
FITTING FUNCTIONS AND THEIR DERIVATIVES

WITH NEURAL NETWORKS

By

ARJPOLSON PUKRITTAYAKAMEE

Bachelor of Engineering
Chulalongkorn University

Bangkok, Thailand
1997

Master of Sciences
Oklahoma State University

Stillwater, Oklahoma
2001

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
July, 2009

ii

FITTING FUNCTIONS AND THEIR DERIVATIVES

WITH NEURAL NETWORKS

Dissertation Approved:

Dr. Martin T. Hagan
Dissertation Adviser

Dr. Lionel M. Raff

Dr. Carl D. Latino

Dr. George Scheets

Dr. A. Gordon Emslie
Dean of the Graduate College

iii

ACKNOWLEDGEMENT

I would like to express my deep gratitude to my advisor, Professor Dr. Martin

Hagan, for his dedication, support, guidance, patience and friendship throughout my grad-

uate studies. His invaluable feedback and suggestions infinitely contributed to my research.

I also would like to thank my other committee members, Professor Dr. Lionel Raff, Profes-

sor Dr. George Scheets and Professor Dr. Carl Latino, for their useful comments and sug-

gestions.

I also thank Professor Dr. Ranga Komanduri, Professor Dr. Satish Bukkapatnam,

Professor Dr. Paras Agrawal and Professor Dr. Mark Rockley for providing helpful com-

ments and all supports possible to the research. My special appreciation goes to Professor

Dr. Lionel Raff for his dedication to teaching me the fundamental of quantum mechanics

and molecular dynamics.

The research is funded by a grant (DMI-0457663) from the National Science Foun-

dation, Division of Mechanical and Manufacturing Innovation (CMMI). I thank Dr. Joce-

lyn Harrison, Program Director for Materials Processing and Manufacturing, for the

interest and support of this work.

Most importantly, I especially thank and dedicate this dissertation to my parents,

my grandmother and my sister for their loving support to all my endeavors and their strong

encouragement at difficult times.

iv

I also would like to take this opportunity to express my gratitude to all of my teach-

ers at Deves Thampirak School, St. Gabriel’s College, Patumwan Demonstration School

and Triam Udom Suksa School, and Professors at Chulalongkorn University and Oklaho-

ma State University for their immeasurable dedication, support and strong encouragement

to my learning.

I would like to thank Dr. Prapaporn Kiattikulwattana for special care, friendship,

enthusiastic support and substantial encouragement throughout my doctoral study. My

thanks and appreciation are extended to the following people: Rathachai Kaewlai (MD.),

Chokeanan Wechaprukpitak, Dr. Manisra Baramichai, Dr. Nipapan Klunngien, Chainart

Vongsittipornrung, Dr. Wisit Kumphai, Kultarika Kwosurat, Rungnapa and Dr. Somsak

Kittipiyakul, Pornphan Dulyakarn, Dr. Chanvit Chantrasrisalai, Chayanuch Jakmanon,

Arthit Phadungsilp, Xiaochen Hu, Dr. Jakkrit Kunthong, Arttaporn Komolhiran and

Katherine McCollom for the enduring friendship, care, support and encouragement; Reza

Jafari, Milind Malshe and Rutu Narulkar for being great colleagues and friends as well as

providing strong supports to the research.

My gratitude also goes to Professor Dr. Dusit Kruangam, Dr. Porponth Sichanu-

grist, Dr. Pavan Siamchai and Dr. Sakon Kittivatcharapong for giving me opportunities to

acquire precious experiences and supports to pursue the doctoral degree. Finally, I thank

friends at Chulalongkorn University, colleagues at Thaicom Satellite and Thai students at

Oklahoma State University for the supportive friendship.

v

TABLE OF CONTENT

CHAPTER 1
INTRODUCTION ...1

Overview..1
Objectives ..2
Outline ...4

CHAPTER 2
APPROXIMATION USING NEURAL NETWORKS...7

Introduction..7
Notation ...7
Multilayer Feedforward Neural Networks...10
Training Algorithms ..20
Conditions for Function and Derivative Approximation...........................35
Summary..38

CHAPTER 3
VALIDATION-RELATED METHODS...40

Introduction..40
Modified validation performance measure ..40
Early stopping using the derivative information of the training set44
Summary..50

CHAPTER 4
GRADIENT-BASED COMBINED FUNCTION AND DERIVATIVE APPROX-
IMATION ..51

Introduction..51
Gradient-Based Combined Function and Derivative Approximation51
Speed Test..79
Summary..80

CHAPTER 5
COMBINED FUNCTION AND DERIVATIVE APPROXIMATION WITH LEV-
ENBERG-MARQUARDT ..82

Introduction..82
CFDA with Levenberg-Marquardt ..82
Batch calculation..85
Memory-save Calculation..101
Speed Test..111
Summary..112

vi

CHAPTER 6
A NETWORK PRUNING ALGORITHM FOR CFDA113

Introduction..113
 Two-Layer Network Response ...114
CFDA Overfitting ..121
Pruning Algorithm ...131
Summary..143

CHAPTER 7
TRAINING RESULTS ON SIMPLE PROBLEMS..145

Introduction..145
Evaluation Procedure...146
Parameters in CFDA..150
Simulation Results ...152
Summary..179

CHAPTER 8
A REAL-WORLD APPLICATION..181

Introduction..181
Molecular Dynamics with Neural Networks ...181
Simulation results ..198
Summary..218

CHAPTER 9
CONCLUSIONS ...220

Objective ..220
Summary..220
Future work..224

APPENDIX
 A. PSGEN algorithm ..226
 B. Calculation for the second derivatives of neural networks232
 C. Class of model...234
 D. Scaled and true derivatives ..242

REFERENCES...245

H2Br

vii

LIST OF TABLES

Table 1 Approximation accuracy on problem 1...42
Table 2 Approximation accuracy on problem 2...43
Table 3 Approximation accuracy on problem 3...43
Table 4 Approximation accuracy on problem 1...47
Table 5 Approximation accuracy on problem 2...48
Table 6 Approximation accuracy on problem 3...48
Table 7 Description of test functions ...146
Table 8 Network structure for each problem..147
Table 9 Approximation accuracy on problem 1 (First set) ..154
Table 10 Approximation accuracy on problem 2 (First set) ..154
Table 11 Approximation accuracy on problem 3 (First set) ..155
Table 12 Approximation accuracy on problem 4 (First set) ..155
Table 13 Number of neurons after pruning (First set)..155
Table 14 Approximation accuracy on problem 1 (Second set)157
Table 15 Approximation accuracy on problem 2 (Second set)157
Table 16 Approximation accuracy on problem 3 (Second set)158
Table 17 Approximation accuracy on problem 4 (Second set)158
Table 18 Number of neurons after pruning (Second set) ...158
Table 19 Approximation RMSE of three-body silicon, 3000 training points201
Table 20 Approximation RMSE of three-body silicon, 1500 training points201
Table 21 Number of neurons after pruning, for three-body silicon201
Table 22 Approximation RMSE of five-body silicon, 3000 training points..................204
Table 23 Approximation RMSE of five-body silicon, 1500 training points..................204
Table 24 Number of neurons after pruning, for five-body silicon204
Table 25 Approximation RMSE of , 3000 training points207
Table 26 Approximation RMSE of , 1500 training points208
Table 27 Approximation RMSE of , 750 training points208
Table 28 Approximation RMSE of , 375 training points208
Table 29 Number of neurons after pruning, for ..209
Table 30 Approximation RMSE of , after some extrapolation elimination211
Table 31 Elements of and their index ...227
Table 32 The binary sequences, combinadics and the associated elements of228
Table 33 Combinadics and their index ..229
Table 34 Notations for the combinadics...229
Table 35 Parameters of the model..234

H2Br
H2Br
H2Br
H2Br

H2Br
H2Br

S iS
P S()

ic

viii

LIST OF FIGURES

Figure 1) A single neuron ..11
Figure 2) The feedforward neural network...12
Figure 3) Training and validation set...24
Figure 4) Sum square function error on training and validation set24
Figure 5) A training record showing versus ..49
Figure 6) Relative execution time (compared to) for computing80
Figure 7) Relative execution time for computing the gradient and Jacobian of ,

compared to ..111
Figure 8) Sketches of and ...117
Figure 9) Effect of the first-layer weight ...117
Figure 10) Effect of the second-layer weight ..118
Figure 11) Neuron’s function and derivative responses in two dimensions....................119
Figure 12) A cross section of the neuron’s derivative responses.....................................120
Figure 13) Responses of two neurons..122
Figure 14) Type-A Overfitting ..122
Figure 15) Distance between a point to a line ...123
Figure 16) Type-B Overfitting...127
Figure 17) Definition of Buffer Zone ..128
Figure 18) Training points and the buffer zone in a two-dimensional case.....................131
Figure 19) Overview for the pruning algorithm ..133
Figure 20) Graph of the four test functions ...147
Figure 21) Impact of on the approximation accuracy..152
Figure 22) Error comparison for problem 1...159
Figure 23) Error comparison for problem 2...160
Figure 24) Error comparison for problem 3...161
Figure 25) Error comparison for problem 4...162
Figure 26) Overfitting in the function and derivative responses164
Figure 27) Function and first derivative errors ..164
Figure 28) Responses of the three neurons ..165
Figure 29) The combined responses of the three neurons ...165
Figure 30) Function and derivative errors, right after pruning (with no retraining)........166
Figure 31) Function and derivative errors of the final network.......................................167
Figure 32) Function and derivative errors ...168
Figure 33) Responses of the two neurons ..169
Figure 34) The combined responses of the two neurons ...170
Figure 35) Function and derivative errors, right after pruning (with no retraining)........171
Figure 36) Function and derivative errors of the final network.......................................172
Figure 37) Function and derivative errors ...173
Figure 38) Responses of the neuron causing the overfitting ...173
Figure 39) Function and derivative errors, right after pruning (with no retraining)........174
Figure 40) Function and derivative errors of the final network.......................................174
Figure 41) Function and derivative errors ...175

3 layer–

EV
˜ EV

Jf∂ x∂⁄ Jd∂ x∂⁄
F2 x()

F1 x()
f 1 ni

1() f·
1

ni
1()

λ

ix

Figure 42) Responses of the three neurons ..176
Figure 43) The combined responses of the 15 neurons ...177
Figure 44) Function and derivative errors, right after pruning (with no retraining)........178
Figure 45) Function and derivative errors of the final network.......................................179
Figure 46) Configuration of three-body silicon ...199
Figure 47) Configuration of five-body silicon...203
Figure 48) Configuration of ..206
Figure 49) Extrapolation in a Monte Carlo trial, with211
Figure 50) Error comparison for with ..212
Figure 51) The three neuron centers ..213
Figure 52) Function and derivative responses of the two neurons along the cross

section ..214
Figure 53) The combined responses ..215
Figure 54) Errors before and right after pruning the two neurons...................................215
Figure 55) Function and derivative response of the neuron ..216
Figure 56) Errors before and right after pruning the neuron ...216
Figure 57) Errors before and right after pruning the 21 neurons.....................................217
Figure 58) Errors before and after performing the pruning algorithm.............................217

H2Br
Q 375=

H2Br Q 375=

1

CHAPTER 1

INTRODUCTION

Overview

Multilayer feedforward neural networks (MFNN) have been used in many nonlin-

ear regression problems. They have been shown (both mathematically and practically) to

be a powerful tool in approximating functions, based on a set of examples. In addition, it

has been theoretically proven that their derivatives are capable of approximating the under-

lying derivatives of the functions. In this research, we focus on the development and the

derivation of training algorithms for MFNNs to approximate both functions and their first-

order derivatives.

Multilayer feedforward neural networks are capable of simultaneously approximat-

ing both a function and its derivatives, as has been proven in [HoSt90], [Horn91], [Ito93],

[Li96] and [Pink99]. However, there has not been a large amount of research into the de-

velopment of algorithms for training multilayer feedforward neural networks to simulta-

neously approximate both a function and its first derivatives. This will be the focus of our

research.

There have been a few methods proposed in the past to train MFNNs for approxi-

mating both a function and its derivatives. All of these methods assume noise-free environ-

ment. One approach, called algebraic training, was proposed in [FeSt05]. This method

2

algebraically obtains the network parameters in one function approximation step. The de-

rivative approximation is carried out in the second stage, where the algorithm iteratively

adjusts the network parameters to improve the derivative approximation of the neural net-

work. In [BaEn99], the derivative approximation was performed by adding an extra output

unit for each partial derivative to the regular structure of the feedforward neural network

that was used to approximate the function. The standard backpropagation procedure was

then used to train the proposed network structure. In [HaZa99], an additional network was

created to approximate the derivatives. The derivative approximation obtained from the ex-

tra network was then combined with the network output used for function approximation

using the Taylor series expansion.

In our research, a different technique will be used. We will modify the network

structure or create an additional network for derivative approximation. We will use the

same network for derivative approximation that we use for function approximation. In ad-

dition, unlike the algebraic training, the derivative approximation in our method will occur

simultaneously with the function approximation. However, like the other methods above,

we also assume that the data for this research are noise-free.

Objectives

As previously mentioned, our research goal is to develop new algorithms for train-

ing MFNNs to simultaneously approximate both a function and its first derivatives (in a

noise-free environment). However, we will also investigate both function and derivative

approximation accuracy for three existing algorithms. These existing algorithms will be

called the standard methods in this research, and they are:

not

3

1. Broyden-Fletcher-Goldfarb-Shanno with Early Stopping (),

2. Levenberg-Marquardt with Early Stopping (), and

3. Gauss-Newton Approximation to Bayesian Regularization ().

This evaluation is similar to the work of [GaWh92], though we will use different training

methods. The approximation accuracy and the execution time of the new algorithms will

be compared with the standard methods.

In this research, five new algorithms are developed. They are

1. Levenberg-Marquardt with Early Stopping using a modified validation measure

(),

2. Levenberg-Marquardt with Early Stopping using the derivative information of

the training set (),

3. Combined Function and Derivative Approximation using Broyden-Fletcher-

Goldfarb-Shanno optimization (), and

4. Combined Function and Derivative Approximation with Levenberg-Marquardt

optimization ().

5. Combined Function and Derivative Approximation methods with a network-

pruning algorithm.

The and methods only change the validation performance

measure, while standard training algorithms are used to train the neural networks. For

 and , the proposed change is in the training performance in-

dex. Therefore, the standard calculations cannot be applied. The methods can be

BFGS ES–

LM ES–

GNBR

LM ES1–

LM ES2–

CFDA BFGS–

CFDA LM–

LM ES1– LM ES2–

CFDA BFGS– CFDA LM–

CFDA

4

incorporated with the proposed network-pruning algorithm, thus resulting in the fifth algo-

rithm.

The results of the standard methods and the new algorithms will be compared on

several analytic and real-world problems. The real-world application we focus on in this

research is molecular dynamics, where the motion of atoms is simulated. The potential en-

ergy of the atoms is a function of atomic configuration, and the forces acting on the atoms

are the negative first derivatives of the potential energy. Therefore, molecular dynamics is

a good example where both the function and its first-order derivative approximation are of

interest.

Outline

In Chapter 2, the mathematical notation and the general concepts of MFNNs will be

introduced. The use of the neural networks in function approximation will be briefly re-

viewed. Three standard training algorithms for function approximation will be discussed,

i.e. , and . The conditions under which the neural networks

can simultaneously and uniformly approximate both a function and its derivatives will be

provided.

In Chapter 3, two new validation-related methods will be introduced, i.e.

 and . The comparison of the approximation accuracy between these

methods and on analytic problems will be compared and discussed.

In Chapter 4, the training performance index is proposed. Two approaches

(i.e. batch mode and memory-save method) for calculating the gradient of the per-

BFGS ES– LM ES– GNBR

LM ES1– LM ES2–

LM ES–

CFDA

CFDA

5

formance index (which works with any gradient-based optimization) are proposed and de-

rived. The execution time for computing the gradient and the standard gradient,

under several scenarios, is compared.

In Chapter 5, the method under the Levenberg-Marquardt framework,

named , is discussed. Two approaches (i.e. batch mode and memory-save

method) for minimizing the performance index are proposed and derived. The

comparison of the execution time for the method and the standard Leven-

berg-Marquardt algorithm is illustrated.

In Chapter 6, two new types of overfitting in a two-layer network with one output,

trained with any method are discussed. A network-pruning algorithm to mitigate

the overfitting is proposed. A pseudo code for the algorithm is given.

In Chapter 7, we introduce a procedure to test the approximation accuracy of neural

networks in four analytic problems. We discuss a way to assign a value to the unknown pa-

rameter in the performance index. We choose , for the gradient-

based . The pruning algorithm is applied to and . We

denote with the pruning method and with the pruning meth-

od: and , respectively. We test the approximation accura-

cy of neural networks trained by the standard methods and the methods (i.e.

, , and). The results are

shown and discussed. Examples showing the overfitting and how the pruning algo-

rithm removes it are demonstrated.

CFDA

CFDA

CFDA LM–

CFDA

CFDA LM–

CFDA

CFDA CFDA BFGS–

CFDA CFDA BFGS– CFDA LM–

CFDA BFGS– CFDA LM–

CFDA BFGS– p CFDA LM– p

CFDA

CFDA BFGS– CFDA LM– CFDA BFGS– p CFDA LM– p

CFDA

6

In Chapter 8, the background material for molecular dynamics is reviewed. The use

of neural networks in molecular dynamics is discussed. The comparison in approximation

accuracy of neural networks trained by and the methods is illustrated and

discussed for several problems. An example showing the overfitting in a molecular

dynamics problem and how the pruning algorithm removes it is demonstrated.

