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I had with Dr. Gert Hütsi, Tartu Observatory, Estonia.

I thank Dr. Henry Neeman and the staff of the Oklahoma Supercomputing

Center for Education and Research (OSCER) for helping me when needed and for

making many learning opportunities freely available.

On a personal note, I am grateful to my parents for who I am today and for

iv



making my success their dream, the only dream, and the only thing they ever

wanted in their life: I promise I never let you down. I thank the love of my life, my

wife, Dhrshani Bopege, for her support and understanding during the good and

the bad, the successes and the failures of my life. Siyara, thank you for sacrificing

valuable father-daughter time for the completion of this project.

I wholeheartedly thank my motherland, Sri Lanka, and the people for the free

education I received during the entire time I was a student. I will never be able to

graduate from college without this support. I sincerely thank my life long friends

Suneth Fernado and Tharaka Gamage for their friendship and understanding. I

also thank all of my Sri Lankan friends in Norman, Oklahoma for simply being

there for each other. I very much appreciate the spiritual guidance provided by

Rev. Higulwala Piyarathana and other monks at Oklahoma Buddhist Center. Last

but not least, I am grateful to the United States for giving students like me who

would never be able to afford graduate education without help, the opportunity of

making their dreams a reality.

This work was supported in part by DOE grants DE-FG02-04ER41305 and

DE-SC0009956.

v



Table of Contents

List of Tables vii

List of Figures ix

1 Introduction 1

1.1 Effect of Matter Density Variations on the Power Spectrum . . . . . . . . 2
1.2 Galaxy Redshift Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Luminous Red Galaxies (LRGs) . . . . . . . . . . . . . . . . . . 8

2 One Dimensional Galaxy Power Spectrum using Direct Fourier Method 14

2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.1 Matter Overdensity Field . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Relationship between Correlation Function and Power Spectrum . 15
2.1.3 Selection Functions . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Estimation of Power Spectrum . . . . . . . . . . . . . . . . . . . 17
2.1.5 Proof of FKP Estimator of the Power Spectrum . . . . . . . . . . 19
2.1.6 Finding Optimum Weights w(r) . . . . . . . . . . . . . . . . . . 24
2.1.7 Window Function . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.8 Summary of the FKP Method . . . . . . . . . . . . . . . . . . . 30

2.2 Obtaining Galaxy Power Spectrum using 2dFGRS and SDSS Data . . . . 31
2.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Measurement of H(z) and DA(z) from the Two Dimensional Power Spec-

trum of Sloan Digital Sky Survey luminous red galaxies 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 2D Galaxy Power Spectrum Estimation . . . . . . . . . . . . . . 42
3.3.2 Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3 Window Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.4 Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.5 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.1 Validating the Method Using Mock Data . . . . . . . . . . . . . . 54
3.4.2 Constraints on Parameters from SDSS Data . . . . . . . . . . . . 56

3.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Summary 69

vi



List of Tables

1.1 LRGs are defined using colors. The definition consists of two color cuts
depending on redshift. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 LasDamas mock catalog fitting results. Each mock catalog is divided
into five patches, and each patch is analyzed separately. The estimated
parameters from each mock is the weighted average of the estimates from
the patches. The mean and standard deviation are obtained by averaging
over 80 mock catalogs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Same as Table 3.1, but for dividing each mock into 10 patches. . . . . . . 56
3.3 Results from our analysis of SDSS DR7 LRGs. The mean values and

standard deviations are calculated from the mean parameter values and
covariance matrices obtained by fitting parameters for the 5 patches. . . . 58

3.4 Normalized average covariance matrix corresponding to Table 3.3. . . . . 58

vii



List of Figures

1.1 The effect of cold dark matter (Ωc) on the power spectrum is shown here.
These three power spectra were generated for Ωc = 0.1, 0.2, and 0.3 as
depicted by dashed line, dotted line, and dot dashed line, respectively. The
maximum of the spectrum shifts to higher k as Ωc increases. Ωb = 0.05 is
assumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The baryon density, Ωb, determines the BAO peak positions on the power
spectrum. BAOs become stronger as the baryon density increases. Ωc =
0.2 is assumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 A summary of different galaxy redshift surveys. Diagonal lines repre-
sent the total number of redshifts measured in the survey. Magnitude
limited surveys are plotted with squares. Surveys that use photographic
redshifts are shown with circles and highly selected surveys such as BOSS
where only LRGs are targeted are plotted with triangles. Adapted from
Ivan K. Baldry (http://www.astro.ljmu.ac.uk/\nobreakspace{}ikb/
research/galaxy-redshift-surveys.html) . . . . . . . . . . . . . . . 7

1.4 This two dimensional projection of SDSS shows that it has a broader sky
coverage and deeper redshift coverage compared to 2dFGRS. . . . . . . . 10

1.5 Top: Redshift coverage map of the 2dFGRS. Bottom: Sky coverage of
2dFGRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 The radial selection function of 2dFGRS showing the number of galaxies
vs. redshift. The smooth curve is a best fit (Colless et al. (2001)). The
galaxy count decreases with redshift as the probability of detection reduces. 18

2.2 Comparison of 2dFGRS and SDSS window functions. The SDSS window
is more compact compared to 2dFGRS window as SDSS has more redshift
coverage (deep). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 2dFGRS power spectrum obtained by direct Fourier technique compared
to the 2dF group published galaxy spectrum. Two spectra deviate from
each other at large scale due to the effect of window function as Cole et al.
(2005) corrected the window effect by division of a factor determined by
model power spectrum and its convolution. This step was omitted in our
study as it was only effective for plotting. . . . . . . . . . . . . . . . . . 36

2.4 Comparison of SDSS power spectrum obtained by direct Fourier technique
and published results by SDSS consortium. They have divided the power
spectrum by a smooth theoretical spectrum which does not have BAO
oscillations and we also used the same method in this comparison. . . . . 37

3.1 This is a plot of SDSS DR7 LRG galaxy sample using a Sanson-Flamsteed
projection. The five patches we use are shown. Note that the coordinates
are not equatorial (RA, Dec). From left to right, patches 1-3 are the lower
panels, and patches 4 and 5 are the upper panels. . . . . . . . . . . . . 43

viii



3.2 Top: Comparison of the average of 160 LasDamas 2D galaxy power spec-
tra (solid lines) and our model 2D power spectrum convolved with the
appropriate window function (dotted lines). Model parameters are set
to the LasDamas input values. Bottom: Average 2D power spectrum
from SDSS DR7 LRGs (solid lines). All five power spectra from different
patches were averaged to obtain a smooth plot. The best fit model cor-
responding to the parameters listed in Table 3.3, convolved with window
functions of five patches and averaged together, is plotted with dashed lines. 47

3.3 Two dimensional window fuction obtained by combining five different win-
dow functions with different bin sizes (note that different contours start
at different values as a resullt). The contour levels are logarithmic from
107 to 10. Also note that this combining was done only for visualization
purposes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Covariance matrices for SDSS data set(top) and LasDamas mock data(bottom).
Both covariance matrices are calculated for the patch 1. These matrices
are created by unrolling the actual 2D array of points; There are 154
points inside the area of interest. . . . . . . . . . . . . . . . . . . . . . . 51

3.5 LasDamas fitting results for the parametersDfid
A (0.35)/DA(0.35) (top left),

DA(0.35)/rs(zd) (top right), H(0.35)/Hfid(0.35) (lower left), H(0.35)rs(zd)/c
(lower right). Dashed lines represent mean values and 1σ error bars and
input parameter values are plotted with dotted lines. . . . . . . . . . . . 60

3.6 The 1D marginalized probability distribution functions and 2D joint con-
fidence contours of the primary parameters in our analysis of SDSS DR7
LRG sample at patch 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Same as Fig.3.6, but for patch 2 . . . . . . . . . . . . . . . . . . . . . . 62
3.8 Same as Fig.3.6, but for SDSS patch 3 . . . . . . . . . . . . . . . . . . . 63
3.9 Same as Fig.3.6, but for SDSS patch 4 . . . . . . . . . . . . . . . . . . . 64
3.10 Same as Fig.3.6, but for SDSS patch 5 . . . . . . . . . . . . . . . . . . . 65

ix



Abstract

The galaxy power spectrum is a powerful tool used to study cosmic large scale

structure and dark energy. A method to obtain the one dimensional galaxy power

spectrum using the direct Fourier method is presented and this technique was

applied to two degree field Galaxy Redshift Survey (2dFGRS) data and Sloan Dig-

ital Sky Survey (SDSS) data separately. Although this method is slow compared

to fast Fourier transform, it is more accurate at small scales. The two dimen-

sional matter power spectrum was only obtained using surveys with narrow sky

coverage until now. The method presented here is applicable to any current or

future survey with wider sky coverage. A method to measure the Hubble param-

eter H(z) and the angular diameter distance DA(z) simultaneously from the two-

dimensional matter power spectrum is also presented. The method is validated by

applying it to the LasDamas mock galaxy catalogs. Then, this method is applied

to Sloan Digital Sky Survey (SDSS) Data Release 7 to measure two dimensional

galaxy power spectrum and obtain measurements of Ωmh
2 = 0.1268 ± 0.0085,

H(z = 0.35) = 81.3 ± 3.8km/s/Mpc, DA(z = 0.35) = 1037 ± 44Mpc, with-

out assuming a dark energy model or a flat universe. The derived parameters

H(0.35)rs(zd)/c = 0.0431 ± 0.0018 and DA(0.35)/rs(zd) = 6.48 ± 0.25 are also

measured and these are in excellent agreement with similar measurements from

the two-dimensional correlation function of the same data.

x



Chapter 1

Introduction

Studying the large scale structure of the Universe is one of the key goals of contem-

porary cosmology. One possible path for large scale structure studies is through

studying galaxy clustering. First we assume that galaxy distribution is a good

indicator of the underlying matter distribution of the Universe, i.e. galaxy rich

areas of the Universe can be treated as high matter density areas and voids as low

density regions. Then, the galaxy power spectrum can be used to study fractional

matter density contributions on different scales. Peebles (Yu & Peebles (1969),

Peebles (1973), Peebles & Hauser (1974), and Peebles (1980)) pioneered the statis-

tical analysis of galaxy catalogs in order to obtain matter density correlation and

the power spectrum. With the information from increasingly large galaxy surveys

such as Sloan Digital Sky Survey (SDSS), cosmologists can infer much more in-

formation today. As we will see, the power spectrum contains all the information

about large scale structure and therefore is useful in measuring the properties of

the Universe.

