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Chapter 1 

Objective 

1.1 Motivation 

In the past 40 years, many kinds of electronic circuits were developed at an 

amazing speed. The low power integrated circuit (IC) is one of the targets designers are 

pursuing. Among the applications of low power ICs, wireless RF transceivers are new 

emerging application that requires small size, low cost and low power. One of the most 

critical components in wireless transceiver is the wireless receiver. 

The objective of this research is to study and realize an ultra-low power RF 

receiver based on double-gate CMOS (FinFET) technology. In this work, tradeoffs and 

strategies for low power receiver design are investigated. A low power global position 

system (GPS) receiver is taken as an example to test our study. 

 

1.2 Overview  

This dissertation is organized as follows. Chapter 2 describes techniques for the 

design of analog circuits for low power. It focuses on the importance of moderate 

inversion usage in this design, which is the main method to reduce the power 

consumption of RF receiver. Chapter 3 and 4 focuses on the design, test and model 

integrated passive devices, such as inductors and varactors. Chapter 5 introduces a new 

double-gate CMOS architecture, FinFET. We characterized the FinFETs with I-V, C-V, 

 1



 
 

and S-parameter measurements at GHz frequency range. A BSIM3SOI model is 

developed for further implementation and validation of the FinFET transistor RF circuits 

in moderate inversion. Starting from Chapter 6, we apply the passive and active devices 

to the GPS receiver front-end circuit design. In Chapter 6, the GPS receiver’s architecture, 

system design and implementation requirement are described. Chapters 7 to 9 describe 

the GPS receiver front-end sub-blocks, such as ultra-low power LNA, VCO and mixer 

design, respectively. The performances and trade offs of each building blocks are 

summarized at the end of each chapter. Chapter 10 concludes the dissertation with a brief 

summary of results and discussion of future research directions.  
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Chapter 2 

Low Power Techniques 

2.1 Introduction 

The silicon CMOS technology has become dominant in integrated circuits. CMOS 

gate lengths have reduced from 10um in the 1970’s to the present day geometries of less 

than 90 nm. According to the 2004 International Technology Roadmap for 

Semiconductors (ITRS), by 2006, MOS transistors with a physical gate length of 80 nm 

will become widely available. Its scalability provides decreased power consumption at 

enhanced performance levels.  When the CMOS devices are scaled into the sub-100nm 

dimension, the deep sub-micron CMOS opens up new frontiers in low voltage and 

current circuit design. In this chapter, design techniques are outlined first, and the 

advantages of modern CMOS devices are analyzed and the ultra low power consumption 

for RF front end circuits is investigated.  

 
2.2 Low Supply Voltage Technique 

Conventional CMOS technology has, for over 3 decades, been locked into 

designing processes with high performance digital circuits as the objective. Analog/RF 

designers basically just used discrete solutions or hybrid blocks of bipolar GaAs, and 

more recently BiCMOS and Heterojunction Bipolar Transistors (HBT). Not only are 

digital device models not sufficient for the accurate circuit simulation, the analog/RF 

designer must face a constantly shrinking design space. One of the most difficult 
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problems is the constantly decreasing supply voltage for modern CMOS processes, 

causing reduced voltage headroom and dynamic range for analog and RF application [1]. 

 

2.1.1 Opportunities for Reduced Supply Voltage 

Here a typical differential local oscillator (LO) is shown in Figure 2.1. It is an 

example capable of operating with a very low supply voltage. It contains two stacked 

transistors. The inductors comprising the resonant load do not consume additional voltage 

headroom, additionally the output is allowed to swing above the supply voltage, VDD. 

Theoretically, the LO may operate on a supply voltage as low as VDsat1+VDsat3, where 

VDsat is the MOSFET saturation voltage. Furthermore, if the devices M1 and M2 are 

designed to operate in the subthreshold regime, VGS and VDsat may be quite small.  

 The main challenge in operating under a low VDD is the reduction in output 

voltage swing. Generally, system level considerations are critical when designing low 

voltage circuits and choosing the optimal power supply voltage. Supply voltage is not 

typically considered a variable parameter available to the designer, because it is 

impractical from an integration perspective if each component requires its own unique 

supply. However, it is entirely reasonable that two supply voltages will be available in a 

network environment: e.g. high voltage for active mode and low voltage for sleep mode. 

Recent research in low voltage digital design has shown that significant savings in 

memory leakage power may be achieved by reducing the supply to a few hundred mill 

volts during standby periods [2]. If a lower voltage supply is made available for use in 

digital standby mode, it may also be available for analog circuits [3]. 
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Figure 2.1 Schematic of low power supply LO. 
 

2.2.2 Challenges for Low Power Supply 

 For analogue circuits, down-scaling supply voltage and process feature size will not 

automatically reduce power consumption and, in fact, usually it often has the opposite 

effect in analog design. In analogue chips, power is consumed to maintain the signal 

energy above the thermal noise floor in order to achieve the desired signal-to-noise ratio 

or dynamic range. Since minimum power consumption is related to the ratio between 

supply voltages and signal amplitude, power-efficient analogue circuits should be 

designed to maximize the voltage swing. Reducing the supply voltage, while maintaining 

the signal-to-noise ratio and bandwidth, therefore requires that the transconductance be 

increased. This is normally done at the expense of power or by reduced channel length. 

Therefore the approach for analogue designs must therefore be different.  

  

2.3 Subthreshold Operation Technique 
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2.3.1 Fundamental of Subthreshold Operation 

 
For gate-source voltage (VGS) less than the extrapolated threshold voltage  but 

high enough to create an inversion region at the surface of the silicon, the device operates 

in the subthreshold region. In this work, both weak and moderate inversion are 

considered as subthreshold operation even we know V

tV

GS may larger than Vt  in moderate 

inversion. Later in this chapter we will point out this work is based on moderate inversion 

because of the bandwidth limitation. 

In subthreshold region, the channel charge is much less than the fixed charge in 

the depletion region and the drain current arising from the drift process is negligible. The 

drain current is caused by a gradient in minority-carrier concentration, i.e. diffusion 

current.  

In subthreshold operation, the surface potential is approximately a linear function 

of the gate-source voltage [4].  Assume that the charge stored at the oxide-silicon 

interface is independent of the surface potential in the subthreshold region, and then 

changes in the surface potential sψ∆ are controlled by changes in the gate-source voltage 

 through a voltage divider between the oxide capacitance and the depletion-

region capacitance

GSV∆ oxC

jsC . Therefore, 

1s ox

GS js ox

d C
dV C C n

ψ
=

+
=            (2.1) 

where n is called subthreshold slope factor and takes on a values from 1 to 2. 

The drain current equation in the subthreshold region is  

exp 1 expGS t DS
D t

T T

V V VWI I
L nU U

⎡ ⎤⎛ ⎞ ⎛−
= −

⎞
−⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
           (2.2) 
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where  is the thermal voltage.  is the gate to source threshold voltage.  is intrinsic 

or specific current. 

TU tV tI

2
02t oxI n C Uµ= T            (2.3)

Physically,  represents the characteristic current for the device in the center of 

the moderate inversion region, providing a convenient normalization factor. The drain 

current of a given device may be normalized to , producing the inversion coefficient, 

tI

tI

D

t

IIC WI
L

=             (2.4) 

The inversion coefficient provides a very useful way of identifying the operation 

region and level of inversion  [5] of MOS transistors, 

1IC << : Weak inversion 

1:IC ≈ Moderate inversion 

1:IC >> Strong inversion 

Unlike in strong inversion, the minimum drain-source voltage required to force 

the transistor to operate as a current source in the subthreshold region is independent of 

the overdrive [4].  

 Calculating D GSI V∂ ∂ from (2.4) and using (2.3) gives 

exp 1 expt GS t DS oxD D
m

t T T T T ox

I V V V CI IWg
L nU nU U nU U C C

⎡ ⎤⎛ ⎞ ⎛ ⎞−
= − − = =⎢ ⎥⎜ ⎟ ⎜ ⎟ +⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ js

      (2.5) 

The ratio of the transconductance to the current of an MOS transistor in subthreshold 

region is 

1m

D T

g
I nU

=              (2.6) 
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The Equation above predicts that this ratio is independent of the overdrive, . For the 

transistor in the strong inversion, the

V∆

m Dg I ratios is  

2m

D

g
I V

=
∆

                                         (2.7) 

where is the overdrive voltage. Comparing (2.6) to (2.7), we find the V∆ m Dg I  of 

subthreshold region may 4 to 8 times higher than in strong inversion. 

 
2.3.2 Advantages of Subthreshold Operation 

 Motivated by the needs for low power narrow-band wireless communication 

systems, the micro-power RFIC front-end, a LNA combined with a down-conversion 

mixer, has been designed using weak inversion CMOS techniques [6].  

 Within the active (saturation) region a device may be biased in the moderate or 

weak inversion region. The available transcondance per amp may 4 to 8 times higher than 

in strong inversion. This can be a big benefit for wireless applications where power 

consumption is much concerned if the bandwidth is available.  

 The second advantage of subthreshold operation is the relatively low drain 

saturation voltage VDsat, which is typically around 3 to 4 UT (about 78mV) [7] at room 

temperatuer. More practically as a result of anticipated temperature variation VDsat, must 

be greater than 120mV. Compared with strong inversion, the value of VDsat in weak 

inversion is independence of gate voltage. The low saturation voltage implies that 

transistors operating in weak or moderate inversion require less overhead resulting in 

greater headroom than do devices in strong inversion. Therefore subthreshold operation is 

a natural choice for circuits operating with reduced supply voltage when the bandwidth is 

available. 
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 The third advantage of subthreshold operation is low flicker noise achieved in 

moderate inversion since the flicker noise is reduced with less current flow [8, [9]. A 

detailed explanation follows in chapter 5. 

 Finally, nonlinearity is not a problem. In subthreshold region the third order 

intercept point voltage ( ) is approximately  [10] 3IIPV

       (2.11) mVUV TIIP 12010043 −≈=

If the system signal is much less than 100 mV we could ignore the effects os VIIP3. The 

second order intercept point voltage ( ) is inversely proportion to input offset voltage 

( )  [10] 

2IIPV

osV

 
( )

OS

T
IIP V

U
V

2

2
4

=         (2.12) 

For 80 nm FinFET the VOS is approximately 4.8 mV per square root of finger numbers 

[11]. For a 200 um device it has 2000 fingers. The VOS is calculated 0.1 V. Thus the VIIP2 

is 25 V. Since for this work the amplitude of signal is on the order of micro-volts, the 

effects of IP2 and IP3 could be ignored.  

 
2.3.3 The challenges of Subthreshold Operation 

Although there are many advantages obtained in weak inversion region there are 

drawbacks as well. The first and obvious problem is the reduced bandwidth. Traditionally, 

transistors for high frequency applications are operated in strong inversion to take 

advantage of the high device transit frequency ( Tf ) in this regime. Transit frequency is 

defined as the frequency where the current gain of the device falls to unity and is 

normally given by: 
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        (2.9) 

Since gm in weak or moderate inversion may be ten or more times smaller than that in 

strong inversion mode,  Tf  in the weak inversion is several orders of magnitude below 

that in the strong inversion although the Cgs in subthreshold may several times smaller 

than that in strong inversion shown in Figure 5.15 in Chapter 5. In the past, this speed 

limitation prohibits the applications in RF design. However, technology scaling is 

beginning to provide the solution since in the weak or moderate inversion, Tf  is inversely 

proportional to the square of the channel length in (2.10)  

 2

T

V
nU

t
T

ox

I ef
L C

∆

≈          (2.10) 

The present deep submicron CMOS technology makes this feasible. As shown in Figure 

2.2 [3], the peak Tf  is around 100GHz, decreasing sharply at lower inversion coefficient. 

At the center of moderate inversion, indicated by the vertical line at IC equal 1, Tf  is 

approximately 5 GHz for the 130nm process. The bandwidth is adequate to implement 

circuits operating in the hundreds of MHz or above. In the Figure 2.3, device Tf  is 

simulated across inversion level for three generations of submicron CMOS. At the center 

of moderate inversion, Tf  is approximately 6 GHz for 180 nm, 12 GHz for 130 nm, and 

21 GHz for 90 nm node. The current state of the art, 90nm CMOS device, can provide 

sufficient bandwidth for subthreshold circuits up to the low GHz range, such as GPS 

receiver front end which works at 1.5 GHz. From now on, we will only concentrate on 

the moderate inversion since it can provide enough bandwidth for low GHz application. 
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As a result the expected gm efficient improvement is only expected to be 2 to 4 greater 

than square law. 

 

 

Figure 2.2 gm/ID and fT for a modern CMOS 0.13um process [3]. 

 
Figure 2.3 Comparision of Tf  with technology scaling [3]. 

 
In addition to the reduce Tf , the current mismatch is another problem. In 

subthreshold region the drain current has an exponential relationship with the gate 
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voltage. As a result any small change in the gate to source voltage will have a larger 

change in drain current, which makes it unpredictable for the circuit.  Fortunately, with 

the device area increase the current mismatch will decrease since  [12] 

22 21 1.2
5

Si
I

Si

TL W ToxA k
L W T Toxfin∆

⎛ ⎞∆∆ ∆ ∆⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ± ⋅ + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

2

      (2.10) 

Where IA∆  is the ratio of current mismatch.  
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Chapter 3 

Integrated Inductors  

3.1 Introduction 

 The inductor is a key component in high RF frequency circuits. In the past a few 

years there was a great drive to improve the quality factor of integrated inductors so that a 

radio-on-chip system can be readily realized [13]. Bulk silicon inductors generally have 

peak Q’s of less than 10 with low self-resonant frequencies [14]. These values are 

typically not satisfactory for high performance, voltage-controlled oscillator (VCO) 

designed to meet the stringent phase noise and low power constraints. 

 In this chapter, the inductor structure and layout were discussed first. Then the 

inductor model and model parameters extraction methods were presented. Finally, the 

model simulation results were compared with the measurement for some typical inductor 

and the conclusion was drawn.  

 

3.2 Structure and Layout 

 High quality factor integrated circular spiral inductors were fabricated in 

SPAWAR Systems Center’s novel 0.5 µm TSOI CMOS technology with a stacked 1.7 

µm-thick aluminum metal. The geometry of the spiral inductors can be described by the 

following parameters: number of turns (n), turn width (w), turn spacing (s), inner 

diameter (d) or inner to outer radius ratio (IDOD). These parameters are shown in Figure 
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3.1(a). The die photo is shown in Figure 3.1(b). The width of the spiral metal is from 15 

um to 50 um. The inner-to-outer diameter ratio is from 0.3 to 0.7. And the number of 

turns is from 1.5 to 10.5.  Figure 3.2 shows a cross-section of an integrated inductor 

fabricated in this technology. The test frame with ground-signal-ground pad was laid out 

for shielding.  

 The inductors we investigated can be grouped in the following classes:  

1) Same IDOD, but different n and w;  

2) Same w, but different IDOD and n;  

3) Same n, but different IDOD and w.  

 All the inductors have a fixed spacing between the turns, s = 3 µm. In this case, 

the inner radius (Ri) can be derived analytically from the parameters set (n, w, IDOD), 

Ri=IDOD*n*(w+s)/(1-IDOD). Three families of inductors were characterized by s-

parameter measurement with HP 8720D network analyzer and Cascade Microtech 

coplanar ground-signal-ground (GSG) probes. De-embedding was carried out to remove 

the parasitic components. 

 

 (a)  
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(b) 

Figure 3.1 (a) Structural parameters of an on-chip spiral inductor, (b) Die photograph of 
the spiral inductor. 

 

Figure 3.2 Cross-section of inductor. 
 

3.3 Inductor Model and Parameter-extraction Method 

 

(a) 
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(b) 

 

(c) 

Figure 3.3 Equivalent circuit for models: (a) with substrate, (b) without substrate, (c) 
equivalent circuit at low frequency. 

