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ABSTRACT 

 

 

Information on the uncertainties in projections of future climate change from 

global climate models (GCMs) is vital for their effective use across a wide range of 

applications, including their increasing role in driving regionally downscaled models 

for higher resolution output useful to local impacts studies (e.g., hydrologic, 

ecosystems, agricultural).  To better estimate GCM uncertainties, a multi-thousand 

member perturbed-physics ensemble (PPE) of climate simulations was assessed to 

quantify uncertainties in future climate change projections for the globe and North 

American region.  The simulations were generated through the distributed computing 

project Climateprediction.net (CPDN), a joint effort between the UK Met Office 

Hadley Centre and Oxford University, where thousands of simulations were run on 

PCs across the globe, each running a different version of the Hadley Centre-based 

HadCM3L coupled atmosphere-ocean GCM with variations to their model physics 

parameters. 

The large PPE was able to model many observed features in the Earth’s 

climate system and climate indices were found to be sensitive to changes in the 

model’s physics parameters with cloud physics parameters being of most importance.  

The PPE was constrained using observational performance and parameter sensitivity 

assessments and it was found that the constrained ensembles reduced both the 

ensemble mean and uncertainty range of the initial ensemble.  Results were compared 

to CMIP3 and CMIP5 ensembles and the CMIP ensembles were found to 



 xxv 

underestimate the full range of uncertainties in physics parameters, thus indicating the 

usefulness of large PPEs to inform users of GCM output of the full range of model 

parameter and structural uncertainty.         
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CHAPTER 1 

INTRODUCTION 

 

Earth’s climate is a highly complex and dynamic system with many interacting 

components including the atmosphere, hydrosphere, cryosphere, land surface, 

biosphere, and in more recent times the impacts of human activities (i.e., anthrosphere) 

(Figure 1.1).  Changes amongst these components take place on differing time scales 

and are driven by a variety of forcing mechanisms (Ruddiman 2007).  Over relatively 

short time periods (i.e., hundreds to a few thousand years) the long-term forcing factors 

(e.g., solar output changes over millions to billions of years, tectonic activity, and 

orbital parameter variations) remain essentially constant and therefore have limited 

impact on climate.  The main drivers of century- to millennial-scale changes therefore 

are short-term solar forcing variations and changes in the composition of the 

atmosphere (i.e., from anthropogenic effects).  On even shorter time scales (e.g., 

interannual to decadal), Earth’s climate can vary due to phenomena such as explosive 

volcanic eruptions capable of reducing solar radiation reaching Earth’s surface or from 

natural internal variability mechanisms such as coupled atmosphere-ocean variations 

(e.g., El Niño-Southern Oscillation (ENSO), Artic Oscillation (AO), North Atlantic 

Oscillation (NAO), Pacific Decadal Oscillation (PDO)) that can exchange and/or 

redistribute heat and energy between and/or within the atmosphere and ocean systems.   
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Figure 1.1:  Various interacting components making up the Earth’s climate system.  The most 

important components include the atmosphere, hydrosphere, cryosphere, land surface, 

biosphere, and anthrosphere. (From Stocker (2011).) 

 

 

Acquiring a greater understanding of the driving forces in Earth’s climate can 

better equip us to anticipate how the climate may change in the future and possible 

impacts these changes could have on natural, managed, and human systems.  With that 

in mind, an extensive amount of research has been conducted over the past decades 

investigating how Earth's climate system has changed in the past and how it may change 

in the future.  This research has been summarized in a series of reports released every 5-

6 years by Working Group I (WGI) of the Intergovernmental Panel on Climate Change 

(IPCC; IPCC 1990, 1996, 2001, 2007).  Each successive report’s findings have grown 

in confidence with the central message being that the Earth's climate is changing, that 

anthropogenic effects are the dominant cause of these changes since the 1950's and that 
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the climate will continue to change in the future as anthropogenic effects continue to 

dominate.         

 The Summary for Policymakers from WGI’s contribution to IPCC’s Fifth 

Assessment Report (AR5) was recently released (Alexander et al. 2013) and affirmed 

that “Warming of the climate system is unequivocal, and since the 1950’s, many of the 

observed changes are unprecedented over decades to millennia.”  Figure 1.2 illustrates 

warming over the past century from three independent global temperature data sets.  All 

three of these data sets show a consistent pattern of warming since the early 1900's with 

considerable interannual and decadal variability embedded within the trend.  This 

warming trend has been apparent across most of the globe at the regional level as well 

(Figure 1.3) with the greatest regional surface warming located on continental land 

masses.  This is because a large portion of the surface heating over the ocean is used for 

evaporating water as well as the fact that the ocean has a greater specific heat than the 

land surface.  It can also transfer surface layer heat to greater depths. 
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Figure 1.2: Observed annual mean global (land and ocean) temperature anomalies from 1850-

2012.  Data sets include HacCRUT4 (black; Morice et al. 2012), GISSTEMP (blue; Hansen et 

al. 2010), and NOAA NCDC MLOST (orange; Vose et al. 2012).  Anomalies are from 1961-

1990 base period average.   (Adapted from Alexander et al. (2013).) 

 

 

 

 

 
Figure 1.3:  Observed surface temperature change from 1901-2012 from NOAA NCDC 

MLOST (Vose et al. 2012).  Trends were calculated for grid cells with greater than 70% 

complete records and those cells with trends significant at the 10% level contain a “+” sign.  

(From Alexander et al. (2013).) 
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While the majority of the globe experienced significant warming over the past 

century (Figure 1.3) there are two regions of the globe that actually experienced slight 

cooling.  The main region is in the North Atlantic where the relative cooling is thought 

to be due in part to an influx of cold, fresh (i.e., low density) water from melting glacial 

ice sheets as well as a relative shift to a more positive phase of the NAO which has a 

cooling effect on the region (e.g., Bindoff and Willebrand 2007).  The second region 

with slight cooling (or relatively no warming) was in the east-central United States 

(U.S.) which has been linked to increased cloud cover, precipitation, and soil moisture 

in the central U.S. due to the linkages between the Great Plains low-level jet and 

regional precipitation (Pan et al. 2004) as well as increased cloud cover in the southeast 

U.S. due to interactions between anthropogenic aerosol pollutants and organic aerosols 

from forest regrowth (Portmann et al. 2009).  Increased irrigation across the 20
th

 century 

also has been identified as a possible cause for some of the cooling (Puma and Cook 

2010) as well as multi-decadal variability of sea surface temperatures (SST’s) in the 

tropical Pacific (Robinson et al. 2002; Meehl et al. 2012) with warmer waters 

corresponding to increased cloud cover over the east-central U.S. 

 Besides temperature observations there are a number of other recorded indices 

indicating a warming world over the last century, especially since 1950.  Figure 1.4 

summarizes some of most important indicators which generally indicate warmer 

temperatures in the lower troposphere and oceans as well as decreases in Arctic sea ice 

extent, mountain glaciers and Northern Hemisphere spring snow cover.  Additionally 

there have been increases in sea-level and atmospheric moisture.  Precipitation across 

the globe also has changed over the last century, but with much more regional diversity 
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(Figure 1.5).  In general, dry areas are getting drier and wet areas wetter, especially 

across the last 60 years, indicating an intensification of the hydrologic cycle.  Focusing 

on the North American (NA) region, the more recent part of the record (i.e., 1979-2010) 

has shown drier conditions in the west-southwest as well as the southeast and wetter 

conditions in the central to north-central region.          

 

 
 

Figure 1.4: A number of indicators of a warming world.  See citation for detailed data set 

information.  (From www.ncdc.noaa.gov/bams-state-of-the-climate/; Updated from Arndt et al. 

(2010).)  
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Figure 1.5:  Trends in land-based precipitation for 1901-2010 (left) and 1951-2010 (right) from 

the Global Precipitation Climatology Centre (GPCC) data set (Becker et al. 2013; Schneider et 

al. 2013).  Trends are calculated within grid cells with greater than a70% complete record.  

White areas (on land) indicate incomplete or missing data.  Dark colored individual grid cells 

indicate cells with significant trends (i.e., zero trend is outside 90% confidence interval. (From 

IPCC (2013).)  

 

 The cause of the late 20
th

 century warming has been attributed to increases in 

anthropogenic greenhouse gas emissions, particularly CO2 (IPCC 1990, 1996, 2001, 

2007; Alexander et al. 2013).  As shown in Figure 1.6, atmospheric CO2 has increased 

significantly since the industrial revolution, especially when compared to changes over 

the past few thousands of years (Figure 1.6(c)),  with the majority of the increase 

coming from the burning of fossil fuels (Figure 1.6(b); Boden et al. 2010).  In 2012 

atmospheric CO2 levels reached 392 ppm (Figure 1.6(a)) and concentrations now are 

higher than anytime in at least the last 800,000 years (see Jansen et al. (2007) and Luthi 

et al. (2008)).  CO2 and other greenhouse gases such as methane (CH4) and nitrous 

oxide (N2O), which also have increased markedly in the recent past (e.g., Jansen et al. 

2007), act to warm the planet by absorbing and reemitting longwave radiation back to 

the surface thereby keeping a portion of the longwave energy within the climate system 

that would otherwise have exited out the top of the atmosphere.  All greenhouse gases 
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provide this same general warming effect but CO2 has been identified as the most 

"climate-relevant" greenhouse gas because of its relative concentration, rate of increase 

from anthropogenic sources, and long life span in the atmosphere (Lacis et al. 2010).   

 
Figure 1.6:  Measurements of atmospheric carbon for (a) CO2 concentrations from Mauna Loa, 

HI (red) and the South Pole (black) from 1958- 2012 (Alexander et al. 2013), (b) anthropogenic 

carbon emissions from burning coal, oil and natural gas and cement production (Boden et al. 

2010)), and (c) reconstructions of atmospheric CO2 over the last 20,000 years based on a variety 

of paleoclimate records combined with current direct measurements (See Figure 6.4 from 

Jansen et al. (2007) for data set descriptions and references).   
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Figure 1.7 provides the relative proportion of anthropogenic factors that have 

acted on Earth’s climate system since the year 1750 as well as natural changes from 

solar forcing.  (Note that volcanic forcing was not included because it has only a short-

term impact on the climate over the time scale considered.)  Changes in the different 

drivers of climate are given in terms of radiative forcing (RF) which is a measure of the 

net change in the Earth’s energy balance in response to an external perturbation.
1
  A 

positive RF value indicates warming and a negative value cooling of global mean 

temperatures.  As Figure 1.7 illustrates, the net anthropogenic RF (bottom red bars) was 

positive and significantly larger than the influence of solar irradiance changes.  The 

majority of this forcing came from well mixed greenhouse gases with CO2 being the 

largest contributor.  The anthropogenic positive forcing has increased rapidly since the 

1950’s with the total RF relative to 1750 roughly doubling from 1950-1980 and then 

nearly doubling again from 1980-2010.  This illustrates the accelerating influence 

anthropogenic effects are having on the climate system.     

 

 

                                                 
1
 Radiative forcing is defined as “the change in net (down minus up) irradiance (solar plus longwave; in 

Wm
-2

) at the tropopause after allowing for stratospheric temperatures to readjust to radiative equilibrium, 

but with surface and tropospheric temperatures and state held fixed at the unperturbed values” (IPCC 

2007).  In WGI AR5 (Alexander et al. 2013), rapid adjustments to perturbations were allowed in the RF 

calculation so as to include faster climate responses from drivers such as aerosols.    
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Figure 1.7:  Radiative Forcing of various climate drivers from their changes between 1750-

2011 in Wm
-2

.  Best estimates are shown as black diamonds and uncertainty ranges as extended 

lines.  Levels of confidence are given on the right hand side as very high (VH), high (H), 

medium (M), low (L), and very low (VL).  See reference for additional details for each 

individual forcing.  (From Alexander et al. (2013).) 

 

 

With an understanding of the various drivers of Earth’s climate system, global 

climate models, also referred to as general circulation models (GCMs), have been used 

to simulate past climate conditions across the globe and to make projections of possible 

future conditions (e.g., Christensen et al. 2007; Hegerl et al. 2007; Meehl et al. 2007b; 

Randall et al. 2007).  (See Chapter 2 for an expanded discussion of climate modeling).  

One way to test climate models and assess our understanding of climate drivers is to 
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simulate past conditions and see how well the models agree with observations.  When 

models include both natural and anthropogenic forcings they generally are able to 

simulate observed trends at both global and regions scales (Figure 1.8).  However, when 

only natural forcings are simulated, models cannot reproduce the warming trend over 

the latter part of the observational time period (Figure 1.8), further strengthening the 

evidence for the role anthropogenic effects are having on the climate system.       
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Figure 1.8:  Comparison of simulated climate change across the historical time period for 

simulations CMIP5 simulations that use both natural and anthropogenic forcings (pink) and 

those that use only natural forcings (blue).  Simulated quantities are temperature (light brown 

backgrounds), ocean heat content (blue backgrounds) and sea ice extent (white background).  

(From IPCC (2013).) 

 

With increased confidence in the ability of GCMs to reproduce general trends in 

the past, they have been used to generate projections of future conditions for the planet 

as a whole and at the regional scale (e.g., Christensen et al. 2007; Meehl et al. 2007b).  

Figure 1.9 provides annual mean global temperature anomalies as simulated by the most 
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advanced global climate models in the world (i.e., the World Climate Research 

Programme’s (WCRP’s) Coupled Model Intercomparison Projects Phase 5 (CMIP5)).  

The CMIP5 simulation ensemble is compared with observational estimates from 1950-

2004 and then simulates future projections based on a variety of future anthropogenic 

forcing scenarios called Representative Concentration Pathways (RCP; Vuuren et al. 

2011) ranging from a low-emissions scenario (RCP2.6) to a high emissions scenario 

(RCP8.5).  (Refer to Chapter 2 for more details.)  It is clear that a relatively large range 

of uncertainty exists for each individual scenario within the CMIP5 ensemble as well as 

an even larger uncertainty range based on choice of RCP.   Figure 1.10 further 

emphases the uncertainty in choice of RCP by showing globally gridded model output 

differences in the low (RCP2.6) and high (RCP) emission scenarios for changes in 

temperature (Figure 1.10(a)) and precipitation (Figure 1.10(b)) over the next century.       

 
 

Figure 1.9:  CMIP5 ensemble annual mean global surface temperature anomaly time series 

(from 1986-2005 mean) simulated over the historic period (black) and for two future RCP 

scenarios with ensemble mean and uncertainty range.  The number of models used to calculate 

the mean is shown for each distribution.  Distributions on the right show ensemble mean and 

uncertainty range for mean temperature from 2081-2100 for the four different RCP scenarios 

(From Alexander et al. (2013).) 
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Figure 1.10:  Spatial maps of CMIP5 multi-model mean for (a) annual mean surface 

temperature change and (b) percent change in annual mean precipitation from 1986-2005 to 

2081-2100 for the lower (RCP 2.6) and higher (RCP 8.5) emissions scenarios.  Hatching 

indicates where the multi-model mean change is small compared to internal variability (i.e., 

change is less than 1 standard deviation of the range of internal variability) and stippling 

indicates where the change is large compared to internal variability (i.e., change is greater than 

2 standard deviations of the range of internal variability).  The number of models used to create 

the mean is shown in upper right corner. (Adapted from Alexander et al. (2013).) 

 

 

 While these global climate model projections provide an extensive amount of 

information across the globe they are limited in their ability to provide directly 

applicable information to decision makers at the regional and local level because of the 

course spatial resolution of GCMs and potential regional and local biases (e.g., Fowler 

et al. 2007).  Therefore, regional downscaling methods have been established to 
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generate relatively high resolution climate model output that can be incorporated into 

local scale models such as ecosystems, hydrologic, and agricultural models used in 

climate change impacts studies.  However, these downscaling methods still utilize GCM 

output to drive their regional models and therefore model uncertainties in the GCM 

become amplified as they move downstream through regional and local model 

projections.  Thus understanding, quantifying, and constraining uncertainties in GCMs 

is a fundamental necessity if the scientific community is to provide useful and reliable 

future projections that can be applicable at the regional and local level.  In fact, 

Racherla et al. (2012) argue that the most important factor in climate change 

downscaling studies is the skill of the driving global model and that the highest priority 

should be given to improving GCM long-range climate predictive skill.         

 Therefore, the background motivation of this dissertation is to provide a better 

understanding of uncertainties within global and regional climate simulations from a 

GCM and to identify whether these uncertainties can be quantified and used to constrain 

future projections.  There are three primary sources of uncertainty within GCM climate 

change predictions (e.g., Tebaldi and Knutti 2007; Hawkins and Sutton 2009): internal 

variability of the modeled climate system due to changes in the initial state of the 

climate, model uncertainty based on variations in model development and choice of 

physics parameters, and uncertainty in the response of the modeled climate due to 

changes in the external forcings (i.e., anthropogenic emissions scenario and changes to 

natural forcings).  This study will focus on model uncertainties in the first two 

categories (i.e., internal variability and physics parameter variations) through use of a 

novel multi-thousand member perturbed physics ensemble (PPE) developed through the 
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Climateprediction.net (CPDN) project (see Chapter 3).  This PPE is different than the 

CMIP Phase 3 (CMIP3) and Phase 5 (CMIP5) multi-model ensembles (MME’s) in that 

it is composed of a large number of simulations generated from a single model with its 

physics parameters changed across their range of uncertainty.  For example, there are 

1,214 control simulations (i.e., constant annual but seasonally varying radiative forcing) 

and 1,692 transient simulations (i.e., includes historic forcings and future emissions 

scenarios) totaling approximately 170,000 years and 237,000 years of modeled output 

respectively. (See Chapter 3 for more details).  The MME, on the other hand, consists of 

a relatively limited number of simulations (on the order of 30-50 simulations for control 

and transient ensembles) generated from different climate modeling groups across the 

world, each representing climate processes in different ways.  (See Chapter 2, Sections 

2.2, 2.3 for discussion of MME and PPE respectively.)  Therefore the MME represents 

a collection of simulations considered by each modeling group to be their most probable 

representation of Earth’s climate system (e.g., simulations are adjusted to best fit 

observational estimates).  Thus, the PPE may provide additional information on 

uncertainties that may not be represented in the MME since the MME simulations are 

“tuned” to observations and multiple groups sometimes use the same or similar 

components or parameterizations and therefore they may not span the full range of 

uncertainties (e.g., Pennell and Reichler 2010; Masson and Knutti 2011).  Additionally, 

the number of simulations in this PPE is significantly larger than most previous PPE 

analyses (e.g., McSweeney et al. 2012; Sexton et al. 2012) and includes the full coupled 

model system with atmosphere, ocean, land surface, and sea ice processes represented 

whereas many previous assessments did not include the fully dynamic coupled model 
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(e.g., Murphy et al. 2004; Piani et al. 2005; Stainforth et al. 2005; Knutti et al. 2006; 

Sexton et al. 2012) and therefore offers a more robust assessment of the impact model 

parameter variations can have on projected future climate.   

  One of the fundamental questions this study hopes to address is whether a large 

PPE can provide useful information to complement or improve information provided by 

MME’s.  Global and North American regional changes in monthly mean temperature 

and precipitation rate from 1941-2080 will be assessed to identify whether the PPE can 

simulate observed mean climate and its natural variability as well as historical changes 

such as long-term trends and relationships between global and regional changes. The 

observational analyses can then be used to identify whether some of the simulations 

produce unrealistic climates.  If so, that information can be used to constrain future 

climate projections based on the model’s goodness-of-fit to past performance.  The 

analysis will be limited to monthly mean temperature and precipitation rate because 

limitations in the saved output (i.e., regional means include ocean grid cells) require 

observational data sets of sufficient quality over the oceans and because temperature 

and precipitation are the two main climatic variables assessed in climate change studies.    

Additionally, another major question to be addressed in this study is whether 

climatic indices are sensitive to changes in model physics parameters and if this 

sensitivity occurs at the global and/or regional level and to what extent.  This 

information can be used to quantify whether certain parameter values lead to unrealistic 

model climates which can then be used to constrain future projections.    
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Finally, this study will investigate how the modeled mean, variability, past 

changes, and future projected changes of the large PPE compares to CMIP MME’s, 

including how any PPE constrained future projections compare to the CMIP MME’s 

and whether the CMIP MME’s are covering the full range of possible model 

uncertainty.   Therefore the overall goal of this study is to quantify uncertainties in 

global and North American regional climate change over the observational and future 

time period (i.e., 1941-2080) using a multi-thousand member perturbed physics global 

climate model ensemble in order to provide a better assessment of uncertainties in 

projections of future climate change.   

Chapter 2 provides an overview of climate modeling including the hierarchy of 

models available and the differences between the global climate model PPE and MME 

as well as sources of climate model uncertainty.  Chapter 3 gives a description of the 

CPDN project and design of the climate model and experiment used to generate the 

large PPE in this study.  Chapter 4 provides an overview of the observational data sets 

used for comparing the modeled output to the real Earth system as measured over the 

historical period.  Chapter 5 evaluates the performance of the CPDN PPE model control 

simulations (i.e., constant annual but seasonally varying radiative forcing) to assess the 

modeled mean climate and its internal variability compared to the climate system’s 

natural variability from 20
th

 century observational data sets.  It also provides an 

assessment of model sensitivity to parameter variations.   Chapter 6 continues the 

assessment of the CPDN model internal variability but compares it to natural variability 

in the climate system as estimated from paleoclimate proxy data records from North 

America across the past few thousand years to provide an alternative measure that is not 
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limited to the relatively shorter temporal period of the higher resolution instrumental 

records and satellite data investigated in Chapter 5.  Chapter 7 evaluates the 

performance of the CPDN PPE model transient simulations (i.e., simulations including 

historic forcings and future emissions scenarios) over the observational time period and 

assesses the sensitivity of modeled past and future trends to parameter variations.  Then 

future projections are constrained based on observational performance and parameter 

sensitivity.  Chapter 8 provides a comparison between the CPDN PPE control and 

transient simulation results with the CMIP3 and CMIP5 MME simulations and Chapter 

9 summarizes the major results of the study and offers a discussion of the final 

conclusions and potential for future work.    
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CHAPTER 2 

CLIMATE MODELING OVERVIEW 

 

  

Understanding the full complexity of Earth's climate system is a difficult task 

requiring information at high spatial and temporal resolution extending over long 

periods of time.  In an ideal setting, controlled experiments would be performed on the 

entire Earth system with all interacting processes closely monitored.  This type of Earth 

laboratory does not exist and therefore it is simulated using numerical models with 

simplified features of the climate system wherein a number of experiments can be run 

using a variety of boundary conditions, initial conditions, and forcing mechanisms to 

better quantify how and why the climate has changed in the past and project how it 

might change in the future.  This chapter provides a brief overview of climate modeling 

with an emphasis on global climate model ensembles because of their use throughout 

the rest of this study.  Section 2.1 reviews the hierarchy of climate models available.  

Section 2.2 discusses the various uncertainties inherent in these climate models while 

Sections 2.3 and 2.4 describe global climate model multi-model ensembles and 

perturbed physics ensembles respectively.   

 

 

2.1  CLIMATE MODEL HIERARCHY 

There are a number of key processes or components that must be considered 

when constructing a model of the climate system.  These include radiation (input, 

absorption and emission), dynamics (movement of energy), surface processes (changes 

in albedo, emissivity as well as energy and moisture exchanges), chemistry (chemical 



21 

 

composition and interactions) and resolution (temporal and spatial scales).  There are 

different types of models that have been developed over the years, each varying in 

complexity and purpose.  These can be summarized into four basic groups: lower 

complexity models, Earth Models of Intermediate Complexity (EMICs), global climate 

models (GCMs), and regionally downscaled models (e.g., McGuffie and Henderson-

Sellers 2005).   

 

2.1.1  Lower Complexity Models 

 Lower complexity models, sometimes identified as energy balance models 

(EMBs), are low-order models that may only calculate a global or hemispheric mean 

and do not provide information at the regional scale.  They typically include solving an 

energy balance equation and may neglect balances of other physical components of the 

climate system (e.g., mass, momentum, moisture, chemical constituents).  They can 

produce a large ensemble because of their simple computations and therefore can be 

useful for approximating output of more complex models.   

 

2.1.2  Earth Models of Intermediate Complexity (EMIC) 

Earth Models of Intermediate Complexity (EMIC) cover the spectrum from 

lower complexity EMBs to highly complex global climate models (GCMs) and can 

include dynamics of the atmospheric and oceanic circulation and representations of 

biogeochemical cycles.  They can include a number of the processes simulated in 

GCMs but with less detail and coarser resolution.  For example, two spatial dimensions 
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may be used instead of three.  Some EMICs include fewer processes and lower detail in 

order to analyze feedbacks between as many components of the climate system as 

possible while others limit interactions between the various components in order to look 

at climate variability in long-term ensemble simulations.   

  

2.1.3  Global Climate Models (GCMs) 

 The most sophisticated models are the global climate models or general 

circulation models (GCMs), which simulate a large number of processes and generate a 

three-dimensional view of the time evolution of the atmospheric and oceanic state.  The 

most comprehensive GCMs are the coupled atmosphere-ocean GCMs which couple 

interactions between the various climate system components (e.g., atmosphere, ocean, 

land surface, sea ice, carbon cycle) and provide the most complete assessment of the 

structure and evolution of the climate system.  GCMs solve a series of fundamental 

equations that involve the conservation of energy, momentum and mass.  Their 

temporal and spatial resolutions continue to change with computational advancements 

but are roughly tens to hundreds of kilometers in the horizontal direction with 

approximately 20-40 vertical levels and a time step of around 10-30 minutes. 

 Due to the still relatively large spatial scales used in GCMs it is not possible to 

model all aspects of the climate system because some processes take place on the sub-

grid scale.    Therefore, it is necessary to parameterize these sub-grid processes in order 

to include their effects on other components of the climate system.  Parameterization 

involves representing important unresolved physical processes in terms of their 
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relationships to resolved model variables.  Parameterization schemes are utilized for a 

number of processes including radiation, land surface interactions, convection, large-

scale precipitation, cloud cover, boundary layer evolution and orographic drag 

(Stensrud 2007).   

 The complexity of GCMs has advanced significantly over the past few decades 

as illustrated in Figure 2.1.  With the addition of more processes and their continued 

improvements, GCMs have been better able to simulate the Earth’s climate system.  

Additionally, computation power has significantly increased, allowing for increased 

horizontal and vertical resolutions in both the atmosphere and ocean as well as 

increased storage capacity for the higher resolution output.  GCM ensembles and 

ensemble uncertainty will be discussed further in Sections 2.2, 2.3, and 2.4.   
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Figure 2.1:  Illustration of the development of coupled climate models since the mid-1970’s 

and when various components were introduced into the model.  Cylinder height represents the 

complexity the processes and how it has increased over time.  The timing of the five IPCC 

reports is given along the top.   (From IPCC (2013).) 

 

 

2.1.4  Regional Downscaled Models 

Even with the improvements to spatial resolution within GCMs, their horizontal 

resolution is still only on the order of tens to hundreds of km’s and therefore difficult to 

use for impacts assessments at the local level (e.g., ecosystems, hydrologic, agriculture).  

For this reason, two main downscaling methods have been developed to obtain more 

practical regional output.  One method is referred to as dynamic downscaling which 
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uses a high-resolution regional climate model that is driven by boundary conditions set 

by a GCM.  Dynamical downscaling models work much the same way GCMs do only 

they simulate physical processes at a higher resolution and over a relatively smaller 

area.  The GCM simulates what is occurring around the rest of the world and then their 

output is incorporated into the boundaries of the regional model.  The North American 

Regional Climate Change Assessment Program (NARCCAP) is one of the main sources 

for dynamically downscaled products for North America (Mearns et al. 2012; 

http://www.narccap.ucar.edu/index.html)    

The other regional downscaling method is statistical downscaling which utilizes 

relationships between large-scale atmospheric variables and regional observations to 

estimate regional changes from GCM output.  These statistical models make the 

assumption that relationships between large-scale features and the local climate will 

remain constant over time.  Recently, a database of over 100 statistically downscaled 

climate projections from 33 CMIP5 GCMs were generated over the conterminous 

United States at 800 meter resolution (Thrasher et al. 2013). 

 

2.2  MODEL UNCERTAINTY IN FUTURE PROJECTIONS 

 There are three main sources of uncertainty within GCM climate change future 

projections (e.g., Tebaldi and Knutti 2007; Hawkins and Sutton 2009): internal 

variability of the modeled climate system due to changes in the initial state of the 

climate, uncertainty in the response of the modeled climate due to changes in the 

external forcings (i.e., anthropogenic emissions scenario and changes to natural 
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forcings), and model uncertainty based on variations in model structural development 

and choice of physics parameters. 

 

2.2.1  Internal Variability Uncertainty   

 The internal variability of a climate model refers to the natural variability within 

the modeled climate system in the absence of any external forcing.  This variability can 

be due to non-linear dynamical processes in any of the components, such as the 

atmosphere or ocean (e.g., Schneider and Kinter 1994), the transfer of atmospheric 

variability into the ocean during the atmosphere-ocean coupling process for heat flux 

forcing (e.g., Dommenget and Latif 2008) and wind-driven fluctuations (e.g., Alexander 

2013), or internal ocean variability (e.g., Delworth et al. 1993).   

 This uncertainty due to internal variability is important over shorter periods of 

time and over smaller regions.  Using a number of different models, Hawkins and 

Sutton (2009) showed that internal variability played a large role in the uncertainties in 

projected annual temperature change out to roughly 10 years and were of greater 

importance at the regional level (Figure 2.2).  Model uncertainty (discussed in Section 

2.2.3) then took over as being most important out to around 50 years after which time 

external forcing scenario uncertainty (discussed in section 2.2.2) became dominant.  

Hawkins and Sutton (2011) found that internal variability was the dominant source of 

uncertainty for decadal scale changes in regional precipitation out to the first couple 

decades. 
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Figure 2.2: Total variance for global mean decadal surface air temperature predictions split into 

uncertainty in internal variability (orange), model (blue), and forcing scenario (green).  Global 

and North American 20 projections are shown in the two smaller panels with variance in annual 

mean temperatures over the first five years given as well.  (From Hawkins and Sutton (2009).) 

 

 

 Using a single model, Deser et al. (2012) looked at projections of temperature 

and precipitation trends from 2000-2060 using 40 simulations having the same external 

forcing (i.e., SRES A1B) but different atmospheric initial conditions.  They compared 

the variation in trends in their initial condition ensemble to the trends found in the 

CMIP3 multi-model ensemble (see Section 2.2.3 and Section 2.3) under the same 

forcing scenario but using 21 different models to give an estimate of the variation in 

model trends due to internal variability.  They found that internal variability accounted 

for approximately 25-50% of the variation in projected temperature trends over most of 
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the globe and 50-75% of the variation over western NA (Figure 2.3(b)).  Additionally, 

they found that internal variability impacted precipitation more than temperature as is 

seen in Figure 2.3(a) where a larger percentage of the variation in trends is associated 

with internal variability, especially across central NA and other regions across the 

globe.    

 

(a) 

 
(b) 

 
 

Figure 2.3:  Ratio of the variability in trends (2005-2060) between an ensemble varying 

only its atmospheric initial conditions (i.e., internal variability) and the CMIP3 

ensemble for (a) precipitation and (b) surface temperature.  Stippling indicates ratios 

significantly different than 1 at the 95% confidence level. (Adapted from Deser et al. 

(2012).) 
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2.2.2  External Forcing Uncertainty   

 External forcing uncertainty is associated with a lack of understanding of how 

certain external factors driving the climate will change in the future.  These external 

factors include changes in natural forcings such as solar output and volcanic activity 

and anthropogenic effects such as greenhouse gas or pollutant (i.e., aerosol) emissions, 

land use change, etc., which will be dependent on socioeconomic conditions and 

technical developments.  Figure 2.4 provides possible future scenarios in anthropogenic 

greenhouse gas emissions (Figure 2.4(b)) based on the primary type of energy that is 

utilized moving forward across the 21
st
 century (Figure 2.4(a)) as established in the 

Representative Concentration Pathways (RCPs) from Vuuren et al. (2011).  As is 

evident from the different scenarios, even if a perfect climate model existed that was 

capable of simulating all of Earth’s climate processes at all temporal and spatial 

resolutions there would still be a large degree of uncertainty in future projections simply 

based on the uncertainty in how future anthropogenic forcings will change.  These 

external forcing uncertainties linked to future emission scenario differences are 

investigated using multi-model ensembles which are discussed in Section 2.3.   
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(a) 

 
(b) 

 
 
Figure 2.4:  Alternative future scenarios from the four Representative Concentration Pathways 

(RCPs) described in Vuuren et al. (2011).  Examples are shown for (a) the primary energy type 

used across the globe from 2000-2100, including a comparison between the various energy 

sources between 2000 and 2100 levels for each scenario (right plot) and (b) atmospheric 

concentrations of the three main anthropogenic greenhouse gases.  Dotted lines represent the 

previous SRES scenarios and gray shading indicates results from other literature sources (see 

reference for details).  (From Vuuren et al. (2011).) 

 

 Unknown changes to natural forcings (e.g., solar and volcanic) also create 

uncertainties in future climate projections but to a much lesser extent than 

anthropogenic effects.  Future projections of climate change typically do not include 

scenario variations in these natural forcings because their impacts are assumed to be 

relatively small compared to anthropogenic effects over time periods of roughly a few 
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hundred years (e.g., solar impact from 1750-2010 shown in Figure 1.7 in Chapter 1) and 

because of their low predictability, especially volcanos.  However, some climate studies 

are including such natural forcing scenario variations such as the model experiment 

used in this study (see Chapter 3, Section 3.3.3 and Figure 3.3).   

 

2.2.3  Model Uncertainty   

 Model uncertainty originates from the fact that different models are constructed 

in different ways and therefore can produce differing responses when the same external 

forcings are applied.  There are two types of model uncertainty typically classified as 

distinct from one another.  These are model structural uncertainties and model physics 

parameter uncertainties (e.g., Tebaldi and Knutti 2007).  The model structural 

uncertainties are associated with variations to broad scale components of the model 

such as type of grid, temporal and horizontal resolution, numerical methods used to 

solve the equations, parameterization schemes used, or other dynamical components 

such as those representing the carbon cycle, vegetation, cloud-aerosol interactions, 

atmospheric chemistry, etc.  Multi-Model Ensembles (MMEs) are typically used to 

assess model structural uncertainties and they are discussed further in Section 2.3.   

 Model physics parameter uncertainties are associated with the fact that small-

scale processes in the model cannot be resolved given the relatively coarse horizontal 

spatial resolution and therefore must be parameterized using larger-scale variables 

produced by the model (e.g., Stensrud 2007).  In the development of the numerical 

representation of these processes, there are a number of parameters (i.e., variables in 
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equations) set to certain values which have their own range of estimated uncertainty.  

The combination of the uncertainties in all parameter variations makes up a model’s 

overall physics parameter uncertainty.  This type of uncertainty is investigated in 

perturbed physics ensembles (PPEs) which are discussed further in Section 2.4.   

 

2.3  MULTI-MODEL ENSEMBLES 

 As discussed in Section 2.2.3 there are structural uncertainties inherent in the 

development of climate models because different modeling groups construct their 

models in different way.  In order to assess these structural uncertainties, model 

intercomparison studies are typically used in which the model simulations from each of 

the major climate modeling centers are combined into a larger ensemble called a   

Multi-Model Ensemble (MME).  These intercomparison studies started with the 

Atmospheric Model Intercomparison Project (AMIP; Gates 1992) which organized 

standard experimental protocol for atmosphere-only GCMs forced by observed sea 

surface temperature  and sea ice variations, leading to an international framework for 

model diagnosis, validation, and intercomparison.  Following the atmosphere-only 

model setup came the coupled atmosphere-ocean studies in the Coupled Model 

Intercomparison Project (CMIP; Meehl et al. 2000).  These collections of coupled 

GCMs have grown in complexity over the years and have been the dominant means for 

assessing past and future climate change in major assessments such as the CMIP Phase 

3 (CMIP3; Meehl et al. 2007a) for the IPCC Fourth Assessment Report (AR4; IPCC 

2007) and Phase 5 (CMIP5; Taylor et al. 2011) for the IPCC Fifth Assessment Report 

(AR5; IPCC 2013). 
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 In providing projections of future climate (e.g., see Chapter 1, Figures 1.9 and 

1.10), these MMEs are sometimes weighted according to how well they simulate past 

metrics such as the climatological mean temperature over a specified region (e.g., 

Giorgi and Mearns 2002; Tebaldi et al. 2005) or observed trends (e.g., Greene et al. 

2006).  However, no individual climate model can be identified as the “best” with 

respect to all variables covering all regions (e.g., Lambert and Boer 2001; Gleckler et al. 

2008) and therefore uncertainty remains as to the best metric to use when attempting to 

weight models (e.g., Tebaldi and Knutti 2007).   

It also has been argued that weighting MMEs may not be appropriate given the 

fact that the models were already calibrated to observations in their development and 

therefore validating their output based on the same observations may not be that 

informative (e.g., Weigel et al. 2010).  Additionally, it is uncertain whether models 

performing well in the past will perform well in the future (e.g., model components or 

parameterizations may not operate the same or follow the same assumptions in a 

warmer climate).  Therefore, a more common method used in assessing MMEs is to 

give equal weight to all models which often utilizes the assumption that the multi-model 

mean response to external forcing is a more robust result than any single member of the 

model (e.g., Tebaldi and Knutti 2007).   

Figure 2.5 provides an example of an equally weighted MME reported in IPCC 

(2007) and the uncertainties inherent when assessing regional-scale changes with such 

an ensemble.  Projected changes across the 21
st
 century are shown for annual and 

seasonal NA temperature (first row) and precipitation (second row) from the multi-

model mean of 21 CMIP3 model simulations.  The MME uncertainty is apparent when 
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looking at the third row which shows the number of models that project increases in 

precipitation.  Therefore across central NA, where a transition zone between increasing 

and decreasing precipitation exists in the multi-model mean (second row), roughly half 

the models indicate an increase in precipitation and half a decrease.  In terms of using 

GCMs to inform regional climate change impacts, such as in driving regionally 

downscaled models, the choice of GCM could have a marked impact on projected 

regional and local changes.   

 
 

Figure 2.5:  MMD multi-model mean temperature and precipitation changes over North 

America for the A1B scenario.  Temperature change (top), fractional change in precipitation 

(middle) and number of models out of 21 that project increases in precipitation (bottom) for 

annual mean (left), DJF (center) and JJA (right) mean.  Changes are given in terms of difference 

between 1980-1999 and 2080-2090.  (From Christensen et al. (2007).) 

 



35 

 

The main advantage of MMEs is that the individual models undergo a wide 

range of development and testing against observed quantities to confirm their credibility 

(e.g., Gordon et al. 2000; Blackmon et al. 2001; Anderson et al. 2004; Johns et al. 

2006).  However, a main disadvantage is that they are not designed to sample the full 

range of model uncertainty as they are in essence an “ensemble of opportunity” 

assembled from whatever models are made available by the various modeling groups.  

The ensemble may undersample modeling uncertainties because even though they are 

produced by independent groups they still contain many similar features such as 

resolution, parameterizations, types of grids or numerical methods (e.g., Tebaldi et al. 

2005; Murphy et al. 2007) and therefore cannot be considered completely independent.  

Additionally, their sample size is relatively small, around 20-50 simulations, even when 

multiple simulations are provided by some of the groups.   

For that reason it is useful to explore model uncertainty using a different 

approach such as varying model physics parameters across their range of uncertainty.  

This approach is discussed in the next section.   

 

2.4  PERTURBED PHYSICS ENSEMBLES 

As discussed in Section 2.2.3, model parameter uncertainties are present in the 

development of climate models when small-scale processes must be parameterized and 

different parameterization schemes with uncertain parameter values are used to 

numerically represent processes occurring at the sub-grid scale.  To assess these 

uncertainties, Perturbed Physics Ensembles (PPEs) are generated where a single model 
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is used to produce a number of simulations with variations to their physics parameters.  

The range of uncertainty for each parameter is estimated by experts with knowledge of 

the known physical processes (e.g., Murphy et al. 2004).  The most concerted effort in 

assessing model uncertainty based on PPEs has come from studies based on the Hadley 

Centre model (e.g., Murphy et al. 2004; Piani et al. 2005; Stainforth et al. 2005; Barnett 

et al. 2006; Collins et al. 2006; Harris et al. 2006; Knutti et al. 2006; Webb et al. 2006; 

Collins et al. 2007; Knight et al. 2007; Sanderson et al. 2008a; Sanderson et al. 2008b; 

Frame et al. 2009; Rougier et al. 2009; Sanderson et al. 2010; Collins et al. 2011; 

Rowlands et al. 2012).  A few other modeling groups also have taken part in GCM PPE 

assessments (Annan et al. 2005) as well as when using simplified models (e.g., 

Schneider von Deimling et al. 2006).  A brief review is provide below of the series of 

PPE studies related to the Hadley Centre model that leads up to the model and 

experiment used in this study (described in Chapter 3).  

Murphy et al. (2004) set the stage for this series of Hadley Centre-based PPEs 

by using the Hadley Centre’s atmospheric model (HadAM3; Pope et al. 2000) coupled 

to a mixed layer slab ocean (i.e., termed HadSM3) to generate 53 simulations with 

variations to 29 parameters deemed important for controlling key physical 

characteristics of the sub-grid scale atmospheric and surface processes (e.g., impacting 

large-scale cloud, convection, radiative transfer, sea ice, surface and boundary layer 

processes and dynamical transports).  These parameters were changed (i.e., perturbed) 

one at a time and simulations run for present-day and for doubled atmospheric CO2 to 

calculate global mean temperature response after doubling CO2 (i.e., called climate 

sensitivity).  They found a wide range of possible climate sensitivities – of similar 
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magnitude as found in MME experiments – due to the variation in parameters (i.e., 90% 

range of 2.4 – 5.4°C).  (Note that in all discussions that follow, specific information on 

each parameter is not given.  All relevant parameters are discussed in detail in Chapter 

3.) 

Stainforth et al. (2005) provided a similar experiment using the same HadSM3 

model but focused on a set of six parameters important in cloud and precipitation 

processes, varying them in a number of different way (i.e., 449 unique combinations) 

and then applying different initial conditions to produce a set of over 2,500 simulations.  

This ensemble was produced using the Climateprediction.net (CPDN) distributed 

computing network, as was all of the remaining studies discussed below (See Chapter 3 

for description of CPDN). These simulations contained a 15 year calibration phase 

where heat flux adjustments were calculated to maintain a stable climate when sea 

surface temperatures (SSTs) were held constant followed by a control phase driven by 

pre-industrial conditions in which SSTs were allowed to vary and subject to the 

atmosphere-ocean heat exchange with corrections for the calculated heat flux 

adjustments and then a doubled CO2 phase which was the same as the control phase but 

driven by conditions with double the amount of atmospheric CO2.  They found a very 

wide range of possible climate sensitivities based on these parameter variations, ranging 

from around 2-11°C.  These initial papers proved that perturbing parameters within a 

single model could result in an uncertainty range as large or larger than that found in 

MME studies for assessing large-scale climate system processes. 

Following Stainforth et al. (2005), a series of studies continued the investigation 

of climate sensitivity using the HadSM3 model including Piani et al. (2005) who 
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provided a best estimate climate sensitivity of 3.3°C with an 90% uncertainty range 

from roughly 2-6°C and Knutti et al. (2006) who calculated a relationship between 

climate sensitivity and the magnitude of the seasonal cycle within regions across the 

globe (i.e., Giorgi and Francisco 2000) where the best estimate climate sensitivity was 

between 3-3.5°C with a 95% range of 2-5°C and those models with high sensitivities 

were found to produce seasonal cycles with larger magnitudes compared to 

observations.   

Knight et al. (2007) continued the assessment of climate sensitivity but included 

a significantly larger number of simulations (i.e., around 57,000) and included 

variations in computer hardware (i.e., processor, RAM size, and clock speed) and 

software (i.e., the specific client middleware system used to implement the model on 

different computer systems) and found that the effect of hardware and software 

difference were small compared to parameter variation, accounting for less than 1% of 

climate sensitivity variation.  Knight et al. (2007) also found that the entrainment 

coefficient in clouds was the most important parameter and accounted for 30% of the 

variation seen in climate sensitivity (refer to Chapter 3, Section 3.3.1 for discussion of 

parameters and their variations).   

