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Abstract 

The local ensemble transform Kalman filter (LETKF) has not been applied the 

storm-scale radar data assimilation (DA) problem until very recently. In this work, 

LETKF and its four-dimensional version, 4D-LETKF, are implemented within the 

Advanced Regional Prediction System (ARPS) ensemble DA framework. This LETKF 

system is first tested by assimilating simulated radar observations of a supercell storm 

through observing system simulation experiments (OSSEs).  

The performance of the LETKF for radar DA is compared with the ensemble 

square root filter (EnSRF) in the ARPS DA system in the OSSEs. With the same 

optimal covariance localization radii, the performances of the EnSRF and LETKF are 

close to each other when their assimilation cycles reach the stable stage. In the earlier 

spin-up stage, when the state estimation and ensemble covariance are poor, the results 

of assimilating radial wind observations are also very close. When the radar reflectivity 

observations are assimilated, however, EnSRF outperforms LETKF during the spin-up 

stage. The differences are believed to be related to the nonlinearity of the reflectivity 

observation operator. The linearization for the nonlinear observation operator is 

implicitly made at different places in the serial EnSRF and simultaneous LETKF 

algorithm. This difference in effective linearization leads to systematic differences in 

the analyses of EnSRF and LETKF. This conclusion was further verified through 

several carefully designed experiments where the above differences are deliberately 

removed. 

The performance of 4D- LETKF is then assessed and compared to the regular 

3D-LETKF when analyzing radar batches spanning different time intervals. With the 



xix 

4D-LETKF algorithm, high frequency observations distributed over time can be 

analyzed simultaneously without introducing observation timing error. Compared to 

3D-LETKF with short, 1 minute intermittent assimilation cycles, 4D-LETKF can 

produce analyses of similar quality after a few DA cycles while reducing computational 

cost significantly by using fewer cycles. When using 3 minute or longer larger data 

batch, 4D-LETKF performs better than 3D-LETKF, mainly due to the observation 

timing error in 3D-LETKF. Considering the flow-dependence in error covariance, the 

effects of time localization and adaptive localization with a hierarchical filter (HF) are 

also tested within 4D-LETKF, respectively. The results show that both time localization 

and hybrid adaptive and non-adaptive localization can improve the performance of 4D-

LETKF, especially when larger data batch length is large. 

As an effort to enhance the balance in the analysis, divergence equation and 

pressure tendency equation are implemented as equation constraints in the ARPS-

LETKF framework and tested through OSSEs. The analysis of pressure is improved, 

while the overall quality of analyses does not change much. 
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Chapter 1: Introduction and Overview 

1.1 Background and Motivation 

Mathematically numerical weather prediction (NWP) is an initial-boundary 

value problem (Lorenc 1995). The quality of initial conditions, which is an estimation 

of the atmospheric state, is vitally important to NWP. Data assimilation (DA), which is 

the process of finding the model representation of atmospheric state that is most 

consistent with the current and past observations (Lorenc 1995), plays key role in NWP. 

Variational DA (VarDA) and ensemble Kalman filter (EnKF) are two dominant 

methods used in modern DA. EnKF is not as well-developed as VarDA, which has been 

used in most operational NWP centers around the world. However, since it was first 

introduced into atmosphere and ocean data assimilation by Evensen (1994), the EnKF 

method is gaining popularity. EnKF and its variants, such as the ensemble square root 

filter (EnSRF) (Whitaker and Hamill 2002), ensemble adjustment  Kalman filter 

(EAKF) (Anderson 2001), and local ensemble transform Kalman filter (LETKF) (Hunt 

et al. 2007), have been intensively studied and widely applied to atmospheric DA from 

large to small scales in the most recent decade. 

In a typical convective-scale DA system, usually the cloud microphysical 

process in the forecast model is strongly nonlinear, even non-differential in some 

situations; radar observations, as the main existing routine observations which are 

suitable for resolving convective-scale storms, are related to the model variables 

through nonlinear observation operators, especially the radar reflectivity. Due to the 

high cost in the implementation and maintenance of adjoint model, and the difficulty in 

developing the adjoint code for nonlinear and non-differentiable formulas in the model 
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and/or observation operators, VarDA, especially the four dimensional variational 

(4DVar) method, is limited to relatively simple applications and model settings when 

applied to convective-scale DA. EnKF, as an ensemble extension to the classical 

Kalman filter, applies the Monte Carlo method to estimate the forecast error statistics 

(Evensen 1994;2003). Both the fully nonlinear forecast model and nonlinear 

observation operators could be completely included in EnKF methods without the need 

of the adjoint code. With the advantage of explicit estimation of the error covariance in 

the EnKF analysis, error covariance in EnKF is not only flow-dependent, but also 

continuously improved through the EnKF DA cycles. Then a reasonable, balanced, and 

flow-dependent error covariance structure could be built up for a convective-scale DA 

system, which could not be gained in the VarDA. For its simplicity and ease of 

implementation, the EnSRF, as a variant of EnKF, has been applied to the convective-

scale data assimilation of radar data in the last decade (Snyder and Zhang 2003; Xue et 

al. 2006; Jung et al. 2008a; Jung et al. 2008b; Xue et al. 2010; Yussouf and Stensrud 

2010; Dowell et al. 2011; Snook et al. 2011; Jung et al. 2012). These studies used both 

observation system simulation experiments (OSSE) and real cases to show the promise 

of the EnSRF method in a convective-scale DA.  

The high computational cost of EnKF is still a serious concern for real-time 

applications. The high resolution of the model and high density of radar data, which are 

typical in a real convective-scale DA practice, require efficient, massive parallelization 

of the EnKF system. Anderson and Collins (2007) proposed a parallel algorithm for 

EnSRF; Wang et al. (2013c) developed a different efficiently parallel version of EnSRF 

for the ARPS model on massive parallel computers. However, due to the sequential 
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nature of EnSRF algorithm, the implementation of parallel EnSRF is still sophisticated 

in practice.  

Compared to EnSRF, The local ensemble transform Kalman filter (LETKF), 

designed to be a parallelizing filter, is an attractive alternative algorithm to overcome 

the high computational cost problem. The LETKF algorithm (Hunt et al. 2007; Miyoshi 

and Yamane 2007) was proposed as an efficient upgrade to local ensemble Kalman 

filter (LEKF) (Ott et al. 2004). LETKF updates the analysis of each grid point 

independently by assimilating the observations in the local region centered on each grid 

point simultaneously. As each grid point could be analyzed in parallel, LETKF has 

significant computational efficiency in modern super-parallel computers. A number of 

studies have shown the promise of the LETKF with wide applications including global, 

regional, and mesoscale NWP models (Szunyogh et al. 2008; Seko et al. 2011; Miyoshi 

and Kunii 2012). 

In this study, LETKF is developed with a real, convective-scale NWP model — 

the ARPS model — and inter-compared with ARPS-EnSRF (Tong 2006) using 

simulated radar observations. The ARPS-EnSRF had been assessed in both of OSSE 

cases (Xue et al. 2006) and real data cases (Snook et al. 2011; Jung et al. 2012), and 

could analyze the radar observations successfully. It is used as a reference in this work. 

The first purpose of this work is to assess the capability of LETKF to assimilate radar 

data into a real, convective-scale NWP model.  

The second purpose is to compare the performance of EnSRF and LETKF with 

radar observations, especially the nonlinear observation (e.g., reflectivity). Holland and 

Wang (2013), and Greybush et al. (2011) made the comparison of EnSRF and LETKF 
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by considering the effects of B-localization vs. R-localization, and sequential vs. 

simultaneous observation processing. It should be noticed that their studies compared 

the two schemes of EnSRF and LETKF with linear observation operators and large-

scale models. This work investigated the effect of nonlinear observations on EnSRF 

with sequential observation processing and LETKF with simultaneous processing in the 

convective-scale DA. 

Another advantage of the LETKF algorithm is that it is easy and straightforward 

to extend to its four dimensional formula, compared to the EnSRF algorithm. The 4D 

algorithm could simultaneously analyze the observations frequently collected over time, 

at the times when they were observed, and with fewer analysis cycles. Wang et al. 

(2013a) showed the significant advantages of 4DEnSRF with the WRF model in a 

supercell storm OSSE. The third purpose of this work was to implement 4D-LETKF 

with the ARPS model. Furthermore, the hierarchical filter (Anderson 2007), was 

applied to the 4D-LETKF algorithm as an adaptive localization method. 

In addition, due to the covariance localization, sampling error, and model error, 

the degradation and/or violation of physical and dynamical balance constraints occur in 

the EnKF analysis. A method, which can enforce the broken constraints or exploit the 

additional constraints, must be applied to the current EnKF algorithm in order to 

improve the filtering performance. In order to understand the feasibility and capability 

of constrained-LETKF in convective scale DA problem, the fourth purpose of this 

research was to set up a constrained ARPS-LETKF system, and test this constrained-

LETKF system in the convective-scale DA experiments with simulated radar 

observations. 



5 

1.2 Overview 

The goals of this study are to: 

1) develop an atmospheric data assimilation system based on the Local 

Ensemble Transform Kalman filter (LETKF) with a convective-scale NWP 

model, ARPS, and test whether it could effectively utilize the Doppler radar 

data,  

2) inter-compare the existing ARSP-EnSRF DA system with the newly-

developed ARPS-LETKF system with simulated radar data in an OSSE of a 

convective storm event, 

3) extend the LETKF to its 4D version, and compare 4D-LETKF with regular 

3D-LETKF by assimilating the simulated asynchronous radar observations, 

4) develop a constrained-LETKF system based on this ARPS-LETKF system. 

Chapter 2 first describes the ARPS-EnKF DA systems and OSSE experiment 

design, including a brief introduction of the model and truth simulation, observation 

simulation, and ARPS-EnSRF system. Then the formulation and implementation of 

ARPS-LETKF is described. This newly-developed ARPS-LETKF system is then 

assessed through data assimilation cycle experiments with radar observations. The 

ARPS-LETKF and ARSP-EnSRF are then inter-compared through the data assimilation 

experiments with radar radial wind and reflectivity observation. They performed 

differently in the beginning spin-up cycles when using radar reflectivity observations. 

The effect of the nonlinear observation operator is investigated next. Finally, five 

additional experiments are used to verify the nonlinear effect. 
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Chapter 3 first introduces the background and motivations for using the 4D-

LETKF algorithm to more fully utilize the frequency observations distributed over time. 

Then this 4DLETKF algorithm and its implementation are described, and its difference 

to the 4DEnSRF algorithm is also discussed. Its performance is then tested and inter-

compared to regular 3D-LETKF in OSSEs with simulated radar data. 

In Chapter 4, the background and motivations for EnKF with constraints are 

discussed first, then how the constraints are incorporated as “imperfect measurement” to 

the ARPS-LETKF framework is described next. The divergence constraint and pressure 

tendency constraint are then introduced. The impacts of the two constraints are 

inspected through the data assimilation experiments with radar observations. 

Chapter 5 summarizes the body of work, and outlines a future study where the 

current ARPS-LETKF system could be extended. 
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Chapter 2: Development of ARPS LETKF and Inter-comparison with 

ARPS EnSRF: Effects of Nonlinear Observation Operator  

In this chapter, the ARPS-EnKF DA systems and OSSE experiment design, 

including the brief introduction of the model and truth simulation, observation 

simulation, are first described. Then the formulation and implementation of ARPS-

LETKF are then discussed. The ARPS-LETKF system is assessed through data 

assimilation cycle experiments with simulated radar radial wind and reflectivity 

observations. After that the ARPS-LETKF and ARSP-EnSRF are inter-compared also 

through the data assimilation experiment with simulated radar observations. Difference 

in performances is found during the earlier DA cycles when using reflectivity 

observations and the effects of nonlinear reflectivity observation operator are 

investigated. Five additional experiments are designed to test the nonlinear effects. 

 

2.1 ARPS EnKF Data Assimilation Systems and Experiment Design 

2.1.1. The prediction model and truth simulation 

In this work, the test and evaluation of the newly-developed ARPS-LETKF 

system as well as the inter-comparison with ARPS-EnSRF, are based on simulated data 

from a classic supercell storm case that occurred on 20 May 1977 in Del City, 

Oklahoma (Ray et al. 1981). Such simulation experiments are commonly referred to as 

observing system simulation experiments (OSSEs). Similar OSSE experiments had 

been used in previous work with ARPS-EnSRF in Tong and Xue (2005), Xue et al. 

(2006) and Tong and Xue (2008b). The configurations of the forecast model and truth 

simulation are mostly inherited from Tong and Xue (2005). The forecast model used is 
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the Advanced Regional Prediction System (ARPS) (Xue et al. 2000; Xue et al. 2001; 

Xue et al. 2003). In this study, the ARPS model is used in a 3D cloud model mode and 

the prognostic variables include three velocity components, u, v, w; potential 

temperature, θ ; pressure, p; and six categories of water substances: water vapor specific 

humidity, 
vq ; mixing ratios for cloud water, 

cq  ; rainwater, 
rq  ; cloud ice, 

iq ; snow, 
sq  

; and hail, 
hq . The LFO83 ice microphysics and 1.5-order turbulent kinetic energy 

(TKE)-based subgrid-scale turbulence schemes are the only physics options included. 

More details on the model can be found in Xue et al. (2000) and Xue et al. (2001). 

For all experiments, the physical domain is 64 km ×  64 km ×  16 km. The 

model grid comprises 35 ×  35 × 35 grid points (including points that facilitate the 

specification of boundary conditions), with grid intervals of 2 km in the horizontal 

direction and 0.5 km in the vertical. The truth simulation or nature run is initialized 

from a modified real sounding as used in Xue et al. (2001). A 4-K ellipsoidal thermal 

bubble centered at x = 24, y = 16, and z = 1.5 km, with radii of 10 km in the x and y 

directions and 1.5 km in the z direction is used to initiate the storm. The horizontal 

position of the warm bubble is a little bit different to the position used in Tong and Xue 

(2005); in this study the bubble is centered at x = 48 km. The length of simulation is up 

to 3 h. Despite the differences in resolutions, the evolution of the simulated storms is 

very similar to those documented in Xue et al. (2001). More information about the truth 

simulation could be found in Tong and Xue (2005). 
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2.1.2. Simulation of Radar obervations 

One WSR-88D radar is assumed in this OSSE study. The simulation of the 

WSR-88D radar data are similar to the simulation used in Xue et al. (2006). For the 

WSR-88D radar, standard precipitation-mode parameters are assumed, including 10-cm 

wavelength, 1° beamwidth, and a total of 14 elevations with the lowest elevation at 0.5° 

and the highest at 19.5°. More details could be found in Xue et al. (2006).  

Different from the earlier OSSE studies of Tong and Xue (2005), in this work it 

is assumed that the simulated observations are available in the plan position indicator 

(PPI) planes or the elevation levels of the radar rather than at the model grid points. We 

do assume that the radar observations are already interpolated to the Cartesian 

coordinate in the horizontal directions; in other words, the observations are found in the 

vertical columns through the model scalar points. The main purpose of interpolation is 

to make the data distribution more uniform in the horizontal so as to avoid the cost of 

assimilating an excessive number of data at the close ranges of the radar. The effects of 

the curvature of the earth and the beam bending resulting from the vertical change of 

refractivity are taken into account by using the simple 4/3 effective earth radius model 

discussed in Doviak and Zrnic (1993); it is mainly the earth curvature effect that 

prevents the radars from seeing the lower atmosphere far away.  

Because the observations are not at the model grid points, a forward observation 

operator is needed to bring the data from the model vertical levels to the radar elevation 

levels. This is achieved by using a simplified radar emulator that does the power-gain-

based sampling only in the vertical direction. More information about the vertical 

sampling technique could be found in Xue et al. (2006). With the vertical sampling 
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technique, the gridpoint values of the simulated radial velocity and reflectivity could be 

interpolated onto radar elevation levels. 

The gridpoint values of simulated radar observations are first calculated with the 

observation operators as used in Tong and Xue (2005). The simulated radial velocity, 

Vr, is calculated from, 

cos sin cos cos sin
r g g g g g

V u v w random errorφ γ φ γ φ= + + +  .               (2.1) 

where 
g

φ  is the elevation angle and 
g

γ  is the azimuth angle of radar beam that 

goes through the given grid point; and u, v, and w are the model-simulated velocities 

interpolated to the scalar points of the staggered model grid. The random error is drawn 

from a normal distribution with zero mean and a standard deviation of 1
1ms−
. Because 

Vr is sampled directly from velocity fields, the effect of hydrometeor sedimentation 

does not come into play.  

The simulated logarithmic reflectivity factor (referred to simply as reflectivity in 

most parts of this paper; in dBZ) is estimated from the following equations: 

10 6 3
10 log

1

e
Z

Z simulated error
mm m

−

 
= + 

 
 .                          (2.2) 

The equivalent reflectivity factor, Ze, is made up of three components, 

e er es ehZ Z Z Z= + +  .                                                                 (2.3) 

where Zer, Zes, and Zeh are contributions from rainwater, snow, and hail. Information 

about the error model used for the simulated error for reflectivity can be found in Jung 

et al. (2008b). 

The rain component of the reflectivity is calculated, based on Smith et al. 

(1975), from 
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( )
1.7518

1.75 0.75 1.75

10 720
r

er

r r

q
Z

N

ρ

π ρ

× ×
=  .                                                       (2.4) 

If the temperature is less than 0
°
C, then the component of the reflectivity is, for 

dry snow, 

( )
1.7518 2 0.25

1.75 2 0.75 2

10 720
i s s

es

r s i

K q
Z

K N

ρ ρ

π ρ

× ×
=  .                                           (2.5) 

Wet snow, which occurs at temperatures higher than 0
°
C, is treated in a similar 

way as rainwater, and the equivalent reflectivity factor-mixing ratio relation is 

( )
1.7518

1.75 0.75 1.75

10 720
s

es

s s

q
Z

N

ρ

π ρ

× ×
=  .                                                      (2.6) 

For hail, the wet hail formulation of Smith et al. (1975) is used 

( )
0.95

18
1.6625

1.75 0.75 1.75

10 720
eh h

h h

Z q
N

ρ
π ρ

 ×
=  
 

 .                                       (2.7) 

The above equations define the observation operator, denoted as H, in the 

following sessions. When creating simulated observations for our OSS experiments, a 

lower limit of 1 mm
6
m

-3
 is imposed on the equivalent reflectivity factor to yield a lower 

limit of 0 dBZ for the logarithmic reflectivity factor. 

The ground-based radar is located at the southwest corner of the computational 

domain, that is, at the origin of the x–y coordinates (Figure 2.1). Figure 2.1 shows the 

truth simulation (top panels), simulated radar reflectivity (middle panels) and radial 

wind (bottom panels). The left panels are at t=20min, right panels are at t=60min. The 

radar location is marked with a red dot in the simulated reflectivity plot. Note that the 

truth wind and reflectivity are plotted at the model levels, but the simulated 

observations are plotted at the radar elevation angle=10o . In the simulated reflectivity 
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plots (middle panels), the red circle indicates the places where is 4 km high above 

ground on the radar scan tilt with elevation angle=10
°
, the blue circle is for places where 

is 6 km high above ground. 

For data sampling and assimilation, we assume that the observation operators, 

given by the above equations, are perfect. As with most atmospheric data assimilation 

systems, the prediction model is also assumed to be perfect; that is, no model error is 

explicitly taken into account. 

From the equation (2.1)-(2.7), it is obviously that, without considering the effect 

of terminal velocity of hydrometers, the observation operator for radial wind is linear, 

but the observation operators for reflectivity factors are strongly nonlinear. Because of 

its strong non-linearity, the error distribution of the reflectivity data is likely non- 

Gaussian. One of the goals of this study is to inter-compare the performances of EnSRF 

and LETKF with assimilation of the nonlinear radar reflectivity observations. 
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Figure 2. 1 Truth simulations (top panels) and simulated radar observations at elevation 

angle = 10o
 (middle panels for reflectivity; bottom panels for radial wind) at t=20min 

(left panels) and t=60min (right panels).  

elevation angle = 10o  elevation angle = 10o 



14 

2.1.3. ARPS-EnSRF scheme 

The current ARPS-EnSRF system (Xue et al. 2006) is primarily based on the EnSRF 

algorithm of Whitaker and Hamill (2002). The system includes capabilities for 

parameter estimation (Tong and Xue 2008b;2008a), dual-polarimetric radar data 

assimilation (Jung 2008; Jung et al. 2008a; Jung et al. 2008b), simultaneous reflectivity 

attenuation correction (Xue et al. 2009), and the ability to handle a variety of data 

sources (Dong et al. 2011). Additionally, it has been coupled with a double-moment 

microphysics scheme (Xue et al. 2010; Jung et al. 2012). Recently, an efficient 

parallelization of ARPS-EnSRF system had been implemented by Wang et al. (2013c). 

A full description of the filter can be found in Tong (2006), Xue et al. (2006) and Wang 

et al. (2013c). 

