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PREFACE 

 

There is a great demand for wired and wireless network architectures to support a 

variety of applications with very high speed communication. Nowadays, the pace of our 

business and social lives has created a great demand for not only instant transferring and 

accessing various kinds of data by a click on the mouse (i.e. digitized voice and video, 

file transfers, e-commerce, transactions, e-mail, telnet, web browsing and multicast), but 

also for reliable and better quality of Internet service. As a result, quality of service (QoS) 

currently becomes an issue of concern for wide area network (WAN) telecommunications 

providers or backbone carriers. For instance, what is the required bandwidth for the local 

area network (LAN) or wide area network (WAN) to provide sufficient capacity for 

video transferring with desired minimum level jitter? 

 A critical challenge for both wired and wireless networking vendors and carrier 

companies is to be able to accurately estimate the quality of service (QoS) that will be 

provided based on the network architecture, router/switch topology, and protocol applied.  

The variation in QoS performance based on the priority assignment is of significant 

importance, due to the fact that the differentiated services (DiffServ) capable networks 

should be able to effectively control QoS through classifying traffic according to desired 

service level (prioritize the data flows) and marking the packets so that the routers can 

recognize the prioritized packet. We need a tool to investigate whether the packet 

prioritization could truly reduce the delay jitter or not.  
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 Therefore, the main objective of this study is to provide a theoretical analysis 

of delay jitter, which investigates the issues of traffic jitter characteristic in the 

homogenous wireless communication and heterogeneous wired networks deploying 

different priority scheduling algorithms. 

 
Although simulation can be a powerful tool, an engineer must understand the 

mathematical model underlying each program model to be applied correctly. In addition, 

one may not afford an extensive simulation, which requires an extensive data mining 

process. On the other hand, a mathematical formula is much easier to use compared to 

using a simulation model. Thus, the efficient way is to use a simulation tool in 

combination with a probably less realistic mathematical/analytic model.  

 

Plan of this thesis 

This thesis is organized as follows. In Chapter 1, an overview of this thesis is 

provided, which states why the proposed methodology is important and how it may 

contribute to designing and planning of internetworking system. Literature review on 

WAN networks and Internet traffic is given in Chapter 2, where the challenge of the 

heterogeneous traffic modeling compared to the homogeneous traffic modeling is 

discussed. The understanding of the WAN networks characteristics is needed to construct 

the analytic model. Chapter 3 provides mathematical derivations for the per-class jitter 

characteristic of a wireless network with automatic repeat request (ARQ) error control 

and head-of-line (HOL) priority scheduling. The derivations provide a direct method to 

analyze/evaluate the per-class jitter based on the DiffServ network and protocol 

parameters. In Chapter 4,  the Gaussian traffic modeling combining with Maximum 
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Variance Approach to conduct the queue length analysis, which further apply in 

heterogeneous traffic jitter analysis of multiple priority queues..  

The conclusion of this thesis is in Chapter 5, which summarizes the essential 

elements in order to provide guidelines for network designers trying to meet engineering 

specifications of performance deliverables. The references list is provided in Reference 

section.  

The main contributions of this dissertation are as follow: 

1. Chapter 3 

• Derive mathematical equations, which to be able to provide a mathematical tool 

to analyze the homogeneous traffic in wireless networks with adequate accuracy. 

• Propose a call admission control (CAC) scheme to improve the jitter performance. 

2. Chapter 4 

• Derive mathematical equations, which to be able to provide mathematical tool to 

analyze the heterogeneous traffic in wired broadband networks with adequate 

accuracy. Simulation is done to show the accuracy of the mathematical model. 

• Propose an adaptive distortion-reducing peak output-rate enforcing (APORE) 

scheme to control/improve the jitter performance. 
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Chapter 1  
 

 Introduction 

 
1.1 Overview 
 

Delay jitter is one of the most important parameters in quality of service (QoS) 

that indicates the level of variation of traffic services of real-time data transfer. In real-

time wired/wireless data communication, delay jitter is defined as the difference in time 

delay of the arrival at the destination that each transmitted packet experiences commonly, 

which is also simply referred to as jitter.  

Delay jitter has been successfully analyzed for the performance of asynchronous 

transfer mode (ATM) network applications, in order to accurately estimate the quality of 

service (QoS) in terms of jitter that will be provided based on the network architecture, 

router/switch topology, and protocol applied. 

Several papers [2], [3], [4], and [5] have successfully analyzed the performance of 

the delay jitter in order to be more easily, consistently, and effectively implemented in 

various ATM network applications. In [2], the analysis of delay jitter was conducted on 

voice traffic using an exponential On/Off source in cellular wireless ATM network. In 

[3], the jitter bound for various classes of constant bit rate (CBR) traffic is analyzed, 

where the performance bound is used in the call/connection admission control (CAC)
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mechanism. The multiple access control topology applied in [3] is based on a non-

preemptive priority polling scheme [4].   

The papers of [6], [7], and [8] address delay jitter for more general type of 

wireless networks, rather than ATM. In [6], the time division multiple access 

(TDMA)/time division duplex (TDD) scheduling scheme is used. In [7], jitter is analyzed 

for mobile ad hoc networks (MANET) based on the ad hoc on-demand distance vector 

(AODV) routing protocol, where the authors propose a novel handover mechanism. Both 

[6] and [7] provide results on jitter performance analysis based on computer simulation 

for the wireless network models. In [8], the authors provide a jitter analysis on wireless 

networks involving automatic retransmission request (ARQ) error recovery, where the 

delay jitter is calculated using the window-length generating function and the numerical 

results are verified through simulation. In [9], the jitter of homogeneous traffic in 

reference to the different priority classes has been analyzed. The delay jitter research of 

[9] extends the results of [1] and [10] for DiffServ networks, but all three papers do not 

consider the channel error probability or the ARQ error control scheme, which makes the 

results difficult to apply to wireless networking applications. Therefore, Chapter 3 the 

mathematical derivations to analyze the delay jitter performance of homogenous wireless 

networks that apply ARQ error recovery with time constraints have been developed, 

which resulted in [11]. In [11], we attempt to provide a novel analysis of the per-class 

jitter performance of DiffServ networks based on wireless channels that experience 

packet errors, assuming a non-preemptive head-of-the-line (HOL) priority scheme. The 

derivations provide a direct method to analyze/evaluate the per-class jitter based on the 

DiffServ network, retransmission time constraints, and network packet error parameters 
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[12]. In addition, we evaluated the effects on the delay jitter in reference to the priority 

control scheme of the ARQ traffic for the two cases of: 1) the ARQ traffic has a priority 

over the original transmission traffic; and 2) the ARQ traffic has no priority over the 

original transmission traffic. 

As the next step, this homogenous jitter study is extended to heterogeneous wired 

and wireless network jitter analysis by deriving a general approach, which is going to be 

covered in this dissertation. In general, WAN traffic is often characterized by a diverse 

mix of heterogeneous data streams (e.g., multimedia, digitized voice, Internet, video, 

teleconferencing and many newly evolved applications), the periodicity of the individual 

streams is different from each other. In other words, in the heterogeneous environment, 

the input traffic streams are a superposition of data packet streams from different data 

sources with different periods. To further investigate heterogeneous jitter characteristics, 

first, a study is conducted on wired networks, and then the focus will be extended to 

wireless networks, which requires a longer time period due to its complexity. The studies 

that have been conducted and completed (but not limited to) in this dissertation are as 

follows: 

• Various possible traffic modeling techniques have been investigated  

• Diverse statistical properties of heterogeneous wireless networks is evaluated.  

• The traffic modeling combined with heterogeneous jitter analysis. 

Traffic analysis can assist one in developing a good traffic model for analyzing the jitter 

characteristic of heterogeneous wireless networks, where the results could serve as a tool 

to aid the network engineers and developers in wireless and wired network planning and 

architecture structuring.   
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The models, such as Markov Modulated Poisson Process (MMPP) and M/M/1/B 

have been applied in wireless network traffic modeling. In wired or wireless networks, 

the Poisson arrival may not be an appropriate model since actual networks traffic is very 

bursty in nature due to its long-range dependency (LRD) and self-similar characteristics. 

Numerous studies have found that aggregated traffic at a node (router, switch for 

wired networks case) or base station (for wireless networks case) exhibit LRD, and such 

traffic can be very bursty. Thus, many broadband traffic studies have evolved around 

Gaussian, and they show that Gaussian models indeed provide a good approximation to 

networks traffic if the aggregated traffic is sufficiently large [13],[14]. Hence, 

heterogeneous wireless network traffic processes can be modeled as a Gaussian process, 

where some of these models have been discussed in Chapter 4. In extension of the MVA 

approach, we can derive the MVA lower bound and upper bound to provide a boundary 

conditions on the traffic. Another popular approach in traffic modeling is by using 

Fractional Gaussian Noise (fGN), which is a stationary Gaussian process with LRD. 

Recent research [15][16][17] models the heterogeneous networks traffic in the wavelet 

domain, where self-similar traffic exhibits long-range-dependent (LRD) correlations and 

non-Gaussian marginal distribution [15]; it shows that the aggregated traffic can be 

decomposed into those two groups [15]. 

In conclusion, the following is the summary of the work conducted in this 

dissertation: 

1. Investigate the characteristics of the wireless networks that applying 

retransmission request (ARQ) with homogeneous type traffic.  
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2. Investigate the issues of traffic jitter characteristic in heterogeneous wired 

communication networks deploying different scheduling algorithms. 

3. The emphasis of this dissertation is to investigate the various possible traffic 

modeling techniques and evaluate the challenges in characterizing the diverse 

statistical properties of heterogeneous wireless networks. 

4. Apply the Gaussian traffic modeling using MVA approach to conduct the queue 

length analysis, which will be further used in heterogeneous jitter analysis. 

5. Analyze the difference between jitter probability of multiple priority queues and 

servers.  

The contributions of this dissertation are as follow: 

1. Evaluate the characteristics of the wireless networks that applying retransmission 

request (ARQ) with homogeneous type traffic.  

2. Evaluate the characteristics of the diverse statistical properties of wired networks 

with heterogeneous type traffic. 

3. Investigate various possible traffic modeling techniques.  

4. Apply the Gaussian traffic modeling using the MVA approach to analyze the 

queue length, and further generalize the heterogeneous jitter analysis. 

5. Analyze the jitter process and the jitter probability distribution of multi priority 

class traffic.   

6. Propose a scheme to control and improve networks performance in term of jitter. 

In order to do these, we have to first: 

• Study the traffic characteristics 

• Investigate the traffic modeling techniques 
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Then, we’ll be able to analyze the jitter process, and propose a scheme to control it. 

 
 
1.2 Delay Jitter Analysis Methodology 
 

In real-time wired or wireless communications, each transmitted packet may 

experience a different time delay during arrival at the destination. This variation in delay 

is often referred to as delay jitter or simply jitter.  

For instance, let nd  represent the packet transmission delay experienced by the 

nth packet from a tagged stream. Thus, the process of delay jitter between the nth and 

(n+1)th packet of a tagged stream with respect to data stream original period (inter-

departure time between nth and (n+1)th packets transmitted from the source), T, is  

nddJ nnn ∀−= + ,~
1 .      

     (1.1) 

In the steady-state limit nnn dd =+∞= 1
lim , therefore jitter is a zero mean random 

sequence. Another interpretation of jitter is that it represents the difference in waiting 

times experienced by successive packets. Hence, we can relate the transmission delay and 

the queue length (number of packets) ahead of the tagged packet (i.e., nQ  represents the 

number of customers ahead of the nth tagged packet). Let any customer’s service time be 

equal to one slot and follows first-in-first-out (FIFO) order, nn dQ =  (in time slot units). 

Therefore, (1.1) implies that 

...,2,1,~
1 =−= + nQQJ nnn .                                                         (1.2) 

To prove this, let the variable nQ denote the number of customers, regardless of their 

class affiliation, that are waiting for service just ahead of the arrival of nth packet of the 

reference user. Thus, the nth packet of the reference user begins to enter service at time  
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nnn Qt +=τ .                                                                          (1.3) 

Hence, 

)()()( 111 nQTQQttJ nnnnnnn ∆+=−+−=−= +++ ττ .             (1.4) 

The normalized jitter with respect to the original data stream period (inter-

departure time between nth and (n+1)th packets transmitted from the source), T can be 

expressed as:: 

,...,2,1),(~
=∆=−= nnQTJJ nn   where nn

def
QQnQ −=∆ +1)(  .    (1.5) 

From (1.5), we can observe the study of jitter can be equivalently changed to the study of 

the queue size variation )(nQ∆  of p-customer arrivals, which is the methodology that is 

going to be applied in this study.  We want to find the pmf (probability mass function) of 

nJ~ , i.e., }~{ nJf , from the queue length distribution  }{ nQf . A discrete-time approach is 

used in the delay analysis, where time is slotted. It is assumed that the packets arrive and 

depart at the beginning of a slot, which leads to a discrete time queueing process. 

