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Abstract 

    This dissertation advanced the traditional hydrological prediction via multi-sensor 

satellite remote sensing products, numerical weather forecasts and advanced data 

assimilation approach in sparsely gauged or even ungauged regions and then extend this 

approach to global scale with enhanced efficiency for prototyping a flood early warning 

system on a global basis. 

This dissertation consists of six chapters: the first chapter is the introductive chapter 

which describes the problem and raises the hypotheses, Chapters 2 to 5 are the four 

main Chapters followed by Chapter 6 which is an overall summary of this dissertation.  

For regional hydrological prediction in Chapter 2 and 3, two rainfall – runoff  

hydrological models: the HyMOD (Hydrological MODel) and the simplified version of 

CREST (Coupled Routing and Excess Storage) Model were set up and tested in 

Cubango River basin, Africa. In Chapter 2, first, the AMSR-E (Advanced Microwave 

Scanning Radiometer for Earth observing system) signal/TMI (TRMM Microwave 

Imager) passive microwave streamflow signals are converted into actual streamflow 

domain with the unit of m
3
/s by adopting the algorithm from Brakenridge et al. (2007); 

then the HyMOD was coupled with Ensemble Square Root Filter (EnSRF) to account 

for uncertainty in both forcing data and model initial conditions and thus improve the 

flood prediction accuracy by assimilating the signal converted streamflow, in 

comparison to the benchmark assimilation of in-situ streamflow observations in actual 

streamflow domain with the unit of m
3
/s. In Chapter 3, the remote-sensing streamflow 

signals, without conventional in-situ hydrological measurements, was applied to force, 

calibrate and update the hydrologic model coupled with EnSRF data assimilation 
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approach in the same research region, but resulting in exceedance probability-based 

flood prediction. 

    For global hydrological predictions in Chapter 4 and 5, a physical based distributed 

hydrological model CREST is set up at 1/8 degree from 50 N to 50 S and forms the 

Real Time Hydrological Prediction System (http://eos.ou.edu) which was co-developed 

by HyDROS (Hydrometeorology and Remote Sensing Laboratory) lab at the University 

of Oklahoma and NASA Goddard center. In Chapter 4, the CREST model is described 

with details and then the Real Time Global Hydrological Monitoring System will be 

comprehensively evaluated on basis of gauge based streamflow observation and gridded 

global runoff data from GRDC (Global Runoff Data Center, 

http://www.bafg.de/GRDC/EN/Home/homepage_node.html). In order to extend the 

hydrological forecast horizon for the Real Time Global Hydrological Prediction System, 

the deterministic precipitation forecast fields from a numerical meteorological model 

GFS (Global Forecasting System) as well as the ensemble precipitation forecast fields 

are introduced as the forcing data to be coupled into the global CREST model in order 

to generate the global hydrological forecasting up to around 7 days lead time in Chapter 

5. The July 21, 2012 Beijing extreme flooding event is selected to evaluate the 

hydrological prediction skills for extremes of both the deterministic and the ensemble 

GFS products. 

Keywords: Remote Sensing; Numerical weather forecasts; Data assimilation; 

Hydrological model 

 

http://eos.ou.edu/
http://www.bafg.de/GRDC/EN/Home/homepage_node.html
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Chapter 1. Introduction 

1.1 Statement of Problems 

Flooding, which is considered as one of the most hazardous disasters in both rural 

and urban areas, accounts for around one-third of all global geophysical hazards 

(Adhikari et al. 2010; Smith and Ward 1998). Looking back at the past year 2012, 

which was a moderate year, there were 905 natural disasters worldwide, of which 36% 

were floods (http://en.wikipedia.org/wiki/Natural_disaster). In the first half of 2013 

alone, flooding occurred in Europe, Canada, Asia and Australia causing a total 

economic loss of around 45 billion dollars. (Munich Re; http://go.nature.com/ku2qff). 

Wake recently pointed out that “the number, extent and global impact of the flood 

events this year (2013) is extraordinary and accounts for about 47% of global economic 

losses from nature disasters” (Wake 2013).   

Every year there are hundreds and thousands of flood events around the world that 

cause significant human suffering, loss of life and property damage (Adhikari et al. 

2010; Hong et al. 2007a). As mentioned by Adhikari et al., “The International Flood 

Network indicates that from 1995 to 2004, natural disasters caused 471,000 fatalities 

worldwide and economic losses totaling approximately $49 billion USD, out of which 

approximately 94,000 (20%) of the fatalities and $16 billion USD (33%) of the 

economic damages were attributed to floods alone” (Adhikari et al. 2010). Throughout 

the history, severe floods occurred frequently: In 1931, China experienced the ever 

recorded deadliest “Central China floods” of the 20
th

 century over Yellow River, 

Yangtze River and Huai River basins, which caused an estimated 2.5 to 3.7 million 

fatalities (http://en.wikipedia.org/wiki/1931_China_floods);  in 1887 and 1938, Yellow 

http://en.wikipedia.org/wiki/Natural_disaster
http://go.nature.com/ku2qff
http://en.wikipedia.org/wiki/1931_China_floods
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River was inundated and caused around 0.9-2 million and 0.5-0.7 million deaths, 

respectively, making them the second and third most devastating floods in Chinese 

history. The 1975 Ru River flood in China (0.231 million fatalities), the 2004 Indian 

Ocean tsunami in Indonesia (0.23 million fatalities) and the 1530 St. Felix’s flood in 

Netherlands are ranked No. 4, 5 and 6, respectively, in terms of death toll.  

In the future, which will be strongly impacted by human activities and changing 

climate, it is reasonably anticipated that the flood risk will not decrease, but rather 

become more severe and frequent, thus threatening more regions around the world. The 

increasing adverse worldwide impact from floods indicates that: (1) Accurate and 

precise flooding prediction plays an increasingly important role in early warning 

systems to protect human lives and properties, especially for those developing regions 

with sparsely hydrological gauges or even without gauge observations. (2) Flooding is 

not only a regional or national-level issue, but is instead a global problem that greatly 

motivates a global flood monitoring and forecasting system coordinated among 

worldwide research institutions and government decision makers. Therefore, (1) 

Regional hydrological predictions advanced by remote sensing techniques and data 

assimilation approaches, especially for those sparsely gauged or ungauged developing 

regions, are of great importance to provide early warning and guidance for the 

preparedness of flood disaster.  (2) A reliable Global Flood Prediction System (GFPS) 

is appealing for international collaborations in the preparedness and response for water 

management and flood emergence.  
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1.2 Literature Review 

1.2.1 Traditional hydrological prediction approach 

    Early last century, when remote sensing technique was not widespread, the 

hydrological prediction in the downstream was commonly calculated based on the 

hydrological conditions in the upstream using a hydraulic way (e.g. unit hydrograph, 

Muskingum method). However, the lead time for those approaches is often limited by 

the water concentration time in the river channel.  Then the physical based hydrological 

models were developed to better represent the hydrological process and increasingly 

applied for flood monitoring and forecasting in order to provide early warnings of 

impending disasters. Conventionally, a hydrological model is set up at natural river 

basins with meteorological gauges which can provide temperature, precipitation, etc., 

and hydrological gauge observations such as streamflow. For distributed hydrological 

model, the input rain gauge observations are usually interpolated into grids and taken as 

the forcing data to the model. And then the model parameters are tuned manually based 

on the modelers’ experiences or via sophisticated auto-calibration algorithms. There are 

some commonly applied calibration methods for improving the accuracy of streamflow 

simulation and prediction, such as SLS (Stepwise Line Search) (Kuzmin et al. 2008), 

SCE-UA (Shuffling Complex Evolution-University of Arizona) (Duan et al. 1994), and 

DREAM (DiffeRential Evolution Adaptive Metropolis) (Vrugt et al. 2009). Please refer 

to the citations for detailed information about the auto-calibration algorithms.  

1.2.2 Advanced remote sensing techniques for hydrological modeling 

In addition to calibration techniques, the recent development of remote-sensing 

technology from space-borne sensors, provided new insights into global rainfall patterns 
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and runoff response, and the real-time availability of these data over vast regions, has 

spawned the capability for systematic rainfall monitoring and subsequent flood 

modeling especially for those poorly gauged or ungauged basin, and for global 

hydrological forecasting. (e.g. (Brakenridge et al. 2007; Brakenridge et al. 2003; Hong 

et al. 2007b; Smith 1997)). Considering hydrological modeling in those basins with 

limited ground surface observation networks, a great deal of success has been achieved 

through the recent availability of remote-sensing precipitation data (e.g. (Hong et al. 

2004; Huffman et al. 2007; Joyce et al. 2004; Khan et al. 2011a, 2011b; Sorooshian et al. 

2000; Turk and Miller 2005)). However, it is recognized that the uncertainty with 

remote sensing data may cause additional errors to be propagated into hydrologic 

modeling results. For example, the TRMM (Tropical Rainfall Measurement Mission) - 

3B42 RT forcing data used in this study, according to (Bitew and Gebremichael 2011; 

Gourley et al. 2011), can lead to biased streamflow simulations through the error 

propagated from the model input to the model output in several different basins. The 

commonly used batch calibration system for hydrologic analysis combines errors from 

input data and model structures into parameter uncertainties; sequential data 

assimilation has the potential to overcome this weakness by taking into account each 

source of uncertainty separately (Moradkhani et al. 2005). Recently, the Global Flood 

Detection System (GFDS, http://www.gdacs.org/flooddetection/), began using a passive 

microwave sensor, AMSR-E, together with the TRMM Microwave Imager (TMI), to 

measure the surface brightness temperatures, which can be used creatively to infer 

streamflow and thus show the potential to monitor floods over the globe (Brakenridge et 

al. 2007). Previous assimilation studies with AMSR-E information have only focused 

http://www.gdacs.org/flooddetection/
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on the soil moisture products but not on the remotely sensed streamflow signals. In 

Chapters 2, the AMSR-E remote sensing streamflow signals are converted into actual 

streamflow for hydrological model calibration and data assimilation; by contrast, in 

Chapter 3, the signals are directly utilized for calibration, and then are converted into 

the exceeding probability for data assimilation.  

1.2.3 Advanced data assimilation techniques for improving hydrological performance 

In addition to conventional calibration approaches, data assimilation can further 

improve the accuracy and precision of the modeling results by correcting the internal 

model states that are used as the initial condition of the forecasting at the next time steps 

via assimilating available and reliable observations.  

Ensemble data assimilation was first used in engineering and aerospace applications 

during the 1960s. In the recent decades, ensemble data assimilation has increasingly 

been expanded to many fields, especially meteorology, oceanography and hydrology. 

Data assimilation is defined as the insertion of reliable data into the dynamical model to 

improve the quality and accuracy of the estimates. The Ensemble Kalman Filter (EnKF), 

which is a promising approach as it is robust and flexible in calculating background 

covariance (Reichle et al. 2002), has broadly been applied in the research area of 

dynamic meteorology as well as numerical prediction (e.g. (Anderson et al. 2005; 

Hamill et al. 2001; Houtekamer and Mitchell 1998, 2001; Mitchell et al. 2002; Wang et 

al. 2007，2009.)). Results show great potential of EnKF in enhancing modeling 

performance thus providing more reliable forecasts.   

An increasing number of studies have been exploiting the potential of assimilating 

different types of hydrological observations by integrating EnKF with advanced 



6 

 

hydrological models. One focus has been on the optimal use of soil moisture data with 

the EnKF (e.g. (Aubert et al. 2003; Chen et al. 2011; Crow and Ryu 2009; Crow et al. 

2005; Gao et al. 2007; Pauwels et al. 2002) ). By assimilating soil moisture into an 

appropriately physically based model (either land surface model or hydrological model), 

more accurate estimates of antecedent soil moisture condition result can be generated, 

thus enhancing the hydrologic prognostic capability of soil and streamflow states and 

fluxes. However, the degree of improvement in forecast skill is contingent on the model 

structure and the quality of the observations that are assimilated into the model. Chen et 

al. (2011) pointed out that the failed attempt to improve streamflow prediction via 

assimilating soil moisture into the SWOT model was due to the deficiency of the model 

structure (Chen et al. 2011). A variety of studies have examined the applicability of 

assimilating streamflow observations into hydrological models in order to improve the 

prediction skill of the streamflow and soil moisture conditions (e.g. (Aubert et al. 2003; 

Chen et al. 2013; Clark et al. 2008; Pauwels and De Lannoy 2006)).   

1.2.4 Advanced global hydrological monitoring and forecasting system in Real Time 

    Flooding accounts for about one-third of all global geophysical hazards and it leads 

to significant human suffering, loss of life and property damage. Currently, only several 

satellite remote-sensing, flood-monitoring systems exist at global scales and provide 

forecasts in near real time (Brakenridge et al. 2007; Hong et al. 2007b; Wu et al. 2012; 

Yilmaz et al. 2010). Timely, recent development and improvement of global flood early 

warning systems are appealing to users when they provide forecasts several days in 

advance for better planning and responding to emerging disasters. In Chapter 4, a Real 

Time Global Hydrological Monitoring System, forced by NASA TRMM-based Multi-
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satellite Precipitation Analysis (TMPA) at near real-time, is proposed to be 

systematically evaluated to prove the reliability of hydrological detection skills; in 

Chapter 5, a Global Hydrological Prediction System (GHPS), forced by NOAA’s 

Global Forecast System (GFS) precipitation forecasts, was developed and evaluated 

thus providing global real time flood forecasting up to 7 days in advance, which is of 

great significance to  government decision makers in emergency response. 
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1.3 Research Objective 

    The overarching goal of this dissertation is to advance the traditional hydrological 

prediction via multi-sensor satellite remote sensing products, numerical weather 

forecasts and advanced data assimilation approach in sparsely gauged or even ungauged 

regions and then extend this approach to global scale with enhanced efficiency for 

prototyping a flood early warning system on a global basis. 
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1.4 Hypotheses 

Based on the overarching objective, the following hypotheses are made in this 

dissertation: 

1. Spaceborne streamflow signals can compensate for the uncertainty of spaceborne 

precipitation data to achieve hydrologic prediction skill comparable to results 

benchmarked with conventional observations.  

2. Remote-sensing data can complement or even replace in-situ networks to force and 

calibrate hydrologic models, especially over vast sparsely gauged basins throughout 

the world. 

3. The real time global hydrological monitoring system can be enabled by multi-sensor 

satellite rainfall products for near real time monitoring purpose while the real time 

global hydrological forecasting system can be enabled by the precipitation forecasts 

from Numerical Weather Prediction (NWP) system for real time forecasting purpose. 

4. In addition the deterministic NWP precipitation forecast which can formulate the 

deterministic hydrological forecast; the ensemble NWP precipitation forecasts can 

add additional value in probabilistic Ensemble Streamflow Predictions which can 

better quantify the hydrological prediction uncertainties.  
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1.5 Outline of the Dissertation 

This dissertation consists of six Chapters: the first Chapter is the introductive 

Chapter which describes the problem and raises the hypotheses, Chapters 2 to 5 are the 

four main Chapters followed by Chapter 6 which is an overall summary of this 

dissertation.  In order to make every chapter an independent story, there are some 

repetitions in the content.  

For regional hydrological prediction in Chapter 2 and 3, two rainfall – runoff  

hydrological models: the HyMOD (Hydrological MODel, (Wagener et al. 2001)) and 

the simplified version of CREST (Coupled Routing and Excess Storage, (Wang et al. 

2011)) Model were set up and tested in Cubango River basin, Africa. In Chapter 2, first, 

the  AMSR-E (Advanced Microwave Scanning Radiometer for Earth observing system) 

signal/TMI (TRMM Microwave Imager) passive microwave streamflow signals are 

converted into actual streamflow domain with the unit of m
3
/s by adopting the 

algorithm from Brakenridge et al. (2007); then the HyMOD was coupled with Ensemble 

Square Root Filter (EnSRF) to account for uncertainty in both forcing data and model 

initial conditions and thus improve the flood prediction accuracy by assimilating the 

signal converted streamflow, in comparison to the benchmark assimilation of in-situ 

streamflow observations in actual streamflow domain with the unit of m
3
/s. In Chapter 3, 

the remote-sensing streamflow signals, without conventional in-situ hydrological 

measurements, was applied to force, calibrate and update the hydrologic model coupled 

with EnSRF data assimilation approach in the same research region, but resulting in 

exceedance probability-based flood prediction. 
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For global hydrological predictions in Chapter 4 and 5, a physical based distributed 

hydrological model CREST is set up at 1/8 degree from 50 N to 50 S and forms the 

Real Time Hydrological Prediction System (http://eos.ou.edu) which was co-developed 

by HyDROS (Hydrometeorology and Remote Sensing Laboratory) lab at the University 

of Oklahoma and NASA Goddard center. All the parameters were either directly 

estimated from input data (e.g. soil type) or used as a-priori parameters (for detailed 

information, please refer to (Wang et al. 2011; Wu et al. 2012)). The CREST model, 

which is forced by gridded meteorological forcing fields - nominally rainfall observed 

from TRMM, has been used to simulate and forecast hydrometeorological variables 

such as streamflow, soil moisture, and actual evapotranspiration. In Chapter 4, the 

CREST model is described with details and then the Real Time Global Hydrological 

Monitoring System (also refer to the nowcast mode of GHPS) will be comprehensively 

evaluated on basis of gauge based streamflow observation and gridded global runoff 

data from GRDC (Global Runoff Data Center, 

http://www.bafg.de/GRDC/EN/Home/homepage_node.html). In order to extend the 

hydrological forecast horizon or the lead time for the Real Time Global Hydrological 

Prediction System, the deterministic precipitation forecast fields from a numerical 

meteorological model GFS (Global Forecasting System) as well as the ensemble 

precipitation forecast fields (also refers to GENS –GFS Ensembles in this study) are 

introduced as the forcing data to be coupled into the global CREST model in order to 

generate the global hydrological forecasting up to around 7 days lead time in Chapter 5. 

The July 21, 2012 Beijing extreme flooding event is selected to evaluate the 

http://eos.ou.edu/
http://www.bafg.de/GRDC/EN/Home/homepage_node.html
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hydrological prediction skills for extremes of both the deterministic and the ensemble 

GFS products.  
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Chapter 2. Assimilation of Passive Microwave Streamflow Signals for 

Improving Flood Forecasting: A First Study in Cubango River 

Basin, Africa 

 

Abstract 

Floods are among the most frequently occurring and disastrous natural hazards in the 

world. The overarching goal of this study is to investigate the utility of passive 

microwave AMSR-E signal and TRMM based precipitation estimates in improving 

flood prediction at the sparsely gauged Cubango River Basin, Africa. This is 

accomplished by coupling a widely used conceptual rainfall-runoff hydrological model 

with Ensemble Square Root Filter (EnSRF) to account for uncertainty in both forcing 

data and model initial conditions. Three experiments were designed to quantify the 

contributions of the AMSR-E signal to the flood prediction accuracy, in comparison to 

the benchmark assimilation of in-situ streamflow observations, for both “Open Loop” 

and “Assimilation” modules. In general, the EnSRF assimilation of both in-situ 

observations and AMSR-E signal-converted-streamflow effectively improved 

streamflow modeling performance in terms of three statistical measures. In order to 

further investigate AMSR-E signals’ contribution to extreme events prediction skill, the 

upper 10
th

 percentile daily streamflow was taken as the threshold. Results show 

significantly improved skill and detectability of floods as well as reduced false alarm 

rates. Given the global availability of satellite-based precipitation from current TRMM 

and future GPM, together with soil moisture information from the current AMSR-E and 

future SMAP mission at near real-time, this “first attempt” study at a sparsely gauged 
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African basin shows that opportunities exist for an integrated application of a suite of 

satellite data in improving flood forecasting worldwide by careful fusion of remote 

sensing and in-situ observations.  
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2.1 Introduction 

Every year there are hundreds and thousands of flood events around the world that 

cause significant human suffering, loss of life and property damage (Adhikari et al. 

2010; Hong et al. 2007a; Kugler and Groeve 2007). In a changing climate, it is 

reasonably anticipated that the flood risk will not decrease but become more severe and 

frequent, thus threatening more regions around the world (McCarthy 2001). Therefore, 

accurate and precise forecasting of floods plays an increasingly important role in early 

warning systems to protect life and property. 

In order to provide early warnings of impending disasters, hydrological models are 

typically applied for flood detection and prediction. The traditional way to improve the 

accuracy of streamflow simulation and prediction is to calibrate the model using manual 

or automatic approaches such as SLS (Stepwise Line Search) (Kuzmin et al. 2008), 

SCE-UA (Shuffling Complex Evolution-University of Arizona) (Duan et al. 1994), and 

DREAM (DiffeRential Evolution Adaptive Metropolis) (Vrugt et al. 2009). In addition 

to conventional calibration approaches, data assimilation can further improve the 

accuracy and precision of the modeling results by correcting the internal model states 

that are used as the initial condition of the forecast for the next time steps via 

assimilating available and reliable observations.  

   Ensemble data assimilation was first used in engineering and aerospace 

applications dating back to the 1960s. In recent decades, ensemble data assimilation has 

increasingly been expanded to many fields, especially meteorology, oceanography and 

hydrology. Data assimilation is defined as the insertion of reliable data into the 

dynamical model to improve the quality and accuracy of the estimates (Robinson and 
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Lermusiaux 2000). Recently, an increasing number of studies have been exploiting the 

potential to assimilate different types of hydrological observations by integrating EnKF 

with advanced hydrological models. One focus has been on the optimal use of soil 

moisture data with the EnKF (e.g. (Aubert et al. 2003; Chen et al. 2011; Crow and Ryu 

2009; Crow et al. 2005; Gao et al. 2007; Pauwels et al. 2002) ). Besides the assimilation 

of soil  moisture, a variety of studies have examined the applicability of assimilating 

streamflow observations into hydrological models in order to improve streamflow 

prediction and soil moisture conditions (e.g. (Aubert et al. 2003; Chen et al. 2013; Clark 

et al. 2008; Pauwels and De Lannoy 2006)).   

