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CHAPTER 1

Introduction

1.1 Motivation

In the present day world, the availability of affordableginiquality image and video cap-
turing devices has generated an abundance of visual data@anded for automated visual
data analysis. Over the past two decades a number of suatiqael have been proposed
ranging the topics of image enhancement, automated slarvesl, vision aided naviga-
tion, automated object detection, tracking and recogmjtlluman-computer interaction
etc. Further, the field specific advantages of imaging in thevisible band (infrared for
night surveillance, synthetic aperture radar (SAR) for siranean resource mapping) has
resulted in the popularity of imaging in non-visible freqaees. In such cases, data analy-
sis techniques are either adopted from those of the visuial badeveloped specifically to
deal with the intricacies associated with the specific nisible band.

Detection, tracking and recognition tasks are of great mamze in military applica-
tions and are incorporated into a number of systems thatnakegeping track of a large
number of targets over vast spaces in the battleground. dileegtiso used in sensor based
missile guidance systems. Civilian applications includghtiay traffic monitoring, re-
stricted area surveillance, border security etc. The thslaoking and recognition is chal-
lenging because targets of interest do not always appeaathe and can have different
signatures based on their pose, camouflage etc. In additiersensors used to acquire
information are affected by many intrinsic (focal lengtR, $ensitivity etc) and extrinsic
factors (temperature, reduced visibility, atmospherinditions etc). Further, there are

problems associated with varying backgrounds, presenckitsér, occlusion, interaction



between various targets etc. All of these issues necessitatneed for a robust system
that can accomplish the tasks of detection, tracking andgr@tion under adverse field
conditions.

The focus of this dissertation will be on the key componemtaroAutomatic Target
Recognition (ATR) system namely: target detection, trackiegrning and recognition
with greater emphasis on infrared videos, however the iqoks discussed can easily be
extended to videos in the visual band. We begin with a forreéihdion of a few key terms
that will be used through this dissertation. Detectionnete the process of locating an
object of interest (target) in the image obtained from thagimg sensor such as a video
camera, forward looking infrared (FLIR), synthetic apestuadar (SAR) etc. Tracking
refer to the process of being able to continuously followrttewvement of the target directly
on the image plane or infer its location in in real world caloates. Recognition is the

task of associating the target with a class label pertaitants class, type or identity.

1.2 Research goals and challenges

ATR system
Tracking
Traget
Sensor . - tracks
— > ————
input Detection Recognition and
) identities
Leaming

Figure 1.1: Components of an integrated ATR system.

The overall goal of this research is to develop an integr&fEd system capable of
detecting, tracking and recognizing targets of interest given infrared video sequence.
Fig. 1.1 shows the components that make up an ATR system atiek ifollowing we

discuss the challenges related to each component



e Objective 1: Target DetectionTarget detection is the process of identifying areas in
the image, that could possibly belong to a target of interéstget detection is one
of the most fundamental and challenging tasks in computsovi Since detectors
often form the first stage of the consecutive tracking andgettion tasks it is also

vitally important the detector be both accurate and fast.

Challenges

1. Small target size. Low spatial resolution of the targgioe often implies there
is very little information available about the target thandoe used to distin-

guish it from the surrounding background and clutter.

2. Variable thermal signatures, movable parts, pose vanst These variables
result in many possible appearance for a single target mgakaétection more

difficult.

3. Low signal-to-noise (SNR) ratio sensor images. The psehstrong sensor
noise and background clutter make distinguishing the tdrgen background

very difficult.

4. Environmental conditions. Environmental conditionelthe time of the day,
relative position of the sun, relative humidity etc can efffitne amount of ther-
mal radiation received by the sensor and thereby alter tbeapnce of the

target.

The problems faced by a detector are well illustrated by #repde frames shown
in Fig.1.2. In Fig.1.2 (a) and (b) the military targets aredanspicuous and blend
in easily with the surrounding clutter making it difficult tdentify them. In Fig.1.2
(c) there are multiple targets of interest present and theyhbscured by trees and
surrounded by similar looking rooftop structures. A robdistector will require the

use salient region descriptors that can accurately moeetaityet appearance and



Figure 1.2: Examples of Medium Wave InfraRed (MWIR) images @né=d to the detector
to identify (a) single military target at night time (b) siegnmilitary target at day time (c)

multiple civilian targets imaged from an UAV.

competent classifiers that can distinguish the large potdrget appearances from

every possible background and clutter.

e Objective 2: Target Tracking

Tracking refers to the process of determining the targettipasither on the image
plane or inferring its position in the real world 3D co-ordias using information

from the image.

Challenges

1. Targets of interest often are non-cooperative and exbilmng maneuvering
action as an evasion tactic. Further, the imaging senstdopiais often times
airborne and exhibits strong ego motion. The difficulty indaling such un-

predictable actions makes the tracking task challenging.

2. Time varying target signatures. Due to motion of the sepkform relative to
the target, its appearance as observed by the sensor wilfeedt at different
time instances. Therefore the appearance descriptioneofatiget has to be

continuously updated to maintain a robust track.

3. The task of inferring 3D position from 2D image observasias an ill-posed

problem as information of distance along the sensors fieldesy is lost.



4. Small target size. The small target size makes it diffttutompute complex

and powerful features to describe the target area.

5. Low signal-to-noise (SNR) ratios, poor target visibijlipcclusions and pres-
ence of multiple targets make the task of maintaining stablé continuous

track difficult.

Tracking in general depends on the robustness of two impioriadels (1) the target
appearance and (2) the target motion or kinematics. Thesappes model provides
a description of the target area usually in the form of exédd¢eatures from the tar-
get area. The motion model describes the typical motion etainget. The tracker
then infers the true location of the target based on prioimkadge contained in the
two descriptive models and the observed frames. In this woeekconsider the prob-
lem of tracking maneuvering ground targets in infrared (lRagery acquired from
an airborne platform. The challenges described above lptahie straightforward
extension of existing visible band tracking algorithms tdF images. Therefore
there exists a need to develop appropriate appearance rem&iic models to suit

the unique challenges imposed by infrared video sequences.

Objective 3: Target Appearance Learning

Target appearance learning is the process of updating amdammang a valid de-

scription of the target appearance that is used to traclatigett.
Challenges
1. Maneuvering action and sensor platform motion. Theseindependent mo-
tions imply that the appearance of the target on the senaoepiontinuously

changes with time. Therefore the appearance model usechyaitker has to

be updated over time for robust tracking.

2. Choice of appearance representation. The procedure msied update of the



Frame 50 Frame 95

(b)

Frame 1

Figure 1.3: (a) Example of nonstationary target signatuoduéion in AMCOM LWIR run
rngl8._17. There are two vehicles. The lead vehicle is barely visiblee second vehicle,
which is clearly visible, is the target of interest. Top ro@bserved frames. Bottom row:
closeup views of the target. (b) Example of target beinguatedl by foliage in the VIVID

dataset.

appearance model greatly depends on the choice of the amgeaepresenta-

tion.

3. Occlusion. When a target is occluded its appearance iflyiselace by that of
clutter. In such circumstances it is important to prevetwlaip of the appearance

model so that when the target reappears it is possible tonesacking.

An example of the profound nonstationary variations inea@ppearance over rel-
atively short time scales is shown in Fig. 1.3(a). Here, @jeave imaging sensor
is situated on an airborne platform that closes on a pair efengering ground ve-

hicles. Profound changes in the target’s appearance aeevalosbetween frames 24
and 165 over a time scale of only a few seconds and arise piyrfram the relative

motion between the sensor and the target. There is sulatar@gnification that re-



sults from the sensor closing on the target and pose chaagestults from the target
executing an aggressive turning maneuver. While the secehdle in Fig. 1.3(a)
exhibits a strong signature, the lead vehicle is much dimamek is barely visible
amid the surrounding clutter, demonstrating that brigééredone cannot be used as
the sole basis for reliable detection and tracking. Ratherersophisticated tech-
niques are generally required for representing the tapgetarance and for adapting

to (e.g, learning) complex appearance changes that occur over time

Further, in many cases the target may move out of the sengewsor may become
occluded thereby significantly altering the observed afgrez. An example of this
is shown in Fig. 1.3(b) where the target being observed mbeemd a tree along
its path and thereby disappears from the sensor’s view. Whdémportant to adapt
the appearance model to accommodate variations in the s&ggature it is equally

important to avoid learning the appearance of occludingabjor the background.

Obijective 4: Joint Tracking and Recognition

Recognition is the process of identifying with a target witblass or identity label.
In most cases recognition is intertwined with the trackimgcess and the identity

associated with the target increases in confidence over time

Challenges

1. Variability among different target types. The varialilin appearance across
different target types is vast and it is necessary to deweelopdel that is capable

of compactly representing these variation.

2. Appearance variability due to viewing angle and distdnctner necessitate a

model with the above mentioned capabilities.

3. Motion cues. Taking advantage of the peculiar motionattaristic of a target
can help in categorizing it with higher confidence and theeeimust be built

into the joint tracking and recognition process.
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Figure 1.4: 3-D target models of five representative tamlstilating the variability in target

appearance.

In addition to time variations in the target appearanceggation is greatly compli-
cated by the immense variability among target types as sliowig. 1.4. It would

be a daunting task to store all possible appearance of \&atawgets for recognition
purposes. Therefore we will need an efficient method thatbsatrained from a
small training set to characterize shape variation dueddabtors of class identity

and viewing angle.

1.3 Contributions and outline

In the following we give a brief description of the specificntiwbutions of our research

with respect to the above mentioned objectives and chadkeng

e Contribution | : A new sparse feature termed as relational combinatoriaturfe
RelComis defined, that encapsulates higher order spatial steicttormation within
the target window. The RelCom feature is not limited to pixekiees and can easily
accommodate any vectorized descriptor of the target ateaféature can be thought

of as a weak classifier that imposes a relational rule overéotor descriptor. A



number of such weak classifiers are combined using booshdgRoost) to define
a strong classifier with acceptable performance that camgissh between targets
and non-targets. The advantage of the RelCom classifier ig th#st, accurate and

not limited to any particular feature type.

Contribution 1l : A dual histogram appearance model with feature selection f
tracking small maneuvering targets in FLIR images. We psepbe use of a quad
histogram based appearance model to represent the taggetSpecifically we use
histogram representations of the intensity and standarititen information from
both the target area (foreground) and the area surroundentptget (background).
The histogram features are fast and easy to compute andlarstiio cases where
the target is extremely small in size. Further, a featurecti@in mechanism to as-
sign varied importance to the histogram features duringrdeking process is also

presented.

Contribution Il : An appearance learning framework to account for variation
the target signature. Though histogram features are fatyst, over time they may
become invalid, due to movement of the target or imagingaeasd result in track
loss. To overcome this effect, we model the evolution of tistogram over time
as a state space system and apply an Adaptive Kalman Filkdf)(#o estimate the
states. The AKF makes use of the autocorrelation of the fégdues to estimate the

unknown system and measurement noise variances, requitied filtering process.

Contribution IV : A generative model framework for joint tracking and recibign.

In order to account for the multitude of target appearanc@tians, we propose the
use of a nonlinear tensor-based generative model that cahesyze a target signa-
ture given the target type and an arbitrary pose. In addtbaading the tracker by
accounting for inter-frame appearance changes, this nalslelfacilitates recogni-

tion by generating distinct type-specific appearances ity pose. In addition, a



target dependent generative motion model is proposed tmatéor the mechanical
variability among the target types. These two generativeetsoare coupled in a

graphical model framework for joint tracking and recogpniti

e Contribution V : The generative model mentioned in the previous step, detts
discrete identity labels. We extend this generative mogehbroducing the con-
cept of a continuous valued identity manifold. This idgntitanifold allows us to
recognize not only a known target, but also an unknown onentgrpolating the
shape meaningfully between two training targets. Adddlbn we develop a new
multi-view shape-based generative model that integratesn@sphere-shaped view
manifold with this identity manifold to provide simultangoidentity and pose esti-

mation.

This work follows in the spirit of the evolution of ATR researover the past decade [1],
and is fueled by several recent advances in the field of madbarning and computer vi-
sion. A tabular form of the contributions and the associathéntages is shown in Fig.1.5.
It is seen that the solutions to the challenges in differemygonents of the ATR system
are dependent on a variety of broad technical areas relateé¢hine learning, computer
vision, signal processing etc. For example, boosted ¢iassivere mainly developed for
use in pattern recognition, Adaptive Kalman filters weramauniilly developed for use in
the field of signal processing and state estimation. In #sgarch, these have been inte-
grated together to develop a hybrid ATR system. The restisfdissertation is organized

as follows:

¢ In Chapter 2 we provide an overview of the existing literature in the feetd target
detection, tracking and recognition in the context of bastual and infrared imagery.

¢ In Chapter 3we discuss the development of a low false alarm and low coatiputl
complexity target detector based on a novel feature term@&ehational Combinato-

rial (RelCom) feature.
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In Chapter 4 we present a particle filter tracker based on a quad histogppear-
ance model for target tracking in FLIR images under diffi¢iglid conditions along
with the concept of feature selection to decide the relativeortance of the four
different histograms to maintain a robust track.

In Chapter 5 we greatly improve the tracker presented in Chapter 4 by densg
the issue of appearance learning using Adaptive KalmaarBi{AKFs). We show the
advantage of our proposed auto-covariance least squatasidae over traditional
methods by experiments on both real and simulated data.

In Chapter 6 we discuss a joint motion-appearance generative modeirfaitsne-
ous 3D target tracking and recognition. This model uses th@harget appearance
and motion dynamics in determining the target identity.tlem, we decompose the
shape variability in the given training set into the two tast discrete identity label
and a continuous view angle by means of non-linear tensamdpasition.

In Chapter 7 we extend the generative model in Chapter 6 by removing thetnt
of discrete target identity labels. We introduce the cohoépdentity manifold to
account for both inter and intra class shape variations.dditian to being able to
deal with arbitrary view variations, this model allows ugigtermine the identity of
an unknown target at both the class and sub-class level.

In Chapter 8 we conclude the dissertation with the discussion of futuoekw

11



A

‘Safejuenpe EERFOPUE YoJeasal Sy JO SUoNNgLIU0d urew ay| G T ainbi4

Joint pose and identity

Objective Detection Tracking Learning Joint tracking and recognition o
recognition
. . . ) Nortlinear tensor decomposition, | Coupled view-dentity manifolds for
Methodology Boosted classifier Particle filter Adaptive Kalman Filter (AKF) graphical model rrulti-view target modeling
. RelCom features-a |+ Dual foreground e Useabank of_AKFs for _ Generative models fqr both target | Conn nuous-valued identity
) ) appearance histogramleaming appearance and motion manifold that captures both
_— sparse representation background histogram . : . . .
Contribution that res soatial ance nodel Application of autocovariance Exploit both appearance and inter-class and intra-class
Swgwafgj of mepg . Onl Iline feature seleciion least squares, to estimate motion cues in an integrated shape variability combined with
get unknown systemnoise variances graphical framework a hemispherical view manifold
» Fastdetectionusing . ' Ab'l ity o track over long ime Joint estimation of 3D position, |+ Joint estimation of target
Accurate tracking of periods I -
lookup tables target positionandsize |+ Handle arance change pose and target identty identity and pose
Advantage |+ Lowfalse alamrate getposition e > appearal ang Improved identity estimationby | Identity of previously unknown
Handle small sizedand |+ Occlusion handling o ; . .
* Extendabletoall hard to e targets « Improved accuracy of position associating motion with target targets estimated at both class
vectorized features o8 arlg size esi maIeCZ posi type and sub-class levels




CHAPTER 2
Literature Review

This chapter provides an overview of the existing literatiarthe fields of detection, track-

ing, appearance learning and joint tracking and recognitio

2.1 Detection

Detection is the first and a very important component of an AJRem. Based on the
survey presented in [2], detection methods can be separdtetbur distinct categories
as shown in Fig 2.1. A brief discussion of the different methwith insights from [2] is

presented in the following.

Detection methods

Y Y Y |
Point feature . Background Classifier

Figure 2.1: Broad classification of detection methods imditgre.

2.1.1 Point feature detectors

Point feature detectors are used to find interest points@imthge, and are mostly located
on distinctly textured areas, strong gradient locationsners etc. Commonly used point
detectors include Harris interest points [3], SIFT feasydgd etc. The Harris detector relies

on the local gradient information and tries to identify geithat show strong variations
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in the selected vicinity. SIFT feature points have the add#l capability of identifying

interest points across multiple scales and is more capdbianalling image deformations.

2.1.2 Segmentation

Segmentation is the process of dividing a image into peuadigtsimilar regions. Effec-
tiveness of segmentation algorithms is largely dependeh® criteria for finding a good
partition. Graph cuts [5] are a popular method for segmamtah visual band images
where the targets are fairly large in spatial extent. In{& shown that feature descriptors
developed primarily for visible spectrum can be adoptedhfrared in the case of larger
targets like pedestrians. Active contours [7] and morphickal operator [8, 9] based seg-

mentation methods are commonly used in infrared imagesdigcting small targets.

2.1.3 Background subtraction

Background subtraction based detection works by buildingpaesentation of the back-
ground or scene and any region of the image that deviatestfrisrmodel is labeled as ob-
ject/foreground. Common models include a Gaussian modeGaussian mixture model
of the pixels/regions over the intensity or color featuracg Over the years background
subtraction algorithms have been successfully developeditigate the effects of chang-
ing illumination [10], noise and periodic background matid1]. This makes these ap-
proaches very suitable for use in fixed camera systems whereatckground is relatively

slow changing and any significantly moving object is the¢arg

2.1.4 Classifier methods

These methods require training a classifier to distinguetivéen targets and non-targets
using exemplars from both categories. The choice of featused to represent the exem-
plars plays an important role in the effectiveness of thesifeer and therefore must be

chosen so as to be discriminative between the two classear whvelets have become
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popular due to their efficient computation [12]. More retgrtistogram-based represen-
tations of image gradients in spatial context, including listogram of oriented gradients
(HOG) [13], the scale-invariant feature transform [4], #iape context [14], were shown
to yield more distinctive descriptors. In [15] a region wapnesented by the covariance
matrix of image attributes in addition to histograms. Tlsedif common descriptors can be
extended to Gabor filters, appearance templates, localybpadterns, etc. The explosion
of available features has led to the application of datamgimipproaches [16, 17] for fea-
ture selection. The objective of the classifier is to detaara hypersurface that separates
the two classes in hight dimensional feature space. Neetalarks, boosting [18], sup-
port vector machines (SVM) [12] and decision trees are sdntleeamost commonly used

classifier methods.

2.2 Target tracking

In line with the comments by Cominiciet.alin [19] a typical visual tracker comprises of
two major components namelggrget representatiomndfiltering. The former is mainly
associated with the appearance description of the targea@apting to changes in appear-
ance. The latter mainly relates to the dynamics of the taagdtevaluation of different
hypothesis. Fig. 2.2 provides a list of the common techrsqused in visual tracking. In
most cases the tracker is based on a chosen technique frénoetme two components.
This section analyzes some of the existing tracking allgorst and their comprising sys-

tems.

2.2.1 Interest points

When using interest points to represent a target, the paiatssaally the output of a detec-
tion stage. The objective in this approach is to associa&el¢hected points at every frame
with a unique target track. The problem becomes one of ifyemg the correspondence

between the detected points in subsequent frames. Theeebkean a number of proposed
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Tracking Algorithm

Target representation Filtering
Correspondence matching
Interest points Kalman filter
Templates Particle filter
Weighted density estimates JPDAF
Silhouettes and contours MHT
Mean-shift
HMM

Figure 2.2: The two major components of a tracking algoritarget appearance modeling
and filtering. Some of the commonly used methods in each coemiare also shown. A

tracking algorithm may be constructed by choosing a methad £ach component.

solution to solve theorrespondence matchingroblem of which the most notable is the
Greedy Optimal Assignment (GOA) proposed by Veenraaal [20]. In [21] detector re-
sults obtained from background subtraction are processeddh a template mask and
used by aKalman Filter to estimate the position of the person. In cases were malltipl
targets are present, Joint Probability Data Associatidteriiig (JPDAF) [22] can be im-
plemented to associate a single observation with each enégget. The Multi Hypothesis
Tracker(MHT) [23] on the other hand maintains multiple hypothesis fohdaoget in any
given time frame and the final track of the target is the md&tlyi hypothesis over a set
of given observation frames. The use of interest points istragitable in cases where the
object is very small and can be represented by a point. Fgedarbjects multiple points

will be required to effectively track the target.
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2.2.2 Templates

Templates that are often a small image of the target areag am@ple way to depict the
target appearance. They carry both spatial and statigtiicamation about the target area.
Templates however are limited to a single view and size otahget and are most useful
when the target does not vary considerably in the observed tiame. Examples of a

simple template baseqghrticle filter tracker are discussed in [24, 25].

2.2.3 Weighted density estimates

Here appearance features of the target area such as geeygeaisity, color or gradient
information is represented as densities. The form of theitlenan be parametric (gaus-
sian, gaussian mixture) or non-parametric (histogram)uallg in such representations
more weight is attached to pixels closer to the target ceartdrless weights assigned to
pixels near the background. This is done to reduce the effeoackground information
corrupting the target appearance when the target boundargtiperfect. Due to its in-
variance to scale and slow varying nature, intensity histog are widely employed for
target representation [19, 26, 27]. In [19hean-shift based tracker that searches for the
target in the neighborhood of its previous location is pnés@. The mean-shift algorithm
uses a histogram representation of the target and candidsds are evaluated using the

Bhattacharya distance.

2.2.4 Silhouettes and contours

Silhouette representation of a target can be thought of aaestemplate and is usually
obtained from determining the target edges. Shape matchihgn performed to identify
the location of the target. Shape matching can be explidégjyendent only on the edges or
also include the information contained within the edges.t@ans on the other hand, can be
thought of as target boundaries that continuously evoles tne. In [28] aparticle filter

is used to optimize a set of spline and affine motion parammétefit the target. Methods
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that represent the contours in parametric form (spline)at@tow operations like split and
merge that are useful when dealing with multiple targetsulch cases, direct minimization
of the contour energy functional is preferred and is aclddieough gradient descent or
greedy methods. The contour energy function is usually nidget either on optical flow

or appearance statistics of the target and background [7].

2.3 Appearance learning

This section provides a brief review of the existing workstlba important issues of ap-
pearance representation, learning and occlusion handiipgearance learning strategies

strongly depends on the appearance representation as ghévwgn 2.3.

Appearance Models

A Y

Parametric Non Parametric
models models
Component GMM Templates Histograms
_ Y ¥ » S yrd Sa
Learning Drift Linear
strategy EM Algorithm Mean Shift . AKF o AKF
correction combination

Figure 2.3: Different appearance learning strategies ritipg on the target appearance

model of choice.

2.3.1 Parametric models

Parametric models are in general a statistical model thatioes the key characteristics
of the target appearance in a way that facilitates estimatfdhe model parameters con-
tinuously online [29]. A sophisticated model combiningldéa wandering, and outlier
components in a Gaussian mixture model (GMM) was proposéBijp where the model

was updated via an expectation maximization (EM) algoritt@MM based appearance
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learning was also applied in [30], where a mean-shift atboriwas used to update the pa-
rameters online. These methods rely on elaborate parametdels and are effective for
tracking extended targets with large spatial signaturesveyver, in case of infrared images
where the targets are very small, there may not be enouglsrethe target to achieve

robust and statistically significant parameter estimation

2.3.2 Non-parametric models

Non-Parametric models are ones in which the target appeaiarcharacterized by em-
pirically derived features that represent certain charatics of the target appearance.
Such features may include simple templates, kernel-bas®tbws [31-33], or local statis-
tics [27, 32] including intensity histograms and their morse

Drift correction strategies for template tracking werepgmseed in [34, 35]. Here the
new template is drift corrected so as to match closely withrdference template given
in the first frame. The adaptability of this technique in casdere there is significant
change in the target’'s appearance over time is questiondblebust Kalman filter was
also developed for appearance learning in [36] where thengity values of the target
template are estimated by means of state space model. Hgpeoitess noise was assumed
known and covariance matching was used to estimate theneariz the innovations.