This chapter presents a brief introduction to the galaxy power spectrum fol-

lowed by an overview of different galaxy redshift surveys with emphasis on the

data used in this work. Chapter 2 contains a detailed proof of some of the key

ideas and techniques as well as the results obtained by applying these techniques to

obtain the one dimensional power spectrum. The next chapter presents the results

obtained using the two dimensional power spectrum of the SDSS LRG sample.
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1.1 Effect of Matter Density Variations on the Power Spec-

trum

The density variations we see today in the Universe can be traced back to the quan-

tum fluctuations produced during inflation in the very early Universe, according

to the standard theory of the structure formation in the Universe. These density

perturbations created during inflation are very small. Gravity slows the expansion

of high density regions causing the density contrasts to grow larger as the Universe

evolves (Lyth, Liddle & Ma (2010)). This subsequent evolution of tiny density

changes through gravity, eventually gave the Universe its present structure. There-

fore, understanding the structure of the Universe will also reveal clues about its

early stage. As long as these density perturbations evolve linearly, inflation theory

predicts they are Gaussian distributed (Linde & Mukhanov (1997); Mukhanov &

Chibisov (1981)). So far, there has been no conclusive evidence to contradict the

assumption that observed matter density variations are Gaussian (Komatsu et al.

(2003)). If this condition holds, all the information about matter density variations

are contained in its power spectrum.

Stability of matter fluctuations is closely related to the Jeans scale: Perturba-

tions smaller than the Jeans scale do not collapse due to pressure support while

those larger grew due to gravity at the same rate, independent of scale (Sunyaev

& Zeldovich (1970)). In a Universe with dark matter and radiation only, the Jeans

scale grows to the size of the horizon at matter-radiation equality, and then reduces

to zero when matter dominates. Therefore, the horizon scale at matter-radiation

2
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Figure 1.1: The effect of cold dark matter (Ωc) on the power spectrum

is shown here. These three power spectra were generated for Ωc =

0.1, 0.2, and 0.3 as depicted by dashed line, dotted line, and dot dashed

line, respectively. The maximum of the spectrum shifts to higher k as

Ωc increases. Ωb = 0.05 is assumed.

equality will be imprinted in the power spectrum as a cutoff of small scale power

and this allows a measurement of Ωmh where h = H0/100 (Longair (2008)). In

other words, as Fig. 1.1 shows, the position of the maximum of power spectrum is

sensitive to cold dark matter density Ωc.

Although small, baryons too have perturbations and therefore leave a mea-

surable imprint on the power spectrum. Eisenstein & Hu (1998) studied models

3
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on the power spectrum. BAOs become stronger as the baryon density

increases. Ωc = 0.2 is assumed.
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with dark matter and baryons which provided greater insight on finding baryonic

signature in the power spectrum. Decoupled from photons there remains a shell

of baryonic matter around dark matter density fluctuations. Later they grow to-

gether due to gravity and these shell structures appear as oscillations in the power

spectrum, which are known as baryon acoustic oscillations. The effect of various

baryon content on the power spectrum is shown in Fig. 1.1.

The simplest theory of inflation predicts that the matter power spectrum is of

the form P (k) ∝ kn where n ≈ 1 (Harrison (1970); Zeldovich (1972)). Combining

the effect of dark matter, baryons, and neutrons on the power spectrum, various

cosmological models can be fitted to the power spectrum to find parameters.

It can be shown that the power spectrum P (k) and the galaxy correlation func-

tion ξ(s) are Fourier pairs (see section 2.1.2). Therefore, studying the power spec-

trum is mathematically equivalent to studying the correlation function. However,

as we shall see, our understanding of both the power spectrum and the correlation

function depends on galaxy redshift surveys. These are volume limited samples

of the Universe and hence result in P (k) and ξ(s) that are not mathematically

equivalent. Therefore, it is important to study both the correlation function and

the power spectrum, because they have different systematic uncertainties.

1.2 Galaxy Redshift Surveys

Galaxy redshift survey data are essential for contemporary precision cosmology as

they provide a method to study large-scale structure of the Universe with increas-

5



ing accuracy as the number of galaxies included grow exponentially. Early surveys

such as Canada-France Redshift Survey(CFRS) contained only 591 galaxies (Lilly

et al. (1995)), Harvard-Smithsonian Center for Astrophysics 2 (CfA2) survey con-

tained 19,369 galaxies (Falco et al. (1999)), Las Campanas Redshift Survey (LCRS)

consists of 26,418 redshifts of galaxies (Shectman et al. (1996)), and Point Source

Catalog redshift (PSCz) survey measured redshifts of 15,411 galaxies (Saunders

et al. (2000)) using Infra-Red Astronomical Satellite(IRAS). Most of these are all

sky surveys. Recent efforts such as the 2dF Galaxy Redshift Survey (2dFGRS) mea-

sured redshifts of 221,414 galaxies (Colless et al. (2003)), WiggleZ survey measured

238,770 galaxy redshifts (Parkinson et al. (2012)), and SDSS obtained redshift of

929,555 galaxies in the seventh data release, DR7, (Abazajian et al. (2009)). The

SDSS-III Baryon Oscillation Sky Survey (BOSS) is targeting 1.5 million Luminous

Red Galaxies (LRGs) (Dawson et al. (2013)), while the Euclid mission will obtain

redshifts of approximately 50 million galaxies (Cimatti et al. (2009); Wang et al.

(2010)). A summary of different galaxy surveys is shown in Fig.1.2.

The most complete galaxy surveys to date are 2dFGRS and SDSS. The 2dF red-

shift survey used the two-degree field spectroscopic facility on the Anglo-Australian

Telescope to measure redshifts reliably from 1997 to 2002. The galaxies covered

approximately 1500 square degrees of three regions: NGP (North Galactic Pole)

strip, SGP (South Galactic Pole) strip, and random fields around SGP strip. All

the data was made publicly available through 2dF website after its final data re-

lease on July 2003. The most important cosmological result from the 2dFGRS was

the measurement of the galaxy power spectrum, initially by Percival et al. (2001),

6
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with a final refined estimate by Cole et al. (2005). There is evidence that the first

and second BAO peaks of the power spectrum have been detected at wavenum-

bers 0.06h Mpc−1 and 0.12h Mpc−1, respectively. This corresponds to 100h−1 in

physical space. Assuming standard ΛCDM cosmological model, the overall density

parameter was derived as Ωmh = 0.168 ± 0.016 and the baryon fraction was esti-

mated to be Ωb/Ωm = 0.185 ± 0.046. The redshift and sky coverage of 2dFGRS

is shown in Fig.1.2.1. I have used 2dFGRS data to obtain the one dimensional

galaxy power spectrum in chapter 2.

In contrast, SDSS covered more galaxies and has a larger redshift coverage.

SDSS is a major multi-filter imaging and spectroscopic redshift survey using a

dedicated 2.5m wide-angle optical telescope at Apache Point Observatory in New

Mexico. The project was named after Alfred P. Sloan. It began its goal of mapping

25% of the sky in 2000 and has covered more than 7,500 square degrees of the

North Galactic Cap, and three stripes in the South Galactic Cap totaling 740

square degrees containing redshifts of 929,555 galaxies. The redshift coverage of

SDSS is shown in Fig.1.2.1. The Luminous Red Galaxy (LRG) data, a subset of

SDSS data, was used to obtain one and two dimensional galaxy power spectrum

in chapter 2 and 3.

1.2.1 Luminous Red Galaxies (LRGs)

Although LRGs form a quantitatively small sample, they are scattered over a wide

range of redshifts. This makes LRGs a perfect candidate for large scale structure

studies. The most luminous galaxies in galaxy clusters are a very homogeneous

8



Cut I for z . 0.4 Cut II for z & 0.4

rPetro < 13.1 + c‖/0.3 rPetro < 19.5

|c⊥| < 0.2 c⊥ > 0.45− (g − r)/6

µ50 < 24.2 mag/arcsec−2 µ50 < 24.2 mag/arcsec−2

rPSF - rmodel > 0.3 rPSF − rmodel > 0.5

Table 1.1: LRGs are defined using colors. The definition consists of

two color cuts depending on redshift.

population (Postman & Lauer (1995)) as they have a very narrow range of color

and intrinsic luminosity. Because these objects are intrinsically very luminous,

they can be observed to great distance. Therefore, these galaxies can be treated

as a volume limited sample (Eisenstein et al. (2001)). LRGs are defined using two

different cuts as shown in Table 1.1 based on colors (Eisenstein et al. (2001)) due

to the shifting of Balmer break at 4000Å from the g band to r band around redshift

z∼ 0.4. In the table 1.1,

c⊥ = (r − i)− (g − r)/4− 0.18, (1.1)

c‖ = 0.7(g − r) + 1.2[(r − i)− 0.18], (1.2)

and g, r, i are SDSS green, red, and infrared magnitudes, respectively through the

corresponding filter. rPetro is the Petrosian corrected red magnitude (Petrosian

(1976)) and µ50 is the Petrosian corrected red surface brightness.
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Figure 1.4: This two dimensional projection of SDSS shows that it

has a broader sky coverage and deeper redshift coverage compared to

2dFGRS.
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Figure 1.5: Top: Redshift coverage map of the 2dFGRS. Bottom: Sky

coverage of 2dFGRS.
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Chapter 2

One Dimensional Galaxy Power Spectrum using

Direct Fourier Method

2.1 Theory

2.1.1 Matter Overdensity Field

The matter overdensity field is defined as,

δ(r) =
ρ(r)−

〈
ρ(r)

〉
〈
ρ(r)

〉 (2.1)

where ρ(r) is the density at position r and
〈
ρ(r)

〉
is the expected matter density.