Sanderson et al. (2008a) focused on identifying the dominant physical processes 

responsible for variations in climate sensitivity across a PPE composed of roughly 

6,700 model simulations.  They found two parameters having the largest impact on 

climate sensitivity, the entrainment coefficient and ice fall speed.  Sanderson et al. 

(2008b) conducted a similar experiment but used an artificial neural network to 

interpolate climate sensitivities between the limited number of parameter variations 
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(e.g., often limited to 2-3 variations) and again found that the most important 

parameters were entrainment coefficient and ice fall speed with a subset of other 

parameters also showing degrees of importance when climate sensitivities are 

exceptionally low or high.  These parameters were the empirically adjusted cloud 

fraction and critical relative humidity.   

Ackerley et al. (2009) used a smaller set of simulations in a PPE (i.e., 243) but 

introduced a sulfur cycle parameterization scheme into the HadSM3 model and varied a 

set of parameters within that scheme.  They found that none of the parameters in the 

sulfur cycle scheme had much of an impact on climate sensitivity but the more 

important aspect was that they produced a realistic sulfur cycle that was included in all 

future versions of the CPDN model.   

Following these climate sensitivity experiments with the simplified HadSM3 

model, a new set of PPEs were generated using a fully coupled atmosphere and fully 

dynamic ocean GCM which was termed HadCM3L (Frame et al. 2009), a version of the 

coupled Hadley Centre model HadCM3 (Gordon et al. 2000; Collins et al. 2001) only 

with slightly lower ocean resolution (see Chapter 3 for details).  Sanderson et al. (2010) 

used the HadCM3L model with roughly 1,600 simulations varying 24 independent 

parameters from the atmospheric and oceanic models as well as the sulfur cycle.  Model 

simulations were run from 1850-2000 using observed forcings and then from 2001-

2060 using SRES scenario A1B including a number of alternative scenarios for solar 

and volcanic past and future forcing (see reference for more details).  They found that 

parameters governing cloud formation, convection strength, and ice fall speed were the 
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most significant in altering climate feedbacks. Perturbations of oceanic and sulfur cycle 

parameters had relatively little effect on the atmospheric feedbacks.    

The HadCM3L model was then used in a concerted effort to generate a large 

PPE under the British Broadcasting Corporation (BBC) Climate Change Experiment 

(CCE), also known as the Transient Coupled Model Experiment (Frame et al. 2009; 

http://www.bbc.co.uk/sn/climateexperiment) which consists of simulations covering the 

period 1920-2080 using historic forcings and the SRES A1B scenario.  (The BBC CCE 

is explained in detail in Chapter 3, Section 3.3.)  Fowler et al. (2010) used 304 

simulations from the HadCM3L BBC CCE to assess projected changes in extreme 

precipitation over the United Kingdom (UK) and found that detectable changes in 

extreme winter precipitation may be detectable by the simulated year 2010 and that 

changes in extreme summer precipitation was not detectable through the entire 

simulation (i.e., out to 2080).  They also found that the entrainment coefficient and ice 

fall speed were important parameters for governing changes in summer precipitation 

and that the accretion constant and scaling factor for anthropogenic sulfur aerosol 

emissions also were found to have a significant impact on the time of detectable change.  

Their results suggested that increased precipitation efficiency, through changes in the 

entrainment coefficient, have an important effect on heavy precipitation generation in 

climate models.   

Finally, Rowlands et al. (2012), used 2,752 simulations from the HadCM3L 

BBC CCE to observationally constrain future projections of global temperature.  They 

created a goodness-of-fit statistic based on spatio-temporal patterns of surface 

temperatures around the globe from 1961-2010 to identify simulations performing 
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better over the observational period.  They found that the original PPE extended to 

larger global temperatures compared to the constrained ensemble which indicated 

temperature increases between 1.4-3.0°C by 2050, relative to the 1961-1990 mean 

(Figure 2.6).  The current study builds on Rowlands et al. (2012) by investigating 

similar HadCM3L simulations across both the globe and North American regions.  The 

next chapter describes in detail the HadCM3L BBC CCE simulations used in this study 

as well as all parameter variations. 

   

 

 
Figure 2.6:  Global mean temperature anomalies (from 1961-1990 mean) for 2,752 simulation 

from the HadCM3L BBC CCE.  Blue shading indicates a calculated goodness-of-fit metric (r
2
) 

with dark blue lines indicating the 66% confidence range.  Global mean observations are shown 

as the thick black line and red bars indicate the CMIP3 ensemble likely range and multi-model 

mean (center red dash).  (From Rowlands et al. (2012).) 
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CHAPTER 3 

CLIMATEPREDICTION.NET CLIMATE MODEL  

AND EXPERIMENT DESIGN 

 

This chapter contains a description of the climate model and experiment 

developed by the Climateprediction.net (CPDN) project that is used in this study.  

Section 1 provides background information on the design and goals of the CPDN 

project.  Section 2 describes the HadCM3L global climate model and Section 3 

describes the accompanying BBC Climate Change Experiment (CCE), the output of 

which is used in this study.   

 

3.1  Climateprediction.net 

3.1.1  CPDN Project Design 

Climateprediction.net (CPDN) is a distributed computing project operated out of 

Oxford University designed to investigate climate modeling uncertainties by generating 

a large number of climate model simulations, each containing slight variations to their 

model physics parameters, forcings, and initial conditions in an effort to assess how 

these variations impact the resulting modeled climate and how such information can be 

used when modeling future climate projections (Allen 1999; Stainforth et al. 2002; 

Stainforth et al. 2004; Massey et al. 2006). While typical climate model simulations 

require the use of large supercomputers, CPDN utilizes the processing power of 

thousands of personal computers whose idle time has been voluntarily donated by 

participants from the general public.  This is accomplished through use of the Berkeley 
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Open Infrastructure for Network Computing (BOINC) software platform hosted out of 

the Space Sciences Laboratory at the University of California, Berkeley 

(http://boincstats.com).  BOINC was originally designed for the Search for Extra-

Terrestrial Intelligence (SETI@home) project (Reichhardt 1999; Korpela et al. 2001) 

which created the distributed computing network concept for analyzing narrow-

bandwidth radio telescope signals from space in an effort to detect signals from extra-

terrestrial intelligent life.  For these distributed computing network projects, participants 

download programs and input files to their personal computers which run the 

applications during idle processing time and then, when complete, upload the computed 

output files back to the CPDN main servers.   

The processing power from a distributed computing network can rival or surpass 

that of a supercomputer with the added benefit of not having to share central processing 

unit (CPU) time with jobs from other projects, as is common with most supercomputers.  

CPDN currently has over 260,000 participants (around 18,000 active at any given time) 

from over 20 different countries providing over 530,000 host computers (around 25,000 

active).  This corresponds to an average performance of roughly 32 trillion Floating-

point Operations Per Second (FLOPS) or 32 TeraFLOPS.
2
 (Refer to 

http://boincstats.com/en/stats/2/project/detail for the most up-to-date performance 

statistics.)   Figure 3.1 shows the processing power of the world’s top supercomputers 

over time.  While performance of the top supercomputers has risen above the 32 

                                                 
2
 By comparison, the more established SETI@home project has nearly 1.4 million users (approximately 

150,000 active) and over 3.3 million host computers (220,000 active) across 233 countries resulting in 

around 640 TeraFLOPS. 
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TeraFLOPS mark in recent years, the distributed computing network still holds the 

advantage of being able to dedicate all processing power to its own specified projects.        

 

Figure 3.1:  Supercomputer Performance over time.  Performance is calculated in terms of 

Floating-point Operations Per Second (FLOPS) and shown for the top performer for a given 

year (red), 500th top performer (pink) and the sum FLOPS over all 500 top supercomputers 

(green).  (From top500.org.)   

 

 

3.1.2  Overview of CPDN Experiments   

Here a brief review is presented of the progression of experiments launched by 

CPDN.  Refer to the perturbed physics ensemble section in Chapter 2 for a discussion of 

any pertinent results that have come out of CPDN research.   

CPDN was officially launched in 2003 using the UK Met Office Hadley Centre 

Slab Model version 3 (HadSM3), a global climate model containing an atmospheric 
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model (HadAM3) and simplified single layer "slab" ocean.  The corresponding initial 

experiment run by each participant was comprised of three, 15-year phases: a 

calibration phase to calculate heat flux adjustments required to maintain a stable climate 

when sea surface temperatures (SSTs) were held constant (i.e., fluxes representing heat 

transport by ocean currents which were not included in the model), a control phase 

driven by pre-industrial conditions in which SSTs were allowed to vary and subject to 

the atmosphere-ocean heat exchange with corrections for the calculated heat flux 

adjustments, and a doubled CO2 phase which was the same as the control phase but 

driven by conditions with double the amount of atmospheric CO2.   

 In 2004 a thermohaline circulation experiment was launched which used the 

same HadSM3 model and three phases from the initial experiment but included a fourth 

15-year phase where SSTs in the North Atlantic were adjusted to resemble the impacts 

of a 50% slowdown in the thermohaline circulation (i.e., the meridional overturning 

circulation in the north Atlantic). 

 In 2006 the fully coupled atmosphere-ocean general circulation model (AO-

GCM) HadCM3L was released to participants under what was identified as the BBC 

Climate Change Experiment (CCE).  The model is sometimes referred to as the 

transient coupled model because climate forcings are allowed to vary with time in the 

experiment, generating a hindcast covering 1921-2000 and a forecast from 2001-2080.  

This model and experiment are used in this study and therefore a more detailed 

description is provided in Section 3.2 for the HadCM3L model and Section 3.3 for the 

BBC CCE. 
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 In 2008 a geo-engineering experiment was developed to investigate global 

climate impacts that would result from humans injecting aerosol particles into the 

stratosphere.  The HadCM3L model was used and simulations generated from 2000-

2080 with and without the inclusion of various amounts of aerosols to quantify its 

impacts.     

 And in 2010 a paleoclimate experiment was initiated called the millennium 

experiment that investigated climate across the past millennium by running simulations 

from 800 AD to 1900 AD with a variety of perturbed model physics parameters and 

natural forcing scenarios.  Also in 2010 a regional climate modeling experiment was 

launched called weather@home which ran regional climate models in the distributed 

computing network platform to generate higher resolution climate change results.  The 

regions of the world modeled in this experiment were Europe, Western United States, 

and Southern Africa.      

 

3.2  HadCM3L Model Design 

HadCM3L (Jones and Palmer 1998) is a coupled atmosphere-ocean general 

circulation model (AO-GCM) based on the UK Met Office Hadley Centre Coupled 

Model version 3 (HadCM3; Gordon et al. 2000; Collins et al. 2001) which is the 

successor of model version 2, (HadCM2; Johns et al. 1997), and the original Hadley 

Centre coupled model (Murphy 1995a, 1995b; Murphy and Mitchell 1995) and is run 

under the UK Met Office Unified Model (MetUM) system (Cullen 1993; Brown et al. 

2012).  Table 3.1 highlights the key components in the HadCM3L atmospheric and 
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ocean model design.  These are discussed further in the next two subsections.  The 

atmosphere-ocean coupling strategy and flux adjustments are unique to the specific 

climate change experiment used (i.e., BBC-CCE) and therefore will be described in that 

section (Section 3.3.2).    
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Table 3.1:  Summary of key components in the HadCM3L model design.  
 

 

Atmosphere 
 

Horizontal Grid Arakawa-B Grid [Arakawa and Lamb 1977] 

Horizontal Resolution 2.5° latitude by 3.75° longitude 

Vertical Grid Lorenz Grid [Lorenz 1960; Holdaway et al. 2012] 

Vertical Resolution 19 levels; hybrid coordinate [Simmons and Burridge 

1981] 

Dynamics Eularian advection; split-explicit time integration [Cullen 

and Davies 1991; Cullen 1993] 

Integration Time Step 30 minutes 

Radiation [Edwards and Slingo 1996; Cusack et al. 1998; Cusack et 

al. 1999] 

Clouds [Smith 1990; Martin et al. 1994; Gregory and Morris 

1996] 

Precipitation (Large Scale) [Senior and Mitchell 1993; Gregory 1995] 

Convection [Gregory and Rowntree 1990; Gregory and Allen 1991; 

Gregory et al. 1997] 

Boundary Layer [Smith 1990, 1993] 

Land Surface [Cox et al. 1999] 

Gravity Wave Drag [Gregory et al. 1998] 

Sulfur Cycle [Ackerley et al. 2009] 
 

Ocean 
 

Horizontal Resolution 2.5° lat by 3.75° long 

Vertical Resolution 20 levels; higher resolution near surface  

Bathymetry [ETOPO5 1988; Gordon et al. 2000]; Iceland removed; 

Denmark Straits deepened 

Dynamical Equations Primitive equations; rigid-lid [Bryan 1969b; Cox 1984] 

Integration Time Step 60 minutes 

Vertical Mixing (momentum) Mixed layer: K-Theory [Large et al. 1994]   

Below mixed layer: K-Theory [Pacanowski and Philander 

1981] 

Vertical Mixing (tracers) Mixed layer: hybrid scheme [Large et al. 1994; Kraus and 

Turner 1967] 

Below mixed layer: K-Theory [Pacanowski and Philander 

1981] 

Eddy Mixing [Gent and McWilliams 1990); Visbeck et al. 1997; 

Griffies et al. 1998] 

Topographically-Based 

Mixing 

Straits of Gibraltar scheme; Greenland-Iceland ridge 

overflow scheme [Gerdes et al. 1991; Roether et al. 

1994] 

Sea Ice [Crossley and Roberts 1995] 

Radiation Absorption Solar double exponential decay [Paulson and Simpson 

1977] 
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3.2.1  Atmospheric Model 

The atmospheric component of HadCM3L is the same atmospheric model used 

in its parent model HadCM3 (Johns et al. 1997).  It has a horizontal resolution of 2.5° 

latitude (lat) by 3.75° longitude (long), corresponding to a global grid 96 cells 

north/south by 72 cells east/west with cells approximately 417 km in the north/south 

direction by 278 km in the east/west direction at the Equator and 295 km north/south by 

278 km east/west at 45° of latitude
3
.  An Arakawa-B staggered grid is used (Arakawa 

and Lamb 1977) with wind components calculated at grid cell boundaries and all other 

variables calculated at a cell’s center. 

The vertical grid consists of 19 layers following a sigma (σ)-p hybrid coordinate 

(Simmons and Burridge 1981) with increasing resolution towards the surface and layers 

that transition from a σ coordinate
4
 (i.e., terrain-following) in the lowest four layers to 

pure pressure layers in the three layers nearest the upper boundary at around 30 km 

altitude (i.e., approximately 10 mb atmospheric pressure near the center of the 

stratosphere).  Table 3.2 shows the σ-p hybrid coordinate used in the vertical grid and 

Figure 3.2 shows a general representation of the vertical layers.  A Lorenz vertical grid 

is applied (e.g., Lorenz 1960; Holdaway et al. 2012) where the vertical component of 

the wind is calculated at the layer boundaries while all other variables are calculated in 

between the layers.  

                                                 
3
 Latitudinal distances for each degree of change remain relatively constant at approximately 111 km 

(only minor discrepancies caused by changes in Earth’s not quite spherical, ellipsoidal, shape) and 

therefore grid cells maintain a 278 km latitudinal cell size while longitudinal distances for each degree of 

change varies from near 111 km near the equator to zero at the poles.  Therefore the longitudinal cell size 

at locations of interest over North America are roughly 361 km at 30°N, 268 km at 50°N, and 143 km at 

70°N while latitudinal cell size remain a constant 278 km for each.  
4
 The σ coordinate is defined as the pressure at a given level divided by the surface pressure.  This allows 

vertical levels in the σ coordinate system to follow orography.   
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Table 3.2:  The σ-p hybrid vertical grid of Simmons and Burridge (1981) used to generate the 

HadCM3L atmospheric model’s vertical structure.  The hybrid coordinate (H) is calculated 

using the equation H = (A/10
5
 Pa) + B.  (From Johns et al. (1997).) 
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Figure 3.2:  Illustration of the HadCM3L atmospheric model’s σ-p hybrid coordinate vertical 

structure (left) with an enlarged view of the lowest 100 mb (right).  Vertical layers transition 

from σ (i.e., terrain-following) layers near surface to pure pressure layers at the top boundary 

with higher resolution near the surface.  Hybrid coordinate values are provided at the layer 

centers across the lowest 100 mb (refer to Table 3.2).  (From Cullen (1993).) 

 

 The dynamical equations used are quasi-hydrostatic versions of the primitive 

equations developed to conserve energy, mass, momentum, angular momentum, and 

total water with full representation of the Coriolis force (Cullen and Davies 1991; 

Cullen 1993).  A Eularian advection scheme is used with split-explicit time integration 

(Cullen and Davies 1991) and a dynamical time step of 30 minutes.  The derived model 

variables include temperature, pressure, horizontal wind components, liquid water 

potential temperature, and total water mixing ratio.     

 A number of complex processes take place on the sub-grid scale and therefore 

must be parameterized in order for their effects to be included in the model.  The 

parameterization schemes used in the atmospheric model are summarized below.  They 
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are run every three hours and include schemes for radiation, clouds, large scale 

precipitation, convection, boundary layer, land surface, gravity wave drag, and the 

sulfur cycle.  (See Section 3.3.1 for parameterization scheme parameter perturbations 

included in the climate change experiment for this study.)   

RADIATION: The radiation scheme is from Edwards and Slingo (1996) and includes 

modifications from Cusack et al. (1999).  This scheme incorporates six shortwave and 

eight longwave bands and includes the effects of CO2, H2O, and O3 as well as the minor 

trace gases O2, N2O, CH4, CFC11, and CFC12.  Aerosol effects also are included 

(Cusack et al. 1998).   

CLOUDS:  The cloud scheme is from Smith (1990) with modifications from Gregory 

and Morris (1996) and Martin et al. (1994).  The scheme generates cloud ice, cloud 

water, and cloud amount from model variables of total moisture and liquid water 

potential temperature.  Mixed phase, liquid and ice, clouds are allowed in the scheme.  

In general, clouds form in the model when a critical relative humidity value is reached 

within a given grid cell.  Cloud-radiation feedbacks are included as well as interactions 

with the other parameterization schemes.   

PRECIPITATION (LARGE-SCALE):  Large-scale precipitation is parameterized using 

Senior and Mitchell (1993) which converts cloud liquid and ice into precipitation based 

on a total water and total ice content threshold.  Phase changes between cloud water and 

ice are represented, and precipitation rates can be enhanced through the process of 

seeding from layers above as precipitation is allowed to fall from one layer to another.  

Also, the evaporation of falling rain and snow based on Gregory (1995) is included.   
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CONVECTION:  Convection (moist and dry) is parameterized using the mass flux 

scheme of Gregory and Rowntree (1990) with the inclusion of downdrafts (Gregory and 

Allen 1991) and representation of convective momentum transport (Gregory et al. 

1997).  Shallow, deep, and mid-level convection are included.  Convective parcels are 

allowed to mix with the environmental air surrounding it and evaporation occurs with 

falling precipitation. Forced entrainment and detrainment also are included.   

BOUNDARY LAYER:  The boundary layer scheme (Smith 1990, 1993) is a first order 

turbulent mixing scheme that mixes heat, moisture, and momentum into the vertical 

within the lowest 1-2 km atmospheric model layers which can be influenced by the 

modeled Earth’s surface (i.e., boundary layer).  A key component of the scheme is use 

of a vertical mixing coefficient that depends on various factors that can influence the 

strength of turbulent motions within the boundary layer, factors such as wind shear and 

atmospheric stability.    

LAND SURFACE:  The land surface is parameterized using the Met Office Surface 

Exchange Scheme (MOSES) from Cox et al. (1999).  This scheme calculates surface to 

atmosphere water and energy fluxes from associated surface and subsurface (four soil 

layers) model variables.  It also calculates vegetation to atmosphere fluxes of CO2, 

incorporating both photosynthesis and stomatal conductance (i.e., exchange of CO2 and 

water vapor through plant stomata).  Additionally, freezing and melting is represented 

in the sub-surface soil layers, and surface and subsurface basin-wide river catchment 

runoff is instantaneously transported to the respective costal outflow location.   
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GRAVITY WAVE / OROGRAPHIC DRAG:   The generation and breaking of sub-grid scale 

orographically forced atmospheric gravity waves are represented using Gregory et al. 

(1998) which is an advancement of Palmer et al. (1986).  The scheme includes 

representation of anisotropic orography (i.e., orography that is non-circular in its 

horizontal structure), low-level wave breaking of trapped waves along the lee side of 

orography, flow blocking, and the hydraulic jump phenomena (i.e., higher velocity flow 

building up after encountering lower velocity flow).          

SULFUR CYCLE:  The atmospheric model contains an interactive sulfur cycle 

parameterization that converts sulfur dioxide (SO2, e.g., from anthropogenic and 

volcanic sources) and dimethyl sulphide (DMS, e.g., from volcanic sources and ocean 

phytoplankton) into sulfate aerosols (Ackerley et al. 2009).  The direct effects (e.g., 

aerosol scattering and absorption of solar radiation) and indirect effects (e.g., altering 

cloud albedo and precipitation efficiency) of the resulting sulfate aerosols are 

represented in the model.     

 

3.2.2  Ocean Model 

The ocean component of the HadCM3L model is similar to the ocean model of 

its parent model HadCM3, but is adjusted in a few areas to increase the computational 

efficiency for use in the distributed computing network.  (See Gordon et al. (2000) for a 

detailed description of the ocean model in the HadCM3 parent model.)  The horizontal 

resolution of HadCM3L is the same as the atmosphere, 2.5° lat by 3.75° long, which is 

courser than its parent model’s resolution of 1.25° lat by 1.25° long but is the same as 
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the second generation model, HadCM2.  The vertical grid has 20 levels that transition 

from higher resolution near the ocean surface (10 m thickness) to a lower resolution at 

the ocean bottom (616 m thickness; See Table 3.3).  The higher resolution near the 

surface allows the mixed layer to be resolved.   

 
Table 3.3:  Vertical levels in the HadCM3L ocean model as well as background vertical 

diffusivity of tracers between a given level and the level directly above it.  (From Johns et al. 

(1997).) 

 

 
 

Ocean bathymetry (i.e., ocean bottom topography) is constructed from the 5 arc-

minute (1/12° lat by 1/12° long) global land and ocean relief gridded data set 

(ETOPO5) from the National Geophysical Data Center (ETOPO5 1988; Gordon et al. 
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2000).  Iceland is removed and the Denmark Straits (i.e., between Iceland and 

Greenland) deepened in HadCM3L compared to HadCM3 due to the fact that the 

distance across the Denmark Straits in the lower resolution HadCM3L is less than the 

size of a single grid cell.  Making this adjustment allows for a more realistic North 

Atlantic circulation through an improved northward heat transport into the North 

Atlantic and Nordic Sea region (Jones 2003).   

The dynamical equations used are based on the primitive equations model with a 

“rigid-lid” approximation
5
 (Bryan 1969b; Cox 1984).  A one hour integration time step 

is used and the derived model variables include potential temperature and salinity 

(referred to as tracers) and horizontal velocity (i.e., momentum).  The remainder of this 

section provides information on the important components and parameterization 

schemes of the ocean model.  These are summarized in Table 3.1. 

VERTICAL MIXING:  Vertical mixing of momentum is parameterized in the mixed 

layer
6
 using a K-Theory scheme based on Large et al. (1994) and below the mixed layer 

a K-Theory scheme based on Pacanowski and Philander (1981) is applied.  K-Theory 

schemes contain prognostic equations for their first order moments but then 

parameterize the higher-order moments, utilizing a vertical diffusion coefficient.  This 

coefficient is based on both local properties and a background vertical diffusivity value 

which is held constant across the entire depth of the ocean.   

                                                 
5
 A “rigid-lid” approximation sets vertical motions to zero at the ocean surface which eliminates fast 

moving surface gravity waves.  This allows for a longer integration timestep to be used and therefore 

permits longer simulations due to the improved computational efficiency. 
6
 The mixed layer is a portion of the uppermost ocean containing relatively homogenous properties (e.g., 

temperature and salinity) due predominantly to turbulent mixing.   
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 Vertical mixing of tracers (i.e., potential temperature and salinity) below the 

mixed layer is parameterized using Pacanowski and Philander (1981) while in the 

mixed layer a hybrid mixing scheme is used.  In this hybrid scheme, a K-Theory 

diffusive mixing scheme is used (Large et al. 1994) as well as a mixed layer energy 

balance model based on Kraus and Turner (1967) that provides the input of turbulent 

kinetic energy from the wind available for mixing temperature and salinity in the mixed 

layer.  When negative surface buoyancy fluxes are present at the ocean’s surface, a 

convective adjustment is applied to mix the fluxes down to a level of neutral buoyancy.  

For the vertical mixing of tracers, a background vertical diffusivity value at each layer 

varies with depth and is shown on the right hand column of Table 3.3.  (See Appendix 

A in Gordon et al. (2000) for a more detailed description of the vertical mixing 

parameterizations.)      

EDDY MIXING:  Ocean eddies are circulations in the water that can cause mixing to 

occur but are typically smaller than the ocean model grid cell and therefore must be 

parameterized.  The parameterization scheme used for eddy mixing of tracers is the 

Visbeck et al. (1997) version of the Gent and McWilliams (1990) scheme.  Potential 

energy is removed adiabatically by diffusion of isopycnal (i.e., constant density) layer 

thickness with a thickness diffusion coefficient established locally (Visbeck et al. 1997).  

Additionally, the Griffies et al. (1998) form of the Redi (1982) isopycnal mixing 

scheme is used to diffuse tracers along isopycnal surfaces.  And a latitude dependent 

horizontal mixing of momentum (viscocity) formulation is used to adequately resolve 

subtropical western boundary currents while also maintaining numerical stability in the 
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diffusion equation at high latitudes where grid cell lines converge.  (See Appendix A in  

Gordon et al. (2000) for a more detailed description of the eddy mixing scheme.)   

TOPOGRAPHICALLY-BASED MIXING:  The Straits of Gibraltar, connecting the 

Mediterranean Sea and Atlantic Ocean, cannot be resolved within the model’s 

topography/bathymetry and therefore a mixing parameterization is included to simulate 

the outflow of water from the Mediterranean into the Atlantic (e.g., Manabe and 

Stouffer 1988).  The temperature and salinity are completely mixed between the 

westernmost grid cell of the Mediterranean and corresponding easternmost grid cell in 

the Atlantic with the mixing taking place within the top 13 ocean layers (i.e., 1200 m), 

the depth over which water is expected to sink after entering the Atlantic.   

 Also, two simplified sill (i.e., raised ridge on the ocean bottom) overflow 

parameterization schemes were included for the Greenland-Iceland-Scotland ridge 

(Gerdes et al. 1991; Roether et al. 1994).  These schemes allow for more realistic 

mixing near the ocean bottom ridge.  For example, dense water at the top of a ridge is 

allowed to flow down the sloped surface as a boundary current as opposed to being 

mixed out with the underlying water.     

SEA ICE:  The sea ice model of Crossley and Roberts (1995) is built directly into the 

ocean model.  Its thermodynamics are from Semtner (1976) and includes 

representations of ice concentration (Hibler 1979), the amount of ice below the water 

line based on the weight above it (Ledley 1985), sea ice leads (i.e, an ice-free fracture in 

the sea ice), and ice formation and melting, including its impact on ocean salinity.  Sea 

ice dynamics are parameterized using Bryan (1969a) which allows advection of ice 

thickness, ice concentration, and snow depth.  Ocean heat fluxes are computed from the 
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ocean water into the bottom of the ice with surface fluxes from the ice or leads into the 

atmosphere calculated in the atmospheric model.  Energy is mixed vertically down into 

the open water of leads from the atmospheric wind above and surface albedo is 

parameterized to account for differences in sea ice surfaces (e.g., bare ice, snow of 

different ages, or the presence of melt ponds).  Sea ice rheology (e.g., Feltham 2008) is 

represented by inhibiting sea ice convergence after the ice depth reaches 4 m (Steele et 

al. 1997).  However, ice is allowed to continue growing thicker with continued freezing.    

SOLAR RADIATION ABSORPTION:  The upper ocean is designed to selectively absorb 

shortwave solar radiation with depth using the double exponential decay function 

created by Paulson and Simpson (1977) based on observations which assumes an ocean 

water clarity of Type 1B (Jerlov 1968). 

 

3.3  BBC Climate Change Experiment 

 The HadCM3L output utilized in this study was generated as part of the 

climatepredicion.net British Broadcasting Corporation (BBC) climate change 

experiment (CCE), also known as the Transient Coupled Model Experiment (Frame et 

al. 2009; http://www.bbc.co.uk/sn/climateexperiment).  In this experiment, a large 

number of climate simulations were generated with variations to their atmosphere and 

ocean model physics parameters, past and future forcings, and initial conditions to 

investigate how these changes can impact the resulting modeled climate.  In the first 

sub-section the perturbed physics parameters will be described.  The atmosphere-ocean 

coupling process and flux adjustment procedure will be provided in the second sub-

section followed by a description of the control and transient simulations in the third 
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sub-section.  The fourth sub-section reviews available model output from this 

experiment.   

 

3.3.1  Physics Parameter Perturbations 

 A number of physics parameters in the atmosphere and ocean model 

components of HadCM3L were varied (i.e., perturbed) across their current range of 

uncertainty through expert elicitation (Murphy et al. 2004).  These perturbed parameters 

are discussed below for the atmospheric parameters and then for the ocean parameters.  

An initial condition parameter also was perturbed and will be discussed at the end of 

this sub-section.  All parameters are summarized in Table 3.4. 
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Table 3.4:  CPDN perturbed parameters, associated parameterization schemes and perturbation 

values.  Default parameter values are highlighted in bold. 
 

Parameter  Description Perturbed Values 
   

ATMOSPHERE   

ALPHAM Albedo at melting point of ice 0.5, 0.57, 0.65
 

ANTHSCA Scaling factor for anthropogenic sulfates 0.5, 0.8, 1.0, 1.2, 1.5 

CLOUDTAU Time a circulating air parcel remains in 

cloud (s) 

3.6, 10.8, 32.4 [x 10
3
] 

CT Accretion constant (s
-1

) 0.5, 1, 4 [x 10
-4

]
 

CW_LAND 
a Precipitation threshold over land  (kg m

-3
)  1, 2, 20[x 10

-4
]
 

CW_SEA 
a Precipitation threshold over sea

 
(kg m

-3
) 2, 5, 50 [x 10

-5
] 

DTICE Temperature range of ice albedo variation 2, 5, 10 

EACF Empirically adjusted cloud fraction 0.5, 0.63, 0.67
**

 

ENTCOEF Entrainment coefficient 0.6, 1.0, 3.0, 9.0 
 

I_CNV_ICE_LW 
b Type of convective cloud ice crystal used in 

longwave radiation 
 

1, 7 

I_CNV_ICE_SW 
b Type of convective cloud ice crystal used in 

shortwave radiation  

3, 7 

I_ST_ICE_LW 
b Type of stratiform cloud ice crystal used in 

longwave radiation 
 

1, 7 

I_ST_ICE_SW 
b Type of stratiform cloud ice crystal used in 

shortwave radiation  

2, 7 

ICE_SIZE Ice crystal size (m) 2.5, 3.0, 4.0 [x 10
-4

] 

L0 
c Sulfate mass scavenging parameter L0 (s

-1
) 2.17, 6.5, 19.5 [x 10

-5
] 

L1 
c Sulfate mass scavenging parameter L1 (s

-1
) 0.99, 2.96, 8.86 [x 10

-5
] 

NUM_STAR Condensation threshold for accumulation  0.1, 1.0, 10 [x 10
6
] 

RHCRIT Critical relative humidity 0.65, 0.73, 0.9 
** 

SO2_HIGH_LEVEL Sulfur cycle: model level for SO2 (high 

level) emissions 

1, 3, 5 

VF1 Ice fall speed (m s
-2

) 0.5, 1.0, 2.0 

VOLSCA Sulfur cycle: scaling factor for emission 

from natural (volcanic) emissions 
 

1, 2, 3 

OCEAN   

HANEY
 Haney heat forcing coefficient (Wm

-2
K

-1
) 81.88, 163.76 

HANEYSFACT Haney salinity forcing factor 0.25, 1.0 

ISOPYC Isopycnal diffusion of tracers (m
2
s

-1
) 0.2, 1, 2 [x 10

3
] 

MLLAM
 Wind mixing energy scaling factor (m

2
 s) 0.3, 0.7 

VDIFFDEPTH 
d Ocean: increase of background vertical 

mixing of tracer with depth (ms
-1

) 

0.7, 2.8, 9.6 [x 10
-8

] 

VDIFFSURF 
d Ocean: background vertical mixing of 

tracer (diffusion) at surface (m
2
s

-1
) 

0.5, 1, 2 [x 10
-5

] 

VERTVISC
 Ocean: background vertical mixing of 

momentum (viscocity) (m
2
s

-1
) 

 

0.5, 1.0 [x10
-5

] 

INITIAL CONDITIONS
  

 

DTHETA Initial condition potential temperature 

perturbation applied to atmosphere (°C) 

0, 0.01, 0.02, 0.03, 0.04, 0.05, 

0.06 0.07, 0.08, 0.09 

   

a, b, c, d
  Individual groups of parameters perturbed together 

          **
  Parameter values represent mean over 19 model levels (variations occur at each level) 
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The following perturbed parameters are associated with the HadCM3L 

atmospheric model, which includes components of the sulfur cycle 

ALPHAM (Albedo at the melting point of ice is):  The albedo (i.e., reflectivity) of sea 

ice can vary depending on temperature and therefore parameter ALPHAM allows for 

different albedos to be set at the melting point of ice.  The perturbed values are (0.5, 

0.57, 0.65).  (Note that default parameters will be highlighted in bold throughout these 

discussions.)  Also see parameter DTICE, which is related to ALPHAM.   

ANTHSCA (Scaling factor for anthropogenic sulfates):  There is uncertainty in the 

exact anthropogenic SO2 emissions that have occurred in the past or will occur in the 

future.  Therefore parameter ANTHSCA is used to scale historical and future SO2 

emissions estimates to generate a range of possible scenarios.  These SO2 emission are 

important in the model because they can be oxidized in the atmosphere and thereupon 

be converted to atmospheric sulfate aerosols which scatter/absorb solar radiation (direct 

effects) and alter cloud albedo and precipitation efficiency (indirect effects).  (Refer to 

Ackerley et al. (2009) for further discussion on the model’s sulfur cycle processes.)       

The parameter values are [0.5, 0.8, 1.0, 1.2, 1.5] and correspond to multipliers used to 

scale the estimated past and future time series (see Figure 3.3c).   

CLOUDTAU (Time a circulating air parcel remains in a cloud):  This parameter is in 

the sulfur cycle parameterization scheme and represents the amount of time an air 

parcel takes to transit through a cloud which affects how much anthropogenic SO2 is 

oxidized while passing through it.  The oxidation process removes SO2 from the cloud 

and converts it to atmospheric sulfate aerosols which scatter/absorb solar radiation 

(direct effects) and alter cloud albedo and precipitation efficiency (indirect effects).  
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CLOUDTAU is directly related to the oxidation rate so that as CLOUDTAU increases 

(decreases) the oxidation rate and therefore amount of sulfate aerosols in the 

atmosphere increases (decreases).  (Refer to Ackerley et al. (2009) for further 

discussion on CLOUDTAU, see their Eq. (2), and the model’s sulfur cycle processes.)  

The parameter variations are [3.6, 10.8, 32.4 (x10
3 

s)] which represent minimum, best 

guess, and maximum value estimates (Ackerley et al. 2009). 

CT (Accretion constant):  This parameter establishes the cloud droplet to rain 

conversion or accretion rate (i.e., the time it takes to convert cloud droplets to rain).  

(See Gregory and Morris (1996) and Smith et al. (1998))  CT has been found to impact 

cloud, water vapor, and lapse rate feedbacks with a decreased parameter value found to 

reduce the rate of cloud water accreted onto falling precipitation thereby increasing the 

amount of clouds for a given temperature and humidity (Sanderson et al. 2010).  A 

different way to explain it is that an increase in CT allows more cloud droplets to be 

removed by falling rain which reduces the overall cloud coverage.  CT was found to 

increase extreme precipitation as the parameter value is increased (Fowler et al. 2010).  

The parameter values are [0.5, 1, 4 (x10
-4 

s
-1

)]. 

CW_LAND; CW_SEA (Precipitation threshold over land and sea):  This parameter 

controls the rate at which cloud liquid water is converted to large-scale precipitation.  

Different values are used over land (CW_LAND) and over sea (CW_LAND) because of 

the variation in cloud condensation nuclei (CCN) residing over each (e.g., a greater 

number of CCN are present over land).  These two parameters have been found to have 

a large impact on shortwave cloud, water vapor, and lapse rate feedbacks (Sanderson et 

al. 2010).  Lower parameter values result in clouds precipitating with greater efficiency, 
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resulting in reduced cloud coverage.  Sanderson et al. (2010) showed that when the 

parameter values were increased it resulted in a positive humidity feedback because 

larger humidities could remain in the atmosphere without initiating precipitation.  They 

also showed that an increase in the parameter values caused an increase in shortwave 

cloud feedback in the tropics and decrease at high latitudes.  (See Gregory and Morris 

(1996) and Smith et al. (1998) for further details.)  The parameter values for 

CW_LAND are [1, 2, 20 (x10
-4 

kg m
-3

)] and for CW_SEA are [2, 5, 50 (x10
-5 

kg m
-3

)] 

and they are perturbed together (i.e., when one is at its lowest, middle, or highest value 

the other is as well). 

DTICE (Temperature range of ice albedo variation):  The albedo (i.e., reflectivity) of 

sea ice can vary depending on temperature and parameter DTICE sets the temperature 

range below the melting-point in which sea-ice varies linearly between the melting 

albedo and the cold ice albedo.  The perturbed values are [2, 5, 10 (°C)].   

EACF (Empirically adjusted cloud fraction):  This parameter identifies how much 

cloud cover there will be when the specific humidity within a grid cell equals the 

saturation value (i.e., the air is saturated) and therefore is a scaling factor for cloudiness 

for a given temperature and humidity profile.  (See Smith et al. (1998) for further 

details.)  It has been found that an increase in EACF results in an increase in the amount 

of clouds present for a given value of temperature and humidity and therefore acts to 

amplify boundary layer cloud over the oceans and decrease them over landmasses 

(Sanderson et al. 2010).  EACF values can vary with height across the 19 model vertical 

layers.  There are three perturbed parameter options and these are distinguished by the 

single values [0.5, 0.63, 0.67] representing the average value across all 19 levels.  Table 
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3.5 lists the exact EACF values at each atmospheric level for the three options and it is 

apparent that the perturbations allow for increased cloud coverage for a given 

temperature and humidity, especially in the lowest model levels.   

 

Table 3.5:  Empirically adjusted cloud fraction (EACF) parameter perturbation values, which 

vary with height.  The EACF parameter perturbation value identifier is the average of all values 

across the 19 vertical layers in the atmosphere.     

 
 

Vertical Level  
 

EACF = 0.5 

(default) 

 

EACF = 0.63 
 

EACF = 0.67 

 

19  
 

0.50 
 

0.60 
 

0.65 

18  0.50 0.60 0.65 

17  0.50 0.60 0.65 

16  0.50 0.60 0.65 

15  0.50 0.60 0.65 

14  0.50 0.60 0.65 

13  0.50 0.60 0.65 

12  0.50 0.60 0.65 

11  0.50 0.60 0.65 

10  0.50 0.60 0.65 

9  0.50 0.60 0.65 

8  0.50 0.60 0.65 

7  0.50 0.60 0.65 

6  0.50 0.633 0.70 

5  0.50 0.666 0.75 

4  0.50 0.70 0.80 

3  0.50 0.70 0.80 

2  0.50 0.70 0.80 

1 
 

 0.50 0.70 0.80 

 

 

ENTCOEF (Entrainment coefficient):  This parameter sets the rate at which convective 

clouds mix with their surrounding environmental air.  In previous studies it was found 

that variations to ENCOEF played a significant role in altering modeled climate 

characteristics (e.g., Knight et al. 2007; Sanderson et al. 2008a; Fowler et al. 2010; 
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Sanderson et al. 2010).  In the convection parameterization scheme (Gregory and 

Rowntree 1990) a proportion of the rising air within an unstable grid cell (i.e., having 

positive buoyancy
7
 when lifted to the next vertical layer) across each vertical layer is 

allowed to mix a portion of the surrounding air into the rising air (called entrainment) as 

well as mix a portion of the rising air into the surrounding air (called detrainment).  The 

rate of these two processes is proportional to the value set for the parameter ENTCOEF.  

The parameter values are [0.6, 1.0, 3.0, 9.0].         

When ENTCOEF is set to lower values, rising convective air is less diluted by 

the environmental air surrounding it and therefore maintains greater buoyancy and can 

rise to higher altitudes before reaching a level of zero buoyancy.  The result is an 

increased depth of convection and greater transport of moisture to higher levels.  When 

ENTCOEF is set to higher values more mixing occurs resulting in weaker convective 

activity and greater moisture in the mid-troposphere.   

Sanderson et al. (2008a) found that decreasing ENTCOEF resulted in a 

moistening of the upper troposphere and lower stratosphere and a drying of the lower 

troposphere across the tropics.  The greater mid- to upper level moisture was found to 

increase clear-sky absorption of longwave radiation but at the same time produce a 

compensating effect by increasing reflection of shortwave radiation through greater 

albedo from an increase in high-level cloud formation.  The difference in these two 

compensating effects impacts a model’s climate sensitivity (i.e., the global mean 

temperature response to a doubling of atmospheric CO2) and it was found that this 

                                                 
7
 While the exact definition of buoyancy can vary (e.g., see discussion in Doswell and Markowski 

(2004)), it is generally understood to be the density difference between a fluid parcel and its surrounding 

environmental fluid.  Therefore, if a rising parcel of air has lower density than the air surrounding it; it 

will have positive buoyancy and continue to rise until it reaches a level where its density is equal to that 

of the air surrounding it (i.e., level of zero buoyancy).    
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difference can be dependent on other model parameter settings.  For example, Knight et 

al. (2007) found that ENTCOEF was responsible for 30% of the variation in climate 

sensitivity with lower ENTCOEF values tending to correspond with higher climate 

sensitivity but this relationship was modulated by parameters RHCRIT, CT and VF1.  

Cloud formation was suppressed when values of RHCRIT were higher, CT lower, and 

VF1 lower which resulted in less reflection of solar radiation while the lower 

ENTCOEF maintained greater clear-sky absorption of longwaver radiation, thus leading 

to greater climate sensitivity.    

 Additionally, Fowler et al. (2010) found that variations to ENTCOEF impacted 

precipitation efficiency and lead to changes to heavy precipitation.  This was due to the 

fact that ENTCOEF partially controls the amount of convective activity simulated in a 

model (Gregory and Rowntree 1990) which is responsible for the majority of heavy 

precipitation.   

I_CNV_ICE_LW;  I_CNV_ICE_SW;  I_ST_ICE_LW;  I_ST_ICE_SW (Type of 

convective/stratiform cloud ice crystal used in longwave/shortwave radiation):  These 

parameters allow for non-spherical ice particles in the radiation scheme.  Their 

parameter values are I_CNV_ICE_LW [1, 7],  I_CNV_ICE_SW [3, 7],  I_ST_ICE_LW 

[1, 7],  I_ST_ICE_SW [2, 7] and they are perturbed together (i.e., when one is at its 

default value or secondary value the others are as well).  The default values assume 

spherical ice particles while the non-default value (i.e., 7) allows for non-spherical ice 

particles in the radiation scheme (Edwards and Slingo 1996) and is associated with an 

alteration to the expressions for cloud optical depth, single scatter albedo, and scattering 
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direction which are functions of cloud water content and effective ice particle size 

(Slingo 1989; Ingram 1990).      

ICE_SIZE (Ice crystal size in radiation):  This parameter gives the effective radius for 

ice crystals in clouds (i.e., radius the ice would have if it were perfectly spherical) and is 

used in the radiation scheme (Edwards and Slingo 1996) for calculating how reflection 

takes place for incoming and outgoing radiation.  The parameter values are [2.5, 3.0, 4.0 

(x10
-4

m)
8
].   

