value of the current generated in one of the short stages.  However, the overall power in the 
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device is not necessarily reduced because the voltage across each stage adds to create the total 

voltage in the device.  This tradeoff is useful for reducing the series resistance losses that can be 

problematic when the device operating current is high.   

The opportunity to create multiple-stage devices based on interband transitions is 

possible when utilizing heterostructures composed of the group of III-V semiconductors with 

lattice constants near 6.1 Å.  This group includes InAs, GaSb, AlSb, and their related alloys.  The 

three binary semiconductors are nearly lattice-matched.  High quality heterostructures composed 

of these materials can be grown on InAs or GaSb substrates using molecular beam epitaxy 

(MBE). 

 The subsequent chapters of this dissertation will detail research carried out to explore and 

demonstrate the advantages of the interband cascade approach for certain applications.  Chapter 

2 will provide a historical perspective on the development of interband cascade optoelectronic 

devices.  It will also present a qualitative overview of the attractive features this design presents 

for sensing and energy conversion applications.  In Chapter 3, a general analytic model 

describing the physics of multiple-stage devices is presented.  This model is then applied to 

compare the ultimate limits of single-absorber and multiple-stage devices.  Chapters 4 and 5 

describe the design and experimental characterization of interband cascade PV devices.  Chapter 

4 focuses on devices targeted for energy conversion.  The devices investigated include a series 

that utilized InAs/GaSb SL absorbers and others that utilized InAs SL absorbers.  As shown, 

these devices are able to achieve high open-circuit voltages.  However, the efficiency is limited 

by a low fill factor, which is shown to be partially due to surface shunting effects.  Chapter 5 

focuses on devices targeted for use as infrared detectors.  This chapter gives an experimental 

comparison between single- and multiple-stage infrared detectors with cutoff wavelengths in the 
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MWIR.  The sensitivity of the different designs is compared as a function of temperature.  It is 

shown that at high temperature, the decrease in photoresponse caused by the reduction in 

diffusion length is mitigated.  Thus, these detectors are able to achieve a better sensitivity at high 

temperatures.  The main findings from this work and a discussion of the future prospects of 

interband cascade photovoltaic devices are included in Chapter 6. 
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Chapter 2 : Overview of Interband Cascade Structures 

2.1 Historical Perspective – Interband Cascade Lasers 

 The concept of what would eventually become the interband cascade design for 

optoelectronic devices was first presented in 1994 [56].  This design was originally proposed as 

an alternative to the intersubband laser, which a hot research topic at the time in the photonics 

community.  Shortly before this proposal, a laser based on intersubband transitions was 

demonstrated at Bell Labs [57].  The Bell Labs intersubband laser was dubbed the quantum 

cascade laser (QCL).  The term “cascade” in the name referred to the fact that the laser was 

composed of multiple stages cascaded together in series.  Each individual stage was designed to 

enable electrons to relax to lower energy states by emitting photons.  The relaxed electrons were 

then transported to the next stage.  With the cascade design, a single electron was used to 

generate multiple photons. 

 

Figure 2.1: Schematic of electron transport and photon emission in interband cascade 

laser.  From Ref. 58. 

 When a cascade laser is forward biased, lasing can occur when the individual stages are 

separated by an energy larger than eV/Ns, where V is the bias voltage and Ns is the number of 

stages.  Current flow in the device arises due to the relaxation of electrons through the cascade, 
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as seen in Fig. 2.1.  Ideally, the electron relaxation occurs by photon emission rather than non-

radiative processes.  A cascade laser requires a higher voltage than a standard laser diode.  This 

is because each stage must consume enough voltage to obtain population inversion.  However, 

the current required to generate a certain output power is reduced, as multiple photons are 

produced for each injected electron.  At the high operating currents needed for a high-power 

semiconductor laser, the Ohmic power loss, equal to I2Rs, where Rs is the series resistance, can 

be particularly detrimental.  Thus, the cascade design can be beneficial for improving the total 

power conversion efficiency by lowering the operating current. 

 

Figure 2.2: Non-radiative generation and recombination processes in semiconductors. 

 The first multiple-stage interband laser following the design of Ref. 56 was demonstrated 

in Ref. 59.  It was shown that this sort of interband laser was able to achieve differential quantum 

efficiencies greater than 100%, meaning that a single injected electron was in fact generating 

more than one emitted photon.  This was an important validation of the multiple-stage nature of 

the device.  Due to its similar nature to the QCL, this multiple-stage interband laser was 

christened the interband cascade laser (ICLs).  Like QCLs, ICLs utilize a cascade design.  

Another similarity between the designs is that ICLs use bandstructure engineering for tailoring 
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the energy that photons are emitted and absorbed and for achieving the diode configuration 

needed for many optoelectronic devices.  However, unlike the intersubband devices, photon 

emission in ICLs occurs via interband transitions.  This is an important distinction because non-

radiative interband transitions occur on a much longer timescale than intersubband non-radiative 

transitions.  The non-radiative lifetime of interband devices is determined by Auger 

recombination (the inverse of impact ionization) or by defect-assisted Shockley-Read-Hall 

recombination (the inverse of the defect-assisted generation process described in Chapter 1).  

These processes that mediate non-radiative interband generation and recombination are 

illustrated in Fig. 2.2.  Intersubband devices are limited by phonon scattering, which occurs on a 

much faster (> 2 orders of magnitude) timescale.  For lasers (and other optoelectronic devices) 

the device performance will be better if the non-radiative lifetime for the optical transition is 

longer.  Note that this fast intersubband scattering time is the also the source of the high thermal 

generation rates in QWIPs discussed in Chapter 1.   

 

Figure 2.3: Lattice constants and band alignments of binary III-V 6.1 Å semiconductors.  

Figure is from Ref. 60. 

 In ICLs, a type-II heterostructure is employed to efficiently transport electrons between 

the conduction band of one stage and the valence band of an adjacent stage.  This sort of 
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heterostructure is made possible by the unique band alignments of the 6.1 Å group of 

semiconductors.  The relative band alignments of these binary semiconductors at room 

temperature is shown in Fig 2.3.  Note that the bandgap for AlSb refers to the energy gap 

between the indirect X-Γ transition.  The key feature that makes this set of materials ideal for 

multiple-stage devices is the unique type-II broken-gap alignment that exists between InAs and 

GaSb.  The conduction band edge of InAs actually falls about 150 meV below the valence band 

edge of GaSb.  For heterostructures that include both InAs and GaSb layers, this means that 

electrons can easily pass between conduction band states localized in the InAs layers and valence 

band states localized in the GaSb layers via fast scattering processes in which little energy is 

gained or lost. 

 The way this type-II broken-gap alignment is exploited in an ICL can be seen in Fig. 2.4. 

This figure shows the layer sequence of a single stage under forward bias and the resulting band 

diagram.  An individual stage in an ICL is composed of an active region, consisting of an InAs-

GaInSb-InAs “W” QW [61], an electron injector, consisting of digitally graded InAs/AlSb QWs, 

and a hole injector, consisting of GaSb/AlSb QWs.  When the ICL is placed under forward bias, 

electrons are injected from the conduction band of the electron injector into the conduction band 

of the active region.  The injected electrons then relax to the valence band of the active region.  

The relaxed electrons are swept into the valence band of the hole injector.  Because of the type-II 

alignment between the GaSb layers in the hole injector and the InAs layers in the electron 

injector, the electrons are then able to pass through the valance band of the hole injector into the 

conduction band of the electron injector of the next stage.  As stated above, these interband 

processes that enable electrons to pass between stages are very fast processes, such as phonon 

scattering.  Because of the strong coupling enabled by the type-II interface, the electrons in the 
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valence band of the hole injector come into equilibrium with the electrons of the conduction 

band, faster than they equilibrate with the conduction electrons in their own stage. 
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Figure 2.4: Band diagram of an interband cascade laser stage under forward bias.  Figure 

is available in public domain and was taken from Wikipedia Commons.  It is originally 

from Ref. 62. 

 ICLs combine the advantage of reduced Ohmic losses from cascade lasers with the 

advantage of the long lifetime of interband transitions.  At present, cw operation of ICLs at room 

temperature has been demonstrated from 2.9 to 5.7 µm [63].   

2.2 Interband Cascade Devices for Light-to-Electricity Conversion 

2.2.1 Structure and Device Overview 

 The majority of research into interband cascade structures has focused on their usefulness 

for realizing good light-emitting devices.  However, the advantages offered by the multiple-stage 

architecture may actually be more signficant for optoelectronic devies designed for light-to-

electricity conversion.  In this disseration, we will generally refer to these structures as interband 
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cascade photovoltaic (IC PV) structures.  These device structures can be used to fabricate 

interband cascade infrared photodetectors (ICIPs) or energy-conversion cells.   

 The concept and demonstration of an IC PV device was first presented in 2005 [8].  

These initial devices were actually fabricated from ICL structures.  Thus, the active part of the 

device resembled the band diagram of the ICL in Fig. 2.4.  The light absorber region consisted of 

only a single pair of coupled quantum wells.  In subsequent devices, the design did not have to 

be significantly altered.  This is because the basic device structure for a good light emitter and 

good PV device are similar.  It can be seen that a single stage in the ICL in Fig. 2.4 resembles the 

heterostructure diode in Fig. 1.3(b).  The electron injector in an ICL can serve as the hole barrier 

in an IC PV structure.  Analogously, the ICL hole injector can serve as the electron barrier.  

Thus, a single stage in the IC PV is a double heterostructure, with the absorber between wider 

bandgap electron and hole barriers.  The rectification effect within a stage is established by using 

type-II staggered band-edge alignment between the absorber and barrier regions.   

 The main modification to the basic interband cascade structure in the optimization for PV 

applications has been the replacement of the coupled quantum wells with longer InAs/GaSb 

type-II SL absorbers [10-11].  This choice enabled the devices to absorb a much larger 

percentage of the incident photons.  Recent designs have also enhanced the thickness of the 

electron barrier region compared to that in a typical ICL.  This was done to suppress any inter-

stage tunneling currents [14,64]. 

 Since current rectification in IC PV devices is achieved using heterostructures, rather 

than doping gradients, intentional doping is not required anywhere in the structure.  However, 

the absorbers in IC PV devices are typically doped p-doped.  This is done in order to make holes 

the majority carrier in the absorber.  Studies of structures with different doping choices has found 
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that InAs/GaSb SL detectors with majority holes in the absorber have lower dark currents [65-

66].  This is presumably because the interaction cross-section between the trap states and valence 

band states is lower than that between the trap states and conduction band states.  This doping 

choice has also been adopted for IC PV energy conversion devices.   

 

Figure 2.5: General schematic for interband cascade PV devices under forward bias for (a) 

electron-hole and (b) electron-only pictures.  The black (green) lines and arrows show the 

transport path of electrons (holes) from generation in the absorber to recombination 

(collection) at the interface of the electron and hole barriers (denoted by the brown dashed 

lines). 

 Fig 2.5(a) shows a basic schematic of a multiple-stage IC PV device in forward bias.  

Note that the band alignment of a single stage in the figure differs in an important way from that 

of the stage shown in Fig. 1.3(b).  In the structure of Fig. 1.3(b), the valence band edge of the 

electron barrier is below the conduction band edge of the hole barrier.  For IC PV devices, the 

ground state of the electron barrier valence band is designed to be above or within kbT of the 

ground state of the conduction band ground state of the adjacent hole barrier.  This is a necessary 

condition for an efficient interband stage-to-stage transition.  The black and green lines in the 

figure designate the ideal transport paths taken by electrons and holes, respectively.  The 

direction of the net flow for a given carrier is away from its namesake barrier.  The carriers 

generated within an internal stage of the structure recombine with another internally generated 
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carrier from an adjacent stage.  This carrier recombination occurs at the interface of the electron 

barrier and hole barrier of the adjacent stages.  Electrons generated in the top stage of the stack 

and holes generated in the bottom stage will be collected at the device contacts.  It is also 

insightful to think of an alternative picture, where the concept of holes is disregarded.  This 

representation is illustrated in Fig. 2.5(b).  Here, electrons are excited from the valence band of a 

stage’s absorber to the conduction band of the absorber.  The electrons then pass through the 

unipolar barrier regions to the valence band of the next stage.  They are then excited again by 

another photon.   

 The recycling of electrons permits interband cascade PV devices to achieve 

photovoltages higher than the individual absorber bandgap.  This does come at the cost of a 

lower upper limit for the photocurrent.  This is because the top contact only extracts electrons 

generated in the top stage of the stack.  Nevertheless, this tradeoff between photocurrent and 

photovoltage will be beneficial in many cases.  Similar to ICLs, the reduction in operating 

current will mitigate contact resistance power losses in energy-conversion cells based on the IC 

PV structure.  These losses are particularly detrimental for narrow-bandgap, single-absorber 

converters.  This is because in PV devices with narrow bandgaps a larger percentage of the 

power is carried as current, rather than voltage.  In addition, most potential terrestrial PV 

applications, such as micron-gap TPV [67] and laser power-beaming applications, involve the 

conversion of large incident light intensities.  The current for voltage trade also raises the 

resistance of the device.  This should be a useful feature for ICIPs, because the higher device 

resistance makes it less likely the noise will be limited by the preamplifier and other parasitic 

sources [68].  This parasitic noise can be especially problematic at longer wavelengths where the 

detector bandgap is small and thus the resistance of a single-absorber devices is inherently low. 
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2.2.2 Carrier Collection Improvement 

 Another advantage of the multiple-stage design is that the thickness of the absorbers can 

be kept shorter than the diffusion length.  This ensures that most of the carriers are collected 

before they recombine (either at the contacts or at the electron-barrier/hole-barrier interface).  

Particle conversion efficiencies, defined as the percentage of incident photons that generate an 

electron that is collected, close to 100% should be possible. 

 The improvement in carrier collection offered by the multiple-stage architecture is 

illustrated in Fig. 2.6 for detectors with p-type absorbers.  This figure compares the absorption 

and collection process of a single-absorber detector with that of a four-stage detector for the case 

where αLn = 0.5.  The four-stage PV device is chosen to have identical stages.  The total absorber 

thickness, d, for both detectors was set equal to the absorption depth.  Thus, the individual 

absorber thicknesses for the four stages in the detector are equal to d/4.  Since light absorption 

only occurs in the absorber region, the total absorption efficiency for both detectors is equal.  In 

this example, the light is taken to be incident on the absorber from the minority carrier collection 

point. 
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Figure 2.6: Comparison of collection efficiency in single- and multiple-stage absorbers for 

detectors using a p-type absorber material with a low αL product.  In this example αL was 

0.5, and the thickness of the single-stage device was set equal to the absorption depth α-1.  

The absorber thicknesses of the four-stage device are d/4.  Thus, the total absorption 

thickness in the two devices is the same.  The shaded regions in each stage indicate the 

variation of the product of the photo-generation rate and minority carrier collection 

probability across the absorber. 

 The shaded region in the absorber show how the product of the photo-generation rate, 

gph(x), and carrier collection probability, fc(x) varies across the absorber region.  The carrier 

collection probability is higher throughout the absorber regions of the multiple-stage device 

because of the discrete collection architecture.  The rate that carriers are collected in a given 

stage is the integral of the product of these two quantities across the stage absorber.  The total 

collection efficiency is defined as the ratio of the incident photons that are successfully converted 

to collected current in any of the stages.  This collection efficiency is found to be fairly low 

(54%) for the case of a single-absorber detector.  This is due to the low carrier collection 

probability at points far from the minority carrier collection point.  Notably, the carriers that are 

generated at the right edge of the absorber, and have to travel across the entire absorber to be 

collected, only have a collection probability of ~27%.  In contrast, each stage in the multiple-
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stage detector has a carrier collection point at the interface of the hole barrier and the absorber.  

Since the absorbers are kept short, the collection efficiency stays fairly high across the absorber.  

This enables the multiple-stage device to achieve a much higher total collection efficiency of 

93%.  For this case, the carriers generated farthest from the collection point at the right edge of 

one of the absorbers still have a high collection probability of ~89%. 

 It should be noted that since infrared detectors are typically operated near zero bias, there 

is an additional requirement that the device have an equal photocurrent in all stages.  This will 

reduce the effective particle efficiency of the device.  In ICIPs, the photocurrent will be equal to 

the photo-generation rate in the stage with the lowest photo-generation rate.  For ICIPs with 

identical stages, this will be the optically deepest stage.  In order to keep a constant current 

through the device, the other stages must have some compensating injection current.  For ICIPs 

with identical stages, this negates some of the advantages of the multiple-stage architecture.  An 

alternative design choice is to utilize a photocurrent-matched detector design, where the absorber 

thicknesses are varied across the structure in order to achieve an equal photo-collection current in 

each stage.  It is notable that this loss of signal due to the current-matching effects is not present 

when an illuminated device is operated at zero net current.  For an illuminated device with zero 

current, each photon that contributes to the photo-collection current in any of the stages, requires 

some additional forward bias to bring the detector to a zero-current condition.  This is one reason 

why the open-circuit voltages in interband cascade structures can be quite high [13]. 

2.3 Noise Reduction in Multiple-Stage Infrared Photodetectors 

 The previous section presented the advantages of a cascade structure for improving 

energy-conversion cells designed to convert mid-infrared radiation.  However, even with 

improved carrier collection, it may still seem counter-intuitive to engineer a photodetector that 
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requires multiple incident photons to generate a single electron in the external circuit.  This sort 

of design probably seems even more ludicrous when it is taken into consideration that an ICIP 

with several identical stages will have the same saturation dark current as one with a single-stage 

that is equivalent to those in the multiple-stage device!  To truly understand the benefits of a 

multiple-stage design, it is necessary to consider how the use of multiple stages influences the 

noise associated with the current flow.   

 The noise in a detector results from the inherent uncertainty in the arrival times of 

electrons to the collecting contacts.  In interband detectors, the flow of current between the 

device contacts is primarily bottlenecked by the interband transition of electrons from the 

absorber valence band to the absorber conduction band.  Each interband excitation is a random 

process that follows the Poisson distribution.  As seen in Fig. 2.5, by introducing multiple-stages 

into the structure, electrons are forced to undergo additional interband transitions as they pass 

between the contacts.  For the single-stage structures, such as those in Fig 1.3, the transport of an 

electron between the device contacts is bottlenecked by only a single interband transition.  Thus, 

only a single random event is required to produce current.  From Poisson statistics, the 

uncertainty in the arrival time rate for a single-stage device will scale will the square root of the 

average arrival time rate.  This relationship was established by Schottky [69].  For a device with 

Ns stages, random events in each of the stages are required to create an electron flowing in the 

external circuit.  Thus, the uncertainty in the current will be reduced by a factor of Ns.  The 

addition of stages to a detector essentially has the same effect as the addition of extra trials in a 

measurement of the current.  It is well-known that additional trials in an experiment lowers the 

measurement uncertainty. 
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 There are actually several other electronic systems where noise reduction is achieved by 

increasing the number of transition events the electron must undergo in their transport path 

between the contacts.  One example is the aforementioned QWIP detectors.  In these 

intersubband detectors, as long as the emission and capture events in each of the wells are 

uncorrelated, the noise is reduced by a factor of 1/Nw, where Nw is the total number of wells in 

the detector structure [70].  The experimental verification of this was established in Ref. 71.  

Another common example is the double-barrier resonant tunneling structure, where the electron 

must tunnel across two separate barriers as it traverses from the emitter to the collector [72].  

This can result in noise reduction by as much as a factor of 1/2.  Also notable is that in reverse-

biased p-n junctions, when the interband transitions are primarily due to recombination and 

generation at deep traps in the depletion region, it is possible for the noise to be reduced if the 

emission and capture cross-sections for electrons in the conduction band and holes in the valence 

band are of comparable magnitude [73,74].  In this system, the noise reduction can also be as 

much as ½ since there are two independent processes, hole emission and electron emission, that 

are required for current flow under reverse bias. 

 The potential of using this sort of design to improve the sensitivity of infrared detectors 

has actually been explore previously.  Earlier attempts to realize these sorts of devices using 

MCT were carried out by utilizing tunnel junctions to electrically connect the conduction band of 

one absorber to the valence band of an adjacent absorber in a way similar to multi-junction solar 

cells [68,75].  However, this proved difficult due to both extraneous absorption at the tunnel 

junction [76] and due to high series resistance between the tunnel junctions [77].   
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Chapter 3 : Theoretical Comparison of Multiple-Stage and Single-Stage 

Interband Photovoltaic Detectors 

3.1 Theoretical Framework for Multiple-Stage Device Analysis 

3.1.1 Signal and Noise in Infrared Detectors 

 The sensitivity of an infrared detector is determined by the signal-to-noise ratio.  As such, 

the sensitivity depends on both the detector’s external quantum efficiency (EQE), ηext, and the 

noise current, in.  In this work, ηext is defined as the number of electrons produced in the external 

circuit per incident photon.  If a photon flux of Φo, is incident on a detector with an EQE of ηext, 

the resulting photocurrent, iph, is given by: 

 𝑖𝑝ℎ = 𝑒Φ𝑜𝜂𝑒𝑥𝑡. (3.1) 

In the subsequent analysis, it is assumed that the detector has a good anti-reflection coating, so 

the optical losses at the air-semiconductor interface are negligible.  In multiple-stage detectors, at 

least one absorbed photon per stage is required in each stage to maintain a continuous 

photocurrent through the structure, unless there are internal gain mechanisms.  This means that 

for a multiple-stage detector with Ns stages, the value of ηext is bounded by 𝜂𝑒𝑥𝑡 ≤ 1/𝑁𝑠, where 

Ns is the number of stages.  The noise current in a semiconductor device is given by the 

autocorrelation function: 

 𝑖𝑛
2 = 〈𝑖(𝑡)𝑖(0)〉𝑡 − 〈𝑖〉𝑡

2, (3.2) 

where <>𝑡 represents a time-averaged quantity. 

Typically, the quality of an infrared sensor is assessed using figures of merit that do not 

depend on the strength of the incoming signal or the integration time.  Common alternative 

figures of merit for evaluating a focal plane arrays (FPAs) are the noise-equivalent power (NEP) 

and the noise-equivalent temperature difference (NETD).  The noise equivalent power represents 

the signal power required to achieve a signal-to-noise ratio of unity.  The NETD is defined as the 
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temperature difference at which the induced change of the background power equals the NEP.  

The NETD is particularly relevant for infrared imaging applications, because it directly gives the 

temperature resolution of a thermal imaging system.  In this work, we will not be characterizing 

FPAs, but instead single-element detectors.  The sensitivity a single-element detector is typically 

quantified by specific detectivity, D*.  The value of D* is proportional to the inverse of the 

noise-equivalent power, and is normalized for a detector of a given area, A, and bandwidth, Δf.  

In terms of ηext and in, the expression for D* for a general detector is given as: 

 𝐷∗ =
𝑒𝜆

ℎ𝑐
𝜂𝑒𝑥𝑡√

𝐴 Δ𝑓

𝑖𝑛
2

.  (3.3) 

3.1.2 Device Transport and Shockley-Ramo Theorem 

In order to determine the ultimate sensitivity limit of a given detector structure, it is 

necessary to relate ηext and in to the device design parameters and the structure material 

properties.  This requires a model for the electron transport.  For ideal (so-called diffusion-

limited) detectors, these quantities are not independent [78,79], and should be calculated from 

the same transport model.  This ensures that the design tradeoff between signal and thermal noise 

is established.  We consider semiconductor devices where phase-coherent effects are not a 

critical part of the transport process.  In this limit, the carrier transport can be described as arising 

from the exchange of electrons between the eigenstates of the structure’s static Hamiltonian.  We 

will assume that the transitions of electrons between the static eigenstates can all be considered 

as Markov processes.  Consequently, the noise in the device arises from the statistical 

uncertainties in these transitions.  To simplify the analysis, it is useful to sort the many 

eigenstates of the static Hamiltonian into groups of states, which we refer to as reservoirs.  The 

dynamic interactions of the states within the same group is fast enough that they can be 
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considered to be in thermodynamic equilibrium, and thus share a common chemical potential.  

The dynamics between states with different chemical potentials is relatively slow.  The detailed 

physics of this “discrete” transport picture has been developed by researchers in the mesoscopic 

physics [72,80], and quantum cascade detector communities [81-83].  Our model will closely 

follow these ideas, particularly those from Refs. 72 and 82. 

A schematic representation of the discrete transport picture we are considering is shown 

in Fig. 3.1 for a device with four reservoirs.  The semiconductor device is assumed to be held 

between two metallic contacts.  The first contact is held at a constant potential of Vo, and the 

second is grounded.  The 1st and Nth reservoirs are assumed to be in equilibrium with the left and 

right contacts, respectively.  We assume that the contacts provide large reserves of electrons, 

which act to replenish the steady-state occupation numbers in these reservoirs, so that the 

potential across the device remains constant.  Transport of electrons through the device occurs as 

a result of the exchange of electrons between reservoirs.  The transition rate of electrons from the 

ith to jth reservoir is denoted as wij.  The transition rates between two reservoirs will depend on 

their relative disequilibrium, which is quantified by the difference in their chemical potentials.  

Figure 3.1: Schematic of an arbitrary semiconductor device where electron transport can 

be modeled as thermalized reservoirs exchanging electrons. 



37 

 

To solve the transport problem, one must assume a form for this relationship between the 

chemical potential difference between two reservoirs and the transition rate.  The problem is 

solved by finding the average rates, <wij>t, for a given value of Vo under the constraint that the 

current should be constant through the device. 

The Shockley-Ramo theorem [80,84-86] provides a useful tool for analyzing transport in 

complex devices.  This theorem connects the temporal change in the distribution of the device’s 

internal electrons to the temporal signal delivered to the external circuit.  This provides a more 

accurate description of current flow in devices than the conventional picture that charge flows in 

the external circuit only when carriers are collected at the contact.  When applied to our discrete 

transport model, the theorem establishes that the transition of an electron between two of the 

reservoirs in the device yields an effective charge delivered to the external circuit that is 

proportional to the relative change in the electron’s chemical potential before and after the 

transition.  As seen in the subsequent analysis, this distinction in the interpretation of current 

flow is a critical consideration for proper treatment of the noise. 