 Next, the various traffic modeling techniques are discussed. First, let’s denote 

the heterogeneous network of steady state queue length distribution as the probability of 

queue size larger than x, i.e., )( xQP > . Here, the input traffic at a high-speed multiplexer 

is characterized by a Gaussian process. Hence, the central limit theorem is applied to the 

traffic process. In high-speed networks, homogenous (i.i.d) and heterogeneous sources 

(independent but not identically distributed) are multiplexed at the multiplexer. Here, we 

are concerned about the delay jitter characteristic in heterogeneous traffic since real 

network traffic consists of multimedia traffic, which is a mixture of CBR voice, CBR 

video, real time VBR video, real time VBR voice, time critical data and non-time critical 

data. In networks, traffic management controls are on the level of traffic aggregates, and 
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not for individual links. Therefore, even though each link is not normally distributed, the 

aggregated traffic distribution shows Gaussian characteristics. This can be verified by 

applying the Central Limit Theorem (CLT) that states that summing a large numbers of 

independent variables with finite variance will converge or weakly converge to a 

Gaussian random density [22].  

The tail of the queue length distribution ( )( xQP > ) at high-speed multiplexer can 

be approximated under a variety of Cramer type assumptions (exponentially bounded 

marginal and autocorrelations of the arrival process). Thus, )( xQP >  of an infinite buffer 

is asymptotically exponential [26], 

                 xCexQP η−> ~)( ,                           (1.6) 

where the positive constant η is called the asymptotic decay rate, and the positive 

constant C is called the asymptotic constant, in which (1.6) is suggested for large values 

of x [25-30]. 

In section 1.4, the discussion of some popular approaches to find the queue length 

distribution by applying Gaussian/Normal process is provided.  

 

1.3 Queueing and Teletraffic Theory Applied in High-Speed Wide Area Networks 

(WANs) with Heterogeneous Type Traffic 

 
Due to the fast growth of telecommunication technology over the last past ten 

years (based on demands for better mobile telephony and Internet services) there have 

been many studies on traffic behavior and network architechture. Hence, traffic modeling 

is one of the key issues in traffic engineering for efficient designing and controlling of 
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networks, where a mathematical model analysis of a complex system yields useful 

information. Here, Queueing theory and Teletraffic theory are applied as a tool for traffic 

modeling.  

Queueing theory concerns the usage of a network resource for which the demands 

are random. When the resource is not available to the users, the requested service demand 

is queued or declined. While Teletraffic theory is a branch of engineering mathematics 

that relies heavily (but not solely on) queueing theory, it can be viewed commonly as 

queueing theory applied for telecommunication systems. It is applied for evaluating 

network designs, performance, stability and routing protocols, and optimizing network 

resources through mathematical analysis and simulation.  

Hence, the following topics are essential in traffic modeling for networks: 

• Characterization of Internet traffic 

• Long-range dependent traffic models (LRD) 

• Heavy-tailed distribution traffic models 

• Gaussian traffic models 

• Effective bandwidth model 

• Traffic models for mobile networks 

• Traffic measurements 

• Traffic estimation and prediction 

Poisson modeling fails to properly characterize multiplexed network traffic, due 

to the fact that Internet and Wide Area Network (WAN) traffic is self-similar. The 

Poisson traffic model severely underestimates burstiness especially when traffic flows 

multiplex/aggregate. The self-similar characteristic can be analyzed using statistical 



 10

analytic tools, and the most popular methods are R/S plot, Variance-Time plot, Wavelet 

method, Periodogram method, and Whittle estimator. The several traffic models that are 

being proposed are Pareto On/Off model, M/G/∞ input model (infinite source Poisson 

model with heavy-tailed service/processing time), Fractional Brownian Motion (fBm), 

Fractional Auto-Regressive Integrated Moving Average (ARIMA) process, which 

capture the heavy-tailed characteristic (burstiness) of self-similar traffic. Here, the Hurst 

parameter (H) is the measure of burstiness.  

Discrete-time definition of self-similarity is a stationary times processes X, and 

we define the m-aggregated time series { }L,2,1,0),()()( == kkXX mm  and )()( kX m  by 

averaging the original times series X over a non-overlapping block of size m, which is 

given in (1). Thus, a process X is said to be self-similar with parameter β (0 <β <1) if for 

all m = 1, 2, … we have the following definitions: 

Exactly second-order self-similar: Variance: βm
XX m )var()var( )( =                                (1.7) 

Autocorrelation: )()()( kRkR XX m = . 

Asymptotically second-order self-similar: Variance: βm
XX m )var()var( )( =                   (1.8) 

Autocorrelation: )()()( kRkR XX m →  ∞→m as . 

Eq. (1.7) and (1.8) define that self-similarity characteristic exists as the autocorrelation of 

the aggregated process has the same form as the original process, where the degree of 

variability or burstiness at different time scales will be the same. Fig. 1.1 and 1.2 show a 

graphical representation of self-similarity, where we can see that the networks traffic is 

very bursty and self-similar across all time scales. That is Fig. 1.1 and Fig. 1.2 look 
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similar to one another in a distribution sense, all of the plots involve a fair amount of 

burtiness. The traffic pattern in Fig. 1.2, which sampled at large scale (the data are 

aggregated over 10 folds time scale, i.e., from 1ms to 0.01s) does not smooth out.  

Thus, the other models such as Markov Modulated Poisson Process (MMPP) and 

M/M/1/B that can be applied in wireless network traffic modeling may not be a good fit. 

In wired or wireless networks, the Poisson arrival may not be an appropriate model since 

the networks traffic is very bursty in nature due to its long-range dependency (LRD) and 

self-similarity characteristics. 

Numerous studies have found that aggregated traffic at a node (router, switch for 

wired networks case) or base station (for wireless networks case) exhibit LRD, and such 

traffic are very bursty. Thus, many broadband traffic studies have evolved around 

Gaussian, and they show that Gaussian models indeed provide a good approximation to 

network traffic if the aggregated traffic is sufficiently large [13][14]. Hence, 

heterogeneous wireless network traffic processes can be modeled as a Gaussian process, 

where some of these models will be discussed in section 1.4. In extension of the MVA 

approach, we can derive the MVA Lower Bound and Upper Bound to provide a boundary 

condition on the traffic. Another popular approach in traffic modeling is by using 

Fractional Gaussian Noise (fGN), which is a stationary Gaussian process with LRD. 

Recent research [15-17] models the heterogeneous networks traffic in the wavelet 

domain, where self-similar traffic exhibits long-range-dependent (LRD) correlation and a 

non-Gaussian marginal distribution [15]. 

 In recent years, the emerging Gaussian model is believed to be the possible 

model for high-speed networks, where traffic flows in the networks are highly 
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multiplexed. The Gaussian model can be LRD by including H in the modeling process.  

The main reasons to consider Gaussian traffic modeling are Central Limit Theorem 

(CLT) and the Functional Central Limit Theorem (FCLT) [18]. As the network grows, 

the number of multiplexed/aggregated traffic flows at a node (e.g., router, switch) 

increase, and the shape of traffic distribution will become closer and closer to Gaussian 

[19][20]. The aggregated input traffic queueing processes will weakly converge to a 

Gaussian process [19][20], which is shown in Fig. 1.3 and 1.4. These two plots display a 

normal probability plot of the data, where if the data does come from a normal 

distribution, the plot will appear linear. As the traffic flows aggregate, the traffic becomes 

closer and closer to a Gaussian process, which illustrated in Fig. 1.4. 

The aggregated traffic is just as bursty as before, where it has the exactly same 

Hurst parameter H, but it is smoother [21]. Let a traffic process denotes as X, the 

aggregate of L independent copies of X is LX ⊕ [21].  To demonstrate this, Fig. 1.4 shows 

the trace of aggregated process (byte.txt, a data set provided at Murad S. Taqqu’s website 

is used; the data is splitting up into non-overlapping blocks, and then looking at the 

aggregation of two or more of those blocks). 
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Fig. 1.1 The actual Ethernet traffic trace in original time scale (time unit = 1ms). 

 
 
 
 
 
 

 
Fig. 1.2 The Ethernet traffic trace is aggregated 10 folds (time unit = 0.01s). 
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Fig. 1.3  Original Ethernet traffic. 

 
 
 
 
 

 

 
Fig. 1.4 Aggregated 100 Ethernet traffic flows. 
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1.4 Approximations for the Queue Length Distribution Gaussian Model for 

Broadband Traffic 

In high-speed networks, the aggregated traffic becomes close to Gaussian 

characteristic by applying Central Limit Theorem (CLT) that stated that summing a large 

number of independent variables with finite variance is going to converge or weakly 

converge to a Gaussian random variable [22]. 

 The Gaussian model is useful for two main reasons. First, any stationary 

Gaussian process can be completely characterized by its mean and auto-covariance. 

Second, the high-speed networks of today are highly complex and traffic is usually the 

superposition of some thousand network applications. By applying CLT, the aggregated 

traffic can be modeled as a Gaussian process; even though each single independent data 

source does not follow a Gaussian distribution. The only defect in this model is that there 

is a positive probability of a negative quantity of arriving traffic, which is impossible in 

real traffic. This significant weakness is counterbalanced by the fact that the CLT appeals 

as more and more traffic streams are aggregated to share a link, traffic becomes more 

Gaussian, and the case that the amount of negative traffic reduces as traffic is aggregated 

[24]. 

 Many broadband traffic studies have evolved around Gaussian, and they show 

that Gaussian models indeed provide a good approximation to network traffic if the 

aggregated traffic is sufficiently large. In [22], [23], and [24], results show that the 

Gaussian traffic models could be the precise tool for analyzing the high-speed networks. 

Moreover, the Gaussian model is also a good fit for high-speed networks with 
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differentiated services (DiffServ). In differentiated services networks, traffic management 

controls are on the level of traffic aggregates, and not for individual links [23]. 

The input traffic at a high-speed multiplexer can be characterized by Gaussian 

processes. Thus, the tail of the queue length distribution ( )( xQP > ) at high-speed 

multiplexer can be approximated under a variety of Cramer type assumptions 

(exponentially bounded marginal and autocorrelations of the arrival process). Thus, 

)( xQP >  of an infinite buffer is asymptotically exponential [26], 

xCexQP η−> ~)( ,           (1.9) 

where the positive constant η is called the asymptotic decay rate, and the positive 

constant C is called the asymptotic constant. Equation (1.9) is suggested for large values 

of x [25][27][28][29][30]. 

 

1.4.1 Single-Asymptotic Upper Bound [25] 

The single-asymptotic upper bound can be represented as 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +
⎟
⎠
⎞

⎜
⎝
⎛−≤>

S
kDx

S
kxQP 2exp)(    (1.10) 

where k, S, and D are defined by the first two moments of a single Gaussian input process 

and the service rate µ per input, ∑∞

=
=

1
)(2:

l
llCD γ  [25]. The )(lCγ  denotes the auto-

covariance function of a stationary Gaussian net input process µλγ −= nn , where 

µλγ −= nn  is the net amount of fluid input at time n and },0max{:)( xx =+ [25]. Since the 

mean and auto-covariance function of nX  can be computed in term of 
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,){ as)(Cand}{: 0 knXElEk n −=−= γγ and ∑∑ ==
−= 2

2

1

1 1 12121 )(),( n

l

n

lX llCnnC γ  by a 

change of variable 12 lll −= , the variance can be expressed as a weighted sum of )(C lγ , 

i.e., ∑ =
+=

1

1
)()(2)0(}{Var n-

l γγn lCn-lnCX  [25]. 

 

1.4.2 Maximum Variance Asymptotic (MVA)[25][26] 

For a discrete-time fluid queue, the amount of fluid in the buffer is denoted by 

nQ , which can be defined using Lindley’s equation [25]: 

+
− += )( 1 nnn QQ γ    (1.11) 

where µλγ −= nn is the net amount of fluid input at time n less the capacity µ ,  and 

},0max{:)( xx =+ [25]. Let nX represents a stochastic process { }L,2,1,0: =nX n defined 

by ∑ = −=
n

m mnX
1

: γ , the backward accumulation process (Note that the first two moment of 

nX is defined as above in Single-Asymptotic Upper Bound section). Assume stationary 

and ergodicity of nγ , and the stability condition, i.e., 0}{ <nE γ , the distribution of nQ  

converges to a steady-state queue distribution. Hence, the aggregate arrival process, nλ , 

can be characterized by a stationary Gaussian process. Thus, the steady-state queue 

length distribution can be represented as 

( )xXPxQP n
n

>=>
≥0

sup)( .        (1.12) 

The function ( )xXP n > achieves its maximum at a finite value of xnn )= : 

( )xXPxQP
xn >=> ))(                         (1.13) 
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where in a Gaussian process, the time scale xn)  is also the time at which 2
,nxσ  achieves its 

maximum value 2
xσ .  