In addition to calibration and data assimilation techniques, the recent development of 

remote-sensing technology, which provides high temporal and spatial resolution forcing 

data such as precipitation and soil moisture, can greatly facilitate the improvement of 

flood forecasting (e.g. (Brakenridge et al. 2003, 2007; Hong et al. 2007b; Smith 1997)). 

However, it is recognized that the uncertainty with remote sensing data may cause 

additional errors to be propagated into hydrologic modeling results. For example, the 

TRMM (Tropical Rainfall Measurement Mission) - 3B42 RT forcing data used in this 

study, according to (Bitew and Gebremichael 2011; Gourley et al. 2011), can lead to 

biased streamflow simulations through the error propagation from the model input to 

the model output in different basins. The commonly used batch calibration system for 

hydrologic analysis combines errors from input data and model structures into 

parameter uncertainties; sequential data assimilation has the potential to overcome this 

weakness by taking into account each source of uncertainty separately (Moradkhani et 

al. 2005). 
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NASA AMSR-E (Advanced Microwave Scanning Radiometer for Earth observing 

system)/Aqua provides both soil moisture retrievals from the brightness temperature 

and the approximated river streamflow signals using the techniques proposed by 

(Brakenridge et al. 2007).  To date, however, previous assimilation studies with AMSR-

E information are only focused on the soil moisture products but not on the remotely 

sensed streamflow signal. The overarching goal of this study is to investigate the 

potential utility of AMSR-E remotely-sensed signal data for hydrological model 

calibration and data assimilation in the Cubango River Basin, with rainfall forcing from 

TRMM-based satellite precipitation estimates. To do so, an ensemble square root filter 

(EnSRF), (also referred to as an EnKF without perturbing the observations) was applied 

and coupled with a widely tested rainfall-runoff hydrological model called HyMOD to 

overcome both the uncertainty of remotely sensed precipitation and streamflow data 

combined with the simplicity of the model structure.  

To the best of our knowledge, this research is the first attempt to incorporate 

remotely-sensed streamflow, which was derived from the AMSR-E signals retrieved 

and provided by the Global Flood Detection System (GFDS, 

http://www.gdacs.org/flooddetection/), for hydrologic model parameter estimation and 

data assimilation. This study demonstrates the applicability of the globally-available 

AMSR-E signals and satellite-based precipitation estimates in enhancing the hydrologic 

performance via a combined calibration and data assimilation approach. It is shown that 

the assimilation of either gauge-observed or remote sensing-derived streamflow into the 

model updates all the internal model states (soil moisture content, quick and slow flow 

tank contents) with the expectation of thereby reducing the deviations between the 

http://www.gdacs.org/flooddetection/
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model simulation and observation of streamflow. With the increasing availability of 

remote-sensing data over the globe (e.g. precipitation and soil moisture) and advances 

in computational power, it is possible that sequential data assimilation of remotely-

sensed soil moisture and streamflow signals can be implemented in a real-time 

hydrological prediction system for improved hydrological forecasting, especially for the 

vast basins of the world that are only sparsely gauged. 

Section 2.2 describes the Cubango river basin and the details of the model and data 

sources. Section 2.3 introduces the methodology of this study. In section 2.4, the results 

of sensitivity analysis, calibration, data assimilation and threshold-based evaluation are 

discussed. Finally, a summary of results and conclusions are provided in section 2.5.  
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2.2 Study Region, Model and Data 

2.2.1 Study Region 

The Okavango River, which is the fourth longest river system in southern Africa, 

runs for about 1100 km from central Angola and flows through Namibia and Botswana 

(as shown in Figure 2.1).  

The Okavango catchment is approximately 413,000 km
2
, while the Okavango delta 

which lies downstream is about 15,000 km
2
. Within the area of this catchment, Angola 

accounts for 48%, Nambia accounts for 37% and Botswana 15% of the land area. The 

Okavango river originates in the headwaters of central Angola, then the Cubango and 

Cuito tributaries meet to form the Cubango-Okavango River near the border of Angola 

and Namibia and flow into the Okavango Delta in Botswana. The upper stream region 

belongs to subtropical climate zone with annual precipitation around 1300mm while the 

downstream region, which contains the Kalahari Desert, belongs to the semi-arid 

climate zone with annual precipitation around 450mm (Hughes et al. 2006; Milzow et al. 

2009b). The headwater region, which is the northern part of the basin, is mainly covered 

by the ferralsols soil with a lower hydraulic conductivity. The headwater region also has 

a high forest cover and contributes significantly to the river runoff (Hughes et al. 2006). 

The rest of the basin is dominated by arenosals soil (www.sharing-water.net), which is 

very porous with high hydraulic conductivity, so that water drains rapidly, leaving little 

moisture for plants. As mentioned in (Chen et al. 2013), around 95% of inflow is lost in 

the atmosphere due to high potential evapotranspiration rate and only a small portion 

contributes to groundwater.  

http://www.sharing-water.net/


25 

 

 

Figure 2.1 Map of research region – Cubango River Basin, South Africa (a) 

African; (b) Southern Part of Africa; (c) Cubango River 

     

    Several studies in the Okavango River Basin have investigated the hydrological 

response under climate change (Andersson et al. 2006; Hughes et al. 2006，2011; 

McCarthy et al. 2003; Milzow et al. 2009a). Since the Okavango River basin is one of 

the most important economic and water resources in southern Africa, additional studies 

have been solicited to assist in the decision-making for water management in this basin. 

The main tributary of Okavango River, the Cubango River, which is mainly located in 

Angola, is selected as the study basin. Figure 2.1 shows the location of the Cubango 

River in southwest Africa, which accounts for a majority of the available water 

resources in the Okavango river. The Rundu gauge station is located at the outlet of 
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Cubango River, a location where both the ground gauge-based streamflow observation 

and the remote-sensing discharge estimates (i.e., AMSR-E M/C ratio signal) are 

available.   

2.2.2 Model  

To concentrate on the effectiveness of the Ensemble Square Root Filter, the 

conceptually simple Hydrological MODel (HyMOD. Figure 2.2) described in (Wagener 

et al. 2001) was utilized. This model commonly consists of several quick flow 

reservoirs and one single reservoir for slow flow; the quick flow reservoirs and the slow 

flow reservoir operate in parallel as routing components. The parameters of HyMOD 

and their reasonable ranges are as shown in Table 2.1 (Wagener et al. 2001a): (1)     : 

maximum storage capability in the catchment; (2)     : the degree of spatial variability 

of the soil moisture capacity within the catchment; (3)  : quick-slow split parameter; (4) 

  : number of quick flow routing tanks; (5)   : quick flow routing tanks rate parameter; 

and (6)    : slow flow routing tanks rate parameter. The internal states are (1)     : soil 

moisture accounting tank state contents; (2)    : quickflow routing tanks state contents 

with dimension of 1*Nq; and (3)   : slowflow routing tank state contents. Following 

evaporation, the remaining rainfall is used to fill the soil moisture storage and then the 

excess rainfall splits into quickflow reservoir and slowflow reservoir by the quick-slow 

split parameter  . The flow in each reservoir is governed by quick flow routing tanks 

rate parameter     and slow flow routing tanks rate parameter    (Blasone et al. 2008; 

Kollat et al. 2012). In summary, the input variables should consist of the precipitation 

and the Potential Evapotranspiration    , while the main output variable is the 

streamflow  .  
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Figure 2.2 Structure of HyMOD 

 

Table 2.1 Parameter Range of HyMOD 

Parameter Unit Range 

     mm 1-500 

     - 0.1-2 

  - 0-0.99 

   - 1-inf 

   day 0.1-0.99 

   day 0-0.1 
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2.2.3 Data 

    With the development of remote-sensing techniques, the application to distributed 

hydrologic modeling especially in sparse or even ungauged basins has dramatically 

improved. Remote-sensing data with higher spatial and temporal resolution can provide 

information over the globe with less cost and less manual maintenance involved. These 

data can be used as the forcing data (e.g., precipitation, potential evapotranspiration) to 

drive the hydrologic models and to calibrate the parameters as well, thus enabling the 

flood forecasts and water resources management tools in most of the developing 

countries where conventional ground-based measurements are scarce. The Okavango 

River Basin is considered to be poorly gauged. Sparse ground gauge-based precipitation 

measurements are available in the Cubango sub-basin where most runoff is generated 

(Milzow et al. 2011). In this study, remotely-sensed precipitation and potential 

evapotranspiration are incorporated to drive the model while both the gauge 

measurement and the remotely-sensed estimation of streamflow are adopted to calibrate 

the model.  

TRMM Multisatellite Precipitation Analysis (TMPA) provides two standard 3B42-

level products: the near-real-time 3B42 RT which uses the TRMM combined 

instrument dataset to calibrate the data and the post-real-time research product 3B42 V7 

(level 7) which adjusts the rainfall accumulation by gauge analysis (Huffman et al. 

2007). Both 3B42 RT and 3B42 V6 products are quasi-global with coverage from 50°N 

to 50°S latitude. In this study, the TRMM 3B42 RT with the spatial resolution of 0.25° 

(approximate to 25km in the tropical area) and temporal resolution of three hourly, is 

processed into daily accumulation as well as basin average and applied as the forcing 
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data to drive the hydrological model. PET (potential evapotranspiration) comes from the 

Famine Early Warning System Network (FEWS NET; 

http://igskmncnwb015.cr.usgs.gov/Global/) with a spatial resolution of 0.25°, and is 

likewise processed into daily and basin average as additional forcing to the model. 

    For the benchmarks that were used to calibrate the model, both the ground gauge-

observed streamflow from the local government and the AMSR-E signal converted 

streamflow were applied in this study.  Dartmouth Flood Observatory (DFO, 

http://www.dartmouth.edu/~floods/), as well as GFDS, uses the AMSR-E sensor for 

discharge estimation in global scope for flood monitoring. Besides these two systems, 

other studies also explore the possibility of estimating the discharge based on the 

AMSR-E sensors (Salvia et al. 2011; Temimi et al. 2007, 2011).  This study uses the 

conventional Dartmouth algorithm (Brakenridge et al. 2007), a polynomial model (refer 

to part 2.3.2), to retrieve the actual streamflow (in m
3
/s) from the AMSR-E C/M 

radiance ratio.  
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2.3 Methodology 

2.3.1 Streamflow estimation from AMSR-E signals 

The GFDS uses the near real-time satellite-based, remote-sensing data to monitor 

floods over the globe. In this system, a passive microwave sensor, AMSR-E, together 

with TRMM TMI (TRMM Microwave Imager) sensor, are used to measure the 

brightness temperature at 36.5GHz, descending orbit with horizontal polarization, 

which responds to surface wetness and thus flooding (Brakenridge et al. 2007). It 

should be noted that though AMSR-E-polarized measures the brightness temperature 

(also expressed as radiance) both horizontally and vertically at 6 frequencies from 6.9 to 

89.0 GHz, only 36.5GHz at horizontal polarization is selected to measure the change of 

river discharge through a series of sensitivity tests (Brakenridge et al. 2007). A wet 

pixel (usually over the surface of a river) is selected to measure the brightness 

temperature of the measurement (M) area while an adjacent dry pixel is selected to 

measure the brightness temperature of the calibration (C) area (usually over the land 

near the wet pixel); the fraction of the measurement and calibration brightness 

temperature is referred as the M/C ratio signal (Eq. (1)).  

                                                       (1) 

The M/C ratio signal data are provided by GFDS. Some details about selecting the 

M/C pixels should be noted: (1) The calibrated dry pixel C is located near the 

measurement wet pixel M so that changes such as vegetation, soil texture, etc. at those 

locations are more likely to be correlated. In other words, those two locations are more 

likely to share similar conditions (e.g. vegetation, and soil texture); (2) C and M are 

within a short distance so that the measurement acquired by AMSR-E are effectively 

/ /m cM C Ratio Tb Tb
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contemporaneous; (3) M is selected to have the largest change in water surface area and 

relatively high sensitivity; (4) C is selected to be close to M but is located far enough to 

be not affected by flood inundation; (5) Moderate Resolution Imaging 

Spectroradiometer (MODIS) is applied to assist selecting M where flow area 

expansions occur (Brakenridge et al. 2007; Kugler and Groeve 2007).  The main merit 

of the AMSR-E passive microwave sensor onboard the NASA EOS Aqua satellite is 

that it is not restricted by cloud cover and provides data availability for daily flood 

monitoring over the globe. In addition, since nighttime radiation is more stable than 

during the day, the descending (nightly) orbit with a footprint size of approximately 8×

12km is used. For additional details, refer to Figure 3. in (Kugler and Groeve 2007) 

which illustrates how the AMSR-E sensor can be used to detect flooding.  

The C/M radiance ratio, which is the reciprocal of M/C ratio signal, is correlated at a 

significant level with observed streamflow as shown in Figure 2.3.  

 

Figure 2.3 Time series plot of C/M radiance ration and observed streamflow from 

Jun-22-2002 to Dec-31-2007 

   

2003 2004 2005 2006 2007 2008
0

100

200

300

400

500

600

700

800

900

1000

S
tr

e
a

m
F

lo
w

(m
3
/s

)

 

 

2003 2004 2005 2006 2007 2008

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

C
/M

 r
a

d
ia

n
c
e

 r
a

ti
o

time(daily)

Gauge StreamFLow

C/M Radiance Ratio



32 

 

    The relationship can also be visualized by the scatter plot shown in Figure 2.4. Here, 

the observed streamflow is used to calibrate the orbital gauging measurements (the C/M 

radiance ratio signal) into in-situ discharge units (m
3
/s) via a quadratic polynomial 

regression as shown in Figure 2.4. Some other regressions were also tested in this study 

but not listed in this paper; it turns out the nonlinear quadratic polynomial regression 

outperformed the linear regression and other polynomial regressions. This arithmetic 

“pair ratio” (C/M radiance ratio as shown in eq. (1)) approach proposed by Brakenridge, 

accounts for the inherent correlated changes between the brightness temperature ratio 

and river gauge data (Brakenridge et al. 2007). Brakenridge et al. (2007) also 

demonstrated that AMSR-E data, calibrated via the paired measurement approach, and 

obtained over carefully selected river reaches, can characterize river discharge changes 

at a useful level of accuracy (Brakenridge et al. 2007). It should be noted that the 

parameters of the quadratic polynomial equation as shown in Figure 2.4 are calibrated 

using both the gauge streamflow and AMSR-E signals data sets from 22 Jun 2002 to 31 

Dec 2005.  Following conversion, the correlation coefficient between the signal-

converted streamflow and the observed streamflow is 0.95, the Bias is 1.91% and the 

RMSE (Root Mean Square Error) is 56.64m
3
/s during this period [note: capitalized 

“Bias” in this paper refers to the statistical index that is calculated by eq.(17)].  
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Figure 2.4 Scatter plot and rating curve equation comparing daily C/M radiance 

radio versus gauge based streamflows (In the equation, R refer to runoff 

/streamflow and S refer to signal) 

 

The datasets from 1 Jan 2006 to 31 Dec 2007 are applied to validate the performance 

of this regression method. Figure 2.5 indicates that the signal-converted streamflow is 

well correlated with gauge observations from 2002 to 2007, especially during the peak 

flow periods. However, overestimation of streamflow exists during the low flow period 

because the AMSR-E sensors are not sensitive to low flows. In addition, this approach 

is applied to medium- to large-sized basins. The accuracy of the AMSR-E signals for 

basins with less than 50000km
2
 drainage areas needs further investigation (Khan et al. 

2012). Additional factors influencing the utility of AMSR-E data for streamflow 

estimation include the width of the river, channel geometry, water temperature relative 

to land, and measurement pixel resolution.   
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Figure 2.5 Observed streamflow V.S. signal converted streamflow from Jun-22-

2002 to Dec 31-2005 

 

2.3.2 Model Calibration and Validation 

There are two general approaches for hydrologic model calibration:  manual 
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method to estimate the posterior probability density function in complex, high–

dimensional sampling problems and resulted in a successful calibration of the HyMOD 

model parameters. From the authors’ experience, the sensitivities of the parameters 

     which controls the quantity of excess rainfall and the routing parameter    which 

controls the residence time of quick-flow are relatively higher, then followed by  ,      

and    . From the previous experiences (Blasone et al. 2008; Kollat et al. 2012; 

Wagener et al. 2001), the number of quick-flow tanks    is somewhat sensitive but 

usually the recommended best value is three for small- to medium-sized basins. 

The time series of the precipitation, PET, gauge streamflow observation, and AMSR-

E signal are from 22 Jun 2002 (the starting date of the AMSR-E data) to 31 Dec 2007 

due to the data availability.  The calibration period spans 2003 to 2005, and the 

validation period is from 2006 to 2007. For each experiment, a warm-up period from 22 

Jun 2002 to 31 Dec 2002 was run ahead of each experiment to initialize the internal 

model states.  

2.3.3 Data Assimilation Approach: EnSRF  

A sequential data assimilation technique called Ensemble Square Root Filter (EnSRF), 

which is also referred to as EnKF without perturbing observations, is applied to 

assimilate different streamflow observations into HyMOD. Compared to the traditional 

EnKF which requires perturbing both forcing data and observations, for the EnSRF, 

only the forcing data is perturbed and the ensemble mean is updated by the observation. 

Whitaker and Hamill demonstrated that there is no additional computational cost by 

EnSRF relative to EnKF, and EnSRF performs more accurately than EnKF for the same 

ensemble size (Whitaker and Hamill 2002). But it still remains a research topic to 
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compare the accuracy and efficiency of different sequential data assimilation 

approaches (e.g. EnKF, EnSRF).  

Let be the background model forecast, which is also called the first guess in data 

assimilation (    dimension and n is the number of emsembles); let  be the 

observation (    dimension and   is the number of observations), which is the 

streamflow measurements in this study; let be the observation operator that converts 

the states in the model into observation space (    dimension); the estimate of the 

analyzed state  can be described by the traditional Kalman filter update function 

(Whitaker and Hamill 2002) (             ), 

       ̂                                                              (2) 

    In Eq (2),  ̂ refers to the traditional Kalman gain. Let’s denote the ensemble    as  

                                                          =(   
    

      
 )                                                 

(3) 

Where we ignore time index and the subscript represents the ensemble member. The 

ensemble  mean is then defined as  

  ̅̅̅̅   
 

 
∑   

  
                                                                  (4) 

   The perturbation from the mean for the i th member is  

  
      

     ̅̅ ̅                                                          (5) 

Then      is defined as a matrix formed from the ensemble of perturbations: 

                               
     

       
                                                  (6) 

 An estimation of background error covariance is defined as 

 ̂  
 

   
                                                             (7) 
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However, in practice, we do not calculate  ̂ , but rather calculate  ̂    and   ̂    

are evaluated by the following equations In order to estimate the Kalman gain  ̂ ::  

 ̂    
 

   
∑    

   ̅       
       ̅̅ ̅̅ ̅̅ ̅̅       

                              (8) 

  ̂    
 

   
∑      

      ̅        
       ̅̅ ̅̅ ̅̅ ̅̅     

                 (9) 

    Here, m is the ensemble size. Then the traditional Kalman gain  ̂ can be calculated 

by Eq (10),  

 ̂   ̂      ̂                                                                    (10) 

    R is the observation error covariance with a dimension of      In EnSRF, the 

reduced Kalman gain  ̃ is used to update the deviation from the ensemble mean as 

estimated by the following equation,  

 ̃     √
 

  ̂     
    ̂                                                 (11) 

    The ensemble mean can be updated by 

 ̅ 
   ̅ 

   ̂      ̅ 
                                                    (12) 

                                     

    The perturbation (deviation of ensemble mean) can be updated by 

          
     

    ̃    
                                                        (13) 

    The final analysis follows as  

  
  

   ̅ 
    

                                                                 (14) 

     As mentioned above, when the EnSRF is applied, the forcing data (which is the 

precipitation in this study) needs to be perturbed. Precipitation perturbations in this 

study are defined as  

                                                                       (15) 

     where    is a random noise factor drawn from a Gaussian distribution 

                                                                         (16) 
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    Since this study utilizes a lumped model HyMOD, the satellite-derived precipitation 

is aggregated into a basin average at every time step as the forcing input of the model, 

so no spatial error correlation is computed in the generation of the precipitation 

perturbation due to the feature of the lumped model. Regarding the temporal error 

correlations, the equation does not directly account for the temporal error correlations.  

At each time step, an independent rainfall error is generated by Gaussian distribution 

(refer to eq. (15) and (16)) and added to the original basin average precipitation.  

2.3.4 Experimental Design 

The primary forcing datasets for the Cubango River basin come from the TRMM RT 

remote-sensing product and the potential evapotranspiration data from FEWS 

(http://igskmncnwb015.cr.usgs.gov/Global). Three experiments were performed for 

testing the efficiency of improving the streamflow simulations by assimilating different 

sources of observations. First, rainfall and runoff observations from June 2002 to 

December 2005 were used to calibrate the model parameters without data assimilation 

following the warm-up period. Then, both the gauge-based streamflow observation and 

the AMSR-E signal converted streamflow were assimilated separately into HyMOD to 

update all the internal states at each assimilation cycle, which is daily in this study for 

both calibration and validation period. The modeling results of these three experiments 

are evaluated by the gauge-observed streamflow, which is always considered as the 

most accurate and reliable observation of streamflow.  

In the first experiment, the model was calibrated by the gauge-observed streamflow 

and then the gauge observation was also assimilated into HyMOD to estimate the 

internal model states. This experiment is the benchmark for all experiments, which are 
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summarized in Table 2.2. In the second experiment, the model was similarly calibrated 

using the gauge-observed streamflow; however, in the assimilation step, the AMSR-E 

signal converted streamflow was incorporated into HyMOD in lieu of the gauge-

observed streamflow data assimilated in experiment 1. 

Table 2.2  Introduction of experiments design 

Experiments Calibration Benchmark Data Assimilated into Model 

Exp1 Ground Gauge Observed 

Streamflow 

Ground Gauge Observed 

Streamflow 

Exp2 Ground Gauge Observed 

Streamflow 

AMSR-E M/C Ratio Signal 

Converted Streamflow 

Exp3 AMSR-E M/C Ratio Signal 

converted streamflow 

AMSR-E M/C Ratio Signal 

Converted Streamflow 

 

In the third experiment, the model was calibrated by the AMSR-E signal converted 

streamflow and then it was also assimilated into model to correct the model states for 

each assimilation cycle, without gauge-based observations involved.  