The essence of the Shockley-Ramo theorem is that the signal produced in a device’s 

external circuit at a given time is caused by the exchange of energy between the device’s internal 

electrons and the environment at the same instant.  An essential assumption is that retardation 

effects are negligible.  In the transport picture we are considering, signal is produced each time 

an electron transitions between reservoirs.  As shown in Appendix A, the effective charge 

delivered to the circuit by an inter-reservoir transition can be deduced by considering the changes 

in the Gibb’s free energy of the before and after the transition.  Under the transport picture we 

are considering, the Shockley-Ramo theorem gives the instantaneous current in the device as: 
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 𝑖(𝑡) = 𝑒 ∑ 𝛼𝑖𝑗𝑓𝑖𝑗(𝑡 − 𝑡𝑝
𝑖𝑗

),

𝑖,𝑗

 (3.4) 

where αij is the percentage of the total voltage that is applied to the i→j transition.  The times tp
ij 

are sets of random variables indicating the times at which an electron is transferred between 

reservoirs i and j.  The indices p of these random times range from 1 to Nij, where Nij is the total 

number of transitions from i to j in the observation time Tobs.  The function fij(t) gives the 

temporal pulse shape that characterizes the i→j transition.  This can be more conveniently 

defined in terms of its Fourier transform: 

 𝑓𝑖𝑗(𝑡) = ∫
𝑑𝜔

2𝜋
𝐹𝑖𝑗(𝜔) exp(−𝑖𝜔𝑡)

∞

−∞

, (3.5) 

where Fij(ω) is the Fourier amplitude of the pulse shape.  We will assume a delta-like pulse for 

each transition, so that Fij(ω) = 1.  Under this assumption, the time-averaged current, <i>t can be 

written as: 

 〈𝑖〉𝑡 = 𝑒 ∑ 𝛼𝑖𝑗〈𝑤𝑖𝑗〉𝑡

𝑖,𝑗

, (3.6) 

where <wij>t indicates the average transition rate from i to j.  From the Shockley-Ramo theorem, 

it can be seen that a given transition event between reservoirs i and j delivers an effective charge 

of αije to the external circuit.  Thus, αij is an indication of how much of a bottlenecking effect the 

i→j transition has in the overall path of an electron between the device contacts.  This fact allows 

us to classify the various transitions as either macroscopically significant or insignificant, based 

on the effective charge that is delivered to the external circuit.  Macroscopically significant 

transitions are the ones that play a role in determining the empirically measurable quantities such 

as the dc current and the noise frequency spectrum.  Macroscopically insignificant transitions 

will not show any signatures in these measurements. 
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 Now, we will consider the noise that arises from the fluctuations in the electron exchange 

between reservoirs.  Often in the analysis of infrared detectors, the noise is split into various 

components.  A common approach for finding the noise in the literature has been to simply write 

the total noise, s, as a sum of Johnson noise and shot noise components.  This is expressed as: 

 𝑠 =
4𝑘𝑏𝑇

𝑅
+ 2𝑒〈𝑖〉𝑡, (3.7) 

where R is the device resistance.  This treatment assumes that Johnson and shot noise are 

independent phenomenon.  The use of Eq. 3.7 in evaluating the detector noise is often attractive, 

because it allows the noise to be found from the measurement of the device’s I-V characteristics, 

rather than having to be measured directly.  Direct measurement of the detector noise can be 

difficult in practice because of the difficulty in isolating the device noise from the other sources 

of noise introduced by the experimental setup.  However, this picture of Johnson and shot noises 

as independent phenomenon in infrared detectors has been criticized recently [83].  A more 

general criticism of this picture in analyzing solid state devices was given earlier by Landauer in 

1993 [87].  In addition, experiments have shown deviations in the noise from the prediction of 

Eq. 3.7 when the detector is operated under a large reverse bias.  In this operation regime, the 

noise is expected to approach the pure shot noise limit, which is given by the famous Schottky 

expression [69]:   

 𝑠 = 2𝑒〈𝑖〉𝑡. (3.8) 

However, when measured directly, the noise in infrared detectors is often found to exceed this 

prediction.  This problem has been known for some time in the MCT community [88], and recent 

experiments have shown excess noise in InAs/GaSb SL detectors as well [89,90].  The excess 

noise is usually classified as 1/f noise.  This is because when the noise spectrum is measured, 

rather than having a uniform frequency-dependence, the noise at low frequencies tends to 
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increase as 1/f.  The source of the 1/f noise in infrared detectors is often speculated to be related 

to bulk or surface defects.  There is some experimental evidence to support this conclusion.  

Notably, Tobin et. al. found a strong correlation between the noise in MCT photodiodes and the 

surface leakage current [91].  They were able to isolate the surface component of the current by 

measuring detectors fabricated from the same wafer, but with different areas for the mesa 

surface.  Despite this evidence, the conventional theory has not been able to explain these effects, 

which has made it challenging to make the appropriate design modifications needed to lower the 

noise and improve the detector sensitivity. 

A more reliable approach is to simply deduce the total noise directly from the 

instantaneous current equation provided by the Shockley-Ramo theorem, which is given in Eq. 

3.4.  In this treatment, the observed macroscopic noise is calculated directly from the temporal 

fluctuations in the transition rates between reservoirs, wij(t).  This provides a direct link between 

the microscopic phenomenon and the measurable quantities.  In addition, although not done in 

this work, the theory should be useful for calculating the spectral distribution of the noise. 

This would provide a means for evaluating the excess noise observed in infrared detectors.  

Often, the models for 1/f noise attempt to find a relationship between the current fluctuations and 

the average current, <i>t, under dark conditions.  However, this sort of treatment is inapplicable 

to devices such as Auger-suppressed detectors, where large noise is present under large reverse 

bias, even while the total dark current is reduced due to the reduced impact ionization generation 

[88]. 

 In our application of the Shockley-Ramo theorem, we assume the voltage across the 

device is held fixed (i.e. not fluctuating) and that the αij values for a given transition are 

unaffected by the transition rate fluctuations from which the noise arises.  The former 
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assumption is contingent on the external circuit having a negligible impedance.  Dealing with the 

finite impedance of the circuit is a non-trivial problem [92], and we will assume that it’s effects 

are minimal.  The αij values will be fixed if the reservoir chemical potentials, µi, are fixed.  The 

assumption of non-fluctuating chemical potentials for the reservoirs that are in equilibrium with 

the contacts, μ1 and μN follows from the assumption of a fixed external voltage.  The chemical 

potentials for the internal reservoirs will be fixed so long as the fluctuations of the transition rates 

between the reservoirs do not create large internal potentials.  Although this assumption may not 

be valid in certain mesoscopic systems, as pointed out in Ref. 80, for devices such as cascade 

lasers or detectors this assertion should be valid. 

The noise spectral density, c(ω), is related to the autocorrelation of the instantaneous current 

by the Wiener-Khinchin theorem, and is written as: 

 𝑐(𝜔) =
1

𝑇𝑜𝑏𝑠

|𝑖(𝜔)|2 − 2𝜋〈𝑖〉𝑡
2𝛿(𝜔), (3.9) 

where i(ω) is the Fourier transform of i(t) defined in Eq. 3.4.  This quantity is evaluated as: 

 𝑖(𝜔)𝑒 ∑ ∑ 𝛼𝑖𝑗𝑒𝑖𝜔𝑡𝑝
𝑖𝑗

𝑝𝑖,𝑗

. (3.10) 

Squaring i(ω), we obtain: 

 |𝑖(𝜔)|2 = 𝑒2 ∑ ∑ 𝛼𝑖𝑗𝛼𝑘𝑙

𝑘,𝑙

∑ ∑ 𝑒−𝑖𝜔(𝑡𝑝
𝑖𝑗

−𝑡𝑠
𝑘𝑙)

𝑠𝑝𝑖,𝑗

. (3.11) 

We now split the sum over p and s into two different sums: 

 

∑ ∑ 𝑒𝑖𝜔(𝑡𝑝
𝑖𝑗

−𝑡𝑠
𝑘𝑙)

𝑠𝑝

= ∑ 𝑒𝑖𝜔(𝑡𝑝
𝑖𝑗

−𝑡𝑝
𝑘𝑙)𝛿𝑖𝑗,𝑘𝑙 + ∑ ∑ 𝑒𝑖𝜔(𝑡𝑝

𝑖𝑗
−𝑡𝑠

𝑘𝑙)(1 − 𝛿𝑖𝑗,𝑘𝑙𝛿𝑝,𝑠)

𝑠𝑝𝑝

. 

(3.12) 
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where the first sum is over the diagonal terms (s=p), and the second sum represents the non-

diagonal terms.  In the diagonal sum, the only non-zero terms are those where we are evaluating 

the difference between the same random time index from the same transition.  Each of these 

terms is unity, and the overall sum over each of these terms evaluates to Nklδij,kl.  To evaluate the 

second sum, where the terms of the exponent are differences of unequal times, the sum over the 

tp
ij times for a given time ts

kl can be approximated as an integral [72,82].  The result of this 

approximation is: where hij,kl(t) represents the i→j transition rate, given a k→l transition occurred 

at t=0.  At times far from t=0 the transition rate hij,kl(t) will lose all correlation with the k→l 

transition event at t=0 and will approach its mean value hij,kl(t=±∞)→<wij>.  Thus, we define the 

reduced correlator gij,kl(t) = hij,kl(t) – <wij>, which indicates the transient time-dependence of the 

i→j transition rate in the vicinity of the k→l transition times.  Far from these times gij,kl(t) = 0.  

We can now write:
 

 

|𝑖(𝜔)|2 = 𝑒2 ∑ ∑ 𝛼𝑖𝑗𝛼𝑘𝑙

𝑘,𝑙

𝑁𝑘𝑙 [𝛿𝑖𝑗,𝑘𝑙 + 2𝜋〈𝑤𝑖𝑗〉𝛿(𝜔)

𝑖,𝑗

+ ∫ 𝑑𝑡 𝑔𝑖𝑗,𝑘𝑙(𝑡)𝑒−𝑖𝜔𝑡

∞

−∞

]. 

(3.13) 

By substituting this result for |i(ω)|2 into Eq. 3.9, we can get the general form of c(ω) for a given 

structure.  In real devices, the relevant noise parameter is the one-sided noise spectral density, 

which is defined as: s(ω)=2c(ω).  This quantity can be split into two parts, s(ω)=so+scorr(ω).  The 

first noise term, so, represents the noise without considering the transient behavior of wij(t).  This 

noise is Poissonian, and has no frequency dispersion.  The second term represents a correction 

that arises when the correlations between events are considered.  Because of our assumption of 

delta-like behavior of the transition pulses between reservoirs, the frequency dependence in the 
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total noise spectrum arises only from the correlations between transitions.  The first portion of 

the noise, the uncorrelated noise term so, is given by: 

 𝑠𝑜 = 2𝑒2 ∑ 𝛼𝑖𝑗
2 〈𝑤𝑖𝑗〉

𝑖,𝑗

. (3.14) 

This so term resembles the Schottky noise expression given in Eq. 3.7.  However, whereas the 

original Schottky formula only gives the current noise associated with the transport between two 

reservoirs, the expression in Eq. 3.14 provides a more general equation that includes the 

contribution from all the possible transport channel in a more complex device.  The correlation 

noise term, scorr(ω), is given by: 

 𝑠𝑐𝑜𝑟𝑟(𝜔) = 2𝑒2 ∑ 𝛼𝑖𝑗𝛼𝑘𝑙 ∫ 𝑑𝑡 𝑔𝑖𝑗,𝑘𝑙(𝑡)𝑒−𝑖𝜔𝑡

∞

−∞𝑖,𝑗

, (3.15) 

which we refer to as the “correlation correction” to the noise spectrum.  The correlation 

correction can be obtained by using a master equation for the time-dependence of the conditional 

occupation probability of the reservoirs in the device [72,82].  The magnitude of this correction 

is given by a sum over the terms: 

     

 𝛼𝑖𝑗𝛼𝑘𝑙〈(𝑤𝑖𝑗(𝑡) − 〈𝑤𝑖𝑗〉𝑡)𝑤𝑘𝑙(0)〉𝑡.  

If the transition rates wij(t) deviate strongly from their mean values in the time immediately after 

a k→l transition, we will expect a strong correlation correction.  When these terms are small, the 

noise can be approximated as the Poissonian so term.  In the subsequent analysis of multiple-

stage interband detectors, we will assume that the correlation correction to the noise is negligible, 

which should be valid as a first-order approximation. 
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3.1.3 Relationship of Signal-to-Noise in Multiple-Stage Detectors 

 Now, we apply this theory to the specific case of a multiple-stage interband infrared 

detector.  The main goal in the subsequent analysis is to calculate the magnitude of performance 

improvement that may be possible for a given infrared detector material when a multiple-stage, 

rather than single-absorber architecture is utilized.  We focus on the “ultimate” performance limit 

of a given material and device architecture.  This represents the limit where the detector 

performance is determined bulk properties of the absorber material.  In this spirit, we neglect a 

number of non-idealities that may be present in real devices.  We assume that the barrier regions 

block all tunneling of their namesake carriers and act as ideal contacts for the opposite carrier.  

As a result of this assumption, the chemical potentials are spatially constant across these regions.  

In a real device, there may be some resistive or tunneling effects that must be accounted for 

when analyzing experimental data.  We also assume that the structure has been designed so that 

the potential drop across the absorber is zero, and hence all electric fields are confined to the 

barriers.  This can typically be achieved with a proper choice of barrier doping.  A flat-band 

absorber design is often preferred for narrow-bandgap detectors in order to avoid detrimental 

tunneling currents.  In addition, factors such as shunting effects and contact series resistance are 

neglected.  These factors are expected to be minimal after sufficient maturation of the material 

growth and device fabrication techniques. 

 For many infrared detector materials, such as InAs/GaSb SLs, the cross-sections for 

microscopic processes such as phonon scattering and defect-assisted generation recombination 

are not well known.  In addition, for SL materials these parameters will vary with the 

composition of an individual period.  This precludes a more complete microscopic analysis such 

as those carried out for quantum cascade detectors in Ref. 93-94.  Instead, we will connect our 
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theory with macroscopic parameters that average over the influence of all the microscopic 

events.  These parameters are: the minority carrier diffusion coefficient, Dn, the nonradiative 

recombination time τnr, and the optical absorption coefficient, α.  These parameters are more 

easily obtained experimentally than the microscopic cross-sections.  Note that we are assuming 

that radiative recombination is a negligible process in the narrow-bandgap systems we are 

considering due to the prevalence of strong Shockley-Read-Hall and Auger processes. We will 

assume that the absorber material can be considered “bulk-like.”   

 In the ultimate limit, the total current consists of separate forward and reverse currents.  

The forward current arises due to the injection of minority carriers from the contact (or opposite 

polarity barrier) into the absorber and their subsequent recombination.  This current is referred to 

as the injection current.  The reverse current consists of the generation of minority carriers in the 

absorber and their subsequent collection.  This current is referred to as the collection current.  

The collection current arises both due to carrier generation induced by the incident photons and 

thermal generation. 

 Let us now consider how we can divide the individual states in a multiple-stage detector 

structure into reservoirs.  First, let us consider the special case of Dn→∞.  In this limit, all the 

minority carriers within a given stage are perfectly thermalized.  This implies that all the 

generated minority carriers are collected.  This is sometimes referred to as the infinite mobility 

limit in the solar photovoltaic literature.  In this limit, the only transport bottlenecks come from 

the interband transitions across the absorber bandgaps.  In this limit, the electrons can be clearly 

grouped into Ns+1 distinct reservoirs.  In this case, an individual reservoir would consist of the 

electrons occupying conduction band states in the absorber and the hole barrier of one stage, and 

the electrons occupying valence band states of the absorber and electron barrier of the adjacent 
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stage to which it is connected via the type-II broken-gap window.  This means that within a 

given stage, all of the absorber states in the conduction band have a single chemical potential that 

is different than the chemical potential of the valence band states in the same stage.  For an 

internal stage, this chemical potential will be shared with the opposite band absorber states of 

one of the adjacent stages.  In the first and last stages, either the conduction or valence band 

states will be in chemical equilibrium with the adjacent contact, depending on whether the 

contacts are hole- or electron-injecting.  This gives a total of Ns+1 distinct chemical potentials in 

the device.  The formation of these chemical potentials under reverse bias situation is shown in 

the Fig. 3.2, indicated as the Dn→∞ case (dotted line). 

 
Figure 3.2: Schematic of an ICIP with equal-absorber thicknesses d under reverse bias.  

The direction of injection, Ri, thermal collection, Γi, and photo-collection currents, Gi, are 

indicated in each stage are indicated for the ith stage.  The four distinct chemical potentials 

that exist in the three stages are indicated for the case where d=L (solid line) and Dn→∞ 

(dotted line).  Also shown is the material composition of an ICIP near the interface of the 

electron and hole barriers, and the path than an electron takes as it travels between stages. 
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The overall picture becomes more complicated in the case where the collection process is 

no longer perfect.  Carrier diffusion from the point of generation to the collection point provides 

an additional bottlenecking effect.  Nevertheless, with some modifications to the theory, we can 

still retain the same overall picture.  In this case, there are still Ns+1 distinct chemical potentials.  

However, electrons generated farther from the collection point have a greater probability of 

thermalizing with the valence electrons (i.e. recombining) before they are collected.  Thus, the 

splitting of the two chemical potentials in a given stage will become smaller at points farther 

from the collection point.   

Since the absorber material is treated as bulk-like, the chemical potential of all the 

electrons at a given point in the absorber varies continuously.  For SL absorbers, we assume that 

the transport through the absorber is due to sequential well-to-well transport of the electrons 

through the material.  Thus, although we describe the collections of eigenstates with similar 

energies in the SL absorber as “minibands”, the “miniband transport” is a drift-diffusion process, 

rather than phase-coherent transport of delocalized electron waves.  In a SL absorber, assuming 

that an electron in a given well only move sequentially to one of the adjacent wells, the diffusion 

coefficient can be expressed as:   

 𝐷𝑛 =
(𝛿𝑥𝑤)2

𝜏𝑤
, (3.16) 

where is the well-to-well transition time and Δxw is the length of a single SL period.  Note that an 

electron in a given SL well has an equal probability of transitioning to either of the two adjacent 

wells.   

 The spatial variation of the chemical potential across the three stages for the case where 

the minority carrier diffusion length, 𝐿𝑛 = √𝐷𝑛𝜏𝑛𝑟 was set equal to 1/3 of the absorber 

thickness, d is shown in Fig 3.2.  As seen, the main difference between the Dn→∞ and the finite 
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Dn cases are that in the latter case the chemical potential of the minority carriers in the absorber 

has a spatial dependence.  When Dn is finite the separation in the chemical potential between 

conduction band and valence band reservoirs of a given stage becomes smaller near the electron 

barrier.  This is a consequence of the decreased collection probability for carriers farther from the 

collection point.  A stronger separation in the chemical potentials across the stage is maintained 

when the absorber is made shorter than the diffusion length.  Thus, it can be seen that when light 

is absorbed and collected in discrete intervals, it is easier to maintain good collection across the 

whole structure.  This is why the multiple-stage architecture is able to maintain a good 

photovoltaic response even in situations where the material properties are not optimal. 

 

Figure 3.3: Circuit model for an ICIP found using Shockley-Ramo theorem.  The black 

dots represent thermally generated or injected carriers.  The red carriers represent photo-

generated carriers.  The inset shows the time-dependent signal.  The squares represent the 

pulses of current produced when there is a transition between two reservoirs. 

 The signal and noise properties of multiple-stage detectors are determined by the 

statistics of the particle exchanges between these reservoirs.  Using the Shockley-Ramo theorem, 
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it can be stated that in the time an electron moves across the mth stage, an effective charge of 

qm=βme is delivered to the external circuit, where βme is the percentage of the overall voltage that 

is applied to the mth stage.  This suggests that a multiple-stage detector can be thought of as 

stages acting in parallel rather than in series.  A representation of this alternative picture of a 

three-stage detector is shown in Fig. 3.3.  Each of the m stages with absorber thicknesses denoted 

as dm can be thought of as a separate charge generator.  In general, the βme to either of the two 

contacts.  The forward and reverse currents in a given stage are represented by the circles 

traveling from the stage to one of the contacts.  The black circles represent thermal carriers, 

while the red circles represent photo-carriers.  In the figure, the carrier injection process is 

represented by the carriers traveling to the left contact, and the carrier generation process is 

represented by carriers traveling to the right contact.  The average rate of charge delivery from 

one of the stages to the contacts is fixed, and is determined by the injection and collection 

currents in the stage.  However, there is an inherent uncertainty in the times at which charge is 

transferred from one of the stages to the contacts, due to the random nature of the physical 

processes that give rise to the current.  This inherent statistical uncertainty is the source of noise 

in the device.  Since the average total current must be equal in each stage this validates our 

assertion from Chapter 2 that introducing multiple stages into the device amounts to performing 

additional measurements of the current. 

 For a bulk-like absorber, the equation that governs the minority carrier density n(x) and 

the chemical potential μ(x) is: 

 
𝑑

𝑑𝑥
[

𝐷𝑛

𝑘𝑏𝑇
𝑛(𝑥)

𝑑𝜇(𝑥)

𝑑𝑥
] −

𝑛(𝑥)

𝜏𝑛𝑟
= −𝑔(𝑥), (3.17) 

where g(x) is the interband carrier generation rate per unit volume.  When the electric field is 

zero in the absorber, the relationship between n(x) and μ(x) is given by: 
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 𝑘𝑏𝑇
𝑑𝜇(𝑥)

𝑑𝑥
=

1

𝑛(𝑥)

𝑑𝑛(𝑥)

𝑑𝑥
, (3.18) 

so the equation for n(x) is now an diffusion equation: 

 [
𝑑2

𝑑𝑥2
−

1

𝐿𝑛
2

] 𝑛(𝑥) = −
𝑔(𝑥)

𝐷𝑛
. (3.19) 

Let us define the bottom edge of the mth absorber as x=xm.  This point corresponds to the left 

edge of the absorber, as indicated in Fig. 3.2(b).  The thickness of the mth absorber is dm, so the 

absorber extends from xm to xm+dm.  Note that we designate the dm with higher index m as those 

that are optically deeper in the structure.  Thus, for detectors designed for a single radiation pass, 

the higher the m index of dm, the weaker the incident light is on that particular stage, due to the 

light absorption in the first m-1 stages.  At x=xm, all the generated carriers will be collected and 

the steady-state concentration will not be influenced by the limits of the diffusion collection.  Let 

us define βm as the percentage of the total applied voltage that falls across the mth stage.  At x=xm, 

the electron concentration will be equal to the value that would be present if the conduction and 

valence band chemical potentials were flat across the absorber and separated by βmeV.  In other 

words, the concentration at this point should be the same as in the Dn→∞ limit considered 

earlier.  This gives a boundary condition of: 

 𝑛𝑚(𝑥)|𝑥=𝑥𝑚
= 𝑛𝑜 exp(𝛽𝑚𝑒𝑉/𝑘𝑏𝑇). (3.20) 

At the opposite end of the absorber, x=xm+dm, the minority diffusion current terminates at the 

interface between the absorber and the electron barrier.  Ideally, the barrier should be perfectly 

reflecting, so that Jn|x=xm+dm =0.  However, there may be some recombination of minority carriers 

due to impurity states in the barrier.  If a surface recombination velocity of Seb is used to 

characterize the recombination at the absorber-electron barrier interface, the boundary condition 

is: 
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𝑑𝑛𝑚(𝑥)

𝑑𝑥
|

𝑥=𝑥𝑚+𝑑𝑚

= −
𝑆𝑒𝑏

𝐷𝑛

[𝑛𝑚(𝑑) − 𝑛𝑜]. (3.21) 

For maintaining completeness of the theory, we will consider a nonzero Seb in the theory 

development, though we will assume Seb=0 in the analysis in Section III. 

 Eq. 3.19 has the form of the inhomogeneous Helmholtz equation.  For this equation, we 

are interested in the solution of n(x) under both the spatially uniform thermal generation rate 

(dark) and a generation rate with a negative exponential spatial variation (light).  An elegant 

approach to this problem is to find a Green’s function Gm(x,x’) from which we can calculate the 

distribution, and hence the current, under an arbitrary generation rate.  The development of this 

reciprocity method is attributed to Donolato [95,96].  It has also been extended and utilized 

extensively by members of the solar PV community, since it provides an important link between 

the short-circuit current and open-circuit voltage of a solar cell [97-99].  To our knowledge, this 

is the first time this method has been applied to analyze photodetectors.  Thus, we present a self-

contained derivation in the hope of increasing awareness of this technique in the community. 

 The Green’s function is found by solving the differential equation: 

 [
𝑑2

𝑑𝑥2
−

1

𝐿𝑛
2

] 𝐺𝑚(𝑥, 𝑥′) = 𝛿(𝑥 − 𝑥′), (3.22) 

with homogenous boundary conditions .  The solution methods for obtaining a particular 

Helmholtz Green’s function are well-known [100].  The complete derivation of the closed-form 

expression of the Green’s function is given in Appendix B.  Here we will summarize the main 

results that we use to analyze photodetectors.  For a given spatial generation profile in the 

absorber, g(x), the spatial electron concentration in the mth stage, nm(x), can be expressed as: 
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𝑛𝑚(𝑥) = −𝑛(𝑥′ = 𝑥𝑚) [
𝑑

𝑑𝑥′
𝐺𝑚(𝑥, 𝑥′)]

𝑥′=0
−

𝑛𝑜𝑆𝑒𝑏

𝐷𝑛
𝐺𝑚(𝑥, 𝑥′)|

𝑥′=𝑥𝑚+𝑑𝑚

− ∫ 𝑑𝑥′𝐺𝑚(𝑥, 𝑥′)
𝑔(𝑥′)

𝐷𝑛
 

𝑥𝑚+𝑑𝑚

𝑥𝑚

. 

(3.23) 

We see that physically, the function Gm(x,x’) correlates the stationary carrier distribution at x to 

the carrier generation rate at x’.  Thus, we expect Gm(x,x’) to have a maximum at x=x’ and to 

decay away from this point with a characteristic length given by diffusion length.  The 

appropriate Green’s function is given as: 

 𝐺𝑚(𝑥, 𝑥′) = −𝐿𝑛 sinh (
𝑥<

𝐿𝑛
)

cosh [
𝑥> − 𝑑𝑚

𝐿𝑛
] − (

𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh [

𝑥> − 𝑑𝑚

𝐿𝑛
]

cosh (
𝑑𝑚

𝐿𝑛
) − (

𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh (

𝑑𝑚

𝐿𝑛
)

, (3.24) 

where x< represents the lesser value of x and x’ and x> represents the greater value.  A simpler 

function that is more useful for calculating experimentally observable quantities such as the 

current and voltage is the carrier collection probability, fc,m(x).  This probability can be derived 

from Gm(x,x’).  This function gives the probability that an electron at position x will diffuse to the 

collection point x=xm before recombining.  The function fc,m(x) can be found by considering the 

condition of zero illumination.  In this case, there is only thermal generation, which is uniform 

across the absorber (as shown in Appendix B).  The result is: 

 
𝑓𝑐,𝑚(𝑥) =

cosh[(𝑥> − 𝑑𝑚)/𝐿𝑛] + (
𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh[(𝑥> − 𝑑𝑚)/𝐿𝑛]

cosh (
𝑑𝑚

𝐿𝑛
) + (

𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh (

𝑑𝑚

𝐿𝑛
)

. (3.25) 

Note that the spatial collection probability is related to the dark carrier distribution by: 

 
𝑛𝑚(𝑥) = 𝑛𝑜[1 + 𝑓𝑐,𝑚(𝑥)(𝑒𝑒𝛽𝑚𝑉/𝑘𝑏𝑇 − 1)], (3.26) 

and the relationship between the chemical potential for conduction band states across the mth 

stage, μm(x), and the carrier distribution is given by: 
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𝜇𝑚(𝑥)

𝑘𝑏𝑇
=

𝜇𝑜,𝑚 

𝑘𝑏𝑇
+ ln (

𝑛𝑚(𝑥)𝑝𝑜

𝑛𝑖
2 ), (3.27) 

where μo,m is the chemical potential for valence band states in the mth stage.  The relationship 

between μo,m, μo,m+1, and the total applied bias is given by: 

 
𝜇𝑜,𝑚+1 − 𝜇𝑜,𝑚 = 𝑒𝛽𝑚𝑉, (3.28) 

 Now, we can use the functions fc,m(x) and Gm(x,x’) to evaluate the expressions for ηext and 

so.  The total current in a given stage is given by the difference of the forward injection current 

and the reverse collection current.  The injection current flowing in the mth stage, Rm, is bias-

dependent, and thus is determined by the amount of bias that is applied to a given stage.  As 

stated above, the collection current consists of a thermal collection current, Γm, and a photo-

collection current, Wm.  Note that Rm, Γm, and Wm are particle current densities.  The 

corresponding electric current densities are related by a factor of electric charge.  From Eq. 3.14, 

we can write so for a multiple-stage detector as a weighted sum of the current components of 

each stage, given as: 

 𝑠𝑜 = 2𝑒2𝐴 ∑ 𝛽𝑚
2 (Γ𝑚 + 𝑅𝑚 + 𝑊𝑚)

𝑁𝑠

𝑚=1

. (3.29) 

We have used the assertion that the voltage applied to a given stage is equal to the change in the 

chemical potential as an electron moves across the stage.   