For histogram-based target representations, appeareaggng is generally accom-
plished by iteratively updating a reference histogram g8j—Typically, the new reference
histogram at each iteration is given by a linear weightinghaf previous reference his-
togram and the most recent observation, where the weighaafjicient may be based on
an appropriate measure of histogram similarity. While sechniques are often effective
for adapting the appearance model when the target has adpagi@l extent, they can be
susceptible to drifting problems, particularly when apglto smaller targets. Improved
histogram estimation was achieved by modeling the tempawalution of the reference

histogram in an adaptive Kalman filtering (AKF) frameworl{&7]. In [40, 41], the AKF
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measurement noise variance was estimated from the firsefeard was assumed station-
ary, while the process noise variance was estimated ondiing @ovariance matching [42].
A robust Kalman filter was also developed for appearancaitlegin [36], where the pro-
cess noise was assumed known and covariance matching veboestimate the variance
of the innovations.

Various methods have been developed for handling temptral loss, especially oc-
clusion. Typically, occlusion can be detected by investigpthe distance between candi-
dates and reference representations. The distance betiveeeontours of objects was used
in [7]. Latecki and Miezianko incorporated motion cue inte tdefinition of the template
distance [43]. Wiet al. explicitly introduced a state variable as the indicatordoclusion
into the dynamic Bayesian networks in order to estimate tleatility of occlusion. In
their approach, the likelihood is also defined based on tplegte distances [44]. For
the histogram representation, the percentage of outliertagen as the index to occlusion
in [40], and the outliers are classified based on the ressdumathe Kalman filtering of

histograms.

2.4 Joint tracking and recognition

Joint vehicle tracking and recognition is a prevalent arallehging issue in many civilian
and military surveillance applications. One major chajem vehicle appearance mod-
eling is that of representing appearance variability boithivw a vehicle class and across
different vehicle classes. For example, appearance modedsticular must accommodate
the variation in appearance over time that occurs due toyamsation or partial occlusion.
A brief overview of some of the common appearance modeldehdtthemselves to target

recognition are shown in Fig. 2.4.

20



Multi-view target

models
Y Y v
3D Models Termplates Genr;ecrlzflsve
Y v Y Y

NonHinear tensor

Rigid Parametric PCA .
deconposition

Figure 2.4: Different appearance learning strategies rmitipg on the target appearance

model of choice.

2.4.1 Multi-view target models

There are two theories on object representation. One stgygeset of representative 2D
shapshots [45, 46] and the other involves a 3D object mod@! [ the first theory, un-
known views can be interpolated from the given ones, andewhithe second one, the 3D
model is used to match the 2D observation via 3D-to-2D ptmec Accordingly, most
object recognition methods can be categorized into twomgpue., those involving 2D
multi-view images [8, 48-52] and those supported by exp8B models [53-56]. Some
make use of both the 3D shape and 2D appearances [57]. Awafi2D features (e.qg., sil-
houettes, edges, HOG, SIFT) or 3D models (e.g., meshes)gadyons) were used in these
methods. The psychophysical evidence [58] motivates useé®D view-based silhouettes
for multi-view object representation.

The ready availability of 3D CAD models of common vehiculag&ts has made their
use very popular in tracking and recognition systems. Lowa).e proposed the use of a

predefined 3D shape model to track the position and pose dfialeen [53] by making
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use of the ground plane motion constraint. In [59], the sheamd pose were character-
ized explicitly using a deformable model with multiple paseters that must be optimized
continuously for localization and recognition.

Templates are the simplest way to characterize appearafieseedce among target
types and views. In [48], shape information was exploitedglwith the object appearance
in order to classify vehicles according to type, where onigvarepresentative poses were
considered for each type.

Generative models provide a way to parameterize the appesakariations caused by
identity and pose variations. In the context of face tragkamd recognition, appearance
models adaptive to pose changes were also studied extgngintuding Principal Com-
ponent Analysis (PCA) based models [29, 60, 61] and non4linenifold based meth-
ods [62]. One early work in [63] applied PCA to find two sepamitgenspaces (one for
all objects and one for a specific object under different ppga joint identity and pose
estimation. The bilinear models [64] and multilinear ais&dy{65] have provided more
systematic multi-factor representation by decomposingadBervations into several inde-
pendent factors. In [66], the view variable is related whlk appearance through shape
sub-manifolds which have to be learned for each object cRessently, multi-linear analy-
sis was combined with manifold learning to provide a gemezaihodel-based human shape
representation that is specified by multiple factors incigdhe identity (body shape), pose,
and view [67]. The major advantage of this model is that italedo synthesize an unseen
observation under an arbitrary view given an identity andsepwhich can aid the tracker
in accounting for inter-frame appearance variation thauoe due to changes in pose or
view. Moreover, this approach also facilitates recognitiath a built-in identity variable.
This appearance generative model is one of the two major coergs in our research that
can be easily connected with a type-dependent motion mgdghéring a single identity
variable.

Along another line of thinking, some methods can synthes@e| 3D shapes from a
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set of 3D objects belonging to the same class. For examp|[86ina 3D object is repre-
sented by mesh vertices that are matched to salient feabumesn the observed image.
The main challenge is to determine correspondences betiveenodel and observation.
A correspondence-free method was presented in [55], whatphe 3D objects are used
to develop a generic 3D shape prior, and PCA is applied to gémaovel 3D shapes. Then
the shape and pose parameters can be optimized jointly biymzaxg the degree of match
between the 2D projection of the novel 3D model with givensegmentation boundary
of the unknown object. In contrast, our generative modebistrolled by two indepen-
dent variables constrained on their own low dimensionalifoltts, making the inference

process very efficient and flexible.

2.4.2 Motion models

Motion modeling is a second important component of jointkmag and recognition. For
example, multiple motion models have been widely adoptedt@mmodate different ma-
neuvering actions in vehicle tracking [68]. In reality, ehiede is equipped with a specific
engine and mechanical system that generates a unique npatitaxn and maneuverabil-
ity. This inspires researchers to develop multiple typpettelent motion models to achieve
joint vehicle tracking and recognition [69, 70]. Howevérese approaches require sensors
capable of providing direct measurements of the kinemdtadar, for example), and do
not consider the vehicle appearance captured by passigngiaensors such as electro-
optical (EO)/infrared (IR) sensors. We recently proposedreegative model-based maneu-
vering vehicle tracking approach that is able to captureitigerlying physical constraints
in the mechanical system of a maneuvering vehicle and regjoinly passive imaging sen-

sors [71].
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2.4.3 Integrating motion and appearance cues

Integrating motion and appearance cues for joint trackimyracognition is attractive be-
cause of their complementary nature. In the context of @gtirecognition, for example,
object trajectories aggregated from past tracking histame been employed as important
cues for classification of high-level object activitiesf#2]. In addition, recent face track-
ing and expression recognition algorithms have incorgaratultiple temporal models of
facial features conditioned on the variable to be recoghize. facial expression [75, 76].
However, in these methods there is no direct dependencebetilve identity (object activ-
ity or facial expression) and the object appearance; treiappearance contributes only in-
directly to recognition through tracking crucial signasi(trajectories and facial features)
that determine the identity. On the other hand, identitgeshelent appearance models are
widely used in joint face tracking and recognition [62, 78], but no identity-dependent
multiple dynamic (motion) models have been used. Motion @dre used for appear-
ance update in [60,62,62], but these have no direct impat@ygnition. In our work, we
present a new approach where both appearance and motionsnaoel@ependent on the

vehicle identity and are integrated into a unified probabdiframework.
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CHAPTER 3

Target Detection using Relcom Features

3.1 Background

Small object detection still remains one of the most fundatadeand challenging tasks
in computer vision. On the core, it requires salient regieaaiptors that can accurately
model object appearance and competent classifiers thatstargdish the large pool of ob-
ject appearances from every possible background andrclDgection in infrared images
is especially challenging due to the low spatial resolutbthe object region. Variable
thermal signatures, movable parts, combined with extdhuahination and pose varia-
tions, contribute to the complexity of the problem. Sincéedtors often form the first
stage of the consecutive tracking and recognition taslss\itally important the detector
be both accurate and fast.

Here we introduce the relational combinatorics featlRetCom We first generate
combinations of low-level attribute coefficients, whichyrdirectly correspond to pixel
coordinates of the object window or feature vector coeffitseepresenting the window
itself, up to a prescribed size (pairs, triplets, quadruples, etc). We then apply relation
operators such as margin based similarity rule over eacsilgesair of these operands.
The space of relations constitutes a proposition spaceliides the original feature space
into discrete regions. From this space we define combiratlunctions of Boolean op-
erators to form complex hypotheses as shown in Fig. 3.1. éfbey, we can produce any

relational rule over the operands, in other words, any Egicoposition over the low-level

1The work presented in this chapter was done in collaboratitmDr Fatih Porikli when the author was

an intern at Mitsubishi Electric Research Labs (MERL).
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T Relational Combinatorial Mappings
Operators
Figure 3.1: RelCom: After a number of coefficients are selefrtad the input image (or
feature vector), a set of relational operators are imposegeherate a discrete proposi-
tion space, from which hypotheses are constructed by agplygmbinations of Boolean

operators (conjunction, disjunction, etc.).

descriptor coefficients. In case these coefficients arecadsd with pixel coordinates, we
encapsulate higher order spatial structure informatiadhiwithe object window. Using a
descriptor vector instead of pixel values, we effectivehpose feature selection without
any computationally prohibitive basis transformationstsas PCA. In addition to propos-
ing a simple methodology to encode the relations betwgarels on an image (of vector
coefficients), we employ boosting to iteratively select acdaveak classifiers from these
relations to perform faster target detection.

RelCom is significantly different from the body of work devedojparound:-tuples, as
we explicitly use logical operators with a learned simthathresholds as opposed to raw
intensity (or gradient) values. Unlike the sparse featarebassociated pairings, it extends
the combinations of the low-level attributes to multipléperands to gain better object
structure imposition on the classifier. Instead of miningcompositional features [17],
which can split the feature space only along the dimensiensteees, RelCom partitions
the space into margin regions along the hyperplanes andraotsshigher level hypotheses,
thus, it can provide much better granularity using the saumeber of primitive classifica-

tion rules.
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3.2 RelCom features

Consider a dataséty = {x;, ¢;};¥, with N training samples where each sample is charac-
terized by its feature vector, € R? and has an associated binary class lapel {—1,1}.
The traditional classification problem is to find a classifigrctiong(.) : x — ¢ that pro-
vides a mapping between the feature space and class lgjjglss usually determined by
minimizing classification error over a representativenirag set. Instead of a direct map-
ping from the feature space to class labels, we define a buadugd propositional feature
space{f,, f;,--- , fx } where eaclf;, : x — {0,1}. In effect this is a transformation from
the continuous valued scalar space to a binary valued spateassibly a reduction in
dimension if K < d. The mapping functioffi, can take on a multitude of forms such as a
simple decision stump in a single dimension, a multi-dineme hyperplane, a threshold
based match filter etc. For any given classification probleene are a plethora of pos-
sible feature representations of the objects involved. r8fbee, the choice of, will be
dependent on the semantic meaning of the featui@sd the problem at hand.

Once we have obtained the K-bit binary striRg= {f,fs,--- ,fx} by choosing an
appropriate mapping function, it is easy to see that thez@ar possible ways to assign
binary class labels to any given test samgle An example for the case df = 3 is
shown in Tab.3.1 where the left column represents all ptessilmary string patterns and
each hypothesis columi(F) on the right represents one possible class label assignment
pattern. Though the number of possible hypothesis incsegatly withK” we have found
in our experimentdX = 2,3 was adequate to meet the detection challenge. The value
of h; indicate whether a sample is classified as positive (1) oatneg(-1) for a given
propositional binary pattern.

To illustrate further the concept of combinatorial featutensider @ dimensional fea-
ture descriptox = [x(1) x(2)--- x(d)]’ and an associated 3-bit propositional mapping
{f;, £, f3} using simple decision stumps. Fig.3.2 represents a hypodh@rojection of

these decision stumps along the first two dimensions of dueife space. We observe that
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fi £ f3] (F) heo(F) hs(F) hi(F) hase(F)
O 0 O -1 -1 -1 1 1
0O 0 1 -1 -1 -1 1 1
O 1 O -1 -1 -1 1 1
0O 1 1 -1 -1 -1 -1 1
1 0 O -1 -1 -1 -1 1
1 0 1 -1 -1 -1 1 1
1 1 O -1 -1 1 -1 1
1 1 1 -1 1 -1 1 1

Table 3.1: lllustration of the2" possible class label assignments for a propositional pinar

string of lengthK" = 3.

the entire feature space has been divided into a small nuofiligscrete region each with
a binary string label. Fig.3.3 represents the decision Bates corresponding to a few
possible hypothesis from Tab.3.1 where data samplesdadithin the shaded region are
classified as positives. It is observed that simple logicaindaries in the propositional
form complex decision boundaries in the original featuracgp This enables us to de-
fine complex decision boundaries by combining the resuligdi¥idual simple decision
stumps in a multitude of combinations. From Fig.3.3 it isygaarceive that the decision
regions resulting from the combinations are more likely éolbeneficial in classification
problems than those of any individual decision stumps. Hewedhe regions of the indi-
vidual decision stumps are a subset of the larger set of alipte combinations. Though
combinational features allow for complex decision bouretawe still consider each of
these to be a weak classifier and perform boosting to selettfarmative subset from
these combinations.

Some of the hypotheses in Tab.3.1 are degenerate and acallpgivalid such as the

first and last columns. Half of the remaining are complemehts different column and
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Figure 3.2: Example of one possible mapping from featureespathe propositional space
spanned by a 3-bit binary string. The dotted lines repretheae simple decision stumps.
Data points that lie on the positive normal side (represkhiedark arrows) of a decision

stump map to a binary 1 in the propositional space.

need not be evaluated explicitly. Based on the definitiofy dfis possible that some of the
patterns in the left column never occur and this further cedithe number hypothesis to
be evaluated. An example of this is seen in Fig.3.2 wheretthrggd 00 is not a possibility.
Thus, when we search within the hypotheses it is not negessaevaluate all of22*
possibilities.

Fast target detection invariably requires the computatitwad imposed by features
and the propositional mapping to be minimized. In this caapte primarily consider the
simplest possible feature - raw image pixel values. Theaufeatectorx is taken to be a
raster scan of the pixel values making its dimensicgqual to the number of the pixels
in the target window. Experiments with other feature dedors computed in a target
window, e.g. HOG feature are also considered.

Inspired by the:-tuple classifier and other recent works [79, 80] that cappairwise
feature variations in a small subset of the entire featuaeespwe define our propositional

mapping function to be simple a margin based similarity thkt operates on two feature
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Figure 3.3: lllustration of a few possible complex decidomundaries using combinatorial
features. Data points that lie in the shaded regions arsifiexbas positives. Propositional

mapping using Top: simple decision stumps and Bottom: mdrgged similarity rule.

dimensions chosen from a setwfrandomly sampled feature dimensions. For a giwen
dimensional feature vector, we randomly select, (n < d), of the possible dimensions
and represent it by, = {p1,ps,- - , pn} Where eachy; is unique ang, € {1,2,--- ,d}.

Given an arbitraryr-tuple P,, for each unique paitp;, p;), p;,p; € P, we can define a

propositional mapping;. of the form

) L)Xl < o

0 otherwise,

wherex(p;) represents the value of the feature along ftfith dimension. The margin
valuer, indicates the acceptable level of variation and it can besehso as to maximize
the classification performance of a particular hypothelspgar knowledge of the feature
space is available. Given antuple and the definition in Eq.3.1 the number of unique
propositional mapping$;, £ € {1,---, K} that can be defined is limited th = (’2‘)

corresponding to the number of possible unique pgirsp;). We denote the resulting

binary string byF (x) = {f;,--- , fk}.
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When the propositional mapping in Eq.3.1 is applied to rawgenpixel values with
n-tuples, we are effectively analyzing the intensity vaoiatpatterns over the image
pixels at a time. This draws attention to the extremely largmber ofn-tuples that can
be selected for any given image vector of dimensiofi,d= d!/(d — n)!. In this work
we mostly deal with the cases of = 2,3 which we refer to as ‘doublet’ and ‘triplet’
respectively. For the case of even a<ll® template and triplets there exist®70k unique
choices of triplets. A second point of concern is the sabectif X different thresholdr,

a continuous variable, that is difficult to optimize withqartor knowledge of the feature
space. The vastness of this parameter spaeetoples and thresholds makes determining
optimal values for either of them impossible. However, eadhple, threshold pair can
be thought of as a weak classifier and these can be combineddsyitg to produce a
strong classifier. Since we explore different sparse coatiauns of the original feature

space using relational operators we refer to our featurBakC'om’.

3.2.1 Boosting

To select the most discriminative RelCom features from a lpoy# of candidates we use
the discrete AdaBoost algorithm. Since the output of each Rellypothesis is binary it
can easily be adapted into the discrete AdaBoost framewat&BAaost works iteratively to
combine a number of weak classifiers linearly to producecagtclassifier with acceptable
classification performance. In each iteration a single wetagsifier is selected that min-
imizes the weighted error over the training set. The weighthe misclassified samples
are increased (and the weights of each correctly classikachple are decreased), so that
in the next iteration the new weak classifier focuses mordemrtisclassified examples. It
has been shown [81] that for a binary classification probleretror of the final hypothesis
decreases exponentially with the number of boosting ro(ireladditional weak classifier).
Our adaptation of the Discrete AdaBoost for RelCom featureswshn Fig. 3.4) is

similar to original AdaBoost, except differences at the l@feveak learners. In this case,
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domain of the weak learners is in the combinatotidliple hypotheses and threshold space.
In each iteration random samples of a set of n-tupteésnd associated thresholds® are
drawn for more efficient spanning of the enormous searchesgdwese define the mapping
from the input feature space to the propositional spadé’ (x;). Next we identify the n-
tuple pattern, associated threshold and the hypothederpahat minimizes the weighted
error on the training set and update the training sample M®igThe identified patterns,
threshold and hypothesis are added to the classifier poblaggociated weight;. Once
the classifier is trained, given a test feature vector, weidantify the propositional map-
ping from a lookup table. The hypothesis corresponding eadist pattern is pre-stored in
a second lookup table and also requires no computation. Tipeioof the strong classifier
is the sign of the sum of the weighted RelCom feature resporss&soavn in Fig. 3.5.

In order to illustrate the competence of the RelCom featur#s boosting we demon-
strate the proposed method on two infrared datasets 1)CSthlign vehicles from aerial
view) and 2) SENSIAC (military targets from planar view) ngiraw pixel values as the
feature vector. Figure 3.6 shows the position of the top 1Bl features for the case
of triplets. Interestingly, the features are distributedtoe target and background to gather
clues about the target shape. Figure 3.7 presents the mhp wfeighted locations of the
RelCom features on the SENSIAC dataset when the number of waatdrs is varied. As
visible, the target edges are are found to be more discriméalncreasing the number
of the features helps to concentrate attention on the sagions of the target especially
in the night time images. For the day time images the effeletsis pronounced due to the

presence of considerable clutter.

3.2.2 Computational load

Note that, the relational operator that we use to map fronfehiteire space to propositional
space has a very simple margin based distance form. Theréfts possible to construct a

2D lookup table of the responses fotuples and then combine them into separate hypothe-
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ses lookup tables. This can be achieved without any lossfafmration for the intensity
features, and an insignificant adaptive quantization losgther low-level features. Par-
ticularly, this lets us masterfully trade in the computatibload with the memory imprint
of the algorithm, which itself is relatively small (as many0 x 100 or 256 x 256 binary
tables as the number of features). In case of 500 triple¢sptémory for the lookup ta-
bles is approximately 100MB. After obtaining the proposifibbinary string a secondary
lookup table of the hypothesis is used to identify the clagel. We can then multiply
these binary values with their corresponding weak classifigeights and aggregate the
sum to determine the response. In other words, in the testagg of the algorithm we will
only employ array access operations instead of any aritbraperations, which results in
a very fast detector. Due to vector multiplications, naitB¥M radial basis functions nor
linear kernels can be implemented in such a manner.

Further, in the context of boosted classifiers it is posdibienplement a rejection cas-
cade that significantly reduces the computational loadanising window based detection.
As an example, for Haar wavelet based face detection theifttasbecomes 750 faster
(reported in [18]) by decreasing the effective number otdess to be tested from 6000
(of the original boosted strong classifier) to a mere 8 onay@r In other words, a cas-
caded implementation of the boosted RelCom has every pdtémfiarther speed up the
detection.

We present the computational load and the performance efaleslassifiers including
the boosted RelCom doublet and triplet versions in Table 3sZh®wn, RelCom boosting
provides one of the fastest classifiers whose complexity dapends on the number of
weak classifiers even without a cascade implementation. \Wbmpared to SVM-RBEF, it
would demand only a fraction of the load§00x speed up for the INRIA dataset) and at

the same time outperforms the SVM-RBF.
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Algortihm Computational INRIA
complexity |~ Operationgo of FA
SVM-Linear 10d 21,000 4.58
SVM-RBF 57dNg, + 10N, | 90,600,000 0.38
RelCom Doublet 11N, 16,500 0.22
RelCom Triplet - 1 15N, 7,500 0.23
RelCom Triplet - 2 15N, 150,000 0.02

Table 3.2: Computational complexity and performance ofeddht algorithms given the
input vector of dimensiod, the number of learnt support vectays,, the number of weak
classifiersN,, the number of principal componendg,.. The relative costs of processor
operations are measures against the cost of memory acdesh,igitaken to be unity. The
above expressions assume the cost of a addition to be 3pfmation to be 5, exponential
to be 35. For INRIA dataset usingl x 32 intensity imagesd = 2048, N, = 776.
We setN, = 1500, 500, 10k weak learners for the RelCom doublet, triplet-1 and triplet-2

respectively.
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3.3 Experimental results

To demonstrate the capability of the proposed RelCom featueegerform detection on
three different datasets. 1) INRIA Person dataset - humagctlen in visual images, 2)
SENSIAC ATR dataset - military vehicle detection in midwawérared images and 3)
CSUAV dataset - car detection in midwave infrared imagesntdi@m an UAV. We com-
pared the performance of three different algorithms inclg&VM-Linear, SVM-RBF and
RelCom triplets. The SVM-RBF parameters were set to maximizescvalidation accu-
racy on the training set. LibSVM toolbox was used for tragnand testing. The basis of
comparison are the ROC curves that plot the probabilitywu# ttetectionss probability of
false alarms and visual detection results.

For the standard INRIA dataset we obtained 2416 pictures gbned and centered
images and a further 12180 samples of random backgroundghe®¢ only a fifth of the
positive samples and a tenth of the negative samples wetefosé&raining. For testing
purposes 24360 random background images and 1126 positvased. All images were
of size32x 64. Here we test algorithm performance for two different featype: greyscale
intensity values and HOG features. For HOG feature calicmst we used [-1 1] filter in
orthogonal directions and adapted integral histogram dst évaluation. HOG features
were computed for 8 directions in non-overlapping blocksiag 16 x 8 resulting in a
8 x 4 x 4 = 128 dimensional feature vector.

