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CHAPTER I  
 
 

INTRODUCTION 

 

Text has been used as a major repository of knowledge. The published scientific 

documents constitute in many cases the primary source of information for a wide range of 

application domains. With greater accessibility of scientific documents in electronic 

form, we now have an opportunity to better identify and extract useful information from 

this vast and rich data source.  

For analyzing textual data, it is necessary to pre-process the documents and 

encode their textual contents into some kinds of metric feature vectors. Like any other 

type of real-world data, textual data is often of large volume and represented in high-

dimensional spaces. Its inherent patterns and hidden relationships are hence hard to 

recognize and illustrate. Data visualization has established itself as one powerful tool to 

explore and interpret raw data.  “A picture is worth 1,000 words,” the old adage goes, 

which points out the value of displaying quantitative information as images. Data 

visualization helps to reveal the hidden information within data that cannot be easily 

detected in any other way. The most obvious and popular means of data visualization is 

to use maps to facilitate a spatial understanding of data. It is usually achieved by mapping 

the data into geometric attributes so that the similarity measures between data objects are 

associated with the geometric proximity of objects in some spatial configuration. Maps 
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present an ideal information space for displaying various types of geographically based 

data, using concrete or abstract symbols [Olsen 05]. In the context of textual data, such 

representations are called document maps. In a document map, documents are 

represented as points on a two-dimensional plane and the geometric relations of the 

points depict the similarity relations between different documents. Document maps help 

us gain insight into the information hidden in a large collection of documents, such as the 

cluster structure, conceptual relationships and emerging developments. We may visually 

spot documents not directly related to each other but potentially indirectly related. The 

topics of such documents may be good candidates for knowledge integration. Such maps 

may also aid us in identifying seminal papers representing the evolution of a subject 

domain.  

However, due to the limitation in human visual and cognitive perception, the 

complexity of transformed numeric data needs to be reduced in order for a 

comprehensive map to be realized in case of large data volumes and data with a 

dimensionality higher than three. There exist several data analysis methods that are able 

to reduce the data complexity. They can be broadly divided into two categories, 

clustering methods [Hartigan 75, Jain and Dubes 88] and projection methods [Davison 

83, Sammon 69]. The first category aims at reducing the amount of data by grouping 

similar data patterns together. A similarity measure such as Euclidean distance is used on 

pairs of data patterns to characterize how they are distributed in a multidimensional 

space. Intuitively, patterns within a cluster are more similar to each other than they are to 

patterns belonging to different clusters. Clustering is useful when dealing with a large 

complex data set with many variables and unknown structure. However, some additional 
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illustration methods are usually needed to facilitate our understanding of the clusters. The 

second category of data analysis methods emphasizes reducing the dimensionality of the 

data. The goal of the projection is to represent the data items in a lower-dimensional 

space in such a way that certain properties of the structure of the data set are preserved as 

faithfully as possible. The projection can be used to visualize the data set if a sufficiently 

small output dimensionality is chosen [Kaski 97]. The Self-Organizing Map (SOM) 

[Kohonen 82, Kohonen 95] is a special case in that it can be used at the same time for 

both clustering and projection. As a result, considerable interest has been devoted to the 

SOM for the purpose of visualizing textual data.  

The SOM, originated by Kohonen [Kohonen 82], is a neural network paradigm 

based on unsupervised competitive learning. It creates prototype vectors representing the 

data and projects high-dimensional data onto a low-dimensional grid, usually two-

dimensional. The similarity inherent in the input data is reflected by the geometric 

relationships between the grid units. Similar input vectors are mapped close to each other, 

while dissimilar ones are mapped far apart. Therefore the cluster structure and other 

patterns of the data can be identified visually from the map created. It is a very intuitive 

and straightforward way to visualize the data structure. Because of its implicit ability in 

dimensionality reduction, the SOM has been popularly used as a data clustering and 

visualization tool.  

As noted above, the SOM is a useful tool for organizing and visualizing large 

complex data sets. Document visualizations may be regarded as an interesting application 

domain for the SOM, since the documents can be encoded statistically into a set of very 

high-dimensional feature vectors. In this research, we focus on how the clustering and 
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visualization ability of the SOM can be enhanced and employed to produce meaningful 

document maps. As the major subject of our study is a collection of scientific 

publications, which have the distinct property of containing bibliographic citations, the 

inter-document similarities are based on the citation patterns. These citation patterns 

provide explicit linkages between publications having particular points in common, and 

hence are considered as reliable indicators of intellectual connections among documents. 

Inter-document similarities calculated from citations generally produce meaningful 

document maps whose patterns expose clusters of documents and relations among those 

clusters [Morris et al. 02]. Citation based similarity measures are used extensively when 

working with journal articles and patents from sources like the Science Citation Index 

(SCI). The SCI provides access to current and retrospective citation information for 

scientific literature published in the physical, biological and medical fields. It presents a 

great source of information for citation based document analysis.  

SOM’s capability to deal faithfully with very high-dimensional data, especially in 

the analysis of document collections, is explored and discussed in the work presented 

here. A novel visualization method in conjunction with a dynamic SOM model, namely 

the Growing Hierarchical Self-Organizing Map, is proposed for reflecting the cluster 

structure of the underlying structure presented in the data with variable resolutions. The 

SOM-based approach is used both as a tool for analyzing the data, as well as serving 

directly as the basis for a corresponding interface to the data collections.  

The remainder of this report consists of seven chapters. In Chapter II, a review of 

the previous work on the SOM and its variations is introduced. Chapter III provides a 

review of various approaches to visualize the SOM clustering results. Chapter IV 
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overviews various existing document encoding models. The details of the proposed 

SOM-based approach, the Ranked Centroid Projection, are then presented in Chapter V. 

Chapter VI provides illustrative examples demonstrating the principles of the algorithm 

and comparisons with some state-of-the-art methods. Based on the approach developed in 

this research, a user-friendly software toolbox for analyzing and visualizing document 

collections is designed and presented in Chapter VII. Finally, Chapter VIII concludes this 

report with a few pertinent observations. Directions for continued research to extend the 

research are also discussed. 
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CHAPTER II  
 
 

THE SELF-ORGANIZING MAP (SOM) ALGORITHM 

 

2.1  An Overview of the SOM 

 

The Self-Organizing Map (SOM) is a neural network paradigm for exploratory 

data analysis. The idea of the SOM was originally motivated by the localized regions of 

activities in the human cortex, where similar regions react to similar stimuli. This model 

stems from Kohonen’s work [Kohonen 82] and builds upon earlier work of Willshaw and 

von der Malsburg [Willshaw and von der Malsburg 76]. As a data analysis tool, the SOM 

can be used at the same time both to reduce the amount of data by clustering, and to 

project the data nonlinearly onto a lower-dimensional display [Kohonen 95]. Because of 

its benefits, the SOM has been used in a wide variety of scientific and industrial 

applications such as image recognition, signal processing, and natural language 

processing. In the research community, it has received significant attention in the 

contexts of clustering, data mining, topology preserving vector projection for high-

dimensional input spaces, and visualization.  

The SOM is equipped with an unsupervised and competitive learning algorithm. It 

consists of an array of neurons placed in a regular, usually two-dimensional grid. Each 

neuron is associated with a weight vector (or prototype vector). Similar to other 
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competitive networks, the learning rule is based on weight adaptations. In the original 

design of the SOM, only one neuron (winner) at a time is activated corresponding to each 

input. The presentation of each input pattern results in a localized region of activity in the 

SOM network. During the learning process, a sufficient number of different realizations 

of the input patterns are fed to the neurons so that the neurons become tuned to various 

input patterns in an orderly fashion. The principal goal of the SOM is to adaptively 

transform an incoming pattern of arbitrary dimension into the low-dimensional SOM 

grid. The locations of the responses in the map grid tend to become ordered in the 

learning process as if some meaningful nonlinear coordinate system for the different 

input features were being created over the network. This projection can be visualized in 

numerous ways in order to reveal the characteristics of the underlying input data or to 

analyze the quality of the obtained mapping [Pölzlbauer et al. 05]. 

 

2.2  Structure 

 

The neurons, or map units, in a SOM are usually placed in a regularly spaced one-

, two- or higher dimensional grid. The two-dimensional grid is most commonly used 

because it provides more information than the one-dimensional and is less problematic 

than the higher dimensional ones. The positions of the neurons in the grid are fixed, so 

they won’t move during the training phase of the SOM.  
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(a)              (b) 

 
Figure II.1 The SOM grid structure: (a) rectangular gird (b) hexagonal grid 

 

 

 

 

           (a)          (b) 
 

Figure II.2 Two types of SOM topologies (a) planar topology (b) toroidal topology 
 

 

The neurons are connected to adjacent neurons by a neighborhood relation, which 

dictates the structure or topology of the map. The neurons most often are connected to 

each other via a rectangular or hexagonal grid structure. The grid structures are illustrated 

in Figure II.1, where neurons are marked with black dots. Each neuron has 

neighborhoods of increasing diameter surrounding it. The neighborhood size controls the 

smoothness and generalization of the mapping. Neighborhoods of different sizes in both 

topologies are also illustrated in Figure II.1. Neighborhood 1, the neighborhood of 

diameter 1, includes the center neuron itself and its immediate neighbors. The 

neighborhood of diameter 2 includes the neighborhood 1 neurons and their immediate 

neighbors. The map topology is usually planar but toroidal topologies [Ultsch and 

Neighborhood 1 
 
Neighborhood 2 
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Mörchen 05] have also been suggested. Figure II.2 illustrates these two types of 

topologies.  

 

2.3  Initialization 

 

In the basic SOM algorithm, the layout and number of neurons are determined 

before training. They are fixed from the beginning. The number of neurons determines 

the resolution of the resulting map. A sufficiently high number of neurons should be 

chosen to obtain a map with a decent resolution. Yet, this number should not be too high, 

as the computational complexity grows quadratically with the number of neurons 

[Vesanto and Alhoniemi 00].  

Each neuron in the SOM is associated with an n-dimensional weight 

vector T
1 2[ , ,..., ]i i i inw w w w= in the space of the data, where n  is the dimension of the input 

vectors and T denotes the matrix transpose. The weight vector is often referred to as the 

prototype vector. In this study, the terms weight vector and prototype vector are used 

interchangeably. Before the training phase, initial values are assigned to the weight 

vectors. Three types of network initializations are proposed by Kohonen [Kohonen 95]: 

• random initialization, where random values are assigned to weight vectors. 

This is the case if little is known about the input data at the time of the 

initialization. 
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• initialization using initial samples, which has the advantage that the initial 

locations of the weight vectors lie in the same part of the input space as the 

data points. 

• linear initialization, where the weight vectors are initialized to lie in the linear 

subspace spanned by two largest eigenvectors of the input data. This helps to 

stretch the SOM to the orientation in which the input data set has the most 

significant amount of information. 

  

2.4  Training 

 

The SOM is an unsupervised neural network, which means the training of a SOM 

is completely data-driven. No external supervisor is available to provide target outputs. 

The SOM learns only from the input vectors through repetitive adaptations of the weight 

vectors of the neurons.  

 

2.4.1 Two-step Training 

The training process of the SOM uses the repeated application of a two-step 

learning rule. At each time step, one input vector x is drawn randomly from the input data 

set and presented to the network. The training consists of two essential steps:  

1) Winner selection 

This step is often called competition. For each input pattern, a similarity measure 

is calculated between it and all the weight vectors of the map. The neuron with the 

greatest similarity with the input vector will be chosen as the winning neuron, also called 
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the best-match unit (BMU). Usually the similarity is defined by a distance measure, 

typically Euclidian distance. Therefore the winner, denoted as c, is the neuron whose 

weigh vector is the closest to the data sample in the input space. This can be defined 

mathematically as the neuron for which 

{ }ii
wxc −= minarg .            (II.1)        

2) Updating weight vectors 

After the winner is determined, the winning unit and its neighbors are adjusted by 

modifying their weight vectors towards the current input according to the update rule 

formulated as  

[ ])()()()()()1( twtxthttwtw iciii −+=+ α ,        (II.2)  

where wi(t) is the weight vector associated with unit i at time t and x(t) is the input vector 

randomly drawn from input set at time t. α(t) is the learning rate function and a scalar 

parameter monotonically decreasing with t. )(thci  is a non-increasing neighborhood 

function centered on the winner unit at time t.  

This adaptation rule of the weights is closely related to the k-means clustering. 

The weight vector of each neuron represents a cluster center. Like the k-means, the 

weight of the best matching neuron (cluster center) is updated in a small step in the 

direction of the input vector x. However, unlike k-means, the winner, and also the 

neurons surrounding it, are updated instead of the winner alone. The size of the 

surrounding region is specified by )(thci , which is a non-increasing function of time and 

of the distance of neuron i from the winner c.  

As a result of the update rule, the neuron whose weight vector is the closest to the 

input vector is updated to be even closer. Consequently the winning unit is more likely to 



 12

win the competition the next time a similar input sample is presented, while less likely to 

win when a very different input sample is presented. As more input samples are presented 

to the network, the SOM gradually learns to recognize groups of similar input patterns in 

such a way that neurons physically close together on the map respond to similar input 

vectors.  

 

2.4.2 Analysis of the Update Rule 

The update rule in Equation II.2 can be rewritten as  

).()()()()]()(1[)1( txthttwthttw ciicii αα +−=+        (II.3) 

This equation characterizes the influence of data samples during training and directly 

shows how the parameters, α(t) and )(thci , affect the motion of wi. Every time a data 

sample x(t) is presented to the network, the value of x(t), scaled down by α(t) )(thci , is 

superimposed on wi and all previous values x(t’), t’ = 0, 1, …, t-1, are scaled down by the 

factor [1- α(t) )(thci ], which we assume < 1. The contribution of the data samples can be 

shown more clearly by rewriting Equation II.3 into a non-iterative form.  

Given wi(0) as the initial condition, Equation II.3 can be transformed into the 

following form by iteratively substituting wi(t’) with wi(t’-1), t’ = t, t -1, …, 1, 

∑
=

+++=+
t

n
ii nxntBwtAtw

1

).(),1()0()1()1(        (II.4) 

The coefficient A(t) describes the effect of the initial weight value on wi(t) and B(t,n) 

describes the effect of the data point presented at time n on wi(t). Both A(t) and B(t,n) are 

functions of α(t) )(thci  and decrease with t [Mulier and Cherkassky 94].  



 13

Equation II.4 shows that wi(t+1), the weight vector at time t + 1, depends on a 

weighted sum of the initial condition and every data points presented to the network. 

wi(t+1) can be therefore considered as a “memory” of all the values of x(t’), t’ = 0, 1, …, 

t. As the weight function B(t,n) is a function of α(t) and )(thci , the influence of a training 

sample on the final weight vector depends on the specific learning rate and neighborhood 

function used during the self-organizing process.  

 

2.4.3 Neighborhood Function 

The neighborhood function is a non-increasing function of time and of the 

distance of unit i from the winner neuron c. The form of the neighborhood function 

determines the rate of change around the winner neuron. The simplest neighborhood 

function is the bubble function as shown in Figure II.3a, which is constant over the 

defined neighborhood of the winner unit and zero elsewhere. Using the bubble 

neighborhood function, every neuron in the neighborhood is updated the same proportion 

of the difference between the unit and the presented sample vector. 