 

1.4.3 MVA Lower Bound [25] 

By studying the asymptotic behavior of )( xQP > , and with 1=α  corresponding to 

the lower bound, (for a Gaussian process) the lower bound of )( xQP >  can be written in 

terms of  ∫
∞

−=
z

dyyz )]2/(exp[21:)( 2πψ  (the tail function of the standard Gaussian 

distribution) as 

                 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
≥>

2
)(

x

xxQP
σ

ψ   

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

2

2

2
exp

2
~

x

x x
x σπ

σ
.           (1.14) 

 

1.4.4 MVA Upper Bound [25] 

The approach is to find a function of 2
xxz σ= , which resembles )(zψ such 

that is similar to the asymptotic upper bound (1.11), 

                      )]2/(exp[)( 2zz −=ψ .                              (1.15) 
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1.4.5 MVA general approach (not bound) [26] 

In discrete time queue, the extreme value distribution of nX  is determined by 

determining the extreme value distribution of a new stochastic process nZ , 

{ }L,2,1,0: =nZ n , which is defined as 

    
))1((

)1(
kn
nX

Z n
n +−

−−
=

ρµ
ρµ                 (1.16) 

where nZ  is a normal process with 

    0}{ =nZE , and 

    22 ))1((
}{Var

}{Var
kn

X
Z n

n +−
=

ρµ
.                        (1.17) 

Thus, the steady-state queue distribution can be rewritten as [26] 

            ( )xXPxQP n
n

>=>
≥0

sup)(  

                   ( )1sup
0

>=
≥

n
n

ZP .                  (1.18) 

The }{Var nZ achieves its maximum value for xnn ˆ=  [26] 

     )()(sup ˆ
0

uZPuZP nn
n

>≈>
≥

                     (1.19) 

for sufficiently large u. If 1}{Var <<nZ , then by using the approximation in (1.19) to 

obtain [26] 

     ( )1)( ˆ >≈> nZPxQP .            (1.20) 

Thus, the tail probability )( xQP > can be defined as 

     ( ) ∫
∞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=>≈>

max

1

2

ˆ 2
exp

2
11)(

σ π
dxxZPxQP n    (1.21) 
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where maxσ is the maximum value of }{Var nZ , which can be computed by determining 

the maximum value of }{Var nZ , 

22

1

1

))1((

20
}{Var

kn

(l)(n-l)C)(nC
Z

n-

l γγ
n +−

+
=

∑ =

ρµ
.    (1.22) 

 

1.4.6 Long Range Dependent Gaussian model [27] [32]: The Discrete Gaussian Model 

Assume a FIFO single server queue, and the time is divided into fixed-length 

sampling intervals (discrete time). The arrival process is considered to be stationary and 

ergodic, and Gaussian distributed. A discrete time queueing system has k statistically 

independent, but identical, traffic streams aggregated at a multiplexer. Let time be 

divided into fixed-length sampling intervals [28]. The amount of queued traffic in a 

buffer at time n is defined as nV , with standard deviation σ, and net input rate m. H is the 

Hurst parameter of the input traffic [27]. Under the long-range dependent (LRD) case, the 

overflow probability (unfinished work distribution) for a Gaussian fractal queue can be 

approximated by [13][19][22][27][32], 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−×−×−≈> −
−

−
∞

H
H

t
mH

HHmtVP 22
2

2
2 |)1(|

|1|2exp),(2}{
σ

σψ
σ
π  (1.23)      

where H is the Hurst parameter of the traffic, Vn denotes the amount of queued traffic in a 

buffer at time n, σ  is the standard deviation of the arriving traffic, m is the net input rate 

to the buffer (which has to be negative for stability) [13][19][22][27][32].  The function 

),( σψ m− represents the mean of the random variable that is normally distributed with 

mean –m and standard deviation σ  [13][19][22][27][32], 
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     .
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−

σπ
σσψ σ merfcmem

m

                (1.24) 

 

1.4.7 The Continuous Gaussian Model 

A superposition of independent Gaussian processes is still a Gaussian processes. 

Assume FIFO with single server queue.  

Let us define the cumulative arrival processes of class i, which are independent 

continuous Gaussian processes with stationary increments, as }{}{ i
ti

i
t ZtmA +=  [14][27]. 

The mean input rate is mi and Z{i} is a centered continuous Gaussian process with 

variance }{Var)( i
ti Ztv = [14][27]. The server capacity is denoted as c, and the queue with 

input }{iA is denoted as }{iQ [14][27]. 

Applying the path space of the Gaussian processes, reproducing kernel Hilbert 

space, and based on the estimate of the buffer emptiness probability, the lower bound for 

the aggregated queue distribution can be derived using the 1-dimensional normal 

distribution as [27] 
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where 0<xt  is the value of t which minimize the expression [14][27] 
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1.4.8 Large two-stage models: Heavy Traffic  

Let the arrival rate be 0>λ , service rate 0>µ , and offered load µλ=m . 

Assume the arrival process is asymptotically normal. Let lN  be a stationary number of 

customers in the system that has l channels. Then N is approximately normal with mean 

m and variance mz when m is large.  The distribution of lN  can be obtained as [chapter 7 

of 33] 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
≈

mz
mi

mz
mimziNP φϕ)1())(( l ,                                     (1.27) 

where ϕ  is the standard normal density function, and φ is the standard normal 

distribution [chapter 1 of 33] 

( )22 2/)(exp
2

1)( σµ
πσ

ϕ −−= xx .                                       (1.28) 

In this chapter, the motivations of studying the jitter process and its concept 

have been discussed. The self-similarity characteristic of broadband networks traffic have 

also been studied. Then, several popular traffic modeling techniques for modeling the 

networks with heterogeneous type traffic have been investigated. In the next chapter, the 

methods used for determining the self-similarity of a network are being examined.   
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Chapter 2  
 

Wide Area Networks and Internet Traffic Analysis 

 
2.1 Introduction: Analyzing traffic traces 
 
The statistical analysis is applied to a set of collected data, and then a statistical inference 

of the data set is made. Here, we are interested in traffic self-similarity, which is 

measured by the Hurst parameter. The methods used to estimate the traffic self-similarity 

by computing the Hurst parameter (H) are: 

1. Aggregated Variance 

2. R/S Analysis 

3. Wavelet Estimate 

 
 
2.2 Aggregated Variance Method 
 
2.2.1 Description and Methodology  
 
Aggregated variance method is also referred to as variance-time analysis.  

• For each m = 1, 2, 3, …, data is divided into non-overlapping blocks of size m 

to obtain the aggregated process )(mX . For instance, if the given input data set 

has length N: 

mNkiX
m

kX
km

mki

m /,,2,1,)(1)(
1)1(

)( ∑
+−=

== K .                            (2.1)
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• For the variance vs. time log-log plot, the variance is first normalized to the 

corresponding sample variance (Thus, the estimate β̂ of the asymptotic slope 

will fall between –1 and 0, which suggests self-similarity). Then, we need to 

plot log10(var( )(mX )) versus log10(m). The variance is computed as  

( )∑
=

−=
mN

k

mm XkX
mN

X
1

2)()( .)(1)(rva)                                      (2.2) 

 
Recall: 

The discrete-time definition of self-similarity is a stationary times X, and we define the 

m-aggregated time series { }L,2,1,0),()()( == kkXX mm  and )()( kX m  by averaging the 

original times series X over non-overlapping block of size m, which is given in (2.1). 

Thus, a process X is said to be self-similar with parameter β (0 <β <1) if for all m = 1, 2, 

… we have the following: 

Exactly second-order self-similar: Variance: βm
XX m )var()var( )( =                             (2.3.a) 

Autocorrelation: )()()( kRkR XX m = . 

Asymptotically second-order self-similar: Variance: βm
XX m )var()var( )( =               (2.3.b) 

Autocorrelation: )()()( kRkR XX m →  ∞→m as . 

(2.3.a) and (2.3.b) define that self-similarity characteristic exists as the autocorrelation of 

the aggregated process has the same form as the original process, where the degree of 

variability or burstiness at different time scales will be the same. 
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Simple Least Squares Line Fitting: 

Now, by taking log10 on both sides of the variance in (2.3): 

[ ] [ ]mXX m
1010

)(
10 log)var(log)][var(log β−= , and it can be rewritten as  

[ ] [ ])var(loglog)][var(log 1010
)(

10 XmX m +−= β                        (2.4) 

and 2)var( σ=X is a positive finite constant. Equation (2.4) can be fitted through a 

simple least squares line equation as cmxy += . So, we try to fit a line through the points 

on the log-log plane. The graphical representation is given in Fig 1. 

 

 

 

 

 

 

Fig. 2.1 The relationship between aggregated variance  

equation and the least squares line. 

 

From the log-log plot, we estimate β̂  by computing the slope of the least line. Then, we 

can compute H using (6). The slope is formulated: 

( )∑ ∑
∑ ∑ ∑

−

−
= 22

ˆ
ii

iiii

xxn

yxyxn
β ,      where n is the number of samples. (2.5) 

(Note: To avoid computational round off errors (2.5) is used instead of a simple form of 

(2.4). This has been verified by comparing the results from both equations, with the later 

underestimating the slope value) 

x 

y 

slope = β 
c 

[ ])var(log )(
10

mX

[ ]m10log  

[ ])var(log10 X  

Note: the aggregated variance is 

normalized by the corresponding 

  Statistical computed data point 
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• Hurst parameter is estimated by fitting a simple least squares line through the 

resulting points in the plane. By ignoring the very low-end and very high-end m 

value, compute the slope ( β̂ ), and then the Hurst parameter (H) is computed as: 

212)2( ββ
)))

−=+=H .                                                  (2.6) 

(Note: capped symbol means an estimate of the true value.) 

 

Simulation Results 
 

Ethernet data set: byte.txt (Note: the byte.txt data set (1999) is more recently 

collected compared to BC-pAug89, but the this data set is smaller compared to BC-

pAug89) is used to plot Fig. 2. According to [34], Ethernet data in 1989 (AUG89 trace) 

has H ~0.8, and the traffic is more self-similar from 1990 onwards with H~0.9 (FEB92 

trace during high internet traffic hour of Feb. 1992 with H~0.96 [34]). Fig. 2 shows the 

same degree of self-similarity in the Ethernet traffic of year 1999, which once again 

confirms that H~(0.90,0.96) for Ethernet traffic in 90’s. This may be due to the popularity 

of Internet usage, and more applications/services (e.g. digital video streaming, 

multimedia service) being able to be provided through Internet.   

The aggregated variance plot of Ethernet traffic is showed in Fig. 2.2. It has the H 

value 0.9279, which indicates that the traffic do have the self-similarity characteristic. 
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Fig 2.2  This figure shows that Ethernet traffic is very self-similar,  

which is indicated by a fairly large H value. 

 

 
Star Wars IV, high quality: Terse_StarWarsIV.dat data set is used to plot Fig. 2.3. 
 
 

 
Fig 2.3  This figure shows that Star Wars IV data stream is self-similar,  

and the level of self-similarity is indicated by the H value. 
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2.2.3 Simulation Flow Chart 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Begin 

Aggregate the input data series by dividing its length N 
into blocks of size m, and then averaging each block. 

∑
+−=

==
km

mki

m kiX
m

kX
1)1(

)( ,2,1)(1)( K , N/m 

Compute its sample variance. 
 

( )∑
=

−=
mN

k

mm XkX
mN

X
/

1

2)()( )(
/
1var

Normalize )(var mX corresponding to its sample. 
Plot the normalized variance log10( )(var mX ) 
versus log10(m). Fit a straight line (with a slope β 
=2H-2) to the points on the plot. 

From the slope β (compute β by ignoring very 
low end and very high end m for more 
accuracy), and then compute (estimate) the 
Hurst parameter, where H=1- β/2. 

