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PREFACE

Cooperative decision and control for mobile robot teams have been of great interest in

the control community. A lot of effort has been put into this area. Groups of mobile robots

working cooperatively lead to many advantages in a variety of critical applications. With

the expectation that unmanned mobile robots can perform key roles in future civilian or

military missions, the research on mobile robot control is likely to increase rapidly in the

near future.

The objective of this dissertation is to use model predictive control (MPC) to coordinate

the motion of nonholonomic mobile robots. Specifically, we consider the formation control

of a group of mobile robots and trajectory tracking and point stabilization of nonholonomic

vehicles.

The formation control problem is addressed by a Lyapunov-based nonlinear controller

design for unmanned aerial vehicles (UAV) and in the context of MPC for nonholonomic

mobile robots. For the UAV formation problem, a two-layered hierarchical control scheme

is presented. Assuming that an autopilot operating in holding mode controls the UAV

dynamics at the low-layer, a simplified nonholonomic model is constructed for the high-

layer formation controller design. With the dynamic extension technique, three different

nonlinear formation controllers are proposed. While the first two controllers, a feedback

linearization controller and a sliding mode controller, assume full states information of the

leader, the third robust controller only requires the knowledge of leader’s position. By

eliminating the requirement of leader’s velocity and acceleration information, the robust

controller reduces the inter-vehicle communication overhead and increases the reliability

of the overall system. Stability properties of the controllers are proven using Lyapunov
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theory. As for the nonholonomic mobile robot formation problem, we proposed a dual-

mode MPC formation control algorithm. The stability of the formation is guaranteed by

constraining the terminal state to a terminal region and switching to a stabilizing terminal

controller at the boundary of the terminal region. With this dual-mode MPC implementa-

tion, stability is achieved while feasibility is relaxed. For the choice of stabilizing terminal

controller, a comparison between an input-output feedback linearization controller and a

robust formation controller is given.

We proposed a novel first-state contractive MPC (FSC-MPC) approach for the problem

of trajectory tracking and point stabilization of nonholonomic mobile robots. In the litera-

ture, most of the existing controllers address the trajectory tracking problem by assuming

that the trajectory needed to be track is continuously excited by a reference robot. When

the reference robot stops or even moves backward, most of the controller will fail. As

for the point stabilization problem, discontinuous feedback controllers and time-varying

algorithms are mostly found since by Brockett’s theorem, smooth time-invariant feedback

control laws do not exist. In addition, only a few controllers can handle the tracking and

stabilization problems in the same control structure. In the literature, most of the stabilizing

MPC methods address the stability by adding terminal state penalties in the performance

index and/or imposing constraints on the terminal state at the end of the prediction horizon.

The stability of the FSC-MPC algorithm is guaranteed by adding a contractive constraint

on the first state at the beginning of the prediction horizon. With this first-state contractive

constraint, the proposed FSC-MPC algorithm for nonholonomic mobile robot motion con-

trol achieves: (i) exponential stability, (ii) the ability to track a trajectory moving backward,

and (iii) the capability of simultaneous tracking and point stabilization.

Simulation results are presented to verify the validity of the proposed control algorithms

and demonstrate the performance of the proposed controllers.
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CHAPTER 1

Introduction

From the literal meaning, mobile robots are robots which can move around in their en-

vironment and are not fixed to one physical location. In recent years, the research and

development of mobile robots are very active, mostly because of their better potential than

other kinds of robots in replacing human beings in civilian and military applications.

By the environment in which they move, mobile robots can be classified into: ground

robots (Figure 1.1), aerospace robots (Figure 1.21), and underwater robots (Figure 1.32).

Figure 1.1: MARHES TXT-1 robot truck.

1http://www4.army.mil
2http://www.infotechfrance.com/london/upload/photo_9273.jpg
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Figure 1.2: Unmanned aerial robot.

Figure 1.3: Underwater vehicle by ECA HYTEC of France.

Due to recent substantial developments in electronics and computing, it is now possible

to find onboard embedded computers which have more computing power than the super

computers available a few years ago. Exchanging information between mobile robots,

such as unmanned aerial/ground vehicles (UAV/UGV) distributed over an area, is now

possible by means of off-the-shelf ad-hoc wireless network devices. In addition, there are

various small size, light weight sensing devices on the market ranging from laser range

sensors to color CCD cameras. As a result, by exploiting current technology, one can

2



build a group of relatively small UAVs/UGVs each having satisfactory capabilities within

a reasonable budget. The challenge here lies in designing control algorithms for mobile

robots to perform complex tasks within dynamic environments.

1.1 Motivation

Cooperative decision and control of mobile robot teams have been of great interest in civil-

ian and military applications, as these teams are expected to be capable of performing

many key roles in future civilian or battlefield missions. A lot of effort has been put into

this area and the use of mobile robots is likely to increase rapidly in the near future. Appli-

cations for cooperative control of multi-robot systems include [1]: Formation control, co-

operative classification and surveillance, cooperative attack and rendezvous, environmental

sampling, distributed aperture observing, intelligent highways, and air traffic control.

In application, groups of mobile robots working cooperatively lead to many advan-

tages. Multi-robot systems are expected to outperform single-robot systems in function,

fault tolerance, flexibility, size and cost [1] [2]. A short summary describing some impor-

tant multi-robot capabilities is given below.

• Distribution: Multiple mobile robots can work simultaneously at different positions

in the space. For example, during a surveillance task, the target can be monitored

from different angles by a group of UAVs/UGVs distributed over the area. This will

provide more detailed information of the target.

• Multitasking: Usually, a task can be decomposed into several sub-tasks which are

capable of being handled at the same time. Parallel UAV/UGV operation can finish

the task much faster than a single UAV/UGV can do. For example, during forest-fire

monitoring, the time for scanning can be reduced in half with two UAVs working

side by side.

3



• Fault tolerance: In a multi-robot group, robots’ functions can overlap. Therefore,

if one robot malfunctions, its functionality can be easily substituted by other robots.

The whole group’s functionality will not be affected by individual’s failure. This

increases the robustness of the system, which is critical in dangerous missions.

• Flexibility: The functionality of a group robots can be easily changed by combining

different robots with different capabilities or enhanced by adding new robots.

• cost-effectiveness: Design a versatile robot which is capable of handling different

tasks sometime might not feasible due to the limitation of robot size and payloads.

However, with several robots each has simple functions, a cost-effective robot group

can be built without losing the capability of different tasks handling.

Figure 1.43 shows three mobile robots moving an object cooperatively.

Figure 1.4: Three robots move an object cooperatively.

Formation control was inspired by the emergent self-organization observed in nature,

like birds flocking and fish schooling, see Figure 1.54. Each animal in a herd benefits by

maximizing the chance of detecting predators or food and minimizing its encounters with

predators. Teams of UAVs moving in formations with precisely defined geometries lead to

many advantages, such as energy saving when the vortex forces are taken into account, see

3http://db.tohoku.ac.jp/whois/photo_resact/000000000841.tmp.d.jpg
4http://alanwhite.info/images/Birds_in_formation.JPG
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Figure 1.6 5. Several experimental studies have verified the energy saved when flying in

close formations [3]. In addition, formation control allows for intelligent leaders and single

agent planning while followers can focus on other tasks. Leader-following is a common

approach to build formations of multi-vehicle systems. The challenge here lies in designing

a formation controller that is computationally simple, yet robust.

Figure 1.5: Birds flock.

Figure 1.6: Formation flight - Thunderbirds.

A nonholonomic model (e.g., unicycle) is commonly adopted to describe vehicle’s kine-

5http://www.sky-flash.com
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matics in mobile robot motion coordination. Therefore, fundamental control problems,

trajectory tracking and point stabilization of nonholonomic mobile robots, are inevitably

encountered. During the past decades, those problems have received a lot of attention. For

interested readers, the book [4] is a good starting point for understanding nonholonomic

systems. Though numerous control algorithms can be found in the existing literature, the

controller design is still challenging. For trajectory tracking, most of the controllers will

fail when face a trajectory moving backward. However, a backward trajectory is common

in leader-following formation when the leader tries to avoid some obstacles.

For point stabilization, according to Brockett’s theorem [5], a smooth time-invariant

feedback control law does not exist. Therefore, the controller design is more challeng-

ing. Most of the control design for point stabilization problem can be classified into two

categories: (i) Discontinuous feedback laws, and (ii) time-varying algorithms. However,

time-varying controllers are reported with slow convergence rates and the discontinuous

controller design is complex. In addition, most of the existing approaches do not consider

input constraints.

Since general cooperative objectives can be formulated into optimal control problems,

optimization-based techniques are suited to multi-robot cooperative control. Model predic-

tive control (MPC) or receding horizon control (RHC) in particular is an optimization-based

approach. It has gained more and more attention in the control community. In addition, the

inherent ability of MPC to handle constrained systems makes it a promising technique for

cooperative control, especially for multi-vehicle formation control. With recent substantial

developments in computing and solver techniques, real-time model predictive control of

fast updating system can be found in literature.
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1.2 Objective

The objective of this dissertation is to use model predictive control (MPC) to coordinate

the motion of nonholonomic mobile robots. Specifically, we consider the formation control

of a group of vehicles (UAVs/UGVs) and the trajectory tracking and point stabilization of

nonholonomic mobile robots.

1.3 Statement of Contributions

The contributions of this dissertation can be summarized as follows.

• A robust formation controller is developed for the leader-following formation of

UAVs. With the assumption that an autopilot operating in holding mode at the low-

layer, we present a two-layered hierarchical control scheme which allows a team

of UAVs to perform complex navigation tasks under limited inter-vehicle commu-

nication. Specifically, the robust control law eliminates the requirement of leader’s

velocity and acceleration information, which reduces the communication overhead

(Published [6]).

• A dual-mode MPC algorithm that allows a team of mobile robots to navigate in for-

mations is developed. The stability of the formation is guaranteed by constraining the

terminal state to a terminal region and switching to a stabilizing terminal controller

at the boundary of the terminal region. With this dual-mode MPC implementation,

stability is achieved while feasibility is relaxed (Published [7]).

• A first-state contractive model predictive control (FSC-MPC) algorithm is developed

for the trajectory tracking and point stabilization problems of nonholonomic mobile

robots. The stability of the proposed MPC scheme is guaranteed by adding a first-

state contractive constraint and the controller is exponentially stable. The conver-

gence is faster and no terminal region calculation is required. Tracking a trajectory
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moving backward is no longer a problem under this MPC controller. Moreover, the

proposed MPC controller has simultaneous tracking and point stabilization capability

(Submitted [8]).

1.4 Dissertation Outline

The dissertation begins in Chapter 2 with a brief introduction of nonholonomic mobile

robots. The kinematic model is developed and the Brockett theorem is introduced in Sec-

tion 2.1.1 and 2.1.2. Then a short literature on nonholonomic mobile robots control of

trajectory tracking and point stabilization is given in Section 2.1.3. Since formation control

is one of the dissertation objectives, the shape and position of a formation are introduced

in Section 2.2.1. Then in Section 2.2.2, different formation control approaches, such as

leader-following, virtual structure, behavior based and graph theory based approaches are

reviewed.

Chapter 3 introduces the model predictive control. The strategy of MPC is qualitatively

depicted in Section 3.2. Though in industry, finite impulse response (FIR) or finite step

response (FSR) models are used, MPC is always formulated based on state-space models

in academia and literature. Generic MPC formulations that admits a state-space model,

constraints and a quadratic performance index function are shown in Section 3.3. In detail,

we give a discrete-time formulation for linear time-invariant systems and a continuous-time

formulation for nonlinear systems. A short literature review is given in Section 3.4. Since in

MPC schemes, the control sequence is obtained by solving a finite optimal control problem,

the stability is not automatically guaranteed. Some discussion of the stability of MPC are

given in Section 3.4. The key idea is to prove the monotonicity of the performance index

function and use it as a Lyapunov function. For linear systems, if the open-loop system

is stable, the monotonicity of the performance index function is easily guaranteed if one

of the the weighting matrices is choosing by solving a Lyapunov equation. Generally, by
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adding a terminal state equality constraint to the optimal control problem, the stability of

the closed-loop system can be proven. As for nonlinear systems, the terminal state equality

approach is still working theoretically. However, since the optimization control problem

becomes nonlinear programming, finding the global optimum is computational expensive.

Three approaches, the dual-mode, the quasi-infinite and the contractive algorithms, are

introduced in the second half of Section 3.4.

In Chapter 4, we consider the formation control problem of UAVs. Lyapunov-based

nonlinear controller design techniques are applied in this chapter. We start with a brief

introduction of aircraft dynamics in Section 4.2. Based on the assumption that an autopilot

running in the holding mode is used as a low-level controller, the lateral and longitudinal

movements of a UAV can be decoupled and a simplified nonholonomic model of the air-

craft is constructed. With this simplified model, the leader-following formation if defined

later in this section. We proposed three nonlinear formation controllers in Section 4.3. The

first one is a feedback linearization controller 4.3.1. The dynamic extension method is ap-

plied to design the controller. With this feedback linearization controller, we reduce the

nonlinear error system into a linear system. Though theocratically sound, this technique

is practical only under the assumption of a perfect plant model. Therefore, we propose a

sliding mode controller in Section 4.3.2. The stability proof is also given in this section.

Since a generic sliding vector function is used in the control design, a variety of available

sliding vector functions can be substituted in to reduce the chattering and to achieve satis-

factory performance. In Section 4.3.3, we propose a robust formation controller. Compare

to the first two controllers, which assume full knowledge of leader aircraft’s states, this

robust controller eliminates the requirement of leader’s velocity and acceleration informa-

tion. Therefore, communication overhead can be reduced. A detailed stability proof can be

found in this section. Finally, the performance of the proposed controllers is examined by

simulations in Section 4.4.

The formation control problem is addressed again in the context of MPC in Chapter 5.
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In Section 5.1, formation control by MPC literature is reviewed. We propose that it is more

convenient to put the vehicles’s nonholonomic constraints inside the MPC framework. In

Section 5.2, we redefine the formation with graph theory. Then a dual-mode MPC forma-

tion controller is propose in Section 5.3. The stability of the formation is guaranteed by

constraining the terminal state to a terminal region and switching to a stabilizing terminal

controller at the boundary of the terminal region. A detailed proof is given in Section 5.4.

With this dual-mode MPC implementation, stability is achieved while feasibility is relaxed.

For the choice of stabilizing terminal controller, a comparison between an input-output

feedback linearization controller and a robust formation controller is given in Section 5.4.2

and 5.4.3. Finally, simulation results are presented in Section 5.5 and concluding remarks

are given in Section 5.6.

In Chapter 6, we consider using MPC to control nonholonomic mobil robots. Since

a nonholonomic model is commonly adopted to describe vehicle’s kinematics in mobile

robot motion coordination, fundamental control problems, trajectory tracking and point

stabilization of nonholonomic mobile robots need further investigation. In the literature,

most of the existing controllers address the trajectory tracking problem by assuming that

the trajectory needed to be track is continuously excited by a reference robot. When the ref-

erence robot stops or even moves backward, most of the controller will fail. As for the point

stabilization problem, discontinuous feedback controllers and time-varying algorithms are

mostly found since by Brockett’s theorem, smooth time-invariant feedback control laws do

not exist. In addition, only a few controllers can handle the tracking and stabilization prob-

lems in the same control structure. In this chapter, we proposed a novel MPC approach

for the control of nonholonomic mobile robots. Most stabilizing MPC methods address

stability by adding terminal state penalties in the performance index and/or imposing con-

straints on the terminal state at the end of the prediction horizon. In the MPC algorithm we

proposed, its stability is guarantees by adding a contractive constraint on the first state at

the beginning of the prediction horizon. With this first-state contractive constraint, the pro-
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posed MPC algorithm achieves: (i) Exponential stability, (ii) the ability to track a trajectory

moving backward, and (iii) the capability of simultaneous tracking and point stabilization.

Chapter 6 is organized as follows. In Section 6.2, we introduce the robot kinematic

model and the trajectory tracking and point stabilization problems of a nonholonomic mo-

bile robot. A first-state contractive MPC algorithm is proposed in Section 6.3. Stability

results of the proposed algorithm can be found in Section 6.4. In Section 6.5, simulation

results are presented to show the effectiveness of our method. Finally, a summary is given

in Section 6.6.

In Chapter 7, the FSC-MPC algorithm is extended to multi-robot formations. With the

capability of simultaneous tracking and point stabilization, the FSC-MPC controller can

achieve some practical formations without any special treatments. Simulation results are

provided.

Finally, in Chapter 8, we summarize the main results of this dissertation and outline the

future work.
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CHAPTER 2

Nonholonomic Mobile Robots and

Formations

2.1 Nonholonomic Mobile Robots

A nonholonomic mobile robot is a robot can only move in the direction normal to the axis of

the driving wheels. Most of ground mobile robots (wheeled), part of aerial and underwater

vehicles which move under some specific conditions can be considered as nonholonomic

mobile robots.

Nonholonomic mobile robots have received a lot of attention in the past decades be-

cause of their ability to work in large application domains, such as: (i) Transportation, (ii)

planetary exploration, (iii) surveillance, (iv) security inspection, (v) military targets track-

ing and attack, and (vi) human-machine-interfaces for people with mobility deficiency, to

mention a few.

Due to the wide range of applications, the research of nonholonomic mobile robots

is multidisciplinary and has many directions. As the dissertation objective stated in Sec-

tion 1.2, we only consider the formation control of a group of vehicles and the trajectory

tracking and point stabilization of nonholonomic mobile robots.

12



2.1.1 Kinematic Model

The kinematic model for a wheeled mobile robot (assumed to be of the unicycle type) under

the nonholonomic constraint of pure rolling and non-slipping is considered throughout this

dissertation

q̇ = S(q)u, (2.1)

where q(t), q̇(t) ∈ R3 are defined as

q = [x y θ],

q̇ = [ẋ ẏ θ̇].

x(t) and y(t) are the position of the center of mass of the wheeled mobile robot in a Carte-

sian coordinate frame. θ(t) ∈ R1 denote the orientation of the robot (see Figure 2.1). ẋ(t)

and ẏ(t) are the Cartesian components of the linear velocity v ∈ R1 and θ̇(t) ∈ R1 denotes

the angular velocity.