L0; L1 (Sulfate mass scavenging parameters):  These two parameters are in the sulfur 

cycle parameterization scheme and are scavenging coefficients for the removal (i.e., 

scavenging) of SO2 from the atmosphere by precipitation falling below a cloud.  These 

two parameters increase or decrease by the same factor and their relation is given in Eq. 

3.4 below along with the other scavenging parameterization scheme equations of 

Woodage et al. (2003) and Ackerley et al. (2009),                                              

 
  

  
   (   )                                                   (3.1) 

                                       (   )     
 
 ⁄                                               (3.2) 

                                       (   )    (
 

 
)
 
 ⁄

                                        (3.3) 

                                                              
   ⁄                                                   (3.4) 

where S is SO2 concentration (ppbv), T is time, R is rainfall rate (mm h
-1

), and S0 is a 

SO2 threshold concentration.   (Refer to Ackerley et al. (2009), see their Eqs. (3-5), for 

further discussion on L0 and L1 and the model’s sulfur cycle processes.)  The parameter 

                                                 
8
 Note a possible error in the literature for this parameter.  All but one of the CPDN articles say units are 

“m” which is obviously incorrect and Sanderson et al. (2010) says they are [2.5, 3.0, 4.0 (x10
-5

m)] but it 

is probably [2.5, 3.0, 4.0 (x10
-4

m)] because in Heymsfield (1977), which is used for calculating ice fall 

speed, they show average ice crystal lengths of between roughly 0.3-0.5 mm with minimum length 

around 0.1mm and max length around 0.5mm.  These are on the order of (x10
-4

m) not (x10
-5

m). 
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values are [2.17, 6.5, 19.5 (x10
-5 

s
-1

)] for L0 and  [0.99, 2.96, 8.86 (x10
-5 

s
-1

)] for L1 

which represent minimum, best guess, and maximum value estimates (Ackerley et al. 

2009). 

NUM_STAR (Condensation threshold for accumulation):  This parameter is in the 

sulfur cycle parameterization scheme and is the aerosol concentration threshold for 

identifying when new particle formation is stopped and condensation onto accumulation 

mode particles begins.  (Refer to Ackerley et al. (2009) for further discussion on 

NUM_START and the model’s sulfur cycle processes.)    The parameter values are  

[0.1, 1.0, 10 (x10
6
)] and represent minimum, best guess, and maximum value estimates 

(Ackerley et al. 2009).   

RHCRIT (Critical relative humidity):  This parameter relates the atmospheric humidity 

in a grid cell to the amount of cloud within the grid cell.  Because the size of a grid cell 

is significantly larger than individual clouds the model cannot simply wait for an entire 

grid cell to become saturated before initiating cloud formation but rather must set a 

threshold for when to parameterize cloud initiation at the sub-grid scale.  RHCRIT 

defines this threshold and it corresponds to the critical relative humidity
9
 at which point 

cloud water vapor is initiated within a grid cell (Smith 1990).  An increase in RHCRIT 

reduces the overall water cloud coverage for a given relative humidity because a greater 

amount of moisture is required to initiate clouds.  Alternatively a decrease in RHCRIT 

was found not only to increase the amount of water cloud but also to decrease the 

amount of ice cloud (e.g., Pope et al. 2000).    

                                                 
9
 Relative humidity is defined as the ratio of the partial pressure of water vapor to the saturated vapor 

pressure of water at a given temperature.  Therefore it varies with temperature 
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 Sanderson et al. (2010) showed that the shortwave cloud feedback is positive 

when RHCRIT is increased because the corresponding reduction in boundary layer 

clouds increased the amount of shortwave solar radiation reaching the surface.  They 

also found, contrary to what might be expected, that the longwave cloud feedback was 

positive as well because there was an increase in high-level clouds due to the increase in 

available moisture (from less boundary layer cloud amount) even though a greater 

relative humidity was required to form the clouds.  Therefore, the increase in high-level 

clouds increased longwave absorption and reemission back to the surface.  These 

shortwave and longwave feedbacks were generally found across the global average but 

were especially evident near the equator.       

RHCRIT values can vary with height across the 19 model vertical layers and 

therefore the perturbed variations also can vary with height.  There are three perturbed 

parameter options.  These will be distinguished by the single values [0.65, 0.73, 0.9] 

representing the average value across all 19 levels (see Table 3.6). 
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Table 3.6:  Critical relative humidity (RHCRIT) parameter perturbation values, which vary with 

height.  The RHCRIT parameter perturbation value identifier is the average of all values across 

the 19 vertical layers in the atmosphere.     

 
 

Vertical Level  
 

RHCRIT = 0.65 
 

RHCRIT = 0.73 
 

RHCRIT = 0.90 
 

19  
 

0.60 
 

0.70 
 

0.90 

18  0.60 0.70 0.90 

17  0.60 0.70 0.90 

16  0.60 0.70 0.90 

15  0.60 0.70 0.90 

14  0.60 0.70 0.90 

13  0.60 0.70 0.90 

12  0.60 0.70 0.90 

11  0.60 0.70 0.90 

10  0.60 0.70 0.90 

9  0.60 0.70 0.90 

8  0.60 0.70 0.90 

7  0.60 0.70 0.90 

6  0.60 0.70 0.90 

5  0.60 0.70 0.90 

4  0.60 0.70 0.90 

3  0.85 0.85 0.90 

2  0.90 0.90 0.90 

1 
 

 0.95 0.95 0.95 

 

 

SO2_HIGH_LEVEL (Model level for high level SO2 emissions):  This parameter 

represents the highest atmospheric model level at which anthropogenic emissions are 

released.  In the model there are two levels from which anthropogenic emissions are 

released.  One is at the surface level and the other is at a higher model level to represent 

emissions coming from industrial plant chimney stacks.  The parameter values are [1, 3, 

5].   

VF1 (Ice fall speed coefficient):  This parameter scales the fall speed of cloud ice 

particles in the cloud parameterization scheme (Gregory and Morris 1996).  It is within 
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the formula for parameterizing ice fall speed based on the observational study of 

Heymsfield (1977) 

      (
    ⁄

  
)
    

                                                (3.5) 

where VF is the fall velocity of ice from within a cloud, VF1 is the ice fall speed 

coefficient, ρ the density of water, qc the total cloud condensed water content, C the 

fractional cloud area in a grid cell, and cF a set parameter equal to 1.01086 x 10
-3

 kg m
-3

.  

The expression (ρqc/C) is defined as the incloud condensed water density.   

When cloud water condenses onto ice nuclei to form ice crystals of sufficient 

size they begin to fall out of a cloud.  The speed at which the ice crystals fall is defined 

as VF in Eq. 3.5, which is partly governed by the ice fall speed coefficient VF1.  Larger 

values of VF1 allow for faster fallout of cloud ice which leads to larger particle sizes 

and increased precipitation amount.        

 Consistent results for climatic effects of VF1 variations have been found in 

previous CPDN studies (e.g., Sanderson et al. 2008a; Sanderson et al. 2008b; Sanderson 

et al. 2010) as well as other non-CPDN studies (Grabowski 2000; Wu 2002).  Lower 

values of VF1 resulted in a warmer, cloudier, more moist lower troposphere with 

reduced precipitation.  The greater moisture increased the clear-sky longwave 

absorption as did the increase in low-level cloudiness, both resulting a positive feedback 

on warming.  However there was a compensating effect due to increased shortwave 

solar radiation reflection from increased cloud cover.  Sanderson et al. (2008a) also 

found a reduced latent heat flux at the surface which they deduced as a result of lower 

surface insolation due to increased cloudiness.  And Fowler et al. (2010) showed that a 

reduction in VF1 could lead to an increase in extreme precipitation in summer at the 
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regional scale (e.g., over the United Kingdom) due to the increased available moisture, 

which is contrary to the general global results as stated above.  The VF1 parameter 

values are [0.5, 1.0, 2.0 (m s
-2

)].  

VOLSCA (Scaling factor for emissions from volcanic emissions):  This parameter is 

from the sulfur cycle parameterization scheme and is a scaling factor on estimated 

sulfur emissions from volcanic sources that are continually erupting as opposed to the 

single event explosive eruptions.  (Refer to Ackerley et al. (2009) for further discussion 

on VOLSCA and the model’s sulfur cycle processes.)  While the scaling factor is 

unitless it corresponds to a scaled change from an approximated continuous volcanic 

emissions value of 15 teragrams of sulfur per year (Tg(S)a
-1

) which is defined as having 

a VOLSCA value of 2.  Two additional values are used, one corresponding with 50% 

less annual emission (7.5 Tg(S)a
-1

) defined as VOLSCA equals 1, and the other with 

50% more annual emissions (22.5 Tg(S)a
-1

) defined as VOLSCA equals 3.  These three 

emissions values were chosen because they cover the range of uncertainty defined by 

Houghton et al. (2001).  Therefore the parameter values are  [1, 2, 3] and represent 

minimum, best guess, and maximum value estimates (Ackerley et al. 2009).   

 

 The following perturbed parameters are associated with the HadCM3L ocean 

model. 

HANEY (Haney heat forcing coefficient):  This parameter introduces a time lag for the 

correction of model generated sea surface temperatures (SSTs) to observed SSTs 

(Haney 1971; Jones and Palmer 1998) when spinning up the ocean model.  The 

parameter values are [81.88, 163.76 (Wm
-2

K
-1

)] 
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HANEYSFACT (Haney salinity forcing factor): This parameter introduces a time lag 

for the correction of model generated sea surface salinities (SSSs) to observed SSSs 

(Haney 1971; Jones and Palmer 1998) when spinning up the ocean model.   The 

parameter values are [0.25, 1.0]. 

ISOPYC (Isopycnal diffusion of tracers):  This parameter is associated with the mixing 

of tracers (i.e., temperature and salinity) along surfaces of constant density (i.e., 

isopycnal) in the ocean and are from the Griffies et al. (1998) parameterization scheme.  

The parameter values are [0.2, 1, 2 (x10
3 
m

2
s

-1
)]. 

MLLAM (Wind mixing energy scaling factor):  This parameter comes from the  

vertical mixing parameterization of mixed layer energetics (Gordon and Bottomley 

1985) based on Kraus and Turner (1967) which provides input from wind mixing 

energy (i.e., energy from the atmospheric wind that is available for mixing into the 

ocean).  As described in Gordon et al. (2000), the wind mixing energy is parameterized 

using λρou* where λ is the wind mixing energy scaling factor MLLAM, ρo is a reference 

sea water density, and u* is the friction velocity.  This turbulent energy is mixed down 

into the ocean using the exponential decay function exp(-z/δ) where z is ocean depth 

from the surface and δ is the decay scaling factor, that represents the depth to which the 

available turbulent energy is decreased to 1/e (i.e., approximately 0.37) of its initial 

value.          

VDIFFSURF; VDIFFDEPTH (Background vertical mixing of tracer at surface/with 

depth):  These parameters correspond with the depth dependent background vertical 

mixing of tracers (i.e., diffusion) below the ocean mixed layer in the Pacanowski and 

Philander (1981) vertical mixing parameterization scheme by defining a surface value 
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(VDIFFSURF) and then how the surface value varies with depth (VDIFFDEPTH).  The 

parameter values for VDIFFSURF are [0.5, 1, 2 (x10
-5 

m
2
s

-1)] and for VDIFFDEPTH are 

[0.7, 2.8, 9.6 (x 10
-8 

ms
-1)].  The default values are shown in Table 3.3. 

VERTVISC (Background vertical mixing of momentum):  This parameter represents 

the background value of vertical mixing of momentum (i.e., viscosity) below the ocean 

mixed layer in the Pacanowski and Philander (1981) vertical mixing parameterization 

scheme.  The total vertical mixing of momentum below the mixed layer is 

parameterized based on the local gradient in the Richardson number, which relates 

vertical stability and shear and indicates when convective overturning may occur, and 

this VERTVISC value (Gordon et al. 2000).  The parameter values are [0.5, 1.0 (x10
-5 

m
2
s

-1
)]. 

 The following perturbed parameters are associated with the initial conditions in 

the HadCM3L model.   

DTHETA (Initial condition):  To include the uncertainty relating to different initial 

condition in the model, a temperature perturbation was introduced in the atmosphere 

during its spinup phase.  This parameter indicates the temperature perturbations used 

which are [0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 0.07, 0.08, 0.09 (°C)]  

 

3.3.2  Atmosphere-Ocean Coupling and Flux Adjustments 

 Based on all of the individual perturbed parameter variations, there are 153 

different atmospheric parameter configurations (i.e., different atmospheres) and 10 

different ocean parameter configurations.  Therefore a combined 1,530 different 

combinations are possible when the atmosphere and ocean model components of 
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HadCM3L are coupled together.  (These combinations will interchangeably be referred 

to as different model versions.)
10

   

 Typically, the coupling process requires a simulation spin up period from 

hundreds to thousands of years to bring the two models into a state of equilibrium and 

may require flux adjustments to remove any anomalous fluxes at the interface of the 

two models.  Any anomalous fluxes present could lead to drifts in climate variables.  

With the large number of simulations planned in their project, CPDN developed an 

alternate spin up and flux adjustment procedure to reduce the amount of time required 

in the coupling process (Frame et al. 2009).   In this process the atmosphere and ocean 

components were spun up separately, using simpler model versions of their counterpart, 

and then were combined after flux adjustments were calculated based on the simpler 

models.  The 153 atmospheres were coupled to a simple slab ocean and spun up for 15 

years while the 10 oceans were coupled to a standard atmosphere (i.e., generalized 

vertical structure of temperature, pressure, and density) for a 200 year period.  A longer 

spin up period was required for the ocean because of the longer response time of the 

fully dynamic ocean.  Climatic conditions in the spin up process corresponded 

approximately to those in the year 1920.  Once the flux adjustments were calculated for 

each of the fully dynamic atmospheres and oceans separately they were then coupled to 

one another and each of their flux adjustments combined to create a single flux 

adjustment.     

                                                 
10

 Not all of the atmosphere/ocean combinations are available for analysis.  This is because a number of 

simulations were removed due to a variety of model output file errors (see the first section in both 

Chapter 5 and Chapter 7) and because a large number of initial simulations were generated using an 

incorrect parameter setting for the amount of sulphate aerosols in the atmosphere which led to unrealistic 

modeled climates (Myles Allen and Dan Rowlands, 2010, Personal Communication).   
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 Since this coupling process does not officially spin up and apply flux 

adjustments with the two fully dynamic models, it is possible that the resulting modeled 

climate may not be in complete balance.  This is investigated further in the control 

simulation analysis (See Chapter 5, Section 5.2).      

  

3.3.3  Control and Transient Simulations 

 Two different types of simulations were run for each HadCM3L coupled model 

version.  The first is a 160 year control simulation that maintains constant forcings 

representative of average conditions of roughly 1880-1920.  Solar radiation was allowed 

to vary across the typical annual solar cycle but is the same for each year in the 160 year 

simulation.  This control simulation allows for investigation of the model's mean 

climate and variability due to internal chaotic processes in the climate system.  See 

Chapter 5 for the analysis of the control simulations.   

The second type of simulation is a 160 year transient simulation with forcings 

that vary with time, corresponding to the time period 1921-2080.  A variety of natural 

and anthropogenic forcings were introduced to the different HadCM3L model versions, 

thereby allowing investigation of another level of uncertainty in modeling the climate.  

Atmospheric concentrations of well mixed greenhouse gases (GHGs), ozone, and SO2 

vary according to historically observed values over the period 1921-2000 and use the 

Special Report on Emissions Scenarios (SRES) A1B scenario (Nakićenović and Swart 

2000), a mid-range emissions scenario, for 2001-2080 future variations.  The scenario 

results in an atmospheric CO2 concentration reaching 720 ppm in 2100.   The emission 
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scenarios from SRES have recently been updated (Vuuren et al. 2011) and the A1B 

scenario is qualitatively similar to the new mid-range Representative Concentration 

Pathway (RCP) 6.0 although they do contain differences resulting in less warming near 

the end of the future projection period in RCP 6.0.   

Figure 3.3a shows radiative forcing estimates for well mixed greenhouse gases 

covering both the historical and future time period.  Because there is uncertainty in the 

anthropogenic SO2 emissions that have occurred in the past and will occur in the future, 

the emissions estimated over the historical period and those identified in SRES A1B 

have been scaled to different magnitudes using the parameter “anthsca” to account for 

that uncertainty (Figure 3.3c).   
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Figure 3.3:  Natural and anthropogenic forcing and SO2 emissions scenarios applied to the 

BBC-CCE HadCM3L transient simulations.  (a) Radiative forcing due to well mixed 

greenhouse gases using 1921-2000 historical values and the 2001-2080 SRES A1B future 

scenario.  (b) Radiative forcing from volcanic sulphate aerosol emissions.  Five historical 

scenarios are included based on Sato et al. (1993) (S), Ammann et al. (2003) (A), a logarithmic 

average of the two (Avg S+A), lower magnitude version (Sato-), and higher magnitude version 

(Ammonn+).  Ten future volcanic emission scenarios are created based on the same two data 

sets (S,A) as well as Crowley (2000) (C).  The time periods used from each data set are listed in 

the legend.  (c) Five versions of historical and SRES A1B annual average global anthropogenic 

SO2 emissions scaled by parameter "anthsca."  (d) Five historical solar forcing scenarios from 

1920-2003 are included based on Hoyt and Schatten (1993) (HS), Lean et al. (1995) (LBBx2), 

Solanki and Krivova (2003) (SK) and the other two based on expert elicitation (ML1, ML2), 

(see Frame et al. 2009).  Fifteen future scenarios are created based on three versions of each of 

the historical five; a continuation of the historical trend (Repeated), a reversal of the historical 

trend (Reversed), and zero trend (No-Trend).  (From Rowlands et al. 2012, Supplementary 

Information.) 
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Multiple realizations of past and future volcanic and solar forcings also were 

applied to the HadCM3L model versions (Figure 3.3b,d).  Five different versions of 

volcanic forcings were included for the 1921-2000 historical period, all based on 

observational data sets of volcanic aerosols in the stratosphere (Figure 3.3b).  One of the 

five is based on Sato et al. (1993) and another on Ammann et al. (2003) with the other 

three being a logarithmic average of the two, lower magnitude version of Sato et al. 

(1993), and higher magnitude version of Ammann et al. (2003).  Ten future volcanic 

forcings, 2001-2080, were created based on various segments of each of the two data 

sets as well as from segments of an additional longer data set from Crowley (2000).  

(See Figure 3.3 caption for full description of each of these.)     

Five different versions of solar forcing were included for the 1921-2003 

historical period (Figure 3.3d).  Three of these were based on published observational 

data sets (Hoyt and Schatten 1993; Lean et al. 1995; Solanki and Krivova 2003) and 

two others were constructed based on expert elicitation (see Frame et al. 2009).  Fifteen 

future scenarios, 2004-2080, were created based on the five historical period versions; a 

continuation of the historical trend, a reversal of the historical trend, and zero trend.  

(See Chapter 7 for the full transient simulation analysis.)   

 

3.3.4 Model Output 

 The HadCM3L model generates two sets of output for both the control and 

transient simulations.  The first set is area-averaged monthly mean time-series for the 

globe and 51 regions representing various land regions, ocean basins and other relevant 
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locations such as those associated with the El Nino Southern Oscillation (ENSO) and 

the North Atlantic Oscillation (NAO).  These regions are based on the so called Giorgi 

regions (i.e., Giorgi and Francisco 2000) commonly used in climate modeling studies.  

Table 3.5 provides their boundaries for the North American regions investigated in this 

study and Figure 3.4 provides a visual representation.  Table 3.6 lists some of the main 

variables available for the globe and over North America in the area-averaged monthly 

mean time-series output.  This study will focus on surface air temperature and total 

precipitation rate output because of their importance in the Earth's climate and because 

the regional averages include ocean grid cells and therefore would be difficult to find 

relevant observational data sets to make a comparison with (e.g., maximum and 

minimum temperature). 

 
Table 3.7:  Boundaries used in the area-averaged monthly mean time series output for the 

CPDN North American regions.   
 

Name Label Min Lat 

(°N) 
Max Lat 

(°N) 
Min Long 

(°E) 
Max Long 

(°E) 
      

Alaska, NW Canada ALA 60 72.5 -170 -103 

E Canada, etc. CGI 50 75 -103 -10 

Western NA  WNA 30 60 -130 -103 

Central NA CNA 30 50 -103 -85 

Eastern NA ENA 25 50 -85 -50 
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Figure 3.4:  North American regions investigated containing area-averaged monthly mean time-

series output. 

 

Table 3.8:  Model output variables available for the globe and over North America for the 

HadCM3L area-averaged monthly mean time series. 
 

 

HadCM3L Output Variables 
 
 

surface (1.5 m) air temperature 

total precipitation rate 

surface (1.5 m) relative humidity at 1.5 m 

surface (1.5 m) daily minimum temperature 

surface (1.5 m) daily maximum temperature 
 

 

mean sea level pressure  

u component of wind 

v component of wind 

convective cloud amount 

 

 

 The other set of available HadCM3L model output available for both the control 

and transient simulations is globally gridded (2.5° lat x 3.75° long) decadal mean 

quantities.  This output will not be investigated in the present study but will be the focus 

of future research.   
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CHAPTER 4 

OBSERVATIONAL DATA SETS 

 

 A number of observational data sets were used to assess the climate model 

performance throughout this study.  This chapter provides a review of the datasets used 

for temperature, precipitation rate and a reanalysis product (i.e., the North American 

Regional Reanalysis).  Table 4.1 at the end summarizes the key features of each.  

 

4.1  TEMPERATURE 

 Observational temperature data sets were acquired from three independent 

groups that have been the standard datasets used for observational assessments around 

the globe (e.g., IPCC 2001, 2007).  They have a variety of similarities and differences 

discussed below but the main feature of each is that they utilize observations from both 

the land and ocean to generate a globally gridded data set over both land and ocean.  

This was a necessity because the CPDN HadCM3L model output included both land 

and ocean grid cells in their regional mean values.    

 

4.1.1  HadCRUT3 

 The first temperature data set is the third version of the Met Office Hadley 

Centre and Climate Research Unit (CRU) at the University of East Anglia HadCRUT3 

(Brohan et al. 2006) acquired from CRU (www.cru.uea.ac.uk).  Its gridded land 

component is constructed based on approximately 4,500 land station data measurements 

around the globe from the Global Historical Climatology Network (GHCN; Peterson 

and Vose 1997), U.S. Historical Climate Network (USHCN; 
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http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html), and Antarctic Scientific Committee 

on Antarctic Research (SCAR; http://www.scar.org/).  The gridded ocean air 

temperature component is approximated using sea surface temperature (SST) data from 

ships and buoys as organized in the International Comprehensive Ocean-Atmosphere 

Data Set (ICOADS; Woodruff et al. 1998).   

Homogeneity adjustments are made to account for possible variations in 

recording methods such as changes in station site, measurement time, or 

instrumentation for land-based stations and changes in buckets used to sample ocean 

water in the early 20
th

 century.  Nearest neighbor comparisons are made as well as other 

manual quality control measures.  Monthly mean temperature anomalies of individual 

observations from the 1961-1990 long-term mean (LTM) are averaged across 5° 

latitude (lat) by 5° longitude (long) grid cells with minimum data record requirements 

and other quality control measures applied.  Anomalies are used because of the large 

uncertainties associated with absolute values as they can vary markedly from one 

location to another within a specified region (e.g., especially across varying topography) 

making it difficult to obtain a truly accurate observational estimate, especially when 

large quantities of data are missing between official measurement stations.  Anomaly 

estimates, however, have been shown to be strongly correlated between recording 

stations out to roughly 1,200 km (Hansen and Lebedeff 1987).   

Grid cells containing no data are left as such with no attempt made to interpolate 

the temperature of the cell from surrounding data.  This is the major difference between 

the HadCRUT3 data set and the other two temperature data sets which both use some 

type of interpolation method to infill grid cells containing no recorded observations.  
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Therefore in locations where there are minimal to no observations, such as polar 

regions, HadCRUT3 has empty grid cells with no data.  This must be taken into account 

when calculating global averages or averages near the poles as the relatively colder grid 

cell samples will not be included in an average.  Temperature data from HadCRUT3 are 

available from 1850-present with obvious increases in uncertainties in the earlier part of 

the record due to reduced measurement station coverage.  A new version of HadCRUT3 

came out (i.e., HadCRUT4) but was not used because it only recently became available.  

 

4.1.2  NOAA-MLOST 

The second temperature data set is the NOAA Merged Land-Ocean Surface 

Temperature analysis (NOAA-MLOST) version 3.5.1 (Smith and Reynolds 2005; 

Smith et al. 2008), acquired through NOAA/OAR/ESRL PSD, Boulder, Colorado, USA 

(http://www.esrl.noaa.gov/psd/).  Its gridded land component is constructed based on 

approximately 4,400 land station data measurements from GHCN and USHCN and its 

gridded ocean air temperature is constructed from ship and buoy data from ICOADS.  

Homogeneity adjustments are made as well as a variety of quality control to remove 

non-climatic variations in the data record.  Monthly mean temperature anomalies of 

individual observations from the 1971-2000 long-term mean (LTM) are averaged across 

5° lat by 5° long grid cells with minimum data record requirements and other quality 

control measures applied.  When grid cells contain no data it is interpolated using 

characteristics of the larger surrounding region (i.e., 25° lat by 25° long).  Temperature 

data from NOAA-MLOST is available from 1880-present.     
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4.1.3  NASA-GISTEMP 

The third temperature data set is the NASA Goddard Institute for Space Studies 

(GISS) Surface Temperature analysis (GISTEMP; Hansen et al. 1999; Hansen et al. 

2001) acquired through NOAA/OAR/ESRL PSD, Boulder, Colorado, USA 

(http://www.esrl.noaa.gov/psd/).  Its gridded land component is constructed based on 

approximately 6,300 land station data measurements from GHCN, USHCN and 

Antarctic SCAR.  Its gridded ocean component comes from the Hadley Centre Sea Ice 

and Sea Surface Temperature data set (HadISST; Rayner et al. 2003) and an updated 

data set from Reynolds et al. (2002).  Homogeneity adjustments are made as well as a 

variety of quality control measures to remove non-climatic variations in the data record.  

Monthly mean temperature anomalies of individual observations from the 1951-1980 

long-term mean (LTM) are averaged across 2° lat by 2° long grid cells with minimum 

data record requirements and other quality control measures applied.  When grid cells 

contain no data, interpolation is used to fill in the gaps by combining station data out to 

1,200 km from the grid box center as anomalies were shown to have high correlation 

out to this range (Hansen and Lebedeff 1987).  Temperature data from GISTEMP is 

available from 1880-present.     

 

 

4.2  PRECIPITATION RATE 

Observational precipitation data sets were acquired from two independent 

groups.  As with temperature, these data sets covered both land and ocean regions.   
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4.2.1  GPCP 

 The first precipitation data set is the Global Precipitation Climatology Project 

(GPCP version 2.1 (Huffman et al. 1997; Adler et al. 2003; Huffman et al. 2009) 

established by the World Climate Research Program (WCRP).  The data was acquired 

through NOAA/OAR/ESRL PSD, Boulder, Colorado, USA 

(http://www.esrl.noaa.gov/psd/).  The GPCP data set is constructed based on a complex 

merged analysis of thousands of rain gauge stations and low-orbit satellite microwave 

data and geosynchronous-orbit satellite infrared data.  Relationships between the 

satellite data and surface precipitation were established using knowledge that 

microwave brightness temperatures observed from space are dependent on the 

modification of the emitted surface microwave radiation by hydrometeors in the 

atmosphere and infrared data are used to relate precipitation with cold cloud top areas.  

Monthly mean precipitation rate is calculated over 2.5° lat by 2.5° long grid cells from 

1979-present.   

 

4.2.2  NOAA-PREC 

The second precipitation data set is the NOAA Precipitation Reconstruction 

(NOAA-PREC; Chen et al. 2002; Chen et al. 2003) acquired through 

NOAA/OAR/ESRL PSD, Boulder, Colorado, USA (http://www.esrl.noaa.gov/psd/).  It 

is constructed in a similar manner as GPCP with rain gauge and satellite data except an 

attempt is made to estimate precipitation over the oceans in the pre-satellite era and 

therefore provide a longer data set.  They utilize information from satellites and rain 

gauge observations over islands and land areas during the satellite era to establish 
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broad-scale variations that could have occurred over the oceans using the same gauges 

in the pre-satellite era.  Therefore, precipitation estimates over the oceans prior to 1979 

contain significantly greater uncertainty than estimates post-1979.  The PREC data set 

contains monthly mean precipitation rate anomalies from 1951-present with anomalies 

over land based on the 1951-1990 LTM and over the ocean based on the 1979-1998 

LTM.   

 

 

4.3  NORTH AMERICAN REGIONAL REANALYSIS (NARR) 

 One regional reanalysis was also included for comparison.  This was the North 

American Regional Reanalysis (NARR; Mesinger et al. 2006) acquired through 

NOAA/OAR/ESRL PSD, Boulder, Colorado, USA (http://www.esrl.noaa.gov/psd/).  

NARR is a reanalysis which means it generates climate variables using a dynamical 

model (e.g., including parameterization schemes, as used in climate models) instead of 

simply averaging/interpolating observed variables as purely observational data sets do.  

NARR runs the National Centers for Environmental Prediction (NCEP) Eta Model over 

the North American region using boundary conditions from its global reanalysis 

counterpart, the NCEP – Department of Energy (DOE) Global reanalysis model, and 

assimilates into the model a number of observed fields to help drive the simulated 

climate.  These assimilated variables include quantities such as temperature, wind 

precipitation, moisture, pressure, snow depth, etc. coming from a variety of sources 

(e.g., surface measurements, rawinsondes, dropsondes, aircraft, satellites).  The main 

advantage of NARR compared to conventional observational data sets is that it provides 
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a number of output variables (i.e., similar to those from a climate model)  at high 

temporal (3 hourly) and spatial resolutions (32 km horizontal resolution with 45 vertical 

atmospheric layers).  Pertinent to this study, monthly mean values of both temperature 

are precipitation are available from 1979-present over the North American region.  

There are some issues with NARR precipitation in that it does not handle precipitation 

outside the contiguous U.S. well because precipitation data is utilized in the reanalysis 

process and therefore in data sparse regions (e.g., Mexico, Canada, or over the ocean) 

the resulting precipitation output is less trustworthy and tends to be smaller than actual 

values (e.g., Bukovsky and Karoly 2007; Mo et al. 2005; Mesinger et al. 2006).   

 

 

Table 4.1:  Observational data sets and one reanalysis (i.e., NARR) used in this study. 
 

Data Set Variable Resolution Begins Reference 

HadCRUT3 Tmean (C) 5°, monthly, globe 1850 Brohan et al. 2006 

NOAA-MLOST Tmean (C) 5°, monthly, globe 1880 Smith et al. 2008 

NASA-GISTEMP Tmean (C) 2°, monthly, globe 1880 Hansen et al. 2001 

GPCP Pmean (mm/day) 2.5°, monthly, globe 1979 Huffman et al. 2009 

NOAA-PREC Pmean (mm/day) 2.5°, monthly, globe 1948 Chen et al. 2002 

NARR Tmean (C) 

Pmean (mm/day) 

32 km , monthly, North 

America 
1979 Mesinger et al. 2006 
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CHAPTER 5 

CONTROL SIMULATION ANALYSIS 

  

The goal of this chapter is to evaluate the performance of the HadCM3L control 

simulations from the climateprediction.net (CPDN) British Broadcasting Corporation 

(BBC) Climate Change Experiment (CCE) compared to detrended observational data.  

The control simulations maintain a constant annual but seasonally varying radiative 

forcing (refer to discussion in Chapter 3, Section 3.3.3) and therefore are compared to 

detrended observations to assess the modeled mean climate and its variability due to 

internal chaotic processes in the simulated climate system, including coupling between 

the atmosphere, ocean, land surface, and sea ice. 

Section 5.1 provides the quality control measures applied to the CPDN BBC 

CCE output and Section 5.2 assesses both the initial adjustment period when the 

atmosphere and ocean model components were coupled together as well as long-term 

model drift caused by surface flux imbalances.  Sections 5.3, 5.4, and 5.5 provide 

analyses of the modeled climate mean, seasonal cycle, and variability respectively to 

assess how well the model simulated the natural climate system and Section 5.6 

investigates relationships between the climate indices within and across regions as well 

as to teleconnection indices.  Section 5.7 evaluates the sensitivity of climate indices and 

model drift to variations in model physics parameters and Section 5.8 investigates initial 

conditions uncertainty.  Section 5.9 summarizes the key findings of this chapter.   
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5.1  QUALITY CONTROL OF CONTROL SIMULATION ENSEMBLE 

 The initial control simulation output acquired from CPDN was examined to 

assure the quality of the simulations utilized throughout the rest of this study.  Each 

simulation’s Network Common Data Form (NetCDF) files were checked for errors and 

the surface air temperature at 1.5 m (hereafter temperature) and total precipitation rate 

(hereafter precipitation) values were evaluated over the globe and five North American 

(NA) regions to search for errors, outliers, or duplicates.   

 

5.1.1  NetCDF File Errors 

 A total of 1,236 initial control simulations were downloaded from the CPDN 

servers, nine of which were immediately discarded due to NetCDF file generation errors 

in the CPDN archiving process.  Of the remaining 1,227 simulations, 12 were missing 

at least one monthly output value within one of their annual NetCDF files and 11 of 

these were discarded.  The 12
th

 simulation was left in the official ensemble because it 

was missing a monthly value within the first 20 years of the simulation, a period that is 

not used in analyses because the model’s atmosphere and ocean are still in the 

adjustment period of the coupling process (see Section 5.2).   

 Within the remaining 1,216 simulations, a search was conducted for the 

presence of any non-meteorological values (e.g., NaN, Inf, zero) which were identified 

in previous versions of the CPDN output.  No instances of these values were found and 

therefore all 1,216 control simulations were verified as having a complete set of 

available model output.   

 



92 

 

5.1.2  Erroneous Outliers 

Figure 5.1 displays the absolute temperature and precipitation over the globe and 

NA regions for all available control simulations.  An obvious outlier can be seen within 

most of the ensembles around simulation year 120.  Stainforth et al. (2005) identified a 

small number of CPDN simulations containing “sudden jumps” in the output values 

from the order of 10
2
 up to 10

8
, which they concluded were a result from the loss of 

information during either PC shut-down at a critical processing point or from running a 

computer system at a faster speed than rated by its manufacturer (i.e., ‘overclocking’).  

This outlier appears to be an example of one of the “sudden jumps” they describe.  To 

systematically identify this outlier and any others hidden within the ensemble, an 

anomaly test was conducted on output values for each region.  Monthly and annual 

anomaly values were calculated from the long-term mean for each simulation as well as 

month-to-month and year-to-year difference anomalies.  These anomalies were 

standardized with respect to the full distribution of anomaly values across all 

simulations (i.e., divided by the standard deviation of all anomalies for a specific 

region/quantity) and then sorted to identify simulations with the largest anomalies.   
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(a)    

 
(b) 

 
Figure 5.1: Initial ensemble of all control simulations acquired from CPDN for annual mean 

absolute (a) temperature (°C) and (b) precipitation rate (mm/day) for the globe and five NA 

regions.  Each plot shows time series for 1,216 individual simulations. 
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Each anomaly test identified a similar but not always consistent set of 

simulations containing the largest anomalies for a given variable/region and therefore 

these higher anomalies were assessed individually to determine if they were caused by 

an error within the model or if they were simply larger natural fluctuations within the 

modeled climate.  Two simulations were determined to contain non-climatic outliers 

and the metric accurately distinguishing them was global mean annual average 

temperature anomalies greater than six standard deviations.  There were some instances 

with similar six standard deviation anomalies or slightly higher anomalies that did not 

correspond with an actual error in the output.  This can still be expected given the sheer 

number of samples assessed.  For example, in the annual average tests, the  number of 

samples expected to be outside the range of 1, 2, 3, 4, and 5 standard deviations under a 

normal distribution for 170,240 samples (e.g., 1,216 simulations x 140 years)  is 54,476 

(32%), 7,831 (4.6%), 459 (0.27%), 10 (0.0063%) and 0.1 (0.000057%) samples 

respectively.  Therefore we would expect some anomalies to reach the 4-5 standard 

deviation range and since the distributions were not completely Gaussian in nature, this 

could result in even a few larger anomalies, as was found. 

Figure 5.2 shows the two outlier simulation cases removed from the official 

control ensemble.  A “typical” control simulation also is plotted for comparison 

purposes.  An abrupt change can be seen in most regions for the two outlier simulations.  

However, in specific regions there are instances where the anomalous jump was similar 

in magnitude to the natural variability found in that region.  This helps explain why the 

global average turned out to be the more useful quantity to identify the outliers.       
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(a) 

 
(b) 

 
Figure 5.2:  Two simulations containing outliers (black) and a typical simulation (red, green) 

for annual mean absolute (a) temperature (°C) and (b) precipitation rate (mm/day) for the globe 

and five NA regions.  
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5.1.3  Duplicates 

 After the two outlier simulations were removed, the remaining 1,214 control 

simulations were searched for any duplicate simulations, another feature identified in 

previous versions of the CPDN output.  Within the control simulation ensemble, there 

were combinations of 138 atmospheres, ten oceans, and eight initial conditions.  An 

assessment of the parameter variations indicated 187 simulations having one or more 

simulations with matching atmosphere, ocean, and initial conditions
11

.  While we would 

expect these simulations to have the same output as well, the actual output did not 

match exactly in any of the cases.  As is illustrated in a representative example in Figure 

5.3, the output in these instances closely resemble one another but were not an exact 

match.  All such instances were kept in the final control ensemble because their output 

differences were found to be caused by inconsistencies in the initial condition parameter 

(DTHETA) and deemed appropriate to retain in the ensemble as discussed below.   

 

 

 

 

 

 

 

  

                                                 
11

 Many of the 187 simulations had more than one exact match and therefore the total number of duplicate 

simulations actually totaled 213.   
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(a) 

 
(b) 

 
Figure 5.3:  Two simulations with identical model parameters but with different output for 

annual average absolute (a) temperature (°C) and (b) precipitation rate (mm/day) for the globe 

and five NA regions.   
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To better understand the cause of the output variation within parameter 

duplicates, the ensemble was searched for any instances when two or more simulations 

contained identical output for three different time periods:  the entire 160 year period, 

the first 20 years of the simulation, and the first 12 months of the simulation.  

Simulations with duplicate output were found but only for portions of certain 

simulations.  No simulations had completely identical output for the entire 160 year 

period.  There were 148 simulations having identical output with at least one other 

simulation (197 matches total) over the first 12 months of a simulation with only five of 

those remaining identical through at least the first 20 years of the simulation.  All 

simulations with the same first year had an identical atmosphere and ocean but were 

labeled as having different DTHETA values.   

Of the five duplicates over the first 20 year period, four had a matching 

atmosphere and ocean and one had a complete match of all parameters (e.g., DTHETA 

match as well).  Figure 5.4 shows two simulations having identical output through the 

first 20 years of a simulation, after which time the output diverged into different but still 

similar values.  These initially identical simulations indicate that the two simulations 

must have started out with identical parameter settings (e.g., atmosphere, ocean, and 

DTHETA) and therefore the DTHETA parameter setting must have been mislabeled in 

the NetCDF files
12

.  That, however, does not explain why the two simulations 

eventually diverge.  There are a few possibilities for explaining this.  The first is that the 

computer within the distributed computing network running one of the simulations may 

                                                 
12

 The exact DTHETA value cannot be officially confirmed by the CPDN group because their archived 

NetCDF files are the same used in this study and therefore the only way to identify the true value is for 

the original simulations to be rerun with a variety of DTHETA values applied which is not 

computationally feasible. 

 



99 

 

have encountered a restart or similar disruption in the middle of the simulation as 

described by Stainforth et al. (2005).  Such a restart may have caused the parameters to 

be reset, resulting in the initiation of a new initial condition temperature perturbation 

(e.g., established by the DTHETA parameter value) which would act to slightly alter the 

climate output indices.  Another possibility is that the variety of computers generating 

output could have slightly different architectures (i.e., different Intel processors) that 

may have resulted in slightly different model output.   
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(a) 

 
(b) 

 
Figure 5.4:  Two simulations that have identical output initially but then subsequently diverge 

for annual mean (a) temperature (°C) and (b) precipitation rate (mm/day) for the globe and five 

NA regions.  
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Assuming the duplicate parameter and output discrepancies can be attributed to 

one of the aforementioned issues, its significance must be assessed and a decision made 

on how to handle such simulations.  While the simulations generally are quite similar, 

there are some instances when the climate statistics appear to have noticeable 

differences.  For example, the global temperature output for the two simulations in 

Figure 5.3(a), which have seemingly identical parameter settings, show a marked 

difference in their variability over the final 50 years of the simulations.  To investigate 

this further, the mean, magnitude of the seasonal cycle, and interannual variability were 

calculated for corresponding 30-year time periods across simulations with duplicate 

parameters
13

 and then the magnitude of their differences compared against the range of 

actual values across of the full control ensemble.  The differences for the mean and the 

magnitude of the seasonal cycle were small compared to the full ensemble distribution 

(not shown).  Most of these differences fell within half a standard deviation of the full 

distribution range with a few reaching near one standard deviation.   

Differences in interannual variability, on the other hand, were relatively larger 

with differences on the order of 1-2 standard deviations of the full distribution and 

reaching up to four in some cases.  These differences, however, were found to be of 

similar magnitude as multi-decadal differences of interannual variability within a single 

control simulation (Figure 5.5).  Figure 5.5 shows the distribution of interannual 

variability differences for the 213 simulations having identical parameters as well as the 

multi-decadal variations from all control simulations.  The two distributions were 

standardized by the full distribution of all 30-year interannual variability values across 

all controls, and since the multi-decadal analysis distribution has an order of magnitude 

                                                 
13

 The five 30 year periods were 1941-1970, 1961-1990, 1991-2020, 2021-2050, and 2051-2080. 
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more samples, it was rescaled in the y-direction for better comparison.  It is evident 

from the two distributions that the interannual variability differences between 

simulations with matching parameters but differing output is nearly identical in 

magnitude to the multi-decadal variations that can be expected within a control 

simulation.  This further supports the conclusion of an initial condition restart issue as 

the cause of output differences in simulations with identical parameter settings.  If at 

some point in time within a simulation the initial condition temperature perturbation is 

reintroduced, it could cause the interannual variability to change to a slightly different 

state which could lead to the two simulations having different interannual variability 

characteristics within any given 30-year period, but this difference would still be within 

the normal multi-decadal variability.   
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(a) 

 
(b) 

 
 

Figure 5.5: Standardized differences between interannual variability within corresponding 30-

year periods in simulation pairs having identical parameters (red, green) compared to multi-

decadal differences within all control simulations (gray) for (a) temperature (°C) and (b) 

precipitation rate (mm/day).  Distributions are standardized by the distribution of 30-year 

interannual variability values from all control simulations and the two distributions are rescaled 

on the y-axis because of the sample size difference (1,065 duplicate; 12,140 multi-decadal).   

Duplicate Parameters Differences 
 

Multi-Decadal Differences 

Duplicate Parameters Differences 
 

Multi-Decadal Differences 
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In conclusion, it was determined that both the simulations with partially 

duplicated output and those with listed duplicates in their parameter variations but with 

output variations would be kept in the ensemble and treated as simulations with either 

initial condition variations or computer architecture differences.  There would be no 

skill in attempting to remove any one of these duplicate pairs due to the fact that there 

was no way to identify the “correct” simulation for that set of parameter variations 

without having CPDN carefully rerun all of the simulations in a highly controlled 

environment, which is not feasible.   

Also, this duplicate issue was discovered only because some of the simulations 

actually had duplicates generated.  The large number of other control simulations with 

no matched pairs may be subject to the same initial condition or computer architecture 

issues but there is no matched pair available for comparison.  In summary, this issue 

will, in effect, add noise to the analyses and will be noted as an additional source of 

uncertainty, particularly to the parameter sensitivity analysis for interannual variability 

as there will be multiple factors influencing the spread in its distribution, not just the 

known parameter variations.  