  

 The equivalent circuit for the inductor is shown in Figure 3.3, where Ls is the 

inductance and Rs is the parasitic series resistance of the metal wire. The overlap 

between the spiral and the underpass allows direct capacitive coupling between the two 

terminals of the inductor. This path is modeled by the series capacitance Cs. In a 

conventional inductor structure, the oxide capacitance between the inductor and the 

silicon substrate has to be taken into account, as well as the sub-circuit of the substrate, 

which are shown in Figure 3.3(a). However, including these parasitic circuit elements 

makes the extraction of the important intrinsic inductor parameters very tricky and 

inaccurate. In order to improve the inductor performance the silicon substrate has been 

etched away. As a result, the self resonance frequency and quality factor Q of the 

inductor increase. The resulting circuit model can be simplified to the one shown in 

Figure 3.3(b).  The meaning of Cox in this circuit is no longer the capacitance between the 
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inductor and the substrate; instead, it models the remaining parasitic capacitive coupling 

between the inductor and the surrounding grounded structures. At low frequency, 

100MHz, both the coupling capacitor Cs and the parasitic capacitor Cox can be neglected, 

thus the circuit model is further reduced to the one in Figure 3.3(c).  For this series RL 

circuit, the two components can be easily extracted from the Y-parameter: 

21

1 1ImLs
Yω

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
                                         (3.1) 
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1ReRs
Y

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
                                                                             (3.2) 

 However, as the Y-parameters cannot be measured accurately, they are obtained 

by the transformation from the measured s-parameters.  The overall capacitance can 

found from the self-resonance frequency: 

 2
0

1C
Lsω

=                                               (3.3) 

where C includes Cox and Cs. 

 All parameters (L, R and C) in the inductor model are functions of the number of 

turns (n), the turn width (w), the turn spacing (s), and one from the following: the outer 

diameter dout, the inner diameter din, the average diameter davg = 0.5*(din+dout), or the 

inner and outer diameter ratio (IDOD). By fitting the data, expressions for Ls, Rs and Cs 

were determined. We have successfully obtained these parameters for inductors in a 

broad range: the number of turns from 1.5 to 5.5, turn width from 15 um to 50 um, and 

inner and outer diameter ratio from 0.1 to 0.7. 
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 Due to large amount of data collected, computer software was employed to find 

the dependence on the geometric parameters. However the selected software (Origin 7)   

can only fit two independent variables, therefore, the following three approach was used: 

   a) Ls = f (w, n), while IDOD is fixed, 

   b) Ls = f (n, IDOD), while w is fixed. 

   c) Ls = f (IDOD, w), while n is fixed, 

  As the approach c) is not practical, the approaches a) and b) were adopted. 

 

3.4 Results and Model Verification 

3.4.1 Series Inductance (Ls) 

 The empiric expression of the series inductance is based on the data fitting 

technique in reference [15]. For fix IDOD, the expression is  

32
1

PPLs Pn w=                    (3.4a) 

Taking the logarithm of Eq. (4a) we can get the following monomial relation:  

1 2 3log log log logLs P P n P= + + w                   (3.4b) 

For the inductors with IDOD = 0.5, the fitted the parameters are found: P1 = 0.26591, P2 = 

2.21235 and P3 = 0.72121.  Therefore, the inductance can be modeled as: 

2.21235 0.721210.26591Ls n w=                   (3.4c) 

 In a same way, the inductor model can be fitted following the approach b).  As an 

example, inductors with w = 25 can be modeled as: 

                          (3.5) 1.54863 0.511541.07185Ls n IDOD=

3.4.2 Series Resistance (Rs)  
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  The series resistance of the inductor can be expressed as [16]: 

 
eff

r
s tw

lR
⋅

=
ρ                                                      (3.6) 

where rρ  is the resistivity of the metal; l  is the overall length of spiral, which equals 

avgdnπ ; w is the line width;  is the effective thickness. With the consideration of the 

skin effect, the effective thickness can be calculated as 

efft

)1( δδ t
eff et −−⋅= ; where t  is 

the physical thickness of the metal and δ is the skin depth. At 1 GHz, the skin depth of 

Al and Cu is 2.8 um and 2.5 um, respectively.  

3.4.3 Series Capacitance (Cs) 

The Series capacitance Cs models the parasitic capacitance coupling between the 

inductor and the under-path. It can be approximated as a parallel-plate capacitor [17]. 

 2

2 3

ox
s

M M

k
C nw

t
ε

−

⋅
=                                                                              (3.7) 

 Where 2 3M Mt −  is the oxide thickness between spiral and the under path, which is 0.9 um 

in our sample; = 0.7 is a fitting parameter. k

3.4.4 Model Verification 

  With the method described above, the parameters of the series resistance, 

inductance and capacitance can be extracted; the results from two samples are shown in 

Table 1. 

The measured and simulated S-parameters have been compared in Figure 3.4 and 

Figure 3.5, where the numbers of turns are 2.5 and 4.5, respectively. The measured 

inductances as the function of frequency are plotted in Figure 3.4(b) and Figure 3.5(b). 
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The total error  [18] between the measured and the simulated s-parameter calculated as 

follows by (3.8) is less than 3% over the frequency range from 0.1 to 10 GHz. 

2
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ε

⎧ ⎫−⎪= ⋅ ⋅ ⎨
⎪ ⎪⎩ ⎭

∑ ∑ ⎪
⎬      (3.8) 

  The simulation is carried out with ADS.  We also compared the results from 

inductors with other structural parameters, they consistently have good agreement. 

Table 3.1 Extracted circuit model parameters. 

Turn 
w 

(µm) 
IDOD Ls(nH) Rs (Ω) Cs(fF) 

2.5 25 0.5 2.8 0.13 41.48 

4.5 25 0.5 12 0.36 75 
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Figure 3.4 (a) Measured (dot) and simulated (line) s-parameter, n=2.5, w=25um, s=3um, 
and IDOD=0.5.  
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Figure 3.4 (b) Measured inductance as a function of frequency. n=2.5, w=25um, s=3um, 
and IDOD=0.5. 
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Figure 3.5 (a) Measured (dot) and simulated (line) s-parameter, n=4.5, w=25um, s=3um, 
and IDOD=0.5. 

 

 

Figure 3.5 (b) Measured inductance as a function of frequency. n=4.5, w=25um, s=3um, 
and IDOD=0.5. 
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 A typical fit of the Verilog-A model vs. the measurement data for two inductor 

instances is shown in Figure 3.6. Figure 3.6 shows that a 6.5 nH inductor has a peak Q of 

18, which is higher than the best Q of 15 reported in  [19] for a 5.5 nH inductor in a 

silicon-on-sapphire (SOS) technology with a thicker 2.5µm aluminum metal. The 6.5 nH 

inductor has a self-resonant frequency at about 10 GHz, which is about twice the self-

resonant frequency reported in [19]. 

 

Figure 3.6 Comparison between measurement data and model simulation.  
 

 We also find the model developed is accurate for inductors with the number of 

turns less than 5.5, fortunately most practical on-chip spiral inductors fall in this range. 

When the number of turns is larger than 5.5, the error becomes larger and more circuit 

elements must to be included in the model. As shown in Figure 3.7, the model can not 

predict the behavior for frequency higher than 7 GHz. 
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Figure 3.7 Measured (dot) and simulated (line) s-parameter, n=5.5, w=25um, s=3um, and 
IDOD=0.5. 

 

3.5 Conclusion 

Based on the above analysis, we found that small IDOD ratio inductors were turn-

restricted. For example, if IDOD equals to 0.1and 0.2, n should be maintained less than 2, 

and 3 respectively. Generally IDODs of 0.4 to 0.5, w of 15 um to 30 um and s of 3 

provide a better model fit. The obtained equivalent Spice circuit model shows good 

agreement between the simulated and measured s-parameters over a wide frequency 

range.  
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Chapter 4  

Integrated Varactor 

4.1 Introduction 

 Integrated voltage-controlled capacitors (varactors) are widely used as frequency 

tuning elements for RF applications [20, [21], such as voltage controlled oscillators 

(VCOs). The core of a VCO is the LC tank circuit, composed of a varactor and an 

inductor.  

 Several RF models for the MOS varactor have been reported [21, [22, [23, [24]. 

The physical model proposed in  [21] was derived by considering the device structure but 

consisted of separate models for different operating regions of the device, i.e. in 

accumulation and in depletion, respectively. The theoretical model reported in  [22] 

includes the physics-based equations. The SPICE compatible models exploiting a sub-

circuit based on the BSIM3v3 model were presented in  [23] and [24].  

 This chapter presents a RF model of an accumulation-mode MOS varactor with a 

high capacitance tuning range in a multi-finger layout, and it is based on physical 

parameters. The model describes the voltage dependent capacitances and resistances 

along with the parasitic inductance, capacitance and resistance terms. A single topology 

with the lumped elements derived from the device has been proposed for easy integration 

into common circuit simulator as well as direct linkage to a p-cell. Good agreements 

between measured data and simulation results were obtain in the frequency range of 0.1 

to 25 GHz by de-embedding the test frame inductance. 
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4.2 Structure and Layout 

 Accumulation-mode MOS varactors were fabricated in SPAWAR Systems 

Center’s Integrated Circuit Fabrication Facility in their 0.5 um CMOS-SOI technology 

where the substrate has been removed. This process has low parasitic capacitance which 

facilitates fabricating high quality, high frequency RF varactors by decreasing the losses 

normally associated with bulk silicon processes. The varactors designed, fabricated and 

tested employ a multi-fingered layout with finger lengths of 0.5 um, 0.8 um, and 1.0 um, 

finger widths of 5 um and 10 um, and total widths of 1000 um.  A representative cross-

section of the device is shown in Figure 4.1 with a micrograph for a typical layout shown 

in Figure 4.2.  

 

 
 

Figure 4.1 The cross-section of the single varactor. 
 
 

 Measurements confirm that the varactors have a tuning ratio that varies from 1.7 

for the 0.5 um device to 2.6 for the 1.0 um device. The worst case self-resonant frequency 

of 21.5 GHz was observed for the W = 200 5 mµ× , L = 1.0 um device at its maximum 

capacitance of about 2.13 pF at 500 MHz, as shown in Figure 4.3(a).  As observed in 
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Figure 4.3(b), the quality factor remains satisfactory (above 8) up to 12.8 GHz. These 

figures are significant compared to other varactors which have been created recently [23]. 

  

 
 

Figure 4.2 The micrograph of the varactor under test. 
 

 

           (a) 
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          (b) 

Figure 4.3 (a) Capacitance versus frequency and (b) quality factor versus frequency. 
 

4.3 Model Parameter Extraction and Model Verification 

To verify and parameterize the proposed equivalent circuit show in Figure 4.4, the 

fabricated accumulation-mode MOS varactors were laid out and extracted. Direct 

parameter extraction was performed with Y-parameter analysis based on S-parameter 

data using an HP8720D network analyzer. Cs was extracted out at 1 GHz, with the Rs 

and L extracted at self-resonance. De-embedding was carried out to remove parasitics, 

which consisted primarily of an inductance term. Rm1 and Rg and Rs/dcnt (≈ 0) 

represent the metal1, the gate and gate contact resistance and source/drain contact 

resistance respectively. In order to model the gate bias dependence of CVar
’, varactors 

capacitance per unit width was described as follows, 

  
G
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Where 
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 , oxC LCP =1

β=CP2 , and 

''3 avgfC CCP += . 

 
Figure 4.4 The equivalent varactor circuit. 

 

 

Figure 4.5 Capacitance versus length at VG=0V. 
  

The fringe capacitance per micrometer of varactor width, Cf
’ , was obtained by plotting 

the varactor capacitance at VG equal zero and extrapolating to find the fixed capacitance 
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term or the P3C component of equation (1). All three test devices with gate lengths of 0.5 

µm, 0.8 µm and 1 µm respectively, are plotted as shown in Figure 4.5. Cf
’ is found to 

equal 0.24 fF/µm. 

Equation (4.1) is based on the data fitting and accurately describes the nonlinear 

characteristic of CVar as a function of the varying gate bias, as shown in Figure 4.6. For 

the 5_200_p8 (finger width_finger number_gate length) varactor, P1C =1.64 fF/µm, P2C 

=2.99 V-1, P3C =1.23 fF/µm and for 5_200_1 varactor, P1C =2.89 fF/µm P2C =3.63 V-1, 

P3C =1.58 fF/µm. Using the P3C data and Cf’ from Fig 4.5. and solving for CoxAvg and δL, 

respectively, result in CoxAvg equal 1.765 fF/µm2 and 0.117 µm or Leff = L – 0.234 µm.  

 Varactor resistance consists of both a channel term and the gate poly term. The 

channel resistance is modeled as follows; 

                                      (4.2) paccsch RRRR //+=

In (3.2),  is the gate bias independent or static resistance term of RsR ch.  Racc 

represents the resistance of the accumulation layer formed in the channel region. Rp is the 

n-well resistance in parallel with Racc. 

, ,1 ( ),
,

acc G G ch G G ch
ch

K V dV ifV dV
R

elsewhere
− >⎧

= ⎨ ∞⎩
                     (4.3) 

In (3.3),  is a parametric coefficient that is related to the mobility of electrons 

in the accumulation layer, and is relevant to the flat-band voltage. As V

accK

chGdV , G decreases 

below the flat-band voltage, Racc can be considered as being infinite and Rch approaches a 

constant value of Rs + Rp. When VG increases above the flat-band voltage, Racc dominates 

Rch. As a result, Rch decrease, finally approaching a constant value of Rs, as shown in 

Figure 4.6.  
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Figure 4.6 Capacitance and Resistance change verse gate bias voltage as extracted from 
the varactor parametrics. 

  

 Similarly, a data fitting equation is used to describe the voltage dependence of 

resistance: 

 R
GR

GR
s P
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R 3
2

1

1
+

+
= ,                        (4.4) 

From the extracted resistance data for the 5_200_p8 varactor; P1R = -0.138 V-1 P2R = 

0.191 V-1, P3R = 2.72 Ω and for the 5-200-1 varactor; P1R = -0.0805 V-1, P2R = -0.0354 V-

1, P3R = 2.65Ω.  

 The extracted parameter values for the series resistance and inductance are 

summarized in Table I for VG =0 V. 

Table 4.1 Extracted parameter values for 200 finger (Wf = 5um) varactors for L 
equal 1 um and 0.8 um respectively. 

 
 L(pH) Rm1(Ohm) Rg(Ohm) Cf(pF) Cs(pF) Rch(ohm) 

5_200_0.8 35 0.05 0.078 0.24 0.958 0.658 
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5_200_1 35 0.05 0.0625 0.24 1.20 0.6415 

 

Figure 4.7 and 4.8 compare the measured and simulated S-parameters at 0=GV V 

for the devices of Table 4.1. Note, the methods for determining L, Rm1, and Rg are 

presented in section 4. The total error between the measured and the simulated S-

parameter with the proposed equivalent circuit was calculated to be in less than 1% over 

the frequency range from 1 to 25 GHz. Figure 4.9 shows measured and simulated C-V 

characteristics for the L=0.8 µm and L=1 µm devices. 

freq (1.000GHz to 10.00GHz)

S21

S11

 

Figure 4.7 L=0.8um Vg=0V symbol is measured data and line is the simulated. 
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freq (1.000GHz to 10.00GHz)

S11

S21

 
Figure 4.8  L=1um Vg=0V symbol is measured data and line is the simulated. 

 

 
Figure 4.9 Comparison of the measured (symbol) and simulated (solid-line) C-V 

characteristics for the L=0.8um and L=1um devices. 
 

4.4 Layout Summary and Usage 

 In the circuit design process the designer is given the option to select L in the 

range of 0.7 um to 1.1 um at fixed finger width Wf of 10 um. The designer selects the 

varactor channel length L and provides the desired value of C (VG =0) for the varactor at 
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simulation/layout. The number of fingers n, along with the number of rows (r) and 

columns (c) will then be computed by the p-cell generator and modeled for simulation by 

the Verilog code. It is strongly suggested that all fingers be wired with 10 um wide or 

wider m1 line with at least two gate contacts per finger for reliability. The p-cell and 

Verilog-A model are restricted to Wf=10 um and m1 interconnects that are 10 um in 

width.  