In Chapter 9, the summary of the research and the future work is provided.

GNBR CFDA

CFDA

7

CHAPTER 2

APPROXIMATION USING NEURAL NETWORKS

Introduction

The objective of this research is to use multilayer feedforward neural networks

(MFNNs) for approximating functions and their first-order derivatives. This chapter serves

three purposes. First, the notation used throughout the research will be introduced. Second,

we will discuss the concept and the background material of MFNNs, including a review of

three existing training algorithms for multilayer feedforward neural networks. These algo-

rithms are Broyden-Fletcher-Goldfarb-Shanno with Early Stopping , Leven-

berg-Marquardt with Early Stopping , and Gauss-Newton approximation to the

Bayesian regularization . Finally, the conditions under which multilayer feedfor-

ward neural networks can simultaneously approximate both a function and its first-order

derivatives will be briefly discussed and reviewed.

Notation

This section will introduce mathematical notation that will be used throughout the

research. The following definitions provide the meaning of three mathematical operators,

see [HoJo94] and [MaNe99].

BFGS ES–()

LM ES–()

GNBR()

8

Definition (3) Let be an matrix and a matrix. The ma-

trix defined by

(1)

is called the Kronecker product of and , and written .

Definition (4) If and are matrices of the same order, say

, then the Hadamard product of and is the matrix

. (2)

Definition (5) Let be an matrix and its column; then is the

 vector

. (3)

We will use the following notation, from [MaNe99], for representing the deriva-

tives of a function:

A m n× B p q× mp nq×

a1 1, B … a1 n, B
… …

am 1, B … am n, B

A B A B⊗

A ai j,[]= B bi j,[]=

m n× A B m n×

A B• ai j, bi j,[]=

A m n× aj jth vecA

mn 1×

vecA

a1

a2

…
an

=

9

Definition (6) Let be a differentiable scalar function of a scalar variable . Then

the derivative of is denoted .

Definition (7) Let be a differentiable scalar function of a vector . Then

the derivative of is the array

. (4)

Definition (8) Let be a differentiable real vector function of a vector

, then the derivative of is the matrix

. (5)

And the derivative of the function , where , with respect to the scalar

variable , where is denoted by

. (6)

f x

f f· x() f x()∂
x∂

------------=

f p 1× x

f 1 p×

f x()∂

xT∂
------------ f∂

xT∂
-------- f x()∂

x1∂
------------ … f x()∂

xn∂
------------= =

f m 1× p 1×

x f m p×

f x()∂
xT∂

------------- f∂
xT∂

f1 x()∂

xT∂

…
fm x()∂

xT∂

f∂
x1∂

-------- … f∂
xp∂

--------= = =

fi i 1 2 … m, , ,=

xj j 1 2 … p, , ,=

fi x()∂
xj∂

fi∂
xj∂

-------=

10

Definition (9) Let be a differentiable matrix function of a matrix of

real variables . Then, the derivative of with respect to is the matrix

. (7)

We will also use the notation to denote the matrix, all of whose ele-

ments are ones. The identity matrix will be denoted by the notation .

The next section will discuss some notation and background material for MFNNs.

A brief discussion of how the MFNN can be used for function approximation will also be

presented.

Multilayer Feedforward Neural Networks

We will divide this section into three parts. The first part will briefly discuss the

general concept of MFNNs. The notation for MFNNs will be introduced in the second part.

Finally, we will describe how MFNNs can be used for function approximation.

Background material

The term neural networks has been used to refer to a structure consisting of connect-

ed nodes (or neurons) in any formation (i.e. parallel, series or both). The inspiration of in-

venting neural networks was initially based on how a brain works. However, neural

networks are now considered a mathematical and statistical model for information and sig-

F m n× p q×

X F X mn pq×

vecF∂

vecX()T∂

x1
T∂

∂ f1 …
xq

T∂

∂ f1

… …

x1
T∂

∂ fn …
xq

T∂

∂ fn

=

1m n× m n×

m m× Im

11

nal processing. Neural networks have been theoretically and practically proven to be a pow-

erful tool in many applications, such as function approximation, classification, pattern

recognition, novelty detection, filtering, etc. Neural networks have been categorized into

several types usually based on how neurons are connected. One of the most widely-used

types for function approximation is the MFNN. In this research, we will focus on using

MFNNs for function approximation. For ease of reference, the term neural network (or just

network) will be used throughout this document to refer to MFNNs.

A neural network consists of neurons connected in parallel and series. The structure

of a neuron is shown in the following figure.

Figure 1) A single neuron

From Figure 1), a neuron consists of several components. They are the neuron input , the

weight , the bias , the summer, the net input , the transfer function , and the neuron

output . The net input is computed as . The net input is fed to the transfer

function to produce the neuron output , i.e. . The weight and the bias

are called the “network parameters”.

When neurons are connected in parallel and cascade, a more complicated structure

is obtained. In the parallel structure (layer), each neuron receives the same inputs as the oth-

er neurons do but independently produces its own output. When neurons are in the cascade

 ∑ f

1

b

p a
nw

p

w b n f

a n wp b+=

f a a f n()= w b

12

structure, each neuron output of a preceding layer is distributed to be a neuron input for ev-

ery neuron in the layer following it. The general structure is referred to as an

neural network. An example of a neural network is illustrated in the following

figure.

Figure 2) The feedforward neural network

Since the complexity drastically increases as we have more neurons and layers, we

need notation to refer to a specific neuron. In the next part, we will introduce the notation

for the general structure of a multilayer feedforward neural networks that will be used

throughout this research.

Notations for neural networks

An feedforward neural network structure can be denoted

. This structure notation corresponds to the statement that the

 neural network consists of inputs, neurons in the first layer, neurons

in the second layer and so on, until neurons in layer , i.e. the output layer. The layers

1 through are called hidden layers. Layer is called the output layer. We can con-

sider the network inputs as the neuron outputs of layer .

M layer–

3 layer–

Linear LayerTan-Sigmoid LayerTan-Sigmoid Layer

a tansig W p b
1 1 1
= (+) a tansig W a b

2 2 1 2
= (+) a purelin W a b

3 3 2 3
= (+)

S
1
x 1 S

2
x 1 S

3
x 1

S
1
x 1 S

2
x 1 S

3
x 1

S
1
x 1 S

2
x 1 S

3
x 1

R x 1

S
1
x R S

2
x S

1
S

3
x S

2

S
1

S
2

S
3

n
1

n
2

n
3

p a
1

a
2

a
3

W
1

W
2

W
3

b
1

b
2

b
31 1 1

R

Inputs

3 layer–

M layer–

R S1 S2 …– SM–––

M layer– R S1 S2

SM M

M 1– M

m 0=

13

Suppose we have an neural network and input/target pairs

in the training set. We write to denote element of the input vector, and write to

denote element in the input vector. We write to denote the weight of neuron

at layer , that connects from the output of neuron at layer . The bias for neuron

 at layer is denoted by . The weight is the weight, which connects from the

element of the input vector to neuron in the first layer. The net input of neuron at layer

 is denoted by and the notation denotes the output of neuron at layer . At the

output layer, is also denoted by (). When the input vector is applied to

the network (i.e. for), the values of , and are denoted

by , and , respectively. We assume that the transfer function is the same for

each neuron in the same layer; thus using to denote the transfer function at layer .

The notation we just introduced can also be used in matrix form. A couple of exam-

ples are provided: the notation means this element is at row of the input vector

 and it is also the element at row and column of the matrix . The notation

 means this element is at row of the vector , and it is the element at row

 and column of the matrix . The notation is at row of the vec-

tor . The notation is at row of the vector , and it is at the row and

R S1 S2 …– SM––– Q

pr r pr q,

r qth wi j,
m i

m j m 1–

i m bi
m wi j,

1 jth

i i

m ni
m ai

m i m

ak
M ak ak

M ak= qth

pr pr q,= r 1 2 … R, , ,= ni
m ai

m ak

ni q,
m ai q,

m ak q,

f m m

pr q, r R 1×

pq r q R Q× P

ak q,
m k Sm 1× aq

m

k q Sm Q× Am bi
m i Sm 1×

bm wi j,
m i Sm 1× wj

m i

14

column of the matrix . The following examples illustrate how the nota-

tions , , and can be expressed in matrix form:

 and , (8)

 and , (9)

, (10)

 and . (11)

Note that we use the notation to denote the row vector of the matrix . Similarly,

the notation is to denote the row vector of the matrix . The following equa-

tions illustrate how these are related to the notations previously introduced:

 and , (12)

 and . (13)

j Sm Sm 1–× Wm

pr q, ak q,
m bi

m wi j,
m

pq
T

p1 q, p2 q, … pR q,= P p1 p2 … pQ=

aq
m()

T
a1 q,

m a2 q,
m … a

Sm q,

m= Am
a1

m a2
m … aQ

m=

bm()
T

b1
m b2

m … b
Sm
m=

wj
m()

T
w1 j, w2 j, … w

Sm j,
= Wm

w1
m w2

m … w
Sm 1–
m=

pT
r rth P

wm
i()

T
ith Wm

pT
r pr 1, pr 2, … pr Q,= P

pT
1

pT
2

…

pT
R

=

wm
i()

T
wi 1, wi 2, … w

i Sm 1–,
= Wm

wm
1()

T

wm
2()

T

…

wm

Sm⎝ ⎠
⎛ ⎞ T

=

15

Given the input signal , the output of neuron at layer , i.e. , can be com-

puted as

 and , (14)

for . At the first layer , the neuron output can be calculated as

 and , (15)

for . Eq. (14) and Eq. (15) can be written in matrix form as

 and , (16)

 and . (17)

In the batch mode when all of the inputs (i.e.) are presented to the network

at the same time, Eq. (14) can be expressed as:

, where (18)

pq i m ai q,
m

ai q,
m f m ni q,

m()= ni q,
m wi j,

m aj q,
m 1– bi

m+
j 1=

S m 1–

∑=

i 1 2 … Sm, , ,= m 1=() ith

ai q,
1 f 1 ni q,

1()= ni q,
1 wi r,

1 pr q, br
1+

r 1=

R

∑=

i 1 2 … S1, , ,=

aq
m fm nq

m()

f m n1 q,
m()

f m n2 q,
m()

…

f m n
Sm q,

m
⎝ ⎠
⎛ ⎞

= = nq
m Wmaq

m 1– bm+=

aq
1 f1 nq

1()

f 1 n1 q,
1()

f 1 n2 q,
1()

…

f 1 n
S1 q,

1
⎝ ⎠
⎛ ⎞

= = nq
1 W1pq b1+=

q 1 2 … Q, , ,=

Am Fm Nm() fm n1
m() fm n2

m() … fm nQ
m()= =

16

 . (19)

Eq. (15) can be expressed in the batch mode as:

 and . (20)

Since the objective of the research focuses on the first-order derivative approxima-

tion, we will need to provide the notation for the first-order derivatives of neural networks.

By Definition (6), we write the derivative of with respect to , evaluated at ,

as

. (21)

By Definition (7), the derivative of with respect to the input , evaluated at , as

. (22)

The derivative of with respect to , evaluated at , is denoted by

 . (23)

By Definition (8), the derivative of with respect to the input , evaluated at , is

written

 . (24)

Nm WmAm 1– 11 Q× bm⊗+=

A1 F1 N1()= N1 W1P 11 Q× b1⊗+=

ak pr pr pr q,=

pr q,∂
∂ak q,

pr∂
∂ak

pr pr q,=

≡

ak p p pq=

pq
T∂

∂ak q,

pT∂

∂ak

p pq=

≡

a pr pr pr q,=

pr q,∂
∂aq

pr∂
∂a

pr pr q,=

≡

a p p pq=

pq
T∂

∂aq

pT∂

∂a

p pq=

≡

17

A couple of more examples: the derivative of with respect to the net input , evaluated

at , is expressed as

. (25)

The derivative of with respect to the net input , evaluated at , is denoted by

. (26)

For batch mode, first suppose the input vectors for all are dis-

tinct. By Definition (9), we write the derivative of with respect to the input , evaluated

at for all , as

. (27)

Note that the blocks off the diagonal are zero since is not related to . The de-

rivative of with respect to the input , evaluated at for all , is

denoted by

aj
m nj

m

nj
m nj q,

m=

nj q,
m∂

∂aj q,
m

nj
m∂

∂aj
m

nj
m nj q,

m=

≡

am nm nm nq
m=

nq
m()

T
∂

∂aq
m

nm()
T

∂

∂am

nm nq
m=

≡

pq q 1 2 … Q, , ,=

a pr

pr pr q,= q 1 2 … Q, , ,=

vecA∂

pr
T∂

pr 1,∂
∂a1 0 … 0

0 pr 2,∂
∂a2 … 0

… … …

0 0 … pr Q,∂
∂aQ

=

pr q1, pr q2,

a p p pq= q 1 2 … Q, , ,=

18

, (28)

where, again, the blocks off the diagonal are zeros because each input vector is distinct.

The derivative of with respect to the input , evaluated at for all

, is denoted by

. (29)

One more example: the derivative of with respect to the net input , evaluated at

 for all , is denoted by

vecA∂

vecP()T∂

p1
T∂

∂a1 0 … 0

0
p2

T∂

∂a2 … 0

… … …

0 0 …
pQ

T∂

∂aQ

=

pq

am p p pq=

q 1 2 … Q, , ,=

vecAm∂

vecP()T∂

p1
T∂

∂a1
m

0 … 0

0
p2

T∂

∂a2
m

… 0

… … …

0 0 …
pQ

T∂

∂aQ
m

=

am nm

nm nq
m= q 1 2 … Q, , ,=

19

. (30)

In the next section, we will briefly review how neural networks have been used in

function approximation problems.

Neural networks and function approximation

A MFNN can be used as a function approximator. This means that the network out-

puts will be estimates of the response of an unknown function . Given the vector function

, we write to denote the element. We will use the notation to denote the

element of the function response to the input vector. Note that we also call the

target value. As in previous matrix notation, and are the column vector and batch

mode representations, respectively.

Now, suppose we want a neural network to approximate a function mapping from

a subset in to a subset in . Also suppose that a set of examples were drawn from

function , where an example represents a pair of function inputs and corresponding func-

tion responses; i.e. . Given a sufficient number of neurons and a set of examples

vecAm∂

vecNm()
T

∂

n1
m()

T
∂

∂a1
m

0 … 0

0
n2

m()
T

∂

∂a2
m

… 0

… … …

0 0 …
nQ

m()
T

∂

∂aQ
m

=

g

g gk kth gk q, kth

qth gk q,

gq G

g

ℜR ℜSM

g

pq gq,()

20

(the training set), an neural network can be used to approximate a

function over a subset in . In fact, [HoSt89] theoretically showed that, with a suffi-

cient number of neurons in the hidden layer, networks are capable of approxi-

mating any Borel measurable function from one finite dimensional space to another to any

desired degree of accuracy; meaning that the networks are a class of universal approxima-

tors.

When a neural network is trained, its weights and biases are adjusted so as to min-

imize some performance index (or objective function), which usually involves the mean

square error between the network outputs and the target values. An optimization method is

used to find the network parameters that minimize the performance index. The combination

of the performance index and the optimization method makes up the training algorithm.

There have been many training algorithms developed for neural networks. However, we

will only review three algorithms: Broyden-Fletcher-Goldfarb-Shanno with Early Stopping

, Levenberg-Marquardt with Early Stopping , and Gauss-New-

ton approximation to the Bayesian Regularization .

Training Algorithms

In this section, we will review three existing neural network training algorithm. We

will first discuss the , followed by the , and finally the train-

ing algorithm.

R S1 S2 …– SM–––

g ℜR

2 layer–

BFGS ES–() LM ES–()

GNBR()

BFGS ES– LM ES– GNBR

21

Suppose we want to approximate a function , which maps from a subset in to

a subset in using an neural network. Assume that the number

of data (or examples) in the training set is . We use the vector to denote the col-

umn vector containing all of the network parameters. The total number of the network pa-

rameters (i.e. the number of elements in the vector) is

. (31)

BFGS-ES training algorithm

The performance index for this algorithm is the sum square of the difference be-

tween the network outputs and the target values, i.e. the sum square function error. Its per-

formance index is written as:

. (32)

Minimizing the performance index (with respect to the network parameters) is equiv-

alent to forcing the neural network to approximate the function over a subset in . For

this training algorithm, the optimization method, see [GiMu81], will be used to

minimize the performance index. The steps for the training algorithm are described

in the following section. Note that we use the notation and to denote the

performance index and the gradient of the performance index with respect to , evaluated

at , respectively. The notation denotes the 2-norm of the vector .

g ℜR

ℜSM
R S1 S2 …– SM–––

Q n 1× x

x

n S1 R 1+() S2 S1 1+() … SM SM 1– 1+()+ + +=

Jf ak q, gk q,–{ }2

k 1=

SM

∑
q 1=

Q

∑=

Jf

ℜR

BFGS

BFGS

Jf xk() Jf xk()∇

x

xk x x

22

Steps for BFGS training algorithm

1. Set . Initialize the network parameter vector by the method in

[NgWi90]. Present the training set to the network. Compute the gradient of the performance

index with respect to the network parameters . Set the initial search direction

. Initialize the approximated Hessian matrix .

2. Minimize the performance index along the search direction, i.e. determine

such that minimizes the performance index .

3. Set , and evaluate . Also compute the gradient

. Terminate the process if or are less than their pre-

defined thresholds.