Another widely applied, smooth neighborhood function is the Gaussian 

neighborhood function  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= 2

2
i

)(2
r-r-

xp)(
t

eth c
ci σ

,           (II.3)  

where σ(t) is the width of the Gaussian kernel and 
2

ir-rc  is the distance between the 

winner c and the neuron i with rc and ri representing the two-dimensional positions of 

neurons c and i on the SOM grid respectively. The Gaussian neighborhood function is 

illustrated in Figure II.3b. Usually the radius of the neighborhood is large at first and 
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decreases during the training. One commonly used form [Ritter et al. 92] of σ(t) is given 

by   

max

)0(
)()0()(

t
t

ft ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

σ
σσσ ,            (II.4) 

where σ(0) is the initial neighborhood radius, σ(f) is the final neighborhood radius, and 

tmax is the number of training iterations. Therefore σ(t) is a monotonically decreasing 

function of time. The decreasing neighborhood radius ensures that the global order is 

obtained at the beginning, whereas towards the end the local corrections of the weight 

vectors of the map will be more specific [Honkela 97, Vesanto 97].   
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(a)       (b) 

Figure II.3 Two neighborhood functions: (a) bubble neighborhood, (b) Gaussian neighborhood 

 

2.4.4 Learning Rate 

The learning rate α(t) is a function decreasing with time, which can be linear, 

exponential or inversely proportional to time. The linear learning rate function [Hollmén 

96] can be defined as  

α(t) = α(0)(1-t/tmax),             (II.5) 

where α(0) is the initial learning rate. A commonly used exponentially decreasing 

function [Cherkassky and Lari-Najafi 91] is given by  
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where α(f) is the final learning rate. A function inversely proportional to time is given in 

[Mulier and Cherkassky 94] with the form  
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tNN
tN

m
−
−

=               (II.7) 

where N is the total number of neurons. Using the learning rate function in Equation II.7 

ensures that earlier and later input samples have approximately equal effects on the 

training result.  

The learning rate and the neighborhood function together determine which 

neurons and how much these neurons are allowed to learn. These two parameters are 

usually altered during training through two phases. In the first phase, namely the ordering 

phase, relatively large initial learning rate and neighborhood radius are used. The 

parameters keep decreasing with time. During this phase, a comparatively large number 

of weight vectors are to be updated and they move in big steps towards the input samples. 

In the second phase, the fine tuning phase, both parameters start with small vales from 

the beginning. They continue to decrease but very slowly. The number of iterations for 

the second phase should be much larger than that in the first phase, as the tuning usually 

takes much longer [Demuth 98]. 

 

2.5 Mathematical Treatment 

 

The mathematical proofs of the SOM properties have turned out to be very 

difficult. A thorough analysis was performed only for the one-dimensional case, while for 
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higher dimensions the analysis has not been successfully completed to date. Some of the 

mathematical properties of the SOM are listed in this section.  

 

2.5.1 Convergence 

The SOM algorithm starts with total disorder and gradually self-organizes over 

tmax iterations. In practice under a wide variety of conditions for different input 

distributions, α(t) and )(thci , it has been found that the weight vectors will converge to 

the ordered configuration, which can be defined [Erwin et al. 91] as 

|,||||| qrsr wwwwqrsr −<−⇔−<− qsr ,,∀        (II.8) 

where r, s, and q are neurons while wr, ws, and wq are the associated weights.  

No general analysis of the convergence exists and little is known about the 

essential conditions required for self-organization. The first complete proof of the 

convergence of the SOM learning process in the one-dimensional case was given in 

[Cottrell and Fort 87]. The authors have proven that, for uniform distribution of the inputs 

and a step-neighborhood function, the weight values will almost surely converge to the 

ordered configuration. This result was further generalized to a very large class of input 

distribution [Bouton and Pagés 93]. Erwin et al. extended the proof of self-organization 

[Erwin et al. 92a, Erwin et al. 92b] to include all monotonically decreasing neighborhood 

functions and investigated the effect of various types of neighborhood functions on the 

convergence rates of the SOM.  
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2.5.2 Energy Function 

As opposed to many other neural algorithms, the SOM can not be associated to a 

global decreasing energy function [Erwin et al. 92a]. However, in the case of a discrete 

input set and a fixed neighborhood function, the SOM has been shown to have an energy 

function [Ritter et al. 92]: 

2 ,ci k i
k i

E h x w= −∑∑           (II.9) 

where the index c depends on the input xk and the weight vector wi. The SOM learning 

rule, Equation II.2, corresponds to a stochastic gradient descent on this energy function. 

Equation II.9 closely resembles that of the k-means clustering algorithm, which is given 

as 

2

)(∑ −=
k

kckK wxE ,       (II.10) 

where wc(k) is the centroid closest to xk. The difference is that the SOM takes into account 

the distance of xk from all the weight vectors, instead of just the closet one, weighted by 

the neighborhood function.  

The energy function of the SOM, Equation II.9, can be decomposed into two 

terms as follows [Lampinen and Oja 92, Kaski 97, Vesanto 97]:  

,
22 ∑∑∑ −+−=

i j
jiiij

k
ck wnNhnxE       (II.11) 

where Ni is the number of data samples closest to the weight vector wi, and ni is their 

centroid. The first term in the equation corresponds to the energy function of the k-means 

clustering, i.e., the average distance from the data points to the nearest cluster centers. 

The second term corresponds to the ordering of the map, which is minimized when 

nearby map units have weight vectors close to each other in the input space. 
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2.6  Dynamic SOM Models 

    

In spite of the wide-spread use of the SOM, some shortcomings have been noted, 

which are related to the static architecture of the basic SOM model. First of all, the 

topology of the model, in terms of the number and the layout of the neurons, has to be 

determined before training. The need for predetermining a fixed network structure is a 

significant limitation on the final mapping [Fritzke 94, Fritzke 95a, Fritzke 95b, 

Alahakoon et al. 00]. To address the issue of static SOM architecture, several variations 

based on the basic SOM have been developed recently. The resulting dynamic SOM 

models usually employ an incremental growing architecture to cope with the lack of prior 

knowledge about the number of map units. Some of the models are summarized in this 

section.  

 

2.6.1 Growing Cell Structure 

One of the first models of such kind is the Growing Cell Structures (GCS) 

[Fritzke 94]. In the GCS, the basic two-dimensional grid of the SOM is replaced by a 

network of nodes whose basic building blocks are triangles. Starting with a triangle 

structure of 3 nodes, the algorithm both adds new nodes to and removes existing nodes 

from the network during the training process. The connections between nodes are 

adjusted in order to maintain the triangular connectivity. A local error measure is used to 

decide the position to insert a new node, which is usually between the node with the 
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highest accumulated error and its most distant neighbor. The algorithm results in a 

network graph structure consisting of a set of nodes and the connections between them.  

 
2.6.2 Growing Neural Gas 

In addition to the GCS, Fritzke has also proposed the Growing Neural Gas (GNG) 

[Fritzke 95a] and the Growing Grid (GG) [Fritzke 95b].  

The GNG algorithm combines the GCS and the Neural Gas algorithm [Martinetz 

and Schulten 91]. It starts with two nodes at random positions, and as in GCS, new nodes 

are inserted successively to support the node with high accumulated errors. Unlike the 

GCS, the GNG structure is not constrained. The nodes are connected by edges with a 

certain age. Once the age of an edge exceeds a threshold, it will be deleted. After a fixed 

number of iterations, a new node is added between the node with the highest accumulated 

error and the one with maximum accumulated error among all its neighbors.  

The GG, as an alternative form of growing network, starts with 2×2 nodes, taking 

advantages of a rectangular structured map. The model adds rows and columns of 

neurons during the training process, and therefore is able to automatically determine the 

height/width ratio suitable for the data structure. The heuristics used to add and remove 

nodes and connections are the same as those used in GCS.   

 

2.6.3 Incremental Grid Growing  

Another approach is the Incremental Grid Growing (IGG) [Blackmore and 

Miikkulainen 93]. Starting from a small number of initial nodes, the IGG generates new 

nodes only at the boundary of the map. This guarantees that the IGG network will always 

maintain a two-dimensional structure, which results in easy visualization. Another feature 
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of IGG is that connections between neighboring map units may be added and removed 

according to a threshold value of the inter-unit weight differences. This may result in 

several disconnected subnetworks, which represent different clusters of input patterns. 

The Growing Self-Organizing Maps  (GSOM) [Alahakoon et al. 00], in similar spirit as 

IGG, introduces a spread factor to control the growing process of the map.  

 

2.6.4 Other Growing Structure Models 

Other modified models have also been proposed, including the Plastic Self 

Organizing Maps (PSOM) [Lang and Warwick 02], the Grow When Required (GWR) 

[Marsland et al. 02], and etc. Figure II.4 shows the simulation results of the original SOM 

and some of the dynamic models discussed above, which are given in [Fritzke 06]. The 

simulation results are achieved using 40,000 input signals from a probability distribution, 

which is uniform in the shaded area. The growing versions of the SOM aim at achieving 

an equal distribution of the input patterns across the map by adding new nodes near the 

nodes that represent an unproportionally high number of input data.  

   (a)         (b)            (c)             (d)  

Figure II.4 Simulation results of different models: (a) the SOM, (b) GCS, (c) GNG, and (d) GG. The 

distribution is uniform in the shaded area. Map units are denoted by circles.  
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2.6.5 Hierarchical Models 

Beside the limitation of the fixed structure, another deficiency of the classic SOM 

is the inability of capturing the hierarchical structure commonly present in real-world 

data. The structural complexity of such data sets is usually lost during the mapping 

process by means of a single, low-dimensional map. In order to handle a data set with 

hierarchical relationships, hierarchical models should be used. These models try to 

organize data in a hierarchy by displaying a representation of the entire dataset at a top 

level in a coarse granularity and allowing the lower levels to reveal the internal structure 

of each cluster found in a higher-level representation, where such information might not 

be so apparent [Vicente and Vellido 04].  

The hierarchical feature map [Miikkulainen 90] uses a hierarchical setup of 

multiple layers, where each layer is composed of a number of independent SOMs. 

Starting with one initial SOM at the top layer, a separate SOM is added to the next layer 

of the hierarchy for every unit in the current layer. Each map is trained with only a 

portion of the input data that is mapped onto the respective unit in the higher layer map. 

The amount of training data for a particular SOM is reduced as the hierarchy is traversed 

downwards. As a result, the hierarchical feature map requires a substantially shorter 

training time than the basic SOM for the same data set. Moreover, it may be used to 

produce fairly isolated, or disjoint, clusters of the input data, while the basic SOM is 

incapable of performing the same [Merkl and Rauber 98].  

Another hierarchical model, the hierarchical self-organizing map (HSOM) 

[Lampinen and Oja 92], focuses on speeding up the computation during winner selection 

by using a pyramidal organization of maps. However, like the hierarchical feature map, 
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while representing the data in a hierarchical way this model does not provide a 

hierarchical decomposition of the input space.  

In addition, an extension to the hierarchical SOM models and the Growing Grid, 

the Growing Hierarchical Self-Organizing Map (GHSOM) was introduced in [Rauber et 

al. 02]. This model builds a hierarchy of multiple layers, where each layer consists of 

several independent growing SOMs. Starting from a top-level SOM, each map grows 

incrementally to represent data at a certain level of detail in a manner similar to the GG. 

In GHSOM, the level of detail is measured in terms of the overall quantization error. For 

every map unit in a level, a new SOM might be added to a subsequent layer if this unit 

represents input data that are too diverse and thus more details are desirable for the 

respective data.  

Once the training process is over, visual display of the map must be carried out in 

order for the underlying structure of data to be perceived. A variety of visualization 

techniques based on the SOM have been developed, which will be reviewed in the next 

chapter.  
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CHAPTER III  
 
 

VISUALIZING SELF-ORGANIZING MAPS 

 

The visualization potentiality is a key reason to apply the SOM for data analysis. 

Once the learning phase is over, visual display of the map can be carried out in order for 

the underlying structure of the data to be observed. Extracting the visual information 

provided by the SOM is one of the primary motivations for this study.  

The visualization of SOMs is motivated by the fact that a SOM achieves a 

nonlinear projection of the input distribution through a commonly two-dimensional grid. 

This projection can be visualized in different ways by a variety of techniques. Some of 

them visualize the input vectors directly, whereas others take only the prototype vectors 

(or weight vectors) into account. Based on the object to be visualized, these techniques 

can be divided into several categories, which are reviewed in the remainder of this 

chapter.  

 

3.1 Visualizing Map Topology  

 

One category of the visualization techniques is to visualize the SOM topology 

through distance matrices. The most widely used method in this category is the unified 
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distance matrix (U-matrix) [Ultsch and Siemon 90], which enables visualization of the 

topological relations between the neurons in a trained SOM. The idea is to show the 

underlying data structure by graphically displaying the inter-neuron distances between 

neighboring units in the network. The distances of the prototype vector of each map unit 

to its immediate neighbors are calculated and form a matrix. The same metric is used to 

compute the distances between map units, as is used during the SOM training to find the 

BMU. By displaying the values in the matrix as a 3D landscape or a gray-level image, the 

relative distances between adjacent units on the whole map become visible. The U-matrix 

is calculated in the prototype space and displayed in the map space.  

 

 

 

 

 

 

  
    (a)           (b) 

 
Figure III.1 U-matrix presentations of a 10×10 rectangular SOM: (a) a gray-level image and (b) a 3D 
plot. The Iris data set is used to train the SOM. 

 

A simplified approach is to calculate a single value for each map unit, such as the 

maximum or the sum of the distances to all immediate neighbors, and use it to control the 

height or color in the U-matrix representation [Kraaijveld et al. 95]. High values in the U-

matrix encode dissimilarity between neighboring units. Consequently they correspond to 

cluster boundaries and are marked by mountains in a 3D landscape or dark shades of gray 
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in a coloring scheme. Low values correspond to similarity between neighboring units, 

represented by valleys or light shades of gray.  

A demonstration of the U-matrix is presented in Figure III.1, which is based on a 

10 by 10 rectangular SOM. The Iris data set [Fisher 36] is used to train the SOM in this 

example. The Iris data set contains 150 data points from 3 classes, the setosa class and 

two linearly inseparable classes, versicolor and virginica. In Figure III.1, two essential 

clusters can be observed from both the gray-level presentation and the 3D landscape 

presentation. Apparently, the two linearly inseparable classes are not separated in the 

projection space.  

 

3.2  Visualizing Data Density 

 

Recently a density-based visualization technique, the P-matrix [Ultsch 03a, Ultsch 

03b], has been introduced, which estimates the data density in the input space sampled at 

the prototype vectors. The P-matrix is defined analogously to a U-matrix. Instead of local 

distances, this technique uses density vales in data space measured at the position of each 

prototype vector as height values, called P-heights. The estimate of the data density is 

constructed using Pareto Density Estimate (PDE) [Ultsch 03a], which calculates the 

density as the number of input data points inside a hypersphere (Pareto sphere) within a 

certain radius (Pareto radius) around each prototype vector. In contrast to the U-matrix, 

neurons with large P-heights are located in dense regions of the data space, while those 

with small P-heights are in sparse regions. Illustrations of different visualizations of a 

SOM are given in Figure III.2, taken from [Ultsch and Mörchen 05]. Figure III.2(c) 

shows the P-matrix of the Gaussian mixture data set in Figure III.2(a), where darker gray 
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shades correspond to larger densities. Compared to the U-matrix presentation shown in 

Figure III.2(b), the P-matrix gives a complementary view of the same data set. 