2.3.5 Sensitivity Analysis 

Research has been carried out in the sensitivity analysis among the spread of 

precipitation ensembles, observation error, ensemble size, and their impacts on data 

assimilation efficiency (Pauwels and De Lannoy 2006; Whitaker and Hamill 2002). 

Here, the “spread of the precipitation” is the white noise that is added into the 

precipitation to generate the precipitation ensembles. In other words, it is a measure of 

the difference between the precipitation ensemble members and is represented by the 

standard deviation (e.g. the parameter R is eq. (11)). (Pauwels and De Lannoy 2006) 

analyzed the sensitivity of observation error; results show that the increase in the 

observation error leads to a decrease in the accuracy of the modeled discharge. 
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(Whitaker and Hamill 2002) pointed out that with the enlargement of the ensemble size 

the modeled result improved up to a point where the modeled result remained the same. 

Those two studies mentioned above only analyzed the sensitivity of a single factor (e.g. 

observation error and ensemble size) affected in the effectiveness of data assimilation. 

Actually, the effectiveness of EnSRF, which can be evaluated by an NSCE (Nash-

Sutcliffe Coefficient of Efficiency) statistic, should be a function of several factors (i.e., 

observation errors, spread of precipitation and ensemble size). In this study, a joint 

sensitivity analysis has been carried out to evaluate the mutual impacts of various 

observation errors, spread of precipitation and ensemble sizes for assimilating different 

sources of streamflow observations. Finally an optimal and reasonable point (with 

certain observation error, spread of precipitation and ensemble size) that yields the best 

simulation results when applying EnSRF will be identified and then utilized in the data 

assimilation experiments.  It should be noted that the sensitivity analysis is applied after 

the model calibration step to avoid the bias in the model, and the sensitivity analysis is 

only applied for the calibration period.   

2.2.6 Evaluation Metrics  

In this study, three commonly used statistical indicators were used to assess the long 

time series model performance with and without the EnSRF data assimilation technique. 

Bias Ratio quantifies the difference between the simulated streamflow and the observed 

streamflow as described by the following equation: 

                                              (17) 
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    In Eq(12), (13) and (14), is the observed streamflow and  is the simulated 

streamflow. Normalized Root Mean Square Error is used to measure random errors as 

follows: 

                                        (18) 

For both Bias and RMSE, the smaller their values are (i.e., closest to 0), the better the 

model result is. Small values of Bias and RMSE signify the modeling results are close 

to the corresponding observations in regards to systematic bias and random errors. 

NSCE is a frequently used statistic to quantify the agreement between the model 

simulation and the ground observation. The perfect value of NSCE is 1. If the value of 

the NSCE is below 0, it indicates that the mean of the observation is a better predictor 

than the model.  

                                          (19) 

    In order to further evaluate the performance of EnSRF-coupled-HyMOD in flood 

detection during the peak flow period, a high flow threshold is defined as the top 10% 

daily streamflow quantile, and the categorical verification statistics of Probability of 

Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI) and Equitable 

Threat Score (ETS) are used to evaluate the correspondence between the simulated and 

observed runoff above the high flow threshold. For specific descriptions of POD, FAR, 

CSI and ETS, please refer to Appendix.  
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2.4 Results 

2.4.1 Sensitivity Analysis of the Ensemble Size, Observation Error and Spread of 

Precipitation 

As shown by Figure 2.6., observation errors of 5%, 8%, 10%, 13%, 15%, 18%, and 

20%, spreads of precipitation of 0.10, 0.20, 0.30,…1.90, and 2.00, and ensemble sizes 

of 10, 30, 50, 70, and 90 were tested to carry out the sensitivity analysis on the impact 

of assimilating different sources of streamflow observations to the improvement of 

modeled streamflow. In the sensitivity analysis for the three experiments, NSCE was 

taken as the evaluation metric.  

 

(a) 
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Figure 2.6 Sensitivity analysis regarding observation error spread of precipitation, 

and ensemble size taking NSCE as the evaluation index (a) Experiment 1; (b) 

Experiment 2; (c) Experiment 3 

(b) 

  (c) 
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Figure 2.6(a), which shows the sensitivity analysis results for experiment 1, indicates 

increasing the observation error leads to a decrease in the accuracy of the modeled 

streamflow, which corresponds to the conclusion in (Pauwels and De Lannoy 2006). 

From the sensitivity plot, it appears a value of 5% is an appropriate assumption 

describing the observation error. As the observation error goes up from 5% to 20%, the 

NSCE decreases (see from the vertical direction from Figure 2.6(a)). It may go down 

below 5% for a better NSCE value, but actually the NSCE does not change much when 

observation error goes below 10%, which indicates the model performance is not 

sensitive when the observation error is smaller than 10%. In addition, based on previous 

experiences from USGS (U.S. Geological Survey), the error of streamflow that is from 

the gauge observation is usually around 8% (Sauer and Meyer 1992), which is within 

the reasonable observation error range: 5%-10%. Due to the deficiencies within the 

simple structure of HyMOD, a larger background covariance was generated thus 

making the results much more dependent on the observation. In other words, during the 

assimilation procedure when the observation error is assumed to be smaller, the Kalman 

gain is increasing, which makes more corrections from the first guess to the 

observations. Based on the previous experience form USGS, in this case, for the time 

series assimilation experiment, 8% is assumed as the observation error for experiment 1 

to produce the result in Figure 2.6(a). Regarding the ensemble size, the NSCE increases 

when the ensemble size is enlarged from 10 to 50. However, when the ensemble size is 

further increased from 50 to 90, it does not lead to a further improvement in NSCE, 

which means the ensemble size of 50 members was large enough to produce the optimal 

modeling results. In addition, increasing the spread of precipitation also contributes to 
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the improvement of the modeling result. By increasing the spread of precipitation from 

10% to 170% the modeled streamflow becomes more and more accurate (NSCE 

becomes closer to 1); however, increasing the spread beyond the value 170% results in 

no further improvement in the NSCE values. 

For experiments 2 and 3, similar sensitivity tests were conducted and are shown in 

Figure 2.6(b) and Figure 2.6(c). Regarding the observation error, since the remotely-

sensed AMSR-E signal converted streamflow shows an overestimate during the low-

flow, dry seasons (Figure 2.5), a relatively larger observation error of 10% (compared to 

ground gauge-based streamflow observation error of 8% in experiment 1) is assumed. 

These results are shown for experiments 2 and 3 in Figure 2.7(b) and Figure 2.7(c) 

respectively, both of which assimilate the AMSR-E observations. The optimal ensemble 

size for experiment 2 and 3 is the same as experiment 1. When fixing the ensemble size 

to 50 members, the simulated discharge skill reaches maximum values when the spread 

of precipitation approaches around 140% for both experiment 2 and experiment 3.  

Of all the three factors potentially impacting data assimilation efficiency, ensemble 

size was the least sensitive while the spread of precipitation was the most sensitive. The 

sensitivity analysis shows that the error in the remotely-sensed precipitation estimates 

was around 140% to 170%. As mentioned in the introduction, studies show that the 

TRMM RT precipitation product can lead to bias and random errors that propagate into 

hydrologic modeling outputs. For hydrological forecasting, the error usually comes 

from a combination of uncertainties in the input data (TRMM RT and PET in this 

study), the model structure, and the initial conditions. In this study, the model structural 

errors were not quantified so that the inability of the model to generate accurate 
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streamflow was translated into the input forcing data uncertainty. In other words, a 

larger spread of precipitation is selected in this study to compensate for the modeling 

error in this case.  

2.4.2 Calibration Analysis 

As shown in Figure 2.7, model calibration results are quite similar to one another, 

even when the gauge streamflow observation (experiment 1 & 2) or AMSR-E signal 

converted streamflow (experiment 3) was applied for calibration.  When model 

parameters are adjusted using gauge-observed streamflow (experiments 1 and 2), the 

value of Bias, RMSE and NSCE are -11.08%, 68.33% and 0.61, respectively. When the 

model parameters are adjusted using the AMSR-E signal converted streamflow 

(experiment 3), the value of Bias, RMSE and NSCE are -8.11%, 75.78% and 0.61, 

respectively. The striking similarity of the calibration results using different streamflow 

data sources is a result of high consistency between the signal-converted streamflow 

and the gauge-observed streamflow. As shown in Figure 2.5, the signal-converted 

streamflow matches quite well with the gauge observation especially during high flow 

periods. Moreover, the statistic used to compare the simulations and observations, 

NSCE, is much more sensitive to high flows compared to low flows.  However, it is 

noted that because of the insensitivity of the AMSR-E sensor to low flows, there is 

significant overestimation of the signal-converted streamflow for dry periods. The 

apparent capability to use the AMSR-E signal to calibrate a hydrologic model while 

achieving nearly the same degree of high skill as using in-situ gauge observations 

highlights its great potential to be used in tandem with remotely-sensed precipitation 
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data and PET for providing real-time flood detection and forecasts in sparsely gauged or 

ungauged basins.  

  

Fig. 2.7 (a1) Fig. 2.7 (a2) 

exp1 Calibration Validation 

  Bias(%) RMSE(%) NSCE Bias(%) RMSE(%) NSCE 

Open Loop -11.08 68.33 0.61 104.25 140.62 -2.01 

Assimilation -1.39 29.50 0.91 -7.02 34.59 0.92 

 

 

  

Fig. 2.7  (b1) Fig. 2.7  (b2) 

exp2 Calibration Validation 

  Bias(%) RMSE(%) NSCE Bias(%) RMSE(%) NSCE 

Open Loop -11.08 68.33 0.61 104.25 140.62 -2.01 

Assimilation 2.65 37.27 0.87 -4.93 62.43 0.85 
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Fig. 2.7  (c1) Fig. 2.7  (c2) 

exp3 Calibration Validation 

  Bias(%) RMSE(%) NSCE Bias(%) RMSE(%) NSCE 

Open Loop -8.11 75.78 0.61 109.90 161.43 -2.18 

Assimilation 1.37 33.02 0.89 -7.21 36.88 0.87 

 

Figure 2.7 Comparisons between streamflows predictions before (open loop) and 

after (assimilation) data assimilation  

(a) Experiment 1: model was calibrated by gauge streamflow and the data that 

used to  be assimilated into the model was also gauge streamflow: (a1) for 

calibration period and (a2) for validation period 

(b) Experiment 2: model was calibrated by gauge streamflow and the data that 

used to be assimilated into the model was the AMSR-E signal converted 

streamflow: (b1) for calibration period and (b2) for validation period 

(c) Experiment 3: model was calibrated by AMSR-E signal converted 

streamflow and the data that used to be assimilated into the model was also 

the AMSR-E signal conversion: (c1) for calibration period and (c2) for 

validation period 
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2.4.3 Impact of Data Assimilation  

 Impact of data assimilation during calibration period 

EnSRF is used to assimilate different sources of streamflow observations into the 

hydrological model and to estimate all the internal states, thus potentially improving the 

model outputs of discharge. In order to make the results comparable among those three 

experiments, the same ensemble size (50) and spread of precipitation (150%) were 

assumed during the implementation of the assimilation procedures into HyMOD. Since 

the observation error of the AMSR-E signal converted streamflow shows significant 

overestimation during low flows, a larger observation error of 10% (in experiment 2 & 

3) was assumed while 8% was assumed with the gauge observation error (in experiment 

1). The precipitation forcing was perturbed by adding Gaussian white noise through 

multiplying the TRMM RT daily data by a multiplier of which the mean is 1.0 and the 

standard deviation is 150%.  If negative values appear during the random multiplier 

generating, the code will automatically re-conduct the Gaussian distributed multiplier 

generation until they are all positive values.  

    Overall, Figure 2.7 shows the streamflow “Open Loop” ensembles (grey lines), data 

“Assimilation” ensembles (yellow lines), Open Loop Ensemble Mean (green dash line), 

Assimilation Ensemble Mean (red dash line), Open Loop deterministic model run (blue 

dash line), gauge observation (dark solid line), and signal converted streamflow 

(magenta dash-dot line). Compared to streamflow ensembles before data assimilation 

(grey lines), the streamflow ensemble spread after data assimilation (yellow lines) is 

much reduced, and the ensemble mean after the assimilation is also much closer to the 

observations. This result reflects the effectiveness of the EnSRF. Compared with the 
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deterministic Open Loop run, which is the modeled streamflow driven by the original 

TRMM RT precipitation data without perturbation, the Open Loop ensemble mean is 

overestimated due to the discard of negative values during the precipitation perturbation 

procedure as mentioned in the end of last paragraph.  

For the assimilation module, the statistical evaluation excludes the first three month 

for both calibration and validation period due to the bad first guesses at the beginning of 

each period; in order to make a “fair” comparison between Open-Loop and Assimilation, 

for Open Loop module, statistics were also calculated excluding the first three months 

of each period. Experiment 1 is the benchmark for the experiments as it represents a 

traditional calibration using rainfall and gauged runoff observations while including a 

streamflow data assimilation step. Figure 2.7(a) shows the impact of the assimilation 

procedure on the modeled streamflow in the benchmark experiment 1. By assimilating 

the gauge-based streamflow observation into the gauge-calibrated HyMOD, the Bias is 

improved from -11.08% to -1.39%, RMSE reduces from 68.33% to 29.50%, while 

NSCE goes up from 0.61 to 0.91. These statistical results all indicate significant 

improvement in the modeled streamflow following the assimilation of gauge-based 

streamflow during the calibration period from 2003 to 2005.  

In the second and third experiments, the effectiveness of assimilating AMSR-E signal 

converted streamflow into HyMOD, conditioned on calibrations from different 

streamflow sources was assessed. In the second experiment, the model was calibrated 

by gauge streamflow and then the AMSR-E signal converted to streamflow was 

assimilated into HyMOD. In the third experiment, the AMSR-E signal converted to 

streamflow was used as the source for both model calibration and assimilation. Similar 
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results were obtained in experiments 2 and 3 compared to the first experiment. 

Specifically, after the EnSRF data assimilation technique was applied, values of RMSE 

dropped while NSCE rose. This justifies its use for improving discharge simulations.  

Furthermore, in order to further evaluate the potential advantage of using data 

assimilation approach, ensemble spread before (blue solid line) and after (red solid line) 

data assimilation and the absolute error between modeled streamflow and observed 

streamflow for both Open Loop module (blue dotted line) and Assimilation module (red 

dotted line) were plotted in Figure 2.8. As expected, the ensemble spread is greatly 

reduced using the EnSRF relative to the Open-Loop, and the absolute error is also 

reduced after applying the EnSRF compared to the Open-Loop, especially during the 

validation period. 

 

 Impact of data assimilation during validation period 

    During the validation period from 2006 to 2007, the modeling performance without 

streamflow assimilation has deteriorated at a significant level compared to the 

calibration period in terms of Bias, RMSE and NSCE in all three experiments as shown 

in the tables located in the lower panels in Figure 2.7 (a), (b), and (c), respectively. Both 

the simplicity of the model structure and the inter-annual uncertainties in the remotely-

sensed TRMM RT precipitation contribute to this deterioration.  

However, the application of EnSRF to assimilate different sources of streamflow 

observation improves the 1-day streamflow prediction. All the experiments’ modeling 

results have been remarkably enhanced for the “Assimilation” component compared to 

the “Open Loop” during the validation period.  In comparing the statistics in the three 
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experiments, experiment 2 reveals a slight degradation in all three scores in comparison 

to the benchmark in the first experiment. Nonetheless, the degradation isn’t significant 

indicating the potential application of assimilating the AMSR-E signal even into a 

hydrologic model that has been previously calibrated from gauge observations. As 

expected, the best statistical results were associated to experiment 1. Experiment 3, 

which was based on calibration and assimilation using the AMSR-E signal alone, 

outperformed experiment 2 and has competitive results to experiment 1 as well. The 

comparable modeling performance of experiment 3 compared to experiment 1 clearly 

highlights the potential of using the remote-sensing data as a proxy for streamflow with 

application for flood early warning in sparsely-gauged or ungauged basins. The above 

results demonstrate that even using a simple hydrological model, when coupled with the 

EnSRF data assimilation approach, together with large perturbations of precipitation to 

compensate for the model structural deficiencies, a satisfactory modeling performance 

can be produced for streamflow forecasting. Further evaluations based on extreme 

events are conducted in the next section.  

 

  

Fig. 2.8 (a1) Fig. 2.8 (a2) 
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Fig. 2.8 (b1) Fig. 2.8 (b2) 

  

Fig. 2.8 (c1) Fig. 2.8 (c2) 

Figure 2.8 Time series error analysis for Experiment 1 (Fig.2.8. a), Experiment 2 

(Fig.2.8. b) and Experiment 3 (Fig.2.8 c). The left panels are corresponding to 

calibration period, the right panels are corresponding to validation period. The 

blue and red solid lines are the ensemble standard deviation for Open Loop 

module and Assimilation module respectively. The blue and red dash lines are the 

absolute error between the model simulated streamflow and the observed 

streamflow.  
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2.4.4 Threshold-based Evaluation and Analysis 

As shown in Figure 2.9, a threshold for high flow is calculated by ranking the daily 

streamflow data from 1946 to 2005 (50 years) at the Rundu gauge station from highest 

to lowest. The discharge corresponding to the top 10% daily streamflow quantile, with a 

value of 402 m
3
/s, is identified as the high flow threshold. 

 

Figure 2.9 Identification of high flow threshold 

 

POD, FAR, CSI and ETS were calculated to further evaluate the filter’s performance 

focused on the detection-capability of the top 10% daily streamflow quantile for the 

three experiments as before.  Figure 2.10 indicates that after data assimilation, POD, 

CSI and ETS increase while FAR decreases for all experiments during both calibration 

(left panel in Figure 2.10) and validation (right panel in Figure 2.10) period experiments 
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except for the POD in the validation period. The POD values without data assimilation 

are equal to one for the reason that the modeled streamflow is significantly 

overestimated during the validation period (as shown in Figure 2.7) with all “hits” and 

no “misses”.  Nonetheless, the major improvements of POD, FAR, CSI and ETS during 

both the calibration and validation period highlight the efficiency of high flow detection 

following data assimilation. These categorical verification statistics together with Bias, 

RMSE, and NSCE indicate that the impact of the data assimilation procedure to the 

modeled streamflow is beneficial, especially for improving the model simulation skill 

during flood events mainly due to the fact that the AMSR-E sensor is quite sensitive to 

high flow events. During these flooding cases the difference between the brightness 

temperature for the calibration pixel and the measurement pixel is more acute due to the 

expansion of the river’s surface area.  

 

 

Figure 2.10 Statistics (POD, FAR, CSI, ETS) plot during high flow 

 

For experiment 3, which fully depends on the remote-sensing inputs and highlights 

the potential of flood prediction in ungauged basins, POD, CSI, and ETS showed 

improvements after implementing the data assimilation approach during the high flow 
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period. Compared with experiment 1 during the calibration period, all the categorical 

verification statistics show improvements to POD, FAR, CSI, and ETS following data 

assimilation. When it comes to the validation period, the flood detection capability of 

experiment 3 is better than experiment 2, but slightly degraded yet comparable to 

experiment 1, which indicates the AMSR-E signal converted to streamflow was 

apparently well adapted to the model. These experiments highlight the potential use of 

the AMSR-E signal for streamflow prediction during flooding seasons, especially in 

ungauged basins. 
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2.5 Conclusion 

    Though data scarcity remains a big challenge in hydrologic modeling, remote-

sensing data provide a promising perspective on advancements in this research area. In 

addition, data assimilation techniques incorporate the uncertainties from both the input 

data and initial conditions and also have the potential to enhance modeling performance. 

In this study, the deterministic Ensemble Kalman Filter - Ensemble Square Root Filter 

was coupled with a widely used conceptual rainfall-runoff model to assimilate 

streamflow data from either in-situ or remote sensing sources to update all the internal 

states in the model, thus providing the potential to improve modeling results. The 

following conclusions are reached in this study:  

(1) AMSR-E brightness temperature signals can be successfully used to estimate 

streamflow, highly consistent with the in-situ observation. In particular, the signal 

converted to streamflow matches well with the observation over relatively high flow 

periods due to its high sensitivity to land surface wetness.  

(2) The traditional model calibration technique is subject to uncertainties in the data, 

parameters, internal states and model structure. The general poor performance of the 

calibrated model can be attributed to the weakness of traditional calibration techniques 

that are normally constrained or limited from the inaccuracy of input remote sensing 

precipitation data and the simplification of the model structure. Data assimilation can 

account for both the uncertainties in the input data and the model structure by updating 

the internal model states, so it is a promising tool in improving hydrological modeling 

performance, especially for applications of real-time forecasts for decision-makers.   
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 (3) The modeling results have been found to be insensitive to the ensemble size since 

the model used is a lumped model and there are only a total of five internal states in this 

conceptual rainfall-runoff model. In contrast, the spread of the precipitation is more 

sensitive to the improvements of the modeled streamflow.  

(4) The three experiments show that through the assimilation of either the gauged 

streamflow or the AMSR-E signal converted to streamflow into the hydrological model 

by EnSRF, the difference between the streamflow simulation and observation can be 

reduced. This demonstrates that EnSRF is effective and efficient in improving modeling 

performance by assimilating different sources of high-quality streamflow data. The first 

experiment is the benchmark to verify the feasibility and effectiveness of the data 

assimilation approach. The second experiment proves the modeling improvement via 

assimilating a different source of streamflow (i.e. satellite-based streamflow) into a 

hydrological model that was calibrated by the in-situ streamflow observations. In the 

third experiment, the AMSR-E streamflow signals were used first to calibrate the model 

and then assimilated into the model without in-situ streamflow data, thus demonstrating 

the potential usefulness of the AMSR-E signal data to benchmark and improve 

hydrological predictions in ungauged or undergauged basins.  