4. Calculate the change in the gradient , and compute

the new approximated Hessian matrix:

. (33)

5. Compute the new search direction , which is the solution of

. (34)

6. Set and iterate step 2) to 6).

Note that we will use the algorithm in [NgWi90] to initialize the network parame-

ters for all training algorithms in this research. The backpropagation process is used to com-

pute the gradient of the performance index with respect to the network parameters .

k 0= x0

Jf Jf x0()∇

p0 Jf x0()∇–= B0 In=

αk

xk αkpk+ Jf

xk 1+ xk αkpk+= Jf xk 1+()

Jf xk 1+()∇ Jf xk 1+() Jf xk 1+()∇

yk Jf xk 1+()∇ Jf xk()∇–=

Bk 1+ Bk
Jf xk()∇[] Jf xk()∇[]T

Jf xk()∇[]Tpk

--
ykyk

T

αkyk
Tpk

------------------+ +=

pk 1+

Bk 1+ pk 1+ Jf xk 1+()∇–=

k k 1+=

Jf x()∇

23

The details of the backpropagation process for training a neural network can be found in

several books, such as [HaDe96]. Note also that there are several methods to perform the

line search in step 2. We will use the backtracking algorithm [DeSc83].

From Eq. (32), we can see that the performance index is only the sum square of

the errors, and thus it is an unregularized performance index. When using an unregularized

performance index, it is possible to overfit the training data and then fail to generalize.

There are several available techniques that could be used to prevent overfitting. For exam-

ple, [HeKr91] proposed an approach to perform weight elimination based on the magnitude

of the parameters. [SiDo91] proposed a method which adds noise to the function inputs, and

[Bish95] showed that this technique is equivalent to Tikhonov regularization [TiAr77]. An-

other well known technique called Early Stopping, abbreviated , can be also used to pre-

vent overfitting, and it will be the technique we will use in the research.

Early stopping is a widely-used technique to prevent overfitting by monitoring the

approximation error on a set of data that is not in the training set. This set of data is called

the “validation set”. The approximation error on both the training and validation set initially

decreases, until at some point the error on the validation set starts to increase while the error

on the training set still keeps going lower. When the error over the validation set increases

for a certain number of iterations, early stopping terminates the training process and it re-

turns the network parameters at the point just before the increase of the validation error oc-

curs. An example below illustrates how early stopping technique works.

Suppose we want to approximate a function for . The

following picture shows the graph of the function. Suppose a set of data points drawn from

Jf

ES

g p() πp()sin= 1– p 1≤ ≤

24

the graph of the function were provided. We divided the set of data points into two groups:

training set and validation set. Data points in the training and validation set are also shown

in the figure.

Figure 3) Training and validation set

Now, suppose a network was used to approximate the function through

the training algorithm. Figure 4) shows the sum square function error, i.e. , on

the training and validation set at each iteration.

Figure 4) Sum square function error on training and validation set

−1 0 1
−1

0

1

Training data
Validation data

g p()

p

g
p(
)

1 5– 1–

BFGS Jf

0 500 1000
10

−8

10
−3

10
2

Iteration

Training set
Validation set

J f

25

From Figure 4), we can see that the validation error initially decreased as the train-

ing errors decreased. However, at some point around iteration 400, the validation error

started increasing, while the training error continued to decrease. In order to prevent over-

fitting, it is desirable to use the network trained up to iteration 400. Therefore, if early stop-

ping was used, it would terminate the training process at some iteration after 400 and use

the network trained until iteration 400.

The validation error may fluctuate, so we do not stop the training at the first instance

of an increase in the validation error. Instead, we monitor the error for a specified number

of iterations to be sure that the error does not go back down. For the experiments described

in this report, we monitored the error for 500 iterations after a minimum was reached before

stopping the training.

We use to refer to the training algorithm with early stopping.

It is one of the three training algorithms we will use in the research. In the next section, we

will review the second training method, which is the algorithm.

LM-ES training algorithm

The performance index for this algorithm is the same as in the training

algorithm, i.e. Eq. (32). However, to minimize the performance index, the Levenberg-Mar-

quardt optimization method [Leve44] [Marq63], abbreviated , will be used. The

optimization algorithm is a combination of the Gauss-Newton algorithm and the method of

gradient descent. It was designed to approximate Newton’s method. To understand the con-

cept of the optimization, let us begin with Newton’s method. The update equation in

Newton’s method is

BFGS ES– BFGS

LM ES–

BFGS ES–

LM LM

LM

26

, (35)

where is the Hessian matrix evaluated at . This means we need to compute the

gradient and the Hessian matrix of the performance index .

To compute the gradient and the Hessian matrix, first suppose the performance in-

dex is in the form of

, (36)

then the element of the gradient would be

, (37)

where is the number of elements in the vector . The gradient can be written in ma-

trix form:

, (38)

where is the Jacobian matrix.

Next, we need to find the Hessian matrix. The element of the Hessian matrix

would be

. (39)

The Hessian matrix can then be expressed in matrix form:

, (40)

xk 1+ xk Jf xk()∇2[] 1– Jf xk()∇–=

Jf xk()∇2 xk

Jf

F x() zT x() z x()×=

jth F x()∇

F x()∇[]j
F x()∂

xj∂
-------------- 2 zi x()

zi x()∂
xj∂

i 1=

N

∑= =

N z x()

F x()∇ 2JT x()z x()=

J x() z x()∂ xT∂⁄=

k j,

F x()∇2[]k j,
F x()2∂
xk∂ xj∂

----------------- 2
zi x()∂

xk∂

zi x()∂
xj∂

-------------- zi x()
zi x()2∂
xk∂ xj∂

-----------------+
⎩ ⎭
⎨ ⎬
⎧ ⎫

i 1=

N

∑= =

F x()∇2 2JT x()J x() 2S x()+=

27

where

. (41)

If we assume is small, the approximated Hessian matrix becomes

. (42)

By substituting Eq. (38) and Eq. (42) into Eq. (35), we obtain the Gauss-Newton method:

, (43)

where and are the vector and the Jacobian matrix , evaluated at ,

respectively.

One problem with the Gauss-Newton method is that the approximate Hessian ma-

trix may not be invertible. This problem can be overcome by using the matrix

 in place of the matrix , where . Increasing the pa-

rameter will make the matrix become positive definite, and thus invertible. This leads

to the Levenberg-Marquardt algorithm:

. (44)

The optimization algorithm requires us to calculate two terms, which are the

vector and the Jacobian matrix . By equating the performance index in Eq. (36)

and Eq. (32), we have the vector

, where , (45)

S x() zi x() zi x()∇2

i 1=

N

∑=

S x()

F x()∇2 2JT x()J x()≅

xk 1+ xk JT xk()J xk()[]
1–
JT xk()z xk()–=

z xk() J xk() z x() J x() xk

JT x()J x()

H̃ JT x()J x() µIn+= JT x()J x() µ 0>

µ H̃

xk 1+ xk JT xk()J xk() µkIn+[]
1–
JT xk()z xk()–=

LM

z x() J x()

z x()

z x() vecE= E A G–=

28

with . Obtaining is thus simply the feedforward propagation. Computing

the Jacobian matrix in neural networks is, however, more complicated and it was

originally discussed in detail in [HaMe94]. Calculating the Jacobian matrix involves the

calculation of the Marquardt sensitivity [HaDe96], using the backpropagation process. The

following is a summary of the training algorithm.

Steps for LM training algorithm

1. Set . Initialize the network parameter vector . Present the training set to

the network. Initialize to a small value, e.g. 0.001. Set to a large value, e.g. .

Set , e.g. 10.

2. Compute and the Jacobian matrix using Eq. (45) and Eq. (38), re-

spectively. Also compute . Terminate the process if or is less

than its predefined threshold, or if .

3. While , do the following:

a). Compute

. (46)

b). Compute and the Jacobian matrix . Compute

.

c). If , set and go back to Step 3. Otherwise,

go to the next step.

N SMQ= z x()

J x()

LM

k 0= x0

µ0 µmax 1010

ϑ 1>

z xk() J xk()

Jf xk() Jf xk() J xk()z xk()

µk µmax≥

µk µmax<

xk 1+
temp xk JT xk()J xk() µkIn+[]

1–
JT xk()z xk()–=

z xk 1+
temp() J xk 1+

temp()

Jf xk 1+
temp()

Jf xk 1+
temp() Jf xk()≥ µk ϑµk=

29

d). If , set and set . Then,

set and go back to Step 2.

4. Terminate the process (in this case it is due to).

As the performance index is only the sum square of the function errors, early

stopping will again be used to prevent overfitting. We will denote this algorithm, which

minimizes the performance index using the optimization with early stopping, as the

 method. In the next section, we will review the Gauss-Newton approximation to

Bayesian Regularization training algorithm.

GNBR training algorithm

Unlike the performance index for the and the training algo-

rithms, the performance index of the training method is a regularized performance

index, as shown below:

, (47)

where is a network weight or bias, is the total number of weights and biases, and

 are scalar values weighting the importance of the two terms. The regularized term in the

performance index is , which is the sum of squares of the network weights and bi-

ases.

Jf xk 1+
temp() Jf xk()< µk 1+ µk ϑ⁄= xk 1+ xk 1+

temp=

k k 1+=

µk µmax≥

Jf

Jf LM

LM ES–

GNBR()

BFGS ES– LM ES–

GNBR

F β gk q, ak q,–()2

k 1=

SM

∑
q 1=

Q

∑ α xi
2

i 1=

n

∑+=

xi n β

α

xi
2

i 1=

n

∑

30

Regularization is another technique used to prevent overfitting. Although its pur-

pose is the same as early stopping, it works in a different way. The regularized performance

index forces the magnitudes of the network parameters to be small, which causes the net-

work output to be smooth. That is, the regularization prevents steep fluctuations in the net-

work response.

A problem for using the regularized performance index is that the weighting factors

 and are unknown and problem-dependent. If is too small relative to , then we

would still observe overfitting as there is too little impact from the regularized term. In con-

trast, if is too large relative to , then the network output would be too smooth and would

not approximate the function. To overcome this problem, David J. C. MacKay proposed a

method in [MacK92] using Bayes’ rule to automatically choose the weighting factors to

balance between the function approximation capability and the smoothness of the network

output. [FoHa97] later combined MacKay’s method with the Levenberg-Marquardt frame-

work to obtain the Gauss-Newton Approximation to Bayesian Regularization, denoted as

. The concept of this algorithm can be explained in two parts: first, minimizing the

performance index in Eq. (47), and second, choosing the values of and .

From Eq. (36) and Eq. (47), we can rewrite the performance index as:

. (48)

Now, from Eq. (38), the gradient of the performance index can be written

. (49)

Since is in fact in Eq. (32), the Jacobian matrix , which can be ob-

β α α β

α β

GNBR

β α

F βzT x()z x() αxTx+ βED αEW+= =

F∇ β ED∇ α EW∇+ 2βJD
T x()z x() 2αJE

T x()x+= =

ED Jf JD x() J x()=

31

tained by the same backpropagation process as in the Levenberg-Marquardt training algo-

rithm. Since the Jacobian matrix , this becomes . Therefore,

Eq. (49) turns out to be

 . (50)

Using Eq. (42) and Eq. (49), the Hessian can be approximated and written in matrix form:

. (51)

By substituting Eq. (50) and Eq. (51) into Eq. (35), the update equation becomes

. (52)

Now, we have an update equation for the performance index in Eq. (47). Next, we will ex-

plain MacKay’s method to choose the values of and .

Under the Bayesian framework of MacKay [MacK92], the network parameters are

considered random variables. The posterior density of the network parameters can be

written according to the Bayes’ rule:

, (53)

where represents the data set presented to the network, and is the network model. The

term is the likelihood function, the term is the prior density, and

the term is named evidence. The parameter is related to the variance of

the likelihood and is related to the variance of the prior density. If the noise in the model

output and the prior density are assumed to follow Gaussian distributions, then the likeli-

JE x() x∂ xT∂⁄= JE x() In=

F∇ 2βJT x()z x() 2αx+=

F x()∇2 β ED∇2 α EW∇2+ 2βJT x()J x() 2αIn+≅=

xk 1+ xk βkJT xk()J xk() αk µk+()In+[]
1–
βkJT xk()z xk() αkxk+[]–=

β α

P x

P x D β α M, , ,()
P D x β M, ,()P x α M,()

P D β α M, ,()
---=

D M

P D x β M, ,() P x α M,()

P D β α M, ,() β

α

32

hood function and the prior density become

, and (54)

, (55)

respectively. The term and , where .

Considering the evidence as a normalization factor, and substituting Eq. (54) and

Eq. (55) into Eq. (53), we obtain the posterior density

. (56)

From Eq. (56), we can see that maximizing the posterior density is equivalent to minimiz-

ing the regularized objective function .

Now, given the data, we are interested in what value and should be. This

means we need to consider . By using Bayes’ rule, it becomes

. (57)

Suppose the prior density is uniform, which corresponds to the statement that

we do not know what value and should be. Then, maximizing the posterior

 is equivalent to maximizing the likelihood function . Howev-

er, note that the likelihood function in Eq. (57) is the evidence, which is the normalization

factor, in Eq. (53). Therefore, the evidence in Eq. (53) can be solved:

. (58)

P D x β M, ,() 1
ZD β()
--------------- βED–()exp=

P x α M,() 1
ZW α()
---------------- αEW–()exp=

ZD β() π β⁄()N 2⁄= ZW α() π α⁄()n 2⁄= N SMQ=

P x D β α M, , ,() 1
ZF β α,()
--------------------- F x()–()exp=

F

β α

P β α, D M,()

P β α, D M,()
P D β α M, ,()P β α M,()

P D M()
--=

P β α M,()

β α

P β α, D M,() P D β α M, ,()

P D β α M, ,()
P D x β M, ,()P x α M,()

P x D β α M, , ,()
---=

33

By substituting Eq. (54) to Eq. (56) into Eq. (58), we obtain

. (59)

From Eq. (59), the only term we do not know is . However, we can estimate it

from a Taylor series expansion, by assuming the objective function has a quadratic shape

in a small region around the minimum point . At the minimum point, the gradient of

the function is zero. Thus, the objective function approximated around is written as

, (60)

where is the Hessian matrix of , and is the Hessian ma-

trix evaluated at . Therefore, the posterior density in Eq. (56) can be written as

, (61)

which is rewritten as

. (62)

The multivariate Gaussian density with mean and the covariance matrix is

expressed as:

. (63)

By equating Eq. (62) and Eq. (63), we can solve for

P D β α M, ,()
ZF β α,()

ZD β()ZW α()
-------------------------------=

ZF β α,()

xMP

xMP

F x() F xMP() 1
2
--- x xMP–()

T
HMP x xMP–()+≅

H β ED∇2 α EW∇2+= F x() HMP

xMP

P x D β α M, , ,() 1
ZF β α,()
--------------------- F xMP() 1

2
--- x xMP–()

T
HMP x xMP–()+

⎩ ⎭
⎨ ⎬
⎧ ⎫

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp≅

P x D β α M, , ,() 1
ZF β α,()
--------------------- F xMP()–()exp

⎩ ⎭
⎨ ⎬
⎧ ⎫ 1

2
--- x xMP–()

T
HMP x xMP–()–⎝ ⎠

⎛ ⎞exp≅

xMP HMP()
1–

P x() 1

2π()n 2⁄ HMP()
1– 1 2⁄

--- 1
2
--- x xMP–()

T
HMP x xMP–()–⎝ ⎠

⎛ ⎞exp=

34

. (64)

Substitute Eq. (64) into Eq. (59) along with the values of and from Eq. (54)

and Eq. (55), take the derivative with respect to each of the log in Eq. (59) and set them to

zero. This produces

 and , (65)

where is called the effective number of parameters. The param-

eter is a measure of how many parameters in the network are effectively used in reducing

the error function, and it can range from zero to .

Since the estimation for and requires the calculation of the Hessian matrix of

the performance index at the minimum point , [FoHa97] proposed using the ap-

proximated Hessian readily available under the Levenberg-Marquardt framework, i.e. Eq.

(51), leading to the training algorithm. The algorithm is summarized below.

Steps for GNBR training algorithm

1. Initialization: Same as the Levenberg-Marquardt training algorithm. Initialize

, .

2. Take one step of the training algorithm to minimize the objective function

in Eq. (47), by using Eq. (52).

3. Compute the effective number of parameters , where the

Hessian matrix can be approximated by Eq. (51), and is the Hessian evaluated at .

ZF β α,() 2π()n HMP()
1–

[]
1 2⁄

F xMP()–()exp≅

ZD β() ZW α()

βMP N γ–
2ED xMP()
-------------------------= αMP γ

2EW xMP()
--------------------------=

γ N 2αMPtr HMP()
1–

–=

γ

n

β α

F x() xMP

GNBR

α0 0= β0 1=

LM

γk n 2αktr Hk()–=

H Hk xk

35

4. Compute the new estimates for and :

 and . (66)

Then, set .

5. Iterate step 2) to 5) until , or is less than its predefined thresh-

old.

As the algorithm penalizes the magnitude of the network parameters as a

technique to reduce the overfit problem, we will not have a validation data set in this algo-

rithm.

Recall that the goal of this research is to approximate both a function and its first-

order derivatives using neural networks. [HoSt89] showed that multilayer feedforward neu-

ral networks can approximate any Borel measurable function. In the next section, a theo-

retical discussion of function and derivative approximations with neural networks will be

reviewed.

Conditions for Function and Derivative Approximation

Recall that our goal is to approximate both a function and its first-order derivatives.