A combination of the U-matrix and the P-matrix has also been proposed by 

Ultsch, namely the U*-matrix [Ultsch 03b]. Commonly viewed as an extension to the U-

matrix, it takes both the prototype vectors and the data vectors into account. The values 

of the U-matrix are dampened in highly dense regions, unchanged in regions of average 

density, and emphasized in sparsely populated regions. It is designed for use with 

Emergent SOMs [Ultsch and Mörchen 05], which are SOMs trained with a high number 

of map units compared to the number of data samples. U*-matrix is advantageous over 

the U-matrix in data sets with clusters that are not clearly separated. The U*-matrix 

presentation of the Gaussian mixture data set in Figure III.2(d) shows clearly two 

Gaussian distributions, which U-matrix fails to reveal.  

 

 
 

 

 

 

 

 

 

 

 

Figure III.2 Different visualizations of the SOM: (a) The original data set of a mixture of two 
Gaussians,  (b) U-matrix presentation, (c) P-matrix presentation, (d) U*-matrix presentation.  
 
 

  (a) (b)

  (c) (d)
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3.3 Visualizing Prototype Vectors 

 

An alternative way to visualize the SOM is to project the prototype vectors onto a 

two-dimension output space using a generic projection method. Such methods include 

multidimensional scaling (MDS) [Davison 83] and Sammon’s mapping [Sammon 69]. 

MDS is a traditional technique for transforming a dataset from a high-dimensional space 

to a space with lower dimensionality. It creates a mapping to a usually two-dimensional 

coordinate space, where object can be represented as points. The inter-point distances in 

the original data space are approximated by the inter-point distances of the projected 

points in the projected space. Accordingly, more similar objects have representative 

points that are spatially nearer to each other. The error function to be minimized can be 

written as  
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where dij denotes the distance between vectors i and j in the original space, and dij* 

denotes the distance between i and j in the projected space. A gradient method is 

commonly used to optimize the above objective function. MDS methods are often 

computationally expensive.  

Closely related to MDS, Sammon’s mapping also aims at minimizing an error 

measure that describes how well the pairwise distances in a data set are preserved [Kaski 

97]. The error function of Sammon’s mapping is  
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Compared to MDS, the local distances in the original space are emphasized in Sammon’s 

mapping. Since the mapping employs steepest descent procedure to minimize the error, it 

requires both first- and second-order derivatives of the objective function at each iteration 

[Ridder and Duin 97]. The computational complexity, as a result, is even higher than 

MDS.   

 

     (a)                          (b)  
 
Figure III.3 Different ways to visualize the prototype vectors: (a) MDS projection of a SOM, (b) 
Sammon’s mapping of a SOM. Neighboring map units, depicted as black dots, are connected to each 
other. The Iris data set is used to train the SOM.  
 

Since the SOM provides a topology-preserving mapping of the input data, the 

MDS or Sammon’s projection of the SOM can be used as a rough approximation of the 

shape of the input data. Both of these nonlinear projection approaches are iterative and 

computationally expensive. However, the computation load can be alleviated to an 

acceptable level when applied to the prototype vectors of a SOM instead of the original 

data set, provided a much smaller number of map units are used compared to the input 

vector number. The MDS projection and Sammon’s mapping of a SOM are illustrated in 

Figure III.3, where the map units are visualized as black dots and connected to their 

neighbors by lines. In this example, the Iris data set is used to train a 10×10 rectangular 
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SOM. Roughly two clusters can be seen from both projections. Apparently, the two 

linearly inseparable classes, versicolor and virginica, are still joined in the projection 

space.  

In additional to the high computational cost, another drawback of MDS and 

Sammon’s mapping is that they do not yield a mathematical or algorithmic mapping 

procedure for previously unseen data points [Ridder and Duin 97]. That is, for any new 

input data point to be accounted for, the whole mapping procedure has to be repeated 

based on all available data. Mao and Jain have proposed a feed-forward neural network 

[Mao and Jain 95] to solve this problem, which employs a specialized, unsupervised 

learning rule to learn Sammon’s mapping. 

 

3.4 Visualizing Component Planes 

 

The prototype vectors can also be visualized using the component plane 

representation. Instead of a single plot, this technique provides a “sliced” version of the 

SOM, which shows the projection of each individual dimension of the prototype vectors 

on a separate plane [Simula et al. 98]. The values of each component are taken from all 

prototype vectors and depicted by color coding. Each component plane shows the 

distribution of one prototype vector component. Similar patterns in different component 

planes indicate correlations between the corresponding vector components. This 

technique is hence useful when the correlation between different data features is of 

interest. However, one drawback of component planes is that cluster borders cannot be 

easily perceived. In addition, data with high dimensionality results in lots of plots.  
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Figure III.4 Component planes representation of a SOM trained with the Iris data set. The color bars 
beside each component planes show the maximum, mean, and minimum values and the 
corresponding colors.  

 
 

The component planes of the 10×10 rectangular SOM trained with the Iris data set 

is presented in Figure III.4. The color scheme of the map units has been set so that the 

lighter the color is, the smaller the component value of the corresponding prototype 

vector is. It can be seen, for instance, that the two components, petal length and petal 

width, are highly related.   

 
3.5 Visualizing Best Matching Units 

 
Another category of visualization is to display the BMUs of the input data set. 

Data vectors can be projected on the map by locating their BMUs. Because the prototype 

vectors are ordered on the map grid, nearby map units will have similar data projected to 

them. Projecting multiple input vectors will result in a histogram of the BMUs. For each 

data vector, the BMU is determined and the number of hits for that map unit is increased 
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by one. The hit histogram shows the distribution of the data set on the map. Map units on 

cluster borders often have very few data samples, which implies very few hits in the 

histogram. Therefore low-hit units can be used to indicate cluster borders. The values of a 

histogram can be depicted in different ways. Figure III.5 illustrates the gray level 

presentation and the 3D presentation of the same hit histogram. In Figure III.5(a), the 

darker the gray shade is, the higher the hit value of that unit is. In Figure III.5(b), the 

height directly corresponds to the value of the histogram. 

However, hit histograms consider only the BMU for each data sample while real 

world data is usually represented by more than one unit. This inevitably causes 

distortions in the final map. A variation of the standard hit histogram, namely the 

Smoothed Data Histogram (SDH) [Pampalk et al. 02], has been developed counting the 

data sample’s relativeness to more than one map unit. The SDH allows a data sample to 

“vote” not only for the BMU but also for the next few good matches based on the ranks 

of distances between the data sample and the corresponding prototype vectors.  

 

 

 

 

 

           (a)                       (b) 

Figure III.5 Different presentations of the hit histogram: (a) a gray level image, and (b) a 3D plot.  

The Iris data set is used to train the SOM.  
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3.6 Other Visualizations 

 

Aside from the above categories, other visualization techniques are also available 

for the SOM. A rather different way to project the prototype vectors, the so-called 

Adaptive Coordinates [Merkl and Rauber 97], was proposed with a focus on cluster 

boundary detection. This approach mirrors the movements of prototype vectors during 

the SOM training within a two-dimensional “virtual” space, which is used for subsequent 

visualization of the clustering result. The initial positions of the prototype vectors are 

defined by the network structure, which are on top of the junctions of the map grid. The 

coordinates of the prototype vectors are adapted during the training. After convergence of 

the training process, the prototype vectors can be plotted in arbitrary positions in the 

projected space according to their coordinates. The algorithm offers an extension to both 

the basic training process and the fixed grid representation.  

Another extended SOM model, called the visualization-induced SOM (ViSOM) 

[Yin 02], has been developed to directly preserve the distance information along with the 

topology on the map. The ViSOM updates the weight of the winning neuron using the 

same learning rule as the SOM. For the neighboring neurons, the weight adaptation is 

decomposed into two parts: a lateral movement toward the winner and an updating 

movement from the winner to the input vector. ViSOM places a constraint on the lateral 

contraction force between the neurons and hence regularizes the inter-neuron distances. 

As a result, the inter-neuron distances in the data space are in proportion to those in the 

map space. A scalable parameter λ is introduced in the constraint that controls the 
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resolution of the map. If a high resolution is desirable, a small λ should be used, which 

will result in a large map.   
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CHAPTER IV  
 
 

VISUALIZATION OF A SCIENTIFIC DOCUMENT COLLECTION 

 

4.1 Visualizing Documents in General  

 

Technological innovation has led to a rapid growth in the quantity of textual 

information. Such massive information can be overwhelming to the users. Powerful tools 

for exploring and organizing this wealth of information are critically needed. A natural 

and useful heuristic to assist the user in document exploration is to arrange textual items, 

or documents, in space, as spatial relations play an important role in human recognition 

and communication. Such spatial representations are called maps. The document map 

provides a mapping from the document space to a 2D or 3D display space. Documents 

and their relations are represented by various visual cues such as points, links, clusters 

and areas as well as their sizes, colors and geometric arrangements. Therefore, the map 

display visualizes the documents and the relationships that might exist among them, 

which may be invisible to the users. The ability to visualize large text data sets enables 

users to quickly gain insight into a collection of documents. 

It is an effective way to cluster documents using the SOM, which generates maps 

that visualize the similarity between documents in term of distances within the two-
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dimensional display space. Hence, similar documents may be found in neighboring 

regions of the map and clusters with similar concepts may be located nearby on the map. 

This provides the SOM clustering a main advantage over the traditional statistical 

clustering tools, which only assign objections to clusters but are unable to reveal the 

relations between clusters. This chapter presents a novel visualization method based on 

the SOM algorithm. This method organizes a document collection on a map display, 

which provides an overview of the collection and sheds light on the associations that 

might exist among the documents.  

 

4.2 Document Encoding 

 

4.2.1 Inter-Document Links  

A pre-process is needed to encode documents into a set of feature vectors before 

any automatic analysis tools can be applied. There are two types of inter-document 

relations existing in any document corpus, the implicit links and the explicit links [Olsen 

et al. 93], based on which the documents can be converted into the vector representation.  

The implicit inter-document links are relations between document contents, which 

exist on the basis of the term-document relations.  All documents consist of collections of 

terms and individual terms can appear in multiple documents. A set of terms, or 

keywords, can be selected and used as descriptors of the represented document. Links 

between documents can be established if different documents are described by the same 

terms. In this case, terms correspond to the features of the documents. The implicit links 
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are illustrated in Figure IV.1. The network in the figure describes the importance of a 

term with respect to a document.  

 

 

 

 

 

 

Figure IV.1 The implicit links between documents based on the document-term relations. Documents 
Di (circles) are connected by common terms ti (black dots). 

 

The explicit links within a document collection are pointers into other documents, 

usually created by the author. The types of explicit links in a document may vary 

depending on different document categories. In the scientific publications, for instance, 

authors, organizations, and citations can be used as the explicit links. A scientific 

document usually contains a list of authors and their affiliated organizations, while 

individual authors and organizations can appear in multiple documents. Inter-document 

links can be defined by finding papers with the same authors and organizations. Besides, 

explicit links are built between an author’s current work and prior work of others when 

the author creates the reference list for his or her publication. 

Different sets of features will be selected to describe the documents if different 

types of links are used. One popular choice is to use the term-document representation so 

that the features correspond to terms or keywords. One well-know example is the 

WEBSOM system [Kohonen et al. 00]. However, the term-document representation is 

only one aspect of the possible semantic associations between documents. Technology 
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advances that make bibliographic databases easily available also enable us to represent 

documents in different ways, e.g. using title lists, author lists, and citations. In the 

following sections, several models that attempt to describe the documents using different 

sets of features are reviewed.  

 

4.2.2 The Vector-Space Model (VSM) 

The VSM [Salton et al. 75] is one class of techniques that are still popularly used 

in currently available information retrieval systems. It relies on the premise that the 

meaning of a document can be derived from the document's constituent terms. The VSM 

represents documents as vectors of terms in a t-dimensional space so that each unique 

term in the document collection corresponds to a dimension in the space. Each document 

i is described by a t-dimensional vector Di = (di1, …, dij, …, dit)T, where dij represents the 

weight of the jth term in the document i. A 2-dimensional matrix of documents and terms 

can therefore represent a collection of documents. Document similarities can be 

computed by simple vector operations.  

The simplest way of document encoding using the VSM is to represent document 

as binary vectors, where the value of a vector element is set to 1 if the respected term is 

found in the document and to 0 otherwise. More complex types of vector space models 

involve different methods to compute the elements in Di in an attempt to provide a better 

measure of each term’s importance in the document. Term weighting schemes are 

typically used to serve for this purpose. A straightforward approach known as term-

frequency weighting is to assign the weight to each term k in accordance with its 

frequency of occurrence, fi
k, in a document i. A more sophisticated way is to use the well-
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know inverse document frequency (IDF) based schemes, which assumes the less frequent 

terms are higher in value than those of the more frequent terms. Thus the weight of a term 

k is computed by multiplying the standard term frequency fi
k with the inverse document 

frequency IDFk [Salton et al., 75], given as 

Wk = fi
k×IDFk.                                (IV.1) 

IDFk is the inverse of the number of documents in which the term occurs, which can be 

defined as:   

k
k d

NIDF log=  ,            (IV.2) 

where N is the total number of documents in the collection and dk is the number of 

documents containing term k.  

The VSM, basing its rankings on the Euclidean distance or the angle measure 

between document vectors, is able to automatically find documents that might be 

conceptually similar. The main problem of the VSM is the large vocabulary in any 

sizable document collection, which results in a vast dimensionality of the document 

vectors [Kohonen et al. 00].  

 

4.2.3 Latent Semantic Indexing (LSI)  

Latent Semantic Indexing (LSI) [Deerwester et al. 90] is a well-established 

approach for the investigation of conceptual relations in documents. It is a parallel, yet 

similar, approach to the VSM. Because of the way it represents terms and documents in a 

space, it is often considered a vector-space model.  

The VSM and some other information retrieval systems suffer from two language 

related problems due to the facts that terms often have more than one specific meaning 
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(synonymy) and multiple terms may also describe the same concept (polysemy) 

[Deerwester et al. 90]. Because of the first problem, it is often difficult to discriminate 

between two documents that share a given word, but use it differently, without 

understanding the context in which the word was used. As a result of the second problem, 

related documents may not use the same terminology to describe their shared concepts. 

By using the singular value decomposition (SVD) [Golub and Van Loan 89] on 

the term-document matrix, LSI attempts to solve the synonymy and polysemy problems.  

The approach is based on the concept that the principal components of the term-

document space expose an underlying latent semantic structure in the data. The SVD is 

used to reduce the dimensionality of the term-document space by selecting the highest 

singular values, where the most of the variance of the original space is located. The 

principal components of the space, the major associative patterns, are extracted from the 

data and the smaller, less important patterns are ignored. As a result, semantically-related 

documents may still be placed near each other in the space even though they may not 

share terms, if these documents have similar term-usage patterns.  

