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CHAPTER 1

INTRODUCTION

Overview

Multilayer feedforward neural networks (MFNN) have been used in many nonlin-

ear regression problems. They have been shown (both mathematically and practically) to 

be a powerful tool in approximating functions, based on a set of examples. In addition, it 

has been theoretically proven that their derivatives are capable of approximating the under-

lying derivatives of the functions. In this research, we focus on the development and the 

derivation of training algorithms for MFNNs to approximate both functions and their first-

order derivatives.

Multilayer feedforward neural networks are capable of simultaneously approximat-

ing both a function and its derivatives, as has been proven in [HoSt90], [Horn91], [Ito93], 

[Li96] and [Pink99]. However, there has not been a large amount of research into the de-

velopment of algorithms for training multilayer feedforward neural networks to simulta-

neously approximate both a function and its first derivatives. This will be the focus of our 

research.

There have been a few methods proposed in the past to train MFNNs for approxi-

mating both a function and its derivatives. All of these methods assume noise-free environ-

ment. One approach, called algebraic training, was proposed in [FeSt05]. This method 
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algebraically obtains the network parameters in one function approximation step. The de-

rivative approximation is carried out in the second stage, where the algorithm iteratively 

adjusts the network parameters to improve the derivative approximation of the neural net-

work. In [BaEn99], the derivative approximation was performed by adding an extra output 

unit for each partial derivative to the regular structure of the feedforward neural network 

that was used to approximate the function. The standard backpropagation procedure was 

then used to train the proposed network structure. In [HaZa99], an additional network was 

created to approximate the derivatives. The derivative approximation obtained from the ex-

tra network was then combined with the network output used for function approximation 

using the Taylor series expansion.

In our research, a different technique will be used. We will  modify the network 

structure or create an additional network for derivative approximation. We will use the 

same network for derivative approximation that we use for function approximation. In ad-

dition, unlike the algebraic training, the derivative approximation in our method will occur 

simultaneously with the function approximation. However, like the other methods above, 

we also assume that the data for this research are noise-free.

Objectives

As previously mentioned, our research goal is to develop new algorithms for train-

ing MFNNs to simultaneously approximate both a function and its first derivatives (in a 

noise-free environment). However, we will also investigate both function and derivative 

approximation accuracy for three existing algorithms. These existing algorithms will be 

called the standard methods in this research, and they are:

not
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1. Broyden-Fletcher-Goldfarb-Shanno with Early Stopping ( ),

2. Levenberg-Marquardt with Early Stopping ( ), and

3. Gauss-Newton Approximation to Bayesian Regularization ( ).

This evaluation is similar to the work of [GaWh92], though we will use different training 

methods. The approximation accuracy and the execution time of the new algorithms will 

be compared with the standard methods.

In this research, five new algorithms are developed. They are

1. Levenberg-Marquardt with Early Stopping using a modified validation measure 

( ),

2. Levenberg-Marquardt with Early Stopping using the derivative information of 

the training set ( ),

3. Combined Function and Derivative Approximation using Broyden-Fletcher-

Goldfarb-Shanno optimization ( ), and

4. Combined Function and Derivative Approximation with Levenberg-Marquardt 

optimization ( ).

5. Combined Function and Derivative Approximation methods with a network-

pruning algorithm.

The  and  methods only change the validation performance 

measure, while standard training algorithms are used to train the neural networks. For 

 and , the proposed change is in the training performance in-

dex. Therefore, the standard calculations cannot be applied. The  methods can be 

BFGS ES–

LM ES–

GNBR

LM ES1–

LM ES2–

CFDA BFGS–

CFDA LM–

LM ES1– LM ES2–

CFDA BFGS– CFDA LM–

CFDA
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incorporated with the proposed network-pruning algorithm, thus resulting in the fifth algo-

rithm.

The results of the standard methods and the new algorithms will be compared on 

several analytic and real-world problems. The real-world application we focus on in this 

research is molecular dynamics, where the motion of atoms is simulated. The potential en-

ergy of the atoms is a function of atomic configuration, and the forces acting on the atoms 

are the negative first derivatives of the potential energy. Therefore, molecular dynamics is 

a good example where both the function and its first-order derivative approximation are of 

interest.

Outline

In Chapter 2, the mathematical notation and the general concepts of MFNNs will be 

introduced. The use of the neural networks in function approximation will be briefly re-

viewed. Three standard training algorithms for function approximation will be discussed, 

i.e. ,  and . The conditions under which the neural networks 

can simultaneously and uniformly approximate both a function and its derivatives will be 

provided.

In Chapter 3, two new validation-related methods will be introduced, i.e. 

 and . The comparison of the approximation accuracy between these 

methods and  on analytic problems will be compared and discussed.

In Chapter 4, the  training performance index is proposed. Two approaches 

(i.e. batch mode and memory-save method) for calculating the gradient of the  per-

BFGS ES– LM ES– GNBR

LM ES1– LM ES2–

LM ES–

CFDA

CFDA
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formance index (which works with any gradient-based optimization) are proposed and de-

rived. The execution time for computing the  gradient and the standard gradient, 

under several scenarios, is compared.

In Chapter 5, the  method under the Levenberg-Marquardt framework, 

named , is discussed. Two approaches (i.e. batch mode and memory-save 

method) for minimizing the  performance index are proposed and derived. The 

comparison of the execution time for the  method and the standard Leven-

berg-Marquardt algorithm is illustrated.

In Chapter 6, two new types of overfitting in a two-layer network with one output, 

trained with any  method are discussed. A network-pruning algorithm to mitigate 

the overfitting is proposed. A pseudo code for the algorithm is given.

In Chapter 7, we introduce a procedure to test the approximation accuracy of neural 

networks in four analytic problems. We discuss a way to assign a value to the unknown pa-

rameter in the  performance index. We choose , for the gradient-

based . The pruning algorithm is applied to  and . We 

denote  with the pruning method and  with the pruning meth-

od:  and , respectively. We test the approximation accura-

cy of neural networks trained by the standard methods and the  methods (i.e. 

, ,  and ). The results are 

shown and discussed. Examples showing the  overfitting and how the pruning algo-

rithm removes it are demonstrated.

CFDA

CFDA

CFDA LM–

CFDA

CFDA LM–

CFDA

CFDA CFDA BFGS–

CFDA CFDA BFGS– CFDA LM–

CFDA BFGS– CFDA LM–

CFDA BFGS– p CFDA LM– p

CFDA

CFDA BFGS– CFDA LM– CFDA BFGS– p CFDA LM– p

CFDA
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In Chapter 8, the background material for molecular dynamics is reviewed. The use 

of neural networks in molecular dynamics is discussed. The comparison in approximation 

accuracy of neural networks trained by  and the  methods is illustrated and 

discussed for several problems. An example showing the  overfitting in a molecular 

dynamics problem and how the pruning algorithm removes it is demonstrated.

In Chapter 9, the summary of the research and the future work is provided.

GNBR CFDA

CFDA
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CHAPTER 2

APPROXIMATION USING NEURAL NETWORKS

Introduction

The objective of this research is to use multilayer feedforward neural networks 

(MFNNs) for approximating functions and their first-order derivatives. This chapter serves 

three purposes. First, the notation used throughout the research will be introduced. Second, 

we will discuss the concept and the background material of MFNNs, including a review of 

three existing training algorithms for multilayer feedforward neural networks. These algo-

rithms are Broyden-Fletcher-Goldfarb-Shanno with Early Stopping , Leven-

berg-Marquardt with Early Stopping , and Gauss-Newton approximation to the 

Bayesian regularization . Finally, the conditions under which multilayer feedfor-

ward neural networks can simultaneously approximate both a function and its first-order 

derivatives will be briefly discussed and reviewed. 

Notation

This section will introduce mathematical notation that will be used throughout the 

research. The following definitions provide the meaning of three mathematical operators, 

see [HoJo94] and [MaNe99].

BFGS ES–( )

LM ES–( )

GNBR( )
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Definition (3) Let  be an  matrix and  a  matrix. The  ma-

trix defined by

(1)

is called the Kronecker product of  and , and written .

Definition (4) If  and  are matrices of the same order, say 

, then the Hadamard product of  and  is the  matrix

. (2)

Definition (5) Let  be an  matrix and  its  column; then  is the 

 vector

. (3)

We will use the following notation, from [MaNe99], for representing the deriva-

tives of a function:

A m n× B p q× mp nq×

a1 1, B … a1 n, B
… …

am 1, B … am n, B

A B A B⊗

A ai j,[ ]= B bi j,[ ]=

m n× A B m n×

A B• ai j, bi j,[ ]=

A m n× aj jth vecA

mn 1×

vecA

a1

a2

…
an

=
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Definition (6) Let  be a differentiable scalar function of a scalar variable . Then 

the derivative of  is denoted .

Definition (7) Let  be a differentiable scalar function of a  vector . Then 

the derivative of  is the  array

. (4)

Definition (8) Let  be a differentiable  real vector function of a  vector 

, then the derivative of  is the  matrix

. (5)

And the derivative of the function , where , with respect to the scalar 

variable , where  is denoted by

. (6)

f x

f f· x( ) f x( )∂
x∂

------------=

f p 1× x

f 1 p×

f x( )∂

xT∂
------------ f∂

xT∂
-------- f x( )∂

x1∂
------------ … f x( )∂

xn∂
------------= =

f m 1× p 1×

x f m p×

f x( )∂
xT∂

------------- f∂
xT∂

--------

f1 x( )∂

xT∂
---------------

…
fm x( )∂

xT∂
----------------

f∂
x1∂

-------- … f∂
xp∂

--------= = =

fi i 1 2 … m, , ,=

xj j 1 2 … p, , ,=

fi x( )∂
xj∂

--------------
fi∂
xj∂

-------=
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Definition (9) Let  be a differentiable  matrix function of a  matrix of 

real variables . Then, the derivative of  with respect to  is the  matrix

. (7)

We will also use the notation  to denote the  matrix, all of whose ele-

ments are ones. The  identity matrix will be denoted by the notation .

The next section will discuss some notation and background material for MFNNs. 

A brief discussion of how the MFNN can be used for function approximation will also be 

presented.

Multilayer Feedforward Neural Networks

We will divide this section into three parts. The first part will briefly discuss the 

general concept of MFNNs. The notation for MFNNs will be introduced in the second part. 

Finally, we will describe how MFNNs can be used for function approximation.

Background material

The term neural networks has been used to refer to a structure consisting of connect-

ed nodes (or neurons) in any formation (i.e. parallel, series or both). The inspiration of in-

venting neural networks was initially based on how a brain works. However, neural 

networks are now considered a mathematical and statistical model for information and sig-

F m n× p q×

X F X mn pq×

vecF∂

vecX( )T∂
-----------------------

x1
T∂

∂ f1 …
xq

T∂

∂ f1

… …

x1
T∂

∂ fn …
xq

T∂

∂ fn

=

1m n× m n×

m m× Im
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nal processing. Neural networks have been theoretically and practically proven to be a pow-

erful tool in many applications, such as function approximation, classification, pattern 

recognition, novelty detection, filtering, etc. Neural networks have been categorized into 

several types usually based on how neurons are connected. One of the most widely-used 

types for function approximation is the MFNN. In this research, we will focus on using 

MFNNs for function approximation. For ease of reference, the term neural network (or just 

network) will be used throughout this document to refer to MFNNs.

A neural network consists of neurons connected in parallel and series. The structure 

of a neuron is shown in the following figure.

Figure 1) A single neuron

From Figure 1), a neuron consists of several components. They are the neuron input , the 

weight , the bias , the summer, the net input , the transfer function , and the neuron 

output . The net input is computed as . The net input is fed to the transfer 

function  to produce the neuron output , i.e. . The weight  and the bias  

are called the “network parameters”.

When neurons are connected in parallel and cascade, a more complicated structure 

is obtained. In the parallel structure (layer), each neuron receives the same inputs as the oth-

er neurons do but independently produces its own output. When neurons are in the cascade 

 ∑ f

1

b

p a
nw

p

w b n f

a n wp b+=

f a a f n( )= w b
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structure, each neuron output of a preceding layer is distributed to be a neuron input for ev-

ery neuron in the layer following it. The general structure is referred to as an  

neural network. An example of a  neural network is illustrated in the following 

figure.

Figure 2) The  feedforward neural network

Since the complexity drastically increases as we have more neurons and layers, we 

need notation to refer to a specific neuron. In the next part, we will introduce the notation 

for the general structure of a multilayer feedforward neural networks that will be used 

throughout this research.

Notations for neural networks

An  feedforward neural network structure can be denoted 

. This structure notation corresponds to the statement that the 

 neural network consists of  inputs,  neurons in the first layer,  neurons 

in the second layer and so on, until  neurons in layer , i.e. the output layer. The layers 

1 through  are called hidden layers. Layer  is called the output layer. We can con-

sider the network inputs as the neuron outputs of layer .

M layer–

3 layer–

Linear LayerTan-Sigmoid LayerTan-Sigmoid Layer

a tansig W p b
1 1 1
= ( + ) a tansig W a b

2 2 1 2
= ( + ) a purelin W a b

3 3 2 3
= ( + )

S
1
x 1 S

2
x 1 S

3
x 1

S
1
x 1 S

2
x 1 S

3
x 1

S
1
x 1 S

2
x 1 S

3
x 1

R x 1

S
1
x R S

2
x S

1
S

3
x S

2

S
1

S
2

S
3

n
1

n
2

n
3

p a
1

a
2

a
3

W
1

W
2

W
3

b
1

b
2

b
31 1 1

R

Inputs

3 layer–

M layer–

R S1 S2 …– SM–––

M layer– R S1 S2

SM M

M 1– M

m 0=
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Suppose we have an  neural network and  input/target pairs 

in the training set. We write  to denote element  of the input vector, and write  to 

denote element  in the  input vector. We write  to denote the weight of neuron  

at layer , that connects from the output of neuron  at layer . The bias for neuron 

 at layer  is denoted by . The weight  is the weight, which connects from the  

element of the input vector to neuron  in the first layer. The net input of neuron  at layer 

 is denoted by  and the notation  denotes the output of neuron  at layer . At the 

output layer,  is also denoted by  ( ). When the  input vector is applied to 

the network (i.e.  for ), the values of ,  and  are denoted 

by ,  and , respectively. We assume that the transfer function is the same for 

each neuron in the same layer; thus using  to denote the transfer function at layer .

The notation we just introduced can also be used in matrix form. A couple of exam-

ples are provided: the notation  means this element is at row  of the  input vector 

 and it is also the element at row  and column  of the  matrix . The notation 

 means this element is at row  of the  vector , and it is the element at row 

 and column  of the  matrix . The notation  is at row  of the  vec-

tor . The notation  is at row  of the  vector , and it is at the row  and 

R S1 S2 …– SM––– Q

pr r pr q,

r qth wi j,
m i

m j m 1–

i m bi
m wi j,

1 jth

i i

m ni
m ai

m i m

ak
M ak ak

M ak= qth

pr pr q,= r 1 2 … R, , ,= ni
m ai

m ak

ni q,
m ai q,

m ak q,

f m m

pr q, r R 1×

pq r q R Q× P

ak q,
m k Sm 1× aq

m

k q Sm Q× Am bi
m i Sm 1×

bm wi j,
m i Sm 1× wj

m i
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column  of the  matrix . The following examples illustrate how the nota-

tions , ,  and  can be expressed in matrix form:

 and , (8)

 and , (9)

, (10)

 and . (11)

Note that we use the notation  to denote the  row vector of the matrix . Similarly, 

the notation  is to denote the  row vector of the matrix . The following equa-

tions illustrate how these are related to the notations previously introduced:

 and , (12)

 and . (13)

j Sm Sm 1–× Wm

pr q, ak q,
m bi

m wi j,
m

pq
T

p1 q, p2 q, … pR q,= P p1 p2 … pQ=

aq
m( )

T
a1 q,

m a2 q,
m … a

Sm q,

m= Am
a1

m a2
m … aQ

m=

bm( )
T

b1
m b2

m … b
Sm
m=

wj
m( )

T
w1 j, w2 j, … w

Sm j,
= Wm

w1
m w2

m … w
Sm 1–
m=

pT
r rth P

wm
i( )

T
ith Wm

pT
r pr 1, pr 2, … pr Q,= P

pT
1

pT
2

…

pT
R

=

wm
i( )

T
wi 1, wi 2, … w

i Sm 1–,
= Wm

wm
1( )

T

wm
2( )

T

…

wm

Sm⎝ ⎠
⎛ ⎞ T

=
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Given the input signal , the output of neuron  at layer , i.e. , can be com-

puted as

 and , (14)

for . At the first layer , the  neuron output can be calculated as

 and , (15)

for . Eq. (14) and Eq. (15) can be written in matrix form as

 and , (16)

 and . (17)

In the batch mode when all of the inputs (i.e. ) are presented to the network 

at the same time, Eq. (14) can be expressed as:

, where (18)

pq i m ai q,
m

ai q,
m f m ni q,

m( )= ni q,
m wi j,

m aj q,
m 1– bi

m+
j 1=

S m 1–

∑=

i 1 2 … Sm, , ,= m 1=( ) ith

ai q,
1 f 1 ni q,

1( )= ni q,
1 wi r,

1 pr q, br
1+

r 1=

R

∑=

i 1 2 … S1, , ,=

aq
m fm nq

m( )

f m n1 q,
m( )

f m n2 q,
m( )

…

f m n
Sm q,

m
⎝ ⎠
⎛ ⎞

= = nq
m Wmaq

m 1– bm+=

aq
1 f1 nq

1( )

f 1 n1 q,
1( )

f 1 n2 q,
1( )

…

f 1 n
S1 q,

1
⎝ ⎠
⎛ ⎞

= = nq
1 W1pq b1+=

q 1 2 … Q, , ,=

Am Fm Nm( ) fm n1
m( ) fm n2

m( ) … fm nQ
m( )= =
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 . (19)

Eq. (15) can be expressed in the batch mode as:

 and . (20)

Since the objective of the research focuses on the first-order derivative approxima-

tion, we will need to provide the notation for the first-order derivatives of neural networks. 

By Definition (6), we write the derivative of  with respect to , evaluated at , 

as

. (21)

By Definition (7), the derivative of  with respect to the input , evaluated at , as

. (22)

The derivative of  with respect to , evaluated at , is denoted by

 . (23)

By Definition (8), the derivative of  with respect to the input , evaluated at , is 

written

 . (24)

Nm WmAm 1– 11 Q× bm⊗+=

A1 F1 N1( )= N1 W1P 11 Q× b1⊗+=

ak pr pr pr q,=

pr q,∂
∂ak q,

pr∂
∂ak

pr pr q,=

≡

ak p p pq=

pq
T∂

∂ak q,

pT∂

∂ak

p pq=

≡

a pr pr pr q,=

pr q,∂
∂aq

pr∂
∂a

pr pr q,=

≡

a p p pq=

pq
T∂

∂aq

pT∂

∂a

p pq=

≡
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A couple of more examples: the derivative of  with respect to the net input , evaluated 

at , is expressed as

. (25)

The derivative of  with respect to the net input , evaluated at , is denoted by

. (26)

For batch mode, first suppose the input vectors  for all  are dis-

tinct. By Definition (9), we write the derivative of  with respect to the input , evaluated 

at  for all , as

. (27)

Note that the blocks off the diagonal are zero since  is not related to . The de-

rivative of  with respect to the input , evaluated at  for all , is 

denoted by

aj
m nj

m

nj
m nj q,

m=

nj q,
m∂

∂aj q,
m

nj
m∂

∂aj
m

nj
m nj q,

m=

≡

am nm nm nq
m=

nq
m( )

T
∂

∂aq
m

nm( )
T

∂

∂am

nm nq
m=

≡

pq q 1 2 … Q, , ,=

a pr

pr pr q,= q 1 2 … Q, , ,=

vecA∂

pr
T∂

----------------

pr 1,∂
∂a1 0 … 0

0 pr 2,∂
∂a2 … 0

… … …

0 0 … pr Q,∂
∂aQ

=

pr q1, pr q2,

a p p pq= q 1 2 … Q, , ,=
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, (28)

where, again, the blocks off the diagonal are zeros because each input vector  is distinct. 

The derivative of  with respect to the input , evaluated at  for all 

, is denoted by

. (29)

One more example: the derivative of  with respect to the net input , evaluated at 

 for all , is denoted by

vecA∂

vecP( )T∂
-----------------------

p1
T∂

∂a1 0 … 0

0
p2

T∂

∂a2 … 0

… … …

0 0 …
pQ

T∂

∂aQ

=

pq

am p p pq=

q 1 2 … Q, , ,=

vecAm∂

vecP( )T∂
-----------------------

p1
T∂

∂a1
m

0 … 0

0
p2

T∂

∂a2
m

… 0

… … …

0 0 …
pQ

T∂

∂aQ
m

=

am nm

nm nq
m= q 1 2 … Q, , ,=
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. (30)

In the next section, we will briefly review how neural networks have been used in 

function approximation problems.

Neural networks and function approximation

A MFNN can be used as a function approximator. This means that the network out-

puts will be estimates of the response of an unknown function . Given the vector function 

, we write  to denote the  element. We will use the notation  to denote the  

element of the function response to the  input vector. Note that we also call  the 

target value. As in previous matrix notation,  and  are the column vector and batch 

mode representations, respectively.

Now, suppose we want a neural network to approximate a function  mapping from 

a subset in  to a subset in . Also suppose that a set of examples were drawn from 

function , where an example represents a pair of function inputs and corresponding func-

tion responses; i.e. . Given a sufficient number of neurons and a set of examples 

vecAm∂

vecNm( )
T

∂
---------------------------

n1
m( )

T
∂

∂a1
m

0 … 0

0
n2

m( )
T

∂

∂a2
m

… 0

… … …

0 0 …
nQ

m( )
T

∂

∂aQ
m

=

g

g gk kth gk q, kth

qth gk q,

gq G

g

ℜR ℜSM

g

pq gq,( )
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(the training set), an  neural network can be used to approximate a 

function  over a subset in . In fact, [HoSt89] theoretically showed that, with a suffi-

cient number of neurons in the hidden layer,  networks are capable of approxi-

mating any Borel measurable function from one finite dimensional space to another to any 

desired degree of accuracy; meaning that the networks are a class of universal approxima-

tors.

When a neural network is trained, its weights and biases are adjusted so as to min-

imize some performance index (or objective function), which usually involves the mean 

square error between the network outputs and the target values. An optimization method is 

used to find the network parameters that minimize the performance index. The combination 

of the performance index and the optimization method makes up the training algorithm. 

There have been many training algorithms developed for neural networks. However, we 

will only review three algorithms: Broyden-Fletcher-Goldfarb-Shanno with Early Stopping 

, Levenberg-Marquardt with Early Stopping , and Gauss-New-

ton approximation to the Bayesian Regularization .

Training Algorithms

In this section, we will review three existing neural network training algorithm. We 

will first discuss the , followed by the , and finally the  train-

ing algorithm.

R S1 S2 …– SM–––

g ℜR

2 layer–

BFGS ES–( ) LM ES–( )

GNBR( )

BFGS ES– LM ES– GNBR
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Suppose we want to approximate a function , which maps from a subset in  to 

a subset in  using an  neural network. Assume that the number 

of data (or examples) in the training set is . We use the  vector  to denote the col-

umn vector containing all of the network parameters. The total number of the network pa-

rameters (i.e. the number of elements in the vector ) is

. (31)

BFGS-ES training algorithm

The performance index for this algorithm is the sum square of the difference be-

tween the network outputs and the target values, i.e. the sum square function error. Its per-

formance index is written as:

. (32)

Minimizing the performance index  (with respect to the network parameters) is equiv-

alent to forcing the neural network to approximate the function over a subset in . For 

this training algorithm, the  optimization method, see [GiMu81], will be used to 

minimize the performance index. The steps for the  training algorithm are described 

in the following section. Note that we use the notation  and  to denote the 

performance index and the gradient of the performance index with respect to , evaluated 

at , respectively. The notation  denotes the 2-norm of the vector .

g ℜR

ℜSM
R S1 S2 …– SM–––

Q n 1× x

x

n S1 R 1+( ) S2 S1 1+( ) … SM SM 1– 1+( )+ + +=

Jf ak q, gk q,–{ }2

k 1=

SM

∑
q 1=

Q

∑=

Jf

ℜR

BFGS

BFGS

Jf xk( ) Jf xk( )∇

x

xk x x
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Steps for BFGS training algorithm

1. Set . Initialize the network parameter vector  by the method in 

[NgWi90]. Present the training set to the network. Compute the gradient of the performance 

index  with respect to the network parameters . Set the initial search direction 

. Initialize the approximated Hessian matrix .

2. Minimize the performance index along the search direction, i.e. determine  

such that  minimizes the performance index . 

3. Set , and evaluate . Also compute the gradient 

. Terminate the process if  or  are less than their pre-

defined thresholds.