This section will briefly discuss the theoretical conditions under which neural networks can

simultaneously approximate both a function and its derivatives. There are several discus-

sions on the conditions, such as [HoSt90], [Horn91], [Ito93] or [Pink99]; however, we will

follow [Li96].

β α

βk 1+
N γk–

2ED xk()
--------------------= αk 1+

γk
2EW xk()
---------------------=

k k 1+=

µk µmax≥ F xk()

GNBR

36

We first introduce notation. We let denote the lattice of non-negative multi-in-

tegers in . For , we set and

. (67)

We also write if for all . Given an open set of

(probably), we write to denote the set consisting of functions with all

 order continuous partial derivatives in , for and . We write

 to imply, for a compact set of , there is an open set such that

and . We write to denote a neural network with the network out-

put , the transfer function in the hidden layer and the linear transfer function in the

output layer, i.e. is linear.

Given a compact subset of , and a function for , [Li96]

showed that if and is not a polynomial, then of a network can

uniformly and simultaneously approximate , for and .

For example, [Li96] considered a function on , given by:

 if ; otherwise . We can

verify that and are discontinuous at the origin ; however, ,

Z +
R

ℜR m m1 m2 … mR, , ,() Z +
R∈= m m1 m2 … mR+ + +=

Dm

p1
m1 p2

m2… pR
mR∂∂

m

∂

∂=

m1 m2≤ mr
1 mr

2≤ r 1 2 … R, , ,= Ω ℜR

Ω ℜR= Cm Ω()

kth Ω k Z +
R∈ k m≤

f Ĉm K()∈ K ℜR Ω K Ω⊂

f Cm Ω()∈ M 2 layer–

a f 1

f 2

K ℜR g Ĉm K()∈ m Z +
R∈

f 1 C m ℜ()∈ f 1 Dka M

Dkg k Z +
R∈ k m≤

ℜ2

g p1 p2,() p1p2()11 3⁄ 1 p1p2()⁄[]sin= p1 p2, 0≠ g p1 p2,() 0=

g2∂ p1
2∂⁄ g2∂ p2

2∂⁄ 0 0,() g

37

, , and are continuous on . Therefore, . In

this situation, a network can simultaneously and uniformly approximate , ,

, and on any compact set containing , provided that the

transfer function in the hidden layer is non-polynomial and .

The typical transfer functions in the hidden layers and the output layer of neural net-

works used for function approximation are sigmoid and linear functions, respectively. Sig-

moid functions are non-polynomial and they are of class (infinitely differentiable or

smooth functions), i.e. all derivative orders are continuous. Therefore, given that the func-

tion and its first-order partial derivatives exist and are continuous, the standard two-layer

neural network has the ability to simultaneously approximate the function and its first-

order derivatives.

Next, we will introduce notation for first-order derivative values. Similar to the no-

tation defined in Eq. (21) to Eq. (24), the derivative of the scalar function with respect

to and with respect to , evaluated at and , is written, respectively,

, . (68)

The derivative of the vector function with respect to and , evaluated at

and , is denoted, respectively, by:

g∂ p1∂⁄ g∂ p2∂⁄ g2∂ p1 p2∂∂⁄ ℜ2 g C 1 1,() ℜ2()∈

M g g∂ p1∂⁄

g∂ p2∂⁄ g2∂ p1 p2∂∂⁄ K 0 0,()

f 1 f 1 C2 ℜ()∈

C∞

g

g

gk

pr p pr pr q,= p pq=

pr q,∂
∂gk q,

pr∂
∂gk

pr pr q,=

≡
pq

T∂

∂gk q,

pT∂

∂gk

p pq=

≡

g pr p pr pr q,=

p pq=

38

, . (69)

For batch mode, similar to Eq. (27) and Eq. (28), we will use the following notation:

, and . (70)

Summary

In this chapter, we first stated the objective of the research: to develop procedures

for approximating functions and their derivatives. Then, we introduced the operators and

notation that will be used throughout the research. The notation and background material

for the multilayer feedforward neural network were provided. A neural network learns to

approximate a function through an optimization process. A combination of the objective

function and the optimization process defines a distinct training algorithm. We discussed

three existing training algorithms: , and . Each is capable of

forcing a neural network to approximate a function in a different way. The and

 methods use early stopping as a technique to prevent overfitting, while the

 algorithm uses the Bayesian regularizer.

pr q,∂
∂gq

pr∂
∂g

pr pr q,=

≡
pq

T∂

∂gq

pT∂

∂g

p pq=

≡

vecG∂

pr()T∂

pr 1,∂
∂g1 0 … 0

0 pr 2,∂
∂g2 … 0

… … …

0 0 … pr Q,∂
∂gQ

= vecG∂

vecP()T∂

p1
T∂

∂g1 0 … 0

0
p2

T∂

∂g2 … 0

… … …

0 0 …
pQ

T∂

∂gQ

=

BFGS ES– LM ES– GNBR

BFGS ES–

LM ES–

GNBR

39

Finally, the conditions under which a neural network can uniformly and simulta-

neously approximate a function and its derivatives were discussed. One of the conditions

requires that the function and its first-order derivatives be continuous. A second condition

requires that the transfer function in the hidden layer of the neural network be sufficiently

differentiable but not be a polynomial. For example, the typical sigmoid transfer function

would be satisfactory.

40

CHAPTER 3

VALIDATION-RELATED METHODS

Introduction

Recall that our objective is to use a neural network to approximate a function and

its first-order derivatives. In this chapter, we will discuss two simple methods for accom-

plishing this task. These methods are similar to the standard training algorithms discussed

in Chapter 2, but some modifications are applied to the early stopping technique. As the

Levenberg-Marquardt optimization is chosen to work with these two modified early stop-

ping techniques, the two proposed methods are:

1. Modified validation performance measure (), and

2. Early stopping using the derivative information on the training set ().

As we describe each method, the idea behind it will be discussed. Then, the simu-

lation results for each method, based on the benchmark tests that are described in Chapter

7, will be shown. The results in this chapter can be compared with the simulation results

obtained using the standard early stopping technique, which are shown in Chapter 7.

Modified validation performance measure

For the standard early stopping method (discussed in Chapter 2), the validation per-

formance is measured by the sum squared function error. We proposed using a combination

LM ES1–

LM ES2–

41

of the sum squared function error and the sum squared derivative error. In other words, the

validation performance will be determined by

, (71)

where is the number of examples in the validation set, and is a scalar factor.

If the validation error increases for a certain number of iterations, then the

training will be terminated. The unknown parameter in the equation is , which we will

vary to investigate its consequences to the approximation of neural networks. Another pur-

pose of this parameter is to account for the fact that the scale of the derivative values can

be much different from the function values. The procedure for training a neural network

using this method is exactly the same as the standard training algorithm with the standard

early stopping technique (e.g. or), with two exceptions. First, we

need to compute the derivative of the network output with respect to the network inputs;

i.e. , for all , and this calculation is shown in Chapter 4. Second,

the performance measure in the standard early stopping technique is now replaced by the

new measure in Eq. (71). In this research, we choose to work with the modified

validation performance measure. We denote this method . Note that when

, is .

EVd
ak qV, gk qV,–()2

k 1=

SM

∑
qV 1=

QV

∑ ρd pr qV,∂

∂ak qV,

pr qV,∂

∂gk qV,–
⎝ ⎠
⎜ ⎟
⎛ ⎞

2

r 1=

R

∑
k 1=

SM

∑
qV 1=

QV

∑+=

QV ρd

EVd

ρd

BFGS ES– LM ES–

aq∂ pq
T∂⁄ q 1 2 … QV, , ,=

LM ES–

LM ES1–

ρd 0= LM ES1– LM ES–

42

The approximation accuracy obtained from for the simple analytic func-

tions (which are introduced in Chapter 7) are shown in the next section. Note again that the

procedure to perform the simulation is described in Chapter 6.

Simulation results

The approximation accuracy obtained from for the simple analytic func-

tions are shown in the following tables. The results in Table 1, Table 2 and Table 3 can be

compared with the results obtained from other algorithms in Table 9, Table 10 and Table

11 in Chapter 7, respectively. For ease of reference, we put the results obtained from

 with the standard early stopping (i.e.). Note that the definitions of

 and are defined in the simulation procedure in Chapter 7.

 in Problem 1

Training Test Training Test
0 2.48E-06 8.90E-04 6.42E-03 1.74E-02

1E-06 2.48E-06 8.90E-04 6.42E-03 1.77E-02
1E-04 2.50E-06 8.90E-04 6.42E-03 1.74E-02
1E-02 2.52E-06 8.90E-04 5.71E-03 1.38E-02
1E+00 3.00E-06 9.96E-04 6.51E-03 1.73E-02
1E+02 3.00E-06 9.96E-04 6.51E-03 1.73E-02

Table 1 Approximation accuracy on problem 1

LM ES1–

LM ES1–

LM ES– ρd 0=

RMSEF
md RMSED

md

ρd

LM ES1– RMSEF
md RMSED

md

43

From these results, we can see that the approximation accuracy obtained from

 is similar to the results from . We conclude that adding the derivative

error term into the standard validation performance measure does not improve the approx-

imation accuracy.

In the next section, the simulation results obtained from the training algorithm

with early stopping using the derivative information of the training set, i.e. , will

be discussed.

 in Problem 2

Training Test Training Test
0 1.14E-05 1.16E-02 1.09E+00 1.94E+00

1E-06 1.14E-05 1.14E-02 1.09E+00 1.94E+00
1E-04 4.18E-07 7.44E-03 5.52E-01 1.45E+00
1E-02 9.04E-07 8.67E-03 9.69E-01 1.54E+00
1E+00 9.04E-07 8.67E-03 9.69E-01 1.54E+00
1E+02 9.04E-07 8.67E-03 9.69E-07 1.54E+00

Table 2 Approximation accuracy on problem 2

 in Problem 3

Training Test Training Test
0 6.72E-06 2.09E-04 5.67E-03 1.12E-02

1E-06 6.72E-06 2.09E-04 5.67E-03 1.12E-02
1E-04 9.93E-06 2.80E-04 1.41E-02 2.69E-02
1E-02 1.14E-05 2.96E-04 1.38E-02 2.69E-02
1E+00 1.14E-05 2.97E-04 1.38E-02 2.69E-02
1E+02 1.14E-05 2.97E-04 1.38E-02 2.69E-02

Table 3 Approximation accuracy on problem 3

ρd

LM ES1– RMSEF
md RMSED

md

ρd

LM ES1– RMSEF
md RMSED

md

LM ES1– LM ES–

LM

LM ES2–

44

Early stopping using the derivative information of the training set

In regular early stopping, the training process will be terminated when the valida-

tion performance increases. Recall that the standard validation performance measure is

. (72)

The function error term can be approximated by the first-order Taylor

series expansion at the point , and this becomes:

, where , (73)

where is the nearest training point to . By inserting Eq. (73) into Eq. (72), we obtain

(74)

We may ignore the second term in Eq. (74) if we assume equal distribution around

zero of the training error terms, i.e. and for all ,

 and . Thus the sum of these error terms is approximately

zero. The third term in Eq. (74) can be further expanded:

(75)

EV ak qV, gk qV,–()2

k 1=

SM

∑
qV 1=

QV

∑=

ek qV, ak qV, gk qV,–≡

pqV

ek qV, ek tV, pr tV,∂

∂ek tV, pr tV, pr qV,–()

r 1=

R

∑+≈ pr tV,∂

∂ek tV,

pr tV,∂

∂ak tV,

pr tV,∂

∂gk tV,–=

ptV
pqV

EV ek tV,
2 2ek tV, pr tV,∂

∂ek tV, pr tV, pr qV,–()
r
∑⎝ ⎠
⎜ ⎟
⎛ ⎞

pr tV,∂

∂ek tV, pr tV, pr qV,–()
r
∑⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

+ +
⎩ ⎭
⎨ ⎬
⎧ ⎫

k
∑

qV

∑≈ .

ek tV, ek tV,∂ pr tV,∂⁄ k 1 2 … SM, , ,=

tV 1 2 … QV, , ,= r 1 2 … R, , ,=

pr tV,∂

∂ek tV, pr tV, pr qV,–()
r
∑⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

pr tV,∂

∂ek tV, pr tV, pr qV,–()
⎝ ⎠
⎜ ⎟
⎛ ⎞

2

r
∑ +=

pr tV,∂

∂ek tV, pr tV, pr qV,–()
⎝ ⎠
⎜ ⎟
⎛ ⎞

pr' tV,∂

∂ek tV, pr' tV, pr' qV,–()
⎝ ⎠
⎜ ⎟
⎛ ⎞

r'
r' r≠

∑
r
∑ .

45

From Eq. (75), the validation performance measure could then be approximated by:

(76)

It should be noted that the differences of the two inputs; i.e. for all

, are constant. In addition, by the assumption of equal distribution around

zero of the training error terms, the last term in Eq. (76) is then approximately zero. Thus,

Eq. (76) reduces to

. (77)

Again, since the differences of the two inputs are constant, the validation performance mea-

sure is proportional to:

, (78)

where the summation index can be replaced by .

From Eq. (78), we can see that the first term is getting smaller, while the network is

being trained. Therefore, the increase in the performance measure may be estimated by

the increase of the second term, which is the sum squared derivative errors in the training

EV

EV ek tV,
2

k
∑

qV

∑ pr tV,∂

∂ek tV, pr tV, pr qV,–()
r
∑⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

k
∑

qV

∑+≈

ek tV,
2

k
∑

qV

∑ pr tV,∂

∂ek tV, pr tV, pr qV,–()
⎝ ⎠
⎜ ⎟
⎛ ⎞

2

r
∑ +

k
∑

qV

∑+=

pr tV,∂

∂ek tV, pr tV, pr qV,–()
⎝ ⎠
⎜ ⎟
⎛ ⎞

pr' tV,∂

∂ek tV, pr' tV, pr' qV,–()
⎝ ⎠
⎜ ⎟
⎛ ⎞

r'
r' r≠

∑
r
∑

k
∑

qV

∑ .

pr tV, pr qV,–

r 1 2 … R, , ,=

EV ek tV,
2

k
∑

qV

∑ pr tV,∂

∂ek tV, pr tV, pr qV,–()
⎝ ⎠
⎜ ⎟
⎛ ⎞

2

r
∑

k
∑

qV

∑+≈

EV

EV ek tV,
2

k
∑

tV

∑ pr tV,∂

∂ek tV,

⎝ ⎠
⎜ ⎟
⎛ ⎞

2

r
∑

k
∑

tV

∑+∝

qV 1 2 … QV, , ,= tV 1 2 … QV, , ,=

EV

46

set. This seems to make sense as large derivative errors in training data will result in large

function errors in the validation data. Therefore, if we define a new validation performance

measure whose value depends only on the derivative error of the training set, its increase

should imply overfitting and we would then want to terminate the training process. The new

validation measure is written as

, (79)

where is the number of examples available - the number of data in the training and val-

idation sets. Since the new validation measure uses the derivative information of all data,

we can use all the function information for training. This means that we use all the data in

the training process, while overfitting is prevented by using the new validation measure

. An advantage of having more training examples is we have better generalization, see

[GaWh92] and [AtPa97]. The following summarizes the method.

Steps for early stopping using the derivative information of the training set

1. Change the validation performance measure for early stopping so that it follows

Eq. (79).

2. Use all of the available data for the training process, which can be performed by

any standard training algorithm, e.g. or , etc. In other words, there is no data

division into training and validation set.

3. The training process is terminated when the new validation measure, i.e. Eq. (79),

consecutively increases for a certain number of iterations.

EV
˜

pr q,∂
∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

2

r 1=

R

∑
k 1=

SM

∑
q 1=

Q

∑=

Q

EṼ

BFGS LM

47

We choose the Levenberg-Marquardt training algorithm () to work with the

modified validation performance measure. We denote the method . The method

requires the calculation of the derivative of the network with respect to the network inputs

(for all), and the calculation is shown in Chapter 4. In the next

section, we will provide the simulation results obtained from on the simple an-

alytic problems (introduced in Chapter 7). Recall again that the procedure to perform the

simulation is provided in Chapter 7.

Simulation results

In this section, the simulation results for on the simple analytic prob-

lems are presented in Table 4, Table 5 and Table 6. For ease of reference, we also put the

results obtained from in the tables. The results in Table 4, Table 5 and Table 6

can be compared with Table 1, Table 2 and Table 3 for , and with Table 9, Table

10 and Table 11 in Chapter 7 for other training algorithms.

Training
Algorithm

Problem 1

Training Test Training Test
2.48E-06 8.90E-04 6.42E-03 1.74E-02
2.24E-05 3.67E-04 4.78E-03 8.43E-03

Table 4 Approximation accuracy on problem 1

LM

LM ES2–

aq∂ pq
T∂⁄ q 1 2 … Q, , ,=

LM ES2–

LM ES2–

LM ES–

LM ES1–

RMSEF
md RMSED

md

LM ES–
LM ES2–

48

From the results, we can see that seems to provide better results than the

standard algorithm for both function and the derivatives for problem 1 and prob-

lem 2. However, it is not the case for problem 3, where the derivative error obtained from

 was larger than .

We will analyze the algorithm in the following section. This is to understand why

 does not consistently yield better results over , even though the train-

ing set for is relatively larger than for .