In this reduced-space model, no attempt is made to interpret the meaning of each 

dimension. Each dimension is merely assumed to represent one or more semantic 

relationships in the term-document space. One advantageous effect of LSI is that the 

dimensionality of the document vector becomes much smaller, which makes it possible 

for LSI to represent large data sets.  
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4.2.4 Citation Based Models 

In the previous sections of this chapter, we have discussed document visualization 

and encoding in general. For scientific documents, a distinct property, which makes them 

different from other textual items, is that they contain bibliographic references, or 

citations. Citations serve the purpose of pointing to source documents the author referred 

to or consulted in the production of a document, thus establishing links between 

documents from the author’s point of view. Our approach to encode documents is based 

on the analysis of their citations. Citation analysis, which has been used extensively in 

library and information science, is the study that uses citations in scholarly works to 

establish links between authors, between scholarly works, between journals, or between 

author institutions [Osareh 96]. Citations both from and to a certain document may be the 

objects of the study.  

Citation-based document analysis has been limited by the need of manually 

extracting citation information from documents. The recent availability of Internet-based 

citation services and databases, allowing easy access to document citations in electronic 

form, has made the application of citation-based studies quite appealing. 

 

4.2.4.1 Direct and Indirect Citation Links  

A useful model of representing a collection of scientific documents as a network 

of nodes connected by citations was introduced in [Small 99]. The document-citation 

network is illustrated in Figure IV.2, where the documents are displayed as circles and 

the citation links as lines connecting them. Both direct and indirect citation links exist in 

the document-citation network.  
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A direct citation link occurs when one document cites another document. The 

following similarity function can be defined to depict the direct citation links between 

documents:  

i1 if cites or cites
0 otherwise

j j i
ij

D D D D
dc ⎧

= ⎨
⎩

         (IV.3)  

The similarity values produced by this function form the elements of a symmetric binary 

similarity matrix.  

 
Figure IV.2 Illustration of citation links 

 

Beside the direct citation link, two documents can be connected indirectly by 

taking two steps in the network in the following three forms [Small 97]:  

• Bibliographic coupling, which occurs when a pair of documents cite a common 

third document; 

• Co-citation, which occurs if a pair of documents are cited by a common third 

document;  

• Longitudinal coupling, which occurs between a pair of documents when one 

document cites a third document that cites the other document of the pair. 

The four types of citation links are shown in Figure IV.3. 
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Citation based similarity measures are used extensively when dealing with journal 

articles and patents from sources that provide citation data such as the Science Citation 

Index. Inter-document similarities can be calculated using a single citation link or the 

combination of multiple citation links, which form a similarity matrix. Each dimension of 

the similarity matrix corresponds to one document in the collection and the value of each 

element represents the relative strength of the citation relationship between the 

corresponding document pair.  

 

 

 

 
 
 
Figure IV.3 Illustration of four types of citation links between a pair of documents. A pair of 
documents Di  and Dj are connected by a direct citation (DC) and three forms of indirect citation 
links: bibliographic coupling (BC), co-citaion (CC), and longitudinal coupling (LC). The shaded 
circles represent the corresponding third documents in the indirect links.  
 

4.2.4.2 Clustering Documents Using Bibliographic Coupling 

Based on the different formations of the similarity matrix, various citation 

analysis techniques have been developed with a focus on different aspects of the 

intellectual structure of the document data set [Small 97, Morris et al. 03]. Clustering 

scientific documents using bibliographic coupling was introduced in [Kessler 63], where 

bibliographic coupling was defined as the number of references cited by both documents. 

It is assumed that if two documents cite many common references, they probably cover 

similar research topics. Based on this assumption, bibliographic coupling is often used to 
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cluster documents into research fronts, that is, groups of papers that cover the same 

research topic [Morris et al. 03].  

In our approach, bibliographic coupling counts are used to describe the inter-

document relationships, based on which a similarity matrix is built to store pair-wise 

similarity values between documents. The rows, or columns, of the similarity matrix are 

vectors corresponding to individual documents. Documents are subsequently clustered 

using the similarity matrix. The details of the derivation of the similarity matrix are given 

in Chapter V. 
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CHAPTER V  
 
 

RANKED CENTROID PROJECTION 

 

Several challenges remain when using the SOM for visualizing document 

databases. First, the shape of the grid and the number of nodes have to be predetermined. 

This requires prior knowledge of the input data characteristics, which is usually 

unavailable before the analysis. Second, the underlying hierarchical relations can hardly 

be detected by a single map. Such relations are commonly observed in document 

collections and thus their proper identification is highly desirable. A further limitation, 

which occurs when using the SOM projection, is that the map resolution depends solely 

on the size of the map. To have a high-resolution document map, which is desirable in 

most cases, it requires a considerably large number of neurons. To achieve a better 

visualization, a high-resolution SOM may even call for a higher number of neurons than 

that of input vectors [Bienfait 94]. As a result, the size of the SOM will become 

impractically huge when dealing with large data sets. The computational complexity 

grows quadratically with the number of neurons [Vesanto and Alhoniemi 00]. As a result, 

training huge maps may be exceedingly time-consuming.  

To resolve the above limitations, a SOM-based visualization approach has been 

developed. Figure V.1 shows the schematic diagram of the proposed approach. In the first 

step, a similarity matrix is derived from the collection of documents of interest. This 
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process will be further discussed in this chapter. The similarity matrix is then used to 

train a Growing Hierarchical Self-Organizing Map (GHSOM) [Rauber et al. 02], which 

clusters document items in a hierarchical manner and at the mean time allows for 

adaptation of the network architecture during training. Following the training of the 

GHSOM, a novel SOM projection technique, namely the Ranked Centroid Projection, is 

used to project the input vectors to a hierarchy of two-dimensional output maps. Using 

the proposed approach, a high-resolution map can be achieved with comparatively low 

computational cost.  

 

 

 

 
Figure V.1 The schematic diagram of the proposed SOM-based approach 

 

5.1 The GHSOM Architecture 

 

The typical goal of document clustering is to discover subsets of large document 

collections that correspond to individual topics. Additionally, it can be applied 

hierarchically, yielding more refined groups within clusters. This leads to a large-to-

small-scale presentation of the conceptual structure of the document collection, in which 

large scale clusters correspond to more general topics and smaller scale ones correspond 

to more specific topics within the general topics. Cluster hierarchies thus serve as topic 

hierarchies [Noel et al. 02]. In order to detect this hierarchical structure, the GHSOM is 

employed in the proposed approach.  
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The GHSOM combines the advantages of two principal extensions of the Self-

Organizing Map, the dynamic growth and the hierarchical structure. It uses an adaptive 

architecture which grows during its unsupervised training process to uncover the 

hierarchical structure of the data set under analysis.  

 

Figure V.2 Graphic representation of a trained GHSOM 

 

As depicted in Figure V.2, the GHSOM evolves to a multi-layered architecture 

composed of independent growing self-organizing maps. At layer 0, a single-unit SOM 

serves as a representation of the complete data set. Only one map is used at the first layer 

of the hierarchy, which initially consists of a small number of units, usually a grid of 2×2 

units. For every unit in this map, a separate SOM can be added to the second layer. This 

process is repeated with any subsequent layers in the hierarchy. In the GHSOM shown in 

Figure V.2, two units from one of the second-layer maps have been further expanded into 

third-layer maps. The maps in the upper layers show a coarse representation of the data, 

revealing the major clusters, whereas those in the lower layers offer a more detailed view 

of the data.  
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This model grows in two dimensions: in width (by increasing the size of each 

SOM) and in depth (by increasing the number of levels in the hierarchy). For growing in 

width, each SOM attempts to modify its layout and increase its size in a systematical way 

similar to the Growing Grid model, so as to represent the data at a specific level of 

granularity. The basic steps of the growth in width are summarized in Table V.1.  

Table V.1 Basic steps of the growth in width 

1. Initialize the weight of each unit with random values. Reset error variables Ei  

for every unit i. 

2. The standard SOM training algorithm is applied.  

3. For every input vector, the quantization error (qe) of the corresponding winner 

is measured in terms of the deviation between its weight vector and the input 

vector. Update the winner’s error variable by adding the qe to Ei.  

4. After a fixed number λ of training iterations, identify the error unit e with the 

highest Ei. 

5. Insert a row or a column between the error unit e and its most dissimilar 

neighboring unit d in terms of the distance between respective weight vectors.  

6. Repeat steps 2-5 until the whole map’s mean quantization error (MQEm) 

reaches a given threshold so that MQEm < τ1 · qeu is satisfied, where qeu is the 

quantization error of the corresponding unit u in the proceeding layer of the 

hierarchy and τ1 is a fixed percentage. 

 

Figure V.3 is a graphic representation of the growing process, which illustrates 

the insertion of a row (see Figure V.3(a)) or a column (see Figure V.3(b)).  

As for growing in depth, the general idea is to form a new map in the subsequent 

layer for the units representing a set of input vectors that are too diverse. The basic steps 

for the growth in depth are summarized in Table V.2.  
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Figure V.3 Illustration of the growing process: (a) A row or (b) a column of units is inserted in a 
SOM [Rauber et al. 02]. Unit e is the error unit and d is its most dissimilar neighbor. The shaded 
circles denote the newly inserted units.   

 

Table V.2 Basic steps of the growth in depth 

1. When the training of a map is finished, every unit is examined and those units 

fulfilling the criterion given as qei > τ2 · qe0 will be subject to a hierarchical 

expansion. qe0 is the quantization error of the single unit in the layer 0.  

2. Train the newly added SOM with input vectors mapped to the unit map that has 

just been expanded. 

 

GHSOM automatically determines the architecture of the SOMs at different 

levels. The sizes of the SOMs and the depth of the hierarchy are determined during the 

learning process according to the structure of the input data. Moreover, it enables users to 

choose the granularity of the hierarchical representation of the data by setting different 

parameters. The growing process of the GHSOM is guided by two parameters τ1 and τ2. τ1 

specifies the desired quality of input data representation at the end of the training process 

while τ2 specifies the desired level of detail that is to be shown in a particular SOM. The 

smaller τ1 is, the larger the emerging maps will be. Conversely, the larger τ2 is, the deeper 

the hierarchy will be.  
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5.2  Projection Method  

 

The proposed Ranked Centroid Projection (RCP) approach is based on the 

standard SOM architecture and learning procedure [Morris et al. 01, Wu and Yen 03]. It 

can also be applied to individual maps in a GHSOM. This approach projects the input 

vectors onto the two-dimensional SOM grid and the resulting topographic map indicates 

the similarities between input vectors and various prototype vectors in terms of the 

distance between the respective units.  

As discussed in Chapter I, the SOM is a special data mining tool that can be used 

at the same time for both clustering and projecting data. During the SOM training 

process, a set of prototype vectors, which is much lesser than the number of data vectors, 

becomes ordered along a two-dimensional “elastic network” that follows the distribution 

of the data. By adapting the prototype vectors of the winner unit and a number of 

neighboring units to the input patterns iteratively, the similarities between the input 

patterns originally present in the n-dimensional data space are mirrored within the two-

dimensional output space of the SOM. Therefore the SOM realizes a topology-preserving 

projection from the high-dimensional input space onto a low-dimensional grid of 

neurons. This ordered grid can be used as a convenient visualization surface for showing 

the cluster structure and other features of the data.  

 

5.2.1 An Approach Using Weighted Averages 

The prototype vectors of a trained SOM can be interpreted as cluster centers, 

while the coordinates (cxi, cyi) of each map unit i indicate the position of the 
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corresponding cluster center within the map grid. After convergence of the training 

process, for any data vector xi in the input space, one or several of the prototype vectors 

are close to it. The similarities between the input vector and all the prototype vectors can 

be calculated in terms of the Euclidean distances between them. A similarity measure can 

be defined as the inverse of the Euclidean distance: 

              (V.1) 

where sij is the similarity value and dij is the distance between input vector xi and 

prototype vector wj.  

The objective of the proposed projection approach is to map input vectors onto 

the output space based on their similarities to the prototypes, which are inversely 

proportional to the Euclidean distances between the respective vectors as given in 

Equation (V.1). The map unit with the smallest distance to the input vector xi is the BMU, 

which satisfies: 

 { }arg min i jj
c x w= − ,            (V.2) 

where c denotes the BMU. The BMU has the greatest similarity value with the input 

vector xi and corresponds to a cluster that xi is the most closely related to. Hence xi should 

be projected to a position closer to the BMU than to the other units. However, in most 

cases, there are usually several units that have almost as good matches as the BMU. As a 

result, pointing out only the BMU does not provide sufficient information of the cluster 

membership of xi, which is the problem with hit histograms. Intuitively, the data item 

should be projected to a position so that it is amidst a set of units that have the smallest 

distances to it, which correspond to its nearest neighbors in the input space.  

,
11 −− −== jiijij wxds
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In essence, the task of projecting input vectors can be treated as a problem of 

vector interpolation into a two-dimensional regular grid. Assume that the coordinates of 

each map unit, Cwi = ( , ) ,
i iw wx y are given. An interpolation function f is sought to 

assign coordinates to any data item in the input space, which can be represented as: 

                         (V.3) 

where Cxi represents the coordinates of the data sample xi. This function should reflect 

the similarity relations between xi and the map units.  

A function that satisfies the above criteria is a weighted average of the positions 

of the map units, where the weighting is based on the distances between the data sample 

and those units. The inverse distance is used as a measure of the similarity. The 

coordinates of the input vector xi can be calculated using the following function:  

1 1

1 1

( ) / ( ) if 0 for all
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Figure V.4 Illustration of mapping an input vector by finding the centroid of the spatial histogram of 
the output values. 

 
As given in Equation (V.1), dij is inversely proportional to the similarity between 

the data sample xi and prototype vectors wj. Therefore the weighting factors indicate the 
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normalized responses of xi to various prototypes. Since the map units are arranged in a 

rectangular grid, the set of weights may be characterized as a two-dimensional histogram 

plotted across the map units as illustrated in Figure V.4. The SOM projection procedure 

continues with finding the centroid of this spatial histogram, where the data sample is 

then mapped.  

 

5.2.2 Improving the Weighting Function by Applying a Ranking Scheme 

To enhance the performance of the projection method, the basic weighting 

function discussed in the previous section is subject to modifications and correction 

terms. Instead of mapping the data sample directly onto the centroid of the spatial 

responses of all map units, a ranking scheme is applied to the weighting function. First a 

constant R is set to select only a number of prototypes that are nearby the input vector in 

the input space. Only the positions of the associated R units will affect the calculation of 

mapping position. R is in the range of one to the total number of the neurons in the SOM. 

A membership degree of a data sample to a specific cluster is then defined based on the 

rank of closeness between the data vector and the unit associated with that cluster, which 

is given by: 

for the closest unit

1 for the 2 closest unit

1 for the closest unit

0 for all other units
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For a data sample xi, the new weighting function is defined by applying the 

membership degree mi to function (V.4):  

1 1

1 1
( ) / ( ) if 0 for all

if 0
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C
     (V.6)  

With the new weighting function, the projection procedure continues with finding the 

centroid of the spatial response ranked by the corresponding membership degrees.  