 

2.1.4. Formulation and Implementation of ARPS-LETKF 

The LETKF was proposed by Hunt et al. (2007) as an efficient upgrade of local 

Ensemble Kalman filter (LEKF) (Ott et al. 2004; Szunyogh et al. 2005). LETKF 

updates the analysis of each grid point independently by assimilating the observations in 

the local region centered on each grid point simultaneously(Hunt et al. 2007; Miyoshi 

and Yamane 2007). Because each grid point can be analyzed in parallel, LETKF has 

significant computational efficiency in modern super-parallel computers. Compared 

with its predecessor LEKF, solving the analysis equation in the subspace spanned by 

ensemble members lowers the computational cost of LETKF, and using a symmetric 

square root matrix algorithm helps to make the final analysis smoother and increase the 

accuracy (Hunt et al. 2007; Szunyogh et al. 2008). 
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Formulation of LETKF 

In brief, LETKF first determines the information of the entire first guess and the 

observations, separates the entire fields into local patches around each grid points. Then 

LETKF updates the central grid point of each local patch using the localized 

information in parallel, finally collecting the analysis at every grid point to make up the 

global analysis ensemble (Liu et al. 2007; Miyoshi and Yamane 2007). The LETKF 

analysis equations used in ARPS-LETKF are documented here, and are the same as in 

Hunt et al. (2007):   

)()(
~ 1 boTbaa

yyRYPw −= −  .                                                      (2.8) 

[ ] 11)()1(
~ −−+−= bTba

YRYIKP  .                                                 (2.9) 

a
w  represents the analysis increment in subspace S spanned by ensemble 

member. It is a Kmem–dimensional column vector (Kmem is the ensemble size.). 
aP

~
 is a 

memmem KK ×  matrix, and it represents the analysis error covariance in space S. And o
y is 

the observation vector, b
y is ensemble observation prior mean vector, 

bY  is the 

ensemble observation prior perturbation matrix, and R  is the observation error 

covariance matrix, usually it is assumed to be a diagonal matrix with off-diagonal 

elements as zero. In model space, the analysis mean and covariance are then as follows: 

abba
wXxx +=  .                                                                  (2.10) 

( )Tbaba
XPXP

~
=  .                                                                 (2.11) 

LETKF would find the analysis ensemble with mean and covariance equal to 

a
x  and 

aP in (2.10) and (2.11). So the LETKF algorithm first solves equations (2.8) 

and (2.9) in the ensemble space S, then converts the solutions back to model space with 
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(2.10) and (2.11). One of the advantages of finding the solutions in ensemble space first 

is that it could reduce the dimension of the problem (either of model dimension of 

observation dimension) to the low dimension of sub-space S spanned by the ensemble. 

As we know, the sample/ensemble covariance matrices (either 
bP  or 

aP ) have serious 

rank deficiency problems because the model dimension is much larger than the 

dimension of the ensemble. Solving 
aP

~
 in the ensemble space, instead of solving 

aP  in 

the model space, alleviates the rank deficiency problem. In addition, the inverse of the 

matrix is much easier in ensemble space than in observation space when the observation 

dimension is much larger than the ensemble size, which is common in the practice of 

DA problems with high dense and frequent radar observations. On the other hand, since 

the solutions are found in ensemble space, the covariance in model or observations 

space is not represented explicitly, and the regular covariance localization (e.g, B-

localization) cannot be applied in LETKF directly. The localization in LETKF will be 

discussed later. 

In LETKF the symmetric square root is adopted to choose the analysis ensemble 

perturbations as 

aba
WXX =  .                                                                     (2.12) 

where the Ensemble Transform Matrix is 

[ ] 2/1~
)1( a

mem

a
PKW −=  .                                                    (2.13) 

where 
a

W is the symmetric square root of 
aP

~
 , it is also a 

memmem KK ×  matrix. Equation 

(2.12) shows that the ensemble analysis perturbations are just the linear combination of 

the ensemble analysis perturbations; the weight used for the linear combination is 
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defined as 
a

W in equation (2.13). Its columns represent the analysis ensemble 

perturbations in ensemble space S.  

Finally, combined with equation (2.10) and (2.11), the i-th analysis ensemble 

member is as following 

)()( iabbia
wXxx +=  .                                                            (2.14) 

where { })( ia
w  is the columns of the resulting matrix by adding 

a
w  to each of the 

columns of 
a

W  . { })( ia
w   represents the weight vectors that specify what linear 

combinations of background ensemble perturbations to add to the background mean to 

obtain the analysis member in model space. 

The LETKF is implemented in ARPS with the following steps, also described in 

Hunt et al. (2007). These steps are documented here: 

Step 1. Apply observation operator 
][ g

H  to each background ensemble member 

)(

][

ib

gx  to form the global background observation ensemble { })(

][

ib

gy .  Average { })(

][

ib

gy  to 

get the ensemble mean b

gy ][ . Subtract b

gy ][  from { })(

][

ib

gy , get the ensemble perturbations 

b

gY ][ . 

)( )(

][][

)(

][

ib

gg

ib

g xHy =  

( ))( )(

][][

)(

][][

ib

gg

ib

g

b

g
xHyy ==  

b

g

ib

g

ib

g yyy ][

)(

][

)(

][ −=  

Step 2. Average { })(

][

ib

gx  to get the ensemble mean b

gx ][ . Subtract b

gx ][ from{ })(

][

ib

gx  , 

get the background ensemble perturbations b

gX ][ . 

{ })(

][][

ib

g

b

g
xx ==  
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b

g

ib

g

ib

g xxx ][

)(

][

)(

][ −=  

Step 3. Decompose the global fields into local patches around each grid point. 

b

l

b

g YY ][][ → , b

l

b

g yy ][][ → , b

l

b

g XX ][][ →  and b

l

b

g xx ][][ →  

Also the observation error covariance ][][ lg RR →  

Note: Step 4–8 are done in each local patch independently, and could be 

implemented in parallel. Hereafter the subscript ][l , which represents the local patch, is 

omitted. 

Step 4. Compute
obsmem lk ×   matrix C  

( ) 1−= RYC
Tb

 

If R is diagonal (observation errors are uncorrelated), it is easy to get its inverse

1−R ; If R is block diagonal, then solve the linear system 
bT

YRC = to get matrixC . The 

covariance R-localization (which is discussed later) could also be applied in this step. 

Step 5. Calculate 
memmem kk × matrix 

aP
~

 

[ ] 1
/)1(

~ −
+−= b

mem

a CYIkP ρ  

Method 1. Calculate the inverse of 
memmem kk × symmetric matrix

[ ]b

mem
CYIk +− ρ/)1( ; (use subroutine rs in EISPACK Fortran library .) 

Method 2. Solve the eigen-space of symmetric matrix [ ]b

mem
CYIk +− ρ/)1(  or 

[ ]b
CY  

Tb
VVCY Λ=  and [ ] Tb

VVYCIK
*)1( Λ=+− ρ  

Then 

Ta
VVP

1
*~ −

Λ= , where Λ+−=Λ ρ/)1(*
IK  
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Subroutines ssyev/ssyevx/ssyevr (or corresponding double precision subroutines) 

in Linear Algebra PACKage (LAPACK) is used to solve the eigenspace problem. 

Note: check whether all eigenvalues are positive, or at least semi-positive. 

Negative or very tiny eigenvalues will be assigned to be 0, and the corresponding 

efficient rank of matrix is reduced.) 

Step 6. Calculate  
memmem KK ×  matrix 

a
W  :  

 [ ] [ ] Taa
VKVPKW

21*21

)1(
~

)1( Λ−=−=  

Step 7. Calculate Kmem-dimensional vector )(
~ boaa

yyCPw −=  

 o

llK

a

KKl

bo

lk

a

kk

a

k obsobsmemmemmemobsobsmemmemmemmem
yCPyyCPw 111

~
)(

~
××××××× =−= δ  

Add 
a

w  to each column of 
a

W , to form a resulting matrix, whose columns are 

{ })(iaw  

{ } { } aiaia www += )()(  

Step 8. Update the analysis ensemble { })( iaa xX =  in the local patch, or just 

update the center grid points: 

biabia xwXx += )()( , i=1, 2, 3,… Kmem. 

Step 9. Repeat step 4-8 for each grid points. After that, combine the analysis 

ensemble of every grid points to get the global analysis ensemble.  

Note: notice that steps 4–7 only depend on the information of observations used 

in the local patch. Different local patches, which use the same observations subset, 

could share the matrices 
aP

~
and{ })(iaw . 



20 

In the ARPS-LETKF system, as in the ARPS-EnSRF, the analysis variables 

contained in state vector x include the gridpoint values of u, v, w,θ , p, 
vq ,

cq , 
rq ,

iq ,

sq and 
hq . The observation vector o

y contains the radar radial velocity Vr and 

reflectivity Z. The observation operator H is defined by Eqs. (2.1)-(2.7) in the 

simulation of radar observation session. 

 

Localization in ARPS-LETKF 

The forecast error covariance matrix plays a vital role in modern DA systems. 

The accuracy of the error covariance matrix has direct influence on the quality of the 

analysis. In the EnKF framework, the forecast error matrix is approximately estimated 

by using the sample covariance of the ensemble forecast. Due to the limited ensemble 

size, the sampling error will produce spurious correlations between distant locations in 

the background covariance matrix (Whitaker and Hamill 2002; Hunt et al. 2007; 

Greybush et al. 2011). Ensemble covariance that are deteriorated by the spurious 

correlations lead to an analysis with degraded quality, such as the analysis in a place 

that was influenced by an observation which is far way in an essentially random 

manner(Hunt et al. 2007). 

Localization is a technique by which the impact of observations from distant 

regions upon an analysis is suppressed(Greybush et al. 2011). 

( )

( )( )

b T b b T

gain b T b b T

P H X HX
K

HP H R HX HX R
= =

+ +
                                      (2.15) 

Equation (2.15) is the formula of ensemble Kalman gain.  In EnSRF, because 

the observations are analyzed serially one by one, the denominator is a scalar. The 
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numerator is a vector representing the covariance between the analyzed model state 

variable and the observation variable. To suppress the spurious correlation existing in 

the covariance ( )b b T
X HX , the localization is applied to the each element in the 

covariance vector ( )b b T
X HX by the Shur product, 

( ) ( ( ) )

( )( )

b T b b T

B B
gain b T b b T

P H X HX
K

HP H R HX HX R

ρ ρ
= =

+ +

� �
                                   (2.16) 

Bρ  is the localization weight function, which is a distance-dependent function, “

� ” represents the Shur product operator. So in EnSRF, the localization by a distance-

dependent function is performed upon the covariance between a model grid point and 

the observation(Whitaker and Hamill 2002). This is called B-localization(Greybush et 

al. 2011) because it is applied to the 
bP matrix (which is also called B matrix). In 

ARPS-EnSRF, the distance-dependent function used for B-localization is the 5th-order 

correlation function(Gaspari and Cohn 1999). In this function, the specific distance, 

beyond which the function value is 0, is called localization cut-off radius in this work. 

However, as mentioned before, in LEKTF the analysis update is computed mainly in 

the ensemble–spanned space, and the background error covariance matrix is not 

explicitly used, so B-localization is not suitable for LETKF (Greybush et al. 2011).  

In ARPS-LETKF, the localization includes two steps(Miyoshi and Yamane 

2007). The first step is to select the observations only from a region surrounding the 

location of the analysis grid. This step is intrinsically contained in LETKF at step three 

of the LETKF algorithm. The data selection method is used in Houtekamer and Mitchell 

(1998). LEKF and LETKF are named with “Local” just for this local analysis approach. 

In addition to providing better results, this localization approach allows the LETKF 
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analysis to be done more efficiently as a parallel computation (Hunt et al. 2007). 

However, in this way, the weighting function of the localization is the Heaviside 

function that weights 1 inside and 0 outside the domain (Miyoshi and Yamane 2007); 

the abrupt localization cutoff can result in a noisy analysis (Greybush et al. 2011). So 

Hunt et al. (2007) proposed a “smoothed localization”, called R-localization, also called 

“observation localization” in Nerger et al. (2012), by multiplying the observational error 

variance (which is the element of diagonal matrix R) by the inverse of a localization 

weighting function. 

1

b T

gain b T

R

P H
K

HP H Rρ−
=

+ �
                                                      (2.17) 

Equation (2.17) shows how the localization weight   is applied to the Kalman 

gain used in LETKF. This weight, also called localization function, decays smoothly 

from one to zero as the distance of the observations from the analysis grid point 

increases. By weighting the observation error variance in the range from its original 

value to infinitely large, the influence of observations is localized. Since the weight is 

applied to the observation error variance matrix, it is called “R-localization”. This R-

localization is used as the second step for localization in ARPS-LETKF. Figure 2.2 

depicts the localization scheme used in LETKF. The 5-point star represents the location 

of the current analysis variable, and the circle surrounding the analysis grid (dashed 

line) is the domain for observation selection. The radius of the circle also works as the 

localization cut-off radius, meaning that only the green dots are selected for local 

analysis; the hollow dots beyond the circle are excluded. Finally, R-localization weights 

for the green dots are based on the distances from observation to the analysis grid.  
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In addition, in order to improve the performance of R-localization, Nerger et al. 

(2012) introduced a regulated R-localization scheme. Their experiments demonstrate 

that the regulated localization can lead to a significant reduction of estimation errors as 

well as increased stability of the assimilation process. Although this regulated R-

localization is proved to have identical effect to B-localization when using the same 

localization cut-off radius only in the single observation case, it is also implemented in 

our ARPS-LETKF and tested when inter-comparing with ARPS-EnSRF in the data 

assimilation experiment with radar observations. The effect of R-localization, regulated 

R-localization, and B-localization on the performance will be compared in this work. 

The (2.18) is the regulated R-localization weight 
Rρɶ in Nerger et al. (2012). 
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ɶ                                               (2.18) 

The same 5
th
 order correlation function of Gaspari and Cohn (1999) is used as 

the localization function for R-localization function
Rρ , regulated R-localization weight 

function 
Rρɶ  and B-localization function

Bρ . The optimal cut-off radii for different 

localization schemes are going to be found through comparing the performances of the 

DA experiments with different cut-off radii. Notice that in all of the DA experiments in 

this work, the horizontal radius and vertical radius are the same, meaning our 

localization function is isotropic, although it could be anisotropic.  

Adaptive localization approaches, such as the hierarchical filter (HF) of 

Anderson (2007), will be applied to 4D-LETKF in Chapter 3.  
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Figure 2. 2 Localization scheme: The star is the localization of current analysis variable, 

the circle is the domain for observation selection, and the radius of the circle is the cut-

off radius for R-localization. Only green dots inside the circle would be used in the local 

analysis for the variable at the star point. The R-localization weight for each green dot is 

based on the distance to the star point. This figure was originally from Miyoshi (2010). 

 

Issue related to the staggered model grid 

In the ARPS system, model variables are staggered on an Arakawa C-grid (see 

Figure 2.3), with scalars (including perturbation potential temperature θ', perturbation 

pressure p', cloud water qc, rainwater qr, water vapor qv , cloud ice qi, snow qs, and hail 

qh) defined at the center of the grid boxes and the normal velocity components (u, v, w) 

defined on the corresponding box faces. The coordinate variables x, y and z are also 

staggered and are defined at the u, v and w points, respectively (Xue et al. 1995). So for 

u, v, w and the scalars with the same grid indices, the distances from the same 

observation to them are different. As we know, the data selection and localization 

weight are both distance-dependent, so the local observation search and localization 

weights have to be repeated for u, v, w and the scalars, and correspondingly the weight 

matrices also have to be re-calculated for them respectively. ARPS-EnSRF also makes 

the analysis for u, v, w and the scalar variables on their own grid points respectively, but 
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the computational costs are different. For EnSRF, it is to search the nearby analysis 

variables located on regularly-gridded points which are easily organized and found with 

their indices; for LETKF, it is to search the nearby observations located on irregularly-

distributed points. Furthermore, in EnSRF, the calculation of the update is simple and 

fast because it is only a scalar operation, not a matrix or vector manipulation; in 

LETKF, the complicated matrix manipulations (such as SVD, matrix multiplication) are 

relatively expensive computations. Table 2.1 shows the computational cost for EnSRF 

and LETKF with (u, v, w) exactly analyzed on their stagger. It shows that the 

computational cost of LETKF is usually larger than the cost of EnSRF when they both 

are the serial version. To save the extra computational time of an LETKF analysis for 

u/v/w, the ensemble and mean of the background for u/v/w are interpolated from their 

own grid points to the scalar grid points before the analysis, therefore u/v/w can be 

analyzed with all the other scalar variables together. After the analysis, the updated 

u/v/w have to be interpolated back from scalar grid points back to their own grid points. 

Three different interpolation schemes are implemented in the ARPS-LETKF system. 

The first interpolates the full analysis of u/v/w back, so it is called Full-Interpolation; 

the second interpolates the analysis incrementally back and then adds the interpolated 

analysis increment to the background to get the full analysis at their own grid points, so 

it is called Incremental Interpolation; the third interpolates the analysis weight matrix w
a
 

(in equation (2.13) and (2.14)) to the u/v/w grid points, then uses the interpolated weight 

matrix to update the u/v/w at their own grid points, so it is called Weight-matrix 

interpolation. The third scheme is similar to the LETKF with the weight interpolation 

used in Yang et al. (2009). It is essentially also an incremental interpolation scheme. 
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Table 2.1 also shows the computational cost of LETKF without any interpolation 

scheme, LETKF with incremental interpolation and with weight matrix interpolation. It 

shows that the interpolation scheme could save the time significantly to one third of the 

time of LETKF without interpolation. To compare the EnSRF and LETKF accurately, 

the LETKF analysis for staggered variables (u/v/w) is still made based on their own grid 

points without interpolation scheme, same as in EnSRF. 

 

Table 2. 1 Compuational costs of EnSRF and LETKF 

Experiment Total CPU 

Time (sec) 

Total CPU 

Time w/o I/O 

Note 

EnSRF 44.3  34.5  u/v/w is exactly analyzed on 

the staggered C-grid 

LETKF without Interpolation 105.9  95.5  u/v/w is exactly analyzed on 

the staggered C-grid 

LETKF with incremental interpolation 41.4 31.0 
u/v/w analyzed at scalar grid 

LETKF with W-interpolation 41.8 32.1 
W update matrix interpolation 

 

It should be pointed out that, any interpolation scheme unavoidably introduces 

the interpolation error into the data. Through the single observation test, Figure 2.6 

shows that the interpolation with full variables could introduce a noticeable 

interpolation error in the area where the observation has no influence, while the 

incremental interpolation and weight interpolation have the interpolation error limited to 

the vicinity of the observation. Figure 2.28 shows that the analysis performance of 

LETKF with both incremental interpolation and weight interpolation is very close to the 

LETKF without interpolation throughout all of the DA cycles. The RMSEs of the 

analysis from the LETKF with full variable interpolation is higher than the other three 

schemes during the later DA cycles. Therefore, the incremental interpolation and weight 
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interpolation could save computational time without degradation of the analysis 

performance. 

 

Figure 2. 3 Arakawa C Grid in ARPS-LETKF. The five-point asterisk is an observation, 

and dS, dU, dV and dW represent the distances from the observation to scalar grid point, 

U grid point, V grid point, and W grid point. This figure is originally from figure 6.1 in 

ARPS User Guide by Xue et al. (1995) 
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OpenMP Parallelization of the current LETKF code 

LETKF updates the analysis of each grid point independently by assimilating 

the observations in the local region centered on each grid point simultaneously. It is 

designed in nature as a parallelizing filter. This makes it easy and straightforward to 

parallelize the LETKF code, compared to the serial EnSRF algorithm. In our current 

LETKF analysis code, the analysis loop over the analysis grid points are optimized and 

parallelized with OpenMP directives. The procedures inside the parallel analysis loop 

include the steps (4)-(8) described in the earlier section. In the following, letkf_main is 

the time cost involving the parallelized analysis loop over the analysis grid points. 

Therefore it directly represents the parallel performance. It shows the good scalability 

of LETKF algorithm. The time gap between Total Time without I/O and letkf_main is 

mainly related to the calculation of ensemble observation priors, which has not been 

parallelized yet. In Figure 2.4, all the LETKF-OpenMP run with the incremental 

interpolation scheme. Notice that the total CPU time 105.9 sec for serial LETKF 

analysis without interpolation, whereas the OpenMP parallel LETKF analysis with 

incremental interpolation and 16 OpenMP threads uses less than 20 sec. 
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2.1.5. Ensemble Data assimilation procedure 

Following Xue et al. (2006),Tong and Xue (2008b), Tong and Xue (2008a) and 

Jung et al. (2008a), initial ensemble members are initialized at t = 20 min of model time 

by adding spatially smoothed perturbations to the initially horizontally homogeneous 

first guess defined by the Del City, Oklahoma, sounding. The details about the adding 

spatially smoothed perturbations could be found in Tong and Xue (2008b). The 

standard deviations of the perturbations added to each variable are 2 ms
-1

 for u, v, and 

w; 2 K forθ  ; and 0.6 g kg
-1

 for the mixing ratios of hydrometeors (qv, qc, qr, qi, qs, and 

qh). The perturbations are added to the velocity components, potential temperature, and 
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specific humidity in the entire domain, excluding grids composing the lateral 

boundaries. For the mixing ratios, the perturbations are added only to the grid points 

located within 6 km horizontally and 2 km vertically from the observed precipitation. 