End 
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2.2 R/S Method 
 
2.3.1 Description and Methodology 
 
R/S statistic is also referred to the rescaled adjusted range, and is formulated as 

 

( ) .)()(min)()(max
)(

1:
00 ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
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≤≤≤≤
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ttYdY

d
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     (2.7) 

For a stationary time series, 1 where},{ ≥= iXX i , with sample sum ∑=
=

d

i iXdY
1

2)( , 

and sample variance 

d

ddYX
dS

d

i
i∑

=

−
= 1

22

2
)(

)( .                                       (2.8) 

For fractional Gaussian noise or fractional ARIMA: 

[ ] H
H dCdSRE ~)(/  as d  ∞ and CH is a finite positive constant that is not dependent on 

d. Thus, we have 

[ ][ ] [ ] [ ]HCdHdSRE 101010 loglog)(/log += ,                          (2.9) 

From (2.9), H is directly proportional to the slope. Refer to the least squares line concept 

in section 2.2 for the same argument. 

The algorithm: (An algorithm of the code also given in [35]) 

• For a data length N, divide it into series of K blocks.  

• Then, for each lags d compute ),(),( dtSdtR ii , for different starting point it ; 

the starting points must be Ndti ≤+− )1( . 

• Plot [ ]),(/),(log10 dtSdtR ii  versus )(log10 d . 

• Fit a least squares line through the points on the log-log plane, the slope of the 

line is the estimator for Hurst parameter, H = slope of the line. 
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(Note: the slope is calculated by using the same equation as (2.5).) 

The same Ethernet data set and the video file of Star Wars IV (high quality) are used 

to show that the multimedia source and Internet traffic do exist self-similarity, which 

illustrates in Fig. 2.4 and Fig. 2.5 using the R/S method. Since both figures have H value 

larger than 0.5, and closed to 1. 

 

2.3.2 Simulation Results 
 

The same Ethernet data set and the video file of Star Wars IV (high quality) are used 

to show that the multimedia source and Internet traffic do exist self-similarity, which 

illustrates in Fig. 2.4 and Fig. 2.5 using the R/S method. Since both figures have H value 

larger than 0.5, and closed to 1. 

Compare to [35]  H = 0.903 for K=10 and up to log10(d) = 4.6, the obtained results are 

closed to [35] but not exactly the same, this may due to only up to log10(d) = 3.4 estimate 

points are used.  
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Fig 2.4  This figure shows that the data set is self-similar, and the level of self-similarity 
is indicated by the H value. Here, K = 10 and upto log10(d)=3.4 is used.  

 
 
 
 

 
Fig 2.5  This figure shows that Star Wars IV data stream is self-similar, and the level of 

self-similarity is indicated by the H value. K=10 and up to log10(d)=3.4 is used. 
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2.3.3 Simulation Flow Chart 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Begin 

The input data series of length N is divided into K blocks 

(samples), and with partial sum ∑
=

=
d

i
iXdY

1
)( , the sample 

variance is calculated as 

                ∑
=

−=
d

i
i dYdX

d
dS

1

2222 )()/1(1)(  

Compute its R(d)/S(d) statistic by rescaled adjusted range, 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
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⎞

⎜
⎝
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⎠
⎞
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⎝
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d
ttY
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Plot log10( ),(/),( dtiSdtiR ) versus log10(d). Fit a 
straight line (simple least squares line) to the points 
on the log-log plot.

Compute the slope of the straight line, which 
is the estimator of the Hurst parameter, slope = 
H. 

End 
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2.4 Estimating the Hurst Exponent using Wavelet Spectral Density 
 
2.4.1 Description and Methodology 
 

This method transforms the time series into discrete wavelets.  In Matlab, Discrete 

Wavelet Transform can be use to decompose the input data to scaling and wavelet 

functions.  

1. The Hurst exponent for a set of data is calculated from the wavelet spectral density,  

∑
=

=
j

i
ijj cP

2

1

2

2
1 where ci is the wavelet coefficients.                     (2.10) 

2. Regression line through the normalized spectral density : 

   H = abs((slope –1 )/2).                                             (2.11) 

Recall: 

The spectrum of a long-range dependent process X(t) with the discrete wavelet transform 

coefficients Xc  show the following behavior CljcE Hj
X

)21(2 2)],([ −=  [43]. By taking log2 

on both sides,  

][log]2[log)21()]],([[log 102
2

2 CHljcE j
X +−= .                        (2.12) 

From (2.12): 

( )
2

1
2

121 −
=→

−
=→−=

slopeHslopeHHslope                        (2.13) 

which follows the same least squares line argument. Refer to the least square line concept 

in section 2.2. 
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Algorithm: 

• Compute the power spectrum by averaging the squares of the coefficients of the 

transform P(j). 

• Plot log2(P) versus log2(2j).  

• Fit a simple least squares line through the points on the log-log plane. 

• The Hurst parameter can be computed as H = 
2

1−slope  

.(Note: the slope is calculated by using the same equation as in (2.5).) 

 
The same Ethernet data set and the video file of Star Wars IV (high quality) are 

used to show that the multimedia source and Internet traffic do exist self-similarity, 

which illustrates in Fig. 2.6 and Fig. 2.7 using the wavelet method. Using this method, 

both of the data sets have calculated H value larger than 0.5, and closed to 1. 
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2.4.2 Simulation Results 
 
 

 
Fig 2.6  The figure shows that Ethernet traffic is self-similar,  

and the level of self-similarity is indicated by the H value. 

 
 
 
 

 
Fig 2.7  The figure shows that Star Wars IV data stream is self-similar,  

and the level of self-similarity is indicated by the H value. 

Wavelet Estimate Method to Approximate the Hurst parameter 

Wavelet Estimate Method to Approximate the Hurst parameter 
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2.4.3 Simulation Flow Chart 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Begin 

The input data series is transformed from time series 
into discrete wavelet. Then, the wavelet power spectral 

density can be calculated from  ∑
=

=
j

i
ijj cP

2

1

2.
2
1  

Plot log2(P) versus log2(2j). Fit a straight line 
(simple least squares line) to the points on the log-
log plot. 

Compute the slope of the straight line, which 
is the estimator of the Hurst parameter 

2
1slope −

=H . 

End 
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2.5 Observation and Discussion  
 

All three graphical estimation methods provide a good estimate of the Hurst 

parameter (Fig. 2.8), H, and allow us to detect self-similarity in an empirical data set. 

These three methods provide a closed estimation of H, which is between (0.85, 0.93) for 

Ethernet traffic, and a value between (0.85, 0.91) for Star Wars data set. However, these 

three methods provide point estimate to H, and we may be interested in a more refined 

data analysis, e.g., confidence intervals for H. Therefore, an interval estimation can be 

done with maximum likelihood-type estimates (MLE) and related methods based on 

periodogram [34]. The slope of the graph is the graphical tool to compute the Hurst 

parameter, where the slope of the straight line will provide the information about the 

Hurst parameter. The critical step in this aspect is choosing the statistical computed 

points on the plane that should be used to compute the slope. Usually, the very low end 

and very high end points are not used [36]. 

Fundamentally, the goal of traffic modeling in this dissertation is: 

• To find a general/universal traffic model that is suitable for broadband networks. 

• The model could be appropriate to real traffic and to all type of traffic.  

•  Performance of real networks transporting the traffic of the model could be estimated 

with adequate accuracy. 

By understanding the characteristics of Internet and multi-media traffic, we would be 

able to estimate the jitter process of the broadband networks with adequate accuracy, 

where the networks with heterogeneous type traffic are greatly different than the 

networks with homogeneous type traffic. The following two chapters have derived the 

mathematical equations for evaluating the jitter process in those networks.  
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Fig 2.8  The comparison between the three methods is shown, where the level of self- 

similarity is indicated by the H value. The estimation range is between (0.82, 0.93) for  

Ethernet traffic for low m aggregated level, where all the three methods have  

proved that the Ethernet traffic is very self-similar. 
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Chapter 3  
 

Theoretical Analysis of Delay Jitter of Homogeneous 

Traffic in ARQ Wireless Networks 

 
3.1 Abstract 
 

This chapter provides a theoretical analysis of delay jitter for homogeneous time 

constrained traffic and proposes a call admission control (CAC) scheme for wireless 

differentiated services (DiffServ) networks that apply Selective-Reject (SREJ) automatic 

retransmission request (ARQ). The CAC scheme regulates the lower class traffic to 

provide the required levels of delay jitter for the higher priority classes. 

 

3.2 Introduction 
 

DELAY JITTER [1] (which is equivalents to interarrival packet jitter) is one of 

the most important parameters in quality of service (QoS) support measurement for real-

time data transfer. Due to this fact, there are several papers that have analyzed the 

performance of delay jitter [6][7][61]. In [6], the time division multiple access 

(TDMA)/time division duplex (TDD) scheduling scheme is used. In [7], the jitter is 

analyzed for mobile ad hoc networks (MANET) based on the ad hoc on-demand distance 

vector (AODV) routing protocol, where the authors propose a novel handover 

mechanism. Both [6] and [7] provide results on jitter performance analysis based on 
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computer simulation for the wireless network models. In [61], the authors provide a jitter 

analysis on wireless networks involving ARQ error recovery, where the delay jitter is 

calculated using the window-length generating function and the numerical results are 

verified through simulation. The delay jitter research of [9] extends the results of [1] and 

[10] for DiffServ networks, but all three papers do not consider the channel error 

probability or the ARQ error control scheme, which makes the results difficult to apply to 

wireless networking applications. Therefore, this paper provides a novel analysis of the 

per-class jitter performance of DiffServ networks based on wireless channels that 

experience packet errors, assuming a non-preemptive head-of-the-line (HOL) priority 

scheme. The derivations provide a direct method to analyze/evaluate the per-class jitter 

based on the DiffServ network, retransmission time constraints, and network packet error 

parameters [12]. In addition, this paper evaluates the effects on the delay jitter in 

reference to the priority control scheme of the ARQ traffic for two cases of: 1) the ARQ 

traffic has a priority over the original transmission traffic; and 2) the ARQ traffic has no 

priority over the original transmission traffic. 

 

3.3 Analytical Model  
 
3.3.1 Network and System Model Assumptions 
 

In this dissertation’s chapter, we investigate a wireless communication link that is 

framed for a fixed packet size or is time slot based (e.g., time-division multiple access 

(TDMA)) transmission. The examples of mobile cellular communications based on time-

coordinated slotted data transmissions include Global Systems for Mobile 

Communications (GSM), IS-54 and IS- 136 of the North American Digital Cellular 
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(NADC), and Integrated Digital Enhanced Network (iDEN), which are all TDMA based 

protocols, and the hybrid code-division multiple access (CDMA) based TDMA systems. 

Based on these models, in this paper, the traffic delay jitter characteristics are based on a 

discrete time (slotted) queueing structure. The network traffic model is assumed to be 

slot-based homogenous and statistically time division multiplexed. The ARQ model 

applied in this paper is a selective-reject/repeat topology, where only the packets that are 

erroneous are retransmitted. 

Additionally, assume class 1 has priority over class 2, class 2 has priority over 

class 3, and so on. Among the same priority the first in first out (FIFO) transmission 

ordering applies to the first transmission packets. In this paper, two kinds of ARQ traffic 

priority control schemes are investigated: 1) when the ARQ traffic has a priority over the 

original transmission traffic; and 2) when the ARQ traffic has no priority over the 

original transmission traffic. The network controller model that gives a non-preemptive 

priority to the ARQ traffic is based on existing network schedulers that process admission 

control in reference to time delay bounds, such as the earliest deadline first (EDF) 

scheduler, where a delivery time deadline is applied to the data packets, thereby limiting 

the number of possible retransmissions of an erroneous packet [61]. For these types of 

schedulers, the ARQ packets will commonly have less of a time bound remaining for 

delivery, since a part of their delay bound would have been used in its former 

transmission(s), which would result in having a higher priority over the original 

transmission traffic [12], [61]. Based on these assumptions, in the following, the 

mathematical foundation of the analysis is established. 
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3.3.2 Theoretical Formulations 
 

 Assume the packets arrive and depart at the beginning of a slot, which leads to a 

discrete time queueing process. A slot is defined as the time interval [t-1, t), where t is a 

non-negative integer (i.e., t ≥ 0). Here we define the mth time slot interval (cycle) of a 

tagged stream’s mth packet as [mT, (m+1)T ), where m and T are non-negative integers. 