 

 

5.1.4  Final Ensemble 

The final set of 1,214 control simulations was comprised of 138 atmospheres, 

ten oceans and eight initial conditions.  From these there are 642 simulations having a 

unique atmosphere/ocean combination with the remaining 572 containing a duplicate 

atmosphere/ocean combination with a variation to the initial conditions.  Table 5.1 lists 

the number of control simulations having each particular parameter value.  
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Table 5.1:  CPDN perturbed parameters and the number of control simulations out of 1,214 that 

have a particular parameter value.  Atmosphere and ocean parameters are grouped separately 

and the initial condition parameter is given at the end.  Default parameter values are highlighted 

in bold. 
 

   Parameter              Description Values Control 

Simulations 
    

            ATMOSPHERE    

ALPHAM Albedo at melting point of ice 0.5 

0.57 

0.65
 

231 

462 

521 

ANTHSCA Scaling factor for anthropogenic sulfates 0.5 

0.8 

1.0 

1.2 

1.5 

0  

0 

1,214 

0 

0 

CLOUDTAU Time a circulating air parcel remains in 

cloud (s) [x 10
3
] 

3.6 

10.8 

32.4 

278 

581 

355 

CT Accretion constant (s
-1

) [x 10
-4

] 

 

 

0.5 

1 

4
 

345 

404 

465 

CW_LAND 
a Precipitation threshold over land  (kg m

-3
)  

[x 10
-4

] 

 

1 

2 

20
 

474 

400 

340 

CW_SEA 
a Precipitation threshold over sea

 
(kg m

-3
) 

[x 10
-5

] 

 

2 

5 

50 

474 

400 

340 

DTICE Temperature range of ice albedo variation 

 

2 

5 

10 

521 

462 

231 

EACF Empirically adjusted cloud fraction 
** 

 

 

0.5 

0.63 

0.67 

512 

278 

424 

ENTCOEF Entrainment coefficient 

 

 

 

0.6 

1.0 

3.0 

9.0
 

377 

403 

338 

96 

a, b, c, d
  Individual groups of parameters perturbed together 

          **
  Parameter values represent mean over 19 model levels (variations occur at each level) 
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Table 5.1:  Continued. 
 

   Parameter              Description Values Control 

Simulations 

I_CNV_ICE_LW 
b Type of convective cloud ice crystal used in 

longwave radiation 
 

1 

7 

1034 

180 

I_CNV_ICE_SW 
b Type of convective cloud ice crystal used in 

shortwave radiation  
3 

7 

1034 

180 

I_ST_ICE_LW 
b Type of stratiform cloud ice crystal used in 

longwave radiation 
 

1 

7 

1034 

180 

I_ST_ICE_SW 
b Type of stratiform cloud ice crystal used in 

shortwave radiation  
2 

7 

1034 

180 

ICE_SIZE Ice crystal size (m) [x 10
-4

] 

 

 

2.5 

3.0 

4.0 

381 

471 

362 

L0 
c Sulfate mass scavenging parameter L0 (s

-1
) 

[x 10
-5

] 

 

2.17 

6.5 

19.5 

293 

506 

415 

L1 
c Sulfate mass scavenging parameter L1 (s

-1
) 

[x 10
-5

] 

 

0.99 

2.96 

8.86 

293 

506 

415 

NUM_STAR Condensation threshold for accumulation  

[x 10
6
] 

 

0.1 

1.0 

10 

405 

595 

214 

RHCRIT Critical relative humidity 
** 

 

 

0.65 

0.73 

0.9
 

526 

317 

371 

SO2_HIGH_LEVEL Sulfur cycle: model level for SO2 (high 

level) emissions 

 

1 

3 

5 

163 

809 

242 

VF1 Ice fall speed (m s
-2

) 

 

 

0.5 

1.0 

2.0 

301 

425 

488 

VOLSCA Sulfur cycle: scaling factor for emission 

from natural (volcanic) emissions 

 

1 

2 

3 

669 

352 

193 

a, b, c, d
  Individual groups of parameters perturbed together 

          **
  Parameter values represent mean over 19 model levels (variations occur at each level) 
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Table 5.1:  Continued. 
 

   Parameter              Description Values Control 

Simulations 

            OCEAN    

HANEY
 Haney heat forcing coefficient (Wm

-2
K

-1
) 

 

81.88 

163.76 

1082 

132 

HANEYSFACT Haney salinity forcing factor 

 

0.25 

1.0 

885 

329 

ISOPYC Isopycnal diffusion of tracers (m
2
s

-1
) [x 10

3
] 

 

0.2 

1 

2 

130 

867 

217 

MLLAM
 Wind mixing energy scaling factor (m

2
 s) 

 

0.3 

0.7 

253 

961 

VDIFFDEPTH 
d Ocean: increase of background vertical 

mixing of tracer with depth (ms
-1

) [x 10
-8

] 

 

0.7 

2.8 

9.6 

265 

581 

368 

VDIFFSURF 
d Ocean: background vertical mixing of tracer 

(diffusion) at surface (m
2
s

-1
) [x 10

-5
] 

0.5 

1 

2 

265 

581 

368 

VERTVISC 
 

Ocean: background vertical mixing of 

momentum (viscocity) (m
2
s

-1
) [x10

-5
] 

0.5 

1.0 

245 

969 

          INITIAL CONDITIONS 
   

DTHETA Initial condition potential temperature 

perturbation applied to atmosphere (°C) 
0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

3 

3 

2 

4 

311 

300 

287 

304 

0 

0 
    

    

a, b, c, d
  Individual groups of parameters perturbed together 

          **
  Parameter values represent mean over 19 model levels (variations occur at each level) 
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5.2  MODEL DRIFT  

5.2.1  Drift Due to Initial Model Coupling Adjustment  

When the atmosphere and ocean models were coupled together (see Chapter 3, 

Section 3.3.2) there was a period of time at the beginning of each simulation when the 

two model components were transitioning into the final coupled system.  During this 

adjustment phase, climatic indices contained a large amount of drift until the system 

came into a state of equilibrium or, as will be discussed more in Section 5.2.2, a quasi-

equilibrium state where the climate system still retained a certain degree of drift.    

The initial adjustment period of drift is highlighted in Figure 5.6 where annual 

mean global absolute temperatures are shown for all simulations over the full 160 year 

time period (Figure 5.6(a)) as well as a closer look at the first 30-years (Figure 5.6(b)).  

A relatively large trend can be seen in the first five to ten years of the simulations 

followed by a transition into a more stable, yet sometimes still drifting, climate starting 

around 20 years into the simulation.  This same general characteristic can be found 

throughout all NA regions for both temperature and precipitation as shown in Figure 5.7 

which shows only the first 30 years of the control ensemble.   
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(a) 

 
(b) 

 
 
Figure 5.6:  Control simulation 1,214 member ensemble of annual mean global absolute 

temperature (°C) for (a) the full 160 year period and (b) the initial 30-year period.   
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(a) 

 
(b) 

 
Figure 5.7:  Control simulation 1,214 member ensemble of the initial 30-year period for annual 

mean absolute (a) temperature (°C) and (b) precipitation rate (mm/day) for the globe and five 

NA regions. 
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 The initial period of drift at the beginning of the simulations will affect any 

climate analyses and therefore must be discarded.  To identify the optimum year to 

begin analyses, distributions of trends within each of the 16 decades over all control 

simulations for global mean temperature were calculated and are given in Figure 5.8.  

The decadal distributions clearly show relatively larger trends within the first two 

decades, after which time the trends appear similar for the remaining decades.  A 

similar result can be found in the NA regions and for precipitation (Figure 5.9).  

Therefore, the first 20 year period was not used in control analyses and all subsequent 

discussions of the control simulations will be based on a time period of model years 21-

160.
14

   

 
 

Figure 5.8:  Trends per decade for the 1,214 control simulation’s global mean annual mean 

temperature (°C/century).  The boxplots indicate the mean and 25%-75% range within the box 

with whiskers out to the 95% range and subsequent trends in the outer 5% as black dots.   

  

                                                 
14

 Control simulation years 21-160 correspond to transient years 1941-2080 (see Chapter 7) 



112 

 

(a) 

 
 

(b) 

 
 

Figure 5.9:  Same as Figure 5.8 but including the NA regions for (a) temperature (°C/century) 

and (b) precipitation ((mm/day)/century).  
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5.2.2.   Long-Term Mean Drift 

 Within the established control analysis period (years 21-160), Figures 5.6(a), 

5.8, and 5.9 still indicate that many of the simulations maintain a long-term mean trend 

throughout the rest of the simulation even though flux adjustments were applied in the 

atmosphere/ocean coupling process.  As discussed in Chapter 3 (Section 3.3.2), a more 

generalized flux adjustment procedure was employed in the CPDN project in which the 

flux adjustments were established based on couplings between the separated fully 

dynamic atmosphere and ocean models with simpler versions of their counterparts in 

order to accommodate the large quantity of simulations to be generated.  Therefore 

when the two fully dynamic components were coupled together, additional flux 

inequalities were evidently present which were not represented by the simple model 

coupling process, thus resulting in a long-term mean drift.       

Because the goal of a control simulation is to establish a stable climate from 

which various forcings can be applied and model responses established (i.e., generating 

transient simulations), if the supposedly stable control simulation contains a component 

of drift then that drift also will be present in the corresponding transient simulation and 

the climatic response will be a combination of the drift and forced response.  Therefore, 

the long-term drift must be accounted for and removed in order to isolate the forced 

response.  For that reason, when assessing transient simulations in Chapter 7, the long-

term mean drift of each transient’s matching control simulation (i.e., with matching 

atmosphere and ocean parameters) was removed prior to any analysis (see Chapter 7, 

Section 7.2 for the drift removal process).    
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Figure 5.10 provides the distributions for long-term trends in annual mean 

temperature and precipitation for all control simulations and Table 5.2 lists the 95% 

range of these trends along with observed trends in three observational data sets (see 

Chapter 4).  The main point is that long-term mean drift in the model’s unforced control 

climate could be of the same magnitude or greater than trends found in the observed 

climate over the past 30-90 years.  This highlights the significance of the drift and 

confirms the necessity to remove it from the transient simulations prior to any analysis.  

The long-term mean drift sensitivity to variations in model parameters is discussed in 

Section 5.7.2 and the actual transient drift removal process described in Chapter 7, 

Section 7.2.   

 

Table 5.2:  The 95% range of control simulation 140 year trends in annual mean temperature 

(°C/century) and precipitation rate ((mm/day)/century) for the globe and NA regions.  All three 

observational temperature data set trends are from 1921-2010 and precipitation rate trends are 

from 1981-2010 for GPCP and 1951-2010 for NOAA-PREC.  Refer to Chapter 4 for further 

discussion of the observational data sets.   
 

 Globe ALA CGI WNA CNA ENA 

Temperature       

CPDN 95% -0.6, 0.17 -1.7, 0.6 -1.9, 1.6 -1.02, 0.4 -1.08, 0.54 -0.88, 0.58 

HadCRUT3 

NOAA-MLOST 

GISTEMP 

0.73  

0.79  

0.68  

1.47  

1.46  

1.61  

0.46  

0.39  

0.75  

0.74  

0.84  

0.88  

-0.10  

0.13  

0.21  

0.27  

0.26  

0.46  

       

Precipitation       

CPDN 95% -0.04, 0.001 -0.1, 0.04 -0.16, 0.15 -0.07, 0.06 -0.18, 0.11 -0.11, 0.07 

GPCP 

NOAA-PREC 

0.01  

-0.06  

0.12  

-0.02  

-0.76  

0.002  

-0.56  

-0.003  

0.05  

0.35  

-1.05  

0.11  
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(a) 

 
(b) 

 
 

Figure 5.10:  Control simulation long-term mean trends from years 21-160  in annual mean (a) 

temperature (°C/century) and (b) precipitation rate ((mm/day)/century) for the globe and NA 

regions.  There is one drift value for each of the 1,214 simulations. 
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5.3  MEAN 

5.3.1  Annual Mean 

To assess the performance of the mean climate of the control simulations, each 

simulation was split into five 30-year samples (i.e., model years 21-50, 41-70
15

, 71-100, 

101-130, 131-160) and the annual mean temperature and precipitation calculated for the 

globe and five NA regions.  Splitting simulations into 30-year samples when assessing 

climatic indices was preferred to calculating a single average for each simulation 

because the five samples can represent multi-decadal variations that may be present in 

the simulations and also because observational data sets have lengths of up to only 30-

90 years for comparison and therefore 30 years allows for a common time period of 

averaging.  Also, using a 30-year mean is widely recognized as an appropriate standard 

period for calculating climatic averages because it adequately removes most short-term 

variability (WMO 1983, 1988).  Figure 5.11 provides the resulting 6,070 CPDN 

samples (e.g., five samples from each of the 1,214 simulations) along with 

observational (HadCRUT3, GPCP) and reanalysis (NARR) 30-year mean bootstrap 

distributions for comparison.
16

  Bootstrap distributions were calculated by splitting the 

observational data sets into 5-year blocks and then creating 30-year samples by 

randomly selecting blocks, allowing them to be resampled in the random selection 

                                                 
15

 The 30 year sample covering model years 41-70 overlaps with the sample from 21-50 in order to gain 

30-year samples across the entire 140 years of each simulation.  The overlapping sample could have been 

taken from any time period within the simulation but starting the second sample 20 years after the official 

start of the control simulation analysis (e.g., 41) is a logical choice because  the early portions of the first 

sample (years 21-50) is the only location that could still be slightly impacted by the initial readjustment 

period model drift over the first 20 years of simulation (Section 5.2.1) and therefore the overlapped 

sample could provide a more accurate  representation of the early portion of each simulation. 
16

 Neither the long-term mean trend in the CPDN simulations nor the 20
th

 century trend in observational 

data were removed prior to calculating 30-year mean samples because the trends are small compared to 

the absolute values being compared.  Also, if the trends were removed then we would be required to set 

an arbitrary mean to anchor the detrended data to (e.g., mean of the entire time series) which would add 

its own degree of uncertainty that may be of the same order of magnitude as that added when leaving the 

trends in.   
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process.  The total number of samples generated was equal the number of CPDN 

samples (i.e., 6,070) and the relative proportion of samples coming from each data set 

was set to match the relative differences in the length of their records (e.g., 90 years 

versus 30 years).   
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(a) 

 
(b) 

  
Figure 5.11:  Annual 30-yr mean (a) temperature (°C) and (b) precipitation rate (mm/day) for 

the globe and five NA regions from the 1,214 control simulations (five samples per simulation) 

and observational bootstrap distributions (same number of overall samples).  The upper x-axis 

in each region is standardized values based on the CPDN distribution in that region.  The y-axis 

is set to highlight the CPDN distributions (i.e., observations can be cut off). 
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The CPDN distributions in Figure 5.11 are much broader than the corresponding 

observational distributions (i.e., contain a greater range of simulated mean temperature 

and precipitation).  This can be attributed to the large number of climate model 

parameter variations used and the resulting wide range of simulated climates.  While 

this may imply that many of the simulated climates contain biases and are unrealistic, 

another possibility is that the observational distributions are erroneously too narrow.  

Recall that the bootstrap method used to generate these distributions was based on 

relatively short time periods, 30-90 years, and therefore such a short time span may not 

fully represent the entire range of possible climatic states of the recent past.   

From Figure 5.11 it also is evident that CPDN and observational distributions do 

not show consistent characteristics across regions.  While the distributions of annual 

mean temperature in CNA each have a similar mean and some of the other regions have 

either the observational or reanalysis distribution aligned with CPDN, most regions 

contain varying degrees of misalignment.  This may imply that parameter variations 

affect climatic indices differently across different regions causing variation in model 

biases (investigated further in Section 5.7).  Or it may suggest that observational 

estimates are not properly representing the actual climate in certain regions.  (For a 

number of instances the observational and reanalysis data sets do not even align.)  

These observational inadequacies could be caused by, for example, insufficient 

temporal or spatial data coverage or uncertainties in the methods used to construct the 

data sets themselves.  One aspect of potential significance is that the CPDN NA 

regional averages contain both land and ocean grid cells and therefore the observational 
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averages also were calculated based on both land and ocean data which incorporated the 

added uncertainties associated with limited ocean observations.    

Additionally, the annual mean quantities assessed here are absolute values, 

which can vary markedly from location to location within a specified region making it 

difficult to obtain a truly accurate observational estimate when large quantities of data 

are missing between official measurement stations.  It is for this reason that anomaly 

values are typically used instead of absolute values because the biases are removed and 

additionally because there is a strong correlation between anomaly estimates across 

relatively large distances (on the order of 1,200 km), which reduces the impact of 

missing data (Hansen and Lebedeff 1987).  Absolute values, however, were used when 

analyzing the climate mean here and seasonal cycle in Section 5.3.2 because the biases 

themselves are the important aspects to be investigated in these two indices.     

With that said, some possible explanations for various features found in Figure 

5.11 can be given.  The first feature to note is the distributional differences found in the 

global temperatures in Figure 5.11(a).  The observational means come from the 

HadCRUT3 data set which is missing data from around the polar regions (refer to 

Chapter 4 for all observational data set references) and therefore a calculation of global 

mean in this instance will be missing relatively colder data points, the net result being a 

warmer global mean than the actual average.  Therefore the difference is associated 

with a bias in the observations.  It should be noted that the NARR data set is not shown 

in any global average because it contains reanalysis data only over the NA region.  An 

additional note is that only one observational data set is given for temperature and 

precipitation, besides the reanalysis data set, because the other available data sets 
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discussed in Chapter 4 did not provide absolute value versions of their data, only 

anomalies from a long-term mean which was not provided. 

Another feature that stands out is that CGI, WNA, and ENA temperatures for 

the majority of CPDN samples are cooler than observations.  This could be because the 

model has poor representation of topography, due to its course horizontal resolution, 

and/or snow and ice processes.  Also, a significant fraction of these regions are 

comprised of ocean and therefore the observations may not be representing the true 

average value within the land/ocean region because of observational limitations across 

the ocean.  This seems probable given the fact that the observations of the two land 

locked regions (ALA, CNA) align relatively well with CPDN (except for NARR in 

ALA).       

With the precipitation distributions, the observations are even more varied 

compared to CPDN than what is seen in the temperature distributions.  Given the 

aforementioned issues with calculating observational regional absolute means it is 

difficult to identify the specific causes of the discrepancies.  One feature that can be 

explained further is the fact that NARR estimates are generally smaller than GPCP 

observed estimates.  It has been found that NARR does not handle precipitation outside 

the contiguous U.S. well because precipitation data is utilized in the reanalysis process 

and therefore in data sparse regions (e.g., Mexico, Canada, or over the ocean) the 

resulting precipitation output is less trustworthy and tends to be smaller than actual 

values (e.g., Bukovsky and Karoly 2007; Mo et al. 2005; Mesinger et al. 2006).  While 

we might anticipate this effect to be slightly less for landlocked CNA, that region still 

includes overlap into Canada and Mexico which may be one of the reasons causing the 
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difference between it and CPCP.  Even though NARR is close to the CPDN distribution 

mean, GPCP may be closer to the actual value since an underestimation in modeled 

precipitation over that region may be anticipated due to difficulty in modeling 

convective activity across this region, especially nocturnal summertime mesoscale 

convective systems (e.g., Davis et al. 2003).     

Figure 5.12 provides the same information as Figure 5.11, but displays the 

distributions in box and whiskers form across the entire temperature and precipitation 

range to illustrate differences in the relative magnitudes of annual mean values across 

regions.  These types of boxplots, showing the 25%-75% (inner larger box), 2.5%-95% 

(outer skinnier box), and all samples outside the 2.5%-95% range (small dots of same 

color) will be used throughout the remainder of this study when comparing 

distributions.  The 25%-75% can be referred to as the 50% range and the 2.5%-95% 

referred to as the 95% range.   
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(a) 

 
(b) 

 
Figure 5.12:  Annual 30-yr mean (a) temperature (°C) and (b) precipitation rate (mm/day) for 

the globe and five NA regions from the 1,214 control simulations (five samples per simulation) 

and observational bootstrap distributions (same number of samples).  Boxplots provide 25-75% 

(inner) and 2.5%-97% (outer) ranges and dots for samples outside the 95% range.    
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In general, the relative magnitudes of CPDN temperature distributions across the 

different regions were consistent with those found in the observational data (Figure 

5.12(a)).  The north to south temperature gradient was found across the NA regions with 

the northern regions cooler than the southern regions.  The colder temperatures in ALA 

versus CGI can be explained by the fact that CGI contains greater ocean area than ALA 

as well as the fact that CGI could be influenced by the northward transport of heat from 

North Atlantic Ocean currents.  WNA, CNA, and ENA get slightly warmer respectively 

from west to east which can be expected given that WNA reaches farther north than the 

other two regions and ENA reaches slightly farther south.  Also, WNA includes Pacific 

Ocean waters with currents flowing from north to south bringing with it cooler 

temperatures while ENA includes the warmer Gulf Stream waters flowing up from the 

south. 

In Figure 5.12(b) the CPDN distribution relative magnitudes for precipitation 

across different regions also were generally consistent with those found in observational 

data with a few discrepancies between the GPCP and NARR data sets as already 

discussed.  The drier to wetter transition from west to east was found going from WNA 

to CNA to ENA.  And to the north, CGI correctly simulated larger precipitation than 

ALA because of its warmer temperatures and influence of the North Atlantic Ocean 

heat and moisture transport.  One feature that stands out is the much broader CPDN 

distribution range found in CNA precipitation (and somewhat in ENA as well) 

compared to the other regions.  This shows that parameter variations have a greater 

impact on annual mean precipitation in these regions.  (Parameter sensitivity will be 

explored more in Section 5.7.)  The region generating the largest amount of 
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precipitation is ENA because a large portion of its area resides in or near warm tropical 

waters.  The warmer temperatures allow for greater moisture availability and the region 

can include precipitation from tropical convective storm activity.   

 

5.3.2  Seasonal Means 

Next, the seasonal means in temperature and precipitation were assessed.  Figure 

5.13 displays the seasonal mean distributions which exhibited similar characteristics as 

the annual mean distributions (also shown) from Figure 5.12, most notably the same 

broader distribution compared to observations.  Note that the x-axis range for each 

region can vary due to the differing regional magnitudes.  The CPDN seasonal 

temperatures in Figure 5.13(a) appear to have performed well, having a distinct seasonal 

cycle matching that of observations.   
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(a) 

 
(b) 

 
Figure 5.13:  Same as Figure 5.12 but including seasonal 30-yr means for (a) temperature (°C) 

and (b) precipitation rate (mm/day). 
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The seasonal precipitation shown in Figure 5.13(b) had more disparity than that 

found in temperature with only a modest seasonal cycle apparent in some of the regions.  

At a very general level the magnitude variations between seasons of CPDN appear to 

match that of observations with a few exceptions.  One thing that stands out is that CNA 

was quite a bit drier in SON than what observations might suggest.  If this is a model 

bias then a potential reason could be that the model may not be fully capturing the fall 

season convective activity.  The excessive SON drying is a reason for CNA having a 

relatively wide annual average distribution compared to other region (Figure 5.12(b)).   

Another feature that stands out is CPDN ALA precipitation in JJA which is 

appreciably greater than observations.  This could be caused by an error in the 

observations due to poor observational density in that region because the CPDN ALA 

JJA temperatures do not reveal any anomalous warmth, which could have increased 

moisture available to that region.  However, the additional precipitation could be the 

result of some kind of anomalous transport of moisture to the region either through 

atmospheric circulation or warm ocean current inaccuracies.     

 

 

5.4  SEASONAL CYCLE 

 This section assesses the seasonal cycle of temperature and precipitation in the 

CPDN simulations.  The first subsection evaluates the mean seasonal cycle and the 

second the magnitude of the seasonal cycle in terms of the difference between northern 

hemisphere (NH) summer and winter (JJA-DJF).   
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5.4.1.  Mean Seasonal Cycle 

The monthly mean values in temperature and precipitation for 30-year samples 

is shown in Figure 5.14 for all CPDN simulations along with observational data set 

bootstrap samples.  Both CPDN simulations and observational data sets were detrended 

and centered on their absolute means prior to the analysis to remove any long-term drift 

in the simulations or greenhouse gas forced trends in the observations (i.e., only looking 

at natural variability).  The CPDN temperature monthly averages in Figure 5.14(a) have 

a distinct seasonal cycle in good agreement with observations.  This was anticipated as 

the seasonal cycle in temperature is predominantly controlled by solar radiation changes 

across the seasons.  Comparing across regions, the general temperature seasonal cycle 

magnitudes appear to match observational magnitude differences well (all y-axes are 

the same).  Two areas to point out in Figure 5.14(a) are the larger temperature ranges 

seen in CPDN for ALA and CGI winter which may be related to a greater sensitivity of 

winter temperatures in these regions to changes in model parameter values.  

Alternatively since both of these are northern regions there may be some missing 

observational grid points or measurements in the extreme northern portion of the 

regions causing the temperatures to be too warm.        
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(a) 

 
(b) 

 
Figure 5.14:  Mean seasonal cycle 30-yr averages for (a) temperature (°C) and (b) precipitation 

rate (mm/day) for the globe and five NA regions for the 1,214 control simulations (five samples 

per simulation) and observational bootstrap distributions (same number of samples).  The y-axis 

is the same in all regions for a given variable. 
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The precipitation seasonal cycles for CPDN and observations show more 

variability than temperature (Figure 5.14(b)), a characteristic also anticipated since 

precipitation is dependent on a number of variables (e.g., moisture fluxes/availability, 

geographical distributions, large scale general circulation patterns, storm tracks, etc., as 

well as the size and location of the region in which the average is being computed).  

Even with this complexity, the cycle in which precipitation varies in the observations 

can generally be seen in CPDN simulations.  The general magnitudes looking across 

regions generally match the observations and within an individual region the wet and 

dry periods for the most part line up.  A few obvious exceptions are the drier CPDN fall 

and wetter ALA summer (as discussed in Section 5.3.2).  The wet bias in ALA appears 

to be due to the fact that the increase in precipitation in the models begins earlier than 

what is implied by the observations.  Again it is uncertain whether this is an actual bias 

or an artifact of limited observational coverage in the region.   
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5.4.2  Magnitude of the Seasonal Cycle (JJA-DJF) 

To assess the magnitude of the seasonal cycle a simple measure of NH summer 

minus winter (JJA-DJF) was calculated.  Only temperature is discussed here because, as 

was shown in the previous subsection, precipitation does not necessarily have a straight 

forward seasonal cycle and does not always have its maximum and minimum occurring 

in summer or winter.  Using this measure provides a single value that can be used to 

assess the model’s response to solar forcing and will be useful for investigating 

parameter variation sensitivity (Section 5.7).  Also, the magnitude of the seasonal cycle 

in temperature can be a useful indicator for assessing a model’s global temperature 

response to changes in CO2 (also called climate sensitivity), because the changes in 

solar forcing have similar feedback mechanisms as those associated with changes in 

greenhouse gas forcing (e.g., feedbacks in water vapor, ice albedo).   

Figure 5.15 provides the magnitude in seasonal cycle of temperature for CPDN 

and observations which generally align.  Any differences between the two tend to be a 

somewhat larger range of higher magnitudes in seasonal cycle for CPDN.  This can 

subtly be seen in Figure 5.14 as well and from that figure it appears that one of the 

dominant factors is the cooler winters in the CPDN models, especially seen in ALA and 

CGI.  With the greater range of JJA-DJF, the CPDN model parameter variations may 

alter various feedback processes (e.g., water vapor, albedo, cloud) and result in a greater 

range of climate sensitivities than found in the observed climate (see Section 5.7 for 

further discussion).   
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Figure 5.15:  Magnitude of the seasonal cycle (JJA-DJF) of temperature for the globe and five 

NA regions for the 1,214 control simulations (five samples per simulation) and observational 

bootstrap distributions (same number of samples).  Boxplots provide 25-75% (inner) and 2.5%-

97% (outer) ranges and dots for samples outside the 95% range.    

 

 

5.5  VARIABILITY 

This section investigates the variability of temperature and precipitation in the 

CPDN simulations.  The first subsection evaluates year-to-year variability (interannual 

variability) for annual and seasonal averages and the second section investigates the 

interannual variability of individual months.  Interannual variability will be defined as 

the standard deviation of temperature or precipitation within a defined time period (e.g., 

30 years).  

 

 



133 

 

5.5.1  Interannual Variability 

The interannual variability in annual mean temperature is shown in Figure 

5.16(a) along with observational bootstrap distributions made up of three different 

observational data sets (HadCRUT3, NOAA-MLOST, GISTEMP) and one reanalysis 

data set (NARR).  The precipitation comparison is shown in Figure 5.16(b) with 

observational data sets (GPCP, NOAA-PREC) and the same reanalysis (NARR).  

Additional observational data sets were available for this variability analysis compared 

to the mean and seasonal cycle analysis because here anomaly values can be used 

(which were the only data provided for some observational data sets) since the 

magnitude of the absolute values do not impact calculations of year-to-year variability.  

Both the CPDN simulations and observational data sets were detrended prior to the 

analysis to remove any long-term drift in the simulations or greenhouse gas forced 

trends in the observations (i.e., only looking at natural, unforced variability).   
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(a) 

 
(b) 

 
Figure 5.16:  Annual 30-yr interannual variability for (a) temperature (°C) and (b) precipitation 

rate (mm/day) for the globe and five NA regions from the 1,214 control simulations (five 

samples per simulation) and observational bootstrap distributions (same number of samples).  

Boxplots provide 25-75% (inner) and 2.5%-97% (outer) ranges and dots for samples outside the 

95% range.   
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The interannual variability for both CPDN temperature and precipitation were 

generally in good agreement with observations for the majority of their distributions 

with a few exceptions.  A common feature found in annual temperature variability 

(Figure 5.16(a)) was a number of samples in each region with larger variability 

compared to observations, especially ALA.  A closer look at the interannual variability 

within individual seasons (Figure 5.17(a)) provides some insight into which part of the 

year this greater variability originated from.  This information will be useful when 

assessing parameter variations and identifying possible modeled process changes 

responsible for the larger variability (see Section 5.7.1 for physical explanations of the 

characteristics discussed here based on the parameter sensitivity analysis).  Relatively 

larger values of global interannual variability were found across all seasons while the 

ALA, CGI, WNA, and ENA had most of their increased variability in DJF with 

additional samples coming from MAM.  CNA had a large amount of its increased 

variability coming from JJA with all other seasons also having slightly larger values. 
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 (a) 

 
(b) 

 
Figure 5.17:  Same as Figure 5.16 but including both annual and seasonal 30-yr interannual 

variability for (a) temperature (°C) and (b) precipitation rate (mm/day). 
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The simulated annual precipitation variability (Figure 5.16(b)) had a few aspects 

worth pointing out.  The main point was the extension of the CNA precipitation 

distribution to much larger values of interannual variability.  From the seasonal 

distributions (Figure 5.17(b)) it is apparent that this increased variability predominantly 

came from JJA and somewhat from MAM.  Again, this will be discussed further in 

Section 5.7.1 when the specific parameter variations responsible for the increased 

variability are identified.   

Another aspect to point out is shift in the entire distribution of CGI precipitation 

from the observational data set GPCP (Figure 5.16(b)), which is originating almost 

entirely from DJF (Figure 5.17(b)).  This is almost certainly an issue with the GPCP 

data set when attempting to properly estimate precipitation over a region with limited 

observational measurement sites.  Recall that while all three of the precipitation data 

sets displayed a general decrease in precipitation in CGI over the final decade of the 

observational period CGI showed a more significant drop (Chapter 4, Section 4.2)) 

which would explain this increase in variability.       

 

 

5.5.2   Monthly Interannual Variability 

Instead of looking at year-to-year variations at an annual or seasonal scale, 

individual months also can be assessed.  Figure 5.18 shows the monthly interannual 

variability over the same 30-year time periods for CPDN and observations.  This simply 

illustrates how much the temperature or precipitation in a given month can vary within a 

30-year time period (e.g., standard deviation of 30 years of December temperatures).   
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(a) 

 
(b) 

 
 

Figure 5.18:  Monthly interannual variability 30-yr averages for (a) temperature (°C) and (b) 

precipitation rate (mm/day) of the globe and five NA regions for the 1,214 control simulations 

(five samples per simulation) and observational bootstrap distributions (same number of 

samples).  The y-axis for the global plots differs from the regional plots. 
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In general, CPDN temperature and precipitation follow the relative magnitudes 

of observed monthly variability.  And it is clear from Figure 5.18(a) that CPDN winter 

temperatures tend to have greater variability than summer temperatures, especially 

visible in ALA, which is a feature also found in observations.  This is the result of a 

greater temperature difference between mid-latitudes and polar regions during northern 

hemisphere winter and the arctic frontal passages that traverse the region during that 

time period.  The magnitude of this difference decreases as more ocean water is 

included in a region, which tends to limit variability because of the greater amount of 

energy required to change the ocean surface temperature compared to land (seen when 

comparing WNA and ENA to CNA and CGI to ALA).  Additionally, CPDN winter 

temperatures in CGI appear to have some samples with greater variability, as does ALA 

to some extent (a feature also found in seasonal interannual variability in Figure 

5.17(a)).  And the major aspect to note in monthly variability in precipitation (Figure 

5.18(b)) is the greater variability seen in CNA compared to the other regions, which 

also was found in seasonal interannual variability in Figure 5.17(b).  This cause and 

explanation for this greater range in variability is explored further in the parameter 

sensitivity analysis of Section 5.7.1.   
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5.6  REGIONAL AND VARIABLE RELATIONSHIPS 

 Next a variety of temperature and precipitation relationships were investigated.   

The first sub-section describes relationships between temperature and precipitation 

within each individual region while the second sub-section explores relationships across 

regions.  The third sub-section addresses relationships associated with the El-Niño 

Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) teleconnection 

patterns. 

 

5.6.1  Temperature and Precipitation Relationships within the same Regions 

 The correlation between interannual variations of temperature and precipitation 

in each 140-year simulation was calculated for each NA region and the globe for all 

1,214 CPDN control simulations as well as for the various combinations of temperature 

and precipitation observational data sets.  The CPDN correlations were calculated 

across the entire 140 year simulation after the non-climatic long-term mean drift was 

removed (Section 5.2.2) and the long-term mean trends, associated with the response to 

increasing greenhouse gas forcing, were removed from observations so as to not 

influence the natural variability comparisons.  It should be noted that these 

observational data set correlations are calculated over shorter time spans (30-90 years) 

than the CPDN simulations.    

 Table 5.3 summarizes the correlation results.  The CPDN results are shaded and 

list the mean temperature and precipitation correlation of all 1,214 simulations followed 

by the 2.5%-97.5% range in brackets.  The observational results are listed below the 

CPDN results and represent the mean correlation followed by the minimum and 
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maximum in parentheses covering combinations from the four temperature and three 

precipitation data sets (with NARR included).  Across the regional results, an asterisk 

identifies the largest mean correlation magnitude for both CPDN and observations 

within a specific season and yellow shading identifies the largest mean correlation 

magnitude within a specific region.          
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 It is apparent from Table 5.3 that the correlation found in both control 

simulations and the observations cover a very wide range.  Therefore, it will be more 

useful to focus more on the distribution means when making comparisons.  An initial 

note to make that has already been discussed previously is on the difficulty in 

estimating a realistic global precipitation value from observational data and therefore 

the global temperature and precipitation correlations are of lesser importance.  

However, we do see that the global relationship in the models is relatively large owing 

to the fact that global precipitation variations are related to temperature variations, 

especially through altered tropical convection and moisture availability at higher 

latitudes.   

 Therefore, focusing on NA regional temperature and precipitation correlations, 

the strongest seasonal relationships found in each individual region was the same for 

both the control simulations and observations (yellow shading in Table 5.3), except for 

ENA where the correlations were generally smaller than those found in the other 

regions.  The weaker relationships across ENA could be attributed to the large amount 

of ocean grid cells within that region which may offset some of the impacts changing 

temperatures might have due to heat transfer with the ocean.     

 The major features are similar when looking at the strongest relationships 

between temperature and precipitation both across regions within an individual season 

(asterisk in Table 5.3) and across seasons within an individual region (yellow shading).  

These are mainly found within DJF and JJA seasons.  The strongest relationships found 

in DJF was in ALA.  This was a positive correlation because temperature directly 

impacts the amount of atmospheric moisture available in that region.  Therefore, larger 



144 

 

temperatures mean more moisture available for generating precipitation.  WNA also had 

a similar, but slightly smaller positive correlation in DJF which makes sense as that 

region encompasses higher latitudes than the other three lower NA regions and is 

adjacent to the ALA region.  Also, WNA contains relatively higher topography and 

therefore a similar effect of moisture availability at higher altitudes depending on 

temperature, also could be involved.    

Interestingly, the other high-latitude region (CGI) has relatively larger 

relationships in both its control simulations and observations for DJF but unlike the 

positive relationship found in ALA, this relationship is negative.  This can be explained 

by the fact that this region is impacted by variations in the semi-permanent Icelandic 

Low and Azores High in the North Atlantic, fluctuations typically quantified by the 

North Atlantic Oscillation (NAO) Index (see Chapter 4, Section 4.4 for NAO discussion 

as well as Section 5.6.3 below).  In the Northern Hemisphere winter, when the Icelandic 

Low is stronger (i.e., positive NAO phase) the CGI region experiences lower 

temperatures because the stronger low is associated with stronger northerly (i.e., colder) 

winds on the western side of the low over northeastern Canada and Greenland as well as 

greater precipitation because of an increase in storm activity with the strengthened low.  

When the low is weaker (i.e., negative NAO phase) CGI experiences the opposite 

effects of relatively higher temperatures and lower precipitation.  This negative 

relationship between temperature and precipitation during CGI winter is properly 

simulated in the model.  Section 5.6.3 provides further NAO relationship information 

across the NA regions.       
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In JJA, the largest relationships were in CNA and WNA which were both 

negative correlations indicating larger drying (e.g., evaporation and evapotranspiration) 

with increased summer temperatures.  This effect seemed apparent in CNA for both 

control simulations and observations for MAM and SON as well which is why it ended 

up with the strongest correlation between annual temperature and precipitation among 

NA regions.   

 

5.6.2  Relationships between Regions 

 Next correlations of temperature and precipitation were calculated across NA 

regions and the globe in a variety of combinations ( Tables 5.4 – 5.7).  The tables are set 

up with the same control simulations and observational distinctions shown in Table 5.3 

(e.g., shading and distribution representation).  Any tables showing precipitation 

correlations include an additional row/column giving the regional correlations to global 

temperature.  Again, control simulation correlations are for the entire 140 year 

simulation and observational correlations cover between 30-90 years depending on the 

data set. 

Table 5.4 and 5.5 provide annual mean temperature and precipitation 

correlations across regions respectively.  In general, CPDN had a wide range of 

correlation values for most combinations while the observational range was typically 

much smaller, probably due to the difference in the number of samples between the two 

sets.  Looking at the mean temperature correlations (Table 5.4), CPDN indicated a 

greater relationship between the globe and both ALA and WNA which also was found 

in the observations.  However, CPDN did not show the same higher correlations 
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between the globe and the other regions.  The range of parameter values used therefore 

may be impacting the global to regional relationships in these instances.  Cases when 

both CPDN and the observations had relatively higher regional correlations in 

temperature were typically found when region were next to one another.  For 

precipitation correlations (Table 5.5) there were not any significant features that stood 

out except for possibly the higher relationship between global temperature and global 

precipitation that was not identified in the observations.  As a higher correlation may be 

expected because of global temperature’s impact on rainfall in the tropics, this may be 

indicative of poor observational estimates of precipitation.    

 

Table 5.6 and 5.7 provide DJF and JJA means for temperature and precipitation 

correlations across regions respectively.  DJF mean correlations are given in the lower 

left corner while JJA mean correlations are given in the upper right corner.   As with the 

annual temperature relationships in Table 5.4, observations typically had higher mean 

correlations between the globe and each region while CPDN did not.  And again regions 

aligned next to one another generally had higher correlations in both CPDN and 

observations, more so in DJF.  And for precipitation (Table 5.7), again CPDN global 

precipitation had a higher correlation than observations.  Other than that, the main 

feature that stood out was the larger negative correlation between WNA and ALA 

precipitation.  This may have to do with the large scale circulation where higher 

pressure and therefore less precipitation situated over one region indicates lower 

pressure over the other.   
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5.6.3  NAO and ENSO Teleconnections  

 

 Next, relationships in the model associated with the North Atlantic Oscillation 

(NAO) and El Niño-Southern Oscillation (ENSO) are explored.  The CPDN simulations 

contained monthly mean sea level pressure (MSLP) output for the grid cell nearest 

Stykkisholmur/Reykjavik, Iceland and Ponta Delgada, Azores.  Meteorological 

measurement stations at these two sites (or alternative nearby locations) have been used 

to calculate an NAO index, typically defined as the normalized pressure difference 

between the two stations which reside near the semi-permanent Icelandic Low and 

Azores High in the North Atlantic and provides a measure of the fluctuating strength of 

the two pressure systems (e.g., Rogers 1984; Hurrell 1995; Jones et al. 1997; Hurrell et 

al. 2013) which can greatly impact global weather, especially continental regions 

surrounding the North Atlantic.   

Therefore the normalized pressure difference between Iceland and Azores was 

calculated for both the observed data (acquired from NOAA’s Climate Prediction 

Center (CPC)) and simulated output.  (The normalization process involved dividing a 

location’s data/output by its own standard deviation prior to calculating the difference in 

order to minimize the impact of the larger variability in the more northern measurement 

(i.e., Iceland).)  To see whether the model was properly simulating the variability of the 

NAO, a comparison was made of seasonal interannual variability between it and 

observations.  The calculated NAO index from observations had data from 1921-2001 

and therefore it was split up into 30 year periods using 10-year overlapping (i.e., 6 

samples).  The CPDN control simulations had calculated NAO index values for years 
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21-160 and therefore were split up into five 30-year periods for all 1,214 simulations 

(i.e., 6070 samples).  Figure 5.19 provides the resulting CPDN distributions and 6 

observational samples and it is clear that the NAO variability in the model closely 

resembles the range of the observations.    

 

 

 

Figure 5.19:  Interannual variability in NAO calculated for CPDN control simulations 

(five 30-year samples per simulation) and observations (six 30-year samples; 10 year 

overlapping blocks from 80 years of data). 

 

 

 

Next relationships were investigated between the NAO index value and annual 

and seasonal global and regional temperature and precipitation for both the CPDN 

model simulations and observations.  Table 5.8 and 5.9 list the resulting correlations in 
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both the observations and control simulations.  Note that each CPDN control simulation 

contained a corresponding correlation (i.e., 1,214 correlations) and therefore the tables 

display the mean followed by the 2.5% and 97.5% values in the range of all 

correlations.  The observations, however, came from each data set (i.e., between 2-4 

correlations) and therefore the tables display their mean followed by the minimum and 

maximum correlations found.     

The model appeared to get the main NAO teleconnection features correct, with 

the largest impacts occurring across eastern NA during DJF.  The strongly negative 

relationship between NAO and temperature in the CGI region for DJF was properly 

simulated as well as the general negative relationship that occurs throughout the entire 

year in that region. When NAO is in a positive phase, the Icelandic Low and Azores 

high are relatively stronger resulting in the jet stream and storm track remaining farther 

to the north across NA and the North Atlantic which keeps colder air held in place at 

higher latitudes (i.e., the CGI region).  The opposite is true for CNA and ENA during a 

positive phase of the NAO as the more northerly jet allows warmer southerly air to 

penetrate into their regions.  This positive correlation was correctly modeled (Table 5.8) 

 The most dominant feature typically found in precipitation associated with a 

positive NAO phase is increased precipitation in the North Atlantic/Greenland area.  