Assuming that galaxies represent the underlying continuous matter density field, it

is possible to use the observed discrete galaxy distribution to estimate the density

field. The number density of galaxies is given by,

n(r) =
∑

i

δD(r− ri) (2.2)

where δD(r) is the Dirac delta function. This field is modeled as an inhomo-

geneous Poisson process (Cox process) (Mart́ınez & Saar (2002)) with intensity

(rate),
〈
n(r)

〉
, itself a Poisson density field. Here, angle brackets denote expecta-

tion values over the ensemble of the point processes. The intensity (rate) of
〈
n(r)

〉

is denoted by n̄ which would be a constant for the usual Cox processes. However,

as mentioned above, n̄ is a function of the position due to selection effects induced

by observations. By combining Eq. 2.1 and Eq. 2.2, one can obtain an estimator
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for overdensity of the sample.

D(r) =
∑

i

δD(r− ri)

n̄(r)
− 1. (2.3)

Fourier transform of this would give a simple estimator for Fourier amplitude:

F (ki) =
∑

j

ψ(rj)

n̄(rj)
eiki·r − ψ̃(ki) (2.4)

where ψ(r) is a weight function which will optimize our estimator, and ψ̃(k) is its

Fourier transform. This weight function is normalized as,

∫

V

ψ2(r)d3r = 1 (2.5)

where V is the sample volume.

2.1.2 Relationship between Correlation Function and Power Spectrum

The autocorrelation function is defined as,

ξ(r) ≡
〈
δ(r+ x)δ(x)

〉
(2.6)

Here, the average runs over x. This will also be referred as the correlation function

elsewhere in this text. One can rewrite the overdensity using the Fourier series as

δ(x) =
1

(2π)3

∑

k

δke
−ik·x. (2.7)

Therefore,

δ(r+ x) =
1

(2π)3

∑

k′

δk′e
−ik′·(r+x).

Note that the overdensity given by Eq. 2.1 is a real quantity. Therefore, it can

be replaced by its complex conjugate without loss of generality. Using this and
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substituting Eq. 2.7 to Eq. 2.6

ξ(r) =
1

(2π)6

〈∑

k

∑

k′

δ∗kδk′e
−i(k−k′)·xe−ik′·r

〉
.

Since the angle brackets denote the average over all x within the volume the

overdensity is defined, the above summation vanishes unless k = k′. This gives

ξ(r) =
1

(2π)3

∑

k

|δk|
2e−ik·r. (2.8)

Using the definition of Fourier series,

|δk|
2 =

∫

V

d3rξ(r)eik·r.

Therefore,

ξ(r) =
1

(2π)3

∫

Vk

d3k|δk|
2e−ik·r. (2.9)

Eq. 2.9 shows that the autocorrelation function of overdensities is the Fourier

transform of its power spectrum since we define the power spectrum as

P (k) ≡ |δk|
2, (2.10)

and our Fourier transform convention is

δ(r) =
1

(2π)3

∫
d3kδke

−ik·r. (2.11)

The power spectrum defined in Eq. 2.10 has units of volume. Alternatively, another

form of unitless power spectrum is sometimes constructed as

∆2(k) =
1

2π2
k3P (k). (2.12)

However, the former definition of power spectrum is used throughout this text

unless otherwise specified.
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2.1.3 Selection Functions

〈
ρ(r)

〉
can be expressed in terms of the position dependent mean number density or

the selection function (n̄(r)) times a small volume δV around the point r (Eq. 2.16).

The selection function accounts for the observational limitations of galaxy surveys

and decreases with distance. There are two components in the selection function:

radial and angular. Galaxies which are far away from us are too faint and therefore

have a small chance of detection compared to the ones closer to us. Thus, the radial

galaxy distribution decreases with distance and this is called the radial selection

function. The radial selection function of the 2dFGRS is shown in Fig.2.1.3. The

angular selection function is also known as the mask and it contains information

about the areas avoided or not well-observed in the survey. This is due to bright

stars, dust clouds, or some other observational limitation. The radial function is

obtained from the survey itself. Usually the mask information is provided with the

survey data or one can also make the mask from the data set (eg.Hütsi (2006)).

Theoretically, the selection function can be obtained by multiplying the radial

and angular selection functions together and counting number of galaxies in each

volume element.

2.1.4 Estimation of Power Spectrum

The most widely used power spectrum estimator was first introduced by Feldman,

Kaiser & Peacock (1994) (hereafter FKP). Most research groups use the FKP

method or a variant of this technique. Our results presented in the next section

are based on the original FKP method without using the fast Fourier transform.
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Figure 2.1: The radial selection function of 2dFGRS showing the num-

ber of galaxies vs. redshift. The smooth curve is a best fit (Colless et al.

(2001)). The galaxy count decreases with redshift as the probability of

detection reduces.
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They start by defining an estimator,

F (r) ≡ λw(r)
[ng(r)− αns(r)]

n̄(r)
where λ =

1

[
∫
V
d3rw2(r)]

1

2

, (2.13)

w(r) is the weight function and ng(r), ns(r) are the number density of actual and

random synthetic galaxy catalogs, respectively. n̄ is the selection function of the

chosen galaxy survey. Synthetic catalog contains 1/α times galaxies as the real

catalog. The synthetic catalog has all the properties as the observed catalog except

clustering. i.e., synthetic galaxies are randomly distributed over the survey volume

with the same selection function and mask as the real galaxies. This is done by

generating points randomly and then using the redshift distribution and angular

mask of the actual survey to make its geometry the same as the survey. Details

of how to do this will be discussed in the next section. The purpose of using a

random galaxy catalog is to quantify the survey volume as done by the second

term of Eq. 2.4. The larger the number of random galaxies the better it represents

the volume. Therefore, α is a small number (α≪ 1).

2.1.5 Proof of FKP Estimator of the Power Spectrum

FKP defined a new estimator for the power spectrum given by Eq. 2.13. We present

the motivation for defining
〈∣∣F (k)

∣∣2〉 as an estimator for the power spectrum in

this section and the following derivation given here is supplementary to Feldman,

Kaiser & Peacock (1994).

The Fourier transform of F (r) is

F (k) = λ

∫
d3rw(r)

(ng(r)− αns(r))

n̄(r)
eik·r.
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Therefore,

∣∣F (k)
∣∣2 =F (k) · F ∗(k)

=λ2
∫
d3r

∫
d3r′w(r)w(r′)

(ng(r)− αns(r))(ng(r
′)− αns(r

′))

n̄(r)n̄(r′)
eik·(r−r′)

〈∣∣F (k)
∣∣2
〉
=λ2

∫
d3r

∫
d3r′

w(r)w(r′)

n̄(r)n̄(r′)

〈
(ng(r)− αns(r))(ng(r

′)− αns(r
′))
〉
eik·(r−r′).

(2.14)

The angle brackets denote expectation value over the galaxies.

In order to proceed further, term inside the angle brackets of Eq. 2.14 needs

to be simplified. For this, let g(r, r′) be any function and consider the expectation

value

〈∫
d3r

∫
d3r′g(r, r′)n(r)n(r′)

〉
=

∫
d3r

∫
d3r′g(r, r′)

〈
n(r)n(r′)

〉

=
∑

i

∑

j

g(ri, rj)
〈
ninj

〉
. (2.15)

The last equality follows from the fact that the integration is done over a discrete

rather than a continuous galaxy field. If this galaxy field is divided into infinitesi-

mal microcells of volume δV such that each cell contains maximum of one galaxy

(i.e., ni = 1 or 0) then

〈
n2
i

〉
=

〈
ni

〉
= n̄(ri)δV, (2.16)

where n̄(ri) is the selection function at point ri. Now use Eq. 2.1 and Eq. 2.6 to

find a relation between the galaxy density and the correlation function. Here, the
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galaxy density is replaced by the number density:

ξ(r) =
〈( n(r+ x)〈

n(r+ x)
〉 − 1

)( n(x)〈
n(x)

〉 − 1
)〉

=

〈
(n(r+ x)−

〈
n(r+ x)

〉
)(n(x)−

〈
n(x)

〉
)
〉

〈
n(r+ x)

〉〈
n(x)

〉

ξ(r) =

〈
n(r+ x)n(x)−

〈
n(x)

〉
n(r+ x) +

〈
n(r+ x)

〉
n(x)−

〈
n(r+ x)

〉〈
n(x)

〉〉
〈
n(r+ x)

〉〈
n(x)

〉

=

〈
n(r+ x)n(x)

〉
−

〈
n(r+ x)

〉〈
n(x)

〉
〈
n(r + x)

〉〈
n(x)

〉

This simplifies to,

〈
n(r+ x)n(x)

〉
=

〈
n(r+ x)

〉〈
n(x)

〉
(1 + ξ(r))

= n̄(r+ x)n̄(x)δV 2(1 + ξ(r)) (using Eq. 2.16).

Therefore,

〈
n(r1)n(r2)

〉
= n̄(r1)n̄(r2)δV

2(1 + ξ(r1 − r2)). (2.17)

By substituting Eq. 2.16 to Eq. 2.15, and using Eq. 2.17

∫
d3r

∫
d3r′g(r, r′)

〈
n(r)n(r′)

〉
=

∑

i

∑

i 6=j

g(ri, rj)
〈
ni,nj

〉
+
∑

i

g(ri, rj)
〈
n2
i

〉

=
∑

i

∑

i 6=j

g(ri, rj)n̄(ri)n̄(rj)(1 + ξ(r− r′))δV 2 +
∑

i

g(ri, ri)n̄(ri)δV

=

∫
d3r

∫
d3r′g(r, r′)n̄(r)n̄(r′)(1 + ξ(r− r′)) +

∫
d3rg(r, r′)n̄(r)

=

∫
d3r

∫
d3r′g(r, r′){n̄(r)n̄(r′)(1 + ξ(r− r′)) + n̄(r)δ(r− r′)}. (2.18)

By comparing the left-and right-hand sides of Eq. 2.18,

〈
n(r)n(r′)

〉
= n̄(r)n̄(r′)(1 + ξ(r− r′)) + n̄(r)δ(r− r′). (2.19)

21



Random galaxies are uncorrelated. Therefore, ξ(r − r′) = 0 for the random

galaxy catalog. Using this and Eq. 2.19, one can obtain following expressions:

〈
ng(r)ng(r

′)
〉
=n̄(r)n̄(r′)(1 + ξ(r− r′)) + n̄(r)δ(r− r′) (2.20)

〈
ng(r)ns(r

′)
〉
=n̄(r)

n̄(r′)

α
+ n̄(r)δ(r− r′)

=
1

α
n̄(r)n̄(r′). (2.21)

Now, substitute the above expressions into Eq. 2.14 to obtain

〈∣∣F (k)
∣∣2
〉
= λ2

∫
d3r

∫
d3r′

w(r)w(r′)

n̄(r)n̄(r′)
eik·(r−r′){n̄(r)n̄(r′)(1 + ξ(r− r′))+

n̄(r)δ(r− r′) + n̄(r)n̄(r′) + αn̄(r)δ(r− r′)− 2n̄(r)n̄(r′)},

which simplifies to

〈∣∣F (k)
∣∣2
〉
=λ2

∫
d3r

∫
d3r′w(r)w(r′)eik·(r−r′)

{
ξ(r− r′) + (1 + α)

1

n̄(r′)
δ(r− r′)

}

=λ2
∫
d3r

∫
d3r′w(r)w(r′)ξ(r− r′)eik·(r−r′) + (1 + α)λ2

∫
d3r

w2(r)

n̄(r)
.

