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CHAPTER 1

Introduction

1.1 Motivation

In the present day world, the availability of affordable, high quality image and video cap-

turing devices has generated an abundance of visual data andthe need for automated visual

data analysis. Over the past two decades a number of such techniques have been proposed

ranging the topics of image enhancement, automated surveillance, vision aided naviga-

tion, automated object detection, tracking and recognition, human-computer interaction

etc. Further, the field specific advantages of imaging in the non-visible band (infrared for

night surveillance, synthetic aperture radar (SAR) for subterranean resource mapping) has

resulted in the popularity of imaging in non-visible frequencies. In such cases, data analy-

sis techniques are either adopted from those of the visual band or developed specifically to

deal with the intricacies associated with the specific non-visible band.

Detection, tracking and recognition tasks are of great importance in military applica-

tions and are incorporated into a number of systems that aid in keeping track of a large

number of targets over vast spaces in the battleground. Theyare also used in sensor based

missile guidance systems. Civilian applications include highway traffic monitoring, re-

stricted area surveillance, border security etc. The task of tracking and recognition is chal-

lenging because targets of interest do not always appear thesame and can have different

signatures based on their pose, camouflage etc. In addition,the sensors used to acquire

information are affected by many intrinsic (focal length, IR sensitivity etc) and extrinsic

factors (temperature, reduced visibility, atmospheric conditions etc). Further, there are

problems associated with varying backgrounds, presence ofclutter, occlusion, interaction
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between various targets etc. All of these issues necessitate the need for a robust system

that can accomplish the tasks of detection, tracking and recognition under adverse field

conditions.

The focus of this dissertation will be on the key components of an Automatic Target

Recognition (ATR) system namely: target detection, tracking, learning and recognition

with greater emphasis on infrared videos, however the techniques discussed can easily be

extended to videos in the visual band. We begin with a formal definition of a few key terms

that will be used through this dissertation. Detection refers to the process of locating an

object of interest (target) in the image obtained from the imaging sensor such as a video

camera, forward looking infrared (FLIR), synthetic aperture radar (SAR) etc. Tracking

refer to the process of being able to continuously follow themovement of the target directly

on the image plane or infer its location in in real world co-ordinates. Recognition is the

task of associating the target with a class label pertainingto its class, type or identity.

1.2 Research goals and challenges

Detection

Tracking

Recognition

ATR system

Sensor
input

Traget 
tracks 
and 

identities
Learning

Figure 1.1: Components of an integrated ATR system.

The overall goal of this research is to develop an integratedATR system capable of

detecting, tracking and recognizing targets of interest ina given infrared video sequence.

Fig. 1.1 shows the components that make up an ATR system and inthe following we

discuss the challenges related to each component
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• Objective 1: Target DetectionTarget detection is the process of identifying areas in

the image, that could possibly belong to a target of interest. Target detection is one

of the most fundamental and challenging tasks in computer vision. Since detectors

often form the first stage of the consecutive tracking and recognition tasks it is also

vitally important the detector be both accurate and fast.

Challenges

1. Small target size. Low spatial resolution of the target region often implies there

is very little information available about the target that can be used to distin-

guish it from the surrounding background and clutter.

2. Variable thermal signatures, movable parts, pose variations. These variables

result in many possible appearance for a single target making detection more

difficult.

3. Low signal-to-noise (SNR) ratio sensor images. The presence of strong sensor

noise and background clutter make distinguishing the target from background

very difficult.

4. Environmental conditions. Environmental conditions like the time of the day,

relative position of the sun, relative humidity etc can affect the amount of ther-

mal radiation received by the sensor and thereby alter the appearance of the

target.

The problems faced by a detector are well illustrated by the sample frames shown

in Fig.1.2. In Fig.1.2 (a) and (b) the military targets are inconspicuous and blend

in easily with the surrounding clutter making it difficult toidentify them. In Fig.1.2

(c) there are multiple targets of interest present and they are obscured by trees and

surrounded by similar looking rooftop structures. A robustdetector will require the

use salient region descriptors that can accurately model the target appearance and
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(a) (b) (c)

Figure 1.2: Examples of Medium Wave InfraRed (MWIR) images presented to the detector

to identify (a) single military target at night time (b) single military target at day time (c)

multiple civilian targets imaged from an UAV.

competent classifiers that can distinguish the large pool oftarget appearances from

every possible background and clutter.

• Objective 2: Target Tracking

Tracking refers to the process of determining the target position either on the image

plane or inferring its position in the real world 3D co-ordinates using information

from the image.

Challenges

1. Targets of interest often are non-cooperative and exhibit strong maneuvering

action as an evasion tactic. Further, the imaging sensor platform is often times

airborne and exhibits strong ego motion. The difficulty in modeling such un-

predictable actions makes the tracking task challenging.

2. Time varying target signatures. Due to motion of the sensor platform relative to

the target, its appearance as observed by the sensor will be different at different

time instances. Therefore the appearance description of the target has to be

continuously updated to maintain a robust track.

3. The task of inferring 3D position from 2D image observations is an ill-posed

problem as information of distance along the sensors field ofview is lost.
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4. Small target size. The small target size makes it difficultto compute complex

and powerful features to describe the target area.

5. Low signal-to-noise (SNR) ratios, poor target visibility, occlusions and pres-

ence of multiple targets make the task of maintaining stableand continuous

track difficult.

Tracking in general depends on the robustness of two important models (1) the target

appearance and (2) the target motion or kinematics. The appearance model provides

a description of the target area usually in the form of extracted features from the tar-

get area. The motion model describes the typical motion of the target. The tracker

then infers the true location of the target based on prior knowledge contained in the

two descriptive models and the observed frames. In this work, we consider the prob-

lem of tracking maneuvering ground targets in infrared (IR) imagery acquired from

an airborne platform. The challenges described above prohibit the straightforward

extension of existing visible band tracking algorithms to FLIR images. Therefore

there exists a need to develop appropriate appearance and kinematic models to suit

the unique challenges imposed by infrared video sequences.

• Objective 3: Target Appearance Learning

Target appearance learning is the process of updating and maintaining a valid de-

scription of the target appearance that is used to track the target.

Challenges

1. Maneuvering action and sensor platform motion. These twoindependent mo-

tions imply that the appearance of the target on the sensor plane continuously

changes with time. Therefore the appearance model used by the tracker has to

be updated over time for robust tracking.

2. Choice of appearance representation. The procedure used in the update of the
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Frame 24 Frame 165

Frame 1 Frame 50 Frame 95

(a)

(b)

Figure 1.3: (a) Example of nonstationary target signature evolution in AMCOM LWIR run

rng18 17. There are two vehicles. The lead vehicle is barely visible.The second vehicle,

which is clearly visible, is the target of interest. Top row:Observed frames. Bottom row:

closeup views of the target. (b) Example of target being occluded by foliage in the VIVID

dataset.

appearance model greatly depends on the choice of the appearance representa-

tion.

3. Occlusion. When a target is occluded its appearance is usually replace by that of

clutter. In such circumstances it is important to prevent update of the appearance

model so that when the target reappears it is possible to resume tracking.

An example of the profound nonstationary variations in target appearance over rel-

atively short time scales is shown in Fig. 1.3(a). Here, a longwave imaging sensor

is situated on an airborne platform that closes on a pair of maneuvering ground ve-

hicles. Profound changes in the target’s appearance are observed between frames 24

and 165 over a time scale of only a few seconds and arise primarily from the relative

motion between the sensor and the target. There is substantial magnification that re-
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sults from the sensor closing on the target and pose change that results from the target

executing an aggressive turning maneuver. While the second vehicle in Fig. 1.3(a)

exhibits a strong signature, the lead vehicle is much dimmerand is barely visible

amid the surrounding clutter, demonstrating that brightness alone cannot be used as

the sole basis for reliable detection and tracking. Rather, more sophisticated tech-

niques are generally required for representing the target appearance and for adapting

to (e.g., learning) complex appearance changes that occur over time.

Further, in many cases the target may move out of the sensor’sview or may become

occluded thereby significantly altering the observed appearance. An example of this

is shown in Fig. 1.3(b) where the target being observed movesbehind a tree along

its path and thereby disappears from the sensor’s view. Whileit is important to adapt

the appearance model to accommodate variations in the target signature it is equally

important to avoid learning the appearance of occluding objects or the background.

• Objective 4: Joint Tracking and Recognition

Recognition is the process of identifying with a target with aclass or identity label.

In most cases recognition is intertwined with the tracking process and the identity

associated with the target increases in confidence over time.

Challenges

1. Variability among different target types. The variability in appearance across

different target types is vast and it is necessary to developa model that is capable

of compactly representing these variation.

2. Appearance variability due to viewing angle and distancefurther necessitate a

model with the above mentioned capabilities.

3. Motion cues. Taking advantage of the peculiar motion characteristic of a target

can help in categorizing it with higher confidence and therefore must be built

into the joint tracking and recognition process.
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Figure 1.4: 3-D target models of five representative tanks illustrating the variability in target

appearance.

In addition to time variations in the target appearance, recognition is greatly compli-

cated by the immense variability among target types as shownin Fig. 1.4. It would

be a daunting task to store all possible appearance of various targets for recognition

purposes. Therefore we will need an efficient method that canbe trained from a

small training set to characterize shape variation due to the factors of class identity

and viewing angle.

1.3 Contributions and outline

In the following we give a brief description of the specific contributions of our research

with respect to the above mentioned objectives and challenges.

• Contribution I : A new sparse feature termed as relational combinatorics feature

RelComis defined, that encapsulates higher order spatial structure information within

the target window. The RelCom feature is not limited to pixel features and can easily

accommodate any vectorized descriptor of the target area. The feature can be thought

of as a weak classifier that imposes a relational rule over thevector descriptor. A
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number of such weak classifiers are combined using boosting (AdaBoost) to define

a strong classifier with acceptable performance that can distinguish between targets

and non-targets. The advantage of the RelCom classifier is thatit is fast, accurate and

not limited to any particular feature type.

• Contribution II : A dual histogram appearance model with feature selection for

tracking small maneuvering targets in FLIR images. We propose the use of a quad

histogram based appearance model to represent the target area. Specifically we use

histogram representations of the intensity and standard deviation information from

both the target area (foreground) and the area surrounding the target (background).

The histogram features are fast and easy to compute and are robust in cases where

the target is extremely small in size. Further, a feature selection mechanism to as-

sign varied importance to the histogram features during thetracking process is also

presented.

• Contribution III : An appearance learning framework to account for variations in

the target signature. Though histogram features are fairlyrobust, over time they may

become invalid, due to movement of the target or imaging sensor, and result in track

loss. To overcome this effect, we model the evolution of the histogram over time

as a state space system and apply an Adaptive Kalman Filter (AKF) to estimate the

states. The AKF makes use of the autocorrelation of the filterresidues to estimate the

unknown system and measurement noise variances, required in the filtering process.

• Contribution IV : A generative model framework for joint tracking and recognition.

In order to account for the multitude of target appearance variations, we propose the

use of a nonlinear tensor-based generative model that can synthesize a target signa-

ture given the target type and an arbitrary pose. In additionto aiding the tracker by

accounting for inter-frame appearance changes, this modelalso facilitates recogni-

tion by generating distinct type-specific appearances withany pose. In addition, a

9



target dependent generative motion model is proposed to account for the mechanical

variability among the target types. These two generative models are coupled in a

graphical model framework for joint tracking and recognition.

• Contribution V : The generative model mentioned in the previous step, dealswith

discrete identity labels. We extend this generative model by introducing the con-

cept of a continuous valued identity manifold. This identity manifold allows us to

recognize not only a known target, but also an unknown one by interpolating the

shape meaningfully between two training targets. Additionally, we develop a new

multi-view shape-based generative model that integrates ahemisphere-shaped view

manifold with this identity manifold to provide simultaneous identity and pose esti-

mation.

This work follows in the spirit of the evolution of ATR research over the past decade [1],

and is fueled by several recent advances in the field of machine learning and computer vi-

sion. A tabular form of the contributions and the associatedadvantages is shown in Fig.1.5.

It is seen that the solutions to the challenges in different components of the ATR system

are dependent on a variety of broad technical areas related to machine learning, computer

vision, signal processing etc. For example, boosted classifiers were mainly developed for

use in pattern recognition, Adaptive Kalman filters were primarily developed for use in

the field of signal processing and state estimation. In this research, these have been inte-

grated together to develop a hybrid ATR system. The rest of this dissertation is organized

as follows:

• In Chapter 2 we provide an overview of the existing literature in the fields of target

detection, tracking and recognition in the context of both visual and infrared imagery.

• In Chapter 3 we discuss the development of a low false alarm and low computational

complexity target detector based on a novel feature termed as Relational Combinato-

rial (RelCom) feature.
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• In Chapter 4 we present a particle filter tracker based on a quad histogramappear-

ance model for target tracking in FLIR images under difficultfield conditions along

with the concept of feature selection to decide the relativeimportance of the four

different histograms to maintain a robust track.

• In Chapter 5 we greatly improve the tracker presented in Chapter 4 by considering

the issue of appearance learning using Adaptive Kalman Filters (AKFs). We show the

advantage of our proposed auto-covariance least squares technique over traditional

methods by experiments on both real and simulated data.

• In Chapter 6 we discuss a joint motion-appearance generative model for simultane-

ous 3D target tracking and recognition. This model uses boththe target appearance

and motion dynamics in determining the target identity. Further, we decompose the

shape variability in the given training set into the two factors: discrete identity label

and a continuous view angle by means of non-linear tensor decomposition.

• In Chapter 7we extend the generative model in Chapter 6 by removing the constraint

of discrete target identity labels. We introduce the concept of identity manifold to

account for both inter and intra class shape variations. In addition to being able to

deal with arbitrary view variations, this model allows us todetermine the identity of

an unknown target at both the class and sub-class level.

• In Chapter 8 we conclude the dissertation with the discussion of future work.
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CHAPTER 2

Literature Review

This chapter provides an overview of the existing literature in the fields of detection, track-

ing, appearance learning and joint tracking and recognition.

2.1 Detection

Detection is the first and a very important component of an ATRsystem. Based on the

survey presented in [2], detection methods can be separatedinto four distinct categories

as shown in Fig 2.1. A brief discussion of the different methods with insights from [2] is

presented in the following.

Detection methods

Point feature 
detectors Segmentation

Background 
modelling

Classifier based 
detection

Figure 2.1: Broad classification of detection methods in literature.

2.1.1 Point feature detectors

Point feature detectors are used to find interest points on the image, and are mostly located

on distinctly textured areas, strong gradient locations, corners etc. Commonly used point

detectors include Harris interest points [3], SIFT features [4] etc. The Harris detector relies

on the local gradient information and tries to identify points that show strong variations
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in the selected vicinity. SIFT feature points have the additional capability of identifying

interest points across multiple scales and is more capable of handling image deformations.

2.1.2 Segmentation

Segmentation is the process of dividing a image into perceptually similar regions. Effec-

tiveness of segmentation algorithms is largely dependent on the criteria for finding a good

partition. Graph cuts [5] are a popular method for segmentation in visual band images

where the targets are fairly large in spatial extent. In [6] it is shown that feature descriptors

developed primarily for visible spectrum can be adopted in infrared in the case of larger

targets like pedestrians. Active contours [7] and morphological operator [8, 9] based seg-

mentation methods are commonly used in infrared images for detecting small targets.

2.1.3 Background subtraction

Background subtraction based detection works by building a representation of the back-

ground or scene and any region of the image that deviates fromthis model is labeled as ob-

ject/foreground. Common models include a Gaussian model or aGaussian mixture model

of the pixels/regions over the intensity or color feature space. Over the years background

subtraction algorithms have been successfully developed to mitigate the effects of chang-

ing illumination [10], noise and periodic background motion [11]. This makes these ap-

proaches very suitable for use in fixed camera systems where the background is relatively

slow changing and any significantly moving object is the target.

2.1.4 Classifier methods

These methods require training a classifier to distinguish between targets and non-targets

using exemplars from both categories. The choice of features used to represent the exem-

plars plays an important role in the effectiveness of the classifier and therefore must be

chosen so as to be discriminative between the two classes. Haar wavelets have become
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popular due to their efficient computation [12]. More recently, histogram-based represen-

tations of image gradients in spatial context, including the histogram of oriented gradients

(HOG) [13], the scale-invariant feature transform [4], theshape context [14], were shown

to yield more distinctive descriptors. In [15] a region was represented by the covariance

matrix of image attributes in addition to histograms. The list of common descriptors can be

extended to Gabor filters, appearance templates, local binary patterns, etc. The explosion

of available features has led to the application of data mining approaches [16, 17] for fea-

ture selection. The objective of the classifier is to determine a hypersurface that separates

the two classes in hight dimensional feature space. Neural networks, boosting [18], sup-

port vector machines (SVM) [12] and decision trees are some of the most commonly used

classifier methods.

2.2 Target tracking

In line with the comments by Cominiciuet.al in [19] a typical visual tracker comprises of

two major components namely,target representationandfiltering. The former is mainly

associated with the appearance description of the target and adapting to changes in appear-

ance. The latter mainly relates to the dynamics of the targetand evaluation of different

hypothesis. Fig. 2.2 provides a list of the common techniques used in visual tracking. In

most cases the tracker is based on a chosen technique from each of the two components.

This section analyzes some of the existing tracking algorithms and their comprising sys-

tems.

2.2.1 Interest points

When using interest points to represent a target, the points are usually the output of a detec-

tion stage. The objective in this approach is to associate the detected points at every frame

with a unique target track. The problem becomes one of identifying the correspondence

between the detected points in subsequent frames. There have been a number of proposed
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Templates

Weighted density estimates
Silhouettes and contours

Correspondence matching
Kalman filter
Particle filter

JPDAF
MHT

Mean-shift
HMM

Target representation Filtering

Tracking Algorithm

Figure 2.2: The two major components of a tracking algorithmtarget appearance modeling

and filtering. Some of the commonly used methods in each component are also shown. A

tracking algorithm may be constructed by choosing a method from each component.

solution to solve thecorrespondence matchingproblem of which the most notable is the

Greedy Optimal Assignment (GOA) proposed by Veenmanet.al [20]. In [21] detector re-

sults obtained from background subtraction are processed through a template mask and

used by aKalman Filter to estimate the position of the person. In cases were multiple

targets are present, Joint Probability Data Association Filtering (JPDAF) [22] can be im-

plemented to associate a single observation with each unique target. The Multi Hypothesis

Tracker(MHT) [23] on the other hand maintains multiple hypothesis for each target in any

given time frame and the final track of the target is the most likely hypothesis over a set

of given observation frames. The use of interest points is most suitable in cases where the

object is very small and can be represented by a point. For larger objects multiple points

will be required to effectively track the target.

16



2.2.2 Templates

Templates that are often a small image of the target area, area simple way to depict the

target appearance. They carry both spatial and statisticalinformation about the target area.

Templates however are limited to a single view and size of thetarget and are most useful

when the target does not vary considerably in the observed time frame. Examples of a

simple template basedparticle filter tracker are discussed in [24,25].

2.2.3 Weighted density estimates

Here appearance features of the target area such as greyscale intensity, color or gradient

information is represented as densities. The form of the density can be parametric (gaus-

sian, gaussian mixture) or non-parametric (histogram). Usually in such representations

more weight is attached to pixels closer to the target centerand less weights assigned to

pixels near the background. This is done to reduce the effectof background information

corrupting the target appearance when the target boundary is not perfect. Due to its in-

variance to scale and slow varying nature, intensity histograms are widely employed for

target representation [19, 26, 27]. In [19] amean-shift based tracker that searches for the

target in the neighborhood of its previous location is presented. The mean-shift algorithm

uses a histogram representation of the target and candidateareas are evaluated using the

Bhattacharya distance.

2.2.4 Silhouettes and contours

Silhouette representation of a target can be thought of as a shape template and is usually

obtained from determining the target edges. Shape matchingis then performed to identify

the location of the target. Shape matching can be explicitlydependent only on the edges or

also include the information contained within the edges. Contours on the other hand, can be

thought of as target boundaries that continuously evolve over time. In [28] aparticle filter

is used to optimize a set of spline and affine motion parameters to fit the target. Methods
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that represent the contours in parametric form (spline) do not allow operations like split and

merge that are useful when dealing with multiple targets. Insuch cases, direct minimization

of the contour energy functional is preferred and is achieved through gradient descent or

greedy methods. The contour energy function is usually dependent either on optical flow

or appearance statistics of the target and background [7].

2.3 Appearance learning

This section provides a brief review of the existing works onthe important issues of ap-

pearance representation, learning and occlusion handling. Appearance learning strategies

strongly depends on the appearance representation as shownin Fig. 2.3.

Parametric 
models

Component GMM

EM Algorithm Mean Shift

Non Parametric 
models

Templates Histograms

Drift 
correction AKF

Linear 
combination AKF

Learning 
strategy

Appearance Models

Figure 2.3: Different appearance learning strategies depending on the target appearance

model of choice.

2.3.1 Parametric models

Parametric models are in general a statistical model that captures the key characteristics

of the target appearance in a way that facilitates estimation of the model parameters con-

tinuously online [29]. A sophisticated model combining stable, wandering, and outlier

components in a Gaussian mixture model (GMM) was proposed in[29], where the model

was updated via an expectation maximization (EM) algorithm. GMM based appearance
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learning was also applied in [30], where a mean-shift algorithm was used to update the pa-

rameters online. These methods rely on elaborate parametric models and are effective for

tracking extended targets with large spatial signatures. However, in case of infrared images

where the targets are very small, there may not be enough pixels on the target to achieve

robust and statistically significant parameter estimation.

2.3.2 Non-parametric models

Non-Parametric models are ones in which the target appearance is characterized by em-

pirically derived features that represent certain characteristics of the target appearance.

Such features may include simple templates, kernel-based windows [31–33], or local statis-

tics [27,32] including intensity histograms and their moments.

Drift correction strategies for template tracking were proposed in [34, 35]. Here the

new template is drift corrected so as to match closely with the reference template given

in the first frame. The adaptability of this technique in cases where there is significant

change in the target’s appearance over time is questionable. A robust Kalman filter was

also developed for appearance learning in [36] where the intensity values of the target

template are estimated by means of state space model. Here the process noise was assumed

known and covariance matching was used to estimate the variance of the innovations.

For histogram-based target representations, appearance learning is generally accom-

plished by iteratively updating a reference histogram [37–39]. Typically, the new reference

histogram at each iteration is given by a linear weighting ofthe previous reference his-

togram and the most recent observation, where the weightingcoefficient may be based on

an appropriate measure of histogram similarity. While such techniques are often effective

for adapting the appearance model when the target has a largespatial extent, they can be

susceptible to drifting problems, particularly when applied to smaller targets. Improved

histogram estimation was achieved by modeling the temporalevolution of the reference

histogram in an adaptive Kalman filtering (AKF) framework in[37]. In [40, 41], the AKF
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measurement noise variance was estimated from the first frame and was assumed station-

ary, while the process noise variance was estimated online using covariance matching [42].

A robust Kalman filter was also developed for appearance learning in [36], where the pro-

cess noise was assumed known and covariance matching was used to estimate the variance

of the innovations.

Various methods have been developed for handling temporarytrack loss, especially oc-

clusion. Typically, occlusion can be detected by investigating the distance between candi-

dates and reference representations. The distance betweenthe contours of objects was used

in [7]. Latecki and Miezianko incorporated motion cue into the definition of the template

distance [43]. Wuet al. explicitly introduced a state variable as the indicator forocclusion

into the dynamic Bayesian networks in order to estimate the probability of occlusion. In

their approach, the likelihood is also defined based on the template distances [44]. For

the histogram representation, the percentage of outliers are taken as the index to occlusion

in [40], and the outliers are classified based on the residuals in the Kalman filtering of

histograms.

2.4 Joint tracking and recognition

Joint vehicle tracking and recognition is a prevalent and challenging issue in many civilian

and military surveillance applications. One major challenge in vehicle appearance mod-

eling is that of representing appearance variability both within a vehicle class and across

different vehicle classes. For example, appearance modelsin particular must accommodate

the variation in appearance over time that occurs due to posevariation or partial occlusion.