This positive correlation was properly modeled as seen in Table 5.9.  Also, another NA 

feature with positive phase NAO has been a decrease in spring precipitation across 

ENA and this negative correlation was somewhat found in the models, but small for 

both observations and simulations.   
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Next, relationships in the model associated with the El Niño-Southern 

Oscillation (ENSO) were explored.  ENSO is associated with the cycle of anomalously 

warm and cool ocean water temperatures in the eastern equatorial Pacific Ocean which 

also affects air surface pressure in the tropical western Pacific.  These variations can 

have broad climatic impacts across the entire globe.  The CPDN simulations contained 

monthly mean air temperatures over the Niño 3.4 region, a region across the central 

Pacific used to generate an index for the phase of El Niño.  Therefore variations in 

temperatures across this region were compared to the observed sea surface temperatures 

(SSTs) used to create the El Niño index (i.e., the ERSST.V3B SST data set from NOAA 

CPC).  Granted this comparison is between air temperature and SST but the two are 

roughly correlated when interested in assessing changes in temperature across the 

region.  Note that the observed SST data set was detrended to remove any impact of 

warming ocean waters over the past century.     

Figure 5.20 shows the comparison of seasonal interannual variability between 

the CPDN and observed Niño 3.4 temperatures for 30-year time periods similar to the 

comparison for NAO in Figure 5.19.  The observations had data from 1951-2010 and 

therefore were split up into four 30-year periods with 10-year overlapping.  Again, the 

CPDN control simulations were split up into five 30-year periods for all 1,214 

simulations.  The variability distributions for CPDN appear to be skewed towards larger 

variability with the distribution mean (i.e., black diamond in Figure 5.20) close to the 

four observed variability estimates.  The reasoning for the skewed CPDN is not 

completely apparent but may have to do with the fact that the ocean model has a fairly 
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course resolution that may not be able to accurately represent ocean processes important 

for ENSO.   

 

 

 
Figure 5.20:  Interannual variability in Niño 3.4 SST anomalies calculated for CPDN 

control simulations (five 30-year samples per simulation) and observations (four 30-

year samples; 10 year overlapping blocks from 60 years of data). 

 

 

 Next relationships were investigated between the Niño 3.4 temperatures (i.e., 

ENSO) and annual and seasonal global and regional temperature and precipitation for 

both the CPDN model simulations and observations.  Table 5.10 and 5.11 show the 

resulting correlations and were constructed in the same manner as the NAO correlation 

tables.  The first feature that stands out in the correlations between ENSO and 
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temperature (Table 5.10) was the high correlation found throughout all seasons for the 

globe.  This aligns with the slight warming/cooling that occurs at the global scale with 

phase changes in ENSO due to the large region across the Central Pacific that 

experiences a relatively significant warming/cooling with each phase change.  Another 

major feature of a positive ENSO phase is a general warming of west-northwest United 

States and western Canada/Alaska in winter/spring.  This was modeled well in the 

controls simulations as is seen in Table 5.10 with larger positive correlations for ALA 

and WNA in DJF and MAM.  Additionally, a negative phase ENSO is typically 

associated with warmer summer temperatures across the south-central United States 

which also was modeled well as CNA had a larger negative correlation in JJA (Table 

5.10). 

With precipitation relationships to ENSO (Table 5.11), again the model 

performed well. The positive phase of ENSO typically corresponds with wetter 

conditions in DJF for WNA, CNA, and ENA which was found in the respective 

correlations.   
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5.7  SENSITIVITY TO PHYSICAL PARAMETER VALUES 

The parameter perturbations applied to CPDN control simulations are assessed 

to evaluate uncertainties in climate indices based on variations in these parameters.  

(For parameter perturbation discussions refer to Section 5.1.4 or Chapter 3, Section 

3.3.1)  Section 5.7.1 assesses the sensitivity of simulated mean, interannual variability, 

and magnitude of the seasonal cycle to variations of each model parameter and Section 

5.7.2 assesses sensitivity of long-term model drift to variations in model parameters.    

 

5.7.1  Mean, Variability, and Seasonal Cycle 

  A sensitivity analysis was performed to identify the correlation between CPDN 

model parameter variations and control simulation mean and interannual variability of 

temperature and precipitation and magnitude of the seasonal cycle (JJA-DJF) of 

temperature over the globe and NA regions.  Five 30-year samples of each of these 

indices were calculated for each control simulation and then linked with the appropriate 

parameter values for that particular simulation.  Each parameter varies in a sequential 

low-to-high manner and therefore correlations were calculated between the parameter 

values and climate indice values from all samples over all control simulations.  Table 

5.12 gives the results for those parameter values having climate indice correlation 

magnitudes greater than or equal to (≥) 0.4.  The parameters are listed in order of 

importance with the most influential parameters listed on top. Higher correlation 

magnitudes imply that varying the parameter’s value has a larger impact on the 

resulting simulated climate indice value.   
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 Seven parameters were identified as being more important than the others in 

influencing climate model output with two of those (VFI and ENTCOEFF) having the 

most significance (Table 5.12).  These two parameters have been identified in previous 

studies as being important as well (refer back to Chapter 3, Section 3.3.1).  To gain a 

better perspective on what these correlations imply, Figures 5.21, 5.22, 5.23 provide 

distributions for temperature and precipitation annual mean and interannual variability 

and magnitude of the seasonal cycle in temperature respectively for variations in each 

parameter listed in Table 5.12.  A characteristic found in all of these examples was that 

while some of the distributions display marked shifts in climate indice values when 

changing a parameter value, the majority of distributions across the various regions 

show little to no change when varying these “important” parameters.  Additionally, 

there are instances when only a single region may be impacted while the other regions 

show relatively no change (e.g., impact of varying ENTCOEF for CNA mean 

precipitation, Figure 5.21(b)).  Therefore, it appears that parameter variations identified 

as being most influential to changes in the natural variability of modeled climate 

typically do not impact all regions the same.  This fact will be explored further below.       

First, looking at annual mean temperature (Figure 5.21(a)), only the top two 

parameters (VFI and ENTCOEFF) had a consistent change in temperature with 

parameter variation across nearly all regions.  (Note that actual parameter values are not 

listed in these figures but the ordering corresponds with Table 5.1 in which values are 

listed smallest to largest from top to bottom and therefore the first distribution shown in 

Figure 5.21 for each parameter represents that parameter’s smallest value and the last 

distribution represents the parameter’s highest value.)   
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Figure 5.21:  Annual mean (a) temperature (°C) and (b) precipitation rate (mm/day) of the 

globe and five NA regions for the 1,214 control simulations (five 30-yr samples per simulation) 

split into distributions corresponding with model parameter values.  Actual parameter values are 

not listed but are arranged in the same order as that given in Table 5.1.  Boxplots provide 25-

75% (inner) and 2.5%-97% (outer) ranges and dots for samples outside the 95% range.  The 

95% range of observational (plus NARR) bootstrap distributions is shown as a vertical gray bar.   

(b) 

(a) 



162 

 

The parameter VFI is the ice fall speed coefficient which scales the speed at 

which cloud ice particles fall out of the sky (refer back to Chapter 3, Section 3.3.1 for 

all parameter full discussions).  Figure 5.21(a) shows that lower values of VFI had 

higher mean annual temperatures across all regions (i.e., the first/top distribution had 

warmer temperatures and the last/bottom distribution had cooler temperatures).  The 

reasoning for this is that when VFI is lower, there is slower fallout of cloud ice which, 

compared to higher VFI values, increases low-level cloudiness and reduces the rate at 

which cloud water is condensing onto ice nuclei leaving the atmosphere with greater 

moisture.  The net result is warming due to greater longwave absorption from both low-

level clouds and clear skies with greater moisture.  While there also would be an 

increase in reflection in shortwave solar radiation from increased cloud cover (a cooling 

effect), the previous warming effects must have outweighed this effect, which also was 

found in previous studies (see Chapter 3, Section 3.3.1). 

Parameter VFI also was important for variations in annual mean precipitation 

(Figure 5.21(b).  The globe, WNA, CNA, and ENA all had relatively higher mean 

precipitation when VFI was at larger values.  Larger VFI corresponds with faster fallout 

of cloud ice which increases overall precipitation amount.  This relationship was not 

found in ALA or CGI where there was no change or even a slight distribution shift in 

the opposite direction (i.e., lower VFI equaled more precipitation).  This inevitably must 

have been caused by the colder air temperatures in those regions.  While lower VFI 

values reduced the cloud ice fallout speed, which resulted in less precipitation in the 

warmer regions, it also increased moisture, which has greater importance for 

precipitation at higher latitudes where temperatures are colder and there is less moisture 



163 

 

available.  The two effects therefore resulted in roughly no net change in precipitation 

distributions with VFI variations in ALA and CGI.   

The other parameter found most important for annual mean temperature and 

precipitation differences (Figure 5.21) was ENTCOEF.  This is the entrainment 

coefficient which sets the rate at which convective clouds mix with their surrounding 

environmental air.  For annual mean temperature (Figure 5.21(a)) all regions had an 

increase in temperature with increasing values of ENTCOEF, except for CNA which 

had relatively no change.  Higher values of ENTCOEF means more mixing occurs 

between convective clouds and their surrounding air which weakens convection and 

results in greater moisture in the low- to mid-troposphere, compared to lower values of 

ENTCOEF which reduces mixing and allows stronger convection and greater transport 

of moisture to higher levels in the troposphere.  Therefore the greater moisture at higher 

levels in the troposphere with lower ENTCOEF allow for increased high-level cloud 

formation which increases the reflection of shortwave solar radiation and results in a 

cooling of the lower troposphere and surface, as was found in the distributions of Figure 

5.21(a).   

CNA, however, did not exhibit this same characteristic.  It had relatively no 

change in mean temperature with ENTCOEF variations.  This is likely attributed to an 

offset of the previously mentioned effects by variations to the attributes of convective 

activity over this region, a region containing greater amounts of convective activity than 

other regions.  With the other regions, a decrease in ENTCOEF resulted in a net cooling 

effect but decreased ENTCOEF also means stronger convection which could result in 

an alteration of the cloud cover that increases absorption of longwave radiation thus 
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increasing the warming effect.  Additionally, stronger convection may generate cloud 

tops at higher altitudes which emit longwave radiation away from Earth’s surface at a 

cooler temperature thereby increasing the amount of longwave radiation remaining in 

the system.    

For annual mean precipitation (Figure 5.21(b)) the only notable feature found 

when changing ENTCOEF was found in CNA where decreasing ENTCOEF values 

aligned with decreasing precipitation.  Again, the reasons for CNA being different than 

the other regions for this parameter can be tied to the fact that CNA contains a relatively 

large amount of convective activity.  When ENTCOEF is smaller there are relatively 

smaller regions of stronger convection versus when ENTCOEF is larger and there are 

larger regions of weaker convection.  This is because more near-surface moisture is 

being transported to the upper troposphere with stronger convection, leaving less 

moisture available at the surface for additional storms to form in nearby model grid 

cells (i.e., lower moisture reduces number of times convection is triggered in model’s 

convection scheme).  Additionally, when the moisture is transported into the upper 

troposphere it then can be transported out of the region by upper level winds, reducing 

regional moisture and overall precipitation.   

Next, Figure 5.22 shows variations of interannual variability to changes in the 

top parameter values from Table 5.12.  It is evident that parameter variations have 

minimal impact on interannual variability in either temperature or precipitation.  The 

only variations tend to be in the ranges of some of the distribution (e.g., global 

temperature variations with changes to ENTCOEF).  This figure is shown simply to 

point out the fact parameter variations have limited effects on interannual variability.   
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(a) 

 
(b) 

 
 

Figure 5.22:  Same as Figure 5.21 but for interannual variability.    



166 

 

 Finally, Figure 5.23 provides the variations of the magnitude of the seasonal 

cycle (JJA-DJF) to changes in the top parameter values from Table 5.12.  Again the 

impacts of parameter variations are minimal for most cases.  One interesting feature is 

that JJA-DJF in ALA and CGI decreased as VFI decreased while in CNA the opposite 

relationship is found.  In Figure 5.21(a) it was shown that a decrease in VFI resulted in 

warmer annual temperatures for all three of these regions.  Therefore, the higher 

temperatures for ALA and CGI (higher latitude regions) with decreased VFI went into 

warming the winter period (DJF), while the warming in CNA went into warming the 

summer period (JJF). 

A similar opposing shift of JJA-DJF between these regions also can be found 

with changes in the parameter ENTCOEF (Figure 5.23).  The regions ALA and CGI 

both had slight decreases in JJA-DJF with increases in ENTCOEF which align with the 

greater mean temperatures found with increases in ENTCOEF (Figure 5.21(a)), and 

probable DJF warming.  However, variations in the ENTCOEF caused virtually no 

change in CNA annual mean temperature (Figure 5.21(a)).  The increase in JJA-DJF 

with increasing ENTCOEF was probably still caused by an increase in JJA temperatures 

but it is assumed that warmer and cooler seasons within the annual average resulted in a 

net zero change for the entire year with changing ENTCOEF.     

A final note is that the third most influential parameter from Table 5.12, EACF, 

appears to show slight decreases in JJA-DJF across all regions with increasing values 

(Figure 5.23).  EACF is the empirically adjusted cloud fraction (Chapter 3, Section 

3.3.1) and it defines the amount of cloud cover there will be for a given amount of 

moisture within a grid cell.  Larger values of EACF result in a general increase in 
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cloudiness and therefore the decrease in JJA-DJF with increasing EACF could be 

explained by greater reflection of solar radiation by clouds in JJA (relative to DJF) 

causing cooler summer temperatures.   

 

 
 

Figure 5.23:  Same as Figure 5.21 but for the magnitude of the seasonal cycle (JJA-DJF) of 

temperature (°C).   

 

 

 

5.7.2  Long-term Mean Drift 

 As discussed in Section 5.2.2, a component of long-term mean drift may be 

present in many of the control simulations.  A sensitivity analysis was conducted to 

assess the impact model parameter variations have on this long-term mean drift.  Table 

5.13 provides the parameters having a correlation magnitude between its parameter 
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values and long-term mean drift ≥ 0.2
17

.  It is evident from the relatively lower 

correlation values and fewer parameters, compared to the previous parameter sensitivity 

analysis, that individual parameter variations do not have a large impact on long-term 

mean drift.  Figure 5.24 illustrates this by showing long-term mean drift distributions 

for parameter variations of some of the more sensitive parameters.  Since precipitation 

long-term mean drift tended to be minimal and followed the same characteristics 

changes in long-term mean temperature drift, only temperature distribution changes are 

shown in Figure 5.24 and briefly discussed below.     

 

             

Table 5.13:  Model physics parameters with correlation magnitude ≥ to 0.2 between their 

variations and climate long-term mean drift of temperature (Temp) or precipitation (Precip) 

over a defined region.  Correlations with magnitudes greater than 0.4 are highlighted yellow.  

Parameters are listed in order of generally higher sensitivity to lower.  All correlations shown 

have p<<0.00001.   
 

Parameter Globe ALA CGI WNA CNA ENA 

VDIFFDEPTH, Temp [0.42] Temp [0.48] Precip [0.36] Temp [0.46] Temp [0.35] Temp [0.38] 

VDIFFSURF Precip [0.37] Precip [0.42] Temp [0.34] 

   HANEYSFACT Precip [-0.38] Precip [-0.34] Temp [-0.47] Temp [-0.43] Temp [-0.34] Temp [-0.39] 

 

Temp [-0.38] Temp [-0.31] Precip [-0.42] 

   ISOPYC Precip [-0.33] Temp [-0.26] Temp [-0.30] Temp [-0.34] Temp [-0.24] Temp [-0.28] 

 

Temp [-0.30] Precip [-0.25] Precip [-0.26] 

   ENTCOEF Temp [0.32] 

 

Precip [0.20] Precip [-0.22] Temp [0.25] Temp [0.26] 

 

Precip [0.32] 

     HANEY Precip [-0.31] Precip [-0.23] Temp [-0.31] Temp [-0.29] Temp [-0.23] Temp [-0.27] 

 

Temp [-0.29] Temp [-0.21] Precip [-0.28] 

   VF1 Precip [-0.23]  

      

 

 

                                                 
17

 While a correlation magnitude of 0.2 is quite small it is shown here because the resulting parameters 

are utilized in Appendix A when creating “inferred” control matches to transient simulations. 
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Figure 5.24:  Long-term mean drift in temperature (°C/Century) for the globe and five NA 

regions for the 1,214 control simulations split into distributions corresponding with model 

parameter values.  Actual parameter values are not listed but are arranged in the same order as 

that given in Table 5.1.  Boxplots provide 25-75% (inner) and 2.5%-97% (outer) ranges and 

dots for samples outside the 95% range.  The vertical dotted line corresponds with zero trend.     

 

 

An initial thing to point out in Figure 5.24 is that all regions tend to shift in the 

same direction with varying parameter values for all parameters.  Parameters 

VDIFFDEPTH and VDIFFSURF vary together and correspond to the background 

vertical mixing of ocean temperature and salinity by defining the rate at which vertical 

mixing changes with depth (VDIFFDEPTH) and a surface value of vertical mixing to 

start with (VDIFFSURF).  Increasing these parameters (i.e., vertical mixing) increases 

the transport of heat away from the surface layers and therefore reduced any imbalance 

of heat built up at the atmosphere/ocean interface, thus reducing long-term mean drift 

which is what Figure 5.24 shows (i.e., distributions move closer to zero drift line).   
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Parameter HANEYSFACT sets the time lag for the correction of model 

generated sea surface salinities (SSSs) to observed SSSs in the spin up phase of the 

model.  This process attempts to reduce drift in the model and therefore it is 

understandable that varying it alters the long term mean model drift.   

Parameter ENTCOEF has already been discussed above and was found to 

increase annual mean temperatures in the atmosphere as its values increased.  It was 

found in Figure 5.24 that as ENTCOEF increased long-term mean drift went from a 

larger negative drift to a smaller trend.  Therefore the increased temperature assisted in 

offsetting the atmosphere/ocean imbalance that was causing a cooling trend (i.e., drift 

went from negative trend to less negative trend).     

Parameter HANEY is the Haney heat forcing coefficient and it sets the time lag 

for the correction of modeled sea surface temperature.  Therefore a larger HANEY 

value corresponds to a longer lag time which can allow for greater buildup of heat 

imbalances, which is seen in Figure 5.24 as the temperature drift becomes a larger 

negative value with increasing HANEY value.   

 

 

5.8  INITIAL CONDITIONS UNCERTAINTY  

 As discussed in Chapter 2, Section 2.2.1 one of the three main types of climate 

model uncertainty comes from uncertainty in the internal variability in the modeled 

climate system.  The control simulation ensemble discussed in this chapter provides an 

opportunity to assess this internal variability uncertainty because a number of the 

control simulations containing the same atmosphere and ocean parameters were run 
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with differing initial conditions (i.e., DTHETA from Table 5.1).  Therefore an analysis 

was conducted on sets of control simulations differing only by their initial condition 

parameter (i.e., all atmosphere and ocean parameters were the same) with the stipulation 

that they must be comprised of at least three simulations with differing initial conditions 

in order to get a more representative sample of possible variations.  All such control sets 

were identified and the 70-year drift (i.e., control simulation years 21-90) calculated for 

each initial condition variation member.  The mean 70-year drift of all members in a set 

was then calculated and anomalies established from this mean for each member.  The 

anomalies across all initial condition variation control sets were then combined into a 

single distribution for temperature and precipitation in each region and compared to the 

full distribution of 70-year drift from all controls.  This provides a relative estimate of 

the influence initial condition variations and therefore internal variability can have on 

climate model assessments.  Granted assessing control simulation trends is a rather 

crude method for assessing the impact of internal variability on climate model results 

but the transient simulation analysis in Chapter 7 did not offer a useful alternative due 

to the fact that solar, volcanic, and anthropogenic scaling factor parameters were varied 

alongside initial conditions and therefore the initial condition parameter alone could not 

be isolated to quantify its impact on transient climate changes such as forced trends over 

the historic or future projection period.     

 Figure 5.25 provides the results of the initial condition uncertainty assessment 

where the anomaly distributions of initial condition variations in 70-year drift are 

compared to the full control ensemble of 70-year mean drift.  Table 5.14 quantifies the 

ratios of the 50% and 95% distribution differences shown in Figure 5.25.  The 
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uncertainty in internal variability accounted for roughly half of the 50% uncertainty 

range in global 70-year control drift in both temperature and precipitation and a bit 

more than half for the 95% range.  For regional temperatures this percentage stayed 

roughly the same but for regional precipitation the internal variability uncertainty 

accounted for approximately 80-90% of the total uncertainty in most regions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



173 

 

 

(a) 

 
(b) 

 
 

Figure 5.25:  Comparison of initial condition uncertainty (i.e., control simulations with the 

same atmosphere/ocean parameters but different initial conditions) in 70-year drift (colored) to 

the full control ensemble of 70-year mean drift for (a) temperature (°C/Century) and (b) 

precipitation rate ((mm/day)/Century).     
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Table 5.14:  Ratios of initial condition uncertainty in 70-year control drift compared to the full 

range of 70 year drift for the 50% and 95% range.  Larger ratio values indicate an increased 

influence of the initial conditions variations (i.e., internal variability) to the 70-year trends.  

 

 Temperature Precipitation 

 

50% Range 95% Range 50% Range 95% Range 

Globe 0.56 0.69 0.50 0.62 

ALA 0.74 0.63 0.84 0.74 

CGI 0.41 0.50 0.45 0.49 

WNA 0.65 0.70 0.82 0.88 

CNA 0.62 0.76 0.88 0.80 

ENA 0.70 0.64 0.89 0.82 

 

 

 

 

5.9  SUMMARY 

This chapter provided an evaluation of the performance of the CPDN HadCM3L 

control simulations across the globe and NA regions compared to observational data 

sets.  The control simulations maintained a constant annual but seasonally varying 

radiative forcing and therefore were compared to detrended observations to assess the 

modeled mean climate and its variability due to internal chaotic processes in the 

simulated climate system, including coupling between the atmosphere, ocean, land 

surface, and sea ice.   

There were a total of 1,214 simulations comprised of 138 atmospheres, ten 

oceans and eight initial condition variations resulting in 642 unique atmosphere/ocean 

combinations with the remaining 572 containing duplicates atmosphere/ocean 

combinations with variations to initial conditions.  The controls contained relatively 

large drift in the first 20 years of their simulations due to atmosphere/ocean adjustments 
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associated with the coupling process and therefore these initial 20 years were not used 

in any analysis (i.e., including the corresponding transient simulation years of 1921-

1940).  Control simulations also contained long-term mean drift from flux inequalities 

not removed by the flux adjustment process.  This drift had to be removed from the 

corresponding transient simulations having the same atmosphere and ocean parameter 

values because a similar drift would exist in those forced simulations.      

The absolute mean temperatures of the control simulations were generally 

aligned or slightly cooler than observational estimates due to possibly poor 

representation of topography due to the models relatively coarse resolution.  

Additionally the observational estimates of absolute mean values may not have been 

representing the true value due to the difficulties in establishing absolute values 

compared to anomalies and because of limitations in ocean observations.  The 

magnitude of the seasonal cycle in temperature in the simulations aligned generally well 

with observations but with the range of CPDN distributions being significantly larger 

than the ranges of observations and extending to slightly larger magnitudes.   

The interannual variability of the majority of the simulations and observations 

agreed well, with a general tendency in the model to extend to larger magnitudes of 

variability.  However, with only 30-90 years of observational data to compare to, the 

full range of the climate system’s natural variability may not be represented in the 

existing observational data sets.      

 Parameter variations in the control simulations did not always impact all regions 

or both temperature and precipitation in the same way and therefore a universal 
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parameter value or set of parameter values could not be isolated and used to remove 

model simulations based on performance compared to observations.    

Most of the model parameter uncertainty was found to be associated with two 

cloud physics parameters: the ice fall speed (VFI) which impacts cloudiness (and 

therefore solar radiation and surface temperature) and precipitation by scaling the speed 

at which cloud ice particles fall out of the sky and the entrainment coefficient 

(ENTCOEF) which sets the rate at which convective clouds mix with their surrounding 

environmental air and impact the transport of moisture to higher levels in the 

troposphere.  These two parameters have been found important in previous studies as 

well (e.g., Knight et al. 2007; Sanderson et al. 2008a; Sanderson et al. 2008b; Sanderson 

et al. 2010).     

The uncertainty in internal variability was found to account for roughly half of 

the 50% uncertainty range in global 70-year control drift in both temperature and 

precipitation and a bit more than half for the 95% range.  For regional temperatures this 

percentage stayed roughly the same but for regional precipitation the internal variability 

uncertainty accounted for approximately 80-90% of the total uncertainty in most 

regions. 
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CHAPTER 6 

NORTH AMERICAN PALEOCLIMATE COMPARISON 

 

 The observational datasets used to assess natural variability in the HadCM3L 

control simulations in Chapter 5 were relatively short in duration (e.g., 30-100 years) 

due to the limited length of higher resolution instrumental records and satellite data 

(Chapter 4).  Therefore these near-term observations may not represent the full range of 

variability in the climate system.  One method used to extend the climate record further 

back in time, on the centennial to millennial scale, to get a better sense of past 

variability is the use of paleoclimate proxy data from sources such as tree rings, corals, 

ice cores, or sediments (e.g., see reviews in Jones and Mann 2004; NAS 2006; Mann 

2007).  When these proxy sources are sensitive to changes in their surrounding climate, 

they can be used to reconstruct climate variables such as temperature and precipitation.   

In this chapter, proxy data sets from across North America (NA) are utilized to 

compare climate variability of the more distant past (i.e., during the last 2,000 years) to 

variability found in the modern observational period and in the CPDN control 

simulations.  Section 6.1 provides an overview of the two types of proxy data sources 

used in this analysis (tree rings and varved lake and ocean sediments), and Section 6.2 

describes the climate reconstruction process.  Section 6.3 reviews the various NA proxy 

data sets used and Section 6.4 gives the resulting interannual and decadal variability 

comparisons to the more recent observational data sets and HadCM3L control 

simulations.    
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6.1  PROXY DATA SOURCES 

6.1.1  Tree Rings 

Using tree ring characteristics to study climate (termed dendroclimatology) is 

one of the most widely used methods for reconstructing past climates at an annually 

resolved scale.  This is in part due to the fact that tree ring data provide some of the 

strongest statistical relationships with instrumental climate records, the biophysical 

relationships between temperature and rainfall variations and tree growth, and their 

relatively widespread distribution around the globe compared to other annually resolved 

proxy data sources (e.g., Bradley 1999; Jones and Mann 2004).  A large collection of 

worldwide tree ring data has been collected and made available for the wider scientific 

community with a number of the records extending back 1-2 thousand years (Grissino-

Mayer and Fritts 1997).   

The basic structure of a tree is shown in Figure 6.1.  Just inside of the bark layer 

is the vascular cambium which produce phloem cells (adjacent to the bark), responsible 

for the transport of sugars and photosynthetic material, and the xylem cells (adjacent to 

the phloem cells), responsible for transporting water from the roots to the rest of the 

tree.  Over time the phloem cells are compressed and become part of the bark and the 

xylem cells become rigid wood.  At the beginning of the growing season the xylem 

material is thin walled and low in density giving it a lighter color.  This region of 

growth is called the earlywood.  Near the end of the growing season, tree growth slows 

and the xylem material is thinker walled and higher in density which gives it a darker 

color.  This region of growth is called the latewood.  The combined earlywood and 

latewood comprise a single annual ring (i.e., tree ring) and therefore the transition from 
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one year to the next can be identified by the light to dark color transitions, or the 

corresponding density differences.   

 

 

 
 

Figure 6.1:  Cross section of the components of the inner structure of a tree that are used for 

tree ring identification.  See text for description  (From Fritts (1976).) 

 

 

Information on the climate in which a tree has grown can be acquired from 

analyzing characteristics of its tree rings such as ring width, density and chemical 

composition.  Many factors can influence these tree ring characteristics including 

climatic factors such as temperature, precipitation, sunshine, humidity and non-climatic 
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factors such as tree species, tree age, soil nutrients and tree nutrient storage (Bradley 

1999).  It is therefore necessary to identify the desired climate signal from amongst all 

of these competing factors which is done by choosing site locations where trees are 

growing under climatic stress (i.e., where temperature or precipitation are the limiting 

factors) such as near the limit of their ecological range.  In these locations, variations in 

the climate signal of interest cause significant changes in tree growth.  For example, 

trees growing in semiarid regions such as the southwest United States are often limited 

by water availability and therefore tree ring characteristics may reflect changes in 

precipitation (e.g., Salzer and Kipfmueller 2005). Trees growing at the latitudinal or 

altitudinal boundaries may be limited by temperature and therefore reflect temperature 

variations (e.g., Davi et al. 2003). 

In order to create long-term tree ring records, multiple trees across a number of 

time periods are combined to create a single master chronology.  To accomplish this, 

tree ring sequences are aligned so their corresponding growth patterns match one 

another within overlapping periods.  This often includes the incorporation of dead trees 

to the chronology, which can even originate from beams or logs used to build structures 

over the last few thousand years (e.g., Robinson 1976).   

Prior to combining the individual tree ring records into a long master 

chronology, the individual records must be standardized to account for each tree's mean 

growth rate (e.g., Fritts 1971, 1976).  For example, tree rings are generally wider during 

a tree's early stages of life and then become narrower with age.  These effects have 

nothing to do with changes in climate and therefore must be removed.   One method 

used to account for this is termed Regional Curve Standardization (RCS).  In this 
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method, the expected value of the tree ring characteristic or parameter (e.g., ring width 

or density) is calculated as a function of the tree's age.  Then the actual parameter is 

divided by the expected value at any given year in the sequence, thereby standardizing 

the record.  Once the various records have all been standardized for growth rate, they 

can be combined to form a single master chronology for that specific site or region.  

Figure 6.2 provides an example of this process and shows how non-climatic variability 

can be produced in the master chronology if the standardization process is not applied 

(i.e., compare the fourth time series, which is the combined record, for the top and 

bottom panels).   

 



182 

 

 
Figure 6.2:   Standardization of tree ring width across three different records.  The top panel 

shows the actual tree ring widths as well as the expected value growth curve.  The mean tree 

ring width is shown at the bottom of the top panel for a straight averaging of the original tree 

ring widths whereas the bottom panel shows the result of the standardization process.  (From 

Fritts (1971).) 
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There are a number of limitations when using tree-ring records as proxy data.  

These include the limited areal coverage available where trees are found to be sensitive 

to either temperature or precipitation.  In many instances, tree growth is dependent on 

both of these climate indices and therefore their effects cannot be separated.  Further, 

there are a number of non-climatic factors that can influence tree growth and these are 

not always known across the record.  Additionally, studies looking at the recent 

chronologies of tree ring characteristics point to a possible change in the response of 

these indicators to climatic changes over the 20th century (Briffa et al. 1998) with a 

suggested cause being enhanced tree growth due to higher CO2 concentrations (Graybill 

and Idso 1993).  This response change must be taken into account, if present, when 

attempting to find relationships between modern instrumental data and temperature or 

precipitation (see Section 6.2).   

The final steps in using tree ring data to reconstruct paleoclimates is the 

calibration of the master chronology with overlapping instrumental data, verification of 

that reconstruction with instrumental data not used in the calibration phase, and then the 

application of the proxy/temperature relationship across the chronology record prior to 

the instrumental data.  These steps are also used in the other proxy data reconstructions 

and therefore will be discussed in general in Section 6.2.   
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6.1.2  Varved Lake and Ocean Sediments 

 When sediments are deposited into distinct annual layers at the bottom of a 

water body they are called laminated or varved sediments.  Variations in the 

characteristics of these varved sediments through time can indicate changes to the 

climatic conditions in the surrounding region.  In closed-basin glacial lakes, inorganic 

sediments are deposited on the lake bottom according to the meltwater discharge into 

the lake.  During the warm season, glacial ice melt increases which increases the flow 

of meltwater into the lake.  These higher energy conditions allow larger grained 

sediments (e.g., silt and fine sand) to be brought into the lake and deposited on the 

lakebed.  During winter, the ice melt is significantly reduced which decreases the 

meltwater and limits the flow of sediment into the lake to only the very small variety 

(e.g., clay-sized).  Therefore, annual layers can be identified.   

 As with tree rings, both precipitation and temperature can influence the 

characteristics of the varved sediments and therefore sites are selected where the 

meltwater into the lake is highly sensitive to one of the variables.  Examples can be 

found in Arctic Canadian lakes where summertime meltwater flux into the lakes are 

highly temperature sensitive (e.g., Lamoureux and Bradley 1996; Thomas and Briner 

2009).  In some varved sediments the effects of temperature and precipitation can be 

separated.  Figure 6 shows a core taken from a varved sediment in which the varve 

thickness has been identified as sensitive to temperature but, additionally, small sand 

layers within each annual layer can be linked to precipitation.  Therefore, the two can be 

separated when attempting to reconstruct climate conditions in the area.   
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Figure 6.3:  Varved sediment sample showing annual layers of deposited sediment on a lake 

bottom.  White boxes identify each annual layer while black boxes show sand-layer thickness 

which has been linked to precipitation in the region.  The precipitation dependent sand-layer has 

been subtracted from the annual layer to provide a proxy data set of varve thickness used in 

reconstructing temperature variability.  (From Thomas and Briner (2009).) 

 

 

 A complicating factor with these types of glacial lake sediments is that the 

glacier location relative to the lake can impact the sedimentation rate.  Since the glacier 

moves closer or farther away from the lake depending on the climatic conditions as 

well, this can impact interpretations of sedimentation rate variability (e.g., Leonard 

1997).  Other factors such as hillslope activity, sediment release upstream of the lake 

and transport of sediment by lake ice also can influence the varved sediment record in 

unpredictable ways that cannot be interpreted from the proxy record (Thomas and 

Briner 2009).    
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 Occasionally, varved sediments can be formed along ocean coastlines or within 

estuaries when sedimentation takes place at fast enough rates.  Climate sensitive 

indicators within each layer can be analyzed such as temperature dependent 

magnesium/calcium ratios inferred from deposited shells (e.g., Cronin et al. 2003).  The 

temperature of the water in which these shelled organisms lived can be determined and 

then related to local surface temperatures.  These varved sediment records, however, are 

formed in open bodies of water connected to the ocean which complicates the 

background conditions impacting sediment accumulation each year.  Additionally, 

organisms in the sediment accumulation regions may mix the sediments and alter the 

characteristics of the original layers (Turekian 1978).  An influx of pollution, especially 

in recent decades, also can complicate the record and influence the calibration process 

(e.g., NAS 2006).   

  

 

6.2  PALEOCLIMATE RECONSTRUCTION METHOD 

 The general method used to reconstruct past climates is similar for both the tree 

ring and varved sediment proxies described in the previous section.  This method 

consists of three main steps: comparing the proxy data with the overlapping 

instrumental record to determine an empirical relationship with the climate variable of 

interest, validating the relationship over a separate time period, and using the 

relationship to reconstruct the climate variable throughout the rest of the proxy record.   
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 The first step in this process involves calibrating the proxy record against the 

instrumental climate data, typically using the statistical technique of linear regression 

(Figure 6.4).  Once the proxy record and instrumental record have been aligned over the 

same time period, proxy values and their corresponding observational values are 

identified (e.g., open circles in Figure 6.4).  Once all of these pairs are identified a linear 

least squares line is established which forms the basis for the relationship between the 

proxy and observational values used to reconstruct past values of the climate variable.  

For example, if a proxy value had a magnitude of B in Figure 6.4 sometime in the 

distant past then the reconstructed value would be TB.  While the blue lines in the figure 

show the 95% prediction interval, it is clear that a reconstructed climate variable at a 

proxy value of A will have more uncertainty than at B since A is outside the range used 

to generate the proxy/climate variable linear relationship (i.e., no samples extend out to 

A).   
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Figure 6.4:  An example of how temperature is reconstructed from proxy data using linear 

regression.  Circles indicate a hypothetical annual series of proxy data and corresponding 

instrumental temperature observations over a 100 year calibration period (i.e., 100 circles).  

Solid black line is the linear fit to the data and blue lines indicate the 95% prediction intervals.  

The heavy dashed line and red line indicate potential departures from an assumed linear 

relationship between the proxy and temperature data.  Two examples (A, B) are provided 

showing the temperature predictions for a given proxy value with corresponding prediction 

uncertainty ranges (heavy blue vertical lines).  (From NAS (2006).) 

 

      

  

 Once the empirical relationship is calculated it is tested over a part of the 

instrumental record that was not used in the calibration process.  Climate variables are 

reconstructed from the proxy record during this period and the results compared to 

observations using any number of metrics to assess the measureable skill in the 

predicted variable.  If the relationship is found to have predictive skill then it is used to 

reconstruct the climate variable over the rest of the entire proxy record.  

 This linear regression method assumes that a linear statistical relationship exists 

between the proxy data and the value of the climate variable.  The derived relationship 
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would not produce reliable reconstructions if there were portions of the proxy/climate 

variable relationship that were not linearly related.  This is illustrated in Figure 6.4 with 

the heavy dashed black line.  If the relationship in the upper portion of the proxy record 

were different then the lower portion then the linearity assumption would be violated 

and a more complex relationship would have to be established.   

 Additionally, the statistical relationship is assumed to be maintained throughout 

the entire calibration, validation and reconstruction period (called the stationarity 

assumption).  If it varies with different time periods then the calibrated relationship 

would not accurately reconstruct the actual climate variable.  This is illustrated by the 

red line in Figure 6.4 which could represent the actual proxy/climate variable 

relationship at a time in the distant past.  Since this relationship differs from the one 

established in the calibration phase, the reconstructed values would not reflect the actual 

variability of the climate variable (e.g., see the difference in reconstructed temperatures 

at proxy value A).     

 One thing to note with regard to this linear regression method is that the 

reconstructed climate variable can potentially have less variability than what is found in 

the instrumental data.  This is because only a single value is assigned to a given proxy 

reading whereas there may be a range of potential values that could represent the proxy 

data.  For example, see the multiple temperature/proxy pairs near proxy value B (i.e., 

multiple circles).  The reconstruction assigns a temperature value of TB for this proxy 

reading while the actual pairings over the calibration period indicated a number of 

potential temperature values.  Therefore a reduction in variability can be expected when 

analyzing paleoclimate reconstructions. 
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6.3  NORTH AMERICAN PALEOCLIMATE RECONSTRUCTIONS 

 A number of proxy-based paleoclimate reconstructions were available across 

North America from the National Climatic Data Center’s (NCDC’s) World Data Center 

for Paleoclimatology (http://www.ncdc.noaa.gov/paleo/recons.html), the world’s largest 

archive of paleoclimatic data.  These reconstructions varied in their location, temporal 

resolution and length of record.  Since the goal of this assessment was to compare 

interannual and decadal variability estimates from these paleoclimate reconstructions to 

the more recent relatively high resolution observations and the control simulations, only 

data sets with annual temporal resolution were utilized.  This requirement narrowed the 

data sets to mainly tree rings and varved sediment records.   

The geographic location of each data set is shown in Figure 6.5 and labeled 

according to its proxy data type (symbol shape) and climatic variable (solid or light 

colored fill for temperature and precipitation respectively).  More detailed information 

on each data set is given in Table 6.1 including the time period covered, season, and 

relevant references.  The actual reconstructed temperature and precipitation anomaly 

data sets are shown in Figure 6.6 and 6.7 respectively.  Each proxy-based dataset 

followed a similar climate reconstruction procedure as discussed in the previous section 

and therefore specific details on each will not be given here but can be found in the 

corresponding references (Table 6.1).  Some general information on the data sets is 

discussed below, including some of the more important details that could impact the 

resulting variability analysis that is provided in the next section.   
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Figure 6.5:  Locations of North American proxy-based paleoclimate reconstructions for 

precipitation (open symbols) and temperature (filled symbols) using proxy data from tree rings 

(triangles) and varved sediments (squares).  The five larger rectangular regions highlight the 

regions used for calculating climatic information from the CPDN HadCM3L model.   

 

 

 
Table 6.1:  Information for each proxy-based paleoclimate reconstruction shown in Figure 6.5.   
 

Region Proxy Data Climate 

Variable 

Record  

(years) 

Season Source 

SE Alaska Tree Rings Temp 1593-1992 Annual Davi et al. 2003 

NE Canada Varves Temp 971-2003 Summer Thomas and Briner 2009 

SW Canada Tree Rings Max Temp 950-1994 Summer Luckman and Wilson 2005 

SW USA Tree Rings Max Temp 1-1996 Annual Salzer and Kipfmueller 2005 

E USA Varves Temp 1700-1995 Spring Cronin et al. 2003 

S Canada Tree Rings Precip 1409-1998 Annual St. George and Nielsen 2002 

NW USA Tree Rings Precip 1705-1979 Annual Garfin and Hughes 1996 

SW USA Tree Rings Precip 570-1987 Annual Salzer and Kipfmueller 2005 

Mid USA Tree Rings Precip 1640-1982 Annual Cleaveland and Duvick 1992 

SE USA Tree Rings Precip 933-1985 Spring Stahle and Cleaveland 1992 
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Figure 6.6:  Annual average temperature anomaly (°C; anomaly from each data set’s long-term 

mean) for (a) SE Alaska summer, (b) NE Canada summer, (c) SW Canada summer, (d) SW 

USA annual, and (e) E USA spring.   
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Figure 6.7:  Annual average precipitation anomaly (mm/day; anomaly from each data set’s 

long-term mean) for (a) S Canada annual, (b) NW USA annual, (c) SW USA annual, (d) Mid 

USA annual, and (e) SE USA spring.   
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Tree ring proxy data were used for all of the precipitation reconstructions as 

well as three of the five temperature reconstructions.  The additional two temperature 

proxies were varved sediments from a glacial-lake in northeast Canada (NE Canada; 

Thomas and Briner 2009) and varved ocean sediments from the Chesapeake Bay in the 

eastern USA (E USA; Cronin et al. 2003).  It should be noted that the E USA data set is 

unique from the rest because it was constructed to represent variations in Chesapeake 

Bay water temperature.  However, it was still included because this was the only 

temperature reconstruction from within the CPDN ENA region and additionally because 

over half of that region in the model contained ocean grid cells and therefore the 

inclusion of a SST-based proxy estimate influenced by both oceanic water temperatures 

and regional atmospheric temperatures seemed appropriate.   

Two pairs of temperature/precipitation reconstructions were included in the 

single CPDN WNA region because they provide information on both the Pacific 

Northwest (often cool/wet) and southwest United States (often warm/dry).  Since both 

of these climatic regimes reside within the WNA region their resulting impacts may 

offset each other in a single, region-wide average calculation and therefor including 

both offered an opportunity to investigate this possibility.  The two temperature 

reconstructions in this region were constructed to represent maximum temperature but it 

was assumed that the variability in maximum temperatures resembled that of mean 

temperatures. 

Finally, it is important to keep in mind when using these proxy-based data sets 

that while the reconstructions are meant to represent larger regional average climate 

variations, they still could be representative of an area too small when compared to the 
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large CPDN NA regions.  This could impact the resulting variability comparisons 

because variability changes as the area it is averaged over changes (i.e., averaging over 

a larger area reduces resulting variability estimates).    

 

 

6.4  PALEOCLIMATE VARIABILITY COMPARED TO CPDN AND OBSERVATIONS 

 The interannual and decadal variability of the proxy-based paleoclimate 

reconstructions are shown in Figure 6.8 and 6.9 respectively along with variability in 

CPDN control simulations and observational data sets.  For interannual variability 

(Figure 6.8), the control simulation and observational distributions were constructed in 

the same manner discussed in the previous variability analysis in Chapter 5, Section 

5.5.1 (i.e., five 30-year samples from each of the 1,214 control simulations with the 

same total number of observational bootstrap samples).  Each proxy reconstruction had 

interannual variability calculated from 30-year time periods with 15-year overlapping 

blocks with the total number of samples depending on each data set’s length. 

 In a similar manner, decadal variability (Figure 6.9) was calculated across three 

100-year time periods within each control simulation and a single estimate calculated 

for each of the three 90-year temperature observational data sets.  Decadal variability 

could not be calculated for any of the precipitation observational data sets because there 

were too few decadal samples available.  Decadal variability for the proxy 

reconstructions was calculated from 100-year time periods with 50-year overlapping 

blocks, again resulting in a varying number of samples depending on record length.   
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Figure 6.8:  Interannual variability (30-yr) for (a) temperature (°C) and (b) precipitation rate 

(mm/day) for the 1,214 control simulations (five samples per simulation), observational 

bootstrap distributions (same number of samples) and paleoclimate reconstructions (number of 

samples vary depending on record length).   Boxplots provide 25-75% (inner) and 2.5%-97% 

(outer) ranges and dots for samples outside the 95% range.   