(2.22)

The galaxy power spectrum is defined as the Fourier transform of the correlation

function:

P (k) ≡
1

(2π)3

∫
d3rξ(r)eik·r. (2.23)

Therefore,

ξ(r) =
1

(2π)3

∫
d3kP (k)e−ik·r,

which gives,

ξ(r− r′) =
1

(2π)3

∫
d3kP (k)e−ik·(r−r′). (2.24)
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Also define

W (k) ≡ λ

∫
d3rw(r)eik·r, (2.25)

which gives,

W (k− k′) = λ

∫
d3rw(r)ei(k−k′)·r.

Therefore,

∣∣W (k− k′)
∣∣2 = λ2

∫
d3r

∫
d3r′w(r)w(r′)e−i(k−k′)·(r−r′). (2.26)

Substituting Eq. 2.24 and Eq. 2.26 into Eq. 2.22,

〈∣∣F (k)
∣∣2
〉
=

∫
d3k′

(2π)3
P (k′)

∣∣W (k− k′)
∣∣2 + (1 + α)λ2

∫
d3r

w2(r)

n̄(r)
. (2.27)

The function W (k) defined in Eq. 2.25 is a mask which is also related to the

window function. Eq. 2.27 states that our estimator for power, F (k), is in fact

the convolution with this window function. This is unavoidable due to the survey

geometry effects discussed earlier. However, practically speaking, this window

function is quite compact. Therefore, it is fair to say

〈∣∣F (k)
∣∣2
〉
≃ P (k) + Pshot, where Pshot = λ2

∫
d3r

w2(r)

n̄(r)
. (2.28)

Therefore, the estimator of power P (k) is

P̂ (k) =
∣∣F (k)

∣∣2 − Pshot. (2.29)

The final estimator of power spectrum P (k) is obtained by averaging P̂ (k) over a

shell in k space:

P̂ (k) ≡
1

Vk

∫

Vk

d3k′P̂ (k′). (2.30)
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2.1.6 Finding Optimum Weights w(r)

The mean square fluctuation of P̂ (k) is

σ2
P ≡

〈
[P̂ (k)−P (k)]2

〉
=

〈∣∣δP̂ (k)
∣∣2〉 =

1

V 2
k

∫

Vk

d3k

∫

Vk

d3k′
〈
δP̂ (k)δP̂ (k′)

〉
. (2.31)

Now consider

〈
δP̂ (k)δP̂ (k′)

〉
=
〈
(P̂ (k)− P (k))(P̂ (k′)− P (k′))

〉

=
〈
P̂ (k)P̂ (k′) + P (k)P (k′)− P (k)P̂ (k′)− P̂ (k)P (k′)

〉
. (2.32)

By assuming the Fourier coefficients F (k) are Gaussian variables (FKP) one can

prove that,

〈
P (k)P (k′)

〉
=

〈
P (k)

〉〈
P (k′)

〉
and

〈
P (k)P̂ (k′)

〉
=

〈
P (k)

〉〈
P̂ (k′)

〉
.

Also,
〈
P̂ (k′)

〉
=

〈
P (k)

〉
since P̂ is an estimator of P . By substitution into Eq. 2.32,

〈
δP̂ (k)δP̂ (k′)

〉
=

〈
P̂ (k)P̂ (k′)

〉
−

〈
P (k)

〉〈
P (k′)

〉
. (2.33)

Realizations of Gaussian processes in k-space can be obtained by Fourier trans-

forming a set of independent Gaussian random variables in real space. i.e.,

F (k) =
∑

i

gie
ik·ri .

Therefore,

〈
F (k)F ∗(k′)

〉
=
〈∑

i

gie
ik·ri

∑

j

gie
ik′·rj

〉

=
∑

i

〈
g2i
〉
ei(k−k′)·ri . (2.34)
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The last step results from the fact that
〈
gigj

〉
= 0 for two independent Gaussian

variables if i 6= j. Now consider

〈
P̂ (k)P̂ (k′)

〉
=
〈
F (k)F ∗(k)F (k′)F ∗(k′)

〉

=
〈∑

i

gie
ik·ri

∑

j

gje
−ik·rj

∑

l

gle
ik′·rl

∑

m

gme
−ik′·rm

〉

=
∑

i

〈
g4i
〉
+
〈∑

i

g2i
∑

j 6=i

g2j

〉
+
〈∑

i

g2i e
i(k+k′)·ri

∑

j 6=i

g2j e
−i(k+k′)·rj

〉

+
〈∑

i

g2i e
i(k−k′)·ri

∑

j 6=i

g2j e
−i(k−k′)·rj

〉

=
∑

i

〈
g4i
〉
+
∑

i

∑

j 6=i

〈
g2i
〉〈
g2j
〉
(1 + ei(k+k′)·(ri−rj) + ei(k−k′)·(ri−rj)).

(2.35)

The third step results from the fact that the product does not vanish only when

pairs of the indices are equal (i.e., i = j and l = m, i = l and j = m, i = m

and j = l) or when all indices are equal. FKP neglected the ei(k+k′)·(ri−rj) term as

it oscillates rapidly and therefore, the sum is negligible compared to other terms.

Also, for a Gaussian variable,
〈
g4i
〉
= 3

〈
g2i
〉2
. Therefore, Eq. 2.35 can be simplified

further:

〈
P̂ (k)P̂ (k′)

〉
=
∑

i

〈
g2i
〉2

+
∑

i

∑

j

〈
g2i
〉〈
g2j
〉
(1 + ei(k−k′)·(ri−rj))

=
〈
P (k)

〉〈
P (k′)

〉
+
∣∣〈F (k)F ∗(k′)

〉∣∣2. (2.36)

By substituting Eq. 2.36 to Eq. 2.33

〈
δP̂ (k)δP̂ (k′)

〉
=

∣∣〈F (k)F ∗(k′)
〉∣∣2. (2.37)

Now, a similar approach used to derive Eq. 2.27 is used to find an expression
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for
〈
F (k)F ∗(k′)

〉
:

〈
F (k)F ∗(k′)

〉
=λ2

∫
d3r

∫
d3r′

w(r)w(r′)

n̄(r)n̄(r′)

〈
(ng(r)− αns(r))(ng(r

′)

− αns(r
′))
〉
ei(k·r−k′·r′)

=λ2
∫
d3r

∫
d3r′w(r)w(r′)

( 1

(2π)3

∫
d3k′′P (k′′)e−ik′′·(r−r′)

)

× ei(k·r−k′·r′) + (1 + α)λ2
∫
d3r

w2(r)

n̄(r)
ei(k−k′)·r

〈
F (k)F ∗(k′)

〉
=

∫
d3k′′

(2π)3
P (k′′)W (k− k′′)W ∗(k− k′′) + S(k′ − k), (2.38)

where

S(k) ≡ (1 + α)λ2
∫
d3r

w2(r)

n̄(r)
eik·r.

As before, restricting k, k′ to be on the same thin spherical shell and treating the

mask W to be compact, one can obtain

〈
F (k)F ∗(δk)

〉
≃ P (k)Q(k) + S(δk), (2.39)

where

Q(k) = λ2
∫
d3rw2(r)eiδk·r.

By substituting Eq. 2.39 into Eq. 2.37,

〈
δP̂ (k)δP̂ (k′)

〉
=

∣∣P (k)Q(k) + S(δk)
∣∣2. (2.40)
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Now, the variance can be obtained with Eq. 2.40 and Eq. 2.31:

σ2
P =

1

V 2
k

∫

Vk

d3k

∫

Vk

d3k′
∣∣P (k)Q(k′ − k) + S(k′ − k)

∣∣2

≃
1

Vk

∫
d3k′

∣∣P (k)Q(k′) + S(k′)
∣∣2 since k is small compared to k′ (2.41)

=
1

Vk

∫
d3k′

∣∣∣P (k)
(
λ2

∫
d3rw2(r)eik

′·r
)
+ (1 + α)λ2

∫
d3r

w2(r)

n̄(r)
eik

′·r
∣∣∣
2

=
λ2

Vk

∫
d3k′

∣∣∣d3r
(
w2(r)P (k) + (1 + α)

w2(r)

n̄(r)

)
eik

′·r
∣∣∣
2

=
(2π)3

Vk
λ2

∫
d3r

∣∣∣w2(r)P (k) + (1 + α)
w2(r)

n̄(r)

∣∣∣
2

.

The last step of the above derivation is based on the Parseval’s theorem. The

assumption that |k| is small compared to |k′| is justified by choosing a shell width

that is larger than the coherence length. Also, the synthetic catalog is much larger

than the actual catalog. Therefore, α is very small and we have

σ2
P (k) =

(2π)3

Vk
λ2

∫
d3rw4(r)

(
P (k) +

1

n̄(r)

)2

σ2
P (k)

P 2(k)
=
(2π)3

Vk
λ2

∫
d3rw4(r)

(
1 +

1

n̄(r)P (k)

)2

.