A brief overview of some of the common appearance models thatlend themselves to target

recognition are shown in Fig. 2.4.
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Figure 2.4: Different appearance learning strategies depending on the target appearance

model of choice.

2.4.1 Multi-view target models

There are two theories on object representation. One suggests a set of representative 2D

snapshots [45, 46] and the other involves a 3D object model [47]. In the first theory, un-

known views can be interpolated from the given ones, and while in the second one, the 3D

model is used to match the 2D observation via 3D-to-2D projection. Accordingly, most

object recognition methods can be categorized into two groups, i.e., those involving 2D

multi-view images [8, 48–52] and those supported by explicit 3D models [53–56]. Some

make use of both the 3D shape and 2D appearances [57]. A variety of 2D features (e.g., sil-

houettes, edges, HOG, SIFT) or 3D models (e.g., meshes, polyheadrons) were used in these

methods. The psychophysical evidence [58] motivates us to use 2D view-based silhouettes

for multi-view object representation.

The ready availability of 3D CAD models of common vehicular targets has made their

use very popular in tracking and recognition systems. Lou, et al., proposed the use of a

predefined 3D shape model to track the position and pose of a vehicle in [53] by making
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use of the ground plane motion constraint. In [59], the shapeand pose were character-

ized explicitly using a deformable model with multiple parameters that must be optimized

continuously for localization and recognition.

Templates are the simplest way to characterize appearance difference among target

types and views. In [48], shape information was exploited along with the object appearance

in order to classify vehicles according to type, where only afew representative poses were

considered for each type.

Generative models provide a way to parameterize the appearance variations caused by

identity and pose variations. In the context of face tracking and recognition, appearance

models adaptive to pose changes were also studied extensively, including Principal Com-

ponent Analysis (PCA) based models [29, 60, 61] and non-linear manifold based meth-

ods [62]. One early work in [63] applied PCA to find two separateeigenspaces (one for

all objects and one for a specific object under different poses) for joint identity and pose

estimation. The bilinear models [64] and multilinear analysis [65] have provided more

systematic multi-factor representation by decomposing HDobservations into several inde-

pendent factors. In [66], the view variable is related with the appearance through shape

sub-manifolds which have to be learned for each object class. Recently, multi-linear analy-

sis was combined with manifold learning to provide a generative model-based human shape

representation that is specified by multiple factors including the identity (body shape), pose,

and view [67]. The major advantage of this model is that it is able to synthesize an unseen

observation under an arbitrary view given an identity and a pose, which can aid the tracker

in accounting for inter-frame appearance variation that occurs due to changes in pose or

view. Moreover, this approach also facilitates recognition with a built-in identity variable.

This appearance generative model is one of the two major components in our research that

can be easily connected with a type-dependent motion model by sharing a single identity

variable.

Along another line of thinking, some methods can synthesizenovel 3D shapes from a
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set of 3D objects belonging to the same class. For example, in[56], a 3D object is repre-

sented by mesh vertices that are matched to salient feature points on the observed image.

The main challenge is to determine correspondences betweenthe model and observation.

A correspondence-free method was presented in [55], where multiple 3D objects are used

to develop a generic 3D shape prior, and PCA is applied to generate novel 3D shapes. Then

the shape and pose parameters can be optimized jointly by maximizing the degree of match

between the 2D projection of the novel 3D model with given thesegmentation boundary

of the unknown object. In contrast, our generative model is controlled by two indepen-

dent variables constrained on their own low dimensional manifolds, making the inference

process very efficient and flexible.

2.4.2 Motion models

Motion modeling is a second important component of joint tracking and recognition. For

example, multiple motion models have been widely adopted toaccommodate different ma-

neuvering actions in vehicle tracking [68]. In reality, a vehicle is equipped with a specific

engine and mechanical system that generates a unique motionpattern and maneuverabil-

ity. This inspires researchers to develop multiple type-dependent motion models to achieve

joint vehicle tracking and recognition [69,70]. However, these approaches require sensors

capable of providing direct measurements of the kinematics(radar, for example), and do

not consider the vehicle appearance captured by passive imaging sensors such as electro-

optical (EO)/infrared (IR) sensors. We recently proposed a generative model-based maneu-

vering vehicle tracking approach that is able to capture theunderlying physical constraints

in the mechanical system of a maneuvering vehicle and requires only passive imaging sen-

sors [71].
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2.4.3 Integrating motion and appearance cues

Integrating motion and appearance cues for joint tracking and recognition is attractive be-

cause of their complementary nature. In the context of activity recognition, for example,

object trajectories aggregated from past tracking historyhave been employed as important

cues for classification of high-level object activities [72–74]. In addition, recent face track-

ing and expression recognition algorithms have incorporated multiple temporal models of

facial features conditioned on the variable to be recognized, i.e. facial expression [75, 76].

However, in these methods there is no direct dependence between the identity (object activ-

ity or facial expression) and the object appearance; thus the appearance contributes only in-

directly to recognition through tracking crucial signatures (trajectories and facial features)

that determine the identity. On the other hand, identity-dependent appearance models are

widely used in joint face tracking and recognition [62, 77, 78], but no identity-dependent

multiple dynamic (motion) models have been used. Motion models are used for appear-

ance update in [60,62,62], but these have no direct impact onrecognition. In our work, we

present a new approach where both appearance and motion models are dependent on the

vehicle identity and are integrated into a unified probabilistic framework.
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CHAPTER 3

Target Detection using Relcom Features1

3.1 Background

Small object detection still remains one of the most fundamental and challenging tasks

in computer vision. On the core, it requires salient region descriptors that can accurately

model object appearance and competent classifiers that can distinguish the large pool of ob-

ject appearances from every possible background and clutter. Detection in infrared images

is especially challenging due to the low spatial resolutionof the object region. Variable

thermal signatures, movable parts, combined with externalillumination and pose varia-

tions, contribute to the complexity of the problem. Since detectors often form the first

stage of the consecutive tracking and recognition tasks it is vitally important the detector

be both accurate and fast.

Here we introduce the relational combinatorics featuresRelCom. We first generate

combinations of low-level attribute coefficients, which may directly correspond to pixel

coordinates of the object window or feature vector coefficients representing the window

itself, up to a prescribed sizen (pairs, triplets, quadruples, etc). We then apply relational

operators such as margin based similarity rule over each possible pair of these operands.

The space of relations constitutes a proposition space thatdivides the original feature space

into discrete regions. From this space we define combinatorial functions of Boolean op-

erators to form complex hypotheses as shown in Fig. 3.1. Therefore, we can produce any

relational rule over the operands, in other words, any logical proposition over the low-level

1The work presented in this chapter was done in collaborationwith Dr Fatih Porikli when the author was

an intern at Mitsubishi Electric Research Labs (MERL).
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Figure 3.1: RelCom: After a number of coefficients are selectedfrom the input image (or

feature vector), a set of relational operators are imposed to generate a discrete proposi-

tion space, from which hypotheses are constructed by applying combinations of Boolean

operators (conjunction, disjunction, etc.).

descriptor coefficients. In case these coefficients are associated with pixel coordinates, we

encapsulate higher order spatial structure information within the object window. Using a

descriptor vector instead of pixel values, we effectively impose feature selection without

any computationally prohibitive basis transformations such as PCA. In addition to propos-

ing a simple methodology to encode the relations betweenn pixels on an image (orn vector

coefficients), we employ boosting to iteratively select a set of weak classifiers from these

relations to perform faster target detection.

RelCom is significantly different from the body of work developed aroundn-tuples, as

we explicitly use logical operators with a learned similarity thresholds as opposed to raw

intensity (or gradient) values. Unlike the sparse featuresand associated pairings, it extends

the combinations of the low-level attributes to multiples of operands to gain better object

structure imposition on the classifier. Instead of mining ofcompositional features [17],

which can split the feature space only along the dimensions as k-trees, RelCom partitions

the space into margin regions along the hyperplanes and constructs higher level hypotheses,

thus, it can provide much better granularity using the same number of primitive classifica-

tion rules.
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3.2 RelCom features

Consider a datasetDN = {xt, ct}Nt=1 withN training samples where each sample is charac-

terized by its feature vectorxt ∈ R
d and has an associated binary class labelct ∈ {−1, 1}.

The traditional classification problem is to find a classifierfunctiong(.) : x → c that pro-

vides a mapping between the feature space and class labels.g(.) is usually determined by

minimizing classification error over a representative training set. Instead of a direct map-

ping from the feature space to class labels, we define a binaryvalued propositional feature

space{f1, f2, · · · , fK} where eachfk : x → {0, 1}. In effect this is a transformation from

the continuous valued scalar space to a binary valued space and possibly a reduction in

dimension ifK < d. The mapping functionfk can take on a multitude of forms such as a

simple decision stump in a single dimension, a multi-dimensional hyperplane, a threshold

based match filter etc. For any given classification problem there are a plethora of pos-

sible feature representations of the objects involved. Therefore, the choice offk will be

dependent on the semantic meaning of the featuresx and the problem at hand.

Once we have obtained the K-bit binary stringF = {f1, f2, · · · , fK} by choosing an

appropriate mapping function, it is easy to see that there are 22
K

possible ways to assign

binary class labels to any given test samplex. An example for the case ofK = 3 is

shown in Tab.3.1 where the left column represents all possible binary string patterns and

each hypothesis columnhi(F) on the right represents one possible class label assignment

pattern. Though the number of possible hypothesis increases greatly withK we have found

in our experimentsK = 2, 3 was adequate to meet the detection challenge. The value

of hi indicate whether a sample is classified as positive (1) or negative (-1) for a given

propositional binary pattern.

To illustrate further the concept of combinatorial features consider ad dimensional fea-

ture descriptorx = [x(1) x(2) · · · x(d)]T and an associated 3-bit propositional mapping

{f1, f2, f3} using simple decision stumps. Fig.3.2 represents a hypothetical projection of

these decision stumps along the first two dimensions of the feature space. We observe that
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f1 f2 f3 h1(F) h2(F) h3(F) · · · hi(F) · · · h256(F)

0 0 0 -1 -1 -1 · · · 1 · · · 1

0 0 1 -1 -1 -1 · · · 1 · · · 1

0 1 0 -1 -1 -1 · · · 1 · · · 1

0 1 1 -1 -1 -1 · · · -1 · · · 1

1 0 0 -1 -1 -1 · · · -1 · · · 1

1 0 1 -1 -1 -1 · · · 1 · · · 1

1 1 0 -1 -1 1 · · · -1 · · · 1

1 1 1 -1 1 -1 · · · 1 · · · 1

Table 3.1: Illustration of the22
K

possible class label assignments for a propositional binary

string of lengthK = 3.

the entire feature space has been divided into a small numberof discrete region each with

a binary string label. Fig.3.3 represents the decision boundaries corresponding to a few

possible hypothesis from Tab.3.1 where data samples falling within the shaded region are

classified as positives. It is observed that simple logical boundaries in the propositional

form complex decision boundaries in the original feature space. This enables us to de-

fine complex decision boundaries by combining the results ofindividual simple decision

stumps in a multitude of combinations. From Fig.3.3 it is easy perceive that the decision

regions resulting from the combinations are more likely to be beneficial in classification

problems than those of any individual decision stumps. However, the regions of the indi-

vidual decision stumps are a subset of the larger set of all possible combinations. Though

combinational features allow for complex decision boundaries we still consider each of

these to be a weak classifier and perform boosting to select aninformative subset from

these combinations.

Some of the hypotheses in Tab.3.1 are degenerate and are logically invalid such as the

first and last columns. Half of the remaining are complementsof a different column and
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Figure 3.2: Example of one possible mapping from feature space to the propositional space

spanned by a 3-bit binary string. The dotted lines representthree simple decision stumps.

Data points that lie on the positive normal side (represented by dark arrows) of a decision

stump map to a binary 1 in the propositional space.

need not be evaluated explicitly. Based on the definition offk it is possible that some of the

patterns in the left column never occur and this further reduces the number hypothesis to

be evaluated. An example of this is seen in Fig.3.2 where the string 100 is not a possibility.

Thus, when we search within the hypotheses it is not necessary to evaluate all of22
K

possibilities.

Fast target detection invariably requires the computational load imposed by features

and the propositional mapping to be minimized. In this chapter we primarily consider the

simplest possible feature - raw image pixel values. The feature vectorx is taken to be a

raster scan of the pixel values making its dimensiond equal to the number of the pixels

in the target window. Experiments with other feature descriptors computed in a target

window, e.g. HOG feature are also considered.

Inspired by then-tuple classifier and other recent works [79, 80] that capture pairwise

feature variations in a small subset of the entire feature space, we define our propositional

mapping function to be simple a margin based similarity rulethat operates on two feature
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Figure 3.3: Illustration of a few possible complex decisionboundaries using combinatorial

features. Data points that lie in the shaded regions are classified as positives. Propositional

mapping using Top: simple decision stumps and Bottom: marginbased similarity rule.

dimensions chosen from a set ofn randomly sampled feature dimensions. For a givend

dimensional feature vectorx, we randomly selectn, (n < d), of the possible dimensions

and represent it byPn = {p1, p2, · · · , pn} where eachpk is unique andpk ∈ {1, 2, · · · , d}.

Given an arbitraryn-tuplePn, for each unique pair(pi, pj), pi, pj ∈ Pn we can define a

propositional mappingfk of the form

fk(x) =





1 |x(pi)− x(pj)| ≤ τk

0 otherwise,
(3.1)

wherex(pi) represents the value of the feature along thepi’th dimension. The margin

valueτk indicates the acceptable level of variation and it can be chosen so as to maximize

the classification performance of a particular hypotheses if prior knowledge of the feature

space is available. Given ann-tuple and the definition in Eq.3.1 the number of unique

propositional mappingsfk, k ∈ {1, · · · , K} that can be defined is limited toK =
(
n

2

)

corresponding to the number of possible unique pairs(pi, pj). We denote the resulting

binary string byF(x) = {f1, · · · , fK}.
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When the propositional mapping in Eq.3.1 is applied to raw image pixel values with

n-tuples, we are effectively analyzing the intensity variation patterns over the imagen

pixels at a time. This draws attention to the extremely largenumber ofn-tuples that can

be selected for any given image vector of dimension d,Tn = d!/(d− n)!. In this work

we mostly deal with the cases ofn = 2, 3 which we refer to as ‘doublet’ and ‘triplet’

respectively. For the case of even a 10×10 template and triplets there exists≈970k unique

choices of triplets. A second point of concern is the selection ofK different thresholdτk,

a continuous variable, that is difficult to optimize withoutprior knowledge of the feature

space. The vastness of this parameter space ofn-tuples and thresholds makes determining

optimal values for either of them impossible. However, eachn-tuple, threshold pair can

be thought of as a weak classifier and these can be combined by boosting to produce a

strong classifier. Since we explore different sparse combinations of the original feature

space using relational operators we refer to our feature as ‘RelCom’.

3.2.1 Boosting

To select the most discriminative RelCom features from a largepool of candidates we use

the discrete AdaBoost algorithm. Since the output of each RelCom hypothesis is binary it

can easily be adapted into the discrete AdaBoost framework. AdaBoost works iteratively to

combine a number of weak classifiers linearly to produce a strong classifier with acceptable

classification performance. In each iteration a single weakclassifier is selected that min-

imizes the weighted error over the training set. The weightsof the misclassified samples

are increased (and the weights of each correctly classified example are decreased), so that

in the next iteration the new weak classifier focuses more on the misclassified examples. It

has been shown [81] that for a binary classification problem the error of the final hypothesis

decreases exponentially with the number of boosting rounds(i.e additional weak classifier).

Our adaptation of the Discrete AdaBoost for RelCom features (shown in Fig. 3.4) is

similar to original AdaBoost, except differences at the level of weak learners. In this case,
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domain of the weak learners is in the combinatorialn-tuple hypotheses and threshold space.

In each iteration random samples of a set of n-tuplesP s
n and associated thresholdsT s are

drawn for more efficient spanning of the enormous search space. These define the mapping

from the input feature spacext to the propositional spaceFt
s(xt). Next we identify the n-

tuple pattern, associated threshold and the hypothesis pattern that minimizes the weighted

error on the training set and update the training sample weights. The identified patterns,

threshold and hypothesis are added to the classifier pool with associated weightαi. Once

the classifier is trained, given a test feature vector, we canidentify the propositional map-

ping from a lookup table. The hypothesis corresponding to the test pattern is pre-stored in

a second lookup table and also requires no computation. The output of the strong classifier

is the sign of the sum of the weighted RelCom feature responses as shown in Fig. 3.5.

In order to illustrate the competence of the RelCom features with boosting we demon-

strate the proposed method on two infrared datasets 1)CSUAV (civilian vehicles from aerial

view) and 2) SENSIAC (military targets from planar view) using raw pixel values as the

feature vector. Figure 3.6 shows the position of the top 10 RelCom features for the case

of triplets. Interestingly, the features are distributed on the target and background to gather

clues about the target shape. Figure 3.7 presents the map of the weighted locations of the

RelCom features on the SENSIAC dataset when the number of weak learners is varied. As

visible, the target edges are are found to be more discriminative. Increasing the number

of the features helps to concentrate attention on the salient regions of the target especially

in the night time images. For the day time images the effect isless pronounced due to the

presence of considerable clutter.

3.2.2 Computational load

Note that, the relational operator that we use to map from thefeature space to propositional

space has a very simple margin based distance form. Therefore, it is possible to construct a

2D lookup table of the responses forn-tuples and then combine them into separate hypothe-
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ses lookup tables. This can be achieved without any loss of information for the intensity

features, and an insignificant adaptive quantization loss for other low-level features. Par-

ticularly, this lets us masterfully trade in the computational load with the memory imprint

of the algorithm, which itself is relatively small (as many100×100 or 256×256 binary

tables as the number of features). In case of 500 triplets, the memory for the lookup ta-

bles is approximately 100MB. After obtaining the propositional binary string a secondary

lookup table of the hypothesis is used to identify the class label. We can then multiply

these binary values with their corresponding weak classifiers’ weights and aggregate the

sum to determine the response. In other words, in the testingstage of the algorithm we will

only employ array access operations instead of any arithmetic operations, which results in

a very fast detector. Due to vector multiplications, neither SVM radial basis functions nor

linear kernels can be implemented in such a manner.

Further, in the context of boosted classifiers it is possibleto implement a rejection cas-

cade that significantly reduces the computational load in scanning window based detection.

As an example, for Haar wavelet based face detection the classifier becomes 750× faster

(reported in [18]) by decreasing the effective number of features to be tested from 6000

(of the original boosted strong classifier) to a mere 8 on average! In other words, a cas-

caded implementation of the boosted RelCom has every potential to further speed up the

detection.

We present the computational load and the performance of several classifiers including

the boosted RelCom doublet and triplet versions in Table 3.2. As shown, RelCom boosting

provides one of the fastest classifiers whose complexity only depends on the number of

weak classifiers even without a cascade implementation. Whencompared to SVM-RBF, it

would demand only a fraction of the load (∼600× speed up for the INRIA dataset) and at

the same time outperforms the SVM-RBF.
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Algortihm Computational INRIA

complexity ∼ Operations% of FA

SVM-Linear 10d 21,000 4.58

SVM-RBF 57dNsv + 10Nsv 90,600,000 0.38

RelCom Doublet 11Nc 16,500 0.22

RelCom Triplet - 1 15Nc 7,500 0.23

RelCom Triplet - 2 15Nc 150,000 0.02

Table 3.2: Computational complexity and performance of different algorithms given the

input vector of dimensiond, the number of learnt support vectorsNsv, the number of weak

classifiersNc, the number of principal componentsNpc. The relative costs of processor

operations are measures against the cost of memory access, which is taken to be unity. The

above expressions assume the cost of a addition to be 3, multiplication to be 5, exponential

to be 35. For INRIA dataset using64 × 32 intensity images,d = 2048, Nsv = 776.

We setNc = 1500, 500, 10k weak learners for the RelCom doublet, triplet-1 and triplet-2

respectively.
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3.3 Experimental results

To demonstrate the capability of the proposed RelCom featureswe perform detection on

three different datasets. 1) INRIA Person dataset - human detection in visual images, 2)

SENSIAC ATR dataset - military vehicle detection in midwaveinfrared images and 3)

CSUAV dataset - car detection in midwave infrared images taken from an UAV. We com-

pared the performance of three different algorithms including SVM-Linear, SVM-RBF and

RelCom triplets. The SVM-RBF parameters were set to maximize cross validation accu-

racy on the training set. LibSVM toolbox was used for training and testing. The basis of

comparison are the ROC curves that plot the probability of true detectionsvsprobability of

false alarms and visual detection results.

For the standard INRIA dataset we obtained 2416 pictures of mirrored and centered

images and a further 12180 samples of random backgrounds. Ofthese only a fifth of the

positive samples and a tenth of the negative samples were used for training. For testing

purposes 24360 random background images and 1126 positiveswe used. All images were

of size32×64. Here we test algorithm performance for two different feature type: greyscale

intensity values and HOG features. For HOG feature calculations, we used [-1 1] filter in

orthogonal directions and adapted integral histogram for fast evaluation. HOG features

were computed for 8 directions in non-overlapping blocks ofsize16 × 8 resulting in a

8× 4× 4 = 128 dimensional feature vector.

Figure 3.8(a) shows the detection performance curves for INRIA dataset when using

intensity features. The boosted RelCom triplets with 10k classifiers significantly outper-

forms SVM-RBF to our surprise by a factor of 13.8 at the 50% true detection level. At the

same time it outperforms SVM-Linear by almost a factor of 25.Figure 3.8(b) presents the

ROC curves in the case the HOG feature. Performance of the RelCom is at par with the

SVM-RBF and 12 times better than the SVM-Linear. We are able to achieve performance

comparable to SVM-RBF at significantly lower computational cost. This illustrates that

the proposed method is applicable to any given feature and not limited to spatial features.
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The SENSIAC dataset consists of midwave image sequences acquired both during day

time and night time for eight different targets. The targetsare imaged at multiple distances

and poses. We select 3 of those targets (Pickup, BTR70 and BRDM2) at a distance of

2000 meters to create a training set of 60 positive samples and 5900 negative samples each

for both day and night time images. The testing set consistedof 200 positive samples and

45800 negative images each for day and night time images. Theimages were histogram

equalized before sample templates of size 15×45 were extracted. We train two separate

classifiers for day and night time data on greylevel intensity features. The ROC perfor-

mance curves are shown in Fig.3.9 for both day and night time detection. We observe that

for the night time data the performance all of the algorithmsis very similar as the target is

distinctly visible. The advantage of the RelCom features is greatly emphasized in the day

time images where there is a lot of confusing clutter. In addition results of detection in three

different scenarios are shown in Fig.3.10, Fig.3.11 and Fig.3.12. Note that in each scenario

either the target or the imaging distance is previously unseen (not present in training set).

We observe that the RelCom based classifier is able to clearly identify the target even when

the other methods fail entirely or result in excessive falsealarms.

The CSUAV dataset contains MWIR images acquired from an UAV flying over a civil-

ian locality. From this dataset we selected 1050 positive images and 13000 negative images

for training. For testing purposes 1050 positives and 65000negatives were used. The tem-

plate size was 20×30. Here again it was found that the RelCom triplet greatly outperforms

the SVMs in detection performance. Fig 3.13 shows the resultof using RelCom triplets in

three different scenarios. Since we trained the classifier with a general template irrespective

of orientation, during the detection phase the image was scanned for targets at orientations

of 0o, 45o and90o to detect targets oriented along different directions. Theresults were

combined using non-maximum suppression. We can see that majority of the vehicles in-

cluding those in shade and near trees where correctly detected even though some roof tops

were falsely detected. These experiments establish the competence of the RelCom detector
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for small target detection using intensity features in infrared images.

In conclusion we have shown that high-level combinations ofbasic relational features

can be used in a boosting framework to construct very fast classifiers that are as competitive

as SVM-RBF while requiring only a fraction of the computational load. To summarize the

advantages of our method:

• RelCom can speed up detection several orders of magnitude because it does not re-

quire any complex computations thanks to the two-layer lookup tables.