The effect of the ranking scheme is two-fold. Firstly, since only nearby units are 

significant in determining the projection of the data sample, eliminating calculations with 

distant prototypes can lessen the tendency that all data samples are biased toward the 

center of the map without impairing the projection quality [Morris et al. 01]. Secondly, 

the ranking scheme introduces a membership degree factor into the new weighting 

function in addition to the distance factor, which enables the proposed projection 

technique not only to reveal the clustering tendency in the data but also to visualize 

information on cluster memberships. A positive side effect of the ranking scheme is a 

considerable saving in computation as the result of selecting only R closest units. This 

saving becomes more significant when the map size is large. 

 

5.2.3 Illustrations of the RCP 

Unlike the hit histogram [Simula et al. 98], which simply maps a data sample onto 

its BMU, the RCP takes into account of several map units ranked by their closenesses to 

the data sample. Analogously, each map unit exerts an attractive force on the data item 

proportional to its similarity to that data item. The greater the force is, the closer the data 
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item will be drawn toward the map unit. The data item will end up being placed in a 

position where these forces reach an equilibrium state.  

The number of the nearest units to be included in the calculation is determined by 

setting the parameter R.  Different R will result in different projection results. In the 

following, a simple projection is illustrated with R = 1, 2 and 3.  

A set of SOM units in the input space is shown on the left side of Figure V.5. An 

input vector xi is presented and marked by an X. If R is set to 1, which is a winner-takes-

all case, only the BMU is taken into account in computing the coordinates of xi in the 

output space. The membership degree of xi to each map unit is:  

⎩
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=
30
31

i
i

mi .              (V.7) 

By applying Equation (V.5), the coordinates of xi are:  

 Cxi = Cwc,               (V.8) 

where Cwc represents the coordinates of the BMU. The resulting mapping is illustrated on 

the right side of Figure V.5, where xi is mapped directly onto its BMU. Mapping multiple 

data samples results in a hit histogram. 

Input Space          Output Space 

Figure V.5 Illustration of mapping an input vector xi (marked by an X) to its BMU. i is the index of 
each map unit. wc denotes the BMU. w2 and w3 are the next two closest units. 
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If R = 2, the two closest units are taken into account in the calculation. As shown 

in Figure V.6, d1 and d2 are the Euclidean distances between the data sample and two 

winners wc and w2. The membership degree of xi to each map unit is:  

⎪
⎩
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⎨

⎧
=
=

=
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0
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1
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2

           (V.9)  

The coordinates of xi are calculated as:  

1 12 1
1 2 23 3( ) ( ) ,i cx d w d w− −= +C C C                                  (V.10) 

where Cw2  are the coordinates of the second winner. The projection result is illustrated 

on the right side of Figure V.6. 

 Input Space          Output Space 

Figure V.6 Illustration of mapping an input vector when two units are considered. d1 and d2 are the 
distances in the input space. d1’ and d2’ are the distances in the output space.  

Input Space          Output Space 

Figure V.7 Illustration of mapping an input vector when three winners are considered. d1, d2 and d3 
are the distances in the input space. d1’, d2’ and d3’ are the distances in the output space.  
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1 1 11 1 1
1 2 2 3 32 3 6( ) ( ) ( )i cx d w d w d w− − −= + +C C C C ,                 (V.11)   

where Cw3  are the coordinates of the third winner. This projection is illustrated in Figure 

V.7.  

The computational complexity of the SOM increases linearly with the number of 

data samples, while the complexity scales quadratically with the number of map units. 

Because the RCP algorithm allows the data points to be projected to any locations across 

the SOM network, it can handle a large data set with a rather small map size and provide 

a high-resolution map at the mean time. Therefore, the presented procedure of mapping 

input vectors to the output grid using the RCP alleviates computational complexity 

considerably, making it possible to process large data sets.  

 

5.2.4 Selecting the Ranking Parameter R  

The weighting function in Equation (V.6) implies that only the nearby R map 

units are significant in computing the projection. The performance of the RCP depends 

heavily on the value of the ranking parameter R. It would be beneficial to determine the 

optimal R value automatically for each map based upon certain performance metrics. 

 

5.2.4.1 Effect of R on the Projection Result  

From the RCP illustrations in Section 5.2.3, we can see that different R values 

result in different mapping positions of the input vector. The effect of the ranking 

parameter R can be further illustrated in the following example. 

A three-dimensional data set is shown in Figure V.8, which consists of 300 data 

points randomly drawn from three Gaussian sources. The mean vectors of the three 
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Gaussian sources are [0,0,0]T, [3,3,3]T, and [9,0,0]T respectively, while the variances are 

all 1. A SOM of 2×2 units is used to project the data points onto a two-dimensional 

space. 

 

 

 

 

 

 

Figure V.8 Data set I: Samples in a three-dimensional data space marked as small circles and 
prototype vectors as plus signs.  

 

After training, the prototype vectors of the SOM are shown as plus signs in Figure 

V.8, which span the input space with three of the map units representing the three cluster 

centers respectively. The input vectors are then projected using the RCP method. The 

projection results produced with different R values are presented in Figure V.9. The 

effect of R can be seen in this figure. For the case of R=1, where only the BMU is 

considered in the projection, the map is actually a hit histogram (a small random noise is 

added to the coordinates of each data point in order to show the volume of data points 

projected onto each map unit). Because it can only project input vectors to the map units 

on a rigid grid, this map does not provide much information about the global shape of the 

data. For all possible R values, three major clusters can be observed from the map. With 

R getting larger, the structure and shape of the data become more prominent. It is also 

noticeable that the cluster boarders become obscure as R increases.  
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Figure V.9 Projection results with different R values 
 

5.2.4.2 Criteria for Selecting R  

A two-dimensional representation produced by the RCP enables one to visualize 

underlying structure present in the data, and check for dimensionality reduction and 

clustering tendencies. As shown in Figure V.9, different results are obtained depending 

on the chosen ranking parameter R. We must decide which R value produces the best 

result.  

If meaningful conclusions are to be drawn from the projection result, as much of 

the geometric relationships among the data patterns in the original space as possible 

should be preserved through the projection. At the mean time, it is desirable for the 

projection result to provide as much information about the shape and cluster structure of 

the data as possible. Members of each cluster should be close to each other while the 

clusters should be widely spaced from each other. Thus, a combination of two 

quantitative measures, Sammon’s stress [Sammon 69] and the Davies-Bouldin (DB) 

index [Davies and Bouldin 79], is used in this work to determine the optimal R. 
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Sammon’s stress measures the distortion between the pairwise distances in both the 

original and the projected spaces. In order to achieve good distance preservation, 

Sammon’s stress should be minimized. The DB index attempts to maximize the inter-

cluster distance while minimizing the intra-cluster distance at the same time. It is 

commonly used as a clustering validity index, low values indicating good clustering 

results.  
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(a)          (b) 

Figure V.10 (a) Sammon’s stress and (b) DB index for R = 1, 2, 3, 4 
 

For the projection results in Figure V.9, both Sammon’s stress and the DB index 

are calculated for each R value, which are shown in Figure V.10(a) and Figure V.10(b) 

respectively. It can be seen from Figure V.10 that the two quantitative measures have 

contradicting trends. As R grows larger, Sammon’s mapping increases while the DB 

index decreases. It is hence impossible to optimize both of the objectives at the same 

time. We must identify the best compromise, which serves as the optimal R in this 

context. The task of selecting the optimal R now boils down to a bi-objective 

optimization problem. A typical way to solve the problem is to use the weighted sum 

method, which is stated in [Kim and Weck 05]:  
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min  
)(
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)1(
)(
)(

0,2
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0,1
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xJ
xJ

xJ
xJ

αα −+  ,         (V.12) 

where J1 and J2 are two objective functions to be mutually minimized, J1,0 and J2,0  are 

normalization factors for J1 and J2 respectively, and α is the weighting factor revealing 

the relative importance between J1 and J2. In the context of this work, J1 and J2 

correspond to Sammon’s stress and the DB index. Assuming these two objective 

functions have equal importance, α is set to be 0.5. By taking the weighted sum, the two 

objective functions are combined into a single cost function, which is shown in Figure 

V.11. The optimization problem is therefore reduced to minimizing a scalar function. As 

shown in Figure V.11, the objective function reaches its minimum when R equals to 2. 

Consequently, the condition of R = 2 leads to the best compromise between good 

distance-preservation and good clustering quality. For the three-dimensional example 

used in Subsection 5.2.4.1, Figure V.9(b), obtained with R = 2, is the optimal projection 

result in terms of the two quantitative measures.  
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Figure V.11 The optimal R is found at the minimal point of the single cost function. 
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5.3 Incremental Clustering for Dynamic Document Databases  

 

5.3.1 The Need for Incremental Clustering 

Document collections are dynamic in nature. As time passes, new documents are 

published and added to the database. The size of the document collection is therefore 

constantly increasing in a real-world environment. Many techniques used for clustering 

and mapping documents are based on processing the entire collection of papers at once 

[Booker et al. 99, Morris et al. 02, Morris et al. 03, Vesanto and Alhoniemo 00]. 

However, there are often situations where additional documents are created and available 

when the map is already fully built. It is highly desirable for a document clustering model 

to equip with an ability to perform incremental clustering. Incremental clustering works 

by assigning data objects to appropriate clusters as they arrive, without having to perform 

complete reclustering from scratch. In this section, we discuss how the proposed SOM-

based approach can be used to incrementally cluster new data. This technique is based on 

the growth of the document-reference matrix as new documents are added to the 

collection.  

 

5.3.2 Formation of the Similarity Matrix 

A mathematical model introduced in [Morris 05] is used in this study to encode 

inter-document similarities based on the bibliographic coupling counts, which also 

handles the dynamic growth of the document collection. For a collection of m documents 
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{d1, d2, …, dm} and n references {r1, r2, …, rn}, an m×n document-reference matrix can be 

defined to depict the direct citation links between the papers and references:  

1 if cites
( , )

0 otherwise
i j

dr

d r
i j ⎧

= ⎨
⎩

M                            (V.12) 

Each document is thus represented by a vector, which describes the citations that appear 

in the document. In this case, the matrix Mdr is binary, whose rows correspond to 

documents and columns correspond to references. Furthermore, the rows and columns are 

ordered in the sequences in which the documents and references are published 

respectively. The following example is the document-reference matrix for a document 

collection with m =3 and n = 7:  

 
1 1 1 0 0 0 0
1 0 1 1 1 0 0
0 1 0 0 0 1 1

dr

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M         (V.13) 

The bibliographic coupling relation, as an indirect citation link, can be derived 

from the document-reference matrix Mdr. An m×m matrix Mbc, which contains the 

bibliographic coupling counts bcij between all pairs of documents in the collection, can be 

found by multiplying the paper-reference matrix by its transpose:  

Mbc= Mdr· Mdr
T.                     (V.14)   

The element in the ith row and jth column of Mbc is the number of documents 

cited by both document di and document dj. As an example, using the Mdr given in 

Equation (V.13), we will have the following bibliographic coupling matrix:  

3 2 1
2 4 0
1 0 3

bc

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M .         (V.15) 

documents 

references 
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The inter-document similarities are then calculated by taking the cosine 

coefficient of the bibliographic coupling counts [Salton 89]: 

ji

ij
ij NN

bc
s = ,                            (V.16) 

where sij is the similarity value between document i and document j, while Ni and Nj are 

the total number of document citations for documents i and j respectively. As a result, the 

similarity matrix is a symmetric matrix that contains the normalized bibliographic 

coupling counts between all pairs of documents in a collection. Given the Mbc in 

Equation (V.15), the resulting similarity matrix will be 

1 0.58 0.33
0.58 1 0
0.33 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S .        (V.17)  

The columns or rows, representing individual documents, are used as input patterns to 

train a GHSOM.  

 

5.3.3 Dynamic Growth of the Similarity Matrix  

In a real-world environment, a document collection grows from an initial set of 

documents by sequential addition of papers in the order of their publication dates. When 

a new document is added, it is associated with the existing references and also brings 

additional references in the collection.  

Consider the document collection containing m documents and n references. The 

document-reference matrix Mdr is an m×n matrix, whose rows and columns are ordered 

according to the publication dates. Assume a new document dm+1 is added to the 
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collection and introduces n1 new references. This addition results in a new row and n1 

new columns in the original Mdr: 

 

'

1 1 1 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 1 1 1

dr

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M        (V.18) 

The new row vector corresponds to the added document dm+1. It can be partitioned into a 

1×n vector, which describes dm+1’s citations to the n existing references, and a 1×n1 

vector of all ones, which corresponds to dm+1’s citations to the new references. This 

(m+1)th row can hence be represented as [δ 1], where δ denotes the 1×n vector and 1 

denotes the 1×n1 vector of all ones. Because no citation exists between the newly added 

references and the original set of documents, the corresponding elements are all zeros, 

resulting in an m×n1 zero matrix on the upper right part of the new matrix M’dr. This 

matrix therefore can be represented in the following recursive matrix equation:  

' dr
dr

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

M 0
M

δ 1
,         (V.19)  

where 0 is the m×n1 zero matrix. The new bibliographic matrix M’bc can be obtained by 

applying Equation (V.14): 

T T T
' ' ' T

T T T T
dr dr dr bc dr

bc dr dr
dr dr λ

⎡ ⎤ ⎡ ⎤⋅ ⋅ ⋅
= ⋅ = =⎢ ⎥ ⎢ ⎥⋅ ⋅ + ⋅ ⋅⎣ ⎦ ⎣ ⎦

M M M δ M M δ
M M M

δ M δ δ 1 1 δ M
     (V.20) 

where λ is the total number of 1’s in the (m+1)th row in M’dr. For the example document 

collection, δ = [0 0 1 0 0 1 0], [δ 1] = [0 0 1 0 0 1 0 1 1 1], and thus λ =5. Therefore the 

additional row vector vm+1 in M’bc can be computed as  

 vm+1= [δ·Mdr
 T 

  λ] = [1 1 1 5],          (V.21) 

n1 

m

n 

(m+1)th row
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and the new column is vm+1
T. M’bc is a (m+1)×(m+1) matrix. It becomes the similarity 

matrix S’ after normalization.  

 

5.3.4 An Incremental Document Clustering Algorithm 

The additional row (or column) vector in S’ represents the new document. While 

this new data item is added to the map by the original training, the initial topology of the 

map should be preserved. To achieve this result, a single-pass clustering technique can be 

applied to the new documents, which processes the new documents sequentially and 

compares each of them to all existing clusters. Each new document can then be mapped 

using the RCP algorithm.  

However, a challenge exists for the incremental clustering of documents. As the 

original training was completed by using the rows (or columns) of the original similarity 

matrix S, the prototype vectors of the trained SOM which correspond to the existing 

cluster centers, have a dimension of m. Every time a new document is added to the 

database, the dimension of the new row (or column) vector representing the new 

document grows by one. Therefore the new data vectors can not be compared with the 

prototype vectors directly because of the mismatch in dimensions. To accommodate the 

dynamic growth of the similarity matrix, an incremental clustering algorithm for dynamic 

document processing is proposed. The main steps are summarized in Table V.3.  