θ

v

X

Y

O

Figure 2.1: Nonholonomic wheeled mobile robot.

The matrix S(q) ∈ R3×2 is defined as follows

S(q) =




cos θ 0

sin θ 0

0 1




, (2.2)
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and the velocity vector u(t) ∈ R2 is defined as

u =




v

ω


 , (2.3)

where v and ω are the linear linear and angular velocity, respectively.

The pure rolling and non-slipping constraint means the robot can only move in the

direction normal to the axis of the driving wheels. Mathematically, this constraint can be

expressed as

ẋ sin θ − ẏ cos θ = 0. (2.4)

A detailed analytical study of the kinematics of wheeled mobile robots (includes other

types such as tricycle and car-like) can be found in [9].

For nonlinear systems, linear approximations can be the first step for analysis and con-

trol design. As we know, if the tangent linearized system is controllable, then the original

nonlinear system is at least locally controllable and feedback stabilizable. By linearizing

the system (2.1) about the equilibrium point (q = 0, u = 0), we have

q̇ =




1 0

0 0

0 1







v

ω


 . (2.5)

Clearly, by examining the rank of the controllability matrix

C =




1 0

0 0

0 1




, (2.6)

the linear system is not controllable.

For driftless nonlinear systems in the form

ż =
m∑

i=1

gi(z)ui, (2.7)
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where z ∈ Rn and u ∈ Rm, a sufficient condition (accessibility rank condition) for con-

trollability is that, for any z, the dimension of the involutive closure of the distribution

generated by the vector fields gi is equal to n [10], that is

dim {inv ∆} = n, ∆ ≡ span {gi}. (2.8)

For the system (2.1), we have n = 3, vector fields

g1 =




cos θ

sin θ

0




, g2 =




0

0

1




,

and

rank{g1, g2, [g1, g2]} = rank




cos θ 0 sin θ

sin θ 0 − cos θ

0 1 0




= 3, (2.9)

where [g1, g2] is the Lie bracket of g1 and g2

[g1, g2] =
∂g2

∂p
g1 − ∂g1

∂p
g2. (2.10)

Therefore, dim {inv ∆} = n and the system is controllable. However, for nonlinear sys-

tems, the existence of smooth time-invariant state feedback control laws cannot be implied

from the controllability. This will be discussed in Section 2.1.2.

For control design, with a change of state coordinates, the model equations of the robot

can be transformed into a simpler form. The following change of coordinates [11]



x1

x2

x3




=




0 0 1

cos θ sin θ 0

sin θ − cos θ 0







x

y

θ




, (2.11)

and the change of inputs

u1 = ω,

u2 = v − ωx3, (2.12)
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transform the system (2.1) into

ẋ1 = u1,

ẋ2 = u2, (2.13)

ẋ3 = x2u1.

This system belongs to a general class of systems called chained system [12] which has

the form

ẋ1 = u1,

ẋ2 = u2,

ẋ3 = x2u1, (2.14)

...

ẋn = xn−1u1.

2.1.2 Brockett’s Theorem

The problem of smooth time-invariant state feedback stabilization can be defined as fol-

lows.

Definition 2.1 Find a state feedback u = k(q), where k(q) is a smooth function of q, such

that the closed-loop system

q̇ = S(q)k(q) = f(q), (2.15)

is asymptotically stable.

However, as mentioned earlier, a controllable nonlinear system does not mean that it

can be stabilized by a smooth time-invariant feedback control law. A general theorem on

necessary conditions for smooth feedback stabilization of nonlinear systems is given by

Brockett in [13].
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Theorem 2.1 Consider the nonlinear system ẋ = f(x, u) with f(x0, 0) = 0 and f(·, ·)
continuously differentiable in a neighborhood of (x0, 0), necessary conditions for the ex-

istence of a continuously differentiable control law for asymptotically stabilizing (x0, 0)

are:

1. The linearized system has no uncontrollable modes associated with eigenvalues with

positive real part,

2. There exists a neighborhood N of (x0, 0) such that for each ξ ∈ N there exists a

control uξ(t) defined for all t > 0 that drives the solution of ẋ = f(x, uξ) from the

point x = ξ at t = 0 to x = x0 at t = ∞,

3. The mapping γ : N × Rm → Rn, N a neighborhood of the origin, defined by

γ : (x, u) → f(x, u) should be onto an open set of the origin.

Details and the proof of this theorem can be found in [14]. In the particular case of

driftless systems, a corollary to Brockett’s theorem is the following [10].

Corollary 2.1 Consider a driftless system of the form

q̇ =
m∑

i=1

gi(q)ui, z ∈ Rn u ∈ Rm, m ≤ n, (2.16)

where the gi are smooth vector fields. If the vectors gi(0) are linear independent, i.e.

rank[g1(0), g2(0), · · · , gm(0)] = m, (2.17)

then a solution to the stabilization problem defined in Definition 2.1 exists if and only if

m = n.

Since Corollary 2.1 is not satisfied in the system (2.1) (n = 3, m = 2), stabilizing smooth

time-invariant feedback laws u = k(q) do not exist for the nonholonomic mobile robot.
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2.1.3 Nonholonomic Mobile Robot Control

In this section, a brief literature review focusing on the trajectory tracking and point stabi-

lization problems of nonholonomic mobile robots is given. A detailed summary of devel-

opments in control of nonholonomic systems can be found in [15].

The trajectory tracking problem focuses on stabilizing robots to a time-varying trajec-

tory. Nonlinear feedback controllers are mostly found in the literature. Early results on

local controllers can be found in [16, 10] using Lyapunov direct method. The problem is

globally solved in [17] by nonlinear feedback. Dynamic feedback linearization is applied

in [18, 19, 20]. Other techniques include approximate linearization [21], sliding mode con-

trol [22, 23] and backstepping [24, 25, 26]. A recursive technique for trajectory tracking

of nonholonomic systems in chained form is derived from the backstepping paradigm [27].

However, a major restriction is that, the tracked linear velocity and angular velocity must

not converge to zero, which means the tracked trajectory must be continuously excited.

This restriction makes it impossible for a single controller to handle the tracking problem

and point stabilization problem simultaneously. Consequently, the range of applications of

the above mentioned controllers is limited. In addition, according to the authors in [28], the

nonlinear internal dynamics of the closed-loop system under output feedback linearization

controllers exhibit unstable properties when robots track a trajectory moving backward. To

overcome this issue, full-state tracking techniques are explored in [29]. Model predictive

controllers are reported in [30] for trajectory tracking. The MPC approach is based on the

quasi-infinite algorithm proposed by authors in [31].

The point stabilization problem, which considers stabilizing robots to a final goal pos-

ture, is more challenging. As pointed out in Section 2.1.2, a smooth time-invariant feedback

control law does not exist according to Brockett’s theorem. Most of the control algorithms

for point stabilization can be classified into three categories: (i) Smooth time-varying al-

gorithms, (ii) discontinuous or piecewise smooth feedback laws, and (iii) middle strategies

(discontinuous and time-varying). Smooth time-varying stabilization is pioneered by Sam-
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son [11, 32, 33] and explored by other authors in [34, 35, 4, 36]. For discontinuous feedback

controllers, see [37, 38, 10, 39, 40, 41, 42]. Middle strategies include [43]. As pointed out

by authors in [40], time-varying control laws are extremely complex and only for a spe-

cial class of nonholonomic systems a general strategy is available. Moreover, time-varying

control laws produce very slow convergence and are intrinsically oscillating. A compar-

ative experimental study of time-varying and discontinuous controllers for nonholonomic

mobile robots is reported in [44]. Other techniques, such as dynamic feedback linearization

[20], model predictive control [45], adaptive [46], neural networks [47], and backstepping

[24] are also found in the literature.

Interesting results are given in [48] and [49]. With a special choice of the system

state variables in polar-like coordinates, smooth feedback control laws can be globally

stable. Since in those polar-like coordinates, the state is not defined at the origin, Brockett’s

Theorem does not hold anymore and a smooth time-invariant state feedback law for global

asymptotic stability is not prevented by Brocketts negative result.

The problem of design controllers which can be used for both tracking and stabilization

tasks has been explicitly addressed in [50] and [26]. Other controllers with simultaneous

tracking and stabilization capabilities can be found in [51, 52, 20, 30].

Most of the controllers mentioned above only consider the kinematics of the vehicle.

For the sake of handling dynamics, backstepping techniques are commonly used. The steps

can be: (i) Design velocity controllers for the kinematic system (all the control algorithms

mentioned above can be used), (ii) design a feedback velocity-following control law such

that the robot’s velocities asymptotically converge to the velocity inputs generated by the

first controller, and (iii) calculate the actual toques by a computed-torque feedback con-

troller with the second control signal as inputs. See [25], [26] for trajectory tracking, [53]

for point stabilization and [24] for both.
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2.2 Formations

2.2.1 Shapes and Positions

A formation describes the specific relationship among robots in a group. Shape and position

are the two important characteristics of a formation. Figure 2.2 shows some of the common

formation shapes in consideration, such as line, column, diamond, and wedge [54].

(a) Line. (b) Column.

(c) Diamond. (d) Wedge.

Figure 2.2: Formation shapes.

Besides the shape, each robot must have a specific position in the formation. Three
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techniques for formation position determination have been identified in [54]. They are

unit-center-referenced, leader-referenced and neighbor-referenced (see Figure 2.3). In a

unit-center-referenced position, each robot maintains its desired relative position to a unit-

center point which is the average of the x and y positions of all the robots involved in the

formation. In a leader-referenced position, each robot (except the leader) maintains its

desired relative position to a leader robot. In a neighbor-referenced position, each robot

maintains its desired relative position with respect to one other predetermined robot.

(a) Unit-center-referenced. (b) Leader-referenced.

(c) Neighbor-referenced.

Figure 2.3: Formation position determination.
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2.2.2 Formation Control Strategies

Due to the attention received by formation control research, a lot of control strategies have

been proposed. Approaches can be classified into leader-following, virtual structure, be-

havior based, and graph theory based.

The leader-following formation control is a important method [55, 56, 57, 58, 59, 60,

61]. In this approach, one or some mobile robots are designated as leaders which take care

of the assignment of followers’ relative positions and the global mission objective, such

as trajectory tracking and obstacle avoidance. Simplicity is the major advantage of this

approach since only the leader takes care of the global objective while the formations are

guaranteed by individual robot’s control law. However, when a single-leader architecture

is used, the whole system will fail if the leader fails (single point of failure). In addition,

the full state of the leader must be communicated to each member of the formation. Leader

failure includes robot malfunction and communication error. Some attempts have been

made to overcome the single point of failure. In [55], the architecture has some leader

failure detection mechanisms and redefines the formation control graph according to some

predefined strategies. As the number of robots increase, string stability and mesh stability

need to be addressed [62, 63].

In the virtual structure approach, the entire formation is treated as a single entity. De-

sired states for each vehicle in the formation can be specified by place-holders in the vir-

tual structure [64]. Similar ideas include the virtual leader [65], and the formation refer-

ence point [66]. With these approaches, it is easy to prescribe the coordinated behavior

for the group. In addition, the virtual structure approach can maintain the formation dur-

ing manoeuvres and a rigid geometric relationship among multiple robots. However, the

requirement of the the formation to act as a virtual structure limits the class of potential ap-

plication. Using virtual structure approach for mobile robots formation control is proposed

by Lewis [67] and studied in [68, 69, 70, 71, 72].

The behavior based formation control approach [73, 74, 75, 76, 77, 78] is inspired by
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formation behaviors in nature, like flocking and schooling. In [79], the author simulates

flocks of birds and schools of fish with a simple egocentric behavioral model. In [54], the

authors define two steps for formation maintenance: (i) Detect-formation-position which

determines the robot’s position in formation, and (ii) maintain-formation which generates

motor commands to direct the robot toward the correct location. In behavioral approaches,

the control action for each robot is defined by a weighted average of the control corre-

sponding to each desired behavior. Possible behaviors can be, collision avoidance, obstacle

avoidance, goal seeking and formation keeping. The advantage of the behavioral approach

is that, when robots have multiple competing objectives, it is easy to derive control laws in

a natural way. However, even this approach performs well in simulations and experiments,

it is hard to do mathematical analysis of stability and robustness.

Recently, graph theory is applied to multiple robot formation control [80, 81, 82, 83, 84,

85]. Formations can be described by graphs treating each robot as a vertex and the relation-

ships (control, sensing, communication-flow) among robots as edges. The communication

links among systems are described by Laplacian matrices. The stability of the multi-robot

system is guaranteed by the stability of each robot. However, the method is limited to linear

robot models. In [86], the authors propose two controllers for nonholonomic mobile robots

formation using graph theoretical methods. In the first controller, the robot model is trans-

formed to a linear model by dynamic feedback linearization. The second controller, with

the aid of the time-scaling technique and the properties of Laplacian matrix, overcomes the

singularity of the first controller.

2.3 Summary

In this chapter, a brief review of nonholonomic mobile robots is given. Then the kinematic

model is developed and the Brockett’s theorem is introduced. In addition, a short literature

review on nonholonomic mobile robots control of trajectory tracking and point stabiliza-
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tion is given. Since formation control is one of the dissertation objectives, the shape and

position of a formation are introduced. Different formation control algorithms, such as

leader-following, virtual structure, behavior based and graph theory based approaches are

reviewed.
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CHAPTER 3

Model Predictive Control

3.1 Introduction

In the past decades, model predictive control (MPC), also known as receding horizon con-

trol (RHC), has received great interest in the control community. As an effective method to

solve multi-variable constrained control problems, MPC has appeared in industry for more

than 20 years and successful applications of MPC can be easily found.

The glorious past and present of MPC is due to its abilities of constraint handling, real-

time prediction, optimizing and feedback correcting. Different from conventional control

which uses pre-computed control laws, MPC is a control of the form in which the current

control action is obtained by solving a finite horizon optimal control problem online at each

sampling instant. The optimization yields an open loop optimal control sequence and the

first control of this sequence is applied to the plant. The whole process will repeat at the

following sampling instants.

Actually, the term Model Predictive Control does not designate a specific control strat-

egy but a large range of control methods which explicitly use a plant model to calculate the

control action by minimizing a finite horizon optimal control problem. The ideas appearing

in all the predictive control family are: (i) A model of the plant which is used to predict

the future response of the system at future time instants (horizon), (ii) the calculation of a
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sequence of control action minimizing an optimal control problem using system’s current

states as the initial condition, and (iii) the receding strategy which involves the applica-

tion of the first control action at each step, so that the horizon moves towards the future

at each instant. Practically, this combination of feedforward and feedback makes MPC to

outperform ”passive” feedback control.

As a summary, the advantages of MPC can be [87]: ”Generality - the ability to include

generic models (linear or nonlinear) and constraints in the optimal control problem; Re-

configurability - the ability to redefine cost functions and constraints as needed to reflect

changes in the system and/or environment”.

Though MPC has gained great success in process industries, its applications for fast up-

dating systems are dragged by the computational burden. Since an optimal control problem

must be solved online, the sampling period needs to be long enough for the calculation. In

process industries, usually plants under control are sufficiently ‘slow’ and can be satisfac-

torily linearized, the computational burden is not that critical. However, in highly nonlinear

systems, an optimal solution may not be able to determined within a short sampling period.

Sometimes, even a feasible solution may not be possible. Another issue is that, the stability

of MPC algorithms is not automatically guaranteed since the control sequence is obtained

from solving a finite optimal control problem. The implicit nature of the closed-loop sys-

tem makes the proofs of stability of MPC a complicated job.

3.2 MPC Strategy

The strategy of MPC is depicted in Figure 3.1. This figure shows a generic MPC algorithm

for a single-input-single-output (SISO) system.

At current time, say k, the system’s future response (predicted output) yp(k) on a finite

horizon Np, say [k k + Np], is predicted by the system model and the predicted control

input up(k), [k k + Nm]. Np is named as the prediction horizon and Nm is named as
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the control horizon (Nm ≤ Np). Usually, the system’s future response is expected to

return to a desired set point s(k) by following a reference trajectory r(k) from the current

states. The difference between the predicted output yp(k) and the reference trajectory r(k)

is called predicted error. An finite horizon optimal control problem with a performance

index that usually penalizes the predicted control input and the predicted error is solved

online and an optimal control input u∗(k), [k k + Nm], which minimizes the predicted

error is obtained. Only the first element of u∗(k) is implemented to the plant. All the

other elements are discarded. Then, at the next time interval k + 1, the whole procedure

is repeated. The predicted control input up(k + 1) at time k + 1 can be built by u∗(k)

with linear extrapolation. Since the prediction horizon and control horizon move one step

further into future at each time interval, MPC is also named as receding horizon control

(RHC).

In order to implement this strategy, the basic structure shown in Figure 3.2 is used.

3.3 MPC Formulation

Though in industry, finite impulse response (FIR) or finite step response (FSR) models are

used, MPC is always formulated based on state-space models in academia and literature.

Consider the following discrete-time linear time-invariant system:

x(k + 1) = Ax(k) + Bu(k), (3.1)

where x(k) ∈ Rn and u(k) ∈ Rm are the state and control input, respectively. A ∈ Rn×n

and B ∈ Rn×m are the state and input matrices, respectively. The MPC implementation

can be formulated by introducing the following open-loop optimization problem at every

time interval k:

min
u(·)

J(Np,Nm)(xk), (3.2)
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Figure 3.1: MPC concept.
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Figure 3.2: Basic structure of MPC.
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subject to

x(k + 1) = Ax(k) + Bu(k),

xmin ≤ x(k + i) ≤ xmax, i = 1, 2, · · · , Np,

umin ≤ u(k + i) ≤ umax, i = 0, 1, 2, · · · , Nm. (3.3)

The performance index is defined as

J(Np,Nm)(xk) = xT (Np)Px(Np) +

Np−1∑
i=1

xT (k + i)Qx(k + i)

+
Nm∑
i=0

uT (k + i)Ru(k + i), (3.4)

where P ∈ Rn×n, Q ∈ Rn×n, and R ∈ Rm×m are the weighting matrices, and P = P T >

0, Q = QT > 0, R = RT > 0. Np and Nm denote the length of the prediction horizon and

the length of the control horizon, respectively. Usually, Np ≥ Nm. The first term on the

right hand side of equation (3.4) is called terminal state penalty, the second term is called

state penalty and the third term is called control penalty.