• It can accommodate both basic features including pixel intensities and other complex

descriptors vector computed for the object window.

• It utilizes simple relational operators to capture the spatial structure within the object

window effectively.

• It can be applied to very small object windows unlike HOG features.
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Given:

∗ Training dataset with feature vectors, class labelsD : {(x1, c1), · · · , (xN , cN)},

wherect = ±1 indicates the class label.

∗ Nc the required number of weak classifiers.

∗ S weak classifiers pool size.

Initialize:

∗ Sample weightsW1(t) =
1

2N+ ,
1

2N−
for ct = 1,−1 respectively, whereN+ andN−

are the number of positive and negative samples.

AdaBoost:

∗ For i = 1, · · · , Nc

• Randomly sampleS n-tuplesP 1
n , · · · , P S

n . For eachP s
n also sample threshold

valuesT s = {τ sk}, k = {1, · · · ,
(
n

2

)
}.

• For each of theS n-tuples compute the propositional mappingFt
1,F

t
2, · · · ,Ft

S

over the training samplest = {1, · · · , N} using Eq.3.1.

• For each of theS n-tuples compute error for all valid hypothesis in the set

hj(F) j = {1, · · · , 22K} asλjs =
∑N

t=1Wi(t)[ct 6= hj(F
t
s)].

• SetP i
sel,n = P smin

n , T i
sel = T smin, hisel(F)=hjmin(F) andǫi = λjmin

smin. Where

smin andjmin are indices :λjmin
smin < λjs ∀s 6= smin, j 6= jmin.

• Calculateαi =
1
2
· ln

[
1−ǫi
ǫi

]
.

• Update the sample weights fort = {1, · · · , N}, Wi+1(t) =

Wi(t) exp[−αicth
i
sel(F

t
smin)].

• Normalize the weights
∑N

t=1Wi+1(t) = 1.

Output: Selectedn-tuplesP i
sel,n, thresholdT i

sel, hypothesishisel and classifier weight

αi for i = {1, · · · , Nc}.

Figure 3.4: Training RelCom features with discrete AdaBoost.
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Given:

∗ A single sample feature vectorxtest

∗ RelCom classifier consistingP i
sel,n, T i

sel, hisel and αi for

i = {1, · · · , Nc}

Testing:

∗ IdentifyF1,F2, · · · ,FNc
usingxtest,P i

sel,n andT i
sel.

∗ final classifierH(xtest) =sign [
∑Nc

i=1 αih
i
sel(Fi)].

Figure 3.5: Testing with RelCom features.

Figure 3.6: Top ten RelCom triplet feature locations shown on the mean positive images

for (a) CSUAV dataset, (b) SENSIAC night time and (c) SENSIAC day time. The features

identified compare the object with its background aiming to distinguish the silhouette.
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Figure 3.7: Map of normalized weighted location of RelCom features for the SENSIAC

dataset. Top: Night time and Bottom: Day time. The target edges, as expected, are found

to be more salient by RelCom features.

(a) (b)

Figure 3.8: (a) Detection-error trade off curves for INRIA dataset. As visible, RelCom

outperforms SVM-RBF, (b) Detection-error trade off curves for INRIA dataset using HOG

features.
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(a) (b)

Figure 3.9: ROC curves for SENSIAC dataset (a) Night time (b)Day time.

41



(a) (b)

(c)

Figure 3.10: Sample detection results at FA rate of10−4 on Day time SENSIAC data at

Distance:1500m (unseen) and Target: BRDM2 (seen) for (a) SVM-Linear (b) SVM-RBF

and (c) RelCom triplet.
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(a) (b)

(c)

Figure 3.11: Sample detection results at FA rate of10−4 on Day time SENSIAC data at

Distance:2000m (seen) and Target: ZSU23 (unseen) for (a) SVM-Linear (b) SVM-RBF

and (c) RelCom triplet.
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(a) (b)

(c)

Figure 3.12: Sample detection results at FA rate of10−4 on Night time SENSIAC data at

Distance:4000m (unseen) and Target: BMP2 (unseen) for (a) SVM-Linear (b) SVM-RBF

and (c) RelCom triplet.
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(a) (b)

(c)

Figure 3.13: Sample detection results of RelCom triplet at FA rate of10−4 on three different

scenarios from the CSUAV dataset.

45



CHAPTER 4

Target Tracking with Online Feature Selection

4.1 Background

Target tracking in the forward looking infrared (FLIR) imagery has remained a challeng-

ing problem in the field of computer vision. Usually, FLIR images are characterized by

low signal-to-noise (SNR) ratios, poor target visibility, and time varying target signatures.

These factors prohibit the straightforward extension of existing optical tracking algorithms

to FLIR images. In addition strong ego motion of the FLIR sensor makes it difficult to char-

acterize the target’s kinematics. Two issues will be discussed in this chapter. One is how to

develop an elaborate target appearance model for superior tracking performance? How to

select optimal features to characterize the appearance model? Despite the fact that the issue

of size estimation is especially important in automatic missile guidance systems where the

size may act as a cue for distance, it is usually not considered in most FLIR tracking al-

gorithms [27], partially because of the lack of robust and reliable target appearance model.

For example, to achieve a robust position localization, traditional tracking algorithms as-

sign less confidence to the target’s boundary pixels compared with the center ones [26,27].

However, this biased confidence assignment leads to inaccurate size estimation.

In this chapter, we proposea dual appearance modelthat accounts for both foreground

and background appearances. Unlike the classifier [82,83] approach, we track the target by

matching both its foreground and background statistics with their corresponding reference

model. These statistics are used as features for appearancemodeling. As the target appear-

ance changes with time, the contribution of each feature towards tracking will vary. It is

desired to provide a feature selection scheme that can adaptively assign weights to differ-
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ent features indicating their relative importance to the tracking process. We formulate the

online weights update as a probabilistic estimation problem that is directly integrated with

the tracker. In addition to accurate target localization and size estimation, the proposed

algorithm also indicates the optimal feature combination for target representation while

tracking.

4.2 Probabilistic formulation

In this section, we devise a probabilistic framework to formulate the research problem.

Let xk denote the state vector to be estimated that includes the position and size at time

instantk. In addition, our tracking approach is able to update weightsvk of different fea-

tures associated with the appearance model in an online fashion. Therefore, target tracking

and feature selection are formulated as a state space problem where we need to estimate

posterior densitiesp(xk|y1:k) andp(vk|y1:k) given the observationsy1:k.

1−kX kX 1+kX
TX

1−kV kV 1+kV
TV

1−kY kY 1−kY TY

Target Tracking
Variables

Feature Selection
Variables

Observation
Variables

Figure 4.1: The diagram of the proposed tracking algorithm.

The conditional dependencies between the variables are graphically depicted in Fig.

4.1. Noticing these dependencies, the estimation can be obtained by recursive Bayesian
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filters. Forp(xk|y1:k), we have

p(xk|y1:k) ∝
∫

vk−1

p(yk|xk,vk−1)p(vk−1|y1:k−1)dvk−1

·
∫

xk−1

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (4.1)

We define the kinematic model of the target,p(xk|xk−1) in Sec 4.3 and the weighted like-

lihood p(yk|xk,vk−1) in Sec 4.4. Givenp(xk|y1:k), the posterior density of the feature

weightsp(vk|y1:k) can be represented by:

p(vk|y1:k) =

∫

xk

p(vk|xk,y1:k)p(xk|y1:k)dxk. (4.2)

Let

L(vk) =

∫

xk

p(xk|y1:k)p(vk|xk)p(yk|vk,xk)dxk, (4.3)

where the weighted likelihoodp(yk|vk,xk) has the same form asp(yk|vk−1,xk) andp(vk|xk)

describes how likely the feature weights fit the given tracking estimation, which will be de-

fined in Sec 4.5. Thus (4.2) becomes

p(vk|y1:k) =

L(vk)

∫

vk−1

p(vk|vk−1)p(vk−1|y1:k−1)dvk−1, (4.4)

wherep(vk|vk−1) is the evolution prior of the feature weights to be discussedin Sec 4.5.

Motivated by the idea of particle filters [84], we approximate the posterior densities

p(xk|y1:k) andp(vk|y1:k) using two weighted sample sets{xj
k, w

j
k}

Np

j=1 and{vi
k, w

i
v,k}Nv

i=1.

The integrals in (4.1) and (4.4) can be approximated by summations. To avoid the high

computational expense brought by integratingvk−1 andxk out from (4.1) and (4.3), we

replace the variablesvk−1 andxk by their expectationsE(vk−1) andE(xk) estimated from

the weighted sample sets. The detailed algorithm is summarized in Table 4.1.

4.3 Kinematic models

In our formulation the state vector at any time instantk is defined asxk=[xk, sk], where

xk=[xk, yk] contains the position information andsk=[sxk, syk] shows the size inx and y
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Figure 4.2: The ground truth values of X-position, Y-position, X-size and Y-size of the

sequences LW-15-NS and LW-14-15 over 100 frames.

directions. The foreground areaNF (xk) is defined a rectangle box whose top-left corner

corresponds to coordinate (xk,yk) and the length and width are given bysxk andsyk respec-

tively. In the following, we will analyze the position and size dynamics of the target based

on the ground truth data, and design appropriate dynamic models for both position and

size variations. These dynamic models determine the state transition probabilities, i.e.,

p(xk|xk−1) that play an important role in particle filtering.
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4.3.1 Target position

First let us consider the dynamics of the target’s position.Fig. 4.2 shows the evolution

of the position and size of the sequences LW-14-15 and LW-15-NS from the AMCOM

dataset1. From Fig. 4.2 (a) and (b) we observe that for the LW-15-NS sequence, the target

stays around the center of the image. This is due to the fact that the sensor is mounted

on an airborne platform which is homing in on the target. However the sequence LW-

14-15 is characterized by strong ego-motion of the sensor platform. Therefore, we need

a model which can account for the low variability of the position when there is no ego

motion and at the same time provide more variability when there is strong ego motion. An

adaptive framework which can adjust the variability of the position is apt to deal with this

requirement.

We employ a first order model which can adapt to the change in the variability of the

target state based on the idea in [26]. Such a model requires an estimate of the velocity of

the target based on the previous n frames. The velocity at anytime instantk is given by

equation (4.5). In the cases whenk < n the estimate is made based on all available frames

up to timek.

En[△xk] =
1

n

k−1∑

l=k−n−1

|xl − xl−1|. (4.5)

Then the state transition model for the position vectorxk is defined as

xk = xk−1 + Ckvk, (4.6)

whereCk ∝ En[△xk] andvk ∼ N(0, I). In this model if the target is moving with a low

velocity then the variance of the process noise is low, thereby reducing the variability of the

target state and vice versa. This increased variability physically reflects the spread of the

particles over a larger area in the state space, thereby increasing the probability of locating

the target whose position is affected by strong ego motion ofthe sensor.

1http://cis.jhu.edu/data.sets/AMCOM/amcom.html
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4.3.2 Target size

As the next step we now consider the dynamics of the target size. From Fig. 4.2 (c) and (d)

we observe that the target size has a tendency to increase in steps over time. Though the

LW-15-NS sequence shows gradual increase in size, the sequence LW-14-15 is character-

ized by rapid size changes. In the design of a model for the size dynamics we do not favor

an adaptive variance model due to size increments in single frames. Therefore for the size

dynamics we employ a simple first order model with fixed variance. The state transition

model for the size vectorsk is defined in (4.7),

sk = sk−1 +Dwk, (4.7)

whereD is a fixed constant, andwk ∼ N(0, I). The state transition probabilities can be

derived from (4.6) and (4.7).

4.4 Target appearance model

We now discuss the issue of target representation. This model describes the appearance of

the target in the image in relation to the underlying statesxk =[xk, yk, sxk, syk] and therefore

defines the likelihoodp(yk|xk,vk). We characterize our target using a non-parametric

model based on the intensity and local standard deviation histograms of the target area and

its local background. We call it the ‘Dual model’ since in addition to the information from

the target area we also model its background.

4.4.1 Dual foreground-background model

At any given time instantk assume the intensity imageIk and local standard deviation

imageSk are available. Givenxk we can determine foreground areaNF (xk) in the image.

We next define a local background areaNB(xk) using the “center-surround” approach. For

a target area defined by a rectangle of sizesxk×syk another rectangle of size(2×sxk)×(2×syk)

defines the extent of the local background. This is illustrated in Fig.4.3. It is a common
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practice to use a weighted histogram for the target’s representation [26, 27]. This is due to

the fact that often boundaries between the target and the background are not precise and

therefore pixels from the background regions may easily corrupt the histogram of the target

area. So a weighting kernel is often used to obtain a weightedhistogram by assigning higher

trust to pixels closer to the center of the target. The areas corresponding to the foreground,

background and the placement of the kernel are illustrated in Fig.4.3.
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Figure 4.3: Foreground regionNF (xk) with overlapped kernel and background area

NB(xk) defined based onxk = [xk, yk, s
x
k, s

y
k].

Let p denote the location of the target’s centroid based on the position and size in-

formation contained inxk. The functionb : R2 → {1, · · · ,m} maps the intensity value

of the pixel at a position given byr, to its bin index in the quantized feature space. The

probability of the featureu = 1 · · ·m is given by [85]

pufi(xk) = λ1
∑

rǫNF (xk)

KH(r − p)δ[b(r)− u], (4.8)

whereλ1 is a normalization constant obtained such that
∑m1

u=1 p
u
fi(xk) = 1 andδ is the
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Kronecker delta function. We use the triangular kernel forKH , where the width of the

kernel is determined by the target size information contained in xk. Now we can de-

fine am dimensional vectorffi(xk) = [p1fi(xk), · · · , pmfi(xk)] called the foreground his-

togram. In a similar manner the background area histogram may be obtained asfbi(xk) =

[p1bi(xk), · · · , pmbi (xk)] where

pubi(xk) = λ2
∑

piǫNB(xk)

δ[b(pi)− u], (4.9)

andλ2 is a normalization constant obtained such that
∑m1

u=1 p
u
bi(xk) = 1. Analogously we

can obtain the foreground histogramffs(xk)and the background histogramfbs(xk) from

the local standard deviation imageSk. Therefore givenxk, Ik andSk the candidate region

is characterized byF(xk) defined as follows,

F(xk) = {ffi(xk), fbi(xk), ffs(xk), fbs(xk)}, (4.10)

which is composed of four different histograms corresponding to each of: target area in-

tensityffi(xk) , background intensityfbi(xk), target area standard deviationffs(xk) and

background standard deviationfbs(xk). The tracker then evaluates any given candidate area

by comparing the similarity of the above four histograms from the known reference model.

Thereby we use the information both from the foreground and background area directly in

the tracking process.

4.4.2 Distance measure

During the tracking process we need to evaluate candidate areas based on their distance

from a known appearance model of the target denoted byF′
k. The reference modelF′

k

also has a structure similar toF(xk) and is given byF′
k = {f ′

fi,k, f
′
bi,k, f

′
fs,k, f

′
bs,k}. The

tracker in essence will compare candidate modelsF(xk) againstF′
k based on the histogram

intersection (HI) metric first suggested by Swain and Ballardin [86] to measure the simi-

larity between two histograms. The HI metric between any twonormalized histogramsp
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andq with m bins each is given by (4.11)

d(p, q) =
m∑

i=1

min(p(i), q(i)). (4.11)

Every candidate regionF(xk) comprises four different histograms and therefore we can

compute four HI metrics, one corresponding to each pair of histograms in the candidate

and the modelF′
k. Consequently we define our distance metricD(F(xk),F

′
k) as

D(F(xk),F
′
k;vk−1) =

∑

z∈Z

vk−1
z · d(fz(xk), f

′
z,k), (4.12)

whereZ = {fi, bi, fs, bs} andvk−1
z are chosen such that

∑
z∈Z v

k−1
z = 1. The implication

of thevk−1
z term is to allow for a particular histogram to be more or less dominant in the

distance calculation. The values ofvk−1
z are adaptively selected online and this concept is

discussed in Sec 4.5 on feature selection. The likelihoodp(yk|xk,vk−1) is defined based

on the distance measure in (4.12).

4.4.3 Model update

Since the target is continuously changing with time it is quite intuitive that the reference

modelF′
k has to be updated to account for this change, otherwise it mayresult in tracking

error. We update our reference model using a simple strategywhere past observations are

forgotten with time. The reference modelF′
k+1 is obtained based on̂xk the mean estimate

of the states at time stepk, and the reference modelF′
k by using (4.13) for allz ∈ Z.

f ′
z,k+1 = ξz,k · f ′

z,k + (1− ξz,k) · fz(x̂k), (4.13)

where

ξz,k = d(fz(x̂k), f
′
z,k). (4.14)

ξz,k gives the similarity between the model and the estimated histogram. Therefore a sudden

change in the target appearance warrants a more aggressive update of the model histograms

whereas slower changes do not affect the reference models dramatically.
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4.5 Online feature selection

There are two issues related to online feature selection fortarget tracking. One is how to

evaluate the effectiveness of a certain linear combinationof four histogram-based features,

and how how to evolve the feature weights over time to accommodate the variation of the

target appearance. In the following, we will discuss these two issues.

4.5.1 Feature evolution

The tracker in our model estimates the underlying states based on the distance defined

in (4.12) where the weightsvk−1
z determines the relative importance of the featurez in the

tracking process. A single set of fixedvk−1
z may not be the best choice for effective tracking

in every sequence. Our idea is that if these weights can be adjusted adaptively based on

the sequence at hand, the tracking process will be more robust. So we propose a method in

which thevk−1
z are updated online in order to adapt to the changing circumstances.

We formulate our feature selection in a state space form, where at any timek the state

vk containing the individual feature importance is defined as

vk = [vkfi, v
k
bi, v

k
fs, v

k
bs], (4.15)

and is subject to the constraint
∑

z∈Z v
k
z = 1. The constraint implies that we have only three

independent variables. Therefore it will be easier to decomposevk into three independent

components and then develop a dynamic model for the new transformed variables.

We define a new vectorΓk = [αk, βk, γk] such that the individual elements ofvk can

may be expressed as

vkfi = αkβk,

vkbi = (1− αk)γk,

vkfs = αk(1− βk),

vkbs = (1− αk)(1− γk). (4.16)
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ThereforeΓk uniquely determinesvk and is just constrained by the fact0 ≤ αk, βk, γk ≤ 1.

We then model the dynamics of each component ofΓk as a first order Markov chain with a

common predefined step sizeδ and equal probability of transition. The dynamics ofαk is

given by

αk+1 = αk + ǫ, (4.17)

whereǫ ∈ {−δ, 0, δ} with equal probability. The dynamics of the other parameters (β and

γ) can be obtained in a similar way and together they determinethe transitional probabili-

ties of the feature weightsp(vk|vk−1) that is used to generate possible feature hypotheses

for next time step.

4.5.2 Feature evaluation

Our feature selection is based on the concept that a good feature will result in a higher

confidencefor the state estimation. Confidence may be described as the measure of how

peaky (small variance) the posterior density is at the ground truth state, or for a given state

estimation that is assumed to be accurate. Consider the example in Fig. 4.4, the estimate

of the statex is given by the solid line and it has a mean around 0. Now we needto

select features that would best estimatex. The feature that maximizes the belief of the

current state estimation is considered to be the best feature. Based on this idea, all feature

hypotheses i.e. different linear combinations of the four histograms, are ranked based on

the Mahalanobis distance between the posterior estimate produced by that feature and the

one from the tracking result.

Let {xj
k, w

j
k}, j = 1 · · ·Np represent the state samples and corresponding weights at

timek and letwi
v,k(j) represent the weights for the same set of samplesx

j
k when evaluated

with feature i,i = 1 · · ·Nv. Assume all the weights have been normalized. First we com-

pute the weighted mean of the states asx̂k=
∑Np

j=1w
j
kx

j
k. Then we compute the covariance
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Figure 4.4: The solid line indicates the current belief ofx. The other lines correspond to

the state estimate using two different features. Feature 2 is considered better than Feature

1 since it shows more confidence on the given state estimation.

matrix associated with weighted samples as

Σk =

∑Np

j=1w
j
k(x

j
k − x̂k)(x

j
k − x̂k)

′

1−∑Np

j=1 (w
j
k)

2
. (4.18)

Now to evaluate each feature we use the information in the weightswi
v,k(j). The likelihood

of theith feature at timek, i.e.,p(vk|xk), is denoted asMDi
k that is defined as

MDi
k ∝ −

Np∑

j=1

wi
v,k(j)(x

j
k − x̂k)Σ

−1
k (xj

k − x̂k)
′. (4.19)

TheΣ−1
k term helps us to take into account the variance of the individual state variables and

the covariances among them. Thewi
v,k(j) term in (4.19) ensures that a feature hypothesis

which assigns higher weights to samples closer to the mean will get a better fitness value.

Based on the fitness value of every feature hypothesis, we can compute a mean featurêvk

to be used in the next frame.
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4.5.3 The complete tracking algorithm

We use two particle filters to obtain the sequential estimation of the target’s states and the

feature weights. Once the particle set ofvk−1 is available at timek − 1, its mean estimate

v̂k−1 is passed on and defines the feature weights at timek. The particle set corresponding

to the tracking states are evaluated based onv̂k−1 to determine the mean state estimate

x̂k. Given the mean estimation, the particle sets of the features vk are then updated. The

tracking and feature selection are achieved by recursivelyperforming the above process.

The pseudo code of the algorithm is provided in Table4.1, andthe algorithm diagram is

shown in Fig. 4.1.

4.6 Experimental results

The proposed algorithm is evaluated on the AMCOM FLIR dataset. The dataset com-

prises FLIR sequences in grayscale format (128×128 pixels). Information about the target

position, size and type are also made available. We perform the tracking on 3 different

sequences namely, LW-14-15 from frames 160 through 230, LW-15-NS from frames 160

through 230 and LW-17-01 from frames 1 through 70. We estimate the position and size

of the targets at every frame using a particle filtering framework with adaptive feature se-

lection. We present both visual results of tracking and for the first time, quantitative results

for the position and size estimation for this dataset.

4.6.1 Experimental setup

We begin with testing a particle filter algorithm,PFsimple which uses the dynamic models

described in Sec 4.3 and considering only the foreground intensity histogram for target

representation. The second tracking algorithm,PFdual extendsPFsimple by including the

proposed dual target model that has equal weights (0.25) forall four histograms. The third

algorithm,PFfeature further extendsPFdual by incorporating online feature selection. For
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every sequence the target appearance is initialized based on the ground truth in the first

frame. Initialization methods similar to those presented in [27] may also be used.

The particles for tracking are initialized as a gaussian distribution with unit variance

and mean as the true value. We set the number of particle for trackingNp to be 100 and

the number of particles for feature selectionNv as 200. Nv determines the number of

linear combination of the features at every time step. The computational time ofPFdual

is about three times as that ofPFsimple, as three additional histograms are used along with

the foreground histogram.PFfeature requires only a few extra seconds when compared to

PFdual since it uses most of the data precomputed inPFdual. In our experiments we set

Ck = 3En[△xk] in (4.6),D =
√
3 in (4.7), the step size for the feature evolutionδ is set as

0.05 and, the parameterλ used in the evaluation of the weights of the tracking particles is

set to be 200. The number of bins for the intensity and standard deviation histograms are

set to be 64 and 16 respectively.

4.6.2 Results and discussion

The partial tracking results for the sequence LW-14-15 are shown in Fig. 4.5 and Table

4.2 compares the performance of the algorithms on three different FLIR sequences. From

these, we observe that thePFfeature andPFdual algorithms are able to track the states

more accurately when compared toPFsimple. This result confirms our theory that, includ-

ing background information in the target appearance model improves the tracking perfor-

mance. The importance of the adaptive motion model is also clearly observed, wherein

the algorithms are able to cope with the strong global motionof the sensor in frames 45

through 65. Though thePFfeature andPFdual algorithms perform quite similarly in the size

estimation, thePFfeature is consistently able to produce size estimates closer to theground

truth value.