Any individual periodic T ’ traffic stream of interest among the different class of 

service (CoS) could be the tagged stream. Thus, as we investigate the jitter of a specific 

class, namely the nth class traffic stream, and define the traffic as a mixture 2 of the 

specified periodic T ’ tagged stream and the combined background traffic of numerous T ’ 

period streams from different sources. The number of packets that arrive in each slot will 

not only depend on the data sources but also on the number of ARQ packets that need to 

be retransmitted. Hence, the period of each renewal cycle is T = T ’ + T ’Pe, where the 

retransmitted packets will also consume the channel capacity. The term Pe represents the 

packet retransmission probability, which takes into account that an ARQ retransmission 

packet can also be erroneous again. Assume the packet errors are independent from 

packet to packet. Given the packet error probability perror, the probability that a packet 

transmission is successfully received is (1− perror). If up to r retransmissions are limited 

within the time bound, each of the j consecutive packet transmissions fail, and a 

successful transmission then follows, where j = 1, 2, · · ·, r, and r = 1, 2, · · · , T . 

Therefore, Pe  becomes )1(1

1
1)1(

error
T

i
i
errori

i
e ppP −=∑ +

=
−− , where T is the transmission window 

size (processing rate) in packets (slots). The following notations are applied throughout 

this paper. The network’s packet processing rate is µ packets/s and the average arrival 
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rate is λtotal, and it is assumed that there are N classes of service. Hence, for a stable 

system the utilization is required to satisfy  

( )
1total1)1(totaltotal ≤

++++
=

+
= −

T
PP eNNe λλλλ

µ
λλ

ρ
L

.                               (3.1) 

The utilization of a specific class n (i.e., n = 1, 2, . . .,N) is noted as nρ , and it can be 

obtained from nρ = ( )µµn ( )[ ]µλλ nen P+= , which considers the original transmission 

traffic and the retransmission traffic of the class n data packets. 

The CAC will control the amount of new admissions given to the class n sources 

such that the aggregated arrival rate of class n traffic does not exceed 

( )( )enn P+= 1max, µρλ . When the amount of ARQ packets increase the CAC will 

regulate the traffic loads of the lower classes by giving out less admissions, to maintain 

the required QoS of the higher priority classes.  

In order to investigate the effects of delay jitter in DiffServ networks, the 

derivation of the probability of jitter (i.e }~{ jJP = ) becomes an essential building block.  

Let the random variable jJ nm =,
~ , where n = 1, 2, . . .,N class and cycle m ≥ 1 

[10], denotes the process of the normalized jitter or position difference between the mth 

and (m+1)th packet of the nth class tagged stream that originates from the same source. 

The term nmA ),1( +  indicates the total number of class n packets that arrive in the (m +1)th 

time slot group. The average number of higher priority packets and ARQ packets that 

arrive in the (m+1)th period is represented as 
)1(),1( −+ nm

b  , which can be obtained from 

1),1()2(),1()1(),1()1(),1( +−+−+−+
+++= mnmnmnm

bbbb L . The term )1(),1( −+ nmb  denotes the number of 

all the equivalent (n−1)th priority packets that enter the buffer before the class (n−1) 
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tagged stream’s (m+1)th packet. The probability that a jitter size of j will exist for the 

class n tagged stream is given by [9] 

{ }jJP nm =,
~ = { }abkAjJP

nmnmnm ==−=
−++ )1(),1(),1(, ,1|~  

        { } { }abPabkAP
nmnmnm =⋅==−⋅
−+−++ )1(),1()1(),1(),1( |1 .                      (3.2) 

In (3.2), the term { }abkAP
nmnm ==−
−++ )1(),1(),1( |1  is based on the consideration 

that the assignment probability of the class n packets is dependent to the number of the 

higher priority packets (i.e., variable a) that arrive within the time slot group specified by 

)1(),1( −+ nmb . We subtract 1 from the total number of class n packets that arrive in the 

(m+1)th time slot group (i.e., nmA ),1( + ) due to the fact that the tagged frame is also among 

the overall traffic. The binomial distribution used in (3.2) is based on                                         

{ } [ ])1(,|1
)1(),1(),1( −−===−

−++ aTpBabkAP knmnm  

                                ( ) ( ) kaTk pp
k
aT −−−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −−
= )1(1

1
                                               (3.3) 

where ||)],1(,1[ jaaTk ≤−−∈ , and each class n packets have a successful (errorless) 

arrival probability p. The { }abP
nm

=
−+ )1(),1(

 term represents the probability of the higher 

priority (class 1 to class (n-1)) packets occupying a number of slots among the first j slots 

of jitter offset before the class n tagged packet enters service, and is calculated by the 

probability mass function of a bilateral geometric function (BGF) [9]. The discrete 

triangle distribution is applied to the term { }abkAjJP
nmnmnm ==−=
−++ )1(),1(),1(, ,1|~ , 

which is a symmetric distribution, which represents the probability that the time slot 

position of two sequentially arriving frames will be offset by a jitter amount of +j or −j 

slot(s) for the range [−k, k] 
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among the overall x possible time slots, 0 ≤ x ≤ T . 

A special case of this is the zero jitter case (i.e., j = 0) [9], which is simply 

{ } { }∑
−

=

=−==
)1(

1
,,

~210~ T

j
nmnm jJPJP .                                             (3.5)  

 

3.3.3 Jitter Analysis with Non-Priority ARQ Traffic 
 

In this section a comparison between the different packet error probabilities for 

wireless networks deploying a non-priority ARQ scheme with fixed (limited) channel 

capacity is presented. The non-priority ARQ scheme represents the case where the ARQ 

packets do not have a priority over the regular traffic. The probability of jitter for this 

case can be derived as,     

{ }jJP nm =,
~ =∑ ∑

=

−−

−=

−∆⋅⎥
⎦

⎤
⎢
⎣

⎡
−−

+

||

0

1
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''1 )()1(,)(

j

a

aT

ajk
k

e

n
k ajaT

PTT
Baf

ρ ,                       (3.6) 

where )1(1 −≤≤ Tj . The results are illustrated in Fig. 3.1. The { } )(1)1(),1(
afabP

nm
==

−+
 

term can be obtained from the probability mass function of a BGF [9], 

||,))(1(
2
1)(

)1()1(1 jappaf a
nn

≤−=
−−

.           (3.7) 



 46

The term )1( −np  is the probability of arrival of the higher priority packets and their ARQ 

packets compared to class n in a frame of T slots (i.e., ∑ −

=−
=

1

1)1(

n

i in
p ρ ). The jitter 

probability for class 1 packets can be easily obtained from (3.6) 

P{ }jJm =1,
~ =∑

−

=

∆⎥⎦

⎤
⎢⎣

⎡ −
1

||

1 )()1(,
T

jk
kk jT

T
B

ρ ,  .)1(0 −≤≤ Tj                                 (3.8) 

 

3.3.4 Jitter Analysis with Priority ARQ Traffic 
 

In this section a comparison between the different packet error probabilities for 

wireless networks deploying a priority ARQ scheme with fixed (limited) channel 

capacity is presented. The probability of jitter for this case can be derived as, 

{ }jJP nm =,
~ =   ∑ ∑

=

−−
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⎡
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where )1(1 −≤≤ Tj . In each slot there is a probability Perror of receiving a negative 

acknowledgement of the message. If a negative acknowledgement is received, the 

transmitter immediately retransmits the packet that was received in error instead of a new 

packet. The { } )(2)1(),1(
afabP

nm
==

−+
 term can be obtained from the probability mass 

function of a BGF [9], 

||,))(1(
2
1)( '
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.                   (3.10) 

The term '
)1( −np  is the probability of arrival of the higher priority packets, which includes 

the retransmission packets of classes 1 through n, which can be obtained from 

∑ −
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Fig. 3.1 Comparison between wireless networks deploying the priority and non-priority 

ARQ scheme with Pe = 10%. The solid line represents the non-priority ARQ scheme,  

and the dotted line represents the priority ARQ scheme. 
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Fig. 3.2 Comparison between wireless networks non-priority ARQ scheme 

with Pe = 20%. 

 
Fig. 3.3 Comparison between wireless networks deploying the priority and non-priority 

ARQ scheme with Pe = 1% and 10% for class 1 through class 5. 
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3.4 Discussions and Conclusions 
 

This paper provides a novel analysis of the per-class jitter probability of 

homogeneous traffic streams performance of DiffServ networks based on wireless 

channels that experience packet errors, assuming a non-preemptive head-of-the-line 

(HOL) priority scheme. The investigation has been conducted for the case where the 

ARQ retransmission packets have priority over the first time transmission packets. The 

mathematical results were compared with simulation data, and the results show an 

accurate match, which verifies the derivations. The results of Fig. 3.1 show that for both 

the priority and non-priority ARQ cases, the probability of jitter for the same class can be 

controlled to be approximately the same disregarding the channel packet error rate for the 

traffic of the higher priority classes if the CAC of the wireless network can obtain 

accurate packet error rate information and respond effectively in regulating the admission 

access. The call admission controller will dynamically manage the network traffic loads 

by regulating admissions based on the amount of retransmission traffic that is anticipated. 

Thus, the traffic load can be regulated dynamically to maintain the required jitter 

performance. 

Based on the observations of Fig. 3.1, Fig. 3.2, and Fig. 3.3, it can be observed 

that the normalized jitter probability of the priority ARQ scheme is larger than the non-

priority ARQ scheme. The difference in performance becomes more significant as the 

probability of packet error increases (e.g., when Pe increases from 1% to 10%, and 20%). 

However, class 1 and class 2 still maintain a relatively low probability of jitter compared 

to the traffic of the lower classes. In the ARQ scheme with priority control, the ARQ 

packets will block the new packets from being transmitted during the retransmission 
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process. Thus, the normalized jitter probability of the wireless network deploying ARQ 

with the priority scheme is worse compared to the ARQ with the non-priority scheme, 

especially for the low priority packets. Although the ARQ priority scheme sacrifices the 

delay jitter performance for the low priority classes, it may be needed especially for real-

time service applications in which the packet might be useless unless a successful 

reception of the packet is obtained within its time bound [12], [61]. In Fig.3.2, as Pe is 

20%, no left-over channel capacity is available for class 5 (the lowest priority class) since 

a significant part of the channel capacity is used for retransmission of the higher priority 

class packets. In Fig.3.2, the negative values represent the normalized jitter probability of 

the priority ARQ scheme is larger than the non-priority ARQ scheme, where probability 

of jitter for ARQ priority scheme minus non-priority ARQ scheme. These results 

demonstrate the influence and the effectiveness of DiffServ in limiting the delay jitter for 

the high priority users.  
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Chapter 4  
 

Jitter Characteristics of Heterogeneous Wired Communication 

Networks, Gaussian Traffic Modeling and Queue length  

approximation using the MVA Approach 

 

In real-time wired or wireless communications, each transmitted packet may 

experience different time delays during arrival at the destination. This variation in delay 

is often referred as delay jitter or simply jitter.  Jitter is an unsurprising result of packet 

transferring in high-speed switched networks. The variable delay results from the 

processing and queueing at each node through the multi-hop network. This is because the 

packets transmitted between a given source and destination may vary in length, may take 

different routes, and may experience different delay at the switches.  To compensate the 

packet delay jitter, the incoming packet are buffered at the destination, and then replayed 

at a constant rate based on the controller that regenerates the audio/real-time traffic 

(playback mechanism). The regenerated packets are therefore smoothed out. 

 However, the compensation provided by the delay buffer is limited, where any 

incoming real-time traffic packets that have been delayed more than the replay delay 

bound limit, then the packets will be discarded. Thus, by controlling the delay jitter 

within the network can further reduce the timing distortion of real-time applications.  In
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order to examine the heterogeneous traffic network jitter behavior in a more general 

environment, we develop a generalized analytic approach to approximate the jitter 

probability density function (pdf) of a stationary tagged stream that is multiplexed on a 

high-speed IP network. The main objective of this chapter is to examine the relationship 

between the jitter and traffic characteristics, such as traffic load/utilization, and period T 

of the tagged stream. This insight may aid the design of the scheduling control of the 

buffer in the playback mechanism at each node. For a generalized approach to analyze a 

queueing process, the heterogeneous traffic arrivals at a node are modeled as a Gaussian 

process. 

In high-speed networks, it has been shown that aggregated traffic has a direct 

relation to Gaussian characteristics through Central Limit Theorem (CLT), which states 

that summing a large number of independent variables with finite variance can converge 

or weakly converge to a Gaussian random variable [22]. The networks’ self-similar 

traffic exhibits long-range-dependent (LRD) correlations, and it is very close to being  

Gaussian and strongly LRD (i.e., approximately Fractional Gaussian noise), which is 

caused by both small and large file transfers over limited bandwidth links. Some of the 

traffic may follow a non-Gaussian marginal distribution. However, by applying CLT, the 

aggregated traffic can be modeled as a Gaussian process; even though each single 

independent data source does not follow a Gaussian distribution. 