Equations (3.1)-(3.3) define a quadratic program problem and many algorithms and

software packets are available to solve it. When the optimal control sequence u∗(Np,Nm)(i |
x(k)), i = 0, · · · , Nm1 is obtained, only the first control u∗(Np,Nm)(0 | x(k)) is applied to

the system. The rest of the control sequence is discarded. Then at the next time interval

k + 1, x(k + 1) is used as the new initial condition of the optimal problem (Equation (3.2)

and the process is repeated.

As for nonlinear systems, the concept of MPC remains the same. Consider the follow-

ing continuous-time nonlinear system,

ẋ(t) = f(x(t), u(t)), (3.5)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and control input, respectively.

Similar to the linear case, the optimization problem can be defined as:

min
u(·)

JT (x(t), u(·)), (3.6)
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subject to

ẋ(t) = f(x(t), u(t)),

xmin ≤ x(s; x(t), t) ≤ xmax, t ≤ s ≤ t + T,

umin ≤ u(s) ≤ umax, t ≤ s ≤ t + T. (3.7)

The performance index is defined as:

JT (x(t), u(·)) =

∫ t+T

t

(‖x̄(s; x(t), t)‖2
Q + ‖u(s)‖2

R)ds

+‖x̄(t + T ; x(t), t)‖2
P . (3.8)

In this case, the prediction horizon and the control horizon are the same and equal to T .

The generic MPC algorithm can be described as follows,

1. At current time t or k, measure the current state x(t) or x(k) as the initial condition,

2. Solve the finite optimization control problem (3.2) or (3.6) with the initial condition

obtained in 1, yielding the optimal control sequence u∗ over the control horizon

3. Apply the first element in control sequence u∗ to the system, the remaining elements

of the control sequence is discarded,

4. At time t + δt or k + 1, repeat from 1.

Note that, δt is the sampling time and k = (t− t0)/δt.

3.4 Literature Review

Since the objective of this dissertation is to use model predictive control to coordinate the

motion of nonholonomic mobile robots, a review of theoretical results in MPC is now

given. Two thorough survey papers [88], [89], which give good reviews on MPC’s past,

present and future, stability and optimality, are an excellent starting point for any interested

reader in this area.
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The history of model predictive control is quite different than other control design tools.

This technique has its origin from industry before any theoretical foundation. The develop-

ment of MPC can be traced to the work of Kalman in the early 1960s, which is known as

the Linear Quadratic Gaussian (LQG). However, at that time, the industrial process con-

trol community either had no exposure to LQG technique or regarded it as impractical. The

LQG failed to have a strong impact. This environment led to a more general model based

control methodology developing in industry, in which the dynamic optimization problem

is solved online at each control execution.

The first description of MPC appeared in 1976 [90] and later summarized in [91]. The

authors called their approach model predictive heuristic control (MPHC), but the solution

software is usually mentioned as IDCOM, an acronym for IDentification and COMmand.

The main features of the IDCOM approach are: impulse response model, quadratic perfor-

mance objective, reference trajectory for future plant output behavior, including input, and

output constraints and heuristic iterative optimization algorithm.

Engineers at Shell Oil developed their own MPC technology and an unconstrained

multi-variable control algorithm which they named dynamic matrix control (DMC) was

presented in [92] and [93]. The main features of the DMC approach can be summarized as

follows: linear step response model, quadratic performance objective, setpoint for future

plant output behavior, and least-squares optimization algorithm. Later, the DMC algorithm

was posing into a quadratic program (QP) in which input and output constraints appear

explicitly. This modified DMC algorithm is called quadratic DMC (QDMC) [94, 95].

After the publication of papers addressing IDCOM and DMC/QDMC, interest in this

filed starts to surge and new algorithms have been developed. Today, MPC applications

have made this machinery a multi-million dollar industry. A survey of commercially avail-

able MPC technology can be found in [96]. Figure 3.3 [96] shows the approximate geneal-

ogy of industrial MPC algorithms.

Although the model predictive control formulation seems quite intuitive, the stability is
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Figure 3.3: Approximate genealogy of industrial MPC algorithms.

not automatically guaranteed since the control sequence is obtained from a finite optimal

control problem. Without the fine tuning of weighting matrices, the MPC algorithm for-

mulated in (3.2), (3.6) may lead to divergent responses. Therefore, it is not surprising that

much effort has been devoted to determine sufficient conditions for stability.

As a powerful analysis tool, Lyapunov methods are frequently encountered in MPC

literature. Pointed out by the authors in [89], the performance index function is monotonic

and it can be used as a Lyapunov function. The stability analysis of MPC has reached a

relatively mature stage. A short summary is given in this section. Interested readers are

referred to [89], [88] for excellent reviews of the stability properties of MPC.

As for the linear system, proofs of stability based on the monotonicity property of the

performance index function have been proposed in [97], [98].

To simplify the notation, the prediction horizon and the control horizon are assumed to

be equal Np = Nm = N . Then we use JN to replace J(Np,Nm) = JN which is defined in

Equation (3.4).

The key idea of the monotonicity approach is using the performance index function JN

as a Lyapunov function. This means the following inequality of the index function needs
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to be shown

JN(x(k))− JN(x(k + 1)) ≥ 0 for x 6= 0.

Rewriting JN(x(k))− JN(x(k + 1)) gives:

JN(x(k))− JN(x(k + 1)) = [xT (k)Qx(k) + u∗TN (x(k))Ru∗N(x(k))]

+[JN−1(x(k + 1))− JN(x(k + 1)]. (3.9)

With the assumption that Q > 0 and R > 0, the first term on the right hand side of

Equation (3.9) is positive. However, in general, it is hard to assert whether the second term

is nonnegative.

Several approaches have been proposed to assure the constantly decrease of the perfor-

mance index JN .

In most cases, if the open loop system is stable, by choosing the weighting matrix P as

the solution of the Lyapunov equation [99]

AT PA + Q = P, (3.10)

JN is non-increasing and the stability can be guaranteed.

In [100], the authors prove that when a terminal state equality constraint x(k + N) = 0

is imposed, the performance index JN is non-increasing as a function of N . Then stability

follows.

Another approach is to add a terminal constraint that forces the terminal state to be

inside a positively invariant region. The decreasing property of JN can be achieved by

introducing a stabilizing local controller u(k + i) = Lx(k + i) for i > N . In this case, the

terminal penalty and the positively invariant region need to be defined with respect to the

system x(i + 1) = (A + BL)x(i) rather than x(i + 1) = Ax(i). Furthermore, the positive

invariance should be defined with the respect to the input and state constraints. The local

feedback controller can be chosen by the infinite horizon unconstrained LQR method [101].

33



As for the nonlinear system, approaches introduced above are the idea underlying non-

linear MPC. With a nonlinear system model used, the optimization control problem to be

solved on-line becomes nonlinear programming.

In [97] and [102], the idea of zero terminal constraints for nonlinear MPC is analyzed.

The performance index function is employed as a Lyapunov function. To guarantee sta-

bility, a global optimum must be found at each time step. Though theoretically, the op-

timization problem with terminal equality constraint can be solved, the computation for

finding the global optimum is very expensive. Even when a feasible solution exists, the

convergence to that solution is not guaranteed.

A dual-mode MPC algorithm is proposed by authors in [103] to deal with both the

global optimality and the feasibility problems. A terminal region is introduced to relax

the terminal equality constraint. At the end of the prediction horizon, the terminal region

must be reached. Inside this region, an asymptotically stabilizing controller is employed.

With these modifications, a global optimum is no longer required. A feasible solution at

the initial time will guarantee the feasibility at all future time steps. However, the terminal

region is hard to calculate except for low order systems.

An algorithm called quasi-infinite MPC proposed by authors in [31] can overcome both

the global optimization and the feasibility problem without using controller switching. In

this method, the performance index function is formulated as

JT (x(t), u(·)) =

∫ t+T

t

(‖x̄(s; x(t), t)‖2
Q + ‖u(s)‖2

R)ds + ‖x̄(t + T ; x(t), t)‖2
P .

The open-loop optimal control problem besomes

min
u(·)

JT (x(t), u(·)),

subject to

x̄(t + T ; x(t), t) ∈ Ω. (3.11)

A weight matrix P needs to be determined such that the penalty of the terminal state x̄(t +

T ), which is the second term on the right hand side of the performance index, is bounded
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by the infinite horizon cost after t + T

‖x̄(t + T ; x(t), t)‖2
P ≤

∫ ∞

t+T

(‖x̄(s; x(t), t)‖2
Q + ‖u(s)‖2

R)ds

∀x̄(t + T ; x(t), t) ∈ Ω (3.12)

The bound is established by assuming that the nonlinear system is controlled by a linear

optimal state feedback controller within the region Ω after t + T . Again, a feasible control

sequence solution at time t means feasible solutions in the future and stability of the closed-

loop system is guaranteed. However, the difficulty of terminal region calculation is not

improved by this quasi-infinite MPC method.

A contractive MPC idea is proposed in [104] and completed and proven in [105]. A

constraint is added to the MPC formulation which forces both the actual and predicted

state to contract. With this requirement, the stability can be proven.

All the methods introduced above need to solve nonlinear programming problems at

each time step. Compare to the linear case, the computational requirement is huge. Intu-

itively, we could linearize the system. Then with the linearized system, all the methods

developed for linear systems can be employed. This kind of approach can be found in

[106], [107], and [108].

3.5 Summary

In this chapter, a brief introduction of MPC is given. MPC formulations for linear systems

and nonlinear systems are briefly discussed in discrete-time and continues-time. Since a

finite horizon optimal control problem is solved inside the MPC algorithm, the control law

is not guaranteed to be stable. Different stabilizing MPC methods are introduced for linear

and nonlinear systems.
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CHAPTER 4

Nonlinear Formation Control of

Unmanned Aerial Vehicles

In this chapter, we consider the problem of designing nonlinear formation controllers on

a team of unmanned aerial vehicles (UAV) using off-the-shelf autopilots. Three nonlinear

formation controllers are presented. The first two controllers require knowledge of the

leader’s velocity and acceleration. The third controller, on the other hand, does not have

such requirements. Under these controllers, the formation of UAVs is proven to be stable.

Simulations validate the performance of the proposed controllers.

4.1 Introduction

Due to recent developments in electronics and computing, it is now possible to find small

size, light weight, powerful embedded computers, wireless network equipments and sens-

ing devices on the market. As a result, by exploiting current technology, one can build a

group of relatively small UAVs each having satisfactory capabilities within a reasonable

budget. For tasks such as obtaining sensory measurements over a wide area (e.g., forest

fire monitoring [109]), multiple UAVs are desirable because they can accomplish the task

more efficiently than a single UAV. Interested readers are referred to [110] where a survey
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of UAV cooperative control is provided.

Teams of UAVs moving in formations with precisely defined geometries lead to many

advantages, such as energy saving when the vortex forces are taken into account. Several

experimental studies have verified the energy saved when flying in close formations [3]. In

addition, formation control allows for intelligent leaders and single agent planning while

followers can focus on other tasks. Leader-following is a common approach to build forma-

tions of multi-vehicle systems. The challenge here lies in designing a formation controller

that is computationally simple, yet robust. In [111], a leader-following approach for forma-

tion flight is designed using input/output feedback linearization techniques. Furthermore,

in [112] a framework for controlling a group of UAVs is developed. The controller design

utilizes input/output dynamic linearization techniques based on a model that included the

induced rolling moment generated by the lead aircraft over the wing aircraft. In [113], for-

mation controllers are designed to maintain an optimal longitudinal separation needed to

achieve the maximal reduction in the induced drag. Authors in [114] develop an interesting

experimental testbed to investigate close formation flight.

In this chapter, based on a cost effective autopilot1, we propose a two-layer control ar-

chitecture for practical and robust formation control. In this control scenario, the autopilot

provides stable velocities and height tracking on the lower-level during the mission flight.

On the higher-level, nonlinear formation controllers ensure that leader and follower UAVs

are in formations with desired relative distances and bearing angles.

The remaining of the chapter is organized as follows. Section 4.2 gives a brief in-

troduction of aircraft dynamics and the leader-following formation. In Section 4.3, we

present three different nonlinear formation controllers. Stability results are also provided

in this section. Simulation results are presented in Section 4.4. Finally, concluding remarks

are given in Section 4.5.

1A product of Cloud Cap Technology, Inc.
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4.2 Preliminaries

Clearly, unmanned aerial vehicles are aircrafts without pilots. They are either remotely

controlled or capable of conducting autonomous operations. Like manned aircrafts, UAVs

can be classified by their sizes, types, methods of propulsion and their missions. They may

be fixed-wing aircrafts or helicopters.

To control UAVs, we need to know the position and velocity of the aircraft in the air.

This leads to the study of aircraft dynamics. This section gives a brief introduction of

aircraft dynamics and the setup of leader-following formation.

4.2.1 Aircraft Dynamics

Aircraft motion may only ”make sense” when it is represented in some coordinate systems.

Therefore, it is necessary to define appropriate coordinate systems. In this report, all the

coordinate systems are right-handed and orthogonal.

The earth-fixed reference frame, FE: This coordinate system is defined like this: the

origin is fixed to an arbitrary point on the surface of the Earth. The xE axis points to North,

the yE axis points to East. Consequently the zE axis points to the center of the Earth. Figure

4.1 shows this coordinate system.

Figure 4.1: Earth-fixed reference frame.
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The body-fixed reference frame, FB: In this report, we use the following definition as

the body-fixed reference frame. First, we assume that the aircraft has a plane of symmetry.

Then the xB and zB axes lie in that plane of symmetry. The origin is fixed to aircraft’s

center of gravity. The xB axis points to the head of the aircraft, the zB axis lies in the plane

of symmetry and points downward. The yB axis is determined by the right-handed rule.

The stability-axis reference frame, FS: We consider the aircraft in steady flight con-

dition so that the relative wind is from a constant direction as seen from the aircraft. The

velocity vector Vc of the aircraft is relative to the air mass. Then the projection of this

velocity vector into the aircraft plane of symmetry is defined as xS axis. The origin is fixed

to aircraft’s center of gravity. The zS axis lies in the aircraft plane of symmetry and points

downward. The yB axis is then determined by the right-handed rule.

The wind-axis reference frame, FW : The wind-axis system is defined as follows. The

origin is fixed to aircraft’s center of gravity. The xW axis is in the direction of the velocity

vector of the aircraft relative to the air. The zW axis lies in the aircraft plane of symmetry

and points downward. The yW axis is determined by the right-handed rule. Note that xW

axis needs not lie in the plane of symmetry.

The body-fixed frame, the stability-axis frame and the wind-axis frame are related by

two aerodynamic angles. The angle between the xW axis and the xS axis is called sidelip

and is denoted by symbol β. The angle between the xS axis and the xB axis is called angle-

of-attack and is denoted by symbol α. Figure 4.2 shows the three different frames and the

two angles.

A point in the space can be interpreted differently with the respect to different coor-

dinate systems. Pointed out by the Swiss mathematician Leonhard Euler, one reference

frame can be placed in alignment with any other reference frame by three successive axis-

rotations. The angles to rotate the axes are called Euler angles. With Euler angles, the

transformation between different coordinate systems is represented by the transformation

matrices and the coordinates of a point in different reference frames can be related. In
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Figure 4.2: Reference frames and aerodynamic angles.

aircraft dynamics, the Euler angles between different reference frames are given special

symbols. They are summarized as follows:

TF2,F1 θx θy θz

TB,E φ θ ψ

TW,E µ γ χ

TB,W 0 α −β

Table 4.1: Euler angles.

The TF2,F1 notation means transformation from reference frame 1 to reference frame

2. For example, TW,E means transformation from the earth-fixed reference frame to the

wind-axis reference frame.

With the coordinate system established, one can deduce aircrafts’ equations of motion

by applying Newton’s law (see e.g., [115, 116]). We simplify our analysis to an ideal

scenario that the UAVs are flying in a wings-level steady-state and that the angle of attack

and sideslip are considerably small, such that they can be ignored. With such simplification,
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a 6-DOF nonlinear model can be set up as follows:

ẋ = V cos γ cos χ,

ẏ = V cos γ sin χ,

ż = −V sin γ,

V̇ = −D
m
− g sin γ,

µ̇ = p + (q sin µ + r cos µ) tan γ,

γ̇ = q cos µ− r sin µ,

χ̇ = (q sin µ + r cos µ) sec γ,

ω̇ = J−1ω̂Jω + J−1τ + L̄,

(4.1)

where x, y, z are position states in the flat earth-fixed initial frame; yaw angle χ, pitch angle

γ and roll angle µ are attitude states in the wind-axis frame; roll rate p, pitch rate q and yaw

rate r are angular velocity states in the body-fixed frame; V is the linear velocity along the

flying path; ω = [p q r]T ; J is the inertia matrix; ω̂ is a skew-symmetric operator; τ is

the external moment vector; g is the acceleration of gravity; m is the mass of the UAV; D

is the drag and L̄ = [L̄p 0 0]T is the rolling moment induced by the wake of the leader

aircraft.

Usually, an off-the-shelf autopilot can provide two basic operational modes: (i) Way-

point tracking mode, and (ii) holding mode. In the first mode, a set of ordered points of

interest (POI) can be uploaded into the autopilot before the mission or during the flight.

The autopilot generates a path from the current position along these points of interest and

provides control commands to the aircraft. In this mode, however, the user cannot pre-

cisely control the aircraft’s position except waypoints. In addition, the distance between

two successive waypoints must be long enough such that the autopilot system can generate

the flight path. As for the holding mode, usually three channels are provided as follows:

(1) the Mach hold, (2) the heading turn rate hold, and (3) the altitude hold. The autopilot

continuously executes control commands sent to these hold channels. Although, some suc-

cessful waypoint-based formation flight experiments have been reported in the literature
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(see [117]), it would be more convenient to use the autopilot in holding mode when close

formation flight is required, for instance, navigation in urban environments. In this chapter,

we investigate the feasibility of using an off-the-shelf autopilot [118] in holding mode for

the follower UAVs.