 

4.4.1 Capacitance Calculation and Length choice 

The total capacitance of a varactor is modeled as the sum of a strongly bias 

dependent intrinsic capacitance (Cint) component and a weakly bias dependent fringe 

capacitance (Cf). The latter is equal to 0.24 fF/um.  

a. L was selected such that L approached being LCox >> Cf. Note this includes 

CGDO. The minimum L has been selected to be greater than 0.8um. 

b. Wf was selected such that Rg << Rch . The gate resistance is propotional to Wf but 

channel resistance is inversely proportional to Wf.  Proper Wf choice will reduce 

the gate resistance. Thus, it can reduce the gate resistance noise.   

c. WTotal ≈ CAvg/(LCox + Cf’). Where CAvg is the average or zero bias value of the 

varactor capacitance and approximately equal: 

CAvg ≈ WTotal(L-2δL) CoxAvg /2                      (4.5) 

At VG equal to 0 V the zero bias value of the capacitance equals: 

CVar (VG =0) ≈ WT(L-2δL) CoxAvg /2 + Cf’ WT.                  (4.6) 

Additionally,  

CMin ≈ WCf’                                  (4.7) 
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CMax ≈ WLCoxMax + WCfringe’                    (4.8) 

The varactor with longer channel (L=1 um) provides a greater dynamic 

capacitance range with a reduced Qeff, while a shorter channel length varactor (L=0.8 um) 

provides a higher Qeff with a reduced dynamic capacitance range. 

a. nf the number of fingers equals WT/Wf. 

b. For a square varactor layout  

i. c (L + 1.6um) = r (Wf+12um)                    (4.9) 

ii. c x r = n fingers                    (4.10) 

iii. 
)12(

6.1
umW
umLnr

f +
+

=                                (4.11) 

where )'( fringef

Avg

CCoxLW
C

n
+⋅

=  

then r
nc =   where the row value is rounded to the nearest integer 

and the column value solved for. 

 

4.4.2 Resistance Estimation 

The metal1, gate and contact resistance can be written as: 
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where Rm1 = 50 mohms. 
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For L =1 µm, Wf = 5 µm, and n = 200, it is approximately equal to 20 m Ω . 

Where Rshpoly = 2.5 . Ω

      0
2
1

/ ≈
⋅

=
n

IsRmR DcntS                                                         (4.14) 

Where Rm1Is = 5 ohms. 

 

4.4.3 Inductance Estimation 

With the interconnect wiring set by the square feature of the varactor the 

inductance is better controlled and better estimated. The basic unit of inductance is 

estimated as follows: 
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where  is set to 10 µm and l equal r(L+1.6 µm). This is an approximation. Due to the 

lack of separation between the fingers for W

1mw

f equal 5 or 10 µm it will have limited value 

above 5 to 10 GHz. Note the center-to-center m1 separation of the gate m1 and S/D m1 

will be Wf +10 µm (m1) +2 µm (recommended m1 separation) in the p-cell. 

 

4.5 Conclusion 

   In summary an equivalent RF model of an accumulation-mode MOS varactor 

with high capacitance tuning range in a multi-finger layout is constructed, which is 

composed of the following physical parameters: 

1. Cf ‘ the total equivalent per um fringe capacitance – 0.24 fF/µm. 

2. CoxAvg the equivalent oxide sheet capacitance - 1.765 fF/µm2. 
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3. δL the channel foreshortening distance - 0.117 µm or Leff = L – 0.234 µm. 

 These parameters along with the fitting equations (4.1) and (4.4) and their 

coefficients can reliably be used to model the varactor capacitance, CVar’ and its voltage 

controlled channel resistance Rch. Finally, the inductance and gate resistance parasitics 

are modeled by equations (4.12) through (4.14). The varactor model is valid for finger 

widths of 10 µm and lengths from 0.7 to 1.2 µm where the total width is not expected to 

exceed 2000 µm or 200 fingers. The accompanying p-cell and Verilog-A model are 

restricted to finger widths of 10 µm and m1 interconnection width of 10 µm.   
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Chapter 5  

FinFET transistors and Modeling 

5.1 Introduction 

 As the microelectronic industry is fast approaching the limit of bulk CMOS 

scaling, there are extensive research activities on advanced CMOS structures to extend 

CMOS scaling to less than 100 nm gate length. The FinFET is an innovative design of 

MOSFET, which is built on an SOI structure. The body of the transistor is etched into 

"fin"-like structure, which is wrapped by the gate on both sides. The double gate (DG) 

MOSFET is a popular choice, because this structure is scalable and the short channel 

effects can be suppressed for a given equivalent gate oxide thickness .  

 As shown in Figure 5.1, several rectangular multi-gated structures have been 

proposed recently, such as FinFET [25], tri-gate [26], Omega-gate [27], pi-gate [28], etc. 

The FinFET has emerged as the most popular device because of its ease of babrication 

with the well-understood bulk-MOSFET process. 

 

 

Figure 5.1 Different gate configurations for SOI devices: 1) single gate; 2) double gate; 
3) triple gate; 4) quadruple gate (or: GAA structure); 5) Pi-gate MOSFET.  [28] 
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 The key challenges in the fabrication of double-gate devices are (a) self-alignment 

of the two gates, and (b) formation of an ultra-thin silicon film. Figure 5.2 shows the 

different orientations possible for a double-gate device. Several self-aligned planar 

devices have been proposed [29], however, the process is usually complex and the 

contact to the bottom gate is very challenging. Devices with ultra-thin film are generally 

considered incompatible with traditional processes. The FinFET is derived from the 

vertical MOSFET by reducing its height and converting it into a quasi-planar device. 

 

Figure 5.2 The possible Double-gate MOSFET orientations on silicon [29]. 
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Figure 5.3 The 3-D FinFET. 
 

 

Figure 5.4 Scanning electron microscope picture of the cross section of FinFET 
(compliments of SPAWAR SC San Diego). 

  

 Figure 5.4 depicts the geometry of the FinEFT. The fin is a narrow channel of 

silicon patterned on an SOI wafer. The gate wraps around the fin on three faces. The top 

insulator (nitride) is usually thicker than the side insulator (oxide), hence the device has 

effictively two channels. The thickness of the fin represents the body thickness (Tsi) of 

the double-gate structure, while its hight (Hfin) represents the channel width. 
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Figure 5.5 FinFET Process steps; from  [25] 
 

Figure 5.5 shows the basic process-steps involved in the fabrication of the FinFET. 

Since it was first proposed [25], refinements have been reported consistently [30, [31].  

 

5.2 Performance of FinFET Transistors 

The FinFET transistors were fabricated using SOI deep sub-micro (DSM) 

technology at SPAWAR system center, San Diego. There were two wafers made using 

the same mask. For the first run there are only four dies working on the whole wafer and 
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most measurements were made with these transistors there. For the second run the finger 

yield is low. Although transistors seemed to be working but their drain current much is 

less than expected. Some measurements were also made on this wafer. The discussion is 

that follows is an attempted to explain the problem. 

 

5.2.1 DC Measurements 

 HP4155A semiconductor analyzer was used to make the DC measurement. 

Figures 5.6 to Figure 5.9 show FinFET (10 um width, 56 nm length) I-V characteristics. 

 

Figure 5.6 FinFET drain current versus drain voltage at various gate voltages. 
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Figure 5.7 FinFET drain current versus gate voltage with drain voltage equal 50mV. 
 

 

Figure 5.8 FinFET drain current versus gate voltage with drain voltage equal 1.4V. 
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Figure 5.9 FinFET  versus gate voltage with drain voltage equal 1.4V. mg
  

 In saturation, the ideal drain current has a square-law dependence on the gate-to-

source voltage for long channel devices. But from the drain current curves shown in 

Figure 5.6 we find that it has a linear relationship with the gate voltage. This occurs as a 

result of velocity saturation. 

The high-field effects become prominent at moderate drain voltage with 

continued device scaling. The primary high-field effect is velocity saturation. In silicon, 

as the electric field approaches about V/m, the electron drift velocity shows a weak 

dependence on the field strength and eventually saturates at a value of about 10

64 10×

5 m/s. For 

an 80 nm gate length device, velocity saturation begins to kick in at 320 mV. With the 

gate voltage above threshold voltage and drain-to-source voltage above 320 mV the 

device enters velocity saturation region. 

In the velocity saturation the drain current can be rewritten as 

 ( )
2

n ox
D GS t sat

CI V V Eµ
= −                        (5.1) 
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The values of all small-signal parameters can change significantly in the presence 

of short-channel effects. The limiting transconductance of short-channel MOS device in 

velocity saturation, 

 
2

n oxD
m

GS

CI
satg WE

V
µ∂

≡ ≈
∂

            (5.2) 

Figure 5.7 indicates the threshold voltage of the FinFET is around -0.1V. It is 

difficult to design RF and analog circuits with negative threshold voltage device. 

Molybdenum gate technology has been applied to modify the threshold voltage of 

FinFET transistors, and it was successfully adjusted to 0.4 V [32].  

Figure 5.10 shows FinFET drain current versus gate voltage at different drain 

voltages. The subthreshold slope is about 80mV/dec for drain voltage equal 50mV, and n 

is 1.33. 

 

56 nm (Gate Length) FinFET I-V Characteristics
10x0.056 (WxL) FinFET, Wafer 2751-40
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Figure 5.10  FinFET drain current versus gate voltage at various drain voltages. 
 

 44



 
 

5.2.2 AC Measurement 

HP8720D network analyzer was used to make S-parameter measurement on 

FinFET transistor (W=72um, L=80nm). The maxf was extracted when the power gain 

equal to unity, that is 2
21 1S = , as shown in Figure 5.11. Convert S-parameters to H-

parameter. The fT can be extracted at 21 1h = . 

With the transistor working in velocity saturation region ( , V0.7V∆ ≈ V t=-0.1V, 

VDS=1.2V), maxf of FinFET is approximately 100 GHz, as shown in Figure 11; And fT is 

approximately 42 GHz, as shown in Figure 12. 
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Figure 5.11 FinFET transistor power gain versus frequency ( 0.7V V∆ ≈ , VDS=1.2V). 
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Figure 5.12 FinFET transistor current gain versus frequency ( 0.7V V∆ ≈ , VDS=1.2V). 
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With the transistor working in moderate inversion region ( , V50V m∆ ≈ V t=-0.1V, 

VDS=1.2V), tf  is approximately 20 GHz, as shown in Figure 5.13. An tf  of 20GHz is 

adequate to design low GHz applications when transistor works in moderate inversion 

region. 
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Figure 5.13 FinFET transistor current gain versus frequency ( 50V mV∆ ≈ , VDS=1.2V). 
 

 Since the FinFET with 80nm channel length works in velocity saturation region, 

the transition frequency, tf  can be rewritten as,  

 
( )1

32
2 4
3

n ox sat
m n

T
gs

ox

C WEg E
C LWLC

µ µ
ω ≈ ≈ = sat            (5.3) 

In the velocity saturation region the transit frequency is inversely proportional to 

the channel length, which is different from that in the strong inversion region. 

The maximum frequency of unit power gain can be rewritten as [33], 

 

( )2

T
Max

fringe
g S

gs

ff
C

R R gm
C

=
⎛ ⎞

+ ⋅ ⋅ ⎜ ⎟⎜ ⎟
⎝ ⎠

           (5.4) 
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5.2.3 Noise Measurement 

Figure 5.14 shows noise measurement made on FinFET transistor. It also 

demonstrated less low-frequency noise in moderate inversion than in the strong inversion 

[34]. It further supports FinFET use in moderate inversion operation in the design of RF 

circuits. 

 
 

Figure 5.14 The low frequency noise of the FinFET for L=120nm, W=4.2um [9]. 
 

5.2.4 Capacitance Measurement 

Measurements were performed on a Keithley 590 CV-meter and Keithley 4200 

semiconductor characteristics analyzer. All measurements were performed in the dark 

chamber. For the equilibrium C-V measurement, the hold time and delay were set to 5 

sec and 1.5 sec, respectively. The gate voltage sweep rate can be calculated as (bias 

range)/(total sweep time). The source and drain are shorted together, i.e. Vd = Vs = 0 V. 

Figure 5.15 shows the high frequency gate-to-channel capacitance (hf-Cgc) curve of an n-
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channel FinFET.  The hf-Cgc reaches its maximum value when the channel is in strong 

inversion and exhibits a minimum with reverse gate bias. 

 
Figure 5.15 Equilibrium high frequency C-V curve. 

  

 The C-V measurement is a valuable diagnostic tool to characterize MOSFET. 

Therefore, if the influence of gate depletion capacitance can be neglected, the measured 

maximum gate-channel capacitance is equal to oxide capacitance. The extracted oxide 

thickness found is 2.4 nm, which is different from the designed 2 nm thickness [35]. 

 

5.3 FinFET Model 

5.3.1 FinFET Small-Signal Model 

  The framework for generic physics based double-gate MOSEFT modeling has 

been recently reported [36]. However, to our best knowledge there is no FinFET small-

signal model describes its behavior in GHz region. The FinFET structure investigated is 

depicted in Figure 5.16, where key geometry parameters are defined.  The fabricated 
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transistor is shown in Figure 5.17. Based on the measurement results from this device, we 

developed a high frequency small signal-model.  

 

Figure 5.16 The 3-D FinFET. Tbox=400nm, Hfin=50nm, Tsi=20 nm. 
 

 

Figure 5.17 Die picture of the circuit with test frame. 
 

 

Figure 5.18 FinFET transistor characteristics (W=72 um, L=80 nm). 
 

 49



 
 

 The FinFETs were fabricated at SPAWAR system center, San Diego. The gates of 

the FinFET were e-beam written at Berkeley with a range of 50 to 200 nm, and the 

overall gate width is 72 um. There are 720 fins in this transistor, and the gate width (2Hfin) 

for each fin is 100 nm. The DC ID-VDS curves are shown in Figure 5.18. The S-

parameters were measured with an Agilent 8510 Network Analyzer and Cascade RF-1 

probe station using GSG probes. The data was collected from 45 MHz to 10 GHz.   

 The equivalent circuit shown in Figure 5.19 is based on a quasi-static 

approximation, which is found to be adequate in the GHz range if the extrinsic 

components are properly modeled [37]. This model includes the complete intrinsic quasi-

static MOS model, the series parasitic impedance of the gate, source and drain, as well as 

a substrate coupling network. The extrinsic part includes the parasitic series resistors Rg, 

Rd and Rs, and the parasitic series inductors Lg, Ld and Ls. The intrinsic model is 

composed of the voltage-controlled current source, the output resistance and the gate to 

channel impedance, as well as the intrinsic capacitors Cgs, Cgd and Cds. 
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Figure 5.19 The FinFET small-signal equivalent model. 

 

Figure 5.20 Zero bias small-signal equivalent model. 
 

 The parasitic resistance is extracted at low frequency with the device biased at 

VGS=VDS=0V. Under this bias condition the contribution from the intrinsic circuit 

vanishes except the three capacitors between the intrinsic nodes. In addition, in the low 

frequency region the parasitic inductors and the substrate coupling can be neglected. The 

schematic of the zero bias equivalent circuit at low frequency is shown in Figure 5.20, 

from which the parasitic resistors can be extracted by the Z-matrix components: 

 11Re( ) g sZ R R= +              (5.5) 

 22Re( ) d sZ R R= +              (5.6) 

 12 21Re( ) Re( ) sZ Z R= =              (5.7) 

After the parasitic resistors have been extracted, the parasitic inductors can be modeled 

separately by means of the transmission line equations [38].   

  With the knowledge of the parasitic resistance and inductance, the intrinsic model 

can be determined. First, the S-parameters measured at low frequency and under the bias 

condition of Vgs=0.6V and Vds=1.2V are converted to the Z-parameters. Next the 

parasitic resistance terms are deducted, which is shown in Equation (5.8)-(5.11), in this 

way the intrinsic Z-parameters are obtained. In the intrinsic model most of the 
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components are in shunt connection to the internal source node, so the Z-parameters are 

converted to the Y-parameters, and then the circuit elements in the intrinsic model have 

been extracted. The circuit elements in the substrate network are fitted with the high 

frequency measurement results from inductor model extraction [39]. In Table 5.1 we list 

the extracted model parameters.  