Figure 3.8(a) shows the detection performance curves f&IA\dataset when using
intensity features. The boosted RelCom triplets with 10ksifess significantly outper-
forms SVM-RBF to our surprise by a factor of 13.8 at the 50% treiection level. At the
same time it outperforms SVM-Linear by almost a factor of Bigure 3.8(b) presents the
ROC curves in the case the HOG feature. Performance of the Rei€at par with the
SVM-RBF and 12 times better than the SVM-Linear. We are ablehieae performance
comparable to SVM-RBF at significantly lower computationastcaorhis illustrates that

the proposed method is applicable to any given feature anlihmted to spatial features.
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The SENSIAC dataset consists of midwave image sequencasedtoth during day
time and night time for eight different targets. The targetsimaged at multiple distances
and poses. We select 3 of those targets (Pickup, BTR70 and BRDiVistance of
2000 meters to create a training set of 60 positive sampl$aD0 negative samples each
for both day and night time images. The testing set consst@@0 positive samples and
45800 negative images each for day and night time images.imi&ges were histogram
equalized before sample templates of sizex45 were extracted. We train two separate
classifiers for day and night time data on greylevel intgnfaatures. The ROC perfor-
mance curves are shown in Fig.3.9 for both day and night tieteation. We observe that
for the night time data the performance all of the algorithengery similar as the target is
distinctly visible. The advantage of the RelCom features éatly emphasized in the day
time images where there is a lot of confusing clutter. In addiresults of detection in three
different scenarios are shown in Fig.3.10, Fig.3.11 and3F@. Note that in each scenario
either the target or the imaging distance is previously engeot present in training set).
We observe that the RelCom based classifier is able to cleanyify the target even when
the other methods fail entirely or result in excessive falsems.

The CSUAV dataset contains MWIR images acquired from an UAWW§yover a civil-
ian locality. From this dataset we selected 1050 positivaegies and 13000 negative images
for training. For testing purposes 1050 positives and 65@fatives were used. The tem-
plate size was 2030. Here again it was found that the RelCom triplet greatly exdggms
the SVMs in detection performance. Fig 3.13 shows the reduising RelCom triplets in
three different scenarios. Since we trained the classifiraxgeneral template irrespective
of orientation, during the detection phase the image wasszhfor targets at orientations
of 0°,45° and90° to detect targets oriented along different directions. Tewilts were
combined using non-maximum suppression. We can see thatityaf the vehicles in-
cluding those in shade and near trees where correctly eéetegen though some roof tops

were falsely detected. These experiments establish thpetemce of the RelCom detector
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for small target detection using intensity features inanéd images.

In conclusion we have shown that high-level combinationbasic relational features
can be used in a boosting framework to construct very fassiflars that are as competitive
as SVM-RBF while requiring only a fraction of the computatiblead. To summarize the

advantages of our method:

e RelCom can speed up detection several orders of magnitudedeeitaloes not re-

guire any complex computations thanks to the two-layer upatiables.

¢ |t can accommodate both basic features including pixehsitees and other complex

descriptors vector computed for the object window.

e It utilizes simple relational operators to capture the igphatructure within the object

window effectively.

e It can be applied to very small object windows unlike HOG tees.
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Given:

« Training dataset with feature vectors, class labels{(x,c1), -, (xn,cn)}
wherec, = £1 indicates the class label.

x N, the required number of weak classifiers.

x S weak classifiers pool size.

Initialize:

x Sample weight$V, (t) = for ¢, = 1, —1 respectively, wher&V ¥ and N~

2N+’ 2N*

are the number of positive and negative samples.
AdaBoost:
xFori=1,---, N,

e Randomly samplé n-tuplesP!,--- , P¥. For eachP? also sample threshol
values7* = {r;}, k={1,---, () }.

e For each of the5 n-tuples compute the propositional mappiRg F5, - - - | F%
over the training samples= {1,--- , N} using Eq.3.1.

e For each of theS n-tuples compute error for all valid hypothesis in the
hi(F) j = {1,--- 22" YasAl = 0.5, Wa(t)[er # hy(FL).

= T Bl (F)=hjmn(F) ande; = M7 Where

smin

° Set PZ Psmzn g’t

sel,n sel —

Jjman
smin

smin andjmin are indices \ < M Vs # smin, j # jmin.

€5

e Calculatery; = 5 - In [1;6]
e Update the sample weights for = {1,---,N}, Wyu(t) =
Wi(t) exp[—aiceliy (Fipin)]-

smin

 Normalize the weight§", , Wi, (t) = 1.

Output: Selectedh-tuplesP?, , threshol hypothesisi! _, and classifier weigh

sel,n? sel’ sel

a; fori={1,--- ,N.}.

o

set

Figure 3.4: Training RelCom features with discrete AdaBoost.
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Given:

x A single sample feature vectsg, ;

* RelCom classifier consistingP;, ., 7., h., and «a; for
i={1,---,NJ}

Testing:

* |dentify F1,Fs, - - Fn. usingxtest,Pjel,n and.7,.

« final classifierH (x,..) =sign[>.e, a;hl,, (Fy)].

sel

Figure 3.5: Testing with RelCom features.

T
(c)

Figure 3.6: Top ten RelCom triplet feature locations shownhenrhean positive images
for (a) CSUAV dataset, (b) SENSIAC night time and (c) SENSIALy time. The features

identified compare the object with its background aimingigtiniguish the silhouette.
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(a) Doublet 1500 (b) Triplet 500 (c) Triplet 10K

Figure 3.7: Map of normalized weighted location of RelCom dea¢ for the SENSIAC
dataset. Top: Night time and Bottom: Day time. The target sdge expected, are found

to be more salient by RelCom features.
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Figure 3.8: (a) Detection-error trade off curves for INRIAt@zet. As visible, RelCom

outperforms SVM-RBF, (b) Detection-error trade off curvesIiMRIA dataset using HOG

features.
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Figure 3.9: ROC curves for SENSIAC dataset (a) Night timeD@ay time.
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Figure 3.10: Sample detection results at FA raté®f* on Day time SENSIAC data at
Distance:1500m (unseen) and Target: BRDM2 (seen) for (a) S¥fdar (b) SVM-RBF

and (c) RelCom triplet.

42



(©

Figure 3.11: Sample detection results at FA raté®f* on Day time SENSIAC data at
Distance:2000m (seen) and Target: ZSU23 (unseen) for (&)-Biiear (b) SVM-RBF

and (c) RelCom triplet.
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Figure 3.12: Sample detection results at FA raté®f' on Night time SENSIAC data at
Distance:4000m (unseen) and Target: BMP2 (unseen) for (&)-Biear (b) SVM-RBF

and (c) RelCom triplet.

44



Vg ©

u 1 bbb Ml 41 o104 e El

X } .
‘b : "

y

(©

Figure 3.13: Sample detection results of RelCom triplet atda of10~* on three different

scenarios from the CSUAV dataset.
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CHAPTER 4

Target Tracking with Online Feature Selection

4.1 Background

Target tracking in the forward looking infrared (FLIR) imagéias remained a challeng-
ing problem in the field of computer vision. Usually, FLIR iges are characterized by
low signal-to-noise (SNR) ratios, poor target visibilitjdatime varying target signatures.
These factors prohibit the straightforward extension astexg optical tracking algorithms
to FLIR images. In addition strong ego motion of the FLIR semsakes it difficult to char-
acterize the target’s kinematics. Two issues will be disedsn this chapter. One is how to
develop an elaborate target appearance model for supexakirig performance? How to
select optimal features to characterize the appearanceltBespite the fact that the issue
of size estimation is especially important in automaticsiésguidance systems where the
size may act as a cue for distance, it is usually not congidi@renost FLIR tracking al-
gorithms [27], partially because of the lack of robust arihbée target appearance model.
For example, to achieve a robust position localizatiorgiti@nal tracking algorithms as-
sign less confidence to the target’'s boundary pixels condpaith the center ones [26, 27].
However, this biased confidence assignment leads to inaecsize estimation.

In this chapter, we proposedual appearance modtiat accounts for both foreground
and background appearances. Unlike the classifier [82&8pach, we track the target by
matching both its foreground and background statistick thieir corresponding reference
model. These statistics are used as features for appearausting. As the target appear-
ance changes with time, the contribution of each featureatdsvtracking will vary. It is

desired to provide a feature selection scheme that caniaelgpassign weights to differ-
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ent features indicating their relative importance to tlaeking process. We formulate the
online weights update as a probabilistic estimation prolteat is directly integrated with

the tracker. In addition to accurate target localizatiod aize estimation, the proposed
algorithm also indicates the optimal feature combinationtarget representation while

tracking.

4.2 Probabilistic formulation

In this section, we devise a probabilistic framework to fatate the research problem.
Let x; denote the state vector to be estimated that includes thegmoand size at time
instantk. In addition, our tracking approach is able to update waightof different fea-
tures associated with the appearance model in an onlinefashherefore, target tracking
and feature selection are formulated as a state space protitere we need to estimate

posterior densities(x|y1.x) andp(vi|y1.x) given the observationsg, ;.

.......................... X Target Tracking
Xy T Variables

\ /7 |\ /| \ \
\ / \ / \ \
/ \, 7/ \
........................ Feature Selection
Variables
Y Y A Y
Observation
Yia k Vit T Variables

Figure 4.1: The diagram of the proposed tracking algorithm.

The conditional dependencies between the variables aphigedly depicted in Fig.

4.1. Noticing these dependencies, the estimation can lznebl by recursive Bayesian
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filters. Forp(xx|y1.x), we have

p(Xkb’l:k)O(/ (Ve Xk, Vi—1)D(Vi—1|Y1:k—1)0VE_1

Vk—1

- / Pk x5 1 )p(%e 1|y 11 ) 1. 4.1)

We define the kinematic model of the targetx, |x;_1) in Sec 4.3 and the weighted like-
lihood p(yx|xk, vik—1) in Sec 4.4. Giverp(xx|yi.r), the posterior density of the feature

weightsp(vi|y1.x) can be represented by:

p(Vilyir) = / PV Xk, Y1) P(Xk | Y 1:0) 0K (4.2)
X,
Let
L(vy) = /x P(Xk|y1:6)P(Vi|xk) (Ve |V, X5 ) OX, (4.3)
where the weighted Iikelihoqm(;rk]vk, x) has the same form agy | vi_1, xx) andp(v|xx)

describes how likely the feature weights fit the given traglkeéstimation, which will be de-

fined in Sec 4.5. Thus (4.2) becomes

p(vk|y1:/€) =

Livy) / PV )P (Ve Iy 1 1)dVe . (4.4)
Vi—1

wherep(vy|vi_1) is the evolution prior of the feature weights to be discuseegiec 4.5.
Motivated by the idea of particle filters [84], we approximdhe posterior densities
p(xx|y14) andp(vy|y14) using two weighted sample sefts], wi } >, and{vi,w’ , } .
The integrals in (4.1) and (4.4) can be approximated by suionmsa To avoid the high
computational expense brought by integrating,; andx, out from (4.1) and (4.3), we
replace the variables,_; andx; by their expectation&'(v;_,) andE(x;,) estimated from

the weighted sample sets. The detailed algorithm is suraethin Table 4.1.

4.3 Kinematic models

In our formulation the state vector at any time instaris defined asc;=[x, sx], where

xx=[zr, yx] contains the position information ang=[s}, s;] shows the size inc andy
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Figure 4.2: The ground truth values of X-position, Y-pasiti X-size and Y-size of the

sequences LW-15-NS and LW-14-15 over 100 frames.

directions. The foreground are¥é-(xy) is defined a rectangle box whose top-left corner

corresponds to coordinate,(y;) and the length and width are given By ands; respec-

tively. In the following, we will analyze the position andsidynamics of the target based

on the ground truth data, and design appropriate dynamiceladdr both position and

size variations. These dynamic models determine the sttsition probabilities, i.e.,

p(xx|xx—1) that play an important role in particle filtering.
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4.3.1 Target position

First let us consider the dynamics of the target’s positibig. 4.2 shows the evolution
of the position and size of the sequences LW-14-15 and LW$5fom the AMCOM
dataset From Fig. 4.2 (a) and (b) we observe that for the LW-15-NSusage, the target
stays around the center of the image. This is due to the fattthie sensor is mounted
on an airborne platform which is homing in on the target. Hesvehe sequence LW-
14-15 is characterized by strong ego-motion of the sensdfgoin. Therefore, we need
a model which can account for the low variability of the piasitwhen there is no ego
motion and at the same time provide more variability whemeli&strong ego motion. An
adaptive framework which can adjust the variability of tlesition is apt to deal with this
requirement.

We employ a first order model which can adapt to the changeeivdiiability of the
target state based on the idea in [26]. Such a model requirestanate of the velocity of
the target based on the previous n frames. The velocity atiangyinstantt is given by
equation (4.5). In the cases wher< n the estimate is made based on all available frames
up to timek.

k—1

En[Axk]:% S -l (4.5)

I=k—n—1
Then the state transition model for the position vegiois defined as

Xy, = Xp—1 + Cror, (4.6)

whereC), < E,[Ax;| andv, ~ N(0,1). In this model if the target is moving with a low
velocity then the variance of the process noise is low, thereducing the variability of the

target state and vice versa. This increased variabilitysigiayly reflects the spread of the
particles over a larger area in the state space, therebsasitig the probability of locating

the target whose position is affected by strong ego moticdhetensor.

http://cis.jhu.edu/data.setss AMCOM/amcom.html
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4.3.2 Targetsize

As the next step we now consider the dynamics of the target Biom Fig. 4.2 (c) and (d)
we observe that the target size has a tendency to increasepm @ver time. Though the
LW-15-NS sequence shows gradual increase in size, the seglsV-14-15 is character-
ized by rapid size changes. In the design of a model for theedsinamics we do not favor
an adaptive variance model due to size increments in singheds. Therefore for the size
dynamics we employ a simple first order model with fixed vaz@&anThe state transition

model for the size vectaoy, is defined in (4.7),
Sk = Sg_1 + Dwy, 4.7)

whereD is a fixed constant, and,, ~ N(0, /). The state transition probabilities can be

derived from (4.6) and (4.7).

4.4 Target appearance model

We now discuss the issue of target representation. This Indederibes the appearance of
the target in the image in relation to the underlying staies:[zy, yx, s7, s;] and therefore
defines the likelihoog(y|xk, vi). We characterize our target using a non-parametric
model based on the intensity and local standard deviatgtodriams of the target area and
its local background. We call it the ‘Dual model’ since in &atoh to the information from

the target area we also model its background.

4.4.1 Dual foreground-background model

At any given time instant: assume the intensity imadg and local standard deviation
imageS;, are available. Giver,; we can determine foreground ar&a(x;) in the image.
We next define a local background arf€g(x; ) using the “center-surround” approach. For
atarget area defined by a rectangle of sjze s} another rectangle of sizé x s7) x (2xs})

defines the extent of the local background. This is illusttah Fig.4.3. It is a common
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practice to use a weighted histogram for the target’s regptesion [26, 27]. This is due to
the fact that often boundaries between the target and tHegl@amd are not precise and
therefore pixels from the background regions may easilyupdithe histogram of the target
area. So aweighting kernel is often used to obtain a weidghstdgram by assigning higher
trust to pixels closer to the center of the target. The areagsponding to the foreground,

background and the placement of the kernel are illustraiédg.4.3.

» Background area
Ng (X, )

Kernel placed on
Foreground area

Ne (Xy)

» Image plane

Figure 4.3: Foreground regioVr(x;) with overlapped kernel and background area

Npg(x;) defined based oRry, = [z, k., 57, Si]-

Let p denote the location of the target’'s centroid based on thédiposnd size in-
formation contained irx;. The functionb : R? — {1,--- ,m} maps the intensity value
of the pixel at a position given by, to its bin index in the quantized feature space. The

probability of the features = 1 - - - m is given by [85]

ph(xe) =M Y Ku(r —p)sfp(r) — u, (4.8)

reNp(xy)

where )\, is a normalization constant obtained such thgf*, p,(x;) = 1 and¢ is the
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Kronecker delta function. We use the triangular kernelKgy, where the width of the
kernel is determined by the target size information com@im x,. Now we can de-
fine am dimensional vectoff;(xx) = [py;(xx), - , (k)] called the foreground his-

togram. In a similar manner the background area histograynbreabtained agy; (x;) =

[ps(xk), -+, o (xx)] Where

Poi(Xk) = A2 Z 6[b(p;) — ul, (4.9)

p;eNp(xk)

and)\, is a normalization constant obtained such tha}’, py.(x;) = 1. Analogously we
can obtain the foreground histografy (x;)and the background histograyi (x;) from
the local standard deviation ima§e. Therefore giverx;, I, andS, the candidate region

is characterized b¥'(x,,) defined as follows,

F(x,) = {fri(xx), foi(xx), frs(Xx), fos(Xx) }, (4.10)

which is composed of four different histograms correspogdo each of: target area in-
tensity f1;(xx) , background intensity;;(x;), target area standard deviatigp (x;) and
background standard deviatigin (x; ). The tracker then evaluates any given candidate area
by comparing the similarity of the above four histogramsrirthe known reference model.
Thereby we use the information both from the foreground awkground area directly in

the tracking process.

4.4.2 Distance measure

During the tracking process we need to evaluate candidassdrased on their distance
from a known appearance model of the target denoteH’py The reference modd"’,
also has a structure similar #(x,,) and is given by¥"'y = {f%; 1, foi x> fsn fosx}- The
tracker in essence will compare candidate moB¢ls, ) against’;, based on the histogram
intersection (HI) metric first suggested by Swain and Ballar{86] to measure the simi-

larity between two histograms. The HI metric between any mwomalized histogramp
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andq with m bins each is given by (4.11)

= min(p(i), q(i). (4.11)

Every candidate regioR'(x,) comprises four different histograms and therefore we can
compute four HI metrics, one corresponding to each pair stiolgrams in the candidate

and the modeF’;,. Consequently we define our distance mely@ (x, ), F';) as

D(F(x,), F'x; vimt) = > vF - d(fa(xi), f14), (4.12)

z€Z

whereZ = { fi,bi, fs,bs} andv®~! are chosen such that = 1. The implication

z€Z Uz
of the v*~! term is to allow for a particular histogram to be more or lessihant in the
distance calculation. The values«df ' are adaptively selected online and this concept is
discussed in Sec 4.5 on feature selection. The likelihggd|xy, vi._1) is defined based

on the distance measure in (4.12).

4.4.3 Model update

Since the target is continuously changing with time it istgumtuitive that the reference
modelF’;, has to be updated to account for this change, otherwise itresayt in tracking
error. We update our reference model using a simple stratbgye past observations are
forgotten with time. The reference mod€l, . ; is obtained based oty the mean estimate

of the states at time sté and the reference modEl,, by using (4.13) for alk € ~Z.

Flpmn =& [l + (L =E&x) - f2(Rn), (4.13)
where
£z,k = d(fz(f(k)v f;,k:) (414)

&. r gives the similarity between the model and the estimateddyiam. Therefore a sudden
change in the target appearance warrants a more aggrepdate wf the model histograms

whereas slower changes do not affect the reference modetsatically.
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4.5 Online feature selection

There are two issues related to online feature selectiotafget tracking. One is how to
evaluate the effectiveness of a certain linear combinaifdaur histogram-based features,
and how how to evolve the feature weights over time to accodatethe variation of the

target appearance. In the following, we will discuss theseissues.

45.1 Feature evolution

The tracker in our model estimates the underlying stateedbas the distance defined
in (4.12) where the weights'~! determines the relative importance of the featuie the
tracking process. A single set of fixefi! may not be the best choice for effective tracking
in every sequence. Our idea is that if these weights can hestadj adaptively based on
the sequence at hand, the tracking process will be morettddosve propose a method in
which thev*~! are updated online in order to adapt to the changing circamoss.

We formulate our feature selection in a state space formrevlieany timet the state

v}, containing the individual feature importance is defined as
Vi = [Ulva Ullfz‘a Ul;sv Ufs]? (4.15)

and is subject to the constrait,_, v% = 1. The constraintimplies that we have only three
independent variables. Therefore it will be easier to dgumsav,, into three independent
components and then develop a dynamic model for the newforamsd variables.

We define a new vectdr,, = [y, Sk, 7] such that the individual elements of can

may be expressed as

v = b,

v = (1 —a)m,

vy = (1 — B,

Uz]fs = (I —ap)(l =) (4.16)
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Thereforel’, uniquely determines, and is just constrained by the facK ay, Gi, v < 1.
We then model the dynamics of each componet,oés a first order Markov chain with a
common predefined step sidzeand equal probability of transition. The dynamicsogfis
given by

Qi1 = Qf + €, (4.17)

wheree € {—4,0,d} with equal probability. The dynamics of the other parantse(érand
) can be obtained in a similar way and together they deterth¢ransitional probabili-
ties of the feature weights(v,|v,_1) that is used to generate possible feature hypotheses

for next time step.

4.5.2 Feature evaluation

Our feature selection is based on the concept that a goodréeaill result in a higher
confidencdor the state estimation. Confidence may be described as thsumeeof how
peaky (small variance) the posterior density is at the gidtuth state, or for a given state
estimation that is assumed to be accurate. Consider the éxamipig. 4.4, the estimate
of the stater is given by the solid line and it has a mean around 0. Now we teed
select features that would best estimateThe feature that maximizes the belief of the
current state estimation is considered to be the best feaBased on this idea, all feature
hypotheses i.e. different linear combinations of the fastdgrams, are ranked based on
the Mahalanobis distance between the posterior estimathiped by that feature and the
one from the tracking result.

Let {xi, wi}, j = 1--- N, represent the state samples and corresponding weights at
time £ and Ietwf%k(j) represent the weights for the same set of samdﬂe/shen evaluated
with feature i,i = 1--- N,. Assume all the weights have been normalized. First we com-

pute the weighted mean of the states‘c@stygl wix{;. Then we compute the covariance
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Now to evaluate each feature we use the information in thghweiv; , (7). The likelihood

3 = (4.18)

of theith feature at time, i.e., p(v.|xz), is denoted ad/ D;, that is defined as
MDj, oc =Yl (7) (x4 — %) 3 (3, — %) (4.19)

TheX, ! term helps us to take into account the variance of the indalidtate variables and
the covariances among them. Telngk(j) term in (4.19) ensures that a feature hypothesis
which assigns higher weights to samples closer to the melhgeatia better fithess value.
Based on the fitness value of every feature hypothesis, wearapute a mean feature,

to be used in the next frame.
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4.5.3 The complete tracking algorithm

We use two particle filters to obtain the sequential estiomatif the target’s states and the
feature weights. Once the particle setvgf ; is available at timé& — 1, its mean estimate
Vi,_1 IS passed on and defines the feature weights atkinide particle set corresponding
to the tracking states are evaluated basedrpn to determine the mean state estimate
x,. Given the mean estimation, the particle sets of the featy@are then updated. The
tracking and feature selection are achieved by recurspeljorming the above process.
The pseudo code of the algorithm is provided in Table4.1, thedalgorithm diagram is

shown in Fig. 4.1.

4.6 Experimental results

The proposed algorithm is evaluated on the AMCOM FLIR dataSé¢te dataset com-
prises FLIR sequences in grayscale format (4288 pixels). Information about the target
position, size and type are also made available. We perfbartracking on 3 different
sequences namely, LW-14-15 from frames 160 through 230,1E¥WS from frames 160
through 230 and LW-17-01 from frames 1 through 70. We esegrtia¢ position and size
of the targets at every frame using a particle filtering frawmd with adaptive feature se-
lection. We present both visual results of tracking andHerfirst time, quantitative results

for the position and size estimation for this dataset.