With an autopilot running in the holding mode, the lateral and longitudinal movements

are decoupled [113]. We can write a simplified model of the aircraft as follows:



ẋ

ẏ

ψ̇




=




cos ψ 0

sin ψ 0

0 1







V

ω


 , (4.2)

V̇ = − 1

τv

V +
1

τv

Vc, (4.3)

ω̇ = − 1

τω

ω +
1

τω

ωc,

··
h = − 1

τha

ḣ− 1

τhb

hi +
1

τhb

hc,

where x and y represent the positions in Cartesian coordinates, V is the velocity, ψ is the

heading angle, and h is the altitude. Vc, ωc, and hc are the commands to the Mach hold,

heading-turn-rate hold, and altitude hold channels of the autopilot, respectively. τv, τω,

τha , and τhb
are known positive constants that depend on the autopilot.

We will only use this simplified aircraft model in this chapter.

4.2.2 Leader-Following Formation

In this section, we set up a kinematic model for an UAV formation flight system. Assuming

that the UAVs are flying at a constant altitude, we can consider an operator specified the ith

UAV motion ai ∈ R2, i ∈ {1, 2, ..., N} given as follows

ai = xiı̂ + yî, (4.4)

where xi and yi ∈ R represent the respective Cartesian coordinates in an earth-fixed refer-

ence inertial frame FE . Let F d
jk ∈ R2 be a desired formation that allows a wing airplane k
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to follow a leader airplane j given by

F d
jk = [ldjk ηd

jk]
T , (4.5)

where ldjk ∈ R+ is the desired relative distance and ηd
jk ∈

[
π
2
, 3π

2

]
is the desired relative

bearing angle as shown in Figure 4.3. Consequently by changing F d
jk we are able to define

different formation shapes. Then the actual formation for a wing airplane k to follow a

leader airplane j is described by

Fjk = [ljk ηjk]
T ∈ R×

[
π

2
,
3π

2

]
, (4.6)

in which the relative distance is defined as

ljk(t) = ‖aj − ak‖2 , (4.7)

where ‖·‖2 denotes the standard Euclidean norm. The relative bearing is given by

ηjk = π + ζ − ψj, (4.8)

where ζ = arctan 2(yj − yk, xj − xk).

Taking the time derivative of equation (4.6) with system model (4.2), we have

Ḟjk =




l̇jk

η̇jk


 =




Vk cos γjk − Vj cos ηjk

1
ljk

(Vj sin ηjk − Vk sin γjk − ljkωj)


 , (4.9)

with γjk , ψj + ηjk − ψk. Vk is the linear velocity of the follower. Vj and ωj are the linear

and angular velocities of the leader.

Our control objective is to design a formation controller which drives the wing UAV to

track the desired formation F d
jk. To this end, we define the formation error as

e = F d
jk − Fjk, (4.10)

where e ∈ R2.
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Figure 4.3: Leader-following formation.

4.3 Nonlinear Formation Control

4.3.1 Feedback Linearization

Taking the derivative of (4.10) with respect to time and combining with (4.9), the following

is obtained

ė = Ḟ d
jk − Ḟjk

= Ḟ d
jk −




cos γjk 0

− 1
ljk

sin γjk 0







Vk

ωk


−




−Vj cos ηjk

Vj

ljk
sin ηjk − ωj


 . (4.11)

Since ωk does not appear, it is obvious that the input matrix of the error system (4.11)

is not invertible. Thus we cannot design the control based on (4.11).

To facilitate the control design on this system, we first use the dynamic extension

method from [119] to render (4.11) into a relative degree system.

Differentiating both sides of (4.11) with respect to time and after some algebraic and
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trigonometric manipulation, we obtain

ë = F̈ d
jk − F̈jk

=



− cos γjk −Vk sin γjk

1
ljk

sin γjk − Vk

ljk
cos γjk







V̇k

ωk


 + F̈ d

jk −




s1

s2


 , (4.12)

where

s1 =
1

ljk
V 2

k sin2 γ +
1

ljk
V 2

j sin2 ηjk − V̇j cos ηjk − Vj sin ηjkωj

− 2

ljk
VjVk sin γjksinηjk,

s2 = − 2

l2jk
VjVk sin(γjk + ηjk) +

V 2
j

l2jk
sin 2ηjk +

V 2
k

l2jk
sin 2γjk +

V̇j

ljk
sin ηjk

− 1

ljk
Vjωj cos ηjk − ω̇j.

(4.13)

Define a new formation control input uk , [V̇k ωk]
T ∈ R2 and notate the input matrix

as

g(·) =



− cos γjk −Vk sin γjk

1
ljk

sin γjk − Vk

ljk
cos γjk




and S = [s1s2]
T , we can write the error system in (4.12) as

ë = g(·)uk + F̈ d
jk − S. (4.14)

It is not difficult to check that the new input matrix g(·) is nonsingular under the condition

that the flight speed Vk ≥ Vmin > 0 and ljk ≥ lmin > 0, where Vmin is the UAV stalling

speed, and lmin is the minimum distance to avoid collision between the two UAVs.

Let us define the control input uk as

uk = g−1(·)(−F̈ d
jk + S −Ke− ė), (4.15)

where K = Diag[k1 k2], and k1,2 ∈ R+.
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Substitute (4.15) into (4.14), we obtain a new error system

ë = −Ke− ė. (4.16)

Clearly, we reduce the nonlinear error system (4.14) into a linear error system. With a

carefully chosen K, system (4.16) can be stable. Therefore, under the action of control law

(4.15), the formation can be kept.

4.3.2 Sliding Mode Control

In section 4.3.1, by using the feedback linearization technique, we obtain a stabilizing

control law to reduce a nonlinear error system into a linear stable error system. Though

theocratically sound, this technique is practical only under the assumption of a perfect

plant model. However, a perfect model is not always available. The feedback linearization

technique may not achieve acceptable performance in a real world application. Let us

consider a sliding mode controller in this section.

Rewrite (4.11) into the following form,

ė = Ḟ d
jk − g1(·)Vk − g2(·)Vj − g3(·)ωj, (4.17)

where the vector fields g1(·), g2(·), and g3(·) are defined as

g1(·) =




cos γjk

− 1
ljk

sin γjk


 , (4.18)

g2(·) =



− cos ηjk

1
ljk

sin ηjk


 , (4.19)

g3(·) =




0

−1


 . (4.20)

Differentiating both sides of (4.17) with respect to time and after some algebraic and
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trigonometric manipulation, we obtain

ë = F̈ d
jk − ġ1(·)Vk − g1(·)V̇k − ġ2(·)Vj − g2(·)V̇j − ġ3(·)ωj − g3(·)ω̇j

= F̈ d
jk −

[
∂g1(·)
∂γjk

γ̇jk +
∂g1(·)
∂ljk

l̇jk

]
Vk − g1(·)V̇k − ġ2(·)Vj − g2(·)V̇j − g3(·)ω̇j

= F̈ d
jk −

[
∂g1(·)
∂γjk

(ωj + η̇jk − ωk) +
∂g1(·)
∂ljk

l̇jk

]
Vk

−g1(·)V̇k − ġ2(·)Vj − g2(·)V̇j − g3(·)ω̇j

= F̈ d
jk −

[
∂g1(·)
∂γjk

η̇jk +
∂g1(·)
∂ljk

l̇jk

]
Vk − g1(·)V̇k +

∂g1(·)
∂γjk

Vkωk

−ġ2(·)Vj − ∂g1(·)
∂γjk

Vkωj − g2(·)V̇j − g3(·)ω̇j.

Thus,

ë = F̈ d
jk −

[
∂g1(·)
∂γjk

η̇jk +
∂g1(·)
∂ljk

l̇jk

]
Vk + g(·)uk + f1(·)$j + f2(·)$̇j. (4.21)

where

f1(·) =

[
−ġ2(·) −∂g1(·)

∂γjk
Vk

]
∈ R2×2,

f2(·) =

[
−g2(·) −g3(·)

]
∈ R2×2;

also, we define the leader linear and angular velocity vector as $j = [Vj ωj]
T ∈ R2.

As a new approach in this sub-section, we assume that the leader’s linear and angular

velocity and acceleration vectors $j and $̇j are known to the follower aircraft (by leader’s

onboard instruments and the communication link between the leader and followers).

Let us design the following filtered signal r = [r1 r2]
T ∈ R2

r = ė + Ke, (4.22)

where K =




k1 0

0 k2


, and k1,2 ∈ R+ are design gain constants. Differentiating (4.22)

with respect to time and substituting in (4.21) produces

ṙ =
··
F

d

jk −
(

∂g1(·)
∂γjk

η̇jk +
∂g1(·)
∂ljk

l̇jk

)
Vk + g(·)uk

+f1(·)$j + f2(·)$̇j + Kė. (4.23)
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Based on the subsequent Lyapunov analysis, the formation control law becomes

uk = g−1(·)
[
− F̈ d

jk +

(
∂g1(·)
∂γjk

η̇jk +
∂g1(·)
∂ljk

l̇jk

)
Vk

−f1(·)$j − f2(·)$̇j −Kė− φ(r)

]
, (4.24)

where φ(r) ∈ R2 is a sliding vector function so that the sliding condition is guaranteed.

We now state the main stability result of this section for the proposed formation con-

troller.

Theorem 4.1 The control law of (4.24) ensures stable sliding surface dynamics of the sys-

tem in (4.22) and that all system signals are bounded under closed-loop operation and the

tracking error is asymptotically stable in the sense that

lim
t→∞

e, ė = 0. (4.25)

Proof: To prove the theorem, let us construct the following non-negative function

V =
1

2
rT r. (4.26)

By using the control law (4.24) in equation (4.23), we have

ṙ = −φ(r). (4.27)

Now, taking the time derivative of (4.26) and substituting (4.27) yields

V̇ = rT ṙ = −rT φ(r). (4.28)

The sliding vector function can be, for instance, φ(r) = r + a[sgn(r1) sgn(r2)]
T , where

a ∈ R is a positive constant. Then (4.28) becomes

V̇ = −‖r‖2 − a |r| ≤ −a |r| .

Therefore, V (4.26) is a Lyapunov function and system (4.22) is asymptotically stable,

which means lim
t→∞

r = 0. From (4.22) and with reference to Lemma A.8 of [120], we

conclude that lim
t→∞

e = 0 and lim
t→∞

ė = 0. ¥
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Remark 4.1 A generic sliding vector function φ(r) is given in the above control design, so

a variety of available sliding vector functions can be substituted in to reduce the chattering

and to achieve satisfactory performance.

4.3.3 Robust Control

The effectiveness of the control law introduced in Section 4.3.2 is based on the assumption,

that the leader’s position, attitude, velocity and acceleration information are all known to

the follower. Those data can be obtained by onboard instruments (on leader and/or follower

vehicles) and inter-vehicle communications. This is a common assumption in the formation

control literature. However, in reality, due to the payload limitation or communication

failure (for example, under electronic countermeasures), this assumption might not always

hold. Consequently, control laws that assume full knowledge of leader aircraft’s states may

not guarantee a desired formation in the presence of communication failures. In [121], a

failure detection and identification system based on an interacting multiple-model Kalman

filter approach is proposed. When communication is unaccessible, it can provide accurate

state estimation, which are required in formation flights. In [122, 123], graph theory is used

to improve the robustness and fault tolerance of formation control when communication

fails. A novel solution to a class of problems in feedback stabilization of coupled systems

with limited communication is presented in [124].

In this section, we propose a robust nonlinear formation controller which requires no

information of the leader’s velocity and acceleration. Similar idea of the controller’s design

and analysis can be found in [125].

Specifically, by expanding the second term on the right side of equation (4.23) along

with equation (4.9), we can rearrange (4.23) into

ṙ = F̈ d
jk −




1
ljk

sin2 γjk

2
l2jk

cos γjk sin γjk


 V 2

k + (4.29)

g(·)uk + f1(·)$j + f2(·)$̇j + f3(·)$jVj + Kė,
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where f1(·), f2(·), and f3(·) are functions of Fjk, Vk, and γjk. Note that f1(·), f2(·), and

f3(·) are bounded since ljk ≥ lmin > 0 and Vk ∈ L∞.

We make the following assumptions:

Assumption 4.1 During the formation flight, the leader UAV is stably tracking some de-

sired trajectories $d
j =

[
V d

j ωd
j

]T , $̇d
j =

[
V̇ d

j ω̇d
j

]T

∈ R2 with $d
j , $̇d

j , $̈d
j ∈ L∞ so that

we can assume $j , $̇j , $̈j ∈ L∞.

Assumption 4.2 All other terms in (4.29) except $j and $̇j are known.

Remark 4.2 Using equation (4.3), it is possible to generate a leader UAV trajectory so

that Assumption 4.1 holds.

The follower control vector uk in (4.23) becomes

uk = g−1(·)
(
− F̈ d

jk +




1
ljk

sin2 γjk

2
l2jk

cos γjk sin γjk


 V 2

k

−2Kė−K2e− β1 sgn(e(t))

)
, (4.30)

where β1 is a constant positive control gain.

After substituting uk into (4.29), the closed-loop system is given by

ṙ = f1(·)$j + f2(·)$̇j + f3(·)$jVj

−Kr − β1 sgn(e(t)). (4.31)

Before stating the main result of this section, we give the following lemma which will

be invoked later.

Lemma 4.1 Let the auxiliary function Γ(t) ∈ R be defined as follows

Γ , rT [f1(·)$j + f2(·)u̇j + f3(·)$jVj − β1 sgn(e)] . (4.32)
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If the control gain β1 is selected to satisfy the sufficient condition

β1 > ‖f1(·)$j + f2(·)$̇j + f3(·)$jVj‖2 + (4.33)

k−1
min

∥∥∥∥
d(f1(·)$j + f2(·)$̇j + f3(·)$jVj)

dt

∥∥∥∥
2

,

where kmin = min{k1, k2}, then

∫ t

t0

Γ(τ)dτ 6 ζb, (4.34)

where the positive constant ζb ∈ R is defined as

ζb , β1‖e(t0)‖1 − eT (t0) [f1(t0)$j(t0) + f2(t0)$̇j(t0) + f3(t0)$j(t0)Vj(t0)] (4.35)

where the notation ‖ · ‖1 denotes the L1 norm.

Proof: Before giving a formal proof of Lemma 4.1, we first show that

∫ t

0

sgn(y)ẏdτ = |y(t)| − |y(0)|. (4.36)

Since

|y| =
√

y2, (4.37)

taking the derivative of
√

y2 yields

d
√

y2

dt
=

1

2

(
y2

)− 1
2 2yẏ =

y√
y2

ẏ =
y

|y| ẏ = sgn(y)ẏ. (4.38)

Then integrating both sides, we obtain

∫ t

0

sgn(y)ẏdτ =

∫ t

0

d
√

y2

dt
dτ =

√
y2|t0 = |y||t0 = |y(t)| − |y(0)|. (4.39)

Thus, equation (4.36) holds.

To simplify the notations, let us define

Ω(t) = f1(t)$j(t) + f2(t)$̇j(t) + f3(t)$j(t)Vj(t).
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After substituting (4.22) into (4.32) and then integrating Γ(t) in time, we obtain

∫ t

t0

Γ(τ)dτ =

∫ t

t0

eT KT (τ) (Ω(τ)− β1 sgn e(τ)) dτ

+

∫ t

t0

deT (τ)

dτ
Ω(τ)dτ − β1

∫ t

t0

deT (τ)

dτ
sgn(e(τ))dτ . (4.40)

After integrating the second term on the right-hand side of (4.40) by parts, and utilizing

equation (4.36) for the third term, we have the following simplified expression

∫ t

t0

Γ(τ)dτ =

∫ t

t0

eT KT (τ)

(
Ω(τ)−KT−1 dΩ(τ)

dτ
− β1 sgn(e(τ))

)
dτ

+ eT (t)Ω(t)− eT (t0)Ω(t0)− β1‖e (t) ‖1 + β1‖e (t0) ‖1. (4.41)

We can now upper bound the right-hand side of (4.41), that is

∫ t

t0

Γ(τ)dτ 6
∫ t

t0

kmin‖e (τ) ‖1

(
‖Ω(τ)‖2 + k−1

min

∥∥∥∥
dΩ(τ)

dτ

∥∥∥∥
2

− β1

)
dτ

+ ‖e (t) ‖1 (‖Ω(t)‖2 − β1) + β1‖e (t0) ‖1 − eT (t0)Ω(t0) (4.42)

From (4.42), it is easy to see that if β1 is chosen according to (4.33), then the first and

second term on the right hand side are less than zero, then we have

∫ t

t0

Γ(τ)dτ 6 β1‖e (t0) ‖1 − eT (t0)Ω(t0). (4.43)

Clearly, (4.43) is (4.34). ¥

We now state the main stability result for the second controller in the following theorem.

Theorem 4.2 The control law of (4.30) ensures that all system signals are bounded under

closed-loop operation and the tracking error is asymptotically stable in the sense that

lim
t→∞

e(t), ė(t) = 0. (4.44)

Proof: Let P (t) ∈ R be an auxiliary function as follows

P (t) , ζb −
∫ t

t0

Γ(τ)dτ > 0, (4.45)
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where ζb and Γ(t) have been defined in Lemma 4.1. Based on the non-negativity of P (t),

we define a Lyapunov function candidate V by

V , 1

2
rT r + P. (4.46)

After taking the time derivative of (4.46), we have V̇ = rT ṙ + Ṗ . Then utilize the closed-

loop dynamics of (4.31) and (4.45), we can obtain the following expression

V̇ = rT [f1(·)$j + f2(·)$̇j + f3(·)$jVj

−Kr − β1 sgn(e(t))]− Γ (4.47)

Rearranging the first term on the right hand side of (4.47) and use the definition of Γ, we

get

V̇ = −rT Kr 6 −kmin‖r‖2. (4.48)

Therefore, r (t) ∈ L∞ ∩ L2 and lim
t→∞

r(t) = 0. With (4.22) again, it is easy to see

e(t), ė(t) ∈ L∞ ∩ L2 and lim
t→∞

e(t), ė(t) = 0. ¥

4.4 Simulation Results

In this section, the performance of proposed controllers is tested by simulations. In order

to minimize the chattering of sliding mode controller, instead of sgn(·), arctan(·) is used in

(4.24) and (4.30). To simplify notation, the control algorithms described in Sections 4.3.1,

4.3.2 and 4.3.3 are referred as C1, C2, and C3 , respectively.