(5) When taking the corresponding value to the upper 10th percentile of daily 

streamflow observations for the recent 50 years as the high flow threshold, the 

assimilation of both gauge-based streamflow and AMSR-E signal converted to 

streamflow into HyMOD not only increases POD, CSI, and ETS but also decreases 

FAR, thus further improving the modeling results for flood forecasting in the Cubango 

river basin. 
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(6) Previous studies on hydrological data assimilation commonly take the traditional 

observation as assimilation data sources, i.e., gauge-observed soil moisture (Aubert et al. 

2003; Chen et al. 2011) and observed streamflow (Aubert et al. 2003; Clark et al. 2008; 

Pauwels and De Lannoy 2006). Benefitting from remote-sensing techniques, recent 

studies incorporated remotely sensed soil moisture as assimilation sources to improve 

the discharge prediction (Crow and Ryu 2009; Crow et al. 2005; Gao et al. 2007; 

Pauwels et al. 2002). So far, no remotely sensed streamflow information has been 

applied for hydrological data assimilation. As mentioned in (Wagener et al. 2001), 

currently, river discharge cannot be directly measured by satellite sensors. However, 

passive microwave sensors - AMSR-E together with TRMM TMI have been used to 

detect river discharge changes, and those information can be converted into streamflow 

by using the algorithm mentioned in (Brakenridge et al. 2007). This study is the “first 

attempt” to exploit and demonstrate the applicability of assimilating spaceborne passive 

microwave streamflow signals to improve flood prediction in the sparsely gauged 

Cubango River basin in Africa. Compared to the closest previous publication (Khan et 

al. 2012) which has also investigated the applicability of the AMSR-E signals in 

hydrological modeling in the same research region, this study used a simple yet robust 

model and conducted competitive results. A data assimilation technique is used in this 

study in addition to the traditional calibration compared to (Khan et al. 2012). Ensemble 

streamflow simulations are generated and then the ensemble mean is calculated as the 

final output to represent the streamflow simulation; When combined with EnSRF data 

assimilation approach HyMOD has similar results compared to a complex, distributed 

CREST hydrologic model.  
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    In closing, this study is the “first attempt” to exploit and demonstrate the 

applicability of assimilating spaceborne AMSR-E streamflow signals to improve flood 

prediction in the Cubango River basin. It also shows that opportunities and challenges 

exist for an integrated application of a suite of satellite data to flood prediction by 

careful fusion of remote sensing and in-situ observations and further effective 

assimilation of the information into a hydrological model. Given the global availability 

of satellite-based precipitation and AMSR-E signal information in near real-time, we 

argue that this work will also contribute to the decadal initiative of Prediction in 

Ungauged Basins: a paradigm shift in the streamflow prediction methods away from 

traditional methods reliant on statistical analysis and calibrated models, and towards 

new techniques and new kind of observations, particularly imperative for the vast 

ungauged or undergauged basins around the world. More promising, data assimilation 

of remote sensing information for improving hydrological prediction can be 

increasingly appreciated and supported by the current TRMM and future GPM (Global 

Precipitation Mission, to be launched in July 2013) together with the current 

Aqua/AMSR-E and future SMAP (Soil Moisture Active and Passive, to be launched in 

2014). Both the new missions are anticipated to provide better precipitation and soil 

moisture data in terms of coverage, accuracy, and resolutions.  
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Appendix: 

Table A1 shows the contingency table for streamflow simulation and ground gauge 

observation comparisons. For the case that both the streamflow simulation and ground 

gauge observation are higher than a certain threshold, it is “hit”; for the case that the 

streamflow simulation is lower than the certain threshold when ground gauge 

observation is higher than the same threshold, it is “miss”; for the case that the 

streamflow simulation is higher than the certain threshold but mean while ground gauge 

observation is lower than the same threshold, it is “false alarm”; for the case that both 

the streamflow simulation and ground gauge observation are lower than the certain 

threshold, it is “Correct Rejection”.  The desirable values for POD, FAR, CSI and ETS 

are 1, 0, 1 and 1, respectively.  

Table A1  

Contingency Table for Simulated Steamflow (Before and After) Data Assimilation Applied and Ground 

Gauge Observed Streamflow 

  Ground Gauge Streamflow Observation 

  Yes No 

Simulate Streamflow Yes Hit False Alarm 

Before/After DA No Miss Correct Rejection 

 

    Probability of Detection measures the fraction of observed events that exceeded the 

top 10% daily streamflow quantile that were correctly simulated: 

                                                            (A1) misshit

hit
POD



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    False Alarm Ratio calculates the fraction of simulated events that exceeded the top 10% 

daily streamflow quantile that were not observed:   

                                                       (A2) 

    The Critical Success Index, which is also called Threat score, gives the overall 

fraction of correctly detected events that exceeded the top 10% daily streamflow 

quantile:  

                                              (A3) 

    The Equitable Threat Score, which describes how well the simulated “yes” events are 

corresponding to the observed “yes” events that exceeded the top 10% daily streamflow 

quantile:  

                         (A4) 

  

alarmfalsehit

alarmfalse
FAR




alarmfalsemisshit

hit
CSI




# #

#

Hits E
ETS

Hits Miss False Alarm

Forecast points Observed points
E

of Total points possible




 



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Chapter 3. Impact of assimilating spaceborne microwave signals for 

improving hydrological prediction in ungauged basins 

 

Abstract 

The availability of in-situ data has been a constraining issue in hydrological prediction, 

especially in those regions that are only sparsely monitored or completely ungauged. 

The application of remote-sensing data, without conventional in-situ hydrological 

measurements, to force, calibrate and update a hydrologic model is a major contribution 

of this study. First, a rainfall-runoff hydrological model called CREST, coupled with an 

Ensemble Square Root Filter, is used for exceedance probability-based flood prediction. 

Then, this advanced flood-prediction framework, with different experimental designs, is 

forced by TRMM precipitation while Aqua AMSR-E microwave brightness 

temperature signals are used for model calibration and data assimilation for 

progressively improved river discharge prediction. Results indicate that solely relying 

on remote-sensing data for model forcing, parameter calibration, and state updating 

with EnSRF, the designed framework can adequately predict flooding events. A high 

flow threshold was applied and has further improved modeling performance, 

particularly in the flooding seasons, with a flood warning lead-time of one day. Given 

the anticipated global availability of satellite-based precipitation (i.e. GPM) and AMSR-

E like passive microwave signal information (i.e. SMAP) in near real-time, this 

proposed research framework could potentially contribute to the exceedance 
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probability-based flood prediction in the vast sparsely gauged or ungauged basins 

around the world. 
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3.1 Introduction 

    Insufficient ground gauge observations have been historical barriers in hydrological 

predictions. Over the globe, especially in Africa, it is much more common for a given 

basin to be only sparsely or not monitored at all by in-situ observation networks. 

However, recent advancement in satellite remote-sensing technology bears the 

promising potential to overcome the limited spatial coverage of in-situ observation 

networks, thus providing the potential for hydrological predictions by being creatively 

used as the forcing (e.g. satellite precipitation estimation), calibration basis (e.g. passive 

microwave streamflow signal), and sources for assimilation (e.g. satellite-detected soil 

moisture estimation and passive microwave streamflow signals). This forecast system 

based entirely on remote-sensing information thus enhances the reliability of 

streamflow prediction in poorly-gauged basins, and makes streamflow prediction 

possible even in ungauged basins. 

    Considering hydrological modeling in those basins with limited ground surface 

observation networks, a great deal of success has been achieved through the recent 

availability of remote-sensing precipitation data (e.g. (Hong et al. 2004; Huffman et al. 

2007; Joyce et al. 2004; Sorooshian et al. 2000; Turk and Miller 2005)). Besides 

utilizing the remote-sensing precipitation data as forcing, remote-sensing soil moisture 

data can also facilitate hydrological prediction by data assimilation approaches (e.g. 

(Brocca et al. 2010, 2012; Crow and Ryu 2009; Crow et al. 2005; Gao et al. 2007; 

Matgen et al. 2012; Pauwels et al. 2002)), which is promising for those basins with 

sparsely or even without in-situ soil moisture observations. As a traditional way, the 

hydrological prediction accuracy is commonly improved by calibrating hydrologic 
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models and through assimilating in-situ soil moisture observations and gauge-based 

streamflow measurements into hydrological models. (e.g. (Aubert et al. 2003; Clark et 

al. 2008; Pauwels and De Lannoy 2006)). The use of streamflow estimates from 

remote-sensing methods is a new area being explored, also for model calibration and 

data assimilation. Recently, the Global Flood Detection System (GFDS, 

http://www.gdacs.org/flooddetection/), began using a passive microwave sensor, 

AMSR-E, together with the Tropical Rainfall Measurement Mission (TRMM) 

Microwave Imager (TMI), to measure surface brightness temperatures, which can be 

used creatively to infer streamflow and thus show the potential to monitor floods over 

the globe (Brakenridge et al. 2007). While prior studies have evaluated the potential 

application of the AMSR-E sensor for discharge estimation and flood detection (Salvia 

et al. 2011; Temimi et al. 2007, 2011), they all required in-situ streamflow information. 

In addition to AMSR-E, very recently, Moderate resolution Imaging Spectroradiometer 

(MODIS) has also been applied by (Tarpanelli et al. 2013) to estimate the streamflows 

in medium-sized basins adopting the same methodology developed by (Brakenridge et 

al. 2007) at daily scale; good results show the potential to apply this for smaller basins 

thanks to the higher spatial resolution of MODIS data (250m) compared to the spatial 

resolution of AMSR-E at 25km; likewise the discharge estimation from AMSR-E, this 

approach using MODIS also requires in-situ discharge observations.  

    In this study, the passive microwave streamflow signals from AMSR-E are utilized 

directly, without in-situ streamflow observations, in a hydrologic model to calibrate the 

hydrological model based on the approach in (Khan et al. 2012). Then, the frequency 

(exceedance probability) of the remote-sensing streamflow signals is assimilated into 

http://www.gdacs.org/flooddetection/
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the hydrological model through the data assimilation approach that was applied in 

(Zhang et al. 2013) in order to demonstrate probabilistic flood prediction for an African 

basin. Though conducted in the same research region – Cubango river basin with the 

same forcing data (refer to section 2.2 data sources for detailed information) and a 

similar data assimilation approach (refer to section 2.4 for detailed information), this 

study is conducted in the frequency domain and is independent from the in-situ 

streamflow observation. The application of in-situ steamflow observation in this study 

is set up as the benchmarks to evaluate the hydrological performance of the remote 

sensing streamflow signals, which demonstrates an innovative way for improving the 

hydrological prediction in ungauged basins with outcomes as probabilistic based 

predictions. In contrast, (Zhang et al. 2013) was conducted in the actual streamflow 

domain. It firstly converted the remote sensing streamflow signals into streamflow 

based on the in-situ streamflow observation by adopting the algorithm that was 

developed by (Brakenridge et al. 2007). Then, the remote sensing signal converted 

streamflow was applied to calibrate and update the model, thus providing hydrological 

predictions in actual streamflow domain (i.e., in units of m
3
/s).  

    Section 2 describes the study basin, the data applied and the algorithm. Then section 

3 discusses the results of both calibration and data assimilation in frequency domain 

conducted by the streamflow signals (Experiment 3) compared to the results obtained 

by the in-situ streamflow in both actual domain (Experiment 1) and frequency domain 

(Experiment 2). Finally, the conclusion is drawn in section 4. 
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3.2 Study Basin, Data Sources and Methodology 

3.2.1 Study Basin 

The Okavango River, which runs for about 1100 km from central Angola and flows 

through Namibia and Botswana, is the fourth longest river in southern Africa (Figure 

3.1). The Okavango catchment is approximately 413,000 km
2
; it originates in the 

headwaters of central Angola, then the Cubango and Cuito tributaries meet to form the 

Cubango-Okavango River near the border of Angola and Namibia and flow into the 

Okavango Delta in Botswana. The upper stream region belongs in a subtropical climate 

zone with annual precipitation around 1300mm while the downstream region, which 

contains the Kalahari Desert, belongs to the semi-arid climate zone with annual 

precipitation around 450mm (Hughes et al. 2006; Milzow et al. 2009b). The headwater 

region, which is the northern part of the basin, is mainly covered by the ferralsols soil 

with a lower hydraulic conductivity. The headwater region also has a high forest cover 

and contributes significantly to the river runoff (Hughes et al. 2006). The rest of the 

basin is dominated by arenosals soil (www.sharing-water.net), which is very porous 

with high hydraulic conductivity, so that water drains rapidly, leaving little moisture for 

plants. As mentioned by (Hughes et al. 2006), around 95% of inflow is lost in the 

atmosphere due to high potential evapotranspiration rate and only a small portion 

contributes to groundwater.  

http://www.sharing-water.net/
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Figure 3.1 Research Region – Cubango River Basin 

    Several studies in the Okavango River Basin have investigated the hydrological 

response under climate change (Andersson et al. 2006; Hughes et al. 2006, 2011; 

McCarthy et al. 2003; Milzow et al. 2009a). Since the Okavango River basin is one of 

the most important economic and water resources in southern Africa, additional studies 

have been solicited to assist in the decision-making for water management in this basin. 

The main tributary of Okavango River - the Cubango River, which is mainly located in 

Angola, is selected as the study basin. It accounts for a majority of the available water 

resources in the Okavango river. The Rundu gauge station is the outlet of the Cubango 

River; at Rundu Gauge, both gauge-based streamflow and the remote-sensing discharge 

estimates (i.e., the AMSR-E & TMI streamflow signals) are available.   
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3.2.2 Data Sources 

    This study develops an advanced exceedance probability-based, flood-prediction 

framework, which is based entirely on satellite remote-sensing data without a 

requirement of conventional in-situ hydrological measurements. The in-situ streamflow 

observation, with daily temporal resolution, is only used in this study to evaluate the 

exceedance probability-based hydrological prediction algorithm. The proposed data sets 

that were applied in this study include: 

TRMM RT Satellite Precipitation Estimates 

    Tropical Rainfall Measuring Mission (TRMM) satellite precipitation estimates are 

taken as forcing data into hydrological modeling in this study since the Okavango River 

Basin is poorly gauged (Milzow et al. 2011). TRMM Multi-satellite Precipitation 

Analysis (TMPA) provides two standard 3B42-level products: the near-real-time 3B42 

RT which uses the TRMM combined instrument dataset to calibrate the data and the 

post-real-time research product 3B42 V7 (level 7) which adjusts the rainfall 

accumulation by gauge analysis (Huffman et al. 2007). Both 3B42 RT and 3B42 V7 

products are quasi-global with coverage from 50°N to 50°S latitude. In this study, the 

TRMM 3B42 RT with a spatial resolution of 0.25° (approximate to 25km in the tropical 

area) and temporal resolution of three hourly, is processed into daily accumulations as 

well as basin averages and applied as the forcing data to drive the hydrological model. 

FEWS PET 

    PET (Potential Evapotranspiration) comes from the Famine Early Warning System 

Network (FEWS NET; http://igskmncnwb015.cr.usgs.gov/Global/) with a temporal 
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resolution of monthly and spatial resolution of 0.25°, and is likewise processed into 

daily and basin averages as additional forcing to the model. 

The Passive Microwave Streamflow signal from TRMM and Aqua 

    The Global Flood Detection System uses near-real-time, satellite-based, remote-

sensing data to monitor floods over the globe at daily scale. In this system, a passive 

microwave sensor, AMSR-E, together with TRMM TMI (TRMM Microwave Imager) 

sensor (Note: TMI was applied after Oct 4, 2011 when AMSR-E stopped working), is 

used to measure the brightness temperature at 36.5GHz, descending orbit with 

horizontal polarization, which responds to surface wetness and thus flooding 

(Brakenridge et al. 2007b). A wet pixel (usually over the surface of a river) is selected 

to measure the brightness temperature of the measurement (M) area while an adjacent 

dry pixel is selected to measure the brightness temperature of the calibration (C) area 

(usually over the land near the wet pixel); the ratio of the measurement and calibration 

brightness temperature is referred as the streamflow signal (Eq. (1)).  

                                                       (1) 

    The main merit of the AMSR-E passive microwave sensor onboard the NASA EOS 

Aqua satellite is that it is not restricted by cloud cover and provides data availability for 

daily flood monitoring over the globe. For further detailed information regarding the 

GFDS streamflow signals, please refer to (Brakenridge et al. 2007; Kugler and Groeve 

2007).  

Ground-based streamflow observation  

/ /m cM C Ratio Tb Tb
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    Besides the passive microwave streamflow signal data at Rundu for both calibration 

and assimilation (will be specified in 2.5 Experiment design), ground-based streamflow 

observation at Rundu, Namibia, was used to evaluate the performance of the proposed 

“exceedance probability based flood-prediction framework”
 
(Khan et al. 2012) in an 

upstream catchment – Cubango of around 95000km
2
  

3.2.3 Model 

In this study, a simplified and lumped version of the CREST (Coupled Routing and 

Excess STorage , (Wang et al. 2011)) was applied, together with the satellite data and 

the EnSRF (Ensemble Square Root Filter) data assimilation approach, to provide 

exceedance probability-based hydrological predictions over the Cubango basin. The 

model structure is shown in Figure 3.2. After precipitation passes the canopy layer, the 

excess precipitation that reaches the soil surface is      .       is divided into excess 

rainfall   and infiltration water   through the Variable Infiltration Curve (VIC, (Liang et 

al. 1994)). After that, the excess rainfall   is further separated into overland excess 

rainfall    and interface excess rainfall, and this procedure is governed by  ,which is 

closely related to the saturated soil hydraulic conductivity (the interface excess rainfall 

=  
 

     
  when          the interface excess rainfall =   when        ). Next, the 

interface excess rainfall is evapotranspired through three soil layers and then the 

interface excess rainfall reduces to     The overland excess rainfall    flows through 

three overland flow linear reservoirs while the interface excess rainfall    flows through 

one interflow reservoir; those two procedures are governed by the overland reservoir 

discharge multiplier LEAKO (                ) and the interflow reservoir 
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discharge multiplier LEAKI                  ), respectively, and then form the 

total runoff as                    . 

 

Figure 3.2 Structure of CREST Model 

 

3.2.4 EnSRF 

    A sequential data assimilation technique, the Ensemble Square Root Filter (EnSRF), 

is applied to assimilate passive microwave streamflow signals into CREST. Unlike the 

traditional EnKF which requires perturbing both forcing data and observations, the 

EnSRF only perturbs the forcing data and the ensemble mean is updated by the 

observation. (Whitaker and Hamill 2002) demonstrated that there is no additional 

computational cost by EnSRF relative to EnKF, and EnSRF performs more accurately 

than EnKF for the same ensemble size. But it still remains a research topic to compare 



78 

 

the accuracy and efficiency of different sequential data assimilation approaches (e.g. 

EnKF, EnSRF). The major equations of EnSRF are listed below: 

       ̂                                                              (2) 

     is the updated estimate of the analyzed state (              and n is the 

number of ensembles); 

    is the background model forecast, which is also referred to the first guess in data 

assimilation (    dimension);  

     is the observation (    dimension and   is the number of observations), which 

is the streamflow measurements in this study;  

    is the observation operator that converts the states in the model into observation 

space (    dimension);  

     ̂ refers to the traditional Kalman gain. 

    Let’s denote the ensemble    as  

                                                       =(  
    

      
 )                                                      (3) 

    Where we ignore time index and the subscript represents the ensemble member. The 

ensemble mean is then defined as  

  ̅̅̅̅   
 

 
∑   

  
                                                                     (4) 

The perturbation from the mean for the i th member is  

 

aX

bX

y

H
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     ̅̅ ̅                                                           (5) 

    Then      is defined as a matrix formed from the ensemble of perturbations: 

                               
     

       
                                                      (6) 

     An estimation of background error covariance is defined as 

 ̂  
 

   
                                                                (7) 

    However, in practice, we do not calculate  ̂ , but rather calculate  ̂    and   ̂    

are evaluated by the following equations: 

 ̂    
 

   
∑    

   ̅       
       ̅̅ ̅̅ ̅̅ ̅̅       

                                               (8) 

  ̂    
 

   
∑      

      ̅        
       ̅̅ ̅̅ ̅̅ ̅̅     

                                        (9) 

    Here, m is the ensemble size. Then the traditional Kalman gain  ̂ can be calculated 

by Eq (10),  

 ̂   ̂      ̂                                                                       (10) 

    R is the observation error covariance with a dimension of      In EnSRF, the 

reduced Kalman gain  ̃ is used to update the deviation from the ensemble mean as 

estimated by the following equation,  

 ̃     √
 

  ̂     
    ̂                                                             (11) 

    The ensemble mean can be updated by 

 ̅ 
   ̅ 

   ̂      ̅ 
                                                               (12) 

     The perturbation (deviation of ensemble mean) can be updated by 
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′ 
   

′ 
  ̃    

′ 
                                                                 (13) 

     The final analysis follows as  

  
  

   ̅ 
    

′ 
                                                                     (14) 

     As mentioned above, when the EnSRF is applied, the forcing data (which is the 

precipitation in this study) needs to be perturbed. Precipitation perturbations in this 

study are defined as  

     ε
 
                                                                         (15) 

     where ε
 
 is a random noise factor drawn from a Gaussian distribution 

ε
 
                                                                                (16) 

    At each time step, an independent rainfall error is generated by Gaussian distribution 

(refer to eq. (15) and (16)) and added to the original basin average precipitation.  

3.2.5 Experimental design 

The C/M radiance ratio, which is the reciprocal of M/C ratio signal (e.q. (1)), is 

correlated at a significant level with observed streamflow especially during the peak 

flow periods, as shown in Figure 3.3.  
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Figure 3.3 Time series of gauge streamflow observation plotted against primary y-

axis and C/M Radiance Ratio plotted against secondary y-axis 

 

Based on the high correlation coefficient between the gauge-based streamflow and 

the C/M radiance ratio, an innovative calibration method – the flood frequency 

approach, was proposed by (Khan et al. 2012), which first requires the conversion of 

model-simulated streamflow into exceedance probability, and then takes “max(CC)” 

(CC refers to Correlation Coefficient) as the objective function to conduct the automatic 

hydrological calibration via the algorithm Shuffled Complex Evolution – University of 

Arizona (SCE-UA, (Duan et al. 1994)). The flood frequency approach utilizes the 

period of recorded observations to compute the frequency or exceedance probability. 