4.6.1 Experimental setup

We begin with testing a particle filter algorithmF ;... which uses the dynamic models
described in Sec 4.3 and considering only the foregrourehsity histogram for target
representation. The second tracking algoritif,,, extendsPF;,,,.. by including the
proposed dual target model that has equal weights (0.2%)Iftour histograms. The third

algorithm,PF ;.4 further extend®F,,,; by incorporating online feature selection. For
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every sequence the target appearance is initialized baséaeoground truth in the first
frame. Initialization methods similar to those presentef2i’] may also be used.

The particles for tracking are initialized as a gaussiatridigion with unit variance
and mean as the true value. We set the number of particledokitrg IV, to be 100 and
the number of particles for feature selectidh as 200. N, determines the number of
linear combination of the features at every time step. Thamdational time ofPF 4,
is about three times as thatBF ,;,,,,,., as three additional histograms are used along with
the foreground histogran®F ;...... requires only a few extra seconds when compared to
PF 4.4 Since it uses most of the data precomputedify, ;. In our experiments we set
Cr = 3E,[Axg] in (4.6),D = V3 in (4.7), the step size for the feature evolutidis set as
0.05 and, the paramet@rused in the evaluation of the weights of the tracking patics
set to be 200. The number of bins for the intensity and stahdeviation histograms are

set to be 64 and 16 respectively.

4.6.2 Results and discussion

The partial tracking results for the sequence LW-14-15 amve in Fig. 4.5 and Table
4.2 compares the performance of the algorithms on threerdifit FLIR sequences. From
these, we observe that th&' ;... and PF,,, algorithms are able to track the states
more accurately when comparedR®',;,,,,... This result confirms our theory that, includ-
ing background information in the target appearance madptaves the tracking perfor-
mance. The importance of the adaptive motion model is alsarlgl observed, wherein
the algorithms are able to cope with the strong global motibthe sensor in frames 45
through 65. Though thBF ;... andPFy,,; algorithms perform quite similarly in the size
estimation, thé’F ;... iS consistently able to produce size estimates closer tgriend
truth value.

From the table we infer that mostly the use of the dual modptawves the position and

size estimates. Further improvement is achieved usingeeife selection and this trend

59



501
45
§ 401
3
o
=351
x
301
251
L Il L | L 44 L Il
45 50 55 60 68 45 50 55 60
Frame # Frame #
(a) (b)

%5 26 2‘5 3‘0 3¢ %0 4‘5 50 55
Frame # Frame #
(©) (d)

Figure 4.5: ¢-:Ground truth,-0®F g;,,pic,-0- 'PFgya1,-X-"PF feqrure.  Partial tracking re-
sults (15-20 out of 70 frames) of the state vectors (a) X mosi) Y position (c) X size
and (d) Y size for the sequence LW-14-15 using the threerdiffiealgorithms.
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is clearly observed for the sequence LW-14-15. However énsitquence LW-15-NS the
estimation ofs¥ has deteriorated with the use of the dual model in compats&tr ;. e,
which is due to the fact that the choice of equal weights ferféatures may not be optimal
for this sequence. This is ascertained by the fact that hatlposition and size estimation
improve in comparison t®F4,, when feature selection is incorporated. Also we note
that the state estimation for the sequence LW-17-01 hasdedrwith the use of feature
selection, which is due to the extremely small maximum sizthe target (69 pixels)
where the histograms may not contain sufficient informatemnesult in effective feature
evaluation.

In Fig.4.6 (a) and (b) we illustrate the sensitivity of the éistance to variation in
size and position for the different features. We observe i@ f7 is very sensitive to
both position and size changes. Thefeature is sensitive to position but does not show
large variations with change in size. Feattseshows the maximum sensitivity to any size
change. Featur is the least sensitive to position change and is slightlycaéfd by smaller
sizes. Fig.4.6 (c) represents the relative weights of taufes during the tracking for the
sequence LW-14-15. We observe that featfires given the most importance followed by
bs, fs andbi. This is expected, since featurgs andbs show the maximum sensitivity
to the variation of size or position. This result confirmstthar feature selection criterion

effectively selects the most relevant features for tragkiarposes.
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Initialization: Drang ~ N(Xy,1), and sef} = F(X),
whereX is the ground truth of the states in the initial frame.
Draw Ty ~ Unif(0,1). Set¥(=[0.25 0.25 0.25 0.25].

For k=1, --T
For j=1,--,N,

Draw x], ~ p(xj|x}_,) using (4.6) and (4.7).
Computew] = exp (X - D(F(x]), F'y; ¥5_1)).
End
Normalize the weights such that *, w] = 1.
Compute the mean of the stat%ﬁz;ipl wixi.
Compute the covariance mat®; using (4.18).
For =1, .- ,N,
Draw T ~ p(I'i|T% ) using (4.17).
Computev’ based o™, using (4.16)
For j=1,--,N,
Computew;, , ()= exp(A - D(F(x]), F'g; vi)).
End
Normalize the weights such thgt:j.v:pl wh (1) = 1.
ComputeMD,i€ for featurei using (4.19).
End
Normalize the feature weights such that'*, M D} = 1.
Compute the mean feature vecfonjy:”I MDiv;.
SetI =resamplel, M D}).
Setx] =resampléx,, w})
Update the reference model to obt&f), ; using (5.4).

End

Table 4.1: The pseudo-code of the proposed tracking algorit
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Algorithm PFsimple Pqual PF,feature

Sequence T Y sT sY T Y s* sY T Y sT sY

LW-14-15 || 3.78 | 1.86 | 417 | 1.41 || 1.33 | 0.89 | 2.12 | 1.58 || 0.95 | 0.93 | 1.40 | 1.36

LW-15-NS || 1.26 | 1.04 | 1.60 | 1.23 || 0.80 | 1.15 | 1.02 | 2.03 || 0.88 | 0.92 | 0.95 | 1.33

LW-17-01 || 0.64 | 1.44 | 0.99 | 1.45| 0.75| 095 | 0.84 | 1.25 || 0.62 | 1.10 | 0.87 | 1.28

Table 4.2: Mean error of the state variables over 70 framesaged over 20 Monte Carlo

runs using three different algorithms.
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CHAPTER 5

Target Tracking with Online Appearance Learning

5.1 Background

Target tracking in infrared imagery has remained a chalf@ngroblem in the field of
image processing and understanding. Infrared imageryirechunder actual field con-
dition is typically characterized by strong, structurecthground clutter, strong sensor
noise, poor SNR, and strong ego-motion of the sensor relttitige target. In addition to
these characteristics arising from sensors and enviropthertargets of interest are highly
maneuverable. Therefore, their observed signatures ntapieprofound non-stationary
variations over relatively short time scales making it diift to maintain a robust track lock
over long time scales. This phenomenon of the target rept&sen deviating from its true
signature due to accumulated tracking errors has beemedftr variously as the “drifting
problem”in [41,87], the “template update problem” in [33,88,89], and a “stale template
condition” in [90]. These are challenges that are exemplifig the well-known AMCOM
! closure sequences [2,91-96] and the VIVID datdsethich we will use as illustrative
examples in this work.

An example of this non-stationary variation is shown in Fgl(a). Here, a longwave
imaging sensor is situated on an airborne platform thateslas) a pair of maneuvering
ground vehicles. Profound changes in the target’s appeae observed between frames

24 and 165 over a time scale of only a few seconds and arisapiynfrom the relative

1This data is available from the Johns Hopkins Universityt€efor Imaging Science (http://cis.jhu.edu)

and elsewhere
2https:/iwww.sdms.afrl.af.mil/main.php
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Frame 24 Frame 165

Frame 1 Frame 50 Frame 95

(b)
Figure 5.1: (a) Example of nonstationary target signatuoduigion in AMCOM LWIR run
rngl8_17. There are two vehicles. The lead vehicle is barely visiblee second vehicle,
which is clearly visible, is the target of interest. Top ro@bserved frames. Bottom row:
closeup views of the target. (b) Example of target beinguated by foliage in the VIVID

dataset.

motion between the sensor and the target. The is substaragiification that results from

the sensor closing on the target and pose change that résulttshe target executing an
aggressive turning maneuver. While the second vehicle in3=ifa) exhibits a strong

signature, the lead vehicle is much dimmer and is barelyokisamid the surrounding

clutter, demonstrating that brightness alone cannot bd asehe sole basis for reliable
detection and tracking. Rather, more sophisticated teckesiqre generally required for
representing the target appearance and for adaptirgdoléarning) complex appearance
changes that occur over time.

Further, in many cases the target being tracked may movefdbé sensor’s view or
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may become occluded thereby significantly altering the eseappearance. An exam-
ple of this is shown in Fig. 5.1(b) where the target being ole® moves behind a tree
along its path and thereby disappears from the sensors Wiile it is important to adapt
the appearance model to accommodate variations in thet sigyeature it is equally im-
portant to avoid learning the appearance of occluding ébjecthe background. A robust
tracker must be able to quickly adapt to profound variatiaribe target signature and must
suspend adaptations when the target of interest is occludedls left the scene.

In this work we address the issues of appearance learningplndt tracking in an uni-
fied co-inferencdramework proposed by [97]. A histogram-based appearaaming is
explicitly combined with the estimation of the target pmsitand size, achieving sub-pixel
accuracy. Specifically, we utilize a dual foreground-baokgd appearance representation
that involves a total of four histograms, including histags of the pixel intensities and
of the local standard deviations computed over both thestaggyion and the immediately
surrounding background. The intensity histograms for blo¢ghtarget and background are
estimated in each frame along with the target position apel sThis coupled estimation
forms theco-inferenceprocess, in which the inference of histograms relies ondhtatrget
kinematics, and vice versa. The estimation of the histogram., appearance learning, is
achieved by a bank of adaptive Kalman filters (AKFs), wheeeuhknown process and
measurement noise variances are estimated simultaneasisly the recently developed
autocovariance least squares (ALS) method [98, 99]. The mmacker is a particle fil-
ter where the state vector gives the target position and ifieafion and the likelihood
function depends on the adaptive appearance model. Fuvikedevise a track loss de-
tection scheme embedded into the appearance learningsgragkich provides for robust
track loss detection in the VIVID dataset. Aside from theuaate estimation of the tar-
get appearance, temporary track losses can also be debgatzdmining the Kalman filter
residuals, a byproducts of AKFs at each step. Hence, we e ¢ctackle both the “drifting

problem” and “temporary track losses” in thae-inferencéramework.
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Figure 5.2: Appearance learning for target tracking in anderence paradigm.

5.2 Problem formulation

In contrast to most traditional appearance updating schewe explicitly model the evo-
lution and observation processes of the target's appeansmpresented by multiple his-
tograms. Thus, appearance learning, i.e., the updatingr@ét histograms, is formulated
as a sequential state estimation problem. In this sectiennwoduce a graphical model,
as shown in Fig. 5.2, which integrates the estimation oktaagpearance (histogram bins)
F'1.r with that of target kinematics stateX,;.;. The target kinematicX ;.. and appear-
anceF';.r are coupled by their observationg,; andG.;-. The intensity statistics within
the region given byX, provides the observation for appearance histogr@mat the time

k, and the appearance sta#gs_; determines the likelihood of the observed image frame
y,- Wu and Huang [97] show that the estimation of hidden staiiesacted with common

observations invokes@o-inferencegrocess, denoted as:

Q

PX}c X(Zk7E[Fk|Zk]>7

Pr, ~ F(Zy, E[X1|Z]), (5.1)

Q
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whereZ; includes the observations of kinematics and appearantghasns Py, and P,
are the probability distributions oX;, and F';, andX'(-) and.F(-) represent the inference
processes for these two distributions, respectively) denotes mathematical expectation,
which can be approximated be statistical estimate in gractEquation 5.1 suggests that
the probability of X, relies on the expectation d ', and the expectation oX ;. is used to
calculate the distribution of’;,.

We take the advantage of this co-inference in the joint edton of target kinematic
and appearance states, and are able to separately applgfesenice algorithms with the
estimate of one type of hidden state involved in the other.uR®ee Bayesian filters are
well suited to both inferences when the dynamic evolutiod albservation processes for
X, and F';, are explicitly modeled. A Bayesian filter for the kinematictimation at a
single time steg, p(Xy|y,), from its previous distributiop(X;_1|y,_,) can be denoted

as [84]:

P(Xkly,_) = / P(X k| X 5o 1)p( X o1 | Y1) d X -1, (5.2)
X1

p(Xilyr) ~ pyelXn Fro)p(Xily,_y)- (5.3)

It should be noted that the estimate of appearaiite,;, is embedded in the inference
of X ;. Analogously, the inference of histograms can also be onéthby the recursive
Bayesian filter with the estimate oX, involved. These filters are numerically imple-
mented by the particle filtering and adaptive Kalman filtare tb different physical char-
acteristics and mathematical assumptions on the dynarogepses of target kinematics
and appearance, respectively.

As strong ego motion and maneuvering actions present iodypifrared imagery, the
kinematic transition, i.ejp(X x| X_1) in Egq. 5.2, can hardly be characterized by linear
equations. Moreover, the calculation of histogram obgema of a target in Eq. 5.3
requires non-linear operations from image pixels in thaoregiven by X,. Hence, a

particle filtering based technique is necessary for thenagton of X, by Eqgs. 5.2 and
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5.3, which is detailed in Section 5.4. The estimate of apgeae histograms is applied to
the evaluation of the likelihoody(y,| X «, Fx_1) rather than to the proposal density that
generates the samplesgfX ) in [97].

On the other hand, a Kalman filter is applicable to appearkearaing. The dynamics
of appearance histograms(F';|F';_1), can be reasonably assumed as Gaussian, which
reflects the actual appearance variation in infrared imagbterestingly, it is possible
to deal with abrupt appearance variations due to occlusicough the byproduct of the
Kalman estimation, which is elaborated in Sec. 5.5. The agpee histograms obtained
from the image pixels within the region given by the estimaft&inematics, X, can be
regarded as the direct observation of the true state of agpea histograms corrupted by
Gaussian noise. The estimateXf. is naturally brought into the measurement updating in
the Kalman filtering process in order to achieeeinference However, the robustness and
generalization of the estimation is questionable if thesagparameters are set to known
in anad hocway, because targets may present significant appearariadiorss captured
in different physical conditions (e.g., weather and terapee) even by IR sensors with
identical specifications. The adaptive estimation of thesiee parameters turns out to be
the key to the success of this AKF-based appearance learhivaspecific AKFs will be

discussed that are compared with the traditional histogriamarity method.

5.3 Histogram-based appearance learning

Let y, be a sequence of video frames acquired from an imaging sanhshscrete time
instantsk € N. For simplicity, we suppose throughout Section 5.3 thatethe a sin-

gle object of interest, which could be,g, a target or a patch of background. lgt =

-----

-----

object appearance at tinke The objective of histogram learning is to estimate the gmes
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appearance modé|] by incorporating the current observatigpinto the previous appear-

ance modef,_;. This is typically formulated as a time-varying linear filte

fp =& g+ (1 —-&) fi, (5.4)

wherel is a vector with all entries equal to one antirepresents the Hadamard (or Schur)

product. The vectofy, = {¢8},—1._n, controls the balance between the previous reference

modelf;,_;, and the new observatiqg),, where0 < ¢ < 1 is the time dependent filter co-
efficient for thebth histogram bin. Accurate tuning gf, is the key to effective appearance
learning.

In this section we discuss three different learning techesothat share the form (5.4)
and differ only in howg&,, is computed. The first is the traditional histogram simiiari
based method where all bins are updated with the same wefght{.;0 = 1,..., N;). We
shall refer to this method as HS. After briefly reviewing thesic Kalman filter, we turn
our attention to two AKF methods that use different appreadbor estimating the process
and measurement noise variances. The first, which we wlllABIF..,, uses covariance
matching where the same weight is applied to all bins. Therstowvhich we refer to as

AKF,y, uses the recent ALS technique [98,99] and maintains aatpaeightt’ for each

histogram bin.

5.3.1 Histogram similarity method (HS)

In the widely used HS method, the weight vecggrin (5.4) is updated based on histogram

similarity [39, 86]. All IV, entries of§, share a common value given by the metric

fk =1-— h(fk_l, gk), (55)

whereh is a normalized similarity measure. One popular similantgasure is derived
from the Bhattacharyya coefficient [19]. In practice, howewee find that the histogram

intersection defined by [86]

Np
h(fii,g) = > min(fi_,gf) (5.6)
=1
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is more useful for quantifying histogram similarity in IR agery. With (5.6), if the ob-
served and reference histograms are nearly identicallitin,, g;) ~ 1 and¢; is small,
implying that very little information from the observationill be incorporated into the
learning process at time stép Alternatively, if the two histograms are almost mutually
exclusive ther(f,_1, gx) ~ 0 and{, =~ 1, implying that the new reference histogram will
be heavily dependent on the observation and will largelgatis the historical information
in f,_;. Thus, the observation is weighted strongly when there isdalen change in the
object appearance. Note that the similarity metric (5&)%5)depends on alV, histogram
bins and is scalar-valued, implying that a common wegghs applied to all bins with the
HS method.

As with most dynamic appearance learning strategies, thenetBod can potentially
overadapt in the presence of strong measurement noiseraagidly evolving target and
clutter signatures causing track loss due to the targeteappee model becoming corrupted
with background information. Explicit outlier rejectioremsures were implemented in [37,
40] to control this problem.

To reformulate appearance learning as a Kalman filterin@plpro, we model corre-
sponding bingf} andg® from the reference and observed histograms in state spaoedac

ing to

fim = fituwi, (5.7)

g = fr+, (5.8)

wherew? andv? are mutually uncorrelated process and measurement nbitesassumed
zero-mean, white, and Gaussian with varianeggk) and ¢, (k) that are time-varying

in general. The Kalman filter state prediction and updateaggus for the system under
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consideration are given by

State prediction:f,’jl,ﬁ_1 = ﬂj_l (5.9)
Covariance prediction:pﬁl,g_1 =ph_ + 02, (k) (5.10)
: Phie

Kalman gain: K} = pzlk_lkj algb(k) (5.11)
Innovation: r = gb — ﬁw_l (5.12)

State update:f} = fij,_, + Kpr}
= Kk + (1 - KD (5.13)
Covariance updatep;, = (1 — K})pp._;- (5.14)

There is a direct correspondence between (5.4) and (5.18reathe Kalman gairk?
in (5.13) may be associated with the coefficighin (5.4); hence, with the Kalman filtering
formulation we obtairg} = K.

The Kalman filter balances the relative contributions toegppnce learning from the
reference and observed data based on the estimated varighn¢e) and o, (k). When
o2, (k) > o2 (k), for example, we havé&? ~ 1 implying that the observation will be
weighted much more heavily than the historical referenda.dénder the linearity and
Gaussianity assumptions applied here, the state estirf@a@sand (5.13) are optimal in
the minimum mean squared error sense.

However, computing the Kalman gain (5.11) requires knogtedfs2, (k) ando?, (k),
both of which are usually unknown in practice. This leadshi® adaptive Kalman filter
(AKF), which seeks to estimate the unknown noise variancethe fly. A brief overview
of AKF methods was given in [42] and more recent surveys appgd00, 101]. In [42],
these techniques were broadly divided into four categoBagesian, maximum likelihood,
correlation, and covariance matching methods. The formeare computationally expen-
sive in general. In the following, two different AKF-baseplp&arance learning algorithms

are presented that rely on the covariance matching andatoreapproaches.
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5.3.2 AKF: Covariance Matching (AKF )

Covariance matching techniques [42,102] are based on #ugorethip that exists between
the process and measurement noise variances and the aekaibon of the innovations
process (5.12). Since the innovations are observable abtcorrelation can be estimated
by an empirical sample variance under suitable ergodisisyimptions. Thus, if one of the
two variances?, (k) ando? (k) is known, then the other can be estimated by matching the
empirically calculated innovations autocorrelation ®thieoretical value. Here, we adopt
the specific technique used in [37,40,41] whetd k) is known andr2, (k) is obtained by
covariance matching

It follows easily from (5.7)-(5.14) that the autocorretatiof the innovations process is

given by [103, Section V.B]
Elryrs] = [pioy + on(k) + ol (k = Dok = j), (5.15)

whered(-) is the Kronecker delta. With? (k) known andp?_, given by (5.14), an obvi-
ous empirical approach for solving,,(k — 1) from (5.15) is to approximat&[(r?)?] by
computing the sample variance of (5.12) over the lasiframesy,_rcoyt1; - - -, Yi- HOW-
ever, because the process noise could be time varying inagetiere is a delicate tradeoff
between choosingd.,, large enough to obtain statistically significant estimatéde si-
multaneously choosingi.,, small enough to track nonstationary changes?(k).

In appearance learning for visual target tracking, thidbfgm has been addressed pre-
viously by assuming identical statistics across variainl@sder to increase the sample size
to larger thanl,, while still sampling from only the..,, most recent frames. In [37], it
is assumed that?, (k) is independent of bothand% and thats2, (k) is independent of,
so that allV, bins of the histogram in each frame share identical noigestts. The inno-
vations sample variance may then be computed across binsllessover time. The same
assumptions omn?, (k) are made for the template-based appearance model of [48}ewh

b indexes pixels in the template rather than bins in the histog By assuming a common
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valuecd?, (k) for all template pixels in the current frame, the innovasi@ample variance
can be averaged across both pixels and time. A similar giratas employed in [41] with
the principle difference that?, (k) was assumed time varying and estimated by an auxiliary
algorithm independent of the covariance matching. Sinttsariance matching was used
to estimate the scale matrix in [36].
To formulate this class of covariance matching algorithm®ur present setup, we
assume that?, (k) is independent of both andb and thats2, (k) is independent of (as
in [37,40]). LetB be the set of nonzero histogram bins|(denotes the number of nonzero
bins) and estimat&|(r})?] with the sample variance
N 1 Leov—1
Crlk) = g 2= 2 (i) (5.16)
i=0 beB
Under these assumptiop$_, is independent of. Thus, we arbitrarily choosg, , and

use (5.16) in (5.15) to obtain the approximate solution
ok = 1) m Cy(k) = o3y(k) = ph_y- (5.17)
As in [37,40], the initialization at = 1 is given by
o (k) = 3C (1) Vb ks pp=3C(1) VD, (5.18)

which impliesc?,(0) = 0. We refer to this algorithm a8 KF,,, and use it in the following

primarily as a baseline for comparison with th&F ,;; technique given in the next section.

5.3.3 AKF: Autocovariance Based Least Squares (AKfy)

The ideal expression (5.15) for the autocorrelation of tim@vations holds when there are
no modeling errors and the filter gaing’ in (5.11) are optimal. However, if the process
and measurement noise variances are unknown, then thevglibe suboptimal and the

innovations process will generally exhibit a nontriviah@ation structure. The main idea

of autocovariance based methods is to exploit any obseroadeno correlations at lags
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other than zero to obtain solutions for the unknown noiséamaes and/or the optimal
gains. Pioneering work in this area was given by Mehra in [42] where the residual
autocorrelation was used for adaptive Kalman filtering. M&hmethod involves a three-
step iterative process where a Lyapunov-type equation beusblved at every time step.
Under the assumption that the process and measuremens aoése/ide sense stationary
(WSS), Carew and 8anger [105] developed an improved algorithm that eséstite op-
timal Kalman gains directly using one matrix inversion aedesal matrix multiplications,
eliminating the need to estimate the process and measuremese variances explicitly
and avoiding the requirement to iteratively solve the Lyapuequation associated with
Mehra’s method. Neethling and Young [106] introduced ateelaveighted least squares
technique that improves the statistical efficiency of thehods in [42,104, 105] and in-
corporates a side constraint to guarantee positive sefimide(PSD) estimates for the
unknown noise variances.