(a) 

 

(b) 
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Figure 6.9:  Decadal variability (100-yr) for (a) temperature (°C) and (b) precipitation rate 

(mm/day) for the 1,214 control simulations (three samples per simulation), three observational 

samples for temperature (one per 90-yr data set) and paleoclimate reconstructions (samples 

vary).  Boxplots provide 25-75% (inner) and 2.5%-97% (outer) ranges and dots for samples 

outside the 95% range.   

(b) 

 

(a) 
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The interannual variability in proxy-based reconstructions of temperature 

(Figure 6.8(a)) generally aligned with control simulations and observations except for 

ENA (MAM) and possibly WNA (JJA).  Recall that the temperature reconstruction for 

ENA (MAM) was the unique varved ocean sediments meant to represent water 

temperatures in the Chesapeake Bay (Cronin et al. 2003) and therefore that proxy may 

not be representative of the interannual variability of temperature over the entire ENA 

region.  The WNA (JJA) temperature reconstruction has a number of samples within the 

range found for control simulations and observations but a majority of the samples 

show higher variability.  This reconstruction was for maximum summer temperatures 

(Luckman and Wilson 2005) which may be causing a difference when comparing the 

variability to average summer temperature variability over the entire WNA region.  This 

WNA region also contained a non-trivial amount of ocean within the regional average 

which may reduce the variability compared with a land-based reconstruction.    

The interannual variability in proxy-based reconstructions of precipitation 

(Figure 6.8(b)) was generally larger in most cases except for the CNA (An) proxy data 

set which aligned with the control simulation 50% range (discussed further below).  The 

proxy reconstruction for CGI (An) is located within the continental Canadian region 

(Figure 6.5) and therefore may have greater precipitation variability (e.g., more 

summertime convection) than the overall CGI regional average because of the large 

amount of water in the region.  For WNA (An), both the northern (NW USA) and 

southern (SW USA) proxy reconstructions show similar variability in precipitation 

which was slightly larger than the controls simulations and observations.  This could 

either indicate an underestimation of variability in the observational record and control 
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simulations or may just be due to the proxy data being representative of a smaller 

geographic region.  For ENA (An), the reduced variability in the control simulations 

and observations may be due to size difference between the area represented by the 

reconstruction and the large ENA region. 

Finally, the proxy reconstruction for CNA (An) aligns very well with the control 

simulation distribution (e.g., spans the 50% range).  This is a landlocked region and 

relatively smaller in size compared to other regions and therefore would be less 

impacted by the presence of ocean water or a proxy reconstruction representing too 

small of an area compared to the larger CPDN region.  The good alignment of the proxy 

reconstruction’s interannual variability with the control simulations, which have slightly 

larger variability than the observed data sets, could indicate that the more recent 

observational period does not represent the full range of precipitation variability (e.g., 

underestimates variability).  However, the reconstruction could just have larger 

variability due to a reduced area it actually represents, which would imply that the 

model is overestimating the variability.  Either way, the control simulations contained a 

number of samples that extended to much higher variability which was not found in 

either the proxy reconstructions or observed data which indicates those simulations 

contained parameter variations leading to too large of interannual variability across 

CNA (also discussed in Section 5.5.1).        

 Temperature and precipitation decadal variability (Figure 6.9) contained similar 

features as those found in interannual variability (Figure 6.8) but this time proxy 

reconstructions aligned even better with control simulations because of the reduction of 

short-term variability in the decadal averages.  With decadal variability in temperature 
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(Figure 6.9(a)) the proxy reconstruction ranges generally aligned with the full range of 

control simulations with most samples falling within the 95% range of the simulations.  

However the 50% range of the simulations tended to be on the lower end of most 

reconstructions probably due to the reconstructions being based on a smaller region.  

However it also could imply that the simulations are underestimating decadal 

variability.  The proxy reconstruction for ENA (MAM) decadal variability was closer to 

the control simulations and observations than found in interannual variability (Figure 

6.8) but with only three samples due to the shorter record length it is difficult to make 

any firm conclusions.   

The decadal variability in precipitation generally was in better agreement with 

the control simulations than that found in interannual variability.  CNA had a large 

number of simulations extending to larger variability, indicating its sensitivity to 

parameter variations but the other three regions all tended to have lower variability in 

their simulations, again, probably due to the reconstructions being based on a smaller 

region.          

 

 

6.5  SUMMARY 

 A number of proxy-based paleoclimate reconstructions across NA were assessed 

to see whether the more recent observational period is representative of the full range of 

natural climate variability and if the HadCM3L control simulations reproduce this 

natural variability.  While a number of similarities and differences were found, it is 

difficult to make any robust conclusions because of the many uncertainties involved 
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when using proxy-based data, particularly when comparing to the output from CPDN.  

Some of these uncertainties include the many factors, besides just climatic conditions, 

that affect tree ring and varved sediment growth, the sometimes combined impact of 

temperature and precipitation changes on the proxy, the true geographic area 

represented, and the reconstruction process itself which tends to reduce actual 

variability in the final reconstructed data set.  Besides these uncertainties in the proxy 

data sets, another complicating factor is the large areal extent covered by the CPDN 

regions, which often contain ocean water (Figure 6.5).  If the proxy reconstruction is 

representative of only a smaller regional area then it would be expected to have greater 

variability than that found in the larger CPDN region.   

 With all of these factors potentially impacting the variability estimates it was not 

possible to answer the question of whether the near-term observational record was over- 

or underestimating natural climate variability in temperature or precipitation with any 

certainty.  What can be said is that many of the paleoclimate reconstructions had 

variability similar or slightly larger to that found in the control simulations and 

observations, especially in decadal variability.  It may be possible to investigate this 

further and discern more robust results using the CMIP3 and CMIP5 gridded data sets 

or regionally downscaled gridded data sets over NA which would allow more flexibility 

in defining various geographic regions surrounding each proxy-based reconstruction to 

identify the impact variations in areal coverage has on the variability comparisons.  

Additionally, the CPDN globally gridded decadal average output could be evaluated at 

varying smaller regional scales across NA and compared to decadal variations in the 

paleoclimate reconstructions.          



202 

 

 

CHAPTER 7 

TRANSIENT SIMULATION ANALYSIS 

  

The goal of this chapter is to evaluate the performance of the HadCM3L 

transient simulations from the climateprediction.net (CPDN) British Broadcasting 

Corporation (BBC) Climate Change Experiment (CCE) over the observational time 

period.  In addition these simulations are used to quantify uncertainties in future climate 

projections for the globe and North American (NA) regions and to constrain these 

projections based on a model’s past performance.  The transient simulations were 

forced using natural and anthropogenic historical forcings for the 1921-2000 time 

period and the SRES A1B scenario (Nakićenović and Swart 2000) for 2001-2080 future 

anthropogenic forcings along with a variety of natural forcing scenarios (see Chapter 3, 

Section 3.3.3 for full description).    

Section 7.1 provides the quality control assessment of the transient ensemble 

and Section 7.2 describes the long-term drift removal procedure.  Section 7.3 offers a 

comparison of the transient simulations to observational data sets while Section 7.4 

assesses their past and future trends and Section 7.5 investigates relationships between 

these trends.  Section 7.6 assesses future changes in the magnitude of the seasonal cycle 

and interannual variability.  Section 7.7 evaluates the sensitivity of past and future 

trends to variations in model physics parameters, the results of which are used to 

constrain future climate projections, which is explored in Section 7.8 along with 
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projections constrained by model performance in the past.  Finally Section 7.9 

summarizes the key findings of this chapter.   

 

7.1  QUALITY CONTROL OF TRANSIENT SIMULATION ENSEMBLE 

 The initial transient simulation output acquired from CPDN was examined in the 

same manner as the control simulations (see Chapter 5, Section 5.1) to assure the 

quality of the simulations utilized.  The NetCDF files were checked for errors and then 

temperature and precipitation output searched for errors, outliers, and duplicates as 

discussed below.   

 

7.1.1  NetCDF File Errors 

 A total of 4,018 initial transient simulations were downloaded from the CPDN 

servers, 12 of which were immediately discarded due to NetCDF file generation errors 

in the CPDN archiving process.  Of the remaining 4,006 simulations, 218 were missing 

at least one monthly output value within one of their annual NetCDF files and 187 of 

these were discarded.  The other 31 simulations were left in the official ensemble 

because they were missing a monthly value within the first 20 years of the simulation, a 

period not used in analyses because the model’s atmosphere and ocean are still in an 

initial adjustment period of the coupling process (see Chapter 5, Section 5.2).   

 Within the remaining 3,819 simulations containing output over the full time 

period of interest, an additional two simulations were identified with non-

meteorological values (e.g., NaN, Inf, zero) but only one was removed because the 
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other had its error in the first 20 years.  Therefore 3,818 transient simulations were 

identified as having a complete set of available model output.   

 

7.1.2  Erroneous Outliers 

Figure 7.1 displays the absolute temperature and precipitation over the globe and 

NA regions for all available transient simulations.  A number of obvious outliers can be 

seen within the ensemble.  The large “spikes” correspond with one or two year periods 

of anomalous output, most likely caused by a variable being saved incorrectly as 

another variable.  And the sudden decreases followed by a slow return to its previous 

state correspond with the erroneous “sudden jumps” discussed in Stainforth et al. (2005) 

that also were found in the initial control simulations (Chapter 5, Section 5.1.2).  As 

was done with the control simulations, an anomaly test was conducted to systematically 

identify these outliers from monthly and annual anomaly values as well as month-to-

month and year-to-year anomaly differences within each simulation.  The resulting 

anomalies were again standardized with respect to the full distribution of anomaly 

values across all simulations and then sorted to identify simulations with the largest 

outliers.   
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(a)    

 
(b) 

 
 

Figure 7.1: Initial ensemble of all transient simulations acquired from CPDN for annual mean 

(a) temperature (°C) and (b) precipitation rate (mm/day) for the globe and five NA regions.  

Each plot shows time series for 3,818 individual simulations.  Temperature y-axis values are 

different across regions but all maintain a 30°C range.  Precipitation y-axis values are the same.   
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Each anomaly test again identified a similar but not always consistent set of 

simulations containing the largest anomalies for a given variable and region and 

therefore the highest standard deviation anomalies were assessed individually to 

determine if they were caused by an error within the model or were simply larger 

fluctuations in the modeled climate.  A total of 18 simulations were determined to 

contain non-climatic outliers.  One metric that accurately distinguished 11 of those 

outliers was global mean annual average temperature anomalies greater than six 

standard deviations, which was the same metric used to identify control simulation 

outliers.
18

  An additional six outliers were identified with global mean year-to-year 

anomaly differences greater than six standard deviations and three other outliers were 

found with more gradual transitions deemed anomalous.   

 

7.1.3  Duplicates 

 After the 18 erroneous outlier simulations were removed, the remaining 3,800 

transient simulations were searched for duplicates in their parameters.  There were 

combinations of 153 atmospheres, ten oceans, ten initial conditions (DTHETA), five 

values for scaling anthropogenic sulfates (ANTHSCA), 15 solar forcing scenarios, and 

50 volcanic forcing scenarios.  Six simulations were found having a corresponding 

simulation with matching parameters, natural forcings and initial conditions.  Of these 

six matching pairs only two had identical output, which were immediately removed 

                                                 
18

 As with the control simulations, a six standard deviation anomaly can be expected as an appropriate 

threshold for identifying outliers in such a large sample size.  For the annual average and annual 

difference anomaly tests, the  number of samples expected to be outside the range of standard deviations 

of 1, 2, 3, 4, 5 under a normal distribution for 610,880 samples (e.g., 3,818 simulations x 160 years)  is 

195,481 (32%), 28,100 (4.6%), 1,649 (0.27%), 38 (0.0063%) and 0.3 (0.000057%) samples respectively.   
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from the ensemble.  The other four pairs had similar, but not identical, output and were 

kept in the ensemble as were three other simulation pairs having an initial time period 

of identical output.  These two features also were found in the control simulations and 

reasoning for their retention is described in that section (e.g., possible initial condition 

restart issues; see Chapter 5, Section 5.1.3).   

 

7.2  LONG-TERM MEAN DRIFT REMOVAL 

 Because of the method used to couple the atmosphere and ocean models 

together (see Chapter 3, Section 3.3.2), the transient simulations may contain a 

component of unforced long-term mean drift, as discovered in the control simulations 

(see Chapter 5, Sections 5.2.2 and 5.7.3).  In order to investigate only the forced trends 

in transient simulations, the unforced model drift had to first be removed.  This was 

accomplished by calculating the long-term mean drift (years 21-160) for a transient’s 

matching control simulation (i.e., having the same atmosphere and ocean parameters) 

and then subtracting that drift off of the transient time period of 1941-2080, as the two 

should have the same background unforced model drift.  The first 20 years of the 

simulations were not used because it corresponded with the period of adjustment for 

coupling the atmosphere and ocean models together as found in the control analysis 

(Chapter 5, Section 5.2.1).  We do not attempt to match initial conditions on account of 

the possible issues already described in Chapter 5 (Section 5.1.3) and because it would 

vastly decrease the number of matched pairs available.  Furthermore, initial condition 

variations have minimal impacts on long-term mean trends.   
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Figure 7.2 provides an example of the long-term mean drift being removed from 

a simulation’s annual mean global temperature.  The long-term mean trend in the 

original control simulation was calculated and then removed from the same control 

simulation to show the amount of drift to be removed (Figure 7.2(a)).  The original 

(detrended) control simulation is shown in black (red).  This same long-term mean trend 

was then removed from the original corresponding transient simulation having the same 

atmosphere and ocean parameters (black line in Figure 7.2(b)).  The resulting transient 

with its unforced long-term mean drift removed is shown in red.  Since the original 

unforced control simulation had a negative long-term mean trend, when it was removed 

from the transient simulation the resulting transient-minus-control (transient-control) 

simulation had a greater increase in temperature with time than the original transient 

(i.e., the transient-control simulation has a greater long-term mean trend).  The impact 

of removing the unforced drift was different for each transient/control pair and 

depended on the magnitude and sign of the control drift.  (See Chapter 5, Section 5.2.2 

for the range of control long-term mean drift found.)   
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Figure 7.2:  Long-term mean drift removal example in annual mean global temperature 

anomaly output for (a) control and (b) transient simulations having matching atmosphere and 

ocean parameter values.  Original simulations are given in black and those with the control 

simulation’s long-term mean trend from years 21-160 removed in red.   Anomalies are relative 

to a 1941-1970 base period. 

 

 

 

 

(a) 

(b) 
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Unfortunately, a number of transient simulations did not have an available 

matching control simulation because they were either removed during the quality 

control assessment (Chapter 5: Section 5.1) or primarily because a large initial set of 

CPDN simulations needed to be discarded due to the fact they were generated with an 

error in the model code, resulting in unrealistic climates (Myles Allen and Dan 

Rowlands, 2010, Personal Communication).  Of the 3,798 transient simulations, a total 

of 1,692 were found to have at least one control with matching atmosphere and ocean 

parameter settings from the 1,214 available control simulations.  For this study, only 

these transients with matching controls are investigated because without a direct control 

match there is no way to identify the unforced background drift within a transient 

simulation.  Using a transient that includes unforced drift would introduce an 

unquantifiable error in any assessment of the modeled climate that may or may not have 

a significant impact on the final results.   

In Appendix A a potential alternative for estimating a control match for the 

other 2,106 unmatched transients is explored, a technique not requiring matching of all 

atmosphere and ocean parameters.  This alternative matching procedure is only briefly 

discussed there and further investigation as to its usefulness is left as possible future 

work.  The main conclusion from the discussion in Appendix A is that any alternative 

matching procedure increases the uncertainty in the unforced drift to be removed from 

each transient simulation and therefore increases uncertainty in any analysis performed 

on those transients.  Fortunately, even when the 2,106 unmatched transients are 

removed from our analysis, all parameter values are still represented (see Table 7.1) and 

the relative proportion of simulations for any given value of a parameter is generally the 
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same as that found in the full original set of transient simulations (refer to Appendix A, 

Table A.1) meaning the original span of parameter variations is maintained.   
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Table 7.1:  CPDN perturbed parameters and the number of transient simulations having each 

particular parameter value for the 1,692 transient simulations.  Parameters are separated into 

their respective atmosphere, ocean, or initial condition groups.  Default parameter values are 

highlighted in bold. 
 

   Parameter              Description Values Transient 

Simulations 

ATMOSPHERE 
   

ALPHAM Albedo at melting point of ice 0.5 

0.57 

0.65
 

337 

615 

740 

ANTHSCA Scaling factor for anthropogenic sulfates 0.5 

0.8 

1.0 

1.2 

1.5 

354 

359 

354 

315 

310 

CLOUDTAU Time a circulating air parcel remains in 

cloud (s) [x 10
3
] 

3.6 

10.8 

32.4 

404 

785 

503 

CT Accretion constant (s
-1

) [x 10
-4

] 

 

 

0.5 

1 

4
 

505 

540 

647 

CW_LAND 
a Precipitation threshold over land  (kg m

-3
)  

[x 10
-4

] 

 

1 

2 

20
 

660 

536 

496 

CW_SEA 
a Precipitation threshold over sea

 
(kg m

-3
) 

[x 10
-5

] 

 

2 

5 

50 

660 

536 

496 

DTICE Temperature range of ice albedo variation 

 

2 

5 

10 

740 

615 

337 

EACF Empirically adjusted cloud fraction 
** 

 

 

0.5 

0.63 

0.67 

689 

398 

605 

ENTCOEF Entrainment coefficient 

 

 

 

0.6 

1.0 

3.0 

9.0
 

513 

553 

526 

100 

a, b, c, d
  Individual groups of parameters perturbed together 

          **
  Parameter values represent mean over 19 model levels (variations occur at each level) 
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Table 7.1:  Continued 

   Parameter              Description Values Transient 

Simulations 

I_CNV_ICE_LW 
b Type of convective cloud ice crystal used in 

longwave radiation 
 

1 

7 

1459 

233 

I_CNV_ICE_SW 
b Type of convective cloud ice crystal used in 

shortwave radiation  
3 

7 

1459 

233 

I_ST_ICE_LW 
b Type of stratiform cloud ice crystal used in 

longwave radiation 
 

1 

7 

1459 

233 

I_ST_ICE_SW 
b Type of stratiform cloud ice crystal used in 

shortwave radiation  
2 

7 

1459 

233 

ICE_SIZE Ice crystal size (m) [x 10
-4

] 

 

 

2.5 

3.0 

4.0 

543 

660 

489 

L0 
c Sulfate mass scavenging parameter L0 (s

-1
) 

[x 10
-5

] 

 

2.17 

6.5 

19.5 

383 

638 

671 

L1 
c Sulfate mass scavenging parameter L1 (s

-1
) 

[x 10
-5

] 

 

0.99 

2.96 

8.86 

383 

638 

671 

NUM_STAR Condensation threshold for accumulation  

[x 10
6
] 

 

0.1 

1.0 

10 

593 

789 

310 

RHCRIT Critical relative humidity 
** 

 

 

0.65 

0.73 

0.9
 

690 

504 

498 

SO2_HIGH_LEVEL Sulfur cycle: model level for SO2 (high 

level) emissions 

 

1 

3 

5 

251 

1066 

375 

VF1 Ice fall speed (m s
-2

) 

 

 

0.5 

1.0 

2.0 

398 

662 

632 

VOLSCA Sulfur cycle: scaling factor for emission 

from natural (volcanic) emissions 

 

1 

2 

3 

939 

486 

267 

a, b, c, d
  Individual groups of parameters perturbed together 

          **
  Parameter values represent mean over 19 model levels (variations occur at each level) 
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Table 7.1:  Continued 

   Parameter              Description Values Transient 

Simulations 

OCEAN    

HANEY
 Haney heat forcing coefficient (Wm

-2
K

-1
) 

 

81.88 

163.76 

1499 

193 

HANEYSFACT Haney salinity forcing factor 

 

0.25 

1.0 

1209 

483 

ISOPYC Isopycnal diffusion of tracers (m
2
s

-1
) [x 10

3
] 

 

0.2 

1 

2 

159 

1214 

319 

MLLAM
 Wind mixing energy scaling factor (m

2
 s) 

 

0.3 

0.7 

352 

1340 

VDIFFDEPTH 
d Ocean: increase of background vertical 

mixing of tracer with depth (ms
-1

) [x 10
-8

] 

 

0.7 

2.8 

9.6 

394 

839 

459 

VDIFFSURF 
d Ocean: background vertical mixing of tracer 

(diffusion) at surface (m
2
s

-1
) [x 10

-5
] 

0.5 

1 

2 

394 

839 

459 

VERTVISC 
 

Ocean: background vertical mixing of 

momentum (viscocity) (m
2
s

-1
) [x10

-5
] 

0.5 

1.0 

369 

1323 

INITIAL CONDITIONS 
   

DTHETA Initial condition potential temperature 

perturbation applied to atmosphere (°C) 
0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

195 

163 

154 

178 

161 

176 

163 

153 

173 

176 
    

    

a, b, c, d
  Individual groups of parameters perturbed together 

          **
  Parameter values represent mean over 19 model levels (variations occur at each level) 
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The remainder of this section highlights the drift removal results for the 1,692 

transient-control simulations generated using transients and controls with matching 

atmosphere and ocean parameters (from here on simply referred to as transient 

simulations or transients with the understanding that they actually are transients with 

their unforced long-term mean drift removed).  These matches were comprised of 137 

atmospheres and ten oceans with 614 unique atmosphere/ocean combinations.  The 

remaining 1,078 simulations contained the same atmosphere/ocean combination as one 

of the unique 614 combinations but had variations to either their anthropogenic sulfate 

scaling factor (ANTHSCA), natural forcings (solar or volcanic), or initial conditions 

(DTHETA).  Table 7.1 provides a summary of the number of transient simulations 

having each specific parameter value.   

When identifying a transient simulation’s control match, there often were 

multiple control simulations comprised of the same atmosphere and ocean parameters 

(i.e., multiple control simulation matches for a single transient simulation).  These 

control matches were not exact duplicates of one another, but rather were generated 

using different initial conditions and therefore had slightly different simulated climates.  

In these instances, the long-term mean drift of all controls matching a single transient 

simulation were averaged together and used as the official drift removed from the 

corresponding transient.   

Figure 7.3 shows example transient simulations before and after their 

corresponding control drift was removed.  Each regional example corresponds with the 

largest control drift that was removed in that specific region/variable for all transients 

(i.e., the output shown for any given region/variable typically did not come from the 
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same transient simulation).  As was seen in Figure 7.2, each temperature example in 

Figure 7.3(a) contains transient-control simulations with a larger trend than the original 

transients because of the removal of a negative control trend.  The change in 

temperature after removing the long-term mean drift can be up to 2-3°C which 

substantiates the necessity of removing the drift prior to any analysis.   

It is evident that the drift removal process had a limited impact on long-term 

changes in precipitation (Figure 7.3(b)), which can be attributed to the many factors 

affecting the formation of precipitation.  Of all the regions, the two northernmost 

regions (ALA, CGI) appear to be most impacted which makes sense given that 

precipitation in those colder regions can be more sensitive to long-term changes in 

temperature which can affect the amount of moisture available in the regions.  Note that 

precipitation for ALA and CGI originate from different simulations than those shown 

for the same regions in Figure 7.3(a).  The actual corresponding temperature drift 

removed from ALA (CGI) was negative (positive), meaning the resulting transient 

minus control simulation was warmer (cooler) than the original which corresponds with 

a wetter (drier) simulation, as would be expected.  One might anticipate a similar effect 

for greater drying across WNA and CNA with warmer temperatures but the drift 

removal had negligible impacts, especially with the larger variability seen across those 

regions.   
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 (a) 

 
(b) 

 
 

Figure 7.3:  Transient (black) and Transient-Control (red, green) comparisons for those 

transients having the largest control drift removed for annual mean anomaly of (a) temperature 

(°C) and (b) precipitation rate (mm/day) for the globe and five NA regions from 1941-2080.  

Anomalies are relative to a 1941-1970 base period. 
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7.3  TRANSIENT SIMULATIONS VS. OBSERVATIONS 

7.3.1  Transient Observational Period Ensemble 

 This section provides a comparison between the transient simulations and 

available observational data sets described in Chapter 4.  Figure 7.4 shows the 

comparison between the transient simulation ensemble and observations for annual 

mean (December to November) global temperature anomalies covering the 1941-2010 

observational time period.  A mean base period of 1941-1970 was used instead of the 

more common 1961-1990 or other more recent 30 year periods in order to limit the 

impact of the three major volcanic eruptions across the 20
th

 century (1963, 1982, 1991).  

This was because the perturbed physics ensemble can have a number of parameter value 

arrangements causing too large (small) of a response to the eruptions, most prominently 

in temperature at the global scale, which would make the 30-year mean base period too 

cool (warm), thus making the corresponding anomalies too warm (cool).  The 1963 

Agung eruption is still in this base period but by not including the other two eruptions, 

the overall volcanic impact is minimized.  (The impact of a volcanic eruption on global 

climate is discussed further in the discussion below.)  A person’s choice of base period, 

however, does not impact the trends analysis, which is the focus of this chapter.  It is 

more important when performing a direct comparison of model output to observed data 

at specific points in time (e.g., RMS error analysis).   
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Figure 7.4:  Annual mean global temperature anomaly for the 1,692 transient simulations (red 

shading) and three observational data sets (HadCRUT3, NOAA-MLOST, GISTEMP) over the 

1941-2010 observational time period.  The transient ensemble is shaded according to the 25-

75%, 2.5-97.5%, and min-max ranges.  Anomaly values are relative to a 1941-1970 base period.   

 

The transient ensemble is plotted in density weighted terms, showing the 25-

75% (defined as the 50% range), 2.5-97.5% (defined as the 95% range), and min-max 

range of all simulations in a given year.  Therefore the 50% range (or in actuality the 

center of the 50% range) should not be interpreted as representing the actual evolution 

of a single simulation but rather the location of highest concentration of simulations for 

that year (i.e., a smoothed version not representing interannual variability).  

Temperature observations are from HadCRUT3, NOAA-MLOST, and GISTEMP (see 

Chapter 4).  Even though the observations continue through 2010, recall that transient 
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simulation used observed natural and anthropogenic forcings to drive the simulations 

only up to the year 2000 and then use the SRES A1B scenario forcings starting in 2001 

(Nakićenović and Swart 2000).  Therefore, any observed variations in forcings from 

2001-2010 were not included in the model.     

The observations generally fall near the 50% range and within the 95% range of 

the transient ensemble.  There are however three noteworthy features to discuss.  The 

first is that the minimum to maximum spread in the transient simulation distribution is 

quite large, even in the 1941-1970 base period where the 30-year mean global 

temperature anomaly averages to zero.  This can be attributed to some of the 

simulations having larger interannual variability, which was indeed identified within 

some of the control simulations in Chapter 5 (see Figure 5.16(a) in Section 5.5).  This is 

only true for a limited number of simulations, however, as it can be seen that the 

interannual variability in the observational data sets over the base period appear to 

cover nearly the same relative spread as the 95% range.   

 The second feature in Figure 7.4 is the pronounced drop in temperature near the 

three major volcanic eruptions (Agung in 1963, El Chichon in 1982, and Pinatubo in 

1991).  These types of large explosive volcanic eruptions release sulfur dioxide (SO2) 

into the stratosphere which is converted to sulfuric acid (H2SO4) and subsequently 

condenses to form sulfate aerosols.  The stratospheric sulfate aerosols increase the 

reflection of solar radiation back into space (i.e., increases Earth’s albedo) which in turn 

decreases the amount of radiation entering the troposphere, thus cooling tropospheric 

and surface temperatures.  This effect can typically be observed at the global level and 



221 

 

generally lasts one to three years after which time the aerosols fall out of the 

stratosphere and temperatures return to their prior states.   

 Compared to observations, the models on average appear to have a larger drop 

in temperature associated with each volcanic eruption.
19

  This can be caused either by 

the model having too large of a sensitivity to increases in sulfate aerosols in their 

stratospheres or by an incorrect amount of aerosols being present (i.e., incorrect 

volcanic radiative forcing applied).  Recall that five different volcanic forcing scenarios 

from different data sets were used for the observational time period across the ensemble 

(see Chapter 3, Figure 3.3).  The timing of these eruptions was the same in all five cases 

but the magnitude of the corresponding radiative forcing varied and therefore some of 

the simulations may have too large of forcing applied.  The larger range of volcanic 

responses caused by either increased model sensitivity or variations in volcanic 

radiative forcing justifies our decision to use a base period of 1941-1970 to limit the 

impact of these modeled eruptions.         

The third interesting feature in Figure 7.4 is the relatively warm simulations 

compared to observations near the end of the observational period starting around 2000.  

We cannot draw too much of a conclusion based solely on this shorter, roughly 10-year 

period because short-term natural variability may be at work (see below).  Additionally, 

the observations still lie within the 95% range of the simulations.  However, it may also 

indicate that some of the transient simulations have higher climate sensitivities and 

therefore have too large of warming during that period.  This possibility will be 

                                                 
19

 It should be noted that the drop in temperature associated with the 1982 El Chichon eruption in Figure 

7.4 appears to be aligned with an increase in observational temperature.  This is because a large El Niño 

event occurred in the same year which is the likely cause for the global temperature increase 
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explored more throughout the rest of this chapter and considered in Section 7.8 when 

we utilize the performance of the models over the observational time period to constrain 

future climate projections. 

In terms of a relative slowdown in warming from 2000-2010 caused by natural 

climate variability, Balmaseda et al. (2013) contend that increased oceanic absorption of 

heat from a fluctuation in the Pacific Decadal Oscillation (PDO) is the primary culprit.  

The PDO oscillates between a positive, warm, phase and negative, cool, phase 

approximately every 20-30 years reflecting the pattern of anomalies in sea surface 

temperature and surface air pressure between the north central and northeastern Pacific 

Ocean.  The PDO index pattern can roughly be seen as a superimposed cycle within the 

long-term mean warming trend over the past century with cool phase development 

during the most recent time period (see Figure 7.5).  Balmaseda et al. (2013) argue that 

during the PDO cool phase the prevailing winds shift causing increased mixing of the 

warm Pacific surface waters to deeper depths which in turn allow the surface waters to 

absorb more heat from the atmosphere that would have otherwise been available for 

warming the atmosphere and surface temperatures.  Conversely, in times when the PDO 

is in a warm phase, the wind pattern is such that it reduces mixing to deeper waters, 

leaving the surface waters warmer and less apt to absorb as much atmospheric heat, 

allowing global temperatures to continue rising.  They found that the PDO and 

corresponding wind patterns began to shift towards the cool phase around the year 2000 

which coincided with a significant rise in deeper ocean temperatures.  Therefore the 

decreased warming trend over the past decade could be attributed to an increase in 

absorption of heat by the Pacific Ocean.  They also point out that when the PDO shifts 
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back to a warm phase, there is the potential for a substantial increase in warming across 

the globe due to the fact that the Pacific Ocean will no longer be absorbing as much 

heat from the atmosphere.   

 
 

Figure 7.5:  Comparison of (a) monthly values of the Pacific Decadal Oscillation (PDO) index 

and (b) the HadCRUT3 temperature anomaly (1961-1990 base period).  The 1990-2012 time 

periods are aligned to allow for comparison.   (HadCRUT3 from Met Office Hadley Center, 

based on Brohan et al. (2006); PDO from the Joint Institute for the Study of the Atmosphere and 

Ocean, University of Washington, based on Zhang et al. (1997) and Mantua et al. (1997)). 
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Figure 7.6 shows the same information as Figure 7.4 but includes the NA 

regions as well as precipitation comparisons to observations
20

.  The regional 

temperatures (Figure 7.6(a)) generally compare well with observations, remaining close 

to the 50% range and typically within the 95% range.  Similar to that found in global 

temperatures, there are some simulations with larger interannual variability causing a 

wider min-max distribution range.  But again, the interannual variability of the 

observations roughly span close to the 95% range.  The regional precipitation output 

generally aligns with observations except for CGI at the very end of the time period 

(specifically the GPCP data).  This appears to be unique to this region only and is likely 

tied to insufficient observational coverage in this region that includes high latitude 

ocean grid cells.  Also global precipitation is a very difficult quantity to estimate from 

observations given the very small percentage of the globe containing observing stations 

and therefore we will not focus on any comparisons of the model to these observations.     

 

  

                                                 
20

 Note that temperature anomalies are set relative to a 1941-1970 base period but the NARR data set only 

contains data from 1981-2010.  In order to properly compare these different anomalies the NARR 1981-

2010 base period was adjusted using the following formula to properly align it with the other data set 

anomalies having a 1941-1970 base period:   NARR(1941-1970) = Obs(1981-2010) - Obs(1941-1970) + 

NARR(1981-2010) where Obs is the average 30-year mean value of all observational data sets over the 

specified period.   
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 (a) 

 
(b) 

 

Figure 7.6:  Same as Figure 7.4 but including regional comparisons for annual mean anomalies 

of (a) temperature(C) and (b) precipitation rate (mm/day).  NARR data are included because it 

is available at the regional level and the precipitation data sets also include GPCP and NOAA-

PREC.  Temperature anomalies are relative to a 1941-1970 base period and precipitation 

anomalies are relative to 1981-2010.   
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7.3.2  Transient Observational Period Trends 

 Temperature and precipitation 30- and 70-year trends were calculated over the 

observational time period for all transient simulations.  Figure 7.7 provides the resulting 

trend distributions along with observed trends for comparison.  For temperature trends 

(Figure 7.7(a)), the majority of simulations show positive trends across all regions, as is 

seen in the observations.  Trends over the most recent 30 years are larger than over the 

70-year period, which is expected given the increase in warming over the latter half of 

the 20
th

 century.  Transient global 70-year temperature trends are close but slightly 

larger than observed trends while the 30-year trends are nearly all larger than 

observations.  This general result can be seen in most NA regions as well.  The partial 

slowdown of observed warming over the 2000’s discussed in the previous section may 

be the root cause of this difference in the shorter-term trend.  Importantly, with the 

distributions of both of these trends not centered on the observations, it may be possible 

to constrain future projections based on those simulations that line up best with 

observed trends (see Section 7.8).   
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(a) 

 

(b) 

 

Figure 7.7:  Annual mean (a) temperature (C/Century) and (b) precipitation rate 

((mm/day)/Century) trends for observational periods 1941-2010 (colored) and 1981-2010 

(black).  Observed trends are plotted using same color scheme.   
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Figure 7.7(a) also shows that there were a few transient simulations with slightly 

negative global temperature trends in the observational period.  These appeared to be 

caused by those simulations being overly sensitive to volcanic and anthropogenic 

aerosol forcings (i.e., cooling effect).  Each of their trends became positive in the future 

after greenhouse gas forcings eventually overtook them (not shown). 

Precipitation trends in Figure 7.7(b) show much less of a signal compared to 

temperature with most trends centered near zero for both the transient simulations and 

observations.  The two northern regions (ALA, CGI) show a slight positive trend in the 

both the 30- and 70-year transient simulation trends which are not apparent in the 

observations.  As discussed previously there could be errors in the observational 

estimates due to lack of sufficient observations in those regions.  Whether the greater 

amount of simulated precipitation is realistic or not, the probable cause is an increase in 

moisture availability with modeled simulated warming.   

 One final note on Figure 7.7 is that the distributions for 30-year trends in ALA 

temperature and CNA precipitation are noticeably larger than the other distributions.  

This may be related to the larger range of interannual variability found in the same 

regions/variables in the control simulations (see Chapter 5, Figure 5.16) which implies 

they have greater sensitivity to variations in model parameters or possibly just larger 

natural variability.  
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7.4  TRANSIENT (PAST AND FUTURE) AND CONTROL TRENDS 

 In this section the full period of each transient simulation is assessed (1941-

2080) and past and future trends compared to one another and to long-term mean trends 

found in control simulations.  Figure 7.8 shows the same transient simulation ensemble 

of global mean temperature anomalies as in Figure 7.4 but extends the ensemble out to 

the year 2080.  We see that the uncertainty range (or spread) in the ensemble increases 

with time into the future which emphasizes the variation in climate sensitivities of the 

various model parameter value combinations, further enhanced as atmospheric 

greenhouse gas concentrations continue increasing in the future.  The majority of 

simulations show greater warming from 2011-2080 than was simulated from 1941-

2010, the cause of which is linked to continued increases in anthropogenic greenhouse 

gases and the relatively reduced role of anthropogenic aerosols. 

An interesting feature to point out is the drop in transient temperatures around 

2015.  As Figure 3.3 from Chapter 3 shows, this is a time when an arbitrary volcanic 

eruption was initiated in some of the models.  Whether a volcanic eruption actually 

occurs near that time period is unknown but it is worth remembering that variations to 

volcanic and solar natural forcing were embedded within the transient simulations 

therefore provide additional variations to short-term natural variability.   
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Figure 7.8:  Annual mean global temperature anomaly for the 1,692 transient simulations (red 

shading) and three observational data sets over the 1941-2080 time period.  The transient 

ensemble is shaded according to the 25-75%, 2.5-97.5%, and min-max ranges.  Anomalies are 

relative to a 1941-1970 base period.   

 

 

 

Another somewhat subtle feature to point out in Figure 7.8 is the general 

leveling off of simulated temperatures around 2000-2010 followed by more consistent 

upward trend thereafter.  The interesting part is that the A1B SRES emissions scenario 

begins in 2001 and therefore this time period is not driven by observed forcings.  While 

the observations in this same time period also appear to level off, that was presumably 

due to short-term variability, such as the PDO or ENSO, and such unforced natural 

variability occurs at random within the models and would not be anticipated to be a 

consistent feature across all models.  One possible explanation could be that during this 
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period, an enhanced cooling effect of anthropogenic aerosols slowed the warming.  

Looking back at the A1B emissions scenario forcing in Chapter 3, Figure 3.3, we see 

that the anthropogenic sulfur dioxide (SO2) emissions (Figure 3.3(c)) have a 

pronounced increase starting in the year 2000 and then peak around 2020 before 

declining.  This is true for all values of ANTHSCA shown, which is simply a scaling 

factor of the original SO2 emissions scenario shown as ANTHSCA = 1.  During this 

same time greenhouse gases maintain a continuous increase in concentration (Figure 

3.3(a)).  Therefore the slowdown in model warming from 2000-2010 may be caused by 

this increase in SO2 emissions which are then overtaken by the effect of the greenhouse 

gas forcing, presumably before the SO2 emissions reach their peak in 2020, and a more 

linear increase in temperature ensues.   

 Figure 7.9 provides the same information as Figure 7.8 but includes the NA 

regions as well as precipitation comparisons to observations.  As with the globe, Figure 

7.9(a) shows uncertainties in future projections of temperature increasing in the future, 

with the possible exception being CNA.  Each region also shows greater warming from 

2011-2080 than simulated from 1941-2080.  Precipitation in Figure 7.9(b) shows a 

general increase in uncertainty in the future with ALA, CGI, ENA, and the globe 

(relatively speaking) displaying an increase in precipitation in the future and WNA and 

CNA essentially showing no change.    
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(a) 

 
(b) 

 
Figure 7.9:  Same as Figure 7.8 but including regional comparisons for annual mean anomalies 

of (a) temperature(C) and (b) precipitation rate (mm/day).  Temperature anomalies are relative 

to a 1941-1970 base period and precipitation anomalies are relative to 1981-2010.    
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 To further explore changes in temperature and precipitation in the future, 30- 

and 70-year trends were calculated and compared against past trends and trends found 

in the control simulation ensemble.  Figure 7.10 combines all of these trend 

distributions plus the observed trends from Figure 7.7 into a single plot for comparison.  

The initial feature to point out for both temperature and precipitation is that the control 

simulation 70-year mean trend distributions (three trends calculated for each control 

simulation; years 21-90, 56-126, 901-160) are all centered around zero and relatively 

small in magnitude.
21

  And the 30-year control trend distributions (five 30-year trends 

calculated for each control simulation; years 21-50, 51-80, 81-110, 111-140, 131-160) 

are much larger than the 70-year trends because of the increasing influence of short-

term variability.   

 All transient temperature trend distributions in Figure 7.10(a) are shifted in the 

positive direction compared to the control trend distributions which are centered on 

zero.  This implies that the transient forced response trends are unlikely to be caused by 

natural variability in the model.  While the past 70-year trends in temperature were 

smaller than the 30-year trends at the end of the observational period, the future 30- and 

70-year trends are similar in magnitude (Figure 7.10(a)) because of the consistent, 

generally linear, increase in temperatures over the projection period (Figure 7.9(a)).  

These future trends resemble the late observational period (1981-2010) 30-year trend 

implying that temperatures are projected to continue increasing at a rate similar to later 

part of the observational period.  The 70-year trends roughly double in the future in 

                                                 
21

 Note that the control trends are calculated after the long-term mean drift associated with imbalances 

from the atmosphere/ocean coupling process have been removed.   
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each region presumably due to the decreased influence of anthropogenic aerosols and 

increased influence of anthropogenic greenhouse gases.   

 The precipitation trend distributions shown in Figure 7.10(b) indicate minimal to 

no difference between control trends and past and future transient trends in WNA and 

CNA indicated no expected change in precipitation in the future over those regions.  It 

should be noted however that these two regions are located in a position where most 

identify a transition zone of changing precipitation.  Refer back to the CMIP3 future 

projections of precipitation across North America shown in Chapter 2, Figure 2.5 and 

compare to the regional locations of WNA and CNA (Chapter 3, Figure 3.4) and it 

becomes apparent that the regional means may be averaging together an increase in 

precipitation on the northern side of the region and a decrease on the southern side, thus 

resulting in a net zero trend.  This point will be explored further in future work when an 

assessment is conducted on the CPDN decadal average gridded output.   

The other regions show a slight increase in 70-year trends in the future, mostly 

in the northern regions of ALA and CGI possibly showing a future increase in moisture 

availability with increased temperature.  The slight increase in global 70-year trends 

may be caused by a combination of increased high-latitude precipitation due to 

increased moisture availability and increased tropical convection.   
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(a) 

 
(b) 

 
 

Figure 7.10:  Annual mean (a) temperature (C/Century) and (b) precipitation rate ((mm/year)/ 

Century) trends for past and future transients and controls for 30 year time periods (black) and 

70 year periods (colored).  Observed trends are plotted using the same color scheme.   
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7.5  TRANSIENT TREND RELATIONSHIPS   

7.5.1   Global vs. Regional Trends (Same Time Period) 

 The relationship between global temperature trends and regional trends across 

the same time period are investigated in this sub-section to see if global changes 

correspond with changes at the regional level.  Figure 7.11 shows scatter diagrams of 

the 70-year global temperature trend over the observational period versus regional 70-

year trends across the same time period.  We can see that a general relationship exists in 

each case.  To quantify these relationships, the correlation was calculated for each case 

and is provided in Table 7.2.  Also provided in Table 7.2 are the correlations for both 

30- and 70-year trends during past and future time periods.  Each correlation between 

the globe and an individual region is always calculated over the same time period.         

 

 
 

Figure 7.11:  Comparison of 70 year trends (1941-2010) in annual mean temperature for the 

globe versus each region.  A single point is plotted for each of the 1,692 transient simulations.  

P-values are all << 0.001.  
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Table 7.2:  Correlations between simulated global temperature trends and regional temperature 

and precipitation rate trends over the same time period for the 1,692 transient simulations.  

Correlations are provided for 70 year past (1941-2010) and future (2011-2080) trends and for 30 

year past (1981-2010) and two future time period (2011-2050; 2051-2080) trends.  Correlations 

with magnitude ≥ 0.6 (0.8) are highlighted in gray (yellow).  All p-values are <<0.001.  
 