As a new document is added, the prototype vectors are first expanded by one 

dimension, representing the bibliographic coupling relation to the new document. The 

corresponding element in each prototype vector is randomly initialized. The incremental 

clustering algorithm then updates the cluster center associated with the BMU of the new 
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data point and its neighboring cluster centers as the new data point is presented. 

Subsequently the new data point is projected to the map by finding the weighted average 

of the positions of the nearby existing cluster centers. By taking these steps repetitively 

for each new document, the additions of new documents will be reflected in the map 

without affecting the original map topology.  

 

Table V.3 Basic steps of the incremental clustering algorithm 

1. For a new document di, expand the dimension of the prototype vectors by one. 

Initialize the value of the new element in each prototype vector with a random 

number.  

2. The standard SOM training algorithm is applied to the map so that the 

expanded prototype vectors are adapted to the new input vector.  

3. Apply the Ranked Centroid Projection to the new data and allocate it to the 

original map space.  

4. Repeat steps 1-3 if there is any new document to be added to the database. 
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CHAPTER VI  

 
 

SIMULATION RESULTS 

 

6.1 Overview 

 
The simulations presented in this chapter serve as demonstrations of the 

applicability of the proposed SOM-based visualization method, in which three different 

data sets have been applied. Each of the sections focuses on a separate data set. The first 

data set is a two-dimensional artificial data set used for illustrative purpose. The other 

two data sets are real-world document sets, which are the core subject of this chapter. 

These two simulations aim at solving practical problems in text-based data mining. They 

are examples of a pragmatic, data-centered approach. In these examples the SOM-based 

approach is used to capture and reveal relational features of a collection of documents 

covering different scientific fields.  

The general goal is to examine the usefulness and limitations of the proposed 

approach in clustering and visualizing high-dimensional data, and more in particular to 

illustrate the capabilities of this approach in contributing to a more efficient and 

meaningful knowledge representation of document collections. The emphasis is placed 

on the description of the methodology and not on the explanations of the configuration on 

the map. 
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6.2  Software Tools Used 

 
A number of software tools were used to perform the simulations. The functions 

of the tools and their URLs are given as follows: 

• DIVA package [Morris et al 02] in Matlab for citation analysis, calculating the 

similarity matrices and extracting the cluster labels, of which the author is one of the 

main developers. (http://samorris.ceat.okstate.edu/web/diva_web/) 

• SOM Toolbox [Vesanto et al. 00] in Matlab for creating the SOM  

(http://www.cis.hut.fi/projects/somtoolbox) 

• GHSOM Toolbox [Chan and Pampalk 02] in Matlab for creating the GHSOM 

(http://www.ofai.at/~elias.pampalk/ghsom/) 

• Statistics Toolbox in Matlab for implementing the two-dimensional clustering tasks 

(http://www.mathworks.com/products/statistics/) 

 

6.3 An Illustrative Data Set 

 
The first data set was used to illustrate how the proposed approach performs. This 

data set is the zoo dataset obtained from the UCI Machine Learning Repository [Newman 

et al. 98]. The zoo data set comprises 100 artificial data items representing animals with 

16 attributes (besides names and classes). The animals are divided into 7 classes. An 

additional numeric-valued class attribute is given to indicate the class distribution, which 

is excluded from the training data.  

A GHSOM is trained for this data set, which starts with a 2×2 SOM. The training 

process continues with additional units being added until the quantization error drops 
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below a certain percentage of the overall quantization error of the unit at the first layer. In 

this example, a three-layer GHSOM was generated by setting the thresholds τ1=0.6 and 

τ2=0.0002. The GHSOM is illustrated in Figure VI.1, where the top-layer map is depicted 

in gray and the bottom layer maps are in white. The projection result generated using the 

RCP is shown in Figure VI.2(a), in which the complete set of animals is mapped across 

the 3×2 map grid. The map was generated with the ranking parameter R=3, which is 

selected using the method described in Subsection 5.2.4.2. This value results in the best 

compromise between the projection accuracy and clustering quality. Members of each 

class are marked by different symbols. Meaningful clustering of the animals is shown in 

the map, with several well-separated clusters located in different regions of the map. The 

resulting projection gives a rough representation of the global shape of the data. For 

comparison, the projections by the basic SOM, PCA, and Sammon’s mapping are 

presented in Fig. VI.2(b)-(d) respectively. 

 

Figure VI.1The resulting 3-layer GHSOM for the zoo data set 
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Figure VI.2 Two-dimensional projections of the zoo data. (a) The first-layer map using the proposed 
approach (R=3). (b) A 9×9 SOM with data projected to the corresponding BMUs. (c) PCA. (d) 
Sammon’s mapping. 

 
Visually inspecting the results presented in Figure VI.2, Figure VI.2(a) is 

evidently the best, showing good distribution and clean separation of the clusters. The 

basic SOM projection in Figure VI.2(b) was unable to produce isolated clusters, although 

the clusters are somewhat identifiable. PCA and Sammon’s mapping failed to capture and 

Symbol Class Description  Symbol   Class Description 
× 1 Mammals   □ 5 Amphibians 
○ 2      Birds   ∆ 6       Insects 
◊ 3       Reptiles   • 7       Other invertebrates 
+ 4       Fish  
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present the cluster structure, as shown in Figure VI.2(c) and VI.2(d) respectively. The 

proposed approach appears to outperform the other methods in visualizing the underlying 

structure of data. Fairly good resolution was achieved in the 3×2 map in Figure VI.2(a), 

while a satisfactory resolution requires a considerably larger map size for the basic SOM, 

which has 9×9 units in this case. Besides, using the proposed approach, refined maps 

showing the intra-cluster details are available for clusters of interest. 

Based on the initial separation of clusters in the first layer, further maps were 

automatically generated and trained to represent the sub-clusters in more details. In this 

simulation, 6 submaps are formed on the second layer. One example is shown in Figure 

VI.3, which is the submap expanded from the right-middle unit in the top-layer map. As 

can be seen in Figure VI.2(a), classes 6 and 7 are somewhat mixed and form a large-scale 

cluster in the vicinity of the right-middle unit. This large-scale cluster is distinguished 

from the other classes in that it represents the group of invertebrates, animals without a 

backbone. Figure VI.3 gives a zoomed-in view of this group. Interesting small-scale 

clusters can be noticed in this submap of 2×2 units. Members of class 6, the insects, are 

mapped to the right half of the map, while most of the animals of class 7 occupy the left 

part. Further grouping is also discernible. The animals in the upper-left corner are 

aquatic. The two land insects, flea and termite, are close to each other, indicating 

significant similarity between them, while far away from the airborne insects. Gnat, 

ladybird, moth and housefly, all of which are non-venomous and airborne, form a tight 

sub-cluster. Scorpion is mapped close to honeybee and wasp, as they are all venomous. 
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Figure VI.3 Submap of invertebrates generated with R=3 
 

In this simulation, two quantitative measures, Sammon’s stress and the DB index, 

are computed for each method. The results are summarized in Table VI.1. Although 

inadequate as sole performance metrics for the goodness of the projection, they can be 

used to some degree to characterize the resulting projection. As introduced in Subsection 

5.2.4.2, Sammon’s stress measures the distortion between the pairwise distances in both 

the original and the projected spaces. The DB index is commonly used as a clustering 

validity index with low values indicating good clustering results. The data set was 

projected a number of times with each method to obtain the results in Table VI.1. 

Sammon’s mapping scores the best value on the Sammon’s stress. This is not surprising, 

since the other three methods do not aim at minimizing Sammon’s error measure alone. 

The result of the RCP method is calculated based on the first-layer map of only 6 units. 

The projection in this layer is coarse, which may explain why the corresponding 

Sammon’s stress is significantly higher than the others. Doubling the number of first-

layer units will make the resulting stress of the RCP comparable to the 9×9 SOM. The 
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results of the DB index show that the RCP produces a better result, which is consistent 

with the visual inspection. This implies that for the purpose of classification and 

categorization, the RCP is to be preferred over the other methods presented here.  

 
Table VI.1 Quantitative evaluation results 

 PCA Sammon’s 
Mapping SOM (9×9) Ranked Centroid 

Projection 

Sammon’s 
stress 0.1769 0.0796 0.1944 0.6667 

DB index 0.2283 0.2562 0.2357 0.1666 

 

 

6.4 Document Data Sources 

 

In the next two sections of this chapter, two collections of journal papers covering 

different scientific fields are used as examples. To visualize the document collections, it 

is necessary to find document links based on the inter-document citations in the first stage 

of the proposed approach. Journal papers with citations were extracted from the Science 

Citation Index (SCI) [Garfield 94], the first database complied by the Institute for 

Scientific Information (ISI) in the mid-1960’s. This database provides an accumulating 

body of readily available catalogued bibliographic data on scientific research. The SCI 

has an annual coverage of about 500,000 individual documents with roughly 8,000,000 

citations in the reference lists. The documents stem from over 3,500 professional core 

journals, especially the important periodicals in the natural and life sciences [Tijssen 92]. 

The journal papers used in this study were retrieved on line from ISI Web of Science. 
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The raw files of documents generated from queries to the citation service form a database 

and are stored in MS Access.  

  

6.5  A Collection of Journal Papers on Self-Organizing Maps 

 

The second data set is constructed based on a collection of journal papers from the 

SCI on the subject of Self-Organizing Maps. Using the term ‘Self Organizing Maps’ in 

the general search function of ISI Web of Science, a set of 1,349 papers was collected 

corresponding to journal articles published from 1990 to early 2005. A SQL query was 

used to count the number of bibliographic couplings for each pair of documents in the 

data set. The poorly related papers, i.e. papers that did not have at least 5 bibliographic 

couplings with another document, were discarded, reducing the total number of papers to 

638. 

Citation based similarity matrices are used extensively when working with patents 

and journal articles from sources that provide citation data such as the SCI [Morris et al. 

02, Morris et al. 03]. In this study, document citation patterns are used to describe the 

inter-document relationships between pairs of documents, based on which a similarity 

matrix is built to store pair-wise similarity values between papers. Each dimension of the 

similarity matrix corresponds to one document in the data set and the value of each 

element is equal to the relative strength of the citation relationship between the 

corresponding document pair. Similarities calculated from citations generally produce 

meaningful document maps whose patterns expose clusters of documents and relations 

among those clusters. 
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In this study, the similarity matrix is constructed based on one type of inter-

document citations, namely the bibliographic coupling, as discussed in Chapter IV. The 

similarity matrix is therefore a symmetric matrix that contains the bibliographic coupling 

counts between all pairs of documents in the database. Each element in the similarity 

matrix is calculated as discussed in Equation (IV.4). After the document encoding 

process, a 638×638 similarity matrix is constructed. Each row (or column) of the 

similarity matrix depicts the citation pattern of a document in a 638 dimensional space, 

which is then used as the input vector to train a GHSOM network.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure VI.4 The resulting 3-layer GHSOM for the collection of SOM papers 
 

Starting with a 2×2 SOM at the first layer, a 3-layer GHSOM was generated by 

setting the thresholds τ1=0.8 and τ2=0.008, as illustrated in Figure VI.4. The first-layer 

map, consisting of 3×4 units, shows four major clusters in the collection of journal 

papers. The topics associated with each map unit are labeled in Figure VI.4. The labels 
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are derived after examining manually the paper titles from each cluster for common 

subjects. 

The projection of all the papers onto the first layer map is shown in Figure VI.5, 

where documents are marked as circles in the rectangular area. This projection is 

obtained by using a ranking parameter R = 5. Four major clusters can be observed from 

the figure, which are located around the four corners of the map.  
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Figure VI.5 The projection result of the journal papers on the SOM, where documents are marked as 
circles in the rectangular area.  

 

To enhance the visual representation of the paper collection, the size of the 

document marker can be made proportional to the number of times a document has been 

cited. Figure VI.6 illustrates such a map, in which highly cited papers are displayed as 

large circles with a darker color while the less cited ones are displayed as smaller light-

color circles. Important papers, usually distinguished by large citation counts, are thus 

made standing out on the document map. In this collection of SOM papers, three papers 

are extraordinarily heavily cited, as marked in Figure VI.6. The two large circles in the 

top part of the map, [Toronen et al. 99] and [Tamayo  et al. 99], which appear to be 
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closely related to each other, correspond to two important works on applying SOM for 

clustering gene expression data. Tamayo and colleagues used the SOM to cluster genes 

into various patterned time courses and also devised a gene expression clustering 

software, GeneCluster. Another implementation of the SOM was developed by Toronen 

et al. in 1999 for clustering yeast genes. Yet another heavily cited paper is [Kohonen 90], 

which is cited by a large portion of the documents in this document set. The foundational 

papers Kohonen published in 1980’s, such as [Kohonen 82], are not available from the 

ISI web service. 
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Figure VI.6 An enhanced visualization of the SOM papers, where the size of the document marker is 
proportional to the number of times a document has been cited. 

            

Several map units in the first layer SOM are expanded to the second layer. One 

example is shown in Figure VI.7. Figure VI.7(a) shows the submap expanded from the 

second node from the left in the bottom row in the first-layer map and Figure VI.7(b) 

shows the projection result of this submap. This map, consisting of 3×3 units, represents 
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a cluster of papers covering the theoretical aspect of the SOM, within which Kohonen’s 

seminal paper is located.  

Some of the units in the second-layer maps are further expanded as distinct SOMs 

in the third layer. Due to the incompleteness of this document collection, limited 

information about this subject domain is revealed from the map displays.  

 
(a) Submap for cluster number 2 with labels 
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(b) The projection result of the submap  

 
Figure VI.7 A submap of the resulting GHSOM for the SOM paper collection 
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6.6 A Collection of Journal Papers on Anthrax Research 

 

The third data set is a collection of journal papers on anthrax research, which is 

also obtained from ISI website. Anthrax research makes an excellent example for testing 

the performance of document clustering and visualization. The subject is well covered by 

the SCI. A great deal of the research has been performed in the past 20 years. A review 

paper [Bhatnagar and Batra 01] is available where the names of key papers in this field 

are identified and discussed. The anthrax paper set collected for this simulation contains 

987 documents corresponding to journal papers published from 1981 to the end of 2001 

[Morris 05].  

A 987×987 similarity matrix is formed to train a GHSOM. A 3-layer GHSOM 

was resulted by setting the thresholds τ1=0.78 and τ2=0.004, as illustrated in Figure VI.8. 

The first-layer map consists of 3×4 units. The projection of data samples onto this layer 

is shown in Figure VI.9, which was produced by setting the ranking parameter R = 3.  

 

Figure VI.8 The resulting 3-layer GHSOM for the collection of anthrax papers 
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Figure VI.9 First-layer projection of the anthrax journal papers, where documents are marked as 
circles in the rectangular area.  The cluster labels are added manually showing the major subject of 
each cluster of papers.  