Recently, Odelsoret al.,, developed a new Autocovariance Least Squares (ALS) method
capable of providing PSD estimates for both the process aaturement noise variances
simultaneously [98]. In addition, the ALS variance estiesaaire more stable than those
delivered by Mehra’s method and converge asymptoticallyhéooptimal values with in-
creasing sample size. However, the proof of convergenengiv[98,107] depends explic-
itly on assumptions that the system is time invariant antttlteprocess and measurement
noises are WSS (extension to a time varying system with WS&swias given in [108]).
The ALS algorithm in [98] is primarily meant for identifyintpe system noise properties
in an offline learning process under WSS assumptions. Hiesfjlter innovations are ob-
tained from the observations using a suboptimal Kalman geén an extended period of
time. Then the autocovariance structure of these innawati® used to reliably estimate
the noise variances. Once the noise variances are knowaptimeal Kalman gain can be
determined and applied for filtering during run time using #tandard Kalman filtering

equations (5.9)-(5.14).
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For appearance learning, our interest in this paper is pilyria real-time, online sce-
narios where, for the first time, we consider applicatiorhefALS method under the much
weaker assumption that the noise varianeggk) ando?,(k) are onlypiecewise station-
ary. In order to extend the ALS method to this case, we considertiolution of the
target appearance to be a piecewise stationary processavitgtationary transitions. The
piecewise stationarity assumption can be justified by tigé fiame rate of the imaging
sensor compared to the rate at which the target appearaangeh Such assumptions are
common in,e.g, the context of audio and video compression [109-115]. Tdrestation-
ary characteristics of?, (k) ando?, (k) directly correlate with the rate at which the target
appearance and sensor noise are changing. The piecewisaataformulation allows
us to apply the ALS algorithm to each stationary block indially and thereby allows
us to adapt to the varying nature of the target appearanteghasn over time. In effect,
we adapt the filter gaig? at the end of each stationary block depending on the observed
variation trend in that block. This raises the issue of deteing the block boundaries.
Most existing methods that determine the block intervatpiire a priori knowledge of
the observations; since this is not the case in our real-fippdication, we consider equal
length blocks. We study the effect of block size by perforgréxperiments using the ALS
method on a simulated nonstationary system in Section.5.3.4

In this section, we extend the ALS method for application tpiecewise stationary
process in the context of histogram-based appearancerigawhich we refer to ad KF
in this paper. As before, the state model is given by (5.7) &m®). We assume that?
andv? are mutually uncorrelated and that, (k) ando?, (k) depend orb andk and are
piecewise constant. With this setup, the noise statisteg@nerally different for each bin
of the histogram and there is a separate coeffiggfdr eachb € [1, ;). The size of each
piecewise stationary block is assumed ta\heframes. We also define a block indgxand

then thepth block is represented by

Y (p) = {yrlk € K(p)}, (5.19)
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where

K(p) = {k[(p = )Na+ 1 < k < pNg}. (5.20)

Using this framework, we update the noise variances of tipea@ance histogram corre-
sponding to each bin at the end of every block. In effect, veeaalapting the filter gain
(learning rate) for the current block based on the obseragdtons in the preceding block.
We now briefly present the least squares formulation to deter the system noise
variances of a particular histogram bin at the end of a siblglek. For the remainder of
the section, we drop the bin indéxor brevity. We assume that the asymptotic Kalman
gain K,_, estimated from the previous block is available. Givén ,, the state estimates
in (5.13) for all frames ifK(p) are given byf), = ﬁ|k,1+Kp_1rk. The error in the predicted
state (5.9) is defined as = f. — ﬁ;‘k_l. Then, for all frames: € K(p), this prediction

error along with the innovation (5.12) can be formulatecetbgr in a state model according

to [98,99]
Wy
_ Gp ~—
Ap ——f~—
—l W
Ek+1 = (1 - Kp—l) €k + 1 _Kp—l 5 (521)
Uk
T = €k T V. (5.22)

The ALS method aims to observe the filter innovations andaixghy observed nonzero
correlations at different lags to obtain solutions for tiknown noise variances and/or the
optimal gains. The autocorrelation of the innovations myith block at any lag is given
by

€;(p) = Elrire+jl;  0<j < Las, (5.23)

wherek, k + j € K(p) andLas < Ny is the order of the autocorrelation lags we wish to

consider in formulating the ALS problem. We assufiie,] = 0 and coyey) = m and
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define

Q, = EW,W,"]= Zulpla) 0 : (5.24)
0 o5 (pNa)
- 0
Xp = EWpu] = (5.25)
aa(p)

for k € K(p). Note in (5.25) that althougKk[IV ,v;| contains the time indek, this expec-
tation is constant oveK(p) due to the piecewise stationarity assumption.

In the interest of clarity and to illustrate the form of théesant relations, we assume
Las = 3 in the following; generalization to othdr, is straightforward. The least squares
estimation problem is formulated in terms of an autocovexéamatrix,(Las) that, for

Las=3andk,k+ 1,k + 2 € K(p), is given by

(Tk)Q TETk+1 TETk+2

Ry(3) = E Pk (Thi1)® TreiTre2 | (5.26)
TETk+2  Tk+1Tk+2 (Tk+2)2

The individual elements of?,(3) are functions ofry, A,, G,,Q, and,. Let “vec” be

the vectorization operator which transforms a matrix int@etor by stacking the columns

upon one another. Then the vectorizatiorff3) is given by
vedR,(3)] = (0, ®60,)m
+T, ® T,vedl;ved @, Q, G, )
+ (¥, & ¥, + I3)ved ;)0 (p), (5.27)

wherel,, denotes the: x n identity matrix,® denotes the Kronecker produet,denotes

direct sum, and the matrices,, I', and ¥, are given by

1 0 00
Q=14 | .Th=]1 00/ V=T,8 K1 (5.28)
—9 —
’ A, 10
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Using the Lyapunov equation to eliminate thgterm in (5.27), one obtains

Zp(3)
——
VeC[Rp(g)] =
oy /—:cp—\
T 1| oi(p)
Dp‘ DPKp%—l + (\Ilp D ‘ij + I9)Vec([3) ’
o (p)
(5.29)
where
D, =(0,®6,)(1-A4,®A,)"" + (T, ®T,)vedls], (5.30)

andZ,(3) may be represented in terms of the autocorrelation termsedkin (5.23) as

Go(p) Ci(p) Ga(p)
F,(3) = vec €i(p) Co(p) Gilp) | - (5.31)

G2(p) G1(p) Go(p)

Provided that the innovations process is reasonably peatjodic, the quantitie®’; (p)
in (5.31) may then be estimated by
1 PNi—j

Gi(p) = N S ririy. (5.32)

i=(p—1)Ng+1

We define an estimated vectorized correlation ma@p{?)) by replacing the theoretical
correlationsé;(p) in (5.31) with the empirical estimat@?(p) given by (5.32). From this
definition and (5.29), we write

~

dhx, = X, (3). (5.33)

The expression (5.33) forms the core of the ALS method: #tesl the observed corre-
lations contained ir:@p(S) and defined in (5.32) to the desired varianegép) ando?(p)
contained inx,. Also note thate, is dependent only on the asymptotic Kalman g&in ,

from the previous block. Thus, the least squares problerthBounknown noise variances
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Table 5.1: Pseudo-code to implemeédkF,;, for a single bin of the appearance histogram

during thepth time block andsth frame.

1. Predict bin valuq?k|k,1 = fk_l.
2. Acquire observatiop; based on tracker output.
3. Compute innovationy, = g — fy/s_1.
4. Update bin valug?k = fk‘k,l + Kp_17%.
5. 1f k = pNy
e Find %A”p(LaB) from ng(p) for0 < j < Lys— 1using (5.32)
¢ Determines, using (5.29) to setup the ALS problem in (5.33).
e Perform the optimization in (5.35) to obtai} (p) anda? (p).
e Compute asymptotic Kalman gaik, from the estimated
noise variances for use in the next block.

End

o2 (p) anda?(p) can be expressed as
®,= min |9, — %y (3) (5.34)
subject tos? (p), o2(p) > 0. The positive semi-definite requirements @f(p) ando?(p)

are enforced by appending a logarithmic barrier functiofbt84), resulting in

2

2
o ~
¢, = min |, w(P) — X,(3)
o (p),o3(p) o2(p)
— nloglog, (p)os (p)]; (5.35)

wherey is the barrier parameter. The least squares problem (5&5bé&en shown to be
convex and can be solved using a Newton recursion [98]. Bseode to implement this

AKF,, algorithm for a single bin of the histogram is given in Tabl&.5
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5.3.4 Numerical simulations

Having extended the ALS method to the piecewise stationasg,cwe perform two nu-
merical experiments on simulated data. The first compares.fAland AKF,s in terms of

their capability of noise estimation on a system with WSS eaisaracteristics. The sec-
ond examines the performance of the proposed piecewiserstat ALS method against

piecewise stationary and more general nonstationaryrsys$y@amics.

5.3.4.1 Comparison betweed K F;, and AK'F,,,

The objective of this experiment is to estimate the unknowaisgcovariance matrices from

simulated data using AKE, and AKF,s. Consider a system of the form

Ty, = Axp_ +wp_, (5.36)

Yy, = Cxp+ vy, (5.37)

wherew,, andwv, are zero mean, iid Gaussian noise processes with fixed aocasQ

andR, respectively. Let

01 0 0.1 1 —01 02

A= 0 02 0 | C=1]-02 1 0 [,
0 0 03 0 —04 1
05 0 0 05 0 0

Q=0 07 0 |, R=1|0 02 0
0 0 025 0 0 075

During estimation, the diagonal elements@fand R were initialized with random
values uniformly distributed between zero and one. The asytic filter gain for the ini-
tialized noise covariances was then computed. This gainused for filtering over 5000
data points to obtain innovations that were used, along thihnitial estimates of) and
R by the AKF,, and AKF,s methods to estimate the unknown noise covariances. Re-

sults from repeating the simulation 200 times are showngn 53, where each data point
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corresponds to the estimate from a single trial. It is ob=grhat AKFs produces es-
timates that are positive semi-definite and more precise thase delivered by AKE..
The estimates produced by Ak seem to depend on the initial values of the unknowns.
Since AKR,, assumes that at least one of the noise covariances is kagsori, an er-
roneous initial value can greatly distort the estimatioartler, there is no guarantee that
the estimates (5.17) are PSD, as seen by the occasionaiveegstimates of the AKf,
method in Fig. 5.3. Unlike AKE,, AKF4s (1) estimates both process and observation
noise parameters simultaneously, (2) formulates a leasireq problem based on multiple
constraints obtained by considering the autocorrelatfdheinnovations at different lags

and (3) enforces PSD constraints on the estimates.

Figure 5.3: Diagonal elements of the noise covariance oesf) andR as estimated by

AKF ., and AKF,s for WSS system dynamics.

5.3.4.2 Piecewise treatment of non-stationary systems by ,;,

Here, we examine the performance of AtRand its inherent block stationarity assump-
tions against the linear state model (5.36), (5.37) for #mecf nonstationary noise pro-
cesseaw,_; andw, with diagonal covariance matrix entries that exhibit jumgmsitions

and linear ramps. Let

09 0 0.7 1 —01 0.2
A=1|0 09 0o |,C=] 02 1 0 |-
0 0 0.7 0 —04 1
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and letw, andwv, be zero mean, iid Gaussian noise processes with time vadyaggpnal
covariance matrice® andR having main diagonal entries given by the dotted blue lines
in Fig. 5.4. As indicated in the figure, the noise covariararesblock stationary during the
first portion of each simulation and increase or decreasatiy with small-scale additive
noise during the second portion. The transition times betwbese characteristics for all
six diagonal covariance matrix entries are mutually indelest.

The objective is to estimate the six unknown covariancesgugie AKF,s algorithm
developed in Section 5.3.3. In the absence of apyiori knowledge about the transition
times between piecewise stationary and linear charatitaris the noise variances, we
set the block lengthV, in the AKF,s algorithm to a constant. Choosing; small results
in a paucity of data points being available to perform stiaadly significant least squares
estimation, whereas choosing; large limits the ability of the algorithm to adapt to the
nonstationary changes. The experiment is designed to stedyerformance of AKf; as
a function of the chosen block si?2é,.

The estimates of the diagonal element€pandR are initialized with random values
distributed uniformly in [0, 1]. The asymptotic Kalman gaiarresponding to this initial-
ization is used for filtering over the first block of lengy, to obtain innovations. These
innovations are then used to formulate the least squardsemno(5.35), the solution of
which yields estimates for the six unknown noise covariarargd an asymptotic Kalman
gain K. In an offline application, this Kalman gain could be usedegrocess the first
block. For a real-time implementation, however, we instasel the asymptotic gaif’;
obtained from the first block to process the data in the sebtyek. This approach is ef-
fective for achieving real-time performance provided ttiet jump transitions are not too
large and the ramp characteristics are not too steep. Tloeguee is repeated recursively
with the gaink,,_, from blockY (p — 1) (defined in (5.19)) being used to process the data
in blockY (p) and generate innovations.

Since the number of constraints in the least squares prosteuld be larger than the
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number of unknowns (six in this case), we set the number otautelation lags considered
by the AKF,s algorithm toL,s = 10. We performed simulations against the covariances
shown in Fig. 5.4 with block sized'; = 15, 45, and135, where 100 trials with different
random initializations were run for each block size. Therage estimated covariance
values for the three different block sizes are shown as setidines in Fig. 5.4(a), (b), and
(©).

In Fig. 5.4, we see that a small block siz€,(= 15) affords the opportunity to adapt
quickly to abrupt nonstationary changes in the dynamicstHaiestimation errors are gen-
erally large due to the limited observations available ichelalock. With the largest block
size (V; = 135), the algorithm is slower in adapting to nonstationary e, especially
those that occur in the middle of a block, but the estimationre are generally much
smaller than the ones with the small block size. Box plots maisg the distribution of the
estimation errors are given in Fig. 5.5, where we observe Wigh increasing the block
size, the median error decreases and the probability ofa kstimation error diminishes
as shown by the whiskers of the box plots. Overall, we find &€ s is able to cope
reasonably well with both the jump and ramp nonstatiorexitiepending on the block

size.

5.4 Particle Filter-based Tracking

This section details a patrticle filtering-based trackingoathm where histogram-based
appearance learning is involved at each time step. We fiestepit a target appearance
model used for IR imagery, followed by the dynamic modelsduiselR tracking. The

algorithm implementation is also discussed.

5.4.1 Dual foreground-background appearance model

We present a target model that involves the local statistidsoth the target and its sur-

rounding areas, as shown in Fig. 4.3. The use of backgrodadmation for target track-
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Time (a) Time

Figure 5.4: Simulation of AKEs against nonstationary noise statistics for three differen
block sizes. The dotted blue lines give the true values ofrithan diagonal entries of the
process noise covariance maté)x(left column) and measurement noise covariance matrix
R (right column). The AKE covariance estimates are shown as solid red lines for (a)

Ny =15, (b) Ny = 45, and (C)Nd = 135.
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Figure 5.5: Box plots of AKRgs absolute estimation errors for three different block sizes
against the nonstationary covariances shown in Fig. 5.4.Hdoxds indicate the 25th and
75th percentile, while the centerline indicates the meaiaor. The whiskers extend to

approximately 99% coverage of the error data.

ing was discussed in many tracking algorithms, [82,83,118]. In these methods, target
tracking is performed on an intermediate classificationgejaisually called a confidence
map [116], a likelihood image [117] or a weighted image [8&jere each pixel is assigned
with the probability belonging to the background or the poaind. Here we have a differ-

ent point of view using background for target modeling. Gugét model is motivated by

the “hit-and-miss” morphological transform that uses Hotieground and background for

object detection. In practice, the background informatsoiound to be of great assistance
in localizing the target and determining its size. Spedifjcéghe proposed target model

involves four histograms to represent local statistics.

Let y,, represent théth frame, andk,=[xy, yx; s7, s;] the state to be estimated during
target tracking, wheréry, y,,) and(sy, s;) are the position (top-left corner) and size of the
target area, respectively. As shown in Fig. 4.3, the targpéarance, denoted 6¥(x;,), is
composed of four histograms: the foreground/backgroutehsity g 4 (x;)/gs(xx), fore-
ground/background local standard deviation (stdgv(x;)/gp(xx), which are extracted
from y,. by using the kernel-based method in [85, 96] as follows.

Let c denote the location of the target’s centroid determinechftey, yx). The function
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p:R* — {1,---,m} maps the intensity value of the pixel at positiento a bin index in
the histogram. The probability of each din=1- - - IV, is computed as follows:

Phta) =M Y Ku(r—e)dlp(r) -], (5:38)

T&NF(Xk)
where )\, is a normalization constant obtained such that®, p%(x;) = 1 andJ is the

Kronecker delta function. We use the triangular kernelKg;, where the width of the

kernel is determined by the target siz¢, s;). Now we can define a:-dimensional vector

ga(xz) = [pY(xz), -, py*(xz)] called the foreground histogram. In a similar manner the
background area histogram may be obtainedds;) = [ph(x), - - - , Py’ (xx)] where
> Y dlp (5.39)
reNp(xk)

and ), is a normalization constant obtained such tEaﬁ.i"l p%(x5) = 1. Similarly, we can
obtain the foreground stdev histogram(x;) and the background stdev histogram(x).
Therefore giverx,, the corresponding candidate region in frageis characterized by

G(xy) as follows,

G(xx) = {ga(xx), 8B(%x), 8c(Xk), 8p(Xk) }- (5.40)

A reference target model learned from previous frames & @lailable that is composed
of four histograms, i.eFy_1 = {far—1,f54-1.fck—1.fpr_1}. This reference model is
updated online and used to evaluate any given candidatarafesme k represented by
G(xy) as:

D( Fk: l sz gz Xk zk 1) (541)

z2€Z

whereZ = {A, B,C, D} andd is defined in (5.6).v, is used to adjust the significance
of four histograms. In this work, all four histograms areeagivequal importance during

tracking. It can also be adaptively selected as discussi@b]n
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5.4.2 Target Dynamics

Two dynamic models are needed for IR tracking, one each ®iptsition and size. In
most IR sequences, the target predominantly exhibitsivelgtstable ground motion ac-
companied by strong ego-motion of the airborne sensor.idtusworks in [27, 32] used
a separate global motion model to compensate the sensanetjon. Inspired by [26],
we use an adaptive motion model to capture both ground maiohego-motion for IR
tracking:

Pr = Pik—1 + CiUp, (5.42)

wherepy, = [z, yi], ¢ < En[Api] andv, ~ N(0,1). E,[Ax,] is the velocity (in the
image plane) estimated over the padtames. In essence, this model controls the search
area in proportion with the observed target velocity.

To account for the magnification effect of an infrared target need a dynamic model
to increase or decrease the target size at each time step. tls model needs to control
the magnification change to be proportional with the previsize. Thus the dynamic

model for the size vectay;, is defined as
qr = Day1, (5.43)

whereq;, = [s7,s;] andD ~ U[l —¢,1 + ¢]. In the case of dealing with the AMCOM

closure sequences, we chese 0.2 in this work.

5.4.3 Tracking Algorithm

We develop a SIR (sequential importance re-sampling)ebarseking algorithm adapted
from [84] that involves three stepparticle propagationparticle evaluationandappear-
ance learning The complete tracking algorithm is shown in Table 5.2. tFipgrticles
are drawn according to the state dynamics defined in (5.42Y%d3). Second, particle

weights are computed by the likelihood functipty|xx, Fr_1), which is defined based
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on the distance measure in (5.41) as
p(yk|Xk, Fk—l) X exp()\ . D(G(X}C), Fk—l))a (544)

where\ is a constant to control the sensitivity of the likelihooddtion. G(x;) andF_;
are the observed target appearance given hypothesisstatel the previous reference ap-
pearance, respectively. Then after weight normalizati@hra-sampling, the state estimate

is updated, followed by online appearance learning digmissSection 5.3.3.

Table 5.2: Pseudo-code of the particle filter algorithm weitiine appearance learning for

target tracking.

e Initialization: Drawx), ~ N(Xy, 1), and seffy = G(X),
where Xy is the ground truth of the state in the initial frame.
eFor k=1,--,T (number of frames)
1. Forj=1,--,N, (number of particles)
1.1x] ~ p(x]|x]_,) using (5.43) and (5.42)
1.2 Computeuj = p(yk|xx, Fr—1) using (5.44)
End
2. Normalize the weights such thg . *, w] = 1.
3. Compute the mean of the stafgs= """, w}xj.
4. Setx), =resampléx],, w?).
5. Update reference modBl, based on state estimate

X, according to Table 5.1.

e End

5.5 Detecting occlusions and track losses

The task of excluding outlier observations is quite commoKalman Filtering applica-
tions and is referred to as gating. The gating criterion terobased on the statistical

properties of the residues. In [36] an error norm was defimethe residues to prevent
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outlier pixels from corrupting the appearance informatidm [37] a hypothesis test was
defined based on the standard deviation of the residueswBlipossible because residues
from each bin of the histogram were assumed to be statistisahilar. Other rigorous
methods that employ more sophisticated statistical tésbsexist [118].

In this work, we make use of the fact that the residues condpunt€5.12) for each
histogram binb follows a Gaussian distributior? ~ N(0,02,). Note that the residues
provide information about the mismatch between the prediend observed bin value. In
our model, since each of the histogram bins is charactebyatlfferent distributions we

associate with each bin an uncertainty térpdefined as

1 7‘2 —5[;2
U, =0.85 U, =0.25
- 0 P 0 r

Figure 5.6: lllustration of the uncertainty associatedwwto different residual values for

the underlying distributionV (0, o2, ).

Ideally if the observed appearance exactly matches theerefe model:(2=0), then
there is very little chance of the observation being errosed he uncertainty values for
two differentr?s for the same underlying distribution are shown in Fig. 5\& see that
a value ofr? closer to zero results in lower uncertainty and a value éaréway leads to
higher uncertainty. During the filter operation we refraiomh updating the appearance
model when the average uncertainty over the non-zero tses above a threshold of 0.7
and declare a temporary “track loss”. A prolonged track Iesadicative of an occlusion

or movement of the target outside the sensor view.
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Once in lost mode, in each subsequent frame, attempts are tmaglacquire the target
by using a histogram matching based detector. The detasterformed in window area
around the last known target position and an average of shésa appearance histograms
is used as the reference. Being dependent on only the lastkappearance can be prob-
lematic in cases of partial occlusion. This is because aifgignt portion of the target
appearance may already be lost before a track loss is detetle target is declared as
found and normal tracking resumes when the detected caedielgion has a uncertainty
value below the threshold 0.7. If no acceptable candidate$oaind within 100 frames
of a temporary track loss, a complete “track loss” is dedamrd tracking is terminated.
This simple methodology works very well in recovering theg&t after short periods of
occlusions and scene absence and is discussed furtherexpgbements section. In case
of a prolonged absence from view or occlusions, when theetaggappears it may signifi-
cantly differ from its previous known appearance. This nsakdifficult for the detector to

identify the target with high certainty and may require méalization.

5.6 Experimental Results

Our tracking algorithm was tested on the AMCOM IR dataset. sTdataset comprises
of sequences in grayscale format (¥228 pixels). Ground truth information about the
target position, size and type is available in the datasdtsamves as a benchmark for
performance evaluation. Ten representative IR sequersegsin the experiment are given
in Table 5.3. These sequences exemplify the challenges watRing such as poor target
visibility, strong ego-motion, small targets, size vaoas, dust clouds, significant clutter

and background noise, etc.
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Table 5.3: List of sequences used in experiments.