Region 

70 year Trends (Globe vs. Region) 

                Past         [Future] 

1941-2010 [2011-2080] 

30 year Trends (Globe vs. Region) 

              Past                 [Future] 

1981-2010 [2011-2050; 2051-2080] 

Temperature   

Globe 1.00 [1.00] 1.00 [1.00; 1.00] 

ALA 0.74 [0.91] 0.70 [0.80; 0.86] 

CGI 0.64 [0.72] 0.50 [0.57; 0.66] 

WNA 0.82 [0.94] 0.78 [0.83; 0.89] 

CNA 0.53 [0.74] 0.14 [0.11; 0.11] 

ENA 0.77 [0.82] 0.56 [0.58; 0.69] 

Precipitation Rate   

Globe 0.92 [0.79] 0.81 [0.83; 0.78] 

ALA 0.63 [0.82] 0.47 [0.49; 0.51] 

CGI 0.59 [0.68] 0.51 [0.53; 0.55] 

WNA 0.31 [0.43] 0.49 [0.53; 0.60] 

CNA  0.25 [0.36] 0.44 [0.55; 0.59] 

ENA 0.33 [0.14] 0.46 [0.43; 0.55] 

 

 

  

Table 7.2 shows that regional temperature trends correspond quite well to global 

temperature trends with the exception of CNA, possibly because of larger variability in 

that region.  When comparing relationships between 70- and 30-year trends that share 

an overlapping period (e.g., past 70- and past 30-year trends) the 70-year trend 

relationship was almost always larger because of the increased variability over the 

shorter time span.  The relationship in 70-year future trends was stronger for all regions 

than for 70-year past trends.  This points to the increasing influence rising greenhouse 

gas concentrations had on regional temperature trends in the future as the impact of 

other forms of variability became reduced and the trends began to have a greater 

resemblance to the global long-term trend.   
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 The global temperature trend has much weaker relationships to regional 

precipitation.  The global temperature and global precipitation correspond well because 

global precipitation is highly dependent on global temperature (e.g., impacts on tropical 

rainfall and high-latitude moisture availability).  Additionally, ALA and CGI have 

relatively higher correlations due to the fact that the higher latitudes respond more to 

temperature changes which alters moisture availability.        

 

 

7.5.2   Past Global Trends vs. Future Global and Regional Trends 

 Whereas the previous sub-section looked at relationships over the same time 

period, this sub-section investigates the relationships of past global temperature trends 

with future global and future regional trends.  This addresses the question of whether 

the magnitude of global trends simulated in the past are related to simulated future 

trends at both the global and regional scales.  Table 7.3 provides the results for 70-year 

trends and the two different future 30-year time period trends, where an early and latter 

future 30-year period (2011-2040; 2051-2080) is compared to global temperature trends 

over the final 30 years of the observational period (1981-2010).   
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Table 7.3:  Correlations between simulated past global temperature trends and future regional 

temperature and precipitation rate trends and for the 1,692 transient simulations.  Correlations 

are provided for 70 year past (1941-2010) global and future (2011-2080) regional trends and for 

30 year past (1981-2010) global and two future time period (2011-2050; 2051-2080) regional 

trends.  Correlations with magnitude ≥ 0.25 are highlighted in blue.  All p-values are <<0.001 

except for those denoted with a (*).  

 

Region 

        70 year Trends  
  Past Globe | Future Region 

(1941-2010) vs (2011-2080) 

30 year Trends  
 Past Globe | Future Region 

(1981-2010) vs (2011-2040) 

30 year Trends 
       Past Globe | Future Region 

     (1981-2010) vs (2051-2080) 

Temperature    

Globe 0.18 0.34 0.34 

ALA 0.24 0.26 0.28 

CGI 0.45 0.17 0.33 

WNA 0.20 0.30 0.31 

CNA 0.14 0.09* 0.20 

ENA 0.07* 0.23 0.29 

Precipitation Rate    

Globe 0.18 0.26 0.25 

ALA 0.14 0.19 0.22 

CGI 0.42 0.14 0.33 

WNA 0.17 0.17 0.13 

CNA  -0.09* 0.17 0.08* 

ENA -0.30 0.06* 0.05* 

 

 

 

It is immediately apparent that these correlations are generally much weaker 

than the correlations found comparing global temperature and regional trends across the 

same time period in the previous section (Table 7.2).  This makes sense because when 

making comparisons across the same time period, both the globe and regions will be 

under the same forcings whereas comparisons from past to future will have additional 

uncertainty due to differences in forcings driving the simulations over the two time 

periods.  Therefore we consider the relative differences in the correlations shown in 

Table 7.3 to get a general idea of the relationships of past global temperature trends to 

future regional trends.   
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The main conclusion from this analysis is that, in general, the 30-year 

relationships are stronger than the 70-year relationships, with the exception of CGI 

which may have to do with sea ice interactions and ENA precipitation.  The implication 

of this is that when attempting to constrain future projections it will be better to use the 

recent past 30-year trend rather than past 70 year trends because they show a greater 

correlation to future trends.  This is probably due to fact that greenhouse gas forcing has 

held greater importance in recent decades and it is expected to be a dominant factor in 

the future.    

 

 

 

 

7.5.3   Past vs. Future Trends in Same Region 

 The previous two sub-sections assessed relationships between various regions 

and the global temperature trend.  In this sub-section relationships are quantified 

between past and future trends within an individual region (Table 7.4).  The most 

important aspect of these relationships is their comparison to the correlations calculated 

against past global temperatures in the previous section (Table 7.3).  Again, the 

relationships in the same region (Table 7.4) have 30-year trend relationships that are 

generally stronger than for 70-year trends as was found when comparing past global 

temperatures to each future region.  However, there is a difference in the magnitude of 

those 30-year trend correlations.  The past global temperature trend appears to have a 

greater correlation to future regional climatic trends (Table 7.3) than the correlation 

found between past climatic trends to future trends from within the same region (Table 

7.4). 
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 This result will become useful when attempting to constrain future projections 

(Section 7.8) because it implies that past global temperature trends may be a better 

predictor of future regional climatic trends than past trends in the individual regions 

themselves.  It also suggests that the 30-year trend in past global temperatures (1981-

2010) may be more appropriate predictor to use for constraining than past 70-year 

trends (1941-2010).      

 

Table 7.4:  Correlations between past and future trends within a given region for temperature 

and precipitation rate for the 1,692 transient simulations.  The 70 year trends are compared 

between 1941-2010 and 2011-2080 and the 30 year trends are compared from the past time 

period 1981-2010 and future periods 2011-2040 and 2051-2080.  Correlations ≥0.25 are 

highlighted in blue.  All p-values are <<0.001 except for those with a (*).   

 

Region 

70 year Trends  
   Past               Future 

(1941-2010) vs (2011-2080) 

30 year Trends  
Past               Future 

(1981-2010) vs (2011-2040) 

30 year Trends  
Past               Future 

(1981-2010) vs (2051-2080) 

Temperature    

Globe 0.18 0.34 0.34 

ALA 0.24 0.25 0.20 

CGI 0.30 0.27 0.21 

WNA 0.14 0.27 0.23 

CNA 0.02* 0.13 0.08* 

ENA 0.03* 0.15 0.21 

Precipitation Rate    

Globe 0.11* 0.26 0.23 

ALA 0.14 0.11 0.13 

CGI 0.28 0.21 0.18 

WNA 0.23 0.15 0.04* 

CNA  0.15 0.20 0.02* 

ENA -0.11 0.15 0.08* 
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7.6  Changes in Seasonal Cycle and Variability 

 Next we assess whether there are changes in future projections of interannual 

variability or magnitude in the seasonal cycle (JJA-DJF).  These two quantities were 

calculated in the transient simulations over the periods 1981-2010 and 2050-80 and then 

the difference found.  The 30-year periods were detrended prior to the calculation to 

remove any impact the long-term mean trend might have.  Figure 7.12 shows the 

distribution of these differences from all transients.  To assess the significance of the 

change against natural variability, the same quantities were calculated over various 30-

year periods in each control simulation (21-50, 51-80, 81-110, 111-140, 130-160) and 

differences between each period calculated from within a single control simulation.  All 

of these differences were then combined into a single distribution representing all 

controls and shown as the black distribution in Figure 7.12. 
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(a) 

 
(b) 

 
Figure 7.12:  Differences in 30 year mean interannual variability and JJA-DJF from 1981-2010 

to 2051-2080 for the 1,692 transient simulations (colored) and differences found across five 

different 30 year periods within all 1,214 control simulations.  All values are standardized to the 

control difference distribution. 
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 All changes in future projections of interannual variability and JJA-DJF are 

within the range of multi-decadal differences found in control simulation distributions 

which means that any single realization would not be considered outside the range of 

natural variability.  However, there are instances when the entire distribution appears to 

be shifted and some instances where that shift leaves nearly all of the samples with the 

same sign.  For interannual variability in temperature (Figure 7.12(a)) there was 

essentially no shift in the distributions but in interannual variability in precipitation 

(Figure 7.12(b) there was a slight positive shift in all NA regions and interestingly a 

negative shift in the globe.  With all NA regions shifting one direction and the globe the 

other it implies that the global variability is being influenced by processes other than 

those predominantly affecting NA (e.g., the tropics).     

 JJA-DJF for temperature (Figure 7.12(a)) shows a reduction for ALA, CGI, and 

the globe which would be suggestive of greater warming in the winter than summer for 

the higher latitudes.  WNA and CNA show an increase in JJA-DJF temperature which 

implies summer is warming more than winter which could be indicative of summer 

drying across the region.   

 JJA-DJF for precipitation (Figure 7.12(b)) shows a slight decrease in all regions 

except the globe and ALA.  For the WNA, CNA, and ENA regions this may imply a 

reduction in summer rainfall, which would be consistent with the increased seasonal 

cycle in temperature seen in WNA and CNA (Figure 7.12(a)).  The decrease in CGI is 

more difficult to explain because its maximum and minimum in precipitation do not 

align with JJA and DJF.   
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7.7  Sensitivity to Physical Parameter Values 

The parameter perturbations applied to CPDN transient simulations are assessed 

to evaluate uncertainties in climate indices based on variations to these parameters.  

(For parameter perturbations see Table 7.1 and for further discussion of these 

perturbations refer to Chapter 3, Section 3.3.1)  Section 7.7.1 assesses the sensitivity of 

70- and 30- year trends to variations of each model parameter over the observational 

period while Section 7.7.2 assesses the same sensitivity over the future time period.   

 

7.7.1  Parameter Variations and Observational Period Trends 

 An analysis was performed to identify the correlation between model parameter 

variations and simulated 30- and 70-year trends in both temperature and precipitation 

over the observational period.  The top parameters with highest correlation magnitudes 

(≥ 0.3) are shown in Table 7.5.  Compared to the parameter sensitivity analysis 

performed on control simulation mean and variability measures (Chapter 5, Table 5.5), 

these parameters are both fewer in number and have much weaker correlations.  

Therefore varying parameter settings has much less of an impact on trends than it does 

on natural variability measures.  This is apparent in Figure 7.13 and 7.14 which show 

the limited variations in 30- and 70-year trends as these top parameters are varied.  

Therefore, attempting to constrain future projections based on model parameter values 

that best simulate climatic trends may be challenging (but was still attempted, see 

Section 7.8).  

 

 



246 

 

Table 7.5:  Model physics parameters with correlation magnitude ≥ 0.3 between their variations 

and 30-year (1981-2010) or 70-year (1941-2010) observational period trends in annual mean 

temperature or precipitation rate over a defined region.  Parameters are listed in order of 

generally higher sensitivity to lower.  All correlations shown have p<<0.00001.   
 

Parameter        Globe       ALA CGI   WNA CNA        ENA 

ANTHSCA 
70yr Precip  

[-0.41] 

70yr Precip  

[-0.34]  

70yr Temp  

[-0.31] 

70yr Temp  

[-0.30] 

70yr Temp  

[-0.32] 

 

70yr Temp  

[-0.37]    

  
HANEYSFACT 

70yr Temp  

[-0.30]  

70yr Precip  

[-0.41]    

 

  

70yr Temp  

[-0.40]  

  
RHCRIT 

30yr Precip 

[0.35]      

 

30yr Temp 

[0.31]    
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(a) 

 
(b) 

 
 

Figure 7.13:  Annual mean temperature (a) 30 year trends, 1981-2010 and (b) 70 year trends, 

1941-2010 (°C/Century) over the observational time period for the globe and five NA regions 

for the 1,692 transient simulations split into distributions corresponding with model parameter 

values.  Actual parameter values are not listed but are arranged in the same order as that given 

in Table 7.1.  Boxplots provide 25-75% (inner) and 2.5%-97% (outer) ranges and dots for 

samples outside the 95% range.  The maximum and minimum range of corresponding 

observational data sets (including NARR) is shown as a vertical shaded bar.  A vertical dotted 

line identifies zero trend.      
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(a) 

 
(b) 

 
 

Figure 7.14:  Annual mean precipitation rate (a) 30 year trends, 1981-2010 and (b) 70 year 

trends, 1941-2010 ((mm/year)/Century) over the observational time period for the globe and 

five NA regions for the 1,692 transient simulations split into distributions corresponding with 

model parameter values.  Actual parameter values are not listed but are arranged in the same 

order as that given in Table 7.1.  Boxplots provide 25-75% (inner) and 2.5%-97% (outer) ranges 

and dots for samples outside the 95% range.  The maximum and minimum range of 

corresponding observational data sets (including NARR) is shown as a vertical shaded bar.  The 

observational 70 year trend corresponds with a single data set (NOAA-MPREC) and is a 60 

year average corresponding with the data set length.  A vertical dotted line identifies zero trend.      

  

 

One of the top parameters, ANTHSCA, is the scaling factor for anthropogenic 

sulfate aerosols (refer back to Chapter 3, Section 3.3.1 for all parameter discussions) 

and it is an important parameter because it directly alters the sulfate aerosols in the 

model which has a direct impact on solar radiation and therefore surface temperatures.  

When ANTHSCA is increased there is a greater amount of sulfate aerosols in the 

atmosphere which increases scattering and absorption of solar radiation thereby 
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reducing the amount of radiation reaching the surface (a cooling effect).  When 

ANTHSCA is decreased, less sulfate aerosols are in the atmosphere and the opposite 

effect ensues.  These effects can be seen in Figure 7.13(b) where the distributions in 70-

year global temperature trends decrease as ANTHSCA increases. (Note that parameter 

distributions align with parameter values which are listed as smallest on top and largest 

on bottom to match the ordering in Table 7.1).   

Parameter HANEYSFACT sets the time lag for the correction of model 

generated sea surface salinities (SSSs) to observed SSSs in the spin up phase of the 

model.  This process attempts to reduce drift in the model and therefore varying it alters 

the long term mean model drift, which was supposedly removed, but evidently still 

plays a partial role in trends across the 20
th

 century.   

 The parameter RHCRIT is the critical relative humidity and it sets the relative 

humidity threshold required for cloud water vapor to form in the model.  When 

RHCRIT is set to a lower value, clouds form relatively faster (i.e., do not require as 

much moisture to form) which, in turn, increases the reflection of shortwave solar 

radiation in the clouds, thus decreasing the radiation reaching the ground (a cooling 

effect).  This effect on temperature can be seen in the distribution changes of 30-year 

temperature trends with changing RHCRIT values in Figure 7.13(a) where increasing 

RHCRIT values result in larger trends (i.e., more moisture was required to form clouds 

so relatively less clouds form allowing more solar radiation to reach the surface.          
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7.7.2  Parameter Variations and Future Trends 

 While the main purpose of identifying influential parameters is to use that 

knowledge to constrain future projections it is still interesting to see which parameters 

are most important with regards to variations in future trends.  In this sub-section a 

parameter sensitivity analysis is performed for variations in trends over the future 

projection time period.  Table 7.6 lists the parameters found with highest correlation 

magnitudes (≥ 0.3) between their parameter variations and simulated 30-year (2051-

2080) and 70-year (2011-2080) trends in temperature or precipitation.  There are more 

parameters in this set than found for parameter sensitivities in past trends and the 

correlation magnitudes are slightly larger.  This is probably due to the wider range of 

trend distributions in the future which further emphasizes differences in model climate 

sensitivities.   
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It is interesting to note that while RHCRIT is still listed as a top parameter, 

ANTHSCA and HANEYSFACT are not.  For ANTHSCA this is most likely due to the 

fact that the anthropogenic sulfate aerosols reach a peak in 2020 and then decrease 

throughout the rest of the simulation.  Therefore, the impact these aerosols have on the 

climate would decrease with time, especially as the effects of increasing greenhouse gas 

concentrations began to dominate the modeled climate system.  ANTHSCA is simply 

the scaling factor of the anthropogenic sulfate aerosols and therefore also would become 

less influential in the future.  HANEYSFACT apparently was associated with model 

imbalances in the 20
th

 century but was not as important as other parameters across the 

21
st
 century.  

 There were a few additional parameters of higher significance added that we can 

discuss further (EACF, CT).  The parameter EACF is the empirically adjusted cloud 

fraction and identifies how much cloud cover there will be when the atmosphere is 

saturated over a given grid cell.  When the EACF parameter is increased it means that 

there will be more cloud cover when the atmosphere is saturated and therefore more 

solar radiation will be absorbed or reflected, thus cooling the surface.  This feature is 

seen in Figure 7.15(a,b) in all regions as a decreasing temperature trend with increasing 

values of EACF.   
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Figure 7.15:  Annual mean temperature (a) 30 year trends, 2051-2080 and (b) 70 year trends, 

2011-2010 (°C/Century) for the future time period for the globe and five NA regions for the 

1,692 transient simulations split into distributions corresponding with model parameter values.  

Actual parameter values are not listed but are arranged in the same order as that given in Table 

7.1.  Boxplots provide 25-75% (inner) and 2.5%-97% (outer) ranges and dots for samples 

outside the 95% range.  A vertical dotted line identifies zero trend.  

 

 

 

The parameter CT is the accretion constant and identifies the cloud droplet to 

rain conversion rate (i.e., how long it takes to convert cloud droplets to rain).  As 

discussed in Chapter 3, Section 3.3.1, a reduction in CT has been found to increase the 

amount of clouds for a given temperature and humidity, thereby decreasing surface 

temperatures.  An increase in CT allows more cloud droplets to be removed by falling 

rain which increases the amount of precipitation falling.  Both of these effects can be 

(a) 

(b) 
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seen with temperature trends generally decreasing when CT values are small (Figure 

7.15) and precipitation trends increasing when CT values are large (Figure 7.16).   

  A major takeaway from this future trend analysis is the increasing importance 

of cloud parameters in the future projection period indicating the important role of 

cloud feedbacks on the climate sensitivity and the future warming trends 

 

 

 

 
 

Figure 7.16:  Annual mean precipitation rate (a) 30 year trends, 2051-2080 and (b) 70 year 

trends, 2011-2080 ((mm/year)/Century) for the future time period for the globe and five NA 

regions for the 1,692 transient simulations split into distributions corresponding with model 

parameter values.  Actual parameter values are not listed but are arranged in the same order as 

that given in Table 7.1.  Boxplots provide 25-75% (inner) and 2.5%-97% (outer) ranges and 

dots for samples outside the 95% range.  

(a) 

(b) 
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7.8  Constrained Transient Ensemble 

 Finally, the knowledge gained from the transient simulation assessments in this 

chapter is used to constrain future global and NA regional temperature and precipitation 

projections.  The three sub-sections below provide transient simulation projections 

constrained by a simulation's ability to reproduce observed 30-year global temperature 

trends, observed 70-year global temperature trends, and by using model parameter value 

settings that are best suited to reproduce observed 70-year global temperature trends.  

 

7.8.1  Constrained by 30 Year Global Temperature Trend 

 The first constrained future projection ensemble is constructed based on a 

transient simulation’s ability to reproduce observed 30-year global temperature trends.  

As discussed in Section 7.5, 30-year global temperature trends had the highest 

correlation with future trends at both the global and regional scale and therefore would 

be the best metric to use for constraining future projections based on past performance.  

Figure 7.17 shows the constrained transient ensemble (shaded), which is comprised of 

all simulations that are within one standard deviation of the 30-year global temperature 

trend observed mean.  The original transient ensemble is shown as the respective black 

lines.  Using this constraint had an impact on future projections by generally reducing 

the average simulated future warming trend and its uncertainty range.  It also improved 

the model’s ability to simulate the more recent observed temperatures.   
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Figure 7.17:  Annual mean global temperature anomaly for transient ensemble constrained by 

model performance for 30-year (1981-2010) global temperature trends (red shading; 255 

simulations) and the original transient ensemble (black lines; 1,692 simulations).  Both 

ensembles show the 25-75%, 2.5-97.5%, and min-max ranges.  Observations are averaged 

together to give a single estimate.  Anomalies are relative to a 1941-1970 base period.   

 

 

 Figure 7.18 shows the same constrained simulations as those shown in Figure 

7.17 but for temperature and precipitation across the NA regions.  A similar decrease in 

the average future warming trend is seen across the various regions as well as 

precipitation rate when a long-term trend originally existed.  Performing this constraint 

therefore reduced the uncertainty in future projections of both temperature and 

precipitation at the global and NA regional levels.        



257 

 

(a) 

 
(b) 

 
Figure 7.18:  Same as Figure 7.17 but including regional comparisons for annual mean 

anomalies of (a) temperature (C) and (b) precipitation rate (mm/day).  Temperature anomalies 

are relative to a 1941-1970 base period and precipitation anomalies are relative to 1981-2010.    
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7.8.2  Constrained by 70 Year Global Temperature Trend Performance 

 The next constrained future projection ensemble is constructed based on a 

transient simulation’s ability to reproduce observed 70-year global temperature trends.  

Figure 7.19 shows the constrained transient ensemble (shaded), which is constructed in 

the same manner as Figure 7.17.  Using this constraint appears not to have had an 

impact on the general pattern of the original ensemble.  This is due to the fact that the 

observed 70-year global temperature trend was near the 50% range of the models and 

therefore less likely to identify a consistent set of simulations with the same bias in 

future trends compared to the observed 30-year global temperature trend which was 

closer to the 95% range of the modeled trends, thus having a greater number of 

simulations all containing the same trend bias (refer to Figure 7.7).  The constrained 

regional temperature and precipitation showed virtually identical characteristics as the 

global constrained ensemble in Figure 7.19 (i.e., no changes to the original transient 

ensemble spread) and therefore are not shown.   
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Figure 7.19:   Annual mean global temperature anomaly for transient ensemble constrained by 

model performance for 70-year (1941-2010) global temperature trends (red shading; 997 

simulations) and the original transient ensemble (black lines; 1,692 simulations).  Both 

ensembles show the 25-75%, 2.5-97.5%, and min-max ranges.  Observations are averaged 

together to give a single estimate.  Anomalies are relative to a 1941-1970 base period.   

 

 

7.8.3  Constrained by Parameters with Greatest Sensitivity (70yr Global Trends) 

 The final constrained future projection ensemble is constructed based on model 

parameter value settings that are best suited to reproduce observed 70-year global 

temperature trends.  In Section 7.7.1 it was discovered that variations in three model 

parameters (ANTHSCA, HANEYSFACT, RHCRIT) had the largest impact on 30- and 

70-year observed trends.  By assessing the variations in these trends, a specific value for 

each parameter was found to maximize model performance, specifically the model's 
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ability to simulate 70-year global temperature trends (Figure 7.13(b)).  These values 

were ANTHSCA = 1.5 (i.e., largest value), HANEYSFACT = 1.0 (largest value), and 

RHCRIT = 0.65 (smallest value).  Constraining the transient ensemble to include only 

simulations with these specific values resulted in the ensemble shown in Figure 7.20 for 

annual mean global temperature anomaly.  A significant reduction in the ensemble 

spread occurs with this constraint and the trends are all on the lower end of the long-

term warming spectrum (similar to the results found by constraining based on a model's 

ability to reproduce observed 30-year global temperature trends shown in Figure 7.17).  

Using this constraint also provides a better representation of the more recent observed 

data.  One thing to point out, though, is that using this constraint reduced the number of 

simulations in the ensemble to 37 which means there is the potential that the reduced 

ensemble spread is a result of the smaller number of simulations.  Future work could 

include increasing the number of simulations by including those with parameter values 

within the most important parameters that are close to the settings chosen.  For example, 

the next closest setting for ANTHSCA could be included to see how it impacts the final 

ensemble.  Additionally, we could go back to the alternative "inferred" transient 

ensemble not used in this study (see Appendix A) and identify those simulations with 

the corresponding "best" values in the three top parameters and then also match those 

parameters required for an "inferred" match while letting all other parameters vary and 

see how the ensemble changes.    
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Figure 7.20: Annual mean global temperature anomaly for transient ensemble constrained by 

model parameters with greatest sensitivity for 70-year (1941-2010) global temperature trends 

(red shading; 37 simulations) and the original transient ensemble (black lines; 1,692 

simulations).  Both ensembles show the 25-75%, 2.5-97.5%, and min-max ranges.  

Observations are averaged together to give a single estimate.  Anomalies are relative to a 1941-

1970 base period.   

 

  

 The corresponding constrained regional ensembles are shown in Figure 7.21.  

Again, a similar decrease in the average warming trend is seen across the NA regions as 

well as a decrease in precipitation rate trend when a trend originally existed.  The 

ensemble range also was decreased.  Therefore, this constraint reduced the uncertainty 

in future climate projections at the global and NA regional levels.  These constrained 

transient ensembles are discussed further, in terms of their comparison to the CMIP3 

and CMIP5 ensembles, in Chapter 8.         
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(a) 

 
(b) 

 
Figure 7.21:  Same as Figure 7.19 but including regional comparisons for annual mean 

anomalies of (a) temperature (C) and (b) precipitation rate (mm/day).  Temperature anomalies 

are relative to a 1941-1970 base period and precipitation anomalies are relative to 1981-2010.    
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 In conclusion, both the near-term observational constraint (30-year global 

temperature trends) and the parameter sensitivity constraint (associated with parameter 

value performance over 70-year global temperature trend) generally reduced the 

temperature ensemble mean and decreased the range of possible future projections.  

This same conclusion was found in Stott et al. (2013) where they used an optimal 

fingerprint detection analysis (e.g., Allen and Tett 1999; Allen and Stott 2003; Stott et 

al. 2003) to observationally constrain future projections.  In that analysis six CMIP5 

models were used to assess the impact historical forcings of modeled anthropogenic 

greenhouse gases and other anthropogenic forcings (i.e., aerosols) had on warming and 

compared each to observed warming in order to generate scaling factors to represent 

how much a model’s temperature response to the different forcings needed to be scaled 

up or downward.  These scaling factors on temperature response were then applied to 

future forcings to produce observationally constrained projections.  

 Additionally, Rowlands et al. (2012) used a similar PPE from the same CPDN 

model (i.e., HadCM3L) and constrained future projections by a goodness-of-fit statistic 

based on the spatio-temporal pattern of surface temperatures from 1961 to 2010 and 

they also found that the constrained projection had a reduced ensemble spread and 

ensemble mean that was decreased (see Chapter 2, Figure 2.6).   
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7.8  Summary   

 This chapter evaluated the performance of the CPDN HadCM3L transient 

simulations over the observational time period and quantified uncertainties in future 

projections for the globe and NA regions and produced constrained future projections 

based on a model's performance over the observational time period. 

 There were a total of 1,692 transient simulations comprised of 137 atmospheres, 

ten oceans, ten initial conditions, five values for scaling anthropogenic sulfates, 15 solar 

forcing scenarios, and 50 volcanic forcing scenarios.  This resulted in 614 unique 

atmosphere/ocean combinations with the remaining 1,078 containing duplicate 

atmosphere/ocean combinations with variations to their anthropogenic sulfate scaling 

factor, natural forcings (solar or volcanic), or initial conditions.  The long-term mean 

drift caused by imbalances in the atmosphere/ocean coupling process was removed by 

identifying the drift in a transient’s corresponding control simulation with matching 

atmosphere and ocean parameters.  A number of available transient simulations could 

not be used because they did not have a matching control with the same 

atmosphere/ocean parameters and therefore the long-term mean drift to remove was 

unknown.      

 Observational estimates of temperature and precipitation generally were near the 

50% range of the transient simulation ensemble and were almost always within the 95% 

range for both the globe and North American regions.  The simulations tended to show 

greater warming across the most recent decade (i.e., 2000's) than found in observations 

possibly due to natural variability in the observations (i.e., heat going into the ocean 

within the PDO cycle or ENSO) or too large climate sensitivity in some models.   
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 Future projections of temperature showed increased warming in all regions with 

greater warming occurring over the future projection period than seen over the 

observational period.  Future projections of precipitation did not change for WNA or 

CNA but did show an increase in other regions, with only a minimal increase in ENA.  

The uncertainty range tended to increase with time for both temperature and 

precipitation across the future projection period. 

 There was no change found in future temperature interannual variability but a 

slight increase found in precipitation interannual variability for all NA regions.  The 

magnitude of the temperature seasonal cycle was reduced in the future at higher 

latitudes, indicating greater winter warming, and increased in WNA and CNA, 

indicative of summer drying across the region.        

 Parameters ANTHSCA, HANEYSFACT, and RHCRIT were most sensitive 

with regards to 30- and 70-year trends over the observational period.  ANTHSCA 

impacts temperature by scaling anthropogenic sulfates, HANEYSFACT is associated 

with imbalances between the atmosphere and ocean coupled model across the 20
th

 

century, and RHCRIT defines the rate at which clouds form based on the amount of 

moisture in a model grid cell.  In future projected trends, the most important parameters 

included more cloud parameters indicating the important role of cloud feedbacks on the 

climate sensitivity and the future warming trends. 

Past global temperature trends were the best identified predictors of future 

regional climatic trends (especially 30-year trends) and therefore used to constrain 

future projections.  Also, future projections were constrained based on parameter 

sensitivity of the top three parameters (best reproducing 70-year past global temperature 
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trends).  Constraining based on observed 30-year global temperature trends and by 

parameter sensitivity resulted in a reduction in the spread of the resulting constrained 

ensemble as well as a decrease in the ensemble mean (i.e., future projections resided 

within the lower/cooler part of the original ensemble).  This result was similar to that 

found by Stott et al. (2013) and Rowlands et al. (2012) who used different approaches 

for constraining future projections. 

Constraining future projections by observed 70-year global temperature trends 

did not change the general characteristics of the transient ensemble (i.e., maintained a 

similar ensemble mean, 50%, and 95% range).     
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CHAPTER 8 

CPDN VERSUS CMIP ENSEMBLES 

 

 

This chapter compares the results of the CPDN HadCM3L model analysis of the 

previous chapters to the multi-model ensembles of climate model simulations from the 

World Climate Research Programme (WCRP) Coupled Model Intercomparison Project 

Phase 3 (CMIP3; Meehl et al. 2007a) and Phase 5 (CMIP5 Taylor et al. 2011) described 

in Chapter 2, Section 2.3. CMIP3 and CMIP5 data were downloaded from the 

Koninklijk Netherlands Meteorological Institute (KNMI) Climate Explorer 

(http://climexp.knmi.nl).  The goal of the chapter is to assess whether the uncertainty 

estimates from CMIP3 and CMIP5 adequately represent uncertainties in different 

climate metrics using a much larger ensemble of simulations.  Section 8.1 investigates 

control simulation comparisons and Section 8.2 transient simulation comparisons.  

Section 8.3 summarizes the key findings.   

 

 

8.1  CONTROL SIMULATIONS (CPDN VS. CMIP5) 

Select analyses from the CPDN HadCM3L control simulations were compared 

to CMIP5 control simulations to assess internal variability in the models.  Only CMIP5 

controls were utilized because they were readily available and contain the most recent 

model versions and therefore provide the most current estimates of natural variability in 

global climate models.  There were 41 CMIP5 control simulations available for 

temperature and 37 for precipitation.  All simulations were 190 years long and did not 



268 

 

contain model drift.  These simulations were split into seven 30-year periods and 

climatic indices calculated and then placed into a single distribution for comparison to 

CPDN control simulations (287 samples for temperature and 259 samples for 

precipitation).  It should be noted that while this provided a large sample size it was still 

significantly smaller than the 6070 samples available from the CPDN control simulation 

ensemble (1,214 simulations x 5 samples each).  The subsections below investigate the 

comparisons of CPDN and CMIP5 model mean, seasonal cycle, and variability 

respectively.   

 

8.1.1  Mean 

 The mean climate was assessed in the same manner as in Chapter 5, Section 5.3.  

Figure 8.1 provides annual mean distributions of absolute temperature and precipitation 

for CPDN, CMIP5, and observations.  The annual mean temperature distributions 

(Figure 8.1(a)) of CPDN and CMIP5 were generally in good agreement except possibly 

for slightly warmer CMIP5 models in the global, WNA, and ENA distributions.  In all 

three of these cases the CMIP5 distribution was closer to the observational distributions 

than CPDN, possibly pointing towards improved model performance with the newer 

generation of models in CMIP5 or better tuning of the model parameters to represent 

the observed climatology, recognizing that only limited tuning was done for the 

different parameter combinations for CPDN.  
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(a) 

 
(b) 

 
Figure 8.1:  Annual 30-yr mean (a) temperature (°C) and (b) precipitation rate (mm/day) for the 

globe and five NA regions from the 1,214 CPDN control simulations (five samples per 

simulation), CMIP5 control simulations (seven 30-yr samples per simulation for 41 temperature 

and 37 precipitation simulations), and observational bootstrap distributions (6070 samples).  

Boxplots provide 25-75% (inner) and 2.5%-97% (outer) ranges and dots for samples outside the 

95% range.    
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Annual mean precipitation (Figure 8.1(b)) for CMIP5 appeared to be relatively 

larger than CPDN.  For the globe and high latitude regions this could be caused by the 

slightly warmer absolute temperatures found in some of the models which would allow 

for greater moisture availability.  It is more difficult to identify an exact cause for the 

larger precipitation in the other, lower-latitude regions.  The true cause may be from 

multiple factors tied to the variety of changes made in CMIP5 model development, that 

subsequently had an impact on precipitation processes (e.g., higher spatial resolution, 

more accurate topography, updated model physics, etc.).  Or the CPDN HadCM3L 

model may simply be representative of the CMIP5 models in the lower range of the 

precipitation distributions.   

 In Figure 8.2 the same absolute annual mean temperature and precipitation 

distributions are shown except with the addition of winter (DJF) and summer (JJA) 

seasons.  Again, the mean temperature (Figure 8.2(a)) of both CPDN and CMIP5 were 

generally in good agreement.  The slightly warmer CMIP5 annual means could be seen 

in the globe for both seasons and in WNA and ENA mainly in winter.  The slightly 

warmer CMIP5 winters were found in CNA as well (and even somewhat in ALA and 

CGI) which implies that some of the CMIP5 models generate warmer winters than 

CPDN across much of NA.   
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(a) 

 
 

(b) 

 
 

 

Figure 8.2:  Same as Figure 8.1 but including winter (DJF) and summer (JJA) means. 
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The larger CMIP5 annual precipitation was found to occur mainly during winter 

except possibly for CNA (Figure 8.2(b)).  With a number of the models found with 

higher temperatures this may point to greater moisture availability in those models 

leading to greater precipitation.  The other feature worth noting with the precipitation 

distributions was the relatively larger distribution range found in some of the CMIP5 

cases (e.g., ALA-annual and DJF; CGI-DJF; CNA-JJA).  The reasoning for this was 

uncertain but it should be noted that some of the CMIP5 model simulations generated a 

wider range of absolute mean precipitation than CPDN.    

 

8.1.2  Seasonal Cycle 

 Next the magnitude of the seasonal cycle (JJA-DJF) in temperature was assessed 

in the same manner as was done in Chapter 5, Section 5.4.2.  Figure 8.3 provides the 

resulting distributions which show general agreement between CPDN and CMIP5 with 

the CPDN distributions slightly shifted to larger magnitudes.  This makes sense given 

the slightly warmer temperatures found in CMIP5 DJF absolute mean distributions and 

the small differences found in the JJA distributions (Figure 8.2(a)).     
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Figure 8.3:  Magnitude of the seasonal cycle (JJA-DJF) of temperature for the globe and five 

NA regions for the 1,214 control simulations (five samples per simulation), CMIP5 control 

simulations (seven 30-yr samples per simulation for 41 temperature and 37 precipitation 

simulations), and observational bootstrap distributions (6070 samples).  Boxplots provide 25-

75% (inner) and 2.5%-97% (outer) ranges and dots for samples outside the 95% range.    
 

 

8.1.3  Variability 

 Next, interannual and decadal variability of CMIP5 control simulations were 

compared to CPDN control simulations and detrended observations (as was done in 

Chapter 5, Section 5.5.1).  Figure 8.4 displays the resulting interannual variability 

distributions.  The two ensembles agree well in most regions for both temperature and 

precipitation with CPDN distributions spanning as large or typically larger ranges of 

variability compared to CMIP5.  This shows that the CPDN perturbed physics ensemble 

(PPE) did not underestimate the variability range found in the CMIP5 multi-model 

ensemble (MME).   
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 As was found in CPDN temperature interannual variability (Section 5.5.1), 

CMIP5 extends to relatively larger variability in ALA compared to observations but this 

was not the case in global or CNA variability (Figure 8.4(a)).  Therefore some of the 

physics parameter variations allowed for greater variability in these regions compared 

to CMIP5.  In fact, the largest difference between CMIP5 and CPDN temperature 

interannual variability was found at the global level where CPDN extended to much 

larger values of variability.  This could indicate that CMIP5 is underestimating global 

temperature variability.  With precipitation interannual variability (Figure 8.4(b)), the 

main feature previously found with the CPDN distribution (Section 5.5.1) was the 

apparent shift to larger variability in CNA compared to observations.  While a small 

shift in CMIP5 was found with extensions to larger variability it was not to the same 

extent as CPDN, again indicating parameter settings allowing larger variability in that 

region.    

 Figure 8.5 explores interannual variability further by providing variability for 

DJF and JJA.  As with CPDN, the temperature interannual variability (Figure 8.5(a)) in 

the NA regions for CMIP5 was largest during winter, a feature previously found and 

resulting from the greater temperature difference between mid-latitudes and polar 

regions during northern hemisphere winter and the arctic frontal passages that traverse 

the region during that time period.  CMIP5 did not contain larger variability for either 

season at the global level as seen in CPDN and for CNA it was found that JJA provided 

the main difference in variability between the two, with CPDN shifted to larger 

variability.  Further, the shift to larger precipitation interannual variability in CPDN 
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CNA compared to CMIP5 was caused again by increased JJA variability (Figure 

8.5(b)).  
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(a) 

 
(b) 

 
Figure 8.4:  Annual 30-yr interannual variability for (a) temperature (°C) and (b) precipitation 

rate (mm/day) for the globe and five NA regions from the 1,214 control simulations (five 

samples per simulation),  CMIP5 control simulations (seven 30-yr samples per simulation for 41 

temperature and 37 precipitation simulations), and observational bootstrap distributions (6070 

samples).  Boxplots provide 25-75% (inner) and 2.5%-97% (outer) ranges and dots for samples 

outside the 95% range.   
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(a) 
 

 
(b) 

 
 

Figure 8.5:  Same as Figure 8.4 but including winter (DJF) and summer (JJA) interannual 

variability. 
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Decadal variability distributions for annual mean output are shown in Figure 

8.5.  These resulting distributions show similar characteristics to those found for 

interannual variability (Figure 8.4) with fairly consistent agreement between CPDN and 

CMIP5.  The only difference was a further extension to relatively larger variability in 

nearly every region for CPDN compared to CMIP5.  The extension to relatively greater 

variability in CPDN compared to CMIP5 was even more amplified for the two more 

extreme cases of variability in ALA temperature (Figure 8.5(a)) and CNA precipitation 

(Figure 8.6(b)).  This suggests that the CMIP5 model simulations may be 

underestimating the decadal variability of both temp and precipitation, possibly due to 

their smaller ensemble size and similarity in model components. 
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(a) 

 
(b) 

 
 

Figure 8.6:  Annual 100-yr decadal variability for (a) temperature (°C) and (b) precipitation 

rate (mm/day) for the globe and five NA regions from the 1,214 control simulations (five 

samples per simulation), CMIP5 control simulations (three 100-yr samples per simulation for 41 

temperature and 37 precipitation simulations), and one 90-year sample for each of the 

temperature observational data sets.  Boxplots provide 25-75% (inner) and 2.5%-97% (outer) 

ranges and dots for samples outside the 95% range.   
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8.2  TRANSIENT SIMULATIONS (CPDN VS. CMIP3 & CMIP5) 

 

 

The CPDN HadCM3L transient simulation ensemble was compared to CMIP3 

and CMIP5 transient ensembles to assess any distribution differences.  There were 52 

CMIP3 transient simulations and 46 CMIP5 simulations available.  Recall there were 

1,692 CPDN transient simulations (Chapter 7).  The subsections below provide the 

comparisons over the historical period, future projections, and constrained future 

projections respectively.   

 

8.2.1  Historical Time Period 

 Figure 8.7 provides the CPDN annual mean global temperature anomaly 

ensemble and observational estimates for the 1941-2010 historical time period 

(discussed in Chapter 7, Section 7.3.1) as well as annual time series for each of the 52 

CMIP3 transient simulations (Figure 8.7(a)) and 46 CMIP5 transient simulations 

(Figure 8.7(b)).  The CMIP3 and CMIP5 simulations generally resided near the CPDN 

95% range with CMIP5 in slightly better agreement with CPDN, at least prior to 2000.  

CMIP5 also appears to align slightly better with observations than CMIP3 (e.g., 

particularly between the mid-1960’s to 2000).  This could be associated with improved 

model development and the fact that CMIP5 operates under historical forcing through 

2005 while CMIP3 only goes through 2000.  Also, some of the CMIP3 models did not 

include volcanic forcing in their historical runs and therefore their simulations may be 

slightly warmer after the 1960’s because of it.  As was found in CPDN, most models 

within CMIP3 and CMIP5 produced warmer conditions across the 2000’s than seen in 
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observations which was thought due to natural variability in the climate system driving 

short term observational estimates (refer to Section 7.3.1 for further discussion). 
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Figure 8.7:  Annual mean global temperature anomaly for the 1,692 transient simulations (red 

shading), three observational data sets (HadCRUT3, NOAA-MLOST, GISTEMP), and (a) 52 

CMIP3 and (b) 46 CMIP5 simulations (colored lines) over the 1941-2010 observational time 

period.  The transient ensemble is shaded according to the 25-75%, 2.5-97.5%, and min-max 

ranges.  Anomaly values are relative to a 1941-1970 base period. 

(a) 

(b) 

CMIP3 

CMIP5 
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Decadal average distribution ranges for both CMIP3 and CMIP5 are shown in 

Figure 8.8 with the same CPDN distribution and observations from Figure 8.7.  The 

increase in temperatures over the latter half of the century was apparent in the CMIP 

distributions as well as CMIP5’s slightly better agreement with observations.  The same 

type of plot is shown for each NA region in Figure 8.9.  For temperature (Figure 8.9(a)) 

the CMIP distributions were generally the same and show the same increase in the latter 

part of the time period in each region as found in CPDN and observations.  The CMIP 

distributions remain centered near the CPDN 50% range except in the final decade for 

some regions where they are slightly cooler.  For precipitation (Figure 8.9(b)), the 

CMIP distributions show the same increasing trend as CPDN in ALA and CGI and the 

relative no trend across the other three NA regions.  With ALA and CGI, CMIP5 

precipitation appears to remain closer to the CPDN 50% range than CMIP3.   

 
Figure 8.8:  Same as Figure 8.7 but with CMIP3 and CMIP5 ensembles displayed as boxplots 

representing decadal means values.  These boxplots include the 25-75% and 2.5-97.5% ranges. 
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(a) 

 
(b) 

 
Figure 8.9:  Same as Figure 8.8 but includes NA regional results for (a) temperature (°C) and 

(b) precipitation rate (mm/day).  Temperature anomalies are relative to a 1941-1970 base period 

and precipitation anomalies are relative to 1981-2010.   
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8.2.2  Future Projections 

 In this sub-section the future projections of the CMIP ensembles are compared 

to the CPDN ensemble (discussed in Chapter 7, Section 7.4).  Figure 8.10(a) shows 

annual mean global temperature for the CPDN ensemble and observations compared to 

time series of the 52 CMIP3 members under Special Report on Emissions Scenarios 

(SRES) A1B scenario Nakićenović and Swart 2000 and Figure 8.10(b) shows the same 

but with only the simulation from the CMIP3 HadCM3 model (Gordon et al. 2000) 

which is the parent model of the CPDN HadCM3L model.  The full CMIP3 ensemble 

(Figure 8.10(a)) was generally within the CPDN 95% range but more within the range 

of lower projected warming while the HadCM3 model was similar to the CPDN mean 

in the future projections. The HadCM3 model was one of the models in the CMIP3 

ensemble having slightly larger projecting warming compared to other models.  