Before discussing noise in more detail, let us address the signal portion.  There are two types 

of illumination geometries that should be considered.  The first is the geometry where the light is 

incident on the absorber from the collection point, and thus travels through the structure in a 

direction opposite to the flow of minority carriers.  When the absorber is p-doped, the minority 

carrier collection point is located at x=xm, as indicated in Fig. 3.2.  Consequently, for the figure 

schematic, light coming toward the absorber from the right-hand side would be considered 
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incident from the collection point.  In the other illumination geometry, the light is incident 

opposite to the collection point, so that the incident photons travel through the structure in the 

same direction as the minority carrier flow.  For obtaining a larger signal, the former geometry, 

where the light is incident from the collection point is preferable, since with this choice the 

average collection probability of the photo-excited electrons will be larger.   

For the p-doped absorber we are considering, the spatial variation of the photogeneration 

across the mth absorber is given by: 𝑄𝑚(𝑥) = Φ𝑚𝛼𝑒−𝛼(𝑥−𝑥𝑚), where Φm is the photon flux 

incident on the mth stage.  When light is incident opposite to the collection point, the 

photogeneration across the absorber is given by 𝑄𝑚(𝑥) = Φ𝑚𝛼𝑒−𝛼[𝑑−(𝑥−𝑥𝑚)].  The individual 

quantum efficiency of the mth stage in a detector is given by: 

 
𝜂𝑑𝑚

= Φ𝑚
−1 ∫ 𝑑𝑥 𝑄𝑚(𝑥)𝑓𝑐(𝑥)

𝑥𝑚+𝑑𝑚

𝑥𝑚

. (3.30) 

When light is incident on an absorber with length d from the collection point, the individual 

quantum efficiency is given by: 

 

𝜂𝑑

= [
𝛼𝐿𝑛

1 − (𝛼𝐿𝑛)2
]

× [
(1 −

𝛼𝐿𝑛𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh (

𝑑
𝐿𝑛

) + (𝛼𝐿𝑛 −
𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) 𝑒−𝛼𝑑 + (

𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
− 𝛼𝐿𝑛) cosh(

𝑑
𝐿𝑛

)]

cosh(𝑑/𝐿𝑛) + (
𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh(𝑑/𝐿𝑛)

], 

(3.31) 

and when the light is incident opposite to the collection point, the individual quantum efficiency 

is given by: 
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𝜂𝑑

= [
𝛼𝐿𝑛

1 − (𝛼𝐿𝑛)2
]

× [
(1 +

𝛼𝐿𝑛𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh (

𝑑
𝐿𝑛

) 𝑒−𝛼𝑑 + (𝛼𝐿𝑛 +
𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) cosh (

𝑑
𝐿𝑛

) 𝑒−𝛼𝑑 − 𝛼𝐿𝑛 −
𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
]

cosh(𝑑/𝐿𝑛) + (
𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh(𝑑/𝐿𝑛)

]. 

(3.32) 

These expressions reduce to the expressions of Ref. 101 in the limit where Seb→0.  For the sake 

of clarity, let us also briefly consider the case of a detector using absorbers with n-type doping.  

For the setup in Fig. 3.2, if the absorber is n-doped, the collection point for the minority holes 

will be at x=xm+dm, which is the interface of the absorber and the electron barrier.  Thus, for an 

n-type absorber, light incident from the collection point corresponds to light coming to the 

absorber from the right side of the schematic in Fig. 3.2.  The expression in Eq. 3.31 is valid for 

describing the quantum efficiency of such a detector, so long as we replaced Ln, Dn, and Seb with 

the corresponding parameters for minority holes.  Similarly, for the alternative case, where light 

is incident on an n-type absorber from x=xm, Eq. 3.32 holds, provided the parameters for 

minority holes are utilized.  Thus, in modeling the quantum efficiency of a stage, the choice of 

Eq. 3.31 or Eq. 3.32 depends on the direction of the light traveling through the structure relative 

to the direction of the minority carrier flow. 

If the incident photon intensity is denoted as Φo, the photo-collection current, Wm, that 

flows in the mth stage is given as: 

 
𝑊𝑚 = Φ𝑜𝜂𝑒𝑥𝑡 = Φ𝑜 [∏ exp(−𝛼𝑑𝑗)

𝑚−1

𝑗=1

] 𝜂𝑑𝑚
, (3.33) 

where the bracketed term accounts for the effects of light attenuation. 
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 Now let us apply fc,m(x) to find the thermal injection and collection currents.  These two 

currents can be related by the principle of detailed balance.  This relationship is given by: 

 
𝑅𝑚 = Γ𝑚 exp(𝑒𝛽𝑚𝑉/𝑘𝑏𝑇). (3.34) 

Thermal collection current is produced by the collection of thermally generated carriers in the 

bulk part of the absorber, as well as those generated at the absorber-electron barrier interface.  

For Γm, we have: 

 

Γ𝑚 = 𝑓𝑐(𝑑)𝑛𝑜𝑆𝑒𝑏

+ 𝑔𝑡ℎ ∫ 𝑑𝑥 𝑓𝑐(𝑥)

𝑥𝑚+𝑑𝑚

𝑥𝑚

= 𝑛𝑜𝜏𝑛𝑟
−1𝐿𝑛 [

(
𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) cosh (

𝑑
𝐿𝑛

) + sinh(
𝑑
𝐿𝑛

)

(
𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh (

𝑑
𝐿𝑛

) + cosh(
𝑑
𝐿𝑛

)
]. 

(3.35) 

In the thermal noise limit, we can now write the value for so in terms of the material parameters 

as: 

 

𝑠𝑜 = 2𝑒2𝐴𝑔𝑡ℎ𝐿𝑛

× ∑ {𝛽𝑚
2 [𝑒𝛽𝑒𝑉/𝑘𝑏𝑇 + 1] [

(
𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) cosh (

𝑑𝑚

𝐿𝑛
) + sinh (

𝑑𝑚

𝐿𝑛
)

(
𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh (

𝑑𝑚

𝐿𝑛
) + cosh (

𝑑𝑚

𝐿𝑛
)

]}

𝑁𝑠

𝑚=1

. 
(3.36) 

From this expression, we see that each individual stage can be thought of as separate Poissonian 

charge generator.  Under this picture, an injection/collection event in the mth stage results in the 

delivery of an effective charge of positive/negative eβm to the external circuit.  The average dark 

electrical current that flows through the device is given by: 



57 

 

 

𝐽𝑑(𝑉) = 𝑒𝑛𝑜𝜏𝑛𝑟
−1𝐿𝑛

× ∑ {𝛽𝑚[𝑒𝛽𝑒𝑉/𝑘𝑏𝑇 − 1] [
(

𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) cosh (

𝑑𝑚

𝐿𝑛
) + sinh (

𝑑𝑚

𝐿𝑛
)

(
𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh (

𝑑𝑚

𝐿𝑛
) + cosh (

𝑑𝑚

𝐿𝑛
)

]}

𝑁𝑠

𝑚=1

, 
(3.37) 

where it should be noted that the individual current flowing through each stage will be equal. 

3.2 Finite Collection Limits of Single-Absorber Detectors 

 As stated in Chapter 1, the requirement for creating a device that operates as a 

photovoltaic is an architecture that steers conduction band carriers in the absorber to one contact 

and valence band carriers in the absorber to the other contact.  A basic schematic an arbitrary 

single-absorber photovoltaic detector with a p-doped absorber region of thickness d is shown in 

Fig. 3.4.  The “electron barrier” and “hole barrier” in the schematic can be realized with the use 

of doping gradients or heterostructures. 

 

Figure 3.4: Photovoltaic detector with single absorber of thickness d.  The absorber is p-

doped, so the generated electrons are collected at the interface of the absorber and the hole 

barrier.  

  A model for treating an arbitrary single-absorber PV detectors in the Dn→∞ limit was 

presented by Piotrowski and coworkers [78,79].  In their treatment, they defined the ultimate 

performance limit as the case where the performance was limited by the bulk material properties 

of the material.  Thus, non-idealities introduced by series resistance, surface generation-

recombination effects, and non-ideal contacts are not included in the ultimate limit.  In addition, 

since they assumed that Dn→∞, all the carriers generated in the absorber (both photo-generated 
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and thermally generated carriers) are collected and produce charge flowing in the external 

circuit.  When all absorbed carriers contribute to the photocurrent, the detector quantum 

efficiency, is given by:   

 
𝜂 = 1 − 𝑒−𝛼𝑑, (3.38) 

and the noise current is given by: 

 
𝑖𝑛

2 = 2𝐴𝑒2𝑑(𝑔 + 𝑟)Δ𝑓, (3.39) 

where g and r are the generation and recombination rates in the absorber and Δf is the detector 

bandwidth.  The bandwidth is related to the integration time by: 

 
𝜏𝑖𝑛𝑡 = 1

2Δ𝑓⁄ . (3.40) 

In this limit, the value of D* is given by [79]: 

 
𝐷∗ = 0.31 𝑥 𝑘

𝜆

ℎ𝑐

1 − 𝑒−𝛼𝑑

√2(𝑔 + 𝑟)𝑑
, (3.41) 

where for a single-pass of radiation k is a number that varies between 1 and 21/2 depending on the 

magnitude of the reverse bias.  It can be seen from Eq. 3.41 that detectors operating in the 

thermal noise limit will have a tradeoff between signal and noise as the absorber is made thicker.  

When the detector is made longer, the value of η becomes larger. However, the thermal noise is 

also enhanced.  The tradeoff comes from the fact that the generation rate for photocarriers 

exponentially decays at points deeper in the absorber, while the thermal generation rate is 

constant across the absorber.  The D* value in Eq. 3.41 is maximized by the optimal absorber 

thickness, dopt, which is given by: 

 
𝑑𝑜𝑝𝑡 =

1.26

𝛼
. (3.42) 

This thickness gives the optimal quantum efficiency for a thermal-noise limited detector in the 

Dn→∞ limit as: ηopt=71%. 
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Figure 3.5: Variation of the performance of optimized single-absorber photovoltaic 

infrared detector as a function of absorber material parameter αLn.  The results 

corresponding to an optical signal incident from the minority carrier collection point are 

indicated by the solid line and the results corresponding to an optical signal from opposite 

the collection point are indicated by the dashed line.  (a) The variation of the optimal 

absorber thickness in units of the absorption depth.  (b) The variation of the quantum 

efficiency and optimal detectivity D*
opt, for a detector that utlizes the optimal absorber 

thickness.  The optimal detectivity values are normalized to the corresponding value 

evaluated in the infinite mobility limit. 

 Multiple-stage detectors have the potential to achieve better sensitivity than single-

absorber detectors in the limit where the carrier collection of the generated carriers in the 

absorber is limited by a slow diffusion process.  Thus, it is useful to quantify how the 

performance of an infrared detector is limited by the finite diffusion coefficient.  Using the 

theory developed above, the ultimate limit can be extended to include the effect of finite carrier 

collection. 

 The limiting effects of imperfect carrier collection on the potential performance of a 

single-absorber detector can be judged by the product of the absorption coefficient and the 

diffusion length of the material.  A low value of implies that a single-absorber detector will be 

unable to convert a large percentage of the incident photon flux to photocurrent, because the total 

number of electrons excited within a diffusion length of the collection point will be low.  The 

influence of the finite collection properties of the absorber on the maximum D* of a single-
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absorber detector is shown in Fig 3.5.  As seen, the analysis was done over a range of αLn values 

from 0.01 to 10, and considered both light incident on the absorber from the collection point and 

light incident opposite the collection point.  The configuration of an optimized detector was 

deduced by identifying the αd values that maximized the value of D*.  Fig 3.5(a) shows the 

optimal choice of αd corresponding to a given value of αLn.  It is seen optimal choice for αd is 

reduced for lower αLn.  This is because for smaller αLn, the chance of collecting the carriers 

generated farther from the collection point is reduced.  Fig 3.5(b) shows the variation of the 

optimized single-absorber detectivity, 𝐷𝑜𝑝𝑡
∗ , and corresponding quantum efficiency.  The 

detectivity is normalized to the value evaluated in the Dn→∞ limit, 𝐷𝑖𝑛𝑓
∗ .  As expected, the 

choice of αd for an optimized detector approaches 1.26 for high αLn with a corresponding 

quantum efficiency of ~71% [79].  From Fig. 3.5, one can see that the attainable D* and the 

corresponding quantum efficiency for a single-absorber PV detector decrease when the diffusion 

length is reduced.  The influence of the limited collection on the detector performance can be 

seen when Ln is smaller than 1. 

3.3 Multiple-Stage, Equal-Absorber Detectors 

3.3.1 Detectors Optimized for High-Speed Operation 

 The theory developed above will now be applied to compare the ultimate limits of single-

absorber and multiple-stage detectors.  First, we will consider a multiple-stage detector 

composed of Ns stages, where the absorber lengths in each stage are equal to the same value.  

This length is denoted as d.  As stated above, for a detector designed for only a single pass of 

radiation, the external quantum efficiency of an identical-stage detector will be limited by the 

photo-collection current in the optically deepest stage.  This is the last stage through which the 

incident light passes.  The expression for ηext is given as: 
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𝜂𝑒𝑥𝑡 = 𝜂𝑑 exp[−𝛼𝑑(𝑁𝑠 − 1)], (3.43) 

where ηd is given by Eq. 3.31 when the signal is incident on the absorber from the collection 

point and Eq. 3.32 when the signal is incident opposite to the collection point.  In the case of Jd 

>> Jrad, the voltage is distributed equally across each stage, so βj=1/Ns.  This gives the value of 

D* as: 

 
𝐷∗ =

𝜆

ℎ𝑐
√𝑁𝑠  

𝜂𝑑 exp [−𝛼𝑑(𝑁𝑠 − 1)]

√(𝑟 + 1)2 𝑔𝑡ℎ𝐿𝑛 tanh(𝑑/𝐿𝑛)
, (3.44) 

where r is a number ranging between 0 and 1 that indicates how much of the noise is due to 

recombination.  Explicitly, r is equal to: exp(𝑒𝑉 𝑁𝑠𝑘𝑏𝑇⁄ ).  At zero bias, there is full 

recombination noise, and r=1.  Under saturation bias, there is no recombination noise and r=0. 

It can be seen that when the stages of a multiple-stage detector are made identical, there is a 

tradeoff between higher signal and lower noise as the number of stages increases.  Adding 

further stages to an equal-absorber ICIP reduces the thermal noise, but also reduces the overall 

signal current, because of light attenuation in the optically deeper stages.  From Eq. 3.44 we can 

deduce that the optimal number of stages to maximize the D* of an equal-absorber ICIP 

operating in the thermal noise limit is given as: 

 
(𝑁𝑠)𝑜𝑝𝑡 = (2𝛼𝑑)−1. (3.45) 

 Let us first address how the multiple-stage architecture can be advantageous for realizing 

intrinsically fast interband infrared detectors without overly compromising the sensitivity.  The 

detector’s intrinsic response time is determined by the time it would take the signal current to 

decay to zero if the optical signal were switched off.  This signal-quenching time is itself 

determined by the time it takes a photo-excited electron to move across the conduction band of 

the absorber and through the barrier regions to the valence band of the next stage.  Two ways to 

reduce the response time of a standard photodiode are to shorten the absorber length or to 
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introduce a built-in electric field in the absorber.  Using a short absorber ensures that all the 

generated electrons in a given stage are collected relatively quickly.  Introducing a built-in field 

increases the speed with which photogenerated electrons traverse through the absorber 

conduction band.  However, taking either of these steps to improve the temporal response can 

result in a lower sensitivity.  As mentioned above, the introduction of a built-in electric field will 

likely be accompanied by parasitic tunneling currents, which can result in additional noise.  

Shortening the absorber thickness will reduce the quantum efficiency.  Here, we show that the 

tradeoff between response time and sensitivity that results from shortening the absorber can be 

made less severe by using a multiple-stage architecture.  This is perhaps the most obvious 

advantage of multiple-stage detectors.  In particular, we look at the limit where d<<Ln and 

d<<1/α.  We reiterate that we are neglecting the correlation effects in our treatment, and hence 

the frequency-dependence of the noise spectral density.  The validity of this assumption is less 

certain for detectors operating in the high-speed regime.  Thus, the following analysis should be 

considered as a first-order approximation, and more investigations may be needed to confirm the 

conclusions.   

The value of ηext for the short-absorber case is given by: 

 
𝜂𝑒𝑥𝑡 = 𝑒−𝛼𝑑(𝑁𝑠−1)(1 − 𝑒−𝛼𝑑) ≅ 𝛼𝑑𝑒−𝛼𝑑(𝑁𝑠−1), (3.46) 

where we have set 𝜂𝑑 = 𝛼𝑑, which is valid to first order in αd.  Also, we can make the 

approximation: tanh (𝑑/𝐿𝑛) ≅ 𝑑/𝐿𝑛, which gives 𝑖𝑛
2 = 2𝑒2𝐴(𝑟 + 1)𝑔𝑡ℎ𝑑Δ𝑓.  In this limit, the 

thermal-noise-limited detectivity can be written as: 

 
𝐷∗ = [

𝜆

ℎ𝑐

𝛼𝑑

√2(𝑟 + 1)𝑔𝑡ℎ𝑑
] √𝑁𝑠 exp[−𝛼𝑑(𝑁𝑠 − 1)], (3.47) 

for both light incident from and opposite to the collection point.  The bracketed term in Eq. 3.47 

represents the detectivity of a single-absorber PV detector with absorber thickness d.  The effect 
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of adding additional stages can be seen more clearly by expanding the last exponential term as a 

series: 

 
𝐷∗ = 𝐷𝑠𝑖𝑛𝑔

∗ √𝑁𝑠 [1 − 𝛼𝑑(𝑁𝑠 − 1) +
(𝛼𝑑)2

2!
(𝑁𝑠 − 1)2 − ⋯ ].  (3.48) 

It is seen that in the short-absorber limit, when the chosen Ns is less than order 1/αd, the first 

term in the sum dominates.  This gives the Ns
1/2 scaling predicted previously for this limit [12].  

However, as the number of stages is made larger, the limit imposed by light attenuation in the 

latter stages becomes significant, and the higher order terms in the sum are no longer negligible.  

So we see that the ICIP should offer benefits in achieving higher D* and faster response if the 

product of αd is fairly low. 

 To put this result into context, let us compare the potential performance of a single- and 

multiple-stage detector for the case where we have an absorber with α=2000 cm-1 and wish to 

achieve a high response speed by setting d=100 nm.  For the multiple-stage detector, d represents 

the thickness of the absorber in each of the stages.  Although the multiple-stage detector has a 

longer overall structure, the response time of this device is expected to be similar to the single-

absorber detector, since speed is determined by the collection time in a given stage.  To optimize 

the detector sensitivity of the multiple-stage detector, we should chose (Ns)opt = 25, if  it is 

operating in the thermal noise limit.  From Eq. 3.48, we see that this results in a detector with a 

~3 times higher value of D* than would be achieved using a single-absorber detector with the 

same value of d.  This illustrates how the multiple-stage architecture can be utilized to increase 

the detector response speed with less compromising of the sensitivity. 

3.3.2 Detectors Optimized for Highest Sensitivity 

Now let us consider a circumstance where the application priority is achievement of high 

sensitivity, rather than a fast response.  From Eq. 3.44, it can be seen that the magnitude of the 
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improvement possible with the use of a multiple-stage architecture is a function of the product 

αLn of the absorber material.  When this product is less than unity, it implies that a significant 

amount of light is absorbed at points far from the collection point, and that the collection-

improving properties of multiple-stage detectors may be beneficial in improving the sensitivity.  

Since we expect the benefit of a multiple-stage architecture to be best in the limit where αLn << 

1, let us first estimate the sensitivity for this limiting case.  In this limit, short absorbers (d/Ln << 

1) are preferable.  Thus, as in the analysis above, we can make the approximations 𝜂𝑖𝑛𝑑 ≅ 𝛼𝑑 

and tanh(𝑑/𝐿𝑛) ≅ 𝑑/𝐿𝑛.  This gives the detectivity as: 

 
𝐷∗ =

𝜆

ℎ𝑐
√𝑁𝑠

𝛼𝑑

√2(𝑟 + 1)𝑔𝑡ℎ𝑑
exp(−𝛼𝑑𝑁𝑠).  (3.49) 

The detector can be optimized for the highest detectivity by choosing the number of stages in 

accordance with Eq. 3.45.  With this choice for Ns, the optimized detectivity, 𝐷𝑜𝑝𝑡
∗ , in this limit 

is: 

 
𝐷𝑜𝑝𝑡

∗ =
𝜆

ℎ𝑐

exp(−1/2)

2√𝑟 + 1
√

𝛼

𝑔𝑡ℎ
 . (3.50) 

This derived expression for the αLn<<1 limit is actually a good approximation for the optimized 

detectivity when αLn<0.2.  Also in this limit, the optimized ICIP absorption quantum efficiency, 

which we define as the total percentage of incident photons that are absorbed by the structure, is 

given by: 

 
𝜂𝑎𝑏𝑠 = 1 − exp(−𝛼𝑑𝑁𝑠) = 1 − exp(−1/2),  (3.51) 

which numerically evaluates to 39%.  The particle conversion efficiency, which we define as the 

percentage of incident photons that are converted to useful electrons, is given by 𝜂𝑝𝑎𝑟𝑡 = 𝑁𝑠𝜂𝑒𝑥𝑡, 

and for an optimized multiple-stage detector is equal to: 
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 𝜂𝑝𝑎𝑟𝑡 =
1

2𝛼𝑑
exp(−𝛼𝑑[𝑁𝑠 − 1])𝛼𝑑 ≅

exp(− 1 2⁄ )

2
,  (3.52) 

which numerically evaluates to ~30% for the case where 𝑁𝑠 = (2𝛼𝑑)−1.  Now, let us compare 

the optimized multiple-stage device result with a single-absorber detector in the same limit.  A 

detector with a single, long absorber in the αLn<<1 limit has a quantum efficiency given by: 

 
𝜂𝑒𝑥𝑡 = 1 − exp(−𝛼𝐿𝑛) ≅ 𝛼𝐿𝑛.  (3.53) 

We also make the approximation tanh(𝑑/𝐿𝑛) ≅ 1 for a long absorber.  This gives a single-

absorber detectivity of: 

 
𝐷𝑠𝑖𝑛𝑔

∗ =
𝜆

ℎ𝑐

𝛼𝐿𝑛

√2(𝑟 + 1)𝑔𝑡ℎ𝐿𝑛

.  (3.54) 

We can now deduce the “detectivity enhancement” that is possible from a multiple-stage 

architecture in the αLn<<1 limit.  We define this as the ratio of the detectivity of an optimized 

multiple-stage detector, 𝐷𝑚𝑢𝑙𝑡
∗ , to that of an optimized single-absorber detector.  Using Eq. 3.50 

and Eq. 3.54, we estimate this as: 

 

𝐷𝑚𝑢𝑙𝑡
∗

𝐷𝑠𝑖𝑛𝑔
∗ ≅

exp(− 1 2⁄ )

√2𝛼𝐿𝑛

.  (3.55) 

Thus, we estimate that the benefit provided by the use of identical-stage ICIPs scales as (αLn)
-1/2 

when the absorber parameter αLn is small.  We can now compare this analytic estimate with a 

numerical optimization.  For this analysis, we utilized the full D* expression given in Eq. 3.44.  

The optimal single-absorber detector was found by optimizing the absorber thickness for 

maximum D*.  The optimal ICIP was found by optimizing both the absorber thickness and the 

number of stages.  This was done for a range of αLn values from 0.01 to 1, and for both 

illumination geometries.  The results showing the calculated detectivity enhancement are given 

in Fig. 3.6.  These values are compared with the analytic approximation given in Eq. 3.55.  Also 
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shown is the optimal number of stages for the multiple-stage detector as a function of αLn found 

from the numerical optimization. 

 
Figure 3.6: Theoretical detectivity enhancement for multiple-stage ICIPs with identical 

stages operating in thermal noise limit as a function of the αLn product of the absorber 

material.  The values were obtained by finding the optimal single-absorber and ICIP 

detector designs design using numerical optimization.  The values are shown both for when 

light is incident on the absorber from the absorber’s collection point and when it is incident 

opposite to the collection point.  The enhancement factors obtained from numerical 

optimization were compared with the analytic approximation for this factor given in Eq. 

3.55 from the text.  For the numerical results the maximum number of stages was set to be 

50. 

 From the numerical optimization, it was found that the multiple-stage detector can have 

superior performance for αLn less than ~0.4.  However, above this value of αLn, the detectivity 

enhancement was equal to 1, which means that an optimized multiple-stage detector had Ns=1.  

Note that for the numerical optimization, the maximum number of stages was set as 50.  This 

was the number of stages used for the multiple-stage device for αLn < 0.08.  This is the reason 

that the analytic prediction for D* enhancement is higher than the numerical values in the range 

of αLn < 0.02.  For very low values of αLn, the optimal number of stages becomes quite large 

(e.g. greater than 1000 for αLn < 0.02).  In this range, the analytic approximation in Eq. 3.55 



67 

 

actually represents the theoretical limit for detectivity improvement if the number of stages were 

allowed to be very large.  For higher values of αLn, it is seen that the analytic prediction still 

provides a fairly good estimate of the possible detectivity enhancement, but does underestimate 

the numerical value.  As earlier stated, Eq. 3.50 provides a good approximation for the 

detectivity of an optimized multiple-stage device for αLn < 0.2.  However, Eq. 3.54 overestimates 

the detectivity of a single-absorber detector in this limit, due to an overestimate of the quantum 

efficiency. This is why the analytic expression underestimates the possible detectivity 

enhancement in the range of αLn > 0.2. 

3.4 Multiple-Stage, Photocurrent-Matched Detectors 

3.4.1 Thermal Noise Limit 

From the results shown in Fig. 3.6, we see that if we set each absorber to have equal 

lengths, there will only be appreciable improvements in the sensitivity when the absorber 

parameter αLn is less than 0.2.  This is because the incident photons are still not used very 

efficiently, even with the improved collection of absorbed carriers provided by the multiple-stage 

design.  This can be seen from Eq. 3.52 and Eq. 3.53, which show that for an optimized multiple-

stage detector in the αLn<<1 limit, the overall absorption and particle conversion efficiency are 

below 50%.  A way to improve the overall particle conversion efficiency is to utilize a 

“photocurrent-matched” multiple-stage design.  In this type of design, the absorber thicknesses 

are varied throughout the structure so that an equal photo-collection is achieved in each stage 

when the device is illuminated.  Consequently, this approach enables the most efficient usage of 

the incident photons.  One downside is that this design limits the amount of thermal noise 

reduction that can be achieved by reverse biasing the detector.  For stages with equal-length 

absorbers (both single- and multiple-stage), the noise from the injection current can be 
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completely quenched under reverse bias, which is the case when r=0 in Eq. 3.44.  For ideal 

detectors, this enables the possibility of a 21/2 detectivity improvement compared to the value 

zero-bias.  However, in multiple-stage detectors designed for photocurrent-matching, the 

injection current noise can only be eliminated in the stage with the shortest absorber.  This is 

because stages with longer absorbers must have some injection current to balance the larger 

generation rates in order to achieve an equal total current in each stage.  Any reverse bias 

increase beyond that required for current saturation is applied to the stage limiting the current 

(i.e. the one with the smallest absorber).  This continues until this stage reaches it’s reverse-bias 

breakdown voltage.  In addition to the limited ability to reduce the noise, detectors with a large 

number of stages may require extra iterations of structure growth in order to empirically achieve 

photocurrent-matching, especially if the spectral absorption coefficient is not accurately known. 