From the table we infer that mostly the use of the dual model improves the position and

size estimates. Further improvement is achieved using the feature selection and this trend
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Figure 4.5: -⋄-:Ground truth,-o-:PFsimple,-�- :PFdual,-×-:PFfeature. Partial tracking re-

sults (15-20 out of 70 frames) of the state vectors (a) X position (b) Y position (c) X size

and (d) Y size for the sequence LW-14-15 using the three different algorithms.
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Figure 4.6: Variations of the HI distance defined in (5.6) with respect to the change in

positions (a) and sizes (b) for four different features. (c)Variations of the relative impor-

tance between four different features during the tracking process of the FLIR sequence

LW-14-15.

Frame 50
Frame 35
Frame 20
Frame 5
 Frame 65


Figure 4.7: The tracking gates produced by algorithmPFfeature for sequences LW-15-NS

(top row) and sequence LW-14-15 (bottom row).
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is clearly observed for the sequence LW-14-15. However in the sequence LW-15-NS the

estimation ofsy has deteriorated with the use of the dual model in comparisontoPFsimple,

which is due to the fact that the choice of equal weights for the features may not be optimal

for this sequence. This is ascertained by the fact that both the position and size estimation

improve in comparison toPFdual when feature selection is incorporated. Also we note

that the state estimation for the sequence LW-17-01 has degraded with the use of feature

selection, which is due to the extremely small maximum size of the target (6×9 pixels)

where the histograms may not contain sufficient informationto result in effective feature

evaluation.

In Fig.4.6 (a) and (b) we illustrate the sensitivity of the HIdistance to variation in

size and position for the different features. We observe that the fi is very sensitive to

both position and size changes. Thefs feature is sensitive to position but does not show

large variations with change in size. Featurebs shows the maximum sensitivity to any size

change. Featurebi is the least sensitive to position change and is slightly affected by smaller

sizes. Fig.4.6 (c) represents the relative weights of the features during the tracking for the

sequence LW-14-15. We observe that featurefi is given the most importance followed by

bs, fs andbi. This is expected, since featuresfi andbs show the maximum sensitivity

to the variation of size or position. This result confirms that our feature selection criterion

effectively selects the most relevant features for tracking purposes.
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Initialization: Drawx
j
0 ∼ N(X0, 1), and setF′

1 = F(X0),

whereX0 is the ground truth of the states in the initial frame.

DrawΓi
0 ∼ Unif(0, 1). Setv̂0=[0.25 0.25 0.25 0.25].

For k=1,· · · ,T

For j=1,· · · , Np

Drawx
j
k ∼ p(xj

k|x
j
k−1) using (4.6) and (4.7).

Computewj
k = exp(λ ·D(F(xj

k),F
′
k; v̂k−1)).

End

Normalize the weights such that
∑Np

j=1w
j
k = 1.

Compute the mean of the statesx̂k=
∑Np

j=1w
j
kx

j
k.

Compute the covariance matrixΣk using (4.18).

For i=1,· · · ,Nv

DrawΓi
k ∼ p(Γi

k|Γi
k−1) using (4.17).

Computevi
k based onΓi

k using (4.16)

For j=1,· · · ,Np

Computewi
v,k(j)= exp(λ ·D(F(xj

k),F
′
k;v

i
k)).

End

Normalize the weights such that
∑Np

j=1w
i
v,k(j) = 1.

ComputeMDi
k for featurei using (4.19).

End

Normalize the feature weights such that
∑Nv

i=1MDi
k = 1.

Compute the mean feature vectorv̂k=
∑Np

j=1MDi
kv

i
k.

SetΓi
k=resample(Γi

k,MDi
k).

Setxj
k =resample(xj

k, w
j
k)

Update the reference model to obtainF′
k+1 using (5.4).

End

Table 4.1: The pseudo-code of the proposed tracking algorithm.
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Algorithm PFsimple PFdual PFfeature

Sequence x y sx sy x y sx sy x y sx sy

LW-14-15 3.78 1.86 4.17 1.41 1.33 0.89 2.12 1.58 0.95 0.93 1.40 1.36

LW-15-NS 1.26 1.04 1.60 1.23 0.80 1.15 1.02 2.03 0.88 0.92 0.95 1.33

LW-17-01 0.64 1.44 0.99 1.45 0.75 0.95 0.84 1.25 0.62 1.10 0.87 1.28

Table 4.2: Mean error of the state variables over 70 frames averaged over 20 Monte Carlo

runs using three different algorithms.
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CHAPTER 5

Target Tracking with Online Appearance Learning

5.1 Background

Target tracking in infrared imagery has remained a challenging problem in the field of

image processing and understanding. Infrared imagery acquired under actual field con-

dition is typically characterized by strong, structured background clutter, strong sensor

noise, poor SNR, and strong ego-motion of the sensor relativeto the target. In addition to

these characteristics arising from sensors and environment, the targets of interest are highly

maneuverable. Therefore, their observed signatures may exhibit profound non-stationary

variations over relatively short time scales making it difficult to maintain a robust track lock

over long time scales. This phenomenon of the target representation deviating from its true

signature due to accumulated tracking errors has been referred to variously as the “drifting

problem” in [41,87], the “template update problem” in [34,43,88,89], and a “stale template

condition” in [90]. These are challenges that are exemplified by the well-known AMCOM

1 closure sequences [2, 91–96] and the VIVID dataset2, which we will use as illustrative

examples in this work.

An example of this non-stationary variation is shown in Fig.5.1(a). Here, a longwave

imaging sensor is situated on an airborne platform that closes on a pair of maneuvering

ground vehicles. Profound changes in the target’s appearance are observed between frames

24 and 165 over a time scale of only a few seconds and arise primarily from the relative

1This data is available from the Johns Hopkins University Center for Imaging Science (http://cis.jhu.edu)

and elsewhere
2https://www.sdms.afrl.af.mil/main.php
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Frame 24 Frame 165

Frame 1 Frame 50 Frame 95

(a)

(b)

Figure 5.1: (a) Example of nonstationary target signature evolution in AMCOM LWIR run

rng18 17. There are two vehicles. The lead vehicle is barely visible.The second vehicle,

which is clearly visible, is the target of interest. Top row:Observed frames. Bottom row:

closeup views of the target. (b) Example of target being occluded by foliage in the VIVID

dataset.

motion between the sensor and the target. The is substantialmagnification that results from

the sensor closing on the target and pose change that resultsform the target executing an

aggressive turning maneuver. While the second vehicle in Fig. 5.1(a) exhibits a strong

signature, the lead vehicle is much dimmer and is barely visible amid the surrounding

clutter, demonstrating that brightness alone cannot be used as the sole basis for reliable

detection and tracking. Rather, more sophisticated techniques are generally required for

representing the target appearance and for adapting to (e.g., learning) complex appearance

changes that occur over time.

Further, in many cases the target being tracked may move out of the sensor’s view or
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may become occluded thereby significantly altering the observed appearance. An exam-

ple of this is shown in Fig. 5.1(b) where the target being observed moves behind a tree

along its path and thereby disappears from the sensors view.While it is important to adapt

the appearance model to accommodate variations in the target signature it is equally im-

portant to avoid learning the appearance of occluding objects or the background. A robust

tracker must be able to quickly adapt to profound variationsin the target signature and must

suspend adaptations when the target of interest is occludedor has left the scene.

In this work we address the issues of appearance learning androbust tracking in an uni-

fied co-inferenceframework proposed by [97]. A histogram-based appearance learning is

explicitly combined with the estimation of the target position and size, achieving sub-pixel

accuracy. Specifically, we utilize a dual foreground-background appearance representation

that involves a total of four histograms, including histograms of the pixel intensities and

of the local standard deviations computed over both the target region and the immediately

surrounding background. The intensity histograms for boththe target and background are

estimated in each frame along with the target position and size. This coupled estimation

forms theco-inferenceprocess, in which the inference of histograms relies on thatof target

kinematics, and vice versa. The estimation of the histograms, i.e., appearance learning, is

achieved by a bank of adaptive Kalman filters (AKFs), where the unknown process and

measurement noise variances are estimated simultaneouslyusing the recently developed

autocovariance least squares (ALS) method [98, 99]. The main tracker is a particle fil-

ter where the state vector gives the target position and magnification and the likelihood

function depends on the adaptive appearance model. Further, we devise a track loss de-

tection scheme embedded into the appearance learning process, which provides for robust

track loss detection in the VIVID dataset. Aside from the accurate estimation of the tar-

get appearance, temporary track losses can also be detectedby examining the Kalman filter

residuals, a byproducts of AKFs at each step. Hence, we are able to tackle both the “drifting

problem” and “temporary track losses” in thisco-inferenceframework.

67



1−kX kX 1+kX TX Target Tracking
(Particle filter )

Appearance Learning
(Adaptive Kalman filter )

Infrared 
obervations

Histogram 
observationskG1−kG

TG1+kG

1−kF kF 1+kF TF

1−ky ky 1+ky Ty

Figure 5.2: Appearance learning for target tracking in a co-inference paradigm.

5.2 Problem formulation

In contrast to most traditional appearance updating schemes, we explicitly model the evo-

lution and observation processes of the target’s appearance represented by multiple his-

tograms. Thus, appearance learning, i.e., the updating of target histograms, is formulated

as a sequential state estimation problem. In this section, we introduce a graphical model,

as shown in Fig. 5.2, which integrates the estimation of target appearance (histogram bins)

F 1:T with that of target kinematics states,X1:T . The target kinematicsX1:T and appear-

anceF 1:T are coupled by their observations,y1:T andG1:T . The intensity statistics within

the region given byXk provides the observation for appearance histogramsGk at the time

k, and the appearance statesF k−1 determines the likelihood of the observed image frame

yk. Wu and Huang [97] show that the estimation of hidden states interacted with common

observations invokes aco-inferenceprocess, denoted as:

PXk
≈ X (Zk, E[F k|Zk]),

PFk
≈ F(Zk, E[Xk|Zk]), (5.1)
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whereZk includes the observations of kinematics and appearance histograms,PXk
andPFk

are the probability distributions ofXk andF k, andX (·) andF(·) represent the inference

processes for these two distributions, respectively.E(·) denotes mathematical expectation,

which can be approximated be statistical estimate in practice. Equation 5.1 suggests that

the probability ofXk relies on the expectation ofF k, and the expectation ofXk is used to

calculate the distribution ofF k.

We take the advantage of this co-inference in the joint estimation of target kinematic

and appearance states, and are able to separately apply two inference algorithms with the

estimate of one type of hidden state involved in the other. Recursive Bayesian filters are

well suited to both inferences when the dynamic evolution and observation processes for

Xk andF k are explicitly modeled. A Bayesian filter for the kinematics estimation at a

single time stepk, p(Xk|yk), from its previous distributionp(Xk−1|yk−1) can be denoted

as [84]:

p(Xk|yk−1) =

∫

Xk−1

p(Xk|Xk−1)p(Xk−1|yk−1)dXk−1, (5.2)

p(Xk|yk) ≈ p(yk|Xk, F̄ k−1)p(Xk|yk−1). (5.3)

It should be noted that the estimate of appearance,F̄ k−1, is embedded in the inference

of Xk. Analogously, the inference of histograms can also be obtained by the recursive

Bayesian filter with the estimate ofXk involved. These filters are numerically imple-

mented by the particle filtering and adaptive Kalman filters due to different physical char-

acteristics and mathematical assumptions on the dynamic processes of target kinematics

and appearance, respectively.

As strong ego motion and maneuvering actions present in typical infrared imagery, the

kinematic transition, i.e.,p(Xk|Xk−1) in Eq. 5.2, can hardly be characterized by linear

equations. Moreover, the calculation of histogram observations of a target in Eq. 5.3

requires non-linear operations from image pixels in the region given byXk. Hence, a

particle filtering based technique is necessary for the estimation ofXk by Eqs. 5.2 and
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5.3, which is detailed in Section 5.4. The estimate of appearance histograms is applied to

the evaluation of the likelihood,p(yk|Xk, F̄ k−1) rather than to the proposal density that

generates the samples ofp(Xk) in [97].

On the other hand, a Kalman filter is applicable to appearancelearning. The dynamics

of appearance histograms,p(F k|F k−1), can be reasonably assumed as Gaussian, which

reflects the actual appearance variation in infrared imagery. Interestingly, it is possible

to deal with abrupt appearance variations due to occlusion through the byproduct of the

Kalman estimation, which is elaborated in Sec. 5.5. The appearance histograms obtained

from the image pixels within the region given by the estimateof kinematics,X̄k, can be

regarded as the direct observation of the true state of appearance histograms corrupted by

Gaussian noise. The estimate ofXk is naturally brought into the measurement updating in

the Kalman filtering process in order to achieveco-inference. However, the robustness and

generalization of the estimation is questionable if the noise parameters are set to known

in anad hocway, because targets may present significant appearance variations captured

in different physical conditions (e.g., weather and temperature) even by IR sensors with

identical specifications. The adaptive estimation of thesenoise parameters turns out to be

the key to the success of this AKF-based appearance learning. Two specific AKFs will be

discussed that are compared with the traditional histogramsimilarity method.

5.3 Histogram-based appearance learning

Let yk be a sequence of video frames acquired from an imaging sensorat discrete time

instantsk ∈ N. For simplicity, we suppose throughout Section 5.3 that there is a sin-

gle object of interest, which could be,e.g., a target or a patch of background. Letgk =

{gbk}b=1,...,Nb
be the observed normalized histogram of the object computedfrom the frame

yk, where
∑Nb

b=1 g
b
k = 1 and where the histogram is discretized toNb bins. Similarly, let

fk = {f b
k}b=1,...,Nb

be the reference histogram, which provides an idealized model of the

object appearance at timek. The objective of histogram learning is to estimate the present
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appearance modelfk by incorporating the current observationgk into the previous appear-

ance modelfk−1. This is typically formulated as a time-varying linear filter

fk = ξk · gk + (1− ξk) · fk−1, (5.4)

where1 is a vector with all entries equal to one and “·” represents the Hadamard (or Schur)

product. The vectorξk = {ξbk}b=1,...,Nb
controls the balance between the previous reference

modelfk−1 and the new observationgk, where0 ≤ ξbk ≤ 1 is the time dependent filter co-

efficient for thebth histogram bin. Accurate tuning ofξk is the key to effective appearance

learning.

In this section we discuss three different learning techniques that share the form (5.4)

and differ only in howξk is computed. The first is the traditional histogram similarity

based method where all bins are updated with the same weight (ξbk = ξk; b = 1, ..., Nb). We

shall refer to this method as HS. After briefly reviewing the basic Kalman filter, we turn

our attention to two AKF methods that use different approaches for estimating the process

and measurement noise variances. The first, which we will call AKFcov, uses covariance

matching where the same weight is applied to all bins. The second, which we refer to as

AKFals, uses the recent ALS technique [98,99] and maintains a separate weightξbk for each

histogram bin.

5.3.1 Histogram similarity method (HS)

In the widely used HS method, the weight vectorξk in (5.4) is updated based on histogram

similarity [39,86]. AllNb entries ofξk share a common value given by the metric

ξk = 1− h(fk−1,gk), (5.5)

whereh is a normalized similarity measure. One popular similaritymeasure is derived

from the Bhattacharyya coefficient [19]. In practice, however, we find that the histogram

intersection defined by [86]

h(fk−1,gk) =

Nb∑

i=1

min(f i
k−1, g

k
k) (5.6)
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is more useful for quantifying histogram similarity in IR imagery. With (5.6), if the ob-

served and reference histograms are nearly identical thenh(fk−1,gk) ≈ 1 andξk is small,

implying that very little information from the observationwill be incorporated into the

learning process at time stepk. Alternatively, if the two histograms are almost mutually

exclusive thenh(fk−1,gk) ≈ 0 andξk ≈ 1, implying that the new reference histogram will

be heavily dependent on the observation and will largely discard the historical information

in fk−1. Thus, the observation is weighted strongly when there is a sudden change in the

object appearance. Note that the similarity metric (5.5), (5.6) depends on allNb histogram

bins and is scalar-valued, implying that a common weightξk is applied to all bins with the

HS method.

As with most dynamic appearance learning strategies, the HSmethod can potentially

overadapt in the presence of strong measurement noise and/or rapidly evolving target and

clutter signatures causing track loss due to the target appearance model becoming corrupted

with background information. Explicit outlier rejection measures were implemented in [37,

40] to control this problem.

To reformulate appearance learning as a Kalman filtering problem, we model corre-

sponding binsf b
k andgbk from the reference and observed histograms in state space accord-

ing to

f b
k+1 = f b

k + wb
k, (5.7)

gbk = f b
k + vbk, (5.8)

wherewb
k andvbk are mutually uncorrelated process and measurement noises,both assumed

zero-mean, white, and Gaussian with variancesσ2
wb(k) andσ2

vb(k) that are time-varying

in general. The Kalman filter state prediction and update equations for the system under
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consideration are given by

State prediction:f̂ b
k|k−1 = f̂ b

k−1 (5.9)

Covariance prediction:pbk|k−1 = pbk−1 + σ2
wb(k) (5.10)

Kalman gain: Kb
k =

pbk|k−1

pb
k|k−1 + σ2

vb(k)
(5.11)

Innovation: rbk = gbk − f̂ b
k|k−1 (5.12)

State update:f̂ b
k = f̂ b

k|k−1 +Kb
kr

b
k

= Kb
kg

b
k + (1−Kb

k)f̂
b
k−1 (5.13)

Covariance update:pbk = (1−Kb
k)p

b
k|k−1. (5.14)

There is a direct correspondence between (5.4) and (5.13), where the Kalman gainKb
k

in (5.13) may be associated with the coefficientξbk in (5.4); hence, with the Kalman filtering

formulation we obtainξbk ≡ Kb
k.

The Kalman filter balances the relative contributions to appearance learning from the

reference and observed data based on the estimated variances σ2
wb(k) andσ2

vb(k). When

σ2
wb(k) ≫ σ2

vb(k), for example, we haveKb
k ≈ 1 implying that the observation will be

weighted much more heavily than the historical reference data. Under the linearity and

Gaussianity assumptions applied here, the state estimates(5.9) and (5.13) are optimal in

the minimum mean squared error sense.

However, computing the Kalman gain (5.11) requires knowledge ofσ2
wb(k) andσ2

vb(k),

both of which are usually unknown in practice. This leads to the adaptive Kalman filter

(AKF), which seeks to estimate the unknown noise variances on the fly. A brief overview

of AKF methods was given in [42] and more recent surveys appear in [100, 101]. In [42],

these techniques were broadly divided into four categories: Bayesian, maximum likelihood,

correlation, and covariance matching methods. The former two are computationally expen-

sive in general. In the following, two different AKF-based appearance learning algorithms

are presented that rely on the covariance matching and correlation approaches.
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5.3.2 AKF: Covariance Matching (AKFcov)

Covariance matching techniques [42,102] are based on the relationship that exists between

the process and measurement noise variances and the autocorrelation of the innovations

process (5.12). Since the innovations are observable, their autocorrelation can be estimated

by an empirical sample variance under suitable ergodicity assumptions. Thus, if one of the

two variancesσ2
wb(k) andσ2

vb(k) is known, then the other can be estimated by matching the

empirically calculated innovations autocorrelation to its theoretical value. Here, we adopt

the specific technique used in [37,40,41] whereσ2
vb(k) is known andσ2

wb(k) is obtained by

covariance matching

It follows easily from (5.7)-(5.14) that the autocorrelation of the innovations process is

given by [103, Section V.B]

E[rbkr
b
j ] = [pbk−1 + σ2

vb(k) + σ2
wb(k − 1)]δ(k − j), (5.15)

whereδ(·) is the Kronecker delta. Withσ2
vb(k) known andpbk−1 given by (5.14), an obvi-

ous empirical approach for solvingσ2
wb(k − 1) from (5.15) is to approximateE[(rbk)

2] by

computing the sample variance of (5.12) over the lastLcov framesyk−Lcov+1, . . . ,yk. How-

ever, because the process noise could be time varying in general, there is a delicate tradeoff

between choosingLcov large enough to obtain statistically significant estimateswhile si-

multaneously choosingLcov small enough to track nonstationary changes inσ2
wb(k).

In appearance learning for visual target tracking, this problem has been addressed pre-

viously by assuming identical statistics across variablesin order to increase the sample size

to larger thanLcov while still sampling from only theLcov most recent frames. In [37], it

is assumed thatσ2
vb(k) is independent of bothb andk and thatσ2

wb(k) is independent ofb,

so that allNb bins of the histogram in each frame share identical noise statistics. The inno-

vations sample variance may then be computed across bins as well as over time. The same

assumptions onσ2
vb(k) are made for the template-based appearance model of [40], where

b indexes pixels in the template rather than bins in the histogram. By assuming a common
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valueσ2
wb(k) for all template pixels in the current frame, the innovations sample variance

can be averaged across both pixels and time. A similar strategy was employed in [41] with

the principle difference thatσ2
vb(k) was assumed time varying and estimated by an auxiliary

algorithm independent of the covariance matching. Similarcovariance matching was used

to estimate the scale matrix in [36].

To formulate this class of covariance matching algorithms in our present setup, we

assume thatσ2
vb(k) is independent of bothk andb and thatσ2

wb(k) is independent ofb (as

in [37,40]). LetB be the set of nonzero histogram bins (|B| denotes the number of nonzero

bins) and estimateE[(rbk)
2] with the sample variance

Ĉr(k) =
1

|B|Lcov

Lcov−1∑

i=0

∑

b∈B

(rbk−i)
2. (5.16)

Under these assumptionspbk−1 is independent ofb. Thus, we arbitrarily choosep1k−1 and

use (5.16) in (5.15) to obtain the approximate solution

σ2
wb(k − 1) ≈ Ĉr(k)− σ2

vb(k)− p1k−1. (5.17)

As in [37,40], the initialization atk = 1 is given by

σ2
vb(k) =

1
2
Ĉr(1) ∀ b, k; pb0 =

1
2
Ĉr(1) ∀ b, (5.18)

which impliesσ2
wb(0) = 0. We refer to this algorithm asAKFcov and use it in the following

primarily as a baseline for comparison with theAKFals technique given in the next section.

5.3.3 AKF: Autocovariance Based Least Squares (AKFals)

The ideal expression (5.15) for the autocorrelation of the innovations holds when there are

no modeling errors and the filter gainsKb
k in (5.11) are optimal. However, if the process

and measurement noise variances are unknown, then the gainswill be suboptimal and the

innovations process will generally exhibit a nontrivial correlation structure. The main idea

of autocovariance based methods is to exploit any observed nonzero correlations at lags
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other than zero to obtain solutions for the unknown noise variances and/or the optimal

gains. Pioneering work in this area was given by Mehra in [42,104] where the residual

autocorrelation was used for adaptive Kalman filtering. Mehra’s method involves a three-

step iterative process where a Lyapunov-type equation mustbe solved at every time step.

Under the assumption that the process and measurement noises are wide sense stationary

(WSS), Carew and B́elanger [105] developed an improved algorithm that estimates the op-

timal Kalman gains directly using one matrix inversion and several matrix multiplications,

eliminating the need to estimate the process and measurement noise variances explicitly

and avoiding the requirement to iteratively solve the Lyapunov equation associated with

Mehra’s method. Neethling and Young [106] introduced a related weighted least squares

technique that improves the statistical efficiency of the methods in [42, 104, 105] and in-

corporates a side constraint to guarantee positive semi-definite (PSD) estimates for the

unknown noise variances.

Recently, Odelson,et al., developed a new Autocovariance Least Squares (ALS) method

capable of providing PSD estimates for both the process and measurement noise variances

simultaneously [98]. In addition, the ALS variance estimates are more stable than those

delivered by Mehra’s method and converge asymptotically tothe optimal values with in-

creasing sample size. However, the proof of convergence given in [98,107] depends explic-

itly on assumptions that the system is time invariant and that the process and measurement

noises are WSS (extension to a time varying system with WSS noises was given in [108]).