 The Gaussian model is useful for two main reasons. First, any stationary 

Gaussian process can be completely characterized by its mean and autocovariance. 

Second, as today high-speed networks are highly complex and traffic is usually heavily 

multiplexed of thousands of network applications. By applying CLT, the aggregated 
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traffic can be modeled as Gaussian process; even each single independent data source 

does not follow a Gaussian distribution. The only defect in this model is that there is a 

positive probability of a negative quantity of arriving traffic, which is impossible to 

happen in real networks traffic. This significant weakness is counterbalanced by the fact 

that the CLT appeals as more and more traffic streams are aggregated to share a link; 

traffic becomes more Gaussian, and the case that the amount of negative traffic reduces 

as traffic is aggregated [24]. 

 Many broadband traffic studies have evolved around the Gaussian model, and 

they show that Gaussian models indeed provide a good approximation to networks traffic 

if the aggregated traffic is sufficiently large. In [22], [23], and [24], the results shown that 

the Gaussian traffic model could be the precise tool for analyzing high-speed networks. 

Moreover, the Gaussian model is also a good fit for high-speed networks with 

differentiated services (DiffServ). In differentiated services networks, traffic management 

controls are on the level of traffic aggregates, not for individual links [23][54][55].  

 

4.1 Introduction 
 

In order to evaluate delay jitter, the queue length distribution of the output queue 

was first analyzed. We can relate the transmission delay and the queue length (number of 

packets) ahead of the tagged packet (i.e., nQ  represents the number of customers ahead 

of the nth tagged packet). Let any customer’s service time be equal to one slot and 

follows FIFO order, nQ denotes the number of customers, regardless of their class 

affiliation, that are waiting for service just ahead of the arrival of the nth packet of the p-
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customer. Therefore, the normalized jitter relative to tagged stream period T is (see 

Chapter 1 for more detail discussion) 

...,2,1,~
1 =−= + nQQJ nnn .                                                         (4.1) 

)()( 1 nQTQQTJ nnn ∆+=−+= + .                                 (4.2) 

The normalized jitter with respect to the original data stream period (inter-

departure time between nth and (n+1)th packets transmitted from the source), T: 

,...,2,1),(~ =∆=−= nnQTJJ nn   where nn

def
QQnQ −=∆ +1)(  .       (4.3) 

From (4.3), we can observe the study of jitter turns into an equivalent study of the 

queue size variation )(nQ∆  of a selected user’s packet arrival, which is the methodology 

that is going to be applied in this study.  We want to find the pdf of nJ~ , i.e., }~Pr{ nJ , from 

the queue length distribution of the steady state probability of the buffer with queue 

length q (P(Q>q)), q = 1, 2, … . A discrete-time approach is used in the delay analysis, 

which a node/multiplexer is modeled as a discrete time fluid queue where the time is 

slotted. It is assumed that the packets arrive and depart at the beginning of a slot, which 

leads to a discrete time queueing process. 

In summary, the approach here is  

• First, apply the Gaussian traffic modeling using the MVA approach [25][25] 

to conduct the queue length analysis. Obtain the tail probability P{Q>q} 

based on the MVA approach for the discrete time queueing model [25][26] to 

conduct the queue length analysis, which is used in heterogeneous jitter 

analysis. This is done in section 4.2. At a node in high-speed networks, the 

packet arrival that consist of heterogeneous type traffic includes real time and 
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non-real time integrated traffic streams from different sources (e.g., voice, 

audio, video, image, plain text and data of other newly developed Internet 

applications). A single link will carry hundreds or even thousands of 

applications, which apparently lead to the application of Central Limit 

Theorem, that the network traffic can be modeled by a Gaussian stochastic 

process.  

• Second, find the pdf of the jitter probability from the queue length 

distribution. This is done in section 4.3. 

 
 
4.2 Discrete Time Fluid Queue Model and Extreme Value [26] 
 

The multiplexer is modeled as a fluid queue serving a large number of 

independent sources. 

In the discrete time model, the fluid is permitted to flow in and out of the buffer 

only at discrete time intervals denoted in k. Let N be the total number of sources served 

by the multiplexer, and )(s
kX be the amount of traffic that arrives from source s into the 

buffer at time k, s =1, 2, …, N. Further, let ∑ =
=

N

s
s

kk XX
0

)( and µ−=
∆

)0(
kX , which means 

that kX is the aggregated fluid arriving at time k, and less the system capacity µ.  Let 

0≥kQ be the amount of fluid in the buffer at time k, less than the capacity µ, and the 

kQ for the infinite buffer case can be represented using Lindley’s equation [26] 

{ }.0,max)( 11 kkkkk XQXQQ +=+= −
+

−     (4.4) 

Lets say that the fluid queue has always been operational, that is ∈k ƶ = {…, -1, 0, 1, …} 

(instead of time starting at k = 0).  As long as kX is a stationary and ergodic process, and 
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with 0}{ <= kXEX (the stability condition for an infinite buffer queuing system, where 

the arrival rate must be less than the service rate), (4) can uniquely determine a stationary 

process ( kQ~ ) that satisfies the equation, where for all ∈k ƶ = {…, -1, 0, 1, …} [26][45] 

( ∈k ƶ from this point on). Due to kX  being an ergodic stationary process, the tail 

probability of buffer queue length  q at time k ( )( qQP k > ) converges to a steady state 

tail probability of buffer queue length q ( )( qQP > ) regardless of the initial condition 

Q0. Thus, for all ∈k ƶ, )~( qQP k >  is equal to )( qQP > , since the tail probability does 

not depend on the initial condition Q0, and the tail probability of a stationary process is 

the tail probability itself, where )~( qQP k > = )( qQP > [26][45]. The relation between an 

ergodic stationary process kX  and the corresponding stochastic process kQ~ , where ∈k ƶ 

[26] 
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where m = 0, 1, 2, … .Since, )~( qQP k > = )( qQP > for all k [26], 
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From (4.5) and (4.6), we can see that the steady state tail probability )( qQP > can be 

determined by summing all previous stationary aggregate fluid arrival process.   In other 

words, the probability of the tail probability )( qQP > is the same as the tail probability 
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of the supremum of a stochastic process denoted by ∑
=

−=
m

i
im XW

0
,   

where
⎭
⎬
⎫

⎩
⎨
⎧ >=>

≥
qWPqQP m

m 0
sup)( , m = 0, 1, 2, … [26]. This stochastic process, mW , is 

called the backward accumulation process, and it is not stationary. The first two moments 

of mW  are defined as below [26] 

XmWE m =}{                       (4.7.a) 
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where { }))(()0( XXXXEC lkkX −−= +

∆

 is the auto-covariance function of Xk. Hence, 

)( qQP >  can be calculated by determining the tail probability of the supremum of the 

backward accumulative process mW , where the Extreme Value Theory is applied to this 

supremum of a stochastic process to obtain a simple approximation for )( qQP > [26], 

which is shown in the next subsection below. 

Evaluating P(Q>q) at a multiplexer with Gaussian  Arrival Process using the MVA 

approach  

We can obtain a simple approximation for P(Q>q) by applying the results from 

the theory in section 4.2, where determining the tail probability P(Q>q) of a queueing 

system is mapped to that of determining the tail probability of the supremum of the 

backward accumulation process mW  (here only the discrete case is our concern) [26].  

Let µ−=
∆

)0(
kX denote the link capacity of a multiplexer (e.g., an ATM 

multiplexer). Assume that )(s
kX , the fluid arrival process of source s at time k, s = 1, …, 
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N, are independent mean ergodic stationary arrival processes with finite mean sX , and 

auto-covariance )(lCs .  
)(

1

s

k

N

sk XA ∑ =

∆

= is defined to be the aggregate arrival process. 

Then, Ak is also a mean ergodic stationary arrival process with mean ∑ =
=

N

s sXA
1

and 

auto-covariance ∑ =
=

N

s sA lClC
1

)()( .  So, ∑ =
−==

N

s k
s

kk AXX
0

)( µ  is a mean ergodic 

stationary process with mean µ−= AX  (where === ∑ =

N

s
s

kk XXEX
0

)(}{ )(
1

)( µ−+∑ =

N

s
s

kX , 

since µ−=
∆

)0(
kX ) and auto-covariance )()( lClC AX = . In other words, kX  is the 

aggregate fluid arriving at time k, less the capacity µ.  As long as 0<X , which means 

that the arrival rate must be less than the service rate, the infinite buffer queueing system 

is stable. 

Now, model the arrival process Ak as a stationary normal process. The main 

reason to consider Gaussian traffic modeling is the CLT [25][26]. As the network grows, 

the number of independent traffic sources aggregating at a node (e.g., router, switch, 

multiplexer) increase, and the shape of the traffic distribution will become closer and 

closer to Gaussian. Ak has both negative and positive components. The negative 

component in [26] imply that the buffer is empty due to the arrival process, which is not 

possible in reality. However, as the mean Ā of the aggregate process is typically several 

times larger than its standard deviation )0(AC , the probability of this negative flow is 

negligible.   

Since Ak is modeled as a normal process, both Xk and Wm are normal processes. 

Now, rewrite the arrival process, where determining the extreme value distribution of Wm 
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is equivalent to determining the extreme value distribution of a new stochastic 

process },1,0:{ K=mZm , which is defined as [26] 

                                 
))1((

)1(
km
mW

Z m
m +−

−+
=
∆

ρµ
ρµ

                           (4.8) 

where µρ A
∆

=  is the utilization of the ATM multiplexer, ⎡ ⎤µqk
∆

=  is the time it takes for the 

fluid in the buffer at level q to empty, and µ is the service rate. Zm is the standardized 

maximum value, where ))1(( km +− ρµ  and m)1( ρµ −  are the scale and location 

parameters, respectively. Also, Zm is a normal process with [26] 

0}{ =mZE                      (4.9.a) 

22 ))1((
}{

}{
km

WVar
ZVar m

m +−
=

ρµ
.        (4.9.b) 

The extreme value distribution is used to quantify the probabilistic behavior of unusual or 

rare events, and provide a better fit to the data set.  

Justification of the new stochastic process mZ : Applying Central Limit Theorem, 

assume that{ }0: ≥tBt  is a Gaussian process with stationary increments such that 0B = 0, 

and define ς := ( )∑ =
−=−

N

n
n

tt BEBE
1

)()( , and )var(:)( tBtv = , where each )(n
tB is an 

individual stream. Expressing )( qBP t >  in terms of ς , )(tv , and the standard Gaussian 

tail function παψ 2:)( 2/2

dze z∫ −= , we obtain a multivariate version of the CLT of the 

normalized process [58] 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
=>

)(
)(

tv
tqqBP t

ςψ .                                                        (4.10) 
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Now, apply the Dominant Time-Scale tq and the Maximum Variance Asymptotic 

approach. The term 2)(
)(
tq

tv
ς+

 should attain its maximum value at some finite point 

qtt = , at which )( qBP t >  attains it maximum. For Gaussian processes,  qt , the dominant 

time scale is also the time at which it attains its maximum variance value )(tv . 

)()( qBPqQP t >=> is largely dominated by )( qBP
qt
> [25][26][58].  

The qt should be a local maximum point of ])/()(log[ 2tqtv ς+  that lies in the 

open set qttvt },0)(:{ >  must satisfy [58][59] 

.
)(

)(log0 2
qtttq

tv
dt
d

=

⎥
⎦

⎤
⎢
⎣

⎡
+

=
ς

                                        (4.11) 

Note: Eq. (4.10) and (4.11) will hold for discrete time processes. 

For notation simplicity, under (4.10) and (4.11), the new stochastic process mZ is 

defined as  

mq
mW

Z m
m χ

χ
+
+

=                                                         (4.12) 

and define ⎡ ⎤µqk
∆

= and 
µ

ρ A
=  

where  

               )()(: XmEWEm m −=−=χ  

           [ ]mAE )( µ−−=  

           [ ]mAE µ−−= )(  

           [ ]µρµ −−= m  
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           [ ]m1−−= ρµ  

  [ ]mρµ −= 1                                                       (4.13) 

Substitute (4.13) into (4.12), we have  
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Z m
m ]1[
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ρµ
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mk
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ρµµ
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]1[
ρµ

ρµ
.                                             (4.14) 

 

Proposition 1 [26] 1 ifonly  and if >> mqm ZW  

From proposition 1 and (4.6), the relationship between the steady state tail probability of 

the buffer queue length q and the extreme value distribution of Zm and Wm 

⎟
⎠
⎞

⎜
⎝
⎛ >=>

≥
qWPqQP m

m 0
sup)(  

⎟
⎠
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⎜
⎝
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≥
1sup

0
m

m
ZP  .                                        (4.15) 

From the Dominated Convergence Theorem [26][48], the equations (4.16) and 

(4.17) show that 0}{ →mZVar  as ∞→m  if ∞<∑∞

−∞=k X kC |)(| (a sufficient condition 

for the ergodicity of a stationary process [49]), 

{ } ∑
∞

−∞=
∞→

=
k

Xmm
kCWVar

m
)(1lim     

 (4.16) 

and 
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{ } 22 )1(
)(

lim
ρµ −

= ∑
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k X
mm

kC
ZmVar .    (4.17) 

Fig. 4.1 illustrates a plot of the variance of Zm versus m, it shows that }{ mZVar  must 

reach its maximum value at some finite m = mmax ≥ 0. Next, the extreme/supremum value 

distribution will be applied to approximate the tail probability. 