 '
11 11 ( )g sZ Z R R= − +                                                     (5.8) 

 '
22 22 ( d s )Z Z R R= − +                                          (5.9) 

 '
12 12 sZ Z R= −                             (5.10) 

  '
21 21 sZ Z R= −                (5.11) 

 ''                (5.12) Z Y→

 

Table 5.1 Extracted Model Parameters 
Lg(pH) Rg( Ω ) Rd( Ω ) Ld(pH) Rs( Ω ) Ls(pH) 

100 4.6 10 50 10 50 

Cf(fF) Cdep(pF) Cgs(fF) Rch( Ω ) gm(S) t (ps) 

66 1 300 10 0.1 5 

Rds( ) Ω Cds(fF) Cgb(fF) Rgb( Ω ) Csb(fF) Rsb( ) Ω

450 260 5.6 110 11.2 60 

Cdb(fF) Rdb( Ω ) Rdsb( Ω )   

11.2 60 98   
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 Figure 5.21 and 5.22 show the comparison between the measured data and the 

simulation result from the extracted model. The discrepancy is within 5%, which is 

calculated from the following equation: 

 
2

' '2 2

1 1

Re( ) Re( ) Im( ) Im( )100 ij ij ij ij

iji j

S S S S
Error

n S= =

⎡ ⎤− + −
⎢=
⎢
⎢ ⎥⎣ ⎦

∑∑ ⎥
⎥

                                         (5.13) 

 In summary, we developed a RF small signal model of FinFET from the extracted 

data, and good agreement between the model and the measurement is achieved up to 10 

GHz.   

 

freq (45.00MHz to 10.05GHz)

S12

S22

S11

 

Figure 5.21 Measured (dot) and modeled (line) S-parameters (Vgs=0.6V, Vds=1.2V). 

 

Figure 5.22 Measured (dashed) and modeled (solid line) S21 (Vgs=0.6V, Vds=1.2V). 
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5.3.2 FinFET BSIMSOI Model 

 FinFET BSIMSOI Model was extracted by using Utmost, a Silvaco package [40].  

A  Semiconductor Analyzer (HP4155A) was used to measure the I-V curve. Then the DC 

parameters were extracted by using DC routines in Utmost. A Capacitance-Voltage meter 

(Keithley CV590) was used to measure all capacitance and network analyzer (HP8720D) 

was utilized to do S-parameter measurement. Through AC routines in Utmost, AC and 

capacitance parameters have been extracted. In addition high temperature and noise 

measurement were done by my lab mates. After all these measurement and data analysis 

were finished, a complete FinFET BSIMSOI V3 model has been extracted. The detailed 

model parameters and simulation and measurement comparison are shown in Appendix B. 

 

5.3.3 FinFET Model Summary 

 Both small-signal model and BSIMSOI model are presented in the previous 

sections. The small-signal model demonstrates the feasibility of FinFET operated in 

velocity saturation region. The BSIMSOI model supplies the opportunity to simulate the 

RF circuits working in moderate inversion with Cadence RF spectre tools. But the 

threshold voltage is approximately -0.1 V, which is not practical for RF circuits design. It 

is a fabrication process problem. But the FinFET fabrication process is still improved. 

For example, Molybdenum gate technology has been applied to modify the threshold 

voltage of FinFET transistors, and it was successfully adjusted to 0.4 V [32]. In this work 

it is reasonable to justify the threshold voltage to 0.5 V. The selected model parameters 

are shown in Table 5.1. This model will be used in the later chapters to simulate the RF 
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receiver circuits in moderate inversion. The Figure 5.23 compares the measured ft to the 

modeled ft curves in moderate inversion. The good agreement is found between the 

measurement and model simulated ft curves.  

 
Table 5.1 The modified FinFET BSIM3SOI model. 

 
model NFIN b3soipd type=n  

+ tnom=27                   version=3.1               tox=2.4e-9 

+ tsi=2e-8                     tbox=4.0e-7               xj=1e-8 

+ nch=4.46e14             vth0=0.5                    nlx=1.468104e-8 

+ dvt0=2.5477237        dvt1=0.542419          dvt2=-1.416439e-4 

+ u0=400                       ua=2.35143e-10        ub=1e-18 

+ uc=1.232366e-9          vsat=1e4                  a0=1.0446036 

+ ags=0.5742591             b0=1e-8                   b1=-1e-7 

+ lint=1.683313e-9         eta0=0.01                 mobmod=1 

+ capmod=2                    cjswg=2e-10               cgdo=3e-10 

+ cgso=3e-10                  rsh=600                      

+ nrd=50                          nrs=50 
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Figure 5.23 Measured (dot) and modeled (line) h21 ( 50V mV∆ ≈ , Vds=1.2V). 
 

 

5.4 Summary 

 Based on the above measurement data and analysis we found the FinFET 

transistor is a promising deep-sub micron device. The promising features of the FinFETs 

include high frequency, low supply voltage and low gate leakage current, making it an 

ideal candidate for the design of low power RF front-ends. It has excellent performance 

in both strong and moderate inversion regime. Specifically, its ft is approxiamtely 20 GHz 

in moderate inversion regime, which makes it feasible to realize the ultra-low power RF 

receiver front-end. The only problem of current FinFET transistors is the negative 

threshold which makes it hard to be biased. The threshold voltage of FinFET transistor 

model is assumed to be modifiable to a positive value. For an instance, the VTH0 is set to 

0.5 V for long channel device.  

 

 56



 
 

 

  

 57



 
 

Chapter 6 

GPS Receiver Design  

6.1 Introduction 

In Chapters 3 and 4 the passive devices, on-chip inductors and varactors, were 

modeled. They will be used in the following chapters to design the RF circuits for the 

GPS receiver. In Chapter 5 FinFET transistors were measured and characterized. It did 

have good performance. Especially, the fT is around 20 GHZ at moderate inversion, 

which is enough to realize the circuits working below 2 GHz. The model developed was 

also valid for moderate inversion and it showed good agreement with the measurement. 

We will take advantage of the features of FinFET moderate inversion to realize the GPS 

receiver front-end circuits so that it can operate in ultra-low current. 

As we know, the GPS is a satellite-based location/time finding system with 24 

satellites orbiting the earth. It is a direct sequence spread spectrum (DSSS) functioning at 

two bands: L1 (1575.42 MHz) and L2 (1227.6 MHz) [41]. Most commercial GPS 

receivers use the L1 band only. The L1 band has two sets of codes, coarse-acquisition 

(C/A) and precision (P). The original 50 bit/s data is spread over a 2 MHz bandwidth 

(BW) for the C/A code, as shown in Figure 6.1. 
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Figure 6.1 The GPS L1/L2 band signal spectrum [42]. 
 

At the antenna of a GPS receiver, the received signal power is typically -130 dBm. 

Since we are interested in the 2 MHz main lobe of the C/A code, the noise power is 

simply given by kTBW, which equal -111 dBm. Therefore, the received signal-to-noise 

ratio (SNR) at the antenna is around -19 dB. By despreading and integrating over a long 

time period, a receiver can exploit the inherent spread sprectrum processing gain of the 

navigation signals to get the proper postcorrelation signal-to-noise ratio (SNR). 

 

6.2 GPS Receiver Architectures 

6.2.1 Typical GPS Receiver Architectures 

 There are two architectures widely used in commercial GPS receivers today. The 

first is the dual-conversion architecture, which is used widely. In this architecture, the L1 

band is translated to a moderate intermediate frequency (IF) of approximately 100-200 

MHz where it is filtered by off-chip filter before a second downconversion to a lower IF 

of about 1-10 MHz. Finally, the signal is filtered again before being amplified to a 

detectable level, as shown in Figure 6.2.  
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Figure 6.2 Dual-conversion GPS receiver. 
 

 The second is the single-conversion architecture, as shown in Figure 6.3. Here 

only one mixer is used. The L1 is directly sampled and then converted to baseband in a 

subsequent digital step.  

BPF
LNA

1LOω

Off-chip

 

Figure 6.3 Single-conversion GPS receiver. 
 

 Both architectures have a common advantage. An off-chip LNA or active antenna 

is used, which gives the freedom to remotely place the antenna from the receiver itself. 

But they also have disadvantages. Either dual-downconversion or single-conversion 

architecture needs off-chip components which increase the power cost and foot print. In 

order to realize high integration and low power consumption, CMOS low-IF GPS 

receiver architecture has been presented next to minimize the usage of off-chip 

components and realize single-chip solution. 
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6.2.2 Low-IF Architecture 

In general the low-IF receiver architecture is based on the replacement of the low-

pass filters of a zero-IF receiver by a bandpass filter. The Low-IF receiver is insensitive 

to DC offsets and LO to RF crosstalk or feed through.  But it suffers from the problem of 

limited image rejection due to the need for stringent matching of in-phase (I) and 

quadrature (Q) channel [43]. This limitation makes the low-IF approach unsuitable for 

many applications. However, when we examine the GPS signal spectrum, an opportunity 

emerges [44]. 

Figure 6.4 (a) shows a low-IF architecture with an IF of 2 MHz. The choice of 2 

MHz low-IF results in an image frequency within the P-code 20 MHz bandwidth. 

Thermal noise dominates the 20 MHz P-code band. With an IF of 2 MHz, since the 

image frequency of C/A code lies in the P-code band, no other strong signals are present 

in this band, as shown in Figure 6.5. Thus, the receiver only need reject the noise of 

unwanted sideband. The required rejection is only about 15 dB, which is easily obtained 

with ordinary levels of component matching [45]. This consideration makes the low-IF 

architecture an attractive choice for highly integrated GPS receiver.  

/ 2π

 

Figure 6.4 Block diagram of CMOS GPS receiver. 
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Figure 6.5 The GPS band signal spectrum after downconverted to 2 MHz IF [44]. 
 

The complete analog signal path is integrated, including the low noise amplifier 

(LNA), the mixer, I and Q local oscillator (LO) drivers, IF amplifier (IFA’s), active filters, 

limiting amplifier (LA), and analog-to-digital (A/D) converters. Since most components 

are integrated, the power consumption can be reduced.  

In general, lowing the frequency gives an immediate return on power saving. As 

was reported in Shaeffer’s work [44], since the output intermediate frequency of mixer is 

around 2 MHz, most power is consumed before the IFA’s. Over 60% of the power is 

consumed by the LNA, VCO and mixer. Therefore, in this work low power LNA, Mixer 

and LO designs were concentrated, as shown in the gray shaded area of Figure 6.4. The 

final objective is to design ultra-low power LNA, mixer and LO. 

 

6.3 Receiver System Design 

 With the architecture of the GPS receiver determined, the receiver system 

planning is discussed next. The key point is to trade off the gain, noise figure (NF), and 

linearity properly among all circuits, such that every block can be implemented to satisfy 

low power requirement. Conventional RF system uses 50 Ω  matching network at input 
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and output ports. However, in a low power RF receiver front-end with a single chip 

solution, except the first stage input impedance need to match antenna impedance, the 

following stages do not need to match 50 Ω or 75 Ω impedance, because it consumes 

large amount of current [6]. Such system is presented in Figure 6.7.  

 

Figure 6.7 Cascaded stages of receiver system. 
 

 It can be shown that the inter-modulation grows and accumulates through the 

cascades, and could be described, 

 1 1 2

1 2 3

1 1
3 3 3 3cascade

G G G
IIP IIP IIP IIP

≅ + + + ⋅ ⋅ ⋅            (6.1) 

where IIP3n is the IIP3 of the n-th stage and numeric value, Gn is the power gain of n-th 

stage. 

 As for the noise of a cascaded system, assuming the first input stage of the 

cascade is matching to a source impedance of RS, and the following stages all have high 

input impedance and NF of each stage is calculated with respect to the source impedance 

driving that stage, the cascaded noise factor can be expressed as, 

 32
1 1

1 1 2

11 n
cascade N

n n

F FFF F
G G G G−

1− −−
= + + + ⋅ ⋅ ⋅ +

Π
         (6.2) 

where Gn and Fn is the power gain and noise factor of n-th stage, respectively. Here, we 

assume that the individual stage’s characterization can be directly used to derive the 
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overall system performance. Namely, the loading from subsequent stage will not alter the 

noise and gain performance of the previous stage. This is a reasonable assumption in this 

work since the inter-stage loadings are capacitive and can be treated as high impedance. 

It also can be found from the above equations, increasing the gain in early stages 

improves the total NF, but at the cost of worse IIP3. Since in this work there is no IIP3 or 

IIP2 problem we could try to pursue the gain of LNA as high as possible with low noise 

figure. 

 

6.4 Receiver Implementation Requirements 

To satisfy the stringent power requirement, it is necessary to properly specify and 

optimize the receiver specifications. Unlike other wireless communications systems, the 

GPS requirements were not well defined and specified in the literature until recently [42].  

There are three noticeable differences between GPS and a conventional wireless standard. 

Firstly, GPS has only one RF channel in each band. Secondly, there is no strong in-band 

interferer as is common in a cellular system. All these differences offer a good 

opportunity to build a low-power GPS receiver. In the following section the receiver 

specifications are derived. 

6.4.1 Noise Figure 

 

Figure 6.8 Block diagram of the GPS receiver. 
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 In this work, a CMOS GPS receiver front-end is followed by an ADC and digital 

correlator, as shown in Figure 6.8. The purpose of a GPS receiver is to extract the 

accurate position and time information from the weak satellite signal. There also exist 

various source of position error. Some of the errors are from the satellite and propagation 

delay. The others are from the receiver impairments, such as noise. In order to account 

for the radio impairment, an important signal quality metric, the signal-to-noise ratio 

(SNR) will be reviewed next. However, the SNR of direct sequence spread spectrum 

(DSSS) scheme is function of the position in the receiver under consideration. The 

precorrelation SNRs are negative, whereas postcorrelation SNRs are positive. It is 

convenient to normalize the SNR to 1-Hz bandwidth. This achieves a ratio of signal and 

noise which is bandwidth-independent. It is referred to as the “carrier-to-noise density” 

ratio [46]. The carrier-to-noise density can be readily converted into SNR (S/N) or bit 

error rate (Eb/No), 

 b
b

o o

EC S B R
N N N

⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

           (6.3) 

where B is the bandwidth (in Hz) of that stage of receiver, Rb is a raw data rate of 50 b/s 

for L1 C/A band. This equation is converted into decibels 

 [ ] ( )0 1010log ( )C N dB Hz SNR B⎡ ⎤− = ⎣ ⎦           (6.4) 

 From the above equation, it can be found that C/N0 is a nominal figure. Received 

satellite signal power varies with user antenna gain, satellite elevation angle, and satellite 

age [47]. Typical C/No range from 35-55 dB-Hz. 

 65



 
 

 Once the minimum required C/No is presented or processed by a digital correlator 

to maintain the wanted tracking or acquisition performance, the receiver sensitivity is 

uniquely determined by (6.5) without any confusion caused by the bandwidth ambiguity. 

 [ ] [ ] [ ]
min

o
o

C dBmSensitivity dBm dB Hz N NF dB
N Hz

⎛ ⎞ ⎡ ⎤= − + +⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
   (6.5a) 

 [ ] [ ] [ ]
min

o
o

C dBmSensitivity dBm dB Hz N NF dB
N Hz

⎛ ⎞ ⎡ ⎤= − + +⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
   (6.5b) 

where No is the thermal noise power density at the antenna port which is equal to -174 

dBm/Hz at typical room temperature and NF is the noise figure of the receiver. Assuming 

that a digital correlator requires a (C/No)min of 35 dB-Hz and the receiver sensitivity 

requires -133 dBm. Assuming a 2-bit ADC the NF can be calculated to be 6 dB from 

equation (6.5). This NF includes both receiver front end and A/D converter (ADC)’s NF. 

As we know, both single-bit and multi-bit ADC are currently used in GPS receiver. Most 

low-cost commercial receivers employ 1-bit sampling in narrow (i.e., 2 MHz) bandwidth. 

High-end receivers typically use anywhere from 1.5-bit (3 level) to 3-bit (8 level) 

sampling in bandwidth ranging from 2-20 MHz. Finite-bit quantization degrades the 

signal [48]. The degradations of different bit ADC are listed in Table 6.1. 