The ALS algorithm in [98] is primarily meant for identifyingthe system noise properties

in an offline learning process under WSS assumptions. First, the filter innovations are ob-

tained from the observations using a suboptimal Kalman gainover an extended period of

time. Then the autocovariance structure of these innovations is used to reliably estimate

the noise variances. Once the noise variances are known, theoptimal Kalman gain can be

determined and applied for filtering during run time using the standard Kalman filtering

equations (5.9)-(5.14).
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For appearance learning, our interest in this paper is primarily in real-time, online sce-

narios where, for the first time, we consider application of the ALS method under the much

weaker assumption that the noise variancesσ2
wb(k) andσ2

vb(k) are onlypiecewise station-

ary. In order to extend the ALS method to this case, we consider the evolution of the

target appearance to be a piecewise stationary process withnon-stationary transitions. The

piecewise stationarity assumption can be justified by the high frame rate of the imaging

sensor compared to the rate at which the target appearance changes. Such assumptions are

common in,e.g., the context of audio and video compression [109–115]. The nonstation-

ary characteristics ofσ2
wb(k) andσ2

vb(k) directly correlate with the rate at which the target

appearance and sensor noise are changing. The piecewise stationary formulation allows

us to apply the ALS algorithm to each stationary block individually and thereby allows

us to adapt to the varying nature of the target appearance histogram over time. In effect,

we adapt the filter gainξbk at the end of each stationary block depending on the observed

variation trend in that block. This raises the issue of determining the block boundaries.

Most existing methods that determine the block intervals require a priori knowledge of

the observations; since this is not the case in our real-timeapplication, we consider equal

length blocks. We study the effect of block size by performing experiments using the ALS

method on a simulated nonstationary system in Section 5.3.4.

In this section, we extend the ALS method for application to apiecewise stationary

process in the context of histogram-based appearance learning, which we refer to asAKFals

in this paper. As before, the state model is given by (5.7) and(5.8). We assume thatwb
k

andvbk are mutually uncorrelated and thatσ2
wb(k) andσ2

vb(k) depend onb andk and are

piecewise constant. With this setup, the noise statistics are generally different for each bin

of the histogram and there is a separate coefficientξbk for eachb ∈ [1, Nb]. The size of each

piecewise stationary block is assumed to beNd frames. We also define a block indexp, and

then thepth block is represented by

Y (p) = {yk|k ∈ K(p)}, (5.19)

77



where

K(p) = {k|(p− 1)Nd + 1 ≤ k ≤ pNd}. (5.20)

Using this framework, we update the noise variances of the appearance histogram corre-

sponding to each bin at the end of every block. In effect, we are adapting the filter gain

(learning rate) for the current block based on the observed variations in the preceding block.

We now briefly present the least squares formulation to determine the system noise

variances of a particular histogram bin at the end of a singleblock. For the remainder of

the section, we drop the bin indexb for brevity. We assume that the asymptotic Kalman

gainKp−1 estimated from the previous block is available. GivenKp−1, the state estimates

in (5.13) for all frames inK(p) are given byf̂k = f̂k|k−1+Kp−1rk. The error in the predicted

state (5.9) is defined asεk = fk − f̂k|k−1. Then, for all framesk ∈ K(p), this prediction

error along with the innovation (5.12) can be formulated together in a state model according

to [98,99]

εk+1 =

Ap︷ ︸︸ ︷
(1−Kp−1) εk +

Gp︷ ︸︸ ︷[
1 −Kp−1

]
W p︷ ︸︸ ︷


wk

vk


, (5.21)

rk = εk + vk. (5.22)

The ALS method aims to observe the filter innovations and exploit any observed nonzero

correlations at different lags to obtain solutions for the unknown noise variances and/or the

optimal gains. The autocorrelation of the innovations in the pth block at any lagj is given

by

Cj(p) = E[rkrk+j]; 0 ≤ j < Lals, (5.23)

wherek, k + j ∈ K(p) andLals < Nd is the order of the autocorrelation lags we wish to

consider in formulating the ALS problem. We assumeE[ε0] = 0 and cov(ε0) = π0 and
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define

Qp = E[W pW p

T
] =



σ2
w(pNd) 0

0 σ2
v(pNd)


 , (5.24)

χp = E[W pvk] =




0

σ2
v(p)


 (5.25)

for k ∈ K(p). Note in (5.25) that althoughE[W pvk] contains the time indexk, this expec-

tation is constant overK(p) due to the piecewise stationarity assumption.

In the interest of clarity and to illustrate the form of the relevant relations, we assume

Lals = 3 in the following; generalization to otherLals is straightforward. The least squares

estimation problem is formulated in terms of an autocovariance matrixRp(Lals) that, for

Lals = 3 andk, k + 1, k + 2 ∈ K(p), is given by

Rp(3) = E




(rk)
2 rkrk+1 rkrk+2

rkrk+1 (rk+1)
2 rk+1rk+2

rkrk+2 rk+1rk+2 (rk+2)
2



. (5.26)

The individual elements ofRp(3) are functions ofπ0, Āp, Ḡp, Q̄p and χ̄p. Let “vec” be

the vectorization operator which transforms a matrix into avector by stacking the columns

upon one another. Then the vectorization ofRp(3) is given by

vec[Rp(3)] = (Θp ⊗Θp)π0

+ Γp ⊗ Γpvec(I3)vec(GpQpGp

T
)

+ (Ψp ⊕Ψp + I3)vec(I3)σ
2
v(p), (5.27)

whereIn denotes then × n identity matrix,⊗ denotes the Kronecker product,⊕ denotes

direct sum, and the matricesΘp,Γp andΨp are given by

Θp =




1

Ap

A
2

p



,Γp =




0 0 0

1 0 0

Ap 1 0



,Ψp = Γp ⊕3

i=1 Kp−1. (5.28)
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Using the Lyapunov equation to eliminate theπ0 term in (5.27), one obtains

Rp(3)︷ ︸︸ ︷
vec[Rp(3)] =

Ap︷ ︸︸ ︷[
Dp | DpK

2
p−1 + (Ψp ⊕Ψp + I9)vec(I3)

]
xp︷ ︸︸ ︷


σ2
w(p)

σ2
v(p)


,

(5.29)

where

Dp = (Θp ⊗Θp)(1− Ap ⊗ Ap)
−1 + (Γp ⊗ Γp)vec[I3], (5.30)

andRp(3) may be represented in terms of the autocorrelation terms defined in (5.23) as

Rp(3) = vec




C0(p) C1(p) C2(p)

C1(p) C0(p) C1(p)

C2(p) C1(p) C0(p)



. (5.31)

Provided that the innovations process is reasonably locally ergodic, the quantitiesCj(p)

in (5.31) may then be estimated by

Ĉj(p) =
1

Nd − j

pNd−j∑

i=(p−1)Nd+1

riri+j. (5.32)

We define an estimated vectorized correlation matrixR̂p(3) by replacing the theoretical

correlationsCj(p) in (5.31) with the empirical estimateŝCj(p) given by (5.32). From this

definition and (5.29), we write

Apxp = R̂p(3). (5.33)

The expression (5.33) forms the core of the ALS method: it relates the observed corre-

lations contained inR̂p(3) and defined in (5.32) to the desired variancesσ2
w(p) andσ2

v(p)

contained inxp. Also note thatAp is dependent only on the asymptotic Kalman gainKp−1

from the previous block. Thus, the least squares problem forthe unknown noise variances
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Table 5.1: Pseudo-code to implementAKFals for a single bin of the appearance histogram

during thepth time block andkth frame.

1. Predict bin valuêfk|k−1 = f̂k−1.

2. Acquire observationgk based on tracker output.

3. Compute innovationrk = gk − f̂k|k−1.

4. Update bin valuêfk = f̂k|k−1 +Kp−1rk.

5. If k = pNd

• Find R̂p(Lals) from Ĉj(p) for 0 ≤ j ≤ Lals− 1 using (5.32)

• DetermineAp using (5.29) to setup the ALS problem in (5.33).

• Perform the optimization in (5.35) to obtainσ2
v(p) andσ2

w(p).

• Compute asymptotic Kalman gainKp from the estimated

noise variances for use in the next block.

End

σ2
w(p) andσ2

v(p) can be expressed as

Φp = min
σ2
w(p),σ2

v(p)

∥∥∥∥∥∥∥
Ap



σ2
w(p)

σ2
v(p)


− R̂p(3)

∥∥∥∥∥∥∥

2

(5.34)

subject toσ2
w(p), σ

2
v(p) ≥ 0. The positive semi-definite requirements onσ2

w(p) andσ2
v(p)

are enforced by appending a logarithmic barrier function to(5.34), resulting in

Φp = min
σ2
w(p),σ2

v(p)

∥∥∥∥∥∥∥
Ap



σ2
w(p)

σ2
v(p)


− R̂p(3)

∥∥∥∥∥∥∥

2

− µ log[σ2
w(p)σ

2
v(p)], (5.35)

whereµ is the barrier parameter. The least squares problem (5.35) has been shown to be

convex and can be solved using a Newton recursion [98]. Pseudo-code to implement this

AKFals algorithm for a single bin of the histogram is given in Table 5.1.
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5.3.4 Numerical simulations

Having extended the ALS method to the piecewise stationary case, we perform two nu-

merical experiments on simulated data. The first compares AKFcov and AKFals in terms of

their capability of noise estimation on a system with WSS noise characteristics. The sec-

ond examines the performance of the proposed piecewise stationary ALS method against

piecewise stationary and more general nonstationary system dynamics.

5.3.4.1 Comparison betweenAKFals andAKFcov

The objective of this experiment is to estimate the unknown noise covariance matrices from

simulated data using AKFcov and AKFals. Consider a system of the form

xk = Axk−1 +wk−1, (5.36)

yk = Cxk + vk, (5.37)

wherewk andvk are zero mean, iid Gaussian noise processes with fixed covariancesQ

andR, respectively. Let

A =




0.1 0 0.1

0 0.2 0

0 0 0.3



, C =




1 −0.1 0.2

−0.2 1 0

0 −0.4 1



,

Q =




0.5 0 0

0 0.75 0

0 0 0.25



, R =




0.5 0 0

0 0.25 0

0 0 0.75



.

During estimation, the diagonal elements ofQ andR were initialized with random

values uniformly distributed between zero and one. The asymptotic filter gain for the ini-

tialized noise covariances was then computed. This gain wasused for filtering over 5000

data points to obtain innovations that were used, along withthe initial estimates ofQ and

R by the AKFcov and AKFals methods to estimate the unknown noise covariances. Re-

sults from repeating the simulation 200 times are shown in Fig. 5.3, where each data point
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corresponds to the estimate from a single trial. It is observed that AKFals produces es-

timates that are positive semi-definite and more precise than those delivered by AKFcov.

The estimates produced by AKFcov seem to depend on the initial values of the unknowns.

Since AKFcov assumes that at least one of the noise covariances is knowna priori, an er-

roneous initial value can greatly distort the estimation. Further, there is no guarantee that

the estimates (5.17) are PSD, as seen by the occasional negative estimates of the AKFcov

method in Fig. 5.3. Unlike AKFcov, AKFals (1) estimates both process and observation

noise parameters simultaneously, (2) formulates a least squares problem based on multiple

constraints obtained by considering the autocorrelation of the innovations at different lags

and (3) enforces PSD constraints on the estimates.
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Figure 5.3: Diagonal elements of the noise covariance matricesQ andR as estimated by

AKFcov and AKFals for WSS system dynamics.

5.3.4.2 Piecewise treatment of non-stationary systems by AKFals

Here, we examine the performance of AKFals and its inherent block stationarity assump-

tions against the linear state model (5.36), (5.37) for the case of nonstationary noise pro-

cesseswk−1 andvk with diagonal covariance matrix entries that exhibit jump transitions

and linear ramps. Let

A =




0.9 0 0.7

0 0.95 0

0 0 0.7



,C =




1 −0.1 0.2

−0.2 1 0

0 −0.4 1



,
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and letwk andvk be zero mean, iid Gaussian noise processes with time varyingdiagonal

covariance matricesQ andR having main diagonal entries given by the dotted blue lines

in Fig. 5.4. As indicated in the figure, the noise covariancesare block stationary during the

first portion of each simulation and increase or decrease linearly with small-scale additive

noise during the second portion. The transition times between these characteristics for all

six diagonal covariance matrix entries are mutually independent.

The objective is to estimate the six unknown covariances using the AKFals algorithm

developed in Section 5.3.3. In the absence of anya priori knowledge about the transition

times between piecewise stationary and linear characteristics in the noise variances, we

set the block lengthNd in the AKFals algorithm to a constant. ChoosingNd small results

in a paucity of data points being available to perform statistically significant least squares

estimation, whereas choosingNd large limits the ability of the algorithm to adapt to the

nonstationary changes. The experiment is designed to studythe performance of AKFals as

a function of the chosen block sizeNd.

The estimates of the diagonal elements ofQ andR are initialized with random values

distributed uniformly in [0, 1]. The asymptotic Kalman gaincorresponding to this initial-

ization is used for filtering over the first block of lengthNd to obtain innovations. These

innovations are then used to formulate the least squares problem (5.35), the solution of

which yields estimates for the six unknown noise covariances and an asymptotic Kalman

gainK1. In an offline application, this Kalman gain could be used to re-process the first

block. For a real-time implementation, however, we insteaduse the asymptotic gainK1

obtained from the first block to process the data in the secondblock. This approach is ef-

fective for achieving real-time performance provided thatthe jump transitions are not too

large and the ramp characteristics are not too steep. The procedure is repeated recursively

with the gainKp−1 from blockY (p− 1) (defined in (5.19)) being used to process the data

in blockY (p) and generate innovations.

Since the number of constraints in the least squares problemshould be larger than the
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number of unknowns (six in this case), we set the number of autocorrelation lags considered

by the AKFals algorithm toLals = 10. We performed simulations against the covariances

shown in Fig. 5.4 with block sizesNd = 15, 45, and135, where 100 trials with different

random initializations were run for each block size. The average estimated covariance

values for the three different block sizes are shown as solidred lines in Fig. 5.4(a), (b), and

(c).

In Fig. 5.4, we see that a small block size (Nd = 15) affords the opportunity to adapt

quickly to abrupt nonstationary changes in the dynamics, but the estimation errors are gen-

erally large due to the limited observations available in each block. With the largest block

size (Nd = 135), the algorithm is slower in adapting to nonstationary changes, especially

those that occur in the middle of a block, but the estimation errors are generally much

smaller than the ones with the small block size. Box plots describing the distribution of the

estimation errors are given in Fig. 5.5, where we observe that, with increasing the block

size, the median error decreases and the probability of a large estimation error diminishes

as shown by the whiskers of the box plots. Overall, we find thatAKFals is able to cope

reasonably well with both the jump and ramp nonstationarities depending on the block

size.

5.4 Particle Filter-based Tracking

This section details a particle filtering-based tracking algorithm where histogram-based

appearance learning is involved at each time step. We first present a target appearance

model used for IR imagery, followed by the dynamic models used in IR tracking. The

algorithm implementation is also discussed.

5.4.1 Dual foreground-background appearance model

We present a target model that involves the local statisticsof both the target and its sur-

rounding areas, as shown in Fig. 4.3. The use of background information for target track-
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Figure 5.4: Simulation of AKFals against nonstationary noise statistics for three different

block sizes. The dotted blue lines give the true values of themain diagonal entries of the

process noise covariance matrixQ (left column) and measurement noise covariance matrix

R (right column). The AKFals covariance estimates are shown as solid red lines for (a)

Nd = 15, (b)Nd = 45, and (c)Nd = 135.
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against the nonstationary covariances shown in Fig. 5.4. Boxbounds indicate the 25th and

75th percentile, while the centerline indicates the medianerror. The whiskers extend to

approximately 99% coverage of the error data.

ing was discussed in many tracking algorithms, [82,83,116,117]. In these methods, target

tracking is performed on an intermediate classification image, usually called a confidence

map [116], a likelihood image [117] or a weighted image [82],where each pixel is assigned

with the probability belonging to the background or the foreground. Here we have a differ-

ent point of view using background for target modeling. Our target model is motivated by

the “hit-and-miss” morphological transform that uses bothforeground and background for

object detection. In practice, the background informationis found to be of great assistance

in localizing the target and determining its size. Specifically, the proposed target model

involves four histograms to represent local statistics.

Let yk represent thekth frame, andxk=[xk, yk; sxk, s
y
k] the state to be estimated during

target tracking, where(xk, yk) and(sxk, s
y
k) are the position (top-left corner) and size of the

target area, respectively. As shown in Fig. 4.3, the target appearance, denoted byG(xk), is

composed of four histograms: the foreground/background intensitygA(xk)/gB(xk), fore-

ground/background local standard deviation (stdev)gC(xk)/gD(xk), which are extracted

from yk by using the kernel-based method in [85,96] as follows.

Letc denote the location of the target’s centroid determined from (xk, yk). The function
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ρ : R2 → {1, · · · ,m} maps the intensity value of the pixel at positionr, to a bin index in

the histogram. The probability of each binb = 1 · · ·Nb is computed as follows:

pbA(xk) = λ1
∑

rεNF (xk)

KH(r − c)δ[ρ(r)− b], (5.38)

whereλ1 is a normalization constant obtained such that
∑Nb

b=1 p
b
A(xk) = 1 and δ is the

Kronecker delta function. We use the triangular kernel forKH , where the width of the

kernel is determined by the target size(sxk, s
y
k). Now we can define am-dimensional vector

gA(xk) = [p1A(xk), · · · , pNb

A (xk)] called the foreground histogram. In a similar manner the

background area histogram may be obtained asfB(xk) = [p1B(xk), · · · , pNb

B (xk)] where

pbB(xk) = λ2
∑

rεNB(xk)

δ[ρ(r)− b], (5.39)

andλ2 is a normalization constant obtained such that
∑Nb

b=1 p
b
B(xk) = 1. Similarly, we can

obtain the foreground stdev histogramgC(xk) and the background stdev histogramgD(xk).

Therefore givenxk, the corresponding candidate region in frameyk is characterized by

G(xk) as follows,

G(xk) = {gA(xk),gB(xk),gC(xk),gD(xk)}. (5.40)

A reference target model learned from previous frames is also available that is composed

of four histograms, i.e.,Fk−1 = {fA,k−1, fB,k−1, fC,k−1, fD,k−1}. This reference model is

updated online and used to evaluate any given candidate areain framek represented by

G(xk) as:

D(G(xk),Fk−1) =
∑

z∈Z

vz · d(gz(xk), fz,k−1), (5.41)

whereZ = {A,B,C,D} andd is defined in (5.6).vz is used to adjust the significance

of four histograms. In this work, all four histograms are given equal importance during

tracking. It can also be adaptively selected as discussed in[96].
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5.4.2 Target Dynamics

Two dynamic models are needed for IR tracking, one each for the position and size. In

most IR sequences, the target predominantly exhibits relatively stable ground motion ac-

companied by strong ego-motion of the airborne sensor. Previous works in [27, 32] used

a separate global motion model to compensate the sensor ego-motion. Inspired by [26],

we use an adaptive motion model to capture both ground motionand ego-motion for IR

tracking:

pk = pk−1 + ckvk, (5.42)

wherepk = [xk, yk], ck ∝ En[△pk] andvk ∼ N (0, I). En[△xk] is the velocity (in the

image plane) estimated over the pastn frames. In essence, this model controls the search

area in proportion with the observed target velocity.

To account for the magnification effect of an infrared target, we need a dynamic model

to increase or decrease the target size at each time step. Also, this model needs to control

the magnification change to be proportional with the previous size. Thus the dynamic

model for the size vectorsk is defined as

qk = Dqk−1, (5.43)

whereqk = [sxk, s
y
k] andD ∼ U [1 − ǫ, 1 + ǫ]. In the case of dealing with the AMCOM

closure sequences, we choseǫ = 0.2 in this work.

5.4.3 Tracking Algorithm

We develop a SIR (sequential importance re-sampling)-based tracking algorithm adapted

from [84] that involves three steps:particle propagation, particle evaluation, andappear-

ance learning. The complete tracking algorithm is shown in Table 5.2. First, particles

are drawn according to the state dynamics defined in (5.42) and (5.43). Second, particle

weights are computed by the likelihood functionp(yk|xk,Fk−1), which is defined based
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on the distance measure in (5.41) as

p(yk|xk,Fk−1) ∝ exp(λ ·D(G(xk),Fk−1)), (5.44)

whereλ is a constant to control the sensitivity of the likelihood function.G(xk) andFk−1

are the observed target appearance given hypothesis statexk and the previous reference ap-

pearance, respectively. Then after weight normalization and re-sampling, the state estimate

is updated, followed by online appearance learning discussed in Section 5.3.3.

Table 5.2: Pseudo-code of the particle filter algorithm withonline appearance learning for

target tracking.

• Initialization: Drawx
j
0 ∼ N(X0, 1), and setF0 = G(X0),

whereX0 is the ground truth of the state in the initial frame.

• For k = 1,· · · , T (number of frames)

1. For j = 1,· · · , Np (number of particles)

1.1xj
k ∼ p(xj

k|x
j
k−1) using (5.43) and (5.42)

1.2 Computewj
k = p(yk|xk,Fk−1) using (5.44)

End

2. Normalize the weights such that
∑Np

j=1w
j
k = 1.

3. Compute the mean of the statesx̂k =
∑Np

j=1w
j
kx

j
k.

4. Setxj
k =resample(xj

k, w
j
k).

5. Update reference modelFk based on state estimate

x̂k according to Table 5.1.

• End

5.5 Detecting occlusions and track losses

The task of excluding outlier observations is quite common in Kalman Filtering applica-

tions and is referred to as gating. The gating criterion is often based on the statistical

properties of the residues. In [36] an error norm was defined on the residues to prevent
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outlier pixels from corrupting the appearance information. In [37] a hypothesis test was

defined based on the standard deviation of the residues. Thiswas possible because residues

from each bin of the histogram were assumed to be statistically similar. Other rigorous

methods that employ more sophisticated statistical tests also exist [118].

In this work, we make use of the fact that the residues computed in (5.12) for each

histogram binb follows a Gaussian distributionrbk ∼ N(0, σ2
vb). Note that the residues

provide information about the mismatch between the predicted and observed bin value. In

our model, since each of the histogram bins is characterizedby different distributions we

associate with each bin an uncertainty termUb defined as

Ub =
1√
2πσ2

vb

∫ rb
k

−rb
k

exp(
−x2
2σ2

vb

)dx. (5.45)

b
kr− b

kr0 b
kr− b

kr0

0.25bU =0.85bU =

Figure 5.6: Illustration of the uncertainty associated with two different residual values for

the underlying distributionN(0, σ2
vb).

Ideally if the observed appearance exactly matches the reference model (rbk=0), then

there is very little chance of the observation being erroneous. The uncertainty values for

two differentrbks for the same underlying distribution are shown in Fig. 5.6.We see that

a value ofrbk closer to zero results in lower uncertainty and a value farther away leads to

higher uncertainty. During the filter operation we refrain from updating the appearance

model when the average uncertainty over the non-zero bins rises above a threshold of 0.7

and declare a temporary “track loss”. A prolonged track lossis indicative of an occlusion

or movement of the target outside the sensor view.
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Once in lost mode, in each subsequent frame, attempts are made to reacquire the target

by using a histogram matching based detector. The detectionis performed in window area

around the last known target position and an average of the last few appearance histograms

is used as the reference. Being dependent on only the last known appearance can be prob-

lematic in cases of partial occlusion. This is because a significant portion of the target

appearance may already be lost before a track loss is detected. The target is declared as

found and normal tracking resumes when the detected candidate region has a uncertainty

value below the threshold 0.7. If no acceptable candidates are found within 100 frames

of a temporary track loss, a complete “track loss” is declared and tracking is terminated.

This simple methodology works very well in recovering the target after short periods of

occlusions and scene absence and is discussed further in theexperiments section. In case

of a prolonged absence from view or occlusions, when the target reappears it may signifi-

cantly differ from its previous known appearance. This makes it difficult for the detector to

identify the target with high certainty and may require re-initialization.