4.4.1 Formation under Feedback Linearization Controller

The desired formation in this simulation is ldjk = 100 m and ηd
jk = 5

4
π rad. Total simulation

time is 60 seconds. Controller parameter is K = Diag[2, 2].

The leader is given a constant angular velocity command ωjc = 0.05 rad/s and a con-

stant velocity commandVjc = 17.5 m/s. This means that the leader moves in a circle.
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The initial conditions of the leader are xj(0) = yj(0) = 0 m, zj(0) = 1000 m, ψj(0) =

π rad, Vj(0) = 17.5 m/s, and ωj(0) = 0 rad/s. For the follower, the initial conditions are

xk(0) = 100 m, yk(0) = 200 m, zk(0) = 1000 m, ψj(0) = π rad, Vk = 20 m/s, and

ωk(0) = 0 rad/s.

Figure 4.4 to Figure 4.7 show the response of the feedback linearization formation

controller C1. The trajectory of the 2-UAV team under the action of C1 is presented in

Figure 4.4. Figure 4.5 and 4.6 depict the control inputs and formation errors when C1 is

used. The actual relative position is shown in Figure 4.7. As it can be seen, formation errors

converge to zero and the follower UAV is able to maintain the desired relative distance and

the bearing angle with respect to the leader UAV.

4.4.2 Formation under Sliding Mode Controller

In this simulation, the desired formation is ldjk = 100 m and ηd
jk = 5

4
π rad. Total simulation

time is 200 seconds. Controller parameter is K = Diag[2, 2].

The leader is given a constant velocity command Vjc = 17.5 m/s. The angular velocity

command ωjc is 0 rad/s most of the time and ωjc = 0.1 rad/s for time periods [30, 45],

[60, 75] and [110, 125].

The initial conditions of the leader are xj(0) = yj(0) = 0 m, zj(0) = 1000 m, ψj(0) =

π rad, Vj(0) = 17.5 m/s, and ωj(0) = 0 rad/s. For the follower, the initial conditions are

xk(0) = 150 m, yk(0) = 20 m, zk(0) = 900 m, ψj(0) = π rad, Vk = 20 m/s, and ωk(0) = 0

rad/s.

Figure 4.8 to Figure 4.10 show the response of the sliding mode formation controller

C2. The trajectory of the 2-UAV team under the action of C2 is presented in Figure 4.8.

Figure 4.9 and 4.10 depict the control inputs and formation errors when C2 is used. As

it can be seen, formation errors converge to zero the win-airplane is able to maintain the

desired relative distance and bearing angle with respect to the leader aircraft.
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4.4.3 Formation under Robust Controller

To compare with the sliding mode formation controller, similar simulation setup is used.

In this simulation, the desired formation is ldjk = 100 m and ηd
jk = 5

4
π rad. Total simulation

time is 200 seconds. Controller parameters are K = Diag[2, 2] and β1 = Diag[5, 5].

The leader is given a constant velocity command Vjc = 17.5 m/s. The angular velocity

command ωjc is 0 rad/s most of the time and ωjc = 0.1 rad/s for time periods [30, 45],

[60, 75] and [110, 125].

The initial conditions of the leader are xj(0) = yj(0) = 0 m, zj(0) = 1000 m, ψj(0) =

π rad, Vj(0) = 17.5 m/s, and ωj(0) = 0 rad/s. For the follower, the initial conditions are

xk(0) = 150 m, yk(0) = 20 m, zk(0) = 900 m, ψj(0) = π rad, Vk = 20 m/s, and ωk(0) = 0

rad/s.

Figure 4.11 to Figure 4.13 show the response of the sliding mode formation controller

C2. The trajectory of the 2-UAV team under the action of C3 is presented in Figure 4.11.

It is close to the result of Section 4.4.2. Figure 4.12 and 4.13 depict the control inputs and

formation error when C2 is used. Again, the controller C3 can maintain the win-airplane at

the desired relative distance and bearing angle with respect to the lead aircraft.

Remark 4.3 Note that the initial amplitudes of the control inputs under C3 are higher than

the ones given by C2. We anticipate this behavior since C3 assumes no information about

the velocity and acceleration of the leader aircraft. Nevertheless, the overall performance

of the closed-loop system under C3 is comparable with the performance under C2. C3 is

the preferred controller in case of inter-vehicle communication failure or when the com-

munication bandwidth is limited. A switching-logic scheme can be designed so that C2 is

used when communication between UAVs is possible and the follower UAV has access to

its leader’s velocity and acceleration; otherwise, C3 should be switched in. Stability of the

switching formation controller becomes an issue that would require further investigation.

This analysis is out of the scope of this dissertation.
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4.5 Summary

In this chapter, we present a two-layered control system that allows a team of UAVs to nav-

igate in leader-following formations. At the low-layer, an off-the-shelf autopilot operating

in holding mode stabilizes the UAV. At the higher layer, three stable nonlinear formation

controllers are developed. This hierarchical control scheme allows a team of UAVs to per-

form complex navigation tasks under limited inter-vehicle communication. Specifically,

the third robust control law eliminates the requirement of leader’s velocity and acceleration

information, which reduces the communication overhead.
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Figure 4.4: Trajectories of the UAVs in close formation under the action of C1.
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Figure 4.5: Control inputs generated by C1.

58



0 10 20 30 40 50 60
−0.5

0

0.5
η error

t

η 
er

ro
r 

(r
ad

)

0 10 20 30 40 50 60
−200

0

200
l error

t

l e
rr

or
 (

m
)

0 10 20 30 40 50 60
−2

0

2
ψ error

t

ψ
 e

rr
or

 (
ra

d)

Figure 4.6: Formation errors under the action of C1.

59



0 10 20 30 40 50 60
−2.4

−2.3

−2.2

−2.1

−2
η jk

t

η 
jk

 (
ra

d)

0 10 20 30 40 50 60
50

100

150

200

250
l jk

t

l j
k 

(m
)

Figure 4.7: Relative position under the action of C1.
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Figure 4.10: Formation errors under the action of C2.
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Figure 4.11: Trajectories of the UAVs in close formation under the action of C3.
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Figure 4.13: Formation errors under the action of C3.
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CHAPTER 5

Dual-mode Model Predictive Formation

Control

In this chapter, we consider using model predictive control (MPC) to solve the problem

of controlling a team of mobile robots with nonholonomic constraints to leader-following

formations. We propose that it is more convenient to put the nonholonomic constraints

inside the model predictive control framework. As the first step of exploration, a dual-mode

MPC algorithm is developed. The stability of the formation is guaranteed by constraining

the terminal state to a terminal region and switching to a stabilizing terminal controller at

the boundary of the terminal region. The effectiveness of the method is investigated by

numerical simulations.

5.1 Introduction

A dynamic network consists of spatially distributed dynamic nodes (e.g., autonomous vehi-

cles, mobile sensors) which are coordinated by common set of goals and possible dynamic

interaction between the nodes. There are many applications where a dynamic network may

be more suitable than a single vehicle, especially where a distributed system of sensors is

advantageous. For example, in search-and-rescue operations, deployment of many vehicles
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over an area can allow for more thorough and faster coverage. Other applications, to men-

tion a few, are environmental monitoring, surveillance and reconnaissance, acquisition and

tracking. Yet without coordinating the movement of agents, any advantage of multi-vehicle

deployment may be lost and damaging collisions or interference may occur.

One interesting problem in multi-robot coordination is how to drive a group of robots to

a desired formation. Unmanned ground vehicle (UGV) formations can provide a promis-

ing and efficient alternative to existing techniques in a wide range of applications. Many

researchers have been working on formation problems, and numerous control algorithms

can be found in the literature (see e.g., [126],[127], [128]).

Recently, model predictive control (MPC) or receding horizon control (RHC) has gained

more and more attention in the control community. The inherent ability of MPC to handle

constrained systems makes it a promising technique for cooperative control, especially for

multi-vehicle formation control. Recent work includes [127], [128]. Other applications

of MPC, such as controlling nonholonomic mobile robots are described in [30], [45]; for

multi-vehicle coordination are given in [129]. The stability and feasibility of the MPC

algorithms become a new challenge (see discussion in [130]).

In this chapter, based on previous work [131], [6], we show that it is more convenient

to put the vehicles’s nonholonomic constraints inside the MPC framework. Moreover, we

present a novel MPC algorithm for mobile robot formations. Since a stabilizing terminal

controller is switched in within a specified terminal constraint set, the proposed MPC algo-

rithm is dual-mode [103]. With this dual-mode MPC implementation, stability is achieved

while feasibility is relaxed. For the choice of stabilizing terminal controller, a compari-

son between an input-output feedback linearization controller used in [131] and a robust

formation controller used in [6] is given.

The rest of the chapter is organized as follows. In Section 5.2, some preliminaries are

briefly introduced. A dual-mode MPC algorithm are proposed in Section 5.3. Stability

results are provided in Section 5.4. Section 5.5 contains simulation results. Finally, con-
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cluding remarks are given in Section 5.6.

5.2 Preliminaries

The problem considered in this paper is to drive a team of nonholonomic vehicles to a

desired formation. This section describes the model used for the mobile agents and the

definition of formation.

5.2.1 Vehicle Model

Consider the planar motion of nonholonomic unicycle-model robots whose kinematics are

determined by 


ẋi

ẏi

θ̇i




=




cos θi 0

sin θi 0

0 1







vi

ωi


 (5.1)

where the subscript i ∈ [1, . . . , N ] indicates the ith UGV. (xi, yi) are the Cartesian coordi-

nates of the robot, θi ∈ (−π, π] represents the orientation of the robot with respect to the

positive x axis, and vi and ωi are linear and angular velocities, respectively.

5.2.2 Formation and Formation Control Graph

Definition 5.1 A formation is a network of agents interconnected via their controller spec-

ifications that dictate the relationships each agent must maintain with respect to its neigh-

bors. The interconnections between agents are modeled as edges in a directed acyclic

graph, labeled by a given relationship [59], [132].

Definition 5.2 A formation control graph G = (V , E ,F) is a directed acyclic graph con-

sisting of the following:

• A finite set V = (V1, . . . , VN) of N vertices and a map assigning each vertex Vi to a

control system (5.1).
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• An edge set E ⊂ V × V of pair-wise neighbors encoding the formation between

agents. If the ordered pair (Vi, Vj) ∈ E , then (Vj, Vi) /∈ E , and (Vk, Vj) /∈ E for all

k ∈ {1, . . . , N}\i.

• A set of constants F =
{
F d

ij ∈ R− × R
}

defining control objectives, or set points,

for each node j, such that (Vi, Vj) ∈ E for some Vi, Vj ∈ V .

Consequently, by changing F d
ij , we are able to define different formation shapes for the

mobile robot team.

5.3 Controllers for Multi-Robot Coordination

5.3.1 Formation Error

Let a triplet pi = [xi yi θi]
T describe the position and the orientation of the ith mobile

robot. Let F d
ij =

[
∆xd

ij ∆yd
ij

]T be the desired formation between robots i and j. ∆xd
ij ∈

R− and ∆yd
ij ∈ R are the desired position for robot j in a local Cartesian reference frame

C attached to robot i. Then the actual formation for robot-pair i and j is described by

Fij = [∆xij ∆yij]
T .

Figure 5.1 shows the formation configuration for two UGVs.

Let us define the formation error for the jth robot in a robot-pair (Ri, Rj)

xe
j =




∆xd
ij −∆xij

∆yd
ij −∆yij

θi − θj




. (5.2)

5.3.2 Dual-mode MPC

Model predictive control (MPC), as an effective method to solve multi-variable constrained

control problems, has been used in industry for more than 20 years. Different from con-

ventional control which uses pre-computed control laws, MPC is a technique in which the
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Figure 5.1: Formation configuration for two UGVs.

current control action is obtained by solving, at each sampling instance, a finite-horizon

optimal control problem. Each optimization yields an open-loop optimal control sequence

and the first control of this sequence is applied to the plant until the next sampling instance.

For a robot-pair (Ri, Rj), which has an ordered pair (Vi, Vj) ∈ E in the formation

control graph G and a set point F d
ij ∈ F , a control input uj needs to be determined for

robot j. With the assumption that robot i’s current and future control action ûi are known

to robot j, the formation-error system for robot j ∈ {1, . . . , N} at time tk can be defined

as follows

xe
j(k + 1) = f(xe

j(k), uj(k)),

xe
j(k) ∈ X , uj(k) ∈ U , (5.3)

where f(·) is continuous at the origin, with f(0, 0) = 0; X ⊂ R3 contains the origin in its

interior; U is a compact subset of R2 containing the origin in its interior.

To obtain the current control uj(k) at time tk, where k is a nonnegative integer (k ∈ Z∗),
a finite-horizon optimal control problem

P (xe
j , k) := min

uj

{JH(xe
j , k, uj)},
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must be solved online. JH(xe
j , k, uj) is the performance index and H ∈ N is the horizon

length (for simplicity, the prediction horizon equals the control horizon in this paper). Q

and R are positive definite symmetric matrices.

To ensure stability of the MPC algorithm, a terminal equality constraint xe
j(k +H) = 0

is commonly used. Therefore, ∆xij → ∆xd
ij , ∆yij → ∆yd

ij and θj → θi. However, an

equality constraint usually makes the optimal control problem hard to solve. To balance the

stability and feasibility, the terminal equality constraint can be relaxed to a terminal region.

The MPC algorithm is only required to drive the error system to the edge of the terminal

region. Inside the terminal region, a stabilizing terminal controller is switched in and it

drives the error system to the equilibrium point. Such MPC algorithm is dual-mode [103].

Now let us define the terminal region Xf , which is a convex compact subset of X
containing the origin in its interior. Therefore, we can define a set X c

f , where X c
f ∪Xf = X

and X c
f ∩ Xf = ∅. Inside Xf , a stabilizing terminal controller uT

j is employed to drive the

system (5.3) back to the origin. Note, the terminal region Xf should be positively invariant

for the system xe
j(k + 1) = f(xe

j(k), uT
j (k)). Methods for constructing Xf , which indeed

is the terminal controller’s region of attraction, can be found in [103], [133] (local linear

controller case). For a nonlinear controller which has a region of attraction X , such as

(5.11), the terminal region can be a ball Br, which contains the origin.

The incremental cost in the optimal control problem for robot j ∈ {1, . . . , N} is defined

in the manner of [133]

L(xe
j , uj) = λ(xe

j)L(xe
j , uj), (5.4)

where

λ(xe
j) =





0, if xe
j ∈ Xf

1, otherwise
,

and

L(xe
j , uj) = ‖xe

j‖2
Q + ‖uj‖2

R. (5.5)

Clearly, the incremental cost L(·) is continuous at the origin, with L(0, 0) = 0.
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Now, for robot j ∈ {1, . . . , N}, given (Vi, Vj) ∈ E and F d
ij ∈ F , qi(k) and qj(k),

ui(k + H − 1, · · · , k; k) at any update time instance tk, the optimal control problem of

dual-mode MPC algorithm is defined

P (xe
j , k) := min

uj

{JH(xe
j , k, uj)}, (5.6)

where

JH(xe
j , k, uj) =

H∑
m=1

L(xe
j(k + m; k), uj(k + m− 1; k)), (5.7)

subject to

xe
j(k + 1) = f(xe

j(k), uj(k)),

xe
j(k + H) ∈ Xf , uj(k) ∈ U . (5.8)

The constraint xe
j(k + H) ∈ Xf requires that the final state of the prediction horizon must

reach the edge of the terminal region (see Fig 5.2).

fX

X

( )Hkxe
j +

( )kxe
j

Figure 5.2: Terminal constraint of dual-mode MPC.
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From the definition of incremental cost, the objective function JH(xe
j , k, uj) is greater

than or equal to 0 and JH(xe
j , k, uj) = 0 only when xe

j = 0 and uj = 0.

The solution of optimal control problem (5.6) is denoted as u∗(k) = u∗j(k + m− 1; k).

The optimal state trajectory under this control action is xe
j
∗(k) = xe

j
∗(k + m; k). The

corresponding optimal performance index is J∗H(k) = JH(xe
j
∗(k + m; k), k, u∗j(k + m −

1; k)) where m ∈ [1, . . . , H].

Now the dual-mode model predictive controller for robot j ∈ {1, . . . , N} is stated in

the following algorithm.

Algorithm:

Data: initial states of robots pi(0), pj(0), H ∈ N.

Initial: At time instance tk = 0, if xe
j(0) ∈ Xf , switch to the terminal controller

uT
j for all k such that xe

j(k) ∈ Xf . Else set ûi(l; k) = 0 and ûj(l; k) = 0 for all l ∈
[k, . . . , k+H−1]. Then solve optimal control problem (5.6) for robot j and obtain u∗j(l; k),

where l ∈ [k, . . . , k + H − 1]. Set u◦j(k) = u∗j(k; k) and apply u◦j(k) to the system.

Controller:

1. At any time instance tk:

(a) Measure current state pj(k) and measure or receive current state pi(k).

(b) If xe
j(k) ∈ Xf , switch to the terminal controller uT

j for all k such that xe
j(k) ∈

Xf . Set u◦k(k) = uT
j (k).

(c) Else, with ûi(l; k) and ûj(l; k) as initial guess, solve optimal control problem

(5.6) for robot j and obtain u∗j(l; k), where l ∈ [k, . . . , k +H− 1]. Set u◦j(k) =

u∗j(k; k).

2. Over time interval [tk, tk+1):

(a) Apply u◦j(k) to the system.

(b) If xe
j(k) ∈ Xf , set ûj(l; k + 1) = uT

j (l), l ∈ [k + 1, . . . , k + H].
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(c) Else, compute ûj(l; k + 1) as




u∗j(l; k) l ∈ [k + 1, . . . , k + H − 1]

uT
j (k + H) l = k + H

(d) Transmit ûj(·; k + 1) to all robot n that (vj, vn) ∈ E and receive ûi(·; k + 1).