4. Calculate the change in the gradient , and compute 

the new approximated Hessian matrix:

. (33)

5. Compute the new search direction , which is the solution of

. (34)

6. Set  and iterate step 2) to 6).

Note that we will use the algorithm in [NgWi90] to initialize the network parame-

ters for all training algorithms in this research. The backpropagation process is used to com-

pute the gradient of the performance index with respect to the network parameters . 

k 0= x0

Jf Jf x0( )∇

p0 Jf x0( )∇–= B0 In=

αk

xk αkpk+ Jf

xk 1+ xk αkpk+= Jf xk 1+( )

Jf xk 1+( )∇ Jf xk 1+( ) Jf xk 1+( )∇

yk Jf xk 1+( )∇ Jf xk( )∇–=

Bk 1+ Bk
Jf xk( )∇[ ] Jf xk( )∇[ ]T

Jf xk( )∇[ ]Tpk

--------------------------------------------------
ykyk

T

αkyk
Tpk

------------------+ +=

pk 1+

Bk 1+ pk 1+ Jf xk 1+( )∇–=

k k 1+=

Jf x( )∇
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The details of the backpropagation process for training a neural network can be found in 

several books, such as [HaDe96]. Note also that there are several methods to perform the 

line search in step 2. We will use the backtracking algorithm [DeSc83].

From Eq. (32), we can see that the performance index  is only the sum square of 

the errors, and thus it is an unregularized performance index. When using an unregularized 

performance index, it is possible to overfit the training data and then fail to generalize. 

There are several available techniques that could be used to prevent overfitting. For exam-

ple, [HeKr91] proposed an approach to perform weight elimination based on the magnitude 

of the parameters. [SiDo91] proposed a method which adds noise to the function inputs, and 

[Bish95] showed that this technique is equivalent to Tikhonov regularization [TiAr77]. An-

other well known technique called Early Stopping, abbreviated , can be also used to pre-

vent overfitting, and it will be the technique we will use in the research.

Early stopping is a widely-used technique to prevent overfitting by monitoring the 

approximation error on a set of data that is not in the training set. This set of data is called 

the “validation set”. The approximation error on both the training and validation set initially 

decreases, until at some point the error on the validation set starts to increase while the error 

on the training set still keeps going lower. When the error over the validation set increases 

for a certain number of iterations, early stopping terminates the training process and it re-

turns the network parameters at the point just before the increase of the validation error oc-

curs. An example below illustrates how early stopping technique works.

Suppose we want to approximate a function  for . The 

following picture shows the graph of the function. Suppose a set of data points drawn from 

Jf

ES

g p( ) πp( )sin= 1– p 1≤ ≤
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the graph of the function were provided. We divided the set of data points into two groups: 

training set and validation set. Data points in the training and validation set are also shown 

in the figure.

Figure 3) Training and validation set

Now, suppose a  network was used to approximate the function through 

the  training algorithm. Figure 4) shows the sum square function error, i.e. , on 

the training and validation set at each iteration.

Figure 4) Sum square function error on training and validation set
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From Figure 4), we can see that the validation error initially decreased as the train-

ing errors decreased. However, at some point around iteration 400, the validation error 

started increasing, while the training error continued to decrease. In order to prevent over-

fitting, it is desirable to use the network trained up to iteration 400. Therefore, if early stop-

ping was used, it would terminate the training process at some iteration after 400 and use 

the network trained until iteration 400.

The validation error may fluctuate, so we do not stop the training at the first instance 

of an increase in the validation error. Instead, we monitor the error for a specified number 

of iterations to be sure that the error does not go back down. For the experiments described 

in this report, we monitored the error for 500 iterations after a minimum was reached before 

stopping the training.

We use  to refer to the  training algorithm with early stopping. 

It is one of the three training algorithms we will use in the research. In the next section, we 

will review the second training method, which is the  algorithm.

LM-ES training algorithm

The performance index for this algorithm is the same as in the  training 

algorithm, i.e. Eq. (32). However, to minimize the performance index, the Levenberg-Mar-

quardt optimization method [Leve44] [Marq63], abbreviated , will be used. The  

optimization algorithm is a combination of the Gauss-Newton algorithm and the method of 

gradient descent. It was designed to approximate Newton’s method. To understand the con-

cept of the  optimization, let us begin with Newton’s method. The update equation in 

Newton’s method is

BFGS ES– BFGS

LM ES–

BFGS ES–

LM LM

LM
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, (35)

where  is the Hessian matrix evaluated at . This means we need to compute the 

gradient and the Hessian matrix of the performance index . 

To compute the gradient and the Hessian matrix, first suppose the performance in-

dex is in the form of

, (36)

then the  element of the gradient  would be

, (37)

where  is the number of elements in the vector . The gradient can be written in ma-

trix form:

, (38)

where  is the Jacobian matrix. 

Next, we need to find the Hessian matrix. The  element of the Hessian matrix 

would be

. (39)

The Hessian matrix can then be expressed in matrix form:

, (40)

xk 1+ xk Jf xk( )∇2[ ] 1– Jf xk( )∇–=

Jf xk( )∇2 xk

Jf

F x( ) zT x( ) z x( )×=

jth F x( )∇

F x( )∇[ ]j
F x( )∂

xj∂
-------------- 2 zi x( )

zi x( )∂
xj∂

--------------

i 1=

N

∑= =

N z x( )

F x( )∇ 2JT x( )z x( )=

J x( ) z x( )∂ xT∂⁄=

k j,

F x( )∇2[ ]k j,
F x( )2∂
xk∂ xj∂

----------------- 2
zi x( )∂

xk∂
--------------

zi x( )∂
xj∂

-------------- zi x( )
zi x( )2∂
xk∂ xj∂

-----------------+
⎩ ⎭
⎨ ⎬
⎧ ⎫

i 1=

N

∑= =

F x( )∇2 2JT x( )J x( ) 2S x( )+=
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where

. (41)

If we assume  is small, the approximated Hessian matrix becomes

. (42)

By substituting Eq. (38) and Eq. (42) into Eq. (35), we obtain the Gauss-Newton method:

, (43)

where  and  are the vector  and the Jacobian matrix , evaluated at , 

respectively.

One problem with the Gauss-Newton method is that the approximate Hessian ma-

trix  may not be invertible. This problem can be overcome by using the matrix 

 in place of the matrix , where . Increasing the pa-

rameter  will make the matrix  become positive definite, and thus invertible. This leads 

to the Levenberg-Marquardt algorithm:

. (44)

The  optimization algorithm requires us to calculate two terms, which are the 

vector  and the Jacobian matrix . By equating the performance index in Eq. (36) 

and Eq. (32), we have the vector 

, where , (45)

S x( ) zi x( ) zi x( )∇2

i 1=

N

∑=

S x( )

F x( )∇2 2JT x( )J x( )≅

xk 1+ xk JT xk( )J xk( )[ ]
1–
JT xk( )z xk( )–=

z xk( ) J xk( ) z x( ) J x( ) xk

JT x( )J x( )

H̃ JT x( )J x( ) µIn+= JT x( )J x( ) µ 0>

µ H̃

xk 1+ xk JT xk( )J xk( ) µkIn+[ ]
1–
JT xk( )z xk( )–=
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z x( ) J x( )
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with . Obtaining  is thus simply the feedforward propagation. Computing 

the Jacobian matrix  in neural networks is, however, more complicated and it was 

originally discussed in detail in [HaMe94]. Calculating the Jacobian matrix involves the 

calculation of the Marquardt sensitivity [HaDe96], using the backpropagation process. The 

following is a summary of the  training algorithm.

Steps for LM training algorithm

1. Set . Initialize the network parameter vector . Present the training set to 

the network. Initialize  to a small value, e.g. 0.001. Set  to a large value, e.g. . 

Set , e.g. 10.

2. Compute  and the Jacobian matrix  using Eq. (45) and Eq. (38), re-

spectively. Also compute . Terminate the process if  or  is less 

than its predefined threshold, or if .

3. While , do the following:

a). Compute

. (46)

b). Compute  and the Jacobian matrix . Compute 

.

c). If , set  and go back to Step 3. Otherwise, 

go to the next step.

N SMQ= z x( )

J x( )

LM

k 0= x0

µ0 µmax 1010

ϑ 1>

z xk( ) J xk( )

Jf xk( ) Jf xk( ) J xk( )z xk( )

µk µmax≥

µk µmax<

xk 1+
temp xk JT xk( )J xk( ) µkIn+[ ]

1–
JT xk( )z xk( )–=

z xk 1+
temp( ) J xk 1+

temp( )

Jf xk 1+
temp( )

Jf xk 1+
temp( ) Jf xk( )≥ µk ϑµk=
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d). If , set  and set . Then, 

set  and go back to Step 2.

4. Terminate the process (in this case it is due to ).

As the performance index  is only the sum square of the function errors, early 

stopping will again be used to prevent overfitting. We will denote this algorithm, which 

minimizes the performance index  using the  optimization with early stopping, as the 

 method. In the next section, we will review the Gauss-Newton approximation to 

Bayesian Regularization  training algorithm.

GNBR training algorithm

Unlike the performance index for the  and the  training algo-

rithms, the performance index of the  training method is a regularized performance 

index, as shown below:

, (47)

where  is a network weight or bias,  is the total number of weights and biases,  and 

 are scalar values weighting the importance of the two terms. The regularized term in the 

performance index is , which is the sum of squares of the network weights and bi-

ases.

Jf xk 1+
temp( ) Jf xk( )< µk 1+ µk ϑ⁄= xk 1+ xk 1+

temp=

k k 1+=

µk µmax≥

Jf

Jf LM
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Regularization is another technique used to prevent overfitting. Although its pur-

pose is the same as early stopping, it works in a different way. The regularized performance 

index forces the magnitudes of the network parameters to be small, which causes the net-

work output to be smooth. That is, the regularization prevents steep fluctuations in the net-

work response.

A problem for using the regularized performance index is that the weighting factors 

 and  are unknown and problem-dependent. If  is too small relative to , then we 

would still observe overfitting as there is too little impact from the regularized term. In con-

trast, if  is too large relative to , then the network output would be too smooth and would 

not approximate the function. To overcome this problem, David J. C. MacKay proposed a 

method in [MacK92] using Bayes’ rule to automatically choose the weighting factors to 

balance between the function approximation capability and the smoothness of the network 

output. [FoHa97] later combined MacKay’s method with the Levenberg-Marquardt frame-

work to obtain the Gauss-Newton Approximation to Bayesian Regularization, denoted as 

. The concept of this algorithm can be explained in two parts: first, minimizing the 

performance index in Eq. (47), and second, choosing the values of  and .

From Eq. (36) and Eq. (47), we can rewrite the performance index as:

. (48)

Now, from Eq. (38), the gradient of the performance index can be written

. (49)

Since  is in fact  in Eq. (32), the Jacobian matrix , which can be ob-

β α α β

α β

GNBR

β α

F βzT x( )z x( ) αxTx+ βED αEW+= =

F∇ β ED∇ α EW∇+ 2βJD
T x( )z x( ) 2αJE

T x( )x+= =

ED Jf JD x( ) J x( )=
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tained by the same backpropagation process as in the Levenberg-Marquardt training algo-

rithm. Since the Jacobian matrix , this becomes . Therefore, 

Eq. (49) turns out to be

 . (50)

Using Eq. (42) and Eq. (49), the Hessian can be approximated and written in matrix form:

. (51)

By substituting Eq. (50) and Eq. (51) into Eq. (35), the update equation becomes

. (52)

Now, we have an update equation for the performance index in Eq. (47). Next, we will ex-

plain MacKay’s method to choose the values of  and .

Under the Bayesian framework of MacKay [MacK92], the network parameters are 

considered random variables. The posterior density  of the network parameters  can be 

written according to the Bayes’ rule:

, (53)

where  represents the data set presented to the network, and  is the network model. The 

term  is the likelihood function, the term  is the prior density, and 

the term  is named evidence. The parameter  is related to the variance of 

the likelihood and  is related to the variance of the prior density. If the noise in the model 

output and the prior density are assumed to follow Gaussian distributions, then the likeli-
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hood function and the prior density become

, and (54)

, (55)

respectively. The term  and , where .

Considering the evidence as a normalization factor, and substituting Eq. (54) and 

Eq. (55) into Eq. (53), we obtain the posterior density

. (56)

From Eq. (56), we can see that maximizing the posterior density is equivalent to minimiz-

ing the regularized objective function .

Now, given the data, we are interested in what value  and  should be. This 

means we need to consider . By using Bayes’ rule, it becomes

. (57)

Suppose the prior density  is uniform, which corresponds to the statement that 

we do not know what value  and  should be. Then, maximizing the posterior 

 is equivalent to maximizing the likelihood function . Howev-

er, note that the likelihood function in Eq. (57) is the evidence, which is the normalization 

factor, in Eq. (53). Therefore, the evidence in Eq. (53) can be solved:

. (58)

P D x β M, ,( ) 1
ZD β( )
--------------- βED–( )exp=

P x α M,( ) 1
ZW α( )
---------------- αEW–( )exp=

ZD β( ) π β⁄( )N 2⁄= ZW α( ) π α⁄( )n 2⁄= N SMQ=

P x D β α M, , ,( ) 1
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--------------------- F x( )–( )exp=

F

β α

P β α, D M,( )

P β α, D M,( )
P D β α M, ,( )P β α M,( )

P D M( )
------------------------------------------------------------=

P β α M,( )

β α

P β α, D M,( ) P D β α M, ,( )

P D β α M, ,( )
P D x β M, ,( )P x α M,( )

P x D β α M, , ,( )
-----------------------------------------------------------=
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By substituting Eq. (54) to Eq. (56) into Eq. (58), we obtain

. (59)

From Eq. (59), the only term we do not know is . However, we can estimate it 

from a Taylor series expansion, by assuming the objective function has a quadratic shape 

in a small region around the minimum point . At the minimum point, the gradient of 

the function is zero. Thus, the objective function approximated around  is written as

, (60)

where  is the Hessian matrix of , and  is the Hessian ma-

trix evaluated at . Therefore, the posterior density in Eq. (56) can be written as

, (61)

which is rewritten as

. (62)

The multivariate Gaussian density with mean  and the covariance matrix  is 

expressed as:

. (63)

By equating Eq. (62) and Eq. (63), we can solve for

P D β α M, ,( )
ZF β α,( )

ZD β( )ZW α( )
-------------------------------=

ZF β α,( )

xMP

xMP

F x( ) F xMP( ) 1
2
--- x xMP–( )

T
HMP x xMP–( )+≅

H β ED∇2 α EW∇2+= F x( ) HMP

xMP

P x D β α M, , ,( ) 1
ZF β α,( )
--------------------- F xMP( ) 1

2
--- x xMP–( )

T
HMP x xMP–( )+

⎩ ⎭
⎨ ⎬
⎧ ⎫

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp≅

P x D β α M, , ,( ) 1
ZF β α,( )
--------------------- F xMP( )–( )exp

⎩ ⎭
⎨ ⎬
⎧ ⎫ 1

2
--- x xMP–( )

T
HMP x xMP–( )–⎝ ⎠

⎛ ⎞exp≅

xMP HMP( )
1–

P x( ) 1

2π( )n 2⁄ HMP( )
1– 1 2⁄

--------------------------------------------------- 1
2
--- x xMP–( )

T
HMP x xMP–( )–⎝ ⎠

⎛ ⎞exp=



34

. (64)

Substitute Eq. (64) into Eq. (59) along with the values of  and  from Eq. (54) 

and Eq. (55), take the derivative with respect to each of the log in Eq. (59) and set them to 

zero. This produces

 and , (65)

where  is called the effective number of parameters. The param-

eter  is a measure of how many parameters in the network are effectively used in reducing 

the error function, and it can range from zero to .

Since the estimation for  and  requires the calculation of the Hessian matrix of 

the performance index  at the minimum point , [FoHa97] proposed using the ap-

proximated Hessian readily available under the Levenberg-Marquardt framework, i.e. Eq. 

(51), leading to the  training algorithm. The algorithm is summarized below.

Steps for GNBR training algorithm

1. Initialization: Same as the Levenberg-Marquardt training algorithm. Initialize 

, .

2. Take one step of the  training algorithm to minimize the objective function 

in Eq. (47), by using Eq. (52).

3. Compute the effective number of parameters , where the 

Hessian matrix  can be approximated by Eq. (51), and  is the Hessian evaluated at .
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β α
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4. Compute the new estimates for  and :

 and . (66)

Then, set .

5. Iterate step 2) to 5) until , or  is less than its predefined thresh-

old.

As the  algorithm penalizes the magnitude of the network parameters as a 

technique to reduce the overfit problem, we will not have a validation data set in this algo-

rithm.

Recall that the goal of this research is to approximate both a function and its first-

order derivatives using neural networks. [HoSt89] showed that multilayer feedforward neu-

ral networks can approximate any Borel measurable function. In the next section, a theo-

retical discussion of function and derivative approximations with neural networks will be 

reviewed.

Conditions for Function and Derivative Approximation

Recall that our goal is to approximate both a function and its first-order derivatives. 

This section will briefly discuss the theoretical conditions under which neural networks can 

simultaneously approximate both a function and its derivatives. There are several discus-

sions on the conditions, such as [HoSt90], [Horn91], [Ito93] or [Pink99]; however, we will 

follow [Li96].

β α

βk 1+
N γk–

2ED xk( )
--------------------= αk 1+

γk
2EW xk( )
---------------------=

k k 1+=

µk µmax≥ F xk( )
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We first introduce notation. We let  denote the lattice of non-negative multi-in-

tegers in . For , we set  and

. (67)

We also write  if  for all . Given an open set  of  

(probably ), we write  to denote the set consisting of functions with all 

 order continuous partial derivatives in , for  and . We write 

 to imply, for a compact set  of , there is an open set  such that  

and . We write  to denote a  neural network with the network out-

put , the transfer function  in the hidden layer and the linear transfer function in the 

output layer, i.e.  is linear.

Given a compact subset  of , and a function  for , [Li96] 

showed that if  and  is not a polynomial, then  of a network  can 

uniformly and simultaneously approximate , for  and .

For example, [Li96] considered a function on , given by: 

 if ; otherwise . We can 

verify that  and  are discontinuous at the origin ; however, , 

Z + 
R

ℜR m m1 m2 … mR, , ,( ) Z + 
R∈= m m1 m2 … mR+ + +=

Dm

p1
m1 p2

m2… pR
mR∂∂

m

∂

∂=

m1 m2≤ mr
1 mr

2≤ r 1 2 … R, , ,= Ω ℜR

Ω ℜR= Cm Ω( )

kth Ω k Z + 
R∈ k m≤
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, , and  are continuous on . Therefore, . In 

this situation, a network  can simultaneously and uniformly approximate , , 

, and  on any compact set  containing , provided that the 

transfer function  in the hidden layer is non-polynomial and .

The typical transfer functions in the hidden layers and the output layer of neural net-

works used for function approximation are sigmoid and linear functions, respectively. Sig-

moid functions are non-polynomial and they are of class  (infinitely differentiable or 

smooth functions), i.e. all derivative orders are continuous. Therefore, given that the func-

tion  and its first-order partial derivatives exist and are continuous, the standard two-layer 

neural network has the ability to simultaneously approximate the function  and its first-

order derivatives.

Next, we will introduce notation for first-order derivative values. Similar to the no-

tation defined in Eq. (21) to Eq. (24), the derivative of the scalar function  with respect 

to  and with respect to , evaluated at  and , is written, respectively,

, . (68)

The derivative of the vector function  with respect to  and , evaluated at  

and , is denoted, respectively, by:
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g
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pq
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, . (69)

For batch mode, similar to Eq. (27) and Eq. (28), we will use the following notation:

, and . (70)

Summary

In this chapter, we first stated the objective of the research: to develop procedures 

for approximating functions and their derivatives. Then, we introduced the operators and 

notation that will be used throughout the research. The notation and background material 

for the multilayer feedforward neural network were provided. A neural network learns to 

approximate a function through an optimization process. A combination of the objective 

function and the optimization process defines a distinct training algorithm. We discussed 

three existing training algorithms: ,  and . Each is capable of 

forcing a neural network to approximate a function in a different way. The  and 

 methods use early stopping as a technique to prevent overfitting, while the 

 algorithm uses the Bayesian regularizer.
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Finally, the conditions under which a neural network can uniformly and simulta-

neously approximate a function and its derivatives were discussed. One of the conditions 

requires that the function and its first-order derivatives be continuous. A second condition 

requires that the transfer function in the hidden layer of the neural network be sufficiently 

differentiable but not be a polynomial. For example, the typical sigmoid transfer function 

would be satisfactory. 
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CHAPTER 3

VALIDATION-RELATED METHODS

Introduction

Recall that our objective is to use a neural network to approximate a function and 

its first-order derivatives. In this chapter, we will discuss two simple methods for accom-

plishing this task. These methods are similar to the standard training algorithms discussed 

in Chapter 2, but some modifications are applied to the early stopping technique. As the 

Levenberg-Marquardt optimization is chosen to work with these two modified early stop-

ping techniques, the two proposed methods are:

1. Modified validation performance measure ( ), and

2. Early stopping using the derivative information on the training set ( ).

As we describe each method, the idea behind it will be discussed. Then, the simu-

lation results for each method, based on the benchmark tests that are described in Chapter 

7, will be shown. The results in this chapter can be compared with the simulation results 

obtained using the standard early stopping technique, which are shown in Chapter 7.

Modified validation performance measure

For the standard early stopping method (discussed in Chapter 2), the validation per-

formance is measured by the sum squared function error. We proposed using a combination 

LM ES1–

LM ES2–
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of the sum squared function error and the sum squared derivative error. In other words, the 

validation performance will be determined by

, (71)

where  is the number of examples in the validation set, and  is a scalar factor.

If the validation error  increases for a certain number of iterations, then the 

training will be terminated. The unknown parameter in the equation is , which we will 

vary to investigate its consequences to the approximation of neural networks. Another pur-

pose of this parameter is to account for the fact that the scale of the derivative values can 

be much different from the function values. The procedure for training a neural network 

using this method is exactly the same as the standard training algorithm with the standard 

early stopping technique (e.g.  or ), with two exceptions. First, we 

need to compute the derivative of the network output with respect to the network inputs; 

i.e. , for all , and this calculation is shown in Chapter 4. Second, 

the performance measure in the standard early stopping technique is now replaced by the 

new measure in Eq. (71). In this research, we choose  to work with the modified 

validation performance measure. We denote this method . Note that when 

,  is .
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The approximation accuracy obtained from  for the simple analytic func-

tions (which are introduced in Chapter 7) are shown in the next section. Note again that the 

procedure to perform the simulation is described in Chapter 6.

Simulation results

The approximation accuracy obtained from  for the simple analytic func-

tions are shown in the following tables. The results in Table 1, Table 2 and Table 3 can be 

compared with the results obtained from other algorithms in Table 9, Table 10 and Table 

11 in Chapter 7, respectively. For ease of reference, we put the results obtained from 

 with the standard early stopping (i.e. ). Note that the definitions of 

 and  are defined in the simulation procedure in Chapter 7.  

 in Problem 1

Training Test Training Test
0 2.48E-06 8.90E-04 6.42E-03 1.74E-02

1E-06 2.48E-06 8.90E-04 6.42E-03 1.77E-02
1E-04 2.50E-06 8.90E-04 6.42E-03 1.74E-02
1E-02 2.52E-06 8.90E-04 5.71E-03 1.38E-02
1E+00 3.00E-06 9.96E-04 6.51E-03 1.73E-02
1E+02 3.00E-06 9.96E-04 6.51E-03 1.73E-02

Table 1 Approximation accuracy on problem 1

LM ES1–

LM ES1–

LM ES– ρd 0=

RMSEF
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From these results, we can see that the approximation accuracy obtained from 

 is similar to the results from . We conclude that adding the derivative 

error term into the standard validation performance measure does not improve the approx-

imation accuracy.

In the next section, the simulation results obtained from the  training algorithm 

with early stopping using the derivative information of the training set, i.e. , will 

be discussed.

 in Problem 2

Training Test Training Test
0 1.14E-05 1.16E-02 1.09E+00 1.94E+00

1E-06 1.14E-05 1.14E-02 1.09E+00 1.94E+00
1E-04 4.18E-07 7.44E-03 5.52E-01 1.45E+00
1E-02 9.04E-07 8.67E-03 9.69E-01 1.54E+00
1E+00 9.04E-07 8.67E-03 9.69E-01 1.54E+00
1E+02 9.04E-07 8.67E-03 9.69E-07 1.54E+00

Table 2 Approximation accuracy on problem 2

 in Problem 3

Training Test Training Test
0 6.72E-06 2.09E-04 5.67E-03 1.12E-02

1E-06 6.72E-06 2.09E-04 5.67E-03 1.12E-02
1E-04 9.93E-06 2.80E-04 1.41E-02 2.69E-02
1E-02 1.14E-05 2.96E-04 1.38E-02 2.69E-02
1E+00 1.14E-05 2.97E-04 1.38E-02 2.69E-02
1E+02 1.14E-05 2.97E-04 1.38E-02 2.69E-02

Table 3 Approximation accuracy on problem 3
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Early stopping using the derivative information of the training set

In regular early stopping, the training process will be terminated when the valida-

tion performance increases. Recall that the standard validation performance measure is

. (72)

The function error term  can be approximated by the first-order Taylor 

series expansion at the point , and this becomes:

, where , (73)

where  is the nearest training point to . By inserting Eq. (73) into Eq. (72), we obtain

(74)

We may ignore the second term in Eq. (74) if we assume equal distribution around 

zero of the training error terms, i.e.  and  for all , 

 and . Thus the sum of these error terms is approximately 

zero. The third term in Eq. (74) can be further expanded:

(75)
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From Eq. (75), the validation performance measure  could then be approximated by: 

(76)

It should be noted that the differences of the two inputs; i.e.  for all 

, are constant. In addition, by the assumption of equal distribution around 

zero of the training error terms, the last term in Eq. (76) is then approximately zero. Thus, 

Eq. (76) reduces to

. (77)

Again, since the differences of the two inputs are constant, the validation performance mea-

sure  is proportional to:

, (78)

where the summation index  can be replaced by .