Table 6.1 Signal degradation due to finite quantization in the ADC. 
 

 1-bit ADC 2-bit ADC 3-bit ADC 

Narrow IF bandwidth 3.5 dB 1.2 dB 0.7 dB 

 

6.4.2 Phase Noise 
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 In previous section the carrier-to-noise ratio (C/No) has been used as a figure of 

merit for the GPS receiver front-end performance. There are several factors degrading 

C/No, such as finite image rejection ratio (IMRR), phase noise, filter bandwidth and ADC 

bit resolution. Since in this work we only emphasize on LNA, VCO and mixer design, the 

effects from IMRR, filter bandwidth and ADC bit resolution are also not considered. The 

relationship between phase noise and C/No is reviewed. The goal is to find the maximum 

tolerable phase noise for minimal C/No degradation. 

  

Figure 6.9 Reciprocal mixing of the in-band thermal noise and phase noise [42]. 
 

 The phase noise requirement comes from the reciprocal mixing of the phase noise 

spectrum by the in-band thermal noise itself, as seen in Figure 6.9. Multiplication in the 

time domain corresponds to convolution in the frequency domain, and hence the added 

noise density due to the phase noise is calculated by  [42] 

 ( ) ( ) ( ) ( ) ( ) ( )' '
PN IN LO IN LO o LON N S N S d N S dω ω ω ω ω ω ω ω

∞ ∞

−∞ −∞
= ∗ = − =∫ ∫ ω       (6.6) 

where ( )LOS ω  is the phase noise of LO. The last integral term represents the absolute rms 

jitter of the local oscillator, normalized to its period, 

 ( )
2

, 2LO rmsPN
LO rms

o LO

TN S d
N T

ω ω σ
∞

−∞

∆⎛ ⎞
= ≈ ⎜ ⎟

⎝ ⎠
∫ ≡          (6.7) 

The effective C/No at the mixer output can be written by 
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⎞
⎟⎟      (6.8) 

In order to obtain less than 0.1 dB loss on C/No, the averaged phase noise should be 

lower than -80 dBc/Hz [42]. From this limit, it can be inferred that small-sized ring 

voltage controlled oscillator (VCO) is promising low cost solution, as presented in [49]. 

However, when considering power consumption, the LC tank VCO is still advantageous 

since it uses fewer active devices. 

6.4.3 Summary 

 Based on the previous discussion, we can conclude the design specifications in 

Table 6.2. And the gain and noise distribution is summarized in Table 6.3.  The 

parameters in tables will be updated along with the design.  

Table 6.2 Summary for GPS receiver front-end requirements. 
 

Parameters Specification Note 

Sensitivity -130 dBm At antenna 

Noise Figure < 9 dB 
From input of LNA to output of 

mixer  

Phase Noise @ < - 80 dBc/Hz For VCO. 

C/No 35 dB For whole GPS receiver front-end

ADC 2-bit 1.2 dB signal loss 

Current < 4.5 mA 
Limited to LNA, VCO and 

mixers 

Power < 4.5 mW Limited to LNA, VCO and 
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mixers 
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Chapter 7  

Ultra-Low Power Low Noise Amplifier (LNA) Design  

7.1 Introduction 

The first stage of a RF receiver is a Low-noise amplifier (LNA), whose main 

purpose is to provide enough gain to overcome the noise of subsequent stages (such as 

mixer) and linearity while not degrading the signal-to-noise ratio. Much valuable research 

on CMOS LNA design in submicron technologies has been done in recent years: from the 

topology investigation [50, [51, [52], and the design guidelines [53], to various new ideas 

on design improvement for low noise figure [54, [55, [56], high power gain [54], low 

power consumption [55], and high linearity [57]. The frequency range of these CMOS 

LNA designs is from 900 MHz to 5.2 GHz [58, [59], and the technologies in use is as 

small as 0.18 um or less. 

In this chapter, an ultra-low power LNA is implemented using SOI deep-

submicron (SOIDSM) 80 nm FinFET technologies. As described in Chapter 5, the 

double-gate MOSFET (FinFET) is considered as one of the most attractive devices to 

succeed the planar MOSFET. With two gates controlling the channel, the short-channel 

effects are greatly suppressed. The transition frequency of the characterized FinFET 

transistors is 42 GHz when working in velocity saturation region, and 20 GHz when 

working in moderate inversion.  

With the FinFET transistors operating in moderate inversion, the operation 

current will be several times smaller than that in saturation for a given transconductance. 
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As a result, the FinFET transistors open the door to realize micro-power front-end 

applications. 

In chapter 6 the GPS receiver architecture, design methodologies, and 

implementation requirements were discussed. All of those are optimized to meet the low 

power requirement. In this chapter, the LNA topology choice is illustrated first. Then the 

ultra-low power LNA is proposed. Finally, the performance is presented and compared 

with previous designs.  

 

7.2 LNA Topology Choice 

The four most widely used topologies, shown in Figure 7.1, are reviewed. One 

will be selected for use in the low power GPS receiver. 

The first topology shown in Figure 7.1(a) uses resistive termination of the input 

port to provide 50 Ω impedance. The drawback of using of real resistors is that the added 

resistor contributes its own noise comparable to that of the source resistance [60]. 

According to the calculation [60], the noise figure will be above 6 dB. It does not satisfy 

our system requirement for noise figure. 
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Figure 7.1 Common LNA topologies. (a) Resistive termination, (b) 1/  termination, (c) 
shunt-series feed back, and (d) inductive degeneration. 

mg

 
Figure 7.1 (b) shows the second topology which uses the source of MOSFET in a 

common-gate (CG) configuration as the input termination. CG topology has good high 

frequency performance. The minimum theoretically achievable noise figures tends to be 

around 3 dB or greater in practice. Input impedance is determined by1/ .  mg

Figure 7.1 (c) represents another topology, which utilizes shunt and series 

feedback to set the input and output impedances of the LNA [61]. It is a broadband 

amplifier, but it has very high power dissipation compared to others with similar noise 

performance. For a GPS receiver, a broadband front end is not required and it is desirable 

to use narrowband technology to save power and reduce interferers. 
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Figure 7.1 (d) employs inductive source degeneration to generate a real term in 

the input impedance. At the operational frequency, the source inductor provides a stable 

50 Ω input impedance. It is the most prevalent topology used for LNA design. And it 

offers the possibility of achieving the best noise performance of any architecture [50].  

 Based on above analysis, it seems that the common-gate LNA (CGLNA) and 

common-source LNA (CSLNA) topology is good candidate for GPS receiver. The 

detailed analysis and comparison of CGLNA and CSLNA is reviewed below.  

7.2.1 Common-source LNA (CSLNA) 

 The CSLNA is based on the common-source with source inductive degeneration 

amplifier. Figure 7.2 shows the schematic of a popular cascade single-ended CSLNA. At 

the operation frequency, the input inductors Ls provides stable 50 Ω input impedance. 

The input inductors Lg, Ls and input device gate-to-source capacitance, Cgs provide the 

operational frequency for CSLNA. 

 

Figure 7.2 CSLNA Schematic Diagram. 
 

A simple analysis of the circuit depicted in Figure 7.2 shows that the input 

impedance of the circuit is given by (7.1) when neglecting the M1 drain-gate overlap 
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capacitance, and the inductor parasitic elements toward the substrate (Cox, Rsi and Csi in 

Figure 3.3(a)) 

( ) 1 m
in g s s g Lg Ls

gs gs

gZ j L L L R R R
j C C

ω
ω

= + + + + + +                     (7.1) 

where Cgs amd gm are respectively the gate-source capacitance and the transconductance 

of M1 and Rg the gate resistance of M1. RLg and RLs represent the parasitic series 

resistance of Lg and Ls, respectively. 

At resonance, the imaginary term of Zin will be zero, which gives 

( ) 1 0g s
gs

L L
C

ω
ω

+ − =              (7.2) 

From (7.2) the center frequency can be derived, 

( )
1

o
g s gsL L C

ω =
+

             (7.3) 

The real part of the input impedance is 

,
m

in real g Lg Ls s g Lg Ls T T
gs

gZ R R R L R R R Ls Ls
C

ω ω= + + + ≈ + + + ≈       (7.4) 

where Tω  is an approximation of the transition frequency of M1. Using (7.4) the 

inductance of source inductor can be determined. Once Ls has been determined Lg can be 

calculated by (7.3).  

 One of the most attractive advantages of this topology is that the inductor used to 

match the input impedance is noiseless, unlike the topology shown in Figure 7.1 (a), 

which employs a noisy resistor in the signal path to provide the 50 Ω termination 

resistance. This explains the low noise performance and popularity of the inductively 

degenerated CSLNA.  
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 The effective small-signal transconductance of the input transistor is a parameter 

which accounts for the transconductance for input transistor and input matching network. 

 
( ) 1

m T
m m

o gs s T s T s
o s

s

gG g Q
C R L LR

R

ω
ω ω ωω

= = =
+ ⎛ ⎞

+⎜ ⎟
⎝ ⎠

         (7.5) 

 Note that the input matching circuit is a pure series RLC resonant circuit. At 

resonance the voltage across Cgs is enhanced by Q times, where Q is the quality factor of 

input matching RLC network. In other words, the Q enhancement mechanism provides a 

free gain of Q for both the input signal and the noise from the source resistance Rs. The 

added gain from the input matching circuit helps to suppress channel noise. If the input is 

matched to Rs, we have  

 1
2

T
m

s o
G

R
ω
ω

⎛
= ⎜

⎝ ⎠

⎞
⎟              (7.6) 

It is worth noting that the effective transconductance Gm is only related to the ratio of Tω  

to oω  and is independent on the MOSFET small-signal transconductance .  mg

 The gate-to-drain capacitance Cgd provides a feedthrough path from input to 

output, decreasing the reverse isolation. In addition, the miller effect of Cgd provides a 

shunt current branch at the input, which further complicates the input matching. One 

should add a cascode stage to mitigate the Miller effect of Cgd and improve reverse 

isolation. 

 Next, the noise performance of CSLNA is analyzed. Starting with the noise model 

of a MOSFET, as shown in Figure 7.3, we surmise that their main noise sources are the 

thermal channel noise and the induced gate noise. 
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Figure 7.3 MOSFET equivalent noise model. 
 

 The channel thermal noise id shows a white power spectral density described by  

 2
04d di kT gγ= f∆              (7.7) 

where is Boltzmann’s constant, is the zero-bias drain conductance, k 0dg f∆ is the 

bandwidth of interest and γ is a bias-dependent factor that, for long channel devices, 

satisfies the inequality 

 2 1
3

γ≤ ≤               (7.8) 

the value of 2/3 holds when the device is in saturation mode and the value of one is valid 

when the drain-source voltage is zero. For short-channel devices, however, γ is much 

greater than 2/3 for devices operating in saturation [50]. For the present there is no 

standard γ  value for devices operating in moderate inversion. 

 In addition to channel thermal noise id, a companion noise current ig at the gate of 

the MOSFET, which is known as induced gate noise, has been observed in both theory 

and experiment, 

 2 4gi kT gδ= g f∆               (7.9) 
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where δ  is another bias-dependent empirical parameter, classically equal to 4/3 for long-

channel devices. Unlike the white noise spectrum of the channel thermal noise, induced 

via the gate noise has blue spectrum frequency. The gate noise is partially correlated with 

the drain noise, with a correlation coefficient given by  [62] 

 
*

2 2
0.395g d

g d

i i
c

i i
= ≈ j            (7.11) 

 

Figure 7.4 Small-signal model for noise calculation of CSLNA. 
 

 After determining the noise source of MOSFET, we will derive the noise factor of 

the CSLNA. To obtain the expression for noise factor, it is instructive to calculate the 

transfer functions of the different noise source in the CSLNA [63]. The small-signal 

circuit used in the computation is shown in Figure 7.4. In this CSLNA noise model five 

noise sources are considered, input impedance noise, series resistance noise from gate 

inductor, gate resistance noise from input MOS device, channel thermal noise of MOS 

device and induced gate current noise. The noise factor is derived according to its 

definition, that is, the ratio of total output noise power to the output noise power due to 

input source impedance, as shown 
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where  

 
0

m

d

g
g

α ≈             (7.13) 

For long-channel device, α = 1. For short-channel device, 1α ≤ . 

7.2.2 Common-gate LNA (CGLNA) 

 Figure 7.5 shows a CGLNA where the gate terminal is shorted to an AC ground 

and the input signal is injected at the source terminal. The resistance looking into the 

source terminal is about 1 mg , which provides the input 50 Ω match.  Unlike CSLNA, 

there is no Miller effect associated with Cgd in CGLNA, which results better reverse 

isolation. 

RS

Vin

Zin

Vbias

M1

Lload

 

Figure 7.5 the CGLNA schematic diagram. 
 

 The effective small-signal transcondance of the input transistor of CGLNA is  

 1
2m

s
G

R
=                      (7.14) 
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However, the CGLNA suffers from the presence of a noisy channel conductance in the 

signal path, which attenuates the noise performance. It can be shown that under perfect 

input matching, the CGLNA has the following noise factor  [60] 

 
2

1
5 T

F γ δα ω
α ω

⎛ ⎞
= + + ⎜ ⎟

⎝ ⎠
                     (7.15) 

In the above equation, the third term is from the contribution of the induced gate noise, 

which is negligible compared to contribution of channel noise. Neglecting gate noise for 

a CGLNA is reasonable approximation since the gate noise is not amplified, unlike it in 

CSLNA. Therefore, the noise factor of CGLNA is approximated by  

 1F γ
α

= +             (7.16) 

In CSLNA we can not make this approximation since the gate noise is amplified and 

becomes comparable to channel noise. 

 

7.2.3 Comparisons of CSLNA and CGLNA 

Based on the above discussion, the detailed comparison is listed in Table 7.1.  

Table 7.1 The comparison between CSLNA and CGLNA (“+” indicates better, “-” 
indicates worse). 

 
 CSLNA CGLNA Comments 

Gain + – 
0

1 1
2 2

T
CSLNA CGLNA

s s
G G

R R
ω
ω

⎛ ⎞
= > =⎜ ⎟

⎝ ⎠
 

Noise Figure + – Discussed above 

Input matching – + CGLNA has lower Q parallel resonant network. 

Reverse isolation – + 
Cgd in CSLNA provides a feed-forward path 

between input and output. 
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 In this work the NF for receiver front-end requirement is less than 6 dB in order to 

obtain the desired GPS receiver sensitivity, as discussed in Chapter 6. So the topology 

CSLNA is used to achieve low noise and low power GPS receiver front end. Once 

selecting the CSLNA topology, the next question is to take either a single-ended or 

differential architecture. The signal-ended LNA architecture has at least one important 

shortcoming, and that is sensitivity to parasitic ground inductance. There are several 

advantages in using a differential LNAs. Firstly, the use of Gilbert mixers and the low-IF 

architecture requires a differential feed source. If the single-ended is taken we need to 

add a Balun to generate the differential signal. The Balun itself has about 0.5 dB loss. 

Secondly, the virtual ground formed at the tail removes the sensitivity to parasitic ground 

inductance, which makes the real part of the input impedance purely controlled by the 

source degeneration inductance (Ls). Thirdly, the differential amplification of signal 

ensures attenuation of the common mode signal. But for equal total power consumption, 

the noise figure of differential LNA is higher than its single-ended counterpart. 

Specifically, the power consumed is twice that of a single-ended LNA to achieve the 

same noise figure. Since it is hard to tell which architecture is better for this application, 

both architectures will be taken to implement the ultra-low power GPS receiver front-end 

circuits. 