            

In Figure VI.9, several major clusters can be seen on the map with their subjects 

labeled. The labels are manually created after browsing the paper titles in each individual 

cluster. Starting from the upper left corner of the map and going clockwise, we can see 

that the topics of the papers change with different locations on the map. The cluster of 

papers in the upper left corner is focused on how anthrax moves, interacts with, and 

enters host cells. Note that several smaller groups are visible inside this cluster, which 

implies expanding this cluster to a further layer would reveal several sub-topics. To the 

right, the papers in the upper center of the map are found to deal with anthrax genes. The 

cluster located in the upper right corners cover biological effects of anthrax, while the 

cluster right below it covers the effect of anthrax on the immune system. In the lower 

right corner of the map, another group of papers exists, which deals with the comparison 

of anthrax and other Bacillus strains. A tight cluster is formed in the lower left corner of 

the map, which discusses the use of anthrax as a bio-weapon. As a whole, several obvious 
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groups of documents are formed on the map, which relate to different research focuses in 

the context of anthrax research. Fundamental research topics are located in the upper 

portion of the map, which are somewhat in vicinity of each other. There are no obvious 

borders between these groups as the topics are closely interrelated. On the contrary, other 

relevant topics on anthrax are mapped to the lower portion, which are rather far away 

from the fundamental research topics and from each other. It can be seen that the 

geometric distance indicates the degree of relevance between documents. It is also 

noticeable that many documents sitting between clusters, which is the result of the 

heavily overlapped research coverage.  

 

Figure VI.10 Labeled map of the anthrax paper set with paper marker sizes proportional to the 
number of times the corresponding papers have been cited. 
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made proportional to the number of times they have been cited. The result is shown in 

Figure VI.10.  

Several seminal papers can be identified from Figure VI.10, five of which are 

marked in the figure as examples. The earliest seminal paper is the Gladstone paper 

published in 1946, in which he reported on the discovery of protective antigen. In the 

1950’s, Smith and Keppie showed in their paper that anthrax kills through a toxin. These 

papers are landmark papers forming the foundation for anthrax research and they fall into 

the cluster of anthrax effect on immunity. Later another influential paper was published 

in 1962 when Beall showed anthrax has a three-part toxin. Leppla announced edema 

factor in his paper in 1982. These papers mainly deal with the effect of anthrax on host 

cells. Another heavily cited paper was on macrophages published by Freidlander in 1986, 

which became the key paper in this area.  

Based on the initial separation of the most dominant topical clusters in the 

document collection, further maps can be automatically created to represent the topics in 

more detail. One second-layer submap is presented in Figure VI.11, which consists of 

4×3 neurons. This map is expanded from the neuron in the upper left corner in the first-

layer map. It was trained using a total of 192 papers, which are represented by the parent 

neuron in the preceding layer. The corresponding projection of the data samples is shown 

in Figure VI.12. In the second layer, the papers are further clustered into three groups: 

anthrax effect on macrophages, anthrax delivery, and anthrax interaction. This result is 

consistent with the first-layer representation. One unit on this second-layer map is further 

expanded as a separate SOM in the third layer. 
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Figure VI.11 One submap expanded from the upper left neuron in the first-layer map. 
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Figure VI.12 The second-layer document projection of the upper-left cluster in the preceding layer 
 
 
 

6.7 Adding New Documents to an Existing Map 

 

This section is to demonstrate the performance of the presented projection method 

under a dynamic environment, where new documents are added to the existing document 

collection. In this example, the collection of 638 SOM papers is used again. To simulate 

the dynamic data set, we assume that the first 600 papers in the collection are the initially 

available data, which are transformed by using the similarity representation. The 

remaining 38 papers, which were published later than the existing paper set, are treated as 
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new papers. An initial map was trained using the set of 600 papers, which is illustrated in 

Figure VI.13. Several clusters can be seen from the map, which are labeled with the 

corresponding subjects. 
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Figure VI.13 The first-layer map of the initial 600 papers for training  
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Figure VI.14 The first-layer map with the additional 38 papers added as new data. The red circles 
represent newly added papers.  
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Assume the remaining 38 papers were received after the initial map was created. 

The addition of these new papers results in the dynamic growth of the similarity matrix of 

the original document set. For every additional paper, a new row and column will be 

added to the original similarity matrix. Using Equation (V.21), the new vector, which 

represents the new paper, can be calculated by simple matrix operations. Thereafter each 

new document can be mapped sequentially to the existing map using the incremental 

clustering method as described in Section 5.4.4. The resulting map with the 38 additional 

papers is shown in Figure VI.14, in which the new papers are displayed as red circles. 

Most of the new papers are mapped to existing clusters. Take one cluster for example: the 

top left cluster in Figure VI.13 covers the usage of SOMs in gene expression data 

analysis. 10 out of the 38 new papers are mapped to this cluster, as shown in Figure 

VI.14. Figure VI.15 shows the 3-dimensional timeline plot of the papers. In this figure, 

papers are mapped in the order of their publication dates along a third axis, so that 

vertical streams of circles represent clusters of papers in chronological order. The new 

papers are highlighted in the figure, which are all located on the top portion of the 3-

dimensional display space indicating they were published comparatively late. The cluster 

of gene expression data analysis is quite distinguished from others, which was formed 

around 2000 as can be seen from the map. The titles, journals, authors and publication 

dates of these papers are listed in Table VI.2. Most of the papers in the list are from 

biomedical science journals, with a topic matching the subject of the existing cluster.  

The incremental clustering result updates the existing map with new publications 

and presents changes over time in a specific research field. Visual information of the 
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amount of activity in different research fields can be obtained by comparing two maps, 

since the algorithm does not change the initial topology of the map.  

 

 
Figure VI.15 3D timeline of the 638 SOM papers 

 
Table VI.2 List of new papers mapped to the cluster labeled “gene expression data analysis” 

Title Source Year Author 
Open source clustering software  BIOINFORMATICS  6/12/2004 de Hoon MJL
Modulation of gene expression by 
alloimmune networks following murine 
heart transplantation  

MOL GENET 
GENOMICS  

7/1/2004 Christopher 
K  

Environment-dependent one-body score 
function for proteins by perceptron 
learning and protein threading  

J KOREAN PHYS SOC  8/1/2004 Cheon M  

A hybrid self-organizing maps and 
particle swarm optimization approach  

CONCURR COMPUT-
PRACT EXP  

8/10/2004 Xiao X  

Influence of microarrays experiments 
missing values on the stability of gene 
groups by hierarchical clustering  

BMC BIOINFORMATICS 8/23/2004 de Brevern 
AG  

Global gene expression patterns spanning 
3T3-L1 preadipocyte differentiation  

CAN J ANIM SCI  9/1/2004 Hansen C  

Analysis of the major histocompatibility 
complex in graft rejection revisited by 
gene expression profiles  

TRANSPLANTATION  9/27/2004 Christopher 
K  
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Title Source Year Author 
Clustering binary fingerprint vectors with 
missing values for DNA array data 
analysis  

J COMPUT BIOLOGY  10/1/2004 Figueroa A  

Mapping high-dimensional data onto a 
relative distance plane - an exact method 
for visualizing and characterizing high-
dimensional patterns  

J BIOMED INFORM  10/1/2004 Somorjai RL 

Modelling and optimal control of fed-
batch processes using a novel control 
affine feedforward neural network  

NEUROCOMPUTING  10/1/2004 Xiong ZH  
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CHAPTER VII  
 

DESIGN OF THE SOFTWARE TOOLBOX  

 

7.1 Overview 

 

To implement the document clustering and visualization proposed in this study, a 

Document Visualization and Analysis Toolbox has been developed. The majority of the 

exploration and analysis functions of the toolbox are implemented in Matlab, while 

document storage is done using MS Access.  

The toolbox is a software tool supporting intuitive, user friendly exploration of 

document collections by visualizing documents on a two-dimensional map. The resulting 

maps usually exhibit a clearly detectable structure by clustering documents by topic. This 

structure allows us to gain insight into the contents of the document collection as well as 

to get a rough overview of the relationships among documents and clusters of documents. 

It can thus be used to identify inherent knowledge contained in huge document datasets.  

In this chapter, a detailed discussion of the overall analysis process and 

exploration functions the toolbox offers will be provided. Figure VII.1 shows the main 

graphic user interface (GUI) of the toolbox, which is used to manage projects and control 

the exploration of document maps. Along the menu bar at the top of the GUI are five pull 
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down menus. Four groups of information display and control are below the menu bar. 

Section 7.2 describes the functioning of the toolbox as a system, showing each step in the 

document visualization and analysis process. Section 7.3 discusses the general procedure 

involved in setting up the workspace using the menu bar. Section 7.4 provides details on 

displaying and manipulating maps using the control groups. An example of visualizing a 

set of journal papers is also given in the following sections to illustrate the usage of the 

toolbox. 

 

 

Figure VII.1 Main GUI of the Document Visualization and Analysis Toolbox 

 

7.2 System Description 

 

The main design framework of the toolbox follows the procedure of the proposed 

SOM-based approach described in Chapter V. Figure VII.2 shows a flow chart of the 

process involved while developing a visual representation using the toolbox. 
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Figure VII.2 Flow of work of the document visualization and analysis toolbox 
 

A typical process for analyzing large document sets begins with identifying suitable 

electronic database sources for the problem at hand. Once the relevant electronic data sources 

have been located, a set of documents of interest can be colleted and loaded into the 

project database from the sources. Following this, a similarity matrix, based on document 

citations, is created to measure the strength of the links between all pairs of documents in 

the database. Based on these links, the documents are mapped onto a two-dimensional 

space for visualization. Such mapping is done by a GHSOM, which usually organizes 

documents in a multi-layered manner and groups documents into clusters on each 

individual layer. The clusters can be manually identified and labeled by the user, who can 

then employ additional exploration functions to visualize relations among documents and 

document clusters. A detailed description of the individual parts of the visualization 

system follows. 

 

7.2.1 Document Sources 

A variety of electronic document databases can be used as data sources for the 

toolbox, such as patent services and citation services [Morris et al. 02]. In this 

dissertation, journal papers available from the Science Citation Index (SCI) are used as a 

major data source. The SCI provides access to scientific literature published in the 
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physical, biological and medical fields. More information about the SCI can be found in 

Chapter VI. For scientific literature in other technical domains, web-based services such 

as Citeseer [Lawrence et al. 99] or IEEE Xplore (http://www.ieee.org/ieeexplore) can be 

used.  

Once the SCI has been selected as the data source, it can be queried using general 

keywords to extract only relevant documents of interest to the user. Results of the 

querying process will then be downloaded and saved as plain text files. A typical record 

of a journal paper in text format is shown in Figure VII.3, which is one of the papers 

retrieved by using the query term ‘Self Organizing Maps.’ Author, institute, keywords, 

abstract text, and other information are printed in tagged format, i.e. field labels precede 

each piece of information. Citations of the papers are available as well, which are listed 

in the field labeled with CR. They provide explicit links among the papers.  

 

Figure VII.3 A typical journal paper printed in a text file 
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7.2.2 Project Database 

The downloaded documents, as shown in Figure VII.3, are in unstructured text 

format. To analyze them, it is necessary to convert the unstructured text-based literature 

into a structured database format, such as one readable by MS Access. The project 

database is created by loading documents from source files using procedures written in 

MS Access Visual Basic. Figure VII.4 is a snapshot of the project database, in which 

documents are stored in a tabular format. The toolbox accesses these stored documents 

using SQL queries.  

 
 

Figure VII.4 Documents are saved in tabular format in the project database. 
 

 
7.2.3 Similarity Matrix  

The similarity matrix describes the magnitude of links between all pairs of 

documents in the database. As discussed in Chapter IV, bibliographic coupling, which 

provides links between documents citing common references, is used to build the 

similarity matrix in our approach. This is implemented by using a SQL query that counts 

the number of total bibliographic couplings for each pair of documents in the project 

database.  
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Finally, inter-document similarities are calculated as the normalized bibliographic 

coupling counts between each pair of documents, using Equation (V.16). A more detailed 

discussion of the formation of the similarity matrix can be found in Section 5.3.2.   

 

7.2.4 Mapping of Documents 

Once similarity values are obtained for the documents, a GHSOM is trained and 

used to map the documents onto a hierarchy of rectangular planar surfaces. In practice, 

the method starts by training the GHSOM with the rows of the similarity matrix. Starting 

from a small single top-layer SOM, the GHSOM grows both in width and in depth to 

represent data at a certain level of detail. This enables a large-to-small-scale presentation 

of the conceptual structure of the document collection. As a result, traversing the 

hierarchical structure from top down will provide a zoomed-in view of the document 

collection.  

Following the training of the GHSOM, the Ranked Centroid Projection is applied 

to each individual map in the hierarchy to locate the coordinates of the documents 

relative to each other on the corresponding two-dimensional plane.  

 

7.2.5 Clustering of Documents 

Once the above steps are successfully accomplished, it is ready to generate cluster 

maps, which are visual representations of the documents constituting the database. The 

toolbox allows the user to do all clustering manually by identifying interesting groups of 

documents on the map display. Lists of documents in each cluster are stored in the project 

database as the user identifies them. Most clusters on the map correspond to specific 



 94

technological fields or sub-fields in the document set. Document titles from each cluster 

can be examined manually for common themes in order to derive labels for each cluster.  

 

7.2.6 Visual Exploration 

Further exploration and analysis of the documents can be carried out using the 

different functions and tools available in the toolbox. Each cluster of documents can be 

selected and analyzed individually. Some of the exploration approaches include 

analyzing most frequent terms, authors, institution sources, links between cluster groups 

and the like.  

An enhanced visual representation, as the one shown in Figure VI.6, can be 

created by displaying the size of the document marker proportional to the number of 

citations the document receives. This function helps identify seminal papers in the 

database. Publication dates of the documents can also be visualized by varying the color 

of the document marker, which helps identify the chronological trend in the documents.  

 
 

7.3 Getting Started with the Menu Bar 

 

As shown in Figure VII.1, there are five drop-down menus at the top of the GUI. 

The user can start the document visualization and analysis process by using these menus.  
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7.3.1 Working with a Project  

The first step in the process is to start a project. A project is a workspace involved 

in analyzing a particular database, including the associated setup and all information 

needed for generating the document maps.  

Assume we have collected a number of journal papers, as those used in Section 

6.5, and converted them from source files to a MS Access database named som. The user 

can set up a new project by clicking on New Project under the Project menu (Figure 

VII.5). Following this, a link between the project and the relevant database needs to be 

set up. This can be done by selecting the Set Database Link under the Project menu. A 

window, as shown in Figure VII.6, containing the names of all available databases will 

pop up next. Select the one of interest, som in this case, to link it to the current project.  

 

Figure VII.5 Click on New Project to create a new project 
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Figure VII.6 Selecting a database from the list 
 
 

After the completion of the above steps, a project with a database link is set up. 

An existing project can be recalled by selecting Open Project under the Project menu and 

locating the name of the project from the directory.  

 

7.3.2 Building Similarity Matrix 

The procedure described in Section 5.3.2 is followed to build the similarity 

matrix. First the document-reference matrix Mdr is loaded by selecting Load paper to 

reference matrix under the Matrix menu (Figure VII.7). Following this, the similarity 

matrix, as defined in Equation (V.16), can be calculated by selecting Use bib coupling 

default under the Coccurrence menu (Figure VII.8). Next click Bib to Diva under the 

Similarity menu (Figure VII.9) to load the similarity matrix to the current project.  
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          Figure VII.7 Load paper-reference matrix                    Figure VII.8 Create similarity matrix 
 
 

 

Figure VII.9 Load similarity matrix to current project 
 
 

An adjacency matrix is needed later for executing the exploration functions, 

which represents the citation network illustrated in Figure IV.3 as a directed graph. The 

adjacency matrix can be generated and loaded by selecting Read Adjacency from 

database under the Similarity menu. 