Negative values of mixing ratios after the perturbations are added are reset to zero. The 

pressure variable is not perturbed. These configurations are the same as in Tong and 

Xue (2008b). 

The first assimilation of simulated observations is performed at 25 min of model 

time and the analyses are repeated every 5 min until 100 min. The EnSRF and LETKF 

both use 40 ensemble members, a covariance inflation factor of 12%, different to 15% 

used in Jung et al. (2008b), and a covariance localization radius of 6 km, and the 

inflation is applied to only to the area influenced by radar observations where the 

reflectivity > 5dBZ. For more detailed information on the configuration of the 

assimilation experiment, see Xue et al. (2006),Tong and Xue (2008b), Tong and Xue 

(2008a) and Jung et al. (2008a). 

 

2.2 Assimilation of simulated radar observations with ARPS-LETKF system and 

Inter-comparison with ARPS-EnSRF 

In this section, the newly-developed ARPS-LETKF system is tested and evaluated in 

the data assimilation cycle experiments with the simulated radar observations. The 

performance of ARPS-LETKF is inter-compared with the performance of the existing 

ARPS-EnSRF. In the scenario of OSSE, the Root Mean Square (RMS) Error of 

ensemble-mean forecast and analysis is used to show the performance of a DA system. 

And the Root Mean Squared (RMS) Difference is also used to show how well the 
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ensemble-mean forecast and analysis fit the observations. In this work, RMS Error 

(RMSE) and RMS Difference (RMSD) are averaged over points at which the true 

reflectivity is greater than 10 dBZ. Therefore, the verification area is basically within 

the simulated storm. 

 

2.2.1. Evaluation of ARPS-LETKF with assimilation of Radar Observations 

Single Observation Test 

First we use the experiments with a single radar observation to test the effect of 

regulated R-Localization. The single observation is a radar reflectivity observation, 

which is located at x=39. 000 m, y=23000.0 m and z=3286.461 m (on the 7
th
  scan tilt). 

The observation value is 67.22541 dBZ with observation innovation of 24.84894 dBZ. 

Nerger et al. (2012) showed that, in the case of single observation, the B-localization 

and regulated R-localization should have identical effect. In this single observation 

analysis, the analysis of EnSRF with B-localization, LETKF with R-localization and 

regulated R-localization are compared. They use same localization radius=6 km. Figure 

2.5 shows that the influences of B-localization and R-localization on the analysis are 

obviously different, while the results of B-localization and regulated R-localization are 

almost same. Their differences are in the magnitude of 10
-7

. So considering the 

computational accuracy, these two localization schemes are numerically same when 

analyzing single observation. 

Next, the same single observation analysis experiment is used to compare the three 

interpolation schemes. Figure 2.6 shows that the differences between analysis of 

LETKF with incremental interpolation and LETKF without interpolation are small and 
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just limited near the observation. The result of LETKF with weight matrix is similar; it 

shows even smaller interpolation errors. However, for the LETKF with full variable 

interpolation errors are found throughout the domain, not only in the vicinity of the 

single observation. Therefore, in the data sparse area, or when observations have small 

influence (e.g., when analysis is very close to observations and/or truth in the later DA 

cycles), the interpolation error caused by the full variable interpolation may turn out to 

be fairly important and degrade the analysis performance. This is the reason why it is 

observed that the analysis performance of LETKF with full variable interpolation is not 

as good as the performances from LETKF without interpolation, LETKF with 

incremental interpolation, and LETKF with weight interpolation. 
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(a) 

(b) 

Figure 2. 5 The X-Z cross-section of the difference between analysis of 

EnSRF with B-localization and the analysis of (a) LETKF with R-

localization, (b) LETKF with regulated R-localization in the case of single 

observation. The observation position is marked with “X” in the figure. 
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(a) 

(b) 

(c) 

Figure 2. 6 The X-Z cross-section of the difference between analysis of LETKF 

without interpolation and the analysis of (a) LETKF with full interpolation, (b) 

LETKF with incremental interpolation, and (c) LETKF with weight interpolation, in 

the case of a single observation. The observation position is marked with “X” in the 

figure. 
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Greybush et al. (2011) and Holland and Wang (2013) indicated that in their 

work, the R-localization and B-localization used a different optimal scale length to 

reach the comparable performances. To compare the performances of ARPS-LETKF 

and ARPS-EnSRF in our convective-scale DA cycle experiment with radar 

observations, the optimal localization cut-off radius should be found for LETKF and 

EnSRF first. Through these data assimilation experiments with radar observations, the 

performances of ARPS-LETKF are evaluated. 

 

Experiment I: Optimal cut-off radius for R-localization in ARPS-LETKF 

In Experiment I, the ARPS-LETKF runs with different cut-off radii for R-

localization (including 6000m, 5000m, 4000m, 3500m and 2000m) in the DA cycles 

with radar observations. Figure 2.7 shows the ensemble-mean forecast and analysis 

RMS Errors (RMSE) of all analysis variables for experiments of LETKF with different 

cut-off radii of R-localization.  

In Figure 2.7, at each analysis step, the RMSEs for all analysis variables 

decrease quickly by assimilating the radar observations. Although at the model forecast 

step the RMSEs may increase, the RMSEs still get reduced down to a very low and 

relatively steady level after a few assimilation cycles. Especially in the first several 

analysis cycles, the RMSEs are reduced significantly. The period of beginning several 

DA cycles is called the “spin-up” stage of a DA system. During the spin-up period, 

there are the significant adjustments of model state toward the observations and true 

state. In this case, the spin-up stage begins at t=25 min and usually lasts for 4~6 analysis 

cycles until t=50~60 mins. The period of spin-up is about 35 minutes long. Then after 
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the spin-up, the RMSEs lower to relatively low and steady levels. The significant 

reduction of RMSEs indicates that this newly-developed ARPS-LETKF system could 

effectively assimilate the radar observations and produce a good analysis which fits the 

true state very well after a few DA cycles in this OSSE case under the perfect model 

assumption. These results are consistent with the performances from ARPS-EnSRF 

(Tong 2006).  

In Figure 2.7, the LETKF running with a cut-off radius equal to 3500 m  made 

the lowest RMSE in both the spin-up stage and the final steady stage for almost every 

variable. The performances with a cut-off radius of 4000 m are very close to the 

performances of 3500 m. The performances from longer radii (like 6000 m, 5000 m) or 

shorter radii (like 2000 m) are not as good as the performances from 3500 m. So in this 

OSSE case 3500 m is the optimal cut-off radius for R-localization in ARPS-LETKF. 

 

Experiment II: Optimal cut-off radius for regulated R-localization in ARPS-

LETKF 

Experiment II is similar to Experiment I but for ARPS-LETKF running with 

different cut-off radii (including 600 0m, 4000 m, and 8000 m) for the regulated R-

localization. In the DA cycles the same radar data are used as in Experiment I, including 

the radar radial wind and reflectivity data. By comparing the RMSEs in Figure 2.8, the 

performance with cut-off radius equal to 6000 m appears to be the best. Thus the 

optimal cut-off radius for a regulated R-localization in the ARPS-LETKF is 6000m for 

this OSSE case. 
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Experiment III: Optimal cut-off radius for B-localization in ARPS-EnSRF 

Experiment III is also similar to Experiment I but for ARPS-EnSRF running 

with different cut-off radii (including 6000 m, 4000 m, and 8000 m) for the B-

localization. In the DA cycles the same radar data are used, including radar radial wind 

and reflectivity data. Comparing the RMSEs in Figure 2.9, the performance with cut-off 

radius equal to 6000 m appears to be the best. Thus the optimal cut-off radius for B-

localization in the ARPS-EnSRF is 6000 m for this OSSE case. 
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Figure 2. 7 The ensemble-mean forecast and analysis Root Mean Squared Errors 

(RMSE) averaged over points at which the true reflectivity is greater than 10 dBZ for: 

u, v, w and perturbation potential temperature θ', perturbation pressure p', cloud water 

qc, rainwater qr, water vapor qv (the curves with larger values), cloud ice qi (the curves 

with lower values), snow qs, and hail qh, for experiments of R-localization in ARPS-

LETKF with different cut-off radius: 6000 m (black), 5000 m (red), 4000 m(blue), 

3500 m (pink) and 2000 m (green). 
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Figure 2. 8 RMSEs, same as figure 2.7, but for experiments of the regulated R-

localization in ARPS-LETKF with different cut-off radius: 6000 m (black), 4000 m 

(red) and 8000 m (blue). 
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Figure 2. 9 RMSEs, same as figure 2.7, but for experiments of the B-localization in 

ARPS-EnSRF with different cut-off radii: 6000m (black), 4000m (red) and 8000m 

(blue). 
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2.2.2. Inter-comparison of EnSRF and LETKF with Simulated radar observations 

In Experiment I and II, the performances of ARPS-LETKF were evaluated. In 

an OSSE case and with perfect model assumption, ARPS-LETKF could assimilate the 

radar observation effectively and make good analysis after a few DA cycles, which fit 

the truth simulations. Based upon the experiment I, I, and III, the optimal cut-off radius 

for the B-localization in ARPS-EnSRF is 6000 m, the optimal radius for R-localization 

in ARPS-LETKF is 3500m, and ARPS-LETKF with regulated R-localization is 6000 

m. Now, with their optimal localization cut-off radii, the performance of the ARPS-

EnSRF and ARPS-LETKF are inter-compared in the experiments of data assimilation 

with radar observations. The impacts of nonlinear radar observations (e.g., reflectivity) 

on EnSRF and LETKF are the main focus of this inter-comparison. 

 

Experiment IV: Assimilation of both of radar radial wind 
RV and reflectivity Z  

In Experiment IV, radar radial wind 
RV and reflectivity Z  are both assimilated 

by the EnSRF and LETKF systems. The RMSEs of EnSRF with B-localization, LETKF 

with R-localization, and LETKF with regulated R-localization are plotted in Figure 

2.10.  

Figure 2.10 shows that after the spin-up stage, the RMS errors of EnSRF, 

LETKF with R-localization, and LETKF with regulated R-localization all get 

significantly reduced and converge to similar levels. This indicates that with their 

optimal cut-off radii, EnSRF with B-localization, LETKF with R-localization, and 

LETKF with regulated R-localization may perform similarly. The optimal cut-off radius 

for R-localization (3.5 km in this case) is shorter than the radius for B-localization (6 
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km in this case). This result is consistent with the result in Holland and Wang (2012) 

and Greybush et al. 2011. Shorter optimal radii for R-localization in LETKF leads to 

fewer data selections and less data influence than for B-localization in EnSRF. This 

would make the inter-comparison of EnSRF and LETKF unequal. However, with very 

similar performances, the regulated R-localization has the same optimal cut-off radius 

(6km in this case) as B-localization has. Although the regulated R-localization is 

exactly equivalent to B-localization only for single observation case (Nerger et al. 2012; 

Holland and Wang 2013), these results indicate that the effect of the regulated R-

localization could be coarsely equivalent to B-localization in the case of multiple 

observations.  

Furthermore, Figure 2.10 shows that the performance of LETKF with regulated 

R-localization is a little bit better than with R-localization in both of the spin-up stage 

and the final steady stage. By using same localization cut-off radius in regulated R-

localization and B-localization, the differences in data selection and data influence are 

reduced to minimum; meanwhile, the performances of the two localization schemes 

remain very close. So the inter-comparison of EnSRF with B-localization and LETKF 

with regulated R-localization is more equitable. Hereafter, only the LETKF with 

regulated R-localization will be inter-compared with EnSRF with B-localization. A cut-

off radius of 6 km is used for both schemes. 

In Figure 2.10, the significant differences between RMSEs of EnSRF and 

LETKF occur in the spin-up stage. In the beginning cycles, the RMS errors of LETKF 

with either R-localization or regulated R-localization are obviously higher than RMS 

errors of EnSRF. This indicates that in the spin-up stage, the EnSRF outperforms 
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LETKF, so that EnSRF reaches the final steady stage earlier than LETKF by 1~2 DA 

cycles. The differences between their performances are significant and systematic. After 

the spin-up, the differences between the performances from EnSRF and LETKF become 

trivial and non-systematic. 

This significant and biased difference between EnSRF and LETKF in beginning 

DA cycles also could be observed in the ensemble-mean analyses fields of EnSRF and 

LETKF. Figure 2.11, Figure 2.12, and Figure 2.13 show the true state and ensemble 

mean analysis from EnSRF and LETKF at t=25min (first analysis), 35mins (in the 

middle of spin-up) and 60mins (final stable stage). The first DA cycle is at t=25min, so 

the analysis of EnSRF and LETKF are based on same observations and same ensemble 

background. However, Figure 2.11 shows that the strength of update and reflectivity in 

EnSRF analysis are obviously stronger than in LETKF analysis, and the EnSRF 

analysis also fits the true state better than LETKF. In Figure 2.12, t= 35min after three 

DA cycles, but the model is still in the spin-up period, and the differences between 

EnSRF and LETKF are not as big as in the first analysis step. EnSRF analysis is still a 

little bit better than LEKTF analysis. For example, in the panel of velocity below 4km, 

the updraft in LETKF is still weaker than in EnSRF, which leads to a little bit weaker 

reflectivity around that level in LETKF analysis. At t=60min, in Figure 2.13, there is 

almost no difference between EnSRF and LETK, and they both are very close to the 

true state. So the results from Figure 2.11, Figure 2.12, and Figure 2.13 are consistent 

with the results from Figure 2.10. The EnSRF outperforms LETKF significantly in the 

spin-up stage. 

  



44 

 

  

Figure 2. 10 Ensemble-mean forecast and analysis RMS errors for EnSRF with B-

localization cut-off radius=6 km (black), LETKF with R-localization cutoff radius = 

3.5 km (red) and with regulated R-localization cut-off radius=6 km(blue). 
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Figure 2. 11 Velocity (left panels) and reflectivity (right panels) on the X-Z slice 

at y=23km and t=25min (first analysis). Top panels (True), middle panels (EnSRF 

analysis mean), bottom panels (LETKF analysis mean). 
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Figure 2. 12 Same as Figure 2.11, but for t= 35min. 
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Figure 2. 13 Same as Figure 2.11, but for t= 60min 
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Experiment V: Assimilation of only radar radial wind 
RV  

In Experiment V, the LETKF and EnSRF are inter-compared through a data 

assimilation with only radar radial wind
RV  The results from EnSRF with assimilation of 

both 
RV and Z observations are used as a reference in this experiment. In Figure 2.14, 

the RMS errors from EnSRF and LETKF with only 
RV are very close to each other from 

the beginning cycles to the final cycles for all analysis variables. It indicates that if only 

radar radial wind 
RV  is assimilated, EnSRF and LETKF have very similar performance 

in spin-up and final stable stages. 

It should be noticed that, in the later spin-up stage (t=35min~50min), the RMS 

errors of LETKF are a little bit smaller than RMSEs of EnSRF for some variables, such 

as the wind components, u, v and w. Thus the LETKF outperforms EnSRF during the 

later spin-up stage when only radial wind is analyzed. The cause of this phenomenon 

might be the effect of covariance localization on the balance in the analysis of LETKF. 

Holland and Wang (2013) and Greybush et al. (2011) pointed out the R-localization 

causes less imbalance in the analysis than B-localization when same scale length is 

used. Although the imbalance caused by localization in the analysis already occurs from 

the first analysis step of the spin-up stage, the analysis error performance at the 

beginning step could not reflect it directly. The effect of imbalance has to be shown out 

through several model forecast steps. This is why LETKF outperforms EnSRF in the 

later spin-up stage. After the spin-up stage, the performance of data assimilation system 

is getting stable. In the stable stage the observations could not make the impact on the 

analysis as much as in the spin-up stage. Correspondingly the effect of localization on 

the imbalance also becomes insignificant. After 6~7 forecast steps, the model state in 
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the final stable stage are in good balance, so the differences caused by between the 

performances of EnSRF and LETKF become trivial in the final steady stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2. 14 Ensemble-mean forecast and analysis RMS Errors for experiments of 

EnSRF with only radial wind 
RV  (red), LETKF with only radial wind 

RV  (blue), and 

EnSRF with radial wind 
RV and reflectivity Z (black, used as reference and control). 
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Experiment VI: Assimilation of only radar reflectivity 

In Experiment VI, the LETKF and EnSRF are inter-compared through the data 

assimilation cycles with only radar reflectivity Z . The results from EnSRF with both 
RV

and Z data are used as reference and control run. In Figure 2.15, at the first several 

analysis steps, the reduction of the analysis RMS Errors of EnSRF is more significant 

than the reduction of analysis RMS Errors of LETKF for almost variables, such as u, w, 

p, qr, qs, qh, qv and qi. Then after the spin-up stage, the RMS errors of LETKF and 

EnSRF are getting closer. Figure 2.16 shows the ensemble-mean analysis and forecast 

Root Mean Square Differences (RMSDs) to the observations for EnSRF and LETKF. In 

the middle panel for reflectivity observation Z , it is obvious that, in the first 5~6 

analysis steps, the RMSDs of EnSRF get reduced more significantly than RMSDs of 

LETKF. Both of Figure 2.15 and Figure 2.16 indicate that analysis of EnSRF fits much 

better to true state and observation than analysis of LETKF in the spin-up stage when 

only radar reflectivity data is assimilated. EnSRF outperforms LETKF in the spin-up 

stage when reflectivity observations are assimilated. This is consistent to the results of 

the experiment IV in that both of radial wind and reflectivity are assimilated. 

It should be also noticed that, in Figure 2.15, for some variables, such as w, qr, 

qs and qh, although in the analysis step the analysis RMSEs of EnSRF decrease more 

significantly than LETKF, the forecast RMSEs of EnSRF increase also more 

significantly in the forecast step. Similarly in the middle panel of Figure 2.16 for 

reflectivity observation Z , the forecast RMSD of EnSRF jumps up back to the level 

very close to RMSDs of LETKF in the forecast step. It seems that if only reflectivity 

data is analyzed, EnSRF analysis is better than LETKF analysis, however, this 
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advantage of EnSRF over LETKF is weakened in the forecast. The reason is not clear 

yet. Our understanding to this phenomenon is related the balance and adjustment in the 

convective-scale. In the convective-scale adjustment processing, the wind fields 

dominate over the mass and/or moisture fields. If new information (like reflectivity) 

only for the mass fields or moisture fields are assimilated in the analysis step so that 

mainly the moisture fields are updated, then through the adjustment process in which 

the wind fields dominate, the considerable part of the update to mass or moisture fields 

might be lost in the forecast step. So for the EnSRF analysis, although it is better and 

closer to the observations then LETKF analysis, so in EnSRF analysis there are more 

update for moisture fields by the reflectivity observations than in LETKF analysis, but 

there is no update from wind data to support the update in moisture field, and the B-

localization in EnSRF might cause more imbalance in the analysis than LETKF, then 

EnSRF loses its advantage in the forecast. On the contrary, if the wind observations are 

assimilated together, then the assimilation of wind observation data could help to 

remain the new information in the mass and moisture fields. So in the results of the 

experiments with both radar radial wind and reflectivity data assimilated together, we 

could see the EnSRF outperforms LETKF in the spin-up stage consistently in both of 

analysis steps and forecast steps, not just only in analysis step like in the experiments of 

only reflectivity data. 
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Figure 2. 15 Ensemble-mean Forecast and analysis RMS Errors for experiments of 

EnSRF with only reflectivity (red), LETKF with only reflectivity (blue), and EnSRF 

with radial wind and reflectivity (black, used as reference and control) 

Figure 2. 16 Ensemble-mean Forecast and analysis RMS Differences (RMSDs) with 

radar the observations (radial wind , reflectivity and cross-beam wind ) for 

experiments of EnSRF with only reflectivity (red), LETKF with only reflectivity 

(blue), and EnSRF with radial wind and reflectivity (black, used as reference and 

control) 
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As a brief summary for the inter-comparison experiments of ARPS-LETKF and 

EnSRF, EnSRF and LETKF could make comparable performances with their optimal 

localization radii. And the less imbalance in LETKF analysis may help LETKF 

performs better in the spin-up stage when using linear radial wind data. Those results 

are consistent with the previous research work on the inter-comparison of EnSRF and 

LETKF (Greybush et al. 2011; Holland and Wang 2013). However, the result that 

EnSRF outperforms LETKF significantly in the spin-up stage has not been reported and 

discussed in the previous research work. Considering the strong nonlinearity in the 

observation operator for radar reflectivity, the significant and systematic differences in 

performances of EnSRF and LETKF in the spin-up stage should be related to the effect 

of nonlinear observation operator on the EnKF algorithm. In the next session, it will be 

inspected. 