This approach essentially normalizes the streamflow observations from absolute units 

(m
3
/s) to dimensionless values in the frequency domain. The same approach can be 

applied to any time series data (i.e., passive microwave streamflow signal) as long as 

there is a sufficiently long record to represent climatological conditions and the signal is 

temporally correlated to streamflow. 
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As shown by Table 3.1, experiment 1, which was conducted in absolute streamflow 

units (m
3
/s), is the traditional gauged-based approach to model calibration and data 

assimilation. It sets the reference to be to be compared to the frequency-based in-situ 

and remote-sensing approaches in Experiments 2 and 3. In Experiment 2, streamflow 

observations from the Rundu gauge are used to automatically calibrate the model 

parameters as in Experiment 1, but using the exceedance probability approach described 

in (Khan et al. 2012); and then the gauge streamflow frequency was assimilated into 

CREST model via EnSRF. Experiment 3, which represents the advanced exceedance 

probability-based streamflow prediction framework, is designed similarly to 

Experiment 2, but the exceedance probability of the observed streamflow is replaced 

with the frequency of the AMSR-E signals. Experiment 3 is thus based entirely on 

remote-sensing data and applies generally to ungauged basins. Results from the 

experiments with no data assimilation are referred to as “Open Loop”, while the 

components that employ the EnSRF are referred to as “Assimilation”. Results from all 

experiments are evaluated using gauge-observed streamflow at the Rundu station.   

Table 3.1 List of Experiments Design 

Exp 
 Calibration  

 data source 

Data Assimilated  

into Model 

Calibration 

objective function 

1 
 Gauge 

Streamflow 
Gauge Streamflow Min(RMSE) 

2 
 Gauge streamflow 

Frequency 

Gauge streamflow 

Frequency 
Max(CC) 

3 

(a) Before  

Threshold Applied AMSR-E Signal 

Frequency 

AMSR-E Signal 

Frequency 
Max(CC) 

(b) After  

Threshold Applied 
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    The modeling performance for both “Open Loop” and “Assimilation” was evaluated 

by the statistic indices normalized Root Mean Square Error (RMSE) and Nash-Sutcliffe 

Coefficient of Efficiency (NSCE):  

        
√∑       

   

 ̅
                                                           (17) 

       
∑       

 

∑     ̅  
                                                                      (18) 

    Where   is the observed streamflow and    is the simulated streamflow. 
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3.3 Results and Discussion 

    (Zhang et al. 2013) has conducted a sensitivity analysis in order to better understand 

the spread of precipitation (r in Eq. (16)), ensemble size (n in Eq. (3)) and observation 

error (R in Eq. (10)) and their impact to data assimilation efficiency. In this study, the 

same spread of precipitation (50%, as the precipitation are the same for those three 

experiments) and ensemble size (20) are applied to all of those three experiments. For 

the observation error R, it is usually assumed from the “actual” observation error based 

on experience. In experiment 1 and 2, the observation error is assumed as 8% according 

to the report (Sauer and Meyer 1992) from USGS which indicates 8% represents the 

common streamflow observation error; as the AMSR-E streamflow signals shows 

overestimation during low flows (Figure 3.3), a larger observation error of 10%  is 

assumed in experiment 3.  

Experiment 1 is the reference experiment; the model was calibrated by gauge-based 

streamflow observations for the period 2003 to 2005 with a computed RMSE of 34% 

and NSCE of 0.88. Then, the model was validated for the period 2006 to 2007, in which 

the RMSE shot up to 64% and the NSCE dropped to 0.33. In order to enhance the 

hydrological performance, the gauge streamflow observation was assimilated into the 

well-calibrated lumped CREST model via EnSRF at daily time step. After assimilation, 

the modeling performance was improved significantly during both calibration and 

validation periods. (Note: the statistical evaluation excludes the first half-year due to the 

bad first guesses at the beginning for each experiment.) The two simulations illustrated 

in Figure 3.4 serve as the stream gauge-based reference for the Open Loop and 
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Assimilation experiments focused on the use of the gauge streamflow and the 

microwave streamflow signals in frequency domain hereafter. 

 

 

  Calibration Validation 

  RMSE(%) NSCE RMSE(%) NSCE 

Open Loop 34 0.88 64 0.33 

Assimilation 29 0.91 27 0.88 

 

Figure 3.4 Impact of assimilating gauge streamflow into CREST in Experiment 1.  

*Note: to the left side of the black dash line is the calibration period from 2003 to 2005; 

to the right side of the black dash line is the validation period from 2006 to 2007; the 

same for Figure 3.5 and 3.6.  
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In Experiment 2, the sources of data for model calibration are the same but the 

simulated and observed streamflow data have been converted to the frequency domain 

and expressed as a exceedance probability (Figure 3.5). This conversion upgraded the 

skill of the Open Loop simulation compared to the one in Experiment 1 in terms of 

RMSE; it has fallen from 34% to 22%, though with a slightly decrease of NSCE from 

0.88 to 0.85 during the calibration period. For the validation period, the modeling skill 

improved significantly relative to Experiment 1; RMSE decreased from 64% to 29% 

while NSCE increased from 0.33 to 0.74.  For further improvement, the Assimilation 

simulation, which employed the EnSRF by assimilating the gauge streamflow data in 

the frequency domain, resulted in a better overall skill compared to the Assimilation run 

in Experiment 1. 

 

  Calibration Validation 

  RMSE(%) NSCE RMSE(%) NSCE 

Open Loop 22 0.85 29 0.74 

Assimilation 12 0.96 12 0.95 

 

Figure 3.5 Impact of assimilating gauge streamflow frequency into CREST in 

Experiment 2.  
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Figure 3.3 shows the time series of the passive microwave C/M radiance ratio (green 

line), which is used as the streamflow proxy for automatically estimating the model 

parameters. The C/M radiance ratio matches well with the gauge streamflow 

observations during the high flow period, but shows noise during the low flow period 

because of the insensitivity of the AMSR-E and TMI sensors to low flows. In 

Experiment 3(a), the sources of data for model calibration are the C/M radiance ratios, 

and the C/M radiance ratios have been converted into the frequency domain and also 

expressed as the exceedance probability (Figure 3.6(a)). The application of C/M 

radiance ratio frequency degraded the skill of the Open Loop simulation compared to 

the ones in both Experiment 1 and 2 during the calibration period, but enhanced the 

Open Loop simulation during the validation period with NSCE increasing from 0.33 

(Experiment 1) and 0.74 (Experiment 2) to 0.81. However, after assimilation, the 

streamflow signal indicates a small peak near Nov 2003 that was not observed by the 

stream gauge (Figure 3.6(a)). This error was not reflected in the Open Loop simulation; 

however, by assimilating the C/M radiance ratio with noise into the model during the 

low flows, errors during low flows result. The performance of the simulations was poor 

for low flows, but remarkable for high flows. This latter feature prompted us to devise 

Experiment 3(b) the same as the Assimilation component of Experiment 3(a), but the 

radiance ratio data are assimilated only if the exceedance probability is < 30%. In other 

words, the C/M radiance ratio data are trusted only during high flow conditions. After 

application of this subjectively chosen threshold, the red curve in Figure 3.6(b) 

illustrates very similar performance during high flows as in Experiment 3(a) (red curve 

in Figure 3.6(a)), but the prior problems during low flows have been alleviated. The 
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RMSE (26% during calibration period and 23% during validation period) is even better 

than the reference simulations in Experiment 1 that assimilated gauge streamflow (in 

absolute units), but worse than the simulation in Experiment 2. The NSCE of 0.79 and 

0.84 during calibration and validation periods, respectively, is only a slight reduction 

from the reference values in both Experiment 1 and 2. Nonetheless, this reduction is 

quite modest considering Experiment 3b is based entirely on remote-sensing data thus 

can provide probability-based streamflow prediction in ungauged basins.  

  



89 

 

 

  Calibration Validation 

  RMSE(%) NSCE RMSE(%) NSCE 

Open Loop 27 0.77 25 0.81 

Assimilation 36 0.61 31 0.69 

 

  Calibration Validation 

  RMSE(%) NSCE RMSE(%) NSCE 

Open Loop 27 0.77 25 0.81 

Assimilation 26 0.79 23 0.84 

 

Figure 3.6 Impact of assimilating Passive Microwave signal frequency into CREST 

in Experiment 3 (a) before threshold and (b) after threshold 

     

  



90 

 

    In addition to the improvement of hydrological prediction by assimilation of remote 

sensing streamflow signal frequencies, it is also interesting to explore the parameter 

values and ranges between those that were calibrated in the actual streamflow and 

frequency domains. Concerning parameter ranges, upper and lower bounds were set on 

all parameter values based on physical constraints and on past experience with those 

parameters that are more intangible. We found out that there are slight differences with 

the parameters PKE (multiplier to convert PET), PIM (the impervious area ratio), 

LEAKI (the interflow reservoir discharge multiplier), and PB (the exponent of the 

variable infiltration curve). However, there are large differences with the parameters 

PWM (the maximum soil water capacity), PFC (the soil saturated hydraulic 

conductivity) and LEAKO (the overland reservoir discharge multiplier). From our 

experience, those three parameters with the largest differences are the most sensitive 

parameters in this model, which control the peak volume and timing. In addition, when 

the parameter set calibrated from the frequency domain was applied into the actual 

streamflow domain, simulated streamflow showed strong overestimation compared to 

gauge observations. Nevertheless, the simulated streamflow and gauge observations 

were still well correlated, which indicates that the consistent overestimation in the 

actual domain does not impact its hydrological performance in the frequency domain.  

    Overall, the lumped CREST coupled with state estimation through an EnSRF 

approach can effectively improve flood prediction using remote-sensing data alone in 

the Cubango river basin. A limitation, as mentioned by (Khan et al. 2012) is that the use 

of AMSR-E signals for streamflow estimation is limited to medium- and large-scale 

basins. Moreover, the signal was found to be uncorrelated with observed streamflow 
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during low flow periods. These constraints must be considered when using the GFDS 

streamflow signals to infer streamflow for hydrologic model calibration and state 

estimation.   
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3.4 Conclusion  

    The application of remote-sensing data, alone, to force, calibrate and update a 

hydrologic model is a major contribution of this study. More generally, the approach 

developed and benchmarked herein can have great potential for predicting floods for the 

vast number of river basins throughout the world that are poorly gauged or even 

ungauged. In the Cubango River basin, data from an in-situ streamflow gauge was used 

for model calibration and data assimilation in a traditional manner, providing a 

benchmark for evaluating the use of the passive microwave sensor-derived streamflow 

signals as a proxy for streamflow. Then, the passive microwave streamflow signals 

were converted into exceedance probability; i.e., in the frequency domain, to be applied 

similarly as the traditional approach for calibration and assimilation. 

The major outcomes from this study are summarized as follows: 

(1) In the absence of data assimilation (i.e., Open Loop), model performance was 

limited due to the inherent deficiencies of the model structure, but was more likely 

dominated by bias in the rainfall forcing from the TRMM 3B42RT algorithm.  

(2) The implementation of the EnSRF in all experiments resulted in a significant 

improvement over the Open Loop simulations except Experiment 3(a). 

(3) When the GFDS streamflow signals converted to the frequency domain were 

substituted as the streamflow proxy for the Open Loop simulation in Experiment 

3(a), there was a significant reduction in model skill compared to using gauged 

streamflow in both actual and frequency domains during the calibration period, but 

there was a significant enhancement during the validation period. However, the 

assimilation of the GFDS signals during the calibration period degraded the RMSE 
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to 36% (from 27% for Open Loop) and the NSCE to 0.61 (from 0.77 for Open 

Loop), which was worse than the values in the reference Experiments 1 and 2. This 

characteristic was found to be a result of poor sensitivity of the GFDS signal during 

low flow periods. 

(4) The final Experiment 3(b) assimilated the AMSR-E signal only if the exceedance 

probability was < 30%; i.e., during high flow periods. The application of this 

threshold resulted in model skill that was comparable to what was obtained in the 

reference Experiment 1, but slightly worse than in Experiment 2. Nonetheless, this 

reduction is quite modest considering Experiment 3b is based entirely on remote-

sensing data and this approach can be applied to those ungauged basin over the 

globe.  

    Given the real-time availability of satellite-based precipitation and AMSR-E and 

TMI-like passive microwave streamflow signal information, we argue that this work 

contributes to the decadal initiative of prediction in ungauged basins. Moreover, this 

study presents a potential paradigm shift in the use of streamflow exceedance 

probabilities, different from traditional methods reliant on in-situ streamflow 

observation for calibration, and towards new techniques and new types of observations. 

These observations and new methods are particularly imperative for the vast sparsely 

gauged or ungauged basins around the world. More promisingly, assimilation of 

remote-sensing information for improving hydrological prediction can be increasingly 

appreciated and supported by the current TRMM and anticipated GPM (Global 

Precipitation Mission, to be launched in earlier 2014), together with the future SMAP 

(Soil Moisture Active and Passive, to be launched in 2014). Both missions are 
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anticipated to provide better precipitation and surface wetness estimates in terms of 

coverage, accuracy, and resolutions, which bears promise to further improve flood 

predictions in combination with the proposed framework in this study. 
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Chapter 4. Multi-scale Evaluation of the Global Hydrological 

Modeling System Forced by Real Time Multi-satellite Precipitation 

Abstract 

A near real-time Global Hydrological Simulation and Flood Monitoring Demonstration 

System (NR-GHSFMDS, http://eos.ou.edu/), with its core part of a physical based 

distributed hydrological model called Coupled Routing and Excess STorage (CREST), 

has been established and applied for real time global flood monitoring， thus providing 

early warning for decision makers and stakeholders. The latest Version 7 near real time 

TRMM Multi-satellite Precipitation Analysis (TMPA) was used to force the CREST 

model at the spatial resolution of 1/8 degree at quasi-global scale from 50 N to 50 S for 

a retrospective period (2002-2012). The simulated hydrological variables (e.g. runoff 

depth and streamflow) were compared with Global Runoff Data Center (GRDC) 

observations in terms of gridded global runoff climatology (mm/yr), and the selected 

basins based annual means, etc. The post real time TRMM product was also applied in 

this study to investigate how much improvement the rain gauge corrections have 

contributed to the hydrological simulations forced by the post real time TRMM research 

product compared to the real time product. At global scale, the TRMM derived gridded 

global runoff climatology (mm/yr), and model simulated annual streamflow means over 

selected basins, are in general agreement with those of the GRDC observations, though 

with performance variation over different continents (e.g. Africa shows relatively poor 

performance compared to other continents due to the sparsely in-situ networks for 

TMPA algorithm development). The results also indicate that the modeling 

performance is better with a larger basin size and a location near the equator. Given the 

http://eos.ou.edu/
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global availability of satellite-based precipitation in near real-time, this study 

demonstrates the opportunities and challenges that exist for the real time flood 

prediction on basis of NR-GHSFMDS, which is particularly useful for the vast 

ungauged regions around the globe.  
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4.1 Introduction 

Flood is one of the major natural disasters that leads to a significant number of 

fatalities and economic losses. Wake (2013) recently pointed out that “the number, 

extent and global impact of the flood events this year (2013) is extraordinary and 

accounts for about 47% of global economic losses from nature disasters” (Wake 2013). 

Floods occurred in Europe, Canada, Asia and Australia throughout the first half of 2013, 

causing a total loss of around 45 billion dollars (Munich Re; 

http://go.nature.com/ku2qff). Then in the beginning of the second half of 2013 around 

early September, Colorado experienced an extreme storm and flood event, which 

damaged around 19,000 homes and at least 30 state highway bridges 

(http://en.wikipedia.org/wiki/2013_Colorado_floods). Floods, with their frequent 

occurrences, have become a severe and global issue. With the increasing likelihood of 

human impacts and climate change, it is anticipated to have more frequent, intensive, 

and extreme floods in the future. Hirabayashi et al. (2013) recently presented the global 

flood risk under climate change by the end of this century using 11 climate models and 

the results show that there is an increasing probability in Southeast Asia, peninsular 

India, eastern Africa, etc (Hirabayashi et al. 2013). Wu et al. (2013) investigated the 

anthropogenic impacts on the Earth’s hydrological cycle and pointed out that a further 

rapid increase in precipitation is expected if the current air pollution trend continues 

(Wu et al. 2013). The frequent occurrences and increasing possibilities of flood 

disasters indicate the importance of the operational hydrological predictions for the 

purpose of “preparedness” and “mitigation”, though floods cannot be entirely prevented. 

A lot of application of hydrological modeling are focused on the predictions at basin 

http://go.nature.com/ku2qff
http://en.wikipedia.org/wiki/2013_Colorado_floods
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scales (e.g. (Li et al. 2013; Maggioni et al. 2013; Zhang et al. 2013)). In the recent 

decades, the increasing development of remote sensing technique (e.g. satellite 

precipitation estimation) demonstrates the potential for flood estimation at macro scale, 

and enables the fostering of flood detection system at global scale (e.g. (Brakenridge et 

al. 2007; Hong et al. 2007; Proud et al. 2011; Westerhoff et al. 2013; Wu et al. 2012; 

Yilmaz et al. 2010)), which is of high importance for issuing an early warning for a 

flooding event, especially for those undeveloped regions with insufficient precipitation 

data. However, challenges still remain in global hydrological model parameterization, 

the accuracy and resolution of satellite precipitation estimates, and the computational 

efficiency in global hydrological modeling, etc. Among all of the satellite precipitation 

products, the National Aeronautic and Space Administration (NASA) Tropical Rainfall 

Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA; (Huffman 

et al. 2007, 2010) has been widely applied to hydrological predictions at both regional 

and global scales (e.g.(Hong et al. 2007; Stisen and Sandholt 2010; Su et al. 2008; Wu 

et al. 2012; Yilmaz et al. 2010; Yong et al. 2010; Zhang et al. 2013) ) and got positive 

results. However, these studies applied the old version of the TMPA product, which is 

Version 6. The updated Version 7 TMPA product was released on June 25, 2012 and 

was expected to have more reliable data quality than the old version. Motivated by the 

recent increasing availability of new satellite data for global precipitation estimation, 

this study aims at evaluating the performance of the updated Version 7 TMPA 3B42 

product (both real time product, abbreviated as 3B42 V7 RT hereafter, and research 

product with post real time rain gauge corrections, abbreviated as 3B42 V7 RP hereafter) 

in the Near Realtime Global Hydrological Simulation and Flood Monitoring 
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Demonstration System (NR-GHSFMDS, http://eos.ou.edu/) in its initial stage without 

regional re-calibrations of the hydrological model. Wu et al. (2012) did a retrospective 

evaluation of the same Global Flooding Monitoring System (GFMS), but with Version 

6 TMPA 3B42 research product as forcing. The results show that the GFMS has a 

Probability Of Detection (POD) around 0.7 and a False Alarm Ratio (FAR) around 0.65 

for those flood events with the duration longer than 3 days and meanwhile without dams 

in the Well-Reported Areas (WRA), which indicate the good skill of GFMS in detecting 

flooding events (Wu et al. 2012).  

    This paper is organized as follows: section 4.2 describes the model and data for the 

global hydrological system; section 4.3 illustrates the evaluation of the hydrological 

performance of both 3B42 V7 RT and 3B42 V7 RP products; finally, in section 4.4, the 

conclusion is drawn with main findings, and future work is also discussed in this section.   

http://eos.ou.edu/
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4.2 Methodology and Data 

4.2.1 Model  

The Near Realtime Global Hydrological Simulation and Flood Monitoring 

Demonstration System (NR-GHSFMDS) forced by TRMM RT, with its core part of a 

physical based distributed hydrological model called Coupled Routing and Excess 

STorage (CREST, (Wang et al. 2011)), is currently operationally available at 

http://eos.ou.edu/ at the University of Oklahoma with both 3-Dimensional and 2-

Dimensional Visualizations based on Google Earth (Figure 4.1).   

 

Figure 4.1 3-D and 2-D Visualizations of the streamflow from the NR-GHSFMDS 

The CREST model is modified from the state-of-art Variable Infiltration Capacity 

(VIC) model (Liang et al. 1994; Nijssen et al. 1997) by adding a distributed grid-to-grid 

routing scheme, and has been successfully applied in hydrological predictions at both 

regional and global scales (e.g. (Khan et al. 2011a, 2011b; Wu et al. 2012; Xue et al. 

2013)), proving its high cost-effectiveness in hydrological prediction. In this study, the 

CREST model sets up and runs at 1/8 degree based on the Digital Elevation Model 

(DEM) with quasi-global coverage from 50 N to 50 S at 3 hourly time interval. The 

model parameters are estimated from input data and used as a priori parameters, these 

parameter estimation details are provided in (Wang et al. 2011) and (Wu et al. 2012). 

http://eos.ou.edu/
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Two sets of hydrological simulations forced by 3B42 V7 RT and 3B42 V7 RP are 

conducted initially at 3 hourly temporal and then are converted to daily temporal scale 

in order to evaluate the hydrological performance based on the daily streamflow 

observations from the Global Runoff Data Center (GRDC) at near real time for 

operational application, and retrospective hydrological simulation for research purpose 

as well. The details of those two remote sensing satellite precipitation products are 

given in the next section.  

Before running the model and evaluating its performance with ground streamflow 

observation from GRDC, the “quality control” of streamflow observations is applied: 

- The locations of (i.e. latitude and longitude) of the GRDC gauge stations are 

specified in the CREST project file in order to generate the corresponding 

streamflow simulation at the specific locations. If the latitude and longitude of a 

certain GRDC gauge are not corresponding in the correct grid cell in the river 

network, a considerable underestimation of the streamflow simulation is expected.  

Therefore, a systematic location check has been conducted - if the GRDC gauge 

stations are not located on the correct grid cell in the river net which is extracted 

by the input 1/8 degree DEM, a manual gauge location correction is applied to 

correct the latitude and longitude of those GRDC gauges in order to navigate 

them into the river net. This quality control can prevent the underestimation due 

to the coarse resolution of DEM which might inaccurately represent the true river 

geomorphology.  