Algorithm analysis

Recall that, for , the overfitting is prevented by terminating the training

process once the derivative error of all training data increases. An advantage of this method

is the number of examples in the training process increases from including examples in the

Training
Algorithm

Problem 2

Training Test Training Test
1.14E-05 1.16E-02 1.09E+00 1.94E+00
1.76E-05 6.44E-03 2.40E-01 8.23E-01

Table 5 Approximation accuracy on problem 2

Training
Algorithm

Problem 3

Training Test Training Test
6.72E-06 2.09E-04 5.67E-03 1.12E-02
1.16E-05 1.82E-04 7.66E-03 1.41E-02

Table 6 Approximation accuracy on problem 3

RMSEF
md RMSED

md

LM ES–
LM ES2–

RMSEF
md RMSED

md

LM ES–
LM ES2–

LM ES2–

LM ES–

LM ES2– LM ES–

LM ES2– LM ES–

LM ES2– LM ES–

LM ES2–

49

validation set into the training set. The increase in the training examples would lead to a

better generalization (see [GaWh92] and [AtPa97]).

We analyzed the method by training a network with the algo-

rithm. However, we also monitored the values of (see Eq. (72)) and (see Eq. (79))

along the optimization process. The following figure shows the training records.

Figure 5) A training record showing versus

From Figure 5), we can see that the derivative error of the training set increased

(at around iteration) sooner than the validation performance measure did. This

means that the increase in does not directly imply an increase in . This contradicts

the assumption we made in the previous section, where we assumed the increase in

could be estimated by the increase in . The reason behind this lies in Eq. (78).

In Eq. (78), we can see that the regular validation measure is proportional to two

terms; the first is the square training function errors, and is the second. This means that

LM ES2– LM ES–

EV EṼ

0 100 200
10

−8

10
−2

10
4

Iteration

EV
˜

EV

Jf

EṼ EV

EṼ

125th EV

EṼ EV

EV

EV
˜

EV

EṼ

50

even though the value of increases, if the reduction in the training function error counts

more, the regular validation measure will still be lower. From this fact, we conclude

that the regular validation measure cannot exactly be estimated by the training deriva-

tive error, since one more factor (i.e. the training function error) also counts.

Summary

Recall that our objective is to approximate a function and its first-order derivatives

using neural networks. Two new methods were proposed in this chapter: and

. These methods are similar to the standard training algorithms. However,

changes were made in the early stopping technique.

In the method, the validation performance measure was changed from

the squared function error to a combination of the squared function and derivative errors.

The simulation results showed that the effectiveness of this new validation measure is sim-

ilar to that of the standard early stopping.

In the second method (), the validation performance measure was

changed to the squared derivative error of the training set. In this method, data division into

training and validation sets is no longer needed, unlike in the standard early stopping. The

simulation results showed that the new validation measure sometimes terminates the train-

ing process too soon (i.e. sooner than using the standard early stopping), causing worse ap-

proximation.

EṼ

EV

EV

LM ES1–

LM ES2–

LM ES1–

LM ES2–

51

CHAPTER 4

GRADIENT-BASED COMBINED FUNCTION AND DERIVATIVE

APPROXIMATION

Introduction

Recall that the objective of this research is to use neural networks for approximating

functions and their first-order derivatives. In this chapter, we will propose a new training

algorithm to perform this function. This algorithm is designed to work with any gradient-

based optimization method (e.g. steepest descent, conjugate gradient, , etc.). We call

this algorithm the Combined Function and Derivative Approximation algorithm.

We will start this chapter by introducing the performance index used in the

method and will derive two approaches for gradient calculation. At the end of the chapter,

we will provide some examples to illustrate how fast the new training algorithm is in com-

parison with the standard algorithm.

Gradient-Based Combined Function and Derivative Approximation

In Chapter 2, the conditions under which the neural network can approximate both

a function and its first-order derivatives were discussed. We will introduce the performance

index for the method, assuming these conditions are satisfied. Then, we will focus

on the derivation of the gradient of the performance index, which is required for any gradi-

BFGS

CFDA()

CFDA

CFDA

52

ent-based optimization method. We will develop two approaches for gradient calculation.

The first approach assumes the gradient computation is in batch mode, i.e. data are used at

the same time, and this is performed by arranging information in matrices. This may be nec-

essary in some programming languages in order to speed up the calculation. The second

method, however, offers a trade-off between the computation time and the required mem-

ory.

Performance Index

Assume we want to approximate the function , which maps a subset in to a

subset in , and its first-order derivatives, by an neural network (with the

conditions discussed in Chatper 2). Also suppose for all . The

proposed performance index is written as:

(80)

where the term is added to form the new performance index. is a scalar value con-

trolling how important the term is, relative to the term . If , the new perfor-

mance index reduces to the standard performance index we discussed in Chapter 2. The

function in the performance index is introduced to cope with the situation when

the terms are not available. The function is defined below:

g ℜR

ℜSM
M layer–

gk C1∈ k 1 2 … SM, , ,=

J Jf ρJd+=

1
QSM
----------- ak q, gk q,–{ }2

k 1=

S M

∑
q 1=

Q

∑
ρ

QdSd
MRd

-------------------- ϕk r, q()
ak q,∂
pr q,∂

gk q,∂
pr q,∂

------------–⎝ ⎠
⎛ ⎞

2
,

r 1=

R

∑
k 1=

S M

∑
q 1=

Q

∑+=

ρJd ρ

Jd Jf ρ 0=

ϕk r, q()

gk q,∂ pr q,∂⁄

53

(81)

Minimizing the performance index will force the neural network to simultaneously

approximate both the function and its first-order derivatives. We will present two ap-

proaches for calculating the gradient of the performance index. The first puts all the calcu-

lations in matrices for batch operation, and the second offers a trade-off between the

computation speed and the required memory. The derivations for these two approaches will

be shown in the next section.

Gradient Calculation: Batch Operation

The batch mode operation will be discussed in this section. To minimize the perfor-

mance index using gradient-based optimization methods, we need to compute the deriva-

tive of the performance index with respect to each network parameter. This means that we

need to compute and , where and .

Note that we will show only how to compute and , since the terms

 and can be computed using the standard backpropagation algorithm

[HaDe96].

From Eq. (80), by taking the derivative of with respect to (note that the con-

stant term is temporarily dropped from the term for simplicity), we have:

ϕk r, q()
1 ;

gk q,∂
pr q,∂

------------ is available.

0 ; otherwise. ⎩
⎪
⎨
⎪
⎧

=

g

J∂ wi j,
m∂⁄ J∂ bi

m∂⁄ i 1 2 … S m, , ,= j 1 2 … S m 1–, , ,=

Jd∂ wi j,
m∂⁄ Jd∂ bi

m∂⁄

Jf∂ wi j,
m∂⁄ Jf∂ bi

m∂⁄

Jd wi j,
m

1 QdSd
MRd()⁄ Jd

54

(82)

where

. (83)

Since the term can be computed with standard backpropagation, we will focus

on the computation of the term . Note that

. (84)

From Eq. (84), we can use the chain rule of calculus to compute the term . This

is also a part of the standard backpropapgation [HaDe96], which can be computed as fol-

lows:

(85)

The term can be calculated using Eq. (14). Thus, Eq. (85) becomes

. (86)

wi j,
m∂

∂Jd

wi j,
m∂

∂ ϕk r, q() pr q,∂
∂ak q,

pr q,∂
∂gk q,–

⎝ ⎠
⎜ ⎟
⎛ ⎞

2

r 1=

R

∑
k 1=

SM

∑
q 1=

Q

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

2 pr q,∂
∂ek q,

wi j,
m∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

×

r 1=

R

∑
k 1=

SM

∑
q 1=

Q

∑ .=

pr q,∂
∂ek q, ϕk r, q() pr q,∂

∂ak q,
pr q,∂

∂gk q,–
⎝ ⎠
⎜ ⎟
⎛ ⎞

≡

ek q,∂ pr q,∂⁄

wi j,
m∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

wi j,
m∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr q,∂
∂

wi j,
m∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

ek q,∂ wi j,
m∂⁄

wi j,
m∂

∂ek q,

ni q,
m∂

∂ek q,

wi j,
m∂

∂ni q,
m

× .=

ni q,
m

wi j,
m∂

∂ek q,

ni q,
m∂

∂ek q, aj q,
m 1–×=

55

From Eq. (86), Eq. (84) becomes

(87)

Using Eq. (87), Eq. (82) becomes

(88)

By rearranging the summations, we obtain

(89)

To further compute Eq. (89), define

 and (90)

. (91)

wi j,
m∂

∂
pr q,∂

∂ ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr q,∂
∂

wi j,
m∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

pr q,∂
∂

ni q,
m∂

∂ek q, aj q,
m 1–×

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

pr q,∂
∂

ni q,
m∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

aj q,
m 1–×

ni q,
m∂

∂ek q,
pr q,∂

∂aj q,
m 1–

×+ .=

wi j,
m∂

∂Jd 2 pr q,∂
∂ek q,

pr q,∂
∂

ni q,
m∂

∂ek q,

⎩ ⎭
⎨ ⎬
⎧ ⎫

aj q,
m 1–××

⎝ ⎠
⎜ ⎟
⎛ ⎞

r
∑

k
∑

q
∑

⎩
⎨
⎧

=

pr q,∂
∂ek q,

ni q,
m∂

∂ek q,
pr q,∂

∂aj q,
m 1–

××
⎝ ⎠
⎜ ⎟
⎛ ⎞

r
∑

k
∑

q
∑+

⎭
⎬
⎫

 .

wi j,
m∂

∂Jd 2 aj q,
m 1–

pr q,∂
∂ek q,

pr q,∂
∂

ni q,
m∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

×
⎩ ⎭
⎨ ⎬
⎧ ⎫

r
∑

k
∑⎝ ⎠

⎜ ⎟
⎛ ⎞

q
∑

⎩
⎨
⎧

=

pr q,∂
∂aj q,

m 1–

pr q,∂
∂ek q,

ni q,
m∂

∂ek q,×
⎩ ⎭
⎨ ⎬
⎧ ⎫

k
∑⎝ ⎠

⎜ ⎟
⎛ ⎞

r
∑

q
∑+

⎭
⎬
⎫

 .

vi q,
m

pr q,∂
∂ek q,

pr q,∂
∂

ni q,
m∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

×
⎩ ⎭
⎨ ⎬
⎧ ⎫

 ,
r
∑

k
∑≡

uqi r,

m
pr q,∂

∂ek q,

ni q,
m∂

∂ek q,×
⎝ ⎠
⎜ ⎟
⎛ ⎞

k
∑≡

56

By using Eq. (90) and Eq. (91), Eq. (89) becomes (with the term returned):

. (92)

In matrix form, Eq. (92) can also be written as

(93)

where the vector consists of the terms , for all . The

matrix consists of the terms , for all and .

To write Eq. (92) in batch mode, we first define the matrix :

. (94)

By Eq. (94), Eq. (92) can be rewritten as

(95)

where the matrix is

. (96)

1 QdSd
MRd()⁄

wi j,
m∂

∂Jd 2
QdSd

MRd

-------------------- aj q,
m 1– vi q,

m{ }
q
∑ pr q,∂

∂aj q,
m 1–

uqi r,

m

⎩ ⎭
⎨ ⎬
⎧ ⎫

r
∑

q
∑+

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

Wm∂

∂Jd 2
QdSd

MRd

-------------------- vq
m aq

m 1–()
T

Uq
m

pq
T∂

∂aq
m 1–

⎝ ⎠
⎜ ⎟
⎛ ⎞ T

+
⎩ ⎭
⎨ ⎬
⎧ ⎫

q
∑ ,=

Sm 1× vq
m vi q,

m i 1 2 … Sm, , ,= Sm R×

Uq
m uqi r,

m i 1 2 … Sm, , ,= r 1 2 … R, , ,=

SmQ RQ× Um

Um

U1
m 0 … 0

0 U2
m … 0

… … …

0 0 … UQ
m

≡

Wm∂

∂Jd 2
QdSd

MRd

-------------------- Vm Am 1–()
T +

⎩
⎨
⎧

=

11 Q× I
Sm⊗() Um vecAm 1–∂

vecP()T∂

⎝ ⎠
⎜ ⎟
⎛ ⎞T

1Q 1× I
Sm 1–⊗()××

⎭
⎬
⎫

 ,

Sm Q× Vm

Vm
v1

m v2
m … vQ

m=

57

Note that

, and (97)

, (98)

are the and matrices, respectively. Note further that Eq. (83) can be

written in batch mode as:

. (99)

The matrix is defined as:

, (100)

where is the matrix consisting of the elements , for all

 and .

11 Q× I
Sm⊗() Um× U1

m U2
m … UQ

m=

vecAm 1–∂

vecP()T∂

⎝ ⎠
⎜ ⎟
⎛ ⎞T

1Q 1× I
Sm 1–⊗()×

p1
T∂

∂a1
m 1–

p2
T∂

∂a2
m 1–

…
pQ

T∂

∂aQ
m 1–

T

=

Sm RQ× RQ Sm 1–×

vecE∂

vecP()T∂
----------------------- Φ vecA∂

vecP()T∂
----------------------- vecG∂

vecP()T∂
-----------------------–

⎩ ⎭
⎨ ⎬
⎧ ⎫

•

p1
T∂

∂e1 0 … 0

0
p2

T∂

∂e2 … 0

… … …

0 0 …
pQ

T∂

∂eQ

= =

S MQ RQ× Φ

Φ

Φ1 0 … 0
0 Φ2 … 0

… … …
0 0 … ΦQ

≡

Φq SM R× ϕk r, q()

k 1 2 … SM, , ,= r 1 2 … R, , ,=

58

In addition to , we also need to compute the derivative of the perfor-

mance index with respect to the biases, i.e. . In Eq. (82), the term is

changed to , and using the fact that

, (101)

thus

. (102)

As in Eq. (85), the term can be computed as

(103)

and by Eq. (14), this reduces to

(104)

Thus, Eq. (102) becomes

. (105)

From Eq. (90), Eq. (105) reduces to

(106)

Jd∂ wi j,
m∂⁄

Jd∂ bi
m∂⁄ Jd∂ wi j,

m∂⁄

Jd∂ bi
m∂⁄

bi
m∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr q,∂
∂

bi
m∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

bi
m∂

∂Jd 2
QdSd

MRd

pr q,∂

∂ek q,
pr q,∂
∂

bi
m∂

∂ek q,

⎩ ⎭
⎨ ⎬
⎧ ⎫

×
⎝ ⎠
⎜ ⎟
⎛ ⎞

r 1=

R

∑
k 1=

SM

∑
q 1=

Q

∑=

ek q,∂ bi
m∂⁄

bi
m∂

∂ek q,

ni q,
m∂

∂ek q,

bi
m∂

∂ni q,
m

× ,=

bi
m∂

∂ek q,

ni q,
m∂

∂ek q, .=

bi
m∂

∂Jd 2
QdSd

MRd

pr q,∂

∂ek q,
pr q,∂
∂

ni q,
m∂

∂ek q,

⎩ ⎭
⎨ ⎬
⎧ ⎫

×
⎝ ⎠
⎜ ⎟
⎛ ⎞

r
∑

k
∑

q
∑=

bi
m∂

∂Jd 2
QdSd

MRd

-------------------- vi q,
m

q
∑ .=

59

Therefore, the vector can be written as

. (107)

From Eq. (95) and Eq. (107), we need to calculate the elements of the matrices ,

 and . We will first show how to compute , fol-

lowed by , and finally . We will break these calculations into three sections.

I. Calculation of

An element of this matrix is . From Eq. (14), by using the chain rule of

calculus, we obtain

(108)

Using Eq. (14), Eq. (108) becomes

, (109)

where

(110)

Eq. (109) can be written in matrix form as

, (111)

Sm 1× Jd∂ bm∂⁄

bm∂

∂Jd 2
QdSd

MRd

-------------------- vq
m

q
∑

2
QdSd

MRd

-------------------- Vm 1Q 1××{ }= =

Vm

Um vecAm∂ vecP()T∂⁄ vecAm∂ vecP()T∂⁄

Um Vm

vecAm∂ vecP()T∂⁄

aj q,
m∂ pr q,∂⁄

pr q,∂
∂aj q,

m

nj q,
m∂

∂aj q,
m

pr q,∂
∂nj q,

m

× .=

pr q,∂
∂aj q,

m

f· m nj q,
m() wj l,

m
pr q,∂

∂al q,
m 1–

×
⎝ ⎠
⎜ ⎟
⎛ ⎞

l 1=

S
m 1–

∑=

f·
m

nj q,
m()

nj q,
m∂

∂aj q,
m

 .=

pq
T∂

∂aq
m

F· m nq
m()Wm

pq
T∂

∂aq
m 1–

=

60

where is the matrix defined below:

. (112)

In batch mode, we have

. (113)

Thus, from Eq. (111), the matrix can be computed as

(114)

From Eq. (114), we can see that computing requires the calcu-

lation of . Thus, we need to initialize (i.e.

). From the fact that is the input , thus and we can compute

 as follows:

(115)

F·
m

nq
m() S m Sm×

F·
m

nq
m()

nq
m()

T
∂

∂aq
m

≡

f·
m

n1 q,
m() 0 … 0

0 f·
m

n2 q,
m() … 0

… … …

0 0 … f·
m

n
S m q,

m
⎝ ⎠
⎛ ⎞

=

vecAm∂

vecNm()
T

∂

F·
m

n1
m() 0 … 0

0 F·
m

n2
m() … 0

… … …

0 0 … F·
m

nQ
m()

=

vecAm∂ vecP()T∂⁄

vecAm∂

vecP()T∂
----------------------- vecAm∂

vecNm()
T

∂
--------------------------- IQ Wm⊗() vecAm 1–∂

vecP()T∂
-------------------------- .××=

vecAm∂ vecP()T∂⁄

vecAm 1–∂ vecP()T∂⁄ vecA0∂ vecP()T∂⁄

m 0= aj q,
0 pj q, S0 R=

aj q,
0∂ pr q,∂⁄

pr q,∂
∂aj q,

0
1 ; if j r .=
0 ; if j r . ≠⎩

⎨
⎧

=

61

Thus, the matrix is

(116)

Therefore, in batch mode, the matrix becomes

(117)

This completes the calculation for the matrix . Next, we will

show the calculation for .