 

2.3 Effect of Non-linear forward observation operator 

The results in last session show that in the spin-up stage of DA cycles, EnSRF 

outperforms LETKF significantly when the nonlinear radar reflectivity observations are 

assimilated. In this session, we are going to investigate how the nonlinear observations 

effect on the analyses of EnSRF and LETKF and how it helps EnSRF output LETKF in 

the beginning cycles.  

First let us look at how the nonlinear observation forward operator is involved 

when calculating the forecast error covariance used in Kalman gain of EnKF algorithm 

(Lorenc 2003b) 

( ) ( ) ( )( )P H
T

f T f f f fx x H x H x≈ − −                                               (2.19) 
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( ) ( )( ) ( ) ( )( )HP H
T

f T f f f fH x H x H x H x≈ − −                             (2.20) 

As can be seen, the nonlinear observation operator H is directly used in the 

R.H.S. of the equations (2.19) and (2.20) to approximately calculate the estimates of the 

error covariance (which are in linear form) in the L.H.S, without needing its linearized 

operator H and the adjoint operatorHT
. Although the linearization is not used directly 

in EnKF algorithm, the approximation in equations (2.19) and (2.20) is still called 

“implicit linearization” in (Lorenc 2003b). To understand how this linearization is made 

implicitly in equation (2.19) and (2.20), these 2 equations are derived out in detail as the 

following: 

First applying the Taylor expansion to the nonlinear operator ( )H x  , the 

ensemble form of ( )H x  is also called “ensemble observation prior” 

2

( ) ( ) H( )z ( ) ( ) H( )zf f f f f f f fH x H x x O z H x x= + + ≈ +                (2.21) 

where f f f
z x x= − is the ensemble perturbations, and the ensemble covariance is

f f f TP Z Z= . Applying the ensemble mean operator to the ensemble observation prior, 

or say, equation (2.21), with 0f
z = , and ignoring the 2

nd
 order and higher order terms, 

then 

2

2

( ) ( ) H( )z ( )

( ) H( )z ( ) ( )

f f f f f

f f f f f

H x H x x O z

H x x O z H x

= + + =

= + + ≈

                           (2.22) 

With equation (2.21) and (2.22), the ensemble perturbations in observation 

space is as following 
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( ) ( )
2

( ) H( )z ( ) ( ) H( )zf f f f f f f f fH x H x H x x O z H x x− = + + − ≈            (2.23) 

Applying equation (2.23) into the R.H.S of equation (2.19) and (2.20), 

( ) ( ) ( )( ) ( )H( )z

H( ) P H( )

T T
f f f f f f f

f f T f T f f T

x x H x H x z x

z z x x

− − ≈

= =

                                  (2.24) 

 

( ) ( )( ) ( ) ( )( )

( )( )H( )z H( )z

H( ) H( )

H( )P H( )

T
f f f f

T
f f f f

f f f T f T

f f f T

H x H x H x H x

x x

x z z x

x x

− −

≈

=

=

                                               (2.25) 

Equations (2.24) and (2.25) are same as (2.19) and (2.20). The derivation above 

obviously show that the validity of using the full nonlinear operator directly to 

approximately estimate the error covariances in linearized form is based on the 

linearization of the nonlinear operator represented by equation (2.21). So although only 

full nonlinear operator is needed in EnKF algorithm, the linearization is actually 

calculated in equation (2.19) and (2.20) implicitly (Lorenc 2003b). Equation (2.21) 

indicates that this implicit linearization is made at the place of ensemble mean f
x , 

denoted as the explicitly linearized observation operator H( )fx . And in this sense, 

EnKF is an implicitly linearized form of Kalman filter (KF) as an extension to the 

nonlinear observation scenario. 

EnSRF and LETKF both adopt the implicit linearization for the nonlinear 

observation operator in their analysis algorithms. By inspecting the linearization in 

sequential observation processing of EnSRF and the simultaneous processing of 
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LETKF, it is found that they are choosing different places to linearly approximate the 

nonlinear relation between the state and observations priors. For the simultaneous 

observation processing in LETKF, the implicit linearization is made to fit over the 

entire prior ensemble for all nonlinear observations just for once before the whole 

analysis starts. For EnSRF, its sequential algorithm in nature requires the implicit 

linearization is re-made over the intermediate ensemble, not the entire prior ensemble 

used by the linearization in LETKF. This fact was also pointed out by Anderson and 

Collins (2007). For the nonlinear operator ( )H x , its linearized operator H( )x itself is 

also a function of model state x . Then the linearization for same nonlinear observations 

but over different ensemble definitely generates the different linearization, or say, 

different linearized operator H( )fx . Even though this linearized operator is implicit for 

EnKF, the implicit linearization is different for EnSRF and LETKF indeed. Since the 

linearized operator H( )fx  is implicitly involved in the EnKF analysis algorithm, such 

as the calculation of Kalman gain and observation innovation, then the different 

linearization used by EnSRF and LETKF leads to the different final analyses for EnSRF 

and LETKF. 

It should be also noticed that, for the sequential processing in EnSRF, the 

intermediate ensemble is the current ensemble analysis with the new information from 

the observations previously analyzed, so the intermediate ensemble statistically are the 

more accurate and better ensemble estimate of the model state than the entire prior 

ensemble used in LETKF. As we know, the linearization is valid and accurate locally 

around the place the linearization is made. So for EnKF, which essentially is the 

implicit linearized form of Kalman filter as an extension in the nonlinear observation 
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problem, its analysis has only local optimality around the place where the linearization 

is made, not like the global optimality of the KF analysis for linear system. So if the 

linearization is re-made about a better model state which is closer to the observations or 

true state, then statistically this re-made linearization should help EnKF find a better 

analysis with local optimality around that better model state. In this sense, EnSRF, in 

which the implicit linearization is re-made about the inter-mediate ensemble, is superior 

to LETKF, in which the linearization is made about prior ensemble. So EnSRF could 

outperform LETKF. In fact, for the similar reason, Lorenc (2003a) claimed that “These 

implicit linearization (in EnKF) are fitted over the entire prior ensemble; the EnKF is 

inferior in this regard to 4D-Var which linearizes explicitly about the current best 

estimate.” This is also one of the motivations to the iterative EnSRF (Sakov et al. 2012; 

Wang et al. 2013b) and RIP-LETKF (Yang et al. 2012). 

According the discussion above, the linearization in EnSRF is sequentially re-

made over the inter-mediate ensemble, which is different to, and more accurate and 

better than the entire prior ensemble used by linearization in LETKF. This leads to the 

different linearization for EnSRF and LETKF, and also makes LETKF inferior to 

EnSRF, then finally causes the biased differences in the analyses from EnSRF and 

LETKF. This is the effect of nonlinear observation forward operator on the EnKF 

analysis.  

If the linearization for EnSRF and LETKF are more different, then 

correspondingly the differences in the final analyses from EnSRF and LETKF are more 

significant. To answer the question – why the differences between LETKF and EnSRF 

are significant in spin-up stage only and then turn to trivial, we should inspect the 
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factors which contribute to the differences of linearization for EnSRF and LETKF. For 

the simplicity and also without losing generality, a simple 0-D system is used here for 

this purpose.  

This model only has 1 model variable x  and 2 independent nonlinear 

observations 
1y and

2y . Let 
bx be the prior background. In LETKF, the linearized 

operators for the 2 nonlinear observations are both based on 
bx , denoted as 

1H ( )bx  for

1y  and 
2H ( )bx for

2y . In EnSRF, without losing the generality, assuming
1y is analyzed 

first, the linearized operator for
1y  is also based on the prior background

bx , denoted as

1H ( )bx for
1y . Obviously for observation

1y , there is no difference in the linearization 

for LETKF and EnSRF. When observation
2y is analyzed, the linearized operator for

2y

is re-made on the intermediate background (denoted as *

b
x ) updated by observation

1y , 

denoted as *

2H ( )
b

x . The difference between *

2H ( )
b

x  (for EnSRF) and 
2H ( )bx  (for 

LETKF) is the difference of the linearizations for same nonlinear observation
2y . By 

Taylor expanding *

2H ( )
b

x  at 
bx  and ignoring the higher order terms,  

* *
H( ) H( ) H ( )( )

b b b b b
x x x x x′≈ + −                                                         (2.26) 

Re-written (2.26), and the difference between the linearization for observations

2y  used in EnSRF (denoted as *

2H ( )bx ) and the linearization for
2y  used in LETKF 

(denoted as
2H ( )bx ) is 

* *H( ) H( ) H ( )( )b b b b bx x x x x′− = −                                                        (2.27) 
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Note that H( )x is the first-order derivative function of the nonlinear operator

( )H x , H ( )x′ is the first-order derivative function of the linearized operator H( )x , also is 

the second-order derivative function of the nonlinear operator ( )H x . 

The equation (2.27) shows that the difference between these two linearization 

for same observation is determined by two factors, H ( )bx′ and *( )b bx x− . The factor 

H ( )bx′ represents the nonlinearity in the nonlinear operator . It is called real 

nonlinearity in Jazwinski (1970) because H ( ) 0bx′ ≡ if ( )H x is a linear operator. 

Another factor *( )b bx x− is the analysis increment due to the analysis of earlier processed 

observation in the sequential processing scheme, and it represents the differences 

between the places where the linearization is made in sequential and simultaneous 

processing schemes respectively. Although this factor is different to the induced 

nonlinearity in Jazwinski (1970), it is still called as induced nonlinearity in this 

dissertation for its function as an “inducer” and “amplifier” to stimulate the effect of 

real nonlinearity H ( )bx′ . These two factors work together to contribute to the 

significance of the effect of the nonlinear observation operator. 

For this simple 0-D system, the induced nonlinearity *( )b bx x−  is equal to the 

analysis increment by the analysis of 1
st
 observation,  

( )( )

( )( )

2
*

1 12 2

1 12 2

1

1 ( / )

b

b b b

b o

b

o b

x x y H x

y H x

σ

σ σ

σ σ

− = −
+

= −
+

                                                  (2.28) 
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The equation (2.28) shows that the induced nonlinearity *( )b bx x−  depends on

2 2/o bσ σ  and ( )1 1 b
y H x− . Term 2 2/o bσ σ is the ratio of observation error variance 2

oσ and 

background error variance 2

bσ , and term ( )1 1 b
y H x− is the observation innovation for 1y . 

Although the equations (2.27) and (2.28) are derived for a simple 0-D system, 

the real and induced nonlinearity in these 2 equations are useful concepts in the general 

EnKF algorithm when using the nonlinear observations. Especially equation (2.28) 

indicates that the 2 terms, 2 2/o bσ σ  and ( )1 1 b
y H x− , could determine the significance of 

the effect of nonlinear observation operator through the induced nonlinearity. Another 

fact in equation (2.28) is that when the observation noise is much bigger than the 

forecast error, then the large noise could effectively “cover” the neglected nonlinearities 

(Jazwinski 1970). 

This induced nonlinearity could be used to explain the question -- why the 

differences between the analyses from EnSRF and LETKF are significant only in the 

spin-up stage of the DA cycles. In the beginning cycles, the quality of the initial 

ensemble is poor, so that statistically the background error variance 2

bσ is much larger 

than the observation error variance 2

oσ , then the ratio 2 2/o bσ σ is very small. For the same 

reason, the background 
bx is fairly far away from the true. Correspondingly the 

observation prior 1H ( )bx departs from observation 1y significantly. With equation 

(2.28), the induced nonlinearity *( )b bx x− becomes important. It leads to the significant 

differences in the analyses from EnSRF and LETKF in the beginning DA cycles. 

However, after the spin-up stage, the quality of the background ensemble are getting 

good enough, 2

bσ could be equal to or even smaller than 2

oσ , so the ratio 2 2/o bσ σ  
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increases. And the observation prior 1H ( )bx based on the better background is also much 

closer to the observations 1y , the observation innovation is small. Then induced 

nonlinearity *( )b bx x− is small, so the effect of nonlinear observation operator becomes 

trivial. So there is no significant difference between the analyses from EnSRF and 

LETKF in the final stable stage. 

 

2.4 Sensitivity experiments for verification of the effect of non-linear observation 

forward operator 

In this section, based on the theory about the effect of nonlinear observation 

discussed in section 2.3, several additional sensitivity experiments were designed to 

further test and verify this theory.  

Experiment VII: Assimilation of the Rarefied Reflectivity Z data only 

In this experiment, EnSRF and LETKF were inter-compared with a rarefied 

radar reflectivity dataset. The original simulated reflectivity data are located 

horizontally on the model grid points. The horizontal distance between 2 adjacent 

observations is equal to the horizontal grid spacing, 2 km. By selecting the reflectivity 

observations every 3 grid points from the original dataset, the horizontal distance 

between 2 observations in this thin reflectivity dataset is 6 km, which is just equal to the 

cut-off radius used by the covariance localization in EnSRF and LETKF. When the 

sparse reflectivity data is analyzed in EnSRF, the impact of each observation could not 

spread out to the grid points where the other observations are located due to the 

localization. Then for the sequential processing in EnSRF, the earlier analyzed 

observations could not influence the re-linearization for the following processed 
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observations. So for both of the EnSRF with the sequential processing and LETKF with 

simultaneous processing, the implicit linearization for each non-linear observation is 

still made on the entire prior ensemble. This experiment is designed to remove the 

induced nonlinearity by rarefying the data with localization cut-off radius, 

correspondingly to void the effect of nonlinear observation operator, even though the 

real nonlinearity still exists. It is expected that the differences of the performances from 

LETKF and EnSRF with this thin reflectivity data be very small and trivial from the 

beginning DA cycles. It has to be noticed that, in this experiment, the original dataset is 

rarefied only within the horizontal plane, so the impact of observation still could spread 

out in the vertical column. So we still could see some differences of the analysis 

between EnSRF and LETKF. 

In Figure 2.17, the RMS Errors of EnSRF and LETKF with the thin reflectivity 

data are very close to each other from the beginning cycles. In the middle panel of 

Figure 2.18, differences between the RMSDs of EnSRF and LETKF to the reflectivity 

observations are still observed, it is because the observations are not rarefied in the 

vertical column so that the effect of nonlinear observation still works but is limited only 

in the vertical direction. So the differences are much smaller than the differences 

between the RMSDs of EnSRF and LETKF with the original dense data set showed in 

the Figure 2.16. So the results of this experiment fulfill our expectation for this 

experiment. 
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Figure 2. 17 Same as Figure 2.15, RMS Errors  but for experiments of EnSRF with 

only rarified reflectivity data (red), LETKF with only rarefied reflectivity data (blue), 

and EnSRF with original dense radial wind and reflectivity data (black, used as 

reference and control) 

Figure 2. 18 Same as Figure 2.16, RMS Differences but for experiments of EnSRF 

with only rarified reflectivity data (red), LETKF with only rarefied reflectivity data 

(blue), and EnSRF with original dense radial wind and reflectivity data (black, used 

as reference and control) 
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Experiment VIII: LETKF Assimilating reflectivity data in two sequential batches 

In this experiment, the original reflectivity dataset is split into two smaller 

datasets. Then LETKF processes the two smaller datasets in two analysis batches 

sequentially. In each analysis batch, the observations in the smaller dataset are still 

processed simultaneously. This experiment is designed to make the LETKF process the 

data in the way of partial sequence. Because for the 2
nd

 analysis batch, the ensemble 

prior are already updated by the analysis from 1
st
 analysis batch, based on this better 

ensemble prior, the implicit linearization used for the nonlinear observations in 2
nd

 

dataset should be more accurate than the linearization in LETKF which processes all 

data in 1 batch. It is expected the performance of the LETKF with 2 batches is better 

than the performance of LETKF with 1 batch, and is closer to the performance of 

EnSRF. 

Figure 2.19 shows that for the analysis variables, u, v, w, qs, qr, qh, and qv, the 

RMS errors of LETKF processing the data in 2 analysis batches are improved obviously 

compared to the LETKF with 1 analysis batch, and is closer to the RMS Errors of 

EnSRF from the beginning DA cycles. The RMS Differences in Figure 2.20 also 

indicates that the analysis of LETKF with 2 batches is fitting the observations better 

than the analysis of LETKF with 1 batch. The results in this experiment also support our 

expectations. 
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Figure 2. 19 Same as Figure 2.15, RMS Errors but for experiments of EnSRF with 

only reflectivity data (black), LETKF processing the reflectivity data all in 1 batch 

(red), and LETKF processing the reflectivity data in 2 batches sequentially (blue) 

Figure 2. 20 Same as figure 2.16, RMS Differences but for experiments of 

EnSRF with only reflectivity data (black), LETKF processing the reflectivity 

data all in 1 batch (red), and LETKF processing the reflectivity data in 2 batches 

sequentially (blue) 
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Experiment IX: Assimilation with artificial observation lin r s h
Z q q q= + +   

As described in section 2.1.2, the analysis variables r
q , s

q , h
q  are related to the 

radar reflectivity through the nonlinear observation forward operator. In this 

experiment, the r
q , s

q , h
q are related to an artificial observations through a linear 

observation forward operator, lin r s h
Z q q q= + + . This artificial observation is called 

linear reflectivity here. Then LETKF and EnSRF are compared by assimilating this 

linear artificial observation. It is expected that the performances from LEKTF and 

EnSRF should be very close from the beginning DA cycles, just like the results of the 

experiments with radial wind data. 

In Figure 2.21, for all variables, the differences between the RMS Errors of 

LETKF and EnSRF are very small and trivial in the spin-up stage. It also should be 

noticed that, there are some differences between EnSRF and LETKF in the later final 

stage. And there are some big spikes in the RMS errors for all the analysis variables in 

the first DA cycle. The reasons for these  phenomena are not clear to us yet. It may be 

related to the imbalance introduced by the different localization scheme. In Figure 2.22, 

both of the analyses from LETKF and EnSRF fit the real reflectivity observation (in 

middle panel) and the artificial linear reflectivity observation (in the right panel) very 

well in the same way. There is no significant difference between the RMS Differences 

of EnSRF and LETKF observed in Figure 2.22. So the results in this experiment meet 

our expectation, too. 
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Figure 2. 21 Same as Figure 2.15, RMS Errors but for experiments of EnSRF 

with only the artificial observations (black), LETKF with only the artificial 

observations (red) 
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lin r s h
Z q q q= + +

Figure 2. 22 Same as Figure 2.16, the RMS Differences but for experiments of 

EnSRF with only the artificial observations (black), LETKF with only the artificial 
observations (red). Note that the right panel is the analysis and forecast RMS 

Differences to the artificial observations, not to the cross-beam wind in Figure 2.16. 
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Experiment X: Iterative 3D-LETKF 

In this experiment, the radar observations are iteratively used by LETKF. This is 

different to the experiment VIII, in which the observations are split into two datasets 

and processed in two batches sequentially, but every observation is analyzed for once 

only. In this experiment, every observation is analyzed for twice. The purpose of this 

experiment is similar to the experiment VIII. First analysis provides a better background 

for second analysis. So the implicit linearization in the second analysis is more accurate. 

Then the second analysis could fit the observations and the true state more closely. 

Essentially, this iterative analysis is just an application of the Newton-Raphson method 

for nonlinear equations into the nonlinear DA problem (Lorenc 1988). The approach of 

the iterative analysis is already widely used in Variational DA schemes (Courtier et al. 

1994; Lorenc 1997; Courtier et al. 1998). And recently it has been also adopted into the 

EnKF framework, such as the RIP-LETKF (Yang et al. 2012), iterative EnSRF (Sakov 

et al. 2012; Wang et al. 2013b).  

In Figure 2.23, for analysis variables r
q , s

q , h
q , the analysis RMS errors of the 

iterative LETKF is smaller than the analysis RMS errors of the regular LETKF in the 

beginning DA cycles. However, for the other variables, there is only trivial change, or 

even a little bit negative impact by the iterative analysis. In Figure 2.24, it also shows 

that the iterative analysis could more closely fit the observations. But after the forecast 

step, the forecast RMS Differences to the observations jump back to levels which is 

similar to the forecast RMSDs of regular LETKF. In the middle panel of Figure 2.24, 

the advantage of iterative LETKF only shows significantly in the beginning 2 DA 
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cycles, then iterative LETKF lost the advantage and performed in the way similar to the 

regular LETKF in the following DA cycles.  

The results in this experiment indicate that the iterative analysis could help to 

retrieve more information from the nonlinear observations and improve the analysis for 

the variables which are related to the nonlinear observations directly in the beginning of 

the spin-up stage. So in this sense, the results of this experiment satisfy our expectation. 