 Next the ultra-low power FinFET differential LNA design is described. The 

single-ended LNA is just the half circuit of differential LNA. It has the same NF but only 

consume half power of differential LNA. 
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7.3 Circuit Design 

 The LNA design starts from noise optimization because of the tight noise 

requirement. The input devices are required to work in moderate inversion region to 

reduce amplifier drain current with the exception of the tail current source. All the 

formula used to estimate the noise is for MOSFET apply in moderate inversion. Starting 

from the noise analysis, we found the minimal transcondance to achieve the lowest noise 

figure. Once gm is found to be 20 mS, the drain current can be determined by referring 

the inversion coefficient curve with IC equal 0.1 to 1 in Figure 7.6. The curve in Figure 

7.6 is drawn for 80 nm FinFET transistors with the description in 2.3.1.  The m Dg I  of 

around 20 to 40 is achievable in this range. Taking the average value 30, we can get 

30 666D mI g= = uA. The tail current will be twice the ID, 1.3 mA.  The aspect ration of 

M1 and M2 can be calculated by choosing bias current: 

 
( )

D

t

IW
L I IC

=          (7.17) 

where IC is the desired inversion coefficient, which is about 0.15. It is specific current, 

         (7.18) 22t n oxI n C Uµ= T

 which is about 1.46 uA for 80 nm device. The W/L is determined about 3000. Knowing 

channel length equal to 80 nm the width of input device is determined to be 240 um.  
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Figure 7.6 gm/ID versus inversion coefficient curve. 
 

 Knowing gm, device size and Cgs, the transition frequency of input device is 

 m
T

gs

g
C

ω ≈             (7.19) 
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Figure 7.7 Proposed differential LNA schematic. 
 

The source inductance can be determined once the source resistance Rs is set to 50 Ω. 

 s
s

T

RL
ω

=           (7.20) 

Lg can be determined by 

 2
0

1
g s

gs

L
C ω

= − L          (7.21) 

Where 0ω  is the center frequency of GPS L1 band. 
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 The complete LNA schematic is shown in Figure 7.7. All passive components 

values in design are summarized in Table 7.2. All active devices are summarized in table 

7.3. 

Table 7.2 Differential LNA passive components values. 
 

Ls Lg Ld 

100 pH 20 nH 15 nH 

  
Table 7.3 Differential LNA active components values. 

 
Devices Threshold 

voltage 
Sizing 

 (um/um) IC Overdrive  
Voltage 

M1- M4 0.33 V 250/0.08 0.12 - 15 mV 

 

 

7.4 LNA Performance 

 Periodic Steady-State (PSS) and S-Parameter (SP) simulation are adopted to 

measure the gain, noise and linearity performance separately.  

 In SP simulation, the voltage gain of LNA is determined by plotting S21 versus 

frequency. Figure 7.8 shows the maximum voltage is 21 dB at 1.57 GHz. And the S12, 

S11 and S22 are -30 dB, -15 dB and -4 dB, respectively, as shown in Figure 7.9 and 

Figure 7.10. The noise performance is measured by NF shown in Figure 7.11, which is 

about 2.6 dB at 1.57 GHz. If the gate induced noise is counted it will reach 3.4 dB which 

is dependent on device model used. Stability measurement of LNA is presented in Figure 

7.12. 
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 The LNA’s linearity can be measured by 1-dB compression point, as shown in 

Figure 7.13. The 1-dB compression point is -35 dBm. The performance summary for 

proposed LNA is listed in Table 7.4.  

 Compared with the differential LNA designs previously published, the resulting 

LNA consumes only 1.08 mW with 1 V supply voltage. 

 

Figure 7.8 Voltage gain of differential LNA. 
 

 
Figure 7.9 S12 of differential LNA. 
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Figure 7.10 S11 and S22 of LNA. 
 

 

Figure 7.11 Noise Figure of LNA. 
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Figure 7.12 Stability measurement of LNA 
 

 

Figure 7.13 1-dB compression point measurement of LNA 
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Table 7.4 Ultra-low power LNA performance summary 
 

Technology 0.08 um FinFET 

Supply Voltage (Vdd) 1 V 

DC Current 1.44 mA 

Power Consumption 1.44 mW 

Threshold Voltage 0.33 V 

Transition frequency 18 GHz 

Operation Frequency 1.57 GHz 

S21, S11, S22 20 dB, -15 dB, -4 dB 

Noise Figure 3.4 dB 

1-dB compression -35 dBm 

Power Consumption 1.44 mW 
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Chapter 8   

Micro-power RF Voltage Controlled Oscillator Design 

8.1 Introduction 

Voltage controlled oscillators (VCOs) are essential building blocks of modern 

communication systems and are worked with other building blocks to establish phase 

lock loop (PLL) to generate stable local oscillation signal, which is provided to the ports 

of mixer in a typical transceiver architecture to translate data between baseband and 

frequencies suitable for wireless transmission. In a PLL, all building blocks such as VCO, 

phase detector and loop filter contribute phase noise at the output. For a well designed 

PLL, the phase noise of VCO is the dominant source of phase noise [64]. Therefore, in 

the following discussion, the phase noise of VCO is emphasized. The basic LC oscillator 

topology is widely used in RF receiver design due to its superior phase noise performance. 

Consequently, we focus our discussion on LC oscillators.  

In this chapter, following the oscillation fundamental of oscillator, the topologies 

of oscillators are compared. Then the proposed VCO design procedures are presented. 

Finally, the performance of VCO is shown in figures and summarized in table.  

 

8.2 Oscillators Fundamental 

8.2.1 Feedback Oscillator Model 
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 An oscillator can be viewed as a feedback system as shown in Figure 8.1 where 

the transfer function from Vin(s) to Vout(s) is 

 ( ) ( )
( ) 1 ( )

out

in

V s H s
V s H s

=
+

           (8.1) 

 For the oscillation to begin, a loop gain of unity or greater is necessary. 

Oscillation occurs for the condition 0( )H jω 1= . Even without an input, i.e., Vin(s) = 0, the 

oscillation is self-sustained. To maintain constant amplitude, there are two necessary 

conditions that must be met at 0ω .   

 0

0

( ) 1

( ) 180o

H j

H j

ω

ω

=

∠ =
            (8.2) 

 Known as Barkhausen’s criteria, these conditions are necessary but not sufficient 

[65]. In order to ensure oscillation in the presence of temperature and process variations, 

we typically choose the loop gain to be at least twice or three times the required value. 

 

Figure 8.1 oscillator viewed as feedback system. 
 

 An LC resonant tank is an integral component of LC oscillator circuit in Figure 

8.1. It functions as a frequency selective network to eliminate high-order harmonics and 

thus to stabilize the oscillation frequency, as shown in Figure 8.2. 
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Figure 8.2 Feedback model for oscillator with LC resonant tank. 
 

8.2.2 One-Port Oscillator Model 

 Most oscillators employed in RF applications use LC resonators. They are known 

to provide high spectral purity and lower phase noise than other types such as ring 

oscillators, etc. [66]. Monolithic inductors have gradually appeared in bipolar and CMOS 

technologies in the last decade, which makes it possible to design oscillators based on 

passive resonant circuits. 

As shown in Figure 8.3. An inductor L placed in parallel with a capacitor C, 

building a parallel resonance LC tank, which resonates at a frequency 

 1
LC

ω =              (8.3) 

Since the LC tank network is composed only of reactive components, the 

oscillating signal ideally maintains its oscillation amplitude without attenuation. The 

energy in the LC resonator transfers back and forth between the inductor and the 

capacitor in the form of the magnetic and electric energy without loss due to power 

dissipation. In practice, however, the quality factors of the inductor and the capacitor are 
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finite. As a result, this leads to a practical parallel RLC network as shown in Figure 

8.3(b). Quality factor Q of this network is defined as: 

0
0

RQ R
L

Cω
ω

= =             (8.4) 

At this frequency, the impedance of the inductor, j Lω , and the capacitor, ( )1 j Cω , are 

equal and opposite, thereby, yielding an infinite impedance, in theory. The circuit in 

Figure 8.3 (a) has an infinite quality factor, Q. In practice, inductors (and capacitors) 

suffer from resistive component, Rp. In order to sustain the oscillation, a practical tank 

network needs an active circuit that provides a negative resistance, -Ra, to cancel out the 

positive loss resistance of the tank. Such a topology is called one-port oscillator. 

 

 (a) ideal      (b)practical         (c) negative R 

Figure 8.3 LC tank. 
  

8.3 Oscillator Topology Comparison  

 In this section, several oscillator topologies will be compared with an 

emphasis on their phase noise and power consumption. 
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Figure 8.4 the typical cross-couple oscillator. 
 

 Figure 8.4 shows the NMOS-only cross-coupled oscillator topology, widely used 

in high-frequency integrated circuits due to the ease of implementation and differential 

operation [67, [68, [69]. It can be shown that the small-signal impedance looking into the 

drains of M1 and M2 is 2 mg− assuming the parasitic capacitance is neglected. To enable 

oscillation, the negative small-signal conductance added by the cross-coupled transistor 

pair should overcome the loss in Rp, that is  

 1
m

p
g

R
>  

or 1m pg R >             (8.5) 

 Figure 8.5 shows the complementary version using both NMOS and PMOS 

transistors. This topology provides a larger tank amplitude for a given tail current in the 

current limited regime defined in [68]. Since the PMOS is used in this topology, the 
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oscillation frequency is limited by the PMOS. In this work p-channel FinFET transistors 

can not provide enough bandwidth in moderate inversion. Thus this topology is not 

considered. 

 

Figure 8.5 The complementary cross-coupled oscillator. 
 

 Figure 8.6 depicts the single-ended Colpitts oscillator topology. Compared to 

cross-coupled VCO, the Colpitts topology features superior phase noise because noise 

current from the active devices is injected into the LC tank during the tank voltage when 

the impulse sensitivity is low [70, [71]. 

 The negative conductance is formed using transistor M1 and capacitive divider C1 

and C2 in a positive feedback arrangement. Its small-signal impedance looking into the 

drain of M1 is calculated using test voltage divided by test current. It can be shown that 

the negative conductance loading the tank is 
( )

1 2
2

1 2

mg C C
C C

−
+

. Therefore, the startup 

condition for Colpitts oscillator is 
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1 2

1m

p

g C C
RC C

>
+

 

or   ( )2
1 2

1 2
m p

C C
g R

C C
+

>                         (8.6) 

For a typical case,  (8.6) becomes . Comparing to (8.5), we conclude that 

Colpitts oscillator has more difficult start-up condition than the conventional cross-

coupled LC oscillator for a given transconductance, i.e., higher power consumption is 

needed to ensure reliable start-up in the presence of process, voltage or temperature 

variations. And the lack of differential outputs needed to suppress common-mode 

coupling has hindered its usage in CMOS. 

2C C= 1 4m pg R >

   

 

Figure 8.6 The typical Colpitts oscillator. 
 

 Figure 8.7 shows a differential Colpitts VCO. With a small-signal analysis, the 

start-up condition for the differential Colpitts oscillator is given by 

 ( )2
1 2

1 22m p
C C

g R
C C
+

>           (8.7) 
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Compared to (8.6), the effective small-signal transcondance is doubled, the start-up 

condition is also relaxed by a factor of two. In a conventional Colpitts oscillator, the tail 

current is always ON. To reduce power consumption, a switching current source can be 

employed [72]. Power consumptions is reduced at the expense of added noise from the 

tail device. The idea is that since in a Colpitts oscillator the MOSFET is on for less than 

half of a cycle, two switches can be used to steer one current source to the two MOSFETs 

while sustaining oscillation, shown in Figure 8.8 [73].  

 

Figure 8.7 The typical differential Colpitts oscillator. 
 

 Although differential Colpitts oscillator has superior phase noise performance 

than cross-couple differential, it has greater power than cross-couple differential 

oscillator [72]. Since in this work low power consumption is our research goal and the 

cross-coupled oscillator already supplies enough phase noise and cost less power than 

differential Colpitts oscillator, the cross-coupled oscillator is taken to implement the 

ultra-low power VCO.  
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Figure 8.8 The differential Colpitts oscillator with current-switching technique. 

 
8.4 Oscillator Circuit Design  

 With the VCO topology selected, the design procedures are described in this 

section. The proposed VCO schematic diagram is shown in Figure 8. 10. Starting with 

the oscillation frequency equation given in (8.1), we take 1.57 GHz as the target 

frequency. In Chapter 3, a monolithic model was developed for the on-chip inductor with 

substrate removed. The model is valid for the number of turns as large as 4.5. In this 

design we will use the complete inductor model for accuracy, where all substrate losses 

are taken into account. As described in Section 8.2, the cross-coupled pair must provide 

enough negative resistance to cancel the tank losses and allow oscillation to start up. This 

negative resistance equals 1,21 mg−  for half cross-coupled pair.  

 The required for startup sets a lower limit on the current consumption of 

oscillator. To determine the necessary  for startup, the tank losses (R

mg

mg P) must be 

calculated from the inductor model. In Chapter 3, the calculated QL was shown to be  
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approximately 10 at 1.5 GHz for an inductor with a substrate. At the resonant frequency, 

the LC tank may be modeled as depicted in Figure 8.3, where the tank losses are included 

in the resistance Rp. The equivalent parallel resistance at resonance may be calculated by 

taking the capacitor as lossless and calculating the parallel resistance Rp for an inductor 

with finite Q given by the overall tank quality factor, 

 2
p L sR Q R≈             (8.8) 

The  required for startup is  mg

 1
m

p
g

R
≥             (8.9) 

For a given operating frequency, it is desirable to use the inductor in the LC tank which 

has largest pR  value. The Table 8.1 shows the inductance, series resistance and Q of 

inductors with different number of turns at 1.5 GHz. 

Table 8.1 On-chip inductors specifications at 1.5 GHz. 
 

No. turns L (nH) Rs (Ω) Q 

1.5 1.34 1.8 7.28 

2.5 2.83 3.34 8.39 

3.5 6.4 6.15 10.36 

4.5 11.52 9.65 11.88 

 

With Table 8.1, the 4.5 turn inductor is taken since it has largest RP value. In practice, the 

size of the inductor is usually limited by the difficulty of implementing large spiral coils 

on-chip. On the other hand, the critical transconductance is inversely proportional to tank 
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quality factor, so an improvement in inductor Q reduces startup current requirements and 

lowers power consumption. 

 As described in Chapter 3, inductors large than 12 nH are not normally integrated 

on chip. RP is approximately 1000 Ohm at 1.57 GHz for 4.5 turns inductor. Therefore, the 

minimal requirement of  is approximately 1 mS. In order to ensure reliable startup, the 

transconductance is set to 2 mS.  

mg

10-5 10-4 10-3 10-2 10-1 100 101 102
10-1

100

101

102

g m
/I D

Inversion Coefficient (IC)

L=0.08um

 

Figure 8.9 Inversion coefficient for L=80 nm FinFET transistor. 
 

 To optimize the transcondance for minimal bias current, devices M1 and M2 are 

designed to operate with inversion coefficient between 0.1 and 1. This is the moderate 

inversion for transistors.  Referring to Figure 8.9, m Dg I  of around 20 to 40 is achievable 

in this range. Taking the average value 30, we can get 30 66D mI g= = uA. The tail 

current will be twice the ID, or 132 uA.  The aspect ration of M1 and M2 can be 

calculated by choosing bias current: 

 
( )

D

t

IW
L I IC

=            (8.10) 
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where IC is the desired inversion coefficient, which is about 0.15. It is specific current, 

which is about 1.46 uA for 80 nm device. So the W/L ratio is determined around 350. 

The total bias current sourced by M3 is approximately 130 uA. In order to maintain stable 

tail current a long-channel device is chosen and operation in saturation region is selected 

for accuracy. The width of M3 is calculated to be about 20 um. All the devices sizing and 

IC is shown in table 8.2. 

Table 8.2 Device sizing and IC for oscillator transistor. 
 

Device 
Threshold 

voltage 
Sizing (um/um) IC 

Overdrive 

voltage 

M1, M2 0.33 V 30/0.08 0.12 -25 mV 

M3 0.5 V 20/1 10 0.2 V 

 

Next, the voltage controlled capacitor design is selected. In this work, the FinFET 

varactors are used to achieve frequency sweep. All the varactors are n-channel FinFET 

transistors that have a step-like C-V characteristic. Referring to Figure C.3 in Appendix C: 

“CV characteristic of FinFET”, the FinFET capacitance changes from 2 fF/um2 to 13 

fF/um2 with gate voltage swept from -0.5 V to 0.5 V. In order to center the oscillation 

frequency at 1.57 GHz two varactors are connected in parallel which has width 45 um 

and length 1um. Its capacitance at zero bias is around 470 fF, and its swept capacitance 

ratio is 6.5.  