II. Calculation of

We begin by expanding the term in the term in Eq. (91). Using the

chain rule of calculus:

, (118)

From Eq. (14), we obtain

(119)

If we substitute this expression into Eq. (91) and rearrange the summation, we find

R R× aq
0∂ pq

T∂⁄

pq
T∂

∂aq
0

pq
T∂

∂pq IR .= =

RQ RQ× vecA0∂ vecP()T∂⁄

vecA0∂

vecP()T∂

IR 0 … 0
0 IR … 0
… … …
0 0 … IR

IRQ .= =

vecAm∂ vecP()T∂⁄

Um

Um

ek q,∂ ni q,
m∂⁄

ni q,
m∂

∂ek q,

nl q,
m 1+∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

ai q,
m∂

∂nl q,
m 1+

⎝ ⎠
⎜ ⎟
⎛ ⎞

ni q,
m∂

∂ai q,
m

⎝ ⎠
⎜ ⎟
⎛ ⎞

l 1=

S m 1+

∑=

ni q,
m∂

∂ek q,

nl q,
m 1+∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

wl i,
m 1+ f· m ni q,

m() .
l
∑=

62

(120)

Using Eq. (91), Eq. (120) becomes

(121)

Eq. (121) can be written in matrix form as

. (122)

From Eq. (94) and Eq. (113), the batch matrix can be expressed as

. (123)

We need to initialize this equation with . From Eq. (91) with , we have

. (124)

Since and ,

. (125)

Therefore, Eq. (124) reduces to

. (126)

uqi r,

m
pr q,∂

∂ek q,

nl q,
m 1+∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

wl i,
m 1+ f· m ni q,

m()
l
∑×

⎩ ⎭
⎨ ⎬
⎧ ⎫

k
∑=

f·
m

ni q,
m() wl i,

m 1+
pr q,∂

∂ek q,

nl q,
m 1+∂

∂ek q,×
⎝ ⎠
⎜ ⎟
⎛ ⎞

k
∑

⎩ ⎭
⎨ ⎬
⎧ ⎫

l
∑ .=

uqi r,

m f· m ni q,
m() wl i,

m 1+ uql r,

m 1+

⎩ ⎭
⎨ ⎬
⎧ ⎫

 .
l
∑=

Uq
m F· m nq

m() Wm 1+()
T
Uq

m 1+=

Um

Um vecAm∂

vecNm()
T

∂
--------------------------- IQ Wm 1+()

T
⊗

⎩ ⎭
⎨ ⎬
⎧ ⎫

Um 1+××=

UM m M=

uqi r,

M
pr q,∂

∂ek q,

ni q,
M∂

∂ek q,×
⎝ ⎠
⎜ ⎟
⎛ ⎞

k
∑=

ek q, ak q, gk q,–= ak q, ak q,
M=

ni q,
M∂

∂ek q,

ni q,
M∂

∂ak q, f· M ni q,
M() ; if i k=

 0 ; if i k≠⎩
⎨
⎧

= =

uqi r,

M
pr q,∂

∂ei q, f·
M

ni q,
M()=

63

From Eq. (126), can be expressed as

(127)

Therefore, by Eq. (94) and Eq. (99), the batch matrix is written as

(128)

Note that if is the linear function, then and the batch matrix

.

This completes the calculation for . Next, we will compute .

III. Calculation of

From Eq. (90), by using the chain rule of calculus for the term which

is presented in Eq. (119), we obtain

(129)

Since the last term in Eq. (129), , does not depend on , it can be brought outside

the summation . Then, Eq. (129) becomes

Uq
M

Uq
M F·

M
nq

M()
pq

T∂

∂eq .=

UM

UM vecA∂

vecNM()
T

∂
--------------------------- vecE∂

vecP()T∂
----------------------- .×=

f M F·
M

nq
M() I

S M ,=

vecA∂ vecNM()
T

∂⁄ I
S MQ

=

Um Vm

Vm

ek q,∂ ni q,
m∂⁄

vi q,
m

pr q,∂
∂ek q,

pr q,∂
∂

nl q,
m 1+∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

wl i,
m 1+ f· m ni q,

m()
l 1=

Sm 1+

∑
⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

 .×
k
∑

r
∑=

f·
m

ni q,
m() l

l
∑

64

(130)

By rearranging the terms in Eq. (130), this results in

(131)

From Eq. (90) and Eq. (91), Eq. (131) reduces to

. (132)

To write Eq. (132) for batch mode, first consider the term . The

term depends only on the term , i.e. does not depend on

 when for . Thus, can be considered the ele-

ment of the vector function:

vi q,
m

pr q,∂
∂ek q,

pr q,∂
∂ f·

m
ni q,

m()
nl q,

m 1+∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

wl i,
m 1+

l
∑

⎩ ⎭
⎨ ⎬
⎧ ⎫

×
⎝ ⎠
⎜ ⎟
⎛ ⎞

k
∑

r
∑=

pr q,∂
∂ek q, f·

m
ni q,

m()∂
pr q,∂

nl q,

m 1+∂

∂ek q, wl i,
m 1+×

⎩ ⎭
⎨ ⎬
⎧ ⎫

l
∑×

⎝ ⎠
⎜ ⎟
⎛ ⎞

k
∑

r
∑ +=

pr q,∂
∂ek q, f·

m
ni q,

m()
pr q,∂
∂

nl q,
m 1+∂

∂ek q, wl i,
m 1+×

⎝ ⎠
⎜ ⎟
⎛ ⎞

l
∑

⎩ ⎭
⎨ ⎬
⎧ ⎫

×
⎝ ⎠
⎜ ⎟
⎛ ⎞

 .
k
∑

r
∑

vi q,
m f·

m
ni q,

m()∂
pr q,∂

---------------------- wl i,
m 1+

pr q,∂
∂ek q,

nl q,
m 1+∂

∂ek q,×
⎝ ⎠
⎜ ⎟
⎛ ⎞

k
∑

⎩ ⎭
⎨ ⎬
⎧ ⎫

l
∑⎝ ⎠

⎜ ⎟
⎛ ⎞

r
∑ +=

f·
m

ni q,
m() wl i,

m 1+
pr q,∂

∂ek q,

pr q,∂
∂

nl q,
m 1+∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

×
⎩ ⎭
⎨ ⎬
⎧ ⎫

k
∑

r
∑⎝ ⎠

⎜ ⎟
⎛ ⎞

l
∑⎝ ⎠
⎜ ⎟
⎛ ⎞

 .

vi q,
m f·

m
ni q,

m()∂
pr q,∂

---------------------- wl i,
m 1+ uql r,

m 1+

⎩ ⎭
⎨ ⎬
⎧ ⎫

l
∑⎝ ⎠

⎜ ⎟
⎛ ⎞

r
∑ f·

m
ni q,

m() wl i,
m 1+ vl q,

m 1+{ }
l
∑+=

f·
m

ni q,
m()∂ pr q,∂⁄

f·
m

ni q,
m() f m ni q,

m() f·
m

ni q,
m()

f m nj q,
m() i j≠ i j, 1 2 … Sm, , ,= f·

m
ni q,

m() ith

Sm 1×

65

, (133)

which are the diagonal elements of the matrix . In other words,

. (134)

From Eq. (133), further define the batch matrix:

. (135)

It can be obtained from the matrix by

(136)

The batch derivative of the matrix with respect to the input is:

dfm nq
m()

f·
m

n1 q,
m()

f·
m

n2 q,
m()

…

f·
m

n
S m q,

m
⎝ ⎠
⎛ ⎞

≡

F·
m

nq
m()

dfm nq
m() F·

m
nq

m() 1
Sm 1×

×=

Sm Q×

DFm Nm() dfm n1
m() dfm n2

m() … dfm nQ
m()≡

vecAm∂ vecNm()
T

∂⁄

11 Q× I
Sm⊗() vecAm∂

vecNm()
T

∂
---------------------------× IQ 1

Sm 1×
⊗()×

F·
m

n1
m() F·

m
n2

m() … F·
m

nQ
m() IQ 1

Sm 1×
⊗()×=

DFm Nm() .=

DFm Nm()

66

, (137)

We can now represent Eq. (132) in vector form:

. (138)

Using Eq. (135) and Eq. (137), this can be put in batch matrix form:

(139)

 is needed to initialize Eq. (139). From Eq. (90), we have

. (140)

From Eq. (125), this reduces to

. (141)

Therefore, can be written as

vecDFm Nm()∂

vecP()T∂

dfm n1
m()∂

p1
T∂

------------------------ 0 … 0

0
dfm n2

m()∂

p2
T∂

------------------------ … 0

… … …

0 0 …
dfm nQ

m()∂

pQ
T∂

=

vq
m dfm nq

m()∂

pq
T∂

------------------------ Wm 1+()
T
Uq

m 1+

⎩ ⎭
⎨ ⎬
⎧ ⎫

•
⎝ ⎠
⎜ ⎟
⎛ ⎞

1R 1× F·
m

nq
m() Wm 1+()

T
vq

m 1++=

Vm 11 Q× I
Sm⊗() vecDFm Nm()∂

vecP()T∂
------------------------------------ IQ Wm 1+()

T
⊗

⎩ ⎭
⎨ ⎬
⎧ ⎫

Um 1+

⎝ ⎠
⎜ ⎟
⎛ ⎞

•
⎩ ⎭
⎨ ⎬
⎧ ⎫

× ×=

IQ 1R 1×⊗() DFm Nm() Wm 1+()
T
Vm 1+{ }• .+

VM

vi q,
M

pr q,∂
∂ek q,

pr q,∂
∂

ni q,
M∂

∂ek q,

⎩ ⎭
⎨ ⎬
⎧ ⎫

×
⎝ ⎠
⎜ ⎟
⎛ ⎞

r
∑

k
∑=

vi q,
M

pr q,∂
∂ei q,

pr q,∂
∂f·i q,

M

×
⎝ ⎠
⎜ ⎟
⎛ ⎞

r
∑=

vq
M

67

(142)

Using Eq. (99) and Eq. (137), the batch matrix can be then expressed as

. (143)

It now remains to compute . Consider one element of

this matrix, i.e. . Using the chain rule of calculus:

(144)

It may seem unusual that we are using as the itermediate variable here. In fact, it is

often true that can be written as a function of . For example, if is the hy-

perbolic tangent sigmoid function, i.e.

(145)

then the derivative of with respect to , i.e. , is

. (146)

With Eq. (144), the matrix can be expressed as

vq
M dfM nq

M()∂

pq
T∂

pq

T∂

∂eq•
⎝ ⎠
⎜ ⎟
⎛ ⎞

1R 1× .=

VM

VM 11 Q× I
SM⊗() vecDFM NM()∂

vecP()T∂
------------------------------------- vecE∂

vecP()T∂
-----------------------•

⎝ ⎠
⎜ ⎟
⎛ ⎞

IQ 1R 1×⊗()××=

vecDFM NM()∂ vecP()T∂⁄

f·
m

ni q,
m()∂ pr q,∂⁄

f·
m

ni q,
m()∂

pr q,∂

f·
m

ni q,
m()∂

ai q,
m∂

pr q,∂

∂ai q,
m

× .=

ai q,
m

f·
m

ni q,
m() ai q,

m f m

f m n() en e n––
en e n–+
------------------- ,=

f m n f·
m

n()

f·
m

n() n∂
∂f m

1 en e n––
en e n–+

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2

– 1 f m n()()
2

– 1 am()
2

–= = = =

Sm R× dfm nq
m()∂ pq

T∂⁄

68

(147)

where, the matrix is

. (148)

From Eq. (147), the batch matrix can be decomposed to

(149)

At the output layer (i.e.), Eq. (144), Eq. (147) and Eq. (149) also apply, with

 and , and .

This completes the derivation of the batch form of gradient of the performance in-

dex with respect to the network parameters and . In some programming lan-

guages (e.g. MATLAB) batch algorithms are more efficient than computing element by

element. However, performing the calculation in batch mode requires sufficient memory to

dfm nq
m()∂

pq
T∂

dfm nq

m()∂

aq
m()

T
∂

pq

T
∂

∂aq
m

× ,=

S m S m× dfm nq
m()∂ aq

m()
T

∂⁄

dfm nq
m()∂

aq
m()

T
∂

f·
m

n1 q,
m()∂

a1 q,
m∂

----------------------- 0 … 0

0 f·
m

n2 q,
m()∂

a2 q,
m∂

----------------------- … 0

… … …

0 0 …
f·

m
n

S m q,

m
⎝ ⎠
⎛ ⎞∂

a
S m q,

m∂

=

vecDFm Nm()∂ vecP()T∂⁄

vecDFm Nm()∂

vecP()T∂
------------------------------------ vecDFm Nm()∂

vecAm()
T

∂
------------------------------------ vecAm∂

vecP()T∂
-----------------------× ,=

m M=

m M= ai q,
M ai q,= aq

M aq= AM A=

Jd wi j,
m bi

m

69

hold all of the matrix elements at once. Therefore, the larger the matrices, the more memory

is needed. The next section will derive an algorithm that is designed to save memory.

Before going to the derivation of the memory-save method, let’s summarize the al-

gorithm in this section.

70

STEPS TO COMPUTE AND (BATCH MODE)

1. Given , compute , and , by using Eq. (114)

and Eq. (117).

2. Given , compute the derivative of the errors

, using Eq. (99).

3. Compute and , using Eq. (128) and Eq. (143), respectively.

4. Backpropagate and , by Eq. (123) and Eq. (139), respectively.

5. Compute and by Eq. (95) and Eq. (107), respec-

tively. Then, compute and .

6. Update the weights and biases using any gradient-based optimization

technique.

J∂ Wm∂⁄ J∂ bm∂⁄

P Am vecAm∂ vecP()T∂⁄

vecG∂ vecP()T∂⁄

vecE∂ vecP()T∂⁄

UM VM

Um Vm

Jd∂ Wm∂⁄ Jd∂ bm∂⁄

J∂ Wm∂⁄ J∂ bm∂⁄

71

Gradient Calculation: Memory-Save Method

In this section, another approach to compute the gradient of with respect to the

network parameters will be discussed. As previously mentioned, this approach will be use-

ful when the machine’s memory is insufficient for the batch mode operation. Mainly, the

method will break down some matrices into smaller matrices. We will first briefly discuss

the concept of how to break down matrices. This will be followed by the derivation of the

gradient.

From Eq. (80), we can see that, when comparing with the typical performance index

, the new term has the additional summation . This extra summation, when

manipulated for batch mode, leads to larger matrices than those matrices in the regular

backpropagation. The idea is then to form smaller matrices whose sizes do not depend on

the extra summation .

First, from Eq. (90) and Eq. (91), redefine

, and (150)

. (151)

Thus, and are the elements at row and column of and , respectively.

From Eq. (90) and Eq. (150), this implies that

Jd

Jf Jd

r 1=

R

∑

r
∑

ṽri q,

m

pr q,∂
∂ek q,

pr q,∂
∂

ni q,
m∂

∂ek q,

⎩ ⎭
⎨ ⎬
⎧ ⎫

×
⎝ ⎠
⎜ ⎟
⎛ ⎞

k
∑≡

ũri q,

m
pr q,∂

∂ek q,

ni q,
m∂

∂ek q,×
⎝ ⎠
⎜ ⎟
⎛ ⎞

k
∑≡

ṽri q,

m ũri q,

m i q Ṽr
m

Ũr
m

72

(152)

For the term , rather than expressing it as an element of ,

we express it as the element at row of . It is also the element at row (note:

) and column of the matrix (see Eq. (27) for the

notation). Note that

. (153)

By Eq. (153), the following matrices immediately follow:

, (154)

, and (155)

, (156)

where

. (157)

The matrix is defined:

vi q,
m ṽri q,

m .
r 1=

R

∑=

aj q,
m 1–∂ pr q,∂⁄ aq

m 1–∂ pq
T∂⁄

j aq
m 1–∂ pr q,∂⁄ l

l q 1–()Sm 1– j+= q vecAm 1–∂ pT
r∂⁄

11 Q× I
Sm 1–⊗() vecAm 1–∂

pT
r∂

--------------------------×
pr 1,∂

∂a1
m 1–

pr 2,∂
∂a2

m 1–

… pr Q,∂
∂aQ

m 1–
=

11 Q× I
S M⊗() vecA∂

pT
r∂

----------------×
pr 1,∂

∂a1
pr 2,∂

∂a2 … pr Q,∂
∂aQ=

11 Q× I
S M⊗() vecG∂

pT
r∂

----------------×
pr 1,∂

∂g1
pr 2,∂

∂g2 … pr Q,∂
∂gQ=

11 Q× I
S M⊗() vecE∂

pT
r∂

----------------×
pr 1,∂

∂e1
pr 1,∂

∂e2 … pr 1,∂
∂eQ=

vecE∂
pT

r∂
---------------- Φ̃r

vecA∂
pT

r∂
---------------- vecG∂

pT
r∂

----------------–⎝ ⎠
⎛ ⎞•=

Φ̃r

73

, (158)

where is the column vector of the matrix , see Eq. (100).