Frame Size

Sequences Starting| Ending | Length| Starting| Ending

frame | frame size size

LW-15-NS 20 270 250 5x8 | 16x16
LW-17-01 1 350 350 5x8 |16x29
LW-21-15 235 635 400 3x4 | 10x10
LW-14-15 1 225 225 4x5 | 23x19
LW-22-08 50 300 250 5x8 | 17x24
LW-20-18 120 420 300 4x7 | 10x17
LW-18-17 1 190 190 5x9 | 11x25
LW-19-06 40 260 220 3x4 | 6x11
MW-14-10 1 450 450 6x11 | 12x28
LW-20-04 10 360 350 3x4 | 12x15

5.6.1 Experimental setup

Three appearance learning algorithms, nani&lyAKF ., andAKF, are integrated with
the same tracking algorithm given in Table 5.2. It is wortmtiening that all three algo-
rithms share the same linear filtering form defined in (5H} determines; according
to histograms similarity, whilAKF.,, and AKF,;; uses the Kalman gain. The detailed
setting of the three tracking algorithms is listed in Tahk 3n practice, the Kalman filter-
based appearance learning algorithms were applied orthetinvo intensity histograms
andfp). Because the dynamics of stdev histograms do not have adeftied structure,
the stdev histogramg{ andfp) in all cases were updated using the method.

In addition to the tracking errors, we adopt an overlap rogtroposed in [119] to

guantify the degree of overlap between the tracking gate thi actual target area. Ldt
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Table 5.4: Description and value of the experimental patarae

Variables| Description Values
N | bin number of the intensity histogram 32
Nb(Z) bin number of the stdev histogram 16

Lecov number of frames used for AKF in (5.16) 3

Ny block size in frames 7
Las number of autocorrelation lags 5

Ck dynamics of position used in (5.42) 3E,[Axy]
N, number of particles used for tracking 200

1 A (Ground truth
¢=040 :.: B (Tracking gate
7 An B (Overlapping aree

%

000000

{ =0.65 { =1.00

Figure 5.7: lllustration of the overlap metric for a few @ifént tracking cases.

and B represent the tracking gate and the ground-truth boundirgdspectively, then the

overlap ratioC is defined as
#(ANB) x2
#(A) +#(B)’

where+# is the number of pixels. A few representative examples ohtle&ric are shown

¢ = (5.46)

in Fig. 5.7.

5.6.2 Experimental Analysis

Three IR tracking algorithms (50 Monte Carlo runs) were extdd and compared in terms
of their performance of appearance learning (Fig. 5.8)pthelap metric{ (Fig. 5.9) and
the tracking error (Fig. 5.11 and Table 5.6).
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5.6.2.1 Appearance learning

As shown in Fig. 5.8, it can easily be observed that the resfilh KF ), closely match the
ground-truth. Closer examination reveals tH&tandAKF ., result in the histograms that
slowly deviate or “drift” from the true ones. This is cleagyident in Fig. 5.8(c), where
the intensity variation in the latter part of the sequenceyad frame 300) is not captured
by HS andAKF,..,. Therefore, the tracker includes a large portion of the geamknd into

the tracking gate as seen in frames 320, 360 of Fig. 5.11 (c).

5.6.2.2 Overlap metric

The improvements of appearance learning can be furthectrefldy the overlap metric in
Fig. 5.9(a)(b), which compares;,, (.., and(ys in pairwise. For example, the improve-
ment of AKF,;; over AKF.,, or HS can be demonstrated by seeing most data points are
above the diagonal lines. The comparable resuiBt',; and AKF .., in sequence LW-
22-08 is also shown in the similar appearance learning peegnce in Fig. 5.8(e) where
the histogram-based appearance lacks strong modes anddespread and small bin val-
ues. The average value ¢fcorresponding to different algorithms is given in Table.5.5
The AKF s method has the largest value that indicates its superidonmeance of target

tracking when compared to the other two algorithms.

5.6.2.3 Tracking error

Table 5.6 provides quantitative results of the trackinggremance. In most caseaAKF
produces the least errors in terms of both position and Jike.HS approach loses track
of the target in sequences LW-20-18 (6 runs) and LW-19-06u(@¥ as indicated by the
large errors. Thé\KF,, also loses track of the target in the sequence LW-20-18 (1L run
due to the high similarity between foreground and backgdouwore visual comparisons
are shown in Fig. 5.11. We can see tA&{F ), offers the best position and size estimation

except sequence LW-22-08, wheX&F ., is slightly better due to the lack of well defined
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Table 5.5: The overlap metric values of the three trackiggmthms.

Sequences HS | AKF . | AKFs

LW-15-NS | 0.669| 0.707 | 0.714
LW-17-01 | 0.547| 0.596 | 0.720
LW-21-15 | 0.601| 0.578 | 0.620
LW-14-15 | 0.676| 0.682 | 0.708
LW-22-08 | 0.751| 0.770 | 0.758
LW-20-18 | 0.689| 0.753 | 0.758
LW-18-17 | 0.704| 0.702 | 0.703
LW-19-06 | 0.670| 0.685 | 0.713
MW-14-10| 0.802| 0.797 | 0.799
LW-20-04 | 0.715| 0.711 | 0.720

Average | 0.682| 0.698 | 0.721

structure in the histogram-based appearance, as showg.iB.B{e).

5.6.3 Tracking performance of covariance descriptor

We also tested the covariance descriptor for IR trackinge @dvariance descriptor was
found to be robust and effective for object tracking in ogitismages and plays an impor-
tant role in several state-of-the-art tracking algorithixi®0, 121]. It was first proposed
in [122] for object detection. This descriptor has sevedsaatages: (1) it is able to fuse
together many different features; (2) it is invariant tamiination conditions and rotation,
contains both statistical and spatial information andsstiacompute; (3) it can be updated
incrementally and systematically by some manifold leagmmethods. In IR tracking, the
covariance descriptor involves local intensity, stdeadignt, orientation and Laplacian in-
formation of the target area. This descriptor was combingh tlie particle filter whose

dynamics were described in Section 5.4. The tracking resdiltising the covariance de-
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scriptor are shown in Fig. 5.10 where no learning is involvitds observed that the co-
variance tracker is able to maintain a reasonable trackeofatget in LW-17-01, but fails
to track the dark target in LW-15-NS. In both sequences, doeker encounters difficulty
in size estimation. The small size of the target, weak texturd absence of color signifi-
cantly reduce the effectiveness of the covariance descriipt tracking small targets in IR

images.

5.6.4 Further Discussion

In summary, thedS method is usually encumbered by the drifting problem dunmage-
mental appearance learning. TR&F .., method, which assumes the same noise statistics
for all histogram bins and estimates only the process noideut considering PSD con-
ditions, results in a suboptimal Kalman gain. Its perforoears marginally better than
that of HS. The AKF, algorithm, which estimates both process and observatiseso
with PSD conditions for each individual bin in the histogramable to follow the modes
and variations of the histogram during tracking and sugpeffective appearance learn-
ing. However, when a histogram lacks some strong modes anwidaspread and small
bin values, such as LW-22-08 and MW-14-10, all three metlavdscomparable. This is
mainly because the poor structure of the histogram evalutiay invalidate Kalman filter
assumptions, whiléls is still effective to incorporate the most recent tracketiservation
for appearance learning when the histogram is less well efiithis justifies the use of

HS for learning the stdev histograms which normally have wealcsures.

5.6.5 Experiments on the VIVID dataset

In the VIVID dataset the targets are larger compared to theC&N dataset and the fore-
ground information is robust enough to represent the tarfie¢refore we predominantly
depend on the foreground information for tracking by segttine histogram importance

asvy; = 0.45, vy; = 0.05, vy, = 0.45 andwy, = 0.05 in (5.41). The sequences tested
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Table 5.6: Mean error of the state variables over averagedtbe length of the sequence from 50 Monte Carlo runs usirg tthfferent

algorithms.

Algorithm HS AKF oy AKF 4

Sequence|| = Y s* sY x Y s* sY x Y s* sY

LW-15-NS || 1.019| 1.817| 1.906| 2.732|| 0.860| 1.511| 1.644| 2.396|| 0.801| 1.461| 1.423| 2.339

LW-17-01 || 2.406| 3.415| 2.104| 3.016|| 2.145| 3.005| 2.101| 3.163| 1.213| 2.110| 1.376| 3.033

LW-21-15 || 0.970| 1.653| 2.624| 2.941| 1.135| 1.812| 2.799| 3.113| 0.893| 1.300| 2.786| 2.575

LW-14-15 | 0.889| 0.815| 3.160| 2.137| 0.932| 0.787| 2.981| 2.157| 1.099| 0.801| 2.660| 1.787

LW-22-08 || 1.167| 0.868| 1.684| 2.049| 1.202| 0.843| 1.070| 2.232| 1.200| 0.839| 1.363| 2.175

LW-20-18 || 3.230| 1.831| 1.657| 1.953| 0.901| 1.095| 1.307| 1.766| 0.599| 1.084| 1.439| 1.754

LW-18-17 || 1.269| 1.722| 0.733| 2.949| 1.303| 1.838| 0.859| 2.611| 1.425| 1.679| 1.087| 2.252

LW-19-06 || 1.977| 1.545| 1.566| 1.544| 0.797| 0.764| 1.681| 1.454| 0.694| 0.709| 1.536| 1.279

MW-14-10 || 0.628| 0.789| 1.648| 1.691| 0.756| 0.806| 1.638| 1.789| 0.775| 0.778| 1.629| 1.607

LW-20-04 | 0.702| 0.954| 0.940| 1.528| 0.697| 0.937| 1.071| 1.614| 0.688| 0.907| 1.006| 1.357

Average | 1.426| 1.541| 1.802| 2.254|| 1.073| 1.340| 1.715| 2.230|| 0.939| 1.167| 1.630| 2.016




are typical of aerial surveillance videos and are affecte@dn-motion of the sensor, oc-
clusion by foliage, targets exiting scene and reappearihge to the absence of explicit
ground truth information we only present visual evidenc¢heftracking performance. In
all the sequences, the targets were manually initializeld am appropriate bounding box.
We compare the performance of the tracking algorithm WilF , ;,; and withoutAKF
track-loss detection on a few representative sequencésand without track-loss detec-
tion.

A few sample frames from three different sequences, thertaingy associated with
the AKF .., 11q tracker and the corresponding foreground appearancdivasaare shown
in Fig. 5.12, Fig.5.13 and Fig. 5.14 respectively.In SEQfesponding to the top row of
Fig. 5.12, the target is occluded by some trees around fréanam& reemerges from behind
them around frame 65. Both theKF ., 1q and AKF,, algorithms perform similarly
till the time of occlusion. During the period of occlusiorethncertainty associated with
the appearance increases above the set as shown in Fig)5.IBérefore, the\KF ;s 114
tracker stops all update to the appearance and goes intdidatsode. The\KF ,;, tracker
on the other hand continues to learn new appearance condisgdo the background. By
the time the target is occlusion free, the detector is abledate the target with acceptable
level of certainty and tha KF 4, 14 tracker begins tracking the target. TA&F,, tracker
by this time, has learnt the appearance of the backgrountbaesitrack of the target. From
Fig. 5.14 we can observe the appearance of significant pedke iappearance histogram
of the AKF,, tracker as it shifts its focus toward the background. Ri&, ), 14 tracker
suspends all updates until a reliable target is found, shisdicated by the missing values
between the occlusion frames in Fig. 5.14 (a). In this secgiethe increased uncertainty
around frames 30, 80 and 90 maybe attributed to the lens fffeld enteracting with the
target and can be clearly seen in the observed images.

In SEQ2, the target moves outside the sensors view range flew rames and re-

enters the scene. By frame 195 the target is only partialifpleisand this is reflected in
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the increased uncertainty around those frames in Fig.BJ13A(subsequent exit from the
scene triggers the detector mode of i€k, , 14 tracker. The detector is able to quickly
detect the target upon re-entry and passes it on to the tradken a uncertainty value
below the threshold is achieved. TA&F ,, tracker slowly deviates from the target and
begins to concentrate on the background as shown in Fig(5.14

In SEQ3, the target becomes absent from the scene for andextgreriod of time
before re-entering. The exit of the target around frame 268aisily picked up by the
uncertainty indicator. Note the gradual increase in ulagat corresponding to the slow
exit of the target from the scene. When the target re-entersdéne, the detector is quick
to move on to the true target, however, the uncertainty gssatwith it still remains high
as seenin Fig.5.12 and Fig.5.13 (c). This suggests thatgththe uncertainty criterion is
robust enough to detect track-losses, it may not be a stradigator of track-acquisition.
In cases of long absences it may be necessary to re-ingtithleztracker with a more robust

detector using feature descriptors more complex thansitiehistograms or manually.
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Histogram learnt Histogram learnt Histogram learnt
using HS using AKFoy using AKFys

Original histogram

{o

Frame #

Figure 5.8: Comparison of appearance learning for the AMCQOduiseces: (a) LW-15-NS
(b) LW-17-01 (c) LW-21-15 (d) LW-14-15 and (e) LW-22-08 arfi (IW-14-10.
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(a) LW-17-01 (b) LW-21-15 (c) LW-22-08

Figure 5.9: Pairwise overlap comparisQn,s vVS. (cov (top row) and(ars VS. (us

(bottom row) for LW-17-01 (a), LW-21-15 (b) and LW-22-08 (c)

Frame 100 Frame190 Frame 230 Frame 250
Frame 1 Frame 65 Frame220 Frame 271 Frame350

Figure 5.10: Tracking results for two AMCOM sequences usheg dovariance tracker.

Top: LW-15-NS and Bottom: LW-17-01.
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Framel Frame 65 Frame 100 Frame150 Frame 190 Frame 230 Frame 250
ot - - - . — .

Frame 320

Frame 65 Frame 350

Frame 1 Frame 68 Frame 150 Frame 220 Frame 320 ' Frame 360 Frame400

SIII

Frame 1 Frame 45 Frame 100 Frame 125 Frame 150 Frame 190 Frame 225

Framel Frame 50 Frame 100 Frame 150 Frame 200 Frame 225 Frame 250

Figure 5.11: Tracking results of the three algorithm on fild@OM sequences. The top
row of each image shows the observed frame and and the batierdapicts the tracking
gates corresponding to the Ground truth (Top-Léffth (Top-Right), AKF.,, (Bottom-
Left), AKF, (Bottom-Right). The sequences from top to bottom are LW-151N%-17-
01, LW-21-15, LW-14-15 and LW-22-08
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IIII!IJIII

Frame 250 Frame 325 Frame 350

Figure 5.12: A few sample frames from three different segasrare shown in each of the
rows. In each sub-image, the top image represents the @usBame. Bottom left is the
result of AKF ,5.11q @and bottom right:AKF ;. The black bounding boxes represent the

tracking result. The white “+” sign represents the outputhef detector in the\KF ;s 114

method.
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Figure 5.13: The appearance uncertainty associated vatfotkeground histogram by the

AKF 61114 tracker for (a)SEQ1, (b)SEQ2 and (c)SEQ3.
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Frame #

5 10 15 20 25 30 5 10 15 20 25 30
Bin # (b) Bin #

Figure 5.14: Foreground histogram variation associated the AKF s, 1q and AKF s

trackers for (a)SEQ1, (b)SEQ2 and (c)SEQ3.
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CHAPTER 6

Integrated Tracking and Recognition*

6.1 Background

Joint tracking and recognition is a challenging issue that great interest to both computer
vision and signal processing communities. Though the paitfisensor measurements and
research focuses are quite different, they share some consaoes when the problem
is formulated as a dynamic state-space system involvingreason and system models.
Traditionally, vision research focuses on the developrépbowerful appearance models
[31,67] (i.e. observation model), while signal processigearch places emphasis on the
system model by focusing on the dynamics of maneuveringtaf$9, 70]. Recently,
there is a trend to combine both appearance and motion ctes ijpint tracking and
recognition flow [60, 62]. We address the problem of joing#&rtracking and recognition
by incorporating both appearance and motion informati@ntwio generative modeldn
this chapter, we exploit the synergy between the two cues nsytitally fusing them in an
integrated probabilistic framework that enables their naltinteraction for joint tracking
and recognition.

Target appearance modeling is vital in any tracking andgeition algorithm since
target appearance varies widely with pose changes. Maostireximethods [31, 123] only
deal with limited pose variations as they often use templateother image features to
accommodate appearance variability. In addition, suchatsageed continuous update to
ensure robust tracking and recognition [123]. To overconesé issues we suggest the

use of a nonlinear tensor-based generative model simildretone proposed in [67] that

1The work presented in this chapter was done in collaboratitmDr Xin Fan
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can synthesize a target signature given the target type raagbétrary pose. In addition
to aiding the tracker by accounting for inter-frame appeeeachanges, this model also
facilitates recognition by generating distinct type-speappearances with any pose.

Traditionally, multiple motion models have been widely pthal to accommodate ma-
neuvering actions in target tracking [68]. In reality, diént targets would be equipped
with customized engines and mechanical systems that gendistinct motion patterns.
This inspires researchers to develop multiple type-depeinchotion models to achieve
joint target tracking and recognition [69, 70]. Howeveldh approaches require sensors
giving direct kinematics measurements, e.g., radar, amibticonsider the target appear-
ance. We employ target-dependent generative motion madajged with the generative
appearance model for joint tracking and recognition.

We develop an integrated graphical model to encapsulateleifant factors, i.e., the
target type, the motion and appearance models, as welliags#use-and-effect dependen-
cies. The type-dependent motion and appearance modelssyoekgistically for tracking
and recognition, unlike the approaches in [60, 62] whereionatnodels are adaptive to
appearance changes but have no direct impact on recogntiemesort to a particle filter
based inference method, in which a Kalman filter using theanatues is embedded to im-
prove the identity proposal generation as well as kineraasgtimation. The experiments
on simulated infrared sequences demonstrate the advardaagegotential of the proposed

approach for joint tracking and recognition.

6.2 Problem formulation

A graphical model is used to integrate all the factors aloiity) their conditional depen-
dencies into a probabilistic framework as shown in Fig.&Miere three latent variables are
estimated, i.e., a discrete valued target identity vagidple {1, ..., Nr}, the continuous
valued zero-order kinematicx, (position[p,, p,|' and posep) and the continuous valued

first order kinematic¥; (linear velocityv and angular velocity,). Z; denotes the cur-
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rent observation frame an$l, a intermediate variable represents the hypothesizedttarge
appearance. Here joint tracking and recognition simpliftean estimate of the posterior

probability p(1;, X, K| Z,).

Target type

1'st order Kinematics
(Linear, angular velocities)

Zero order Kinematics
(position and orientation)

Target Appearance

Observed frame

Zt-l Zt Zt+1 *

Figure 6.1: Graphical model for integrated tracking anaggation.

Fig.6.1 implies the probabilistic dependencies of thetjdistributionp(1;, K, X, Z;|0;_1),
where©;_; denotes the previous observation and latent states. Thbanveern,;, X ; and
S; as well as those betwedn K; and X, show the cause-and-effect relationships that
correspond to the generative appearance and motion madgisatively. Specifically, the
appearance of the targ8t in a given frame is dependent on its identity, position anskepo
with respect to the camera. The change in pose and positeingén frames is dependent
on the linear and angular velocities of the target which i tiepend on its identity. From

the conditional independence in Fig.6.1, the joint proligltan be factorized as:

P(]t, K, X, Zt|@t—1)

:p(ZtutaXt)p(IhXt’Kt|®t—l)a (6-1)

wherep(Z,|I;, X ) is the observation likelihood dependent on the appearandemAp-
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plying the conditional independence between two time stijgdast term in 6.1 is:

p(Itv X, Kt’@t—l)

= p<Xt|Xt—17 Kt—l)p(Ktuta Kt—l)p(jt|]t—1)7 (6-2)

wherep(X,| X1, K;—1) andp(K,|I;, K, 1) are related to the generative motion model
andp(l;|I;_,) is defined by a target type transition matrix. Due to the n@us3ian prop-
erty of I; and non-linearity ofX;, we resort to the particle filtering approach where the
posterior probability is maintained by a weighted sample 3t&e samples at timecan

be generated from those at tifle— 1) by 6.2, and weights are assigned by 6.1. A bet-
ter proposal is derived by incorporating the current apgreae observation in the spirit of
APF [124] and the estimation can be further improved byaitiy the Gaussian probability

of p(K| 1, K1)

6.3 Tensors: A brief review

As pointed out by the authors in [65] natural images are dtrefa number of interacting
factors related to illumination, scene structure etc. Kkangple in [65] the authors consider
a face dataset with variations in identity, illuminatiorpeession, pose etc. In our problem,
we want to develop a appearance model capable of handlirgivas in target shape due
to viewing angle and target identity. The algebra of highwter tensors provides a effec-
tive framework to separate out (decompose) the constitiaetdrs of image ensembles.
In this chapter, tensor decomposition is a primary compboéthe proposed generative
appearance model. The aim of this section is to provide &fewéew of the relevant tensor
algebra concepts and is based on the works presented ir2f53,26].

Common linear algebra techniques like Principal Componerlyss (PCA) and In-
dependent Component Analysis (ICA) have been successfullijedpto several image
analysis and representation problems primarily in the exdnof face recognition [127].

However, by their nature these methods are most suited fysia of a single varying
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factor. In the case of face recognition this varying fackomiost often the identity of the
individual. These methods have difficulty in effectivelycdenposing other variations such
as illumination or pose if they are present in the datasahitnchapter we develop a target
appearance model with the decomposable factors of targetitg and view angle using
multi-linear algebra.

A tensor is defined as a multidimensional matrix ot-avay array orn-mode matrix.
They are higher order generalizations of a vector (first otelesor) and a matrix (second
order tensor). In this section we represent scalars usimgrloase lettersa, b, ..), vectors
using bold lower case lettefa, b, ..), matrices using bold upper case letteds B, ..) and
higher order tensors by script upper case letters %, ..). The order of a tenso#/ €
phxlzx-xIn js N and a element of this tensor is denoteddy, ;, wherel < i, < I,,.

Tensor Flattening: One of the most important and useful operation that can be per
formed on a tensor is flattening (matricization or unfoldinigis the process of reordering
the elements of a tensor into a matrix. For example a3 x 4 tensor can be rearranged
into a 4 x 6 matrix, 3 x 8 matrix or a2 x 12 matrix. The mode: matricization of a tensor
o € Ri<kxxIx js denoted byA,,. The example provided in [125] is repeated here for

clarity of the flattening concept. Let the frontal slicesafc 23*4*2 be represented by

1 4 7 10 13 16 19 22
Ai=|2 5 8 11 |,A2=1] 14 17 20 23 |- (6.3)
36 9 12 15 18 21 24
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Then the three mode-flattened matrices are given by

1 47 10 13 16 19 22
An=12 5 8 11 14 17 20 23 |. (6.4)
36 9 12 15 18 21 24

1 2 3 13 14 15

4 5 6 16 17 18
78 9 19 20 21

10 11 12 22 23 24

12 3 -+ 11 12
Ay = . (6.6)
13 14 15 -.- 23 24

Note that different works use different ordering of the ecohs for the mode: flattening
operation. In general, the specific permutation of the colsira not important as long as it
is consistent across all related calculations [125].