However, as the CPDN HadCM3L distribution shows, the physic parameters within 

HadCM3 model could have been configured in alternative ways that could have led to 

results similar to the other CMIP3 simulations, or quite different (e.g., could have been 

even warmer comparatively).   

This provides a good example as to the significance of perturbed physics 

ensembles compared to multi-model ensembles since it is apparent from Figure 8.10 

that the single HadCM3 model simulation in the CMIP3 distribution can have its 

physics parameters changed across the range of uncertainty for each parameter and the 

resulting range of uncertainty in future projections (i.e., CPDN ensemble) can be even 

larger than the uncertainty range of the entire CMIP3 ensemble.   
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Figure 8.10:  Annual mean global temperature anomaly from 1941-2080 for the 1,692 transient 

simulations (red shading), three observational data sets (HadCRUT3, NOAA-MLOST, 

GISTEMP), and (a) 52 CMIP3 simulations using SRES A1B and (b) the HadCM3 simulation 

from CMIP3.  The transient ensemble is shaded according to the 25-75%, 2.5-97.5%, and min-

max ranges.  Anomaly values are relative to a 1941-1970 base period. 

(a) 

(b) 

CMIP3-A1B 
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Figure 8.11(a) shows the comparison to the 46 CMIP5 members under the 

Representative Concentration Pathway (RCP) 6.0 Vuuren et al. 2011 and Figure 8.11(b) 

the next generation of the HadCM3 model named the Hadley Centre Global 

Environment Model version 2 (HadGEM2) Collins et al. 2008; Jones et al. 2011.  

Again, the future projections of the CMIP5 ensemble were on the cooler side of the 

CPDN ensemble’s future projections and the HadGEM2 simulations had generally 

larger projected warming than most of the other CMIP5 members.  It is difficult to 

make a true comparison between CMIP5 simulations and the CPDN ensemble since 

CMIP5 does not have a future forcing scenario that is exactly the same as CMIP3 and 

therefore CPDN.  The CMIP3 SRES A1B scenario is close to but not the same as RCP 

6.0 with the resulting future projections in global temperatures from RCP 6.0 

simulations smaller than that of SRES A1B.  This is further demonstrated in the 

discussion below.   
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Figure 8.11:  Annual mean global temperature anomaly from 1941-2080 for the 1,692 transient 

simulations (red shading), three observational data sets (HadCRUT3, NOAA-MLOST, 

GISTEMP), and (a) 46 CMIP5 simulations using RCP 6.0 and (b) four HadGEM2 simulations 

from CMIP5.  The transient ensemble is shaded according to the 25-75%, 2.5-97.5%, and min-

max ranges.  Anomaly values are relative to a 1941-1970 base period. 

(a) 

(b) 

CMIP5-RCP 6.0 
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 To better compare the CMIP3 and CMIP5 ensembles to one another and to the 

CPDN ensemble, Figure 8.12 displays the CMIP ensembles as decadal mean 

distributions on top of the CPDN and observational annual mean global temperatures.  

The reduced warming in the CMIP5 ensemble compared to CMIP3 is immediately 

apparent.  Again this does not imply that the CMIP3 simulations were projecting too 

warm temperatures, as the two ensembles simply were generated using two different 

future forcing scenarios.  There was another RCP scenario producing global 

temperatures warmer than SRES A1B (i.e., RCP 8.5) but the difference between the 

resulting projected warming temperatures was much larger than differences between 

SRES A1B and RCP 6.0.  Therefore RCP 6.0 was the best CMIP5 forcing scenario for 

comparing to CMIP3 SRES A1B.  The reduction in future warming due to the different 

forcings used must be taken into account in any comparison.    

Figure 8.13 displays the same information as the global temperature results in 

Figure 8.12 but includes the NA regions and precipitation ensembles.  The CMIP 

ensembles for temperature across the NA regions showed similar characteristics as 

found in the global results (Figure 8.13(a)) with CMIP5 distributions at slightly lower 

values than CMIP3 except for ALA where the two are roughly the same.  They both 

show continued warming across the projection time period in all regions with the 

warming being slightly less than the CPDN ensemble mean.  The precipitation 

projections (Figure 8.13(b)) for the CMIP ensembles were similar to the CPDN 

projections with an increase in precipitation for the globe, ALA, and CGI regions and 

minimal change across WNA, CNA, and ENA.  In almost every case, for both 

temperature and precipitation, the 95% range of CMIP3 and CMIP5 is smaller than the 
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95% range of the CPDN ensemble suggesting they underestimate uncertainties due to 

perturbed physics.    

 

 

 

 
 

Figure 8.12: Same as Figure 8.11 but with CMIP3 (SRES A1B) and CMIP5 (RCP 6.0) 

ensembles displayed as boxplots representing decadal means values.  These boxplots include 

the 25-75% and 2.5-97.5% ranges. 
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(a) 

 
(b) 

 
Figure 8.13:  Same as Figure 8.12 but includes NA regional results for (a) temperature (°C) and 

(b) precipitation rate (mm/day).  Temperature anomalies are relative to a 1941-1970 base period 

and precipitation anomalies are relative to 1981-2010.  
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8.2.3  CMIP3 versus Constrained CPDN Ensembles 

 Finally, the CMIP3 ensemble was compared to the constrained CPDN 

ensembles from Chapter 7, Section 7.8.  Only the CPDN ensembles constrained by 

observed 30-year global temperature trends and by parameter sensitivity were assessed 

because the ensemble constrained by observed 70-year global temperature trends did 

not alter the general characteristics of the initial full CPDN ensemble (Section 7.8.2).  

Figure 8.14 shows annual mean global temperature anomalies for the initial CPDN full 

ensemble (background black lines), mean observations (heavy black line), CMIP3 

decadal mean distributions and the CPDN ensembles constrained by performance with 

30-year (i.e., 1981-2010) global temperature trends (Figure 8.14(a)) and constrained by 

parameter sensitivity (Figure 8.14(b)).  Note that constraining by observed 30-year 

trends resulted in a relatively larger number of ensemble members (255 simulations) 

compared to constraining by parameter sensitivity (37 simulations).  Therefore the 

ensemble spread of the 37 simulations could be much smaller simply because of the 

smaller sample size (i.e., conclusions made from the larger ensemble are more robust).  

However the CMIP3 ensemble also had a relatively smaller number of samples, 

comparatively, at 52 simulations.   
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(a) 

 
(b) 

 
Figure 8.14: CMIP3 decadal mean global temperature distributions (52 simulations) with 

annual mean global temperature anomalies for transient ensemble constrained by (a) model 

performance compared to 30-year (1981-2010) observed trends (red shading; 255 simulations) 

and (b) model parameters with greatest sensitivity for 70-year (1941-2010) global temperature 

trends (red shading; 37 simulations) and the original transient ensemble (black lines; 1,692 

simulations).  Both sets of CPDN ensembles show the 25-75%, 2.5-97.5%, and min-max 

ranges.  CMIP3 shows the 25-75% and 2.5-97.5% ranges and observations are averaged 

together to give a single estimate (heavy line).  Anomalies are relative to a 1941-1970 base 

period. 
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Looking at both constrained ensembles in Figure 8.14 (i.e., red shading) it is 

apparent that the mean of their projected warming was shifted to less warming 

compared to the original ensemble, bringing the 50% range in general agreement with 

that of the CMIP3 ensemble, especially for the observationally constrained CPDN 

ensemble containing the larger number of members (Figure 8.14(b)).  The 95% range 

differences contained an interesting result.  The extent of the greater warming side (i.e., 

top) of the CMIP3 95% range tended to align fairly well with the constrained 

ensembles, but the lower extent (less warming) of the 95% range did not reach as far as 

the CPDN 95% range, again especially for the observationally constrained ensemble.  

Therefore the uncertainty range of the CMIP3 ensemble was smaller than the 

constrained CPDN ensemble with an underestimation of the lower bound of the spread.   

Focusing on the NA regions, Figure 8.15 and Figure 8.16 provide the same 

information as Figure 8.14 but for the regional and precipitation CPDN ensembles 

constrained by observations and parameter sensitivity respectively.  As with the global 

results, the regional results of the two constrained ensembles show similar 

characteristics with the parameter sensitivity constrained ensemble exhibiting a 

relatively smaller range of uncertainty, again possibly due to the smaller number of 

samples.  Therefore the two will be discussed together in general with a focus on the 

observationally constrained ensemble with larger sample size.  The regional 

temperatures (Figure 8.15(a)) for the observationally constrained CPDN ensemble show 

similar comparison qualities to CMIP3 as found in the global results (Figure 8.14) with 

the CMIP3 50% range aligning fairly well in ALA and CGI but showing slightly less 

future warming for WNA, CNA, and ENA.  The 95% range of CMIP3 was smaller than 
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CPDN for all regions except CGI with ALA underestimating the lower bound (i.e., less 

warming) and WNA, CNA, and ENA underestimating the upper bound (i.e., more 

warming).  These same features were found in general for the CPDN ensemble 

constrained by parameter sensitivity but with less agreement between the 50% and 95% 

ranges within the CGI region (i.e., CPDN ensemble had greater warming).    

For regional precipitation comparisons, both constrained CPDN ensembles 

displayed similar results (Figure 8.15(b) and Figure 8.16(b)).  At the global level 

CMIP3 generally had a greater increase in precipitation than constrained CPDN.  The 

50% range was similar for both CMIP3 and constrained CPDN for ALA, CGI, and 

WNA but smaller for CMIP3 in CNA and ENA.  The CMIP3 95% range was smaller 

than constrained CPDN in all regions except CGI, with ALA underestimating the lower 

bound and WNA, CNA, and ENA with all having much smaller ranges than CPDN.  

The general increasing trend in precipitation for ALA and CGI was found in both sets 

of ensembles as well as the minimal change found in WNA and CNA.  The slight 

increasing trend in ENA in constrained CPDN ensembles was not found in CMIP3.    
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 (a) 

 
(b) 

 
Figure 8.15: Same as Figure 8.14(a) (i.e., constraining by model performance compared to 30-

year (1981-2010) observed trends) but includes NA regional results for (a) temperature (°C) and 

(b) precipitation rate (mm/day).  Temperature anomalies are relative to a 1941-1970 base period 

and precipitation anomalies are relative to 1981-2010.    
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(a) 

 
(b) 

 
Figure 8.16: Same as Figure 8.14(b)  (i.e., constraining by parameters with greatest impact on 

70-year global temperature trends) but includes NA regional results for (a) temperature (°C) and 

(b) precipitation rate (mm/day).  Temperature anomalies are relative to a 1941-1970 base period 

and precipitation anomalies are relative to 1981-2010.    
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The distribution differences between the original CPDN ensemble, both 

constrained CPDN ensembles, and the CMIP3 ensemble found in the previous figures 

and discussions were quantified by calculating decadal mean information for three 

decadal time periods: late historical (2001-2010), mid-future projection (2041-2050), 

and late-future projection (2071-2080).  Table 8.1 and Table 8.2 provide each 

ensemble’s mean, 2.5%, 25%, 75%, and, 97.5% value for temperature and precipitation 

respectively.   

As an example on how to utilize the two tables, recall that when constraining the 

original CPDN ensemble there tended to be a reduction in both the ensemble mean and 

spread for future projections.  The 50% range of these constrained ensembles aligned 

better with the 50% range of CMIP3 and the 95% range was closer to CMIP3 than the 

original CPDN ensemble but the CMIP3 95% range generally underestimated the 

uncertainty range.  Looking at decadal mean global temperatures in Table 8.1 for both 

the mid- (2041-2050) and late-projection (2071-2080) time periods, the original CPDN 

ensemble’s 50% ranges were (1.71, 2.27) and (2.54, 3.50) respectively.  These ranges 

were reduced in both magnitude and spread when constrained by observations to (1.47, 

1.96) and (2.19, 2.84) which brought them closer to the 50% ranges of the CMIP3 

ensemble, (1.47, 2.00) and (2.10, 2.84).  When comparing the 95% ranges, the original 

CPDN ensemble (i.e., [1.26, 2.98] and [1.88, 4.71]) still showed a reduction in both 

magnitude and spread after constraining by observations (i.e., [1.01, 2.58] and [1.61, 

3.89]), but the CMIP3 ensemble’s range was appreciably smaller (i.e., [1.22, 2.42] and 

[1.97, 3.50]). 
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8.3 SUMMARY 

This chapter compared the CPDN HadCM3L ensemble to the CMIP3 and 

CMIP5 ensembles to assess whether the uncertainty estimates from CMIP3 and CMIP5 

adequately represent uncertainties in different climate metrics using a much larger 

ensemble of simulations.  In general, the control ensembles compared well between 

CPDN and CMIP5 (CMIP3 not available).  The annual and seasonal mean absolute 

temperatures were in good agreement while the absolute precipitation was slightly 

larger for CMIP5, especially in the DJF season, except for CNA which saw larger 

amounts in JJA (Figures 8.1, 8.2).  The magnitude of the seasonal cycles were similar 

but with the CMIP5 ensemble having a slightly smaller cycle (Figure 8.3) due to the 

slightly warmer DJF temperatures in conjunction with similar JJA temperatures as 

CPDN (Figure 8.2(a)).   

The interannual variability was similar between the two ensembles for both 

temperature and precipitation with the CPDN distributions spanning as large or 

typically larger ranges of variability compared to CMIP5 (Figures 8.4, 8.5, 8.6).  

Therefore the CPDN PPE did not underestimate the interannual variability range found 

in the CMIP5 MME.  For the decadal variability, however, the CPDN distributions for 

temperature and precipitation across all regions were larger with extensions to relatively 

greater variability.  This suggests that the CMIP5 model simulations may be 

underestimating the decadal variability of both temperature and precipitation, possibly 

due to their smaller ensemble size and similarity in model components.   

The transient simulation ensembles were compared between CPDN, CMIP3, 

and CMIP5.  Over the historical period (1941-2010) both CMIP temperature 
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distributions displayed the same increasing temperature as CPDN at the global and 

regional scales and were centered near the 50% range of the CPDN ensemble in the NA 

regions but typically had smaller 50% and 95% ranges (Figures 8.7, 8.8, 8.9).  The 

CMIP ensembles also tended to have relatively warmer temperatures compared to 

observations in the 2000’s at the global scale as was found in CPDN (Figure 8.7).  

Historical precipitation in both CMIP ensembles followed a similar pattern to CPDN 

with increasing trends for the globe, ALA, and CGI but relatively no trend for WNA, 

CNA, and ENA.   

The future projections of CMIP3 global temperatures were generally within the 

CPDN 95% range but had a 95% range that was much smaller than CPDN and more 

along the lower range of projected warming, especially near the end of the future 

period, while the HadCM3 model (CPDN parent model from CMIP3) resided along the 

CPDN mean, emphasizing the fact that the HadCM3 model was on the warmer side of 

the CMIP3 ensemble (Figure 8.10).  This comparison provided a good example of the 

significance of a PPE versus an MME as each model simulation within an MME (i.e., 

CMIP3) has its own range of uncertainty that is not represented in the full MME.  The 

single HadCM3 model simulation included in CMIP3 was shown, through the CPDN 

HadCM3L PPE experiment (i.e., red shading in Figure 8.10), to have a large range of 

uncertainty when varying the physics parameters across their range of uncertainty – a 

range found to be even larger than the entire CMIP3 ensemble itself.    

The CMIP5 ensemble produced similar global temperature results but had 

slightly lower projected future warming than CMIP3 – generally found at both global 

and regional scales – because of the different future forcing scenario used (Figures 8.12, 
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8.13).  However, the next generation version of the HadCM3 model, HadGEM2, again 

resided in the portion of the CMIP5 ensemble having larger warming, bringing it closer 

to the CPDN ensemble mean (Figure 8.11).   

Regional temperatures projections in both CMIP ensembles followed similar 

patterns as that found at the global level with all regions increasing in temperature but at 

a slightly lower rate than CPDN on average.  CMIP Regional precipitation projections 

generally continued the same characteristics found over the historical period with 

increasing trends in the globe, ALA, and CGI regions but very minimal change in 

WNA, CNA and ENA.   

The CMIP3 ensemble was then compared to the constrained CPDN ensembles 

and it was found that constraining the CPDN ensemble reduced the global temperature 

ensemble mean and spread and brought the 50% range in general agreement with the 

CMIP3 50% range.  However, the 95% range of the CMIP3 ensemble was considerably 

smaller than that of the constrained CPDN during most time periods, mostly 

underestimating the lower bound of the spread.  At the regional level, CMIP3 appeared 

to underestimate the lower bound of the 95% spread for ALA, but then underestimate 

the upper bound for WNA, CNA, and ENA.  For regional precipitation the 95% range 

of CMIP3 was significantly smaller than that for CPDN in WNA, CNA and ENA. 
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CHAPTER 9 

CONCLUSIONS 

 

This study investigated uncertainties in global and North American (NA) 

regional changes in temperature and precipitation over the observational and future time 

period (i.e., 1941-2080) using a multi-thousand member global climate model perturbed 

physics ensemble (PPE) in order to provide a better understanding of model 

uncertainties in projections of future climate change.  The PPE was developed through 

the Climateprediction.net (CPDN) project and contained variations to 20 atmospheric 

and 10 ocean parameters as well as 5 alternative anthropogenic sulfate forcing 

scenarios, 15 solar forcing scenarios, 50 volcanic forcing scenarios, and the application 

of 10 different initial conditions.  A total of 1,214 control simulations (i.e., constant 

annual but seasonally varying radiative forcing) and 1,692 transient simulations (i.e., 

including historic forcings and future emissions scenarios) were analyzed which 

equaled approximately 170,000 years and 237,000 years of modeled output 

respectively.     

 

9.1  CONTROL ANALYSIS 

The control analysis provided an evaluation of the performance of the CPDN 

HadCM3L control simulations across the globe and NA regions compared to 

observational data sets.  The control simulations maintained a constant annual but 

seasonally varying radiative forcing and therefore were compared to detrended 
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observations to assess the modeled mean climate and its variability due to internal 

chaotic processes in the simulated climate system, including coupling between the 

atmosphere, ocean, land surface, and sea ice.   

There were a total of 1,214 control simulations comprised of 138 atmospheres, 

ten oceans and eight initial condition variations resulting in 642 unique 

atmosphere/ocean combinations with the remaining 572 containing duplicate 

atmosphere/ocean combinations with variations to initial conditions.  The controls 

contained relatively large drift in the first 20 years of their simulations due to 

atmosphere/ocean adjustments associated with the coupling process and therefore these 

initial 20 years were not used in any analysis (i.e., including the corresponding transient 

simulation years of 1921-1940).  Control simulations also contained long-term mean 

drift from flux inequalities not removed by the flux adjustment process.  This drift had 

to be removed from the corresponding transient simulations having the same 

atmosphere and ocean parameter values because a similar drift would exist in those 

forced simulations.      

The absolute mean temperatures of the control simulations were generally 

aligned or slightly cooler than observational estimates potentially from poor 

representation of topography due to the models relatively coarse resolution.  

Additionally the observational estimates of absolute mean values may not have been 

representing the true value due to the difficulties in establishing absolute values 

compared to anomalies and because of limitations in ocean observations.  The 

magnitude of the seasonal cycle in temperature in the simulations aligned generally well 
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will observations but with the range of CPDN distributions being significantly larger 

than the ranges of observations and extending to slightly larger magnitudes.   

The interannual variability of the majority of the simulations and observations 

agreed well, with a general tendency in the model to extend to larger magnitudes of 

variability.  However, with only 30-90 years of observational data to compare to, the 

full range of the climate system’s natural variability may not be represented in the 

existing observational data sets.  Therefore further analyses were performed on North 

American paleoclimate proxy reconstructions across the past 2,000 years to assess 

interannual and decadal variability.  These analyses suggest greater variability of 

temperature and precipitation in proxy reconstructions than modern observations and 

the median estimate of the CPCN simulations in many regions.  It was difficult, 

however, to identify significant differences between variability in the reconstructions 

and observational data sets or CPDN simulations because of the limitation in both the 

reconstruction process and the relatively smaller regional area that each proxy-based 

reconstruction may represent.  However, using paleoclimate records to assess a climate 

model’s internal variability offers fruitful prospects for future research which is 

discussed further in Section 9.5.   

Parameter variations in control simulations did not always impact all regions or 

both temperature and precipitation in the same way and therefore a universal parameter 

value or set of parameter values could not be isolated and used to remove model 

simulations based on performance compared to observations.    

Most of the model parameter uncertainty was found to be associated with two 

cloud physics parameters: the ice fall speed (VFI) which impacts cloudiness (and 
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therefore solar radiation and surface temperature) and precipitation by scaling the speed 

at which cloud ice particles fall out of the sky and the entrainment coefficient 

(ENTCOEF) which sets the rate at which convective clouds mix with their surrounding 

environmental air and impacts the transport of moisture to higher levels in the 

troposphere.  These two parameters have been found important in previous studies as 

well (e.g., Knight et al. 2007; Sanderson et al. 2008a; Sanderson et al. 2008b; Sanderson 

et al. 2010).     

The uncertainty in interannual variability was found to account for roughly half 

of the 50% uncertainty range in global 70-year control drift in both temperature and 

precipitation and a bit more than half for the 95% range.  For regional temperatures this 

percentage remained roughly the same but for regional precipitation the internal 

variability uncertainty accounted for approximately 80-90% of the total uncertainty in 

most regions. 

 

 

 

9.2  TRANSIENT ANALYSIS 

The transient analysis evaluated the performance of the CPDN HadCM3L 

transient simulations over the observational time period and quantified uncertainties in 

future projections for the globe and NA regions and produced constrained future 

projections based on a model's performance over the observational time period. 

 There were a total of 1,692 transient simulations comprised of 137 atmospheres, 

ten oceans, ten initial conditions, five values for scaling anthropogenic sulfates, 15 solar 

forcing scenarios, and 50 volcanic forcing scenarios.  This resulted in 614 unique 

atmosphere/ocean combinations with the remaining 1,078 containing duplicate 
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atmosphere/ocean combinations with variations to their anthropogenic sulfate scaling 

factor, natural forcings (solar or volcanic), or initial conditions.  The long-term mean 

drift caused by imbalances in the atmosphere/ocean coupling process was removed by 

identifying the drift in a transient simulation’s corresponding control simulation with 

matching atmosphere and ocean parameters.  A number of available transient 

simulations could not be used because they did not have a matching control with the 

same atmosphere/ocean parameters and therefore the long-term mean drift to be 

removed could not be established.      

 Observational estimates of temperature and precipitation generally were near the 

50% range of the transient simulation ensemble and were almost always within the 95% 

range for both the globe and North American regions.  The simulations tended to show 

greater warming across the most recent decade (i.e., 2000's) than found in observations 

possibly due to natural variability in the observations (i.e., associated with ENSO and/or 

heat going into the ocean within the PDO cycle) or too large of climate sensitivity in 

some models.   

 Future projections of temperature showed increased warming in all regions with 

greater warming occurring over the future projection period than seen over the 

observational period.  Future projections of precipitation did not change for WNA or 

CNA but did show an increase in other regions, with only a minimal increase in ENA.  

The uncertainty range tended to increase with time for both temperature and 

precipitation across the future projection period.      

There was no change found in future temperature interannual variability but a 

slight increase found in precipitation interannual variability for all NA regions.  The 
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magnitude of the temperature seasonal cycle was reduced in the future at higher 

latitudes, indicating greater winter warming, and increased in WNA and CNA, 

indicative of summer drying across the region.        

Parameters ANTHSCA, HANEYSFACT, and RHCRIT were most sensitive 

with regards to 30- and 70-year trends over the observational period.  ANTHSCA 

impacts temperature by scaling anthropogenic sulfates, HANEYSFACT is associated 

with imbalances between the atmosphere and ocean coupled model across the 20
th

 

century, and RHCRIT defines the rate at which clouds form based on the amount of 

moisture in a model grid cell.  In future projected trends, the most important parameters 

included more cloud parameters indicating the important role of cloud feedbacks on the 

climate sensitivity and the future warming trends. 

Past global temperature trends were the best identified predictors of future 

regional climatic trends (especially 30-year trends) and therefore used to constrain 

future projections.  Also, future projections were constrained based on parameter 

sensitivity of the top three parameters (best reproducing 70-year past global temperature 

trends).  Constraining based on observed 30-year global temperature trends and by 

parameter sensitivity resulted in a reduction in the spread of the resulting constrained 

ensemble as well as a decrease in the ensemble mean (i.e., future projections resided 

within the lower/cooler portion of the original ensemble).  This result was similar to that 

found by Stott et al. (2013) and Rowlands et al. (2012) who used different approaches 

for constraining future projections. 
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Constraining future projections by observed 70-year global temperature trends 

did not change the general characteristics of the transient ensemble (i.e., maintained a 

similar ensemble mean, 50%, and 95% range).     

 

9.3  COMPARISON TO CMIP ENSEMBLES 

The CPDN HadCM3L ensemble was compared to the CMIP3 and CMIP5 

ensembles to assess whether the uncertainty estimates from CMIP3 and CMIP5 

adequately represent uncertainties in different climate metrics using a much larger 

ensemble of simulations.  In general, the control ensembles compared well between 

CPDN and CMIP5 (CMIP3 not available).  The annual and seasonal mean absolute 

temperatures were in good agreement while the absolute precipitation was slightly 

larger for CMIP5, especially in the DJF season, except for CNA which saw larger 

amounts in JJA.  The magnitude of the seasonal cycles were similar but with the CMIP5 

ensemble having a slightly smaller cycle due to the slightly warmer DJF temperatures in 

conjunction with similar JJA temperatures as CPDN.   

The interannual variability was similar between the two ensembles for both 

temperature and precipitation with the CPDN distributions spanning as large or 

typically larger ranges of variability compared to CMIP5.  Therefore the CPDN PPE did 

not underestimate the interannual variability range found in the CMIP5 MME.  For the 

decadal variability, however, the CPDN distributions for temperature and precipitation 

across all regions were larger with extensions to relatively greater variability.  This 

suggests that the CMIP5 model simulations may be underestimating the decadal 
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variability of both temperature and precipitation, possibly due to their smaller ensemble 

size and/or similarity in model components.   

The transient simulation ensembles were compared between CPDN, CMIP3, 

and CMIP5.  Over the historical period (1941-2010) both CMIP temperature 

distributions displayed the same increasing temperature as CPDN at the global and 

regional scales and were centered near the 50% range of the CPDN ensemble in the NA 

regions but typically had smaller 50% and 95% ranges.  The CMIP ensembles also 

tended to have relatively warmer temperatures compared to observations in the 2000’s 

at the global scale as was found in CPDN.  Historical precipitation in both CMIP 

ensembles followed a similar pattern to CPDN with increasing trends for the globe, 

ALA, and CGI but relatively no trend for WNA, CNA, and ENA.   

The future projections of CMIP3 global temperatures were generally within the 

CPDN 95% range but had a 95% range that was much smaller than CPDN and more 

along the lower range of projected warming, especially near the end of the future 

period, while the HadCM3 model (CPDN parent model from CMIP3) resided along the 

CPDN mean, emphasizing the fact that the HadCM3 model was on the warmer side of 

the CMIP3 ensemble.  This comparison provided a good example of the significance of 

a PPE versus MME as each model simulation within an MME (i.e., CMIP3) has its own 

range of uncertainty that is not represented in the full MME.  The single HadCM3 

model simulation included in CMIP3 was shown, through the CPDN HadCM3L PPE 

experiment, to have a large range of uncertainty when varying the physics parameters 

across their range of uncertainty – a range found to be even larger than the entire 

CMIP3 ensemble itself.    
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The CMIP5 ensemble produced similar global temperature results but had 

slightly lower projected future warming than CMIP3 – generally found at both global 

and regional scales – because of the different future forcing scenario used.  However, 

the next generation version of the HadCM3 model, HadGEM2, again resided in the 

portion of the CMIP5 ensemble having larger warming, bringing it closer to the CPDN 

ensemble mean.   

Regional temperature projections in both CMIP ensembles followed similar 

patterns as that found at the global level with all regions increasing in temperature but at 

a slightly lower rate than CPDN on average.  CMIP Regional precipitation projections 

generally continued the same characteristics found over the historical period with 

increasing trends in the globe, ALA, and CGI regions but very minimal change in 

WNA, CNA and ENA.   

The CMIP3 ensemble was then compared to the constrained CPDN ensembles 

and it was found that constraining the CPDN ensemble reduced the global temperature 

ensemble mean and spread and brought the 50% range in general agreement with the 

CMIP3 50% range.  However, the 95% range of the CMIP3 ensemble was considerably 

smaller than that of the constrained CPDN during most time periods, mostly 

underestimating the lower bound of the spread.  At the regional level, CMIP3 appeared 

to underestimate the lower bound of the 95% spread for ALA, but then underestimate 

the upper bound for WNA, CNA, and ENA.  For regional precipitation the 95% range 

of CMIP3 was significantly smaller than that of CPDN in WNA, CNA and ENA.   
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9.4  BROAD IMPLICATIONS 

 The larger implications of this study include the fact that a very large perturbed 

physics ensemble (PPE) was able to model many observed features in Earth’s climate 

system.  A subset of the PPE was identified as producing unrealistic historic climatic 

trends based on observed trends and that information was used to constrain future 

projections of climate change for the globe and North American regions.  Additionally, 

climate indices were sensitive to changes in model parameter values and that 

information also was used to constrain future climate change projections.   

 With regards to comparing PPEs to multi-model ensembles (MMEs), the MMEs 

were found to underestimate the full range of uncertainties in physics parameters and 

therefore PPEs could be used to better quantify the full range of uncertainties in global 

and regional climate change.  These results are important when considering which 

GCMs to use in regional downscaling studies where uncertainties in GCMs move 

downstream through regional projections for use in local impacts studies (e.g., 

ecosystems, hydrologic, agricultural).  Climate scientists need to be able to quantify and 

effectively explain uncertainties originating from GCMs that may be present in regional 

and local impacts studies for their effective use and implementation by decision makers.     

 

 

9.5  FUTURE WORK 

 Based on the current study, it would be useful if a similar large PPE experiment 

were conducted on different GCMs from other modeling groups to see if there are any 

additional physics parameter uncertainties based on differing model structures.  Also, it 
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would be helpful if the PPE experiments were extended to other future emission 

scenarios besides SRES A1B.  There may be uncertainties in parameter variations based 

on the atmospheric composition that can only be identified through investigation of 

different emission scenarios.  And as a suggestion for others attempting to create a large 

PPE such as what CPDN has done, it would be useful to generate archived output for 

land-only regional means as well as land plus ocean regional means as the addition of 

ocean grid cells complicates assessing the performance of the PPE models because of 

the limitations in ocean observations.       

 And finally, in consideration of future work for myself, there is a great deal of 

analyses that could be done with regards to the CPDN globally gridded decadal mean 

output.  Besides the global and five North American regional monthly mean time series 

output investigated in this study there are 2.5° lat by 3.75° long globally gridded 

decadal mean output available for all simulations.  Therefore the next logical step would 

be to assess spatial patterns of temperature and precipitation across the historical period 

and compare them to future projections.  The entire CPDN ensemble could be assessed 

as well as the constrained ensembles identified in this study.  These results could then 

be compared to CMIP3 and CMIP5 globally gridded output.      

 Also, the higher spatial resolution CPDN decadal gridded output could be used 

to better assess decadal variability between the model and paleoclimate reconstructions 

across North American.  The assessment described in Chapter 6 was limited because it 

attempted to compare the large CPDN regional means to relatively smaller regional 

reconstructed averages.  With higher spatial resolution, a more robust assessment could 

be made between model and reconstructed observed decadal variability.  This work 
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could be extended to the CMIP3 and CMIP5 gridded output to make further 

comparisons between paleoclimate reconstructions and MMEs and PPEs.     
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APPENDIX A 

INFERRED TRANSIENT SIMULATION ENSEMBLE 

 

The 2,106 transients not having a corresponding control with matching 

atmosphere and ocean parameters and thus not having a known unforced model drift to 

be removed could potentially still be utilized if a pseudo-match could be established.  

This subsection briefly describes a possible method for identifying a transient’s pseudo 

or “inferred” control match but then will leave any further analysis for potential future 

work.         

Table A.1 provides a summary of the number of transient simulations having 

each specific parameter value for both the transients having a matching control with the 

same atmosphere and ocean parameter settings (“direct” match) and those that do not 

(“inferred” match).  From comparing the number of “direct” and “inferred” simulations 

in Table A.1 it is clear that all parameter values are represented in the “direct” match 

simulations and that the relative proportion of simulations for any given value of a 

parameter is similar for both the “direct” and “inferred” groups, further supporting the 

use of only “direct” match simulations in this study.   
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Table A.1:  CPDN perturbed parameters and the number of transient simulations having each 

particular parameter value for the 1,692 transients with a “direct” atmosphere/ocean matching 

control and for the 2,106 transients with an “inferred” match based on parameter sensitivity to 

control simulation long-term drift (see Chapter 5, Section 5.7.2).  Default parameter values are 

highlighted in bold. 
 

   Parameter              Description Values Transient 

Simulations 
Direct (Inferred)  

ATMOSPHERE 
   

ALPHAM Albedo at melting point of ice 0.5 

0.57 

0.65
 

337 (513) 

615 (674) 

740 (921) 

ANTHSCA Scaling factor for anthropogenic sulfates 0.5 

0.8 

1.0 

1.2 

1.5 

354 (398) 

359 (393) 

354 (430) 

315 (418) 

310 (469) 

CLOUDTAU Time a circulating air parcel remains in 

cloud (s) [x 10
3
] 

3.6 

10.8 

32.4 

404 (554) 

785 (1042) 

503 (512) 

CT Accretion constant (s
-1

) [x 10
-4

] 

 

 

0.5 

1 

4
 

505 (492) 

540 (702) 

647 (914) 

CW_LAND 
a Precipitation threshold over land  (kg m

-3
)  

[x 10
-4

] 

 

1 

2 

20
 

660 (910) 

536 (735) 

496 (463) 

CW_SEA 
a Precipitation threshold over sea

 
(kg m

-3
) 

[x 10
-5

] 

 

2 

5 

50 

660 (910) 

536 (735) 

496 (463) 

DTICE Temperature range of ice albedo variation 

 

2 

5 

10 

740 (921) 

615 (674) 

337 (513) 

EACF Empirically adjusted cloud fraction 
** 

 

 

0.5 

0.63 

0.67 

689 (1014) 

398 (449) 

605 (645) 

ENTCOEF Entrainment coefficient 

 

 

 

0.6 

1.0 

3.0 

9.0
 

513 (662) 

553 (536) 

526 (686) 

100 (224) 

a, b, c, d
  Individual groups of parameters perturbed together 

          **
  Parameter values represent mean over 19 model levels (variations occur at each level) 
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Table A.1:  Continued 

   Parameter              Description Values Transient 

Simulations 
Direct (Inferred) 

I_CNV_ICE_LW 
b Type of convective cloud ice crystal used in 

longwave radiation 
 

1 

7 

1459 (1723) 

233 (385) 

I_CNV_ICE_SW 
b Type of convective cloud ice crystal used in 

shortwave radiation  
3 

7 

1459 (1723) 

233 (385) 

I_ST_ICE_LW 
b Type of stratiform cloud ice crystal used in 

longwave radiation 
 

1 

7 

1459 (1723) 

233 (385) 

I_ST_ICE_SW 
b Type of stratiform cloud ice crystal used in 

shortwave radiation  
2 

7 

1459 (1723) 

233 (385) 

ICE_SIZE Ice crystal size (m) [x 10
-4

] 

 

 

2.5 

3.0 

4.0 

543 (827) 

660 (746) 

489 (535) 

L0 
c Sulfate mass scavenging parameter L0 (s

-1
) 

[x 10
-5

] 

 

2.17 

6.5 

19.5 

383 (489) 

638 (872) 

671 (747) 

L1 
c Sulfate mass scavenging parameter L1 (s

-1
) 

[x 10
-5

] 

 

0.99 

2.96 

8.86 

383 (489) 

638 (872) 

671 (747) 

NUM_STAR Condensation threshold for accumulation  

[x 10
6
] 

 

0.1 

1.0 

10 

593 (563) 

789 (1061) 

310 (484) 

RHCRIT Critical relative humidity 
** 

 

 

0.65 

0.73 

0.9
 

690 (751) 

504 (813) 

498 (544) 

SO2_HIGH_LEVEL Sulfur cycle: model level for SO2 (high 

level) emissions 

 

1 

3 

5 

251 (274) 

1066 (1220) 

375 (614) 

VF1 Ice fall speed (m s
-2

) 

 

 

0.5 

1.0 

2.0 

398 (626) 

662 (783) 

632 (699) 

VOLSCA Sulfur cycle: scaling factor for emission 

from natural (volcanic) emissions 

 

1 

2 

3 

939 (990) 

486 (662) 

267 (456) 

a, b, c, d
  Individual groups of parameters perturbed together 

          **
  Parameter values represent mean over 19 model levels (variations occur at each level) 
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Table A.1:  Continued 

   Parameter              Description Values Transient 

Simulations 
Direct (Inferred) 

OCEAN    

HANEY
 Haney heat forcing coefficient (Wm

-2
K

-1
) 

 

81.88 

163.76 

1499 (1902) 

193 (206) 

HANEYSFACT Haney salinity forcing factor 

 

0.25 

1.0 

1209 (1421) 

483 (687) 

ISOPYC Isopycnal diffusion of tracers (m
2
s

-1
) [x 10

3
] 

 

0.2 

1 

2 

159 (211) 

1214 (1439) 

319 (458) 

MLLAM
 Wind mixing energy scaling factor (m

2
 s) 

 

0.3 

0.7 

352 (377) 

1340 (1731) 

VDIFFDEPTH 
d Ocean: increase of background vertical 

mixing of tracer with depth (ms
-1

) [x 10
-8

] 

 

0.7 

2.8 

9.6 

394 (358) 

839 (1100) 

459 (650) 

VDIFFSURF 
d Ocean: background vertical mixing of tracer 

(diffusion) at surface (m
2
s

-1
) [x 10

-5
] 

0.5 

1 

2 

394 (358) 

839 (1100) 

459 (650) 

VERTVISC 
 

Ocean: background vertical mixing of 

momentum (viscocity) (m
2
s

-1
) [x10

-5
] 

0.5 

1.0 

369 (425) 

1323 (1683) 

INITIAL CONDITIONS 
   

DTHETA Initial condition potential temperature 

perturbation applied to atmosphere (°C) 
0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

195 (208) 

163 (210) 

154 (232) 

178 (209) 

161 (205) 

176 (207) 

163 (213) 

153 (203) 

173 (214) 

176 (207) 
    

    

a, b, c, d
  Individual groups of parameters perturbed together 

          **
  Parameter values represent mean over 19 model levels (variations occur at each level) 
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It may be possible to estimate the model drift to be removed from a transient 

simulation using knowledge gained from the assessment of model parameter variations 

having the greatest influence in changes to model drift (see Chapter 5, Section 5.7.2).  

When matching transient and controls directly, there were a total of 28 atmosphere and 

ocean parameters needing to be identical.  For this set of “inferred” match transient 

simulations, that total was reduced to the top six parameters from Section 5.7.2 whose 

variations were found to be the most influential in changes to long-term mean drift in 

control simulations (see Table 5.11)
22

.  These six parameters had a correlation 

magnitude greater than or equal to (≥) 0.2 between their variations and long-term mean 

drift in temperature and/or precipitation.    

This requirement allowed all 2,106 “inferred” transients to have at least one 

control with the same value across all six of those parameters.  These transients were 

comprised of 152 atmospheres and ten oceans with 796 unique atmosphere/ocean 

combinations.  Increasing the number of required matching parameters decreased the 

number of transients-control matches (see Table A.2) while decreasing the number of 

parameters increased the uncertainty range in drift values covered by the matching 

controls (Figure A.1).  Figure A.1 illustrates the increased uncertainty when varying the 

number of parameters requiring a match (i.e., varying the required correlation 

threshold).  In that figure the long-term mean drift in global temperature for all control 

simulations is given as the black distribution at the bottom.  (Only global results are 

given and discussed because regional characteristics are all similar.)  This distribution 

was not centered upon zero and therefore the bias was subtracted off in order to better 

                                                 
22

 There are actually seven parameters that must match but VDIFFDEPTH and VDIFFSURF vary 

together and therefore can be considered a single parameter.   
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compare the range in these drift value magnitudes to the other distributions shown in 

Figure A.1 which are anomaly values.  These anomaly distributions correspond with the 

“direct” (blue) and “inferred” (red) transient-control matching cases and represent 

anomalies from the average long-term mean drift within each set of control simulations 

that match a single transient simulation.  For example, a transient simulation may have 

five matching control simulations.  The long-term mean drift was calculated for all five 

simulations and then averaged together to create a single estimate used as the official 

drift value removed from the matching transient simulation.  An anomaly value, from 

that average control drift value, was then calculated for each of the five control 

simulations (i.e., actual drift of the control simulation minus the average value of all 

five).  This was done for all control sets that match an individual transient and then all 

these anomalies were combined into a single anomaly distribution.  That anomaly 

distribution is what is shown in Figure A.1. 

 

Table A.2:  Model parameter matching information for matching all atmosphere and ocean 

parameters (“Direct”) and multiple options for matching a reduced number of parameters 

(“Inferred”).  The number of parameters matched, number of transient-control matches, and 

average number of controls matching a single transient are given.  The “Inferred” match options 

originate from the parameter sensitivity analysis for control long-term mean drift in Chapter 5 

(Section 5.7.2).   
 

 “Direct” 

Matches 
“Inferred” Matches (Correlation magnitude ≥) 

0.1 … 0.125 0.15 0.175 … 0.2 0.3 0.4 

Number of 

Parameters 
28 13 … 9 6 6 … 6 5 2 

Number of 

Matches 
1692 626 … 1827 2106 2106 … 2106 2106 2106 

Average # 

Controls 

per Match 

2 3 … 9 54 54 … 54 60 462 
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Figure A.1:  Comparison of normalized (i.e., mean of distribution subtracted off) long-term 

mean drift in global mean temperature for all control simulations (black bottom distribution) to 

anomalies from the average long-term mean drift for each set of control simulations matching 

one of the transient simulations in the “direct” match cases (top blue distribution) and for four 

different correlation threshold examples in the “inferred” match cases (four middle red 

distributions).  All distributions are in units of (°C/Century).   

 

The main takeaway point from Figure A.1 is that when a large number of 

parameters are used to match transients and controls, the long-term mean drift 

differences found in the control simulation matching sets are smaller (e.g., all 28 

atmosphere/ocean parameters from the “direct” match cases shown as the blue 

distribution at top) than if a smaller number of parameters are used to match (e.g., 2 

parameters from correlation magnitude ≥ 0.4 from the “inferred” match cases shown as 

the bottom red distribution) when comparing against the full range of actual long-term 

mean drift values (black distribution at bottom).  The figure, along with the information 
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given in Table A.2, also show us that using six parameters (i.e., correlation magnitude ≥ 

0.2) to match transients and controls is the most useful threshold to use.  Using more 

than six parameters (i.e., correlation magnitude ≥ 0.1 or 0.125) decreases the number of 

total transient-control matches available (Table A.2) while using less parameters 

increases the average number of controls used to estimate the long-term mean drift to be 

removed from each matching transient (Table A.2) which increases the uncertainty in 

the control drift values removed from the matched transients.  Additionally, there are 

only minimal anomaly distribution differences between correlation magnitude 

thresholds of 0.2 and 0.1 which mean the uncertainty in drift removed does not change 

that much when using fewer parameters.  The uncertainty range, however, is still 

significantly larger than matching all atmosphere and ocean parameters (i.e., “direct” 

matches shown in blue at top of Figure A.1) which is why we have decided to 

investigate only the “direct” match group in this study.   

As a consequence, there are 15 atmospheres and 796 unique atmosphere/ocean 

combinations in the “inferred” match group that are not in the “direct” match group and 

therefore not available for analysis.  But as already discussed and shown in Table A.1, 

all individual parameters are still represented and the relative proportion of parameter 

value variations remain consistent with the original full set of transient simulations.  

Future studies may explore this alternative “inferred” match group of transients and 

compare the results to the current study.   

 