By Eq. (150) and Eq. (151), we can rewrite Eq. (92) as

, (159)

which can be further expressed as:

(160)

It should be noted that the transpose of the matrix in Eq. (153) produces the matrices in Eq.

(160), i.e.

. (161)

The sizes of the matrices in Eq. (160) are less than or equal to the matrix sizes in Eq. (95),

which was for batch mode.

For calculating the term , we can directly use Eq. (107) since can be

easily obtained by using Eq. (152):

. (162)

Φ̃r

φr 1() 0 … 0
0 φr 2() … 0
… … …
0 0 … φr Q()

≡

φr q() rth Φq

wi j,
m∂

∂Jd 2
QdSd

MRd

-------------------- aj q,
m 1– ṽri q,

m()
q
∑ pr q,∂

∂aj q,
m 1–

ũri q,

m

⎝ ⎠
⎜ ⎟
⎛ ⎞

q
∑+

⎩ ⎭
⎨ ⎬
⎧ ⎫

r
∑⎝ ⎠
⎜ ⎟
⎛ ⎞

=

Wm∂

∂Jd 2
QdSd

MRd

-------------------- Ṽr
m

Am 1–()
T

Ũr
m vecAm 1–∂

pT
r∂

⎝ ⎠
⎜ ⎟
⎛ ⎞ T

1Q 1× I
Sm 1–⊗()×+

⎩ ⎭
⎨ ⎬
⎧ ⎫

 .
r 1=

R

∑=

11 Q× I
Sm 1–⊗() vecAm 1–∂

pT
r∂

--------------------------×
⎝ ⎠
⎜ ⎟
⎛ ⎞ T

vecAm 1–∂
pT

r∂

⎝ ⎠
⎜ ⎟
⎛ ⎞ T

1Q 1× I
Sm 1–⊗()×=

Jd∂ bm∂⁄ Vm

Vm Ṽr
m

r 1=

R

∑=

74

Alternatively, from Eq. (107) and Eq. (162), can also be directly expressed in the

form of as follows:

. (163)

From Eq. (160) and Eq. (163), we need to compute , and .

We will start with , followed by and .

I. Calculation of

From Eq. (109), by using Eq. (112), we can express as

. (164)

Therefore, by Eq. (113) and Eq. (153), becomes

. (165)

Since this is a forward propagation process, we need to initialize at . Recall

that . From Eq. (115), we then have the vector

Jd∂ bm∂⁄

Ṽr
m

bm∂

∂Jd 2
QdSd

MRd

-------------------- Ṽr
m

1Q 1××()
r
∑=

Ṽr
m

Ũr
m

vecAm∂ pr
T∂⁄

vecAm∂ pr
T∂⁄ Ũr

m
Ṽr

m

vecAm∂ pr
T∂⁄

aq
m∂ pr q,∂⁄

pr q,∂
∂aq

m

F·
m

nq
m()Wm

pr q,∂
∂aq

m 1–

=

vecAm∂ pr
T∂⁄

vecAm∂
pT

r∂
------------------- vecAm∂

vecNm()
T

∂
--------------------------- IQ Wm⊗() vecAm 1–∂

pT
r∂

--------------------------××=

m 0=

S0 R=

75

, (166)

where one appears at row . Thus, the matrix

, for any . (167)

Next, we will derive .

II. Calculation of

From Eq. (151), using Eq. (119), we have

(168)

and by Eq. (151), it reduces to

(169)

Eq. (169) can be expressed in the form of , using Eq. (136), as

. (170)

Since this is a backpropagation process, we need to initialize . From Eq. (125),

Eq. (151) reduces to

pr q,∂
∂aq

0

pr q,∂
∂pq

0
…
0
1
0
…
0

= =

r

vecA0∂
pT

r∂
------------------ IQ pr q,∂

∂pq⊗= q

Ũr
m

Ũr
m

ũri q,

m f·
m

ni q,
m() wl i,

m 1+
pr q,∂

∂ek q,

nl q,
m 1+∂

∂ek q,×
⎝ ⎠
⎜ ⎟
⎛ ⎞

k
∑

⎩ ⎭
⎨ ⎬
⎧ ⎫

 ,
l
∑=

ũri q,

m f·
m

ni q,
m() wl i,

m 1+ ũrl q,

m 1+

⎩ ⎭
⎨ ⎬
⎧ ⎫

 .
l
∑=

Ũr
m

Ũr
m

DFm Nm() Wm 1+()
T
Ũr

m 1+
{ }•=

Ũr
M

76

(171)

From Eq. (171), can be written, using Eq. (156), as

(172)

Next, we will illustrate how to calculate .

III. Calculation of

From Eq. (150), by similarly following Eq. (129) to Eq. (132), we obtain

(173)

Eq. (173) can be expressed in the form of as

, (174)

where is the column vector of . Then, by Eq. (136), can be expressed

as

(175)

Next, we need to initialize at . From Eq. (141), the term can be com-

puted as follows:

ũri q,

M

pr q,∂
∂ei q, f·

M
ni q,

M() .=

Ũr
M

Ũr
M

DFM NM() 11 Q× I
S M⊗() vecE∂

pT
r∂

----------------×
⎩ ⎭
⎨ ⎬
⎧ ⎫

 .•=

Ṽr
m

Ṽr
m

ṽri q,
m f·

m
ni q,

m()∂
pr q,∂

---------------------- wl i,
m 1+ ũrl q,

m 1+

⎩ ⎭
⎨ ⎬
⎧ ⎫

l
∑ f·

m
ni q,

m() wl i,
m 1+ ṽrl q,

m 1+

⎩ ⎭
⎨ ⎬
⎧ ⎫

 .
l
∑+=

ṽrq

m

ṽrq

m dfm nq
m()∂

pr q,∂
------------------------ Wm 1+()

T
ũrq

m 1+

⎩ ⎭
⎨ ⎬
⎧ ⎫

• F·
m

nq
m() Wm 1+()

T
ṽrq

m 1++=

ũrq

m 1+ qth Ũr
m 1+

Ṽr
m

Ṽr
m

11 Q× I
Sm⊗() vecDFm Nm()∂

pT
r∂

------------------------------------×
⎩ ⎭
⎨ ⎬
⎧ ⎫

Wm 1+()
T
Ũr

m 1+
{ }•=

DFm Nm() Wm 1+()
T
Ṽr

m 1+
{ }•+ .

m M= ṽri q,

M

77

(176)

Thus, can be expressed as

. (177)

It now remains to calculate . Consider one element of this

matrix, which is . From Eq. (144) and Eq. (147), we obtain

(178)

Then, by Eq. (137) and Eq. (149), can be decomposed to

(179)

We have derived an algorithm to compute the gradient of the new performance in-

dex with respect to the network parameters and such that the calculation pro-

cess requires less machine memory than the batch mode operation. This algorithm is

summarized below.

ṽri q,

M f·
M

ni q,
M()∂

pr q,∂

pr q,∂
∂ei q, .×=

Ṽr
M

Ṽr
M

11 Q× I
SM⊗() vecDFM NM()∂

pT
r∂

------------------------------------- vecE∂
pT

r∂
----------------•

⎝ ⎠
⎜ ⎟
⎛ ⎞

×=

vecDFM NM()∂ pT
r∂⁄

f·
m

ni q,
m()∂ pr q,∂⁄

dfm nq
m()∂

pr q,∂

dfm nq
m()∂

aq
m()

T
∂

pr q,∂

∂aq
m

 .×=

vecDFM NM()∂ pT
r∂⁄

vecDFm Nm()∂
pT

r∂
------------------------------------ vecDFm Nm()∂

vecAm()
T

∂
------------------------------------ vecAm∂

pT
r∂

------------------- .×=

Jd Wm bm

78

STEPS TO COMPUTE AND (MEMORY SAVED)

1. Given inputs in , obtain . Initialize .

2. Obtain by Eq. (165) and Eq. (167).

3. With , compute using Eq. (157).

4. Calculate and , using Eq. (172) and Eq. (177), respectively.

5. Backpropagate to obtain and , using Eq. (170) and Eq. (175),

respectively.

6. Compute and by Eq. (160) and Eq. (163), respec-

tively.

7. Set , and repeat step until .

8. Compute and . Update the weights and biases using

any gradient-based optimization technique.

J∂ Wm∂⁄ J∂ bm∂⁄

Q P Am r 1=

vecAm∂ pr
T∂⁄

vecG∂ pr
T∂⁄ vecE∂ pr

T∂⁄

Ũr
M

Ṽr
M

Ũr
m

Ṽr
m

Jd∂ Wm∂⁄ Jd∂ bm∂⁄

r r 1+= 2 7– r R>

J∂ Wm∂⁄ J∂ bm∂⁄

79

In this section, we have shown two approaches for computing the terms

and . The first approach is performed in batch mode, thus requiring sufficient ma-

chine memory to simultaneously hold all numeric elements. This approach takes advantag-

es of faster computation for some programming languages, e.g. MATLAB. The second

approach, however, breaks down the matrices in the batch mode operation so that their sizes

are smaller. This approach is useful when the machine’s memory is insufficient to perform

in batch mode, thereby compromising between the computation speed and the required

memory.

Speed Test

In this section, we create a network structure, i.e. an network (will be

varied), to test the speed of the algorithm. We will compare the computation time

between the two approaches we previously derived, i.e. batch mode and memory-save ap-

proach.

The following figure shows the relative one-iteration execution times (averaged

over 10 runs) for the batch and memory-save methods for computing the gradient of ,

when compared to the time to compute the gradient of . Note that we assume the number

of training points is fixed at . These tests were run on a computer with pro-

cessor speed of 2.0GHz, and the memory size of 512MB.

Jd∂ Wm∂⁄

Jd∂ bm∂⁄

R 25– 1– R

CFDA

Jd

Jf

Q 75 000,=

80

Figure 6) Relative execution time (compared to) for computing

We expected that time for computing the gradient of would be more than that of

. However, from Figure 6), we can see that, initially, the gradient calculation for took

less time than that for . This is because of the overhead in MATLAB codes. Once the

input dimension increased, the time for computing the gradient of was now more than

that for . The interesting part, however, occurred when the input dimension was more

than seven. For these cases, the memory requirement caused the existing PC’s RAM to

overflow, which required data to be sent to disk. Thus, the time for computing the gradient

in batch mode was more than that for the memory-save approach. These results show that

the memory-save approach is useful when the data storage requirements exhaust existing

RAM.

Summary

In this chapter, a new training algorithm for approximating a function and its first-

order derivatives, called gradient-based , was proposed. We proposed the new per-

2 4 6 8 10 12
10

−1

10
0

10
1

10
2

10
3

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e
fo

r

Batch

Memory−Save

J d
∂

x∂⁄

R

Jf∂ x∂⁄ Jd∂ x∂⁄

Jd

Jf Jd

Jf

Jd

Jf

CFDA

81

formance index, which includes not only the squared function errors but also the squared

derivative errors. Two approaches for gradient calculation to minimize the performance in-

dex were presented. The first method arranges every numeric element into matrices for

batch mode operation, in order to expedite the gradient calculation time in some program-

ming languages. This approach, however, requires sufficient memory to simultaneously

hold all elements. The other approach, called the memory-save method, compromises be-

tween the computation time and the required memory. The computation time under differ-

ent conditions were measured. The results showed that the computation time for the

squared derivative error term defined in the method was longer than the standard

backpropagation. This is expected as the gradient computation in the method is

more complicated than that in the standard backpropagation algorithm. The results also il-

lustrated that the memory-save approach is useful in cases where computer RAM is insuf-

ficient to perform the gradient calculation in batch mode.

CFDA

CFDA

82

CHAPTER 5

COMBINED FUNCTION AND DERIVATIVE APPROXIMATION WITH

LEVENBERG-MARQUARDT

Introduction

In this chapter, we present a Levenberg-Marquardt algorithm for minimizing the

 performance index. Recall from Chapter 2 that optimization with the Levenberg-

Marquardt algorithm requires the calculation of the Jacobian matrix. This will be the core

work in this chapter.

We will begin this chapter with a discussion of the Levenberg-Marquardt frame-

work for . We will then present two approaches for computing the Jacobian matrix.

The first approach performs the calculation in batch mode. The second approach (i.e. the

memory save method) compromises between the execution time and the required memory.

The measured execution time under different conditions will be illustrated at the end of the

chapter.

CFDA with Levenberg-Marquardt

Consider a performance index in the form:

, (180)

where

CFDA

CFDA

F x()

F x() ρ1F1 x() ρ2F2 x()+=

83

 and . (181)

The element of the gradient is

. (182)

The gradient can be written in matrix form:

, (183)

and, from Eq. (38) in Chapter 2, this becomes

, (184)

where the Jacobian matrices are

 and . (185)

Next, we want to find the Hessian matrix. The element of the Hessian matrix would be

. (186)

From Eq. (39) in Chapter 2, this turns out to be

(187)

F1 x() zi
2 x()

i 1=

N1

∑ zT x() z x()×= = F2 x() z̃i
2 x()

i 1=

N2

∑ z̃T x() z̃ x()×= =

jth

F x()∇[]j
F x()∂

xj∂
-------------- ρ1

F1 x()∂
xj∂

----------------- ρ2
F2 x()∂

xj∂
-----------------+= =

F x()∇ ρ1 F1 x()∇ ρ2 F2 x()∇+=

F x()∇ 2 ρ1JT x()z x() ρ2J̃
T

x()z̃ x()+{ }=

J x() z x()∂

xT∂
-------------= J̃ x() z̃ x()∂

xT∂
-------------=

k j,

F x()∇2[]k j,
F x()2∂
xk∂ xj∂

----------------- ρ1
F1 x()2∂
xk∂ xj∂

------------------- ρ2
F2 x()2∂
xk∂ xj∂

-------------------+= =

F x()∇2[]k j, 2ρ1
zi x()∂

xk∂

zi x()∂
xj∂

-------------- zi x()
zi x()2∂
xk∂ xj∂

-----------------+
⎩ ⎭
⎨ ⎬
⎧ ⎫

i 1=

N1

∑ +=

2ρ2
z̃i x()∂

xk∂

z̃i x()∂
xj∂

-------------- zi x()
z̃i x()

2
∂

xk∂ xj∂
-----------------+

⎩ ⎭
⎨ ⎬
⎧ ⎫

 .
i 1=

N1

∑

84

Using Eq. (40), the Hessian can then be expressed in matrix form

 (188)

where

 and (189)

If we assume is small. In this scenario, if we assume that both and are

small, relative to the terms and , then the Hessian matrix can be ap-

proximated as

(190)

Therefore, by Eq. (184) and Eq. (190), the Levenberg-Marquardt update is

(191)

Note that is adjusted using the typical Levenberg-Marquardt algorithm, which was pre-

sented in Chapter 2.

Now, recall from Eq. (80) that the performance index in the method con-

sists of two terms (i.e. and). This is in the same form as the performance index in

Eq. (180), if we assign

F x()∇2 2ρ1 JT x()J x() S x()+
⎩ ⎭
⎨ ⎬
⎧ ⎫

2ρ2 J̃
T

x()J̃ x() S̃ x()+{ } ,+=

S x() zi x() zi x()∇2

i 1=

N1

∑= S̃ x() z̃i x() z̃i x() .∇2

i 1=

N2

∑=

S x() S x() S̃ x()

JT x()J x() J̃T x()J̃ x()

F x()∇2 2ρ1JT x()J x() 2ρ2J̃T x()J̃ x()+≅

2 ρ1JT x()J x() ρ2J̃T x()J̃ x()+{ } .=

x∆ k 1+ xk 1+ xk–=

ρ1JT xk()J xk() ρ2J̃
T

xk()J̃ xk() µkIn+ +[]
1–

ρ1JT xk()z xk() ρ2J̃
T

xk()z̃ xk()+[].×–=

µk

CFDA

Jf Jd

85

 , (192)

 (193)

where and .

Since the algorithm for computing and is already known (see [HaMe94]

and [HaDe96]), we will focus on the calculation of and . The calculations for

these terms are given in the following two sections. The next section will show the batch

calculation and the following ssection will show the memory-save calculation.