Mode-n product: The next important operation involving tensors that is ¢éiast to
us is the moder product. The mode-product of a tensogy € R xT2xxInxxIN with a
matrix@Q € R’/*» is denoted by = 7 x,,Q. The tensoB ¢ Rl > 12X In—1xIxInt1exIn

and elementwise we have

In

bil...in,ljin+1...i1\; = Z Qiyig..inQjip - (6.7)
in=1
The moder multiplication maybe represented using flattened matiase®llows
B =9 %, Q& By = QA. (6.8)
Another important property of the modeproduct is

A Xy P Xy Q=9 X, Q %X, P (M #m). (6.9)

Tensor decomposition: Let us consider the singular value decomposition (SVD) of

a matrix P € R**2, The SVD operation orthogonalizes the row space and themzolu
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space of the matrisP and provides the decompositidh = U, XU3 . HereU, € RI1*
is the orthogonal columns space of the matfx ¥ € R/+*/2 is the diagonal singular
value matrix andJ, € R2%’2 is the orthogonal row space of the mat#x In terms of the

moden product discussed previously, SVD can be expressed by
P=U3U} < P =3 x,U; x,U,. (6.10)
Extending the concept of SVD tomode matrices it is possible to obtain
A =€ x1U; xoUy--- xyUy. (6.11)

Here the tenso% is known as the core-tensor and is analogous to the diagomallar
value matrix in the SVD decomposition of a matrix. Note tle tore tensor” does not
have a diagonal structure and contains information abeutiieraction between the mode
matricesU,, forn = 1,2,--- , N. The “N-mode SVD” operation expresses the tensor
</ as the moder product of N orthogonal spaces. The mode matriéés contain the
orthonormal column space of the matu,, that result from the mode-flattening of
the tensorzZ. Once the mode matrices are identified using regular SVD erildéittened

matricesA,,, the core tensdé” maybe obtained by
€= x Ul x, UL - xyUXL. (6.12)

The implication of the decomposition in (6.11) can bettedenstood by considering the
face dataset example presented in [65]. Assume we have sTfegeimages of 20 different
people imaged under 5 different views and 3 different exgpoes and let each image be of
size80 x 60. It is possible to represent this dataset as a tensaf dimension20 x 5 x

3 x 4800. We can perform tensor decomposition as described abovsamo
A =C X1 Upeople X2 Um'ews X3 Ue:ppression X4 Upi:pels- (613)

Here the matrix,..,.. contains the basis vectors of the space of identity of thgestsh

Uviews SPans the space of viewpoint parametérs,,,.ssio, spans the space of expression

112



“ Target type (1)

=
1

e O = =

=

X

n - ’ iy =. .=
B! Manifold
ofo A - [
product

Target type factor
Target ! Target
Appearance : Signatur >
Learning B Synthesis

= Target 2 E
o o | | it Y e |
n Core Tensor
. . . .
ﬂ s
NT B’ :§
B . a
: £
NT <]
n B S . . .
= =
1%2)
Lk T ey
g
4

<&

Figure 6.2: Tensor-based generative model for multi paggtaepresentation.

parameterd/,;..;s sSpans the space of images and the core tegiggoverns the interaction
between the mode matrices. The tensor decomposition @e¥t a way to meaningfully
separate out the constituent factors affecting imagesietisemble. In our work, we apply
a similar decomposition to separate out target identity\aen related factors as outlined

in the section below.

6.4 Generative models

There are two generative models involved in Fig.6.1, nartfedyappearance and motion
generative models. The former relates the latent statésobgervation, whereas the latter
specifies the evolution of latent states over time. The ¢wmdil dependencies among the
variables in Fig.6.1 are derived from the generative matthalsencode the cause-and-effect
relationships between variables. These two models that gsha same identity (cause)

variable are jointly callegbint appearance-motion generative models
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6.4.1 Appearance model

One major challenge in tracking and recognition is that getacan continuously change
its appearance due to pose variations. It is practicallyossjple to train an algorithm
with all possible target appearances. Inspired by [67,,12@] use a generative model
approach to overcome this problem. We assume that the amesr of different poses
lie on a conceptual pose manifold represented by a 2-D comhemon to all targets, as
shown in Fig.6.2. Our objective is to have a functional maggrom this low dimensional
conceptual space to the higher dimensional image spacealR&aBis Functions (RBFs)
are often used in function interpolation and can easily iol@a mapping between a higher
dimensional and a low dimensional space. In addition, sunh@ping can be learned from
a small set of training data which include signatures §ilaguettes) of multiple targets
under different poses. The learning results in a mappingtion from a point on the low
dimensional manifold to a high dimensional silhouette imagd also provides a way for
us to generate silhouettes corresponding to view pointhenoww-dimensional manifold
that were not used for learning the mapping. Details of tlaenlieg of such a mapping
function using radial basis functions is clearly presemedd29].

We use non-linear Gaussian Radial Basis Functions (GRBF) tonotbta following
mapping [130]:

Y = BE(2), (6.14)

wherey”® is the high dimensiondl x 1) row vectorized silhouette image of targetinder
posem; x,, is the point corresponding to pose on the conceptual manifoldB* is a
d x N, linear mapping corresponding to tardet (-) is a non-linear kernel mapping
to the embedding space, composed\Qf GRBFs along the manifold. Fa¥; different
targets, based on 6.14 we may obtain their correspondingimgfunctionsB* for k =
{1,2,..., Ny} that can be stacked together to form the ma@ix= [B' B* ... B"7]. C
contains information about target-dependent signatuggsiping to different poses. From

C, we can decompose the target type fac¢tdsy using the asymmetrical bilinear model to
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perform tensor decomposition as in [64]. The tensor-basegkt representation may then
be written as

Y = A X310 X (), (6.15)

where.«/ is called the core tensor with dimensionality< N, x Np; i* is the target type
factor of dimensionalityV;; and x ; denotes modg-tensor product.

As shown in Fig. 6.2, there are two steps involved in the gaiher modelappearance
learning andsignature synthesisThe former is accomplished by findifdgf* in 6.14 fol-
lowed by a bilinear decomposition to obtairi and:*. The latter is characterized by 6.15,
using which we can reconstruct a target signature of anyaygepose. Once the learning
is accomplished, we only need to stareand:* to provide a general target representation.
In addition to aiding the tracker by accounting for inteafre appearance changes, this
model can also facilitate recognition by generating didttgpe-specific appearances with

any pose.

6.4.2 Motion models

Motion models play an important role in target tracking [68] practice, different targets
have widely varying kinematics maneuverability due to tagure of engines and mechan-
ical systems. Using type-specific motion models will bettepture the kinematics and
maneuvering actions of different targets. Therefore, weser multiple 3-D rigid motion
models that are associated with different target types.elhar, the motion cue provides
additional evidence for recognizing target types.

For ground targets, we introduce a type dependent variatiehe dynamics of linear

velocity v along the direction of target motion’(in Fig.6.3).
vy = V1 + f(Ly) + s(1;)wy, (6.16)

wherew, is independent identically distributed (iid) Gaussianseqiv, ~ N (0,1); f(I;)

ands(1;) are the two variables controlling the target-dependentlacation. It is worth
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Figure 6.3: The 3-D coordinate systems of a ground vehiclee dxest’y/’ 2’ defines the
body frame, where the vehicle is constrained to move aloegrthdirection and rotate
about thez’ axis to avoid unrealistic motion. Theyz axes define the observer’s frame of

reference where the planey is parallel toz'o'y/.

noting that the dynamics af; is a linear Gaussian model given making it possible to
update the related probabilities using a Kalman filter.
The dynamics for zero-order kinematics, i.e., pose andipasare introduced in addi-

tion to that of velocity. The pose variabtefollows a simple dynamic model given by
Gt = Pr1 + u+ wy, (6.17)

whereu denotes a fixed angular velocity, ang ~ N (0, 03,). This model is capable of
capturing subtle rotational dynamics of a rigid target. Tdrget is assumed to move only
on the ground planep(=0). The positiorp = [p,, p,|" in observer’s coordinate system is

related to velocity and pose as:
Py =D+ R(th—l)Ut—l + wp, (6-18)

whereR is a rotational vector defined &(¢) = [cos ¢ sin ¢]’, andw, ~ N(0, diag(o?, 7))
Nonlinearity introduced in the state equation 6.18 requaiesampling based inference.
Since the type dependent velocity appears in 6)Xi8 models are needed to characterize

the type-specific motion patterns.
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6.5 Inference algorithms

In this section, we detail two inference algorithms for thhaphical model described in
Section 6.2. One is the APF-based particle filter that takiss account the current ob-
servations abouk; (position/pose), and other is an enhanced APF algorithnrevtie

current observation ok, (velocity) is involved for proposal generation.

6.5.1 APF algorithm

Dynamics The dynamics of kinematic variables corresponding toaigta);, pose varia-
tions ¢, and positiorp, are defined in 6.16,6.17 and 6.18 respectively. In order tiotaia
multiple hypothesis about the target identity, we definedyreamics of the identity variable
I, as

p(]t - Z.|[t—1 = .]) = Tt(Zvj)aZa] € {1a2a e 7NT} (619)

whereT', (i, j) is a transition matrix that defines the transition probabiietween identities

i andj at time t. Using an annealing-like strate@, is defined as follows:

1 —exp(—at) ifi=j,

exp(—at) e - .
]\I;Tfl if i # 7,

Tt<Z7]) =

whereq is a fixed positive constant. This empirical settingbfgradually reduces the iden-
tity switch frequency based on the belief that the stater@mfee is increasingly confident
about the identity estimation with time. However, the vabfie depends on the reliability
of the observations.

Observation likelihood: Assume a target with certain identity moving in a 3-D scene
according to its dynamics and we observe it via a stationagycplibrated perspective
camera with known paramet€is.,,..... Given the target type, pose and position we can
synthesize the required target silhouette using the geveraodel 6.15. This silhouette
is then appropriately placed on the 2-D image plane withifipescale and position, us-

iNng T.omere. Assuming that the observed image sequences are corruptedtitive i.i.d.
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Gaussian noisd/(0, 02,), the likelihood functiorp(Z,|1;, X ;) of the current observation
Z, is given by:

. ”Zt - g([t7 Xta Tcamera)||2

P )
2 Uobs

p(Z| Ly, X)) o< exp [ (6.20)

whereg(-) is a mapping function that results in a hypothesized tarffatigette based on

Ita Xt1 and Tcamera;

- || gives the mean square error between the observation and the
synthesized target appearance in the tracking gate.

Algorithm pseudo-code Having defined the required system and observation models,
sequential state estimation can be performed using aniaogxiParticle Filter (APF). The
pseudo code for a single time step of the APF-based inferiergieen inTable 6.1where

the current observation is considered for drawing samplsgeip 4.

6.5.2 Kalman filter enhanced APF (KAPF)

Discussion on APF:Due to the lack of velocity measurements, there is no dirdeténce
about the velocity, in the APF, making its estimate less accurate. Howevergitglplays
an important role in the estimation &f ; as well as/;, when targets exhibit different mo-
tion patterns. In the following, we enhance the velocitymation and apply it to improve
the efficiency of state inference in two ways. Firstly, theneated velocity is involved to
generate more samples of the most likely target type andchgggan generating improved
position hypothesis for the next time step. The underlyoteni of the APF is to use the
effect(current observations) to generate more plausitblesesamples (position/pose hy-
pothesis). Similarly, we consider tledfect(position estimation) to generate more likely
causesamples (velocity). Unlike [60], where the change in highelnsional appearance is
used for velocity update, we use position estimates to epekdbcity using a 1-D Kalman
filter.

New proposal: A new proposal generation scheme is inserted between the 8te

and 9 inTable 6.1for target type and velocity, in the spirit of RBPF using theiviion
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Input: The current observatio#; and the particle set at time
¢t — 1 represented b{/@{fl}fjl = (X7} v, Iffl}j.v:'l’l

1. Propagate the particle s@{_l};\i’l using the motion
model equations 6.16,6.17,6.18 and 6.19 to obtain the particle set
{@fy;2 = (X1, I}

2. Assign welghts{w{} 7o p(Z4|®]) as in (6.20).

3. Normalize weights @/ j M such thatzj LW =1

4. Draw auxiliary variable\’ € {1,2,---, N,,} such that
p(N =1i) = wi wherei = 1,2,--- , N,.

5. Propagate the patrticle s@t 1452 1 using the motion

model equations 6.16,6.17,6.18 and 6.19 to obtain the new particle set

{‘I)J}Np1 = {Xt,vt,I]}

P(Zt|<1>{)
p(Z113))

7. Normalize welghts{wg} . such thatz v owl =1,

6. Assign welghts{wi}] | X asin 6.20

8. Estimate mean positigs, and posazbt from {<I>t,wt}

9. Set{@”} . = Re- sample{@t,wt} -

Outputs: The particle set at timerepresented byqﬂ} *, and

the mean estimatgs anda;.

Table 6.1: Pseudo-code for one time step of the APF algorithm

in [131, 132]. Since the velocity follows a linear Gaussiaogess (6.16), a Kalman filter

is incorporated to generate identity samples and updateetloeity samples. In addition

to the particle sel{CIﬂ M in Table 6.1, we maintain a second set of partlcle,sj

= {Igv M%,t;

t}] ., Where type sampleH are from[<I>J ;215 the mear)uvt and variance

Ei’t characterize the velocity probability density for eachtigle. In generating target

type samples, the type whose motion model fits the currentitglclosely is given higher

preference. Thus the predictive density of the type vagiagblssigned as

p(It|It717 yu) X p(yt|y1:t717 Io:ta), (6-21)
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wherey; denotes the velocity observation at time stejbtained from the effect variables

of velocity using
Yt = Hﬁt - ﬁt—lH' (6.22)

We assume(y;|v;) ~ N (v, b*(1;)), whereb?(1,) is the variance of;. Then the predictive
density ofy, is also Gaussian, i.e(y:|y1.+—1, It) ~ N (u,+, Xy+), @and can be evaluated by

1-D Kalman filtering equations as:

pyt(lt) = poe—1 + f(Ly),

Spe(ly) = Sop1+ (L) + 0 (L), (6.23)

where f(I;) ands(l;) appear in 6.16 characterizing the maneuverability. In tamitithe
Kalman filter can also be used to update the density of vglditusing the conditional
Gaussian. For simplicity, we omit the identity varialfjeand the Kalman equations in the

1-D case becomes

Hot = Hot—1 + (Ev,tfl + 32)2;% (yt - Ny,t),

Yot = (Zv,t71+52)b22;%- (6.24)

Therefore, new velocity samples are generated /g, ;, 2, ;) and used for position
prediction.

Algorithm pseudo-code: The KAPF algorithm is given iffable 6.2that is embedded
between steps 8 and 9 Table 6.1 The output containing the identity and velocity sam-
ples{]f,v{ ;V:pl replace the ones generated by step Jable 6.1, as priors for position
prediction in the next time step. The elements of the treomsihatrix used in 6.19 are set

to 1/Np to avoid any possible bias.

6.6 Experimental results

The generative models and inference algorithms are eealuatthree experiments based

on simulated sequences where the background is a real IReimily additive Gaussian
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Figure 6.4: Comparison of reconstruction MSE for the gemneranodel (G15) and the
template model (T15). Only a pose rangel 8f° is shown due to symmetric nature of the

reconstruction error.
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Figure 6.5: lllustration of the generative model based mstoiction.
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Inputs: Position estimatep, andp,_; from Table 6.1and the
particle set{go{fl};yz"lz{lffl, M{;,tfh Ei,tq}j‘vﬁr
Computey; based on 6.22.

Forj=1,---,N,
ForI=1,--- Ny
Calculateui?t(l) andziﬁt(l) using 6.23
Evaluate [()I]Ig_l, yt) o< N (ye; M;,tv E;,t)
End
Samplel{ ~ p(I|1]_;, y:)
Updatey] , andx/,, using 6.24
End
Draw samplegv] } 2" ~ N (4], ,, 3, ,)
Outputs: The particle set at timerepresented b{/gp{ ;.Vzpl and

the velocity samplegu] } 1,

Table 6.2: Pseudo-code of motion cue based proposal gemerat

noise (SNR=20dB). The first experiment examines the generagppearance model in
terms of its capability of synthesizing unseen target digies. The second experiment
compares the joint appearance-motion generative modeisigatemplate model for in-
tegrated tracking and recognition. The last experimentatestnates the advantages of the

KAPF algorithm for velocity, position and identity estint.

6.6.1 Target signature generation

A comprehensive target database that includes 3-D modaiay ground vehicles, mainly
tanks was collected for this research. In the following expents, we use five tank mod-
els from this database, i.e., FCS, MK1, T28, Eagle, and Maushawn in Fig. 6.6. From
these 3-D models we obtain silhouettes of dimensiorx 80 corresponding to different

poses [° to 360°) of a particular tank. These silhouettes are transformaxgray-scale
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images using signed distance transform as in [67, 128], pnga smoothness of the dis-
tance between poses. For each talgehe mapping B*) is found using 24 silhouettes
corresponding to posds$° apart. The generative model is then learnt as in Sec 4.1.
Once the model is learnt we can synthesize a target sill@oétany pose. Fig.6.4
shows the mean square error (MSE) of the generative modd)(®hen compared to
the case of using templates (T15) sampled 15 degrees aparmb¥¢érve that synthesized
silhouettes have much lower MSE than the template-basedagp Fig.6.5 illustrates the
reconstructed silhouettes for a few untrained poses. T¢mnstruction closely resembles
the true template for most view angles even for those witlihdrigeconstruction error.
However in both figures note the significantly large erromuad90° due to the fact that
there is more perceived change per degree of rotation anbwse angles. This suggests
that an uniformly sampled circular manifold may not be ariropt representation of the

true underlying structure of the view manifold.

Figure 6.6: 3-D target models of the five tanks used in sirmriat

6.6.2 Tracking and recognition with joint models

Five sequences corresponding to five targets were genarsiregl the dynamics in 6.16,
6.17 and 6.18 and imaged through a virtual camera. When tle®&equences were gen-

erated, we sef(/;) = 0.025 to simulate a constant forward force and;) = 0.01 * I
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to simulate type dependent accelerations 7/180 ando, = 7/60 in 6.17. Few frames
of a simulated IR sequence are shown in Fig. 6.7. The infer&done using the APF
algorithm outlined inTable 6.1

The tracking performance of two different appearance nsidel, the generative model
(G15) and the template model (T15) are compared withoutideriag type dependent
motion, i.e.,s(1;) is a constant in the APF inference algorithm. Sample trackésults for
SEQ2 are shown in Fig.6.8. It is seen that the T15 model cahttelmss of track due to its
limitation in matching intermediate poses absent in thiaitng set. On the other hand, the
G15 model that can create intermediate poses improves lbsttiign and pose estimation
as shown infable 6.3

Next, the tracking performance of the G15 model along withetgependent motion
i.e., the joint appearance-motion generative model (G)5<dwkvaluated. To accommodate
different motion models, we set/;) = 0.01 x I, in the inference algorithnTable 6.3lists
the tracking performance of all three approaches. In masts;aG15-M shows the best
tracking performance proving the usefulness of the jointegative model in pose and
position estimation. The three methods result in comparaddognition performance, and
for all five sequences the identity estimation convergebedrue target type within a few

time steps.

6.6.3 KAPF based inference and proposal generation

Five more sequences corresponding to each of the five tange¢sgenerated witlfi(/;) =
0.0025, s(1;) = 0.01 = I; in 6.16 and random turning actions= 0, o, = 7/60 in 6.17. In
this experiment, the appearance model is trained from B6wsdttes corresponding 10°
pose changes for each of five targets. The tracking perfarenahthe KAPF is compared
to that of APF (APF with fixed transition matrix as defined in Sec 5.2) to dwvamy prior
bias.

As seen from Tab. 6.4, the KAPF algorithm shows improvemeet the APF method
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Figure 6.7: Sample frames of sequence SEQL1 (Tank FCS). Frgri6s28, 35, 40 and 50

left to right, top to bottom.

since the Kalman filter used for velocity estimation is otinm the MSE sense under
Gaussian assumptions. The appearance based likelihooedl&fi 6.20 is not very sensi-
tive to the variation of scene depth,j (that is only reflected by scale of the target signa-
ture) when compared to that of translatign)( In addition to the appearance likelihood,
the KAPF also exploits motion cues to improve position eates especially for depti,).
These improvements imply that the KAPF is able to generdteitg samples closer to the
true states and thereby provide better prediction for mprsgamples.

The KAPF also performs better than AP terms of recognition with fewer mis-
classification. The KAPF that uses both appearance andityeloformation to generate
identity samples, has an advantage over ARFRich uses only appearance information, es-
pecially when two targets appear similar in a certain poserddver, the KAPF maintains
the hypotheses of other target types during tracking, teespriong preference towards the
right type. This provides a good balance betwderersityandfocusof sample distribu-
tion during inference, and prevents the type samples franglieapped into incorrect type

hypotheses.
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Figure 6.8: Sample tracking result for sequence SEQ2: (#) estimate and (b) pose

estimate.

Algorithms || SEQ1| SEQ2| SEQ3| SEQ4| SEQ5

¢ || 3.271| 3.824 | 2.948 | 5.331 | 5.428

T15 | p, || 0.115| 0.248 | 0.106 | 0.263 | 0.231

py || 0.541| 1.573 | 0.208 | 1.192 | 1.413

¢ || 3.397 | 2.325| 2.519 | 3.468 | 3.057

G15 | p, || 0.106 | 0.153 | 0.116 | 0.145 | 0.200

py || 0.637| 0.870 | 0.337 | 0.605 | 1.222

¢ || 2.768 | 2.258 | 2.007 | 3.801 | 2.785

G15-M | p, || 0.094 | 0.117 | 0.099 | 0.185| 0.232

p, || 0.323| 0.560 | 0.238 | 0.454 | 1.174

Table 6.3: RMSE of pose and position estimates over 50 fravexraged upon 20 Monte

Carlo runs.
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Algorithms || SEQa| SEQb | SEQc| SEQd| SEQe

¢ || 6.307| 2.195| 3.874| 6.021 | 2.188

APF* | p, || 0.146| 0.105| 0.378| 0.132 | 0.135

py || 0.729 | 0.697 | 1.265| 0.692 | 0.319

v || 0.035| 0.054| 0.239| 0.075| 0.106

¢ || 4.659| 2.209 | 3.412| 5.355| 2.314

KAPF | p, || 0.089| 0.098 | 0.161| 0.106 | 0.128

py || 0.412] 0.681 | 0.653| 0.524 | 0.273

v || 0.030| 0.036 | 0.096 | 0.054 | 0.127

Table 6.4: RMSE of the pose, position and velocity estimates 80 frames averaged

upon 20 Monte Carlo runs.
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CHAPTER 7

Recognition based on identity and view manifolds

7.1 Background

The human visual system (HVS) has remarkable ability to tstded a scene by effort-
lessly recognizing individual objects present in the sceftee need to replicate this abil-
ity, at least in part, in real world applications has trigeggeintensive research in the area
of object recognition. Some of this research is object#igedike detecting humans or
cars [133, 134], while others try to distinguish betweentipld object classes [57]. There
are two key issues of interest which is how to detect and m@zegbjects under different
viewpoints and the second is how to account for both intesschnd intra-class variations.
Usually, both the view and identity variables are consideoebe discrete valued for view-
independent object modeling. In this chapter, we study #ee ©f vehicle recognition
where we model both these variables to be continuous makimgre flexible to handle
unseen views or unknown class variants.

According to [50], the object recognition research coulddagghly grouped into three
categories, i.e., single-view 2D models, single instari@er®dels, and multi-view mod-
els. The methods of the first group focus on object detecatimer than pose estimation
by modeling the appearances of multiple objects in a sirdjggrete or limited range of
views [18, 135] without relating features across multigkaws. Those of the second group
estimate the pose/view by matching local features undet tignsformations [136, 137],
making extensions to other object classes difficult. Thdskeothird group aim to build a
coherent object model by relating descriptive features oudtiple views [49,52,57,134].

Our research belongs this group, and we propose a new slaapd-generative model for
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Figure 7.1: Coupled view-identity manifolds for vehicle netidg. We decompose the
shape variability in the given training set into the two tast identity and view, and both
can be mapped to a low dimensional manifold. Then by choasipgint each manifold,
a new shape can be interpolated that can be used for jointgstgeation and identity

recognition.

general vehicle appearances that supports simultanesesapa identity estimation.