 
Figure 3.7: Theoretical zero-bias detectivity enhancement for 2-stage, 11-stage, and 30-

stage photocurrent-matched multiple-stage interband detectors operating the thermal noise 

limit.  For a given number of stages, the optimal photocurrent-matched detector was found 

by optimizing the sequence of absorber lengths for maximum D*. 
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For the analysis in the thermal-noise limit, we will restrict our analysis to the case where 

the device is held at zero-bias.  At zero-bias, the detectivity enhancement possible from using 

multiple stages again depends simply on the value of αLn for the absorber material.  This result 

should suffice as a guide for identifying the operating regimes where this approach is beneficial. 

The thermal-noise-limited detectivity for photocurrent-matched detectors is given as: 

 
𝐷∗ =

𝜆

ℎ𝑐

𝜂𝑒𝑥𝑡

√4𝑔𝑡ℎ𝐿𝑛

 √∑
1

tanh(𝑑𝑚/𝐿𝑛)
𝑚

,   (3.56) 

where dm represents the thickness of the mth absorber.  Note that the individual resistance of a 

given stage scales as 1/tanh (𝑑𝑚/𝐿𝑛).  Thus, the sum inside the radical in Eq. 3.56 represents a 

summing of the resistances of each of the stages.  This shows that the noise at zero bias reduces 

to the Johnson noise, given as: 

 
𝑖𝑛

2 =
4𝑘𝑏𝑇

𝑅𝑜
Δ𝑓,   (3.57) 

where Ro is the total resistance of the detector .  To achieve photocurrent-matching, the dm are 

chosen so that the number of collected photocarriers is equal in each stage.  The optimized 

photocurrent-matched detectors were found by identifying the optimal sequence of absorber 

thicknesses for a detector with a given number of stages.  The results are shown in Fig. 5 for 2-

stage, 11-stage, and 30-stage detectors with αLn values ranging from 0.01 to 10.  Like the equal-

absorber case, it is seen that the advantages of using multiple-stages only become significant 

when αLn < 1.  However, it is interesting to note that there is always a sensitivity advantage to be 

gained from using multiple stages when operating at zero bias.  This result is independent of the 

material parameters.  We can simply illustrate this by comparing a single-stage and two-stage 

detector in the limit where Ln →∞, so that: 𝜂𝑑𝑚
= 1 − 𝑒−𝛼𝑑𝑚 .  For a single-stage device, the 

optimal absorber thickness that maximizes D* is d=1.26/α [79].  An optimized two-stage device 
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will have d1=0.55/α and d2=1.32/α.  The ultimate zero-bias detectivity for this case is then given 

by: 

 
𝐷∗ = (0.339)

𝜆

ℎ𝑐
√

𝛼

𝑔𝑡ℎ
,   (3.58) 

which is higher than the single-stage value by a factor of 1.06.  This zero-bias detectivity 

enhancement will continue to increase as the number of stages is increased.  For a large number 

of stages, the equation for the detectivity will be similar to Eq. 3.58, but with the numerical 

prefactor approaching the value of 8-1/2 as the number of stages is increased.  This corresponds to 

an upper limit improvement of 1.1 times higher D* than the single-absorber case. 

3.4.2 Strong Signal Limit 

 In this section, we will apply the developed theory to investigate the case of signal-

limited detection.  This is relevant for certain applications such as optical communication and 

heterodyne detection, which utilize laser sources.  In this limit, it is expected that the best 

detectors will be those that make the most efficient usage of the incident photons.  In the strong-

signal limit, the photo-collection current is strong enough that Gm >> Γm in each stage.  Thus, the 

noise comes directly from the fluctuations associated with signal current flow itself.  Since we 

dealing with a photocurrent-matched design, no compensating injection current across any of the 

stages is required for realizing current-matching, so the condition of Gm >>Rm holds as well.  

Here, we shall evaluate the detector sensitivity directly from the signal-to-noise ratios of the 

different designs.  The signal current is given by: 

 
𝑖𝑠 = 𝑒𝜂𝑒𝑥𝑡Φ𝑜𝐴,  (3.59) 

where ηext is the external quantum efficiency and Φo is the incident photon flux  For the situation 

where Gm is much greater than Γm and Rm, Eq. 3.14 reduces to: 
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 𝑠𝑜 = 2𝑒2𝐴 ∑ 𝛽𝑚
2 𝐺𝑚.

𝑁𝑠

𝑚−1

 (3.60) 

In the high signal regime, the overall voltage will be applied equally to each stage, so βm=1/Ns.  

The overall squared noise current can then be written: 

 
𝑖𝑛

2 =
2𝑒2𝐴𝜂𝑒𝑥𝑡Φ𝑜

𝑁𝑠
Δ𝑓, (3.61) 

where we have utilized the condition: 𝐺1 = 𝐺2 = ⋯ = 𝜂𝑒𝑥𝑡Φ𝑜 for  photocurrent-matched 

detectors.  The overall signal to noise ratio (SNR) for an arbitrary number of stages is then given 

by: 

 
𝑆𝑁𝑅 = √

𝜂𝑝𝑎𝑟𝑡Φ𝑜𝐴

2Δ𝑓
, (3.62) 

where we have defined the quantity 𝜂𝑝𝑎𝑟𝑡 = 𝑁𝑠𝜂𝑒𝑥𝑡 as the particle conversion efficiency.  This 

metric indicates how efficient the device utilizes the incident photons.  We see that Eq. 3.62 

reduces to the standard expression for a single-absorber photovoltaic detector in the case of Ns = 

1: 

 
𝑆𝑁𝑅 = √

𝜂𝑒𝑥𝑡Φ𝑜𝐴

2Δ𝑓
. (3.63) 

It can be seen that when the incoming optical signal strong enough that the signal current is 

much greater than the dark current, there is no longer a design tradeoff between signal and noise.  

Thus, the design goal is simply to achieve as large a particle conversion efficiency as possible.  If 

the absorber material has good extraction properties, such that ηext can be very high for a single-

absorber detector, there is limited room for improving the particle conversion efficiency by 

utilizing additional stages.  However, when the photocarrier extraction properties of the absorber 

are poor, as indicated by the absorber product αLn, adding additional stages can greatly enhance 
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ηpart.  Thus, as with the earlier cases discussed above, the multiple-stage approach will be useful 

when the product αLn of the absorber material is relatively low. 

3.5 Outlook for Multiple-Stage Detectors Using 6.1 Å Semiconductor Materials 

From the above analysis, it can be seen that detectivity improvement is possible using 

both equal-absorber and photocurrent-matched detectors when αLn < 0.5.  Of the two designs, the 

photocurrent-matched detectors are able to achieve better sensitivities in the αLn range from 0.1 

to 1.  Here, we will attempt to put additional perspective on these results for detectors utilizing 

InAs/GaSb T2SL absorbers. We do this using the empirical data for absorption coefficient and 

diffusion length.  Since much of the existing data was acquired at low temperatures it is difficult 

to conjecture on the high-temperature performance.  We hope this discussion will spur additional 

interest from community to address some of the open questions. 

For InAs/GaSb SL with bandgaps in the MWIR, there is both theoretical and 

experimental evidence placing the absorption coefficient in the range of 2000-5000 cm-1 [102-

104].  For LWIR detection, the reported values are smaller, ranging from 1000-2000 cm-1 

[103,105].  All of these values were acquired in the 77-80 K range, and may be larger at high 

temperature.  There is more scatter in the reported diffusion length values.  Several groups have 

found empirical diffusion lengths by fitting quantum efficiency data.  Some results suggest fairly 

short 80 K diffusion lengths ranging from 0.6 µm [106] to 3.5 µm [105].  However, other 

sources suggest much larger values (e.g. as high as 20 µm) at this temperature [104,107].  Thus, 

at 80 K, the value of αLn for the absorber material will be most likely greater than unity.  This 

would preclude the need for a multiple-stage design for MWIR detection where high-sensitivity 

is prioritized over response speed.  For LWIR detectors it is more difficult to make a concrete 

judgment.  In both spectral ranges, there is a better chance the multiple-stage approach will find 
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applications for high-temperature detection.  As stated earlier, the diffusion lengths are expected 

to drop at high temperature because of a reduction in the interband carrier lifetime [19-22,108].  

However, to our knowledge, there are no systematic studies of the diffusion length dependence 

on temperature for InAs/GaSb SL material.  Such a study must account for both the temperature-

dependence of the diffusion coefficient (or equivalently the mobility), as well as the absorber’s 

interband transition time.   

 The absorber diffusion length will also depend on the doping and the primary generation-

recombination mechanism.  As discussed in the interoduction, the performance of InAs/GaSb SL 

detectors is limited by the fairly fast Shockley-Read transition time between the conduction band 

and valence band states of the absorber material.  These defect-assisted generation-

recombination effects are strong enough to make it the dominant mechanism, even at higher 

temperatures where impact ionization and Auger recombination would be dominant in other 

materials such as MCT.  The preferred absorber doping in T2SL detectors depends on the 

absorber bandgap, but is typically above 1016 cm-3.  If the source of the defect causing the short 

lifetime in current InAs/GaSb SL detectors can be identified and eliminated, these detectors may 

have Auger-limited performance at these doping levels.  In this case, a lower absorber doping 

would be preferred, similar to that used in MCT detectors.  In MCT detectors designed for high-

temperature operation, the absorber materials are typically doped on the order of 1015 cm-3 in 

order to achieve lower rates of impact ionization and Auger recombination (these two processes 

are the inverse of each other).  In these low-doped detectors is also possible to achieve “Auger-

suppression” by reverse biasing the detectors and reducing the number of free carriers to very 

low-levels.  However, the low absorber doping means that the carrier collection process will no 

longer be limited by the minority carriers, but will be ambipolar in nature.  Thus, the minority 
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carrier formalism presented in this paper does not apply to such devices.  However, we do 

conjecture that the multiple-stage architecture should be very useful for improving the collection 

efficiency of detectors with low-doped absorbers.  This is because in the ambipolar regime, the 

photocarrier extraction process can be much less efficient, since it is limited by the low hole 

mobility.  We are not aware of any studies of the ambipolar diffusion coefficient in 6.1 Å 

materials, but for MCT it has been established that the difference between the minority electron 

diffusion length in fairly highly-doped samples and the ambipolar diffusion length in low-doped 

samples can be fairly large [109].  An optical measurement of diffusion lengths in T2SL, carried 

out at 77 K, suggested that the hole diffusion length may be two orders of magnitude lower [110] 

at that temperature.  This result suggests the difference between the minority electron and 

ambipolar diffusion lengths may even be larger in T2SL than in comparable materials.  

3.6 Comparison of Single- and Multiple-Stage Photovoltaic Energy-Conversion Devices 

 When an illuminated photovoltaic device is held at zero current (i.e. open-circuit), a 

positive voltage is observed.  This voltage is the open-circuit voltage, denoted as Voc.  When the 

circuit is connected, and held at a voltage between zero and the Voc, the current flow in the 

device will be in the opposite direction of the electrostatic potential gradient.   In this situation, 

power is delivered to the external circuit.  This is the basis of photovoltaic energy conversion. 

 The total power for a photovoltaic device is given by: 

 
𝑃𝑜𝑢𝑡 = 𝐽𝑜𝑝𝑉𝑜𝑝 = 𝐽𝑠𝑐𝑉𝑜𝑐𝐹𝐹, (3.64) 

where Jop is the operating current, Vop is the operating voltage, Jsc is the short-circuit current 

density, and FF is the fill factor.  The operating voltage is the voltage that maximizes Pout, and is 

set by the condition: 
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(

𝜕𝑃𝑜𝑢𝑡

𝜕𝑉
)

𝑉=𝑉𝑜𝑝

= 0, (3.65) 

where P = -JV.  Note that Jop is related to Vop by the semiconductor device theory developed 

above.  The fill factor is defined as: 

 
𝐹𝐹 =

𝐽𝑜𝑝𝑉𝑜𝑝

𝐽𝑠𝑐𝑉𝑜𝑐
. (3.66) 

In real devices, the fill factor is typically limited by series resistance effects and shunting 

currents. 

 As with multiple-stage detectors, multiple-stage energy-conversion devices will have 

lower operating currents than single-absorber devices.  However, the operating voltages will be 

higher, so the total power under a given source illumination can be larger.  This is because 

voltage must be applied to each stage in order to provide an injection current that compensates 

the photo-collection current induced by the light illumination.  The open-circuit condition is 

achieved when the magnitude of the injection and collection currents in each stage are equal.  

The total voltage will be a sum of the voltage applied to each stage.  Using the theory developed 

in the previous sections of this Chapter, the total Voc for a multiple-stage PV device is given as: 

 

𝑒𝑉𝑜𝑐

𝑘𝑏𝑇
= ∑ ln (

Φ𝑚𝜂𝑚

Γ𝑚
+ 1) ,

𝑁𝑠

𝑚=1

 (3.67) 

where under strong illumination (Φm >> gthLn) the second term in the ln ( ) is negligible.  If we 

assume that the intrinsic carrier concentration of the absorber follows the relationship 

 
𝑛𝑖

2 = 𝑁𝑐𝑁𝑣𝑒−𝐸𝑔/𝑘𝑏𝑇 , (3.68) 

where Nc and Nv are the effective density of states for the conduction band and valence band of 

the absorber material, then in the strong illumination limit, Eq. 3.67 can be expressed as: 
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𝑒𝑉𝑜𝑐

𝑘𝑏𝑇
= ∑ ln (Φ𝑚𝜂𝑚𝜏𝑛𝑟

𝑝𝑜

√𝑁𝑐𝑁𝑣

𝑒𝐸𝑔/𝑘𝑏𝑇) ,

𝑁𝑠

𝑚=1

 (3.69) 

where we have also used the well-known relationship 𝑛𝑜𝑝𝑜 = 𝑛𝑖
2, which is commonly referred to 

as the law of mass action.  From Eq. 3.69, the relationship between Eg and the Voc (under the 

assumptions considered in this work) can be expressed as: 

 

𝑒𝑉𝑜𝑐

𝑘𝑏𝑇
= 𝑁𝑠

𝐸𝑔

𝑘𝑏𝑇
− ∑ ln (

𝑁𝑐𝑁𝑣

Φ𝑚𝜂𝑚𝜏𝑛𝑟𝑝𝑜
) .

𝑁𝑠

𝑚=1

 (3.70) 

Within the assumptions of this work, the condition 𝑁𝑐𝑁𝑣 ≫ 𝑝𝑜Φ𝑚𝜂𝑚𝜏𝑛𝑟 will exist.  This implies 

that each of the terms inside the ( ) in the m ln( ) terms in the sum is greater than unity.  Thus, 

Eq. 3.68 illustrates that while the Voc of a single-absorber (Ns = 1) PV device is bound by Voc < 

Eg, the Voc of an Ns-stage device is bound by Voc < NsEg..  Note that at very high light intensities, 

many of the assumptions necessary for deriving Eq. 3.70 would not exist (such as the assumption 

of purely non-radiative thermal generation and recombination).  However, the bounding of Voc < 

NsEg would still hold. 

 The total power delivered to the external circuit is a sum of the power delivered by each 

individual stage.  This is given as: 

 𝑃𝑜𝑢𝑡 = ∑ 𝑃𝑚

𝑁𝑠

𝑚=1

= 𝐽𝑜𝑝 ∑ [𝑉𝑜𝑝,𝑚],

𝑁𝑠

𝑚=1

 (3.71) 

where Vop,m denotes the operating voltage of the mth stage.  The operating current is constant 

across the device.  This means that the difference of the injection and collection currents must be 

equal in each stage.  This requirement also implies that the Vop,m values are not independent. 

 Let us consider how the ultimate efficiency of a PV energy-conversion device can be 

improved with the use of a multiple-stage design.  We will utilize the high illumination 
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approximation described above, Φm >> gthLn, for each of the m stages.  This is the expected 

condition for most TPV applications.  Under this assumption, the photo-collection current is 

much higher than the thermal collection current.  For achieving the best efficiency, a multiple-

stage PV energy-conversion device should be designed for photocurrent-matching.  With this 

design choice, the collection currents, given by Eq. 3.33, are equal in each stage.  Since the total 

operating current in each stage must be equal, the injection currents, given by Eqs. 3.34 and 3.35 

must also be equal in each stage. 

 As in the analysis for detectors, we will assume there is no dispersion in the absorption 

coefficient.  This approximation will not hold for most TPV applications, where broadband light 

is converted.  However, in this limit, as with the detector analysis above, it is possible to quantify 

the performance improvement that is possible from a multiple-stage design simply in terms of 

the αLn product of the absorber material.  Thus, the analysis below should serve as a useful first 

approximation. 

 In terms of the thickness, d1, and corresponding individual quantum efficiency, 𝜂1(𝑑1), 

of the absorber in the first stage through which light passes, the operating current is given as: 

 
𝐽𝑜𝑝 = 𝑒[𝜂1(𝑑1)Φ𝑜 − 𝑔𝑡ℎ𝐿𝑛 tanh(𝑑1/𝐿𝑛)𝑒𝑒𝑉𝑜𝑝,1,/𝑘𝑏𝑇], (3.72) 

where Vop,1 represents the operating voltage across the first stage.  Note we have assumed that 

Seb=0.  The voltages Vm across the m > 1 stages can be related to V1 by using the fact that the 

injection current components are equal in each stage.  This relationship is given as: 

 
tanh(𝑑1 𝐿⁄ )𝑒𝑒𝑉1/𝑘𝑏𝑇 = tanh(𝑑𝑚 𝐿⁄ )𝑒𝑒𝑉𝑚/𝑘𝑏𝑇 , (3.73) 

for m > 1.  Solving for Vm gives: 

 

𝑒𝑉𝑚

𝑘𝑏𝑇
=

𝑒𝑉1

𝑘𝑏𝑇
−ln (

tanh(𝑑𝑚 𝐿⁄ )

tanh(𝑑1 𝐿⁄ )
). (3.74) 
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For devices designed for photocurrent-matching, the dm values will increase with increasing m.  

Thus the voltages across the longer and optically deeper stages will be smaller.  Substituting into 

Eq. 3.71, the power for a multiple-stage PV energy-conversion device is given in terms of Vop,1 

as: 

 

𝑃𝑜𝑢𝑡 = 𝑒 [𝜂1(𝑑1)Φ𝑜 − 𝑔𝑡ℎ𝐿𝑛 tanh(𝑑1/𝐿𝑛)𝑒
𝑒𝑉𝑜𝑝,1

𝑘𝑏𝑇 ]

× [𝑁𝑠

𝑒𝑉𝑜𝑝,1

𝑘𝑏𝑇
− ∑ ln (

tanh(𝑑𝑚 𝐿⁄ )

tanh(𝑑1 𝐿⁄ )
)

𝑁𝑠

𝑚=2

]. 

(3.75) 

The operating voltage for the first stage, Vop,1, is set by Eq. 3.65 with V1 replacing V as the varied 

quantity.  The value of Vop,1 is determined by the transcendental equation: 

 

𝑒𝑉𝑜𝑝,1

𝑘𝑏𝑇
=

𝑒𝑉𝑜𝑐,1

𝑘𝑏𝑇
− ln [1 +

𝑒𝑉𝑜𝑝,1

𝑘𝑏𝑇
−

1

𝑁𝑠
∑ ln (

tanh(𝑑𝑚 𝐿⁄ )

tanh(𝑑1 𝐿⁄ )
)

𝑁𝑠

𝑚=2

], (3.76) 

where the voltage contribution from the first stage under open-circuit conditions, Voc,1, is given 

by: 

 

𝑒𝑉𝑜𝑐,1

𝑘𝑏𝑇
= ln (

𝜂1Φ𝑜

𝑔𝑡ℎ𝐿𝑛 tanh(𝑑1/𝐿𝑛)
), (3.77) 

and the total open-circuit voltage for the multiple-stage photocurrent-matched device is: 

 

𝑒𝑉𝑜𝑐

𝑘𝑏𝑇
= 𝑁𝑠

𝑒𝑉𝑜𝑐,1

𝑘𝑏𝑇
− ∑ ln (

tanh(𝑑𝑚 𝐿⁄ )

tanh(𝑑1 𝐿⁄ )
)

𝑁𝑠

𝑚=2

.  (3.78) 

An approximate solution for Vop,1 can be found through a recursive substitution for Vop,1 in the 

ln( ) [111].  This gives: 
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𝑒𝑉𝑜𝑝,1

𝑘𝑏𝑇
=

𝑒𝑉𝑜𝑐,1

𝑘𝑏𝑇

− ln {−
1

𝑁𝑠
∑ ln (

tanh(𝑑𝑚 𝐿⁄ )

tanh(𝑑1 𝐿⁄ )
) + 1 +

𝑒𝑉𝑜𝑐,1

𝑘𝑏𝑇

𝑁𝑠

𝑚=2

− ln [1 −
𝑞𝑉𝑜𝑝,1

𝑘𝑏𝑇
−

1

𝑁𝑠
∑ ln (

tanh(𝑑𝑚 𝐿⁄ )

tanh(𝑑1 𝐿⁄ )
)

𝑁𝑠

𝑚=2

]},  

(3.79) 

where the last ln[ ] term in the braces is negligible.  Using Eq. 3.77 and Eq. 3.78, Vop,1 can be 

written in terms of the total Voc.  This is given by: 

 

𝑒𝑉𝑜𝑝,1

𝑘𝑏𝑇
=

𝑒𝑉𝑜𝑐,1

𝑘𝑏𝑇
− ln (1 +

1

𝑁𝑠

𝑒𝑉𝑜𝑐

𝑘𝑏𝑇
),  (3.80) 

Note that for the case of Ns=1, the total operating voltage is given by: 

 

𝑒𝑉𝑜𝑝,1

𝑘𝑏𝑇
=

𝑒𝑉𝑜𝑐,1

𝑘𝑏𝑇
− ln (1 +

𝑒𝑉𝑜𝑐

𝑘𝑏𝑇
) . (3.81) 

Substituting Eq. 3.79 into Eq. 3.75, we can now cast the total output power in terms of the 

design, material, and illumination parameters:  

 

𝑃𝑜𝑢𝑡 = 𝑒 [𝜂1(𝑑1)Φ𝑜 − 𝑔𝑡ℎ𝐿𝑛 tanh(𝑑1/𝐿𝑛)
𝑒

𝑒𝑉𝑜𝑐,1
𝑘𝑏𝑇

1 +
1

𝑁𝑠

𝑒𝑉𝑜𝑐

𝑘𝑏𝑇

]

× [𝑁𝑠

𝑒𝑉𝑜𝑐,1

𝑘𝑏𝑇
− ln (1 +

1

𝑁𝑠

𝑒𝑉𝑜𝑐

𝑘𝑏𝑇
) − ∑ ln (

tanh(𝑑𝑚 𝐿⁄ )

tanh(𝑑1 𝐿⁄ )
)

𝑁𝑠

𝑚=2

]. 

(3.82) 

 The multiple-stage design will be most useful when a low value of αLn limits the possible 

quantum efficiency absorber material.  When this is the case, the portion of the photon flux that 

cannot be efficiently converted to current in a single-stage can instead be used to drive a voltage 

in the later stages.  However, as seen, with the photocurrent-matched design, gains in efficiency 

are still possible, even when the absorber material is fairly good (αLn > 10).  This is because in 
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PV energy-conversion devices, as in photodetectors operating in the thermal noise limit, there is 

a tradeoff in choosing the thickness of the absorber.  As the absorber is made thicker, more light 

is absorbed, increasing the short-circuit current.  However, the open-circuit voltage will be 

higher as the absorber thickness, d, is made thicker, since the injection current will increase as 

Lntanh(d/Ln). 

 
Figure 3.8: Theoretical efficiency improvement for 2-stage and 10-stage photocurrent-

matched multiple-stage photovoltaic energy-conversion devices as a function of the product 

of the absorption coefficient and diffusion length of the absorber material.  The ratio of the 

photon flux to the thermal flux (Φo/gthLn) was set equal to 1x106.  Also shown are the 

particle conversion efficiencies for optimized 1-stage, 2-stage, and 10-stage devices. 

 The possible efficiency improvement that can be achieved with the use of 2-stage and 10-

stage photocurrent-matched devices is shown in Fig. 3.8 for a range of αLn values from 0.1 to 

100.  In this analysis, the optimal absorber thicknesses for each design were found by finding the 

values that maximized Pout, as given in Eq. 3.82.  In the analysis, the ratio of the photon flux to 

the thermal flux, defined as:   

 
𝜉 =

Φ𝑜

𝑔𝑡ℎ𝐿𝑛
, (3.83) 
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was taken to be equal to 1.0x106.  Also shown in Fig. 3.8 are the particle conversion efficiencies 

for optimized 1-stage, 2-stage, and 10-stage devices.   

 As predicted, the multiple-stage devices are most effective when αLn is fairly low, and 

better efficiency improvement is possible when more photocurrent-matched stages are used.  For 

instance, when, αLn = 0.1, an efficiency improvement of 73% is possible by using a 2-stage 

device and an improvement of 395% is possible by using a 10-stage device.  Even for high 

values of αLn, efficiency improvement is possible due to the fact that optimized multiple-stage 

detectors use incident photons more efficiently than optimized single-stage devices.  This can be 

seen from the particle conversion efficiency curves.  For αLn = 10, the particle conversion 

efficiencies for optimized 1-stage, 2-stage, and 10-stage devices are 94.9%, 97.6%, and 98.7%.  

As a result, an optimized 2-stage device is 7% more efficient than an optimized 1-stage device, 

while an optimized 10-stage device is 10% more efficient. 
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Chapter 4 : Interband Cascade Structures for Infrared Radiation Energy 

Conversion 

4.1 Overview 

 This chapter presents the design and experimental characterization of interband cascade 

PV devices that were designed for the conversion of infrared radiation.  The chapter is split into 

two parts.  The first part reviews the characterization of devices from wafer EB3337.  These 

devices had cutoff wavelengths of ~5 μm at room temperature and were designed with identical 

cascade stages.  The absorbers in these stages were composed of conventional InAs/GaSb SLs.  

The second part of the chapter details work done on devices with wider-bandgap absorbers.  The 

devices presented in this section were fabricated from wafer EB3911, which had three cascade 

stages, and EB3917, which had two cascade stages. 

 

Figure 4.1: Schematic representation of device processed from wafer EB3911. 

 Each of the three EB3--- series of samples were grown using molecular beam epitaxy at 

Sandia National Laboratories.  Each was grown on a (100) p-type GaSb substrate.  The 
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processing of these wafers into devices was done at the University of Oklahoma.  The processing 

steps for all the devices presented below were similar.  A schematic of a processed device from 

wafer EB3911 can be seen in Fig. 4.1.  For all the devices presented, the processing was carried 

out using standard contact UV lithography followed by wet-chemical etching.  After the etching 

was completed, a dielectric layer was deposited for passivation using an AJA sputtering system.  