 

8.4 VCO Performance 
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Figure 8.10 Micro-power VCO schematics. 
 

 The completed VCO design is shown in Figure 8.10. Its tuning range is 720 MHz 

wide around the center frequency of 1.57 GHz (i.e., 45.7%) without considering process, 

voltage and temperature (PVT) variation, as shown in Figure 8.11.  Figure 8.12 shows 

that the differential output oscillation signal amplitude is around 700 mV, that is, around 

350 mV peak-to-peaks for single end output. With power supply voltage of 1 V, the 

phase noise of the VCO is -112 dBc at 1 MHz offset from 1.57 GHz, shown in Figure 

8.13. 

 Compared with the VCO design published before, this VCO consumes only 128 

uW with 1 supply voltage. 
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Figure 8.11 Simulated tuning characteristics of the VCO. 

 

 
Figure 8.12 Output LO signal magnitude versus frequency. 
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Figure 8.13  VCO Phase noise versus frequency. 
 

Table 8.3 Summary of VCO performance. 
 

Parameters Value 

Supply voltage 1 V 

Power Consumption 128 uW 

Frequency tuning range 1.38-2.1 GHz 

LO Vpp 350 mV 

Phase Noise -111 dBc/Hz @1 MHz offset 
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Chapter 9 

Ultra-low Power Mixer Design 

9.1 Introduction 

The rapid growth of portable wireless communication systems, such as wireless 

(cordless and cellular) phones, GPS, wireless local area network (LAN), etc., has 

increased the demand for low-cost and high performance front-end receivers. Mixers are 

used for frequency conversion and are the critical components in modern radio frequency 

(RF) systems which are commonly used to down convert frequencies to achieve 

frequency translation. The motivation for this translation stems from the fact that filtering 

out a particular RF signal channel centered among many densely populated, narrowly 

spaced neighboring channels would require extremely high Q filters. A mixer converts an 

RF signal at a high frequency into a signal at lower frequency to make signal processing 

easier and less power consumptive. One of the best known architectures is the 

downconversion heterodyne receiver, schematically depicted in Figure. 9.1. Here the 

received RF signal after preamplification in a low-noise amplifier is supplied to a mixer. 

It is then mixed with local oscillator (LO) frequency LOf . The signal obtained after the 

mixer contains the frequencies RF LOf f± , as well as the input signals at RFf  and LOf . 
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With a low-pass filter (LPF) or band-pass filter (BPF), the lower frequency 

component RF LOf f− , known as the intermediate frequency (IF), is selected for further 

processing. 

RF LOf f±RFf

LOf

IFf

 

Figure 9.1 The heterodyne receiver system with a mixer. 
 

In this chapter, following the fundamentals of mixing, the mixer topology choice 

is made based on our application. Then the design procedure is discussed to achieve low-

power consumption. Finally, the proposed mixer performance is presented. 

 

9.2 Mixer Fundamentals 

The ideal mixer is a device which multiplies two input signals. If the inputs are 

sinusoids, the ideal mixer output is a signal that contains both the sum and difference 

frequencies given by 

( ) (( cos )( cos ) cos cos
2RF LO RF LO RF LO

ABA t B t tω ω ω ω ω ω )t⎡ ⎤= − + +⎣ ⎦        (9.1) 

Typically, either the sum or the difference frequency is removed with a filter. If 

the LO amplitude is constant, any amplitude modulation in the RF signal is also 

transferred to the IF signal. Having recognized the fundamental role of multiplication, the 

most important characteristics of mixers are discussed next. 

9.2.1 Conversion Gain 
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 The gain of mixers must be carefully defined to avoid confusion. The voltage 

conversion gain of a mixer is defined as the ratio of the root mean square (rms) voltage of 

the IF signal to the rms voltage of the RF signal. The power conversion gain of a mixer is 

defined as the IF power delivered to the load divided by the available RF power from the 

source. If the input impedance and the load impedance of the mixer are both equal to the 

source impedance, then the voltage conversion gain is equal to power conversion gain in 

decibels. In this work the LNA output impedance is not matched to source impedance. 

Thus, the voltage conversion gain is adopted instead of power conversion gain. 

 In terms of conversion gain, mixers can generally be categorized into passive and 

active mixers. Passive mixers, such as diode mixers and passive field-effect transistor 

(FET) mixers, have no conversion gain but a conversion loss. On the other hand, active 

mixers have conversion gain that can reduce the noise contribution from the IF stages but 

consume considerable more power.  

9.2.2 SSB and DSB Noise Figure 

 Noise figure is defined as the signal-to-noise ratio (SNR) at the input (RF) port 

divided by the SNR at the output (IF) port. In a typical mixer, there are actually two input 

frequency that will generate a given intermediate frequency. One is the desired RF signal, 

and the other is called the image signal. Those two signals are frequently referred as 

sidebands. The existence of an image frequency complicates noise figure calculation, 

because noise generation in both the desired and image frequencies contributes IF noise. 

In the usual case where the desired signal exists at only one frequency, the noise figure is 

called the single-sideband (SSB) noise figure. In the rarer case, where both the RF and 

image signal contain useful information, leads to a double sideband (DSB) noise figure. 
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In summary, the SSB noise figure of a mixer is 3 dB higher than the DSB noise, since the 

SSB noise figure only count the RF power on one side only.  

 Noise figures for mixer are considerably higher than those for amplifier because 

noise from frequencies other than at the desired RF can mix down to the IF. The typical 

values for SSB noise figure range from 10 dB to 15 dB or more [50].  

9.2.3 Isolation and Linearity 

 The isolation between two ports of a mixer is critical. The LO-RF feedthrough 

results in LO leakage to the LNA and eventually the antenna, whereas the RF-LO 

feedthrough allows strong interferers in the RF path to interact with the local oscillator 

driving the mixer. The LO-IF feedthrough makes the substantial LO signal exists at the 

IF output, which desensitizes the following stage. Finally, the fraction of the signal in the 

RF path that appears in the IF is determined by RF-IF isolation. The required isolation 

levels depend on the environment in which the mixer is used.  

 Linearity is an important requirement for mixer, and the IF output is expected to 

be proportional to the RF input signal amplitude. It is in this manner in which linearity is 

interpreted in the mixer. Like amplifiers, beyond a certain input limit the signal from the 

mixer distort or clip or have a nonlinear relationship with the input signal. The 

compression point is the value of RF signal at which a calibrated departure from the ideal 

curve occurs. Usually, a 1-dB compression point is specified.  

 

9.3 Mixer Topology Comparison 

 During mixer design, the noise, power consumption, conversion gain, linearity 

and port isolation have to be considered. Since mixer is not the only component in 

 107



 
 

circuits, we need to make compromises to simplify the design of LNA and VCO. For 

multiplier-based mixers, there are two types of them, passive and active mixers. Making a 

decision on which topology of mixer to use is dependent on the requirement from the 

application.  

9.3.1 Passive Mixer 

Figure 9.2 shows the passive double-balanced mixer, which consists of four 

switches in a bridge configuration. The switches are driven by LO signals in anti-phase, 

so that only one diagonal pair is conducting at any given time. The IF output is therefore 

the multiplication of the RF and the LO signal. It is readily seen that this mixer consumes 

zero DC power because of the passive operation. However, the mixer provides negative 

conversion gain, which depends on the LO waveform shape. For example, the mixer has 

a voltage conversion gain of 2/π (-3.9 dB) for square-wave LO signal, and π/4 (-2.1 dB) 

for sinusoidal LO signal.  

 

Figure 9.2 Simple double-balanced passive mixer. 
 

The passive mixer shows good linearity if the switches are driven by a square-

wave or large-amplitude sinusoidal LO signal. Because with large and sharp LO signals, 
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the switch on-resistance only depends on the input signal very weakly, thus minimizing 

non-linearity. However, if the LO amplitude is limited due to low-power (or low-voltage) 

design requirements, this linearity advantage diminishes. On the other hand, passive 

mixer does not have good isolation between LO and RF signals, and the LO to RF 

feedthrough may happen easily.   

9.3.2 Active Mixer 

Based on the above analysis the active mixer is taken to realize the ultra-low 

power GPS receiver design. Figure 9.3 shows a typical active double-balanced mixer, 

which consists of two single-balanced circuits. The two single-balanced mixers are 

connected in antiparallel as far as the LO is concerned but in parallel for the RF signal. 

Therefore, the LO terms sums to zero in the output, whereas the converted RF signal is 

doubled in the output. Thus it provides a high degree of LO-IF isolation, making the filter 

requirements at the output easier. If layout is carefully taken, IC realizations of this 

circuits could provide 40 dB LO-IF isolation [50]. Compared with passive mixers active 

mixers have much higher conversion gain,  
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Figure 9.3 A active double-balanced mixer. 
 

2
V mA g

π
= LR               (9.2) 

which is typically 10 dB in most reported results. It may add variable gain amplifier 

(VGA) capability. Despite these advantages, it also has some drawback in this 

configuration. Firstly it consumes power; secondly it has worse flick noise than passive 

mixers. One noise source is the transconductor itself, and its noise figure sets a lower 

bound on the mixer noise figure. The switching pair transistors also degrade noise 

performance in a number of ways. One noise contribution arises from imperfect 

switching, which results in attenuation of the signal current. Another NF contributor is 

the interval of time in which both transistors conduct current and hence generate noise. 

The mixer noise can be predicted by the following equation [74], 

 2
,

28 1 L
o n L m L

R IV kTR g R
A

γ γ
π

⎛= + +⎜
⎝ ⎠

) ⎞
⎟          (9.3a) 
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 This equation clearly shows how mixer output noise varies with different circuit 

parameters, such as LO amplitude (A) and mixer DC bias current in each side of the 

mixer (I).  

Other mixer topologies include the sub-sampling mixer  [50] and those 

implemented from complex signal processing [75]. Both kinds of mixers can achieve 

good linearity but suffer high noise figures. Such circuits require high-gain preceding 

LNAs, thus posing more constraints on the overall receiver implementation.  

  

9.4 Circuit Design 

 Since active and passive mixers have their own characteristics, it is difficult to tell 

which one is more fitting to this work till this point. In the conclusion chapter, system 

simulation is done with active and passive mixers, respectively. In this section, only the 

active double-balanced mixer design is presented since passive mixer design is pretty 

straightforward.  

 The mixer topology used for this work is shown in Figure 9.4. In order to make 

the mixer work under low supply voltage, a parallel LC tank is used to replace the DC 

current source to create a zero-headroom AC current source. The resonant frequency of 

the tank is chosen to provide rejection of the RF common-mode component.  

 The input devices work in the moderate inversion such that the lowest current 

could be reached for a given transconductance. In Chapter 7, the noise figure of LNA is 

approximately 3.4 dB. In order to keep the NF of the system less than 6 dB, the NF of 
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mixer has to be less than 20 dB. Here tradeoff between gain and NF is made to satisfy the 

NF requirement and the gain requirement together. Considering equations (9.2) and (9.3) 

we found the transconductance is approximately 6 mS to pursue 10 dB gain at output 

with NF less than 20 dB. Referring to inversion coefficient curves of Figure 8.8 in 

Chapter 8 we can determine the drain current and W/L ratio of 150 uA and 1200, 

respectively. 

 

LO

RF

IF

M1 M2 M3 M4

M5 M6

VDD

1K 1K

100/0.08 100/0.08

5nH 2pF

9/0.08 9/0.08

 

Figure 9.4 Minimum supply-headroom double-balanced mixer. 
 

 It turns out to be 150 uA for single balanced mixer. The total current consumption 

will be 300 uA for double balanced mixer. The shortest channel length is taken for input 

device to permit the mixer to have sufficient bandwidth. The input device is calculated to 

be 100/0.08 um and the transistor overdrive voltage is at around -10 mV. 
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9.5 Mixer Performance 

 The ultra-low power mixer is simulated in Cadence SpectreRF simulator. 

 1. Combining PSS analysis with a periodic small-signal transfer function PXF 

analysis, the conversion gain of the down converter can be determined. At 1.57 GHz, it is 

8.3 dB, as shown in Figure 9.5. 

 2. Combining a PSS analysis with a small-signal Pnoise analysis, the noise figure 

can be determined. It is found to be about 13.25 dB at 1 MHz IF output, as shown in 

Figure 9.6. 

 3. A swept PSS analysis determines the 1dB compression. Figure 9.7 shows the 

input 1-dB compression is -19.4 dBm. 

 4. Sweeping PSS analysis with a Periodic AC (PAC) analysis is adopted to 

produce data for an IP3 plot. The IIP3 is found to be -9.37 dBm , as shown in Figure 9.8. 

 The final results are summarized in Table 9.1. 

 

Figure 9.5 Conversion gain versus frequency. 
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Figure 9.6 Noise figure versus frequency. 

 

Figure 9.7 1-dB compression point of mixer. 
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Table 9.1 Active double-balanced mixer performance summary. 
 

Parameter Value 

Supply voltage 1 V 

Power dissipation (Vdd=0.5 V)  452 uW 

Conversion gain 13.77 dB 

Noise figure at 2 MHz (SSB, 50 Ω) 13 dB 

Input referred 1-dB compression point -19 dBm 
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Chapter 10 

Conclusions 

10.1 Research Summary 

 In this research, design approaches and methodologies were presented to realize 

the ultra-low power RF receiver front-end circuits. Moderate inversion operation was 

explored as a possible method of reducing power consumption along with the use of low 

supply voltage. The research is firstly concentrated on passive and active devices 

modeling. One of the most commonly used passive devices is on-chip inductor. On-chip 

spiral inductor model was developed firstly. Compared to the model developed by others, 

this model can predict the behavior of the inductors with different structural parameters 

over a board frequency range (from 0.1 to 10 GHz).  Then the SOI varactor model was 

developed based on our measurement and extraction. 

 Besides the passive devices modeling, a new most promising MOSFET candidate, 

FinFET, was characterized at GHz frequency range.  Based on the measurement results, 

we found the FinFET transistors have superior performance over bulk-Si CMOS 

technology. And an RF circuit model of FinFET was developed followed that. It provides 

the basic idea about how to model this new structure MOSFET. 

 Based on the passive and active device models developed, Global Positioning 

System (GPS) receiver front end circuits were designed. There are two system designs 

summarized in this work. We call them called plan A and plan B. The difference is that 

different types of mixers are used. Plan A uses a differential LNA designed, an active 
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double-balanced mixer and a VCO.  Plan B employs a differential LNA, a passive 

double-balanced mixer and a VCO. Both system designs are summarized in Figure 10.1.  

 

Figure 10.1 The diagram of system simulation of GPS receiver front-end sub-blocking 
circuits. 

 
 In practice we can not really simulate a VCO, mixer and LNA together. During 

simulation PSS needs to find the beat frequency of VCO frequency. But the beat 

frequency could change enormously with a tiny change in the VCO frequency. In other 

words, the combination is chaotic. A fraction of hertz change in the VCO could cause the 

beat frequency to change from 100 MHz to 0.00001 Hz in a moment [76]. In Figure 10.1 

the VCO is an oscillator model in rfLib. The VCO performance is characterized using 

PSS/PNOISE. The summary of GPS receiver front-end sub-blocking circuits of plan A is 

shown in Table 10.1. 
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Figure 10.2 The gain of plan A.  

 

Figure 10.3 The noise figure of plan A. 
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Figure 10.4 The 1-dB compression point of plan A. 

 

Table 10.1 Summary of GPS receiver front-end sub-blocking circuits of plan A. 
 

Parameter Value 

Supply Voltage 1 V 

Power Consumption 1.9 mW 

Voltage Gain 24.3 dB 

NF 8.7 dB 

1-dB Compression -31.6 dBm 

 

 The summary of GPS receiver front-end sub blocking circuits of plan B is shown 

in Table 10.2.  
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Figure 10.5 The gain of plan B. 

 

Figure 10.6 The NF of plan B. 
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Figure 10.7 The 1-dB compression point of plan B. 

 

Table 10.2 Summary of GPS receiver front-end sub-blocking circuits of plan B. 
 