To illustrate our approach, we choose four classes of rohtthes, i.e., cars, pickups,
SUV’s and mini-vans, each of which include several subsdasor model training, as
shown in Fig.7.1. There are two important continuous-v@loranifolds supported by the
proposed model. First, we learn a 1-D identity manifold taleldooth inter-class and intra-
class shape variability among all training vehicles. An amant issue is how to specify
the manifold topology to order all classes and sub-cladses dhe identity manifold, and
we propose alass-constrained shortest-closed-p#dtiind the optimal manifold topology
for identity modeling. Second, we define a 2-D hemisphesgst view manifold to cope

with arbitrary view variations. A non-linear tensor decamajion technique is used to
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Figure 7.2: lllustration of the generative model for viewdadentity based shape appear-
ance synthesis. Reconstruction results of the shape arengbowhe blue path traversed
along the view manifold and for four different points on tkemtity manifold that do not
correspond to any of the training data. In each case the sleapestructed has strong

characteristics of the view and vehicle class.

integrate two manifolds into a unified generative model thatirectly controlled by two
variables. Although the simple silhouette-based shapeireas used in this work, the
proposed model could be extended to other more powerfulifestfor better modeling
capability and recognition performance.

Though the proposed approach is not limited to a specificcolbgEognition applica-
tion, we use vehicle recognition as a case study in this wdrkrey the silhouette-based
shape representation is adopted to represent vehicle rapges. In the following, we will
discuss the identity and view manifolds first, followed bg thevelopment of shape-based
generative model where the two manifolds are integrateohtdti-view vehicle appearance

modeling.
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7.2 ldentity manifold

The identity manifold plays the central role in our work thas the ability to capture both
inter-class and intra-class shape variability. Unlikeeotimethods in terms of the way that
the identity is handled, its continuous nature makes itiptesso interpolate an unknown
subclass based on limited training data. However, therénarémportant questions to be
addressed in order to learn such manifold. The first one igevbein which space we
can learn this identity manifold. It should be in a LD latepaise with only the identity
factor rather than the HD observation space where the viemMdamtity factors are coupled
together, which will be addressed in Section 3.3. The secmedtion is how to learn a
semantically validdentity manifold that supports meaningful sub-classriméation. Or
what kind property we want to impose on the learned identiyifold.

To learn the identity manifold, we need to define a manifofgbtogy first that includes
the dimension or LD structure as well as the ordering ratatigp of all vehicle identities
from different classes or sub-classes. If the training da&asparse (e.g., 20-30 in this
work), we suggest a 1-D closed-loop structure to ensurel waéintity interpolation, and
this structure can also facilitates the inference procgsa simple 1D identity variable.
Although there is no clear ordering relationship amongedéht vehicles, we do want those
form the same class or of similar shapes to stay closer alenigientity manifold compared
with dissimilar ones. Thus we introduceckss-constrained shortest-closed-patkthod
to find the unique ordering relationship across all vehidientities. This method needs
to specify a view-independemwlistanceor dissimilarity measure between two identities.
Ideally, we should use the shape dissimilarity between t@on®dels. For simplicity,
we use the accumulated mean square errors of multi-viewglites (after the distance
transform [128]) to compute this distance.

Given N individual objects, suppose that we can find a sefVo¥iew-independent
identity vectors in a LD latent spadé, k& € {1,---, N} along with the associated class

label L,. Let us usey® to denote the vectorized silhouette of objéctinder viewm.
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The similarity between objects andv, represented by* and:’ respectively, over allM/

training views is given by

M
D(i",3") = > ||yt — yill + o - €(Ly, L), (7.1)
m=1
where
0 if L,=L,,
e(Ly,,L,) = (7.2)

1 otherwise,
where||.|| represents the Euclidean distance arid a constant. The functioiL,, L,) is
a penalty term that ensures objects belonging to the sarsg @ta grouped together along
the identity manifold. Let the manifold topology be reprateel by T = [¢; to -« tn1]
wheret; € [1, N], t; # t; fori # j andt; = ty41. The class-constrained shortest-closed-

path can be written as

N
T = arg min D(i" 4" +). 7.3
g1 Z( ) (7.3)

This manifold topology tends to group those objects of @sm8D shapes and/or within
the same class together, enforcing the best Isealantic smoothnesdong the identity
manifold to be learned, which is essential for valid idgniitterpolation of an unknown

sub-class.

7.3 Conceptual view manifold

In addition to the identity manifold, we also need to speefyiew manifold to accom-
modate the view-induced shape variability. A common wayigge some non-linear di-
mensionality reduction techniques, such as LLE, Laplaeiganmaps, to find the LD view
manifold from HD observations for a given object [128]. Téare two main limitations.
One is that they are identity-dependent, and multiple vieawnifiolds are involved which
may have to be aligned together in the same latent space jictabcognition. The other
is that they are normally constrained by a 1D structure they ot accurately reflect all

possible object poses in the real-world. In this paper, wegtethe view manifold to be
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a hemisphere that embraces almost all possible viewingaragbund an object as shown
in Fig. 7.1 and is characterized by two parameters: the ghirmngled and the elevation
angle¢. Such conceptual manifold helps us avoid the issue of legrand aligning mul-
tiple view manifolds for each individual object. At the samiae, it provides a unified
and physically meaningful representation of the view sphatsupports efficient dynamic

view estimation.

7.4 Non-linear tensor decomposition

In the following, we extend the non-linear tensor decompmsiechnique discussed in [67]
to develop a shape-based generative model that can repeesabject by a view and
identity variables. This involves learning a non-lineappiag function from the data space
to the unified view manifold and then linearly factoring ol tidentity vectors, giving a
view-independent space for identity representation.

Let thed-dimensional observation of objelcunder viewmn bey” and the correspond-
ing LD point on the view manifold be:,,,. For each object k, we can learn a non-linear
mapping between these two spaces using the generalizeal bediis function (GRBF)

kernelg(.) according to

Ne
Y= 0o (llzm — zll) + [1 @b, (7.4)
=1

where{z;|l = 1,..., N.} are theN, kernel centers on the view manifold’, are the object
specific weight of each kernel argis the mapping coefficient of the linear polynomial

[1 «,,]. This mapping maybe written in matrix form as

Yy = B Y(z), (7.5)

wherex,, is a point corresponding to view. on the view manifold. B* is ad x N,

linear mapping corresponding to objectcomposed of the weight terms® in (7.4),

V(@) = [0(||Tm — 21l s Ol|®m — 2N,

,1,x,)] is a non-linear kernel mapping that
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contains the regularization terth x,,,|. Since¢(x,,) is dependent only on the view angle
we can reason that the identity related information in doethwithin the termB™. For K
different objects, based on (7.5) we may obtain their cpoading mapping functionB*
for k = {1,2, ..., K} that can be stacked together to form the tengoe [B! B> ... BX].
The tensory can be thought of to contain information about identity-elegient signatures
pertaining to different poses. Application of HOSVD 44 abstractsk” identity vectors
i* € RX. This decomposition allows us to synthesize the appearssrcesponding to an

identity vectori* and a view pointe,,, according to
Yy, = C x31" xg ¢(m), (7.6)

where% is called the core tensor with dimensionality V. x K; andx ; denotes modg-
tensor product.

The identity vectord*|k = 1,..., K'} from training objects maybe interpreted as the
basis vectors of the exemplar identity space. Such an m&on gives us an impres-
sion that any normalized linear combination of these basisors would form a valid new
identity vector, which may lead to a meaningful shape irdkioon. However the recon-
struction produced in this manner normally does not reserabiteal world object. To
ensure valid shape reconstruction, we should first learna#ntontinuous-valued iden-
tity manifold via B-spline curving fitting in the tensor coefgént space according to the
manifold topology defined in 7.3). It is expected that an taaby identity vector along
this identity manifold will be more semantically meaninigfiue to its proximity to iden-
tity vectors from training objects, and should supportd/alhape interpolation. Thus (7.6)
gives a compact generative model for multi-view shape nmiongé¢hat is controlled by two
continuous-valued variables each of which follows a LD rf@di Since the identity mani-
fold is a closed-loop spanned in thedimensional tensor coefficient space, we camép

it to a circle along which inference is much easier.
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7.5 Inference of view and identity

A graphical model is used to integrate all the factors aloiitty wiheir conditional depen-
dencies into a probabilistic framework as shown in Fig. Wi3ere viewX , and identity/,
are two latent variables to be estimated @#\dthe observed shapes, is the synthesized
object shape given view and identity hypotheses. The pnoloifjoint identity and view
estimation becomes the estimation of the posterior prdibabi(/,, X;|Z;). Due to the
non-linearity nature of this inference problem, we resorthe particle filtering approach
that involves a likelihood function and the dynamics of tateht variables to sequentially

updatep(ly, X|Z,).

Observed frame

| Zia Z Zivy | *

Figure 7.3: Graphical model for view and identity inference

At the tth frame, given new hypotheses of generated along their oamifoids, the
corresponding hypothesized appearaS¢&an be reconstructed by the generative model
defined in (7.6) given hypothesizédand X ;. Then we can define the likelihood function

by matchingS; with the observed shagé, as

12, — Si°

p(Z| 1y, X)) o< exp | — | 572 (7.7)

whereg? controls the likelihood sensitivity anidd- || gives the mean square error between

the observed and hypothesized object shapes.
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We also need to specify two dynamic models, one along theleirshaped identity
manifold, and the other along the view manifold. Since the katent variables have been
decoupled in the generative model, we could define the twaraép dynamic models to
propagate the view and identity hypotheses along their oamifoids independently. How-
ever, it is perceivable that the identity dynamics shouldnfileenced by the current view
estimation (as indicated by the dotted line between the awakles in Fig. 7.3. It is mainly
because that in some views (such as side views) the idestityich more distinguishable
than other views (such as the rear/front/top views). Thuslefane a view-sensitive prior
p(I¢| X1, I;_1) that propagates the identity hypothesis adaptively albeddentity man-
ifold according the current view/identity estimation, down in Fig. 7.5, which shows
the amount of identity variation as a function of a view angWhile the view variable
can follow a 2D random walk on the view manifold given byX,;| X ;_,). Then the joint

dynamics of two variables can be defined by
p(ItaXt|@t—1) = p(It|Xt—1>[t—l)p(Xt|Xt—1)a (7.8)

where©,_; is the previous state estimate. Then from (7.7) and (7.8)caveestimate

posterior probability of latent variables sequentiallg particle filtering as
p([t,Xt’Zt) OCp(Zt’[taXt)p<[taXt‘@t71>' (79)

The most computational demanding step is the likelihoodutation that involves online

shape reconstruction from the generative model for eachthggis during inference.

7.6 Experimental results

In this section, we first introduce the dataset involved is Work. Then we take a detailed
look of the learnt identity manifold from the generative regdollowed the recognition

and pose estimation results under three cases.
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Figure 7.4: View-dependent identity dynamics where thercoldicates the amount of

variation allowed during sampling.
7.6.1 Dataset

We collected 3D models of 36 different vehicles (10 cars, b&yps, 10 SUVs and 6
mini-vans). Of these 29 models (8 cars, 8 pickups, 8 SUVs amdnbvans) were used
in the training phase and the rest used for testing. For eBcm@&del, we acquired a set
of silhouettes corresponding to 200 training view poinributed on a view hemisphere.
These training views are relatively sparser near the topefitew hemisphere and denser
at the bottom. This is because there is less distinguislsdialpe variability in a top down
view compared with that in a profile view. Using the silhoasttve can learn a generative
model as described in Section 7.4 to obtain the identityorsassociated with all training

examples according to (7.6).
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Car Minivan

Training data

Testing data

Figure 7.5: lllustration of the synthetic 3D vehicle datassed in the experiments. Models
from four different vehicle categories were used and theseewlivided into training and

testing sets as shown.

7.6.2 Traversal along the identity manifold

Here we discuss the construction of the identity manifold #re reconstructed shapes
when traversing along it. Given the manifold topology dss®d in Section 7.2, wee can
span a closed identity manifold by fitting a B-spline in thentily coefficient space de-
fined in (7.6). Then a mapping is determined from this curva tarcle that allows us to
parameterize the identity manifold by a 1D parameter.

To examine the validity of this identity manifold, we want teveal the variation in
each dimension of the identity coefficients as we traversegathe identity manifold, as
shown in Fig. 7.6. Within each class, a relatively smoothgii@on can be observed in each
dimension among sub-classes in the same class, while sheapsitions are noticeable
between classes. For each class under a few representativg we can interpolate new

shapes by traversing along the identity manifold, as shaowRig. 7.7, where the first
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and last columns are two adjacent training sub-classesafdr ef four classes while other
columns show the interpolated shapes between the two asbed. Irrespective of the view
angle, the identity manifold provides a smooth and meanirgdnsition of the interpolated
shapes between every two training vehicles. For examplewrtwo, the pickup with a
long-bed deforms slowly into one with a short-bed and laogéx. In row five, the height of
the minivan reduces and its length increases from left tat righile all interpolated shapes

maintain a discernible van shape.

7.6.3 Recognition and pose estimation

The proposed method was examined under three cases: (1atohuideo sequences with
unknown vehicles , (2) real video sequences with a prewawsseen vehicle, and (3) still
images with silhouettes obtained by a segmentation prdbasss initialized manually.

In the first two experiments with simulated/real video sew@s, we can obtain the
continuous estimation of the identity and view variablepe&fically, the former one is
represented by an angular parametd) < o < 27) along the circular-shaped identity
manifold, while the latter one includes the elevation anglé) < ¢ < 7/2) and the
azimuth anglé (0 < 6 < 27). In the first frame all the variables are uniformly distriéd.

In subsequent frames the particles are propagated andags@lun accordance with (7.8)
and (7.7), respectively. In the experiments with the stilhges, the identity and view are

estimated by the exhaustive search along their own masifold

7.6.3.1 Simulated video data

Several simulated video sequences were created by movngittual camera along a
smooth path on the view manifold which is centered with a joesly unseen 3D vehicle
model. Typical frames from one of these sequences showeifirgh row of Fig7.8. In this

example, the camera begins at a top-down view and progedgsinoves around the vehicle

by reducing the elevation. The result of identity recogmitand view estimation are shown
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in Fig.7.8 and Fig.7.9 respectively. Fig.7.8, we show tlmnstructed shapes (the second
row) and the corresponding view-based shapes (the lastdws)rfrom the two nearest
training vehicles which belong to the same class, showia@gtturate identity estimation
result. In Fig.7.9, there is an error of 88 the estimate of the azimuth angt (n the first
frame due to the shape ambiguity in the top-down view, thidlem is quickly resolved
as more frames become available. Actually, the car chosdhifexperiment was longer
than others in the “car” class and is easily confused withcup in the first few frames.
However, as we progress towards lower elevation anglesidrdity estimate consistently

lies between a four-door sedan and a two-door sedan.

7.6.3.2 Real video data

In this experiment we try to estimate the pose and identitg tdy vehicle in an indoor
environment whose 3D model not available in the trainingdét few closed-up view of
this toy vehicle is shown in Fig. 7.10(a). A few sample imagarfes are shown in the first
row Fig.7.11. Background subtraction was used to obtain itheuettes of the moving
vehicle as shown in the second row of Fig.7.11. The first 1dthé& of this video contain
only the background and is used for initializing the backapab subtraction algorithm. The
two adjacent training vehicles from the same SUV class aresctly identified in most
instances. In frame 238 the vehicle partially moves out efstene resulting in a distorted
silhouette and then a slightly wrong pose estimate, whiekddeto some changes in the
identity compared to previous frame. However, as the vemabves back into full view the
pose and identity estimate stabilize to nominal values. &dtienated view points shown in
Fig.7.10(b) are also consistent with the motion patterrheftby vehicle that moves away
from the camera, makes a left turn and then moves in reveosiese the camera. This
experiment demonstrates the ability of our model to colyadentify unknown vehicle

classes and relate them with existing models in the traiséig
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7.6.3.3 Stillimages

In this experiment, several different still images of védéscwere selected and each image
was initialized with a few seed points manually to obtain gnsentation based on graph
cuts. Sample images along with their segmentation restdtslaown along the first three
columns in Fig. 7.12. In all the examples shown here, thetifieation of the vehicle class
was found to be accurate. The result of pose estimationadaildy accurate with only the
car in the last row having its pose mis-estimated as facicgward. Being able to identify
the vehicle class and pose even when the segmentationisesaisy, deformed or missing

parts proves the robustness of the proposed approach.
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Figure 7.6: Variation in each dimension of the identity ¢ioéfnt as we travel along the
identity manifold between different classes are shownglesch row. Class boundaries
are indicated by steep transitions smoothed by a splinegyaloga or more of the rows. The
bottom row has the lowest variance and the top row has thermmivariance across dif-
ferent classes. Further, a clustering phenomenon is atsredd with vehicles of one class
having dominant peaks along certain dimensions in the cosfti space. For example, the
cars have peaks concentrated along dimensions of lowaangsiindicating that the car
models used for training do not vary significantly withinitngass, whereas the minivans
with only 5 training examples have peaks along dimensioriarger variance indicating

larger intra-class variation.
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Figure 7.7: First and last columns: 3D models of two adjateming vehicles along the

identity manifold. Columns two through four: Interpolatdthpe when moving along the

identity manifold.
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Figure 7.8: Results of pose and identity estimation in a sateal video sequence with
a previously unknown car. First row: Observed silhouettecddd row: The closest re-
constructed shape match. Third and fourth rows : Two of theedt neighbors along the

identity manifold, shown in the estimate pose.

144



__|===+True camera path
— Estimated path 0
e 3 : Pickup
v
“““ 7 0oh o oq
| ® ) hqqg
O%W & ¢
0.5+ o
i 0 o
o
1
/ w %
0

—~ =
@ =
—150
) Q
= [=2]
{e2)
= S
4]
c
<100 o
= =
©
E >
N 9
[b]
= 50
= -
= Z
e o
= =
L 0 Wy L
ANV YA A AT N

20 4 60 80 100
Frame#

©

Figure 7.9: (a) Plot of the true and estimated camera patigalee view manifold. The
green marker indicates the first frame and the red markerastigriame. (b) Estimate of
the object identity shown in a subsection of the identity rwhth (¢) and (d) Error in the
estimated azimuth] and elevation¢) angles. The average errors were found to bé 8.4

for the azimuth and 3%6or the elevation angles
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Figure 7.10: (a) Sample views of the toy vehicle used in theeement; (b) The estimated
camera path along the view manifold. The green and red mankierates the first and
last frames respectively. (c) Estimate of the vehicle idigishown in a subsection of the

identity manifold.
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Figure 7.11: Results of pose and identity estimation in videguired using a toy vehicle.
From the first to last rows: (1) original video frame, (2) segred object shape using
background subtraction, (3) closer view of the segmentedltrén row two, (4) the best
matching interpolated shapes (re-scaled), (5) and (6) fwheoclosest training vehicles

along the identity manifold shown in the estimated pose.
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Figure 7.12: Example of pose and identity recognition in eaeal images. From the
first to the last columns: original images, segmented ressdfgmented silhouettes, recon-

structed shapes, two adjacent training vehicles alongignatity manifold.
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CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

This dissertation presented the components of an inteh&k& system namely: target

detection, target tracking, appearance learning andf@oking and recognition.

e Detection: We have shown that high-level combinations of basic refatideatures
can be used in a boosting framework to construct very fassiflars that are as com-
petitive as SVM-RBF while requiring only a fraction of the comtgtional load. The
proposed RelCom classifier was able to successfully detedk temggets in complex

environments.

e Tracking: A new target tracking algorithm for FLIR imagery was devedpthat
supports accurate target localization and size estima8pacifically, a dual foreground-
background target appearance model was proposed, thgitatee local statistics of
both background and foreground to enhance the trackerstsaty. Moreover, an
online feature selection technique was presented thatetaotoptimal features by
maximizing the confidence of the state estimation. Both targeking and feature
selection are unified in a probabilistic framework where apted particle filtering

approach is involved for sequential state estimation.

e Appearance Learning: We have discussed infrared tracking under a unified co-
inference framework where both Kalman filtering and paetidkering are used to
update target appearance and to estimate target kinemegsctively. The contri-

bution of this research is how to robustly and reliably updae target appearance
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represented by multiple histograms during the tracking@ss. Particularly, we pro-
posed a new AKF-based appearance learning methBd,;;, which was compared

with the two existing techniquea\KF.,,, H.S) and was found to be superior.

Integrated Tracking and Recognition: A unified framework for integrated tar-
get tracking and recognition was discussed, where joineaggmce-motion gener-
ative models are incorporated in a graphical model. Theetaggpe and kinemat-
ics are jointly estimated by a particle filter based infeeeiadgorithm embedded
with Kalman filters. The experimental results demonstria&t the joint appearance-
motion models improve both tracking accuracy and recogmigierformance when
compared to the ones using the template-based appearanet amad a single mo-
tion model. Also, it was shown that the embedded Kalman dilfgovide better
samples for both kinematics and the target type by expbpitire type-dependent

motion models, leading to further improved tracking andggttion performance.

Recognition using Identity and View Manifolds: Finally, we presented a continuous-
valued identity manifold for object recognition that capts both inter-class and
intra-class shape variability for a set of similar objects, road vehicles, which can
be grouped into a few major classes each of which has sewdrallasses. This iden-
tity manifold allows us to recognize not only a known vehjdet also unknown ones
by meaningfully interpolating between two training veb&l Additionally, we de-
velop a new multi-view shape-based generative model thegiates a hemisphere-
shaped view manifold with this identity manifold to providenultaneous identity

and pose estimation.
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8.2 Future work

8.2.1 Drawbacks of the existing generative appearance maode

In the preceding chapters we had developed a non-linearaememodel for target ap-
pearance synthesis that is dependent on the view angle aniityd This model was learnt
based on synthetic data and was found to work efficiently. &l@w to learn the compo-
nents of this model there are two main requirements 1) cleayet template chips and 2)
information of the pose associated with each template. dhvieleos, segmenting out a
clean template from the image and assessing the pose irtftomaaie both difficult tasks.
We had also discussed issues with appropriate selectidreafdnceptual manifold shape
in the previous section. Another important issue with irdchimagery is that the target
appearance is a function of temperature profile and the @mwiental conditions. As an
example, a target would appear bright if its engine were tahaing over a period of time
or if its surface was warmed up by the sun. Therefore a sigtget can exhibit multiple
intensity profiles depending on internal and external fi@ctdrhe generative model dis-
cussed previously concerns mainly with the target shapleerahan the intensity profile,
and assumes a constant intensity profile for simplicity,clwhs hardly the case in the real
world. Also if the appearance of the target were to changegmerative model would
have to be re-learnt. Therefore, it is necessary to devalogppearance model that can

accommodate time varying intensity profiles.

8.2.2 Development of a 3D thermal appearance model

To overcome the limitations discussed above, as future weaghpropose to develop a novel
3D thermal appearance model that is learnt directly fromadbgerved image sequence.
We propose to use the technique of voxel coloring [138, 138iklvis commonly used
in computer graphics to reconstruct the 3D shape of an abjemtn 2D images. In this

way, we will be able to reconstruct not only the 3D shape otanget, but also its thermal
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(b)

Figure 8.1: Example illustrating the reconstruction of 3iage from 2D images using
voxel coloring. (a) The 2D input images used for voxel caigri(b) Views from multiple

angles of the reconstructed 3D model.

intensity texture. An example of the results obtained usiel coloring is shown in Fig.
8.1. Here we observe that both the shape and texture infammarte accurately rendered
in the reconstructed model. Once this 3D textured modelveldped it can be used to
learn a generative appearance model including the factadentity, and viewing angle
and used in a tracking and recognition framework. In additmthe voxel coloring, we
hope to improve the reconstructed shape by augmentingniaftton from a known 3D

CAD model of the target.
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