From Eq. (78), we can see that the first term is getting smaller, while the network is 

being trained. Therefore, the increase in the performance measure  may be estimated by 

the increase of the second term, which is the sum squared derivative errors in the training 
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set. This seems to make sense as large derivative errors in training data will result in large 

function errors in the validation data. Therefore, if we define a new validation performance 

measure whose value depends only on the derivative error of the training set, its increase 

should imply overfitting and we would then want to terminate the training process. The new 

validation measure is written as

, (79)

where  is the number of examples available - the number of data in the training and val-

idation sets. Since the new validation measure uses the derivative information of all data, 

we can use all the function information for training. This means that we use all the data in 

the training process, while overfitting is prevented by using the new validation measure 

. An advantage of having more training examples is we have better generalization, see  

[GaWh92] and [AtPa97]. The following summarizes the method.

Steps for early stopping using the derivative information of the training set

1. Change the validation performance measure for early stopping so that it follows 

Eq. (79).

2. Use all of the available data for the training process, which can be performed by 

any standard training algorithm, e.g.  or , etc. In other words, there is no data 

division into training and validation set.

3. The training process is terminated when the new validation measure, i.e. Eq. (79), 

consecutively increases for a certain number of iterations.
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We choose the Levenberg-Marquardt training algorithm ( ) to work with the 

modified validation performance measure. We denote the method . The method 

requires the calculation of the derivative of the network with respect to the network inputs 

(  for all ), and the calculation is shown in Chapter 4. In the next 

section, we will provide the simulation results obtained from  on the simple an-

alytic problems (introduced in Chapter 7). Recall again that the procedure to perform the 

simulation is provided in Chapter 7.

Simulation results

In this section, the simulation results for  on the simple analytic prob-

lems are presented in Table 4, Table 5 and Table 6. For ease of reference, we also put the 

results obtained from  in the tables. The results in Table 4, Table 5 and Table 6 

can be compared with Table 1, Table 2 and Table 3 for , and with Table 9, Table 

10 and Table 11 in Chapter 7 for other training algorithms.  

Training 
Algorithm

Problem 1

Training Test Training Test
2.48E-06 8.90E-04 6.42E-03 1.74E-02
2.24E-05 3.67E-04 4.78E-03 8.43E-03

Table 4 Approximation accuracy on problem 1
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From the results, we can see that  seems to provide better results than the 

standard algorithm  for both function and the derivatives for problem 1 and prob-

lem 2. However, it is not the case for problem 3, where the derivative error obtained from 

 was larger than .

We will analyze the algorithm in the following section. This is to understand why 

 does not consistently yield better results over , even though the train-

ing set for  is relatively larger than for .

Algorithm analysis

Recall that, for , the overfitting is prevented by terminating the training 

process once the derivative error of all training data increases. An advantage of this method 

is the number of examples in the training process increases from including examples in the 

Training 
Algorithm

Problem 2

Training Test Training Test
1.14E-05 1.16E-02 1.09E+00 1.94E+00
1.76E-05 6.44E-03 2.40E-01 8.23E-01

Table 5 Approximation accuracy on problem 2

Training 
Algorithm

Problem 3

Training Test Training Test
6.72E-06 2.09E-04 5.67E-03 1.12E-02
1.16E-05 1.82E-04 7.66E-03 1.41E-02

Table 6 Approximation accuracy on problem 3
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validation set into the training set. The increase in the training examples would lead to a 

better generalization (see [GaWh92] and [AtPa97]).

We analyzed the  method by training a network with the  algo-

rithm. However, we also monitored the values of  (see Eq. (72)) and  (see Eq. (79)) 

along the optimization process. The following figure shows the training records.

Figure 5) A training record showing  versus 

From Figure 5), we can see that the derivative error of the training set  increased 

(at around iteration ) sooner than the validation performance measure  did. This 

means that the increase in  does not directly imply an increase in . This contradicts 

the assumption we made in the previous section, where we assumed the increase in  

could be estimated by the increase in . The reason behind this lies in Eq. (78). 

In Eq. (78), we can see that the regular validation measure  is proportional to two 

terms; the first is the square training function errors, and  is the second. This means that 
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EṼ



50

even though the value of  increases, if the reduction in the training function error counts 

more, the regular validation measure  will still be lower. From this fact, we conclude 

that the regular validation measure  cannot exactly be estimated by the training deriva-

tive error, since one more factor (i.e. the training function error) also counts.

Summary

Recall that our objective is to approximate a function and its first-order derivatives 

using neural networks. Two new methods were proposed in this chapter:  and 

. These methods are similar to the standard training algorithms. However, 

changes were made in the early stopping technique.

In the  method, the validation performance measure was changed from 

the squared function error to a combination of the squared function and derivative errors. 

The simulation results showed that the effectiveness of this new validation measure is sim-

ilar to that of the standard early stopping.

In the second method ( ), the validation performance measure was 

changed to the squared derivative error of the training set. In this method, data division into 

training and validation sets is no longer needed, unlike in the standard early stopping. The 

simulation results showed that the new validation measure sometimes terminates the train-

ing process too soon (i.e. sooner than using the standard early stopping), causing worse ap-

proximation.

EṼ

EV

EV

LM ES1–

LM ES2–

LM ES1–
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CHAPTER 4

GRADIENT-BASED COMBINED FUNCTION AND DERIVATIVE 

APPROXIMATION

Introduction

Recall that the objective of this research is to use neural networks for approximating 

functions and their first-order derivatives. In this chapter, we will propose a new training 

algorithm to perform this function. This algorithm is designed to work with any gradient-

based optimization method (e.g. steepest descent, conjugate gradient, , etc.). We call 

this algorithm the Combined Function and Derivative Approximation  algorithm.

We will start this chapter by introducing the performance index used in the  

method and will derive two approaches for gradient calculation. At the end of the chapter, 

we will provide some examples to illustrate how fast the new training algorithm is in com-

parison with the standard algorithm.

Gradient-Based Combined Function and Derivative Approximation

In Chapter 2, the conditions under which the neural network can approximate both 

a function and its first-order derivatives were discussed. We will introduce the performance 

index for the  method, assuming these conditions are satisfied. Then, we will focus 

on the derivation of the gradient of the performance index, which is required for any gradi-

BFGS

CFDA( )

CFDA

CFDA
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ent-based optimization method. We will develop two approaches for gradient calculation. 

The first approach assumes the gradient computation is in batch mode, i.e. data are used at 

the same time, and this is performed by arranging information in matrices. This may be nec-

essary in some programming languages in order to speed up the calculation. The second 

method, however, offers a trade-off between the computation time and the required mem-

ory.

Performance Index

Assume we want to approximate the function , which maps a subset in  to a 

subset in , and its first-order derivatives, by an  neural network (with the 

conditions discussed in Chatper 2). Also suppose  for all . The 

proposed performance index is written as:

(80)

where the term  is added to form the new performance index.  is a scalar value con-

trolling how important the term  is, relative to the term . If , the new perfor-

mance index reduces to the standard performance index we discussed in Chapter 2. The 

function  in the performance index is introduced to cope with the situation when 

the terms  are not available. The function is defined below:

g ℜR

ℜSM
M layer–

gk C1∈ k 1 2 … SM, , ,=

J Jf ρJd+=

1
QSM
----------- ak q, gk q,–{ }2
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S M

∑
q 1=
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∑
ρ

QdSd
MRd

-------------------- ϕk r, q( )
ak q,∂
pr q,∂

------------
gk q,∂
pr q,∂

------------–⎝ ⎠
⎛ ⎞

2
,

r 1=

R

∑
k 1=

S M

∑
q 1=

Q

∑+=

ρJd ρ

Jd Jf ρ 0=

ϕk r, q( )

gk q,∂ pr q,∂⁄
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(81)

Minimizing the performance index will force the neural network to simultaneously 

approximate both the function  and its first-order derivatives. We will present two ap-

proaches for calculating the gradient of the performance index. The first puts all the calcu-

lations in matrices for batch operation, and the second offers a trade-off between the 

computation speed and the required memory. The derivations for these two approaches will 

be shown in the next section.

Gradient Calculation: Batch Operation

The batch mode operation will be discussed in this section. To minimize the perfor-

mance index using gradient-based optimization methods, we need to compute the deriva-

tive of the performance index with respect to each network parameter. This means that we 

need to compute  and , where  and . 

Note that we will show only how to compute  and , since the terms 

 and  can be computed using the standard backpropagation algorithm 

[HaDe96].

From Eq. (80), by taking the derivative of  with respect to  (note that the con-

stant term  is temporarily dropped from the term  for simplicity), we have:

ϕk r, q( )
1    ; 

gk q,∂
pr q,∂

------------ is available. 

0    ; otherwise.             ⎩
⎪
⎨
⎪
⎧

=

g

J∂ wi j,
m∂⁄ J∂ bi

m∂⁄ i 1 2 … S m, , ,= j 1 2 … S m 1–, , ,=

Jd∂ wi j,
m∂⁄ Jd∂ bi

m∂⁄

Jf∂ wi j,
m∂⁄ Jf∂ bi

m∂⁄

Jd wi j,
m

1 QdSd
MRd( )⁄ Jd
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(82)

where

. (83)

Since the term  can be computed with standard backpropagation, we will focus 

on the computation of the term . Note that

. (84)

From Eq. (84), we can use the chain rule of calculus to compute the term . This 

is also a part of the standard backpropapgation [HaDe96], which can be computed as fol-

lows:

(85)

The term  can be calculated using Eq. (14). Thus, Eq. (85) becomes

. (86)
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From Eq. (86), Eq. (84) becomes

(87)

Using Eq. (87), Eq. (82) becomes

(88)

By rearranging the summations, we obtain

(89)

To further compute Eq. (89), define

 and (90)

. (91)
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By using Eq. (90) and Eq. (91), Eq. (89) becomes (with the term  returned):

. (92)

In matrix form, Eq. (92) can also be written as

(93)

where the  vector  consists of the terms , for all . The  

matrix  consists of the terms , for all  and .

To write Eq. (92) in batch mode, we first define the  matrix :

. (94)

By Eq. (94), Eq. (92) can be rewritten as

(95)

where the  matrix  is

. (96)
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Note that

, and (97)

, (98)

are the  and  matrices, respectively. Note further that Eq. (83) can be 

written in batch mode as:

. (99)

The  matrix  is defined as:

, (100)

where  is the  matrix consisting of the elements , for all 

 and .
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In addition to , we also need to compute the derivative of the perfor-

mance index with respect to the biases, i.e. . In Eq. (82), the term  is 

changed to , and using the fact that

, (101)

thus

. (102)

As in Eq. (85), the term  can be computed as

(103)

and by Eq. (14), this reduces to

(104)

Thus, Eq. (102) becomes
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Therefore, the  vector  can be written as

. (107)

From Eq. (95) and Eq. (107), we need to calculate the elements of the matrices , 

 and . We will first show how to compute , fol-

lowed by , and finally . We will break these calculations into three sections.

I. Calculation of 

An element of this matrix is . From Eq. (14), by using the chain rule of 

calculus, we obtain
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where  is the  matrix defined below:

. (112)

In batch mode, we have

. (113)

Thus, from Eq. (111), the matrix  can be computed as

(114)

From Eq. (114), we can see that computing  requires the calcu-
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Thus, the  matrix  is

(116)

Therefore, in batch mode, the  matrix  becomes

(117)

This completes the calculation for the matrix . Next, we will 

show the calculation for .

II. Calculation of 

We begin by expanding the term in the term  in Eq. (91). Using the 

chain rule of calculus:

, (118)

From Eq. (14), we obtain
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(120)

Using Eq. (91), Eq. (120) becomes

(121)

Eq. (121) can be written in matrix form as

. (122)

From Eq. (94) and Eq. (113), the batch matrix  can be expressed as
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We need to initialize this equation with . From Eq. (91) with , we have
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From Eq. (126),  can be expressed as

(127)

Therefore, by Eq. (94) and Eq. (99), the batch matrix  is written as

(128)

Note that if  is the linear function, then  and the batch matrix 

.

This completes the calculation for . Next, we will compute .

III. Calculation of 

From Eq. (90), by using the chain rule of calculus for the term  which 
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(130)

By rearranging the terms in Eq. (130), this results in

(131)

From Eq. (90) and Eq. (91), Eq. (131) reduces to

. (132)

To write Eq. (132) for batch mode, first consider the term . The 
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, (133)

which are the diagonal elements of the matrix . In other words,

. (134)

From Eq. (133), further define the  batch matrix:

. (135)

It can be obtained from the matrix  by
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The batch derivative of the matrix  with respect to the input is:
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, (137)

We can now represent Eq. (132) in vector form:

. (138)

Using Eq. (135) and Eq. (137), this can be put in batch matrix form:

(139)

 is needed to initialize Eq. (139). From Eq. (90), we have

. (140)
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(142)

Using Eq. (99) and Eq. (137), the batch matrix  can be then expressed as

. (143)

It now remains to compute . Consider one element of 

this matrix, i.e. . Using the chain rule of calculus:

(144)

It may seem unusual that we are using  as the itermediate variable here. In fact, it is 

often true that  can be written as a function of . For example, if  is the hy-

perbolic tangent sigmoid function, i.e.

(145)

then the derivative of  with respect to , i.e. , is
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With Eq. (144), the  matrix  can be expressed as
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(147)

where, the  matrix  is

. (148)

From Eq. (147), the batch matrix  can be decomposed to

(149)

At the output layer (i.e. ), Eq. (144), Eq. (147) and Eq. (149) also apply, with 

 and ,  and .

This completes the derivation of the batch form of gradient of the performance in-

dex  with respect to the network parameters  and . In some programming lan-

guages (e.g. MATLAB) batch algorithms are more efficient than computing element by 

element. However, performing the calculation in batch mode requires sufficient memory to 
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hold all of the matrix elements at once. Therefore, the larger the matrices, the more memory 

is needed. The next section will derive an algorithm that is designed to save memory.

Before going to the derivation of the memory-save method, let’s summarize the al-

gorithm in this section.
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STEPS TO COMPUTE  AND  (BATCH MODE)

1. Given , compute , and , by using Eq. (114) 

and Eq. (117).

2. Given , compute the derivative of the errors 

, using Eq. (99).

3. Compute  and , using Eq. (128) and Eq. (143), respectively.

4. Backpropagate  and , by Eq. (123) and Eq. (139), respectively.

5. Compute  and  by Eq. (95) and Eq. (107), respec-

tively. Then, compute  and .

6. Update the weights and biases using any gradient-based optimization 

technique.

J∂ Wm∂⁄ J∂ bm∂⁄

P Am vecAm∂ vecP( )T∂⁄

vecG∂ vecP( )T∂⁄

vecE∂ vecP( )T∂⁄

UM VM
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J∂ Wm∂⁄ J∂ bm∂⁄
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Gradient Calculation: Memory-Save Method

In this section, another approach to compute the gradient of  with respect to the 

network parameters will be discussed. As previously mentioned, this approach will be use-

ful when the machine’s memory is insufficient for the batch mode operation. Mainly, the 

method will break down some matrices into smaller matrices. We will first briefly discuss 

the concept of how to break down matrices. This will be followed by the derivation of the 

gradient.

From Eq. (80), we can see that, when comparing with the typical performance index 

, the new term  has the additional summation . This extra summation, when 

manipulated for batch mode, leads to larger matrices than those matrices in the regular 

backpropagation. The idea is then to form smaller matrices whose sizes do not depend on 

the extra summation .

First, from Eq. (90) and Eq. (91), redefine

, and (150)

. (151)

Thus,  and  are the elements at row  and column  of  and , respectively. 

From Eq. (90) and Eq. (150), this implies that
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(152)

For the term , rather than expressing it as an element of , 

we express it as the element at row  of . It is also the element at row  (note: 

) and column  of the matrix  (see Eq. (27) for the 

notation). Note that

. (153)

By Eq. (153), the following matrices immediately follow:

, (154)

, and (155)

, (156)

where

. (157)

The matrix  is defined:
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, (158)

where  is the  column vector of the matrix , see Eq. (100).

By Eq. (150) and Eq. (151), we can rewrite Eq. (92) as

, (159)

which can be further expressed as:

(160)

It should be noted that the transpose of the matrix in Eq. (153) produces the matrices in Eq. 

(160), i.e.

. (161)

The sizes of the matrices in Eq. (160) are less than or equal to the matrix sizes in Eq. (95), 

which was for batch mode.

For calculating the term , we can directly use Eq. (107) since  can be 

easily obtained by using Eq. (152):
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m 1– ṽri q,

m( )
q
∑ pr q,∂

∂aj q,
m 1–
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Alternatively, from Eq. (107) and Eq. (162),  can also be directly expressed in the 

form of  as follows:

. (163)

From Eq. (160) and Eq. (163), we need to compute ,  and . 

We will start with , followed by  and .

I. Calculation of 

From Eq. (109), by using Eq. (112), we can express  as
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, (166)

where one appears at row . Thus, the matrix

, for any . (167)

Next, we will derive .

II. Calculation of 

From Eq. (151), using Eq. (119), we have

(168)

and by Eq. (151), it reduces to

(169)

Eq. (169) can be expressed in the form of , using Eq. (136), as
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(171)

From Eq. (171),  can be written, using Eq. (156), as

(172)

Next, we will illustrate how to calculate .

III. Calculation of 

From Eq. (150), by similarly following Eq. (129) to Eq. (132), we obtain
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Eq. (173) can be expressed in the form of  as
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where  is the  column vector of . Then, by Eq. (136),  can be expressed 

as

(175)
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(176)

Thus,  can be expressed as

. (177)

It now remains to calculate . Consider one element of this 

matrix, which is . From Eq. (144) and Eq. (147), we obtain

(178)

Then, by Eq. (137) and Eq. (149),  can be decomposed to

(179)

We have derived an algorithm to compute the gradient of the new performance in-

dex  with respect to the network parameters  and  such that the calculation pro-

cess requires less machine memory than the batch mode operation. This algorithm is 

summarized below.
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STEPS TO COMPUTE  AND  (MEMORY SAVED)

1. Given  inputs in , obtain . Initialize .

2. Obtain  by Eq. (165) and Eq. (167).

3. With  , compute  using Eq. (157).

4. Calculate  and , using Eq. (172) and Eq. (177), respectively.

5. Backpropagate to obtain  and , using Eq. (170) and Eq. (175), 

respectively.

6. Compute  and  by Eq. (160) and Eq. (163), respec-

tively.

7. Set , and repeat step  until .

8. Compute  and . Update the weights and biases using 

any gradient-based optimization technique.

J∂ Wm∂⁄ J∂ bm∂⁄

Q P Am r 1=

vecAm∂ pr
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Ṽr
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Ũr
m

Ṽr
m

Jd∂ Wm∂⁄ Jd∂ bm∂⁄

r r 1+= 2 7– r R>

J∂ Wm∂⁄ J∂ bm∂⁄
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In this section, we have shown two approaches for computing the terms  

and . The first approach is performed in batch mode, thus requiring sufficient ma-

chine memory to simultaneously hold all numeric elements. This approach takes advantag-

es of faster computation for some programming languages, e.g. MATLAB. The second 

approach, however, breaks down the matrices in the batch mode operation so that their sizes 

are smaller. This approach is useful when the machine’s memory is insufficient to perform 

in batch mode, thereby compromising between the computation speed and the required 

memory.

Speed Test

In this section, we create a network structure, i.e. an  network (  will be 

varied), to test the speed of the  algorithm. We will compare the computation time 

between the two approaches we previously derived, i.e. batch mode and memory-save ap-

proach.

The following figure shows the relative one-iteration execution times (averaged 

over 10 runs) for the batch and memory-save methods for computing the gradient of , 

when compared to the time to compute the gradient of . Note that we assume the number 

of training points is fixed at . These tests were run on a computer with pro-

cessor speed of 2.0GHz, and the memory size of 512MB.

Jd∂ Wm∂⁄

Jd∂ bm∂⁄

R 25– 1– R

CFDA

Jd

Jf

Q 75 000,=
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Figure 6) Relative execution time (compared to ) for computing 

We expected that time for computing the gradient of  would be more than that of 

. However, from Figure 6), we can see that, initially, the gradient calculation for  took 

less time than that for . This is because of the overhead in MATLAB codes. Once the 

input dimension increased, the time for computing the gradient of  was now more than 

that for . The interesting part, however, occurred when the input dimension was more 

than seven. For these cases, the memory requirement caused the existing PC’s RAM to 

overflow, which required data to be sent to disk. Thus, the time for computing the gradient 

in batch mode was more than that for the memory-save approach. These results show that 

the memory-save approach is useful when the data storage requirements exhaust existing 

RAM.

Summary

In this chapter, a new training algorithm for approximating a function and its first-

order derivatives, called gradient-based , was proposed. We proposed the new per-
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formance index, which includes not only the squared function errors but also the squared 

derivative errors. Two approaches for gradient calculation to minimize the performance in-

dex were presented. The first method arranges every numeric element into matrices for 

batch mode operation, in order to expedite the gradient calculation time in some program-

ming languages. This approach, however, requires sufficient memory to simultaneously 

hold all elements. The other approach, called the memory-save method, compromises be-

tween the computation time and the required memory. The computation time under differ-

ent conditions were measured. The results showed that the computation time for the 

squared derivative error term defined in the  method was longer than the standard 

backpropagation. This is expected as the gradient computation in the  method is 

more complicated than that in the standard backpropagation algorithm. The results also il-

lustrated that the memory-save approach is useful in cases where computer RAM is insuf-

ficient to perform the gradient calculation in batch mode.

CFDA

CFDA
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CHAPTER 5

COMBINED FUNCTION AND DERIVATIVE APPROXIMATION WITH 

LEVENBERG-MARQUARDT

Introduction

In this chapter, we present a Levenberg-Marquardt algorithm for minimizing the 

 performance index. Recall from Chapter 2 that optimization with the Levenberg-

Marquardt algorithm requires the calculation of the Jacobian matrix. This will be the core 

work in this chapter.

We will begin this chapter with a discussion of the Levenberg-Marquardt frame-

work for . We will then present two approaches for computing the Jacobian matrix. 

The first approach performs the calculation in batch mode. The second approach (i.e. the 

memory save method) compromises between the execution time and the required memory. 

The measured execution time under different conditions will be illustrated at the end of the 

chapter.

CFDA with Levenberg-Marquardt

Consider a performance index  in the form:

, (180)

where

CFDA

CFDA

F x( )

F x( ) ρ1F1 x( ) ρ2F2 x( )+=
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 and . (181)

The  element of the gradient is

. (182)

The gradient can be written in matrix form:

, (183)

and, from Eq. (38) in Chapter 2, this becomes

, (184)

where the Jacobian matrices are

 and . (185)

Next, we want to find the Hessian matrix. The  element of the Hessian matrix would be

. (186)

From Eq. (39) in Chapter 2, this turns out to be

(187)
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Using Eq. (40), the Hessian can then be expressed in matrix form

 (188)

where

 and (189)

If we assume  is small. In this scenario, if we assume that both  and  are 

small, relative to the terms  and , then the Hessian matrix can be ap-

proximated as

(190)

Therefore, by Eq. (184) and Eq. (190), the Levenberg-Marquardt update is

(191)

Note that  is adjusted using the typical Levenberg-Marquardt algorithm, which was pre-

sented in Chapter 2.

Now, recall from Eq. (80) that the performance index in the  method con-

sists of two terms (i.e.  and ). This is in the same form as the performance index in 

Eq. (180), if we assign
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 , (192)

 (193)

where  and .

Since the algorithm for computing  and  is already known (see [HaMe94] 

and [HaDe96]), we will focus on the calculation of  and . The calculations for 

these terms are given in the following two sections. The next section will show the batch 

calculation and the following ssection will show the memory-save calculation.

Batch calculation

In this section, we will compute the vector  and the Jacobian matrix . Re-

call from Eq. (193) that we have

. (194)

We can rewrite Eq. (194) as

(195)
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, (196)

where the matrix  is defined in Eq. (99). Then, Eq. (195) can be ex-

pressed as

, (197)

where

. (198)

Now, by equating Eq. (197) to Eq. (181), we can see that

. (199)

For the calculation for the Jacobian matrix , we need to have the vector  con-

taining all of the network parameters. There are several ways to define . However, the 

definition we use is

, (200)

where the value of  is shown in Eq. (31). The vector  is defined as
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. (201)

Therefore, from Eq. (185), the Jacobian matrix  can be written as

. (202)

Using Eq. (200) and Eq. (201),  can be written

, (203)
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, (205)

where

. (206)

To obtain , we need to compute . However, it is fairly com-

plicated to derive the entire  at once. Therefore,  will 

be considered first. Then, the batch matrix  will be expressed.