- Those GRDC gauge stations with a difference above 20% between the upstream 

area calculated from the modeled river network and the actual upstream area 
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provided by GRDC are filtered out, to prevent mismatching data pairs between 

the model simulation and gauge observation. This usually happened in relative 

small river basins due to the scaling issue.  

4.2.2 Forcing Data 

In this study, two sets of the updated Version 7 TMPA products (Huffman et al. 2007, 

2010, 2012) are applied: 

- TMPA near-real-time 3B42 V7 RT, which uses a combination of active and 

passive microwave, infrared measurements from TRMM, and other satellites, is 

posted to the web about 6 hours after observation time. 

- TMPA post-real-time 3B42 V7 RP, which adjusts the rainfall accumulation by 

gauge analysis at monthly scale and has around 2 to 3 month time delay in 

posting to the public on the web.   

Both 3B42 V7 RT and 3B42 V7 RP products are quasi-global with coverage from 

50°N to 50°S latitude with a spatial resolution of 0.25° and temporal resolution of 3 

hourly. Huffman (2012) encouraged the users to investigate the potential of the TMPA 

3B42 V7 RT in real time hydrological predications without gauge adjustment. The key 

features of 3B42 V7 RT are listed below (Huffman 2012):  

- Additional satellites, such as the early parts of the Microwave Humidity Sounder 

(MHS) and the entire operational Special Sensor Microwave Imager/Sounder 

(SSMIS) are included.  

- Uniformly processed input data using the current algorithms, including 

Advanced Microwave Sounding Unit (AMSU), MHS, TRMM Combined 
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Instrument (TCI), TRMM Microwave Imager (TMI), Advanced Microwave 

Scanning Radiometer – Earth Observation System (AMSR-E) and SSMI. 

- Use of a latitude-band calibration scheme for all satellites.  

4.2.3 GRDC discharge observation 

    Quantitative evaluations of both real-time hydrological simulations for operational 

applications and post-real-time hydrological simulations for research purposes are 

performed by benchmarking with GRDC discharge observations. The main objective of 

the GRDC is to collect, store and disseminate the discharge data from rivers around the 

world in order to facilitate hydrological research and application 

(http://www.bafg.de/GRDC/EN/Home/homepage_node.html). After the quality control 

procedure described in the above section, a total of 88 GRDC gauge stations with at 

least 1-year’s worth of discharge data at a daily time step are used for the evaluation in 

this study (Figure 4.2). Besides the gauge based GRDC discharge, the GRDC observed 

Runoff Climatology data is also applied for the Macro-scope evaluation of gridded 

runoff depth. The detailed evaluation results are illustrated in section 4.3.  

  

http://www.bafg.de/GRDC/EN/Home/homepage_node.html
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Figure 4.2 GRDC gauges distribution and the locations of the 18 selected basins 
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4.3 Results 

In this section, first, the GRDC observed Runoff Climatology data is applied for the 

Macro-scope evaluation in section 4.3.1; then, a total of 88 GRDC discharge data sets 

(as shown by the yellow triangles in Figure 4.2) with at least 1-year’s worth of data at a 

daily time step are used to assess the modeling performance in terms of annual mean 

discharge (m
3
/s, section 4.3.2), modeling performance as a function of basin sizes and 

of latitude (section 4.3.3); to further investigate the hydrological performance of the 

global system at specific basins, 18 primary basins (section 4.3.4, as shown in Figure 

4.2 and Table 4.1, the red triangle legends in Figure 4.2 indicate the locations of the 

outlets of those 18 primary basins) are selected based on the basin size and the 

observation availability to investigate the daily time series of streamflow simulation.  

  



109 

 

4.3.1 Macro-scope evaluation of gridded runoff depth over the quasi-globe  

Figure 4.3(b) and (c) show the modeled annual mean runoff (mm/yr) driven by 

TRMM 3B42 V7 RT and TRMM 3B42 V7 RP 3hrly products in comparison with the 

GRDC observed annual mean runoff (mm/yr, Figure 4.3(a)). Please note that the blank 

areas indicate a lack of observation data. Figure 4.3 (b) and (c) show similar annual 

mean runoff estimations over the long period of 2002-2012 from RT and RP; in 

comparison with the GRDC observed runoff climatology, the 3B42 V7 RP derives 

closer annual mean runoff in central Africa around the equator, the land to the north of 

the Gulf of Mexico in the U.S., and the northeastern part of the U.S. (red rectangle areas 

①, ②, and ③ as shown in Figure 4.3(c)) relative to GRDC rather than that of the 3B42 

V7 RT.  

Figure 4.3 (d) and (e) show the Bias (%) of the satellite remote sensing precipitation 

derived runoff climatology (RT and V7, respectively) relative to the GRDC observation. 

The 3B42 V7 RT forced modeled annual mean runoff relative to 3B42 V7 RP is shown 

in Figure 4.3(f), which provides information about the pairwise agreement of those two 

datasets over the period of 2002-2012 in terms of hydrological simulation at a global 

scale (please refer to the Appendix I. for the definitions and equations of the Bias(%), 

RMSE(%) and NSCE which are mentioned later).   
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Figure 4.3 (a) GRDC observed runoff (mm/yr) (b) Annual Mean Runoff (mm/yr) 

simulated by CREST model forced by 3B42 V7 RT for the period 2002-2012 (c) 

Annual Mean Runoff (mm/yr) simulated by CREST model forced by 3B42 V7 RP 

for the period 2002-2012 (d) Bias(%) of 3B42 V7 RT Derived Runoff Climatology 

relative to GRDC (e) Bias(%) of 3B42 V7 RP Derived Runoff Climatology relative 

to GRDC (f) Bias(%) of 3B42 V7 RT Derived Runoff Climatology relative to 3B42 

V7 RP 
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4.3.2 Annual streamflow evaluation  

The annual means of the daily discharge simulations forced by the 3B42 V7 RT and 

3B42 V7 RP over the 88 selected basins rate quite well with the GRDC observations. 

The GRDC observations and CREST simulations yielded a Correlation Coefficient (CC) 

up to 0.98 for 3B42 V7 RT and 0.99 for 3B42 V7 RP (Figure 4.4). The TMPA 3B42 V7 

RP, with rain gauge correction, improved the average Bias(%) from 16.2% (forced by 

3B42 V7 RT) to 2.9%; likewise with Bias(%), the RMSE(%) is improved from 74.2% 

to 47.7% when the forcing data is switched from 3B42 V7 RT to 3B42 V7 RP.  

 

Figure 4.4 Scatter plot of streamflow annual mean between model simulation and 

gauge  
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4.3.3 Model performance as a function of basin size and of latitude  

Considering the Bias(%) and RMSE(%) of the TPMA 3B42 V7 products (both RT 

and RP) forced daily streamflow relative to GRDC observations as the functions of 

basin sizes, the left panels of Figure 4.5 show an overall convergent trend to minimum 

errors (0% is the perfect value for both Bias(%) and RMSE(%)) with the increasing of 

basin sizes.  The 3B42 V7 RP product, with post time rain gauge adjustment, has lower 

errors relative to the GRDC observation in general when compared with the 3B42 V7 

RT product, as we expected.  

When evaluating the hydrological performance of those two types of TMPA 3B42 

V7 in terms of Bias(%) and RMSE(%) of daily streamflow simulation relative to GRDC 

observation as the functions of the latitude, the right panels of Figure 4.5 show a general 

trend of errors decreasing with the basins’ outlets closer to the equator. However, there 

are four “odd” basins marked by the red circle in Figure 4.5 that do not have 

satisfactory performances even though their basin outlets are near the equator. Then a 

further investigation is conducted of those four basins: results show that those basins are 

located in Africa, and the large Bias(%) and RMSE(%) values of the daily time series of 

those four basins are caused by overestimation of the streamflow magnitudes from the 

TMPA 3B42 V7 RT and RP products and peak timing differences (Figure A1 in 

Appendix II). We assume that the limited number of the rain gauge stations prevents the 

development of the TMPA 3B42 precipitation estimation algorithms in Africa. Since 

the hydrological performance is highly dependent on the accuracy of rainfall input, it is 

anticipated that the global hydrological prediction system will be improved with further 
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improvement from the satellite precipitation estimation (e.g. the future GPM mission 

which will be discussed in Chapter 6). 

 

Figure 4.5 Bias(%) and RMSE(%) as a function of basin area (left panels) and 

latitude (right panels)  
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4.3.4 Evaluations of Primary Basins  

(a)  Information of the selected primary 18 basins     

In order to further investigate the hydrological performance of the global system, 18 

primary basins within the TMPA domain (50  N to 50  S) are selected for more 

quantitative evaluation based on the data availability and basin sizes. The selected 18 

primary basins are distributed over six continents (Figure 4.2) with basin areas ranging 

from 38,363 km
2
 (Beijiang, Asia, Table 4.1) to 4,680,000 km

2
 (Amazon, South America, 

Table 4.1). For detailed information (i.e. the basin name, outlet, the corresponding 

GRDC gauge number, and basin areas) about these 18 primary basins, please refer to 

Table 4.1. The GRDC daily streamflow observations are used to evaluate the CREST 

model simulated streamflows forced by 3B42 V7 RT and RP respectively: the 

streamflow time series at daily scale for those 18 basins over different continents are 

shown by Figure 4.6 (a) – (f); and more quantitative statistic indices (i.e. Bias(%), 

RMSE(%), NSCE(Nash-Sutcliffe Coefficient of Efficiency) and CC) are listed in Table 

4.2. Please refer to Appendix I. Equations for the definition of those statistic indices.  
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Table 4.1 Information of those 18 primary river basins  

  GRDC ID river station Basin Area (km
2
) 

Africa 

1291100 ZAMBEZI KATIMA MULILO 334000 

1531100 BLACK VOLTA BAMBOI 134200 

1531450 WHITE VOLTA NAWUNI 92950 

1749100 UBANGI BANGUI 500000 

Asia 

2181900 YANGTZE RIVER DATONG 1705383 

2186800 XI JIANG WUZHOU 3 329705 

2186901 BEI JIANG SHIJIAO 38363 

S.America 

3629001 AMAZONAS OBIDOS - LINIGRAFO 4680000 

3629150 RIO TAPAJOS FORTALEZA 363000 

3630050 RIO XINGU ALTAMIRA 446203 

3649950 TOCANTINS TUCURUI 742300 

N.America 

4123050 OHIO RIVER METROPOLIS 525770 

4125804 ARKANSAS RIVER MURRAY DAM 409297 

4127501 MISSISSIPPI RIVER THEBES 1847188 

Oceania 

5109200 MITCHELL RIVER  KOOLATAH   45872 

5608024 FITZROY RIVER FITZROY CROSSING   46133 

5708110 VICTORIA RIVER COOLIBAH HOMESTEAD   44900 

Europe 6742900 DANUBE RIVER CEATAL IZMAIL 807000 
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Figure 4.6 Comparison between model simulated streamflow with satellite rainfall 

forcing and observations at daily scale for the selected 18 basins in different 

continents. 
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Table 4.2 Statistical indices of the selected 18 primary basins. 

  
GRDC No. 

  TRMM RT   TRMM V7 

    Bias(%) RMSE(%) NSCE CC   Bias(%) RMSE(%) NSCE CC 

Africa 

1291100   101 239 -4.13 0.33   79 207 -2.86 0.36 

1531100   180 319 -0.96 0.72   127 229 -0.01 0.77 

1531450   129 286 -2.66 0.66   105 233 -1.42 0.78 

1749100   27 61 0.41 0.82   27 61 0.41 0.83 

Mean   109 226 -1.83 0.63   84 183 -0.97 0.69 

Asia 

2181900   72 83 -1.88 0.91   12 24 0.76 0.95 

2186800   25 87 0.44 0.89   -8 52 0.80 0.90 

2186901   -10 112 0.15 0.64   -18 78 0.59 0.79 

Mean   29 94 -0.43 0.81   -4 51 0.72 0.88 

S.America 

3629001   31 45 -1.57 0.84   14 25 0.20 0.87 

3629150   4 62 0.22 0.84   3 64 0.17 0.82 

3630050   34 76 0.45 0.88   37 83 0.33 0.85 

3649950   22 86 -0.28 0.73   24 89 -0.35 0.75 

Mean   23 67 -0.29 0.82   20 65 0.09 0.82 

N.America 

4123050   -36 58 0.17 0.71   -36 56 0.24 0.82 

4125804   86 137 -1.16 0.54   75 119 -0.61 0.67 

4127501   125 153 -5.04 0.32   33 69 -0.22 0.52 

Mean   58 116 -2.01 0.52   24 81 -0.20 0.67 

Oceana 

5109200   106 321 -0.09 0.74   57 210 0.53 0.83 

5608024   44 459 0.46 0.71   25 423 0.54 0.77 

5708110   209 544 -1.02 0.83   166 470 -0.50 0.87 

Mean   119 441 -0.22 0.76   83 368 0.19 0.82 

Europe 
6742900   39 74 -2.36 0.20   45 65 -1.54 0.55 

Mean   39 74 -2.36 0.20   45 65 -1.54 0.55 

 

(b) Basins in Africa 

Compared to other continents, rain gauge networks in Africa are extremely sparse 

and prevent hydrological modeling. Therefore, the remote sensing precipitation 

estimations play an important role in this region. The daily time series comparisons 

between the model simulated streamflow and GRDC gauge observations of the four 

primary basins – Zembezi, Black Volta, White Volta and Ubangi are shown by Figure 
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4.6(a) and the quantitative statistics (i.e. Bias(%), RMSE(%), NSCE and CC) are shown 

in Table 4.2. In general, the 3B42 V7 RP is generally better at hydrological predictions 

than 3B42 V7 RT for the four basins. However, the overall performance of the global 

CREST model in Africa is the worst in comparison to those basins located on other 

continents: three basins out of the total four have a NSCE below zero. Further research 

has been conducted as shown in Table A1 in Appendix III: the cross correlation 

coefficients are calculated with time lags in comparison to the original correlation 

coefficients: with time lags of 58- to 16-day, the cross correlation coefficients increase 

significantly when compared to the original correlation coefficients. We assume that the 

differences in peak timings are caused by the hydro-projects on those rivers:  (1) there 

are two dams - Kariba and Cahora Bassa on the Zambezi River which impact the 

natural hydrological cycle in this river; (2) the Black Volta and White Volta are two 

tributaries of the river Volta which has a large reservoir downstream - Lake Volta - 

which is the largest in the world, and which might cause some backwater issue that 

leads to the peak timing errors for both the Black and White Volta Rivers; (3) several 

hydropower plants on the Ubangi river may lead to the peak timing differences in this 

river.  

 (c) Basins in Asia 

    Figure 4.6(b) and Table 4.2 show remarkable improvements for hydrological 

simulation forced by 3B42 V7 RP in contrast with that forced by 3B42 V7 RT in the 

Yangtze river: the NSCE increased from -1.88 to 0.76 after switching the forcing data 

from RT to RP (Table 4.2), and the differences (Bias(%)) between modeled streamflow 

simulation and GRDC observation is minimized down to 12% (RP) from 72% (RT). For 
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those two other basins – Xijiang and Beijiang, 3B42 V7 RP also outperforms 3B42 V7 

RT. The average NSCE of these three basins forced by V7 RP is above 0.7, which 

indicates the good hydrological prediction skill in Asia.  

(d) Basins in South America 

Similar to Africa, the two TMPA products forced streamflow simulations in those 

four basins in South America also show overestimations compared to GRDC gauge 

observations (Figure 4.6(c)): as the Bias(%) as shown in Table 4.2 for both Africa and 

South America are all with positive values. Another similarity to the basins in Africa is 

the time lag of the model simulated streamflow in comparison to the gauge observations. 

The cross correlations are also investigated as shown in Table A1 in Appendix III: with 

the time lags around 20 days, the cross correlation coefficients increased to above 0.8 

for all of these four basins compared to the original correlation coefficients which are 

only around 0.7. We also assume that the many dams in the three tributaries of the 

Amazon River - the upstream Amazon Basin, Rio Tapajos River and Rio Xingu River, 

and the Tucurui dam in the Tacantins River lead to the differences in peak timings 

between observations and model simulations in South America.  

As shown by Table 4.2, for the basins Rio Xingu and Tocantins, the 3B42 V7 RP (the 

Bias(%) of Rio Xingu is 37% while the Bias(%) of Tocantins is 24%) shows slightly 

degrade from 3B42 V7 RT (the Bias(%) of Rio Xingu is 34% while the Bias(%) of 

Tocantins is 22%) in simulated streamflow, though the differences are within 2-3%.  
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(e) Basins in North America 

Three basins are investigated in North America – the Ohio, Arkansas and Mississippi 

rivers as shown in Figure 4.6(d).  

For those two medium sized basins – the Ohio River of 525,770 km
2
 and the 

Arkansas River of 409,297 km
2
, the hydrological performance of the 3B42 V7 RT and 

3B42 V7 RP are quite similar (Table 4.2): the Biases(%) of the Ohio river are of the 

same value -36% with both RT and RP, the RMSE(%) only decreases by 2% from RT 

to RP; for the Arkansas river, the Bias(%) is improved from 86% to 75% from RT to RP, 

while the RMSE(%) is decreased from 137% to 119%.  

For the largest river among these three - the Mississippi river which is within a basin 

area of 1,847,188 km
2
, the improvement from RT to RP is significant as the Biases(%) 

decreased from 125% to only 33% throughout the 9 years evaluation period (2002-

2010).  

(f) Basins in Oceania 

    The three basins investigated in Oceania are all small with sizes below 50,000 km
2
. 

As shown by Figure 4.6(e) and Table 4.2, similarly to the basins in Africa and Asia, the 

hydrological predictive skills improved considerably from 3B42 V7 RT to RP.  

 (g) Basins in Europe 

The primary basin – the Danube River basin in Europe is around 807,000 km
2
. Both 

3B42 V7 RT and RP show obvious overestimations in the streamflow simulations in 

this river with low correlation coefficients. 3B42 V7 RP shows improvement in 
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comparison with 3B42 V7 RT in terms of RMSE(%, from 74% down to 65%), NSCE 

(from -2.26 up to -1.54) and CC (from 0.2 to 0.55), but the overall performance is not 

satisfactory even with the forcing as RP. The poor performance with both TMPA 

products might be due to the high latitude – the precipitation estimation is of low 

accuracy when IR data are combined in the high latitude precipitation estimation (Yong 

et al. 2010).  

(h) General conclusion for these 18 primary basins 

Overall, three general conclusions are drawn from the above analysis: 

-  The CREST modeled streamflow forced by the post real time TMPA 3B42 V7 RP 

generally improves the hydrological performance compared to the modeled streamflow 

forced by the real time TMPA 3B42 V7 RT, although in some basins the hydrological 

simulations with 3B42 V7 RP are still unsatisfactory, especially for those basins in 

Africa and Europe.  

- From the mean values of those statistic indices in Table 4.2, we can draw the 

conclusion that the hydrological improvement from forcing with TMPA 3B42 RT to 

TMPA 3B42 RP is significant in those primary basins (out of 18 primary basins) in 

Asia and Oceana (e.g. the means NSCEs are increased from -0.43, -0.22 in Asia and 

Oceania to 0.72 and 0.19 respectively).  

- The general poor hydrological performances (the peak timing lag as shown in 

Appendix III, Table A1) in Africa and South America might be caused by (a) the 

hydrological projects such as reservoirs and dams on top of the rivers, (b) the poor 

satellite precipitation data quality.   
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4.4 Conclusion and Future work 

In this study, we present the evaluation of the Near Realtime Global Hydrological 

Simulation and Flood Monitoring Demonstration System forced by the updated Version 

7 near real time and post real time TMPA 3B42 products:  

First, a macro-scope evaluation is conducted by modeling the multiple year runoff 

climatology (mm/yr): the 3B42 V7 RT and RP precipitation estimation products derive 

similar runoff climatology over the 2002-2012 period; in contrast with RT derived 

annual mean runoff, RP shows higher skill in the central Africa around the equator, the 

land to the north of the Gulf of Mexico in the U.S., and the northeast part of the U.S. 

against GRDC observed runoff climatology. 

Then, a total of 88 GRDC discharge gauge data with at least 1-year recond length at 

daily time step are used to assess the modeling performance in terms of the annual mean 

discharge: the results show the CREST model simulated annual mean streamflows over 

the 88 selected basins are in high agreement with the GRDC observation; and the 

annual mean streamflow driven by 3B42 V7 RP has lower errors against the GRDC 

observation in terms of Bias(%) and RMSE(%) and higher correlation coefficient (CC) 

in comparison with that driven by 3B42 V7 RT.  

After that, the daily scale streamflow simulation performance in those 88 basins 

forced by V7 RT and V7 RP is evaluated as the functions of basin size and latitude 

respectively, a general role is found that the modeling performance is better with a 

larger basin size and a location closer to the equator.  
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At last, 18 primary basins are selected to examine the daily streamflow simulation 

effectiveness: in general, the CREST modeled streamflow forced by the post real time 

3B42 V7 RP improved the hydrological performance compared to the modeled 

streamflow forced by the real time 3B42 V7 RT, although in some basins the 

hydrological simulation with 3B42 V7 RP are still unsatisfactory, especially for those 

basins in Africa and Europe.  

    Overall, this study shows the hydrological performance of the Near Realtime Global 

Hydrological Simulation and Flood Monitoring Demonstration System forced by the 

updated Version 7 real time and post real time TMPA 3B42 products in its initial stage; 

in other words, no local calibration has been involved in this work. This is an important 

aspect for future improvement: regional parameterization and collaborations with local 

experts are of high importance to better predict the streamflow, especially for those 

regions with high flood occurrence. As the evaluation results analyzed in section 4.3, 

the system performance is highly dependent on the quality of the input forcing data: for 

most of the cases, in contrast to TMPA 3B42 real time rainfall products, TMPA post 

real time products– the 3B42 RP with rain gauge corrections simulate more accurate 

streamflow against GRDC observations at both annual and daily scales. Therefore, with 

the promising next generation of global satellite precipitation estimation – “Global 

Precipitation Measurement (GPM)” with higher spatial resolution (~4km vs. ~25km 

with TRMM) and global-coverage (90 N to 90 S vs. 50 N to 50 S with TRMM), the 

CREST model can be setup at a higher spatial resolution (~4km) over the 90 N to 90 S 

global coverage. In addition, the GPM precipitation, which is expected to have better 

accuracy than the current TRMM precipitation, can be applied as the forcing data into 
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the current system and is expected to improve hydrological performance compared to 

the current TRMM mission. In addition to the parameter error and input forcing data 

error, human impact is another crucial factor that increasingly needs to be considered. 