 

7.3.3 Training the GHSOM 

Once the similarity matrix is created and loaded, the user can follow the steps 

below to start training a GHSOM neural network:  

a. Select the similarity matrix to be the training data by highlighting similarity in the 

Connections window (Figure VII.10).  
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b. Select Train GHSOM under the Map menu (Figure VII.11) to start training. If the 

similarity matrix is not selected before this step, an error message as shown in 

Figure 12, will display.  

c. Set training parameters τ1 and τ2 respectively in the window popping up next and 

click on OK (Figure VII.13).  

 

                   

Figure VII.10 Select similarity matrix                      Figure VII.11 Start GHSOM training 
 
 

                                   

Figure VII.12 Error message                         Figure VII.13 Set training parameters 
 
 

When the training is completed, a two-dimensional representation of the GHSOM 

structure will display as shown in Figure VII.14. The first-layer ordinations are saved to 

the project, which will be used to generate the document map. A dialog box (Figure 

VII.15) will pop up asking the user to name the set of ordinations.   
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Figure VII.14 The two-dimensional representation of the GHSOM structure 
 
 

                                                 

         Figure VII.15 Enter the name of the map                 Figure VII.16 The Map control group 

 

7.4 Displaying and Working with Maps 

 

7.4.1 Displaying Maps  

The MAP control group below the top menu bar is used for displaying maps 

(Figure VII.16). The map ordinations previously produced can be found in the window 

on the left of the control group. The user can select a map by highlighting the 

corresponding name and display the document map by pressing the DOTMAP button. 

Once the above steps are completed, a map as shown in Figure VII.17 will be displayed.  
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Figure VII.17 The dot map for the first-layer map 

 

                  
  
(a)       (b) 

Figure VII.18 (a) Landscape map (b) Contour map 

 

The map in Figure VII.17 is usually called a dot map, as the documents are shown 

as small circles, or dots, on a rectangular area. The dot map is the most convenient and 

common map representation used for exploration. However, when many documents are 

mapped on top of each other, it is difficult to gauge the density of documents on the map. 

Two alternate map formats, landscapes and contour maps, are also available, which can 

be generated by clicking on the corresponding buttons on the right of the control group. 



 101

Figure VII.18(a) shows the landscape map for the same data plot, in which the height of 

the surface above plane is proportional to the density of documents at that position. 

Figure VII.18(b) shows the contour map for the same data plot, which offers another way 

of visualizing document densities on the map.  

                 

7.4.2 Exploring Maps 

In addition to the Map control group, there are three other sub-windows in the 

toolbox GUI: Time, Clusters, and Connections (see Figure VII.1). These control groups 

are designed for specific exploration functions, which will be discussed respective in the 

following.  

 

7.4.2.1 Clustering and Marking Documents 

The CLUSTERS control group, as shown in Figure VII.19, is used to identify, 

display and mark clusters of documents on dot maps. On a dot map, clusters can be 

created by dragging the mouse to draw a rectangle over the group(s) of dots of interest. 

Upon selection, the documents inside the rectangle will be highlighted (Figure VII.20).  

 

Figure VII.19 The CLUSTERS control group 
 
 



 102

 

Figure VII.20 The selected cluster is highlighted. 

 
The user can label the cluster by browsing the document titles for a common 

topic. Upon right click on the map, a menu pops up (Figure VII.20). Selecting the show 

titles option will enable a window with all the titles of the selected group listed (Figure 

VII.21).  

 

 

Figure VII.21 Titles of the highlighted documents 

 
Examining the paper titles in Figure VII.21, we find microarray data analysis is 

the common subject, using which we can label the selected cluster. To save this cluster 

for later use, press the STORE button and name the cluster in the window popping up 
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next (Figure VII.22). The name of the cluster just stored will appear in the cluster 

window (Figure VII.23).  

The CLEAR button is used to clear a group selection. The user can then make a 

new selection and define it under a previously named cluster. The DELETE button is 

used to delete a stored cluster. Pressing the SAVE IN DBASE button saves the selected 

group of documents in the MS Access database that the current project is linked to.  

Using Matlab figure editor, the user can also directly label each cluster on the dot 

map. A labeled map is shown in Figure VII.24.  

 

                                               

Figure VII.22 Enter the cluster name                Figure VII.23 The cluster name appears in the window 

 

 

Figure VII.24 Labeled map 
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7.4.2.2 Visualization of Document Links 

Another important exploration function available in the toolbox is the option of 

displaying links among individual documents and document clusters. A pair of 

documents is linked if they have a non-zero similarity value. These links convey 

information vital to understand the inherent relationship in the data set. The 

CONNECTIONS window (Figure VII.25) is used to generate and manipulate 

connections.  

The user can limit the display of links by setting the threshold slider bar. Only 

links corresponding to similarity values above a threshold will be displayed. Before 

displaying the links, the desired type of links, similarity matrix or adjacency matrix, must 

be selected from the pull-down menu (Figure VII.26).   

                    

      Figure VII.25 The CONNECTIONS window             Figure VII.26 Select the desired link 
 
 

Four types of document links can be visualized by pressing the four buttons on the 

right of the window. The All button enables the display of all similarity connections 

above the threshold value (Figure VII.27(a)). The Group button enables the display of 

only links connecting to user selected documents and clusters. Figure VII.27(b) shows the 

citation links that connect to the selected cluster in the lower right corner of the map. The 

Dependent button is used to visualize all documents citing the selected documents both 
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directly and indirectly (Figure VII.27(c)). The Precedent button visualizes the opposite 

citation relation (Figure VII.27(d)).  

 

               

(a)        (b)  

                  

(c)        (d)  

Figure VII.27 Different types of connections: (a) All, (b) Group, (c) Dependent, (d) Precedent. 

 

7.4.2.3 Visualization of Document Dates  

Visualization of the publication date is very useful for investigating the trends in 

document citation patterns and cluster sizes. The TIME control group (Figure VII.28) 

provides functions to visualize date information by highlighting documents on a dot map 

within a specific time span.  
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Figure VII.28 The TIME control window 
 
 

  

Figure VII.29 Documents published within a specific time period are highlighted  

 
The bottom slider bar in the control window is used to set the beginning date 

desired for display and the top slider bar is used to set the period or span of time needed 

in the time stratification visualization. For instant, if the user needs to analyze documents 

published in two years starting from February 1997, the starting date should be set at 

“Feb. 97” and 2 should be specified for the period (Figure VII.28). Figure VII.29 shows 

the result, in which the documents published within the above time period are 

highlighted. From the figure we can find that no papers were published on microarray 

data analysis during this time period. Setting this function over specific adjacent time 

periods, such as every two years, helps visualize activity in the document set.   
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7.4.2.4 Visualization of Document Citation Counts 

One of the most useful functions provided by the toolbox is to the visualization 

the document citation counts. This function can be executed by pressing the Vary Size in 

the MAP control group (Figure VII.16). The resulting map is shown in Figure VII.30, in 

which the size of the document marker is proportional to the number of times a document 

has been cited. This operation causes important papers, as judged from large citation 

counts, to stand out on the document map as shown in Figure VII.30. A labeled version 

of this map can be found in Figure VI.7. 

 

 

Figure VII.30 A dot map with document citation counts visualized 
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CHAPTER VIII  
 

CONCLUSION AND FUTURE WORK 

 

8.1 Summary of the Work 

 

With the rapid growth in the production and availability of textual data, 

algorithms to explore it, organize it, and extract knowledge from it, are in great need. 

This study introduces an approach for clustering and visualizing high-dimensional data, 

especially textual data. The devised approach, which is an extension of the Self-

Organizing Map, acts both as an analysis tool as well as a direct interface to the data, 

making it a very useful tool for processing textual data. It clusters documents and 

presents them on a two-dimensional display space. Documents covering similar topics are 

grouped into the same cluster and clusters with similar concepts are located nearby on a 

map.  

In the training phase, the proposed approach employs a GHSOM architecture, 

which grows both in depth according to the data distribution, allowing a hierarchical 

decomposition and navigation in portions of the data, and in width, implying that the size 

of each individual map adapts itself to the requirements of the input space. After 

convergence of the training process, a novel projection method, the Ranked Centroid 

Projection, is used to map the input vectors to the hierarchy of two-dimensional output 
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maps of the GHSOM. The performance of the presented approach has been illustrated 

using one artificial data set and two real-world document collections. The two document 

collections are scientific journal articles on two different subjects obtained from the 

Science Citation Index. The document representation relies on a citation-based model that 

depicts the inter-document similarities using the bibliographic coupling counts between 

all pairs of documents in the collection.  

Although the resulting SOM maps are graphical artifacts, the simulation results 

have demonstrated that the approach is highly effective in producing fairly detailed and 

objective visualizations that are easy to understand. These maps therefore have the 

potential of providing insights into the information hidden in a large collection of 

documents. In addition, for the given document collections, it is rather easy to judge the 

quality of the clustering result. 

 

8.2 Advantages and Limitations 

 

The proposed clustering and visualization approach is based on the SOM model 

and incorporates several unique features, such as the growing hierarchical structure, the 

ranked centroid projection of the data vectors, and the incremental clustering for dynamic 

databases. The advantages of the presented approach for processing document data are as 

follows:  

1) The GHSOM structure employed by the presented approach overcomes two 

major limitations of the standard SOM: the static architecture of the SOM and 

its poor capability in representing hierarchical relations of the data.  
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2) The novel projection method, the RCP, involves a ranking scheme based on a 

membership degree factor. This enables the proposed projection technique not 

only to reveal the clustering tendency in the data but also to visualize 

information on cluster memberships.  

3) The RCP allows the data points to be projected to arbitrary locations across 

the SOM network. It is therefore possible to handle a large data set with a 

rather small number of nodes while providing a high-resolution map at the 

mean time.  

4) The number of nodes required to represent a set of data is less than that of a 

comparable SOM. This will result in a lower computation load and hence less 

processing time.  

5) The RCP may be used to incrementally process new data points without 

affecting the original map topology.  

Advantages 1) and 5) become especially useful when dealing with document 

databases, which often process a hierarchical and dynamic nature. The size of the 

network is also an important issue, as it will directly affect the processing time, especially 

in cases of large data sets. Due to the dynamic structure it adopts, the proposed approach 

achieves the same level of detail with a lesser number of nodes, which is a critical 

advantage in mapping large data sets. In addition, the flexible mapping of the RCP 

provides visualizations with satisfactory resolutions using a comparably small number of 

nodes. Therefore, it is evident that the proposed approach is a very useful tool in 

knowledge discovery tasks.  
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Several limitations also exist in the ability of the presented approach to depict the 

document databases. The spatial representation of documents provides only an 

approximate view of the documents of interest. Such spatial representations are 

sometimes criticized as being lack of validity and reliability. Particularly, it is because 

many graphical representations of the same set of data are possible. A decision should be 

taken for choosing the best spatial representation for the given data set. In order to 

support such a decision, performance metrics for measuring the quality of a spatial 

representation are needed. However, the construction of such performance metrics is 

especially difficult provided that, in the real world data, the underlying data distribution 

is usually unknown or there is no certainty about a clustering structure. As a result, the 

evaluation of a data projection is very difficult. Moreover, further attempts to interpret 

the findings or to develop new ideas on the basis of the spatial data may require the 

involvement of domain experts.  

Although the above limitations exist, a spatial representation may still be the best 

initial approach in a theory-deficient area like quantitative studies of the underlying 

conceptual structure of document collections. In such cases, the most important 

contribution of these maps is the detection of the previously invisible structure.  

 

8.3 Future Directions 

 

The introduction (Chapter I) outlined a large research field, which can not 

possibly be completely covered in a single study. The main results presented here may be 

characterized as an extension to the use of the SOM in document clustering and 
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visualization and the development of the presented projection method. Many issues 

outlined in the introduction have been addressed in the contents of this study. However, 

some concerning problems still await to be attended, which are summarized in the 

following.  

The incremental clustering method is based on the assumption that it is possible to 

consider new documents one at a time and assign them to the existing clusters. As time 

progresses, new documents are added while old documents may also become obsolete. 

The same is true for the references. This implies that an incremental clustering algorithm 

for a dynamic database should be able to handle both additions of new data points and 

deletions of obsolete data points.  

Another possibility is the development of suitable performance metrics for the 

various tasks described in this report, as well as the application of such principles in 

evaluating document maps and text visualization models in general. So far, two 

quantitative measures, the DB index and Sammon’s stress, have been used in this study to 

characterize the resulting projection. However, these two factors are inadequate to be 

used as sole performance metrics for assessing the document map, where the underlying 

data structure is complicated and mostly unknown. Some new measure(s) would be 

needed to accommodate the characteristics of the document map.  

Last but not the least, a continuing challenge is to demonstrate the usage of the 

proposed approach in different large-scale real-world applications. In this report, the 

proposed approach acts as an excellent analysis tool for investigating the inner structure 

of the transformed textual data, providing the capability of clustering and visualizing the 

document collection of interest. Yet, there are application domains other than textual 
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information to be explored, where the proposed approach can provide a unique value. It 

should be particularly beneficial in dealing with large-scale data, hierarchical data or/and 

dynamic data.  
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The Self-Organizing Map (SOM) is an unsupervised neural network model that 
provides topology-preserving mapping from high-dimensional input spaces onto a 
commonly two-dimensional output space. In this study, the clustering and visualization 
capabilities of the SOM, especially in the analysis of textual data, i.e. document 
collections, are reviewed and further developed. A novel clustering and visualization 
approach based on the SOM is proposed for the task of text data mining. The proposed 
approach first transforms the document space into a multi-dimensional vector space by 
means of document encoding. Then a growing hierarchical SOM (GHSOM) is trained 
and used as a baseline framework, which automatically produces maps with various 
levels of details. Following the training of the GHSOM, a novel projection method, 
namely the Ranked Centroid Projection (RCP), is applied to project the input vectors onto 
a hierarchy of two-dimensional output maps. The projection of the input vectors is treated 
as a vector interpolation into a two-dimensional regular map grid. A ranking scheme is 
introduced to select the nearest R units around the input vector in the original data space, 
the positions of which will be taken into account in computing the projection coordinates.  

The proposed approach can be used both as a data analysis tool and as a direct 
interface to the data. Its applicability has been demonstrated in this study using an 
illustrative data set and two real-world document clustering tasks, i.e. the SOM paper 
collection and the Anthrax paper collection. Based on the proposed approach, a software 
toolbox is designed for analyzing and visualizing document collections, which provides a 
user-friendly interface and several exploration and analysis functions.  

The presented SOM-based approach incorporates several unique features, such as 
the adaptive structure, the hierarchical training, the automatic parameter adjustment and 
the incremental clustering. Its advantages include the ability to convey a large amount of 
information in a limited space with comparatively low computation load, the potential to 
reveal conceptual relationships among documents, and the facilitation of perceptual 
inferences on both inter-cluster and within-cluster relationships.  
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