In order to find optimum weights w, use the fact that σ2
P (k) should be stationary

for arbitrary variations of w:

dσ2
P

dw
=0

∫
d3rw3(r)

(
1 + 1

n̄(r)P (k)

)2

∫
d3rw4(r)

(
1 + 1

n̄(r)P (k)

)2 =

∫
d3rw(r)∫
d3rw2(r)

.

This is satisfied by

w(r) =
n̄(r)

1 + n̄(r)P (k)
. (2.42)

Note that this derivation is carried out by assuming k is much larger than

the coherence length. Therefore, w(r) is optimum only for k ≫ 1/L where L is
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the depth of the survey. Although this weighting requires prior knowledge of P (k),

weights remain unbiased as they are normalized in Eq. 2.13 using the normalization

constant λ and hence an approximate value of average power spectrum within the

range under consideration is used. Error in P will only increase the variance of the

estimates. According to this weighting scheme, equally dense points are weighted

equally while more-clustered points receive less weight.

As shown in Eq. 2.29, the power spectrum is estimated by subtracting a shot

noise term from
〈∣∣F (k)

∣∣2〉. Origin of this contribution is the delta function in the

density correlation function at zero separation (Eq. 2.19). Since Fourier transform

of correlation function is the power spectrum, and the Fourier transform of the delta

function is a constant for all wavenumbers, we need to subtract a constant term

when estimating power. This is called shot noise because we model the density field

with a Poisson distribution and the noise of such distributions is usually known as

shot noise in physics.

Measuring more galaxies in the same volume does not improve the estimated

power substantially. However, it does reduce shot noise. Also, a sample with

higher density (i.e. more galaxies) allows us to measure the power spectrum on

larger scales (smaller k). The scale which we can measure with significant accuracy

is k ≈ 1/d, where d is the average separation between galaxies. Therefore, it

is important to conduct new redshift surveys for understanding the large scale

structure of the universe. Increasing the depth of the survey L reduces the size of

coherence cells and hence increases the resolution of the power spectrum. This is

the advantage of SDSS over 2dFGRS. Also, SDSS has considerably more data and
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sky coverage.

2.1.7 Window Function

The power estimated by FKP estimator is actually convolved with the window

function (Eq. 2.27), not the actual power spectrum. The effect of the convolution

is to increase the large scale power. The window function is the Fourier transform

of a function that depends only on mean density. Mean density is a small and

slowly varying function and therefore the window function decays very fast with

the wavenumber. Thus, one can treat the FKP power spectrum as the true power

spectrum in small scales. The exact form of the window function of the 2dF survey

will be presented in section 3.4. The window function is usually treated as spher-

ically symmetric and therefore spherically averaged for mathematical simplicity.

Although this is not entirely true for a highly non-symmetric survey volume, most

groups who extracted power spectrum from survey data have justified the use of

such a window to correct small deviations caused by convolution. Percival et al.

(2001) approximated the normalized window function as,

|W (k)|2 =
A

1 + ak2 + bk4
(2.43)

where a, b are fitting constants and A is the normalization constant. Although the

estimated power spectrum can be corrected by deconvolving |W (k)|2 with the raw

power spectrum (Lucy (1974)), this does not produce accurate results due to noise

in the observed spectrum.
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2.1.8 Summary of the FKP Method

Eq. 2.13 and Eq. 2.42 can be rewritten as,

F (r) ≡ λw(r)[ng(r)− αns(r)], where λ =
1

[
∫
d3rn̄2(r)w2(r)]

1

2

(2.44)

and w(r) =
1

1 + n̄(r)P (k)
. (2.45)

This is done purely for convenience in expressing integrations as summations as

shown below. The Fourier transform of the fluctuation field is then

F (k) =

∫
d3rw(r)[ng(r)− αns(r)] exp(ik · r)

=
∑

g

w(rg) exp(ik · rg)− α
∑

s

w(rs) exp(ik · rs). (2.46)

The conversion of integration into summation above is done by using Eq. 2.2. The

normalization of w(r) can be expressed in a similar way by using
∫
V
d3rn̄(r)... →

α
∑

s ... . This follows from the fact that n̄(r) is the mean density and the random

catalog has α times as many galaxies as real catalog. It is better to express the

summation over the synthetic catalog here because we measure mean density using

the random catalog. This gives a better estimate simply because there are more

galaxies in it. In a similar way, the normalization constant λ is obtained from

Eq. 2.13:

λ−1 =

∫
d3rn̄2(r)w2(r) = α

∑

s

n̄(rs)w
2(r). (2.47)

Finally the estimated power spectrum is given by

P (k) =
1

Nk

∑

k<|k|<k+δk

[|F (k)|2 − S(0)], S(0) = α(1 + α)
∑

s

w2(rs) (2.48)
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where S(0)is the shot noise term. As showed in section 2.1.6, the uncertainty of

the power estimate is obtained as

σ2
P (k) =

2

Nk

∑

k′

∑

k′′

|PQ(k′ − k′′) + S(k′ − k′′)|2, (2.49)

where Q(k) =α
∑

s

n̄(rs)w
2(rs)e

ik·rs , (2.50)

and S(k) =α(1 + α)
∑

s

w2(rs)e
ik·rs . (2.51)

2.2 Obtaining Galaxy Power Spectrum using 2dFGRS and

SDSS Data

2.2.1 Method

The FKP method described in the previous section was used to obtain the galaxy

power spectrum. 2dFGRS final data release (Colless et al. (2003)) was used as the

data set. There are 186908 galaxies used from this data set. Some galaxies are

omitted because the redshifts are poorly determined (according to 2dF group). The

NGP region has 77870 total galaxies while the SGP region has 109038 galaxies with

accurately determined redshifts. Galaxies in random fields around these regions

were skipped as this volume contains many more galaxies than have been observed

and this leads to a poor estimate on mean density. The same method was used to

measure galaxy power spectrum from SDSS DR7 LRG data (further details about

this data set is provided in the next chapter).

The 2dF group provides a code to generate the selection function and complete-

ness at a given point within the survey volume as part of their data set. This code
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was used to generate synthetic galaxies. The completeness contains angular mask

information. If a given point has a completeness of 1, it means that redshifts have

been measured accurately on all the galaxies observed around this point. A frac-

tional completeness is an indication of incomplete redshift data at a point. When

a random galaxy is created for the synthetic catalog, the completeness is obtained

through this code. It is then probabilistically determined whether to keep this

galaxy using the completeness at its position. Resultant synthetic galaxies need

to be assigned a redshift. The first step of achieving this is to obtain the redshift

distribution of the real data. Following Cole, Sánchez & Wilkins (2007), redshift

distribution was fitted with the function

dn

dz
∝ zα exp(−(z/z0)

β). (2.52)

This distribution function is normalized and used to retain or reject the galaxy

using the rejection method. i.e., generate a random number and if that number

is smaller than the distribution value at its randomly generated redshift, then the

galaxy is retained in the catalog. This process was repeated until we obtain five

times as many random galaxies as the real data set.

The raw data downloaded from 2dF website contains multiple entries for the

same object which correspond to multiple observations. The best observations

were filtered for each galaxy by using the “quality” field of the data: quality=3

or higher means they are sufficiently accurate for distance measurements. The

galaxy density falls rapidly at the outer boundary of the survey and therefore an

upper limit was imposed on redshift. Following Percival et al. (2001), the 0.003 <
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z < 0.25 range was selected. The lower limit was chosen for the same reason.

The next task was to convert redshifts into distances. Assuming a flat Ωm =

0.3 cosmological model, redshifts of real and synthetic galaxies were converted

into distances (Carroll, Press & Turner (1992)). All catalogs were recorded in a

Cartesian coordinates making the dot products in Eq. 2.46 easy to evaluate.

The next step was to set up a three-dimensional Cartesian wave-vector grid.

Theoretical considerations of the power spectrum shows that it is a rapidly de-

creasing function of wavenumber k. Also, using a large k grid is computationally

expensive as one needs to evaluate Eq. 2.46 at each and every grid point. There-

fore, the chosen grid size was limited to |k| ≤ 0.5hMpc−1 with δk = 0.002hMpc−1.

Using symmetry in Fourier space, one can show that it is sufficient to consider only

the positive side of the z axis (in fact, this is true for any axis and the choice of z

axis is arbitrary). This gives more than 8× 106 grid points. the Fourier transform

was performed by evaluating the equations listed in the previous section at each

of these grid points. This requires summation over real and synthetic catalogs

at each grid point and hence takes a large amount of computational time. The

Fourier transform was then used to estimate the power spectrum by calculating

the power in each thin shell.

2.3 Results and Discussion

Fig. 2.3.a shows the resultant power spectrum and the 2dF group result (Cole

et al. (2005)). Two results agree with each other within 1σ except for small k.
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2dF group has deconvolved the measured power spectrum to remove any effects

from the window function and therefore our unconvolved result deviates from their

power spectrum in large scale. The error bars shown are obtained by evaluating

Eq. 2.49 using the same scheme described above. Although error reduces with

increasing k, it is worth noting that the constant shot noise term becomes com-

parable to the power for small k. The shot noise contribution becomes 50% of

the power at k ≈ 0.2. The wiggles extending towards the small scale are baryon

oscillations. In particular, the first two peaks at 0.06h Mpc−1 and 0.12h Mpc−1 are

visible and these values agree with the 2dF group findings. Cole et al. (2005) used

a slightly different technique: They used fast Fourier transform to do the trans-

formation instead of direct summation which expedite the calculation immensely.

However, this also adds some noise to the power spectrum which can not be re-

moved completely at small scale (large k range). The 2dF survey window function

is also obtained from the synthetic catalog and shown in Fig 2.2 along with the

SDSS window function. This shows that the window function is very compact and

hence would only contribute in the large scale limit.

This comparison proves the potential of direct FKP method for one dimensional

power spectrum calculations although it is rather computationally expensive. The

advantage is that it does not need any modification to obtain the correct power

spectrum for all scales. However, required computational time increases linearly

with the increase of sample size. For example, SDSS survey currently has ∼ 106

galaxies. This is about five times as many galaxies as 2dFGRS. The SDSS syn-

thetic catalog has ∼ 5 × 106 galaxies and hence the time required to obtain the
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Fourier transform increases five-fold. This is not impossible given the comput-

ing techniques such as distributed computing. The data set described in the next

chapter is used to generate one dimensional SDSS power spectrum shown in Fig.2.4

with a comparison of published results.