Most of the devices were passivated with SiO2.  Other devices were passivated with silicon 

oxynitride (combination of SiO2 and Si3N4).  The metal contacts, consisting of 30 nm Ti / 180 

nm Au, were deposited with thermal evaporation.  Further details specific to each set of devices 

are given below. 

4.2 Narrow-Bandgap Photovoltaic Devices 

4.2.1 EB3337 Structure Details 

 The absorber in the wafer EB3337 composed of a 33-period InAs/GaSb (7/9 monolayers) 

type-II SL.  The GaSb layers in the SL absorber were p-doped with a targeted dopant 

concentration of 3.0x1017 cm-3.  The total thickness of each absorber was ~0.16 μm.  The 

absorbers for each stage were made identical.  The electron barrier in this structure was 

composed of alternating layers of GaSb and AlSb with layer thicknesses (in Angstroms) of 

16/53/16/75, where the normal and bold numbers refer to the GaSb and AlSb layers, 

respectively.  The hole barrier was composed of InAs, AlSb, and Al0.8In0.2Sb, with a digitally 

graded layer thickness (in Angstroms) sequence given by 

20/81/20/66/21/55/22/47.5/23/42/24/37.5/25/34/26/31/32, where normal, bold, and bold italic 

represent InAs, AlSb, and Al0.8In0.2Sb layers respectively.  The GaSb layers in the electron 

barrier were p-doped with the same concentration as those in the absorber, while the AlSb layers 

were left undoped.  All the layers in the hole barrier were left undoped.  The band diagram of 
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this structure under a forward bias is shown in Fig. 4.2.  The figure shows the layer structure near 

the interface of the electron and hole barriers.  The bottom conduction miniband and highest 

valence miniband of the SL absorber are indicated.  The ground state energy levels and 

wavefunctions for the QWs that compose the barrier regions are shown.  The electron and hole 

levels were calculated using the k•p envelope function theory [112].  The potential of the free 

carriers was included using the Hartree approximation [113].  This yielded self-consistent 

Schrödinger-Poisson solutions of the charge and potential distribution.  As seen, the voltage is 

primarily applied to the electron and hole barriers, and a flat-band condition is maintained in the 

SL absorber, even for a device under bias. 

 

Figure 4.2: Calculated band diagram of EB3337 under forward bias at 300 K in the region 

near the interface of electron and hole barrier regions. 

 The devices were processed into circular mesa devices with mesa diameters ranging from 

100-400 μm.  For characterization, the devices were mounted onto ceramic chip carriers and 

wire-bonded.  In order to study the temperature-dependence of the performance metrics, the 
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devices were mounted in a LN2-cooled cryostat.  A Lakeshore 331 control unit was used to vary 

the temperature of the device.  A calibrated blackbody emitter was used as a thermal radiation 

source.  The external quantum efficiency (EQE) and current-voltage characteristic curves were 

measured over a range of device temperatures from 80 to 340 K.  A Nicolet 8700 Fourier 

Transform Infrared Spectrometer (FTIR) was used to measure the relative spectral response.  The 

calibrated EQE spectrum was found by measuring the device’s photocurrent, while it was 

illuminated by the blackbody source.  For the EQE measurements, the blackbody source was 

heated to 1,200 K, and placed 30 cm away from the device.  For the low-temperature dark 

current measurements, the device was encased in a cold shield in order to isolate it from the ~300 

K background radiation.   

4.2.2 Photocurrent and Open-Circuit Voltage 

 

Figure 4.3: Particle conversion efficiency of device from wafer EB3337 at different 

temperatures. 

 In this section, we present detailed results from the device that achieved the highest open-

circuit voltage (Voc) at 80 K.  The diameter of this device was 400 µm and it was passivated with 

silicon oxynitride.  Other devices fabricated from this wafer (both passivated with SiO2 and 
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silicon oxynitride) showed comparable performance.  The particle conversion efficiency spectra 

at temperatures of 80, 200, and 300 K for a device processed from this sample are shown in Fig. 

4.3.  Recall that the particle conversion efficiency for a device is defined as the external quantum 

efficiency times the number of stages.  This data was acquired at zero-bias.  The device had a 

10% cutoff wavelengths of 4.0 µm at 80 K and 4.8 µm at 300 K.  From these values, the SL 

absorber bandgap (Eg) is estimated to be 0.31 eV at 80 K and 0.26 eV at 300 K.  As seen, the 

signal becomes stronger as the temperature is increased, even up to room temperature.  This 

observation suggests efficient photocarrier collection because the EQE is not sensitive to the 

decrease in minority carrier diffusion length at higher temperatures.  

 

Figure 4.4: Current density-voltage characteristics at different device temperatures for a 

device illuminated by a 1200 K blackbody source.  The aperture radius of the source was 

0.76 cm and it was held at a distance of 30 cm from the device. 

 The current measured under illumination at different device temperatures is displayed in 

Fig. 4.4.  This data was taken for both forward- and reverse-bias voltages.  For this particular 

measurement, the blackbody source temperature was 1,200 K, the aperture radius of the 

blackbody emitter was 0.76 cm, and the distance between the emitter and the device was 30 cm.  
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The observed increase in short-circuit current density (Jsc) with device temperature is caused by 

the bandgap narrowing of the absorber.  At all temperatures, an increase in current is observed 

when the device is reverse-biased.  For the data taken at 150 and 180 K this trend is primarily 

due to the high dark current at these temperatures.  However, for this light intensity, the dark 

current (measured with radiation shielding) for the device at 80 K was over two orders of 

magnitude lower than the illumination current (<10-4 mA/cm2 at -2.0 V).  For a device 

temperature of 120 K, this difference between the dark and light current was over one order of 

magnitude.  Thus, for these temperatures, we are observing a voltage-dependent photocurrent.  In 

ideal PV devices, the photocurrent should be insensitive to an increase in reverse bias.  It is 

possible that carriers generated in the absorber do not recombine at the interface of the electron 

barrier and hole barrier.  Instead, they may undergo intraband tunneling across their namesake 

barrier.  This is similar to the “photoconductive gain” effect observed in quantum well infrared 

photodetectors [27].  This “leaky barrier” effect is detrimental in forward bias.  Electrons 

tunneling across the barrier relax via non-radiative processes to an adjacent absorber that is lower 

in the energy cascade.  Theoretical calculations indicate that the electron barrier should be 

sufficiently thick to suppress direct intraband tunneling [14].  However, the tunneling process 

may be assisted by defect states within the bandgaps of GaSb or AlSb. 

  Figure 4.5(a) shows the Voc as a function of device temperature.  This data was acquired 

under the same illumination settings as the data presented in Fig. 4.4.  The cascade design 

enabled the device to maintain a Voc above the individual absorber bandgap up to 180 K even 

under a weak light illumination.  However, this value falls off to just a few meV at higher 

temperature as the dark current becomes more dominant.  Under a more powerful laser source, it 
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was actually found that devices from this wafer were able to achieve open-circuit voltages above 

the individual bandgap at room temperature [114]. 

 

Figure 4.5: Device temperature dependence of (a) open-circuit voltage and (b) dark current 

density of an IC PV device.  The dark current was measured at reverse-bias voltages of -5 

mV, -100 mV, and -1.5 V under radiation shielding. 

 An Arrhenius plot illustrating the temperature-dependence of the dark current density for 

bias voltages of -5.0 mV, -50 mV, and -1.5 V is shown in Fig. 4.5(b).  The inset of Fig. 4.5(b) 

shows the long-range dark current characteristics at a device temperature of 80 K.  This data 

shows that diode-like rectification can be achieved in IC PV devices over a large voltage range.  

However, the dark current characteristics indicate that there is some amount of non-ideal leakage 

current.   

 In ideally operating equal-absorber-length IC PV devices, the application of reverse bias 

should lead to a depletion of minority carriers in the absorber.  At high reverse bias, the current 

should saturate to a value determined by the thermal generation due to Shockley-Read-Hall 

processes or impact ionization.  In our data, there is no clear saturation of the current in reverse 

bias.  This can also be seen by comparing the magnitude and the slope of the Arrhenius plots of 

the dark currents.  For most temperatures, an order of magnitude increase in the dark current is 
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observed as the bias voltage is increased from -50 mV to -1.5 V.  The slope of the Arrehenius 

curves for the data at large reverse bias is also less steep.  This means that the current that flows 

at a given voltage is less temperature sensitive.  This suggests that at higher reverse bias 

voltages, a larger percentage of the transport is occurring through non-ideal channels, since the 

non-ideal current tends to be less temperature-sensitive than the fundamental generation current.   

 One possibility for the additional leakage current is that the mesa edge is not sufficiently 

passivated and there are current-carrying surface states present.  Another possibility is the defect-

assisted carrier tunneling across the electron barrier.  This is the same mechanism earlier 

identified as a possible cause of the bias-dependent photocurrent.  This process is analogous to 

the trap-assisted tunneling current often observed in p-i-n junctions under reverse bias [7]. 

 

Figure 4.6: (a) Open-Circuit voltage and (b) short-circuit current density for an IC PV 

device at 80 K for various above-bandgap photon fluxes.  The incident photons were 

generated from a blackbody source at temperatures of 1200 K and 1323 K.  The photon 

flux was varied by changing the aperture radius of the blackbody source.  The above-

bandgap fluxes were computed using Planck’s radiation law. 

 The relationship between the Voc and short-circuit current density (Jsc) of the device and 

the incident above-bandgap photon flux is shown in Figs. 4.6(a) and 4.6(b).  This data was 

acquired for a device temperature of 80 K.  For a given blackbody temperature, the photon flux 
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was changed by altering the aperture size of the emitter.  For each of these measurements, the 

distance between the blackbody source and the device was 10 cm.  The incident photon flux was 

calculated by considering the radiation transferred from the blackbody source, which emits light 

out of a circular aperture, to the device at a given distance away from the source.  The photon 

flux from the source to the device is given by: 

 
𝐽𝛾 = (

𝑟𝑎

𝑑
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2 2𝜋
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∞

0

∞

0

].  (4.1) 

As seen, this is a modified version of Eq. 1.1, where a prefactor of (ra/d)2 is put in front of the 

integral to account for the fact that the setup can be treated as a point source emitting radiation to 

an object in the far-field [115].  The dashed lines in Figs. 4.6(a) and 4.6(b) show the 

“background” values for Voc and Jsc.  These are the values measured when the radiation from the 

blackbody source was blocked.  These values are nonzero because the unshielded device (at 78 

K) was still exposed to the radiation from the ~300 K ambient surroundings.  It was noticed that 

there was an increase in device temperature when larger apertures were used, due to heating from 

the blackbody source.  Thus, there are two values of Voc quoted for the higher blackbody 

temperature of 1,323 K.  The “Peak” values were measured immediately after the device was 

illuminated.   The device temperature in this case was the lowest that could be achieved with 

LN2.  The “Steady” values were measured when the device reached a stable temperature, after 

the heating from the blackbody source.  The large deviation between the measurements before 

and after heating for an aperture radius of 1.2 cm indicates that there was a significant rise in the 

device temperature.  The scaling of Jsc with incident photon flux was approximately linear, and 

was not strongly affected by the device heating.   The highest Voc value we observed was 1.68 V.  

This value was found for the largest aperture size, and was measured before device heating was 
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observed.  The highest stable-temperature Voc was 1.63 V.   With the bandgap estimated from the 

spectral EQE, we find these Voc values are 77% and 75% of the effective bandgap of NstageEg, 

respectively, where Nstage is the number of cascade stages. 

4.2.3 Power Conversion Efficiency and Relevant Physical Processes 

 There are a diverse number of TPV approaches and applications.  Consequently, there 

has not been a standardization of how to characterize the efficiency of a TPV device.  In this 

work, the total efficiency we give, ηtot, is a measure of how well the device was able to convert 

the radiation from the blackbody emitter used to characterize the device.  In the following 

analysis, we put this value into context by breaking it into a product of individual efficiencies.  

Each of the individual efficiencies characterizes the power loss from a certain physical 

mechanism in the energy-conversion process.  This analysis enables us to gain insight on how 

these relevant processes affect the device performance.  This approach is similar to that used in 

Ref. 4.  The product of the individual efficiencies is given by: 

 
𝜂𝑡𝑜𝑡 = 𝜂𝑠𝑝𝑒𝑐𝜂𝑤𝑖𝑛𝜂𝑠𝑡𝑟𝑎𝑛𝑠𝜂𝑡ℎ𝑒𝑟𝑚𝜂𝑎𝑏𝑠𝜂𝑐𝑜𝑙𝑙𝜂𝑜𝑐𝐹𝐹,  (4.2) 

where ηspec is the spectral efficiency, ηwin is the window transmission efficiency, ηstrans is the 

surface transmission efficiency, ηtherm is the thermalization efficiency, ηabs is the absorption 

efficiency of TPV cell, ηcoll is the collection efficiency, ηoc is the voltage efficiency, and FF is the 

fill factor.  The spectral efficiency is the fraction of transmitted power above the absorber 

bandgap.  The window transmission efficiency is the percentage of incident above-bandgap 

power that is transmitted by the cryostat window. The surface transmission efficiency is the 

percentage of above-bandgap power that passes through the window and is subsequently 

transmitted by the air-semiconductor interface.  It indicates the amount of power that is lost to 

reflection and contact absorption.  The thermalization efficiency describes the amount of 
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transmitted above-bandgap power that can be recovered after carrier thermalization.  The 

absorption efficiency, and collection efficiency, characterize the percentage of transmitted 

above-bandgap light that is absorbed by the cell and successfully collected.  The voltage 

efficiency is given by: ηoc=Voc/(NstageEg).   

 In this analysis, the power loss from below bandgap photons was considered first.  This 

was done in order to make it easier to estimate the efficiency if the losses from the window or 

surface transmission were improved or eliminated.  The transmission at the window is a loss 

introduced by our experimental setup, rather than a loss that is intrinsic to the device.  In a real 

situation this loss may not be present.  The reflection loss at the surface can be improved by 

using anti-reflection coating. 

 The total power conversion efficiency is obtained from the measured J-V curves and the 

calculated total incident power intensity from the blackbody source.  The incident light power 

per unit area from the blackbody emitter is given by the equation: 

 
𝐼𝑖𝑛𝑐 = (

𝑟𝑎

𝑑𝑠𝑑
)

2

𝜎(𝑇𝑏𝑏
4 − 𝑇𝑎𝑚𝑏

4 ),  (4.3) 

the distance between the blackbody emitter and the device, σ is the Stefan-Boltzmann constant, 

Tbb is the blackbody emitter temperature, and Tamb is the ambient temperature (taken to be 300 

K). 

 A summary of the efficiency analysis done at 80 K for two different blackbody 

configurations is shown in Table 4.1.  For the first case, we set Tbb = 1,200 K and dsd = 30 cm, 

and for the second case we set Tbb = 1,323 K and dsd = 9.5 cm.  The J-V curve corresponding to 

the first configuration is shown in Fig. 4.5 (80 K curve).  The estimated particle (electron or 

photon) flux loss and power loss from the different physical mechanisms is given in Table 4.1.  

The individual efficiencies for the two configurations are also given.  Note that we carried out 
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this analysis under the assumption that the absorption of seven photons (one per stage) was 

required in order to deliver an electron to the external circuit.  This neglects any 

“photoconductive gain” effects. 

 The efficiency ηspec was calculated from Planck’s blackbody radiation law, assuming a 

bandgap of 0.31 eV at 80 K.  The transmission loss at the cryostat window was evaluated by 

measuring the spectral transmittance of the CaF2 window.  The resultant efficiency ηwin was 

found by integrating the product of this measured spectrum and the blackbody spectrum across 

above-bandgap energies.  Because anti-reflection coating was not applied, the light reflection at 

the semiconductor-air interface was a major source of power loss.  To determine this loss, we 

estimated the refractive index contrast between air and the semiconductor gives an interface 

reflectance of R≈30%.  It was not possible to break down ηabs and ηcoll into constituent 

efficiencies.  This was because the spectral-dependence of the absorption coefficient for SL 

absorber material is not accurately known, and there is evidence that the carrier collection is not 

perfect.  Instead, we simply quote their product as a single efficiency. 

 Tbb = 1200 K, ra = 0.76 cm, dsd = 30 cm Tbb = 1323 K, ra = 0.76 cm, dsd = 9.5 cm 

Loss Mechanism 
Particle Loss 

(cm-2 s-1) 

Power 

Loss (mW 

cm-2) 

Efficiency 

Particle 

Loss (cm-2 

s-1) 

Power Loss 

(mW cm-2) 
Efficiency 

Below Bandgap 

Transmission 
1.06 x 1017 2.94 ηspec = 61.0% 12.9 x 1017 36.7 ηspec = 67.0% 

Window Transmission 1.1x1016 0.71 ηwin  = 84.6% 1.6 x 1017 10.5 ηwin = 85.8% 

Reflection 1.5x1016 1.16 ηstrans 70.0 2.3 x 1017 19.2 ηstrans = 70.0 

Carrier Relaxation 0 0.99 ηtherm = 63.6% 0 17.5 ηtherm = 60.8% 

Incomplete 

Absorption/Collection 
2.0x1016 0.99 ηabsηcoll = 42.8% 2.7 x 1017 13.6 ηabsηcoll = 50.0% 

Voltage Losses 0 0.24 ηoc = 67.7% 0 3.4 ηoc = 75.1% 

Non-unity fill factor 2.5x1015 0.28 FF = 44.6% 4.6x1016 5.5 FF = 46.3% 

Total 1.5x1017 7.3 ηtot = 3.0% 2.0 x 1018 106 ηtot = 4.3% 

Table 4.1: Individual efficiency analysis of a blackbody-illuminated IC PV device for 

different blackbody settings at 80 K. 

 At 80 K, from the measured J-V curves, the value of ηtot for the device is 3.0% when 

illuminated by the blackbody emitter with settings Tbb = 1,200 K and dsd = 30 cm, and 4.3% for 
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the case of Tbb = 1,323 K and dsd = 9.5 cm.  For the second configuration, the values of ηabsηcoll, 

ηoc, and FF are all higher, and thus, all contribute to the higher overall efficiency.  The larger ηoc 

for the second case is an expected result, due to the higher incident photon flux.  The higher 

values for ηabsηcoll and FF for Tbb = 1,323 K are more challenging to explain.  Additional analysis 

(not documented in Table 4.1) showed that changes in ra and dsd gave the same values for 

ηabsηcoll and FF (to two significant digits) for measurements taken at the same value of Tbb, but 

different values of ηoc.  In these measurements, as expected, higher values of ηoc were observed 

when there were more incident photons.  This comparison of individual efficiencies shows that 

the higher values of ηabsηcoll and FF for Tbb =1,323 K are partially due to the spectral shape 

change for different Tbb, and are not a merely a result of different incident photon fluxes.  

Overall, the FF for both cases (45% and 46%) is fairly low compared to both the theoretical limit 

(>80%) and typical value (~70%) of TPV cells [4].  This suggests that there is significant room 

for improvement.  This will require further exploration of the transport through parallel paths 

such as etched surfaces.  A study of the current in these transport paths is presented below for the 

next set of PV devices. 

 The low value of ηabsηcoll for both cases (42.8% and 50.0%) is mainly due to the 

incomplete absorption of photons.  The total thickness of the seven absorbers was only about 1.1 

μm.  Although the carrier collection might not be perfect, the estimated ηcoll is no lower than 80% 

for both cases.  This assertion is based on the voltage-dependent photocurrent data presented 

earlier.  The value of ηcoll can be further enhanced with improved individual stage design to 

ensure better carrier collection or to suppress the photoconductive gain effects.  Increasing the 

value of ηabs can be simply realized by increasing the absorber lengths or the number of stages.  

In addition, realizing the very high particle conversion efficiencies values predicted for IC PV 
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devices will require using absorbers of different lengths to ensure an equal amount of photon 

absorption in each stage.  This sort of design is explored in the next section. 

4.3 Wider-Bandgap Photovoltaic Devices 

4.3.1 Structure Details of EB3911 and EB3917 

 The basic structure design for wafers EB3911 and EB3917 was similar to that of EB3337 

and previous interband cascade PV devices discussed in Refs 12-14.  Each stage had a SL 

absorber sandwiched between an electron barrier and hole barrier.  The hole barrier was 

composed of seven digitally graded InAs/AlSb QWs. The electron barriers in these structures 

were composed of three GaSb/AlSb QWs, making it slightly thicker than EB3337, which had 

only a two-well electron barrier.  The layer thickness sequence for the electron barriers in 

EB3911 and EB3917 was 15/39/15/53/15/75, where the normal and bold numbers refer to the 

GaSb and AlSb layers, respectively.  Like EB3337, the GaSb layers in both the absorber and 

electron barrier were doped p-type.  However, the doping concentration used was a slightly 

lower value of 3.5x1016 cm-3. 

 One difference with the prior work is that we utilize a SL period consisting of an InAs-

GaSb-Al0.8In0.2Sb-GaSb layering sequence, rather than the standard InAs/GaSb SL.  The thin (~7 

Å) layer of Al0.8In0.2Sb enables a wider absorber bandgap.  The choice of Al0.8In0.2Sb (lattice 

constant of 6.204 Å) also provides compensation to the tensile strain between the InAs (lattice 

constant of 6.058 Å) layers and the GaSb (lattice constant of 6.096 Å) substrate.   
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Figure 4.7: Band diagram and first electron and heavy hole minibands of both the modified 

type-II superlattice with Al0.8In0.2Sb layer insertion and a normal Al-free SL with the same 

InAs and GaSb thickness in a single-period.  On the lower part, the squared wavefunctions 

for the ground state of the conduction miniband (blue) and heavy hole minibands (red) are 

shown for both cases. 

 The effect of inserting this layer into the SL is illustrated in Fig 4.7.  The band diagrams 

in the figure compare the modified SL design with that of the more conventional Al-free 

InAs/GaSb type-II SL.  The ground state minibands for the conduction and heavy hole band are 

shown.  The difference between the band-edges of these minibands forms the effective bulk 

bandgap of the SL.  Below the band diagrams, the squared wavefunctions for the ground state of 

the conduction miniband (blue) and heavy hole minibands are shown for both cases.  Note that 

the miniband dispersions and wavefunctions were calculated by assuming periodic boundary 

conditions (i.e. the “infinite superlattice” approximation).  It is seen that by splitting the GaSb 

layer and adding a layer of Al0.8In0.2Sb, the band-edge of the lowest conduction miniband is 

pushed up in energy, and the edge of the highest heavy hole miniband is pushed down.  This 

creates a larger effective bandgap for the SL, enabling the realization of interband cascade PV 

devices with bandgaps closer to the range of conventional TPV technology.  In addition, the 
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enhanced spatial overlap between the electron and heavy hole wavefunctions should lead to 

stronger light absorption.  This SL design is similar to an M-structure SL, which uses binary 

AlSb to achieve wider-bandgap [116]. 

 

Figure 4.8: Structure designs for wafers EB3911 and EB3917.  The absorber thicknesses 

were varied in order to achieve better photocurrent-matching between the stages. 

 Another novel feature of these two structures in comparison to EB3337 and previous IC 

PV devices is that the absorber thicknesses were varied across the structure in order to achieve a 

rough photocurrent-matching between the stages.  The variation of the absorber thicknesses in 

the two structures is shown in Fig 4.8.  The first two absorbers in both structures consisted of 

SLs with 100 and 113 periods respectively.  This corresponds to absorber thicknesses of 570 nm 

and 644 nm.  The third absorber SL in the wafer EB3911 had 130 periods, corresponding to a 

thickness of 741 nm. 

4.3.2 Quantum Efficiency Calibration 

 The quantum efficiency calibration technique used for EB3911 and EB3917 was slightly 

different than the method described above for EB3337.  One change in the procedure was the 

choice to use lower blackbody source temperatures of 500 K – 800 K.  The procedure was 

modified due to the limited spectral range of the KBr beamsplitter used in the FTIR.  With this 
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beamsplitter material, the relative spectral response obtained from the FTIR is not accurate for 

photon energies above 0.8 eV.  In addition, rather than calibrating the spectra with separate 

blackbody measurements at each temperature, the calibrated quantum efficiency obtained for a 

device at 78 K was used as a reference spectrum to calibrate the quantum efficiency of that 

device at higher temperatures.  This was done by finding the calibration factor, Rcal, which 

related the absolute spectral responsivity of the detector, R(E), and relative responsivity Rrel(E) 

measured by the FTIR.  This relationship is given as: 

 
𝑅(𝐸) = 𝑅𝑐𝑎𝑙𝑅𝑟𝑒𝑙(𝐸).  (4.4) 

Note that R(E) is defined as the ratio of the photocurrent that flows in the device and the optical 

power incident on the device.  The responsivity is related to the ηext by: 

 
𝜂𝑒𝑥𝑡(𝐸) =

𝐸

𝑒
𝑅(𝐸). (4.5) 

 To find Rcal for a certain device, a lock-in amplifier was used to measure the photocurrent 

produced in the device at 78 K, while it was illuminated by the chopped blackbody source.  In 

order to estimate the precision of Rcal, the photocurrent was measured for a variety of blackbody 

source apertures.  In addition, the calibration was carried for different source temperatures of 500 

K and 800 K.  Comparing the results of each of these separate measurements, the uncertainty in 

Rcal was found to be about ~6% or less. 

 It should be noted that at high temperatures, when the device’s resistance, Rdev, was 

comparable with the input impedance, Rin, of the pre-amplifier used, the following correction 

was applied to obtain the photocurrent: 

 
𝐼𝑝ℎ = 𝐼𝑝𝑝(1 + 𝑅𝑖𝑛/𝑅𝑑𝑒𝑣), (4.6) 

where Ipp is the measured peak-to-peak current and Iph is the actual photocurrent.  This correction 

is need because at high temperatures the device’s resistance is reduced and is comparable with 



99 

 

the input impedance of the amplifier.  Thus, the total current is split between the two paths.  The 

value of Rdev was obtained by differentiating the measured current-voltage characteristics.  For 

high temperature measurements, the correction factor in the ( ) in Eq. 4.5 can be fairly large.  

This would plausibly introduce additional uncertainty into the measurement due to the 

uncertainty in both Rdev and Rin.  However, the good agreement between the direct photocurrent 

measurements and the photocurrent obtained by integrating the calibrated responsivity spectra 

seems to confirm that the method is sound.  This correction had to be applied to convert both the 

signal from the FTIR and the signal from the device when illuminated by the blackbody. 

4.3.3 Device Photovoltaic Properties 

 The photomask used to process the material from EB3911 and EB3917 into devices was 

different than the one used for EB3337.  This one was designed to create square mesa devices 

with dimensions ranging from 0.2x0.2 mm2 to 1.0x1.0 mm2.  The zero-bias EQE spectra for 

devices with dimensions of 0.4x0.4 mm2 from EB3917 and EB3911 are shown in Fig. 4.9.  The 

devices from both wafers have a 10% cutoff wavelength of ~3.0 μm, corresponding to a room 

temperature bandgap of about ~0.41 eV.  As seen, the current-mismatching between stages 

causes the 2-stage device to achieve a higher EQE.  This mismatch is fairly small for photon 

energies near the bandgap.  The larger current mismatch at higher photon energies is likely 

because of the stronger absorption at higher energies. 
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Figure 4.9: External quantum efficiencies for devices from wafers EB3911 and EB3917 at 

300 K.  The dimensions for both devices were 0.4x0.4 mm2. 

 For the PV characterization of these devices, an interband cascade laser source was used.  