Maximum Variance Approximation: “For a zero mean normal process Zm that is 

correlated in time and whose variance }{ mZVar achieves a maximum value for some 

finite mmax [26],” 

( )uZPuZP mm
m

>≈⎟
⎠
⎞

⎜
⎝
⎛ >

≥
max

0
sup    (4.18) 

for sufficiently large u [26]. Fig. 4.1 illustrates this point by plotting }{ mZVar vs. m. For 

eq. (4.18), the right hand side approximation is a lower bound of the left hand side, that 

is ( )uZPuZP mm
m

>≥⎟
⎠
⎞

⎜
⎝
⎛ >

≥
max

0
sup   [26].  “Typically, }{5.1

maxmZVaru >  is sufficiently 

large for the approximation to work well [26]”. Thus, if 1}{ <<mZVar , then the tail 

probability P(Q>q) can be approximated as [26]  

                                              ( ) ( )1
max

>≈> mZPqQP      
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2
exp

2
1 2

1

maxσ

π
.   (4.19) 

This is because the probability that P(Q>q) is much less that 1, the condition 

1}{ <<mZVar  readily hold for this analysis [26]. 
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Theorem A (Theorem A in [56], Theorem D.4 in [57]) “Let [ ]{ }ULtt ,: ∈ς  be a zero 

mean (centered) Gaussian process, and suppose that there exist constants a and γ such 

that ( ){ } γςς staE ts −≤− 2  for all t, [ ]ULs ,∈ . Then, there exists a constant K 

determined only by a and γ, such that for any  [ ]ULA ,⊂  and y, 

{ }( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−≤>

A
A

yyLUKyP
σ

ψς γ/2                              (A.1) 

where { }tAtA
Var ςσ ∈= sup ”. 

 

Summary of the algorithm for obtaining the tail probability P(Q>q) based on the MVA 

approach for discrete time queueing model [26]: 

1. Given individual arrival processes with mean sX and auto-covariance )(lCs , compute 

the aggregate mean ∑ =
=

N

s sXA
1

, and auto-covariance ∑ =
=

N

s sA lClC
1

)()(  of the 

aggregate arrival process. 

2. Compute }{ mZVar using Eq. (7.b) and (9.b) as 

22
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= ∑ −
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ρµ
 

where A>µ is the link rate, µρ A= , and ⎡ ⎤µqk
∆

= . 

3. Determine 2
maxσ , the maximum value of }{ mZVar .  

4. Finally, compute the tail probability ( ) ( ) ∫
∞ −

=>≈>
max

2

max 1
2

2
11

σ π
dxeZPqQP

x

m , 

where 
maxmZ is the normal random variable. 
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The typical plot of }{ mZVar versus m is shown in Fig. 4.1. This analysis is done at an 

ATM multiplexer with the following assumptions: q=1000, µ=0.61, N=100, where 

individual arrival process has a mean sX = 10 cells/sec, and auto-covariance of Gaussian 

process l
s elC 04.0100)( −= . 

 

 

 

Fig. 4.11  Plot of variance of Zm versus m. The variance reaches a maximum value and 
then begins to converge to 0. The parameters used are q=1000, µ=0.61, N=100, each 

individual arrival process with mean sX = 10 cells/sec, and auto-covariance 
l

s elC 04.0100)( −= . 
 

                                                 
1 This figure is attempted to reproduce the result of Figure 3 in [26]. Both graphs have the same distribution 
shape but values may not be exactly the same, because the parameters used in [26] to plot Figure 3 are not 
provided by reference [26]. So, we cannot regenerate the plot with the same set of parameters used in [26] 
(which is unknown to us). The attempt here is to use the MVA theory and plot the Fig. 4.1 using a set of 
predicted parameters to regenerate the plot that is similar to Figure 3 in [26].  
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4.3 Jitter Analysis of Heterogeneous Traffic Networks 
 

Assume the packets arrive and depart at the beginning of a slot, which leads to a 

discrete time queueing process. The time is slotted with the size being equal to the 

transmission of a packet. An arrival time slot is defined as the time interval [t-1, t), where 

t is a non-negative integer (i.e., t ≥ 0). Here we define the nth packet arrival time slot 

interval as [nT, (n+1)T) for the packet from the tagged stream (stream of interest), where 

n and T are non-negative integers. The background traffic is the superposition of all the 

other traffic competing for the resources with the tagged stream at a node. In 

heterogeneous high-speed network, jitter experienced by real-time traffic can be 

worsening if traffic is not being regulated or some type of congestion control mechanism 

is not applied. Thus, a service discipline similar to the distortion-reducing peak output-

rate enforcing (PORE) [50] is used to prevent the delay jitter increasing without bound. 

Let’s refer to this as a tagged stream adaptive PORE (APORE) service discipline. The 

APORE service strategy guarantees the packets belong to a tagged stream are transmitted 

at a minimum spacing of Amin slots, where Amin = T -1. Whenever the queue level q < Amin 

, the server delays providing service to the tagged stream, instead provides first-come-

first-serve service to the background traffic. Thereby, it ensures the tagged stream 

experiences minimum jitter (see Fig. 4.4).   

 
Proposition: The probability that a jitter size of j will exist for the nth packet of the 

tagged stream is given by: 

                      { }jJP n =
~ = { }qAjJP nn =−= + 1|~

1 { }qAP n =−⋅ + 11  

                     = ( ) min0),(
2
1 AqjfqQP q ≤<>                                       (4.20) 
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where )1(1 −≤≤ Tj  and 1+nA  indicates the total number of packets that arrive in the 

(n+1)th time slot group. In (4.20), the probability of q number of data packets that arrive 

among the available (T-1) slots will be served.  

A special case of (4.20) is the zero jitter case (i.e., j = 0), which is simply                                        

                                                       P{ }0~ =nJ = { }∑
−

=

=−
)1(

1

~21
T

j
n jJP .                               (4.21) 

Derivations & Explanations: In (4.20), the term { }qAP n =−+ 11  is the aggregated traffic 

arrival distribution that approximates the number of arrivals in the arrival slot of a tagged 

stream packet. It is based on the consideration of the probability the packets that arrive 

within the time slot group, which will be served ahead of the tagged packet. Subtract 1 

from the total number of aggregated packets that arrive in the (n+1)th time slot group 

(i.e., )1( +nA ) due to the fact that the tagged frame is also among the overall traffic. The 

traffic distribution in eq. (4.20) is based on                                       

                      { } ( )qQPqAP n >==−+ 2
111    

                                          { }( ) ∫
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m                           (4.22) 

where )]1(,1[ −∈ Tq , calculated using the MVA approach discussed in section 4.2. The 

discrete triangle distribution applied is a symmetric distribution, which represents the 

probability that the time slot position of two sequentially arriving frames will be offset by 

a jitter amount of +j or –j. Thus, the triangle distribution for the range [-q, q] is applied as  

   { } )(,1|~
)1( jfqAjJP qnn ==−= +  
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1
2

min                        (4.23) 

which provides the normalized jitter probability of  j given that q packet arrivals enter the 

server before the (n+1)th tagged packet of the tagged stream, among the overall x 

possible time slots, 0 ≤ x ≤ T. 

 

4.3.1 Simulation and Numerical Study 
 

The following simulation and numerical results focus on the delay jitter in terms 

of pdf on the performance of a tagged stream under different traffic conditions. For the 

illustrative purpose, the bursty Internet traffic trace is used in this evaluation. The 

simulation environment has been set up in such a way that the information bit stream 

(e.g., video, multi media, digitized voice, etc) is packetized into fixed-length ATM cells 

(packets). The cells are transmitted using fixed inter-arrival time but the bit length is 

varied from cell-to-cell (packet-to-packet). Accordingly, the delay jitter is defined as the 

delay jitter experienced between two successive packets (e.g., the nth and n+1th packets 

from the tagged stream), where the delay jitter is calculated based on (4.3) (see Flowchart 

1). For the experiment, a real Internet traffic trace is used, BC-pAug89 packet traces of 

LAN and WAN traffic seen on an Ethernet. We assume that Ethernet traffic sources are 

multiplexed on to an ATM network, where traffic is segmented into small and fixed sized 

cell/packet in order to achieve small delay and delay jitter [51][52]. The reason we base 

our analysis on ATM networks is because still ATM remains as the most widely used 

Internet backbone protocol at this time. The traces are in byte units, which is converted 

into ATM cell 53 bytes. The variable size Ethernet packets are segmented in to constant 
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size of 53 bytes packets (cells). Thus, the traffic transmitting in the network is fixed size 

packets and one packet is transmitted in each time slot.  

Flowchart 1 is the algorithm of delay jitter calculation at a multiplexer/node. The 

queue consists of a tagged stream packet and background stream packets. The tagged 

stream and background stream are segmented into ATM 53 bytes packets. There are a 

random number of background stream packets that enter the queue before the tagged 

stream packet. Whenever the queue level q < Amin , the server delays providing service to 

the tagged stream, instead provides first-come-first-serve service to the background 

traffic. The traffic trace of BC-pAug89 is re-sampled at 10 ms. Assume the average 

processing rate and overhead delay is 1ms per cell, the inter-arrival time between two 

consecutive cells is 10 ms, which will be equivalent to 10 time slots (for generate T = 10 

tagged stream). Through the numerical example, we demonstrate the accuracy of the 

closed form delay jitter approximation of eq. (4.20) shown in Fig. 4.2 of a 95% 

confidence interval (CI), for self-similar traffic of heterogeneous networks. Here, we 

calculate the 95% CI for the delay jitter proportion between the real data set and the 

numerical analysis (eq. (4.20)). The width of the 95% CI reveals the degree of 

uncertainty in the estimate of the treatment effect; in another words, this is the interval 

which includes the true value with 95% certainty. The real data set is used to obtain the 

empirical pdf function for the delay jitter. Then, eq. (4.20) is used to approximate the 

delay jitter pdf function of the data set. Subsequently, confidence intervals for the 

estimations are computed. The confidence interval bounds on the standard deviation 

between the empirical and numerical values. 
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 In Fig 10, we compare the approximation eq. (4.20) and the simulation results of 

the jitter distribution at a multiplexer serving various Internet applications.  Fig. 4.2 

shows that the delay jitter increases when the traffic utilization increases from 50% to 

90%, for T equals to 10. In Fig. 4.3, we can observe that the tagged stream with a large 

period will tend to experience large delay variation as the utilization increases from 50% 

to 70%, where the T  increases from 10 from 20. Fig. 4.4 illustrates the effectiveness of 

the control algorithm, the APORE service strategy that guarantees the packets belong to a 

tagged stream are transmitted at a minimum spacing of Amin slots, where Amin = T -1. If 

we choose the Amin to be larger than T -1, then we will introduce more delay variation to 

the tagged stream, as shown in Fig. 4.4 the probability of jitter increases as Amin > T-1. 

We will not consider Amin < T-1, because this will increase the possibility that a packet 

from the tagged stream may not be arrived to a node even it is its turn for entering 

service. 
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Flowchart 1 The simulation algorithm used to calculate delay jitter at a multiplexer. 

 
Fig. 4.2 Comparison between the approximation equation and the simulation results of 

the jitter distribution for utilization of 50% and 90% with 95% CI, for the case of T = 10. 
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Fig. 4.3 Distribution of jitter for the comparison between utilization of 50% and 70%, 

and for the comparison between T = 10 and 20. 

 
Fig. 4.4 Distribution of jitter for utilization of 60%, T=10, 

and various Amin values. 
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4.4 Jitter Analysis of Heterogeneous Traffic Networks with Differentiated Services 
 

In this section, the jitter characteristic of the priority class in the DiffServ network 

is analyzed.  