5.6 Experimental Results

Our tracking algorithm was tested on the AMCOM IR dataset. This dataset comprises

of sequences in grayscale format (128×128 pixels). Ground truth information about the

target position, size and type is available in the dataset and serves as a benchmark for

performance evaluation. Ten representative IR sequences used in the experiment are given

in Table 5.3. These sequences exemplify the challenges of IRtracking such as poor target

visibility, strong ego-motion, small targets, size variations, dust clouds, significant clutter

and background noise, etc.
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Table 5.3: List of sequences used in experiments.

Frame Size

Sequences Starting Ending Length Starting Ending

frame frame size size

LW-15-NS 20 270 250 5 x 8 16 x 16

LW-17-01 1 350 350 5 x 8 16 x 29

LW-21-15 235 635 400 3 x 4 10 x 10

LW-14-15 1 225 225 4 x 5 23 x 19

LW-22-08 50 300 250 5 x 8 17 x 24

LW-20-18 120 420 300 4 x 7 10 x 17

LW-18-17 1 190 190 5 x 9 11 x 25

LW-19-06 40 260 220 3 x 4 6 x 11

MW-14-10 1 450 450 6 x 11 12 x 28

LW-20-04 10 360 350 3 x 4 12 x 15

5.6.1 Experimental setup

Three appearance learning algorithms, namelyHS, AKFcov andAKFals are integrated with

the same tracking algorithm given in Table 5.2. It is worth mentioning that all three algo-

rithms share the same linear filtering form defined in (5.4).HS determinesξk according

to histograms similarity, whileAKFcov andAKFals uses the Kalman gain. The detailed

setting of the three tracking algorithms is listed in Table 5.4. In practice, the Kalman filter-

based appearance learning algorithms were applied only to the two intensity histograms (fA

andfB). Because the dynamics of stdev histograms do not have a well-defined structure,

the stdev histograms (fC andfD) in all cases were updated using theHS method.

In addition to the tracking errors, we adopt an overlap metric proposed in [119] to

quantify the degree of overlap between the tracking gate with the actual target area. LetA
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Table 5.4: Description and value of the experimental parameters

Variables Description Values

N
(1)
b bin number of the intensity histogram 32

N
(2)
b bin number of the stdev histogram 16

Lcov number of frames used for AKFcov in (5.16) 3

Nd block size in frames 7

Lals number of autocorrelation lags 5

ck dynamics of position used in (5.42) 3En[△xk]

Np number of particles used for tracking 200

0.19ζ = 0.40ζ =

0.65ζ = 1.00ζ =

 (Ground truth)A

 (Tracking gate)B

 (Overlapping area)A B∩

Figure 5.7: Illustration of the overlap metric for a few different tracking cases.

andB represent the tracking gate and the ground-truth bounding box respectively, then the

overlap ratioζ is defined as

ζ =
#(A ∩B)× 2

#(A) + #(B)
, (5.46)

where# is the number of pixels. A few representative examples of themetric are shown

in Fig. 5.7.

5.6.2 Experimental Analysis

Three IR tracking algorithms (50 Monte Carlo runs) were evaluated and compared in terms

of their performance of appearance learning (Fig. 5.8), theoverlap metricζ (Fig. 5.9) and

the tracking error (Fig. 5.11 and Table 5.6).
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5.6.2.1 Appearance learning

As shown in Fig. 5.8, it can easily be observed that the results ofAKFals closely match the

ground-truth. Closer examination reveals thatHS andAKFcov result in the histograms that

slowly deviate or “drift” from the true ones. This is clearlyevident in Fig. 5.8(c), where

the intensity variation in the latter part of the sequence (around frame 300) is not captured

by HS andAKFcov. Therefore, the tracker includes a large portion of the background into

the tracking gate as seen in frames 320, 360 of Fig. 5.11 (c).

5.6.2.2 Overlap metric

The improvements of appearance learning can be further reflected by the overlap metric in

Fig. 5.9(a)(b), which comparesζals, ζcov andζHS in pairwise. For example, the improve-

ment ofAKFals overAKFcov or HS can be demonstrated by seeing most data points are

above the diagonal lines. The comparable result ofAKFals andAKFcov in sequence LW-

22-08 is also shown in the similar appearance learning performance in Fig. 5.8(e) where

the histogram-based appearance lacks strong modes and has widespread and small bin val-

ues. The average value ofζ corresponding to different algorithms is given in Table 5.5.

TheAKFals method has the largest value that indicates its superior performance of target

tracking when compared to the other two algorithms.

5.6.2.3 Tracking error

Table 5.6 provides quantitative results of the tracking performance. In most cases,AKFals

produces the least errors in terms of both position and size.TheHS approach loses track

of the target in sequences LW-20-18 (6 runs) and LW-19-06 (2 runs) as indicated by the

large errors. TheAKFcov also loses track of the target in the sequence LW-20-18 (1 run)

due to the high similarity between foreground and background. More visual comparisons

are shown in Fig. 5.11. We can see thatAKFals offers the best position and size estimation

except sequence LW-22-08, whereAKFcov is slightly better due to the lack of well defined
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Table 5.5: The overlap metric values of the three tracking algorithms.

Sequences HS AKFcov AKFals

LW-15-NS 0.669 0.707 0.714

LW-17-01 0.547 0.596 0.720

LW-21-15 0.601 0.578 0.620

LW-14-15 0.676 0.682 0.708

LW-22-08 0.751 0.770 0.758

LW-20-18 0.689 0.753 0.758

LW-18-17 0.704 0.702 0.703

LW-19-06 0.670 0.685 0.713

MW-14-10 0.802 0.797 0.799

LW-20-04 0.715 0.711 0.720

Average 0.682 0.698 0.721

structure in the histogram-based appearance, as shown in Fig. 5.8(e).

5.6.3 Tracking performance of covariance descriptor

We also tested the covariance descriptor for IR tracking. The covariance descriptor was

found to be robust and effective for object tracking in optical images and plays an impor-

tant role in several state-of-the-art tracking algorithms[120, 121]. It was first proposed

in [122] for object detection. This descriptor has several advantages: (1) it is able to fuse

together many different features; (2) it is invariant to illumination conditions and rotation,

contains both statistical and spatial information and is fast to compute; (3) it can be updated

incrementally and systematically by some manifold learning methods. In IR tracking, the

covariance descriptor involves local intensity, stdev, gradient, orientation and Laplacian in-

formation of the target area. This descriptor was combined with the particle filter whose

dynamics were described in Section 5.4. The tracking results of using the covariance de-
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scriptor are shown in Fig. 5.10 where no learning is involved. It is observed that the co-

variance tracker is able to maintain a reasonable track of the target in LW-17-01, but fails

to track the dark target in LW-15-NS. In both sequences, the tracker encounters difficulty

in size estimation. The small size of the target, weak texture and absence of color signifi-

cantly reduce the effectiveness of the covariance descriptor for tracking small targets in IR

images.

5.6.4 Further Discussion

In summary, theHS method is usually encumbered by the drifting problem duringincre-

mental appearance learning. TheAKFcov method, which assumes the same noise statistics

for all histogram bins and estimates only the process noise without considering PSD con-

ditions, results in a suboptimal Kalman gain. Its performance is marginally better than

that ofHS. TheAKFals algorithm, which estimates both process and observation noises

with PSD conditions for each individual bin in the histogram, is able to follow the modes

and variations of the histogram during tracking and supports effective appearance learn-

ing. However, when a histogram lacks some strong modes and has widespread and small

bin values, such as LW-22-08 and MW-14-10, all three methodsare comparable. This is

mainly because the poor structure of the histogram evolution may invalidate Kalman filter

assumptions, whileHS is still effective to incorporate the most recent tracker’sobservation

for appearance learning when the histogram is less well defined. This justifies the use of

HS for learning the stdev histograms which normally have weak structures.

5.6.5 Experiments on the VIVID dataset

In the VIVID dataset the targets are larger compared to the AMCOM dataset and the fore-

ground information is robust enough to represent the target. Therefore we predominantly

depend on the foreground information for tracking by setting the histogram importance

asvfi = 0.45, vfi = 0.05, vfv = 0.45 andvbv = 0.05 in (5.41). The sequences tested
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Table 5.6: Mean error of the state variables over averaged over the length of the sequence from 50 Monte Carlo runs using three different

algorithms.

Algorithm HS AKFcov AKFals

Sequence x y sx sy x y sx sy x y sx sy

LW-15-NS 1.019 1.817 1.906 2.732 0.860 1.511 1.644 2.396 0.801 1.461 1.423 2.339

LW-17-01 2.406 3.415 2.104 3.016 2.145 3.005 2.101 3.163 1.213 2.110 1.376 3.033

LW-21-15 0.970 1.653 2.624 2.941 1.135 1.812 2.799 3.113 0.893 1.300 2.786 2.575

LW-14-15 0.889 0.815 3.160 2.137 0.932 0.787 2.981 2.157 1.099 0.801 2.660 1.787

LW-22-08 1.167 0.868 1.684 2.049 1.202 0.843 1.070 2.232 1.200 0.839 1.363 2.175

LW-20-18 3.230 1.831 1.657 1.953 0.901 1.095 1.307 1.766 0.599 1.084 1.439 1.754

LW-18-17 1.269 1.722 0.733 2.949 1.303 1.838 0.859 2.611 1.425 1.679 1.087 2.252

LW-19-06 1.977 1.545 1.566 1.544 0.797 0.764 1.681 1.454 0.694 0.709 1.536 1.279

MW-14-10 0.628 0.789 1.648 1.691 0.756 0.806 1.638 1.789 0.775 0.778 1.629 1.607

LW-20-04 0.702 0.954 0.940 1.528 0.697 0.937 1.071 1.614 0.688 0.907 1.006 1.357

Average 1.426 1.541 1.802 2.254 1.073 1.340 1.715 2.230 0.939 1.167 1.630 2.016
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are typical of aerial surveillance videos and are affected by ego-motion of the sensor, oc-

clusion by foliage, targets exiting scene and reappearing.Due to the absence of explicit

ground truth information we only present visual evidence ofthe tracking performance. In

all the sequences, the targets were manually initialized with an appropriate bounding box.

We compare the performance of the tracking algorithm withAKF+tld and withoutAKFals

track-loss detection on a few representative sequences with and without track-loss detec-

tion.

A few sample frames from three different sequences, the uncertainty associated with

theAKFals+tld tracker and the corresponding foreground appearance variations are shown

in Fig. 5.12, Fig.5.13 and Fig. 5.14 respectively.In SEQ1 corresponding to the top row of

Fig. 5.12, the target is occluded by some trees around frame 50 and reemerges from behind

them around frame 65. Both theAKFals+tld andAKFals algorithms perform similarly

till the time of occlusion. During the period of occlusion the uncertainty associated with

the appearance increases above the set as shown in Fig.5.13(a). Therefore, theAKFals+tld

tracker stops all update to the appearance and goes into detection mode. TheAKFals tracker

on the other hand continues to learn new appearance corresponding to the background. By

the time the target is occlusion free, the detector is able tolocate the target with acceptable

level of certainty and theAKFals+tld tracker begins tracking the target. TheAKFals tracker

by this time, has learnt the appearance of the background andloses track of the target. From

Fig. 5.14 we can observe the appearance of significant peaks in the appearance histogram

of theAKFals tracker as it shifts its focus toward the background. TheAKFals+tld tracker

suspends all updates until a reliable target is found, this is indicated by the missing values

between the occlusion frames in Fig. 5.14 (a). In this sequence, the increased uncertainty

around frames 30, 80 and 90 maybe attributed to the lens halo effect interacting with the

target and can be clearly seen in the observed images.

In SEQ2, the target moves outside the sensors view range for afew frames and re-

enters the scene. By frame 195 the target is only partially visible and this is reflected in
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the increased uncertainty around those frames in Fig.5.13 (b). A subsequent exit from the

scene triggers the detector mode of theAKFals+tld tracker. The detector is able to quickly

detect the target upon re-entry and passes it on to the tracker when a uncertainty value

below the threshold is achieved. TheAKFals tracker slowly deviates from the target and

begins to concentrate on the background as shown in Fig. 5.14(b).

In SEQ3, the target becomes absent from the scene for an extended period of time

before re-entering. The exit of the target around frame 263 is easily picked up by the

uncertainty indicator. Note the gradual increase in uncertainty corresponding to the slow

exit of the target from the scene. When the target re-enters the scene, the detector is quick

to move on to the true target, however, the uncertainty associated with it still remains high

as seen in Fig.5.12 and Fig.5.13 (c). This suggests that, though the uncertainty criterion is

robust enough to detect track-losses, it may not be a strong indicator of track-acquisition.

In cases of long absences it may be necessary to re-initialize the tracker with a more robust

detector using feature descriptors more complex than intensity histograms or manually.
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Figure 5.8: Comparison of appearance learning for the AMCOM sequences: (a) LW-15-NS

(b) LW-17-01 (c) LW-21-15 (d) LW-14-15 and (e) LW-22-08 and (f) MW-14-10.

101



(a) LW-17-01 (b) LW-21-15 (c) LW-22-08

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

ζ al
s

ζcov

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

ζ al
s

ζcov

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

ζ al
s

ζcov

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

ζ al
s

ζHSζ
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

ζ al
s

ζHSζ
0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

ζ al
s

ζHSζ

Figure 5.9: Pairwise overlap comparisonζALS vs. ζCOV (top row) andζALS vs. ζHS

(bottom row) for LW-17-01 (a), LW-21-15 (b) and LW-22-08 (c).

Frame 1 Frame 100 Frame 190 Frame 230 Frame 250

Frame 1 Frame 65 Frame 220 Frame 271 Frame 350

Figure 5.10: Tracking results for two AMCOM sequences using the covariance tracker.

Top: LW-15-NS and Bottom: LW-17-01.
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Frame 1 Frame 65 Frame 100 Frame 150 Frame 190 Frame 230 Frame 250

Frame 1 Frame 65 Frame 150 Frame 220 Frame 271 Frame 320 Frame 350

1

Frame 1 Frame 68 Frame 150 Frame 220 Frame 320 Frame 360 Frame 400

Frame 1 Frame 45 Frame 100 Frame 125 Frame 150 Frame 190 Frame 225

4.7162 in.

Frame 1 Frame 50 Frame 100 Frame 150 Frame 200 Frame 225 Frame 250

Figure 5.11: Tracking results of the three algorithm on five AMCOM sequences. The top

row of each image shows the observed frame and and the bottom row depicts the tracking

gates corresponding to the Ground truth (Top-Left),HS (Top-Right),AKFcov (Bottom-

Left), AKFals (Bottom-Right). The sequences from top to bottom are LW-15-NS, LW-17-

01, LW-21-15, LW-14-15 and LW-22-08
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Frame 1 Frame 43 Frame 50 Frame 69 Frame 95

Frame 1 Frame 195 Frame 229Frame 205 Frame 250

Frame 250 Frame 263Frame 1 Frame 350Frame 325

Figure 5.12: A few sample frames from three different sequences are shown in each of the

rows. In each sub-image, the top image represents the observed frame. Bottom left is the

result ofAKFals+tld and bottom right:AKFals. The black bounding boxes represent the

tracking result. The white “+” sign represents the output ofthe detector in theAKFals+tld

method.
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Figure 5.13: The appearance uncertainty associated with the foreground histogram by the

AKFals+tld tracker for (a)SEQ1, (b)SEQ2 and (c)SEQ3.
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Figure 5.14: Foreground histogram variation associated with theAKFals+tld andAKFals

trackers for (a)SEQ1, (b)SEQ2 and (c)SEQ3.
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CHAPTER 6

Integrated Tracking and Recognition 1

6.1 Background

Joint tracking and recognition is a challenging issue that is of great interest to both computer

vision and signal processing communities. Though the nature of sensor measurements and

research focuses are quite different, they share some common issues when the problem

is formulated as a dynamic state-space system involving observation and system models.

Traditionally, vision research focuses on the developmentof powerful appearance models

[31, 67] (i.e. observation model), while signal processingresearch places emphasis on the

system model by focusing on the dynamics of maneuvering targets [69, 70]. Recently,

there is a trend to combine both appearance and motion cues into a joint tracking and

recognition flow [60, 62]. We address the problem of joint target tracking and recognition

by incorporating both appearance and motion information via two generative models.In

this chapter, we exploit the synergy between the two cues by systematically fusing them in an

integrated probabilistic framework that enables their mutual interaction for joint tracking

and recognition.

Target appearance modeling is vital in any tracking and recognition algorithm since

target appearance varies widely with pose changes. Most existing methods [31, 123] only

deal with limited pose variations as they often use templates or other image features to

accommodate appearance variability. In addition, such models need continuous update to

ensure robust tracking and recognition [123]. To overcome these issues we suggest the

use of a nonlinear tensor-based generative model similar tothe one proposed in [67] that

1The work presented in this chapter was done in collaborationwith Dr Xin Fan
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can synthesize a target signature given the target type and an arbitrary pose. In addition

to aiding the tracker by accounting for inter-frame appearance changes, this model also

facilitates recognition by generating distinct type-specific appearances with any pose.

Traditionally, multiple motion models have been widely adopted to accommodate ma-

neuvering actions in target tracking [68]. In reality, different targets would be equipped

with customized engines and mechanical systems that generate distinct motion patterns.

This inspires researchers to develop multiple type-dependent motion models to achieve

joint target tracking and recognition [69, 70]. However, these approaches require sensors

giving direct kinematics measurements, e.g., radar, and donot consider the target appear-

ance. We employ target-dependent generative motion modelscoupled with the generative

appearance model for joint tracking and recognition.

We develop an integrated graphical model to encapsulate allrelevant factors, i.e., the

target type, the motion and appearance models, as well as their cause-and-effect dependen-

cies. The type-dependent motion and appearance models worksynergistically for tracking

and recognition, unlike the approaches in [60, 62] where motion models are adaptive to

appearance changes but have no direct impact on recognition. We resort to a particle filter

based inference method, in which a Kalman filter using the motion cues is embedded to im-

prove the identity proposal generation as well as kinematics estimation. The experiments

on simulated infrared sequences demonstrate the advantages and potential of the proposed

approach for joint tracking and recognition.

6.2 Problem formulation

A graphical model is used to integrate all the factors along with their conditional depen-

dencies into a probabilistic framework as shown in Fig.6.1,where three latent variables are

estimated, i.e., a discrete valued target identity variable It ∈ {1, ..., NT}, the continuous

valued zero-order kinematicsX t (position[px, py]′ and poseφ) and the continuous valued

first order kinematicsKt (linear velocityv and angular velocitywv). Zt denotes the cur-
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rent observation frame andSt a intermediate variable represents the hypothesized target

appearance. Here joint tracking and recognition simplifiesto an estimate of the posterior

probabilityp(It,X t,Kt|Zt).

Target type  I t-1

  K t-1

Zt-1

  I t

  K t

Zt

  I t+1

  K t+1

Zt+1

1'st order Kinematics
(Linear, angular velocities)

Observed frame

St-1
Target Appearance

  Xt-1  Xt   Xt+1

Zero order Kinematics
(position and orientation)

St St+1

Figure 6.1: Graphical model for integrated tracking and recognition.

Fig.6.1 implies the probabilistic dependencies of the joint distributionp(It,Kt,X t,Zt|Θt−1),

whereΘt−1 denotes the previous observation and latent states. The arcs betweenIt,X t and

St as well as those betweenIt,Kt andX t show the cause-and-effect relationships that

correspond to the generative appearance and motion models respectively. Specifically, the

appearance of the targetSt in a given frame is dependent on its identity, position and pose

with respect to the camera. The change in pose and positions between frames is dependent

on the linear and angular velocities of the target which in turn depend on its identity. From

the conditional independence in Fig.6.1, the joint probability can be factorized as:

p(It,Kt,X t,Zt|Θt−1)

= p(Zt|It,X t)p(It,X t,Kt|Θt−1), (6.1)

wherep(Zt|It,X t) is the observation likelihood dependent on the appearance model. Ap-
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plying the conditional independence between two time steps, the last term in 6.1 is:

p(It,X t,Kt|Θt−1)

= p(X t|X t−1,Kt−1)p(Kt|It,Kt−1)p(It|It−1), (6.2)

wherep(X t|X t−1,Kt−1) andp(Kt|It,Kt−1) are related to the generative motion model

andp(It|It−1) is defined by a target type transition matrix. Due to the non-Gaussian prop-

erty of It and non-linearity ofX t, we resort to the particle filtering approach where the

posterior probability is maintained by a weighted sample set. The samples at timet can

be generated from those at time(t − 1) by 6.2, and weights are assigned by 6.1. A bet-

ter proposal is derived by incorporating the current appearance observation in the spirit of

APF [124] and the estimation can be further improved by utilizing the Gaussian probability

of p(Kt|It,Kt−1).

6.3 Tensors: A brief review

As pointed out by the authors in [65] natural images are a result of a number of interacting

factors related to illumination, scene structure etc. For example in [65] the authors consider

a face dataset with variations in identity, illumination, expression, pose etc. In our problem,

we want to develop a appearance model capable of handling variations in target shape due

to viewing angle and target identity. The algebra of higher-order tensors provides a effec-

tive framework to separate out (decompose) the constituentfactors of image ensembles.

In this chapter, tensor decomposition is a primary component of the proposed generative

appearance model. The aim of this section is to provide a brief review of the relevant tensor

algebra concepts and is based on the works presented in [65,125,126].

Common linear algebra techniques like Principal Component Analysis (PCA) and In-

dependent Component Analysis (ICA) have been successfully applied to several image

analysis and representation problems primarily in the context of face recognition [127].

However, by their nature these methods are most suited for analysis of a single varying
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factor. In the case of face recognition this varying factor is most often the identity of the

individual. These methods have difficulty in effectively decomposing other variations such

as illumination or pose if they are present in the dataset. Inthis chapter we develop a target

appearance model with the decomposable factors of target identity and view angle using

multi-linear algebra.

A tensor is defined as a multidimensional matrix or an-way array orn-mode matrix.

They are higher order generalizations of a vector (first order tensor) and a matrix (second

order tensor). In this section we represent scalars using lower case letters(a, b, ..), vectors

using bold lower case letters(a, b, ..), matrices using bold upper case letters(A,B, ..) and

higher order tensors by script upper case letters(A ,B, ..). The order of a tensorA ∈

ℜI1×I2×...×IN isN and a element of this tensor is denoted byai1i2...iN where1 ≤ in ≤ In.

Tensor Flattening: One of the most important and useful operation that can be per-

formed on a tensor is flattening (matricization or unfolding). It is the process of reordering

the elements of a tensor into a matrix. For example, a2 × 3 × 4 tensor can be rearranged

into a 4×6 matrix, 3×8 matrix or a 2×12 matrix. The mode-n matricization of a tensor

A ∈ ℜI1×I2×...×IN is denoted byA(n). The example provided in [125] is repeated here for

clarity of the flattening concept. Let the frontal slices ofA ∈ ℜ3×4×2 be represented by

A1 =




1 4 7 10

2 5 8 11

3 6 9 12



,A2 =




13 16 19 22

14 17 20 23

15 18 21 24



. (6.3)
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Then the three mode-n flattened matrices are given by

A(1) =




1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 24



, (6.4)

A(2) =




1 2 3 13 14 15

4 5 6 16 17 18

7 8 9 19 20 21

10 11 12 22 23 24




, (6.5)

A(3) =




1 2 3 · · · 11 12

13 14 15 · · · 23 24


 . (6.6)

Note that different works use different ordering of the columns for the mode-n flattening

operation. In general, the specific permutation of the columns is not important as long as it

is consistent across all related calculations [125].