Figure 2.2: Comparison of 2dFGRS and SDSS window functions. The

SDSS window is more compact compared to 2dFGRS window as SDSS

has more redshift coverage (deep).
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Figure 2.3: 2dFGRS power spectrum obtained by direct Fourier tech-

nique compared to the 2dF group published galaxy spectrum. Two

spectra deviate from each other at large scale due to the effect of win-

dow function as Cole et al. (2005) corrected the window effect by di-

vision of a factor determined by model power spectrum and its convo-

lution. This step was omitted in our study as it was only effective for

plotting.
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Figure 2.4: Comparison of SDSS power spectrum obtained by direct

Fourier technique and published results by SDSS consortium. They

have divided the power spectrum by a smooth theoretical spectrum

which does not have BAO oscillations and we also used the same

method in this comparison.
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Chapter 3

Measurement of H(z) and DA(z) from the Two

Dimensional Power Spectrum of Sloan Digital

Sky Survey luminous red galaxies

3.1 Introduction

The galaxy power spectrum is obtained through Fourier transforming the observed

galaxy sample. One dimensional power spectrum formed by spherically averaging

the Fourier space has been studied well (eg: Cole et al. (2005); Percival et al.

(2001, 2010); Reid et al. (2010)) to estimate cosmological parameters including

matter density and Hubble’s constant. In chapter 2, an analysis of one dimen-

sional galaxy power spectrum from the same data (Chuang, Wang & Hemantha

(2012)) was presented. Similar studies have used different data sets such as Eisen-

stein et al. (2005), Cabré & Gaztañaga (2009), and Kazin et al. (2010). However,

it is not possible to measure both Hubble parameter H(z) and angular diameter

distance DA(z) from one dimensional power spectrum or 2PCF alone. The first

simultaneous measurement of both of these quantities was obtained by Chuang

& Wang (2012) using the SDSS DR7 two-dimensional two point correlation func-

tion (2D2PCF). Although the power spectrum and the 2PCF are a Fourier pair,

they provide information complementary to each other as redshift surveys cover a

limited volume of the Universe. Therefore, an analysis of two-dimensional galaxy

power spectrum is presented here.

The two-dimensional galaxy power spectrum has been studied from different
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redshift surveys: Las Campanas survey (Landy et al. (1996)), WiggleZ survey

(Blake et al. (2010) and Blake et al. (2011a)), HETDEX project (Chiang et al.

(2012)), for example. However, the estimation of the full set of cosmological pa-

rameters was not carried out. Jing & Börner (2001) measured 2D galaxy power

spectrum for 0.25 ≤ k ≤ 2.5hMpc−1 using LCRS data. However, their limited data

set prevented them from measuring the complete set of cosmological parameters.

Hu & Haiman (2003) explored the possibility of extracting the Hubble parameter,

H(z), and angular diameter distance, DA(z), from future surveys and noted that

curvature of the sky needs to be handled correctly for a broad sky survey such

as SDSS. The WiggleZ data was used to obtain 2D power spectrum and estimate

bias and growth rate as well as cosmic expansion rate at several redshifts (Blake

et al. (2010, 2011a), Blake et al. (2011b)). However, the underlying cosmological

model used throughout that analysis was fixed to Wilkinson Microwave Anisotropy

Probe (WMAP) best fit parameters. Our study aims to measure the main cosmo-

logical parameters in addition to H(z) and DA(z) from the two-dimensional power

spectrum.

In section 3.2, we describe the data set used. The method used to obtain the

two-dimensional power spectrum is presented in section 3.3. In section 3.4, we

validate our method using simulated data and then present the results obtained

from real data. We also compare the parameter values with similar work in section

3.4 and summarize our findings in section 3.5.

40



3.2 Data

The SDSS-II project was finished in October 2008 and this final public data release

included spectroscopic observations of 9380 square degrees of sky. These observa-

tions were carried out with 2.5 m telescope (Gunn et al. (2006)) at Apache Point

Observatory in New Mexico, United States. The luminous red galaxy (LRG) sam-

ple (Eisenstein et al. (2001)) used in this work was extracted from dr72full0 the

New York University-Value Added Galaxy Catalog (NYU-VAGC) (Blanton et al.

(2005)) by setting the flag primTarget = 32. The K-correction was applied to

NYU-VAGC data assuming a ΛCDM fiducial model with Ωm = 0.3, h = 1. We

have selected LRGs located within the redshift range 0.16 − 0.47 and excluded

Southern Galactic Cap region, resulting in an LRG sample of 89,599.

Spectra of individual galaxies are obtained by placing fibres on the focal plane

of the telescope to guide the light from individual objects to spectrometers. The

finite size of these fibres makes it impossible to measure galaxies closer than 55”, a

problem known as “fibre collisions”. Although the overlapping of spectroscopic tiles

(Blanton et al. (2003)) alleviates this issue partially through multiple observations,

some galaxies in crowded regions were not observed. Zehavi et al. (2002) showed

that assigning the redshift of the nearest galaxy with measured redshift is sufficient

for large scale structure studies. VAGC used this procedure to correct for fibre

collisions.

The angular selection function is generated from the geometry and complete-

ness information provided by VAGC in terms of spherical polygons. We have used
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the MANGLE (Swanson et al. (2008)) software package to apply the angular selec-

tion function to the data and random galaxies. The radial selection function was

constructed by binning the galaxy sample with redshift bins of size ∆z = 0.01.

3.3 Methodology

3.3.1 2D Galaxy Power Spectrum Estimation

In this section, we describe the power spectrum estimation method, which is a two-

dimensional extension of the FKP estimator (Feldman, Kaiser & Peacock (1994)).

The first step is tiling the SDSS sky coverage into equal area patches as shown

in Fig.3.1. This is necessary as the flat sky approximation will not hold for a

survey with extended sky coverage such as SDSS. We used the Sanson-Flamsteed

projection (Wall & Jenkins (2012)) where a given Right Ascension (α), Declination

(δ) pair is mapped such that,

α′ = α cos δ, δ′ = δ (3.1)

to generate equal area patches.

Choosing too small patches decreases the number of galaxies inside each patch,

thus increasing the shotnoise. Choosing patches that are too big will lead to

deviation from the flat sky approximation. We have tested dividing the entire

survey area into 2, 5, and 10 patches. We find that the 5 patch division yields the

lowest bias on estimated parameters, based on application to the SDSS DR7 LRG

mocks from the LasDamas (Large suit of Dark matter simulations) collaboration

(McBride et al., in preparation) (see section 3.4.1 for further details). Therefore,
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Figure 3.1: This is a plot of SDSS DR7 LRG galaxy sample using a

Sanson-Flamsteed projection. The five patches we use are shown. Note

that the coordinates are not equatorial (RA, Dec). From left to right,

patches 1-3 are the lower panels, and patches 4 and 5 are the upper

panels.

we divide the sky into five patches throughout this paper. Galaxies inside each

patch were converted to a cartesian coordinate system such that x axis is pointed

towards the center of each patch. Distances to galaxies are calculated from redshifts

assuming a ΛCDM fiducial model (the same as used by LasDamas in making the

LRG mocks) with matter density fraction, Ωm = 0.25. Each patch is then Fourier

transformed as described below. Our choice of axes means that k‖ = kx and

k⊥ =
√
k2y + k2z .

We enclose each patch individually in a cube of side 2000h−1 Mpc, and use the

Nearest Grid Point (NGP) scheme (Hockney & Eastwood (1988)) to interpolate
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weighted galaxy positions to a regular grid of size 5123. We use the standard FKP

optimal weights (for minimum variance), w(r) = n̄(r)/(1 + n̄(r)P̄ ), where n̄(r) is

the expected number density of galaxies and P̄ = 10000h−3Mpc3 is the average

amplitude of the power spectrum. We tested the robustness of this choice by using

P̄ = 40000h−3Mpc3 instead, and verified that the exact value of P̄ has virtually

no effect on the shape of the power spectrum. The FKP estimator described in

Eq.2.1.3 of FKP is calculated at each grid point, and then the fast Fourier transform

of the grid was obtained. A random galaxy set was generated using MANGLE

with the same sky coverage and angular selection function as the real LRG sample.

We have used approximately one hundred times more random galaxies than real

LRGs to minimize the shot noise. The random galaxies are also divided into the

same five patches described above before being used. The Fourier space was then

cylindrically summed with bin size ∆k = 0.01hMpc−1 in each direction and the

shot noise term is subtracted to obtain 2D power spectrum with z axis pointed in

k‖ direction. We retain only the region 0.02h Mpc−1 ≤ k ≤ 0.16h Mpc−1 where

k =
√
k2‖ + k2⊥ to minimize the effects from aliasing (Jing (2005)).

3.3.2 Theoretical Model

A theoretical model power spectrum is necessary for extracting cosmological pa-

rameters from the measured 2D power spectrum. We use the model,

P s
dw(k, µ, z0) = Pdw(k, µ, z0)

(1 + βµ2)2

1 + (kµσv)2
(3.2)
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(Kaiser (1987); Peacock & Dodds (1994); Hamilton (1998)), where β is the redshift

distortion parameter, σv is the pairwise peculiar velocity dispersion divided by

H0, and µ is the cosine of the angle between the line of sight and wave vector k.