Each element in the matrix  is , where  is at ele-

ment  of . We will first consider the case when  is an element in the weight matrix 

 and then the case when  is an element of the bias vector .

Consider when . From Eq. (87) in Chapter 4 and using the fact that
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, (207)

we have

(208)

Next, consider when  is an element of , i.e. . From Eq. (101), Eq. 

(104) and Eq. (207), we have

. (209)

Eq. (208) and Eq. (209) can be written in matrix form:
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(212)

The batch matrix for Eq. (211) can be written as

. (213)
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. (215)

In addition, we have

, and (216)

. (217)
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, (218)

and the result is shown in Eq. (98).

From Eq. (212) and Eq. (213), we will need to calculate , and 

. (We previously provided the equations for the other terms.) We 

will first show the derivation for computing the matrix , followed by 

. Note that the computation for the term  is in Chapter 2, Eq. 

(18), and for the calculation for the term  is in Chapter 4, Eq. (114).

I. Calculation of 

Consider an element of , which is . This element is 

known as the Marquardt sensitivity, [HaDe96]. This term was computed in Eq. (118) and 

Eq. (119) in Chapter 4. Hence,  can be expressed as

, (219)

where  is defined in Eq. (112).

Thus, from Eq. (216) and Eq. (219), the batch matrix  can be 

expressed as

(220)
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--------------------------×
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T
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T
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T
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nq
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T
∂
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T
∂

∂eq Wm 1+ F· m nq
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F· m nq
m( )
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∂
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where the term  is computed as shown in Eq. (113).

Since Eq. (220) is a backpropagation process, we need to initialize it at the output 

layer, i.e. . From Eq. (125), we can write

(221)

We can also write Eq. (221) in the batch mode:

(222)

This completes the computation of . Next, the calculation of 

 will be derived.

II. Calculation of 

Recall that an element of  is . From Eq. (207) 

along with Eq. (119), we have

. (223)

By taking the derivative inside the parenthesis and using Eq. (207), this turns out to be

. (224)

Therefore, using Eq. (133) and Eq. (134), Eq. (224) can be written in matrix form:

vecAm∂ vecNm( )
T

∂⁄

m M=

nq
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T
∂

∂eq aq∂

nq
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T
∂
----------------- F·
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T

∂
--------------------------- vecA∂

vecNM( )
T

∂
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T
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(225)

where  can be computed using Eq. (147) and Eq. (148). From Eq. (214) and 

Eq. (225), the batch matrix  can be expressed as

(226)

where  is defined in Eq. (135) and  can be computed 

using Eq. (149). To clarify Eq. (226), note that

nq
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∂
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, (227)

. (228)

The product of the two matrices in Eq. (227) and Eq. (228) results in the following matrix:

. (229)

In addition, note further, in Eq. (226), that

, (230)
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. (231)

Thus, the Hadamard product of the two expressions in Eq. (230) and Eq. (231) results in

(232)

Since Eq. (226) is a backpropagation process, the computation at the output layer 

where  needs to be evaluated. From Eq. (223), we have

. (233)

Using Eq. (125), it becomes

(234)

Eq. (234) can be expressed in matrix form:
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=
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, (235)

where, by Eq. (112), the matrix  is

. (236)

From Eq. (144), we then have

. (237)

Therefore, Eq. (235) can be written as

. (238)

From Eq. (214) and Eq. (238), the batch matrix  can be written as
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(239)

To clarify Eq. (239), note that the first expression is

. (240)

In addition,

(241)

Thus, the second expression in Eq. (239) yields
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(242)

This completes the calculation of  and , 

which are needed for  and , i.e. Eq. (212) and 

Eq. (213). Then, by Eq. (204), we obtain . By concatenating the matrix 

 for all  as in Eq. (203), we finally have the Jacobian 

matrix . Along with Eq. (199) for , the Levenberg-Marquardt update for the 

 method can be performed, using Eq. (191).

Before going to the next section, in which we will present the computation for the 

Jacobian matrix in the memory save approach, the summary of the batch algorithm is 

shown as follows.
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-----------------------×⎝ ⎠
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⎩ ⎭
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⎧ ⎫
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∂⁄ vecDEP∂ vecNm( )
T
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T
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T
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vecDEP∂ xm( )
T

∂⁄

vecDEP∂ xm( )
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∂⁄ m 1 2 … M, , ,=

J̃ x( ) z̃ x( )

CFDA
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Summary of Batch Calculation

STEPS FOR CFDA WITH LEVENBERG-MARQUARDT

(BATCH MODE)

1. Given  inputs in , compute  and  by Eq. 

(114) and Eq. (117).

2. Given the derivative information in , compute  

by Eq. (196) and obtain  using Eq. (199).

3. Compute  and  using Eq. 

(222) and Eq. (239), respectively.

4. Backpropagate for  and  

by Eq. (220) and Eq. (226), respectively.

5. Compute  and , using Eq. 

(212) and Eq. (213), respectively. Then obtain  by Eq. (204).

6. Obtain the Jacobian matrix , using Eq. (203).

7. Update the network parameters by Eq. (191).

Q P Am vecAm∂ vecP( )T∂⁄

vecG∂ vecP( )T∂⁄ DEP

z̃ x( )

vecE∂ vecNM( )
T

∂⁄ vecDEP∂ vecNM( )
T

∂⁄

vecE∂ vecNm( )
T

∂⁄ vecDEP∂ vecNm( )
T

∂⁄

vecDEP∂ vecWm( )
T

∂⁄ vecDEP∂ bm( )
T

∂⁄

vecDEP∂ xm( )
T

∂⁄

J̃ x( )
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Memory-save Calculation

In this section, we will present a procedure for computing the Jacobian matrix that 

uses less memory than the batch algorithm presented in the previous section.

From Eq. (180), write the performance index  in the form:

, (243)

where  is a column vector. The gradient and the Hessian of the performance index 

, i.e.  and , can then be computed as

(244)

and

. (245)

From Eq. (244), by following Eq. (182) to Eq. (190), the term  and  

can be computed as

 and , (246)

where

(247)
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R
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R
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z̃r x( )∂

xT∂
---------------  .=
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Therefore, Eq. (191) is the Levenberg-Marquardt update for this memory-save approach; 

with the term  and  replaced by Eq. (246).

To compute  and , first consider Eq. (243). By equating it with Eq. 

(193), we obtain

(248)

which can be also written as

(249)

Define the  matrix in Eq. (156):

. (250)

By Eq. (249) and Eq. (250),  in Eq. (193) can be written as

. (251)

Equating Eq. (251) with Eq. (243), this implies

. (252)

To compute the Jacobian matrix , consider Eq. (247), which implies
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=
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T
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103

. (253)

By Eq. (200),  can also be written

, (254)

where, by Eq. (201),

. (255)

From Eq. (200) and Eq. (253), the matrix  can also be written as

, (256)

where
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∂
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∂
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. (257)

To obtain , we need  and . How-

ever, it will be easier if we first consider  and .

Consider one element in , which is . Therefore, 

from Eq. (208),  can be expressed as:

(258)

The elements of  are . By using Eq. (209),  can 

be written as

. (259)

From Eq. (258), the batch matrix  can be expressed as
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∂
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∂
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(260)

From Eq. (259), the batch matrix  can be written as

. (261)

To clarify Eq. (260) and Eq. (261), note that

, (262)
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 . (263)

Note further that the product of  and  in Eq. (260) is al-

ready shown in Eq. (153).

Now, from Eq. (260) and Eq. (261),  is the only term we 

have not yet computed. We will show its computation next.

Calculation of 

Consider one element of , which is . From Eq. 

(224), we find

(264)
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vecDE pr
∂

vecNm( )
T

∂
--------------------------- 1Q 1× I

Sm⊗( )×

n1
m( )

T
∂

∂
pr 1,∂

∂e1

⎝ ⎠
⎜ ⎟
⎛ ⎞

n2
m( )

T
∂

∂
pr 2,∂

∂e2

⎝ ⎠
⎜ ⎟
⎛ ⎞

…

nQ
m( )

T
∂

∂
pr Q,∂

∂eQ

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

11 Q× I
Sm 1–⊗( ) vecAm 1–∂ pT

r∂⁄

vecDE pr
∂ vecNm( )

T
∂⁄

vecDE pr
∂ vecNm( )

T
∂⁄

vecDE pr
∂ vecNm( )

T
∂⁄

ni q,
m∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

nq
m( )

T
∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞ dfm nq

m( )∂
pr q,∂

------------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

T

1
SM 1×

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

nq
m 1+( )

T
∂

∂eq Wm 1+×
⎩ ⎭
⎨ ⎬
⎧ ⎫

• +=

dfm nq
m( )( )

T
1

SM 1×
⊗

⎩ ⎭
⎨ ⎬
⎧ ⎫

nq
m 1+( )

T
∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

Wm 1+×

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

 ,•

dfm nq
m( ) dfm nq

m( )∂ pr q,∂⁄



107

(178) in Chapter 4. Note that Eq. (264) can be also expressed as:

(265)

However, we will use Eq. (264) as part of our computation for two reasons. First, the nota-

tions in Eq. (264) is in a similar form as Eq. (225). Second, we have already developed a 

notation for the term , i.e. , thus it is more convenient 

to use Eq. (264).

From Eq. (262) and Eq. (264),  can be computed by:

(266)

where the term  can be computed by Eq. (179). The second term in 

Eq. (266) can be clarified as follow:

, and (267)
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. (268)

Therefore, the Hadamard product of the two matrices results in

(269)

Since Eq. (266) is a backpropagation process, we need to initialize it at the output 

layer, i.e. . From Eq. (234), the matrix

, (270)

where  can be computed by Eq. (237). Thus, from Eq. (237) and Eq. (262), 

 can be decomposed to:
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This completes the derivation for calculating the Jacobian matrix  and the vec-

tor  for the  performance index with the memory save approach. In the next 

section, we will compare the execution time for computing the gradient and the approxi-

mated Hessian between the standard backpropagation and the  method. We summa-

rize the  method with Levenberg-Marquardt using the memory save approach 

below.

J̃ x( )

z̃ x( ) CFDA

CFDA

CFDA
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Summary of memory-save calculation

STEPS FOR CFDA WITH LEVENBERG-MARQUARDT

(MEMORY SAVE)

1. Given  inputs , obtain . Initialize .

2. Obtain  by Eq. (165) and Eq. (167).

3. With , compute  by Eq. (157) and Eq. (250). Obtain 

 by Eq. (252).

4. Compute  and , using Eq. 

(222) and Eq. (271), respectively.

5. Backpropagate  and  by 

Eq. (220) and Eq. (266), respectively.

6. Compute  and , using Eq. 

(260) and Eq. (261), respectively. Then, obtain  by Eq. (255).

7. Obtain  by Eq. (254). Set , and repeat step  until 

.

8. Obtain  and  by Eq. (246).

9. Update the network parameters by Eq. (191).
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Speed Test

In this section, we will compare the execution time for computing the gradient and 

the approximate Hessian matrix under the Levenberg-Marquardt framework in one itera-

tion in three different scenarios. These three scenarios are (see Eq. (192) and Eq. (193)):

1. The sum squared function error, i.e. , using the batch mode,

2. The sum squared derivative error, i.e. , using the batch mode, and

3. The sum squared derivative error, using the memory-save approach.

The following figure shows the relative execution time (averaging over ten runs) for com-

puting the gradient and the Jacobian for  in batch and memory-save approaches, us-

ing the  networks, compared to the time for computing the gradient and the 

Jacobian for . Note that the number of training examples in this case was 

.

Figure 7) Relative execution time for computing the gradient and Jacobian of , com-

pared to 
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From Figure 7), we can see that computing the gradient and Jacobian for  

took more time than for  (which was the standard training method). In batch mode, 

computing the gradient and the approximated Hessian for  took slightly less time 

than that in memory-save approach. More operations (e.g. kronecker products) in batch 

mode made it just slightly more efficient than in the memory-save approach. Once the input 

dimension was greater than ten, the computer’s RAM overflowed, thus requiring data to be 

sent to disk. The execution time in batch mode for this case thus was greater than that in 

memory-save approach.

Summary

In this chapter, the algorithm for the  method under the Levenberg-Mar-

quardt framework was derived. Two approaches were presented. The first method performs 

the calculation in batch mode. The second method is the memory-save approach, which in-

tends to make the matrix size independent of the input dimension  (same concept as the 

memory-save approach in Chapter 4). The computation times under different conditions 

were measured. The results showed that computing the gradient and approximated Hessian 

for the term  in the  method was longer than that in standard backpropagation. 

This is expected since its computation is more complicated and it involves larger matrices 

than the calculation in standard backpropagation. The results also illustrated that the mem-

ory-save approach is useful in cases where computer RAM is insufficient to perform the 

calculation in batch mode.

F2 x( )

F1 x( )

F2 x( )

CFDA

R

F2 x( ) CFDA
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CHAPTER 6

A NETWORK PRUNING ALGORITHM FOR CFDA

Introduction

One of the major problems in nonlinear fitting is overfitting. In Chapter 2, we brief-

ly mentioned some common techniques to prevent overfitting in function approximation. 

One of the most common techniques was to prune the network (see [SiDo88] or [Reed93]). 

Many methods have been proposed to efficiently prune the network. For example, optimal 

brain surgeon [HaSt93] computes the product of the weight squared and the second-order 

derivative of the function error with respect to the weights. A neuron is pruned if the prod-

uct is sufficiently small. [Lo99] proposed a statistical-based method, which computes the 

covariance of the weights and uses the  to decide which neurons to prune. 

The method proposed in [Karn90] measures the sensitivity of the function error with re-

spect to the removal of each weight. The weights with low sensitivity are pruned. [Enge01] 

proposed another statistical-based method, which prunes the weight with the variance in the 

sensitivity not significantly different from zero over all the training data. The sensitivity is 

based on the calculation of the derivatives of the network output with respect to the network 

parameters. [LaFo06] analyzed the Fourier decomposition of the variance of the network 

output with respect to each weight. This information is used to assess which weight will be 

eliminated. Some other methods are also discussed in [SeGa00], [WaHi00] or [HuSe05].

z statistics–
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When fitting both a function and its first-order derivatives through  training 

algorithms, we expect less overfitting. That is, in the local neighborhoods of training inputs, 

the function response of the neural network is more accurate since the derivatives at the 

training points are forced to be correct. However, we have observed new types of overfit-

ting. In this chapter, we will discuss these new types of overfitting as well as propose a 

method to mitigate the problems. We will focus only on the case of fitting an  

network with the  training algorithms, where the transfer function of the network is 

hyperbolic tangent sigmoid.

We will start this chapter by discussing the impact of the network parameters on the 

function and derivative response. Then, we describe new types of overfitting for networks 

trained by the  algorithms. Finally, we will propose a pruning method to remove 

these types of overfitting from the network responses.

 Two-Layer Network Response

In this section, we will discuss the impact of the network parameters in a  

network on the function and derivative responses. Given a  network, the function 

response of the network can be expressed as:

, (272)

where

CFDA

R S1 1––

CFDA

CFDA

R S1 1––
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2 ai
1
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 and . (273)

By taking the derivative of Eq. (272) with respect to the input , we obtain

(274)

Using the chain rule of calculus, we can further express the term  as:

. (275)

Substituting Eq. (275) into Eq. (274), the derivative response can be written as

. (276)

For ease of reference in this chapter, we also introduce the notation:

 and . (277)

Therefore, Eq. (272) and Eq. (276) can also be written as

 and . (278)

From Eq. (278), the terms  and  can be viewed as the function and derivative 

responses of the  neuron. The network’s function response  and derivative response 
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 are linear combinations of the terms  and , respectively.

To illustrate how Eq. (278) works, we start with the case of a single input and as-

sume that the transfer function is hyperbolic tangent sigmoid. Observe that there are four 

types of parameters contributing to the function and derivative responses: the first-layer 

bias , the second-layer bias , the first-layer weight  and the second-layer weight 

, for . It is clear from Eq. (278) that the term  shifts the entire function 

response  up or down, while it does not contribute to the derivative response . 

Next, we will consider the impact of the other three parameters on the network responses. 

Specifically, we will focus on the impact of the three parameters to the terms  and 

. First recall that the terms  and  depend on the terms  and 

, respectively. With the transfer function being hyperbolic tangent sigmoid, the term 

 can be computed by

. (279)

The sketches of the term  and  are shown in Figure 8).
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Figure 8) Sketches of  and 

The effect of the first-layer bias  on the terms  and  can be seen 

from Figure 8). It controls the center of the neuron response. The center at  

is obtained by solving . The effect of the first-layer weight  on the 

terms  and  is shown in Figure 9).

Figure 9) Effect of the first-layer weight

From Figure 9), we can see that, as  increases, the terms  and  change 

more rapidly. For the term , we see that the width of the response is narrower as the 
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magnitude of  increases. In addition, from Eq. (277),  affects the term  by 

also scaling the response of .

For the second-layer weight , its impact on the terms  and  can be 

seen from Eq. (277), where it scales both the values of  and . Figure 10) il-

lustrates the impact of  when its value increases.

Figure 10) Effect of the second-layer weight

For the single-input case, we can see from Eq. (277) and Figure 10) that the maximum mag-

nitude of , which occurs at the neuron center, equals .

Now, consider the case of multiple inputs. Recall in the single-input case that the 

neuron center is obtained by solving . For multiple inputs, the center 

of the neuron is governed by the equation:

. (280)
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dimensional inputs or a hyperplane for higher dimensions. The impact of the network pa-

rameters on the neuron’s responses for multiple inputs is similar to the single-input case. 

For example, consider a case of two dimensional inputs. If we assume , , 

 and , the terms , , and  in the region of 

 are illustrated below.

 

Figure 11) Neuron’s function and derivative responses in two dimensions

In the example, the neuron center occurs along the line . The widths of the 

terms  and  are controlled by the first-layer weights, which are now com-

posed of two elements (i.e.  and ). With , we can see 
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that the responses change along  much more rapidly than along . To illustrate this, let 

us plot  along the line  (and plot  along the line ). The re-

sult is shown in Figure 12).

 
Figure 12) A cross section of the neuron’s derivative responses

From Figure 11), we see that the extreme values for  and  equal 

 and , respectively, and they occur along the neuron center. 

The magnitude of  equals

. (281)

Thus, at the neuron center, the magnitude is .

In this section, we provided the fundamental concepts of how each network param-

eter contributes to the function and derivative responses of a  network. With this 

background, we are ready to introduce  overfitting in the next section.
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CFDA Overfitting

We will introduce two types of  overfitting,  and . For 

 overfitting, the network responses produce accurate results at every training 

point. However, both the function and derivative responses are inaccurate at some points 

outside the training set. For  overfitting, the network’s derivative responses pro-

duce accurate results at all training points. However, the network’s function response has 

small errors at some training points. The two types of overfitting, as well as the guidelines 

of the method to eliminate them, are discussed as follows.

Type-A

For the first type of overfitting, the network responses are accurate over the training 

set. However, at some spaces between training data, the network performs very poorly, 

causing very large approximation errors on both function and the first derivatives. The 

problem comes from a group of neurons (greater than one), whose responses are cancelled 

at all training points. That is, their responses, when combined together, produce insignifi-

cant contribution to the fitting over the training data. Unfortunately, their responses may 

not cancel at some spaces between training points, thus yielding inaccurate responses at 

these locations.

To illustrate the idea, consider a  network. Assume that two neurons of 

the network yield their function and derivative responses as shown in Figure 13). Note that 

the symbol  in the figure represents the location of training data.
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Figure 13) Responses of two neurons

If we combine the responses of these two neurons together, we obtain Figure 14).

Figure 14) Type-A Overfitting

From Figure 14), we can see that the responses from the two neurons cancel almost 

exactly at training points, but not at the points in between. The remainder after cancellation 

is  overfitting. If these two neurons are removed, it will not produce a significant 

change to the original fitting (since their responses yield almost no contribution to the train-

ing data). However, it will eliminate the overfitting. The basic idea of the pruning method 

is discussed below.

From Figure 13) and Figure 14), we can see that the severity of the overfitting 

(which depends on the magnitude of the remainder) in the derivative is associated with the 
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magnitude of the responses of the two neurons. Recall from the previous section that, for 

the single-input case, the maximum magnitude of  equals the weight product 

. For multiple inputs, it equals . Therefore, the higher the weight prod-

ucts are, the worse the overfitting could be.

The weight product of a neuron is defined as “high” if it is larger than the actual 

derivative of the training point closest to the neuron center. (The reason we select the train-

ing point closest to the neuron center is that it is the point to which the neuron response most 

contributes.) The distance between a training point  and the  neuron center (at 

) can be easily computed in the case of single input. For multiple inputs, it 

requires the calculation illustrated in Figure 15).

Figure 15) Distance between a point to a line

From geometry, the distance from the training point  to the  neuron’s center (which 
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is ) is

(282)

The neuron with high weight product will be selected as a candidate that yields 

 overfitting. Once the candidate is chosen, we need to search for other neurons, 

whose responses will cancel the response of the candidate over the training data. Practical-

ly, it is impossible to validate every possible combination of neurons, since the number of 

combinations could be extremely large. It is also not useful to verify every possible com-

bination of neurons, since neurons with centers far from the candidate’s center would not 

provide the response cancellation. Therefore, checking only a set of neurons whose centers 

are close to the candidate’s center would be sufficient. We thus need to define the “neigh-

bors” of the neuron candidate.

From Figure 13) and Figure 14), we can see that the largest distance between the 

center of two neurons that cause overfitting is the distance between the two training points. 

If the distance between the two centers is greater than or equal to the distance between the 

two training points, it implies that each neuron’s response contributes to the fitting of the 

two training data. Therefore, we use the maximum distance between neighboring training 

points to be the threshold for deciding which neurons should be tested for response cancel-

lation. That is, any neurons whose centers are closer to the candidate center than the max-

imum distance between neighboring data points are considered the candidate’s neighbors. 

In the case of single input, it is easy to calculate the distance between weight centers. For 

multiple inputs, more consideration is needed.
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The definition of a neighbor for multiple inputs requires that a neuron center be 

close to the candidate center, and that the two centers be parallel. Theoretically, the proba-

bility of having two centers in parallel is zero. An angle tolerance is applied in practice. 

Therefore, neighbors in the case of multiple inputs are those neurons whose centers are par-

allel within a tolerance and are close to the candidate center. We fix the angle tolerance at 

one degree. To compute the distance between the neuron centers, we further assume that 

those centers (whose angles are within one degree) are parallel. By geometry, it can be 

shown that the distance between two parallel hyperplanes,  and 

, is

, (283)

if  and  are in the same direction, or

 , (284)

if the directions of  and  are opposite. We can use Eq. (284) and Eq. (285) to com-

pute the distance between two parallel (within a tolerance) centers. Then, we compare the 

distance against the distance threshold, specified by the maximum distance between neigh-

boring training points.

Once having a candidate and its neighbors, combinations of these neurons can be 

tested. We need to verify if cancellation (over the training points) occurs for any of these 
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combinations. If cancellation occurs, the combination of neurons is pruned. Note that there 

could exist more than one combination yielding an insignificant contribution. In this situa-

tion, the combination with highest number of neurons is pruned.

When verifying cancellation for a combination of neurons, their combined deriva-

tive response is measured over the training set. Then, the maximum magnitude of the de-

rivative response (chosen among the training points) will be compared with the true 

derivative magnitude evaluated at the training point. If the maximum derivative response 

from these neurons is much less than the true derivative value, we say that the derivative 

response from these neurons contributes insignificantly to the fitting. Thus, these neurons 

are pruned. The mathematical procedure will be described in detail after we finish discuss-

ing the other type of  overfitting.

In the next section, we will introduce  overfitting, as well as the method 

to remove it.

Type-B

For  overfitting, the network produces accurate derivative response over 

the training set. However, the function response has small errors for some training data. At 

some locations between training points that produce accurate function response and train-

ing points whose function response is inaccurate, the network response changes rapidly. 

This produces a large derivative response between training points. This problem is caused 

by a local minimum in the  performance surface. Although there is a very small 

function error, the derivative error is minimized. This type of overfitting could be generated 

by a single neuron, or by multiple neurons.
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To demonstrate the  overfitting, consider a  network. Assume 

that one neuron of the network yields the function and derivative responses as shown in 

Figure 16).