5.3.3 Terminal Controller

Many formation controllers can be used as the terminal controller. An input-output feed-

back linearization controller (denoted as Separation Bearing Controller, SBC) developed

in [56] is used in our previous paper [131]. Set points, are desired distance ldij and desired

orientation ηd
ij relative to the leader. The control law determining uj = [vj ωj]

T based on

the position of Ri, which stabilizes the position of Rj relative to Ri, is [56]

vj = sij cos γij − lij(bij + ωi) sin γij + vi cos (θi − θj),

ωj =
1

d

(
sij sin γij + lij(bij + ωi) cos γij + vi sin (θi − θj)

)
, (5.9)

where

γij = ηij + θi − θj,

sij = k1(l
d
ij − lij),

bij = k2(η
d
ij − ηij), (5.10)

and k1 and k2 are positive constants.

Notice that, the SBC controller requires leader’s velocity information, which may not be

available. To overcome this limitation, a robust formation control law, uR
j , which stabilizes

the formation between robot-pair i and j is proposed in [6]

uR
j = g−1(·)

(


1
lij

sin2 γij

2
l2ij

cos γij sin γij


 v2

j

−2K ˙eij −K2eij − β1 sgn(eij)

)
, (5.11)
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where

g(·) =



− cos γij −vj sin γij

1
lij

sin γij − vj

lij
cos γij


 ∈ R2×2,

vj is the linear velocity of robot j, K =




k1 0

0 k2


, k1,2 ∈ R+, and β1 are positive

constant control gains. Details of this robust formation controller have been explained in

Section 4.3.3.

5.4 Stability Results

5.4.1 Dual-mode MPC

Since inside Xf , a stabilizing terminal controller uT
j is used, when the state enters Xf , the

error system will converge to the origin according to the stability properties of controller

uT
j . The stability of the system (5.3) is guaranteed if the state, xe

j(k), starting from any

xe
j(0) ∈ X\Xf , reaches Xf within finite time under the dual-mode MPC Algorithm (see

Fig. 5.3).

Assumption 5.1 For the incremental cost L(xe
j , uj), there exists a K-function κ(·) such

that L(xe
j , uj) ≥ κ(‖xe

j‖) for all xe
j ∈ X\Xf and all uj ∈ U .

Assumption 5.2 For all xe
j(k) ∈ X\Xf , u∗(k) exists.

Before presenting the main result of this sub-section, we state the following lemma

(motivated by [103], [133]) which will be invoked later.

Lemma 5.1 Suppose assumptions 5.1, 5.2 are satisfied. Then for all k ∈ Z∗ such that both

xe
j(k) and xe

j(k + 1) are in X\Xf , under the dual-mode MPC algorithm, the following

inequality

J∗H(k + 1)− J∗H(k) ≤ −κ(‖xe
j(k + 1)‖) (5.12)
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Figure 5.3: State trajectory.

holds.

Proof : By Assumption 5.2, u∗j(k) and u∗j(k + 1) exist, so do the optimal performance

index J∗H(k) and J∗H(k + 1).

To find J∗H(k + 1), the dual-mode MPC algorithm solves the optimal control problem

(5.6) from an initial control guess ûj(l; k+1), l ∈ [k + 1, . . . , k + H], which is constructed

from the result of previous optimization on time tk. Obviously, J∗H(k +1) ≤ ĴH(xe
j(·), k +

1, ûj(l; k + 1)). Therefore,

J∗H(k + 1)− J∗H(k) ≤ ĴH(xe
j(·), k + 1, ûj(l; k + 1))− J∗H(k). (5.13)
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Follow the construction of ûj(l; k+1), which is described in the algorithm given in Section

5.3.2, we have

ĴH(xe
j(·), k + 1, ûj(l; k + 1))− J∗H(k) =

−L(xe
j
∗(k + 1; k), u∗j(k; k))

+L(xe
j(k + H + 1; k), uL

j (k + H)). (5.14)

Since xe
j(k + H + 1; k) ∈ Xf , we have

L(xe
j(k + H + 1; k), uL

j (k + H)) = 0.

In addition, assuming the system model is perfect, we have

L(xe
j
∗(k + 1; k), u∗j(k; k)) = L(xe

j(k + 1), u∗j(k; k)).

Therefore,

J∗H(k + 1)− J∗H(k) ≤ −L(xe
j(k + 1), u∗j(k; k)). (5.15)

Clearly, with Assumption 5.1, inequality (5.12) holds. ¥

We now state the main stability result for the proposed dual-mode MPC in the following

theorem.

Theorem 5.1 Let assumptions 5.1 and 5.2 be satisfied. Using the terminal controller (5.11)

and the kinematic model (5.1), the dual-mode MPC is asymptotically stabilizing with a

region of attraction X .

Proof : According to the analysis at the beginning of this section, since inside Xf , a

stabilizing terminal controller uT
j is used, when the state enters Xf , the error system will

converge to the origin asymptotically. We only need to prove that from any xe
j(0) ∈ X\Xf ,

under the dual-mode model predictive controller, the state will be driven into Xf within

finite time.
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As the definition of Xf , it contains the origin in its interior. There must exist a constant

r > 0 such that for all xe
j(·) ∈ X\Xf , we have ‖xe

j(·)‖ ≥ r. Then, with the definition of

K-function, inequality

κ(‖xe
j(·)‖) ≥ κ(r) (5.16)

holds.

Suppose that a finite time tk does not exist such that xe
j(k) ∈ Xf . Because of Lemma

5.1, by adding inequality (5.12) from 0 to k, we have

J∗H(k)− J∗H(0) ≤ −
k∑

n=0

κ(‖xe
j(n)‖)

≤ −k min{κ(‖xe
j(0)‖), . . . , κ(‖xe

j(k)‖)}, (5.17)

for all k ∈ Z∗. Then according to inequality (5.16), we have

−k min{κ(‖xe
j(0)‖), . . . , κ(‖xe

j(k)‖)} ≤ −kκ(r). (5.18)

This means

J∗H(k)− J∗H(0) ≤ −kκ(r), for all k ∈ Z∗. (5.19)

However, (5.19) implies that J∗H(k) → −∞ as k → ∞. This contradicts that JH(k) ≥ 0

for all k ∈ Z∗. Therefore, there exists a time tk such that xe
j(k) ∈ Xf . The stabilizing

property of the controller follows. ¥

5.4.2 Input-Output Feedback Linearization Controller

Theorem 5.2 Assume that the lead vehicle’s linear velocity along the path g(t) ∈ SE(2) is

lower bounded i.e., vi ≥ Vmin > 0, its angular velocity is also bounded i.e., ‖ωi‖ < Wmax,

the relative velocity δv ≡ vi−vj and relative orientation δθ ≡ θi−θj are bounded by small

positive numbers ε1, ε2, and the initial relative orientations ‖θi(t0) − θj(t0)‖ < c1π, with

0 < c1 < 1. If the control law (5.9) is applied to robot Rj , then the formation is stable, and

the system outputs lij , ηij converge exponentially to the desired values [134].
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Remark 5.1 Note that, to guarantee stable behavior of Rj , we would require vi > 0.

Otherwise, the internal dynamics θj of Rj may be unstable. Let the orientation error be

expressed as ėθ = ωi − ωj . After incorporating the angular velocity for the follower (5.9),

we obtain

ėθ = − vi

dj

sin eθ + ξ(ωi, eθ), (5.20)

where ξ(·) is a nonvanishing perturbation for the nominal system (equation (5.20) with

ξ(·) = 0), which is itself (locally) exponentially stable. By using the stability of perturbed

systems, it can be shown that system (5.20) is stable when vi > 0. A detailed proof of

Theorem 5.2 and explanation of internal dynamics can be found in [134].

5.4.3 Robust Formation Controller

A detailed stability proof can be found in Section 4.3.3.

Remark 5.2 Notice that, the robust controller proposed here does not require the leader

robot’s velocity information and there are no internal dynamics. This is a big improvement

to the SBC controller described in Section 5.3.3. The only limitation here is that the ref-

erence robot’s velocity cannot be zero. Otherwise, vj needs to be zero and the inverse of

g(·) cannot be computed. In summary, for the SBC controller, it fails when vi ≤ 0. For the

robust controller, it only fails when vi = 0. In addition, this robust controller is globally

stable, which means that it has a region of attraction X . This alleviates the difficulty of

finding a terminal region.

5.5 Simulation Results

The effectiveness of the control algorithms presented in Section 5.3 is investigated by nu-

merical simulations. In the figures, each robot is depicted by an arrow within a circle. The

orientation of the robot is shown by the orientation of the arrow.
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5.5.1 Tracking-Stabilizing-Tracking

A realistic scenario is illustrated in Figure 5.4. The reference robot 1 first moves forward

from position (0, 0). Then it stops for some time and finally starts to move backward.

This scenario happens when some algorithms are implemented for the reference robot 1

to avoid obstacles. Usually this tracking-stabilizing-tracking case is not considered under

a single controller approach. To keep the formation, a controller switching is required.

However, a simulation shows that this case can be handled within the MPC framework.

The desired formation is F d
12 = [−20,−10] and it is achieved by the MPC controller. Note,

a conventional MPC controller is used here.

5.5.2 Follow a Leader Moving Backward

Figure 5.5 shows the response of robot j following a reference robot i which is moving

backward under the robust formation controller. This scenario cannot be handled by the

SBC controller since it fails when the leader’s velocity is negative. The desired formation

is F̄ d
ij =

[
100, 5π

4

]
. Robot i starts from position (0, 0) and moves backward with constant

speed vi = −17.5. Robot j starts from (150, 200) and moves backward. The formation is

achieved by the robust formation controller.

5.5.3 Control of Chain Formation

Simulations of five robots in chain formation under the dual-mode MPC algorithm are

presented in this section. The robust formation controller (5.11) is used as the terminal

controller.

Total simulation time is 50 seconds. The sample time is set to 0.5 second. Therefore,

the total time instance is 100. The prediction horizon is set to H = 6. As shown in Figure

5.6, robot 1 moves independently and robots i, i ∈ {2, 3, 4, 5}, each follows robot i− 1 to

form a chain of robots. The control action for robot 1 at different time instance is defined
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by

u1(k) =





[20 0]T , k ∈ [0, . . . , 10]

[20 0.2]T , k ∈ [11, . . . , 70]

[20 0]T , k ∈ [71, . . . , 100]

The formations for each robot-pair are F d
12 = F d

23 = F d
34 = F d

45 = [−20 0]T . The initial

conditions for each robot are given as

p1(0) = [0 0 π]T ,

p2(0) = [50 10 π]T ,

p3(0) = [100 − 10 π]T ,

p4(0) = [150 10 π]T ,

p5(0) = [200 − 10 π]T .

The control constrain set is defined as

U =
{

[V ω]T ∈ R2 : 15 ≤ V ≤ 50,−0.3 ≤ ω ≤ 0.3
}

.

Figure 5.6 shows the formation response. The linear velocity control inputs for robots

2, 3, 4, 5 are shown in Figure 5.7 and the angular velocity control inputs are shown in Figure

5.8. Clearly, all the control inputs satisfy the control constraints. As the desired formation

is achieved, the linear velocity control inputs converge to 20 m/s and the angular velocity

control inputs converge to 0 rad/s, which are the final control inputs for robot 1.

5.5.4 Control of Triangle Formation

A simulation of six robots in triangle formation is presented in this section. The edge set

is E = {(V1, V2), (V1, V3), (V2, V4), (V2, V5), (V3, V6)}. Robot 1 moves independently. The

total simulation time is 15 seconds. Again, the sample time is set to 0.5 second. Therefore,

the total time instance is 30. The prediction horizon is set to H = 6. The control action for
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robot 1 is u1(k) = [20 0]T for all the k. The set points for each robot are

F d
12 = [−20 20]T ,

F d
13 = [−20 − 10]T ,

F d
24 = [−20 10]T ,

F d
35 = [−20 − 10]T ,

F d
26 = [−20 − 10]T .

The control constrain set is defined as U =
{

[V ω]T ∈ R2 : 15 ≤ V ≤ 40,−0.2 ≤ ω ≤ 0.2
}

.

The initial conditions for each robot are given by

p1(0) = [0 0 π]T ,

p2(0) = [50 0 π]T ,

p3(0) = [70 5 π]T ,

p4(0) = [100 − 30 π]T ,

p5(0) = [100 0 π]T ,

p6(0) = [100 20 π]T .

The formation response is shown in Figure 5.9. The linear velocity control inputs for

robots 2, 3, 4, 5, 6 are shown in Figure 5.10 and the angular velocity control inputs are

shown in Figure 5.11. Clearly, all the control inputs satisfy the control constraints. As the

desired formation is achieved, the linear velocity control inputs converge to 20 m/s and the

angular velocity control inputs converge to 0 rad/s, which are the control inputs for robot 1.

5.6 Summary

In this chapter, a dual-mode MPC algorithm that allows a team of mobile robots to navigate

in formation is developed and proven to be stable. Simulations show the effectiveness of

the proposed dual-mode MPC algorithm. Additionally, we show that it is more convenient

to put the tracking and point stabilizing problems of nonholonomic robots inside the MPC
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framework. For the choice of stabilizing terminal controller, analysis show that the robust

formation controller is better than the SBC controller.
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Figure 5.4: Trajectory of a robot following a reference vehicle which moves forward, stops,

and then moves backward according to an MPC controller.
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Figure 5.5: Trajectory of a robot following a reference robot which is moving backward

according to the robust formation controller.
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Figure 5.6: Five robots in chain formation according to a dual-mode MPC with robust

formation controller as the terminal controller.
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Figure 5.7: Linear velocity control inputs of chain formation.
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Figure 5.8: Angular velocity control inputs of chain formation.
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Figure 5.9: Six robots in triangular formation according to a dual-mode MPC with robust

formation controller as the terminal controller.
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Figure 5.10: Linear velocity control inputs of triangle formation.
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Figure 5.11: Angular velocity control inputs triangle formation.
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CHAPTER 6

Fisrt-State Contractive Model Predictive

Control of Nonholonomic Mobile

Robots

6.1 Introduction

A brief introduction of nonholonomic mobile robots is given in Chapter 2, where a short

literature review about the control of nonholonomic mobile robots can also be found. Re-

cently, model predictive control has gained more and more attention in the control com-

munity. The inherent ability of MPC to handle constrained systems makes it a promising

technique for the control of nonholonomic mobile robots.

In this chapter, we proposed a novel MPC approach for the control of nonholonomic

mobile robots. From the literature, most stabilizing MPC methods address stability by

adding terminal state penalties in the performance index and/or imposing constraints on

the terminal state at the end of the prediction horizon. However, the proposed MPC al-

gorithm guarantees its stability by adding a contractive constraint on the first state at the

beginning of the prediction horizon. More specifically, the contributions of this chapter are

threefold: (i) The exponential stability of our MPC controller is guaranteed by adding a
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first-state contractive constraint. This means that the convergence is faster and no terminal

region calculation is required; (ii) tracking a trajectory moving backward is no longer a

problem under our MPC controller and (iii), the proposed MPC controller has simultane-

ous tracking and point stabilization capability, in contrast to most of the existing controllers

in the literature.

The rest of the chapter is organized as follows. Section 6.2 introduces the robot kine-

matic model and the trajectory tracking and point stabilization problems of a nonholonomic

mobile robot. A first-state contractive MPC algorithm is proposed in Section 6.3. Stabil-

ity results of the proposed algorithm are found in Section 6.4. In Section 6.5, simulation

results are provided to show the effectiveness of the method. Finally, summary is given in

Section 6.6.

6.2 Preliminaries

This chapter deals with the problem of designing control laws for the motion control of

nonholonomic mobile robots. In this section, a brief introduction of the two fundamental

classes of problems, trajectory tracking and point stabilization, are given.

6.2.1 Kinematic Model

Consider the planar motion of mobile robots under the nonholonomic constraint of pure

rolling and non-slipping, the kinematic model has been given in Section 2.1.1. To assist

the reader, the model is listed again as follows




ẋ

ẏ

θ̇




=




cos θ 0

sin θ 0

0 1







v

ω


 , (6.1)
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where (x, y) ∈ R2 denotes the position of the robot in a Cartesian coordinate frame, θ ∈
(−π, π] represents the orientation of the robot with respect to the positive X axis, and

v ∈ V ⊆ R and ω ∈ W ⊆ R are the control inputs representing linear and angular

velocities, respectively.

6.2.2 Trajectory Tracking

Let a triplet zc = [x y θ]T describe the position and the orientation of a mobile robot.

The reference trajectories can be described by a virtual reference robot with a state vector

zr = [xr yr θr]
T , an input vector ur = [vr ωr]

T and the kinematic model (see Figure 6.1)

żr =




ẋr

ẏr

θ̇r




=




cos θr 0

sin θr 0

0 1




ur. (6.2)

Then the trajectory tracking problem can be defined [10].

Definition 6.1 The trajectory tracking problem, under the assumption that the virtual ref-

erence robot is not at rest (vr = ωr = 0) when t → +∞, is to find a feedback control law

u = [v ω]T , such that

lim
t→∞

(zr − zc) = 0,

with any initial robot posture zc(0).

By transforming the reference state zr in a local coordinate system attached to the

tracking robot, an error state ze can be defined [16]

ze :=




xe

ye

θe




=




cos θ sin θ 0

− sin θ cos θ 0

0 0 1




(zr − zc) . (6.3)
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Figure 6.1: Trajectory tracking.

Taking the derivative of (6.3) and rearranging with (6.1), (6.2), the error model becomes

ẋe = ωye − v + vr cos θe,

ẏe = −ωxe + vr sin θe,

θ̇e = ωr − ω. (6.4)

Let us define ue,

ue :=




u1

u2


 =



−v + vr cos θe

ωr − ω


 , (6.5)

then the error model (6.4) can be rewritten as follows

że =




0 ω 0

−ω 0 0

0 0 0




ze +




0

vr sin θe

0




+




1 0

0 0

0 1




ue. (6.6)

By linearizing system (6.6) about the equilibrium point (ze = 0, ue = 0), we obtain

że =




0 ωr 0

−ωr 0 vr

0 0 0




ze +




1 0

0 0

0 1




ue. (6.7)

The controllability of system (6.7) can be easily checked. However, when the virtual refer-

ence robot stops (vr = ωr = 0), the controllable property is lost.

91



6.2.3 Point Stabilization

For the point stabilization problem, one can have the following definition.