Mode-n product: The next important operation involving tensors that is of interest to

us is the mode-n product. The mode-n product of a tensorA ∈ ℜI1×I2×...×In×...×IN with a

matrixQ ∈ ℜJ×In is denoted byB = A ×nQ. The tensorB ∈ ℜI1×I2×...×In−1×J×In+1...×IN

and elementwise we have

bi1...in−1jin+1...iN =
In∑

in=1

ai1i2...iN qjin . (6.7)

The mode-n multiplication maybe represented using flattened matricesas follows

B = A ×n Q ⇔ B(n) = QA(n). (6.8)

Another important property of the mode-n product is

A ×n P ×m Q = A ×m Q×n P (m 6= n). (6.9)

Tensor decomposition: Let us consider the singular value decomposition (SVD) of

a matrixP ∈ ℜI1×I2 . The SVD operation orthogonalizes the row space and the column
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space of the matrixP and provides the decompositionP = U 1ΣUT
2 . HereU 1 ∈ ℜI1×J1

is the orthogonal columns space of the matrixP , Σ ∈ ℜJ1×J2 is the diagonal singular

value matrix andU 2 ∈ ℜI2×J2 is the orthogonal row space of the matrixP . In terms of the

mode-n product discussed previously, SVD can be expressed by

P = U 1ΣUT
2 ⇔ P = Σ×1 U1 ×2 U 2. (6.10)

Extending the concept of SVD ton-mode matrices it is possible to obtain

A = C ×1 U 1 ×2 U 2 · · · ×N UN . (6.11)

Here the tensorC is known as the core-tensor and is analogous to the diagonal singular

value matrix in the SVD decomposition of a matrix. Note that the core tensorC does not

have a diagonal structure and contains information about the interaction between the mode

matricesUn for n = 1, 2, · · · , N . The “N -mode SVD” operation expresses the tensor

A as the mode-n product ofN orthogonal spaces. The mode matricesUn contain the

orthonormal column space of the matrixA(n) that result from the mode-n flattening of

the tensorA . Once the mode matrices are identified using regular SVD on the flattened

matricesA(n), the core tensorC maybe obtained by

C = A ×1 U
T
1 ×2 U

T
2 · · · ×N UT

N . (6.12)

The implication of the decomposition in (6.11) can better understood by considering the

face dataset example presented in [65]. Assume we have images face images of 20 different

people imaged under 5 different views and 3 different expressions and let each image be of

size80 × 60. It is possible to represent this dataset as a tensorA of dimension20 × 5 ×

3× 4800. We can perform tensor decomposition as described above to obtain

A = C ×1 U people ×2 U views ×3 U expression ×4 U pixels. (6.13)

Here the matrixUpeople contains the basis vectors of the space of identity of the subjects,

Uviews spans the space of viewpoint parameters,U expression spans the space of expression
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Figure 6.2: Tensor-based generative model for multi pose target representation.

parameters,U pixels spans the space of images and the core tensorC governs the interaction

between the mode matrices. The tensor decomposition provides for a way to meaningfully

separate out the constituent factors affecting images in the ensemble. In our work, we apply

a similar decomposition to separate out target identity andview related factors as outlined

in the section below.

6.4 Generative models

There are two generative models involved in Fig.6.1, namelythe appearance and motion

generative models. The former relates the latent states with observation, whereas the latter

specifies the evolution of latent states over time. The conditional dependencies among the

variables in Fig.6.1 are derived from the generative modelsthat encode the cause-and-effect

relationships between variables. These two models that share the same identity (cause)

variable are jointly calledjoint appearance-motion generative models.
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6.4.1 Appearance model

One major challenge in tracking and recognition is that a target can continuously change

its appearance due to pose variations. It is practically impossible to train an algorithm

with all possible target appearances. Inspired by [67, 128], we use a generative model

approach to overcome this problem. We assume that the appearances of different poses

lie on a conceptual pose manifold represented by a 2-D circlecommon to all targets, as

shown in Fig.6.2. Our objective is to have a functional mapping from this low dimensional

conceptual space to the higher dimensional image space. Radial Basis Functions (RBFs)

are often used in function interpolation and can easily provide a mapping between a higher

dimensional and a low dimensional space. In addition, such amapping can be learned from

a small set of training data which include signatures (i.e.,silhouettes) of multiple targets

under different poses. The learning results in a mapping function from a point on the low

dimensional manifold to a high dimensional silhouette image and also provides a way for

us to generate silhouettes corresponding to view points on the low-dimensional manifold

that were not used for learning the mapping. Details of the learning of such a mapping

function using radial basis functions is clearly presentedin [129].

We use non-linear Gaussian Radial Basis Functions (GRBF) to obtain the following

mapping [130]:

ykm = Bkψ(xm), (6.14)

whereykm is the high dimensional(d× 1) row vectorized silhouette image of targetk under

posem; xm is the point corresponding to posem on the conceptual manifold.Bk is a

d × Nc linear mapping corresponding to targetk. ψ(·) is a non-linear kernel mapping

to the embedding space, composed ofNc GRBFs along the manifold. ForNT different

targets, based on 6.14 we may obtain their corresponding mapping functionsBk for k =

{1, 2, ..., NT} that can be stacked together to form the matrixC = [B1 B2 . . . BNT ]. C

contains information about target-dependent signatures pertaining to different poses. From

C, we can decompose the target type factorik by using the asymmetrical bilinear model to
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perform tensor decomposition as in [64]. The tensor-based target representation may then

be written as

ykm = A ×3 i
k ×2 ψ(xm), (6.15)

whereA is called the core tensor with dimensionalityd × Nc × NT ; ik is the target type

factor of dimensionalityNT ; and×j denotes mode-j tensor product.

As shown in Fig. 6.2, there are two steps involved in the generative model,appearance

learning andsignature synthesis. The former is accomplished by findingBk in 6.14 fol-

lowed by a bilinear decomposition to obtainA andik. The latter is characterized by 6.15,

using which we can reconstruct a target signature of any typeand pose. Once the learning

is accomplished, we only need to storeA andik to provide a general target representation.

In addition to aiding the tracker by accounting for inter-frame appearance changes, this

model can also facilitate recognition by generating distinct type-specific appearances with

any pose.

6.4.2 Motion models

Motion models play an important role in target tracking [68]. In practice, different targets

have widely varying kinematics maneuverability due to the nature of engines and mechan-

ical systems. Using type-specific motion models will bettercapture the kinematics and

maneuvering actions of different targets. Therefore, we consider multiple 3-D rigid motion

models that are associated with different target types. Moreover, the motion cue provides

additional evidence for recognizing target types.

For ground targets, we introduce a type dependent variable into the dynamics of linear

velocityv along the direction of target motion (x′ in Fig.6.3).

vt = vt−1 + f(It) + s(It)ωv, (6.16)

whereωv is independent identically distributed (iid) Gaussian noise;ωv ∼ N (0, 1); f(It)

ands(It) are the two variables controlling the target-dependent acceleration. It is worth
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Figure 6.3: The 3-D coordinate systems of a ground vehicle. The axesx′y′z′ defines the

body frame, where the vehicle is constrained to move along the x′ direction and rotate

about thez′ axis to avoid unrealistic motion. Thexyz axes define the observer’s frame of

reference where the planexoy is parallel tox′o′y′.

noting that the dynamics ofvt is a linear Gaussian model givenIt, making it possible to

update the related probabilities using a Kalman filter.

The dynamics for zero-order kinematics, i.e., pose and position, are introduced in addi-

tion to that of velocity. The pose variableφ follows a simple dynamic model given by

φt = φt−1 + u+ ωφ, (6.17)

whereu denotes a fixed angular velocity, andωφ ∼ N (0, σ2
φ). This model is capable of

capturing subtle rotational dynamics of a rigid target. Thetarget is assumed to move only

on the ground plane (pz=0). The positionp = [px, py]
′ in observer’s coordinate system is

related to velocityv and poseφ as:

pt = pt−1 +R(φt−1)vt−1 + ωp, (6.18)

whereR is a rotational vector defined asR(φ) = [cosφ sinφ]′, andωp ∼ N (0, diag(σ2
x, σ

2
y)).

Nonlinearity introduced in the state equation 6.18 requires a sampling based inference.

Since the type dependent velocity appears in 6.18,NT models are needed to characterize

the type-specific motion patterns.
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6.5 Inference algorithms

In this section, we detail two inference algorithms for the graphical model described in

Section 6.2. One is the APF-based particle filter that takes into account the current ob-

servations aboutX t (position/pose), and other is an enhanced APF algorithm where the

current observation ofKt (velocity) is involved for proposal generation.

6.5.1 APF algorithm

Dynamics: The dynamics of kinematic variables corresponding to velocity vt, pose varia-

tionsφt and positionpt are defined in 6.16,6.17 and 6.18 respectively. In order to maintain

multiple hypothesis about the target identity, we define thedynamics of the identity variable

It as

p(It = i|It−1 = j) = T t(i, j); i, j ∈ {1, 2, · · · , NT} (6.19)

whereT t(i, j) is a transition matrix that defines the transition probability between identities

i andj at time t. Using an annealing-like strategy,T t is defined as follows:

T t(i, j) =





1− exp(−at) if i = j,

exp(−at)
NT−1

if i 6= j,

wherea is a fixed positive constant. This empirical setting ofT t gradually reduces the iden-

tity switch frequency based on the belief that the state inference is increasingly confident

about the identity estimation with time. However, the valueof a depends on the reliability

of the observations.

Observation likelihood: Assume a target with certain identity moving in a 3-D scene

according to its dynamics and we observe it via a stationary pre-calibrated perspective

camera with known parametersTcamera. Given the target type, pose and position we can

synthesize the required target silhouette using the generative model 6.15. This silhouette

is then appropriately placed on the 2-D image plane with specific scale and position, us-

ing Tcamera. Assuming that the observed image sequences are corrupted by additive i.i.d.
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Gaussian noiseN (0, σ2
obs), the likelihood functionp(Zt|It,X t) of the current observation

Zt is given by:

p(Zt|It,X t) ∝ exp
[
− ‖Zt − g(It,X t,Tcamera)‖2

2σ2
obs

]
, (6.20)

whereg(·) is a mapping function that results in a hypothesized target silhouette based on

It, X t, andTcamera; ‖ · ‖ gives the mean square error between the observation and the

synthesized target appearance in the tracking gate.

Algorithm pseudo-code: Having defined the required system and observation models,

sequential state estimation can be performed using an Auxiliary Particle Filter (APF). The

pseudo code for a single time step of the APF-based inferenceis given inTable 6.1where

the current observation is considered for drawing samples in step 4.

6.5.2 Kalman filter enhanced APF (KAPF)

Discussion on APF:Due to the lack of velocity measurements, there is no direct inference

about the velocityvt in the APF, making its estimate less accurate. However, velocity plays

an important role in the estimation ofX t as well asIt, when targets exhibit different mo-

tion patterns. In the following, we enhance the velocity estimation and apply it to improve

the efficiency of state inference in two ways. Firstly, the estimated velocity is involved to

generate more samples of the most likely target type and secondly, in generating improved

position hypothesis for the next time step. The underlying idea of the APF is to use the

effect(current observations) to generate more plausiblecausesamples (position/pose hy-

pothesis). Similarly, we consider theeffect(position estimation) to generate more likely

causesamples (velocity). Unlike [60], where the change in high dimensional appearance is

used for velocity update, we use position estimates to update velocity using a 1-D Kalman

filter.

New proposal: A new proposal generation scheme is inserted between the steps 8

and 9 inTable 6.1 for target type and velocity, in the spirit of RBPF using the derivation
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Input: The current observationZt and the particle set at time

t− 1 represented by{Φj
t−1}

Np

j=1 = {Xj
t−1, v

j
t−1, I

j
t−1}

Np

j=1.

1. Propagate the particle set{Φj
t−1}

Np

j=1 using the motion

model equations 6.16,6.17,6.18 and 6.19 to obtain the particle set

{Φ̃j
t}

Np

j=1 = {X̃j
t , ṽ

j
t , Ĩ

j
t }

Np

j=1.

2. Assign weights{w̃j
t}

Np

j=1 ∝ p(Zt|Φ̃j
t ) as in (6.20).

3. Normalize weights{w̃j
t}

Np

j=1 such that
∑Np

j=1 w̃
j
t = 1.

4. Draw auxiliary variableλj ∈ {1, 2, · · · , Np} such that

p(λj = i) = w̃i
t wherei = 1, 2, · · · , Np.

5. Propagate the particle set{Φλj

t−1}
Np

j=1 using the motion

model equations 6.16,6.17,6.18 and 6.19 to obtain the new particle set

{Φj
t}

Np

j=1 = {Xj
t , v

j
t , I

j
t }

Np

j=1.

6. Assign weights{wj
t}

Np

j=1 ∝
p(Zt|Φ

j
t )

p(Zt|Φ̃λj

t )
as in 6.20

7. Normalize weights{wj
t}

Np

j=1 such that
∑Np

j=1w
j
t = 1.

8. Estimate mean position̂pt and posêφt from {Φj
t , w

j
t}

Np

j=1.

9. Set{Φj
t}

Np

j=1 = Re-sample [{Φj
t , w

j
t}

Np

j=1].

Outputs: The particle set at timet represented by{Φj
t}

Np

j=1 and

the mean estimateŝpt andφ̂t.

Table 6.1: Pseudo-code for one time step of the APF algorithm.

in [131, 132]. Since the velocity follows a linear Gaussian process (6.16), a Kalman filter

is incorporated to generate identity samples and update thevelocity samples. In addition

to the particle set{Φj
t}Np

j=1 in Table 6.1, we maintain a second set of particles{ϕj
t}Np

j=1

= {Ijt , µj
v,t,Σ

j
v,t}Np

j=1, where type samplesIjt are from{Φj
t}Np

j=1; the meanµj
v,t and variance

Σj
v,t characterize the velocity probability density for each particle. In generating target

type samples, the type whose motion model fits the current velocity closely is given higher

preference. Thus the predictive density of the type variable is assigned as

p(It|It−1, y1:t) ∝ p(yt|y1:t−1, I0:t−1), (6.21)

119



whereyt denotes the velocity observation at time stept obtained from the effect variables

of velocity using

yt = ‖p̂t − p̂t−1‖. (6.22)

We assumep(yt|vt) ∼ N (vt, b
2(It)), whereb2(It) is the variance ofyt. Then the predictive

density ofyt is also Gaussian, i.e.,p(yt|y1:t−1, It) ∼ N (µy,t,Σy,t), and can be evaluated by

1-D Kalman filtering equations as:

µy,t(It) = µv,t−1 + f(It),

Σy,t(It) = Σv,t−1 + s2(It) + b2(It), (6.23)

wheref(It) ands(It) appear in 6.16 characterizing the maneuverability. In addition, the

Kalman filter can also be used to update the density of velocity by using the conditional

Gaussian. For simplicity, we omit the identity variableIt and the Kalman equations in the

1-D case becomes

µv,t = µv,t−1 + (Σv,t−1 + s2)Σ−1
y,t (yt − µy,t),

Σv,t = (Σv,t−1 + s2)b2Σ−1
y,t . (6.24)

Therefore, new velocity samples are generated fromN (µv,t,Σv,t) and used for position

prediction.

Algorithm pseudo-code:The KAPF algorithm is given inTable 6.2that is embedded

between steps 8 and 9 inTable 6.1. The output containing the identity and velocity sam-

ples{Ijt , vjt}Np

j=1 replace the ones generated by step 9 inTable 6.1, as priors for position

prediction in the next time step. The elements of the transition matrix used in 6.19 are set

to 1/NT to avoid any possible bias.

6.6 Experimental results

The generative models and inference algorithms are evaluated in three experiments based

on simulated sequences where the background is a real IR image with additive Gaussian
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Figure 6.4: Comparison of reconstruction MSE for the generative model (G15) and the

template model (T15). Only a pose range of180o is shown due to symmetric nature of the

reconstruction error.
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Figure 6.5: Illustration of the generative model based reconstruction.
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Inputs: Position estimateŝpt andp̂t−1 from Table 6.1and the

particle set{ϕj
t−1}

Np

j=1={I
j
t−1, µ

j
v,t−1,Σ

j
v,t−1}

Np

j=1.

Computeyt based on 6.22.

For j = 1, · · · , Np

For I = 1, · · · , NT

Calculateµj
y,t(I) andΣj

y,t(I) using 6.23

Evaluate p(I|Ijt−1, yt) ∝ N(yt;µ
j
y,t,Σ

j
y,t)

End

SampleIjt ∼ p(I|Ijt−1, yt)

Updateµj
v,t andΣj

v,t using 6.24

End

Draw samples{vjt }
Np

j=1 ∼ N(µj
v,t,Σ

j
v,t)

Outputs: The particle set at timet represented by{ϕj
t}

Np

j=1 and

the velocity samples{vjt }
Np

j=1

Table 6.2: Pseudo-code of motion cue based proposal generation.

noise (SNR=20dB). The first experiment examines the generative appearance model in

terms of its capability of synthesizing unseen target signatures. The second experiment

compares the joint appearance-motion generative model against a template model for in-

tegrated tracking and recognition. The last experiment demonstrates the advantages of the

KAPF algorithm for velocity, position and identity estimation.

6.6.1 Target signature generation

A comprehensive target database that includes 3-D models ofmany ground vehicles, mainly

tanks was collected for this research. In the following experiments, we use five tank mod-

els from this database, i.e., FCS, MK1, T28, Eagle, and Maus, as shown in Fig. 6.6. From

these 3-D models we obtain silhouettes of dimension60 × 80 corresponding to different

poses (1◦ to 360◦) of a particular tank. These silhouettes are transformed into gray-scale
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images using signed distance transform as in [67, 128], to impose smoothness of the dis-

tance between poses. For each targetk, the mapping (Bk) is found using 24 silhouettes

corresponding to poses15◦ apart. The generative model is then learnt as in Sec 4.1.

Once the model is learnt we can synthesize a target silhouette of any pose. Fig.6.4

shows the mean square error (MSE) of the generative model (G15) when compared to

the case of using templates (T15) sampled 15 degrees apart. We observe that synthesized

silhouettes have much lower MSE than the template-based approach. Fig.6.5 illustrates the

reconstructed silhouettes for a few untrained poses. The reconstruction closely resembles

the true template for most view angles even for those with higher reconstruction error.

However in both figures note the significantly large errors around90◦ due to the fact that

there is more perceived change per degree of rotation aroundthese angles. This suggests

that an uniformly sampled circular manifold may not be an optimal representation of the

true underlying structure of the view manifold.

 FCS MK1 T28 Black Eagle Maus

Figure 6.6: 3-D target models of the five tanks used in simulations.

6.6.2 Tracking and recognition with joint models

Five sequences corresponding to five targets were generatedusing the dynamics in 6.16,

6.17 and 6.18 and imaged through a virtual camera. When the video sequences were gen-

erated, we setf(It) = 0.025 to simulate a constant forward force ands(It) = 0.01 ∗ It
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to simulate type dependent acceleration;u = π/180 andσφ = π/60 in 6.17. Few frames

of a simulated IR sequence are shown in Fig. 6.7. The inference is done using the APF

algorithm outlined inTable 6.1.

The tracking performance of two different appearance models i.e., the generative model

(G15) and the template model (T15) are compared without considering type dependent

motion, i.e.,s(It) is a constant in the APF inference algorithm. Sample tracking results for

SEQ2 are shown in Fig.6.8. It is seen that the T15 model can lead to loss of track due to its

limitation in matching intermediate poses absent in the training set. On the other hand, the

G15 model that can create intermediate poses improves both position and pose estimation

as shown inTable 6.3.

Next, the tracking performance of the G15 model along with type dependent motion

i.e., the joint appearance-motion generative model (G15-M), is evaluated. To accommodate

different motion models, we sets(It) = 0.01 ∗ It in the inference algorithm.Table 6.3lists

the tracking performance of all three approaches. In most cases, G15-M shows the best

tracking performance proving the usefulness of the joint generative model in pose and

position estimation. The three methods result in comparable recognition performance, and

for all five sequences the identity estimation converges to the true target type within a few

time steps.

6.6.3 KAPF based inference and proposal generation

Five more sequences corresponding to each of the five targetswere generated withf(It) =

0.0025, s(It) = 0.01 ∗ It in 6.16 and random turning actionsu = 0, σφ = π/60 in 6.17. In

this experiment, the appearance model is trained from 36 silhouettes corresponding to10◦

pose changes for each of five targets. The tracking performance of the KAPF is compared

to that of APF∗ (APF with fixed transition matrix as defined in Sec 5.2) to avoid any prior

bias.

As seen from Tab. 6.4, the KAPF algorithm shows improvement over the APF∗ method
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Figure 6.7: Sample frames of sequence SEQ1 (Tank FCS). Frames1, 15, 28, 35, 40 and 50

left to right, top to bottom.

since the Kalman filter used for velocity estimation is optimal in the MSE sense under

Gaussian assumptions. The appearance based likelihood defined in 6.20 is not very sensi-

tive to the variation of scene depth (py) (that is only reflected by scale of the target signa-

ture) when compared to that of translation (px). In addition to the appearance likelihood,

the KAPF also exploits motion cues to improve position estimates especially for depth (py).

These improvements imply that the KAPF is able to generate velocity samples closer to the

true states and thereby provide better prediction for position samples.

The KAPF also performs better than APF∗ in terms of recognition with fewer mis-

classification. The KAPF that uses both appearance and velocity information to generate

identity samples, has an advantage over APF∗ which uses only appearance information, es-

pecially when two targets appear similar in a certain pose. Moreover, the KAPF maintains

the hypotheses of other target types during tracking, despite strong preference towards the

right type. This provides a good balance betweendiversityand focusof sample distribu-

tion during inference, and prevents the type samples from being trapped into incorrect type

hypotheses.
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Figure 6.8: Sample tracking result for sequence SEQ2: (a) path estimate and (b) pose

estimate.

Algorithms SEQ1 SEQ2 SEQ3 SEQ4 SEQ5

φ 3.271 3.824 2.948 5.331 5.428

T15 px 0.115 0.248 0.106 0.263 0.231

py 0.541 1.573 0.208 1.192 1.413

φ 3.397 2.325 2.519 3.468 3.057

G15 px 0.106 0.153 0.116 0.145 0.200

py 0.637 0.870 0.337 0.605 1.222

φ 2.768 2.258 2.007 3.801 2.785

G15-M px 0.094 0.117 0.099 0.185 0.232

py 0.323 0.560 0.238 0.454 1.174

Table 6.3: RMSE of pose and position estimates over 50 frames averaged upon 20 Monte

Carlo runs.
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Algorithms SEQa SEQb SEQc SEQd SEQe

φ 6.307 2.195 3.874 6.021 2.188

APF∗ px 0.146 0.105 0.378 0.132 0.135

py 0.729 0.697 1.265 0.692 0.319

v 0.035 0.054 0.239 0.075 0.106

φ 4.659 2.209 3.412 5.355 2.314

KAPF px 0.089 0.098 0.161 0.106 0.128

py 0.412 0.681 0.653 0.524 0.273

v 0.030 0.036 0.096 0.054 0.127

Table 6.4: RMSE of the pose, position and velocity estimates over 30 frames averaged

upon 20 Monte Carlo runs.
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CHAPTER 7

Recognition based on identity and view manifolds

7.1 Background

The human visual system (HVS) has remarkable ability to understand a scene by effort-

lessly recognizing individual objects present in the scene. The need to replicate this abil-

ity, at least in part, in real world applications has triggered intensive research in the area

of object recognition. Some of this research is object-specific, like detecting humans or

cars [133,134], while others try to distinguish between multiple object classes [57]. There

are two key issues of interest which is how to detect and recognize objects under different

viewpoints and the second is how to account for both inter-class and intra-class variations.

Usually, both the view and identity variables are considered to be discrete valued for view-

independent object modeling. In this chapter, we study the case of vehicle recognition

where we model both these variables to be continuous making it more flexible to handle

unseen views or unknown class variants.

According to [50], the object recognition research could beroughly grouped into three

categories, i.e., single-view 2D models, single instance 3D models, and multi-view mod-

els. The methods of the first group focus on object detection rather than pose estimation

by modeling the appearances of multiple objects in a single,discrete or limited range of

views [18,135] without relating features across multiple views. Those of the second group

estimate the pose/view by matching local features under rigid transformations [136, 137],

making extensions to other object classes difficult. Those of the third group aim to build a

coherent object model by relating descriptive features over multiple views [49,52,57,134].