It also should be noticed that the performances from the iterative LETKF are 

only improved in the beginning DA cycles compared to the non-iterative LETKF. And 

the non-iterative EnSRF even still outperforms the iterative LETKF. One of the reasons 

might be the imbalance caused by the over-fitting in the iterative analysis. The other 

reason could be the correlation between the background error and the observation error 

for the second analysis. EnKF algorithm is based on the assumption that the background 

error and observation error are un-correlated. Then with the violation of this assumption 

in iterative analysis, the sub-optimality in EnKF analysis is degraded. 
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Figure 2. 23 Same as Figure 2.15, RMS Errors but for experiments of EnSRF (black), 

LETKF (red) and iterative LETKF (blue) 

Figure 2. 24 Same as Figure 2.16, RMS Differences but for experiments of EnSRF 

(black), LETKF (red) and iterative LETKF (blue) 
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Experiment XI: OSSE with a new supercell added to the south of the original 

single supercell at t = 50 min 

In this OSSE, a new supercell was added to the south of the original single 

supercell at t = 50 min. The purpose is to simulate a multi-cell storm case. In this multi-

cell situation, the successively-emerging new cells could keep the analysis field not 

close to the observations through the data assimilation cycles. Then effect of nonlinear 

observation would keep working through the whole data assimilation cycles. So EnSRF 

might outperform LETKF throughout most of the DA cycles. This is not like in the 

single super-cell case, in the later DA cycles the difference of the performance from 

EnSRF and LETKF are very small due to the quality-improved analysis. 

To add a super-cell, we have to use a different OSSE configuration with larger 

domain and a fast-moving storm. The similar OSSE configuration for a fast-moving 

storm in a large domain is used in Chapter 3, and the detail of this OSSE configuration 

could be found in Chapter 3. Figure 2.26 shows the composite reflectivity with 2 cells at 

t = 50min. The origin of coordinate is still at the left bottom corner of the domain. The 

radar location is at (0, 90km). Here we just describe how the second super-cell was 

added to the south of original super-cell. Figure 2.25 illustrates how to generate the 

truth simulation with the second super-cell. First, the truth simulation with original 

single supercell is made with the initial bubble centered at (45 km, 18 km, 1.5 km) at t = 

0 min. This truth simulation is called “Truth-1” hereafter. At t = 25 min this original 

first warm bubble already develops into a super-cell and move northwards. Then the 

forecast of Truth-1 at t=25min is used as the base field for the 2
nd

 super-cell. A new 

warm bubble, which is same as the first warm bubble, is placed at the same initial 
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location as (45km, 18km, 1.5km) in the forecast field of Truth-1 valid at t=25min. And 

this forecast field with 2
nd

 warm bubble is used as the initial conditions to make the 

truth simulation of 2 super-cells. This truth simulation is called Truth-2. Then the final 

truth simulation used for this experiment is a hybrid of Truth-1 and truth-2. Before 

t=50min, the truth simulation is from Truth-1, from t=50min, the truth simulation 

switches from Truth-1 to Truth-2. This combined truth simulation is called Truth-2cells. 

And the simulated radar observations are also based on this Truth-2cells. Figure 2.26 

shows the composite reflectivity of the Truth-2cells at t = 50min. There are 2 super-

cells, the original first super-cell and the 2
nd

 “newly-emerging” super-cell to the south 

of first super-cell.  

Then the analysis performances from EnSRF and LETKF are compared with the 

simulated radar observations based on the Truth-2cells. Figure 2.27 shows the RMSEs 

of EnSRF and LETKF in OSSE with 2 supercells. The RMSEs of EnSRF and LETKF 

in OSSE with 1 supercell is also plot as the control experiment and a reference. Before 

t=50min, EnSRF outperforms LETKF due to the effect of nonlinear observations. And 

after a few cycles, both of analyses of LETKF and EnSRF are improved and close to the 

truth and observations. The effect of nonlinear observations turns to trivial, and the 

differences of the performances of EnSRF and LETKF turns to insignificant at t=50min. 

At t=50mins, due the newly-emerging 2
nd

 supercell, the analyses of LETKF and EnSRF 

are both “knocked” away from the new truth and observations with 2 supercells. So it is 

observed that there are jumps in the RMSEs of LETKF and EnSRF at t=50min. Then 

the effect of nonlinear observations is re-enhanced and turns to relatively remarkable 

again than before t=50min. Correspondingly it is observed that the RMSE of EnSRF get 
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reduced faster than the RMSE of LETKF after t=50min. EnSRF outperforms LETKF 

after t=50min again in the first several analysis cycles due to re-enforced effect of 

nonlinear observations. This result matches our expectation to this experiment and 

supports our theory about the effect of nonlinear observations. 
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Figure 2. 25  schematic flow chart of the simulation with 2
nd

 supercell 
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Figure 2. 26 the composite reflectivity with a new beginning supercell 

“added” to the south of original supercell at t=50min (3000sec) 
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Figure 2. 27 RMSEs of EnSRF(Black) and LETKF(red) with single supercell, 

EnSRF(blue) and LETKF(purple) with a new supercell added to the south of original 

single spuercell at t-50min. 
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Figure 2. 28 RMSEs of LETKF without interpolation (black), with full variable 

interpolation (red), with incremental interpolation (blue) and with weight 

interpolation (purple). 
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As a summary for this section, to test and verity the theory about the effect of 

nonlinear observation operator, 5 sensitivity experiments (Experiment VII, VIII, IX, X 

and XI) are designed. In Experiment VII, the induced non-linearity is removed by 

rarefication of the data; in Experiment IX, the real non-linearity is removed by using 

artificial linear reflectivity observations. Then in these 2 experiments, the effect of 

nonlinear observation operator could not work. So the performances from EnSRF and 

LETKF are very close from the beginning DA cycles. In Experiment VIII, the data are 

analyzed in 2 batches by LETKF. In Experiment X the data are analyzed in the iterative 

approach by LETKF. The analysis of 1st batch in Exp. VIII and the first time analysis in 

Exp. X could provide a better prior ensemble for the second time analysis. Then the 

implicit linearization in second time analysis of LETKF is made over a better ensemble, 

which could be statistically closer to the intermediate ensemble used by the re-made 

linearization in EnSRF. In this sense, the effect of induced nonlinearity is weakened in 

both of Exp. VIII and X. So the performances of LETKF in these 2 experiments are 

improved and getting closer to the performances from EnSRF, at least in the beginning 

DA cycles.  In experiment XI with newly-emerging 2
nd

 supercell, the effect of nonlinear 

observations is re-enhanced by the new supercell, so EnSRF outperforms LETKF again 

in the later analysis cycles. The theory about the effect of nonlinear observation forward 

operator is verified in all of these 5 sensitivity experiments. 

 

2.5 Summary and discussions 

The Local Ensemble Transform Kalman filter (LETKF) is developed with the 

Advanced Regional Prediction System (ARPS). This newly-developed ARPS-LETKF 



79 

data assimilation system is assessed by assimilating the simulated radar observations 

and inter-compared with the existing ARPS-EnSRF system. Since LETKF algorithm is 

designed to be a parallelizing filter (Miyoshi and Kunii 2012), this ARPS-LETKF 

provides a frame for future research of huge DA problem on massive parallel 

computers, but also an additional inter-comparison test-bed to the ARPS-EnSRF system 

in convective-scale data assimilation with radar data.  

In the experiments of ARPS-LETKF data assimilation with simulated radar 

observations, root-mean-square-error (RMSE) decreases significantly and quickly in the 

beginning cycles and then reaches a very low and steady level. The results of ARPS-

LETKF with radar observations are consistent to the results of ARPS-EnSRF. So this 

newly-developed ARPS-LETKF system could effectively assimilate the radar 

observations and produce the good analysis which fits the true state very well after a 

few DA cycles under the perfect model assumption.  

The experiments for comparison of different localization schemes show that 

with their optimal localization cut-off radii respectively, the performances from EnSRF 

with B-localization, LETKF with R-localization and with regulated R-localization are 

very similar after the spin-up stage. The optimal cut-off radius for R-localization is 

shorter than the radius for B-localization. This result is consistent with the result in 

Greybush et al. (2011) and Holland and Wang (2013). But the regulated R-localization 

and B-localization use the same optimal cut-off radius when using multiple 

observations. Similar performances between regulated R-localization and B-localization 

indicate that the effect of regulated R-localization could be coarsely equivalent to B-

localization for the case of the multiple observations. By using same localization cut-off 
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radius, the differences in data selection and data influence of regulated R-localization 

and B-localization are reduced to minimum. So the inter-comparison of EnSRF with B-

localization and LETKF with regulated R-localization is more equitable. 

The experiments for the inter-comparison of EnSRF and LETKF with radar 

observations show that, when either the radial wind observations only, or the reflectivity 

observations only, or both of them, are assimilated, after the beginning spin-up stage, 

the performances from LETKF and EnSRF with their optimal cut-off radius are very 

close in the final steady stage. In the spin-up stage, when only the radial wind data are 

analyzed, LETKF outperforms EnSRF in the later DA cycles of the spin-up stage, but 

the differences between EnSRF and LETKF are insignificant and turn to trivial in the 

final steady stage. When only reflectivity data are analyzed, EnSRF analysis 

outperforms LETKF analysis significantly in the analysis step, but in the forecast step 

the EnSRF tends to lose its advantage in the error performance. When both of radial 

wind and reflectivity data are assimilated, the EnSRF outperforms significantly LETKF 

consistently in both of analysis and forecast steps, so that EnSRF reaches the final 

steady stage earlier than LETKF by 1~2 DA cycles. The differences in error 

performances from EnSRF and LETKF are significant and systematic in the spin-up 

stage, then turn to trivial in the final stale stage. Considering the strong nonlinearity in 

the observation operator for radar reflectivity, the results that EnSRF outperforms 

significantly LETKF in the spin-up stage should be related to the effect of nonlinear 

observation operator on the EnKF algorithm. 

By inspecting the implicit linearization in EnSRF and LETKF, it is found that 

EnSRF and LETKF choose the different places to make the implicit linearization. The 
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linearization in EnSRF is sequentially re-made over the inter-mediate ensemble, which 

is different to, and more accurate and better than the entire prior ensemble used by 

linearization in LETKF. This leads to the different linearization for EnSRF and LETKF, 

and also makes LETKF inferior to EnSRF, then finally causes systematic/biased 

differences in the analyses from EnSRF and LETKF. This is the effect of nonlinear 

observation forward operator on the EnKF analysis. The real nonlinearity and induced 

nonlinearity are responsible for the significance of the effect of the nonlinear 

observation operator. Especially the evolution of induced linearity with time determines 

the temporal change of differences between the analyses from LETKF and EnSRF. In 

the spin-up stage, due to the poor quality of initial ensemble, the significant induced 

nonlinearity makes the nonlinear effect significant, then leads to significant differences 

between LETKF and EnSRF. But in the later steady stage, prior ensemble is improved 

through several DA cycles and closer to the observations, then induced nonlinearity and 

the effect of nonlinear observation turn to trivial. 

Five additional experiments are designed to test the theory about the effect of 

nonlinear observation operator, especially the effect of the induced nonlinearity. In 2 

experiments, by using artificial linear reflectivity observations to remove the real non-

linearity, or by rarefying the nonlinear observations to remove the induced non-

linearity, the nonlinear effect stops working, then the performances from EnSRF and 

LETKF are very close from the beginning DA cycles. In another 2 experiments, by 

analyzing observations twice with iterative LEKTF, or by splitting the observations into 

2 datasets and processing them in 2 batches sequentially, the effect of induced non-

linearity is weakened, then the performances of LETKF in these 2 experiments are 
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improved and getting closer to the performances of EnSRF, at least in the beginning DA 

cycles. And in the fifth experiment, a new cell was added to south of original supercell 

at t=50min when the analyses of EnSRF and LETKF are both very close to the truth and 

observations. Then analysis is “knocked” away by the new cell from the truth and 

observation. So the effect of nonlinear observation is enhanced, then EnSRF 

outperforms LETKF in the next a few analysis cycles again. All the results from these 

additional experiments meet our expectations. The theory about the effect of nonlinear 

observation forward operator got verified in these 5 sensitivity experiments.  

Through the investigation of the reason for causing the different performances 

from EnSRF and LETKF when assimilating the nonlinear observations, it is realized 

that the implicit linearization is an important concept in EnKF algorithm. When the 

implicit linearization is applied to different assimilation patterns, i.e. the sequential vs. 

simultaneous observation processing (Holland and Wang 2013), EnKF might behave 

differently, e.g., EnSRF could outperform LETKF at the spin-up stage. And in the sense 

of implicit linearization, EnKF is an implicit linearized form of Kalman filter as an 

extension into the nonlinear observation problem. So it also has the limitations as a 

linearization approximation to the nonlinear problem, such as the local optimality, not 

global optimality. And in the KF framework, the estimates for the mean and covariance 

are not enough to describe the problem with non-Gaussian PDF caused by nonlinearity 

(Lorenc 2003b). So although in EnKF the nonlinear operator could be directly used by 

means of implicit linearization, how to effectively assimilating the strong nonlinear 

observations, such as radar reflectivity, polarimetric radar measurements and satellite 
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radiances, are still very challenging for EnKF and its variants. Iterative analysis is an 

approach for EnKF when dealing with the nonlinear problems.  

The less imbalance in LETKF analysis was also observed in our experiments, 

especially when linear observations are assimilated. The effect of localization on the 

imbalance in analysis was discussed in Greybush et al. (2011) and Holland and Wang 

(2013)  with their large scale models. Localization should also introduce the imbalance 

to analysis in convective scale. But the balance in convective-scale is somehow 

complicated and not dominant in most time, not like the geostrophical balance in large 

scale. So how to evaluate the effect of localization on balance in convective scale is a 

concerned issue and might be worth to be investigated in the future. Using the 

approximate form of some model equations or diagnostic relation as a constraint in the 

framework of EnKF could be a way for balance issue. It will be discussed in chapter 4. 
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Chapter 3: Four Dimensional Extension of ARPS LETKF 

 

3.1 Motivations for 4D extension of ARPS LETKF 

Convective-scale weather systems, such as super-cell thunderstorms, usually 

evolve quickly and have short lifespans, ranging from 30 minutes to a few hours. 

Because of this, observations with high density in space and time are very useful for 

convective-scale NWP. Modern weather radars provide high frequency, nearly 

continuous observations. How to effectively and efficiently exploit the high frequency 

observations to How to use the data assimilation system to effectively utilize as much as 

possible from these frequent observations to create the initial conditions for a 

convective-scale NWP model is still challenging. Usually there are three strategies to 

utilize such frequent data. Figure 3.1 shows the schematic flow chart of the data 

utilization in these strategies. 

The first strategy is to bundle observations into many small groups, and then 

analyze each small bundle at frequent intervals. This is the so-called intermittent 

assimilation cycle (Hu and Xue 2007; Dowell and Wicker 2009; Wang et al. 2013a). 

This strategy processes the frequent data sequentially in a very short time interval (e.g., 

1 minute in figure 1 (a)). The analysis and forecast are both made with high frequency. 

It could introduce imbalances into the analysis and forecast field. The frequent switch 

between analysis and forecast also involves more input and output of DA system and 

correspondingly increase the computational cost. 

The second strategy is to group the frequent data into larger data batches, 

meaning a longer time window (e.g,, 5 minutes in figure 1(b)). Then the data in this 
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larger batch is processed in one step of analysis, saving computation cost when 

compared to serial analysis of small batches in first strategy. In this second strategy, all 

the data in the larger batches are distributed in time, but are all utilized as valid at the 

same single time — the analysis time. Obviously this strategy has observation timing 

error, which could raise serious problems when weather systems are evolving quickly. 

To solve the large timing error problem in the second strategy, as well as save 

on computational costs, the third strategy uses a 4D analysis algorithm that could 

assimilate the observations collected over a longer time window simultaneously like in 

the second strategy, but use these asynchronous observations at their observation time 

(e.g, 5minutes in figure 1(c)). The 4DVar is a 4D assimilation algorithm that does this 

by searching the model trajectory which best fits the asynchronous observations 

distributed over a specific time window. Based on the EnKF framework, several 

variations of the 4D EnKF algorithms have been proposed, including the 4D-LEnKF of 

Hunt et al. (2004) and its computational-efficient upgrade version — 4D-LETKF 

proposed by Hunt et al. (2007) Hunt, Kostelich et al. (2007). Sakov et al. (2010) also 

proposed a more general form of Asynchronous EnKF (AEnKF).  

Wang et al. (2013a) developed the asynchronous 4DEnSRF system and applied 

it to the convective-scale radar DA problem with the WRF model and tested it with 

simulated radar data in an OSSE of a fast-evolving storm. Their results show that the 

4DEnSRF outperforms the EnSRF when the cycle length is more than 1 min in the 

presence of observation timing error. For long cycle lengths 4DEnSRF improves the 

analysis by utilizing more data, whereas the EnSRF performs well only when data far 

away from the analysis time are discarded. Their results show that the 4DEnSRF 
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algorithm better utilized observations collected over time than the regular EnSRF 

algorithm. 

Compared to the algorithm of the EnSRF, it is simple to upgrade the current 

LETKF framework to a 4D version. In this work, the ARPS-4DLETKF system was 

implemented on the current LETKF framework and tested with simulated radar data in 

OSSEs of a convective-scale storm. 
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3.2 Methodology 

3.2.1 Algorithm and Implementation 

The regular 3D-LETKF algorithm uses a linear combination of ensemble model 

states that best fit the observations at the analysis time. In 4D-LETKF, instead of 

searching for the best linear combination of ensemble model state to fit the synchronous 

observations only at analysis time, a search is made for the linear combination of 

ensemble model trajectory which best fits the asynchronous observations through the 

data time window. From 3D to 4D-LETKF, the same algorithm is used to find the 

weight W for the best linear combination. The difference is that all of the array/matrix 

observation variables and observation-involved variables need to extend to include the 

same type of variables but from different observation times. The form of algorithms for 

4D and 3D is almost the same. 

The following equations are same as the equations (2.8) and (2.9) in section 

2.1.4 of Chapter 2 

)()(
~ 1 boTbaa

yyRYPw −= −                                                         (3.1) 

[ ] 11)()1(
~ −−+−= bTba

YRYIKP                                                     (3.2) 

When (4.1) and (4.2) extend to the 4D algorithm, the observation vector o
y , 

ensemble observation prior mean vector b
y , ensemble observation prior perturbation 

matrix 
bY and the observation error covariance matrix R will be the combined vectors 

or matrices by concatenating their corresponding variables at different observation 

times. It should be noted that when calculating the ensemble observation prior variables, 

observation operators must be applied to the ensemble background at the observation 

time. In the 3D algorithm the operators are applied to the ensemble background only at 
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the analysis time. With the combined observation vector o
y  , combined ensemble 

observation prior mean vector b
y , combined ensemble observation prior perturbation 

matrix 
bY , and the combined observation error covariance matrix R , equations (3.1) 

and (3.2) keep the same formulas when extending from the 3D to the 4D algorithm. The 

derivation of the 4D LETKf algorithm can be found in Harlim and Hunt (2007) and 

Hunt et al. (2007).  

Since the algorithm is almost the same, the implementation of 4D-LETKF is 

particularly simple. The modification to the original 3D-LETKF system is to pre-

calculate the ensemble observation priors from the ensemble background states at the 

observation times, instead of at analysis time as would be done in the 3D algorithm. 

It should be noted that, compared to the 4DEnSRF algorithm, 4DLETKF, just 

like 3DLETKF, simultaneously processes the observations. The observation priors are 

only calculated once based on the entire ensemble prior at different observation times 

before the analysis. In the 4DEnSRF and EnSRF, the observations are processed 

serially, and the observation priors have to be updated after one observation is analyzed. 

In EnSRF, the model state is updated first by analysis of one observation, then 

observation operators are applied to the updated model state to update the observation 

prior. In 4DEnSRF, the computational cost will be very expensive if the model state is 

updated at all the observation times before the observation prior is updated for all 

observation times within the time window. Then, based on some linear assumptions, the 

observation prior can be updated directly by the analyzed observation in 4DEnSRF, 

without updating the ensemble model state and mean at observation times. The detail 

could be found in Sakov et al. (2010) and Wang et al. (2013a). 
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It is also worth noting that, in 4DLETKF, the weight W is time-independent: it 

could be applied to the ensemble model state at any time within the assimilation time 

window. This W is used to make the optimal trajectory fit during the time window. 

Allowing this time-independent W to be applied to the ensemble model state at different 

times requires the linearity assumption that the evolution of ensemble perturbations is 

linear (Evensen 2003; Hunt et al. 2007; Sakov et al. 2010). So the length of the time 

window should not be very long for strong nonlinear dynamic systems, such as 

convective-scale weather. Otherwise the trajectories may diverge enough that the linear 

combination of the ensemble model trajectories will not approximate the real model 

trajectory (Hunt et al. 2007). 