Figure 16) Type-B Overfitting

From Figure 16), it should be noted that the step in the function response  must 

be very small. (Otherwise, the function errors at the training points would be large and, 

thus, the training process could further reduce these function errors.) A small step in  

corresponds to a small magnitude for , i.e. a small weight product . From 

the figure, the response  does not contribute to the derivative fitting at the training 

points, but it causes a small fluctuation at points between the training data. If this neuron is 

eliminated from the network, it will not produce a significant impact on the overall deriv-

ative responses at training data. However, it would automatically improve the function re-

sponse, as well as eliminate the small fluctuation in the derivative response. The basic idea 

for the pruning method is discussed next.
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To get rid of  overfitting, we want to remove neurons whose derivative 

response is narrower than the distance between training points. Consider the derivative re-

sponse in Figure 17) and the corresponding buffer zone. If there are no training points with-

in the buffer zone, then that neuron may not contribute to the derivative response at the 

training points. The neuron can then be further tested for potential removal.

Figure 17) Definition of Buffer Zone

Note that since the combined responses from more than one neuron could also cause 

 overfitting, the neighbor search procedure (discussed earlier) is also needed. In 

addition, the process of validating whether the response from a combination of neurons sig-

nificantly contributes to the derivative fitting is the same as when dealing with  

overfitting.

In order to proceed with this pruning concept, we first need to define the buffer 

zone. From Figure 9) and Figure 17), we can see that the width of the buffer zone depends 

on the magnitude of the first-layer weight  and the term . That is, the width of 
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the zone is a function of  and . To find the relationship, first let’s fix the value of 

 at . From Eq. (279), we have . Solve for  and recall 

that . Thus, we obtain

. (285)

If , we have  and . Solve 

for  and . Thus, the width of the buffer zone, , is

(286)

Using the fact that the inverse of hyperbolic tangent sigmoid is an odd function, i.e. 

, Eq. (286) becomes

(287)

If , we have  and . 

Therefore, the width, , is

(288)

From Eq. (287) and Eq. (288), we finally obtain

(289)
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For multiple inputs, by changing Eq. (285) from  to  and 

solving, we obtain two hyperplanes making up the boundary of the buffer zone. These two 

hyperplanes are parallel to the weight center, and they are

 and . (290)

To know the width of the buffer zone, we need to know the distance between the two hy-

perplanes. Therefore, from Eq. (283), the distance between the two hyperplanes in Eq. 

(290) is

(291)

The range of  is . For pruning, the value of  could be set, for instance, at 0.5.

Once knowing the width of the buffer zone, we will be able to identify which train-

ing points are inside or outside the buffer zone, by comparing with the distance from the 

training points to the weight center. Then, by counting how many training points satisfying 

the condition:

, (292)

we will be able to tell whether there exist training points inside the zone. If there are none 

in the zone, the neuron becomes a candidate for  overfitting.

To allow no training points inside the buffer zone is a very strict condition. In prac-

tice, it is more promising to allow a small number of training points inside the zone. That 

is, if the neuron response is fitting only a small fraction of the entire training set, we also 
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presume it to be a candidate for  overfitting. Therefore, the rule is now to list a 

neuron as a candidate if the number of training data located inside the buffer zone is less 

than a small fraction of the total number of training points. For example, the fraction could 

be set at 1%. Figure 17) illustrates an example showing a few training points inside the 

buffer zone for a two-dimensional case.

Figure 18) Training points and the buffer zone in a two-dimensional case

In this section, we introduced two types of overfitting produced by the  

training algorithms. The general concept of the pruning algorithm that eliminates these 

types of overfitting was discussed. In the next section, the steps of the algorithm will be pro-

vided in more detail.

Pruning Algorithm

In this section, we will provide more details for the steps of the pruning algorithm. 

The section will be divided into two parts. First, the description of the steps of the pruning 

algorithm will be provided. Second, the pseudo code of the pruning algorithm will be given.
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Description of the pruning algorithm

The steps of the pruning algorithm will be described here. We divide this section 

into six parts. The first part will provide an overview of the pruning method and how it in-

terfaces with the  training algorithms. The last five parts are the body of the algo-

rithm itself, which consists of:

. Initialization,

. Candidate selection,

. Neighbor search,

. Contribution check, and

. Pruning and adjusting.

Overview

Assume we have a neural network  trained by a  training method. Once 

the training is converged, the pruning method will be executed. If the pruning method in-

dicates that the network  is subjected to pruning, we will prune the network. Then, the 

pruned network will be retrained by the  training algorithm. This process will be re-

peated until the pruning algorithm indicates no further pruning. The flowchart of this pro-

cess is illustrated below.
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Figure 19) Overview for the pruning algorithm

Next, we will describe the pruning algorithm, consisting of five processes: Initial-

ization, Candidate Selection, Neighbor Search, Contribution Check and Pruning and Ad-

justing.

CFDA Convergent 
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CFDA Pruning

A.Initialization
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A. Initialization

We initialize the pruning algorithm here. Assume we have a  network 

, completely trained by a  training algorithm.

1. Initialize the set  and the set .

2. Specify the thresholds:

a)  is the threshold for the number of training points inside a buffer zone. We 

choose a value relative to the total number of training points (e.g. 1%: ).

b)  is the threshold for the distance between the centers of neurons. This is to 

consider whether a neuron is a neighbor to the other neuron. As previously mentioned, we 

choose the maximum of the minimum distance between the training points for :

. (293)

c)  is the threshold for the angle between the centers of neurons. In the case 

of multiple inputs, any two neurons will be neighbors if their centers are parallel (within 

the tolerance ) and the distance between them is smaller than the threshold . We 

choose a fixed value for  of one degree: .

d)  is the threshold for the contribution. The measure for contribution is com-

puted as the ratio of the maximum magnitude of the derivative response to the actual deriv-

ative magnitude evaluated at the training point. If the ratio is less than , we assume the 

contribution is not significant. We choose this value to be 10%: i.e. .

R S1 1––

NN CFDA

Q 1 2 … Q, , ,{ }= S1 1 2 … S1, , ,{ }=

T1

T1 0.01=

T2

T2

T2 max min pq ' pq–  ; q'∀ Q q{ }\∈( ) ; q∀ Q∈{ }=

T2̃

T2̃ T2

T2̃ T2̃ 1=

T3

T3

T3 0.1=



135

3. Initialize the set . The set  contains the neurons that will be pruned.

4. Initialize the set . The elements of the set  are the neurons already vis-

ited for candidate selection.

5. Go to step .

B. Candidate selection

1. If , go to step . Otherwise, go to step . This step is to 

let the algorithm proceed if there are neurons that have not been visited for candidate selec-

tion or marked for being pruned.

2. Find the smallest element  such that . Set . Note 

that once neurons are pruned, we will not check them again.

3. Find the training point closest to the weight center:  such that , .

4. If , mark neuron  and go to step . Otherwise, go 

to step .

5. Compute  and  using Eq. (291).

6. Compute the distance  using Eq. (282), .

7. Count how many training points are inside the buffer zone using Eq. (292). Store 

the number in .

8. If , mark neuron  as a candidate and go to step . Otherwise, go to 

step .
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C. Neighbor search

Once neuron  is selected to be a candidate, perform the following steps.

1. Initialize the set . This set contains the neighbors of the candidate neu-

ron .

2. Find its neighbors:

a) For a single input, find neurons whose centers are within the maximum of the 

minimum distance between neighboring training points from the candidate center. That is, 

find neuron  such that

, for all . (294)

b) For multiple inputs, neighbors are those neurons with parallel centers (within 

a tolerance) and close to the candidate center. The angle between neuron  and  is com-

puted by:

, (295)

where  is the inner product of  and . The distance between two hyper-

planes can be computed from Eq. (283) and Eq. (284). Thus, we have two cases. First, find 

neurons whose centers are pointed in the same direction as and close to the candidate cen-

ter. That is, find neuron  such that

 and , for all . (296)
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Second, find neurons whose centers are pointed in the opposite direction and close to the 

candidate center. In other words, find neuron  such that

 and , for all . (297)

For any neuron  satisfying the condition in Eq. (296) or Eq. (297), go to step 

.

3. Put  into the set . Then, go to step .

D. Contribution check

Assume neuron  and its neighbors  are established (note:  could be an 

empty set). We need to validate whether their response significantly contributes to the de-

rivative fitting. Perform the following steps.

1) Initialize  with  (the number of elements in ): . Initialize the 

combinadic index . Initialize .

2. Generate elements of , starting with the combinadic with highest number 

of elements: . For the details of this step, see Appendix A.

3. Include neuron  into the set : . Now, we want 

to validate the response contribution of the neurons in the set . Perform the following 

steps:

a) Create a copy of the neural network: .

l

π anglel i,– T2̃≤
bl

1

w1
l

------------
bi

1

w1
i

------------+ T2≤ l S1 i{ }\∈

l S1 i{ }\∈

C.3

l NBi D.1

i NBi NBi

k nNBi
NBi k nNBi

=

j 0= quit 0=

P NBi( )

P NBi( )k j, psgen NBi k j, ,( )=

i P NBi( )k j, Gi i{ } P NBi( )k j,∪=

Gi
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b) Set the weights of the neurons not in  for the network  to be zero: 

, ,  and , for all .

c) Compute the magnitude of the derivative response from the network  

over the training data: , for all .

d) Find the training point yielding the maximum magnitude of the derivative re-

sponse: .

e) Compute the ratio of the response magnitude to the magnitude of the actual 

derivative at the training point: .

f) If , set , quit this process (set ) and go to step 

. Otherwise, go to step g). Note that this step means if  (the contribution of neu-

rons in  is not significant), the neurons in  are included in the set ). If  (the 

contribution of neurons in  is significant), we will form another combination of neurons.

g) If , set  and go to step  (we will create another 

combination of neurons, where the number of neurons in the new combination will be the 

same, i.e. ). Otherwise, go to step h).

h) If , set  and go to step  (we will create another combina-

tion of neurons, but the number of neurons in the new combination is reduced by one). Oth-

erwise, quit the process by setting  and go to step .
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E. Pruning & Adjusting

Once the set , which contains the neurons to be pruned, is completely formed 

from step  to , one more calculation is needed. This is to calculate the function response 

of the neurons stored in . From Eq. (278), we can rewrite the derivative response of the 

network evaluated at the training point  as:

. (298)

This corresponds to the function response:

. (299)

The notation  and  denotes the term  and  evaluated at 

the input point , respectively. After the neurons in  are pruned, it will not have a sig-

nificant impact on the derivative response  for all  due to the contribu-

tion check (i.e.  for all  is small). However, it may dramatically 

change the network’s function response  for some , since  for some 

 could be large. An simple example is when the set  contains a neuron with very 

large step in its function response and its center is outside the training set. Pruning this neu-

ron would produce no impact on the derivative response, but it would cause a shift up/down 

to the entire function response over the training set.
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To compensate for the response  (that will disappear with the neurons in ), 

we compute its average value computed over the entire training set: i.e.

(300)

Then, the compensation can be done by inserting  to the second-layer bias . 

Now, we are ready to provide the process of pruning and adjusting.

1. If , quit the pruning algorithm and return the network  as the final net-

work. Otherwise, go to step .

2. Prune the neurons contained in  from .

3. Set the second-layer bias of the network to  Quit the pruning algo-

rithm and return the pruned network for a  retraining.

We will provide the pseudo code for the algorithm in the next section.

Pseudo Code

We will provide the pseudo code in this section. The variables in the pseudo code 

were already introduced in the previous section.
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A. INITIALIZATION

Initialize  and . Set  and .
Specify the thresholds: , , ,  and .

B. CANDIDATE SELECTION

While 

Find the smallest element  such that 

Compute .

Compute .

Set  to be the number of  satisfying .

Find  such that , .

If  or 

C. NEIGHBOR SEARCH
Initialize .

For all 
If 

If , add  to the set  .

Else

Compute .

If  and 

Add  to the set .

ElseIf  and 

Add  to the set  .

EndIf  and 
EndIf 

EndFor 
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D. CONTRIBUTION CHECK
Initialize ,  and .

While  and 

While  and 

Set .

Set 

Create a network .
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Compute .
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E. PRUNING & ADJUSTING
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Summary

In this chapter, we introduced two new types of overfitting, i.e.  and 

. These types of overfitting are produced by the neural networks trained by a 

 training algorithm. For  overfitting, the network produces accurate func-

tion and derivative response over the entire training set. However, at some points between 

training points, the network responses (both function and derivative) are inaccurate. We 

demonstrated that  overfitting comes from two or more neurons whose centers are 

close together and whose responses cancel over the entire training set. However, the re-

sponse cancellation does not occur betweeen some training points. We proposed a way to 

detect this problem by first selecting neurons with high weight products. If the weight prod-

uct of a neuron is higher than the magnitude of the actual derivative evaluated at the training 

point closest to the neuron center, the neuron is marked as a candidate for producing 

 overfitting.

For  overfitting, the network produces accurate derivative response over 

the training set. However, the function response has small errors on some training data. 

This problem is caused by a local minimum in the  training surface. We proposed a 

way to detect a neuron producing this type of overfitting by counting how many training 

points are inside the neuron’s buffer zone. If there are less than a small number of training 

points in the zone, the neuron is marked as a candidate for generating  overfitting.

Once a candidate is selected, we search for its neighbors. The neighbors are defined 

as those neurons whose centers are close to the candidate center within the maximum of the 

minimum distance between training points. After locating the candidate’s neighbors, com-

Type A–

Type B–

CFDA Type A–

Type A–

Type A–

Type B–

CFDA

Type B–



144

binations of neurons from the set are formed. The derivative response from these combina-

tions are checked to see whether or not their contribution to the derivative fitting is 

significant. We measure the contribution by computing the ratio of the maximum magni-

tude of the derivative response (computed at training points) to the magnitude of the true 

derivative evaluated at that training point. If the ratio is smaller than the threshold (we 

chose 0.1), we define the contribution as insignificant. Therefore, if a combination of neu-

rons produces insignificant contribution, this combination is pruned. After pruning the net-

work, we showed that the second-layer bias of the network must be adjusted to compensate 

for the function response of the pruned neurons.

In the appendix, we provided the steps of an algorithm to form combinations of neu-

rons. In this chapter, we described the interface of the algorithm to the  training 

methods, as well as the steps of the pruning algorithm. Finally, the pseudo code of the prun-

ing algorithm was provided.

CFDA
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CHAPTER 7

TRAINING RESULTS ON SIMPLE PROBLEMS

Introduction

This chapter serves four purposes. First, it describes the procedure for evaluating 

and comparing the approximation accuracy of various training algorithms, for simple prob-

lems. Comparisons will be made among four groups of algorithms:

1. The standard training algorithms introduced in Chapter 2: , 

, and .

2. The gradient-based  method (Chapter 4),

3. The  method with Levenberg-Marquardt (Chapter 5), and

4. The  methods (i.e. gradient-based and Levenberg-Marquardt) with the 

pruning algorithm (Chapter 6).

Second, the choice of the parameter  in the  method will be analyzed. Third, the 

approximation accuracy obtained from each training algorithm for these simple examples 

will be shown and compared. Finally, some examples illustrating the  overfitting 

and demonstrating how the pruning algorithm eliminates the overfitting will be shown.

BFGS ES–

LM ES– GNBR

CFDA

CFDA

CFDA

ρ CFDA
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Evaluation Procedure

This section will describe the procedure for evaluating the approximation accuracy 

of each training algorithm. It consists of two parts. First, the problem definitions will be in-

troduced. Second, the simulation steps will be presented.

Problem definition

We will use neural networks to approximate the four different functions (and their 

derivatives) defined in Table 7. The table also shows the input ranges for generating the 

training and testing data sets. The table also shows the number of training and testing data 

used for each function. Each data set contains function inputs, the corresponding function 

outputs and the associated first-order derivatives,

Problem Function Training 
Region

No. of 
Training

Test Region No. of 
Testing

1 40 321
2 200 801

3 200 1601
4 , 300 , 100K

Table 7 Description of test functions

0.5πp( )sin 1 p 1≤ ≤– 0.8 p 0.8≤ ≤–

1.2e 3p– 8πp( )sin 0 p 1≤ ≤ 0.1 p 0.9≤ ≤

4πp( )cos 1 p 1≤ ≤– 0.8 p 0.8≤ ≤–

5 10 p1
2 p2

2+( )sin

10 p1
2 p2

2+
--------------------------------------------

1 p1 1≤ ≤–

1 p2 1≤ ≤–

0.8 p1 0.8≤ ≤–

0.8 p2 0.8≤ ≤–
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The network structure used for each problem is defined in Table 8. Note that Figure 

20) illustrates the graph of the functions defined in Table 7.

Figure 20) Graph of the four test functions

Experiment design

The following steps will be repeated on each test problem for every training algo-

rithm.

Problem Network Structure
1
2
3
4

Table 8 Network structure for each problem

1 10– 1–
1 60– 1–
1 40– 1–
2 100– 1–
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Simulation Steps

1. Randomly generate the testing data.

2. Randomly generate the training data.

3. If the training algorithm uses the early stopping technique, randomly divide the 

training data in the previous step into two parts: training and validation. The new 

training set will contain 80% of the data, and the validation set will contain 20% 

of the data. If the training algorithm does not use early stopping, the training set 

remains the same. Note that the data sets will be reused for every training algo-

rithm.

4. Create a neural network with the structure defined in Table 8. The network pa-

rameters are initialized by Nguyen-Widrow algorithm [NgWi90]. Note that this 

initialized network will be reused for every training algorithm.

5. Train the network until the algorithm is terminated.

6. Compute Root Mean Square Error (RMSE) for the function approximation, the 

first derivative approximation and the second derivative approximation on both 

the training and test set. We denote

, (301)

, and (302)

RMSEF
1

QSM
----------- ek q,

2

k 1=

S M

∑
q 1=

Q

∑≡

RMSED
1
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---------------

pr q,∂
∂ek q,

⎝ ⎠
⎜ ⎟
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2

r 1=

R

∑
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∑
q 1=

Q

∑≡
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, (303)

where . The notation  is the function RMSE,  

is the first-order derivative RMSE,  is the second-order derivative 

RMSE, and  is the number of examples in a data set. The calculation of 

 requires the computation of . This is presented in 

Appendix B.

7. Repeat step 2) to 6)  times for Monte Carlo simulation.

8. Report the sample median statistic of  and , denoted  

and  respectively, on both training and testing sets, among the  Mon-

te Carlo samples. Report the sample median statistic of , denoted 

 on testing set, among the  Monte Carlo samples.

The median statistic of  and  is the measure of the approximation 

accuracy for each training algorithm. Note that the median statistic is used, rather than the 

average, because it is less sensitive to outliers (e.g. poor approximation because the training 

process is stuck in a local minimum). We set  for Problem 1, 2 and 3, and  

for Problem 4. We used a lower number for Problem 4 because of the significant computa-

tion time involved.
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For the gradient-based  method, we selected Quasi-Newton  optimi-

zation (with backtracking line search). See Chapter 2 for more details of the  opti-

mization. We refer to this training method as , while  is the 

 method with Levenberg-Marquardt optimization. In the  methods, early 

stopping is not used. This is because standard overfitting does not occur when fitting both 

a function and its derivatives at the training points. We will discuss this in more detail later 

in this document. For the  methods with pruning, we denote  and 

 to indicate  and  with the pruning algorithm, 

respectively.

For problems 1, 2 and 3, we will evaluate the approximation accuracy for 

, , , , ,  and 

. However, for problem 4, the evaluation will be performed only for , 

, ,  and . In the next section, 

the parameter  in the  performance index will be discussed.

Parameters in CFDA

Recall that the  performance index contains a parameter :

(304)

In this section, we will discuss how the value of  is selected. First, we define  to be:
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(305)

where

. (306)

The terms  and  in Eq. (306) are the target function values and the first-

order derivative values in the training set. In this way,  will account for the scale differ-

ence between the target function values and the first-order derivative values. The value of 

 will then be varied to see its impact on the approximation accuracy. The following fig-

ures show the impact of  on the approximation accuracy in RMSE for problem 1, 2 and 

3 using the  algorithm.

ρ λ

η2
------  ,=

η
max gk q,∂ pr q,∂⁄ k∀ r∀ q∀, ,;( )

max gk q, k∀ q∀,;( )
----------------------------------------------------------------------------=

gk q, gk q,∂ pr q,∂⁄

η
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Figure 21) Impact of  on the approximation accuracy

From these results, we determined that a robust value for  would be . This val-

ue will be used for all of the subsequent cases. In the next section, the simulation results 

showing the approximation accuracy in RMSE on each problem for each training algorithm 

will be illustrated.

Simulation Results

We divide this section into two parts. The approximation accuracy in RMSE for 

each problem obtained from every training algorithm is shown in the first part. The second 

part is dedicated to illustrating how the  pruning algorithm works.
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Approximation accuracy

We show the approximation accuracy for two sets of  Monte Carlo samples in this 

section. We used the first set to study the thresholds for the  pruning algorithm. 

Then, the thresholds were applied to the second set to validate its efficiency. Note that, for 

 and , the retraining process (i.e. after pruning) is terminat-

ed either when the  performance index is convergent or it reaches the same level 

achieved before pruning.

First Set

Table 9 to Table 12 show the approximation accuracy obtained by each training al-

gorithm. Note again that, for the  methods, the value of  is set at . Note also 

that RMSE values reported in the tables represent the median statistic among the  Monte 

Carlo samples. The thresholds for the pruning algorithm are , , 

 and .Table 13 shows the median number of neurons of the final pruned 

networks for each case. The values following the “ / ” are the numbers of neuron in the net-

works before pruning.    

K

CFDA

CFDA BFGS– p CFDA LM– p

CFDA

CFDA λ 104

K

T1 0.01= T2
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Training
Algorithm

Problem 1

Training Test Training Test
4.29E-06 1.12E-03 7.38E-03 1.74E-02 4.54E-01
2.48E-06 8.90E-04 6.42E-03 1.74E-02 3.88E-01
3.37E-07 1.91E-06 2.38E-05 3.45E-05 7.52E-04
1.19E-08 1.23E-08 3.75E-09 1.41E-07 6.02E-06
2.86E-09 2.89E-09 3.64E-09 1.60E-08 2.69E-07

7.98E-09 8.09E-09 2.70E-09 7.59E-08 3.51E-06
3.67E-09 3.83E-09 2.92E-09 1.73E-08 2.58E-07

Table 9 Approximation accuracy on problem 1 (First set)

Training
Algorithm

Problem 2

Training Test Training Test
5.76E-04 1.94E-02 2.45E+00 3.24E+00 9.23E+02
1.14E-05 1.16E-02 1.09E+00 1.94E+00 5.73E+02
3.68E-07 4.19E-04 4.02E-02 7.79E-02 1.95E+01
7.70E-07 3.57E-06 1.38E-06 8.01E-04 3.43E-01
6.42E-08 6.47E-08 1.16E-06 1.94E-06 3.20E-04

2.03E-07 2.92E-07 1.28E-07 4.55E-05 1.33E-02
5.68E-08 5.64E-08 5.60E-07 1.49E-06 2.08E-04

Table 10 Approximation accuracy on problem 2 (First set)

RMSEF
md RMSED

md RMSE
D2
md

BFGS ES–
LM ES–
GNBR

CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

RMSEF
md RMSED

md RMSE
D2
md

BFGS ES–
LM ES–
GNBR

CFDA BFGS–
CFDA BFGS– p

CFDA LM–
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From Table 9 to Table 11, we can see that among the three standard training algo-

rithms, the  method yielded best approximation accuracy on both training and test 

Training
Algorithm

Problem 3

Training Test Training Test
6.41E-05 2.28E-03 4.96E-02 1.59E-01 1.83E+01
6.72E-06 2.09E-04 5.67E-03 1.12E-02 1.11E+00
6.33E-07 7.55E-06 3.83E-04 5.51E-04 5.94E-02
7.94E-08 1.10E-07 3.96E-07 2.58E-06 1.98E-04
7.14E-08 7.05E-08 3.94E-07 7.42E-07 6.97E-05

6.20E-08 7.42E-08 1.41E-07 9.64E-07 9.45E-05
3.03E-08 2.97E-08 1.80E-07 3.50E-07 2.85E-05

Table 11 Approximation accuracy on problem 3 (First set)

Training
Algorithm

Problem 4

Training Test Training Test
1.93E-06 4.26E-04 3.19E-03 5.12E-03 8.72E-02
1.73E-04 2.06E-04 4.55E-04 2.54E-03 3.24E-01
9.36E-05 1.12E-04 4.30E-04 1.16E-03 2.31E-02

2.39E-05 3.01E-05 5.47E-05 4.64E-04 1.35E-02
2.03E-05 2.61E-05 6.21E-05 3.37E-04 6.71E-03

Table 12 Approximation accuracy on problem 4 (First set)

Training
Algorithm

Problem 1 Problem 2 Problem 3 Problem 4
8/10 26/60 35/40 92/100

8/10 29/60 31/40 96/100

Table 13 Number of neurons after pruning (First set)

RMSEF
md RMSED

md RMSE
D2
md

BFGS ES–
LM ES–
GNBR

CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

RMSEF
md RMSED

md RMSE
D2
md

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

S1

CFDA BFGS– p

CFDA LM– p
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set. However, both  methods provided lower function errors and much lower first 

derivative errors on the test set than any of the standard methods. The results show that the 

 methods provide improved generalization capabilities, without the need of a vali-

dation set. The  yielded the smallest test error on both function and the deriv-

atives, followed by  and .