Our research belongs this group, and we propose a new shape-based generative model for

128



Car

SUV

T
ru

ck
M

in
i V

an

Identity
Manifold

View
Manifold

ᶱ

ᶲ

Figure 7.1: Coupled view-identity manifolds for vehicle modeling. We decompose the

shape variability in the given training set into the two factors, identity and view, and both

can be mapped to a low dimensional manifold. Then by choosinga point each manifold,

a new shape can be interpolated that can be used for joint poseestimation and identity

recognition.

general vehicle appearances that supports simultaneous pose and identity estimation.

To illustrate our approach, we choose four classes of road vehicles, i.e., cars, pickups,

SUV’s and mini-vans, each of which include several sub-classes for model training, as

shown in Fig.7.1. There are two important continuous-valued manifolds supported by the

proposed model. First, we learn a 1-D identity manifold to model both inter-class and intra-

class shape variability among all training vehicles. An important issue is how to specify

the manifold topology to order all classes and sub-classes along the identity manifold, and

we propose aclass-constrained shortest-closed-pathto find the optimal manifold topology

for identity modeling. Second, we define a 2-D hemisphere-shaped view manifold to cope

with arbitrary view variations. A non-linear tensor decomposition technique is used to
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Figure 7.2: Illustration of the generative model for view and identity based shape appear-

ance synthesis. Reconstruction results of the shape are shown for the blue path traversed

along the view manifold and for four different points on the identity manifold that do not

correspond to any of the training data. In each case the shapereconstructed has strong

characteristics of the view and vehicle class.

integrate two manifolds into a unified generative model thatis directly controlled by two

variables. Although the simple silhouette-based shape feature is used in this work, the

proposed model could be extended to other more powerful features for better modeling

capability and recognition performance.

Though the proposed approach is not limited to a specific object recognition applica-

tion, we use vehicle recognition as a case study in this work where the silhouette-based

shape representation is adopted to represent vehicle appearances. In the following, we will

discuss the identity and view manifolds first, followed by the development of shape-based

generative model where the two manifolds are integrated formulti-view vehicle appearance

modeling.
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7.2 Identity manifold

The identity manifold plays the central role in our work thathas the ability to capture both

inter-class and intra-class shape variability. Unlike other methods in terms of the way that

the identity is handled, its continuous nature makes it possible to interpolate an unknown

subclass based on limited training data. However, there aretwo important questions to be

addressed in order to learn such manifold. The first one is where or in which space we

can learn this identity manifold. It should be in a LD latent space with only the identity

factor rather than the HD observation space where the view and identity factors are coupled

together, which will be addressed in Section 3.3. The secondquestion is how to learn a

semantically valididentity manifold that supports meaningful sub-class interpolation. Or

what kind property we want to impose on the learned identity manifold.

To learn the identity manifold, we need to define a manifold topology first that includes

the dimension or LD structure as well as the ordering relationship of all vehicle identities

from different classes or sub-classes. If the training dataare sparse (e.g., 20-30 in this

work), we suggest a 1-D closed-loop structure to ensure valid identity interpolation, and

this structure can also facilitates the inference process by a simple 1D identity variable.

Although there is no clear ordering relationship among different vehicles, we do want those

form the same class or of similar shapes to stay closer along the identity manifold compared

with dissimilar ones. Thus we introduce aclass-constrained shortest-closed-pathmethod

to find the unique ordering relationship across all vehicle identities. This method needs

to specify a view-independentdistanceor dissimilarity measure between two identities.

Ideally, we should use the shape dissimilarity between two 3D models. For simplicity,

we use the accumulated mean square errors of multi-view silhouettes (after the distance

transform [128]) to compute this distance.

GivenN individual objects, suppose that we can find a set ofN view-independent

identity vectors in a LD latent spaceik, k ∈ {1, · · · , N} along with the associated class

labelLk. Let us useyk
m to denote the vectorized silhouette of objectk under viewm.
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The similarity between objectsu andv, represented byiu andiv respectively, over allM

training views is given by

D(iu, iv) =
M∑

m=1

||yu
m − yv

m||+ α · ǫ(Lu,Lv), (7.1)

where

ǫ(Lu,Lv) =





0 if Lu = Lv,

1 otherwise,
(7.2)

where||.|| represents the Euclidean distance andα is a constant. The functionǫ(Lu,Lv) is

a penalty term that ensures objects belonging to the same class are grouped together along

the identity manifold. Let the manifold topology be represented byT = [t1 t2 · · · tN+1]

whereti ∈ [1, N ], ti 6= tj for i 6= j andt1 = tN+1. The class-constrained shortest-closed-

path can be written as

T = argmin
T

N∑

i=1

D(iti , iti+1). (7.3)

This manifold topology tends to group those objects of similar 3D shapes and/or within

the same class together, enforcing the best localsemantic smoothnessalong the identity

manifold to be learned, which is essential for valid identity interpolation of an unknown

sub-class.

7.3 Conceptual view manifold

In addition to the identity manifold, we also need to specifya view manifold to accom-

modate the view-induced shape variability. A common way is to use some non-linear di-

mensionality reduction techniques, such as LLE, Laplacianeigenmaps, to find the LD view

manifold from HD observations for a given object [128]. There are two main limitations.

One is that they are identity-dependent, and multiple view manifolds are involved which

may have to be aligned together in the same latent space for object recognition. The other

is that they are normally constrained by a 1D structure that may not accurately reflect all

possible object poses in the real-world. In this paper, we design the view manifold to be
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a hemisphere that embraces almost all possible viewing angles around an object as shown

in Fig. 7.1 and is characterized by two parameters: the azimuth angleθ and the elevation

angleφ. Such conceptual manifold helps us avoid the issue of learning and aligning mul-

tiple view manifolds for each individual object. At the sametime, it provides a unified

and physically meaningful representation of the view spacethat supports efficient dynamic

view estimation.

7.4 Non-linear tensor decomposition

In the following, we extend the non-linear tensor decomposition technique discussed in [67]

to develop a shape-based generative model that can represent an object by a view and

identity variables. This involves learning a non-linear mapping function from the data space

to the unified view manifold and then linearly factoring out the identity vectors, giving a

view-independent space for identity representation.

Let thed-dimensional observation of objectk under viewm beyk
m and the correspond-

ing LD point on the view manifold bexm. For each object k, we can learn a non-linear

mapping between these two spaces using the generalized radial basis function (GRBF)

kernelφ(.) according to

yk
m =

Nc∑

l=1

wk
l φ (||xm − zl||) + [1 xm]bl, (7.4)

where{zl|l = 1, ..., Nc} are theNc kernel centers on the view manifold;wk
m are the object

specific weight of each kernel andbl is the mapping coefficient of the linear polynomial

[1 xm]. This mapping maybe written in matrix form as

yk
m = Bkψ(xm), (7.5)

wherexm is a point corresponding to viewm on the view manifold.Bk is a d × Nc

linear mapping corresponding to objectk composed of the weight termswk
m in (7.4),

ψ(xm) = [φ(||xm − z1||, · · · , φ||xm − zNc
||, 1,xm)] is a non-linear kernel mapping that
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contains the regularization term[1 xm]. Sinceφ(xm) is dependent only on the view angle

we can reason that the identity related information in contained within the termBm. ForK

different objects, based on (7.5) we may obtain their corresponding mapping functionsBk

for k = {1, 2, ..., K} that can be stacked together to form the tensorA = [B1 B2 . . . BK ].

The tensorA can be thought of to contain information about identity-dependent signatures

pertaining to different poses. Application of HOSVD toA abstractsK identity vectors

ik ∈ ℜK . This decomposition allows us to synthesize the appearancecorresponding to an

identity vectorik and a view pointxm according to

yk
m = C ×3 i

k ×2 ψ(xm), (7.6)

whereC is called the core tensor with dimensionalityd×Nc×K; and×j denotes mode-j

tensor product.

The identity vectors{ik|k = 1, ..., K} from training objects maybe interpreted as the

basis vectors of the exemplar identity space. Such an interpretation gives us an impres-

sion that any normalized linear combination of these basis vectors would form a valid new

identity vector, which may lead to a meaningful shape interpolation. However the recon-

struction produced in this manner normally does not resemble a real world object. To

ensure valid shape reconstruction, we should first learn a smooth continuous-valued iden-

tity manifold via B-spline curving fitting in the tensor coefficient space according to the

manifold topology defined in 7.3). It is expected that an arbitrary identity vector along

this identity manifold will be more semantically meaningful due to its proximity to iden-

tity vectors from training objects, and should support valid shape interpolation. Thus (7.6)

gives a compact generative model for multi-view shape modeling that is controlled by two

continuous-valued variables each of which follows a LD manifold. Since the identity mani-

fold is a closed-loop spanned in theN -dimensional tensor coefficient space, we can tomap

it to a circle along which inference is much easier.
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7.5 Inference of view and identity

A graphical model is used to integrate all the factors along with their conditional depen-

dencies into a probabilistic framework as shown in Fig. 7.3,where viewX t and identityIt

are two latent variables to be estimated andZt the observed shape.St is the synthesized

object shape given view and identity hypotheses. The problem of joint identity and view

estimation becomes the estimation of the posterior probability p(It,X t|Zt). Due to the

non-linearity nature of this inference problem, we resort to the particle filtering approach

that involves a likelihood function and the dynamics of two latent variables to sequentially

updatep(It,X t|Zt).

View AngleXt-1

It-1

Xt

It

Xt+1

It+1

Object Identity

St-1
Object Appearance

St St+1

Zt-1 Zt Zt+1
Observed frame

Figure 7.3: Graphical model for view and identity inference.

At the tth frame, given new hypotheses of generated along their own manifolds, the

corresponding hypothesized appearanceSt can be reconstructed by the generative model

defined in (7.6) given hypothesizedIt andX t. Then we can define the likelihood function

by matchingSt with the observed shapeZt as

p(Zt|It,X t) ∝ exp
[
− ‖Zt − St‖2

2σ2

]
(7.7)

whereσ2 controls the likelihood sensitivity and‖ · ‖ gives the mean square error between

the observed and hypothesized object shapes.
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We also need to specify two dynamic models, one along the circular-shaped identity

manifold, and the other along the view manifold. Since the two latent variables have been

decoupled in the generative model, we could define the two separate dynamic models to

propagate the view and identity hypotheses along their own manifolds independently. How-

ever, it is perceivable that the identity dynamics should beinfluenced by the current view

estimation (as indicated by the dotted line between the two variables in Fig. 7.3. It is mainly

because that in some views (such as side views) the identity is much more distinguishable

than other views (such as the rear/front/top views). Thus wedefine a view-sensitive prior

p(It|X t−1, It−1) that propagates the identity hypothesis adaptively along the identity man-

ifold according the current view/identity estimation, as shown in Fig. 7.5, which shows

the amount of identity variation as a function of a view angle. While the view variable

can follow a 2D random walk on the view manifold given byp(X t|X t−1). Then the joint

dynamics of two variables can be defined by

p(It,X t|Θt−1) = p(It|X t−1, It−1)p(X t|X t−1), (7.8)

whereΘt−1 is the previous state estimate. Then from (7.7) and (7.8), wecan estimate

posterior probability of latent variables sequentially via particle filtering as

p(It,X t|Zt) ∝ p(Zt|It,X t)p(It,X t|Θt−1). (7.9)

The most computational demanding step is the likelihood calculation that involves online

shape reconstruction from the generative model for each hypothesis during inference.

7.6 Experimental results

In this section, we first introduce the dataset involved in this work. Then we take a detailed

look of the learnt identity manifold from the generative model, followed the recognition

and pose estimation results under three cases.
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7.6.1 Dataset

We collected 3D models of 36 different vehicles (10 cars, 10 pickups, 10 SUVs and 6

mini-vans). Of these 29 models (8 cars, 8 pickups, 8 SUVs and 5minivans) were used

in the training phase and the rest used for testing. For each 3D model, we acquired a set

of silhouettes corresponding to 200 training view points distributed on a view hemisphere.

These training views are relatively sparser near the top of the view hemisphere and denser

at the bottom. This is because there is less distinguishableshape variability in a top down

view compared with that in a profile view. Using the silhouettes we can learn a generative

model as described in Section 7.4 to obtain the identity vectors associated with all training

examples according to (7.6).
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Figure 7.5: Illustration of the synthetic 3D vehicle dataset used in the experiments. Models

from four different vehicle categories were used and these were divided into training and

testing sets as shown.

7.6.2 Traversal along the identity manifold

Here we discuss the construction of the identity manifold and the reconstructed shapes

when traversing along it. Given the manifold topology discussed in Section 7.2, wee can

span a closed identity manifold by fitting a B-spline in the identity coefficient space de-

fined in (7.6). Then a mapping is determined from this curve toa circle that allows us to

parameterize the identity manifold by a 1D parameter.

To examine the validity of this identity manifold, we want toreveal the variation in

each dimension of the identity coefficients as we traverse along the identity manifold, as

shown in Fig. 7.6. Within each class, a relatively smooth transition can be observed in each

dimension among sub-classes in the same class, while sharper transitions are noticeable

between classes. For each class under a few representative views, we can interpolate new

shapes by traversing along the identity manifold, as shown in Fig. 7.7, where the first
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and last columns are two adjacent training sub-classes for each of four classes while other

columns show the interpolated shapes between the two sub-classes. Irrespective of the view

angle, the identity manifold provides a smooth and meaningful transition of the interpolated

shapes between every two training vehicles. For example, inrow two, the pickup with a

long-bed deforms slowly into one with a short-bed and largercab. In row five, the height of

the minivan reduces and its length increases from left to right, while all interpolated shapes

maintain a discernible van shape.

7.6.3 Recognition and pose estimation

The proposed method was examined under three cases: (1) simulated video sequences with

unknown vehicles , (2) real video sequences with a previously unseen vehicle, and (3) still

images with silhouettes obtained by a segmentation processthat is initialized manually.

In the first two experiments with simulated/real video sequences, we can obtain the

continuous estimation of the identity and view variables. Specifically, the former one is

represented by an angular parameterα (0 ≤ α ≤ 2π) along the circular-shaped identity

manifold, while the latter one includes the elevation angleφ (0 ≤ φ ≤ π/2) and the

azimuth angleθ (0 ≤ θ ≤ 2π). In the first frame all the variables are uniformly distributed.

In subsequent frames the particles are propagated and evaluated in accordance with (7.8)

and (7.7), respectively. In the experiments with the still images, the identity and view are

estimated by the exhaustive search along their own manifolds.

7.6.3.1 Simulated video data

Several simulated video sequences were created by moving the virtual camera along a

smooth path on the view manifold which is centered with a previously unseen 3D vehicle

model. Typical frames from one of these sequences shown in the first row of Fig7.8. In this

example, the camera begins at a top-down view and progressively moves around the vehicle

by reducing the elevation. The result of identity recognition and view estimation are shown
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in Fig.7.8 and Fig.7.9 respectively. Fig.7.8, we show the reconstructed shapes (the second

row) and the corresponding view-based shapes (the last two rows) from the two nearest

training vehicles which belong to the same class, showing the accurate identity estimation

result. In Fig.7.9, there is an error of 180o in the estimate of the azimuth angle (θ) in the first

frame due to the shape ambiguity in the top-down view, this problem is quickly resolved

as more frames become available. Actually, the car chosen for this experiment was longer

than others in the “car” class and is easily confused with a pickup in the first few frames.

However, as we progress towards lower elevation angles the identity estimate consistently

lies between a four-door sedan and a two-door sedan.

7.6.3.2 Real video data

In this experiment we try to estimate the pose and identity ofa toy vehicle in an indoor

environment whose 3D model not available in the training data. A few closed-up view of

this toy vehicle is shown in Fig. 7.10(a). A few sample image frames are shown in the first

row Fig.7.11. Background subtraction was used to obtain the silhouettes of the moving

vehicle as shown in the second row of Fig.7.11. The first 140 frame of this video contain

only the background and is used for initializing the background subtraction algorithm. The

two adjacent training vehicles from the same SUV class are correctly identified in most

instances. In frame 238 the vehicle partially moves out of the scene resulting in a distorted

silhouette and then a slightly wrong pose estimate, which leads to some changes in the

identity compared to previous frame. However, as the vehicle moves back into full view the

pose and identity estimate stabilize to nominal values. Theestimated view points shown in

Fig.7.10(b) are also consistent with the motion pattern of the toy vehicle that moves away

from the camera, makes a left turn and then moves in reverses to face the camera. This

experiment demonstrates the ability of our model to correctly identify unknown vehicle

classes and relate them with existing models in the trainingset.
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7.6.3.3 Still images

In this experiment, several different still images of vehicles were selected and each image

was initialized with a few seed points manually to obtain a segmentation based on graph

cuts. Sample images along with their segmentation results are shown along the first three

columns in Fig. 7.12. In all the examples shown here, the identification of the vehicle class

was found to be accurate. The result of pose estimation is also fairly accurate with only the

car in the last row having its pose mis-estimated as facing backward. Being able to identify

the vehicle class and pose even when the segmentation resultis noisy, deformed or missing

parts proves the robustness of the proposed approach.
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Figure 7.6: Variation in each dimension of the identity coefficient as we travel along the

identity manifold between different classes are shown along each row. Class boundaries

are indicated by steep transitions smoothed by a spline along one or more of the rows. The

bottom row has the lowest variance and the top row has the maximum variance across dif-

ferent classes. Further, a clustering phenomenon is also observed with vehicles of one class

having dominant peaks along certain dimensions in the coefficient space. For example, the

cars have peaks concentrated along dimensions of lower variance indicating that the car

models used for training do not vary significantly within their class, whereas the minivans

with only 5 training examples have peaks along dimensions oflarger variance indicating

larger intra-class variation.
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Figure 7.7: First and last columns: 3D models of two adjacenttraining vehicles along the

identity manifold. Columns two through four: Interpolated shape when moving along the

identity manifold.
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Frame 1 Frame 85 Frame 100Frame 40Frame 25 Frame 65

Figure 7.8: Results of pose and identity estimation in a simulated video sequence with

a previously unknown car. First row: Observed silhouette. Second row: The closest re-

constructed shape match. Third and fourth rows : Two of the closest neighbors along the

identity manifold, shown in the estimate pose.
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Figure 7.9: (a) Plot of the true and estimated camera path along the view manifold. The

green marker indicates the first frame and the red marker the last frame. (b) Estimate of

the object identity shown in a subsection of the identity manifold (c) and (d) Error in the

estimated azimuth (θ) and elevation (φ) angles. The average errors were found to be 8.4o

for the azimuth and 3.6o for the elevation angles
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Figure 7.10: (a) Sample views of the toy vehicle used in this experiment; (b) The estimated

camera path along the view manifold. The green and red markerindicates the first and

last frames respectively. (c) Estimate of the vehicle identity shown in a subsection of the

identity manifold.
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Frame 142 Frame 182 Frame 238 Frame 291 Frame 325 Frame 371

Figure 7.11: Results of pose and identity estimation in videoacquired using a toy vehicle.

From the first to last rows: (1) original video frame, (2) segmented object shape using

background subtraction, (3) closer view of the segmented result in row two, (4) the best

matching interpolated shapes (re-scaled), (5) and (6) two of the closest training vehicles

along the identity manifold shown in the estimated pose.
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Figure 7.12: Example of pose and identity recognition in some real images. From the

first to the last columns: original images, segmented results, segmented silhouettes, recon-

structed shapes, two adjacent training vehicles along the identity manifold.
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CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

This dissertation presented the components of an integrated ATR system namely: target

detection, target tracking, appearance learning and jointtracking and recognition.

• Detection: We have shown that high-level combinations of basic relational features

can be used in a boosting framework to construct very fast classifiers that are as com-

petitive as SVM-RBF while requiring only a fraction of the computational load. The

proposed RelCom classifier was able to successfully detect small targets in complex

environments.

• Tracking: A new target tracking algorithm for FLIR imagery was developed, that

supports accurate target localization and size estimation. Specifically, a dual foreground-

background target appearance model was proposed, that integrates local statistics of

both background and foreground to enhance the tracker’s sensitivity. Moreover, an

online feature selection technique was presented that can select optimal features by

maximizing the confidence of the state estimation. Both target tracking and feature

selection are unified in a probabilistic framework where a coupled particle filtering

approach is involved for sequential state estimation.

• Appearance Learning: We have discussed infrared tracking under a unified co-

inference framework where both Kalman filtering and particle filtering are used to

update target appearance and to estimate target kinematicsrespectively. The contri-

bution of this research is how to robustly and reliably update the target appearance
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represented by multiple histograms during the tracking process. Particularly, we pro-

posed a new AKF-based appearance learning method,AKFals, which was compared

with the two existing techniques (AKFcov,HS) and was found to be superior.

• Integrated Tracking and Recognition: A unified framework for integrated tar-

get tracking and recognition was discussed, where joint appearance-motion gener-

ative models are incorporated in a graphical model. The target type and kinemat-

ics are jointly estimated by a particle filter based inference algorithm embedded

with Kalman filters. The experimental results demonstrate that the joint appearance-

motion models improve both tracking accuracy and recognition performance when

compared to the ones using the template-based appearance model and a single mo-

tion model. Also, it was shown that the embedded Kalman filters provide better

samples for both kinematics and the target type by exploiting the type-dependent

motion models, leading to further improved tracking and recognition performance.

• Recognition using Identity and View Manifolds: Finally, we presented a continuous-

valued identity manifold for object recognition that captures both inter-class and

intra-class shape variability for a set of similar objects,i.e., road vehicles, which can

be grouped into a few major classes each of which has several sub-classes. This iden-

tity manifold allows us to recognize not only a known vehicle, but also unknown ones

by meaningfully interpolating between two training vehicles. Additionally, we de-

velop a new multi-view shape-based generative model that integrates a hemisphere-

shaped view manifold with this identity manifold to providesimultaneous identity

and pose estimation.
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8.2 Future work

8.2.1 Drawbacks of the existing generative appearance models

In the preceding chapters we had developed a non-linear generative model for target ap-

pearance synthesis that is dependent on the view angle and identity. This model was learnt

based on synthetic data and was found to work efficiently. However, to learn the compo-

nents of this model there are two main requirements 1) clean target template chips and 2)

information of the pose associated with each template. In real videos, segmenting out a

clean template from the image and assessing the pose information are both difficult tasks.

We had also discussed issues with appropriate selection of the conceptual manifold shape

in the previous section. Another important issue with infrared imagery is that the target

appearance is a function of temperature profile and the environmental conditions. As an

example, a target would appear bright if its engine were to berunning over a period of time

or if its surface was warmed up by the sun. Therefore a single target can exhibit multiple

intensity profiles depending on internal and external factors. The generative model dis-

cussed previously concerns mainly with the target shape, rather than the intensity profile,

and assumes a constant intensity profile for simplicity, which is hardly the case in the real

world. Also if the appearance of the target were to change thegenerative model would

have to be re-learnt. Therefore, it is necessary to develop an appearance model that can

accommodate time varying intensity profiles.

8.2.2 Development of a 3D thermal appearance model

To overcome the limitations discussed above, as future work, we propose to develop a novel

3D thermal appearance model that is learnt directly from theobserved image sequence.

We propose to use the technique of voxel coloring [138, 139] which is commonly used

in computer graphics to reconstruct the 3D shape of an objects from 2D images. In this

way, we will be able to reconstruct not only the 3D shape of thetarget, but also its thermal

151



(a)

(b)

Figure 8.1: Example illustrating the reconstruction of 3D shape from 2D images using

voxel coloring. (a) The 2D input images used for voxel coloring. (b) Views from multiple

angles of the reconstructed 3D model.

intensity texture. An example of the results obtained usingvoxel coloring is shown in Fig.

8.1. Here we observe that both the shape and texture information are accurately rendered

in the reconstructed model. Once this 3D textured model is developed it can be used to

learn a generative appearance model including the factors of identity, and viewing angle

and used in a tracking and recognition framework. In addition to the voxel coloring, we

hope to improve the reconstructed shape by augmenting information from a known 3D

CAD model of the target.
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