The laser provided the higher power needed for these devices to achieve comparable short-circuit 

densities to other TPV cells reported in the literature.  The emission photon energy of the mid-

infrared laser used was about ~0.42 eV.  This was slightly higher than the absorber bandgap.  

Typical J-V curves for EB3911 and EB3917 are shown in Fig. 4.10 for temperatures of 300 K 

and 340 K.  The devices from both wafers had mesa dimensions of 0.3x0.3 mm2.  The data was 

acquired while the devices were under illumination from the mid-infrared laser.  The inset shows 

the emission spectrum of the laser used for the characterization compared to the 

electroluminescence (EL) spectrum of the PV device.  Both the laser spectrum and the EL 

spectrum of the PV device have their spectral peaks near ~0.42 eV. 
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Figure 4.10: Measured J-V curves of devices from wafers EB3911 and EB3917 under 

illumination from a mid-infrared laser.  Both devices had 300x300 μm2 square mesas.  The 

incident intensity was the same for each of the curves shown.  The inset shows the emission 

spectrum of the laser used for characterization and the electroluminescence spectrum of 

the PV device acquired at 300 K. 

 The three-stage device was able to achieve higher values of open-circuit voltage (Voc) and 

fill factor (FF) than the two-stage device, as expected.  However, the short-circuit current density 

(Jsc) value was about ~16% lower in the three-stage device.  This is due to the mismatch of 

photocurrent between the different stages.  There were similar differences in the Jsc values obtained 

under blackbody illumination for the two- and three-stage devices.  This indicates that better 

performance of the three-stage device should be possible simply by improving the photocurrent-

matching between the stages.  However, the photocurrent-matching was good enough that the 

three-stage devices achieved higher output powers under equivalent illumination conditions.    

 Both devices show an expected decrease in both Voc and FF as the temperature was 

increased from 300 K to 340 K.  However, it is noteworthy that there is a strong increase in the 

short-circuit current.  This is due to the decrease in the bandgap (estimated to be ~10 meV from 

the cutoff the in the response spectra).  This is noteworthy because it demonstrates the preservation 

of high carrier collection in IC PVs at high temperature.   
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 Under laser illumination, the three-stage device had Jsc = 310 mA/cm2, Voc = 295 mV, 

and FF = 44%.  This Voc value is comparable to those of the GaSb-based TPV devices reported in 

Ref. 117, which ranged from 240-320 mV (with bandgap ranged from 0.50-0.55 eV), under a 

much higher incident light intensity (the reported Jsc is about an order of magnitude higher than 

that of our device).  However, the FF values for those devices were 58-66%, which is 

significantly higher than our values.  The source of a lower than expected fill factor is usually 

series resistance dissipation or shunting effects.  The shape of the J-V curves at 300 K are 

actually consistent with what would be expected if there were shunting currents.  A more 

detailed study of the possibility of surface shunting is carried out below. 

 Now we will discuss the efficiency with which the devices are able to convert the laser 

power.  In this experiment, the spot size of the laser was larger than the device.  Therefore, it was 

not known a priori how much laser power was actually incident on the cell during the 

experiment.  However, this value can be estimated using the calibrated EQE, and the measured 

Jsc.  The laser power, Pinc, for a laser emitting photons with energy Eph is given as: 

 
𝑃𝑖𝑛𝑐 =

𝐸𝑝ℎ𝐽𝑠𝑐

𝑒𝜂𝜆
,   (4.7) 

where ηλ is the EQE of the cell at the lasing wavelength.  Thus, the efficiency, EFF, with which 

a PV cell converts laser power can be expressed as: 

 
𝐸𝐹𝐹 = 𝜂𝜆𝐹𝐹

𝑉𝑜𝑐

(𝐸𝑝ℎ/𝑒)
,  (4.8) 

where we note that the term Eph/e in the denominator is the photon energy in units of eV.  The 

EQE of the 3-stage device is about ~8.0% at 0.42 eV, while that of the 2-stage device is ~9.2%.  

From this, the laser power incident on the 3-stage device is determined to be 1.6 W/cm2, and the 

power incident on the 2-stage device is determined to be 1.7 W/cm2.  This difference is 
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reasonable due to the uncertainties in the EQE calibration and the laser alignment.  For the 3-

stage device the efficiency is found to be about ~2.5%, while that of the 2-stage device is found 

to be about ~1.9%.  This was used previously to estimate the power efficiency of a device from 

EB3337 under laser illumination [114].  Under comparable power, the efficiency of that device 

was about ~0.6%.  Note that the PV conversion efficiency will increase as the source power 

becomes stronger, due increases in the Voc and FF. 

 
Figure 4.11 External quantum efficiency of device from 3-stage wafer EB3911 at different 

temperatures. 

 In order to get a better understanding of the underlying device physics, the photoresponse 

and dark current were studied as a function of temperature for devices from both structures.  The 

EQE for a device from wafer EB3911 for is shown in Fig. 4.11 for a series of temperatures from 

78 K to 420 K.  The competing effects of bandgap-narrowing and shortening of the diffusion 

length can be seen by studying the temperature-evolution of the EQE curve.  The bandgap-

narrowing effect pushes the absorption edge to lower energies, and increases the overall 

absorption at energies well above the bandgap.  However, the reduction of the diffusion length at 
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high temperature results in fewer excited carriers being collected.  This effect is why the EQE at 

higher energies drops from 340 K to 420 K. 

 For applications, the relevant parameter of interest is the total current that flows in 

response to radiation from a source.  Fig. 4.12 shows the photocurrent that would flow in devices 

from the two wafers when under illumination by a 1000 K blackbody source.  These values were 

actually calculated from the calibrated quantum efficiencies, rather than directly measured.  In 

this situation, the blackbody temperature was taken to be 1000 K, and it was assumed to be 

emitting from an aperture with radius of 0.762 cm.  Note that the shape of the curve will not be 

changed by the choice of a different aperture size. 

 

Figure 4.12: Temperature-dependence of photocurrent under a 1000 K blackbody in 

devices from EB3911 and EB3917.  The values were calculated by integrating of the 

calibrated external quantum efficiency.  The inset shows how the bandgap of a device from 

EB3911 changes with temperature.  The Varshni parameters describing the temperature-

dependence of the bandgap are shown. 

 From Fig. 4.12, it is seen that for both 2- and 3-stage devices, the photocurrent increases 

in the range of 78 K up to room temperature and slightly above.  This is consistent with the laser 

measurements.  A decrease in photocurrent is not seen until about 375 K.  Even for temperatures 
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as high as 420 K a strong signal is maintained.  This result suggests that at the operating 

temperature of 300 K, a minimal number of excited carriers are lost to recombination.  This 

provides additional validation that the multiple-stage, short-absorber design should be able to 

overcome some of the obstacles typically associated with the conversion of mid-infrared 

radiation at room temperature. 

 The temperature-dependence of the dark current was also studied.  This was done in the 

temperature range of 150-420 K.  In this range, the thermal noise level was higher than the 

average background current, so no shielding of the devices was needed.  The specific parameter 

that was studied was the zero-bias resistance-area product, RoA.  For single-absorber photovoltaic 

devices, RoA is related to the magnitude of the expected saturation dark current, Jsat, by: 

 
𝑅𝑜𝐴 =

𝑘𝑏𝑇

𝑞𝐽𝑠𝑎𝑡
.  (4.9) 

For a multiple-stage device with Ns stages, the value of RoA is higher by a value of Ns. 

 The temperature-dependence of RoA will be controlled by the main transport mechanism 

that governs the dark current.  The expected temperature-scaling, if the current is bottlenecked by 

transitions across the absorber bandgap has the form: 

 
(𝑅𝑜𝐴)−1 = 𝐶𝑇𝑞𝑒−𝐸𝑎/𝑘𝑏𝑇 ,  (4.10) 

where C, q, and Ea are fitting parameters.  The parameter Ea is referred to as the activation 

energy.  In certain limits, the activation energy is expected to scale either as either Eg0 or Eg0/2, 

where Eg0 is the bandgap at zero Kelvin [118].  This value was found for the two samples by 

extrapolating the temperature-dependence of the absorber bandgaps.  The extrapolation was done 

by using the Varshni formula [119]:  

 
𝐸𝑔(𝑇) = 𝐸𝑔0 −

𝛼𝑇2

𝛽 + 𝑇
,  (4.11) 
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where α, β, along with Eg0 compose the Varshni parameters describing the temperature-

dependence of a given semiconductor.  The fitting of the temperature-dependent bandgap for a 

device from wafer EB3911 is shown in the inset to Fig. 4.12.  The fitted parameters are also 

shown.  These parameters were found to be a good fit for the devices processed from both 

wafers. 

 

Figure 4.13: Arrhenius plot of measured (RoA)-1 over temperature range of 150-420 K for 

devices from EB3911 and EB3917.  The activation energies correspond to the case of q=2 in 

Eq. 4.9.  

  An activation energy of Eg0 is expected when the transport is diffusion limited.  An 

activation energy of Eg0/2 is expected when the transport is dominated by the g-r mechanism in 

the depletion region.  An activation energy lower than Eg0/2 typically indicates current 

conduction through leakage channels.  Activation energies higher than the bandgap are typically 

not observed.  The value of q is expected to be equal to 1 if the dark current scales with ni (the 

generation-recombination limit) and equal to 2 if it scales with ni
2 (diffusion limit).  However, 

the temperature-modulation will also be influenced by the temperature-dependence of the carrier 
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lifetime, as well as the temperature-dependence of the diffusion coefficient if there is less than 

100% collection of thermally generated carriers.   

 Arrhenius plots of the temperature-dependence of (RoA)-1 for devices from both wafers 

are shown in Fig. 4.13.  The fitting was done for temperatures in the range of 240 K – 420 K.  

The result of fitting of the data to Eq. 4.9 is also shown for the case of q=2.  As seen, for 

temperatures below 240 K, the (RoA)-1 for both devices is higher than what is predicted by the 

high temperature trend lines.  This is because at lower temperatures, more of the current 

conduction is occurring through the non-ideal channels.  The fitting results for two other devices 

from wafer EB3911 are summarized in Table 4.2 and those for four other devices from wafer 

EB3917 are summarized in Table 4.3.  The tables present the fitting results for the cases of q=1, 

q=2, and q=3. 

 As expected, the RoA values are higher for the 3-stage device, due to the additional stage.  

For both devices the fitted Ea values are between Eg0 and Eg0/2 for the case of q=2.  The largest 

fitted values are for q=1.  Even for this choice of q, the fitted Ea values for EB3917 are over 50 

meV less than Eg0 for for EB3911 they are about 100 meV less than Eg0.  They are also less than 

Eg at 300 K.  From this comparison, it can stated that the transport in devices from both wafers is 

not completely determined by the diffusion mechanism.  This is actually consistent with the 

results of a variable-area study presented below, which shows that there is significant current 

conduction along the perimeter of the devices.  However, the data in Tables 4.2 and 4.3 do not 

indicate a correlation between device size and the fitted Ea.  Thus, the surface leakage probably 

does not account for the sub-Eg0 activation energy 

 An interesting observation is that the fitted values of Ea for the two-stage devices are 

higher than those of the three-stage devices.  The difference in Ea for the devices from the two 
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wafers is about 30-40 meV.  This variation is larger than what the author would expect from 

random sample-to-sample variations in material or processing quality.  This suggests that the 

unknown mechanism causing the deviation from the diffusion limit may be related to transport 

between stages. 

Wafer EB3917, 2-Stage 

Eg0 = 465 meV 
High Temperature Activation Energies 

Device Mesa Edge q=1 q=2 q=3 

A 500 μm 388 meV 358 meV 328 meV 

F 400 μm 382 meV 356 meV 326 meV 

H 400 μm 381 meV 351 meV 320 meV 

Table 4.2: Fitted values of activation energy for devices from sample EB3917.  This sample 

had three stages and was designed for photocurrent-matching. 

Wafer EB3911, 3-Stage 

Eg0 = 465 meV 
High Temperature Activation Energies 

Device Mesa Edge q=1 q=2 q=3 

A 200 μm 357 meV 327 meV 297 meV 

B 300 μm 343 meV 313 meV 282 meV 

C 400 μm 363 meV 332 meV 302 meV 

D 500 μm 372 meV 342 meV 311 meV 

E 1000 μm 344 meV 314 meV 284 meV 

Table 4.3: Fitted values of activation energy for devices from sample EB3911.  This sample 

had two stages and was designed for photocurrent matching.   

4.3.4 Influence of Surface Conduction 

 The elimination of leakage current channels is an important focus in optoelectronic 

device fabrication.  One source that is often problematic in devices based on InAs [120] and 

similar materials such as InAs/GaSb SLs [121] is charge conduction along the surface.  The 

termination of the crystal periodicity and the resulting dangling bonds create surface states.  This 

extra charge leads to pinning of the Fermi level at the surface.  In GaAs, this pinning is usually 

near the center of the bulk bandgap.  In materials with low-lying conduction bands, such as InAs, 

the Fermi level can actually be pinned above the conduction band edge [122].  This is shown for 

a device with a p-type absorber in Fig. 4.14.   
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Figure 4.14: Pinning of Fermi level at the surface in p-type material such as InAs or 

InAs/GaSb SL that has a low-lying conduction band.  Since the Fermi level is pinned above 

the conduction band, an inversion layer is formed on the surface.  Figure is adopted from 

Ref. 121. 

 When the Fermi level is pinning above the conduction band edge, this can lead to the 

formation of an inversion layer at the surface.  The inversion region creates a channel by which 

carriers can flow between the device contacts in a nearly-ohmic manner.  The formation of an 

inversion layer is a well-known problem in InAs-based infrared detectors.  Addressing this 

problem was part of the impetus for the original nBn design [33]. 

 In PV energy-conversion devices, which operate in forward-bias, the surface shunting 

currents run opposite to the photocurrent.  The net effect of this is a reduction of the reverse 

current at a given voltage.  This leads to a reduction in the fill factor, and can also reduce the 

open-circuit voltage.  It should be noted that there is a difference between surface conduction and 

surface generation-recombination.  The later effect refers to the generation or recombination of 

an electron-hole pair. 

 In the above analysis of the devices from wafer EB3337, it was established that the 

transport was not diffusion-limited and there was some source of leakage current.  One of the 

proposed leakage channels was along the surface.  However, at the time a thorough examination 

of this was not carried out.  In order to study this effect in the devices from EB3911 and EB3917, 
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a variable-area device analysis was conducted.  A variable-area analysis exploits the fact that the 

percentage of surface vs. bulk conduction in a device changes as a function of the perimeter-to-

area ratio of the device mesa.  

 For this experiment, several arrays of devices were cut from the processed material and 

mounted onto ceramic chip carriers.  Each array contained 22 devices with mesa dimensions 

ranging from 0.2x0.2 mm2 to 1.0x1.0 mm2. The relationship between the device edge length, r, 

and the perimeter-to-area, P/A, ratio is given by P/A = 4/r.  For each of the devices, the dark 

current at room temperature was measured at a reverse bias voltage of -200 mV.  In reverse bias, 

the bulk generation current, Jbulk, and the surface current flow in the same direction.  For ohmic 

surface conduction, the relationship between the total dark current, Jtot, and the device P/A is 

given by [123]: 

 
𝐽𝑡𝑜𝑡 = 𝐽𝑏𝑢𝑙𝑘 +

𝑉

𝜌𝑠𝑤

𝑃

𝐴
 ,  (4.12) 

where ρsw is the resistivity of the device sidewall. 

 
Figure 4.15: Dark current density as a function of device perimeter-to-area ratio from 

which bulk current density and sidewall resistivity from devices from wafers EB3911 and 

EB3917 are extracted.   The dark current was measured at a reverse bias voltage of -200 

mV. 
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 The parameters Jbulk and ρsw for each of the device arrays were obtained by fitting the 

measured Jtot values to Eq. 4.11.  The results for an array from EB3911 and an array from 

EB3917 are shown in Fig 4.15.  As seen, the predicted linear relationship between Jtot and P/A 

was observed in both wafers.  The extracted parameters indicate that the surface contribution to 

the total current is substantial.  The percentage of total current that flows along the surface varies 

from about 30% for the large devices to as much as 70% for the smallest devices. 

 The fitting results for each of the device arrays that contained a large amount of working 

devices are tabulated in Table 4.4 for wafer EB3911 and Table 4.5 for wafer EB3917.  The 

number of working devices that had dark current values included in the fits are also displayed in 

the tables.  Some of the arrays (i.e. Array 1 from EB3911) did not have a large number of 

working devices and are thus not included in the su1.mmary.  As seen, the extracted Jbulk values 

were larger for the 2-stage device arrays.  This result is expected.  For a 2-stage and 3-stage 

device under the same total bias voltage, the voltage applied to an individual stage will be less 

for the 3-stage device.  This will lead to less generation current in these devices at a given 

voltage.  The sidewall resistivity values are found to be larger for the 3-stage device arrays.  The 

difference between the two is about 300 mΩ cm2.  Although this difference is small, there is a 

clear observable trend.  The reason for this difference may be the fact that the three stage devices 

utilize a thicker overall structure. 

 EB3911 (3-Stage) Device Arrays at V = -200 mV 

 Array 2 Array 4 Array 5 

Devices 14 21 19 

Jbulk 14 mA/cm2 13 mA/cm2 13 mA/cm2 

ρsw 1.3 Ωcm2 1.4 Ωcm2 1.3 Ωcm2 

% Surface (0.2 mm) 69% 69% 70% 

% Surface (1.0 mm) 31% 31% 31% 

Table 4.4: Fitting parameters obtained from wafer EB3911 of Jtot vs. P/A for 3 different 

arrays of devices.  
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 EB3917 (2-Stage) Device Arrays at V = -200 mV 

 Array 1 Array 2 Array 3 Array 4 

Devices 15 11 18 19 

Jbulk 16 mA/cm2 18 mA/cm2 20 mA/cm2 23 mA/cm2 

ρsw 1.0 Ωcm2 1.0 Ωcm2 0.92 Ωcm2 1.2 Ωcm2 

% Surface (0.2 mm) 71% 69% 67% 59% 

% Surface (1.0 mm) 33% 31% 31% 23% 

Table 4.5: Fitting parameters obtained from wafer EB3917 of Jtot vs. P/As for 4 arrays of 

devices. 

 The results presented establish that, in addition to the intrinsic current due to interband 

generation, there is additional current caused by surface conduction.  Since the inversion layer 

conduction channel is expected to be Ohmic, it will also conduct leakage current in forward bias.  

As stated earlier, this current runs in the opposite direction as the photocurrent, and reduces the 

fill factor and open-circuit voltage.  In order to check this, the photovoltaic properties of the 

devices discussed above were also checked.  In this experiment, the devices were illuminated by 

the blackbody source.  The illumination was kept fairly weak in order to avoid heating the 

devices.  The results are shown in Fig 4.16, which shows the measured Voc and Jsc values as a 

function of P/A ratio.  As seen, in the smaller devices, where the perimeter conduction effect will 

be stronger, the open-circuit voltage is lower.  The perimeter effects do not influence the value of 

the short-circuit current.  The slightly lower value of Jsc for the 0.2x0.2 mm2 devices is likely due 

to a fact that the metal contacts in the smaller devices take up a larger percentage of the top 

surface.  The fact that P/A strongly influences Voc, but not Jsc is consistent with what would be 

expected from surface shunting effects. 
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Figure 4.16: Dependence of short-circuit current density and open-circuit voltage on device 

perimeter-to-area ratio for devices from EB3917 and EB3911. 
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Chapter 5 : Experimental Comparison of Single- and Multiple-Stage MWIR 

Detectors 

5.1 Introduction 

 In Chapter 3, a theoretical discussion was presented that detailed how an ICIP design can 

be beneficial for improving the sensitivity of photovoltaic detectors.  At the end of that chapter, it 

was stated that a multiple-stage design may be particularly useful for improving the sensitivity of 

infrared detectors operating at high temperatures (> 200 K).  This is because a reduction in 

quantum efficiency is typically observed in single-absorber detectors at these temperatures.  This 

has been observed by several groups [124,125].  A reduced quantum efficiency at high 

temperature implies that photo-excited electrons that would be collected at low temperature are 

not collected at high temperature.  An ICIP responds to this intrinsic limit on photocurrent by 

using multiple short-absorber stages to lower the detector noise.  By using a multiple-stage 

architecture, the “wasted photons” that would excite uncollected electrons in single-absorber 

detectors are instead utilized to drive the photocurrent in the optically deeper stages. 

 In Chapter 4, it was shown that devices from wafer EB3337, which had cutoff 

wavelengths of ~5 μm at room temperature, had EQE values that increased as the temperature 

was raised from 78 K up to room temperature.  The wider-bandgap devices from wafers EB3911 

and EB3917 did not show a decrease in photocurrent until ~375 K.  In addition, operation of an 

ICIP with a room temperature cutoff wavelength of ~6.2 μm at temperatures of 420 K has also 

been shown by the University of New Mexico [126].  These results are positive affirmations of 

the ability of multiple-stage devices to maintain a strong photoresponse at high temperature.  

What has been missing hitherto, both in this dissertation and the literature, is a direct 

experimental comparison of the temperature-dependence of the photocurrent and sensitivity of 

single- and multiple-stage detectors with similar designs.  In this chapter, we present such a 
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comparison for a set of five detectors that use InAs/GaSb SL absorbers with MWIR cutoff 

wavelengths. 

5.2 Structure Details for R100 Detector Series 

 The five wafers used to fabricate this series of MWIR detectors are denoted as R100, 

R101, R102, R103, and R104.  The epitaxial structures were grown by Hao Ye at the University 

of Oklahoma.  The growth of this set of samples was done within a two-week period in late 

March and early April of 2013.  Thus, the growth conditions and material quality should be 

similar for all the samples. 

Wafer 
Number of 

Stages 

Total Absorber 

Thickness 

Stage Absorber Thickness 

R100 1 1.32 μm Single absorber was 1320 nm 

R101 1 2.32 μm Single absorber was 2320 nm  

R102 15 2.32 μm All stages were identical 

R103 2 1.32 μm 605 nm, 710 nm 

R104 3 1.32 μm 634 nm; 754 nm; 936 nm 

Table 5.1: Design details for the ICIP wafers in this study. 

 The primary design difference between the five wafers was in the choice of the number 

of stages and absorber thickness.  Wafers R100 and R101 were both single-stage devices, with 

total absorber thicknesses of 274 SL periods (~1.32 µm) and 484 SL periods (~2.32 µm), 

respectively.  Wafer R102 was designed to have 15 identical stages.  The absorbers in this 

structure were fairly short, consisting of 33 SL periods (~158 nm).  Wafers R103 and R104 were 

multiple-stage devices, where the absorber thicknesses were varied across the structure in order 

to achieve a rough matching of the photocarrier generation rate in each stage.  In these samples 

the optically deeper stages were made thicker, since light attenuation in the shallower stages 

causes fewer photons to be incident on these stages.  The absorbers in the two stages in wafer 

R103 had 126 (~605 nm) and 148 (~710 nm) periods respectively.  The absorbers in three stages 

in wafer R104 had 132 (~634 nm), 157 (~754 nm), and 195 periods (~936 nm), respectively.  
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Note that the total absorption thicknesses of R103 was equal to the absorber thickness of R100, 

and that the total absorption thicknesses of R101, R104, and R102 are also equivalent. 

 

Figure 5.1: Calculated band profile of one stage of a detector from samples R103 under 

reverse bias.  The blue and red rectangles in the absorber represent electron and hole 

minibands.  The ground state energy levels and calculated wavefunctions for the QWs of 

the barrier regions are shown.  The blue wavefunctions represent electron states in the 

conduction band of the hole barrier and red wavefunctions represent the hole states in the 

valence band of the electron barrier. 

 The calculated band profile for sample R103 under a reverse bias is shown in Fig. 5.1.  

The calculation procedure is similar to that described in Chapter 4 for sample EB3337.  As 

before, it is seen that the voltage is primarily applied to the barrier regions.  As noted above, the 

basic stage design for each of the samples is the same.  The only change between the samples 

was in the choice of the number SL absorber periods, and the thickness of the electron barriers, 

which were made slightly thicker in the single-stage devices.  The hole barrier consisted of a 

series of InAs/AlSb QWs, while the electron barrier consisted of a series of GaSb/AlSb QWs.  

Note that the several of the AlSb layers in the interior of the hole barrier actually had a very thin 
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layer of InSb grown in the center.  This was done to ensure a local strain balance.  This was not 

accounted for in the calculated bandstructure of Fig. 5.1.  The electron barrier in the multiple-

stage samples consisted of 3 total QWs, while those in the one-stage samples were made slightly 

thicker and consisted of 5 QWs.  As seen in Fig. 5.1, the series of wells in both barriers were 

digitally graded so that the energy difference between the ground states of the electron and hole 

barriers is either nearly zero or within a thermal energy kbT.  This was done to ensure fast 

thermalization of the carriers in these two regions.  The period of the absorber SL for each of the 

structures was composed of a 20.5 Å-thick InAs layer (7 ML) and a 27.5 –thick GaSb layer (9 

ML).  The GaSb-on-InAs interface was forced during the growth to be InSb type, while the 

InAs-on-GaSb interfaces did not have a forced interface type.   

 Some p-doping of the GaSb layers in the structure was done by introducing Be dopants, 

so that holes were the majority carriers in the absorber.  However, in contrast to our previous 

designs, where the entire absorber region and electron barrier were doped, the samples studied 

here only had a partially doped absorber.  The GaSb layers in the electron barrier, along with 

those in the 1/3 of the absorber closest to the electron barrier were doped p-type with an acceptor 

concentration of 3.5x1016 cm-3.  This introduction of a doping gradient was done as a precaution 

against detrimental band-bending in the absorber due to hole accumulation in the GaSb layers in 

the electron barrier [14]. 

 The epitaxial growth sequence of a single stage consisted of the electron barrier being 

grown on top of the absorber, which was grown on top of the hole barrier.  With this illumination 

geometry, the light is incident from the opposite side of the collection point.  As noted in Chapter 

3, this design choice actually results in a lower signal in situations where slow diffusion limits 

the carrier collection process. 
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5.3 Device Characterization Results and Analysis of R100 Series 

5.2.1 Overview of Devices and Dark Current Analysis 

 Square mesa ICIPs were processed from the epitaxial material.  The processing was done 

using the same wet-etch recipe described earlier.  The photomask was the same as the one used 

to process the devices from wafers EB3911 and EB3917.  Thus, the device mesas had edge 

lengths ranging from 0.2 mm to 1.0 mm.  Arrays of devices were cut from the processed 

material, mounted on a heat sink, and wire bonded.  Micrographs of the mounted and bonded 

square-mesa devices can be seen in Fig. 5.2.  No anti-reflection coating was deposited, so an 

inherent 30% reflection loss of incoming photons are expected to be lost due to the index 

contrast between air and the planar semiconductor surface. 

 

Figure 5.2: Micrograph of processed and wire-bonded detector samples taken using 

scanning electron microscopy.  The image was provided by Dr. Lu Li. 

 The dark current-voltage characteristics of the device were measured for a range of 

temperatures.  At low temperatures, a cold shield was used to block the extraneous background 

radiation.  From the measured dark current-voltage curves, the RoA values were extracted in 

order to determine the detector noise when operated under zero bias. 
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Figure 5.3: Arrhenius plot shown the temperature-dependence of (RoA)-1 for three devices 

from wafer R103.  R103 is a two-stage wafer designed for photocurrent-matching.  The 

inset shows the dark current densities as function of voltage for the three devices at a 

temperature of 78 K. 