The various hydrological projects such as hydro-power stations, dams, and reservoirs, 

impact the natural hydrological cycle on a basin scale, thus degrading the overall 

hydrological simulation skills. In order to mitigate the negative impact of the 

hydrological predictions skills from those hydrological projects, new model components 

such as the reservoir module is considered to be added into the current model.  

  



127 

 

Appendix I. Equations: 

The equations of the evaluation matrices used in this paper are listed below: 

                                             (A1) 

                                   (A2) 

                                                (A3) 

In equation A1 and A2, is the observed streamflow and  is the simulated 

streamflow. For both Bias and RMSE, the smaller their values are (i.e., closest to 0), the 

better the model result is. Small values of Bias and RMSE signify the modeling results 

are close to the corresponding observations in regards to systematic bias and random 

errors. NSCE is a frequently used statistic to quantify the agreement between the model 

simulation and the ground observation. The perfect value of NSCE is 1. 
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Appendix II. Supplementary Figures: 

 

Figure A1. Time series of those four “odds” basins in Figure 4.5 

 

 

  

  



129 

 

Appendix III. Supplementary Tables 

Table A1 Cross correlations of the rivers in Africa and South America 

  
GRDC 

No. correlation coefficient cross correlation time lag (days) 

Africa 

1291100 0.33 0.85 58 

1531100 0.72 0.83 20 

1531450 0.66 0.8 16 

1749100 0.82 0.93 23 

S.America 

3629001 0.84 0.96 28 

3629150 0.84 0.91 23 

3630050 0.88 0.94 18 

3649950 0.73 0.83 23 
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Chapter 5. Hydrometeorological Analysis and Remote Sensing of 

Extremes:Was the July 2012 Beijing Flood Event Detectable and 

Predictable by Global Satellite Observing and Global Weather 

Modeling Systems? 

Abstract 

Prediction and thus preparedness in advance of flood events are crucial for proactively 

reducing their impacts. In the summer of 2012, Beijing - the capital of China, 

experienced extreme rainfall and flooding, causing around 1.6 billion dollars of 

economic losses and up to 79 fatalities. Using rain gauge networks as a benchmark, this 

study investigated the detectability and predictability of the 2012 Beijing event via the 

Global Hydrological Prediction System (GHPS), which was forced by the NASA 

Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis at 

near real-time and by the deterministic and ensemble precipitation forecast products 

from NOAA Global Forecast System (GFS) with around 7-day lead time. The results 

indicate that the disastrous flooding event was detectable by the satellite-based global 

observing system and predictable by the model-based global weather prediction system 

GFS 4 days in advance. Furthermore, the GFS ensemble precipitation forecast products 

from NOAA for streamflow forecasts provided additional useful information on the 

identification of the possibility of the extreme event. Given the global availability of 

satellite-based precipitation in near real-time and GFS precipitation forecast products 

with different lead times, this study demonstrates the opportunities and challenges that 
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exist for an integrated application of GHPS. These systems are particularly useful for 

the vast ungauged regions of the globe.  
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5.1 Introduction 

    Flooding, which is always considered as one of the most hazardous disasters in both 

rural and urban areas, accounts for about one-third of all global geophysical hazards 

(Adhikari et al. 2010; Smith and Ward 1998). Urban areas are more vulnerable to floods 

and their associate damages than rural areas due to high population density and 

intensively developed infrastructure. Urban flooding affects structures, including 

buildings, bridges and roadways; it may also induce severe water-borne diseases. On 

July 21, 2012, the capital of China, Beijing, and its surroundings experienced extreme 

rainfall and flooding. The storm lasted for around 16 hours and the rain rate reached as 

high as 215 mm/day in the urban area. It was reported as the heaviest storm event since 

1951 and the return periods for flooding were estimated at 60 years in Beijing and 100 

years in the surrounding Fangshan suburban area. It inundated roadways, bridges and 

sewage systems, causing houses collapse, cars damages, and even debris flows in 

Fangshan. Overall, the flooding event resulted in 79 fatalities and around 1.6 billion 

dollars in damages. In the same year, the Gelendzhik, Novorossiysk and the Krymsk 

districts in Russia were affected by the Kuban flood in July and 171 people were killed. 

Three months later, New York City experienced Hurricane Sandy which flooded the 

streets, subways, and tunnels, and cut electricity in and around the city in October. 

Earlier the same year, the third biggest city in Australia, Brisbane, Queensland, was 

inundated by floods from December 2010 to January 2011 by several separate storm 

events. As mentioned by (Adhikari et al. 2010), “The International Flood Network 

indicates that from 1995 to 2004, natural disasters caused 471,000 fatalities worldwide 

and economic losses totaling approximately $49 billion USD, out of which 
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approximately 94,000 (20%) of the fatalities and $16 billion USD (33%) of the 

economic damages were attributed to floods alone.” In the coming decades, urban areas 

will likely become increasingly vulnerable to hydrometeorological extremes because 

urban populations are increasing, especially in fast-growing developing countries. 

The increasing adverse worldwide impact from floods indicates this is not only a 

regional or national-level issue but also a global problem that greatly motivates a global 

flood detection and prediction system coordinated among worldwide research 

institutions and government decision makers. Currently, several satellite remote-sensing, 

flood-monitoring systems exist at global scales and provide forecasts in near real time 

(e.g. Brakenridge et al. 2007; Hong et al. 2007; Westerhoff et al. 2013; Wu et al. 2012; 

Yilmaz et al. 2010). Timely, recent development and improvement of global flood early 

warning systems are appealing to users when they provide forecasts several days in 

advance for better planning and responding to emerging disasters. The traditional 

approach to forecast streamflow at the outlet of a basin is often using a hydraulic way 

based on the upstream gauge observation, such as a hydrograph; for this approach, the 

lead time is often limited by the catchment concentration time (Bartholmes and Todini 

2005). In order to extend the hydrological forecast horizon, Numerical Weather 

Prediction (NWP) products (e.g. temperature and precipitation) can be coupled with 

hydrological rainfall-runoff model, which is of high importance especially for those 

rivers without upstream river discharge observation and those smaller rivers with 

shorter response time (Hopson and Webster 2010). Besides the deterministic forecast 

product from NWP system, ensemble forecast products from NWP are usually applied 

to quantify the uncertainty in hydrologic forecast, which make NWP ensembles an 
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attractive product for flood forecasting system with the potential to better quantify 

predictability (Cloke and Pappenberger 2009). In particular, the Hydrological Ensemble 

Prediction Experiment (HEPEX ,(Schaake et al. 2007) http://hepex.irstea.fr), with its 

mission as “to demonstrate the added value of hydrological ensemble predictions 

(HEPS) for emergency management and water resources sectors to make decision that 

have important consequences for economy, public health and safety”, has maintained a 

community from meteorology to hydrology in order to improve the ensemble forecast 

(e.g. Bradley et al. 2003; Bradley et al. 2004; Brown et al. 2010, 2012; Demargne et al. 

2009; Demargne et al. 2013; Gneiting et al. 2007; Pappenberger et al. 2008; Seo et al. 

2006; Zappa et al. 2013). Recently, a review paper (Cloke and Pappenberger 2009) 

showed the potential of using ensemble streamflow forecast to further improve the early 

warning system.  

    In this study, we aim at demonstrating the prototype of a Real Time Global 

Hydrological Prediction System (GHPS), which is driven by the NASA TRMM Multi-

satellite Precipitation Analysis (TMPA) and NOAA’s Global Forecast System (GFS) 

deterministic and ensemble precipitation forecasts. In addition, we are intending to 

address those questions: (1) Was the July 2012 Beijing Flood Event Detectable and 

Predictable by Global Satellite Observing and Global Weather Modeling Systems in its 

initial stage without specific calibration? (2) How much “added value” does the 

ensemble streamflow forecast contribute to the hydrological prediction in the 

probabilistic domain for this specific case study?  

This study is organized as follows. In Section 5.2, the core part of GHPS - a 

distributed hydrological model and its set-up are described. Then the study region and 

http://hepex.irstea.fr/
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data sets applied for this particular case study are introduced in Section 5.3. In Section 

5.4, the hydrologic predictions conditioned on forcing from remote-sensing datasets and 

model forecasts are assessed in both actual domain and probabilistic domain. Finally, 

results are summarized in section 5.5 along with concluding remarks.   
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5.2 Global Hydrological Prediction System 

    The Global Hydrological Prediction System (GHPS, Figure 5.1), with the Coupled 

Routing and Excess STorage (CREST, (Wang et al. 2011)) distributed hydrological 

model as its core part, is selected to evaluate the detectability and predictability of 

flooding using TRMM precipitation estimates and forecasts from the GFS model. The 

core part of GHPS, the CREST model, is modified from the state-of-art Variable 

Infiltration Capacity (VIC) model (Liang et al. 1994; Nijssen et al. 1997) and has added 

a distributed grid-to-grid routing scheme. The CREST model is currently running within 

the Near Realtime Global Hydrological Simulation and Flood Monitoring 

Demonstration System (http://eos.ou.edu) at University of Oklahoma; and this is 

considered as the “Real Time System” driven by TRMM 3B42 Real Time (RT, 

(Huffman et al. 2007)) product in the proposed GHPS. The “Retrospective System” and 

“Forecast System” are driven by TRMM 3B42 Level 7 (V7,(Huffman et al. 2007)) and 

NOAA GFS precipitation forecasts (Han and Pan 2011; Kanamitsu et al. 1991; Yang et 

al. 2006), respectively. For detailed information of the forcing data, please refer to 

section 3 and the corresponded references. In GHPS, the CREST model is set up at 1/8 

degree based on the Digital Elevation Model (DEM) with quasi-global coverage from 

50 N to 50 S, providing near real time runoff and streamflow simulation every 3 hours 

forced by TRMM RT, retrospective hydrological simulation forced by TRMM V7 since 

1998 and real time flood prediction initialized at 00UTC every day with forecast lead 

times up to 180 hours for each initialization at each 1/8 degree grid. The model 

parameters are estimated from input data and used as a priori parameters (for detailed 

information about the parameter estimation, please refer to (Wang et al. 2011; Wu et al. 

http://eos.ou.edu/
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2012)): those physical parameters such as hydraulic conductivity, available water 

capacity, etc. in CREST model can be estimated based on the soil type map, land cover 

maps and digital elevation model (DEM). The CREST model, as core of the GHPS, has 

been warming up and partially benchmarked by 10+ years’ TMPA QPE. The CREST 

model has been evaluated and implemented at both global and regional scales (Khan et 

al. 2011a; Khan et al. 2011b; Wu et al. 2012; Yilmaz et al. 2010), proving its high cost-

effectiveness in hydrological prediction. Wu et al. (2013) applied the same hydrological 

model – CREST, but forced with TRMM V6 – the gauge corrected research product to 

run a retrospective streamflow simulation over the quasi-globe from 50 N to 50 S 

during the period 1998 – 2010. In general, the results show that the flood probability of 

detection (POD) is around 0.70 for the flood with the duration longer than 3 days in the 

no-dams areas. The general positive results indicate the potential value of this system 

forced with TRMM in global flood detection. However, Wu et al. (2013) did not 

specifically address or investigate extreme or rare events such as the studied Beijing 

event in this paper. Therefore, this paper is the first time prediction skill assessment of 

the GHPS in a local setting. In this study, the updated version TRMM data – both 

TRMM RT (real time product) and TRMM V7 (gauge corrected research product) are 

applied for flood detection. Considering the improvement satellite precipitation 

estimates from TRMM V6 to V7 product, the GHPS is expected to have better flood 

detection skills.  

 Other than streamflow and runoff depth, the GHPS can also provide gridded soil 

moisture and Actual Evapotranspiration (AET) at 1/8 degree spatial resolution as well.  
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Figure 5.1 Structure of Global Hydrological Prediction System 

     

    In this study, the global CREST model is warmed up by TRMM RT from July 1
st
, 

2012 until the initial time of each experiment. Then, the model is forced by rain gauges, 

TRMM RT, TRMM V7, and GFS deterministic and ensemble precipitation forecasts at 

different initializations (with different lead times) to generate hydrological forecasts of 

surface runoff in urban areas and streamflow in the watersheds. Although the CREST 

model includes a parameter describing the degree of imperviousness of the surface, 

which is quite distinct in urban regions, the model physics do not explicitly account for 

evapotranspiration, surface runoff generation, routing, and drainage processes that are 

specific to the urban environment. A detailed discussion regarding the detectability and 

predictability of surface runoff depths and streamflows using the GHPS, even with the 

simplified natural environment assumption will be discussed in section 5.4.  
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5.3 Research Region and Input Data  

For this case study, Beijing and its upstream Juma River basin are selected as the 

research region as shown in Figure 5.2. Beijing, as the capital of China, is located in the 

northern part of China and surrounded by Heibei Province. It is the political, economic, 

cultural and educational center of China; it is also the metropolitan with the most-

density population (20,693,000 as of 2012, http://en.wikipedia.org/wiki/Beijing) in the 

world. The dense population of Beijing makes it vulnerable to be highly impacted by 

the rainfall and flood extremes, thus leading to huge economic loss and fatalities.  

 

Figure 5.2 Research Region 

Four precipitation data sets are used to evaluate the spatial variability of precipitation 

in and around Beijing on July 21, 2012: (1) High-density rain gauge observations 

http://en.wikipedia.org/wiki/Beijing
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(Figure 5.2) with hourly temporal resolution from 03UTC on July 19, 2012 to 12UTC 

on July 22, 2012. There are 2041 rain gauge stations in total within Hebei province and 

231 in total within Beijing city. The rain gauge data are interpolated onto a 0.25°-

resolution grid using kriging and accumulated into 3-hourly rainfall accumulations in 

order to facilitate comparison with TMPA products; (2) TRMM Multi-satellite 

Precipitation Analysis (TMPA) near-real-time 3B42RT, which uses a combination of 

active and passive microwave and infrared measurements from TRMM and other 

satellites (Huffman et al. 2007); (3) TMPA  post-real-time 3B42 V7, which adjusts the 

rainfall accumulation by gauge analysis.  Both 3B42RT and 3B42 V7 products are 

quasi-global with coverage from 50°N to 50°S latitude with a spatial resolution of 0.25° 

and temporal resolution of 3 hours (Huffman et al. 2007); (4) the Deterministic (GFS 

hereafter) and  ensemble (GENS hereafter) precipitation forecast products from NOAA 

Global Forecast System was used to drive the hydrological forecasts.  The GFS 

forecasts were run in near real time by NOAA Earth System Research Lab.  The 

forecasts were initialized by the hybrid ensemble-variational data assimilation system 

developed based on NOAA NCEP operational data assimilation.  The description of the 

hybrid data assimilation system for GFS can be found in (Wang 2010) and (Wang et al. 

2013). The GFS forecasts were initialized four times per day (00, 06, 12, and 18UTC); 

and saved at 3-hourly interval up to 180-hour lead time. The spatial resolution of the 

forecasts data was 0.5 degrees. In this study, the GFS data and a 20-member ensemble 

GENS initialized at 00UTC were used to drive the hydrological forecast. Both the 

deterministic GFS and ensemble GENS precipitation forecasts members were 



143 

 

interpolated to 0.25° in order to match the spatial resolution of the TRMM rainfall 

estimates.   
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5.4 Results and Discussion  

5.4.1 Rainfall evaluation 

Figure 5.3 shows the total precipitation accumulation (mm/day) on July 21, 2012 

over the Hebei province (dark outline), which contains the Beijing region (white 

outline), based on rain gauges (Figure 5.3(a)), TRMM V7 (Figure 5.3(b)), TRMM RT 

(Figure 5.3(c)), GFS forecast initialized 4 days to 1day in advance of the event (Figure 

5.3(d,e,f,g), Please be noted that all the time information are based on UTC standard in 

this study). Although TRMM V7 and RT slightly underestimate the daily accumulated 

precipitation amounts in the center of the field compared to the gauge observations, the 

main characteristics of TRMM precipitation products capture the observed precipitation 

patterns well. The GFS daily precipitation accumulations with different lead times 

resemble the general patterns of the July 21 event, but they have limited spatial 

variability due to their coarse spatial resolution.   
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Figure 5.3 Daily precipitation accumulation (mm/day) on July 21, 2012 from                 

(a) Rain Gauge stations; (b) TRMM V7; (c) TRMM RT; (d) GFS initialized from 

July 18 2012 00hr; (e) GFS initialized from July 19 2012 00hr; (f) GFS initialized 

from July 20 2012 00hr; (g) GFS initialized from July 21 2012 00hr.  
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The left panels of Figure 5.4, 5.5 5.6 and 5.7 show the rainfall accumulation time 

series from rain gauges, TRMM V7, TRMM RT, deterministic GFS precipitation 

forecasts and ensemble GFS precipitation forecasts initialized at different dates with 

different locations.  

The performance of TRMM V7 and RT are in agreement throughout the July 21 

event at urban Beijing and Fangshan: both of them captured the extreme rainfall peak, 

though with slight underestimation of peak volume compared to the gauge observation. 

GFS forecasts indicate an impending storm event over the region 4 days in advance; 

however, there is slightly underestimation of peak rainfall amounts compared to both 

the gauge observation and satellite rainfall estimates (i.e. TRMM V7 and RT). As 

shown by the left panels of Figure 5.4, 5.5, 5.6 and 5.7, with lead times ranging from 1 

to 4 days, GFS underestimated the precipitation according to the gauge observations, 

but compares relatively well to the TRMM satellite rainfall estimates. However, the 

GFS forecast products do not indicate run-to-run consistency as the lead time decreases. 

For example, the GFS model predicted the rainfall accumulation accurately at 2 days in 

advance, with a lag of about 6-9 hours in the timing to reach the maximum rainfall 

accumulation following that observed by rain gauges. In contrast, for the forecast just 1 

day prior to the event, the timing of the peak rainfall has improved, but there is 

significant underestimation with errors similar to those associated to the forecasts 

produced 3-4 days prior to the event.  

Similar to urban Beijing and Fangshan, the performance of TRMM V7 and RT are in 

agreement throughout the July 21 event at Zhangfang and Zijingguan gauge station; 
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however, GFS, TRMM V7 and RT have obvious underestimation compared to gauge 

observations.  

Overall, although the GFS shows underestimation of rainfall amounts and around 6-9 

hours delay in reaching the maximum rainfall accumulation, it provided potentially 

informative prognostic skill up to 4 days in advance of the July 21 Beijing event (Figure 

5.4(b)). Because GFS and GENS almost show no skills with 7-, 6- and 5-day lead time, 

the accumulative rainfall and runoff/streamflow simulation plots with 7-, 6- and 5-days 

lead time have been omitted in Figure 5.4, 5.5, 5.6 and 5.7 in this paper.  But the overall 

statistics have been calculated from lead time 7-day to 1-day to provide a general 

picture of how the predictive skill propagate with shorter lead times as shown in Figure 

5.8.  
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Figure 5.4 Accumulative Rainfall initialized from different date at 00UTC at 

Central Beijing (red dot in Figure 5.2) from different products: Gauge observation, 

TRMM RT, TRMM V7, GFS, GENS and GENS mean (left panel); GHPS 

predicted streamflow initialized from different date at 00UTC forced by different 

precipitation products: Gauge observation, TRMM RT, TRMM V7, GFS and 

GENS (right panel) 

Note: Row 1 to Row 4 indicate lead time from 4 days to 1 day; 

Orange dash line indicates 50 years return period surface runoff /streamflow threshold;           

Green dash line indicates 20 years return period surface runoff /streamflow threshold.     
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Figure 5.5 Same as Figure 5.4, but for Fangshan (dark dot in Figure 5.2) 
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Figure 5.6 Same as Figure 5.4., but for the region over upstream of Zhangfang 

Gauge Station (red triangle in Figure 5.2)  

Note: Red asterisk in the last two columns indicate the reported streamflow peak and 

timing. 
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Figure 5.7 Same as Figure 5.6., but for the region over upstream of Zijingguan 

Gauge Station (dark triangle in Figure 5.2)  
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5.4.2 Time Series hydrological evaluation 

Similar to rainfall evaluation, the right panels of Figure 5.4, 5.5 5.6 and 5.7 show the 

temporal evolution of GHPS modeled surface runoff at urban Beijing and suburban 

Beijing – Fangshan, and streamflow time series at Zhangfang and Zijingguan which are 

located at Juma River, the  upstream of Beijing (as shown in Figure 5.2).  In general, the 

modeled surface runoff and streamflow are underestimated when using the GFS forcing 

compared to the rain gauge-forced results on July 21 2012 over the four locations 

mentioned above. The GFS forced runoff at urban Beijing (~ 35mm) was 

underestimated around 20mm compared to gauged forced runoff (~ 55mm) at 4 days of 

lead time in regards to the peak flow, and there was also a slight delay in peak timing 

over urban Beijing (Figure 5.4(b)). For suburban Beijing - Fangshan, at the same lead 

time of 4 days, the GFS-forced simulations matched well with gauge-forced surface 

runoff on peak flow (~50mm v.s. ~45mm) but with 6-9 hours delay in the timing of the 

peak (Figure 5.5(b)). This indicates that the GHPS can give an early warning of up to 4 

days in advance when forced with GFS rainfall forecasts, but the performance does not 

exhibit run-to-run consistency as the lead time decreases. Hlavcova et al. (2006) got 

similar conclusion that there is a considerable forecast variability with deterministic 

forecast – it give a clear signal at 4-day lead time but would have to be reduced in the 

future (Hlavcova et al. 2006). At Zhangfang gauge station, the peak volume of gauge 

forced modeled streamflow is in agreement with reported gauge peaks (red asterisk in 

Figure 5.6) with 3-6 hours lag, showing the promising potential of GHPS detectability if 

forced by quantitative precipitation estimation at real time. GFS-forced streamflow 

simulations with 4 days of lead time at Zhangfang shows an accurate prediction of the 
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peak timing, but with obvious underestimation in volume. For the Zijingguan gauge 

station, streamflow simulations conditioned on all the different forcings (i.e., gauge 

observations, TRMM V7, TRMM RT and GFS) underestimated the peak flow of the 

Beijing event compared to observed streamflow (Figure 5.7). Interestingly, at 2 days of 

lead time, GFS-forced simulations are more accurate than those from TRMM rainfall 

estimates in term of magnitude of the peak streamflow, but are poorer in terms of the 

timing. At 1day lead time, GFS shows advantages regarding both timing and peak 

volume relative to TRMM.    