In order to provide high quality service, end-to-end quality of service (QoS) 

support is required. Several network models and mechanisms have been proposed by the 

Internet Engineering Task Force (IETF) to improve the QoS of integrated service 

networks by deploying differentiated service (DiffServ), traffic engineering (TE), and 

constraint-based routing (CR) [53]. The realization of DiffServ in networks is one of the 

essential focuses of TE technologies under development. Recently, in wide area networks 

(WANs), protocols like multiprotocol label switching (MPLS) and generalized MPLS 

(GMPLS) are being developed with this focus of enabling effective TE with DiffServ 

capabilities. 

A basic differentiated service scheme can be provided by a set of priority 

scheduling algorithms. The traffic flows are aggregated according to their belonging to a 

certain class type called the per-hop behavior (PHB) [54]. The traffic classification is 

done in qualitative terms, which are based on vendor concerns [54][55]. For example, the 

network administrator may configure the service rate of 50%, 35%, and 15% for classes 

1, 2, and 3 respectively. Class 3 may correspond to delay jitter insensitive traffic, where 

the least bandwidth is being enforced for this class (e.g., best effort Internet traffic).  

Therefore, the research presented in this dissertation proposes a methodology to 

directly compute the QoS performance quantity (e.g., probability distribution of inter-

arrival jitter) of network deploying differentiated services. The analytic models are 

applied in analyzing the contribution of multiple-class of services in Internet networks 
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with respect to inter-arrival packet jitter. In addition, the relationship between inter-

arrival packet jitter and the system characteristics, such as the server utilization and 

priority, is also investigated. This tool will help to provide an analysis of network routers 

and network streams for various system server topologies in order to assist network 

system designers in the hardware/firmware development and estimate the quality of 

service of DiffServ networks with heterogeneous type traffic, which includes real time 

and non-real time integrated traffic streams from different sources (e.g., voice, audio, 

video, image, plain text and data of other newly developed Internet applications).  

DiffServ capable networks provide end-to-end QoS control by classifying and 

assigning different classes of services onto the incoming packets. Hence, at the base 

station’s router/switch, the packets are buffered before being multiplexed onto the high-

speed link following a non-preemptive HOL priority scheme, where the packets that have 

been postponed in services will wait at the head of the line of its equivalent class until all 

higher priority packets have been cleared out of the server. The APORE service control 

algorithm strategy that guarantees the packets belong to a tagged stream are transmitted 

at a minimum spacing of Amin slots, where Amin = T -1. Assume class 1 has priority over 

class 2, class 2 has priority over class 3, and so on. Among the same priority the first in 

first out (FIFO) transmission ordering applies.  

In the discrete time model, the fluid is permitted to flow in and out of the buffer 

only at discrete time interval denoted by k. Let N  be the total number of sources served 

by the multiplexer. Define dkX ,  to be the aggregated fluid of class d arriving at time k, 

and less the system capacity µd of class d, where ∑ =
=

N

s
s
dkdk XX

0
)(

,, and ddkX µ−=
∆

)0(
, . Here, 

we assume that each fluid arrival process of class d corresponding to source s, )(
,
s
dkX , is an 
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independent mean ergodic stationary process with mean dsX ,  and auto-covariance )(lCs . 

Let’s denote 
)(

,1,

s

dk

N

sdk XA ∑ =

∆

=  to be the aggregate arrival process. Then, Ak is also a 

mean ergodic stationary arrival process with mean ∑ =
=

N

s dsd XA
1 , and auto-covariance 

∑ =
=

N

s dsA lClC
d 1 , )()( .  Thus, ddkdk AX µ−= ,,  is a mean ergodic stationary process with 

mean ddd AX µ−=  (where ∑ =
==

N

s
s
dkdkd XXEX

0
)(

,, }{ ) and auto-covariance 

)()( lClC
dd AX = . Let 0, ≥dkQ be the amount of fluid corresponding to class d in the 

buffer at time k, less than the capacity µd, and dkQ ,  for the infinite buffer case can be 

represented using Lindley’s equation  

{ }.0,max)( ,,1,,1, dkdkdkdkdk XQXQQ +=+= −
+

−   (4.24) 

Let say that the fluid queue has always been operational, that is ∈k ƶ = {…, -1, 0, 1, …} 

(instead of time starting at k = 0). Due to dkX ,  being an ergodic stationary process, the tail 

probability of the buffer queue length q at time k ( )( , qQP dk > ) converges to a steady 

state tail probability of buffer queue length q ( )( qQP d > ) regardless of the initial 

condition. The steady state queue length distribution corresponds to the supremum 

distribution of an ergodic stationary process dkX ,  and the corresponding stochastic 

process dkQ ,
~ . The maximum amount of fluid in the system at time k can be expressed as  

∑
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dik

m
dk XQ       (4.25) 
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where m = 0, 1, 2, … . On the supremum distribution of Integrated Stationary Gaussian 

process with linear drift, the limiting (steady state) queue length distribution corresponds 

to the supremum distribution, 

                      )~(lim:)( , qQPqQP dkkd >=> ∞→            
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Let the supremum of a stochastic process for class d defined by ∑
−

=
−

∆

=
1

0
,,

m

i
didm XW . Based 

on the Extreme Value Theory, we can study the supremum distribution of dQ  through the 

supremum stochastic process dmW , . Note that this stochastic process dmW ,  is not 

stationary. Now, Ak,d is modeled as a stationary normal process, then both Xk and Wm are 

normal processes. This is justified by applying the Central limit Theorem, which 

mentioned in the introduction that the multiplexer will serve a large number of 

independent sources. Thus, we study the supremum distribution of dmW , through the new 

supremum stochastic process dmZ , , where dmZ ,  is a centered (zero mean) Gaussian 

process.  So, determining the extreme distribution of dmW , is equivalent to determining 

the extreme distribution of dmZ , . Assume there is a total of D class of services, the 

extreme value distribution of a new stochastic process of class 

d },,2,1;,1,0:{ , DdmZ dm KK == , which is defined as 

                                 
))1((

)1(,
, km

mW
Z

dd

dddm
dm +−

−−
=
∆

ρµ
ρµ

                           (4.27) 



 76

where 
d

d

c

N

s csd

c c
A

d

X
d

d

µ
ρρ µ

∑ ∑∑ = =
=

∆

=== 1 1 ,

1
 is the load of class d at the multiplexer, ⎡ ⎤d

qk µ

∆

=  

is the time it takes for the fluid in the buffer at level q to empty, and µd is the service rate 

of class d. Based on this we can define Zm,d  as a normal process with  
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Based on the Maximum Variance Approximation, the tail probability of class d, P(Qd>q), 

can be approximated as  
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This is based on the same argument proved in [26], which is explained in section 4.2 

above. Due to the probability that P(Qd>q) is much less that 1, the condition 1}{ , <<dmZVar  

readily hold for this study. 

Proposition: The probability that a jitter size of j will exist for the nth packet of the 

tagged stream for a class d traffic source is given by 

                      { }jJP dn =,
~ = { }qAjJP dndn =−= + 1|~

,1, { }qAP dn =−⋅ + 1,1  

                     = ( )
min

0),(
2
1

, ddqd AqjfqQP ≤<>                             (4.30) 

where )1(1 −≤≤ Tj  and dnA ,1+  indicates the total number of packets that arrive in the 

(n+1)th time slot group of class d and higher priority classes compare to class d. In eq. 
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(4.30), the probability of q number of data packets that arrive among the available (T-1) 

slots will be served.  

A special case of (4.30) is the zero jitter case (i.e., j = 0), which is simply                                        
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Derivations & Explanations: In (4.30), the term { }qAP dn =−+ 1,1  is the aggregated traffic 

arrival distribution of class 1 up to class d, that approximates the number of arrivals in the 

arrival slot of a class d tagged stream packet. It is based on the consideration that the 

assignment probability of the packets that arrive within the time slot group, which will be 

served ahead of the tagged packet. Subtract 1 from the total number of aggregated 

packets that arrive in the (n+1)th time slot group (i.e., dnA ),1( + ) due to the fact that the 

tagged frame is also among the overall traffic. The traffic distribution in (4.30) is based 

on                                       
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where )]1(,1[ −∈ Tq , calculated using the MVA approach discussed in section 4.2. The 

discrete triangle distribution applied is a symmetric distribution, which represents the 

probability that the time slot position of two sequentially arriving frames will be offset by 

a jitter amount of +j or –j. Thus, the triangle distribution for the range [-q, q] is applied as  

   { } )(,1|~
,),1( jfqAjJP dqdnn ==−= +  
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which provides the normalized jitter probability of j given that q packet arrivals enter the 

server before the (n+1)th tagged packet of tagged stream, among the overall minA  

possible time slots. 

 

4.4.1 Simulation and Numerical Study 
 

The jitter probability of heterogeneous traffic streams with HOL priority control 

in DiffServ networks has been investigated. The derivations of this section provide a 

direct method to analyze the per-class jitter based on the parameters ρ and T. Fig. 4.5 and 

14 show the jitter probability distribution of three different classes for the case of T = 10 

slots and ρ equal to 50%, and also assuming that the probability of traffic arrival in the T 

slot observation window for class 1, class 2, and class 3 are the same. Fig. 4.5 has shown 

the 95% CI for the delay jitter proportion between the real data set and the numerical 

analysis. The width of the 95% CI reveals the degree of uncertainty in the estimate of the 

treatment effect; in another words, this is the interval which includes the true value with 

95% certainty. The wider the width the more uncertainty it is, and more data set that 

collected from the same population is needed to increase the confidence level. In Fig. 4.6, 

the approximation equation results are comparing to the simulation results of the jitter 

distribution. In Fig. 4.5 and 4.6, it can be observed that the probability distribution 

function of the interarrival packet jitter widens as the class priority is descending, thus 

resulting in a higher probability of packet jitter for low priority classes. This is an 

expected result, where the newly derived equations provide a method to directly compute 
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this physical probabilistic quantity. Also, for class 1 as ρ << 1 the probability of jitter at 

zero (no jitter) increases while the probability of jitter for the non-zero values is reduced. 

 

 

Fig. 4.5 Comparison among class 1, class 2 and class 3 with respect to the approximation 
equation and the simulation results of the jitter distribution for utilization of 50% 

with 95% CI, and T = 10. 
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Fig. 4.6 The comparison of probability jitter distribution among class 1, class 2, and 
class3, where utilization is 50% and T is 10. 
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Chapter 5  
 

Conclusions  

 

In this dissertation, the following research has been conducted   

1. Investigate the delay jitter performance of homogenous wireless networks that 

apply ARQ error recovery with time constraints have been developed. The effects 

on the delay jitter in reference to the priority control scheme of the ARQ traffic 

for the two cases are evaluated: i) the ARQ traffic has a priority over the original 

transmission traffic; and ii) the ARQ traffic has no priority over the original 

transmission traffic. 

2. Investigate the issues of traffic jitter characteristics in heterogeneous wired 

communication networks deploying different scheduling algorithms: 

• Obtain the tail probability P{Q>q} based on the MVA approach for discrete 

time queueing model [25][26] to conduct the queue length analysis, which is 

used in heterogeneous jitter analysis. 

• To find the pmf (probability mass function) of inter-arrival packet jitter from 

the queue length distribution. 

3. The objective of this dissertation is to investigate and analyze the various possible 

traffic modeling techniques and evaluate the challenges in characterizing the 

diverse statistical properties of heterogeneous wireless networks [13-43][56-60]:
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• Study the characteristics of the traffic: self-similarity, heavy-tailed 

distribution, Gaussian traffic distribution. 

• Comparisons among the popular traffic models.  

4. Apply the Gaussian traffic modeling using the MVA approach [25][26] to 

conduct the queue length analysis, which will be further used in heterogeneous 

jitter analysis [1-12]. 

5. Analyze the difference between jitter probability of multiple priority queues and 

switches [1-12]: 

• The head-of-line (HOL) priority queueing mechanism is applied at the 

queueing and scheduling control. 

6. Develop a service discipline called the tagged stream adaptive distortion-reducing 

peak output-rate enforcing to control and avoid the delay jitter increases without 

bound.   

In conclusion, using the Gaussian traffic modeling technique combined with the 

MVA approach for self-similar network traffic, the delay jitter was shown with the 95% 

CI for the delay jitter proportion between the real data set and the numerical analysis.  

For future research, this analysis will be extended to multiple priority queueing 

case. The multi-hop jitter of wireless and wired network analysis can be conducted, 

where end-to-end congestion control is needed at a router for fair bandwidth allocation 

per-flow. The Core-Stateless Fair Queueing (CSFQ) [47] can be applied to allocate fair 

bandwidth per-flow, and performance is evaluated (the number of congested links).  
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