 At low temperatures, a strong variation in the dark current was observed for devices that 

were processed from the same wafer.  This can be seen in Fig. 5.3 for a set of devices processed 

from wafer R103.  The figure shows an Arrhenius plot comparing the (RoA)-1 of three devices 

from the same device array as a function of temperature.  It can be seen that at low temperatures, 

the (RoA)-1 values vary by orders of magnitude from device-to-device.  The dark current density 

of the devices also varies by orders of magnitude.  The inset of the figure shows the dark J-V 

characteristics of the three devices acquired at 78 K.  Typically, the dark current density of 

devices from the same wafer should not vary by more than one order of magnitude, even at low 

temperature where some non-uniformity between the devices would be expected.   

 As seen, the temperature-dependence of the (RoA)-1 for devices E2 and F2 is very weak at 

low temperature.  In contrast, the dark current of device B2 is strongly dependent on temperature 
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over the whole temperature range.  For this device, there is no “roll-over” in (RoA)-1 at low 

temperature, and the data for the whole 78-350 K temperature range would seemingly be well-fit 

by a single exponential function.  The most logical explanation for this observation is that there 

is some leakage channel present in devices E2 and F2 that dominates the transport at low 

temperature.  In device B2, this channel is not present.  Thus, we can assert that the transport in 

this device is bottlenecked by the absorber interband transition across the whole temperature 

range.  Unlike the surface issues discussed in Chapter 4, the leakage in devices E2 and F2 does 

not appear to be a perimeter effect, since there is no correlation between the P/A value of the 

devices and the (RoA)-1 values.  Recent work has indicated this problem is most likely introduced 

during the SiO2 deposition process [127].  In this experiment, the dark current of devices 

passivated with SiO2 and Si3N4 was compared.  The wafer used was an ICIP structure with a 

similar cutoff wavelength as the series of wafers discussed in this section.  At 78 K, the devices 

passivated with SiO2 had similar variations in the low temperature RoA values as those presented 

above from R103.  However, the devices passivated with Si3N4 (with heating) had dark current 

densities that were consistent within an order of magnitude.  In addition, the dark current of the 

devices passivated with Si3N4 were generally found to be lower than those passivated with SiO2.  

Thus, further improvement of the SiO2 deposition is needed to resolve the observed non-

uniformity in dark current. 

 At higher temperatures, it can be seen that there is more consistency in the values and 

temperature-dependence of the (RoA)-1 of different devices from wafer R103.  Similar converging 

of the dark current for devices from the same wafer was seen in the other wafers.  Thus, it is 

believed that the leakage current present at low temperature is not limiting the high temperature 

performance, which is what we are most interested in studying with this set of samples. 



121 

 

 For the temperature-dependent performance study presented below, representative 

devices were chosen from each wafer.  To avoid uncertainty introduced by the leakage current, 

the devices chosen were the ones that demonstrated the best performance at low temperature.  

The mesa sizes for the devices are shown in Table 5.2, along with the estimated Eg0 values for 

each of the corresponding wafers.  The temperature-dependence of the absorber bandgaps was 

estimated from the 10% cutoff wavelength of the relative response spectra, measured using the 

FTIR.  The values of Eg0 were found by fitting the temperature-dependent bandgaps to the 

Varshni formula, given in Eq. 4.10.  The fitting result is shown in Fig. 5.4 for the device from 

wafer R101. 

 

Figure 5.4: Temperature-depedent cutroff wavelength and estimated bandgap for device 

from wafer R101.  The fitted Varshni parameters for the device are shown.  

Sample 

Total 

Absorption 

Thickness 

Mesa 

Edge 
Eg(0 K) 

High Temp. Activation Energy 

q=1 q=2 q=3 

R100 1.32 μm 400 μm 303 meV 175 meV 158 meV 141 meV 

R101 2.32 μm 300 μm 296 meV 166 meV 149 meV 132 meV 

R102 2.38 μm  1000 μm 298 meV 166 meV 144 meV  122 meV 

R103 1.32 μm 400 μm 296 meV 177 meV 155 meV 133 meV 

R104 2.32 μm 200 μm 296 meV 186 meV 164 meV 141 meV 

Table 5.2: Details on wafers used in study and representative devices from each wafer. 
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 From Table 5.2, it can be seen that samples R101, R103, and R104 have zero-temperature 

bandgaps that are equal to three significant digits.  In addition, the devices from these three 

wafers had fairly consistent bandgaps across the whole temperature range examined.  The value 

of Eg0 for R102 was about 2 meV higher, while that of R100 was about 7 meV higher.  We 

believe that the difference in Eg0 between R102 and the first three wafers devices is not 

significant enough to conclude that there are large differences in the absorber composition of that 

sample compared with the other three.  However, as seen in more detail below, there was some 

unusual behavior exhibited by the devices from sample R100.  Note that the structural 

characterization did not illuminate any significant differences in the material quality of R100 

compared with the other samples. 

 Fig. 5.5 shows an Arrhenius plot of the temperature-dependent (RoA)-1 values obtained for 

the five representative devices from each sample.  The temperature dependence was fit to Eq. 

4.9.  The fitted activation energies for the cases of q=1, q=2, and q=3 are shown in Table 5.2.  

The values displayed in Fig 5.5 correspond to the case of q=2.  It can be seen that the 

temperature-dependent data for the devices from wafers R101, R103, and R104 can be well-fit 

using a single activation energy for the entire temperature range of 78 K – 350 K.  The fitted 

values of Ea for the three samples are within 10 meV.  For reference, the results are compared 

with the predicted RoA value from “Rule 07” for MCT detectors [54].  Rule 07 is an equation that 

gives the approximate dark current that can be expected for a diffusion-limited MCT detector 

with a certain cutoff wavelength at a certain temperature.  The formula was found by fitting the 

dark current data for a large number of MBE-grown MCT detectors.  For the researchers 

working on InAs/GaSb SLs it provides a useful benchmark [11].  As seen, at high temperature, 

the ICIPs in this study are actually able to exceed MCT Rule 07.  This is due to the fact that the 
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absorbers are shorter and because the devices utilize multiple stages.  However, the ICIP RoA 

data shows a weaker dependence on temperature than the Rule 07 curve.  The fitted Ea values are 

fairly close, but slightly larger than Eg0/2.  As noted in Chapter 4, this indicates that the dark 

current is scaling with ni, rather than ni
2.  This indicates that the current is determined by the 

interband generation-recombination events, but that these events are occurring in a region of 

carrier depletion.  This may indicate that the absorber is not a field-free region, as it was 

designed.  Another possibility is that band bending on the device perimeter is causing a depletion 

region to form near the device surface. 

 
Figure 5.5: Arrhenius plot of measured (RoA)-1 is shown in (a) for the samples that had a 

total absorption thickness of 1.32 μm and in (b) for the samples that had a total absorption 

thickness of 2.32 μm.  The fitting results correspond to the case of q=2.  As a guide, the 

(RoA)-1 value predicted by MCT Rule 07 is also shown. 

 The devices from wafer R100 have exhibit an unusual temperature-dependence of (RoA)-1 

at both low and high temperatures.  For the temperature range of 140 K – 200 K, the data is well 

fit using a value of Ea~150-160 meV, which is near the fitted high temperature Ea for the other 4 
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wafers.  At lower temperatures, a relatively temperature-insensitive dark current is observed.  

This high dark current at low temperature was observed in all the devices processed from this 

wafer.  A temperature-insensitive dark current is also observed at high temperatures.  This can be 

seen in the roll-over in (RoA)-1 for temperatures above ~250 K.  A similar roll-over can be seen in 

the data from the other single-stage sample, R100, but only for temperatures above ~300 K.  This 

observation for the single-stage samples is likely due to drop in diffusion length at high 

temperature, which in addition to limiting the photocurrent, will also limit the amount of 

thermally generated carriers that can be extracted.  These combined factors of unusual 

temperature-dependent (RoA)-1 behavior and a deviation in the zero-temperature bandgap lead us 

to conclude that wafer R100 had a lower overall material quality than the other wafers.  

 For device R102, separate activation energies were used to fit the high-temperature and 

low-temperature data.  The high-temperature value of Ea was similar to, but slightly smaller than 

the fitted Ea for samples R101, R103, and R104.  Although there is some deviation, we believe 

the values are consistent enough to indicate that the high-temperature dark current mechanisms 

in the devices from R102 are the same as those for the longer-absorber detectors.  At lower 

temperatures, the magnitude of the dark current decreases at a slower rate as the temperature is 

lowered.  A roll-over in (RoA)-1, similar that that observed for devices E2 and F2 from R103 in 

Fig. 5.3, and the device from R100 in Fig. 5.5, can be seen for the R102 device at low 

temperatures.  In devices E2 and F2, it was suspected the roll-over in (RoA)-1 was caused by 

some local imperfections in the fabrication quality, since there were other devices from that 

sample (such as B2) that showed temperature-dependence consistent with that at high 

temperature.  However, like wafer R100, a roll-over in (RoA)-1 was observed for all the devices 

from wafer R102.  In R100, this was believed to be due to a lower overall material quality.  
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However, unlike wafer R100, there is no other indication that wafer R102 has a lower material 

quality than R101, R103, or R104.  In fact, the weak temperature-dependence of RoA may be due 

to the connected to the multiple-stage, short-absorber design of that structure.  Similar behavior 

at low temperature has been observed in devices from other structures with similar designs.  This 

trend can be seen in the data presented in Appendix C.  This Appendix summarizes the 

temperature-dependence of RoA for all the MWIR ICIPs studied in this dissertation, along with 

those whose performance results were reported in Refs. 12-14.  Most of the early ICIPs utilized 

seven-stage designs with relatively short (150-250 nm) absorbers.  As seen, all these devices 

from wafers EB2700, EB2702, EB3337, IQE11A, IQE12A, and IQE13A all show a strong roll-

over in (RoA)-1 at low temperature.   

 It is not currently clear whether this is caused by the multiple-stage nature of the device 

or by the fact that fairly short absorbers are used.  The mitigation of this leakage current at low 

temperature could be an important topic in the development of high-speed ICIPs, which may 

need to be cooled in order to reach the sensitivities needed for certain applications.  

5.3.2 Photocurrent and Response Spectra 

 The calibrated external quantum efficiency (EQE) and nominal spectral particle 

conversion efficiency of detectors from samples R101, R102, and R104 are shown in Fig. 5.6 for 

both 78 K and 300 K.  These measurements were done at zero bias.  Recall that the particle 

conversion efficiency of a detector corresponds to the EQE multiplied by the number of stages, 

since that number of absorbed photons is required in order to generate a full electron charge of 

signal in the external circuit.  We refer to the curve in Fig 5.6 as the “nominal” spectral particle 

conversion efficiency, since we assume that there is no internal gain in the device.  Note that for 

single-absorber detectors the particle conversion efficiency is equal to the EQE. 
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Figure 5.6: External quantum efficiency (solid line) and nominal particle conversion 

efficiency (dashed lines) of devices from samples R101, R104, and R102.  The inset shows 

the deviation of particle conversion efficiency of the multiple-stage samples (R104 and 

R102). 

 In the limit where the diffusion length is long compared to the absorber thicknesses, we 

expect that the R101 device will have the highest particle conversion efficiency, followed by R104, 

and then R102.  When the diffusion length is long compared to the absorber thickness, all electrons 

excited in the absorber will be converted to photocurrent.  In this limit, the multiple-stage 

architecture is actually less efficient at using the incident photons, because of the requirement of 

current continuity across the device.  The device from R104 can only match the particle efficiency 

of R101 if the photocurrent-matching between the three stages is perfect, which is not the case.  

The signal generated in sample R102 is limited by the photo-generation rate in the optically deepest 

stage, which leads a fairly weak overall signal.  Gain in the multiple-stage samples can lead to a 

higher photo-response (but not necessarily a higher sensitivity since this will also compromise the 

noise reduction capability of multiple-stage devices). 

 The deviations of the nominal particle efficiencies of the multiple-stage devices from 

those of the single-stage device are shown in the Fig 5.6 insets.  At 78 K, it is seen that while 
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R101 has the largest EQE, its nominal conversion efficiency is about 60% lower that of the 

device from R104, and also less than that of R102 at photon energies less than 0.39 eV.  Thus, 

we tentatively conclude that there is some gain in the multiple-stage structures. 

 Interestingly, the quantum efficiency of the devices from wafer R102 tends to roll-over at 

shorter wavelengths, while the values for sample R101 and R104 continue to increase.  This may 

be due to current-mismatching of the photocurrent generated by high-energy photons, which are 

more strongly absorbed. 

5.3 Detectivity and Photocurrent 

 To evaluate the sensitivity, we utilize the convention of measuring the D* for a detector 

illuminated by a blackbody set to a temperature of 500 K [128].  For a detector at zero-bias 

illuminated by a source with power Pinc the detectivity, D*, is given as: 

 
𝐷∗ =

𝐼𝑝ℎ

𝑃𝑖𝑛𝑐

√
𝑅𝑜𝐴

4𝑘𝑏𝑇
 ,  (5.1) 

where Iph is the photocurrent that flows under the given incident power.  The D* values for 

illumination by a 500 K blackbody source were obtained from the calibrated EQE spectra and 

the measured values of RoA using Eq. 5.1. 
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Figure 5.7: Temperature-dependent zero-bias detectivity measured under a 500 K 

blackbody is shown in (a) for the samples that had a total absorption thickness of 1.32 μm 

and in (b) for the samples that had a total absorption thickness of 2.32 μm.  The insets of 

(a) and (b) compare the detectivity values of the 1.32-μm absorber and the 2.32-μm 

absorber devices at high temperature on a linear scale for detecitivity. 

 The temperature-dependence of D* for each of the devices is shown in Fig. 5.7.  In the 

figure, the temperature-dependence of detectors with the same overall absorber lengths are 

directly compared.  As predicted, the shorter absorbers in the multiple-stage devices enable them 

to have a sensitivity that is much less sensitive to temperature than the single-stage devices.  For 

wafers R100 and R103, which have an absorber thickness of 1.32 μm, the multiple-stage device 

achieves higher D* values at both low and high temperature.  We believe the reason that R103 

has a better D* than R100 at low temperature is the material quality difference between the two 

wafers, as detailed in the above discussion.  The D* values of the two are quite similar in the 

temperature range of 160 K – 230 K, which is notably the temperature range where R100 has a 

dark current temperature-dependence that is consistent with the other four wafers.  At 

temperatures above 250 K, the sensitivities of the two devices diverge, with R100 showing a 

stronger decrease in D* as the temperature increases.   
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Figure 5.8: Temperature-dependent response (photocurrent divided by incident power) of 

MWIR ICIPs under a 500 K blackbody is shown in (a) for samples that had a total 

absorber thickness of 1.32 and in (b) for samples that had a total absorption thickness.  

Note that response is the photocurrent that flows in the device divided by the incident 

power. 

 The advantages offered by the multiple-stage architecture can be more clearly seen by 

comparing the temperature-dependence of the photocurrent.  Fig. 5.8 shows the temperature-

dependence of the detector response under a 500 K blackbody, which is the photocurrent that 

flows under that illumination divided by the incident power.  For both samples R100 and R101, 

an increase in the photocurrent is observed at low temperatures, and after peaking shows a sharp 

decrease at high device temperatures.  For R100, the decrease in photocurrent begins around 200 

K, while for R101 it begins around 250 K.  This is consistent with the earlier observation of the 

high temperature (RoA)-1 roll-over occurring at a lower temperature for R100 than R101.  The 

devices from samples R103 and R104 show a monotonic increase in photocurrent with 

temperature up to about 325 K until the signal begins to drop.  The devices from sample R102 

show a constant rise in signal with increasing temperature, which is expected for devices with 

such short absorber lengths. 
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5.4 LWIR Interband Cascade 

 We believe that the multiple-stage approach may be even more advantageous for 

improving the sensitivity of detectors at longer wavelengths.  Generally, for InAs/GaSb SLs, 

both the near-cutoff absorption coefficient and carrier lifetime will become smaller as the 

bandgap is made narrower.  In particular, detectors with cutoff wavelengths in the LWIR 

atmospheric transmission window of 8-12 μm are of great technological interest.   

Recently, we grew and fabricated photocurrent-matched two-stage and three-stage ICIPs with 

cutoff wavelengths near ~12.0 μm.  The overall design structure of these detectors was similar 

that of our MWIR ICIP structures.  The absorbers consisted of InAs/GaSb type-II SL material.  

The thickness of a single SL period in the absorber was about 66 Å.  The InAs layer was 

designed to be ~40.3 Å and the GaSb layer was designed to be ~25.7 Å.  As with the MWIR 

samples, an InSb interface was forced at the GaSb-on-InAs interface in order to provide strain 

compensation.  The first two absorbers in both structures were composed of SLs with 86 and 96 

periods respectively.  These choices correspond to absorber thicknesses of 568 nm and 634 nm in 

the first two stages.  The third absorber in the three-stage sample was composed of a SL with 112 

periods, corresponding to a thickness of 739 nm. 
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Figure 5.9: External quantum efficiency (solid line) and particle conversion efficiencies 

(dashed line) for 2-stage and 3-stage LWIR ICIPs 

 The EQE and particle conversion efficiency curves for zero-bias operation are shown in 

Fig. 5.9.  As seen, the detectors are able to achieve a fairly good photoresponse at zero bias.  This 

confirms that photovoltaic ICIPs with LWIR cutoffs can be achieved using the same basic stage 

design as has been used for the MWIR detectors.  Since the absorber thicknesses of the two 

structures are the same, the two devices should have roughly the same EQE if the current-

matching between stages was perfect.  However, as seen, the two-stage device has a higher EQE 

value across the spectral range, indicating some current mismatching.  The particle conversion 

efficiency was higher for the three-stage device though since it had a larger overall absorption 

thickness.  The cutoff wavelengths between the two wafers are slightly different, despite the fact 

they were designed to have the same SL period.  In addition, the observed RoA values were low.  

This indicates some inconsistencies in the material growth process.  This is also apparent from 

Nomarski microscopy analysis, which shows about an order of magnitude higher defect density 
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for the LWIR detector structures than the MWIR ICIPs.  Thus, further optimization of the 

material is needed for improving the performance of LWIR ICIPs.  It should be noted that the 

LWIR detectors were grown prior to the MWIR detectors described earlier, which indicates 

some improvement in the growth process. 
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Chapter 6 : Conclusions and Future Work 

6.1 Dissertation Summary 

 The aim of this dissertation was to outline and demonstrate the advantages that 

photovoltaic devices based on interband cascade structures offer as an alternative to conventional 

single-absorber devices.  Interband cascade photovoltaic devices are unique because of their 

multiple-stage nature.  This sort of design is made possible by the type-II broken-gap alignment 

between InAs and GaSb.  This alignment enables electrons to transition between the valence 

band of GaSb and the conduction band of InAs via elastic or low-energy inelastic scattering 

processes.  In a multiple-stage structure, this creates a window through which electrons can pass 

from the absorber conduction band of one stage to the absorber valence band in the next stage.  

Thus, transport in these devices arises from a series of interband excitation and collection events, 

and several photons are required for an electron to traverse between the device contacts.   

 For photovoltaic devices, the multiple-stage design is useful because it allows the use of 

short absorbers.  This ensures that excited photocarriers are collected before they recombine.  

The recombination of excited photocarriers is a well-known problem for narrow-bandgap 

semiconductor devices operating at high temperature.  Another advantage of multiple-stage 

devices is that they have lower operating currents.  In energy-conversion devices, this trade of 

lower current for higher voltage leads to less power dissipation across the contact resistance.  In 

photodetectors, the lower operating current and higher device resistance reduces noise from 

parasitic sources such as the pre-amplifier. 

 In Chapter 3, we presented theory aimed at evaluating the carrier transport and noise in 

multiple-stage interband infrared detectors.  The model follows from the picture that transport in 

the detector arises from the exchange of electrons between groups of thermalized states within 
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the device.  In this picture, it is simple to evaluate the electronic noise, which arises from the 

stochastic variation of these exchanges.  This approach highlights the inherent design tradeoff 

between the signal and thermal noise.  For instance, in the case of bulk-like absorbers, both the 

photocurrent and thermal currents can be calculated from their respective generation rates using 

a Green’s function, which is related to the design and material properties of the absorber. 

 The developed theory is general for multiple-stage photovoltaic devices.  Here it was 

applied to identify the situations where the multiple-stage approach can be superior to single-

absorber detectors.  We considered the ultimate thermal-noise performance limit set by the 

diffusion-limited transport where the electric fields in each stage are confined to the barrier 

regions.  We first investigated detectors optimized for high speed, with d << 1/α and d<<Ln.  For 

detectors in this limit, we derived an optimal number of stages in terms of α and d.  This result 

suggests that the use of multiple-stages provides a means for achieving high-speed detectors 

without sacrificing as much sensitivity as would be required for a single-absorber device to 

achieve a similar response time.  For applications where high speed is less important than 

sensitivity, the multiple-stage approach also provides a means for improving the performance by 

enhancing the carrier collection efficiency.  Most notably, the ultimate performance limit of 

detectors operated at zero-bias is higher for multiple-stage devices, provided the absorbers are 

correctly designed to achieve an equal amount of absorbed and collected carriers in each stage.  

Our analysis of the potential improvement in detectivity of optimized detectors showed the 

multiple-stage approach should be beneficial (i.e. detectivity improvement of 1.5 or higher) 

when αL is < 0.2 for equal-absorber devices and when αL < 0.5 for photocurrent-matched 

devices.  It was also shown that photocurrent-matched detectors can improve the detector 

sensitivity in the strong-signal limit by enhancing the particle conversion efficiency. 
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 In Chapter 4 we discussed the design and experimental characterization of a series of IC 

PV devices designed for radiative energy conversion.  We examined devices utilizing InAs/GaSb 

superlattice (SL) absorbers and others using wider-bandgap InAs/Al0.8In0.2Sb/GaSb/Al0.8In0.2Sb 

SLs.  The thin layer of Al0.8In0.2Sb enabled the latter devices to achieve a wider absorber 

bandgap.  There were two wider-bandgap structures examined.  One structure had two stages and 

the other had three stages.  In both designs the absorber thicknesses were varied across the 

structure in order to achieve a rough matching of the photo-collection current in each stage.  

It was shown that at comparable laser powers, the wider-bandgap devices were able to achieve a 

better power conversion efficiency.  The three-stage device had a higher efficiency than the two-

stage due to a higher open-circuit voltage.  However, for both sets of devices, the power 

conversion efficiency is found to be limited by a low fill factor.  A variable-area analysis of a 

series of the wider-bandgap devices revealed the devices suffered from significant surface 

shunting effects.  The shunting was also shown to limit the open-circuit voltage. 

 Chapter 5 presented an experimental study of the temperature-dependent performance of 

a set of MWIR interband cascade infrared photodetectors that utilized InAs/GaSb SL absorbers.  

In this study, we were primarily interested in how the photocurrent and the zero-bias detectivity 

varied with temperature for devices with different numbers of stages and absorber thicknesses.  

We found that the short-absorber devices had a photo-response that was less sensitive to 

temperature, and as a result were able to achieve better D* values above 250 K than the single-

stage devices.  This verifies predictions that the photoresponse in short-absorber, multiple-stage 

devices would be less sensitive to increasing device temperature, and would have the potential to 

achieve higher sensitivities due to their inherently lower noise.  This result shows that the 

multiple-stage architecture can produce sensitivity improvements for infrared detectors operating 
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at high temperature.  To the author’s knowledge, this is the first comparative study of single- and 

multiple-stage infrared detectors for which the main design features such as absorber material 

composition and barrier design were kept roughly the same.  One unexpected factor in this study 

was the observation of high temperature activation energies close to half the extrapolated zero-

temperature bandgap for devices from most of the samples. 

6.2 Future Work   

 This section will address the broad challenges faced in the development of PV devices 

targeted for the conversion of mid-infrared radiation and also those issues more specific to 

interband cascade structures.  First, I will address some of the more extrinsic challenges that are 

currently faced in the material growth and fabrication process.  As discussed in this work, PV 

devices designed to efficiently convert mid-infrared radiation to electricity must be fairly thick in 

order to absorb most of the incident light.  For devices using SL absorbers this implies that the 

epitaxial heterostructure will consist of many (> 1000) layers.  When these sort of 

heterostructures are grown very thick, it becomes more challenging to maintain strain balancing, 

even with the close lattice-matching of InAs, GaSb, and AlSb.  To the author’s knowledge, the 

thickest absorber for a detector based on InAs/GaSb SL was 6 μm, and was grown by 

Northwestern University [129].  This device had a cutoff wavelength of ~12 μm at 77 K.  

Absorbers even thicker than this may be needed to achieve high quantum efficiencies, especially 

for LWIR detectors.  For multiple-stage structures, the growth optimization may be more 

challenging, due to the extra barrier layers. 

 A second extrinsic challenge is to mitigate the surface effects that were observed in the 

energy-conversion devices presented in Chapter 4.  These issues will most likely be encountered 

in ICIP fabrication as well.  For conventional, deep-etched devices, this would involve 
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experimenting with different dielectric materials and deposition conditions.  An alternative to the 

conventional passivation method of dielectric deposition is to utilize the self-passivation 

approach discussed in the introduction.  Applied to IC PV devices, this method would utilize the 

wide-bandgap electron or hole barrier at the top of structure for passivation.  Whether the 

electron or hole barrier is used would depend on the preferred illumination condition.  With this 

approach, only the top contact layer would be etched.   This is attractive for FPA applications, 

due to the fact that thicker structures are more difficult to etch and clean, especially when the 

device dimensions are as small as those needed for an FPA [10].  However, doing this with a 

multiple-stage SL-absorber device would more challenging due to the need to account for the 

effects of current-spreading, especially if one wants to achieve a photocurrent-matched device.  

The photocurrent-matching process in the design would need to account for both the lateral and 

vertical transport properties. 

 A third issue that must be resolved is the choice and optimization of the absorber 

material.  The devices presented in this work used InAs/GaSb and 

InAs/Al0.8In0.2Sb/GaSb/Al0.8In0.2Sb SL absorbers.  As stated in Chapter 1, the InAs/GaSb SL is 

considered a promising material for mid-infrared PV devices.  It was also noted that the defect-

assisted interband transition time has been found to be unexpectedly short.  Although this may 

also be considered an extrinsic problem, this short lifetime has been observed by multiple groups 

using material grown by different machines.  Thus, resolving this issue will likely require more 

than some tweaks to the MBE growth steps.  A series of time-resolved material studies have 

established a loose consensus that the short lifetime of InAs/GaSb SLs is related to the presence 

of Ga in the material [21-24].  There is also evidence that the lifetime is not caused by the SL 

nature of the material, as the lifetime has been found to be insensitive to the number of interfaces 
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[130].  However, there has not been any indication yet as to whether the defect issue can be 

mitigated.  Thus, the fundamental material optimization of InAs/GaSb SLs is an area that 

requires further research. 

 The InAs/Ga(In)Sb SL is a natural absorber material for interband cascade PV devices.  

However, the use of other absorber materials is possible if they have the proper band alignment 

with the electron and hole barriers and can be lattice-matched to either a GaSb or InAs substrate.  