It is interesting to note that, the  methods yielded much smaller second de-

rivative errors than  in every problem, except problem 4. In problem 4, the second 

derivative errors obtained from  were larger than . However, after 

pruning the networks, the errors became smaller. For  and , 

the approximation accuracy was better on both function and derivatives (i.e. first and sec-

ond orders) than the regular  methods. However, we will validate these results 

again, using the second set. Among the three standard training algorithms,  consis-

tently provided the smallest approximation error in every problem. Therefore, only  

will be used to compare against the two  methods (with and without the pruning al-

gorithm) for the remainder of this chapter.

Second Set

For each problem, a new set of  Monte Carlo samples is simulated. The purpose 

is to validate the efficiency of the thresholds of the  pruning algorithm we specified 

in the first set. Table 14 to Table 17 show the approximation accuracy obtained for each 

CFDA
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training algorithm. Table 18 shows the median number of neurons of the final pruned net-

works for each case.    

Training
Algorithm

Problem 1

Training Test Training Test
6.72E-08 3.39E-07 4.45E-06 6.08E-06 1.71E-04
1.98E-09 3.58E-09 1.47E-09 2.55E-08 7.51E-07
7.58E-10 7.91E-10 1.75E-09 5.74E-09 1.21E-07

3.67E-09 4.37E-09 1.59E-09 4.23E-08 1.00E-06
1.02E-09 1.17E-09 1.57E-09 1.07E-08 1.73E-07

Table 14 Approximation accuracy on problem 1 (Second set)

Training
Algorithm

Problem 2

Training Test Training Test
7.18E-07 2.11E-04 8.75E-03 3.40E-02 7.11E+00
2.38E-06 6.35E-06 3.84E-06 5.43E-04 1.80E-01
1.96E-07 2.40E-07 2.87E-06 7.43E-06 9.48E-04

1.42E-07 2.06E-07 1.01E-07 2.81E-05 8.21E-03
2.16E-08 2.15E-08 3.17E-07 8.72E-07 1.22E-04

Table 15 Approximation accuracy on problem 2 (Second set)

RMSEF
md RMSED

md RMSE
D2
md

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

RMSEF
md RMSED
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From Table 14 to Table 17, we can see that the results are consistent with the results 

in the first set. More importantly, the results showed that the pruning thresholds also 

worked well for this new set. The methods  and  consis-

tently provided lower approximation errors on both function and derivatives than the reg-

Training
Algorithm

Problem 3

Training Test Training Test
7.98E-07 2.77E-06 1.95E-04 2.26E-04 2.04E-02
3.22E-07 3.44E-07 8.24E-07 4.62E-06 3.68E-04
1.73E-07 1.76E-07 8.24E-07 2.53E-06 1.75E-04

8.66E-08 8.63E-08 1.06E-07 1.91E-06 2.14E-04
2.24E-08 2.13E-08 1.12E-07 2.87E-07 2.37E-05

Table 16 Approximation accuracy on problem 3 (Second set)

Training
Algorithm

Problem 4

Training Test Training Test
1.92E-06 3.54E-04 3.52E-03 5.01E-03 7.58E-02
1.39E-04 1.66E-04 3.60E-04 3.13E-03 2.40E-01
7.71E-05 1.04E-04 3.47E-04 1.21E-03 2.75E-02

1.15E-05 1.29E-05 2.80E-05 1.80E-04 4.16E-03
1.12E-05 1.29E-05 2.66E-05 1.73E-04 3.86E-03

Table 17 Approximation accuracy on problem 4 (Second set)

Training
Algorithm

Problem 1 Problem 2 Problem 3 Problem 4
9/10 26/60 36/40 93/100

8/10 30/60 32/40 98/100

Table 18 Number of neurons after pruning (Second set)

RMSEF
md RMSED

md RMSE
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md

GNBR
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ular  methods. In addition, for problem 4, although  produced 

higher second derivative errors than , the pruning algorithm eventually made the er-

rors smaller.

We show the RMSEs for each Monte Carlo sample in Figure 22) to Figure 25), i.e. 

for ,  and  in problem 1 to 3, and for , 

 and  in problem 4. We will also show the second deriv-

ative errors for each Monte Carlo network in problem 1 and problem 4.

Figure 22) Error comparison for problem 1
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Figure 23) Error comparison for problem 2
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Figure 24) Error comparison for problem 3
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Figure 25) Error comparison for problem 4

From Figure 22) to Figure 25), we can see that the  methods with the pruning algo-

rithm yielded lower approximation errors than the regular  algorithms in almost ev-

ery Monte Carlo sample. Only a few networks showed slightly worse approximation errors 

after pruning. Two reasons could explain this. First, it could have occurred by chance (i.e. 

the test errors could slightly fluctuate up and down, even without pruning, when continuing 

training around the local minimum). Second, the retraining process yielded a new local 

minimum. Recall that one of the criteria to terminate the retraining process is when the 

 performance index reaches the same value as before the network is pruned. This 

means that the function errors could be higher, while the first derivative errors could be 

lower than those before pruning (or vice versa). It is worth noting that, in problem 4, 
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 produced worse second derivative errors than  in almost every 

Monte Carlo trial. However, the pruning algorithm made the errors smaller for every Monte 

Carlo trial.

The results in this section indicated that the  methods with the pruning algo-

rithm yielded the most accurate approximation, followed by the regular  methods 

and the standard training algorithms. Of all the methods tested,  with pruning 

yielded the most accurate networks. In the next section, we will demonstrate some exam-

ples, which were selected from this section, to show the  overfitting and how the 

pruning algorithm eliminates them.

Elimination of CFDA Overfitting

This section provides some examples that demonstrate the  overfitting and 

show how the pruning algorithm removes them. The plots are generated from some net-

works selected from one of the two sets of the  Monte Carlo networks. There are two parts 

in this section. Each part will illustrate one type of  overfitting and demonstrate how 

the pruning algorithm removes it. We will start with  and then .

Type A

We will show two examples. First is the overfitting that occurs in problem 2 with a 

network trained by . The second is from problem 4 with a network trained by 

.

For the overfitting in problem 2, Figure 26) shows the true function, its first deriv-

ative and the function and derivative responses of the network trained by .

CFDA BFGS– GNBR
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Figure 26) Overfitting in the function and derivative responses

The function and derivative errors are shown in Figure 27). We can see that the errors were 

small everywhere, except over a very tiny region. The large errors occur between training 

data. Since the area in the input space having the overfitting is very small, a validation set 

would not be able to detect this. The symbol  represents the location of training points.

Figure 27) Function and first derivative errors

Figure 28) and Figure 29) show how the overfitting occurred. The pruning algo-

rithm indicated that the overfitting was produced by three neurons with responses shown in 

Figure 28). We can see that two of the three neurons have extremely large slope, while the 

other one is smaller to compensate the difference between the two. Notice also that the cen-

ters of these neurons are close together.
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Figure 28) Responses of the three neurons

When combining the responses of these three neurons, we obtain Figure 29).

Figure 29) The combined responses of the three neurons

We can see from Figure 29) that the combined response is very small everywhere, except 

where the overfitting occurs. In that region, the responses of the three neurons did not can-

cel, thus yielding a large residual. By removing these three neurons, as indicated by the 

pruning algorithm, the function and derivative errors right after pruning (without any 

 retraining) are shown in Figure 30). The figure has two rows, both are the same but 

different in scale. The first row uses the same scale as Figure 27), while the second row uses 

a smaller scale.
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Figure 30) Function and derivative errors, right after pruning (with no retraining)

From Figure 30) in the first row, we can see that the pruning algorithm got rid of 

the overfitting. However, pruning the network caused worse approximation at some train-

ing points. Therefore, a retraining process after pruning is needed. Figure 31) shows the 

function and derivative errors of the final retrained network. The figure shows the errors in 

the same scale as the figure in the second row of Figure 30).
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Figure 31) Function and derivative errors of the final network

We can see that we obtained much lower errors after the network was pruned. The approx-

imation was smoother, and the second derivative errors were also lower after pruning.

Next, we will demonstrate the overfitting in problem 4, which has two inputs. Fig-

ure 32) illustrates the function error and the first derivative error with respect to each input 

of the network trained by .
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Figure 32) Function and derivative errors

We can see from Figure 32) that the errors were small everywhere, except where the over-

fitting occurred (which was along a line). We emphasize again that, since the regions where 

the large errors occur is very small, the use of a validation set would not be able to detect 

this. The pruning algorithm indicated that two neurons whose centers are almost parallel 

caused the overfitting. Their responses are shown in Figure 33).
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Figure 33) Responses of the two neurons

From Figure 33), their slopes were very large, almost the same size with opposite sign. 

When combining their responses, we obtain Figure 34).
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Figure 34) The combined responses of the two neurons

Figure 34) shows that the responses of the two neurons cancel everywhere, except in the 

region close to the neurons’ centers, which is the region where the overfitting occurred. The 

function and derivative errors right after pruning these two neurons from the network (with-

out a  retraining) are shown in Figure 35).
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Figure 35) Function and derivative errors, right after pruning (with no retraining)

From Figure 35), we can see that the overfitting disappeared (even without retrain-

ing). This is because the pruning algorithm correctly identified and removed the neurons 

producing the overfitting. Figure 36) shows the errors of the final trained network.
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Figure 36) Function and derivative errors of the final network

With retraining after pruning, the final network produced a very smooth response on both 

the function and its derivatives. The generalization ability of the network after pruning was 

improved.

Next, some examples with  overfitting will be demonstrated.

Type B

Two examples will be provided. First is from a network for problem 3. The second 

network is for problem 4 (which has two input variables). Both networks were trained by 

.

For the network with  overfitting in problem 3, Figure 37) shows the func-

tion and derivative errors.
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Figure 37) Function and derivative errors

We can see from the figure that the function error had a step at a point, whereas the deriv-

ative error spiked. The step in the function error demonstrated that, even on training points 

where , the training process misfits the function. The pruning algorithm indicated 

that there was one neuron causing the overfitting. Its responses are shown in Figure 38).

Figure 38) Responses of the neuron causing the overfitting

From Figure 38), we can see that the neuron produced a very sharp step in the function re-

sponse, with a small step size. This implies the first-layer weight is large, while the second-

layer weight is small. Figure 39) shows the function and derivative errors right after prun-

ing the neuron (without a  retraining).
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Figure 39) Function and derivative errors, right after pruning (with no retraining)

From Figure 39), we can see that right after pruning the neuron, the network responses were 

automatically improved. That is, the step in the function response observed in Figure 37) 

was smaller, while the spike in the derivative error disappeared. Figure 40) shows the errors 

of the final trained network.

Figure 40) Function and derivative errors of the final network

As shown in Figure 40), the responses of the final network were more accurate on both the 

function and its derivatives.

Next, we will illustrate  overfitting in problem 4. Figure 41) shows the 

function and derivative errors of the network, trained by .
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Figure 41) Function and derivative errors

From Figure 41), we can see that the errors were, although small, very jagged. The pruning 

algorithm indicated that 15 neurons were involved in the overfitting. We will, however, 

show only the response of three neurons, causing overfitting at three different locations, in 

Figure 42).
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Figure 42) Responses of the three neurons

From Figure 42), we can see that these three neurons had small but very sharp steps 

in the function response. This corresponds to the small spikes in the derivative response. 

The combined responses of these 15 neurons are shown in Figure 43).
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Figure 43) The combined responses of the 15 neurons

We can see from Figure 43) that the combined response of these neurons generated the 

jagged network responses. By removing these 15 neurons from the network, the function 

and derivative errors after pruning (without a  retraining) are shown in Figure 44).
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Figure 44) Function and derivative errors, right after pruning (with no retraining)

We can see from Figure 44) that the responses after pruning the network were smoother 

(even without a retraining), with all the jagged response removed. The responses of the fi-

nal trained network are shown in Figure 45).
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Figure 45) Function and derivative errors of the final network

Figure 45) shows that the final network produced much smoother responses than the net-

work before pruning.

We will provide a summary of this chapter next.

Summary

In this chapter, seven different algorithms for training neural networks were tested 

on four simple problems. The seven training algorithms consist of , , 

, , ,  and . The goal 

was to compare the approximation accuracy obtained from each training algorithm. We 

proposed to measure the approximation accuracy by using RMSE on functions and their 
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first and the second derivatives. The effect of the parameter  in the  method was 

also analyzed, and  was defined so as to account for the scale difference between the val-

ues of the function and the values of the first-order derivatives. An automated procedure 

was developed so that  could be automatically set for any problem.

The test results showed that, among the three standard training algorithms,  

yielded best approximation accuracy on both training and test sets. The  

and  method provided even better approximation accuracy on the test set than 

the other three standard training methods. In fact, the derivative approximation errors were 

usually one or two orders of magnitude smaller when using the  methods.

The results also showed that the  training algorithms with pruning (i.e. 

 and ) yielded even more precise approximation than the 

regular  algorithms. The pruning algorithm not only provided more accurate func-

tion and the first derivative approximation, but also it produced smoother responses, as the 

second derivative errors were significantly reduced. We also provided some examples 

showing the two types of  overfitting and how the pruning algorithm eliminates 

them, for both single and multiple inputs.

Among the training algorithms tested,  produced the best approxima-

tion accuracy.
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CHAPTER 8

A REAL-WORLD APPLICATION

Introduction

This chapter serves two purposes. First, we will introduce a real-world application 

where neural networks can be used to approximate both a function and its first-order deriv-

atives. This application is in the field of Molecular Dynamics. We will review the general 

concept of molecular dynamics, followed by a description of how neural networks can be 

used in molecular dynamics. Second, the approximation accuracy of neural networks 

trained by five training algorithms: , , , 

 and  will be shown for three molecular-dynamics prob-

lems. An example showing the  overfitting (discussed in Chapter 6) in molecular 

dynamics and how the pruning algorithm works will also be illustrated.

Molecular Dynamics with Neural Networks

In Molecular Dynamics (MD), the motion of atoms and molecules in a material un-

der a given force are simulated, using known laws of physics to calculate the forces on in-

dividual atoms. This section will provide a basic review of molecular dynamics. For further 

details on molecular dynamics, books such as [Raff01] and [Stei85] are recommended. We 

will start by reviewing Hamilton’s equations of motion in classical mechanics. Then, the 

GNBR CFDA BFGS– CFDA LM–

CFDA BFGS– p CFDA LM– p
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well-known stationary-state  equation of quantum mechanics will be briefly 

described. An additional assumption, the Born-Oppenheimer approximation, which is used 

to numerically solve the stationary-state  equation, will be also reviewed. Fi-

nally, we will discuss a general framework for molecular dynamics.

Classical mechanics: Hamilton’s equation of motion

For any isolated system consisting of  particles, the classical Newtonian equa-

tions of motion can be used to describe the behavior of all the particles. From the three fun-

damental Newtonian postulates, the behavior of any particle in the system is described by 

the Newtonian equations of motion. For example, if the system is referred in the Cartesian 

coordinate system, the Newtonian equations of motion for particle  are in the form:

,  and , (307)

where  is the mass of particle , and  denotes time. The variables ,  and  are 

the positions of particle  along the ,  and  directions, respectively. The term  is the 

potential energy of the system, and it is a function of the position of all particles, i.e. 

. The potential energy is related to the force field act-

ing on particle  in the ,  and  direction by:

  and (308)

respectively.

It is useful to express the Newtonian equations in the Hamiltonian form:
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(309)

where  is the total energy of the system, which consists of the kinetic energy  and the 

potential energy . The kinetic energy depends on the velocities of the  particles, and the 

potential energy depends on the positions of the particles, where  and  are the velocity 

and the position of particle .

For example, in Cartesian coordinates, the kinetic energy is in the form:

(310)

where , ,  represent the momentum of particle  with mass  and the veloci-

ties , , , along the ,  and  coordinates, respectively. From Eq. (309) and Eq. 

(310), we obtain the classical Hamilton’s equations of motion for particle :
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 (315)

 (316)

It should be noted that, although written in Cartesian coordinates, Eq. (311) to Eq. (316) 

hold regardless of the coordinate system used [Raff01], see the proof in [Arya90].

If we know the positions, the velocities of all particles at a particular time and the 

functional form of , we can compute the entire future and past behavior of the system (i.e. 

,  and ) by solving the Newtonian or the Hamilton’s equations of motion.

Quantum mechanics: The  equation

In an isolated molecular system, electrons and nuclei are considered particles. The 

classical Hamilton’s equations of motion, however, fail to explain the behavior of the par-

ticles, e.g. the behavior that the electron can stay in its orbital in a Hydrogen atom. Quantum 

theories were then developed, in order to provide a better explanation of the particles’ be-

havior. The theories are based upon the fundamental postulates of quantum mechanics. The 

postulates allow the existence of the wave function that follows certain mathematical prop-

erties. The wave function becomes a mathematical tool to provide a complete description 

of how the particles behave. In 1926,  showed how the wave function 

can evolve over time. Similar to the classical Hamiltonian,  showed that the 

quantum mechanical Hamiltonian is the operator acting upon the wave function:

(317)
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where  is the wave function of a molecular system,  denotes the positions of all 

the particles in the coordinates used. Eq. (317) is called the time-dependent  

equation. The quantum mechanical Hamiltonian  and the total energy  operators are:

 and . (318)

The notation  is the imaginary unit,  and  is the Planck’s constant. The term 

 is the time-dependent electric potential energy. The kinetic energy operator  is 

in the form (in SI unit):

(319)

where  is the Laplacian operator (i.e. the second-order partial derivatives with respect 

to the coordinates for particle ). For example, in Cartesian coordinates, we then have 

 and  is in the form:

. (320)

From Eq. (317), when solved, it yields the wave function .

For many problems, the electric potential energy  does not depend on time, writ-

ten . In addition, assume that the wave function can be separable and written as

. (321)

By substituting Eq. (321) into Eq. (317) and solving it, the wave function is obtained:
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, (322)

where  is a constant and the real constant  is

(323)

By using Eq. (322), it has been shown that the constant  is the expected total energy of 

the system operating on the wave function, denoted by :

, (324)

where  is the volume over the coordinates , e.g.  if the Cartesian coor-

dinate is used.  is the complex conjugate of . Since  is the expected total 

energy of the system, it is customary to write Eq. (323) in the form:

, (325)

and this is called the stationary-state  equation. When Eq. (325) is solved, it 

yields the wave function . Then, by Eq. (322), the time-dependent wave function 

 is finally obtained.

The stationary-state  equation can be analytically solved only in very 

simple problems, such as the system consisting of one Hydrogen atom (see [Raff01] for de-

tails), or the problem of a particle in a box (see [Matt93] for details and more problems). It 

is impossible to analytically solve Eq. (325) for more complex systems. An approximation 

to the solution is needed.
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To obtain approximated solutions of Eq. (325) for a general system, further assump-

tions and numerical methods are needed. Before introducing the assumptions, let us rewrite 

the stationary-state  equation in a more general form. Consider an -particle 

system consisting of  electrons and  nuclei, i.e. . Let  be the vector rep-

resenting the position of electron , and  be the vector representing the position of nucle-

us . The Hamiltonian operator in Eq. (325) can be rewritten as:

, (326)

where, from Eq. (319),

 and (327)

are the kinetic energy operator of all electrons and that of all nuclei, respectively. The term 

 is the mass of electron , and  is the mass of nucleus . The Laplacian operator in 

 and  is with respect to  and , respectively. The electric potential energy  

can be computed, by the Coulomb’s law, in SI unit as:

(328)

where  is the permittivity of the vacuum, and  is the charge magnitude (electrons and 
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protons have equal charge magnitudes that are opposite in sign). The term  is elec-

tron-nuclei attraction, the term  is electron-electron repulsion, and the term  

is nuclei-nuclei repulsion. The notation  is the 2-norm of the vector , or the distance 

between the two vectors in the 2-norm. The notation  is the atomic number of nucleus 

. In atomic units, Eq. (327) reduces to:

 and (329)

while Eq. (328) reduces to

(330)

To numerically solve Eq. (325), a well-known assumption, called the Born-Oppen-

heimer approximation, is first needed. We will discuss the Born-Oppenheimer approxima-

tion in the next section.

Born-Oppenheimer Approximation

To solve Eq. (325) numerically, Max Born and Robert J. Oppenheimer first as-

sumed that the wave function  can be separable to

, (331)

where the electronic wave function  is a function of electron coordinates  and it 

depends parametrically on . This means that, at a fixed nuclear position , the electronic 

wave function depends only on the coordinates ; however, the shape of the electronic 
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wave function is changed as the nuclei’s position  changes. The term  is the nuclear 

wave function, depending only on the position of all nuclei. From Eq. (325) to Eq. (331), 

Eq. (325) can be written as:

. (332)

From Eq. (332), first note that, since  is the operator only on , then

. (333)

In addition, recall from Eq. (329) that  is the second order derivative operator, thus

(334)

Here comes the second approximation. Born and Oppenheimer used that fact that 

nuclei are much heavier than electrons, i.e. . This assumption makes the bracket-

ed term in Eq. (334) negligible (see [Stei85]); resulting in

. (335)

Plugging Eq. (333) and Eq. (335) into Eq. (332), and rearranging the terms, we obtain

(336)

For a fixed position of nuclei , the third term in Eq. (336) depends only on the elec-

tron coordinates . This forms the electronic  equation:

, (337)
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where the real constant  is the expected electronic energy at the given nuclear posi-

tion . It should be noted that, although written as a function of nuclear position, this energy 

value changes as the nuclear configuration (i.e. distances and/or angles between nuclei) 

changes. This means that two different nuclear positions with the same nuclear configura-

tion produce the same value of the electronic energy. We will mention this point again 

when we want to rewrite the energy as the function of nuclear configuration, rather than the 

nuclear position. Similar to Eq. (324), the term  can then be computed by:

(338)

By substituting Eq. (337) into Eq. (336), we obtain

(339)

and rearranging Eq. (339) yields the nuclear  equation:

, (340)

where the term  is the expected total energy at the fixed nuclear position . Eq. (340) 

implies that the nuclei are considered to be moving in the potential generated by the moving 

electrons  and the nuclei repulsion . Note again that the energy  and the 

nuclei repulsion  change as the nuclear configuration changes.

The steps for solving Eq. (325) using the Born-Oppenheimer approximation can be 

summarized as follows. First, assume Eq. (331). Second, the nuclei are considered to be 
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fixed at a configuration . Third, solve the electronic  equation, i.e Eq. (337), 

and obtain  from Eq. (338). Fourth, use  and solve the nuclear  

equation, i.e. Eq. (340). Finally, infinitesimally change the nuclear configuration and repeat 

the procedure.

With the assistance of the Born-Oppenheimer approximation, we are now ready to 

explain molecular dynamics.

Molecular Dynamics

In molecular dynamics, the motion of atoms is of interest. By the Born-Oppenhe-

imer approximation, this is equivalent to changing nuclei position in the potential of the 

moving electrons and nuclei repulsion. However, to perform molecular dynamics, we need 

further approximations. First, recall that we need to solve  using Eq. (338). Unfortu-

nately, we cannot analytically solve it, since the electronic wave function  is un-

known. One way to overcome this problem is to create a predefined mathematical model 

for the electronic wave function. Let  represent the mathematical model used in 

approximating the true electronic wave function . The model  is a func-

tion of all of the electrons’ position  and a set of model parameters , at the fixed nuclei 

position . We use to notation  to represent the expected electronic energy of the 

system using the guessed model . Similar to Eq. (340),  is then comput-

ed by:

s̃ Schro··dinger
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(341)

Nature always adjusts the electrons in the most stable orbitals possible, thus its true energy 

is lowest. Therefore, for any values of ,

, (342)

and the equality holds when . This inequality is called Rayleigh-Ritz 

Variational Principle. Hence, given the nuclei position , we adjust the parameters  in 

the model  so as to minimize the energy . This is an optimization pro-

cess, with respect to the parameters  in the model . Once minimized, we obtain 

, i.e.  that produces the minimum value of . We use  and  to 

denote the model  and the value of , evaluated at . The energy  

approximates the true electronic energy of the system . Examples of models that have 

been used for approximating the electronic wave function are Slater type orbitals (STO) 

and Gaussian type orbitals (GTO). There are several methods that have been used to obtain 

 and , such as the Hartree-Fock method and the electron correlation methods (e.g. 

-Plesset Perturbation theory (MP) [MoPl34], and the density functional theory 

(DFT) [HoKo64]). The details of the models and methods can be found in Chapter 14 in 

[Raff01]. To solve  using Eq. (341), some models provide the solution in analytic 

form. For the models that do not provide the analytic form of solution, numerical integra-
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tion is needed.