In order to assess the applicability of the flood detection with the GHPS to ungauged 

basins over the globe, we used a historical database of TRMM RT rainfall estimates. 

The global CREST model was driven by TRMM RT for its archive of 10 years to yield 

a retrospective hydrological simulation from 2002 until 2011 at each grid point. Then, 

the annual peaks were extracted and used to estimate the parameters of a Log Pearson 

Type III distribution. This enables us to estimate the simulated surface runoff and 

streamflow corresponding to return periods of 50 years (orange dash line in Figure 5.4 – 

5.7) and 20 years (green dash line in Figure 5.4 – 5.7). This technique enables the 

GHPS to provide useful early detection information on the basis of its satellite remote 

sensing historical database without the requirement of rain gauges or stream gauges 

information. The results indicate there would have been flooding with a return period of 

approximately 50 years in both urban and suburban Beijing 4 days in advance of the 

event (Figure 5.4 (b), Figure 5.5(b)). This analysis also indicates the possibility of near 

20-year return period flooding at Zhangfang at 4 days in advance and above 20-year 

return period flooding Zijingguan at 2 days in advance on the river.  
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In order to further assess the predictability of GHPS driven by the GFS precipitation 

forecasts, taking rain gauge observations as ground truth and TRMM RT as an 

additional benchmark, both the meteorological and hydrological predictabilities are 

evaluated with Bias (%) and RMSE (%) as a function of lead time. In Figure 5.8, the 

Bias (%) and RMSE (%) values of GFS rainfall relative to TRMM RT are calculated for 

7-day period with different initialization time. For the hydrological predictability, the 

Bias(%) and RMSE(%) as functions of lead time are calculated for urban Beijing, 

suburban Beijing - Fangshan, Zhangfang and Zijingguan respectively, combined into a 

mean of those four series, and plotted in Figure 5.8(b). As shown in Figure 5.8, GFS has 

a general trend of increased prediction skill with shorter lead time in terms of both the 

meteorological (Figure 5.8(a)) and hydrological (Figure 5.8(b)) aspects compared with 

gauge observations and TRMM RT. The bias (%) of GFS-forced simulations relative to 

gauge-forced simulations is approximately -60% four days prior to the Jul 21 event 

(Figure 5.8(b)). Similarly, the Bias (%) of GFS-forced modeled streamflow relative to 

TRMM RT-based simulations is around -20% with 4 days lead time not only indicates 

useful and informative predictive skill, but also shows the competitive hydrological 

prognostic capability of GFS-forced GHPS relative to the detectability of TRMM RT at 

real time (Figure 5.4(b), 5.5(b), 5.6(b) and 5.7(b)).  
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Figure 5.8 (a) Meteorological predictability of GFS relative to Gauge and TRMM 

RT; (b) Hydrological predictability of GFS relative to Gauge and TRMM RT.  
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5.4.3 Probabilistic hydrological evaluation  

Probabilistic forecast derived from ensemble forecasts is considered to be much more 

attractive for flood forecasting system because they can provide additional information 

than the deterministic forecast - the identification the possibility of extreme and rare 

events (Buizza 2008; Gouweleeuw et al. 2005). In this section, we evaluate that how 

much “added value” (useful information) the ensemble streamflow forecasting 

contributes to the GHPS. First, the Ranking Probability Score (RPS, (Jolliffe and 

Stephenson 2012)) is calculated to assess the overall performance of the probabilistic 

forecast. The RPS for one forecast/simulation (e.g. GFS, TRMM forced modeled 

streamflow) is calculated via equation (1) 

    ∑          
                                                          (1) 

Where    is the experienced non-exceeding probability of the forecast and    is the 

experienced non-exceeding probability of the observation. For a group of   forecasts, 

the RPS is the mean of   RPSs: 

   ̅̅ ̅̅ ̅̅  ∑
 

 
    

 
                                                            (2) 

A perfect forecast is with the RPS of the value of 0.  

Figure 5.9 shows the RPS of GFS, GENS, TRMM RT and TRMM V7 at different 

initialization with a 168hrs forecast/simulation horizon at different locations. Generally 

the hydrological performance with TRMM RT and V7 are very similar throughout 

different initial time at different locations as the purple curve and the blue curve are 

almost overlapped with each other. The overall performances of GFS and GENS meam 

are worse than the TRMM RT and V7. For Beijing, Fangshan, and Zhangfang, the RPSs 

of GFS are lower than the RPSs of GENS which indicate the “average” hydrological 
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performance of the GENS is worse than the GFS as forcing of hydrological forecasting; 

for Zijinguan, the forecasting forced by GENS outperforms GFS at the initial time of 

July 19 and 20. The results indicate that the “average performance” of GENS is not 

competitive with GFS, which is in agreement with the information delivered by Figure 

5.4 to 5.7 that the GENS forced modeled streamflow ensemble mean is weak than the 

GFS forced streamflow forecast for most of the case. However, the RPSs of the GENS 

represent the performance of GENS central tendency (ensemble mean); for the 

ensemble streamflow forecast, we usually care more about if the ensemble forecast can 

convey the probability of occurrence of an extreme event. In this study, the traditional 

ensemble streamflow verification matrices (e.g. POD, FAR, Reliability Diagram, 

Relative Operating Characteristic) are not applicable to this study due to the low sample 

size limitation (Brown et al. 2010; Cloke; Pappenberger 2009); therefore,  the ensemble 

predictive efficiency in terms of RPS, peak volume, peak timing, both peak volume and 

timing are developed to investigate that how many of the ensemble streamflow forecasts 

are “doing a better job” than the deterministic one thus delivering additional useful 

information.  

 The ensemble predictive efficiency    in term of RPS is defined as follow: 

   
       

 
                                                                (3) 

     Where   is the total number of ensembles (     in this study),         is the 

total number of ensemble streamflow that have a lower RPS than the GFS. The bars in 

Figure 5.9 shows the percentages of ensemble streamflow forecasts  that “conquer” the 

deterministic forecast are above 25% at Beijing with different lead time; for Zijingguan 

gauge station, the ensemble predictive efficiency is up to 85% at 2-day in advance 
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(initialized at 2012072000). Despite the unstable value of the ensemble predictive 

efficiencies, they are all above zero for those four different locations with different lead 

times, which demonstrate that at least there are some ensemble forecasts that can deliver 

more accurate and reliable early warning information.   
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Figure 5.9 RPS of GFS, GENS, TRMM RT, TRMM V7 and the predictive 

efficiency of GENS in terms of RPS relative to GFS  
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    Similarly to the ensemble predictive efficiencies in term of RPS, the ensemble 

predictive efficiency in term of peak volume       , peak timing       , both peak 

volume and timing         are defined as shown by equation (4), (5) and (6). 

       
      

 
                                                         (4) 

       
      

 
                                                          (5) 

        
       

 
                                                       (6) 

                      are the total number of ensemble streamflow that have 

more accurate steamflow forecast in terms of peak volume, peak timing, and both peak 

volume and timing relative to the deterministic forecast. Likewise   , 

                      also demonstrate the possibility that ensemble forecasts can 

deliver more accurate and reliable early warning information regarding on the peak 

volume and timing of a rare event (Figure 5.10).  
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Figure 5.10 The predictive efficiency of GENS in terms of Peak Volume (PV), Peal 

Timing (PT) and both Peak Volume and Timing (PVT) relative to GFS 
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The above predictive efficiencies of the GENS demonstrate the usefulness of the 

NCEP ensemble forced streamflow prediction relative to that of the deterministic 

forecast. As (Bartholmes; Todini 2005) mentioned that, “the added benefit of ensemble 

forecast is not in quantitative flood forecasting (e.g. hydrograph predictions) but in the 

exceedance of warning levels.” In order to further identify the probability of the 

occurrence of the extreme event, the probabilities of the ensemble forecasts that are 

exceeding the 50- and 20-year reoccurrence warning levels are calculated at those four 

locations with different lead time (Figure 5.11). 4-day ahead of the July 21 2012 Beijing 

extreme event, the deterministic streamlfow forecast at Zhangfang and Zijingguan show 

substantial underestimation to the reported observations (red asterisks in Figure 5.6(b) 

and Figure 5.7(b)); even regardless of the reported observations, the deterministic 

forecasts also bear obvious underestimation compared to the 50- and even 20-year 

reoccurrence threshold (orange and green dashed lines in Figure 5.6(b) and Figure 

5.7(b)), which indicates that purely rely on the deterministic forecast cannot issue an 

early warning  based on the 50- and even 20-year reoccurrence warning levels at 

Zhangfang and Zijingguan. In contrast, the ensemble forecasts show the probabilities of 

20% (Figure 5.11(c)) and 15% (Figure 5.11 (d)) for a 20-year event occurrence, and 5% 

and 10% possibilities for a 50-year event occurrence at Zhangfang and Zijingguan 4 

days ahead of the extreme events. At Beijing (Figure 5.4 (b)) and Fangshan (Figure 5.5 

(b)), the deterministic forecast exceed the 50-year reoccurrence warning level at 4 days 

lead time, which can help issue an 50-year reoccurrence event warning; however, the 

prediction skill degrade with 3 days lead time at Beijing (Figure 5.4 (d)) and Fangshan 

(Figure 5.5(d)), the deterministic forecasts do not exceed even the 20-year reoccurrence 
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warning level, which would make a miss of early warning at this time stage. The 

occurrence probabilities for 50- and 20-year reoccurrence calculated by ensemble 

forecast are 10% and 20% at Beijing, 15% and 15% at Fangshan; this provides added 

information for decision makers to issue an early warning on basis of the deterministic 

run. Despite the overall poor performance of the occurrence probability (low 

probabilities under 30%, Figure 5.11) for this particular case, it at least demonstrates the 

identification of the probability of a rare event, which is considered as the additional 

value to the deterministic forecast. 
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Figure 5.11 The occurrence probability for 50- and 20-year reoccurrence level by 

ensemble streamflow forecast 
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5.5 Conclusion and Future Work 

The results of this study indicate the disastrous July 21 Beijing hydrometeorological 

extreme event was detectable by TRMM satellite precipitation estimates and predictable 

by deterministic GFS rainfall forecasts at least 4 days in advance. These conclusions are 

based on results from inputting the precipitation estimates and forecasts to the Global 

Hydrological Prediction System, which has been trained through the use of a decade-

long retrospective simulation using TRMM RT rainfall. If the operational hydrological 

forecast forced by reliable meteorological precipitation forecast products were available 

and accessible for local stakeholders and integrated into Beijing emergency planning 

and response decision-making systems, governmental agencies will have adequate time 

for preparation and thus very likely reducing the impact of flooding, e.g. the loss of 

human life and property damages. Unfortunately in the real world it is not always 

effective as this hindcast shown, and the GHPS still needs improvements especially in 

engaging local stakeholders. In closing, this study examines the detectability and 

predictability of the current Global Hydrological Prediction System forced by satellite 

rainfall estimations (i.e., TRMM 3B42 RT and TRMM 3B42V7) and NCEP-produced 

GFS deterministic precipitation forecast products on the July 21 Beijing extreme event. 

In addition, this study also explores the additional value of the GFS precipitation 

ensembles for identifying the occurrence probability of an extreme event in a 

hydrological forecasting system. Given the global availability of such satellite-based 

precipitation observing system and GFS precipitation forecasting products, this study 

demonstrates the opportunities and challenges that exist for an integrated application of 

GHPS and GFS precipitation for flood prediction, systematically over the globe. The 
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method of forecasting rare flooding situations by referencing a decade-long 

retrospective simulation enables the forecasts to be applied in basins without the 

requirement of rain gauges or stream gauges.  

    To further improve the Global Hydrological Prediction System for more accurate 

and reliable early flood warning purpose, some future work are either under conducting 

or in planning: first, the regionalization of this system with historical GFS precipitation 

as input for those areas with high occurrence of flooding events is under consideration 

as it can locally improve the predictive skill with expert local partnerships as well as 

data availability; second, a much more extensive evaluation with longer period (not 

only an extreme case study) is planned to be conducted to demonstrate the predictive 

skill of this system over the globe, we have made efforts and have investigated both the 

deterministic and ensemble GFS precipitation forecast for the period Jun –Aug 2012 for 

a more extensive hydrological predictive skill evaluation of the GHPS for the summer 

season, which is the first step stone towards the envisioned future GHPS forced with the 

ensemble GFS together with the global parameterization; third, the data assimilation 

approach, which is increasingly appreciated and supported by the current Aqua/AMSR-

E and future SMAP (Soil Moisture Active and Passive, to be launched in 2014) with 

anticipated better soil moisture data in terms of coverage, accuracy, and resolutions, 

might be applied to assimilate remote-sensing information for improved hydrological 

prediction.  
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Chapter 6. Overall Conclusion 

Accurate and reliable flood prediction, especially in cases of catastrophic flooding 

events that lead to huge fatalities and economic losses, is of significant importance for 

issuing early warning and producing enough time for “preparedness” in advance. The 

impact of human activities and possible climate change is anticipated to cause more 

frequent and severe flooding events. Therefore, further efforts need to be made in the 

real time operational flood monitoring and flood forecasting in order to mitigate the 

huge potential loss from such extreme flooding events. The remote sensing technique, 

which provides a mean of observing hydrological variables at large scales, endeavors to 

further improve flood prediction, especially for those regions with sparse gauge 

observations or even no gauge observations. In addition, compared to the point based 

gauge observations, remote sensing observations can better represent the spatial 

variability of the hydrological components such as precipitation and soil moisture. 

While remote sensing technique improves the understanding and the detection of 

flooding, the recently developed Numerical Weather Prediction (NWP) system which 

provides precipitation forecasts several days in advance to drive the hydrological model, 

has the potential to further improve the hydrological predictions by extending its 

forecasting horizon (lead time). Together, the increasingly accurate precipitation 

forecast products from the NWP and remote sensing precipitation estimation into the 

hydrological model, are expected to improve the accuracy and reliability of 

hydrological monitoring and forecasting at fine spatial resolution and with longer lead 

time.  
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6.1 Remote sensing products for flood monitoring 

The development of remote sensing technique explores the possibility of hydrological 

predictions for ungauged regions as well as for large-scale or even global scale 

predictions by utilizing the remote sensing data for model set-up, parameterization, and 

forcing, etc.  

The topography data such as the Digital Elevation Model (DEM) can be observed 

from the freely available Advanced Spaceborne Thermal Emission and Reflection 

Radometer (ASTER) with 83°N to 83°S coverage and around 30m spatial resolution, 

and the Shuttle Radar Topography Mission (SRTM) with 60°N to 56°S coverage and 

around 90m spatial resolution from NASA can be applied to calculate the slope and 

extract the river net for both global and regional hydrological model set-up. 

At global scale, both the Advanced Very High-Resolution Radiometer (AVHRR) and 

the MODerate resolution Imaging Spectroradiometer (MODIS) provide global land 

cover information which estimates the hydrological physical parameters, such as the 

saturated hydraulic conductivity and the maximum soil water capacity in the CREST 

model.  

Besides contributing to the hydrological model set-up and parameterization, remote 

sensing data also provides information for specific hydrological components to be used 

either as the forcing data (e.g. precipitation) or observation (e.g. soil moisture and 

streamflow) to be assimilated into the hydrological system in order to improve its 

predictive skills. The global-wide precipitation can be estimated from multiple satellite 

missions and sensors such as TRMM - Tropical Rainfall Measuring Mission from 
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NASA, CMORPH – CPC Morphing technique from the Climate Prediction Center at 

NOAA, PERSIANN - Precipitation Estimation from Remotely Sensed Information 

using Artificial Neural Networks that is operational at the University of Arizona, etc. 

Soil moisture, another major hydrological component that controls how much of the 

excess rainfall is infiltrated into the soil and how much of the excess rainfall is 

generated as the overland flow, can be retrieved from both active and passive 

microwave sensors. The global remote sensing soil moisture missions and sensors 

include the passive AMSR-E - the Advanced Microwave Scanning Radiometer - Earth 

Observing System from NASA, the passive SMOS - The Soil Moisture and Ocean 

Salinity from European Space Agency (ESA), the active ASCAT - the Advanced 

Scatterometer from NOAA, and the future mission SMAP – Soil Moisture Active and 

Passive from NASA which estimates the soil moisture by combing both active radar 

observation and passive radiometer observation and will be launched in the year 2014. 

In addition to the remote sensing precipitation and soil moisture estimation, the AMSR-

E and MODIS were recently used to estimate the streamflow at ungauged basins as 

mentioned in Chapter 2 and 3; this can be either directly applied to estimate the 

streamflow for flood detection or be utilized as the data assimilation source to update 

the internal states of the hydrological model, thus improving the hydrological predictive 

efficiency.  

In this study, Chapter 2 and 3 are two proof-of-concept studies that explore and 

demonstrate the applicability of utilizing TRMM precipitation as forcing and 

assimilating spaceborne AMSR-E streamflow signals in both actual domain and 

frequency domain to improve the steamflow prediction in a sparsely gauged basin – 
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Cubango which is located in Africa. However, TRMM has the key limitation in 

underestimation of the precipitation in higher latitude and in the regions of intense 

convection over land. The application of AMSR-E streamflow signals for hydrologic 

perspective, which are impacted by factors including width of the river, channel 

geometry, water temperature relative to land, and measurement pixel resolution, can be 

obtained from Global Flood Detection System (http://www.gdacs.org/flooddetection/) 

at near real time.   

Chapter 2 shows that opportunities and challenges exist for an integrated application 

of a suite of satellite data to flood prediction by careful fusion of remote sensing and in-

situ observations and further effective assimilation of the information into a 

hydrological model. The approach developed and benchmarked in Chapter 3 has great 

potential for probabilistic flood prediction for the vast number of river basins 

throughout the world that are poorly gauged or even ungauged. Chapter 4, which 

conducts the evaluation of the hydrological performance of two TMPA 3B42 products - 

the real time and the post real time rainfall estimation with CREST model, demonstrates 

the potential of utilizing the remote sensing precipitation for real time flood detection 

over the globe.  

  

http://www.gdacs.org/flooddetection/
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6.2 NWP products for flood forecasting 

   While the remote sensing satellite data facilitates global flood monitoring, the 

Numerical Weather Prediction (NWP) products (e.g. the precipitation forecasts and the 

temperature forecasts) bring the potential to extend the hydrological prediction horizons 

thus benefit the early warning system. In addition to the deterministic precipitation 

forecasts from the NWP, ensemble precipitation forecasts address the uncertainty in 

hydrological forecast for flood risk management. And the ensemble streamflow 

forecasts are expected to have much more added value in longer lead time hydrological 

forecast.  

The currently available NWP systems include the National Centers for 

Environmental Prediction (NCEP) Global Forecasting System (GFS) at NOAA, U.S., 

and the European Centre for Medium-Range Weather Forecasts (ECMWF) at U.K., etc.    

Chapter 5 demonstrates the prototype of a Real Time Global Hydrological Prediction 

System (GHPS), which is forced by NOAA’s Global Forecast System (GFS) 

deterministic and ensemble precipitation forecasts, and then evaluates the performance 

of this system for an extremely rare event – the July 21, 2012 Beijing event—in both 

deterministic domain and probabilistic domain. Given the global availability the GFS 

precipitation forecasting products, this study shows the potential of an integrated 

application of GHPS and GFS precipitation for flood prediction, systematically over the 

globe. The method of forecasting rare flooding situations by referencing a decade-long 

retrospective simulation driven by TRMM precipitation, enables the forecasts to be 

applied in basins without the requirement of rain gauges or stream gauges. 
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6.3 Challenges 

The use of remote sensing data and NWP products for hydrological detections and 

predictions is becoming a widespread activity. The Chapters 2 to 5 in this study have 

demonstrated its effectiveness. But challenges still exist in the following aspects: 

- Improving the current satellite remote sensing products in terms of higher spatial, 

temporal resolution and better accuracy  

- Improving the current NWP system in terms of higher spatial, temporal resolution, 

better accuracy and longer lead time 

- Global hydrological model parameterization and data assimilation  
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6.4 Future research directions 

At both regional and global scales, the real time operational hydrological prediction 

can be increasingly appreciated and supported by the current TRMM, future GPM 

(Global Precipitation Mission), and the precipitation forecasts from the NWP system, 

together with the future SMAP. The new satellite missions are anticipated to provide 

better precipitation and soil moisture data in terms of coverage, accuracy, and 

resolutions. Those stated improved perspectives of the soil moisture mission SMAP, are 

expected to significantly benefit the hydrological data assimilation thus improving the 

predictive skills. To further extend the forecast horizons of the Global Hydrological 

Prediction System for more accurate and reliable early warnings: first, the 

regionalization of the Global Hydrological Prediction System with historical GFS 

precipitation as input for those areas with high occurrence of flooding events is under 

consideration as it can locally improve the predictive skill with expert local partnerships 

as well as data availability; second, the finer spatial resolution of the GFS precipitation 

forecasts, or the reliable dynamic downscaling technique is expected to better represent 

the spatial variability of the precipitation and facilitate the hydrological predictions; 

third, a much more extensive evaluation over a longer time period (in addition to an 

extreme case study as in Chapter 5) is planned to be conducted to demonstrate the 

predictive skill of this system worldwide.  We have made efforts and have investigated 

both the deterministic and ensemble GFS precipitation forecast for the period June - 

August 2012 for a more extensive hydrological predictive skill evaluation of the GHPS 

for the summer season, which is the first stepping-stone towards the envisioned future 

GHPS forced with the ensemble GFS together with the global parameterization.   