Pdw(k, µ, z0) is the dewiggled linear galaxy power spectrum given by,

Pdw(k, µ, z0) = G2(z0)P0k
nsT 2

dw(k, µ, z0), (3.3)

where G(z0) is the linear growth factor and ns is the power-law index of the

primordial matter power spectrum. Anisotropicaly dewiggled transfer function,

Tdw(k, µ, z0), is constructed from the linear transfer function, Tlin(k, z0), and the

“no wiggle” transfer function, Tnw(k, z0) from Eq.(29) of Eisenstein & Hu (1998) as

in Wang, Chuang & Hirata (2013),

T 2
dw(k, µ, z0) = T 2

lin(k, z0) exp (−gµk
2/k2⋆) + T 2

nw(k, z0)(1− exp (−gµk
2/k2⋆)), (3.4)

where gµ is given by

gµ = G2(z0)[1− µ2 + µ2(1 + fg(z0))
2] (3.5)

We use z0 = 0.35 as the average redshift in this paper, following previous work

on the same data. We use CAMB (Lewis, Challinor & Lasenby (2000)) to calculate

linear transfer functions. For the efficient calculation of Tlin(k, z0) for parameters

(Ωbh
2,Ωch

2), where Ωb and Ωc are the baryon and dark matter density fractions

respectively, and h is the dimensionless Hubble constant (H0 = 100hkm/s/Mpc),

we create an evenly spaced grid of transfer functions with spacing 0.001 and 0.005

respectively in each parameter. Cubic spline interpolation is then used to find the

linear theory transfer function for a given set of parameter values. This process
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is much faster than running CAMB and was rigorously tested and found to be

accurate for fitting purposes in this paper. However, linear theory power spectrum

does not adequately describe the galaxy power spectrum due to non linear effects.

We use a modified version (Sánchez, Baugh & Angulo (2008)) of the semi-analytic

model introduced by Cole et al. (2005) to correct the linear matter power spectrum,

and modify the galaxy power spectrum as follows:

P s
nl =

1 +Qk2

1 + Ak +Bk2
P s
dw(k, µ, z0), (3.6)

where, A,B,Q are constants. Following Sánchez, Baugh & Angulo (2008), we fix

B = Q/10 and this seem to fit the observed galaxy power spectrum on the range

of interest (0.02hMpc−1 ≤ |k| ≤ 0.16hMpc−1).

Fig.3.2 (top panel) shows a comparison of our theoretical model and the average

of 2D power spectra obtained from 160 LasDamas mock catalogs. As discussed

in the next section, the model spectrum is convolved with the window function of

each of the five patches and then averaged to obtain a smooth plot. This shows

the non-linear correction model is able to approximate the observed galaxy power

spectrum within our range of interest.

3.3.3 Window Matrix

The observed galaxy power spectrum, Pobs(k), is given by convolving the true

galaxy power spectrum, Pt(k), with the survey window function, W (k), as follows:

Pobs(k) =

∫
d3k′Pt(k

′)|W (k− k′)|2, (3.7)
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Figure 3.2: Top: Comparison of the average of 160 LasDamas 2D

galaxy power spectra (solid lines) and our model 2D power spectrum

convolved with the appropriate window function (dotted lines). Model

parameters are set to the LasDamas input values. Bottom: Average

2D power spectrum from SDSS DR7 LRGs (solid lines). All five power

spectra from different patches were averaged to obtain a smooth plot.

The best fit model corresponding to the parameters listed in Table 3.3,

convolved with window functions of five patches and averaged together,

is plotted with dashed lines.
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where the window function is given by

W (k) =

∫
d3rn̄(r)w(r) exp(ik · r). (3.8)

As cylindrical coordinate system is a natural choice for 2D power spectrum,

Eq.(3.7) can be rewritten as,

Pobs(k) =

∫
dk′‖dk

′
⊥dφ

′k′⊥Pt(k
′)|W (k− k′)|2. (3.9)

The survey window function in configuration space, w(r), is obtained from the

random galaxy catalog by using NGP scheme on weighted random catalog alone on

the previously mentioned 5123 size grid. In theory, one can deconvolve the observed

power spectrum with the window function to obtain the underlying true galaxy

power spectrum. However, deconvolution is susceptible to noise degradation. Thus,

we convolve the model with the window window function instead, and compared

the convolved model with the observed galaxy power spectrum.

Starting with a cube of size 8000Mpch−1 and successively dividing the size by a

factor of 2 until the size is 500Mpch−1 (similar to Cole et al. (2005)), we construct

a full three dimensional survey window by only keeping the range 25% - 50% of

Nyquist frequency from each box. We use periodic boundary conditions to map

points that lie outside boxes. It is necessary to use multiple boxes to obtain a win-

dow function with sufficiently wide range (0.0004 hMpc−1 ≤ |k| ≤ 0.7979 hMpc−1).

We repeat this procedure for each of our five patches, and obtain five window func-

tions. These five windows were used to generate a composite window function for

graphical purposes alone and shown in Fig.3.3.3. As the convolution process given

by Eq.(3.9) is numerically expensive, we do this integration one time and cast the
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Figure 3.3: Two dimensional window fuction obtained by combining

five different window functions with different bin sizes (note that differ-

ent contours start at different values as a resullt). The contour levels

are logarithmic from 107 to 10. Also note that this combining was done

only for visualization purposes.

result into a window matrix Wi,j. Pt(k) is replaced by a set of unit basis vectors

and the contribution of the window is calculated on each basis vector. For a fixed

set of i ≡ (k‖, k⊥) and j ≡ (k′‖, k
′
⊥),

Wi,j = k′⊥

∫ 2π

0

dφ|W (k− k′)|2. (3.10)

The window matrix terms are normalized such that
∑

j W (i, j) = 1 for each i.

49



Pre calculated 3D window is spline-interpolated(Press et al. (1992)) to carry out

the integration. Now, using Eq.(3.9), a 2D model galaxy power spectrum given by

Eq.(3.6) can be convolved with the SDSS window function as follows:

Pth,i =
∑

j

Pgal,jWi,j . (3.11)

We construct window matrices for each patch separately, and convolve each

with the model 2D power spectrum, to obtain the model power spectrum for each

patch. The model for each patch can be compared with the observed power spec-

trum of that patch in a likelihood analysis.

3.3.4 Covariance Matrix

We estimate the covariance matrix as follows

Cij =
1

N − 1

∑

k

(P̄i − P k
i )(P̄j − P k

j ), (3.12)

where N is the number of mocks catalogs, P̄i is the mean power spectrum at the

ith bin, and P k
i is the power spectrum at the ith bin in the kth mock catalog. We

construct a total of five covariance matrices (one each for the five patches shown

in the Fig.3.4). For convenience, we unroll the 2D array of points inside the mask

0.02 ≤ |k| ≤ 0.16 and construct a 1D array of 154 points. This allows us to express

the covariance matrix as a 2D matrix.

We use 160 LasDamas mocks to generate covariance matrix for SDSS data.

As the galaxy density of the volume limited LasDamas mocks are different from

luminosity limited SDSS real galaxy sample, we dilute the mock catalog using the

rejection method so that both SDSS and mock data have the same radial selection
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Figure 3.4: Covariance matrices for SDSS data set(top) and LasDamas

mock data(bottom). Both covariance matrices are calculated for the

patch 1. These matrices are created by unrolling the actual 2D array

of points; There are 154 points inside the area of interest.
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function. These covariance matrices need smoothing due to the fact that there

are only 160 mock catalogs available, and the diluting process described above

further reduces the number of galaxies by about 20% in each catalog. We use the

same method as described in Chuang & Wang (2012) to make covariance matrices

smooth. We use their Eq.(A1) with p = 0.01, ∆s = ∆k = 0.01hMpc−1 and repeat

the process ten times. The diagonal elements are smoothed using their Eq.(A2)

with the same parameter choices.

3.3.5 Likelihood

We derive constraints on estimated parameters in a Markov Chain Monte Carlo

(MCMC) likelihood analysis. The likelihood is proportional to exp (−χ2), with

χ2 =
∑

i,j

(Pobs,i − Pth,i)C
−1
ij (Pobs,j − Pth,j). (3.13)

To use this equation in its original form, one needs to recalculate the covariance

matrix and the observed 2D power spectrum for each set of cosmological parame-

ters under consideration (e.g.,Cole et al. (2005)). We use the scaling method from

Chuang & Wang (2012), which has the advantage that the observed 2D power

spectrum and its covariance matrix only need to be calculated once. The scaling

operator T is defined as,

Pobs(k‖, k⊥) = T(P fid
obs(k‖, k⊥)), (3.14)

where P fid
obs(k‖, k⊥) is the observed power spectrum obtained using a fiducial cos-

mological model for distance estimation. Now, Eq.(3.13) can be written as,

χ2 =
∑

i,j

[T−1(Pth,i)− P fid
obs,i]C

−1
fid,ij[T

−1(Pth,j)− P fid
obs,j ]. (3.15)
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The scaling operator T can be constructed by considering the size of an object

of observed size ∆z,∆θ in the line of sight and transverse directions respectively.

Using this argument, Seo & Eisenstein (2003) found,

kfid⊥ = k⊥
DA(z)

Dfid
A (z)

; kfid‖ = k‖
Hfid(z)

H(z)
. (3.16)

We define our scaling operator using the above relations, and apply it to the

theoretical power spectrum as follows,

T−1(Pth(k‖, k⊥)) = Pth

(
Dfid

A (z)

DA(z)
k⊥,

H(z)

Hfid(z)
k‖

)
, (3.17)

which we use to calculate exp (−χ2) (see Eq.[3.15]).

We use COSMOMC (Lewis & Bridle (2002)), a publicly available package for

MCMC likelihood analysis. Cosmological parameters Ωbh
2 and ns are fixed at

WMAP 7 values as these parameters are not well constrained by power spec-

trum alone, and k⋆ = 0.11hMpc−1 is used as results are found to be insensi-

tive to small changes of k⋆. We use the data to extract constraints on {Ωmh
2,

H(0.35)/Hfid(0.35), Dfid
A (0.35)/DA(0.35)}, and marginalize over parameters {β,

σv, Q, A, N} where N is the normalization of the power spectrum. We use

flat priors β = [0.0, 0.9], σv = [0.0, 700.0]km/s, Q = [5.0, 30.0]h2Mpc−2, and

A = [0.5, 10.0]hMpc throughout this work.

3.4 Results

We will first present the results from appying our method to mocks (which establish

the validity of our method), then the results from the analysis of SDSS DR7 LRGs.
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3.4.1 Validating the Method Using Mock Data

We use 80 LasDamas mock catalogs (1a through 40a and 1b through 40b) to

validate the method discussed in section 3.3. Each mock catalog is divided into

five patches, and each patch is individually analyzed to obtain constraints on the

parameters {Ωmh
2, H(0.35)/Hfid(0.35), Dfid

A (0.35)/DA(0.35)}. The estimated pa-

rameters from each mock is the weighted average of the estimates from the patches,

with the weight proportional to the galaxy count in each patch. The parameters

Ωbh
2 and ns were fixed at the simulation input values, 0.0196 and 1.0 respectively.