 

3.2.2 Localization 

As previously stated, the ensemble observation priors in the 4D-LETKF 

algorithm include background information at different observation times, meaning that 

a
w and 

aPɶ in (3.1) and (3.2) involve the ensemble priors at different times. The 

ensemble covariance in ensemble space,
aPɶ , implicitly includes the asynchronous 

covariance, both spatial and temporal. Therefore, in 4DLETKF, the localization has to 

be implemented not only in space, but also in time. In this 4D-LETKF, the regulated R-

localization is used as the non-adaptive localization scheme, which is similar to the 

regulated R-localization used in regular LETKF in Chapter 2. To consider the influence 

of time localization, the time localization weight 
tρ  is multiplied by the spatial 

localization weight
sρ . This means the non-adaptive localization weight 

N t sρ ρ ρ= is 

same as used in Wang et al. (2013a). The spatial and temporal localization weights are 
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both calculated by using the fifth-order correlation function of Gaspari and Cohn (1999) 

with the user-specified cut-off radius for space and time respectively.  

The hierarchical filter of Anderson (2007) is applied into our 4DLETKF system 

as the adaptive localization scheme. The adaptive localization weight   is defined as the 

regression confidence factor (RCF), and is estimated by the hierarchical filter (HF). In 

Anderson (2007), 

,

,

x y

y y

σ
β

σ
=                                                                                (3.3) 

β  is the regression coefficient used in an EnKF-like algorithm to update the 

model state, ,x y
σ  is the sample covariance between analysis variable x and observation 

variable y, and ,y y
σ is the sample variance of observation variable. β  works like the 

Kalman gain. The HF estimates the confidence, or uncertainty of β by using the 

resampling method. This confidence factor of the regression coefficient (RCF) is then 

used as the localization weight for the regression coefficient β  itself when updating the 

model state. 

It should be pointed out that the regression coefficient β  is mainly determined 

by the sample correlation between the analysis variable x and the observation variable y. 

The confidence factor, or uncertainty of β  is basically similar to the uncertainty of the 

correlation coefficient. The textbook formula for the standard error of the correlation 

coefficient is as following, 

2ˆ1

3

corr

corr
n

ρ
σ

−
=

−
                                                                      (3.4) 
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where 
corrσ  is the standard error of the correlation coefficient 

corrρ , n is the 

sample size, and ˆ
corrρ  is the estimate of the correlation coefficient. If using the standard 

error of correlation to represent the uncertainty of the correlation, (3.4) indicates that 

large correlation tends to have small standard errors. Correspondingly, the large value 

of β  will have less uncertainty, meaning they will be given more confidence. In other 

words, large values of β  will be assigned a large regression confidence factor (RCF), 

aρ , i.e. the localization weight. The HF method is essentially a method where, if there 

is strong sample correlation between the observation variable and the state variable, a 

larger weight will be assigned to the corresponding element in the Kalman gain by the 

Shur product. Therefore, the influence of observations is applied to this model state 

variable. If the sample correlation between the observation and model state variables are 

small, then a very small weight will be given to the corresponding element in the 

Kalman gain. There would be only trivial influence from the observation to the model 

state variable.  

As mentioned before, β  is a variant of regular Kalmann gain. The RCF is 

designed as a B-localization weight. If it is applied to the R-localization, it can be 

regulated in the same way as the regulated R-localization in Chapter 2 (see equation 

(2.18)). Furthermore, the formula of the hybrid nonadaptive and adaptive localization is 

defined as following, 

(1 ) N Ac cρ ρ ρ= − +                                                                       (4.5) 

where c is the weight for adaptive localization part. c=0.5 was also used in Wang et al. 

(2013a). 
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3.3 OSSE system and data assimilation experiment design 

3.3.1. Truth Similation 

This 4D-LETKF system was tested in the OSSE with 20 May 1977 Del City, 

Oklahoama, supercell storm (Ray et al. 1981), which is also used for the OSSE in 

Chapter 2. The ARPS model is used in both the simulation and data assimilation cycles. 

Two truth simulations were created: one for a slow-moving storm system in the small 

domain (referred to as SMS hearafter), and one for a fast-moving storm system in the 

large domain (referred to as FML hearafter). These similar truth simulations had been 

used in Xue et al. (2006). Both simulations are initialized with same initial bubble in the 

same way as in Chapter 2.  

The SMS simulation is the same in all aspects as the truth simulation used in the 

OSSE in Chapter 2, except that the center location of the initial bubble is moved from 

x=24 km (used in Chapter 2) to x=48 km. The model configuration, domain 

configuration, etc., are as same as used in Chapter 2. The model resolution has a 

horizontal grid spacing of 2km and vertical grid spacing of 500 m; the 3D grid point 

network is 35×35×35. Horizontally, it covers a 64kmx64km physical domain. Figure 

3.2 shows the composite reflectivity of the truth simulation for SMS at t=1800 sec, 3600 

sec, and 5400 sec. 

The FML simulation uses the same model resolution as the SMS. To 

accommodate the fast-moving storm, the 3D grid point network is 48×83×35. The 

coverage in the vertical direction is the same as in SMS simulation: 500m. The 

horizontal physical domain is 90km×160km. And the center location of the initial 

bubble is at x=45km, y=18km. Note that z=1.5km which is the same as used in SMS, as 
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well as in Chapter 2. The turbulence mixing scheme in the FML simulation is the 

Smagorinsky mixing coefficient. This is different than the 1.5-order turbulent kinetic 

energy (TKE) scheme used in the SMS simulation and in Chapter 2. To make the storm 

move fast, a constant wind of u=3ms
-1

 and v=14ms
-1

 is added to the sounding data used 

in SMS simulation. Figure 3.3 shows the composite reflectivity of the truth simulation 

for SMS at t=1800 sec, 3600 sec, and 5400 sec. 

 

3.3.2. Simulation of Radar Observation 

Similar to the simulation of radar data in Chapter 2, one WSR-88D radar is 

involved in this OSSE study. For the WSR-88D radar, standard precipitation-mode 

parameters are assumed, including 10-cm wavelength, 1
°
 beamwidth, and a total of 14 

elevations, with the lowest elevation at 0.5
°
 and the highest at 19.5

°
. Also similar to the 

observation simulation in Chapter 2, it is also assumed that the simulated observations 

are available in the plan position indicator (PPI) planes, or the elevation levels of the 

radar, rather than at the model grid points. We do assume that the radar observations are 

already interpolated to the Cartesian coordinate in the horizontal directions; in other 

words, the observations are found in the vertical columns through the model scalar 

points. The observation operators are also same as describe in Chapter 2. In the OSSE 

for the SMS, the ground-based radar is located at the x-y coordinate origin, while in the 

OSSE for the FML, the radar is located at x=0 km and y=80 km. In Figure 3.2 and 

Figure 3.3, the red dot indicates the location of radar for OSSE of SMS and FML 

respectively. 
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In this work, we use the same volume scan strategy as used in Wang et al. 

(2013a). The volume scan strategy is described as following (cited from Wang et al. 

(2013a)): 

Each volume scan spans 5 min. Following Yussouf and Stensrud (2010), the 

lowest 12 elevations of observations are collected at a rate of three elevations 

per minute and the upper two elevations are collected during the last minute of 

each volume scan with observations stored in data files minute-by-minute. Data 

in each file are assumed to be observed simultaneously and these 1 min data 

files are referred to as raw data files. 

The first raw data file here is at t=23 min of the model time, not at t=21 min as 

done in Wang et al. (2013a).  

The data collection strategy in this work is different to the strategy used in 

Chapter 2. In Chapter 2 the full volume scans are assumed to have been collected 

simultaneously, i.e. all the radar observations on the 14 radar scan tilts are observed at 

same time, which is also the analysis time. Then after the interval of 5 min, another 

simultaneous full volume scan is made and the data are used for next analysis time. 

 

  



96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3. 2 composite reflectivity of truth simulation for SMS at 

t=30min (top), 60min (middle), and 90min (bottom) 
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Figure 3. 3 Ccomposite reflectivity of truth simulation for FML at t=30min 

(top left), 60min (top right), and 90min (bottom). 
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4.3.3 Data Assimilation Experiment Design 

The 4DLETKF and regular 3DLETKF both use 40 ensemble members, 

initialized in the same way as described in Chapter 2. Initial ensemble members are 

initialized at t = 20 min of model time by adding spatially smoothed perturbations to the 

initially horizontally homogeneous first guess defined by the Del City, Oklahoma, 

sounding. The standard deviations of the perturbations added to each variable are 2 ms
-1

 

for u, v, and w; 2 K for θ ′ ; and 0.6 g kg
-1

 for the mixing ratios of hydrometeors (qv, qc, 

qr, qi, qs, and qh). The perturbations are added to the velocity components, potential 

temperature, and specific humidity in the entire domain excluding grids composing the 

lateral boundaries. For the mixing ratios, the perturbations are added only to the grid 

points located within 6 km horizontally and 2 km vertically from the observed 

precipitation. Negative values of mixing ratios after the perturbations are added are 

reset to zero. The pressure variable is not perturbed.  

Different to the multiplicative covariance inflation scheme used in Chapter 2, 

the relaxation inflation scheme (Zhang et al. 2004) is adopted here. The weight for the 

ensemble background is set to 0.5 as in Wang et al. (2013a). The spatial localization 

cut-off radius is 6km in both of horizontal and vertical directions. For the calculation of 

RCF of the hierarchical filter used as adaptive localization, 40 ensemble members are 

divided into five groups of eight members each, which is different to the eight groups of 

five members each used in Wang et al. (2013a),; our earlier test showed that this group 

strategy was best for our case. 

The main purpose of this portion of the work is to compare the performance of 

the two analysis schemes (4D-LETKF and 3D-LETKF) when using the asynchronous 
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observations distributed over a time window. The experiments were designed for this 

purpose. Table 3.1 lists out the experiment s. The rules for naming the experiments are 

similar to the rules used in Wang et al. (2013a) Wang, Xue et al. (2013). 

Table 3. 1 Experiment names for 4DLETKF and 3DLETKF 

Experiment 

name 

Analysis scheme Analysis 

start time  

Data Batches 

(min) 

SE1m 3DLETKF 23 1 

SE3m 3DLETKF 24 3 

4D3mw 4DLETKF 24 3 

SE5m 3DLETKF 25 5 

4D5mw 4DLETKF 25 5 

SE10m 3DLETKF 27 10 

4D10mw 4DLETKF 27 10 

 

As in Wang et al. (2013a), SE in the experiment name means the regular 

3DLETKF scheme is used; 4D represents the 4DLETKF scheme. The ‘nm’ or ‘nmw’ in 

the experiment names indicates the data batch length (also known as time window 

length) with ‘n’ indicating minutes. The observation data in the ‘nm’ data batch are 

collected over n minutes centered at the analysis time. In our radar data simulation, each 

raw data file includes 1 min batch data; 1 min is the shortest interval in our OSSE. So 

SE1m represents the first strategy to group the high frequency data into small batches 

and analyze these short batches of data serially with frequent intervals. SEnm (n=3, 5, 

10) represents the second strategy to analyze the asynchronous observations in longer 
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batches, and assume all the observations to be valid at the analysis time, while 4Dnmw 

(n= 3, 5, 10) represents the third strategy to use the asynchronous data distributed over a 

time at their valid observation time. 

Considering the flow-dependency in the covariance localization, hierarchical 

filter was implemented in this 4D-LETKF as the adaptive localization scheme, and also 

tested in the OSSEs of SMS and FML. Table 4.2 lists the experiments to test the 

adaptive localization scheme with the hierarchical filter. 

Table 3. 2  Experiment names used in tests of the hierarchical filter 

Experiment name  

NonAL Non-adaptive localization, i.e. the regulated R-localization 

including the spatial and temporal localization.  

AL Adaptive localization with hierarchical filter (HF) 

RAL Regulated adaptive localization with HF 

HRAL Hybrid of regulated adaptive localization and regulated R-

localization. The weight of adaptive localization is 0.5 

NoRL No R-localization and adaptive localization, only the data 

selection in the cut-off radius. 
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3.4 Experiment Results and Discussion 

The 4DLETKF and regular 3DLETKF are compared in the OSSE case. As in 

Chapter 2, the Root Mean Square (RMS) Error of ensemble-mean forecast and analysis 

is used to show the performance of each DA system. 

3.4.1 3DLETKF with intermittent assimilation cycle (1 minute window) vs. 4DLETKF 

with varying data window length  

First is a comparison of the performance of the 3DLETKF with 1min data 

batches to the 4DLETKF with varying data batch length. Figure 3.4 shows the evolution 

of the RMSEs from SE1m, 4D3mw, 4D5mw and 4D10mw in the OSSE of FML. And 

Figure 3.5 shows the evolution of ensemble spread of SE1m, 4D3mw, 4D5mw and 

4D10mw in the OSSE of FML. The analysis cycle of 3DLETKF with frequent intervals 

(SE1m) outperforms 4DLETKF in the early cycles. The main reason for the 

outperformance of SE1m is that the temporal covariance structure of 4DLETKF did not 

gain information from observations as much as the 3DLETKF in the beginning cycles. 

4DLETKF has a relatively poor quality covariance structure. After several beginning 

analysis cycles, the model state and covariance structure improve and the RMSEs of 

4DLETKF with 3min and 5min data batches reduce down to the same level as the 

RMSEs of 3DLETKF with 1min data batches. Also note that there are more jumps in 

the RMSE of perturbation pressure from the 3DLETKF with 1min data batches. That 

indicates an imbalance due to the impact of high intermittent analysis and very short 

forecast interval.  

An inter-comparison of the performance of the 4DLETKF with varying batch 

lengths is shown in Figure 3.4. The 4DLETKF with shorter data batches outperforms 
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4DLETKF with longer data batches. The advantage of 3min over 5min is not very 

significant because they both reach the same performance level after a few cycles. The 

4DLETFK with 10min data batches, however, performs poorly compared to 3min and 

5min data batches. The final RMSEs of 4D10mw remain about 2–3 times of RMSEs of 

4D3mw and 4D5mw. The reason the shorter data batches have a shorter spin-up period 

may be related to the poor quality temporal covariance structure. After several 

beginning analysis cycles, the amount of observations utilized by 4DLETKF with 

different time windows (e.g., 3min and 5min) should be same — or at least very similar 

— but the poor quality temporal covariance could do more harm to the 4D analysis with 

long window (5min) than to the short window (3min). It would prevent the 4DLETKF 

with the long window from gaining as much information as the 4DLETKF with a short 

window, making the 4D analysis algorithm less efficient than the 4D analysis with short 

window in the early cycles. As long as the time window is not too long, the 4DLETKF 

with longer window (e.g., 5min in this case) still could have similar performance after 

the spin-up cycles. The relatively poor performance of 4DLETKF with 10min data 

batches (4D10mw) in the final cycles may be due to the time window being too long for 

this fast-moving storm. The linearity assumption required by 4D EnKF algorithm might 

break up, which would lead to failure of the 4D10mw. Considering the additional 

computational cost and possible imbalance in the analysis related to the shorter data 

batch (e.g., 1 min), and the possible break-up of the linearity assumption by the longer 

window (e.g., 10 min), the 5 min window could be a good balance between 

performance and computational cost.  
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3.4.2 4DLETKF vs. 3DLETKF with longer DA time window (3 minutes and longer)  

Next, the performance of the 4DLETKF is compared to the 3DLETKF with data 

batches longer than 1 min. Figure 3.6, Figure 3.7 and Figure 3.8 show the RMSEs from 

4DLETKF and 3DLETKF with 3min, 5min and 10min data batches in the OSSE of 

FML, respectively. The 3DLETKF clearly performs poorly compared to the 4DLETKF 

throughout all DA cycles in the OSSE of fast-moving storm. In final analysis cycles, the 

RMSE of 3DLETKF is still as high as about twice that of 4DLETKF. The main reason 

for this is the observation timing error in the 3DLETKF, which treats all the 

asynchronous data be valid at the analysis time. Figure 3.9 shows the 4DLETKF vs. 

3DLETKF with 5 min data batches in OSSE of SMS. For the slow-moving storm case, 

4DLETKF still performs better than 3DLETKF with 5min data batches, though the 

differences are small. In the final analysis cycles, the performance from 4D and 

3DLETKF are comparable. This indicates that the significance of the observation 

timing error is also related to the nonlinearity and evolution of the weather system. 

 

3.4.3 Effect of Time Localization 

Statistical analyses with longer time windows tend to have more spurious 

temporal correlations. In this work the time localizations are mainly applied to the 

experiments with longer data batches, such as SE10m and 4D10mw. This part of the 

analysis examines the effect of time localization. Figure 3.10 shows the RMSEs of 

SE10m without and with  time localization in the FML (fast-moving storm) case. The 

cut-off radius for time localization is 600 sec (10 min). The figure shows that the time 

localization could improve the performance to some extent. Note that for SE10m, the 10 
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min data batches already include two full volume scans of radar data. Although these 

data are asynchronous they are all considered as valid at same time, which could cause 

fairly large observation timing errors, especially in this fast-moving storm case. The 

time localization could suppress the harmful influence of the data that have large timing 

errors, since those data are usually not close to the analysis time; time localization could 

improve the analysis. For the 3DLETKF with a longer time window, time localization 

works in a way that is similar to simply discarding observations that are not close to the 

analysis time. Wang et al. (2013a) point out that the inclusion of additional data with 

larger timing error can actually harm the analysis of regular EnSRF with longer data 

batches, such as 10 min. 

Time localization is then applied to 4DLETKF with 10 min data batches for the 

OSSE of the FML (fast-moving storm) case. Figure 3.11 shows the RMSEs of 

4D10mw, 4D10mw_timeloc600 (cut-off radius for time localization is 10min) and 

4D5mw_timeloc300 (cut-off radius for time localization is 5min.). The result is 

interesting. In most analysis cycles, the performance from analyses localized by a 

10min cut-off radius is better than performance without time localization. On the other 

hand, the performance from analyses localized by a 5min cut-off radius is worse than 

4DLETKF without time localization. This indicates that the time localization could 

improve the analysis, but could also degrade the analysis. Its effect depends on the cut-

off radius. Finding an optimal value for the time cut-off radius could be challenging. 

Even if found, the flow-dependent or case-dependent temporal covariance structure 

might make the radius useless. Applying an adaptive localization scheme in our 4D-

LETKF system may be appropriate, especially when considering time localization.  
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3.4.4 Effect of Adaptive Localization 

The hierarchical filter of Anderson (2007) was applied as the adaptive 

localization scheme into our 4DLETKF system. Figure 3.12 shows the RMSEs of 

4DLETKF with 5min data batches in the experiments listed in Table 3.2; these are for 

the slow-moving storm case. The performance with pure adaptive localization (AL) is 

better than the performance with only data selection but without R-localization applied 

to the selected observation. This indicates that HF could effectively remove or suppress 

the spurious correlation and improve the analysis performance. Also note that in the 

early cycles the performance of AL is not as good as the regulated R-localization 

(NonAL). The performance of AL, however, is eventually improved through the 

analysis cycles. In the final cycles, its performance is comparable to the performance of 

NonAL. In this case, the pure Adaptive Localization is not as efficient as the Non-

adaptive localization. One possible reason for this phenomenon is that the hierarchical 

filter is a type of statistical resampling method. Statistics in resampling methods are 

dependent upon the quality of the original sample. Thus, in the early cycles, the 

covariance structure is poor among the ensembles, the results from HF are also poor, 

and HF is not as efficient as the non-adaptive localization in the early cycles.  

As mentioned in section 3.2, the RCF, localization weight, and estimated in HF 

are designed for EnKF and its variants using B-localization. This localization weight is 

regulated in the same way as the R-localization in Chapter 2, and is called ‘RAL”. 

Figure 3.12 shows that with the regulated localization weight, the performance of RAL 
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is better than the unregulated AL, as expected. Furthermore, the hybrid regulated non-

adaptive and regulated adaptive localization result in the best performance. 

Finally, the adaptive localization is tested with a longer window (10min) for the 

fast-moving storm case. Figure 3.13 shows the RMSEs of the experiments with 

different localization schemes. The performance of the hybrid localization method is the 

best, and its advantage being most significant in the final cycles. The performance of 

pure adaptive localization is as good as the non-adaptive localization in the early cycles, 

but becomes poor in the final cycles. The reason is unknown yet. 
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Figure 3. 4 RMSE of SE1m, 4D3mw, 4D5mw, and 4D10mw in FML (fast-moving 
storm OSSE) 
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Figure 3. 5 Ensemble spread of SE1m, 4D3mw, 4D5mw, and 4D10mw in FML 
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Figure 3. 6 Ensemble spreads of 4D3mw and SE3m in FML (fast-moving storm 

OSSE) 
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Figure 3. 7 RMSEs of 4D5mw and SE5m in FML (fast-moving storm OSSE) 
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Figure 3. 8 RMSEs of 4D5mw and SE5m in SMS (slowt-moving storm 

OSSE) 
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Figure 3. 9 RMSEs of 4D5mw and SE5m in SMS (slow-moving storm OSSE) 
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Figure 3. 10 RMSE of SE10m and SE10m with time localization in FML (cut-off radius 

for time localization is 10 min) 
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Figure 3. 11 RMSE of 4D10mw with no time location, 4D10mw with a cut-off 

radius of 10 min (4D10mw_timeloc600), and 4D5mw with a cut-off radius of 5 min 

(4D5mw_timeloc300). 
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Figure 3. 12  RMSE of 4D5mw of SMS without adaptive localization (black curve), 

4D5mw with adaptive localization (AL, in red), 4D5mw with regulated adaptive 

localization (RAL, in blue), 4D5mw with hybrid localization (HRAL, purple), and 

4d5mw without localization (NoRL, green) for SMS OSSE. 
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Figure 3. 13 RMSE of 4D10mw without adaptive localization (NonAL, black), 

4D10mw with adaptive localization (AL, red), 4D10mw with regulated adaptive 

localization ( RAL, blue) and 4D10mw with hybrid localization, for FML OSSE. 
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3.5 Summary and Conclusions 

In this work, the newly developed ARPS-LETKF system was extended to its 4D 

version. With this 4D-LETKF algorithm, high frequency observations (such as radar 

observations) distributed over a time window could be analyzed simultaneously without 

timing error. This 4D-LETKF system is assessed by analyzing simulated radar 

observations in two OSSEs, with a fast-moving and a slow-moving supercell 

thunderstorm, respectively. Its performance was compared with the regular 3D-LETKF 

with different time window lengths.  