Definition 6.2 Given an arbitrary constant reference position and orientation zd = [xd yd θd]
T ,

the point stabilization problem is to find a feedback control law u = [v ω]T , such that

lim
t→∞

(zd − zc) = 0,

with any initial robot posture zc(0).

Without loss of generality, we use zd = [0 0 0]T as the constant reference posture

(since by coordinate transforming, any arbitrary posture can be transformed to [0 0 0]T ).

Then the problem becomes to find a feedback control law which drives the system (6.1)

back to the origin aligning with the X axis.

It is a well-known result that a smooth time-invariant feedback control law does not

exist for the point stabilization problem [5]. However, with the analysis in Section 6.2.1,

system (6.1) is still controllable. The price is that non-smooth or time-variant control laws

have to be applied.

Consider a Cartesian to polar coordinate transformation [48] (see Figure 6.2), a polar

state zq = [l φ α]T can be defined

l =
√

x2 + y2

φ = arctan2(−y,−x)

α = φ− θ (6.8)

Then the kinematic model (6.1) becomes

l̇ = −v cos α

φ̇ =
v sin α

l

α̇ = −ω +
v sin α

l
(6.9)

Note, when l = 0, which means that robot reaches the origin, the new kinematic model

is not defined.
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Figure 6.2: Coordinate transformation.

6.3 First-State Contractive MPC

Without considering disturbances and model uncertainties, systems like (6.4) and (6.9) can

be generally expressed by the following nonlinear set of differential equations

ż(t) = h(z(t),u(t)), z(0) = z0, (6.10)

with a state vector z(t) ∈ Rm and an input vector u(t) ∈ Rn, m,n ∈ N. Function

h : Rm × Rn → Rm is assumed to be continuous.

Since usually the control system is implemented on a computer in discrete time, (6.10)

can be converted into the following set of difference equations

z(k + 1) = f(z(k),u(k)), z(0) = z0, (6.11)

with a state vector z(k) ∈ Z and an input vector u(k) ∈ U , k ∈ Z∗. Z ⊂ Rm is the

state constraints which contains the origin in its interior. U ⊂ Rn is the input constraints

which is a compact subset of Rn containing the origin in its interior. Usually, we have

U = {u ∈ Rn : umin ≤ u ≤ umax}. umin and umax are known constants in Rn. Function
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f : Rm × Rn → Rm is assumed to be continuous.

The control goal is to find u(k) which drives the system (6.11) toward the equilibrium

(z(k) = 0 and u(k) = 0).

To obtain the current control u(k) at time tk, where k is a nonnegative integer (k ∈ Z∗),
a finite-horizon optimal control problem

min
u

JH(z, k,u),

subject to: z(k + 1) = f(z(k),u(k)),

z(k) ∈ Z,

u(k) ∈ U , (6.12)

must be solved online for an MPC algorithm. The performance index JH(z, k,u) is defined

as

JH(z, k,u) :=
H∑

i=1

L(z(k + i; k),u(k + i− 1; k)), (6.13)

where H ∈ N is the horizon length (for simplicity, the prediction horizon equals the control

horizon in this paper). The incremental cost is defined as

L(z,u) := ‖z‖2
Q + ‖u‖2

R, (6.14)

where ‖z‖Q and ‖u‖R denote the weighted 2-norm, which are defined as ‖z‖2
Q := zT Qz

and ‖u‖2
R := uT Ru. Q and R are positive definite symmetric matrices of appropriate

dimensions.

Since a finite horizon is used, the controller found in (6.12) is not guaranteed to be sta-

ble. Many researchers have contributed to the stability of nonlinear MPC with some impor-

tant methods. In [102], authors propose that by adding a terminal state equality constraint

z(k + H) = 0 to the optimal control problem, the stability can be guaranteed. However,

strong assumptions of the optimal control problem are required and the computational load

is huge in the nonlinear case. In order to overcome those difficulties, a terminal state in-

equality constraint z(k + H) ∈ Ω can take the place of terminal state equality constraint
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[103]. Ω, a subset of Rm containing the origin in its interior, is called terminal region. A

terminal controller is switched in if the states is inside the terminal region. This method is

denoted as dual-mode MPC. A similar approach, quasi-infinite MPC, is proposed in [31].

In addition to the terminal inequality constraint, a terminal penalty g(z(k+H)) is added to

the performance index to assure the stability. A terminal controller is still required, but it is

never applied to the system in the quasi-infinite MPC scheme. Though the computational

load can be reduced, the difficulty of dual-mode MPC and quasi-infinite MPC algorithms

lies in calculating the terminal region (upper bounded by the region of attraction of the

terminal controller). An MPC scheme without terminal region requirements is proposed

by authors in [105]. A terminal contractive constraint g(z(k + H)) ≤ ρg(z(k)), where

ρ ∈ (0, 1) is called contractive parameter, takes the place of terminal inequality con-

straint. Global exponential stability of the closed-loop system can be guaranteed. See [89]

for a more detailed discussion on stability of MPC.

To achieve stability, the core idea behind the methods mentioned above is to add ter-

minal state penalties in the performance index and impose constraints on the terminal

state at the end of the prediction horizon. Therefore, those methods can be denoted as

terminal-state constrained MPC (TSC-MPC). However, in the implementation of most

MPC schemes, only the first control of the control sequence yield by optimization is ap-

plied to the plant at each sampling instance. All the other controls are discarded. Only the

first state at the beginning of the prediction horizon is directly affected by this implemen-

tation.

Motivated by this observation and the contractive MPC scheme developed in [105], a

new MPC algorithm is proposed here. To be specific, we obtain the current control u(k) at
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time tk by solving the following finite-horizon optimal control problem online

min
u

JH(z, k,u),

subject to: z(k + 1) = f(z(k),u(k)),

z(k) ∈ Z,

u(k) ∈ U ,

‖z(k + 1)‖P̂ ≤ ρ‖z(k)‖P̂ , (6.15)

where JH(z, k,u) is defined in (6.13) and (6.14). P̂ is a positive definite symmetric matrix

and ρ ∈ (0, 1).

Note, the last inequality constraint in (6.15) can be called first-state contractive con-

straint. This means the first state at the beginning of the prediction horizon, z(k + 1) is

contracted in norm with respect to the current state, z(k). Therefore, the proposed MPC

algorithm can be denoted as first-state contractive MPC (FSC-MPC). The user adjustable

parameter ρ is called contractive parameter, which addresses the contraction rate.

The FSC-MPC controller can be implemented as follows.

FSC-MPC Algorithm

Data: prediction horizon H ∈ N; sampling time δT ∈ R+; weights Q, R, P̂ > 0;

constraints umin, umax ∈ Rm; contractive parameter ρ ∈ (0, 1); k ∈ Z∗.
Step 0: set k = 0; set initial control prediction û(i; k) = 0, i ∈ [1, . . . , H − 1].

Step 1: measure the states z(k) at time tk; with control prediction û(i; k), solve the

optimal control problem (6.15) and obtain a control sequence u∗(i; k).

Step 2: apply the first control u∗(1; k) in the control sequence u∗(i; k) to system (6.11)

for the time interval [tk, tk+1], where tk+1 = tk + δT .

Step 3: update the control prediction as follows

û(i; k) =





u∗(i + 1; k) i ∈ [1, . . . , H − 2]

u∗(i; k) i = H − 1
;

set k = k + 1; go back to Step 1.

96



Note, in Step 1, an assumption is that for all k ∈ Z∗, a feasible solution of the opti-

mal control problem (6.15), satisfying all the constraints, always exists. However, global

optimal solution is not strictly required here. Any feasible or local optimal solutions is

acceptable. This approach might compromise the performance, but the stability property

of the algorithm will not be affected.

6.4 Stability Results

In this section, the stability of FSC-MPC algorithm will be proven. Before we give the

mean results, let us make the following assumptions.

Assumption 6.1 There exists a constant β ∈ (0, ∞) such that for all z(k) ∈ Bβ :=

{z ∈ Z|‖z‖P̂ ≤ β}, a contractive parameter ρ ∈ (0, 1) can be found so that at time

tk, a feasible solution of the optimal control problem (6.15), satisfying all the constraints,

always exists for all k ∈ Z∗.

Note, Assumption 6.1 means that if the optimal control problem is feasible at time t0,

then all the subsequent optimal control problems are feasible. Since the optimal control

problem is feasible at time t0, state z(0) ∈ Bβ . By solving the optimal control problem,

we have ‖z(1)‖P̂ ≤ ρ‖z(0)‖P̂ , which means z(1) ∈ Bρβ ⊂ Bβ . Therefore, according

to Assumption 6.1, the optimal control problem is again feasible at time t1. By repeating

this, we can have z(k) ∈ Bρkβ ⊂ Bβ . This concludes that the optimal control problem is

feasible for all k ∈ Z∗.

Assumption 6.2 For all t ∈ [tk, tk+1], k ∈ Z∗, there exists a constant κ ∈ (0, ∞), such

that the transient state, z(t), satisfies ‖z(t)‖P̂ ≤ κ‖z(k)‖P̂ .

Note, Assumption 6.2 means that systems with finite escape time are not under consid-

eration. Since u is constrained, this assumption is always satisfied.
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Theorem 6.1 Suppose that the optimal control problem is feasible at time t0 and Assump-

tions 6.1 and 6.2 are satisfied. The FSC-MPC algorithm described in Section 6.3 for system

(6.10), (6.11) is exponentially stable in the sense that the state trajectory of the closed-loop

system satisfies the following inequality

‖z(t)‖P̂ ≤ κ‖z(0)‖P̂ e
− (1−ρ)

δT
(t−t0)

, (6.16)

where δT is the sampling time.

Proof : Since the optimal control problem is feasible at time t0, from Assumption 6.1,

the optimal control problem is feasible at time tk, k ∈ Z∗. Therefore, we have

‖z(k)‖P̂ ≤ ρ‖z(k − 1)‖P̂ ≤ · · · ≤ ρk‖z(0)‖P̂ . (6.17)

Now with Assumption 6.2 and (6.17), z(t) satisfies the following inequality

‖z(t)‖P̂ ≤ κρk‖z(0)‖P̂ , (6.18)

where t ∈ [tk, tk+1], for all k ∈ Z∗.
Since ρ ∈ (0, 1), we have e(ρ−1) − ρ ≥ 0, which means e(ρ−1)k ≥ ρk ≥ 0, for all

k ∈ Z∗. Inequality (6.18) can be rewritten as follows

‖z(t)‖P̂ ≤ κ‖z(0)‖P̂ e−(1−ρ)k. (6.19)

Since k = (tk− t0)/δT and (t− t0)/δT ≤ (tk− t0)/δT = k, for all t ∈ [t0, tk], we have

e−(1−ρ)k ≤ e
− (1−ρ)

δT
(t−t0) (6.20)

Therefore, from inequalities (6.19) and (6.20), we conclude

‖z(t)‖P̂ ≤ κ‖z(0)‖P̂ e
− (1−ρ)

δT
(t−t0)

.

According to [135], the closed-loop system is exponentially stable, so does the FSC-MPC

algorithm. ¥
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6.5 Simulation Results

The effectiveness of the FSC-MPC algorithm presented in Section 6.3 is investigated by

numerical simulations. In the figures, each robot is depicted by an arrow within a circle

(dotted circle for virtual reference robot). The orientation of the robot is shown by the

orientation of the arrow.

The units used in the simulations are, for position, meter (m), for orientation, ra-

dian (rad), for linear velocity, meter/second (m/s), and for angular velocity, radian/second

(rad/s).

6.5.1 Trajectory Tracking

In this section, the simulation results of our FSC-MPC controller, Kanayama’s controller

proposed in [16] and Samson’s controller proposed in [10] are compared. Specifically, the

controllers proposed in [16] and [10] are



v

ω


 =




vr cos θe + Kxxe

ωr + vr(Kyye + Kθ sin θe)


 , (6.21)




v

ω


 =




vr cos θe + K1xe

ωr + K2vr
sin θe

θe
+ K3θe


 , (6.22)

respectively.

The reference trajectory starts from posture zr(0) = [0 0 0]T with constant control

inputs [vr ωr]
T = [1 0]T . In addition, we assume that two perturbations occur at time 10 s

and 20 s which change the orientation of the virtual reference robot from 0 rad to π/2 rad

and from π/2 rad back to 0 rad, respectively. Total simulation time is 30 s.

The initial condition of tracking robot is zc(0) = [0 3 0]T . Controller parameters are

selected as follows. For Kanayama’s controller, Kx = 1, Ky = 4 and Kθ = 4. For

Samson’s controller, K1 = 1, K2 = 4 and K3 = 4. Sampling time for these two controllers
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is δT = 0.1 s. For FSC-MPC controller, H = 6, ρ = 0.95,

Q =




5 0 0

0 5 0

0 0 1




, R =




1 0

0 1


 , P̂ =




1 0 0

0 1 0

0 0 1




.

Sampling time is δT = 0.5 s. Control input constraints are

−4(m/s) ≤ v ≤ 4(m/s), −0.8(rad/s) ≤ ω ≤ 0.8(rad/s).

The system responses of the three controllers are shown in Figure 6.3. Control inputs

and errors of each controller are illustrated in Figure 6.4 and 6.5. The FSC-MPC controller

successfully stabilizes all the tracking errors to 0. Noticing the high peaks on control inputs

of Kanayama’s controller and Samson’s controller in Figure 6.4, the FSC-MPC controller

exhibits a comparable performance while requires much less control energy.

Specifically, we use the integral of norm squared actual control inputs (
∑k

1 ‖u‖2δT ) as

a metric to evaluate the control energy. The result is shown in Table 6.1.

Kanayama’s Controller 596.1606

Samson’s Controller 621.0847

FSC-MPC Controller 87.5021

Table 6.1: The integral of norm squared actual control inputs for tracking.

Note, in Figure 6.5 the xθ control errors of Kanayama and Samson controllers are much

larger than that of our FSC-MPC controller during the time t = [0, 5]. The reason is that

with larger angular velocity inputs of Kanayama and Samson controllers during that time

(see Figure 6.4), the robot rotates and points to the reference robot much faster than the

robot under our FSC-MPC controller (see Figure 6.3). Since we express the tracking error

in a local frame work attached to the tracking vehicle (see equation 6.3), the error is related

to orientation of the tracking robot.
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6.5.2 Point Stabilization

In this section, the simulation results of our FSC-MPC controller and Aicardi’s controller

proposed in [48] are compared. Specifically, the controllers proposed in [48] is



v

ω


 =




K1e cos α

k2α + K1
cos α sin α

α
(α + K3φ)


 (6.23)

Three initial robot postures are used in the simulation. They are

zc(0) =








1

0

π/2




,




−0.5

0.867

π/2




,




−0.5

−0.867

π/2








.

The final posture is zd = [0 0 0]T . Controller parameters are selected as follows. For

Aicardi’s controller, K1 = 3, K2 = 6 and K3 = 1. Sampling time is δT = 0.05 s and the

simulation lasts 4 s. For FSC-MPC controller, controller parameters, sampling time and

control input constraints are the same as those in Section 6.5.1. Total simulation time is 10

s.

The trajectories generated by Aicardi’s controller and our FSC-MPC controller from

different initial postures are shown in Figure 6.6. Control inputs and errors for different

initial postures are illustrated in Figures 6.7-6.12. The FSC-MPC controller successfully

stabilizes the robot at the desired final posture.

The control energy expended by each controller from different initial postures are

shown in Table 6.2. The FSC-MPC controller requires much less control energy in com-

parison with the Aicardi’s controller.

6.5.3 Simultaneous Tracking and Stabilization

Two simulations are illustrated in this section which show that our FSC-MPC controller

has the ability of simultaneous tracking and stabilization. Usually, simultaneous tracking

and stabilization is not considered under a single controller approach. Most of the existing
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Initial Posture Aicardi’s Controller FSC-MPC Controller

[1 0 π/2]T 1772.7122 10.4999

[−0.5 0.867 π/2]T 586.2641 6.1507

[−0.5 − 0.867 π/2]T 69.7075 3.7015

Table 6.2: The integral of norm squared actual control inputs for stabilization.

controllers for trajectory tracking of nonholonomic mobile robots will fail when the virtual

reference robot stops or moves backward. However, in realistic scenarios, we do need to

handle those situations.

In Case 1, the virtual reference robot starts moving backward from posture zr(0) =

[0 0 π/2]T with constant control inputs [vr ωr]
T = [−1 0.1]T . Then, it stops at time

t = 5 s. The initial condition of the tracking robot is zc(0) = [10 10 π/2]T . We compare

our FSC-MPC controller with Samson’s controller (6.22).

Controller parameters, sampling time, simulation time and control input constraints are

the same as those in Section 6.5.1.

The results are shown in Figures 6.13-6.15. The FSC-MPC controller successfully sta-

bilizes the tracking robot to the final posture where the reference robot stops. Meanwhile,

Samson’s controller experiences some extreme maneuvers and only stops the tracking robot

to a neighbor position.

In Case 2, the virtual reference robot starts from posture zr(0) = [0 0 0]T with

constant control inputs [vr ωr]
T = [1 0]T . Then, it stops at time t = 15 s. Finally, at time

t = 20 s, it starts to move backward with constant control inputs [vr ωr]
T = [−1 − 0.1]T .

This scenario could happen when the reference trajectory is generated to avoid obstacles.

The initial condition of tracking robot is zc(0) = [0 3 0]T .

Controller parameters, sampling time and simulation time are the same as those in

Section 6.5.1 except for the control input constraints

−5(m/s) ≤ v ≤ 5(m/s), −0.8(rad/s) ≤ ω ≤ 0.8(rad/s).
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The results are shown in Figures 6.16 and 6.17. We can see during time t ∈ [15, 20],

the FSC-MPC controller does stop the tracking robot (v = 0, ω = 0). Tracking errors

converge to zero.

6.6 Summary

In this chapter, a first-state contractive model predictive control (FSC-MPC) algorithm is

developed for the trajectory tracking and point stabilization problems of nonholonomic

mobile robots. Stability of the proposed MPC scheme is guaranteed by adding a first-state

contractive constraint. Simulation results show that the proposed FSC-MPC controller can

generate satisfactory system responses while requires much less control energy in compar-

ison with other well-known controllers. In addition, the proposed FSC-MPC algorithm has

the ability of simultaneous tracking and stabilization, in contrast to controllers available in

the literature.