The alignment of the absorber with the hole barrier should be type-II with the absorber valence 

band edge falling in the bandgap of hole barrier.  This means the absorber valence band edge 

should fall either within or slightly above the bandgap of InAs.  The alignment of the absorber 

with the electron barrier should also be type-II.  However, in this case the conduction band edge 

should fall within the bandgap of the electron barrier.  This is the case if it falls in the bandgap of 

GaSb.  If these conditions are met, an interband cascade type structure can be realized with an 

alternative absorber material.  One alternative that may be possible is the Ga-free InAs/InAsSb 

SLs.  This material has been demonstrated to have a longer non-radiative interband lifetime than 

InAs/GaSb SLs [23,24].  The disadvantage to this material it also has a fairly low mobility and 

absorption coefficient.  However, a material with a long interband lifetime, but low mobility and 

absorption coefficient is the exact sort of material that can be improved with the multiple-stage 

design. The alignment of the valence band of an InAs/InAsSb SL and the hole barrier will be 

fairly small.  This means that a grading of the electron barrier quantum wells, rather than the hole 

barrier quantum wells, should be used to relax the excited carriers to the next stage.  This may 

lead to a higher inter-stage resistance because of the slow hole transition process.   

 There are many potential directions for the future development of IC PV energy-

conversion devices.  One reason for this is the immense versatility of the PV approach for 
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energy-conversion.  The development of cells for non-solar applications is still very immature.  

Research into improving the source and spectral shaping technology is also ongoing.  The 

progress in this ongoing work may change the parameters required for the optimum PV cell.  For 

example, a reasonable next step in interband cascade PV research may seem to be to utilize 

absorbers with different bandgaps in order to achieve spectral splitting.  This would only be 

useful if the radiation converted by the cell has a broadband distribution.  The development of a 

good selective emitter that is able to convert the radiation emitted from a broadband source to a 

narrow spectral band would make the spectral splitting approach unnecessary.  Since there are 

already many inherent losses in a TPV system, this may be the most promising path towards an 

efficient system for converting terrestrial radiation.  Because of the uncertainties in the future 

development of TPV sources and spectral shaping technology, my recommendation for future 

work on interband cascade PV energy converters would be to concentrate on research that 

demonstrates some of the fundamental advantages the multiple-stage approach has over a 

converter cell that only has a single absorber.   

 One almost certain requirement for all potential IC PV energy-conversion applications is 

that the cell will need to be able to efficiently convert a large photon flux to electrical power.  As 

stated earlier, in narrow-bandgap PV devices, this is problematic for single-absorber devices due 

to the large series resistance losses associated with the high current.  The multiple-stage 

approach provides the means for mitigating this loss by trading a lower current for higher voltage 

without sacrificing the power output of the cell.  However, this advantage has not been 

definitively established in practice.  Thus, one fairly straightforward but important experiment 

that could be conducted is a comparison of the conversion efficiency of single- and multiple-

stage cells with similar designs as a function of incident power from the source.  At low incident 
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powers the efficiency in both cells would be expected to increase with power due to the increase 

in open-circuit voltage.  At higher incident powers, the behavior of the two cells would be 

different.  The efficiency of the single-absorber cell would strongly decrease due to series 

resistance effects.  The efficiency of the multiple-stage device would continue to increase or at 

least fall off less rapidly with increasing power due to the reduced loss to series resistance.  Such 

a result would unambiguously demonstrate the advantage that multiple-stage devices have in 

mitigating series resistance losses.  

 Another possible direction for future research on interband cascade energy-conversion 

cells is the optimization of the structure doping for the conditions under which these cells will 

operate.  In this work, the absorbers of the energy-conversion devices were doped in a manner 

similar to the detector structures.  However, the physics of these devices is different because they 

will operate at room temperature and under forward bias.  Thus, the absorber contains a large 

number of excess carriers.  The carrier densities will be similar to, but (in an ideal world only 

slightly) less than those of an ICL or interband cascade LED at the transparency voltage.  Since 

recombination in ICLs near threshold is known to be limited by Auger recombination, it would 

be expected that forward-biased interband cascade PV devices would also be dominated by 

Auger recombination, rather than Shockey-Read-Hall processes.  If this is the case, the doping 

must be altered accordingly.  In a study presented in Ref. 62, it was found that the optimal 

threshold condition for ICLs was one where the electron and hole densities were roughly equal.  

This corresponds to the condition where the cross-section for multi-electron and multi-hole 

processes are roughly equal.  If this is the case, the incorporation of carrier rebalancing would 

lead to an increase in the open-circuit voltage by reducing the Auger recombination rate at a 
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given voltage.  For this design, the multiple-stage architecture would be beneficial because the 

carrier extraction would be limited by the slow hole diffusion process. 

 The path forward for ICIPs is a bit clearer than for their energy-conversion counterparts.  

Many of the general issues discussed above such as growth improvement, passivation 

improvement, and absorber material optimization are important topics for future ICIP research. 

In particular, high-quality growth of thick structures will be required for realizing better ICIPs 

with cutoff wavelengths in the LWIR and VLWIR regions of the spectrum.  The potential for 

improvement with the use of multiple-stages is expected to be even better than in the MWIR 

region, due to the lower absorption coefficient and diffusion length. 

 As discussed in this dissertation, the ICIP concept is most promising for achieving 

semiconductor infrared detectors with better high temperature performance and for achieving 

better high speed detectors.  One outstanding issue from this dissertation is the question of why 

the low-temperature activation energies appear to be inherently lower for the multiple-stage, 

short absorber devices.  This could be a relevant question for high-speed ICIPs, since these 

detectors would conceivably use many stages with very short absorbers.  In addition, they may 

need to be cooled to reach the sensitivities required for certain applications.  Eliminating the 

leakage source that is causing the dark current to be less sensitive to temperature would 

potentially lower the cooling requirements for these detectors. 

 Another important topic for future ICIP research is the study of the high temperature 

physics in InAs/GaSb SL detectors.  Most of the fundamental material studies have concentrated 

on studying the low-temperature recombination and transport properties.  The physics of 

semiconductor devices is often fundamentally different at low and high temperature.  As seen in 

this work, the performance at low temperature is often limited by extrinsic factors such as the 
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presence of defects or the fabrication quality.  The high temperature performance is more likely 

to be governed by the intrinsic properties of the absorber material.  One key issue that remains 

unresolved is why the minority carrier diffusion length of mid-infrared absorber materials drops 

at high temperature.  This could be caused by either a drop in the non-radiative lifetime, or a 

drop in the effective diffusion coefficient.  The latter effect is possible if the slow dynamics of 

the valence band carriers in the absorber play a limiting role in the high-temperature transport.  

This would be expected if the rising temperature makes the material more intrinsic.  When this 

high-temperature device physics is better understood, the degree to which the multiple-stage 

approach can be beneficial can be better quantified for detectors using specific absorber 

materials. 
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Appendix A: Derivation of Shockley-Ramo Experession for Instantaneous 

Current Under Fixed Potentials 

 
Figure A.1: Schematic of an arbitrary semiconductor device where electron transport can 

be modeled as thermalized reservoirs exchanging electrons. 

 Let us consider a system such as that in Fig. A.1.  The system is composed of a 

semiconductor structure between two metal conductors, which we will denote as conductor 1 and 

conductor 2.  Conductor 1 has a charge of q and voltage V.  Conductor 2 is grounded.  The 

electrons in the device interior are grouped into different reservoirs, each with a separate 

chemical potential, denoted as μi for the ith reservoir.  The amount of work to assemble this 

configuration at constant temperature and pressure is given by the Gibbs’ free energy: 

 𝐺 = 𝑞𝑉 + ∑ 𝑛𝑖𝜇𝑖

𝑖

, (A.1) 

where ni is the total number of electrons in the ith reservoir.  For now, we assume that all 

quantities in Eq. A.1 are able to vary with time.  The inducement of signal in the external circuit 

is a two-step process.  First, the environment (composed of the lattice, local electromagnetic 

field, etc…) induces an electron to transition from one reservoir to another.  This transition event 

obviously causes a change in the total Gibbs’ free energy.   However, the total Gibbs’ free 

energy of the system should be constant with time.  Thus, any change in the Gibbs’ free energy 

of the internal electrons will be compensated by the inducement of charge on conductor 1 and 
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energy transferred to or from the external circuit to ensure that dG/dt=0.  The assertion that the 

Gibbs’ free energy should be constant with time comes from the same principle as Green’s 

reciprocity theorem [53], which was used in the original proof by Shockley [23].  The total 

power delivered to the circuit due to the inducement of charge on conductor 1 is equal to –V 

dq/dt and can be expressed as: 

 𝑃𝑐𝑖𝑟𝑐 = ∑(𝑛𝑖𝜇𝑖̇ + 𝑛𝑖�̇�𝑖)

𝑖

+ 𝑞�̇�, (A.2) 

where a dot over a quantity indicates its time-derivative.  In this expression, we have allowed all 

the relevant quantities to fluctuate with time.  Henceforth, the time-dependence of quantities will 

be explicitly indicated.  Also, we will now assume that the voltage of conductor 1 is fixed to the 

value Vo, and that consequently there is also no time-variation in the chemical potentials.  The 

value of )(tni



 can be written as: 

 �̇�𝑖(𝑡) = ∑[𝑤𝑗𝑖(𝑡) − 𝑤𝑖𝑗(𝑡)]

𝑗

. (A.3) 

This leads to the following expression for instantaneous power under constant potential: 

 𝑃𝑐𝑖𝑟𝑐(𝑡) = ∑ 𝑤𝑖𝑗(𝑡)(𝜇𝑗 − 𝜇𝑖)

𝑖,𝑗

, (A.4) 

which is seen to be similar to the equation for the Joule power dissipation across a resistor.  The 

instantaneous current flowing in the circuit can be found by simply dividing Pcirc(t) by Vo: 

 𝑖(𝑡) = 𝑒 ∑ 𝑤𝑖𝑗(𝑡)𝛼𝑖𝑗

𝑖,𝑗

, (A.5) 

where the definition of αij is the same as in the text.  This result indicates that a charge flow 

through the external circuit occurs when there is energy transfer between the internal electrons 

and the environment.  Thus, we preserve the physics of the original formulation, which found 
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that the instantaneous current at a given time depended on the work done on the internal 

electrons of the device   
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Appendix B: Derivation of Green’s Function Solution, Boundary Conditions, 

and Carrier Collection Probability 

 Here it is shown how to solve for the diffusion equation Green’s function Gm(x,x’) and 

the corresponding carrier collection probability fc(x) needed to calculate the current flow in the 

mth stage.  The solution method for the Green’s function follows the techniques of Refs. 100 and 

131.  For simplicity, we will drop the m subscript indicating the stage.  We assign the coordinates 

x=0 to be the edge of the mth absorber closest to the top of the structure.  We denote the absorber 

thickness as d, so the absorber extends from x=0 to x=d.  The equation for the minority carrier 

density in the absorber under an arbitrary generation profile g(x) is given as: 

 [
𝑑2

𝑑𝑥2
−

1

𝐿𝑛
2

] 𝑛(𝑥) = −
𝑔(𝑥)

𝐷𝑛
, (B.1) 

We can find the spatial profile of the minority carrier density for a given generation profile by 

solving for the Green’s function, governed by the equation: 

 [
𝑑2

𝑑𝑥2
−

1

𝐿𝑛
2

] 𝐺(𝑥, 𝑥′) = 𝛿(𝑥 − 𝑥′), (B.2) 

To find the relationship between n(x) and G(x,x’), we multiply Eq. B.1 by G(x,x’) and Eq. B.2 by 

n(x).  We integrate the difference of the two equations over the length of the absorber: 

 

∫ 𝑑𝑥′ [𝐺(𝑥, 𝑥′)
𝑑2

𝑑𝑥′2 𝑛(𝑥′) −
𝑛(𝑥′)𝑑2

𝑑𝑥′2 𝐺(𝑥, 𝑥′) ]

𝑑

0

= − ∫ 𝑑𝑥′𝐺(𝑥, 𝑥′)
𝑔(𝑥′)

𝐷𝑛
− ∫ 𝑑𝑥′𝑛(𝑥′)𝛿(𝑥 − 𝑥′)

𝑑

0

𝑑

0

, 

(B.3) 

where we have utilized the reciprocity relationship for the Green’s function G(x,x’) = G(x’,x).  

Applying the one-dimension Green’s theorem and rearranging terms, we can evaluate n(x) as: 
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𝑛(𝑥) = − ∫ 𝑑𝑥′𝐺(𝑥, 𝑥′)
𝑔(𝑥′)

𝐷𝑛

𝑑

0

+ [𝑛(𝑥′)
𝑑

𝑑𝑥′
𝐺(𝑥, 𝑥′) + 𝐺(𝑥, 𝑥′)

𝑑

𝑑𝑥′
𝑛(𝑥′)]

𝑥′=0

𝑥′=𝑑

  , 

(B.4) 

The boundary conditions for the carrier density are: 

 𝑛(𝑥)|𝑥=0 = 𝑛𝑜𝑒𝛽𝑚𝑒𝑉/𝑘𝑏𝑇 , (B.5) 

at x=0, and: 

 
𝑑𝑛(𝑥)

𝑑𝑥
|

𝑥=𝑑

= −
𝑆𝑒𝑏

𝐷𝑛

[𝑛(𝑑) − 𝑛𝑜] , (B.6) 

at x=d, as given in the text.  Following the conventional approach, we chose the boundary 

conditions for the Green’s function to be homogenous.  With this choice, the types of boundary 

conditions for the Green’s function (i.e. Dirichlet, Neumann, or mixed) are the same as that of 

the carrier density.  The boundary conditions are: 

        0',
0


x
xxG  

     

    ,0',
'

',















dxn

eb xxG
D

S

dx

xxdG

   (B.7) 

where we have again used the reciprocity relationship for G(x,x’) so that the boundary conditions 

are defined for x.  With our choice of Green’s function boundary conditions, the solution of n(x) 

simplifies to: 

 

𝑛(𝑥) = −𝑛(𝑥′ = 0) [
𝑑

𝑑𝑥′
𝐺(𝑥, 𝑥′)]

𝑥′=0
− 𝑛𝑜

𝑆𝑒𝑏

𝐷𝑛
𝐺(𝑥, 𝑥′)|𝑥′=𝑑

− ∫ 𝑑𝑥′𝐺(𝑥, 𝑥′)
𝑔(𝑥′)

𝐷𝑛

𝑑

0

  , 

(B.8) 
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We can physically interpret the three terms on the right hand side of Eq. B.8 as the contributions 

to n(x) from three separate sources.  The first term represents carrier injection at x’=0, the second 

term represents carrier generation from the absorber-electron barrier interface at x’=d, and the 

third term gives the contribution from internal generation in the bulk of the absorber.  

 A closed-form expression for the Green’s function can be found by solving Eq. B.2 with 

the boundary conditions of Eq. B.7.  First, we must find general solutions for G(x,x’) in the 

regions x<x’ and x>x’, where the inhomogeneous term in Eq. B.2 is equal to zero.  These general 

expressions are given as: 

 

𝐺<(𝑥, 𝑥′) = 𝐶1(𝑥′) sinh (
𝑥

𝐿𝑛
)              (𝑥 < 𝑥′), 

𝐺<(𝑥, 𝑥′) = 𝐶2(𝑥′) [𝑒−(𝑑−𝑥)/𝐿𝑛 +
1 + 𝑆𝑒𝑏𝐿𝑛/𝐷𝑛

1 − 𝑆𝑒𝑏𝐿𝑛/𝐷𝑛
𝑒(𝑑−𝑥)/𝐿𝑛]                 (𝑥 < 𝑥′), 

(B.9) 

where G<(x,x’) specifies the Green’s function in the region where x<x’, and G>(x,x’) specifies 

the Green’s function in the region where x>x’.  The functions C1(x’) and C2(x’) are arbitrary 

functions of x’ that are determined by the matching conditions for the two solutions at x=x’.  

These matching conditions are found by integrating Eq. B.2 over an infinitesimal length centered 

at x=x’.  They are given as: 

 

[
𝑑

𝑑𝑥
𝐺>(𝑥, 𝑥′) −

𝑑

𝑑𝑥
𝐺<(𝑥, 𝑥′)]

𝑥=𝑥′
= 1, 

[𝐺>(𝑥, 𝑥′) − 𝐺<(𝑥, 𝑥′)]𝑥=𝑥′ = 0 

(B.10) 

Thus, we see that the Green’s function is continuous across x=x’, but it’s derivative is 

discontinuous.  By applying the matching conditions and solving for C1(x’) and C2(x’), we obtain 

the Green’s function in the two regions as: 

 



165 

 

 

𝐺<(𝑥, 𝑥′) = −𝐿𝑛 sinh (
𝑥

𝐿𝑛
) [

cosh [
(𝑑 − 𝑥′)

𝐿𝑛
] + (

𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh [

(𝑑 − 𝑥′)
𝐿𝑛

] 

cosh (
𝑑
𝐿𝑛

) + (
𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh (

𝑑
𝐿𝑛

)
], 

𝐺<(𝑥, 𝑥′) = −𝐿𝑛 sinh (
𝑥′

𝐿𝑛
) [

cosh [
(𝑑 − 𝑥)

𝐿𝑛
] + (

𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh [

(𝑑 − 𝑥)
𝐿𝑛

] 

cosh (
𝑑
𝐿𝑛

) + (
𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh (

𝑑
𝐿𝑛

)
] 

(B.11) 

The total Green’s function can be concisely expressed as: 

 𝐺(𝑥, 𝑥′) = −𝐿𝑛 sinh (
𝑥<

𝐿𝑛
) [

cosh[(𝑑 − 𝑥>)/𝐿𝑛] + (
𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh[(𝑑 − 𝑥>)/𝐿𝑛] 

cosh(𝑑/𝐿𝑛) + (
𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh(𝑑/𝐿𝑛)

], (B.12) 

where x< represents the lesser value of x and x’ and x> represents the greater value.  For the 

specific case where there is no illumination and the generation rate is just the spatially uniform 

thermal generation rate g(x) = Γth, the carrier distribution function is given by: 

 𝑛(𝑥) = 𝑛𝑜 [1 +
cosh[(𝑑 − 𝑥)/𝐿𝑛] + (

𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh[(𝑑 − 𝑥)/𝐿𝑛] 

cosh(𝑑/𝐿𝑛) + (
𝑆𝑒𝑏𝐿𝑛

𝐷𝑛
) sinh(𝑑/𝐿𝑛)

(𝑒𝑒𝑉/𝑘𝑏𝑇 − 1)], (B.13) 

 It is now convenient to define a carrier collection probability fc(x), which gives the 

probability that a carrier generated at point x in the absorber will diffuse to the collection point at 

x=0 before recombining.  It is defined as: 

 Γ = ∫ 𝑑𝑥 𝑓𝑐(𝑥)𝑔(𝑥)

𝑑

0

, (B.14) 

where Γ is the total generation particle current in a stage that runs as a result of the carrier 

generation rate g(x).  We reiterate that g(x) is an arbitrary generation rate, so Eq. B.14 applies for 

both radiative and non-radiative generation.  The relationship between fc(x) and G(x,x’) can be 

found by considering the case of zero illumination, and is given by: 
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 𝑓𝑐 = [−
𝑑

𝑑𝑥
𝐺(𝑥, 𝑥′)]

𝑥′=0
. (B.15) 

A sketch of the spatial dependence of both |G(x,x’)| and fc(x) is shown in Fig. B.1.  In the 

calculation, the absorber length was set equal to the minority carrier diffusion length.  We show 

the profile for the two extreme values of Seb = 0 and Seb = ∞.  The dark carrier density is related 

to the carrier collection probability by: 

 𝑛(𝑥) = 𝑛𝑜 [1 + 𝑓𝑐(𝑥) (𝑒
𝑒𝑉

𝑘𝑏𝑇 − 1)], (B.16) 

which provides a simple and useful relationship for connecting the light and dark behavior of a 

device. 
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Figure B.1: Spatial dependence of Green’s function and carrier collection probability 

across the absorber for the cases of Seb=0 and Seb=∞.  The absorber length was set equal to 

the minority carrier diffusion length. 
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Appendix C: Activation Energy Database for MWIR Interband Cascade 

Infrared Photodetectors 

 

 This appendix summarizes the temperature-dependence of (RoA)-1 values for MWIR ICIP 

wafers grown and characterized in the time period of 2008-2013.  This data was acquired by 

differentiating the measured current-voltage characteristics acquired under shielding.  Details on 

the growth and design of each structure are indicated in Table C.1.  Also displayed in the table 

are the absorber bandgaps at 80 K, which were estimated from the measured response, and the 

RoA values measured at 80 K.  Arrhenius plots showing the temperature-dependence of the 

measured (RoA)-1 values and the corresponding fits to Eq. 4.10 for the case of q=2 are shown in 

Figs. C.1 - C.11.  The activation energies acquired from the fits are also shown in Table C1.  The 

specific device from which the data was acquired is given in each figure, along with the 

temperature ranges over which the fitting was performed.  To aid in making comparisons of the 

data of devices from different samples, all the (RoA)-1 data is plotted on the same logarithmic 

scale with limits from 1.0x10-10 (Ωcm2)-1 to 100 (Ωcm2)-1.  The two solid lines in each plot 

represent the fitting to Eq. 4.10 at high and low temperatures.  The dashed lines show the 

extrapolation of the high temperature (RoA)-1 dependence to low temperature.  The difference 

between the dashed line and the low temperature data provides a guide for how strongly the low-

temperature detector performance is influenced by leakage current.  Devices which have a strong 

variation are believed to be strongly limited by leakage current at low temperatures.  As noted in 

the text, with some exceptions such as R100, which had poor material quality, the trend in (RoA)-

1 for longer-absorber (> 500 nm) devices tend to be more consistent across the entire temperature 

range than multiple-stage, short-absorber (< 250 nm) detectors.  Notably, none of the short-

absorber devices have a low-temperature activation energy greater than 100 meV. 
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Wafer Ns 80 K Eg 
Absorber 

Thickness  
RoA (80 K) RoA (300 K) 

High 

Temp Ea 

Low Temp. 

Ea 

EB2700 7 0.24 eV All 150 nm 4.3x104 Ωcm2 0.11 Ωcm2 149 meV 73 meV 

EB2702 7 0.24 eV All 150 nm 4.2x104 Ωcm2 7.7x10-2 Ωcm2 164 meV -- 

IQE11A 7 0.31 eV All 150 nm 8.6x106 Ωcm2 1.9 Ωcm2 228 meV 73 meV 

IQE12A 7 0.31 eV All 150 nm 2.7x106 Ωcm2 1.3 Ωcm2 268 meV 52 meV 

IQE13A 7 0.31 eV All 250 nm 1.5x107 Ωcm2 0.73 Ωcm2 249 meV 63 meV 

EB3337 7 0.31 eV All 160 nm 3.7x108 Ωcm2 3.0 Ωcm2 253 meV 84 meV 

R100 1 0.30 eV 1320 nm 5.3x103 Ωcm2 2.4x10-2 Ωcm2 160 meV 25 meV 

R101 1 0.29 eV 2320 nm 2.2x106 Ωcm2 2.1x10-2 Ωcm2 149 meV 134 meV 

R102 15 0.29 eV All 160 nm 1.5x105 Ωcm2 1.7 Ωcm2 144 meV 52 meV 

R103 2 0.29 eV 
605 nm; 

710 nm 
7.2x106 Ωcm2 8.0x10-2 Ωcm2 155 meV 128 meV 

R104 3 0.29 eV 

634 nm; 

754 nm; 

936 nm 

1.2x107 Ωcm2 9.7x10-2 Ωcm2 164 meV 131 meV 

Table C.1: Summary of design details and temperature-dependence of RoA for MWIR 

ICIPs characterized in time period of 2008-2013.  . 

 
Figure C.1: Arrhenius plot of measured (RoA)-1 for a device from wafer EB2700.  The data 

was originally published in Ref. 12.  The two solid lines show fitting of the data to Eq. 4.10 

in the temperature ranges of T > 200 K and T < 160.  The dashed line shows the 

extrapolation of the (RoA)-1 behavior observed at high temperature to the whole 

temperature ranged studied. 
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Figure C.2:Arrhenius plot of measured (RoA)-1 for a device from wafer EB2702.  The data 

was originally published in Ref. 12.  The solid line shows fitting of the data acquired at 

temepratures above 200 K to Eq. 4.10.  The dashed line shows the extrapolation of the 

(RoA)-1 behavior observed at high temperature to the whole temperature ranged studied. 

 

Figure C.3: Arrhenius plot of measured (RoA)-1 for a device from wafer IQE11A.  The data 

was originally published in Ref. 14.  The two solid lines show fitting of the data to Eq. 4.10 

in the temperature ranges of T > 200 K and T < 160 K.  The dashed line shows the 

extrapolation of the (RoA)-1 behavior observed at high temperature to the whole 

temperature ranged studied. 
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Figure C.4: Arrhenius plot of measured (RoA)-1 for a device from wafer IQE12A.  The data 

was originally published in Ref. 14.  The two solid lines show fitting of the data to Eq. 4.10 

in the temperature ranges of T > 200 K and T < 160 K.  The dashed line shows the 

extrapolation of the (RoA)-1 behavior observed at high temperature to the whole 

temperature ranged studied. 

 
Figure C.5: Arrhenius plot of measured (RoA)-1 for a device from wafer IQE13A.  The data 

was originally published in Ref. 14.  The two solid lines show fitting of the data to Eq. 4.10 

in the temperature ranges of T > 200 K and T < 140 K.  The dashed line shows the 

extrapolation of the (RoA)-1 behavior observed at high temperature to the whole 

temperature ranged studied. 
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Figure C.6: Arrhenius plot of measured (RoA)-1 for a device from wafer EB3337.  The two 

solid lines show fitting of the data to Eq. 4.10 in the temperature ranges of T > 200 K and T 

< 140 K.  The dashed line shows the extrapolation of the (RoA)-1 behavior observed at high 

temperature to the whole temperature ranged studied. 

 

Figure C.6: Arrhenius plot of measured (RoA)-1 for a device from wafer R100.  The two 

solid lines show fitting of the data to Eq. 4.10 in the temperature ranges of 250 K > T > 143 

K and T < 125 K.  The dashed line shows the extrapolation of the (RoA)-1 behavior observed 

at high temperature to the whole temperature ranged studied. 
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Figure C.7: Arrhenius plot of measured (RoA)-1 for a device from wafer R101.  The two 

solid lines show fitting of the data to Eq. 4.10 in the temperature ranges of T > 200 K and T 

< 160 K.  The dashed line shows the extrapolation of the (RoA)-1 behavior observed at high 

temperature to the whole temperature ranged studied. 

 

Figure C.8: Arrhenius plot of measured (RoA)-1 for a device from wafer R102.  The two 

solid lines show fitting of the data to Eq. 4.10 in the temperature ranges of T > 200 K and T 

< 160 K.  The dashed line shows the extrapolation of the (RoA)-1 behavior observed at high 

temperature to the whole temperature ranged studied. 
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Figure C.9: Arrhenius plot of measured (RoA)-1 for a device from wafer R103.  The two 

solid lines show fitting of the data to Eq. 4.10 in the temperature ranges of T > 200 K and T 

< 160 K.  The dashed line shows the extrapolation of the (RoA)-1 behavior observed at high 

temperature to the whole temperature ranged studied. 

 

Figure C.10: Arrhenius plot of measured (RoA)-1 for a device from wafer R104.  The two 

solid lines show fitting of the data to Eq. 4.10 in the temperature ranges of T > 200 K and T 

< 160 K.  The dashed line shows the extrapolation of the (RoA)-1 behavior observed at high 

temperature to the whole temperature ranged studied. 