In addition to the electronic energy approximation, we also need one more approx-

imation to perform molecular dynamics. Recall that once obtaining the electronic energy 

 (which is now estimated by ), we need to solve Eq. (340). However, in molec-

ular dynamics, we rather assume that the nuclei motion is treated using classical Newtonian 

equations of motion. From Eq. (307) and Eq. (340), this means that we treat the nuclei as 

classical particles in the potential energy . For nucleus , this takes the 

form:

. (343)

The first term is simply , where  is the acceleration of nucleus  in the coordinates 

used. The computation for the term  is straightforward, using Eq. (330). The 

term  can be computed by considering at a fixed nuclei position  and calcu-

lating

, (344)

where

. (345)

Again, numerical integration is needed to solve Eq. (344), unless the analytic form of solu-
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tion exists (and this depends on the model used). Similar to Eq. (308), the force field acting 

on the nucleus , at the nuclei position , is

 (346)

where  is the nuclear potential energy:

. (347)

Before summarizing the steps for molecular dynamics, first consider Eq. (343). In-

tegrating the equation yields the velocity and position of each nucleus (or equivalently each 

atom). Several well-known algorithms have been used to perform the numerical integra-

tion, for example Verlet algorithm [Verl67], Leapfrog algorithm [Finc92], velocity Verlet 

algorithm [SwAn82], Beeman’s algorithm [Beem76].

The steps of molecular dynamics can be summarized as follow, for a system con-

sisting of  nuclei (or atoms) and  electrons. Suppose Beeman’s algorithm is used for 

numerically integrating the classical Newtonian equation of motion.

1. Initialize, for atom  for all , the position  and velocity  

over the coordinates used. Initialize . Set  and time . Choose small 

time step  (e.g. ).

2. Given , i.e. the position  for all , we obtain  by minimizing Eq. 

(341) with respect to .
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3. Compute  using Eq. (328). Then, obtain the nuclear potential energy 

 using Eq. (347).

4. Calculate the force field , for all , by Eq. (344) and Eq. (346). 

5. The acceleration  can be computed by , where  is the 

mass of nucleus .

6. For all , move atom , using Beeman’s algorithm, by:

. (348)

7. Perform step 2) to step 5) with  given, and obtain  (this is a part of 

Beeman’s algorithm).

8. Update the velocity for all , by Beeman’s algorithm:

. (349)

9. Move time forward: . Set .

10. Repeat step 2) to step 9) as long as we need.

Note that, it is common to write the potential energy as a function of nuclear configuration, 

rather than the nuclei position (i.e. the potential value is the same for the same configura-

tion, regardless where the system is). This means that we can write the nuclear potential 

energy as , for the nuclear configuration  (i.e. distances and/or angles between 

nuclei) associated with the nuclei position . The force field acting on the nucleus , as 
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calculated by Eq. (346), can then be computed using the chain rule of calculus:

. (350)

Thus, we write the force field acting on the system:

. (351)

This molecular dynamics procedure is generally called ab initio quantum dynamics (or di-

rect dynamics). Since it involves an optimization process in every iteration, the method is 

very time-consuming. Although involving with many approximations to obtain the nuclear 

potential energy  and the force field , they are currently considered to be the 

most accurate simulations. Note that the process to obtain the nuclear potential energy, i.e. 

Eq. (330), Eq. (341) and Eq. (347), and the force field, i.e. Eq. (344) and Eq. (351), at a 

certain nuclear configuration, is called ab initio quantum calculation.

Another method, which is much faster than direct dynamics, is to create an analytic 

empirical nuclear potential energy surface. There are several well-known surfaces avail-

able, e.g. the Tersoff model for Carbon [Ters88] and for Silicon [Ters89], the Finnis-Sin-

clair model for metals and alloys [FiSi84], or the Morse potential for covalently bonded 

diatomic molecules [Mors29]. Molecular dynamics is then performed on the empirical sur-

face, where the forces can be obtained by calculating the analytic derivatives of the surface 

with respect to the distances and/or angles between nuclei.

Another approach is to evaluate the nuclear potential energy  and the force field 

 only at the nuclear configurations of interest. The energy surface can be then fitted based 
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on the data. Subsequently, the molecular dynamics can be performed on the fitted surface. 

However, it is not easy to determine which part of the configuration hyperspace we should 

evaluate. This problem can be overcome by first performing the molecular dynamics pro-

cess on an analytic empirical surface, then select only the configurations of interest. After 

obtaining the configurations of interest, the quantum calculation is then performed only for 

these configurations. Then, based on the data from the quantum calculation, the energy sur-

face can be created by nonlinear regression. Once the surface is created, the dynamics can 

be performed. It should be noted that the accuracy of the dynamics depends on the force 

field , since the force determines the future configuration of the system.

Since the MFNN is a universal approximator [HoSt89], it can be used to create the 

energy surface based on the data from quantum calculations. Let  denote the ener-

gy surface formed by a neural network, whose inputs are the nuclear configuration. Several 

authors, for example [RaMa05], [AgSa05] and [AgRa06], used neural networks trained by 

a standard training algorithm to produce the energy surface, by fitting only on the potential 

energy. To perform dynamics, the force field in [AgRa06] was approximated by numerical 

differentiation on the surface .

In this research, we are using neural networks to fit not only the potential energy, 

but also the force field simultaneously. The conditions that allow us to do this were dis-

cussed in Chapter 2. We will then compare the approximation accuracy of the energy sur-

face obtained from neural networks trained by ,  and , 

where the force field is computed by differentiating the energy surface network  

F

VNN h( )

VNN h( )

GNBR CFDA BFGS– CFDA LM–

VNN h( )
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with respect to the distances and/or angles, i.e. . See Eq. (114) 

in Chapter 4 for how to differentiate the networks. This means that we are going to compare 

the accuracy of neural networks trained by the three algorithms in approximating the po-

tential energy (i.e. function) and the force fields (i.e. the negative of the first-order deriva-

tives). Note that we will not perform dynamics in this research, as the goal is to approximate 

the energy surfaces by neural networks. To perform dynamics on the created energy sur-

faces, the potential energy can be obtained by evaluating . The forces can be com-

puted by using Eq. (350) and Eq. (351), with  replaced by  and  replaced 

by . It should be noted that the accuracy of dynamics depends on the approximation 

accuracy of the energy surface (i.e. the potential energy and the force fields). In this exper-

iment, we will approximate the energy surfaces of three compounds: ,  and .

In the next section, we will illustrate the accuracy of the potential energy and the 

force field approximated by neural networks trained with , , 

,  and  for the three different molecular sys-

tems: ,  and .

Simulation results

This section is divided into two main parts. First, the approximation accuracy of the 

energy surface and the force field produced by neural networks trained by five training al-

gorithms will be compared on three molecular dynamics problems, which are ,  and 

. The five training algorithms are  (see Chapter 2),  (see 
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Chapter 4),  (see Chapter 5) and the  methods with the pruning algo-

rithm discussed in Chapter 6, i.e.  and . As mentioned in 

Chapter 7, the unknown factor  in the  performance index is set according to Eq. 

(305) and Eq. (306) with . Note that the  retraining process (i.e. after prun-

ing) is terminated either when the total performance index is convergent or it reaches the 

same level achieved before pruning. Second, we will illustrate an example to show the 

 overfitting and how the pruning algorithm eliminates it.

Approximation accuracy

Compound 

For , a molecular system consists of three silicon atoms. Since it is a three-body 

system, the coordinates specifying the system’s configuration could be the bond distances 

and angle between the three atoms, i.e. ,  and . Therefore, the energy surface  for 

this compound is a function of these three input variables. The following figure shows a 

silicon molecule, along with the distances and angle used in defining a configuration.

Figure 46) Configuration of three-body silicon

The configurations of interest were first drawn by performing molecular dynamics on the 

Tersoff model [Ters89]. Then, a novelty sampling method [RaMa05] is used to collect 
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more configurations. Once obtaining the final set of configurations, the potential energy 

and the force field are computed from the Tersoff model. The total number of configura-

tions in this case is 10,000. Note that, in this case, since the data were obtained from the 

empirical potential energy surface (not from ab initio quantum calculations), this is equiv-

alent to fitting neural networks to an analytic function.

We created two test conditions. The first case randomly samples  con-

figurations for the training set, and the rest is for testing. The second case randomly samples 

 configurations for training, and the rest is for testing. Since we are using neu-

ral networks to approximate a function of three input variables, the input vector entering 

the network is three. The network structure for this compound is chosen to be . 

The following tables show the approximation accuracy in RMSE of the energy surface ap-

proximated by neural networks trained by three different algorithms. Note that, in each 

case, the network trained by each training algorithm was initialized with the same network 

parameters, using the method proposed in [NgWi90]. Recall again that  is the func-

tion (or the potential energy) RMSE, and  is the first-order derivative (or the force 

field) RMSE. The  is given in electron volts ( ). However, there is no unit for 

, since some derivatives have units of electron volts per angstrom ( ) and 

other derivatives have units of electron volts per radian ( ). Note also that the range 

of the potential energy is in between  and  , whereas the range of the force 

fields is between  and  , and between  and  .

Q 3 000,=

Q 1 500,=

3 100– 1–

RMSEF

RMSED

RMSEF eV

RMSED eV A°⁄

eV rad⁄

5.31– 4.74– eV

1.73– 2.28 eV A°⁄ 1.06– 0.40 eV rad⁄
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From the results shown in Table 19 and Table 20, we can see that both of the 

 methods, i.e.  and , produced smaller approximation 

errors than  on the test set for both the function and the derivatives, for both cases. 

Training
Algorithm

Training Testing Training Testing
2.86E-07 2.97E-07 4.08E-06 4.74E-06
2.91E-07 2.87E-07 3.97E-07 4.53E-07
2.91E-07 2.87E-07 3.92E-07 4.53E-07

2.91E-07 2.87E-07 2.90E-07 3.05E-07
2.91E-07 2.87E-07 2.90E-07 3.03E-07

Table 19 Approximation RMSE of three-body silicon, 3000 training points

Training
Algorithm

Training Testing Training Testing
2.68E-07 3.69E-07 1.09E-05 1.68E-05
2.84E-07 2.91E-07 4.42E-07 1.23E-06
2.83E-07 2.91E-07 4.46E-07 9.77E-07

2.83E-07 2.90E-07 2.81E-07 3.63E-07
2.82E-07 2.90E-07 2.81E-07 3.16E-07

Table 20 Approximation RMSE of three-body silicon, 1500 training points

Training
Algorithm

64/100 69/100

63/100 69/100

Table 21 Number of neurons after pruning, for three-body silicon
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GNBR
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The derivative test errors obtained from the  methods, for both cases, were at least 

one order of magnitude less than the errors from . The pruning algorithm yielded 

slightly lower approximation errors than the regular  methods. The small difference 

in errors between the regular  and the  with pruning indicates two phenom-

ena. First, there was no severe overfitting. Second, the overfitting may occur, but we do not 

have test points over the region of overfitting (since that the area of overfitting is tiny). Ta-

ble 21 shows the number of neurons after pruning the network for each case. We conclude 

that the  methods (with or without pruning) provided more accurate energy surfaces 

and force fields than . In addition,  is the most accurate method.

Compound 

The  system consists of five silicon atoms. For the system of five atoms, a con-

figuration is defined by the four bond distances (i.e. , ,  and ), the three angles 

(i.e. ,  and ), and the two dihedral angles (i.e.  and ). Note that 

 is the angle between the  bond and the  bond, and the dihedral angle  

is the angle between the plane formed by the atoms  and the plane formed by the 

atoms . The configurations of interest were first collected by performing molecu-

lar dynamics on the Tersoff model [Ters89]. After the modified novelty sampling technique 

[RaMa05] is used, the final set of configurations is obtained. Then, the potential energy and 

the forces were computed from ab initio quantum calculation for these configurations, us-

ing the Gaussian 03 program [FrTr04]. The total number of configurations in this case is 
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10,000. The following figure shows the structure of the five-body silicon system, where 

each circle represents a silicon atom.

Figure 47) Configuration of five-body silicon

We created two test conditions. The first case randomly samples  con-

figurations for the training set, and the rest is for testing. The second case randomly samples 

 configurations for training, and the rest is for testing. Since we are using neu-

ral networks to approximate a function of nine input variables, the input vector entering the 

network is nine. The network structure for this compound is chosen to be , fol-

lowing [RaMa05]. The network trained by each algorithm was initialized to have the same 

network parameters, using the method in [NgWi90]. The following tables show the approx-

imation accuracy in RMSE of the potential energy (in ). Again, there is no unit for the 

RMSE of the force fields (as  and  were mixed in the RMSE computation). 
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Note that the range of the potential energy is between  and  . The range 

of the force fields is  to  , and  to  .

Training
Algorithm

Training Testing Training Testing
8.18E-05 1.00E-04 1.75E-03 1.76E-03
1.23E-04 1.23E-04 8.09E-04 8.20E-04
1.23E-04 1.23E-04 8.08E-04 8.19E-04

1.16E-04 1.15E-04 7.16E-04 7.27E-04
1.18E-04 1.18E-04 7.36E-04 7.50E-04

Table 22 Approximation RMSE of five-body silicon, 3000 training points

Training
Algorithm

Training Testing Training Testing
7.40E-05 1.49E-04 2.31E-03 2.45E-03
1.36E-04 1.37E-04 9.69E-04 1.01E-03
1.36E-04 1.36E-04 9.63E-04 1.01E-03

1.13E-04 1.21E-04 7.57E-04 8.16E-04
1.17E-04 1.23E-04 7.56E-04 8.10E-04

Table 23 Approximation RMSE of five-body silicon, 1500 training points

Training
Algorithm

44/45 40/45

43/45 42/45

Table 24 Number of neurons after pruning, for five-body silicon

15.02– 14.20– eV

1.97– 1.38 eV A°⁄ 9.86 10 2–×– 8.23 10 2–× eV deg⁄

Q 3 000,=
RMSEF RMSED

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

Q 1 500,=
RMSEF RMSED
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CFDA LM– p

S1

Q 3 000,= Q 1 500,=
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From the results shown in Table 22 and Table 23, we can see that the function test 

errors obtained from all training algorithms were similar, for both cases. However, the de-

rivative test errors obtained from the  methods were lower than the errors from 

, for both cases. The approximation errors from the pruning method were also in the 

same level as the regular  methods. Again, this implies that we may not have over-

fitting, or the overfitting may occur but the test points were not over the overfitting areas. 

Table 24 shows the number of neurons after pruning the network for each case. We con-

clude that the  methods (with and without pruning) yield more accurate energy sur-

faces than . For this compound,  yielded the most accurate function 

approximation, whereas  produced the most accurate derivative approxima-

tion.

Compound 

The  molecular system is a three-body system. It consists of two Hydrogen 

atoms and one Bromine atom. As a three-body system, the coordinates defining a configu-

ration could be either two bond distances and one angle, like Figure 46), or three bond dis-

tances between the three atoms, i.e. ,  and  as shown in Figure 48). (Note that the 

conversion between the two coordinate systems is performed through the law of cosines: 

.)

CFDA
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CFDA

CFDA

GNBR CFDA LM–

CFDA LMp–

H2Br

H2Br

r1 r2 r3

r3
2 r1

2 r2
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Figure 48) Configuration of 

We opted for the three bond distances as the coordinates, since the  empirical poten-

tial energy , proposed by Kuntz et. al. [KuNe66], is a function of the three bond distances. 

The parameters in the Kuntz’s model were proposed by [SuRa84]. (The detail of the 

Kuntz’s model is in Appendix C.)

A main problem in generating  configurations from the Kuntz’s model is that 

the model is of class  (see the proof in Appendix C). This violates the conditions to use 

neural networks for simultaneously and uniformly approximating both a function and its 

first derivatives (see Chapter 2). To avoid sampling configurations near the discontinuity 

in the first-order derivatives, the configurations of interests were first generated by the ap-

proach in [PuMa09]. Using the approach, we generated approximately 470,000 configura-

tions. Then, the potential energy and the force field associated with the generated 

configurations are computed from the model.

Four test conditions are created; each uses a different number of configurations for 

training, . We set , ,  and  for the four cases. 

In each case, a Monte Carlo simulation is performed with  trials. We set . In 

each trial, we randomly sample  configurations for training and use the rest for testing. 

 r3

 r2 r1

H

Br
H

H2Br

H2Br
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The network structure for this problem is chosen to be . The network parame-

ters are then initialized by Nguyen-Widrow algorithm [NgWi90]. The initialized network 

will be reused for every training algorithm. Once the training for a trial is completed, the 

approximation accuracy in terms of ,  and  will be computed. 

The  is given in electron volts . The  is provided in electron volts per 

angstrom , while the unit of  is electron volts per angstrom squared 

. The median statistic is used to report the approximation accuracy over the  

trials. The range of the potential energy is from  to  , while the range of the 

force fields is from  to  . The range of the second derivatives of the mod-

el is from  to  . Table 25 to Table 28 show the approximation accuracy 

of the neural networks trained by the five training algorithms for the four test conditions. 

Table 29 shows the median number of neurons after pruning the networks for each case.

Training
Algorithm

Training Test Training Test
1.01E-04 4.65E-04 1.55E-02 7.71E-03 1.10E-01
2.33E-04 2.71E-04 1.29E-03 2.76E-03 4.95E-02
2.80E-04 2.76E-04 1.29E-03 2.51E-03 4.54E-02

1.39E-04 1.52E-04 5.31E-04 1.69E-03 2.76E-02
1.91E-04 1.64E-04 5.76E-04 1.53E-03 2.67E-02

Table 25 Approximation RMSE of , 3000 training points

3 150– 1–

RMSEF RMSED RMSE
D2

RMSEF eV( ) RMSED

eV A°⁄( ) RMSE
D2

eV A° 2⁄( ) K

4.73– 2.72– eV

4.61– 7.67 eV A°⁄

6.73– 76.83 eV A° 2⁄

Q 3 000,=

RMSEF
md RMSED

md RMSE
D2
md

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p
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Training
Algorithm

Training Test Training Test
5.16E-05 1.27E-03 8.48E-03 1.39E-02 1.09E-01
2.25E-04 1.12E-03 1.27E-03 7.24E-03 8.18E-02
2.52E-04 9.14E-04 1.27E-03 7.13E-03 8.22E-02

2.07E-04 9.82E-04 8.92E-04 7.49E-03 5.65E-02
3.68E-04 1.05E-03 8.92E-04 7.24E-03 5.70E-02

Table 26 Approximation RMSE of , 1500 training points

Training
Algorithm

Training Test Training Test
3.44E-05 3.52E-03 1.68E-02 2.28E-02 2.00E-01
4.76E-04 5.87E-03 1.30E-03 1.93E-02 1.46E-01
4.24E-04 3.82E-03 1.30E-03 1.47E-02 1.09E-01

2.99E-04 2.22E-03 6.94E-04 1.19E-02 9.81E-02
2.46E-04 3.57E-03 6.94E-04 1.40E-02 9.20E-02

Table 27 Approximation RMSE of , 750 training points

Training
Algorithm

Training Test Training Test
8.81E-05 2.13E-02 9.08E-02 1.03E-01 7.72E-01
2.20E-03 3.57E-02 7.04E-04 2.75E-01 3.11E+00
1.33E-03 1.41E-02 8.38E-04 9.54E-02 1.28E+00

3.28E-03 1.45E-02 5.93E-04 8.22E-02 7.91E-01
2.19E-03 1.16E-02 7.56E-04 6.53E-02 6.42E-01

Table 28 Approximation RMSE of , 375 training points

Q 1 500,=

RMSEF
md RMSED

md RMSE
D2
md

GNBR
CFDA BFGS–
CFDA BFGS– p
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H2Br
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From Table 25 to Table 27, the approximation errors obtained from  meth-

ods were lower than . In addition, the errors of the pruned networks were even lower 

than the  networks with no pruning. These results were consistent with the previous 

cases. However, one may observe that, in the case of  (see Table 28), the errors 

from  and the second derivative errors from  were higher, 

compared to . We investigated these results and found that the major contribution 

to larger approximation errors in the  methods come from some data points outside 

the region of training data, i.e. extrapolation. Neural networks have no capability to correct-

ly predict the function characteristics outside the region of training data, and the approxi-

mation errors at extrapolation is unpredictably large.

Thus far, there have been methods developed for detecting extrapolation. However, 

it is not the main objective of this research to have the best method to detect extrapolation. 

We only want to rule out some extrapolation effects that may mislead the result compari-

son, like Table 28. We detected and removed extrapolations by visual inspection, using the 

following steps:

Training
Algorithm

136/150 141/150 136/150 108/150

138/150 144/150 137/150 126/150

Table 29 Number of neurons after pruning, for 

S1

Q 3 000,= Q 1 500,= Q 750= Q 375=
CFDA BFGS– p
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CFDA

Q 375=

CFDA BFGS– CFDA LM–

GNBR

CFDA



210

1. Collect the test points yielding large first derivative errors (we define “large” as 

first derivative errors greater than  ) from a network trained by . Put 

these points into the set .

2. Plot the location of the test points in . Visually inspect the locations of the 

test points to see whether or not they are outside the training region. If there are test points 

inside the training region, exclude them from .

3. Repeat step 1) and 2) for the networks trained by  (create the set 

) and  (create the set ).

4. Combine the three sets, i.e. ,  and . Put them in the set .

5. Remove the test points in  from the original test set for this trial.

Keep in mind that these five steps do not guarantee the removal of every single ex-

trapolation point. It only eliminates some test points that may mislead the comparison of 

the approximation accuracy for interpolation (i.e. points inside the training region). An ex-

ample of the extrapolation points in a trial, using these five steps, is illustrated in Figure 

49). The symbol  represents the training points for this trial. The symbol  represents the 

points with large derivative errors.
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Figure 49) Extrapolation in a Monte Carlo trial, with 

After performing the steps to eliminate some extrapolation, we recalculated the ap-

proximation errors on the new test set. Table 30 shows the median approximation test errors 

after removing extrapolation (for ). Compare this with Table 28.

We can see from Table 30 that the errors from the  methods are now lower than 

. They were higher in Table 28. Another interesting issue is the pruning method im-

proved the approximation accuracy, indicating that the error improvement also occurs at in-

Training
Algorithm

6.99E-03 5.19E-02 6.27E-01
3.10E-03 2.54E-02 5.54E-01
1.24E-03 1.16E-02 2.12E-01

4.24E-03 3.07E-02 3.96e-01
1.59E-03 1.28E-02 1.88E-01

Table 30 Approximation RMSE of , after some extrapolation elimination

p1p2

p3

Q 375=

Q 375=

Q 375=

RMSEF
md RMSED

md RMSE
D2
md
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CFDA BFGS–
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H2Br

CFDA
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terpolation points. The results in Table 30 are now consistent with the other problems. In 

this case, the  produced the lowest function and first derivative approxi-

mation errors, while  yielded the most accurate second derivative approxi-

mation. Figure 50) illustrates the error comparison for every Monte Carlo trial between 

,  and  for , after extrapolation removal.

Figure 50) Error comparison for  with 

From Figure 50), we can see that the approximation errors from the  method were 

consistently lower than  for almost every trial. In addition, the pruning algorithm 

also improved the accuracy for the  method in every trial.
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In the next section, we will show an example illustrating the  overfitting in 

molecular dynamics and how the pruning algorithm gets rid of it.

Elimination of CFDA Overfitting

We will illustrate an example of the  overfitting and how the pruning algo-

rithm eliminates it in  problem. This example is selected from a network (with 

) trained with the  algorithm.

The pruning algorithm indicated that 21 neurons are to be pruned in this network. 

However, we will demonstrate the two types of overfitting developed from only three neu-

rons. Figure 51) shows the input spaces in a three-dimensional plot, where  represents the 

training set. In the case of three-dimensional inputs, the neuron center  

becomes a plane. The centers of the three neurons are also presented in the figure.

Figure 51) The three neuron centers

Neuron  and  develop  overfitting, while neuron  causes . In order 
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to easily visualize the overfitting, we will take a cross section of the network response along 

the cross-section line shown in Figure 51). The cross section is at ,  

and  angstroms (Note that this is associated with ,  and 

 in the normalized input space). We will first illustrate  overfitting, 

followed by  overfitting, using the three neurons. Then, we will show the final 

outcome.

Type A

The network function and derivative responses (with respect to ) of neuron  

and  along the cross-section line are shown in Figure 52).

Figure 52) Function and derivative responses of the two neurons along the cross section

When combining the responses of these two neurons, we obtain Figure 53).
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Figure 53) The combined responses

From Figure 53), we can see that the responses from the two neurons cancel almost every-

where, except at a tiny region close to their centers. Figure 54) illustrates the function and 

derivative errors (with respect to ) before and right after pruning the network (without 

retraining).

Figure 54) Errors before and right after pruning the two neurons

Figure 54) shows that the spikes of the function and derivative errors, which were observed 

before pruning the neurons, are eliminated.

Next, we will illustrate  overfitting.

1 2 3 4
−0.02

0

0.02

p3

yj yk+

1 2 3 4
−0.5

0

0.5

p3

p3∂
∂ yj

p3∂
∂ yk+

p3

1 2 3 4
−0.02

0

0.02
Before Pruning
Right After Pruning

p3

e1

1 2 3 4
−0.5

0

0.5
Before Pruning
Right After Pruning

p3

p3∂
∂e1

Type B–



216

Type B

Along the cross section, the function and derivative responses of neuron  are 

shown in Figure 55).

Figure 55) Function and derivative response of the neuron

The function and derivative errors before and right after pruning the neuron (with no re-

training) are illustrated in Figure 56).

Figure 56) Errors before and right after pruning the neuron

We can see from Figure 56) that the spike in the derivative errors, which were observed in 

the original errors, disappears once pruning the neuron.