Parameter Value 

Supply Voltage 1 V 

Power Consumption  1.5 mW 

Voltage Gain  7.9 dB 

NF  7.8 dB 

1-dB Compression -24.3 dBm 

 

 Comparing to the previous designs with the same constrains, the ultra-low power 

GPS receiver building block circuits in this research are a factor of 5 times better than the 

best design published resuts to date [42], as shown in Table 10.3. A new parameter, 
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gain/power, is introduced here to evaluate the performance improvement. In this work, 1 

mW power can generate 2 to 6 times more gain. 

Table 10.3 Comparison of GPS receiver sub-blocking circuit performance. 
 

Authors Technology 
Supply 
Voltage 

(V) 

Voltage 
Gain (dB)*

Power 
(mW) 

Gain/power 
(dB/mW) Year 

 [44] 0.5um CMOS 2.5 12 60 0.2 1998 

 [77] 0.25um 
CMOS 2 30 35 0.85 2002 

 [42] 0.18um 
CMOS 1.8 28 12 2.3 2005 

Plan A 0.08um 
FinFET 1 24.3 1.9 12 After 2006

Plan B 0.08um 
FinFET 1 7.9 1.5 5.3 After 2006

 

 

10.2 Future Work 

 In the RF transceivers, passive inductors are frequently employed in various 

circuit blocks, such as in LNA, VCO and mixer, as well as matching network. The 

current trend is to integrate all passive and active devices on one chip, so that the cost of 

product can be reduced. However, most commercial RF communication products are still 

using external high-Q inductors. For low power design, the selection of integrated on-

chip passive components or discrete off-chip ones plays an important role in receiver 

implementation. The following example explains the reason.  

 122



 
 

 

Figure 10.8 A typical common-source amplifier with inductor load. 
 

 For a simple inductor loaded common-source amplifiers, as shown in Figure 10.8, 

assume the inductor Q determines the output impedance of amplifier. The amplifier’s 

voltage gain is expressed as, 

          (10.1) v mA g Z= − L

where ZL is the equivalent output resistance in parallel with the inductor. It can be 

described as, 

 0LZ Q Lω=            (10.2) 

when transistor M1 works in saturation region, which can be estimated as, 

 ( )2 2m D GS t n ox
W

Dg I V V C I
L

µ= − =       (10.3) 

Combine equation (10.1)-(10.3), we get 

 2 0n ox D
WA C I Qv L

Lµ ω= ⋅        (10.4) 

It can be observed that the required biasing current ( DI ) is inversely proportional to Q, 

in order to maintain a desired Av. For instance, if the Q is increased from 5 (typical on-

chip CMOS spiral inductor) to 50 (off-chip inductor), the biasing current is reduced by 
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100 times. If in both cases the same power supply are used the total power consumption 

will be reduced by 100 times too. 

 Based on the above analyses, both on-chip and off-chip inductors may be 

employed for power saving purpose. The monolithic spiral inductors are lossy and have 

quality factors less than 10 (for 3 metal layers process). And they also suffer from 

substrate eddy current losses, reduced self-resonant frequency, and the possible 

requirements for non-standard wafer processing. The performance of on-chip inductors is 

described in Chapter 3. For high power application, these low-Q circuits are compatible 

for broad band systems. In contrast, for narrowband wireless application, the high-Q 

passive devices could be used. The off-chip inductors may increase the total cost, but the 

cost can be traded off by some advantages of off-chip component integration. First, by 

moving the passive components from the chip onto the low cost substrate, the fabrication 

cost associated with large silicon chip area for the monolithic inductors can be saved. 

Second, removing the passive components from the lossy silicon substrate dramatically 

reduces the power consumption to achieve low power application. Therefore the high 

system cost associated with batteries is reduced. 

 The use of thin film bulk acoustic-wave resonators in transceiver circuits is one 

way for future exploration, as these components may help to reduce power consumption 

by eliminating the dependence of low Q on-chip passive devices. 
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Appendix A 

Integrated Differential Inductors and Transformers  

Differential inductors offer a greater Q factor and a broader range of operating 

frequency. Two different topologies of differential inductors are shown in Figure A.1. 

 

Figure A.1 Microstrip inductor physical layouts for differential inputs [78]. (a) Two 
asymmetric spiral conductors. (b) Symmetrical microstrip inductor. 

 
The Advantages to employed differential inductor in the layout are: 1) the inductor 

quality factor (Q) is enhanced by ~50% compared with an equivalent single-ended 

configuration. 2) Increase self-resonance frequency. 

The Figure A.2 has been used to illustrate the reason of how Q and self-resonance 

has been increase. 
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    (a)          (b)         (c) 

Figure A.2 (a) Lumped equivalent-circuit model of a microstrip inductor, and circuit 
equivalents for (b) single-ended (port 2 grounded) and (c) differential excitation. 

 
The Figure A.2 (a) shows the lumped equivalent-circuit model of a microstrip 

inductor. For single-ended excitation, the inductor is connected as a one-port network, as 

shown in Figure A.2 (b). 

 Parallel LRC resonance frequency is given 

0
1
LC

ω =            (A.1) 

 The Q at the resonance is 

    RQ
L C

=            (A.2) 

 The ratio of the differential to the single-ended is 

0

0

2 2P Ld P

se P L P

R RQ C
Q R R C C

+
=

+
C          (A.3) 

 Monolithic microstrip transformers are used to perform coupling, biasing and 

filtering functions in RF front-end application. The coupling and biasing technique offers 

important advantages over the traditional stacked transistor biasing arrangement. 

Foremost among these is a reduction in required operating voltage. Additionally, the 
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topology allows the designer to easily adjust the bias current present in the input 

transistors, while bias currents in the other portions of the circuit are unaffected.  

 The layouts of differential inductors and transformers have been submitted. 

Below is a snap shot of the layout, as shown in Figure A.3. 
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Appendix B 

FinFET BSIMSOI Model Extraction 

 
The measured the data and the simulated data compared as below. The model 

parameters are attached behind. 

Max error 12.84%, Ave error 5.175%, RMS error 6.109% 
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Max error 18.98%, Ave error 6.579%, RMS error 8.111% 
 

 

 

 

 

 

 

 

 

 

 

 

 
Max error 16.47%, Ave error 7.147%, RMS error 
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.MODEL FinFETN bsimsoi type=n (                                                   

+TNOM = 27 VERSION = 3 TOX = 2.8E-9                                              

+TSI = 2E-8 TBOX = 4E-7 XJ = 1E-8                                                

+NCH = 4.467859E14 NSUB = 2.589165E14 VTH0 = -0.098271                           

+K1 = 0.0744173 K2 = -2.098137E-3 K3 = 1E-3                                      

+K3B = 22.2319452 K1W1 = 0 K1W2 = 1E-3                                           

+KB1 = 1.438668E-3 W0 = 3.817179E-5 NLX = 1E-6                                   

+DVT0W = 0 AGIDL = 0 BGIDL = 0                                                   

+NGIDL = 1.2 DVT1W = 0 DVT2W = -0.032                                            

+DVT0 = 0.0099948 DVT1 = 0.9493336 DVT2 = -5.29687E-11                           

+VBM = -10 U0 = 347.1962197 UA = 2.35143E-10                                     

+UB = 1.00001E-18 UC = -1E-10 VSAT = 1E4                                         

+A0 = 0.1 AGS = 0.2739092 B0 = -1E-5                                             

+B1 = -1E-7 FBJTII = 0 ESATII = 1E7                                              

+SII0 = 0.5 SII1 = 0.1 SII2 = 0                                                  

+SIID = 0 KETA = 0 KETAS = 0                                                     

+RTH0 = 0 A1 = 0 A2 = 0.1                                                        

+RDSW = 3E3 PRWG = 0.1 PRWB = -5E-3                                              

+WR = 1 WINT = -5.64676E-9 LINT = -3.009477E-7                                   

+DWG = 1E-7 DWB = 9.770558E-8 DWBC = 0                                           

+VOFF = -0.1794607 NFACTOR = 0.0106298 CIT = 0                                   

+CDSCD = 0 CDSCB = 0 BETA0 = 0                                                   

+BETA1 = 0 BETA2 = 0.1 ETA0 = 1E-3                                               

+ETAB = 0 PDIBLC1 = 1E-3 PDIBLC2 = 1E-5                                          

+PDIBLCB = 0 PVAG = 0.01 DELTA = 0.0113262                                       

+ALPHA0 = 0 VDSATII0= 0.9 MOBMOD = 1                                             
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+TII = 0 PRT = 0 UTE = -1.5                                                      

+KT1 = 0 KT1L = 0 LII = 0                                                        

+KT2 = 0 UA1 = 4.31E-9 UB1 = -7.61E-18                                           

+UC1 = -5.6E-11 AT = 3.3E4 WL = 0                                                

+WLN = 1 WW = 0 WWN = 1                                                          

+WWL = 0 LL = 0 LLN = 1                                                          

+LW = 0 LWN = 1 LWL = 0                                                          

+CAPMOD = 2 XPART = 0 CSDESW = 0                                                 

+SHMOD = 1 RBODY = 0 RBSH = 0                                                    

+NDIODE = 1 NTUN = 10 VTUN0 = 0                                                  

+ISBJT = 1E-6 NBJT = 1 LBJT0 = 2E-7                                              

+VABJT = 10 AELY = 0 AHLI = 0                                                    

+ISDIF = 0 ISREC = 1E-5 ISTUN = 0                                                

+XBJT = 1 XDIF = 1 XREC = 1                                                      

+XTUN = 0 NTRECF = 0 NTRECR = 0                                                  

+LN = 2E-6 NRECF0 = 2 NRECR0 = 10                                                

+VREC0 = 0 ASD = 0.3 DLCB = 0                                                    

+DLBG = 0 DELVT = 0 FBODY = 1                                                    

+ACDE = 1 MOIN = 15 LDIF0 = 1                                                    

+NDIF = -1 SOIMOD = 0 VBSA = -2.846956E-8                                        

+NOFFFD = 1 VOFFFD = 0 K1B = 0                                                   

+K2B = 0 DK2B = 0 DVBD0 = 0                                                      

+DVDB1 = 0 MOINFD = 1E3 )                                                        

.END                                       

 

 131



 
 

Appendix C 

Gate-Channel Capacitance Characteristics in Nano-

Scale FinFET 

C.1 C-V MEASUREMENT  
 
 A three-dimensional structure of FinFET is shown in Figure C.1, where the 

channels are formed in the vertical Si fins controlled by self-aligned dual gates. The 

FinFET under test was fabricated in SPAWAR System Center with the following 

parameters: Tsi= 20 nm, Hfin= 50 nm, Sfin= 750 nm, Tbox= 400 nm, tox= 2 nm, and L = 5 

µm,.  Each fin contributes two channels, which has an equivalent gate width of 100 nm.  

There are 200 fins in this FinFET, which give the gate width W= 20 µm. 

 

 

Figure C.1 The 3-D FinFET structure. 
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 Figure C.2 illustrates the scheme of characterization with an n-channel FinFET. 

Measurements were performed on a Keithley 590 CV-meter and Keithley 4200 

semiconductor characterization system. During the test the chip was put in a dark 

chamber, so that the interference from the light-generated carriers can be avoided. For the 

measurement at equilibrium the following procedures are followed: 1) after initially 

applying voltage to the device, allow an adequate hold time before recording the 

capacitance; 2) after each step of voltage change, allow an adequate delay time before 

recording the capacitance. In order to determine what are the adequate hold and delay 

times, a series of C-V curves have been generated in both sweep directions 

(inversion→accumulation and accumulation→ inversion). We optimized the hold and 

delay times until the pair of curves looks essentially the same, which indicates that it is 

independent of the sweep directions [80]. With this approach the hold time and delay 

time were determined to be 5 sec and 1.5 sec, respectively; and the sweep rate limit was 

set as 30mV/s. 

 

 

 Figure C.2 Scheme of capacitance measurements for FinFET. 
 

 The gate voltage Vg was swept from -0.8V to 0.8V and back to -0.8V, while and 

Vd = Vs = 0 V. The high-frequency gate-to-channel capacitance (hf-Cgc) was measured at f 

= 100 KHz. Figure C.3 shows the hf-Cgc curve of an n-channel FinFET in equilibrium.  
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The capacitance reaches its maximum value when the channel is in strong inversion and 

exhibits a minimum in the accumulation region. Such a feature is different from the C-V 

characteristics of the conventional MOS capacitor structure. In an n-channel FinFET, the 

inversion minority carrier (electron) in the channel is connected electrically to a reservoir 

of carrier at the source and drain. Therefore, the minority carriers can response promptly 

to the ac gate signal. On the other hand, there is no such carrier reservoir for the majority 

carrier (holes), since the body of FinFET is floating [81].   

 For the non-equilibrium C-V measurement the gate voltage sweep rate has been 

increased from 60 mV/s to 140 mV/s. The C-V curves have basically the same shape as 

that in equilibrium, except the hysteresis in different sweep directions. With negative gate 

bias the C-V curve of planar single-gate SOI MOSFET changes slightly with different 

sweep rate [81], but this phenomenon is not observed in our measurement with FinFET.  
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Figure C.3 Equilibrium high frequency C-V curve. 
 
 

C.2 ANALYSIS AND DISCUSSION 
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 In order to better understand the C-V characteristics, the band structure of the 

device should be investigated first. The C-V curve shows that at equilibrium (Vg = 0 V) it 

is between the inversion and accumulation regions. If the quantum confinement effect 

can be neglected, the band of the silicon of the FinFET can be described by the Poisson’s 

equation with the depletion approximation [82]:  

 
2

2
a

si

qNd
dx

φ
ε

=                                               (C.1) 

where φ stands for the potential and x is the distance from the symmetry plane at the 

center of the silicon fin, and the doping concentration, aN , is assumed to be constant. 

Because the fin is very narrow, it is assumed that the entire fin is depleted and no neutral 

region remains. Solving the Poisson’s equation with the symmetric boundary condition 

one can find the voltage profile as a parabola:  

 2
0( )

2
a

s
si

qNx xφ φ
ε

= +                                                (C.2) 

where 0sφ  is the potential at the center point. The voltage profile and the band diagram 

are shown in Figure C.4 (a) and (b), respectively.  The electric field in the silicon fin is 

given by: 

 ( ) a

si

qNE x
ε

−
= x                                                                (C.3) 

 When a positive gate voltage is applied, the band is pulled downwards. Before 

reaching the point of medium inversion  
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Figure C.4 (a) Potential profile and (b) band diagram of FinFET. 
 

the shielding effect of the inversion charges can largely be neglected. In this case, the 

maximum electric field at the Si/SiO2 interface (on silicon side) can be found as: 

   max 0.5 2si

a
x t s

si

qN
iE E

ε== = − t                                                      (C.4) 

 Due to the limited doping concentration in the polysilicon gate, a very thin 

depletion region also exists there.  If the trapped charges in the oxide and at the interface 

can also be neglected, the maximum electric field in the polysilicon gate is the same as 

the one derived in Eq. (4). Therefore, we can figure out the width of the depletion region 

in the gate as the following: 

   
2

a si
poly

d

N td
N

=                                                            (C.5) 

where Nd and Na are the doping concentrations of the polysilicon gate and the silicon fin, 

respectively.  The former is around 1020 cm-3, and the latter is less than 1018 cm-3. 

Therefore, the depletion region is limited to one monolayer of silicon atoms in the sample 
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under test. However, this approach is only an approximation, because the charge 

concentration at the Si/SiO2 interface is very complicated.  

 In a simplified MOS capacitor model the gate capacitance reaches its maximum 

value with large forward gate bias, which should be ideally equal to the oxide 

capacitance. In this way, the oxide thickness can be easily extracted from the C-V curve.  

In our FinFET sample the extracted equivalent oxide thickness is 2.4 nm, which is 

different from the parameter (2 nm) listed in section I. Therefore, the gate depletion effect 

must be taken into account, and the depletion layer can be considered as an additional 

series capacitance [83].  

 The C-V measurement is a valuable diagnostic tool in MOSFET characterization. 

The analysis above shows that it can be employed to determine the oxide thickness. 

However, charges can be trapped in the gate oxide and at the Si/SiO2 interface, which can 

complicate the extraction process. 
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