For all simulations, an initial feasible solution is required for the proposed FSC-MPC

controller. Like most of the MPC schemes, a trial-and-error approach is used. The choice

of the contractive parameter is critical for the initial feasible solution. A value close to 1

is preferred. However, a small value will give faster convergence rate when the system

approaches the equilibrium point. As part of our future work, we are investigating adaptive

or time-varying schemes of the contractive parameter, and experimental verifications of the

FSC-MPC on the MARHES [136] testbed.
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Figure 6.3: Tracking trajectories of three controllers. Dashed: Reference. Solid: FSC-

MPC. Dotted: Samson. Dash-dot: Kanayama.
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Figure 6.4: Control inputs of three controllers.
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Figure 6.5: Control errors of three controllers.
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Figure 6.7: Control inputs of two controllers with [1 0 π/2]T as initial posture.
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Figure 6.8: Control errors of two controllers with [1 0 π/2]T as initial posture.
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Figure 6.9: Control inputs of two controllers with [−0.5 0.867 π/2]T as initial posture.
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Figure 6.10: Control errors of two controllers with [−0.5 0.867 π/2]T as initial posture.
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Figure 6.11: Control inputs of two controllers with [−0.5 −0.867 π/2]T as initial posture.
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Figure 6.12: Control errors of two controllers with [−0.5 −0.867 π/2]T as initial posture.
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Figure 6.14: Case 1, control inputs of two controllers.
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Figure 6.15: Case 1, control errors of two controllers.
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Figure 6.17: Case 2, control inputs and errors.
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CHAPTER 7

FSC-MPC Formation Control

In this chapter, we consider using the FSC-MPC algorithm proposed in Chapter 6 to solve

the problem of controlling a team of mobile robots with nonholonomic constraints to

leader-following formations. Since the FSC-MPC algorithm has simultaneous tracking

and point stabilization capability, we expect that it can keep the formation in more sophis-

ticated real world scenarios. As before, the effectiveness of the method is investigated by

numerical simulations.

7.1 Formation Error

Let a triplet pi = [xi yi θi]
T describe the position and the orientation of the ith mobile

robot. A leader-following formation configuration F d
ij between robot i and j can be defined

by the desired relative distances ∆xd
ij and ∆yd

ij in a local coordinate frame attached to the

leader robot i, where F d
ij =

[
∆xd

ij ∆yd
ij

]T .

However, to directly use the results in Chapter 6, we need to convert the formation

control problem to a trajectory tracking problem. Let us define a reference robot, whose

119



position and orientation are as follows

xr = xi + l cos(η),

yr = yi + l sin(η), (7.1)

θr = θi,

where

l =
√

∆xd
ij

2
+ ∆yd

ij
2
,

η = arctan2(∆yd
ij, ∆xd

ij) + θi. (7.2)

Now we can define the formation error for the jth robot, which is a tracking error

defined by

xe
j =




xr − xj

yr − yj

θr − θj




. (7.3)

Figure 7.1 shows this conversion.

7.2 FSC-MPC Formation Controller

Let us define the optimal control problem for robot j, we have

min
u

JH
j (xe

j , k,uj),

subject to: xe
j(k + 1) = f(xe

j(k),uj(k)),

xe
j(k) ∈ X ,

uj(k) ∈ U ,

‖xe
j(k + 1)‖P̂ ≤ ρ‖xe

j(k)‖P̂ , (7.4)

where JH
j (xe

j , k,uj) is defined as

JH
j (xe

j , k,uj) :=
H∑

i=1

L(xe
j(k + i; k),uj(k + i− 1; k)), (7.5)
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Figure 7.1: Convert formation control to trajectory tracking.

where

L(xe
j ,uj) := ‖xe

j‖2
Q + ‖uj‖2

R, (7.6)

The FSC-MPC formation controller can be implemented as follows.

Data: prediction horizon H ∈ N; sampling time δT ∈ R+; weights Q, R, P̂ > 0;

constraints umin, umax ∈ Rm; contractive parameter ρ ∈ (0, 1); k ∈ Z∗; desired formation

F d
ij .

Step 0: set k = 0; set initial control prediction ûi(s; k) = ûj(s; k) = 0, s ∈ [1, . . . , H−
1].

Step 1: receive leader states pi(k), control prediction ûi(s; k) and measure the states

pj(k) at time tk; with control prediction ûi(s; k) and ûj(s; k), desired formation F d
ij and

relations (7.1), (7.2) and (7.3), solve the optimal control problem (7.4) and obtain a control

sequence u∗j(s; k).

Step 2: apply the first control u∗j(1; k) in the control sequence u∗j(s; k) to robot j for

the time interval [tk, tk+1], where tk+1 = tk + δT .
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Step 3: update the control prediction as follows

ûj(s; k) =





u∗j(s + 1; k) s ∈ [1, . . . , H − 2]

u∗j(s; k) s = H − 1
;

set k = k + 1; go back to Step 1.

7.3 Simulation Results

The effectiveness of the FSC-MPC formation control algorithm presented in Section 7.2 is

investigated by numerical simulations. In the figures, each robot is depicted by an arrow

within a circle (dotted circle for virtual reference robot). The orientation of the robot is

shown by the orientation of the arrow.

The units used in the simulations are, for position, meter (m), for orientation, ra-

dian (rad), for linear velocity, meter/second (m/s), and for angular velocity, radian/second

(rad/s).

7.3.1 Reconfiguration

In this simulation, we consider a formation reconfiguration scenario. We assume that the

leader robot has the ability to sense the environment and communicate with each robots in

the team. During the navigation, the leader detects a wall and sends commands to follower

robots to change the formation to a line such that they could pass a small gate. After all the

robots pass the gate, the leader sends commands to resume the previous formation.

The leader robot starts moving from posture p1(0) = [0 0 0]T with constant control

inputs [v1 ω1]
T = [1 0]T . Robot 2 and 3 start from p2(0) = [−8 − 1 π/4]T and p3(0) =

[−15 − 3 − π/4]T . The desired formation is F d
12 = [−5 2]T and F d

23 = [−5 − 4]T . At

time t = 15 s, the leader detects the wall and sends commands to team robots to change

to a new formation F d
12 = [−5 0]T and F d

23 = [−5 0]T , which is a line formations. At
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time t = 30 s, as all the robots have passed the gate, the leader sends commands again and

changes the formation back the original one F d
12 = [−5 2]T and F d

23 = [−5 − 4]T .

The control parameters for the FSC-MPC formation controller are H = 3, ρ = 0.999,

Q =




5 0 0

0 5 0

0 0 1




, R =




1 0

0 1


 , P̂ =




1 0 0

0 1 0

0 0 1




.

Control input constraints are

−4(m/s) ≤ v ≤ 4(m/s), −0.5(rad/s) ≤ ω ≤ 0.5(rad/s).

Sampling time is δT = 0.5 s and the total simulation time is 50 s.

Figure 7.4 shows the trajectories of the robot team. We can see that the triangle for-

mation is kept before and after the change to a line formation and the line formation is

achieved when the team pass the gate.

Figure 7.5 and 7.6 show the control inputs and the relative position of robot 2. From

7.6, we can see that the actual relative position of robot 2 converges to the desired formation

F d
12 = [−5 2]T before t = 15 s and after t = 30 s and the desired formation F d

12 = [−5 0]T

during time [15 30]. From 7.5 we can see that, when the formation is achieved, the control

inputs converge to [1 0]T , which are the velocities of the leader robot.

Figure 7.7 and 7.8 show the control inputs and the relative position of robot 3. From

Figure 7.8, we can see that the actual relative position of robot 3 converges to the desired

formation F d
23 = [−5 − 4]T before t = 15 s and after t = 30 s and the desired formation

F d
23 = [−5 0]T during time [15 30]. Figure 7.7 shows that, when the formation is achieved,

the control inputs converge to [1 0]T , which are the velocities of the leader robot. However,

robot 3 requires more control energy than robot 2 does by comparing Figure 7.5 and 7.7.
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7.3.2 Obstacle Avoidance

In this simulation, we consider a obstacle avoidance scenario. We assume that the leader

robot has the ability to sense the environment. During navigation, the leader robot detects

an obstacle. It stops and then moves backward, stops and moves forward for several times

to make sure the whole team will not collide with the obstacle. Finally, the team moves

forward again in formation.

The leader robot starts moving from posture p1(0) = [0 0 0]T . The leader robot’s

velocity inputs are




v1

ω1


 =





[1 0]T t = [0 15],

[0 0]T t = [15.5 20],

[−1 − 0.15]T t = [20.5 25],

[0 0]T t = [25.5 30],

[1 0.15]T t = [30.5 35],

[0 0]T t = [35.5 39.5],

[1 0]T t = 40,

[−1 − 0.15]T t = [40.5 45],

[0 0]T t = [45.5 50],

[1 0]T t = [50 60],

Robot 2 and 3 start from p2(0) = [−8 − 1 π/4]T and p3(0) = [−15 − 3 − π/4]T .

The desired formation is F d
12 = [−5 2]T and F d

23 = [−5 − 4]T .

Control parameters for the FSC-MPC formation controller are, H = 4, ρ = 0.999,

Q =




10 0 0

0 5 0

0 0 1




, R =




1 0

0 1


 , P̂ =




1 0 0

0 1 0

0 0 0




.

Control input constraints are

−4(m/s) ≤ v ≤ 4(m/s), −0.5(rad/s) ≤ ω ≤ 0.5(rad/s).
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Sampling time is δT = 0.5 s and the total simulation time is 60 s.

Figure 7.9 shows the trajectories of the robot team. We can see that the triangle forma-

tion is kept.

Figure 7.10 and 7.11 depict the control inputs and the relative position of robot 2. From

Figure 7.11, we can see that the actual relative position of robot 2 converges to the desired

formation F d
12 = [−5 2]T . Figure 7.10 shows that, when the formation is achieved, the

control inputs converge to the velocities of the leader robot.

Figure 7.12 and 7.13 show the control inputs and the relative position of robot 3. From

7.13, we can see that the actual relative position of robot 3 converges to the desired for-

mation F d
23 = [−5 − 4]T . However, by comparing Figure 7.10 and 7.12, we can see that

robot 3 requires more control energy than robot 2.

7.3.3 Discussion

From the simulation results in Section 7.3, we notice a problem, the lower level number the

robot has in a formation, the more control energy it needs to keep the formation.

Here the level number can be defined as

• in a formation which has N robots, if robot l is the leader, than its level number is 1,

• for robot i, i ∈ [1 · · ·N ]\l, if it has a formation relationship with leader l, F d
li , then

robot i has a level number 2,

• for robot j, if it has a formation relationship with robot i, which has a level of n, then

robot j’s level number is n + 1,

• the bigger the level number is, the lower level rank it stands for.

If we redo the obstacle avoidance simulation with five robots, where the formations are

defined as F d
12 = [−5 2]T , F d

23 = [−5 − 4]T , F d
35 = [−5 2]T and F d

14 = [−5 − 3]T and

the levels for robots 1, 2, 3, 4, and 5 are 1, 2, 3, 2, and 4, respectively (see Figure 7.2), from
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the results in Figure 7.14, it is very clear that robots 3 and 5 requires more control energy

than robot 2 and 4.

2
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4

5

3

1

2

3

4

2

Figure 7.2: Formation level of five robots.

This problem can be explained with the help of Figure 7.3. Three robots have a line

formation, which is defined by F d
12 = F d

23 = [d 0]T . Now the leader robot 1 changes its

orientation with a small angle θ. To keep the formation, robot 2 at least needs to travel

a distance of dθ. For robot 3, that number will be 2dθ. This reveals that, in a formation,

robots with lower level numbers need to travel more distance (which means more control

energy) to keep the formation. Therefore, an advise from this discussion is that, for a robot

team, too many levels in a formation will deteriorate the formation control quality.

1

2

3

θ

Figure 7.3: Position change in formation.
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7.4 Summary

In this chapter, we extend the results of Chapter 6 to formation control. To directly apply

the results, the formation control problem is firstly converted to a trajectory tracking prob-

lem. Then a FSC-MPC formation controller is constructed. Two real world sophisticated

scenarios are simulated and the FSC-MPC formation controller shows its effectiveness.

In addition, a discussion about the formation level to which the formation control quality

relates, is given.
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Figure 7.4: Reconfiguration during navigation.
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Figure 7.5: Control inputs of Robot 2.
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Figure 7.6: Relative position of Robot 2.
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Figure 7.7: Control inputs of Robot 3.
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Figure 7.8: Relative position of Robot 3.
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Figure 7.9: Obstacle avoidance during navigation - three robots.
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Figure 7.10: Control inputs of Robot 2.
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Figure 7.11: Relative position of Robot 2.
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Figure 7.12: Control inputs of Robot 3.
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Figure 7.13: Relative position of Robot 3.
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Figure 7.14: Obstacle avoidance during navigation - five robots.
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CHAPTER 8

Conclusions

8.1 Summary of Main Results

In this dissertation, two problems are addressed. The first problem is stabilizing a group of

nonholonomic mobile robots into formations. The second problem is the trajectory tracking

and point stabilization problem of nonholonomic mobile robots. Three control algorithms

are proposed step by step each solving some the drawbacks of the preceding algorithms. As

pointed out in Chapter 1 and 6, most of the controllers in the literature will fail when face a

trajectory/leader moving backward or a stationary trajectory/leader. The first algorithm we

proposed is a robust nonlinear formation controller which can handle the situation of leader

moving backward. However, it still will fail when the leader stops. In addition, control

input constraints are not considered. The second algorithm is a dual-mode MPC controller

which explicitly considers the constraints. The third algorithm is a first-state-contractive

MPC (FSC-MPC) controller with the simultaneous tracking and stabilization capability.

With this controller, we solve the problem of handling a trajectory/leader moving backward

or a stationary trajectory/leader.

In Chapter 4, we consider the formation control problem of UAVs by Lyapunov-based

nonlinear controller design techniques. A two-layered hierarchical control scheme is pre-

sented. At the low-layer, we assume that an autopilot operating in holding mode controls
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the UAV dynamics. With this assumption, a simplified nonholonomic model is constructed

for the higher layer formation controller design. The formation is considered in leader-

following relation and we use the relative distance and bearing angle between a UAV and

its designated leader to define the control law. Using dynamic extension, three different

controllers are presented. While the first two controllers, a feedback linearization con-

troller and a sliding mode controller, assume full states information of the leader, the third

robust controller only requires the knowledge of leader’s position. By eliminating the re-

quirement of leader’s velocity and acceleration information, the robust controller reduces

the inter-vehicle communication overhead and increases the reliability of the overall sys-

tem. Stability properties of the controllers are proven using Lyapunov theory. Simulations

validate the performance of the algorithms.

The formation control problem is addressed again in the context of MPC in Chapter 5.

We propose that it is more convenient to put the vehicles’s nonholonomic constraints inside

the MPC framework. The formation is defined with graph theory. Since a finite horizon

optimal control problem is solved in a generic MPC algorithm, the control obtained is not

guaranteed to be stable. We proposed a dual-mode MPC formation controller. The stability

of the formation is guaranteed by constraining the terminal state to a terminal region and

switching to a stabilizing terminal controller at the boundary of the terminal region. When

the state enters the terminal region, it will be driven to the origin according to the stability

properties of the terminal controller. The stability of the system is guaranteed if the system,

starting from a state outside of the terminal region, will reach the boundary of the terminal

region within finite time under the dual-mode MPC algorithm. This result is proven by

contradiction and the monotonicity property of the performance index function. With this

dual-mode MPC implementation, stability is achieved while feasibility is relaxed. For the

choice of stabilizing terminal controller, a comparison between an input-output feedback

linearization controller and a robust formation controller is given.

The problem of trajectory tracking and point stabilization of nonholonomic mobile
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robots is addressed in Chapter 6. We proposed a novel FSC-MPC approach for the con-

trol of nonholonomic mobile robots. Different from most stabilizing MPC methods, which

address stability by adding terminal state penalties in the performance index and/or impos-

ing constraints on the terminal state at the end of the prediction horizon, the stability of

the FSC-MPC algorithm is guarantees by adding a contractive constraint on the first state

at the beginning of the prediction horizon. With this first-state contractive constraint, the

proposed FSC-MPC algorithm is exponentially stable. The convergence is faster and no ter-

minal region calculation is required. Tracking a trajectory moving backward is no longer a

problem under this FSC-MPC controller. Furthermore, the proposed FSC-MPC controller

has simultaneous tracking and point stabilization capability. Simulations also show that, the

FSC-MPC controller exhibits a comparable performance while requires much less control

energy in comparison with other controllers available in the literature.

8.2 Future Work

Distributed control algorithms are highly desired in multi-vehicle coordination. How to

formulate the MPC algorithm in a distributed way, how to guarantee the stability of a

local system with limited information from neighboring systems, and how to generate a

comparable result with a centralized algorithm are problems that need further exploration.

The current work in this report only focuses on robots’ kinematics. In real world ap-

plications, the dynamics of the mobile robots cannot be ignored. Assuming a lower level

controller, usually a proportional-integral-derivative (PID) controller, handling the dynam-

ics might not be the optimal solution. Designing MPC controllers to handle robot dynamics

to form a two-layer MPC approach could be a promising future work.

In addition, model uncertainties and disturbances are not considered in our current

work. Though MPC is a algorithm combined with feedforward and feedback properties,

the robustness of MPC needs further investigation.
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can be summarized as follows.

• A robust formation controller is developed for the leader-following formation of un-
manned aerial vehicles (UAVs). With the assumption that an autopilot operating in
holding mode at the low-layer, we present a two-layered hierarchical control scheme
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inter-vehicle communication. Specifically, the robust control law eliminates the re-
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mations is developed. The stability of the formation is guaranteed by constraining the
terminal state to a terminal region and switching to a stabilizing terminal controller
at the boundary of the terminal region. With this dual-mode MPC implementation,
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state contractive constraint and the controller is exponentially stable. The conver-
gence is faster and no terminal region calculation is required. Tracking a trajectory
moving backward is no longer a problem under this MPC controller. Moreover, the
proposed MPC controller has simultaneous tracking and point stabilization capabil-
ity.

Simulation results are presented to verify the validity of the proposed control algorithms
and demonstrate the performance of the proposed controllers.
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