The results indicate that, compared to the regular 3D-LETKF (which takes the 

asynchronous data in a time window assigns it the same analysis time), 4D-LETKF 

shows better performance. This was mainly due to observation timing errors in the 

former method. Compared to the 3D-LETKF, which utilizes the observations with very 

short time windows, 4D-LETKF could reach the same performance after a few DA 

cycles and save computational cost by fewer analysis cycles. 

The effect of time localization was also inspected with long data batches. Time 

localizations improved the performance of 3DLETKF with long data batches by 

suppressing the harmful influence of data with large timing errors. The time localization 

also helped improve the performance for 4DLETKF with long data batches. Finding the 

optimal cut-off radius for time localization, however, could be difficult. The 

hierarchical filter (HF) was adopted as an adaptive localization scheme in this 4D-

LETKF system for the sake of the flow-dependent covariance, especially the temporal 
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covariance. The hybrid localization of HF and regular non-adaptive localization 

improved the performance of 4D-LETKF, especially with the longer time window. 
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Chapter 4: The Constrained LETKF 

 

4.1 Background and Motivations 

Modern atmospheric data assimilation is a sophisticated procedure to combine 

all the available information, such as observations and model forecast, as well as the 

error information of the data, to produce the best estimate of the model state, which is 

also called analysis. Because this analysis would be provided to the model forecast as 

the initial condition, the analysis is not only required to fit the observations well, but 

also required to fulfill the physical constraints used in forecast model as much as 

possible. Dynamical balance is one important constraint among those physical 

constraints. If the analysis variables are in poor balance, then the imbalance in the initial 

condition would cause unreal and computational oscillations in the beginning of the 

forecast and the model needs some time to adjust to the balance (a.k.a. spin-up). The 

unreal computational oscillations contaminate the forecast state in the spin-up period. 

Sometimes they even could ruin the forecast at final in case of serious imbalance. So the 

balance is also one of the essential features of analysis. Besides the constraint of 

dynamical balance, there are the other constraints, such as non-negative mixing ratio, no 

super-saturation mixing ratio. To some extent, the data assimilation problem in NWP is 

an estimation problem constrained explicitly or implicitly by the dynamical and 

physical laws and limitations. 

In the framework of EnKF, the balance constraint is represented in the 

background covariance. In theory, since the ensemble background fields are the 

solutions of forecast model, they should be in dynamical balance, and if the ensemble 
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size is ideally large enough, then the background covariance sampled from this ideal 

ensemble, should be optimal and could represent the balance constraint perfectly. From 

the point view of ETKF algorithm, the analysis ensemble are the linear combination of 

background ensemble, so analysis ensemble should be in balance since background 

ensemble are in balance. However, in practice, the background covariance is not 

optimal and the balance constraint is correspondingly degraded. First reason is that, the 

forecast ensemble might not be well-balanced in cases that, e.g., the ensemble forecast 

begins from a poor-balanced initial ensemble so that forecast ensemble is still in the 

spin-up stage. Secondly, due to the limit ensemble size in real NWP problem, the 

sample covariance could not represent the balance completely and clearly, the balance 

implied in the sample covariance might be distorted by the sampling noise. 

Furthermore, the localization could deteriorate the balance since it changes the 

covariance structure (Kepert 2009; Greybush et al. 2011). Besides the diminishment in 

the balance constraint, there might be some additional information or limitations about 

the forecast model that the EnKF does not incorporate. For example, the model error, 

non-linearity in the model and observation operator and the non-Gaussian PDF could 

downgrade the EnKF and lead to violation of the other constraints, e.g., the negative 

mixing ratio in the analysis sometimes. Then in practice, the dynamical balance and 

other physical constraints in analysis required by the forecast model could not be 

assured by EnKF. So the degradation and/or violation of the constraints in EnKF 

analysis motivate us to find the methods to modify the current EnKF framework to 

enforce the broken constraints or exploit the additional constraints and improve the 

filtering performance (Simon 2010). 
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Compared to KF and EnKF, the Variational Data assimilation problem is a 

constrained minimization of the cost function. In its nature it is straightforward and easy 

to add a new constraint term into the cost function of VarDA (Gao et al. 1999; Gao et 

al. 2004; Hu et al. 2006; Ge et al. 2012). And this is one of the advantages of 

Variational Data Assimilation (Lorenc 2003a;2003b; Gustafsson 2007). Although 

Kalman filter (KF) was developed originally from the unconstrained optimal state 

estimation problem, there are many research works to re-think about the optimal 

estimate subject to the additional constraints. Quite a few different constrained Kalman 

filtering approaches have been developed in the engineering applications. 

Simon (2010) made a comprehensive survey on the Kalman filtering with state 

constraints. It covers linear and nonlinear systems, linear and nonlinear constraints, and 

equality and inequality constraints. For linear constraints, there are various ways 

including model reduction, perfect measurements, estimate projection, gain projection, 

probability density function (PDF) truncation and system projection. Under certain 

conditions, all these approaches result in the same state estimation. In these approaches, 

perfect measurements and estimation projection are more frequently applied in different 

area. In the approach of the perfect measurements, state equality constraints can be 

treated as perfect measurements with zero measurement noise, i.e. the observation error 

is 0. So its analysis equation is same as unconstrained KF, but the observation data 

space is augmented with the error-free constraints and the observation operators are also 

augmented. One disadvantage of this approach is its singular observation error 

covariance which might cause numerical problems such as ill-conditioning in the error 

covariance estimate. But in this method the equality constraints could be assimilated 
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with regular observations simultaneously, so computationally it is more efficient. Phale 

and Oliver (2011) extended this method into the classical EnKF framework with an 

inequality constraint for the DA problem with oil reservoir model. Another approach, 

the estimation projection, is to project the unconstrained estimate of Kalman filtering 

onto the constraint surface. This method has no issue of singular error covariance and 

can be easily extended to the inequality constraints. So the estimate projection approach 

is a general form a class of the constrained Kalman filters. Basically this method is a 

two-step method which analyzes the observations in step 1and then assimilates the 

constraints in step2. This method was extended into constrained EnKF system for state 

estimation of hydrological models by Wang et al. (2009), and for estimating the 

terrestrial water budget by Pan and Wood (2006).   

However, all these approaches above are suitable for the “hard constraints”, 

which are the constraints that are required to be satisfied exactly and rigorously. In 

practice, there also are the cases that constraints are heuristic, or the constraint 

equations have some uncertainty. So these constraints are only required to be 

approximately satisfied and are called “soft constraint”, also called as “weak 

constraint”. One of the ways to apply the weak constraints in KF is to modify the 

perfect measurements by adding small non-zero observation errors, which will be called 

“imperfect measurements” approach in this study. Johns and Mandel (2008) proposed a 

two-stage EnKF that imposes the smoothness as a penalized constraint. In the second 

stage, the smoothing step consists of another application of the same EnKF code with 

the smoothness constraint as an independent observation with the specified error. In this 

2-stage EnKF the constraint is used as the observation with noise, so it is essentially an 
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extension of the “imperfect measurements” approach to the EnKF. In next session, it 

will be showed that this “imperfect measurements” approach is essentially similar to the 

approach of introducing additional constraint term into the cost function in 3DVar DA 

system.  

What we are interested is the EnKF subject to the additional constraints within 

the context of NWP. There are a few approaches and works in the atmospheric 

ensemble data assimilation area. For example, for the inequality constraint like non-

negative mixing ratio, i.e. , , , , , . 0cloud rain snow ice hail etcq ≥ , setting the updated 0q = directly if 

this constraint is violated. This method is simple and does not consider the 

corresponding influence on the other adjacent variables. So the balance might be 

broken. This method is essentially connected to the PDF truncation approach. In Wang 

et al. (2009), this approach is called “naïve method”.  

Considering the imbalance in ensemble background covariance, Liu (2005) 

proposed a full constrained EnKF and a semi-constrained EnKF to incorporate the 

dynamical balance equation into the covariance by separation of analysis variables into 

balanced and unbalanced parts. This approach had been successfully used in 3DVar 

community for large scale and even some meso-scale DA problem. But it is not suitable 

for convective-scale. Because there is no dominant and definite balance equation either 

in analytical form or in statistical form found for convective-scale yet, so it is not easy 

to split the variables into balanced and unbalanced parts.  

Compared to the incorporation of constraints into the ensemble covariance of 

EnKF (Liu 2005), the perfect/imperfect measurements and the estimate projection are 

easy and flexible, could deal with linear and nonlinear constraints, equality and non-
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equality constraints. And these approaches had been extended to EnKF framework in 

area of hydrological models (Pan and Wood 2006; Wang et al. 2009), oil reservoir 

model (Phale and Oliver 2011) and even a fire model (Johns and Mandel 2008). It is 

worth to try this method for the convective-scale EnKF problem.  

In this study, our goals are to extend the imperfect measurements approach to 

the newly-developed ARPS-LETKF system to set up a constrained-LETKF system, test 

this constrained-LETKF system in the convective-scale DA cycling experiment, and 

gain the understanding of the feasibility and capability of constrained-LETKF in 

convective scale DA problem. In this work, the divergence equation and pressure 

tendency equation are incorporated as “soft constraints” into the ARPS-LETKF 

framework. Why is divergence equation chosen in this work? First, the divergence 

equation is an equity constraint. The inequity constraint, e.g., the non-negative mixing 

ratio, , , , , , . 0cloud rain snow ice hail etcq ≥ ,would be applied only for the member which violates the 

inequity constraint. Not every member would be analyzed simultaneously with the 

inequity constraint. So the inequity constraint might be easy for the classical EnKF, 

which analyzes each member individually. For the equity constraint, it is used by all the 

members simultaneously so that it is easy to be introduced into the deterministic EnKF 

algorithm, such as EnSRF and LETKF. The second reason is the divergence equation 

has been already successfully used as a weak constraint in ARPS-3DVar framework for 

the convective-scale DA problem (Gao et al. 1999; Gao et al. 2004; Hu et al. 2006; Ge 

et al. 2012). Their works showed that the divergence constraint could improve the 

balance in the field and help 3DVar DA system get better performance. Kalnay et al. 
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(2007a) and Kalnay et al. (2007b) also suggested that the divergence could be tested as 

a constraint first in the EnKF framework. 

 

4.2 ARPS-LETKF constrained by divergence equation and pressure tendency 

equation 

By using the imperfect measurements approach, the divergence equation and 

pressure tendency equation are treated as the special types of observation to build up a 

weak-constrained LETKF system. It is similar to the two-stage EnKF with a weak 

constraint for smoothness (Johns and Mandel 2008). But the difference is that the weal 

constraints are assimilated with the other regular observations simultaneously in our 

LETKF, not sequentially in 2 steps.  

Since the divergence equation had been used as a weak constraint successfully 

in ARPS-3DVar, so at first let us look at the ARPS-3DVar with divergence constraint. 

The following formula is the cost function used in ARPS-3DVar (Gao et al. 2004). 

[ ] [ ]1 1 2

( )

1 1 1
( ) ( ) ( ) ( )

2 2 2

B O C
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b b o o c

J x J J J
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= − − + − − +
      (4.1) 

where 
OJ  is observation term, 

BJ is the background term, and 
CJ is the divergence 

constraint term. The weight coefficient,
Cλ , controls the relative importance of this 

constraint term in the cost function. They all are in quadratic form. 
CJ  could be re-

written as the following form 
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1
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T

C cJ D Dλ
−−= − −                                                        (4.2) 
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Comparing the observation term to the above re-written constraint term, the 

constraint term could be taken as a special type of observation term, in which the 

observation is divergence at model grid point and the observation value is always 0. The 

constraint weight,
Cλ , could be viewed as the inverse of error variance of this special 

observation.  

In the sense of taking the divergence constraint as a special observation, the 

weak-constrained LETKF shares the same spirit as the 3DVar with divergence 

constraint. However, it should be noticed that there are some differences between the 

3DVar and LETKF with weak constraints. In the constrained LETKF scheme, the 

constraints used as special type of observation are selected locally for the local analysis 

at each grid point. Furthermore the influence of constraint is tampered with R-

localization. So the constraints make local impact, just like the regular observations 

used in LETKF. This is different to the constraints applied in ARPS-3DVar, where 

those constraints work globally. Another difference is that in LETKF, the constraint 

could have impact on the analysis mean as well as on the analysis covariance structure. 

And the impact on covariance could spread though the ensemble forecast. In 3DVar, the 

constraint only has influence on the analysis. The background covariance would not be 

changed. This difference could make considerable differences through the data 

assimilation cycle experiment.  

Since the divergence is treated as the same “observations” as the regular 

observations, so the analysis equations in this constrained LETKF scheme are almost 

same as in regular LETKF scheme. One difference to the unconstrained LETKF is the 
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augmentation of total observation space due to this “new special observation". Another 

difference is the new forward operator for this new observation. 

 

Table 4. 1 Differences of LETKF and 3DVar both with weak constraints 

 LETKF 3DVar 

Localization Due to data selection and 

R-localization, the impact 

of constraint is local. 

No localization. The impact 

of constraint is global. 

Background Covariance Impact from constraint on 

ensemble mean as well as 

on the ensemble 

background covariance 

No impact from the 

constraint on the 

background covariance. 

Only impact on estimate of 

state 

 

Now let us look at the forward observation operator of divergence, which is just 

the diagnostic equation of divergence used in ARPS (ARPS User Guide, Xue et al. 

(1995)). 

** *1
( )

cu v W
D Div x

G ξ η ζ

 ∂ ∂ ∂
= = + + 

∂ ∂ ∂  
                                        (4.3) 

Now, let us take a look at the divergence observation by applying this 

divergence observation operator to the model fields.  

Figure 4.1 shows the divergence of background and analysis from an 

unconstrained ARPS-LETKF DA system. In Figure 4.1 panel (a) shows the vertical 

profiles of the divergence at grid point (grid index i=16, j =16) for true field (blue 
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curve), ensemble forecast mean (green curve) and ensemble analysis mean (red curve) 

at t=25mins. The analysis is unconstrained LETKF analysis with assimilation of the 

radar observations; Panel (b) is similar as (a), but shows the vertical profiles of the 

horizontal average of the square of divergence; Panel (c) is same as (a) but for each 

ensemble members; and panel (d) is same as (b) but for each ensemble members. Note 

that the vertical coordinate is the index of vertical levels, not the height. The larger is 

the index number, the higher is the level. 

In Figure 4.1, it could be found that the divergences in the background and 

analysis are small. And apparently the divergence of background field is much closer to 

0 and is about 2~3 orders of magnitude smaller than the divergence of analysis field. 

Since the background is the model forecast, it should be well-balanced in model 

dynamics. The balance in analysis field should be broken because of the assimilation of 

the new observations. So the Figure 4.1 told us that the divergence is very close to 0 in 

balanced field. And the knowledge of atmospheric dynamics told us that the divergence 

in the well-balanced field should be very small and very close to 0. This is the reason 

why the divergence equation is used as constraint of balance. It is also noticed that even 

in the balanced field the divergence is really tiny value, but not as same as 0. So 

divergence constraint is not an accurate constraint and is not strictly fulfilled by the real 

NWP model. And very small divergence is the necessary condition for balance, not the 

sufficient condition. So the divergence constraint is a weak constraint. And actually this 

divergence constraint could impose a weak anelastic mass continuity constraint in the 

analyzed wind field (Gao et al. 2004).  So Figure 4.1does indicate that divergence with 

value of 0 could be used as an imperfect observation into the EnKF algorithm. 
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Figure 4. 1 Divergence in true (blue), forecast (green) and analysis (red) fields 

(the analysis is from unconstrained LETKF analysis with radar observations at 
t=25min) 
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The pressure tendency constraint is used in the same way as the divergence 

tendency in constrained LETKF scheme. It is also used as the observation of pressure 

tendency at model grid points and the observation value is 0. The forward observation 

operator of pressure tendency is just the diagnostic equation of pressure tendency used 

in ARPS (ARPS User Guide, Xue et al. (1995)), which is as following 
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+ −  

    (4.4) 

where ρ is the mean air density at a given horizontal level, 1 0.61 v liquid iceE q q +≡ + + . 

Note that the divergence and p-tendency are both “observed” and defined on scalar grid 

points, even the kinetic fields are defined on the staggered grid points. 

In the pressure tendency equation RHS terms are the advection of perturbation 

pressure p′  (which is non-linear term), the advection of base-state pressure p  (which is 

linear term), the divergence term (linear term) and the diabetic terms. The diabatic 

terms are usually small and are therefore neglected in ARPS as well as in this work. 

And the divergence term is usually the dominant term for most meteorological 

applications. So in this sense, the divergence equation is an approximation to the 

pressure tendency equation. Furthermore, the pressure p′  is directly responsible for the 

mass balance in the system, and the divergence constraint is a weak anelastic mass 

continuity constraint in the analyzed wind field. So these two constraints both impose 

mass balance constraint on the analysis field. Then it is expected that these two 
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constraints might produce the similar effect. This is one of the reasons that why we use 

pressure tendency constraint here along with divergence constraint. They could be used 

to cross-validate against each other. By the way, it is suggested that these 2 constraints 

should not be used in constrained LETKF simultaneously. And note that this pressure 

tendency equation constraint is different with the Diagnostic Pressure Equation 

Constraint (DPEC) used in ARPS-3DVar  (Ge et al. 2012). In their work, the diabatic 

terms and turbulence effect are included.  

The divergence equation is linear. Pressure tendency equation is dominant by 

divergence term, so it is weak nonlinear. Then according to the results in chapter 2, 

simultaneous assimilation of constraints and regular observation in 1 step, or sequential 

assimilation in 2 steps should have similar performances when using linear 

observations. This is why we did not use the 2-step EnKF scheme. For the same reason, 

applying these two weak constraints to EnSRF scheme and LETKF scheme also should 

make no significant and systematic differences. Furthermore, because the observation 

space is augmented by the new special types of observations, the computational cost of 

constrained EnSRF and constrained LETKF both increase. As EnSRF processes the 

observations sequentially, so the computational cost of EnSRF is more sensitive to the 

dimension of observation space than the computational cost of LETKF. Since the 

performance of EnSRF and LETKF both constrained by these two linear/quasi-linear 

constraints is expected to be similar, and LETKF could take advantage over EnSRF in 

the sense of the computational cost, so only the constrained LETKF is implemented in 

ARPS-EnKF system at this time. 
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4.3 Experiments and Results 

4.3.1. Experiment of LETKF Analysis with only divergence constraint 

First, an experiment of LETKF analysis with only the divergence constraint but 

no any other observations is made. This experiment runs only for one analysis step. The 

purpose is to investigate the effect of assimilating the divergence constraint as an 

observation. Since the divergence constraint is used as the observation with value 0 and 

the divergence in background is tiny but not 0, so the divergence of the final analysis 

should be reduced and get closer to 0 than divergence of background statistically. The 

variables being plotted in the 4 panels of Figure 4.2 are same as of in the panels of 

Figure 4.1. In Figure 4.2 panel (a), it shows that, from level 9 and above, the divergence 

of ensemble analysis mean (red curve) is closer to 0 than the divergence of ensemble 

forecast mean (green curve). But from level 8 and below, the divergence of analysis 

mean is larger than the divergence of forecast mean. In panel (b) and (d) the similar fact 

could be observed. It indicates that the divergence constraint in LETKF could reduce 

the divergence in middle and high levels. So this divergence constraint could make 

reasonable and expected effect in the LETKF framework at least in middle and higher 

levels. But why does it not work the same way in the lower levels? The reason is 

unknown yet to us now. It will be discussed in summary session of this chapter.  