Next, we will show the final outcome.

l

1 2 3 4
−0.02

0

0.02

p3

yl

1 2 3 4
−0.5

0

0.5

p3

p3∂
∂yl

1 2 3 4
−0.02

0

0.02
Before Pruning
Right After Pruning

p3

e1

1 2 3 4
−0.5

0

0.5
Before Pruning
Right After Pruning

p3

p3∂
∂e1



217

Final outcome

The pruning algorithm indicated the elimination of 21 neurons. Figure 57) com-

pares the errors before and right after pruning all of the 21 neurons.

Figure 57) Errors before and right after pruning the 21 neurons

After pruning the 21 neurons and  retraining the network, the errors before and after 

applying the pruning algorithm are shown in Figure 58).

Figure 58) Errors before and after performing the pruning algorithm

From Figure 58), it is clear that the function and derivative errors with the pruning algo-

rithm are much smaller and smoother. The error plots in Figure 58) imply that the second 

derivative approximation from the pruned network would be also more accurate. This is an-

other example illustrating that the pruning algorithm successfully improves the approxima-
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tion accuracy for the function, first derivative and second derivatives of neural networks 

trained by the  methods.

Summary

In this chapter, we reviewed the general concept of molecular dynamics. This is an 

application in which it is important to approximate both a function and its first-order deriv-

atives. We started the review by describing classical mechanics. The Newtonian or Hamil-

tonian equations of motion are used to determine the motion of particles.

However, to explain the behavior of atomic-level particles, the  equa-

tion is used. For time-independent problems including molecular dynamics, the stationary-

state  equation is used, where the wave function and the potential energy are 

independent of time. It is impossible to obtain analytic solutions for a general system. To 

obtain approximate solutions, the Born-Oppenheimer approximation is used. The electron-

ic energy is first solved at a fixed nuclear configuration. Then, given the electronic energy, 

the nuclear energy at the nuclear configuration is solved. To solve for the nuclear energy, 

the nuclear wave function must be known. Unfortunately, since the nuclear wave function 

is unknown, we replace it with a mathematical model. By using the Rayleigh-Ritz varia-

tional principle, we obtain the approximated nuclear energy at a fixed nuclear configura-

tion.

In molecular dynamics, we treat the motion of nuclei using classical mechanics. To 

calculate the motion of nuclei using the Newtonian equations of motion, we need to know 

the force fields acting on the nuclei. This can be computed by taking the negative of the 

CFDA

Schro··dinger

Schro··dinger
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first-order derivatives of the potential energy with respect to the nuclei position. Once ob-

taining the forces, the acceleration on the nuclei can be computed. Subsequently, the veloc-

ity and the position of the nuclei can be updated by performing numerical integration. We 

summarized the general procedure of molecular dynamics, using the Beeman’s algorithm 

for numerically integrating the Newtonian equations of motion.

Then, we discussed how neural networks can be used in molecular dynamics. We 

explained that, since the force is the negative first-order derivatives of the potential energy, 

neural networks can be used to predict both the potential energy and the force fields. We 

compared the approximation accuracy of the potential energy and the force fields obtained 

by neural networks trained by five algorithms: , , , 

 and , in three molecular dynamics problems: ,  and 

. The results showed that the  methods produced more accurate potential en-

ergy surfaces and force fields than . In addition, the approximation accuracy in the 

regular  methods could be improved by applying the pruning algorithm. The most 

accurate method was . Finally, we illustrated the  overfitting in mo-

lecular dynamics and how the pruning algorithm removed it, through an example. The re-

sults in this chapter also indicate that  overfitting occurs only rarely in molecular 

dynamics problems.  overfitting appears to occur less often as the dimension of the 

input space increases.
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CHAPTER 9

CONCLUSIONS

Objective

In this chapter, we will present the summary of the study, and also discuss the future 

work.

Summary

The objective of this research was to develop training algorithms for neural net-

works to fit both a function and its first derivatives. We also wanted to compare the approx-

imation accuracy obtained from the new training methods with the standard training 

methods (which are used to fit only the function). The new training algorithms are 

 and  (Chapter 3),  (Chapter 4),  

(Chapter 5), and the  methods with the pruning algorithm, i.e.  and 

 (Chapter 6). The standard training methods are ,  and 

.

We first reviewed the general concept of neural networks and the three standard 

training algorithms used for function approximation. Then, the conditions under which 

neural networks can simultaneously and uniformly approximate a function and its first de-

rivatives were presented. The conditions require that the true function and its first deriva-
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tives be continuous, while the transfer function in the hidden layer of the neural networks 

be sufficiently differentiable and the transfer function in the output layer be linear. These 

materials were discussed in Chapter 2.

To approximate both a function and its first derivatives, we first introduced two val-

idation-related methods in Chapter 3. These two methods use the standard backpropagation 

algorithm with early stopping. The first method, i.e. , modified the validation 

performance measure so that it includes two terms: the function error and the derivative er-

ror of the validation set. The derivative error term is also multiplied by a weighting factor. 

With different values of the weighting factor, the simulation results on approximating an-

alytic functions showed that there was no improvement in the approximation over the stan-

dard training methods. In the second method ( ), the validation performance 

measure is changed from the function errors in the validation set to the derivative errors in 

the training set. The simulation results on approximating the analytic functions showed that 

the new validation measure sometimes terminates the training process sooner than the stan-

dard early stopping, causing worse approximation.

Another proposed method, to fit both a function and its first derivatives, changes the 

training performance index so that it contains the squared function errors and the squared 

derivative errors. The squared derivative error is multiplied by the weighting factor . This 

method is called Combined Function and Derivative Approximation, or . To mini-

mize the  performance index using any gradient-based optimization method, the 

gradient of the performance index with respect to the network parameters is required. In 

Chapter 4, we derived two approaches to calculate the gradient: the batch mode and the 
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CFDA
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memory-save method. The execution time for computing the gradient of the  per-

formance index under several scenarios was measured, and the results showed that the 

batch mode took from 0.5 to 370 times as long as the standard method. The memory-save 

approach took from 0.5 to 6.2 times as long as the standard method. The batch mode per-

formed faster than the memory-save approach, unless the computer’s memory overflowed. 

In this research, we chose  optimization as the gradient-based method of choice. We 

call this method .

The  performance index can also be minimized by the Levenberg-Marquardt 

algorithm. However, extra calculations for the Jacobian matrix of the derivative error term 

are needed. In Chapter 5, we derived two approaches to obtain the new Jacobian matrix: the 

batch mode and the memory-save method. The execution times for computing the gradient 

and the Jacobian matrix of the derivative error term, under several scenarios, were mea-

sured, and the results showed that the batch mode took from 0.9 to 35.4 times as long as the 

standard Levenberg-Marquardt method. The memory-save approach took from 0.9 to 8.4 

times as long as the standard Levenberg-Marquardt method. The batch mode performed 

slightly faster than the memory-save approach, unless the computer’s memory overflowed. 

We name this method .

Although the  methods force the first derivatives of neural networks to the 

correct values, new overfitting has been observed. In Chapter 6, we proposed two new 

types of overfitting:  and . The  overfitting is developed from 

the responses of more than one neuron. The responses cancel each other at training points, 

but not the points in between. The  overfitting can be developed from one neuron 
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or more, and it is caused by a local minimum in the  training surface. We introduced 

an algorithm to prune neurons producing the overfitting. The pruning algorithm can be ap-

plied to any  networks, trained by the  methods with the hyperbolic tan-

gent sigmoid transfer function. By incorporating the pruning algorithm to the two  

training methods above, we name them  and .

In Chapter 7, we proposed to set the weighting factor in the  performance 

index to be , where  is the ratio of the maximum absolute derivative value to 

the maximum absolute function value in the training set. We chose , since it yield-

ed robust results for many problems. The simulation results on approximating four analytic 

functions showed that the regular  methods provided more accurate results and bet-

ter generalization, for the both function and its first derivatives, than the standard training 

methods. The  methods with pruning produced even better approximation accuracy 

than the regular  methods. The improvement (for the function, first derivatives and 

second derivatives) was as high as several orders of magnitude for some problems, where 

the overfitting was extreme. The results showed that  yielded the most accu-

rate approximation and the best generalization (for both the function, first derivatives and 

second derivatives) among the other tested methods, which are , , 

, , , ,  and . 

Molecular dynamics is an application where neural networks can be used to fit both 

a function and its first-order derivatives. Neural networks can be used to construct the po-
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tential energy surface, while the negative of the first-order derivatives are the forces. The 

ab initio quantum calculations are used to compute the true potential energy and the forces. 

Unfortunately, it is very time-consuming to evaluate the true potential energy and the forces 

for a given input, as it involves an optimization process. Thus, the advantage of using neural 

networks instead of the ab initio function is the reduction in computation time, which can 

be several orders of magnitude. In Chapter 8, we compared the approximation accuracy of 

neural networks trained by five training algorithms: , , 

,  and  for three molecular dynamics prob-

lems. The simulation results showed that the regular  methods yielded better gener-

alization than . The  algorithms with pruning consistently improved the 

approximation accuracy when compared to the regular  methods. The outcomes of 

the three molecular dynamics problems showed that the  method provided 

the most promising results in terms of approximation accuracy (for the function, first de-

rivatives and second derivatives) among the five training methods. 

Examples illustrating the  overfitting and how the pruning algorithm elimi-

nates it were demonstrated in both Chapter 7 (for simple analytic functions) and Chapter 8 

(for molecular dynamics).

Future work

There is more work to be done. The most critical assumption required to produce 

the excellent results shown in this research is the availability of the correct values of the 

function and its first derivatives. Although several real-world applications follow this pre-

GNBR CFDA BFGS–

CFDA LM– CFDA BFGS– p CFDA LM– p

CFDA

GNBR CFDA

CFDA

CFDA LM– p

CFDA
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sumption, the interest would be even broader if the assumption is more relaxed. Many ap-

plications do not assume having the correct values of the function and its first derivatives, 

since the values may come from imperfect measurements. That is, noise can corrupt the da-

ta. However, it is currently not clear how the noise levels in the function and its first deriv-

atives are associated. Understanding this may lead to constructing an appropriate objective 

function for training neural networks to approximate both the function and its first deriva-

tives under high noise situations.

Although the pruning algorithm produced promising results, it can only be applied 

to a two-layer network with one output. Generalizing the method so that it can be used with 

any multilayer feedforward networks with any number of outputs would be desirable. To 

achieve this, more work is needed to analyze how the overfitting in a layer affects the next 

layer and how the overfitting is developed in multiple outputs.
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APPENDIX

 A. PSGEN algorithm

The  algorithm is used in the pruning method to form combinations of neu-

rons after a candidate and its neighbors are created. The derivative response for each of 

these combinations will be evaluated to verify whether or not it provides a significant con-

tribution. We will describe the  algorithm in such a way that it solves a general prob-

lem, not specific to the pruning method. However, at the end of this section, we will 

describe how to apply this algorithm to the pruning method. Note that the algorithm was 

proposed by [McCa06].

Given a set  with  distinct elements (the set  could be an empty set), the 

 algorithm generates an element of the power set of , denoted by . There exist 

 elements in . To generate all of these elements, we first assign an index  to each 

element of . The index is an integer starting from zero to , i.e. . For 

psgen

psgen

S nS S

psgen S P S( )

2
nS P S( ) iS

S nS 1– 0 iS nS 1–≤ ≤
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example, assume the set . We define the index to each element according to 

the table below:

For the given set , the power set of  is

,

where  denotes the empty set. To represent each element of , we can use a binary 

sequence with the length of  (where the least significant bit is the zeroth and the most 

significant bit is the ). This results in  different sequences, where each will be 

used to represent an element of . The mapping between a sequence and an element of 

 can be done using the index  and a new set, called the . 

A combinadic is a set containing the bit location of the ones in the binary sequence. 

(Thus, elements in a combinadic range from zero to .) Once we have a combinadic, 

the associated element of  can be realized by using the assigned index . In other 

words, the elements in a combinadic are the indices . Therefore, by mapping the index 

 with the element of , the element of  can be generated. For our example, Table 

Element of Element Index 

0
1
2

Table 31 Elements of  and their index 

S a b c, ,{ }=

S iS

a
b
c

S iS

S S

P S( ) ∅{ } a{ } b{ } c{ } a b,{ } a c,{ } b c,{ } a b c, ,{ }, , , , , , ,{ }=

∅ P S( )

nS

nS 1–( )th 2
nS

P S( )

P S( ) iS combinadic

nS 1–

P S( ) iS

iS

iS S P S( )
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32 illustrates the mapping from the binary sequence to the associated elements of  

through the combinadic, using the index  defined in Table 31.l

Therefore, once the indices  of elements in  are defined, we are instantly able to gener-

ate all possible elements of .

Another problem is raised when one wants to generate only some elements of , 

given that they have exactly  elements from the set  (where ). This corre-

sponds to generating the combinadics that contain exactly  elements. Given this condi-

tion, there are totally  possible combinadics. To specify each of these combinadics, we 

first assign an index  to each of them starting from zero to , i.e. . 

The zeroth index is assigned to the combinadic with the smallest value of its associated bi-

nary sequence. The largest index is assigned to the combinadic with the highest value of its 

associated binary sequence. For our example, assume we are interested in generating only 

Binary Sequence Combinadic Element of 
000
001
010
011
100
101
110
111

Table 32 The binary sequences, combinadics and the associated elements of 

P S( )

iS

P S( )

∅{ } ∅{ }

0{ } a{ }

1{ } b{ }

1 0,{ } a b,{ }

2{ } c{ }

2 0,{ } a c,{ }

2 1,{ } b c,{ }

2 1 0, ,{ } a b c, ,{ }

P S( )

iS S

P S( )

P S( )

k S 0 k nS≤ ≤

k

nS
k⎝ ⎠

⎛ ⎞

ic
nS
k⎝ ⎠

⎛ ⎞ 1– 0 ic
nS
k⎝ ⎠

⎛ ⎞ 1–≤ ≤
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the combinadics with two elements, i.e. ,  and . Given the binary se-

quence in Table 32, Table 33 demonstrates the combinadics and their index ,

With the index , we are also able to introduce a notation to represent each combi-

nadic. We use  to represent the combinadic with  elements, i.e. 

, assigned by index , generated for the set  (which has  ele-

ments). Thus, given the binary sequences and combinadics in Table 32, the associated no-

tations  are shown in Table 34.

Combinadic Combinadic Index 

0
1
2

Table 33 Combinadics and their index 

Binary Sequence Combinadic Notation 

000

001

010

011

100

101

110

111

Table 34 Notations for the combinadics

1 0,{ } 2 0,{ } 2 1,{ }

ic

ic

1 0,{ }

2 0,{ }

2 1,{ }

ic

ic

M nS k,( ) ic( ) k

mk 1– mk 2– … m0, , ,{ } ic S nS

M nS k,( ) ic( )

M nS k,( ) ic( )

∅{ } M 3 0,( ) 0( )

0{ } M 3 1,( ) 0( )

1{ } M 3 1,( ) 1( )

1 0,{ } M 3 2,( ) 0( )

2{ } M 3 1,( ) 2( )

2 0,{ } M 3 2,( ) 1( )

2 1,{ } M 3 2,( ) 2( )

2 1 0, ,{ } M 3 3,( ) 0( )
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Given a set , the values of  and , the  algorithm can generate the com-

binadic . Consequently, once obtaining , we can easily convert it to 

the associated elements of  (by mapping from the index  to the element of ). We 

use  to denote the associated element of . Now, we are ready to provide the 

steps of the  algorithm.

Steps for psgen

1. Given the set , define index  to each element of , where . (For 

example, if the elements of  are numeric, we can first sort these elements in ascending 

order. Then, assign index zero to the smallest element and index  to the largest ele-

ment.)

2. Initialize . Define  if . This definition will be used only in step 

3 to step 6.

3. Find the largest element , where  such that .

4. Set  and .

5. If , set .

6. Set .

7. If , set  and go back to step 3). Otherwise, go to step 8 with 

.

S k ic psgen

M nS k,( ) i( ) M nS k,( ) i( )

P S( ) iS S

P S( )k i, P S( )

psgen

S iS S 0 iS nS 1–≤ ≤

S

nS 1–

i 1= n
k⎝ ⎠
⎛ ⎞ 0≡ n k<

mk i– 0 mk i– nS 1–≤ ≤
mk i–

k⎝ ⎠
⎛ ⎞ ic≤

nS mk i–= ic ic
mk i–

k⎝ ⎠
⎛ ⎞–=

ic 0< ic 0=

k k 1–=

k 0> i i 1+=

M nS k,( ) ic( ) mk 1– mk 2– … m0, , ,{ }=



231

8. By using the index  assigned in step 1 to map from the elements in  

to the elements of , obtain and return .

Note that we will not provide the detail of  algorithm in pseudo code for the 

pruning method. However, wherever the  algorithm is needed, we will use 

 to denote the function that takes the set , the values of  and , performs 

these eight steps, and returns .

As previously mentioned, we use the  algorithm when we want to form com-

binations of neurons. That is, once the candidate neuron and its neighbors are established, 

we will put the neighbors into the set . By specifying the values of  and , the  

algorithm will provide the corresponding set of neighbor neurons. Then, a combination of 

neurons are formed by including the candidate neuron with the set of neighbor neurons. 

Then, the derivative response generated from this combination of neurons will be evaluated 

to see whether or not its contribution is significant. We can repeat this process for different 

values of  and , if necessary.

iS M nS k,( ) ic( )

S P S( )k ic,

psgen

psgen

psgen S k ic, ,( ) S k ic

P S( )k ic,

psgen

S k ic psgen

k ic
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 B. Calculation for the second derivatives of neural networks

We will show the calculation for the second derivatives of neural networks, with re-

spect to the inputs, evaluated at , i.e. . In Chapter 4, we have shown the 

calculation for the first derivatives of neural networks with respect to the inputs. That is, 

recall from Eq. (109) in Chapter 4 that

.

By taking the derivative of Eq. (109) with respect to , we obtain

(352)

From Eq. (352), the only term we have not shown the calculation is . (Note 

that the calculation for the term  is expressed in Eq. (144).) Therefore, we 

will focus on the calculation of the term .

First note that the calculation in Eq. (352) is a forward propagation. Therefore, we 

need to initialize . We have the calculation for  in Eq. (115):
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∂
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 By taking the derivative of Eq. (115) with respect to , we obtain

. (353)

Recall that . Therefore, we obtain the second derivatives of the network 

 by propagating Eq. (352) until .

pr q,∂
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0
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 C. Class of  model

We will provide a proof showing that the  model is of class . That is, the 

function itself is continuous, while the first-order derivatives are not continuous. The loca-

tion of the discontinuity in the first-order derivatives will also be specified.

According to [KuNe66] and [SuRa84], the potential energy surface of  can be 

written as:

(354)

where

 and (355)

The function  is

, (356)

and the function  is

(357)

The condition for the input space is , . The parameters , ,  and  are spec-

ified below.

, , , , 

0.26 0.06 1.027 0.9588 4.7466 3.918 1.402 2.673
Table 35 Parameters of the model

H2Br
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Note that the units for  are electron volts, the units for  are , and the units for  

are , where  (or atomic unit) equals  angstroms.

Two major properties of the function are of interest, i.e. continuity and differentia-

bility. We will show that the function  is continuous, but it is not differentiable. However, 

the derivatives ;  are neither continuous nor differentiable. First, for ease of ref-

erence, define

, and (358)

(359)

Therefore,

. (360)

By taking the derivative of Eq. (360) with respect to , we obtain

. (361)

For the second derivatives, we take the derivative of Eq. (361) with respect to , and obtain

(362)

From Eq. (361) and Eq. (362), we can see the locations where we should focus on the con-

tinuity and differentiability of the function are at the points yielding . The inputs 

 yielding  are denoted . Excluding , the function ,  and 
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 are continuous and differentiable.

We will divide the proof into four parts. First, we will show that  is continuous. 

Second, we will locate . Third, we will prove that  is not continuous at . Finally, 

the differentiability of  and  at  will be discussed.

Proof

A. Continuity of 

It is easy to prove that  is continuous. Since  is a function composed of several 

continuous functions (i.e. exponential functions), consequently  is continuous, following 

a fundamental theorem of calculus. Note that, at , the values of  are simply  (since 

).

B. Location of 

We will locate . At , recall that . Therefore, from Eq. (359), we can 

write

. (363)

A possibility to make Eq. (363) hold is when

. (364)

From Table 35, we can see that the parameters for  and  are the same, thus causing 

 whenever . Therefore, we can conclude that  is a condi-
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tion that yields . Now, we need to find the condition for  that produces 

 satisfying Eq. (363). Given  and Eq. (355), we can write it as

(365)

By substituting the terms  and  in Eq. (365), using Eq. (356) and Eq. (357), 

and rearranging all of the terms, we obtain

(366)

where

, , (367)

and

. (368)

From Eq. (366), we can solve for . By using Eq. (368), we obtain the value of :

. (369)

Therefore, the location of  is at when  and  satisfying Eq. (369).

C. Continuity of 

We will show that ; , is not continuous at . We will prove this by show-

ing that the points  are a jump discontinuity. There are two parts of proof in this section.
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First, we need to show that  and ;  at . By taking 

the derivative of Eq. (359) with respect to , we have

; ,  and . (370)

However, at , we have . Therefore the term 

 in Eq. (370) is zero. Thus, we obtain ; , at . By 

taking the derivative of Eq. (370) with respect to , we obtain, if ,

(371)

and, if ,

. (372)

At , since , then Eq. (371) and Eq. (372) reduce to

(373)

From Eq. (373), the terms ; , are not necessarily zero at .
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Second, from Eq. (361), the value  at  is in an indeterminate form because 

both  and  are zero at . To find the values of  at  using L’Ho-

pital’s rule, we need to find , where

(374)

Unfortunately, the denominator  of  is not differentiable at , since its derivative

(375)

does not exist (as its value is ). Thus, L’Hopital’s rule cannot be directly used to find 

. To overcome this problem, we find . Now, both the numerator and denom-

inator of  are both differentiable, and their values at  are both zero. Therefore,

. (376)

From L’Hopital’s rule, by taking the derivative of the numerator and the denominator in 

Eq. (376) with respect to , we obtain

. (377)

By Eq. (373), Eq. (377) becomes
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Therefore, we obtain

(379)

Thus, from Eq. (361) and Eq. (379), we have

(380)

This implies that ; , do not exist, as the limit converges to two values. Thus, 

 is not continuous at . From Eq. (380), we conclude that the points  are a jump 

discontinuity in . As , the values of  converge to  at one 

end, and  at the other end.

D. Differentiability of  and 
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continuous function is differentiable if its derivatives exist and are continuous. However, 

we proved that  does not exist and it is not continuous at . Therefore  is not dif-
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 from Eq. (373) but . Thus,  in Eq. (362) converges 

to infinity. Consequently,  is not differentiable at .)

Summary of the proof:  is a continuous function, but the first derivatives 

; , are discontinuous at . Therefore, we conclude that the function ; 

, is of class . If  are excluded from the input domain, the function  and 

 are both continuous and differentiable.

T2
J∂ ri

2∂⁄ 0≠ TJ r̃( ) 0= V2
∂ ri

2∂⁄
r r̃→
lim

V∂ ri∂⁄ r̃

V r( )

V∂ ri∂⁄ i∀ r̃ V r( )

r∀ 0> C0 r̃ V

V∂ ri∂⁄
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 D. Scaled and true derivatives

When training neural networks, the input space and/or the output space of the train-

ing data are sometimes normalized to the range between  and . Consequently, this pro-

duces an impact on the scales of the derivatives. The conversion between the scaled and the 

true derivatives will be discussed. We will focus only on the conversion of the first and sec-

ond derivatives, since they are the orders discussed in this research.

We use  to denote the normalized  function value evaluated at the  input, 

associated to the true function value . The notations  and  denote the mini-

mum and the maximum values of  for all the training points, respectively. That is, for 

,

 and . (381)

The relationship between  and  is

, (382)

or, equivalently,

. (383)

For the conversion of the  input space, the relationship between  and  is real-

ized by simply replacing every  with  in Eq. (382) and Eq. (383). (That is, change  

1– 1

gk q,
n kth qth

gk q, gkmn
gkmx

gk

Q 1 2 … Q, , ,{ }=
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to , change  to , change  to  and change  to .)

We will first discuss the conversion between the scaled and the true values for the 

first derivatives, followed by the second derivatives.

First derivatives

In this section, we are interested in the conversion between  to 

. By taking the derivative of Eq. (382) with respect to , we obtain

(384)

By using the chain rule of calculus to the term , we have

. (385)

By the relationship in Eq. (383), we can compute :

(386)

Thus, Eq. (384) becomes

(387)

Next, we will discuss the conversion for the second derivatives.
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Second derivatives

In this section, we want to know the conversion between  and 

. By taking the derivative of Eq. (387) with respect to , we obtain

(388)

If the network is trained with the normalized inputs , the term  is a function 

of . By using the chain rule of calculus to the last term in Eq. (388), we have

(389)

By substituting Eq. (386) into Eq. (389), Eq. (388) becomes

(390)
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