Table 3.1 summarizes the results. All the estimated parameters are consistent

within 1σ with their input values; this provides validation of our method. We

also include derived parameters H(0.35)rs(zd)/c and DA(0.35)/rs(zd), where rs(zd)

is the sound horizon at the drag epoch. As shown in Fig.3.1, not all tiles are

entirely full. This reduces the galaxy count in some patches and hence induces

more noise compared to other patches. Therefore, we have weighted each tile ap-

propriately before averaging and obtaining standard deviations. Fig.3.5 shows the

distributions of the mean values of H(0.35)rs(zd)/c and DA(0.35)/rs(zd), as well

as H(0.35)rs(zd)/c and DA(0.35)/rs(zd), from the 80 mocks. For reference, it also

shows the standard deviation of the distributions, as well as the input values of

the parameters.

In order to optimize the choice for the number of patches that the survey area is

divided into, we have applied our method with different patch sizes, corresponding

to 2, 5, and 10 patches respectively. Estimated parameters from the division
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Parameter Mean σ Input Value

Ωmh
2 0.1271 0.0049 0.1225

Dfid
A (0.35)/DA(0.35) 1.007 0.033 1.0

H(0.35)/Hfid(0.35) 1.002 0.035 1.0

DA(0.35)/rs(zd) 6.41 0.17 6.48

H(0.35)rs(zd)/c 0.0425 0.0012 0.0434

Table 3.1: LasDamas mock catalog fitting results. Each mock catalog

is divided into five patches, and each patch is analyzed separately. The

estimated parameters from each mock is the weighted average of the

estimates from the patches. The mean and standard deviation are

obtained by averaging over 80 mock catalogs.

into two patches deviate by more than 2σ from the input values; we believe this

is due to the breakdown of the flat sky approximation as each patch is about

60◦ × 60◦. When the survey region is divided into ten patches, the number of

galaxies in each patch is significantly lower and hence the power spectrum is noisy.

Therefore, the covariance matrix is very noisy, and the estimated parameters have

significantly larger error bars, although mean parameter values are consistent with

input parameters, as shown in Table 3.2. We conclude that dividing the survey

area into five patches is the optimal choice for this work.
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Parameter Mean σ Input Value

Ωmh
2 0.124 0.010 0.1225

Dfid
A (0.35)/DA(0.35) 1.017 0.086 1.0

H(0.35)/Hfid(0.35) 1.032 0.075 1.0

DA(0.35)/rs(zd) 6.39 0.29 6.48

H(0.35)rs(zd)/c 0.0431 0.0017 0.0434

Table 3.2: Same as Table 3.1, but for dividing each mock into 10 patches.

3.4.2 Constraints on Parameters from SDSS Data

We now present our results from the analysis of SDSS DR7 LRGs. Table 3.3

lists the mean and standard deviation for measured parameters {Ωmh
2, H(0.35),

DA(0.35)}, and derived parameters H(0.35)rs(zd)/c and DA(0.35)/rs(zd) that we

have obtained from the 2D power spectrum of the SDSS DR7 LRGs. The mean

parameter values are calculated as follows,

p =
5∑

i=1

pi
σ2
i

/ 5∑

i=1

1

σ2
i

, (3.18)

where, p, pi are mean parameter value and the mean parameter value for the ith

patch, respectively. The standard deviations are the square roots of the diagonal

elements of the covariance matrix, which is obtained by inverting the matrix sum

of the inverse covariance matrices from the five patches. Table 3.4 gives the nor-

malized covariance matrix. The covariance matrix can be reconstructed as follows:

Ci,j = σiσjC
norm
i,j , (3.19)
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where Cnorm
i,j is the normalized covariance matrix, and the σi’s are given in Table

3.3. Figs.3.6-3.10 show the one dimensional probability distribution functions and

2D joint confidence contours of the primary parameters in our analysis. In this

analysis, we have fixed Ωbh
2 and ns to the WMAP 7 year cosmological parameter

values (Larson et al. (2011)), 0.02258 and 0.963 respectively, and k⋆ = 0.11hMpc−1.

Fixing Ωbh
2 and ns is justified by the fact that neither parameter is well constrained

by power spectrum data alone (eg. Percival et al. (2010)), and both are well

determined by WMAP data. Both of these parameters were fixed in similar studies

(eg. Reid et al. (2010)).

Chuang &Wang (2012) simultaneously measuredH(0.35) = 82.1+4.8
−4.9km/s/Mpc,

DA(0.35) = 1048+60
−58Mpc for the first time using two-dimensional two point corre-

lation function. Our results from using the same data set are within 1σ of their

measurements. The differences in mean values and errors can be attributed to

the different methods used (correlation function versus power spectrum). Our re-

sults are also comparable with Xu et al. (2013), where they measured H(0.35) =

84.4 ± 7.0 km/s/Mpc, DA(0.35) = 1050 ± 38Mpc assuming WMAP7 cosmology

from correlation function analysis of SDSS DR7 data. Their measurements are

within 1σ of our measurements. They used the multipole method to carry out

an anisotropic analysis similar to Chuang & Wang (2013). However, it should be

noted that their theoretical model is different from Eq.(3.2): They used a different

FoG model such that the denominator of Eq.(3.2) is squared. This may explain the

difference in the magnitude of errors for each parameter, as the additional damping

of radial power they applied is expected to result in increased uncertainty on the
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measured H(z).

Parameter Mean σ

Ωmh
2 0.1268 0.0085

DA(0.35) 1037 44

H(0.35) 81.3 3.8

DA(0.35)/rs(zd) 6.48 0.25

H(0.35)rs(zd)/c 0.0431 0.0018

Table 3.3: Results from our analysis of SDSS DR7 LRGs. The mean

values and standard deviations are calculated from the mean parameter

values and covariance matrices obtained by fitting parameters for the

5 patches.

Ωmh
2 DA(0.35) H(0.35) DA(0.35)/rs(zd) H(0.35)rs(zd)/c

1 -0.4535 0.4936 0.1746 −0.0915

−0.4535 1 −0.4009 -0.2772 0.9270

0.4936 −0.4009 1 0.9420 −0.2435

0.1746 −0.2772 0.9420 1 −0.2384

−0.0915 0.9270 −0.2435 −0.2384 1

Table 3.4: Normalized average covariance matrix corresponding to Table 3.3.
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3.5 Conclusion and Discussion

We present the first measurement of H(z) and DA(z) from the two-dimensional

galaxy power spectrum from SDSS DR7 LRG data. This method can be applied

to any future survey with a broad sky coverage. The basic concept is to divide

the sky into patches of roughly equal area and calculate individual power spectra

for each patch. We find that the optimum number of patches for SDSS DR7 data

is five, so that enough number of galaxies are included in each patch and the flat

sky approximation is also valid. We have measured {Ωmh
2, H(0.35), DA(0.35)}

and derived parameters H(0.35)rs(zd)/c and DA(0.35)/rs(zd) from the SDSS DR7

LRGs, as shown in Table 3.3. Note that we have analyzed the full two-dimensional

power spectrum, and not the Baryon Acoustic Oscillation (BAO) alone.

To validate our method, we applied it to LasDamas mock data and constrained

cosmological parameters. The results shown in Table 3.1 are consistent with the

LasDamas input parameters, thus establishing the validity of our method.

Our measurements of H(0.35) and DA(0.35) from the SDSS DR7 LRGs, with

errors of 4.67% and 4.29% respectively, are comparable with the values reported

in similar work. We also find that the derived parameters H(0.35)rs(zd)/c and

DA(0.35)/rs(zd) are more tightly constrained, with errors of 4.18% and 3.87%

respectively. A survey such as BOSS which is currently ongoing with more galaxies

and deeper than SDSS would enable the utilization of this method to further

tighten the constraints on these parameters, as well as the matter density and

index of the primordial power spectrum.
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Figure 3.5: LasDamas fitting results for the parameters

Dfid
A (0.35)/DA(0.35) (top left), DA(0.35)/rs(zd) (top right),
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Chapter 4

Summary

The main idea of this work is to investigate the potential of galaxy power spectrum

as a tool for extracting properties of the Universe. I have showed that using

direct Fourier transform (DFT) to obtain one dimensional power spectrum is more

efficient than finding ad-hoc methods to recover original spectrum from fast Fourier

transform (FFT) methods. Although I have used FFT to obtain two dimensional

power spectrum, it is possible to use DFT given the enough computing power.

Also, I have developed a method to extract two dimensional galaxy power spectrum

from any redshift survey with a broad sky coverage. I have applied this method

successfully to obtain SDSS 2D galaxy power spectrum and to measure H(0.35)

and DA(0.35) simultaneously, for the first time.

These techniques can be utilized to measure properties of the Universe from

future galaxy surveys that contain more galaxies. For example, BOSS has made

its initial data release already with a goal of measuring redshifts of over one million

LRGs. This is a ten fold increase of data points which should translate to much

tighter constraints on parameter values. Also, Eulid mission to be launched in

2020 with a goal of measuring 50 million galaxies will lead to much stringent

constraints. With large data sets, it is possible to measure the evolution of H

and DA accurately by dividing the data sample into broad redshift slices. This

is very important for understanding dark energy as the form of dark energy can

be distinguished from this information. Although I have marginalized over several
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cosmological parameters, accurate power spectrum measured from these future

surveys will provide better estimates of parameters including the linear redshift

space distortion parameter β.

Cosmology has evolved from a purely theoretical science to an active research

area strongly coupled with observational data that can estimate various properties

of the Universe with few percent accuracy. For example, my estimates are 4-5%

accurate. Also, the ability to obtain model independent measurements from power

spectrum as well as correlation function helps to determine the accuracy of the

standard ΛCDM model. This increased accuracy will eventually lead to better

understanding of the dark energy, the biggest problem in contemporary cosmology

today.
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