Note that in this experiment the regular observations (like radar observation) are 

not used. The reason is that the increase of divergence due to the assimilation of regular 

observations is much more significant than the reduction of divergence due to the 

assimilation of divergence constraint.  
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Figure 4. 2 Divergence in background (green) and analysis (red) fields , same as 
Figre 4.1 but Analysis is from LETKF analysis with only the divergence 

constraint, with error std. = 0.001kg m
-3

 s
-1
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4.3.2. Impact of divergence constraint with various constraint weight 

In the experiment above, the effect of divergence constraint on analysis is 

examined without analyzing the regular observations. Now, the impact of divergence 

constraint on the performance of ARPS-LETKF is investigated through a set of 

experiments of data assimilation with radar observations. In this set of experiments, the 

different constraint weights are used. The ARPS-LETKF system configuration, the 

radar observation data set are same as used in chapter 2. The constraint weight 

coefficients are listed in Table 4.2. The Figure 4.3 shows the RMSE of the set of 

experiments listed in Table 4.2. And Figure 4.4 shows the ensemble spread for the same 

experiment set in Figure 4.3. 

 

Table 4. 2 Weight coefficients used in experiments with divergence constraint 

Experiment Name 

Constraint weight 

coefficient 
Error stddev. 

LETKF 0 infinite 

Div1E-3 1E+6 1E-3 

Div2E-4 2.5×1E+7 2E-4 

Div1E-4 1E+8 1E-4 

Div1E-5 1E+10 1E-5 
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Figure 4. 3 The ensemble-mean forecast and analysis Root Mean Squared Errors 

(RMSE) averaged over points at which the true reflectivity is greater than 10 dBZ for: 

u, v, w and perturbation potential temperature θ', perturbation pressure p', cloud water 

qc, rainwater qr, water vapor qv (the curves with larger values), cloud ice qi (the curves 

with lower values), snow qs, and hail qh, for experiments Unconstrained LETKF 

(black), LETKF with divergence constraint err.std.=0.001(red), with divergence 

constraint err.std.=0.0002(blue), err.std.=0.0001(pink) and err.std.=0.00001(green). 

 

In Figure 4.3, it shows that the impact of constraint depends on the magnitude of 

the weight constraint coefficient. When the weight is small (like the error stddev is 1.0e-

3), the influence of constraint is very trivial. By varying the weight in the reasonable 

range (like the error stddev. is around 1.0E-4), the obvious positive impact of 

divergence constraint could be observed from the RMSE of perturbation pressure p′ . 

Even in the beginning of the cycles, the improvement in RMSE of p′  could be 

noticeable. After 2~3 cycles, the further reduction in RMSE of p′  due to the divergence 

constraint becomes considerable. When the constraint weight is bigger but still in 

reasonable range, the improvement is more significant. For the other model variables, 

the influence of constraint is very small. When increasing the weight, a little bit increase 



136 

in the RMSE could be seen on some variables, such as wind component . But this 

negative impact is still very insignificant. When weight is too big and beyond the 

reasonable range (like the erro stddev is 1.0e-5), filter divergence comes into existence. 

 

Figure 4. 4 Same as Figure 4.3 but the Ensemble Spread for experiments with various 

weights for divergence constraint  

 

Looking at the ensemble spread in Figure 4.4, it could be found that the 

ensemble spread of the constrained LETKF is smaller than of the unconstrained 

LETKF. When constraint weight increases, the reduction in spread is more 

considerable. This might explain the slight negative impact of the constraint on other 

variables except for perturbation pressure p′ . Especially when large weight is applied, 

the ensemble spread is too small to be consistent with RMSE. Then the filter diverges. 

In theory, more observations could improve the uncertainty in the analysis. Since the 

divergence constraint is used as observations, it might further reduce the ensemble 

spread to some extent compared to the unconstrained LETKF. In practice, the bigger 
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covariance inflation could be applied to compensate this extra reduction of ensemble 

spread caused by the constraint.  

Figure 4.8 shows the pressure perturbation field at t=60min on X-Z cross-section 

at y = 23 km from Truth simulation, LETKF analysis with divergence constraint and 

LETKF analysis without constraint. It could be noticed that the results of LETKF with 

constraint are closer to the true state. The significant differences of pressure 

perturbations between LETKF with and without constraint are in the lower levels, 

especially in the near ground levels. The values of the pressure perturbations in LETKF 

with constraint near the surface are much smaller and closer to the true values. 

Especially in the left-bottom corner area, there is an area with negative values in the 

true and LETKF with constraint, but in LETKF without constraint, that is an area with 

large positive values. 

 

4.3.3. Impact of pressure tendency constraint with various weight 

Similar as the investigation on the impact of divergence constraint discussed 

above, the impact of pressure tendency constraint on the performance of ARPS-LETKF 

is also examined through a set of experiments of data assimilation with radar 

observations. In this set of experiments, the different constraint weights are used. The 

ARPS-LETKF system configuration, the radar observation data set are same as used in 

chapter 2. The constraint weight coefficients are listed in Table 4.3. The Figure 4.5 

shows the RMSEs of the experiment set listed in Table 4.3. And Figure 4.6 shows the 

ensemble spread for the same experiment set listed in Table 4.3. 
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Table 4. 3 Weight coefficients used in experiments with pressure tendency constraint 

Experiment Name 

Constraint weight 

coefficient 

Error stddev. 

LETKF (no constraint) 0 infinite 

Ptnd1.0 1.0 1.0 

Ptnd10.0 0.01 10.0 

Ptnd50.0 0.0004 50.0 

 

 

 

Figure 4. 5   RMSE for: u, v, w , θ', p', qc, qr, qv (the curves with larger values), qi (the 

curves with lower values), qs, and qh, for experiments Unconstrained LETKF (black), 

LETKF with pressure tendency constraint err.std.=1.0 Pascal s
-1 

(red), err.std.=10.0 

(blue) and err.std.=50.0 (pink).  
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In Figure 4.5, with smaller constraint weight (like 0.0004), the impact of 

constraint is very tiny. When the weight is increased to 0.01, the positive impact on the 

RMSE of the perturbation pressure p′  could be obviously observed. When using larger 

weight (like 1.0), the positive impact on p′  turns to more significant, but a little bit of 

negative impact on the other model variables could be noticed also.  

In Figure 4.6, the impact of constraint is to reduce the ensemble spread further 

compared to unconstrained LETKF. With larger constraint weight, the ensemble spread 

decreases more significantly.  

 

 

 

Figure 4. 6  Same as Figure 4.5 but the Ensemble Spread for experiments with various 

weights for pressure tendency constraint. 
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So the impact of pressure tendency constraint is similar to the impact of 

divergence constraint. Either of the two constraints always tends to reduce the ensemble 

spread. And too large constraint weight could lead to filter divergence. With proper 

constraint weight, both of the two constraints could have considerable positive impact 

on RMSE of the perturbation pressure p′  , and slight negative impact on RMSEs of the 

other model variables. In Figure 4.7, the RMSE of unconstrained LETKF, LETKF 

constrained with divergence constraint (error stddev.=1.0e-4) and LETKF constrained 

with pressure tendency constraint (error stddev. =10.0) are plotted to show the similarity 

of these two constraints. As discussed in section 4.2, according to the equations of these 

two constraints, it is expected that they should behave in similar way. And the results in 

these experiments meet the expectations. 

 

Figure 4. 7  RMSE of experiments of LETKF unconstrained (black curve), LETKF with 

divergence constraint err. std. = 0.0001 (red curve), and with pressure tendency 

constraint err.std. = 10.0 (blue curve).  
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Figure 4. 8  Pressure Perturbation field ( p′  in unit of Pa) at t=60min on a X-Z cross-

section at y=23km for True simulation (top left), LETKF with divergence constraint 
(top right) and LETKF without constraint (bottom) 
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4.4. Summary and discussions 

Based on newly-developed ARPS-LETKF, a constrained ARPS-LEKTF system, 

that imposes the divergence equation and pressure tendency equation as weak 

constraints to the analysis, is set up. The two constraints, divergence and pressure 

tendency, are used to improve the balance in analysis field. In the constrained LETKF 

scheme, these two constraints are treated as special “observations” with specified error 

as the weighting coefficient of the constraints. The LETKF analysis algorithm does not 

change, except that the observation space is augmented by the observations of the 

divergence and pressure tendency, and the observation forward operators are also 

augmented by the divergence equation and pressure tendency equation. 

Then this constrained ARPS-LETKF system was tested in the DA cycling 

experiments with radar observations in the same system configuration as in chapter 3. 

The results show that these two constraints have similar effects on the performance of 

LETKF. With proper constraint weight, both of the two constraints show two different 

impacts: the significant positive impact on RMSE of the perturbation pressure , and 

very slight negative impact on RMSEs of the other model variables. Since the 

perturbation pressure and these two constraints are closely related through the mass and 

dynamic balance, so the significant positive impact on pressure showed in our 

experiments is reasonable and expected. The slight negative impact might be because 

the constraints could reduce the ensemble spread further than the unconstrained 

LETKF. And too big constraint weight could lead to filter divergence due to the 

significant reduction in ensemble spread.  
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Ge et al. (2012) used both of divergence constraint and Diagnostic Pressure 

Equation Constraint (DPEC) in ARPS-3DVar framework. In their work the effect of the 

constraints could be seen in almost each analysis variable and the improvement appears 

from the beginning cycles of DA. In the constrained LETKF, the impacts of these 2 

constraints are not significant on all the variables except for pressure p′ . These different 

impacts of constraints from ARPS-3DVar and Constrained ARPS-LETKF might be 

explained as the following: the background covariance in 3DVar has a stationary but 

flow-independent structure. On the contrary, the background covariance in EnKF is 

sampled from the ensemble forecast and it is flow-dependent. For convective scale DA 

problem, the background covariance in EnKF is better than in 3DVar. Correspondingly 

the balance constraint implied in EnKF is also better. Then when additional balance 

constraints (such as divergence constraint) are applied to both of EnKF and 3DVar, the 

3DVar could get more benefits and improvements. Especially during the DA cycle with 

3DVar, the fixed and potentially not-well-balanced covariance is repeatedly used. But 

for the EnKF, the balance in covariance should be getting better and better through the 

DA cycles at least in the scenario of OSSE with perfect model.  

On the other side, since the effect of constraints in constrained LETKF still 

could be observed significantly on perturbation pressure, and as we know, pressure is a 

variable sensitive to the balance in the wind field. The improvement in analysis of 

pressure p′  indicates that the ensemble covariance in EnKF is not very well-balanced 

yet due to the sampling error, model error or other reasons. So these constraints still 

could make some improvements in the EnKF framework.  
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This work shows the feasibility and potential capability of the constrained-

LETKF scheme in a real convective-scale NWP DA system. In the future work, we will 

deeply investigate the impact of these 2 constraints on the balance. For example, how is 

the covariance structure influenced by the constraint? This impact of constraint on 

background covariance is not available in the 3DVar framework. And since the 

divergence and pressure tendency constraints could improve the analysis of perturbation 

pressure, if this means positive impact on the balance in the analysis, then this analysis 

should be used as the initial condition to do the 3~6 hrs forecast to examine the impact 

of constraint on forecast. Furthermore, within this constrained LETKF framework, other 

types of constraints could be considered in the future, such as the non-negative mixing-

ratio (q) as an inequity constraint. 

There are some other issues which also need be concerned in the future work. 

One issue is that when only the divergence constraint is assimilated in the analysis, the 

divergence could be reduced in the middle and higher levels as expected, but not 

reduced in the lower levels. This is not reasonable. According to the estimation theory, 

the analysis should fit the observation statistically better than the background. Our 

understanding to this phenomenon is that, if this is not due to the code bug, it might be 

because the divergence constraint is improper in the lower levels of atmosphere. In the 

current model configuration, level 8 is about 2.5~3km high. So the layer from level 1 to 

level 8 covers the planetary boundary layer. As we know, the flow in the planetary 

boundary layer is strong divergent in most time. The zero-divergence constraint might 

not be a good balance constraint there and it is incompatible to the balance property in 

the ensemble covariance for the lower levels. If this zero-divergence constraint is forced 
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to be assimilated in these lower layers, it might cause unreal and computational 

imbalance in the analysis field and lead to the unexpected increase of divergence in the 

analysis. If this understanding is right, then this zero-divergence constraint should not 

be used for lower level atmosphere. And the following questions would be raised: Is the 

flow in boundary layer totally unbalanced? Then it might be not necessary to apply any 

balance constraint there. Or is the boundary flow in any other kind of balance 

sometimes? is there any analytical equation or statistical equality which could describe 

it and be used as a constraint in DA problem? 

Another issue is that since the constraint is treated as observation, is it necessary 

to consider about the possible correlation of the error of these special observations in 

the LETKF algorithm? Usually in VarDA framework it is assumed to be uncorrelated 

since it is used only as an additional constraint term to force the analysis to be more 

balance, not real observation. But if the error of constraint are correlated but used as if 

they are un-correlated, then the impact of constraint would be over-emphasized or 

distorted in the analysis, and may lead to the unreasonable reduction in the ensemble 

spread. 
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Chapter 5: Summary and Future Plan 

5.1 General Summary 

In convective-scale data assimilation (DA), radar reflectivity observations, 

model dynamics, and microphysical processes are strongly nonlinear. This non-linearity 

limits the feasibility of 4DVar for convective-scale data assimilation due to the 

difficulties in developing and maintaining of the full model adjoint code and the 

associated convergence issues with variational cost function minimization.  

In the EnKF algorithm, the nonlinear model and observation forward operators 

could be directly used without any linearization. The EnKF is easy to implement in 

convective-scale DA. With the advantage of explicit estimation of the error covariance 

in the EnKF analysis, error covariance in EnKF is not only flow-dependent, but also 

continuously improved through the DA cycles. This ensemble-based error covariance 

can help to build up a reasonable, balanced and flow-dependent error covariance 

structure for a convective-scale DA system, which could not be gained in the 4DVarDA 

framework. So The EnKF and its variants have been widely applied into connective-

scale DA with radar observations. Due to the high resolution of models and high density 

of observations in convective-scale DA, the large computational costs demand a 

massive parallel implementation of the EnKF algorithm. Compared to the sequential 

observation processing in the nature of the EnSRF algorithm, LETKF was designed as a 

parallelizing filter with its simultaneous observation processing algorithm. LETKF is 

more suitable to be used as a frame for future studies of large DA problems on massive 

parallel computers. 
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This work first developed the ARPS LETKF DA system and tested it through 

observing system simulation experiments (OSSEs) with simulated radar observations. 

Then this newly-developed ARPS-LETKF system was inter-compared with the existing 

ARPS-EnSRF system in OSSEs also. Furthermore, this ARPS LETKF system was 

extended to its four dimensional version, 4D-LETKF, and compared with regular 3D-

LETKF. Finally, the constrained ARPS-LETKF was built up based on the ARPS-

LETKF framework. Divergence equation and pressure tendency equation were used as 

two equation constraints, for the purpose of reinforcement of the balance in LETKF 

analysis. 

The results of the experiments of ARPS-LETKF with simulated radar 

observations show that this newly-developed system can effectively assimilate radar 

observations and produce good analyses which fit the true state very well after a few 

DA cycles under the perfect model assumption. By using the incremental interpolation 

or weight interpolation scheme in ARPS-LETKF, the computational costs were reduced 

significantly without loss of analysis performance. This LETKF algorithm was then 

parallelized with OpenMP directives. The computational performance of LETKF with 

OpenMP shows the capability of LETKF to be used as parallelizing filter for large data 

assimilation problems in the future work. 

Through the experiments for the inter-comparison of EnSRF and LETKF with 

simulated radar radial wind and reflectivity observations, it is found that the 

performances of EnSRF with B-localization, LETKF with R-localization, and LETKF 

with regulated R-localization are very similar after the spin-up stage, with their optimal 

localization cut-off radii respectively. R-localization uses a shorter optimal cut-off 
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radius, while the regulated R-localization and B-localization use the same optimal 

radius. It is also found that, in the spin-up stage, when using linear radial wind data, the 

smaller imbalance in the LETKF analysis may help the LETKF perform a little bit 

better. These results are consistent with previous research on the inter-comparison of 

EnSRF and LETKF (Greybush et al. 2011; Holland and Wang 2013).  

However, when reflectivity data are analyzed, EnSRF analysis outperformed 

LETKF analysis systematically in the earlier analysis steps, so that EnSRF reached the 

final steady stage earlier than LETKF by 1~2 DA steps. The differences in the 

performances from EnSRF and LETKF are major and systematic in the spin-up stage, 

and then become trivial in the final steady stage. These results have not been reported or 

discussed in previous research. 

By inspecting the implicit linearization in EnSRF and LETKF, it was found that 

EnSRF and LETKF make the implicit linearization at different places. The linearization 

in EnSRF is sequentially re-made over the intermediate ensemble, which is different to, 

and more accurate than the entire prior ensemble used by linearization in LETKF. In 

this regard, the EnSRF is superior to LETKF. The differences in linearization lead to the 

systematic/biased differences in the analyses from EnSRF and LETKF. This is the 

effect of the nonlinear observation forward operator on the EnKF analysis. Further 

inspection shows that the real nonlinearity and induced nonlinearity are responsible for 

the significance of the effect of the nonlinear observation operator. In the spin-up stage, 

due to the poor quality of the initial ensemble, the significant induced nonlinearity 

makes the nonlinear effect significant, then leads to significant differences between 

LETKF and EnSRF. But in the later steady stage, the background ensemble is improved 
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through several analysis steps and is closer to the observations. Then the induced 

nonlinearity turns to small, and the effect of nonlinear observation become trivial. Five 

additional experiments were designed to test the theory about the effects of the 

nonlinear observation operator. All the results from these additional experiments 

supported the above theory about the effect of the nonlinear observation forward 

operator.  

Then the ARPS-LETKF system was extended to its 4D version. With this 4D-

LETKF algorithm, high frequency observations distributed over time could be analyzed 

simultaneously without timing error. This 4D-LETKF system was tested and compared 

with the regular 3D-LETKF by analyzing the simulated radar observations. The results 

indicated that,  

compared to 3D-LETKF with intermittent assimilation cycles (e.g., 1 minute), 

4D-LETKF with longer time windows (e.g., 3 ~ 5 minutes) can produce similar 

analyses after a few DA cycles while reducing computational cost significantly by using 

fewer cycles. When both of 4D and 3D LETKF using 3 minute or longer data batch, 

4D-LETKF performs better than 3D-LETKF, mainly due to the observation timing error 

in 3D-LETKF. 

The effect of time localization was also inspected. It could improve the 

performance of 3D-LETKF with longer data batch (like 10 minutes) by suppressing the 

harmful influence of data with large timing error. Time localization also could help to 

improve the performance for 4D LETKF with longer data batches by removing the 

negative influence from the observations observed at the time which is not close to the 

analysis time. 
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The hierarchical filter (HF) was then adopted as an adaptive localization scheme 

in this 4D-LETKF system. The results showed that the hybrid localization of HF and 

regular non-adaptive localization could improve the performance of 4D-LETKF, 

especially when 4D-LETKF using longer time window. 

The last portion of this research was to build up a constrained ARPS-LEKTF 

system that imposed the divergence equation and pressure tendency equation as weak 

constraints to the analysis. In the constrained LETKF scheme, these two constraints 

were treated as special “observations” with specified error as the weighting coefficient 

of the constraints. The LETKF analysis algorithm did not change, except that the 

observation space was augmented by the observations of the divergence and pressure 

tendency, and the observation forward operators were also augmented with the 

divergence equation and pressure tendency equation. 

Then this constrained ARPS-LETKF system was tested in the DA cycling 

experiments with simulated radar observations. These two constraints showed similar 

effects on the performance of LETKF. With a proper constraint weight, both of the 

constraints show a significant improvement on the analysis of the pressure perturbation. 

Because the pressure perturbations and these two constraints are closely related through 

the mass and dynamic balance, this improvement in analysis of pressure indicates that 

this constrained LETKF could help to enhance the balance in LETKF analysis. It also 

should be pointed out that the overall quality of analyses for the other variables does not 

change much. It suggests deeper inspections into the constrained LETKF in convective-

scale DA in the future work. 
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5.2 Future Plan 

To use this ARPS-LETKF system in the large dimension DA problem, this 

LETKF analysis scheme should be parallelized with high efficiency. Current ARPS-

LETKF code was already parallelized with OpenMP. But it could not easily handle the 

problem with gigantic dimension and massive amount of observations. And OpenMP 

parallel code is not very efficient on the popular distributed parallel computational 

environment, such as the clusters of computer, the emerging cloud computing platform. 

So this ARPS-LETKF will be parallelized in a way of hybrid of MPI and OpenMP 

soon.  

LETKF-RIP (Run-In-Place), as an iterative algorithm of 4D-LETKF, had been 

applied to several different DA problems (Kalnay and Yang 2010; Yang et al. 2012) . In 

the convective-scale DA, Wang et al. (2013b) developed the iterative 4DEnSRF with 

WRF model and tested it in OSSEs. Their research work shows the advantages of the 

iterative approach for 4DEnSRF, which includes the better analysis for nonlinear 

problems and reducing the period of spin-up. So a tentative future work is to implement 

the iterative version based on the current ARPS-4DLETKF system, and then inter-

compare it with the existing iterative ARPS-4DEnSRF.  
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