Batch calculation

In this section, we will compute the vector and the Jacobian matrix . Re-

call from Eq. (193) that we have

. (194)

We can rewrite Eq. (194) as

(195)

Define the following matrix

F1 x() ak q, gk q,–{ }2

k 1=

S M

∑
q 1=

Q

∑≡

F2 x() ϕk r, q()
ak q,∂
pr q,∂

gk q,∂
pr q,∂

------------–⎝ ⎠
⎛ ⎞

2
,

r 1=

R

∑
k 1=

S M

∑
q 1=

Q

∑≡

ρ1 1 QSM()⁄≡ ρ2 ρ QdSd
MRd()⁄≡

J x() z x()

z̃ x() J̃ x()

z̃ x() J̃ x()

F2 x() ϕk r, q()
ak q,∂
pr q,∂

gk q,∂
pr q,∂

------------–⎝ ⎠
⎛ ⎞

2

r 1=

R

∑
k 1=

S M

∑
q 1=

Q

∑=

F2 x() pr q,∂
∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

2

r 1=

R

∑
k 1=

S M

∑
q 1=

Q

∑ vec
pq

T∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞ T

vec
pq

T∂

∂eq .×

q 1=

Q

∑= =

86

, (196)

where the matrix is defined in Eq. (99). Then, Eq. (195) can be ex-

pressed as

, (197)

where

. (198)

Now, by equating Eq. (197) to Eq. (181), we can see that

. (199)

For the calculation for the Jacobian matrix , we need to have the vector con-

taining all of the network parameters. There are several ways to define . However, the

definition we use is

, (200)

where the value of is shown in Eq. (31). The vector is defined as

DEP 11 Q× I
SM⊗() vecE∂

vecP()T∂
-----------------------×

p1
T∂

∂e1

p2
T∂

∂e2 …
pQ

T∂

∂eQ=≡

vecE∂ vecP()T∂⁄

Jd vecDEP()T vecDEP×=

vecDEP

vec
p1

T∂

∂e1

vec
p2

T∂

∂e2

…

vec
pQ

T∂

∂eQ

=

z̃ x() vecDEP=

J̃ x() x

x

xT
x1()

T
x2()

T
… xM()

T≡

n xm

87

. (201)

Therefore, from Eq. (185), the Jacobian matrix can be written as

. (202)

Using Eq. (200) and Eq. (201), can be written

, (203)

where

. (204)

Therefore, by Eq. (202) through Eq. (204), can be written

xm vecWm

bm
≡

J̃ x()

J̃ x()
vecDEP∂

xT∂

xT∂

∂ vec
p1

T∂

∂e1

⎝ ⎠
⎜ ⎟
⎛ ⎞

xT∂

∂ vec
p2

T∂

∂e2

⎝ ⎠
⎜ ⎟
⎛ ⎞

…

xT∂

∂ vec
pQ

T∂

∂eQ

⎝ ⎠
⎜ ⎟
⎛ ⎞

= =

vecDEP xT∂⁄∂

J̃ x()
vecDEP∂

xT∂

vecDEP∂

x1()
T

∂

vecDEP∂

x2()
T

∂
----------------------- …

vecDEP∂

xM()
T

∂
-----------------------= =

vecDEP∂

xm()
T

∂

vecDEP∂

vecWm()
T

∂

vecDEP∂

bm()
T

∂
-----------------------=

vecDEP xT∂⁄∂

88

, (205)

where

. (206)

To obtain , we need to compute . However, it is fairly com-

plicated to derive the entire at once. Therefore, will

be considered first. Then, the batch matrix will be expressed.

Each element in the matrix is , where is at ele-

ment of . We will first consider the case when is an element in the weight matrix

 and then the case when is an element of the bias vector .

Consider when . From Eq. (87) in Chapter 4 and using the fact that

J̃ x()
vecDEP∂

xT∂

x1()
T

∂

∂ vec
p1

T∂

∂e1

⎝ ⎠
⎜ ⎟
⎛ ⎞

x2()
T

∂

∂ vec
p1

T∂

∂e1

⎝ ⎠
⎜ ⎟
⎛ ⎞

…
xM()

T
∂

∂ vec
p1

T∂

∂e1

⎝ ⎠
⎜ ⎟
⎛ ⎞

x1()
T

∂

∂ vec
p2

T∂

∂e2

⎝ ⎠
⎜ ⎟
⎛ ⎞

x2()
T

∂

∂ vec
p1

T∂

∂e1

⎝ ⎠
⎜ ⎟
⎛ ⎞

…
xM()

T
∂

∂ vec
p1

T∂

∂e1

⎝ ⎠
⎜ ⎟
⎛ ⎞

… … …

x1()
T

∂

∂ vec
pQ

T∂

∂eQ

⎝ ⎠
⎜ ⎟
⎛ ⎞

x2()
T

∂

∂ vec
p1

T∂

∂e1

⎝ ⎠
⎜ ⎟
⎛ ⎞

…
xM()

T
∂

∂ vec
p1

T∂

∂e1

⎝ ⎠
⎜ ⎟
⎛ ⎞

= =

xm()
T

∂

∂ vec
pq

T∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

vecWm()
T

∂

∂ vec
pq

T∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

bm()
T

∂

∂ vec
pq

T∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞=

J̃ x() vecDEP xm()
T

∂⁄∂

vecDEP xm()
T

∂⁄∂
xm()

T
∂

∂ vec
pq

T∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

vecDEP xm()
T

∂⁄∂

xm()
T

∂

∂ vec
pq

T∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

xl
m∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

xl
m

l xm x

Wm xl
m bm

xl
m wi j,

m=

89

, (207)

we have

(208)

Next, consider when is an element of , i.e. . From Eq. (101), Eq.

(104) and Eq. (207), we have

. (209)

Eq. (208) and Eq. (209) can be written in matrix form:

(210)

and

. (211)

In batch mode for Eq. (210), the batch matrix and can be ex-

pressed as

pr q,∂
∂

ni q,
m∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

ni q,
m∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

wi j,
m∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

ni q,
m∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

aj q,
m 1–×

ni q,
m∂

∂ek q,
pr q,∂

∂aj q,
m 1–

 .×+=

xl
m bm xl

m bi
m=

bi
m∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

ni q,
m∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

vecWm()
T

∂

∂ vec
pq

T∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

1
1 Sm 1–× nq

m()
T

∂

∂ vec
pq

T∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

⊗

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

aq
m 1–()

T
1

SMR Sm×
⊗

⎩ ⎭
⎨ ⎬
⎧ ⎫

•=

1
R Sm 1–× nq

m()
T

∂

∂eq⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

pq
T∂

∂aq
m 1–

⎝ ⎠
⎜ ⎟
⎛ ⎞ T

1
SM Sm×

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

 ,•+

bm()
T

∂

∂ vec
pq

T∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

nq
m()

T
∂

∂ vec
pq

T∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

vecDEP vecWm()
T

∂⁄∂

90

(212)

The batch matrix for Eq. (211) can be written as

. (213)

To clarify the expressions in Eq. (212) and Eq. (213), first note, from Eq. (196), that

, (214)

and

vecDEP∂

vecWm()
T

∂
----------------------------- 1

1 Sm 1–×

vecDEP∂

vecNm()
T

∂
--------------------------- 1Q 1× I

Sm⊗()×
⎝ ⎠
⎜ ⎟
⎛ ⎞

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

⎝
⎜
⎛

=

Am 1–()
T

1
SMR Sm×

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

•
⎠
⎟
⎞

+

1
R Sm 1–×

vecE∂

vecNm()
T

∂
--------------------------- 1Q 1× I

Sm⊗()×⎝ ⎠
⎛ ⎞⊗

⎩ ⎭
⎨ ⎬
⎧ ⎫

⎝
⎜
⎛

11 Q× I
Sm 1–⊗() vecAm 1–∂

vecP()T∂
--------------------------×

⎝ ⎠
⎜ ⎟
⎛ ⎞ T

1
SM Sm×

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

⎠
⎟
⎞

 .•

vecDEP∂

bm()
T

∂

vecDEP∂

vecNm()
T

∂
--------------------------- 1Q 1× I

Sm⊗()×=

vecDEP∂

vecNm()
T

∂

n1
m()

T
∂

∂ vec
p1

T∂

∂e1

⎝ ⎠
⎜ ⎟
⎛ ⎞

0 … 0

0
n2

m()
T

∂

∂ vec
p2

T∂

∂e2

⎝ ⎠
⎜ ⎟
⎛ ⎞

… 0

… … …

0 0 …
nQ

m()
T

∂

∂ vec
pQ

T∂

∂eQ

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

91

. (215)

In addition, we have

, and (216)

. (217)

We can also write

vecDEP∂

vecNm()
T

∂
--------------------------- 1Q 1× I

Sm⊗()×

n1
m()

T
∂

∂ vec
p1

T∂

∂e1

⎝ ⎠
⎜ ⎟
⎛ ⎞

n2
m()

T
∂

∂ vec
p2

T∂

∂e2

⎝ ⎠
⎜ ⎟
⎛ ⎞

…

nQ
m()

T
∂

∂ vec
pQ

T∂

∂eQ

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

vecE∂

vecNm()
T

∂

n1
m()

T
∂

∂e1 0 … 0

0
n2

m()
T

∂

∂e2 … 0

… … …

0 0 …
nQ

m()
T

∂

∂eQ

=

vecE∂

vecNm()
T

∂
--------------------------- 1Q 1× I

Sm⊗()×

n1
m()

T
∂

∂e1

n2
m()

T
∂

∂e2

…

nQ
m()

T
∂

∂eQ

=

92

, (218)

and the result is shown in Eq. (98).

From Eq. (212) and Eq. (213), we will need to calculate , and

. (We previously provided the equations for the other terms.) We

will first show the derivation for computing the matrix , followed by

. Note that the computation for the term is in Chapter 2, Eq.

(18), and for the calculation for the term is in Chapter 4, Eq. (114).

I. Calculation of

Consider an element of , which is . This element is

known as the Marquardt sensitivity, [HaDe96]. This term was computed in Eq. (118) and

Eq. (119) in Chapter 4. Hence, can be expressed as

, (219)

where is defined in Eq. (112).

Thus, from Eq. (216) and Eq. (219), the batch matrix can be

expressed as

(220)

11 Q× I
Sm 1–⊗() vecAm 1–∂

vecP()T∂
--------------------------×

⎝ ⎠
⎜ ⎟
⎛ ⎞ T

vecAm 1–∂

vecP()T∂

⎝ ⎠
⎜ ⎟
⎛ ⎞T

1Q 1× I
Sm 1–⊗()×=

vecE∂ vecNm()
T

∂⁄

vecDEP∂ vecNm()
T

∂⁄

vecE∂ vecNm()
T

∂⁄

vecDEP∂ vecNm()
T

∂⁄ Am

vecAm∂ vecP()T∂⁄

vecE∂ vecNm()
T

∂⁄

vecE∂ vecNm()
T

∂⁄ ek q,∂ ni q,
m∂⁄

eq∂ nq
m()

T
∂⁄

nq
m()

T
∂

∂eq

nq
m 1+()

T
∂

∂eq Wm 1+ F· m nq
m()=

F· m nq
m()

vecE∂ vecNm()
T

∂⁄

vecE∂

vecNm()
T

∂
--------------------------- vecE∂

vecNm 1+()
T

∂
---------------------------------- IQ Wm 1+⊗{ } vecAm∂

vecNm()
T

∂
--------------------------- ,××=

93

where the term is computed as shown in Eq. (113).

Since Eq. (220) is a backpropagation process, we need to initialize it at the output

layer, i.e. . From Eq. (125), we can write

(221)

We can also write Eq. (221) in the batch mode:

(222)

This completes the computation of . Next, the calculation of

 will be derived.

II. Calculation of

Recall that an element of is . From Eq. (207)

along with Eq. (119), we have

. (223)

By taking the derivative inside the parenthesis and using Eq. (207), this turns out to be

. (224)

Therefore, using Eq. (133) and Eq. (134), Eq. (224) can be written in matrix form:

vecAm∂ vecNm()
T

∂⁄

m M=

nq
M()

T
∂

∂eq aq∂

nq
M()

T
∂
----------------- F·

M
nq

M() .= =

vecE∂

vecNM()
T

∂
--------------------------- vecA∂

vecNM()
T

∂
--------------------------- .=

vecE∂ vecNm()
T

∂⁄

vecDEP∂ vecNm()
T

∂⁄

vecDEP∂ vecNm()
T

∂⁄

vecDEP∂ vecNm()
T

∂⁄
ni q,

m∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

ni q,
m∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr q,∂
∂ f· m ni q,

m() wl i,
m 1+

nl q,
m 1+∂

∂ek q,

⎩ ⎭
⎨ ⎬
⎧ ⎫

l
∑⎝ ⎠

⎜ ⎟
⎛ ⎞

=

ni q,
m∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞ f·

m
ni q,

m()∂
pr q,∂

---------------------- wl i,
m 1+

nl q,
m 1+∂

∂ek q,

⎩ ⎭
⎨ ⎬
⎧ ⎫

l
∑ f·

m
ni q,

m() wl i,
m 1+

nl q,
m 1+∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

⎩ ⎭
⎨ ⎬
⎧ ⎫

l
∑+=

94

(225)

where can be computed using Eq. (147) and Eq. (148). From Eq. (214) and

Eq. (225), the batch matrix can be expressed as

(226)

where is defined in Eq. (135) and can be computed

using Eq. (149). To clarify Eq. (226), note that

nq
m()

T
∂

∂ vec
pq

T∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞ dfm nq

m()∂

pq
T∂

⎝ ⎠
⎜ ⎟
⎛ ⎞ T

1
SM 1×

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

1R 1×
nq

m 1+()
T

∂

∂eq Wm 1+

⎝ ⎠
⎜ ⎟
⎛ ⎞

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

•=

dfm nq
m()()

T
1

SMR 1×
⊗

⎩ ⎭
⎨ ⎬
⎧ ⎫

nq
m 1+()

T
∂

∂ vec
pq

T∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

Wm 1+

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

 ,•+

dfm nq
m()∂ pq

T∂⁄

vecDEP∂ vecNm()
T

∂⁄

vecDEP∂

vecNm()
T

∂
--------------------------- vecDFm Nm()∂

vecP()T∂

⎝ ⎠
⎜ ⎟
⎛ ⎞ T

1
SM 1×

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

IQ 1R 1×⊗ I
SM⊗() vecE∂

vecNm 1+()
T

∂
---------------------------------- IQ Wm 1+⊗()×⎝ ⎠
⎛ ⎞×

⎩ ⎭
⎨ ⎬
⎧ ⎫

• +

11 Q× DFm Nm()()
T

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

IQ 1
1 Sm×

⊗{ }•
⎝ ⎠
⎜ ⎟
⎛ ⎞

1
SMR 1×

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

vecDEP∂

vecNm 1+()
T

∂
---------------------------------- IQ Wm 1+⊗()×

⎩ ⎭
⎨ ⎬
⎧ ⎫

 ,•

DFm Nm() vecDFm Nm()∂ vecP()T∂⁄

95

, (227)

. (228)

The product of the two matrices in Eq. (227) and Eq. (228) results in the following matrix:

. (229)

In addition, note further, in Eq. (226), that

, (230)

and

vecE∂

vecNm 1+()
T

∂
---------------------------------- IQ Wm 1+⊗()×

n1
m 1+()

T
∂

∂e1 Wm 1+× 0 … 0

0
n2

m 1+()
T

∂

∂e2 Wm 1+× … 0

… … …

0 0 …
nQ

m 1+()
T

∂

∂eQ Wm 1+×

=

IQ 1R 1×⊗ I
SM⊗

1R 1× I
SM⊗ 0 … 0

0 1R 1× I
SM⊗ … 0

… … …
0 0 … 1R 1× I

SM⊗

=

IQ 1R 1×⊗ I
SM⊗() vecE∂

vecNm 1+()
T

∂
---------------------------------- IQ Wm 1+⊗()×⎝ ⎠
⎛ ⎞×

1R 1×
n1

m 1+()
T

∂

∂e1 Wm 1+×
⎝ ⎠
⎜ ⎟
⎛ ⎞

⊗ … 0

… …

0 … 1R 1×
nQ

m 1+()
T

∂

∂eQ Wm 1+×
⎝ ⎠
⎜ ⎟
⎛ ⎞

⊗

=

11 Q× DFm Nm()()
T

⊗ DFm Nm()()
T

DFm Nm()()
T
… DFm Nm()()

T=

96

. (231)

Thus, the Hadamard product of the two expressions in Eq. (230) and Eq. (231) results in

(232)

Since Eq. (226) is a backpropagation process, the computation at the output layer

where needs to be evaluated. From Eq. (223), we have

. (233)

Using Eq. (125), it becomes

(234)

Eq. (234) can be expressed in matrix form:

IQ 1
1 Sm×

⊗

1
1 Sm×

0 … 0

0 1
1 Sm×

… 0

… … …
0 0 … 1

1 Sm×

=

11 Q× DFm Nm()()
T

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

IQ 1
1 Sm×

⊗{ }•

dfm n1
m()()

T
0 … 0

0 dfm n2
m()()

T
… 0

… … …

0 0 … dfm nQ
m()()

T

 .=

m M=

ni q,
M∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr q,∂
∂

ni q,
M∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr q,∂
∂

ni q,
M∂

∂ak q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

= =

ni q,
M∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

f·
M

ni q,
M()∂

pr q,∂
---------------------- ; if i k.=

 0 ; if i k.≠⎩
⎪
⎨
⎪
⎧

=

97

, (235)

where, by Eq. (112), the matrix is

. (236)

From Eq. (144), we then have

. (237)

Therefore, Eq. (235) can be written as

. (238)

From Eq. (214) and Eq. (238), the batch matrix can be written as

nq
M()

T
∂

∂ vec
pq

T∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

F·
M

nq
M()∂

p1 q,∂

F·
M

nq
M()∂

p2 q,∂

…

F·
M

nq
M()∂

pR q,∂

=

F·
M

nq
M()∂ pr q,∂⁄

F·
M

nq
M()∂

pr q,∂

f·
M

n1 q,
M()∂

pr q,∂
----------------------- 0 … 0

0
f·

M
n2 q,

M()∂
pr q,∂

----------------------- … 0

… … …

0 0 …
f·

M
n

SM q,

M
⎝ ⎠
⎛ ⎞∂

pr q,∂

=

F·
M

nq
M()∂

pr q,∂

dfM nq
M()∂

aq
T∂

pr q,∂

∂aq 1
1 SM×

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

•=

nq
M()

T
∂

∂ vec
pq

T∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

1R 1×
dfM nq

M()∂

aq
T∂

-------------------------⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

vec
pq

T∂

∂aq 1
1 SM×

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

•=

vecDEP∂ vecNM()
T

∂⁄

98

(239)

To clarify Eq. (239), note that the first expression is

. (240)

In addition,

(241)

Thus, the second expression in Eq. (239) yields

vecDEP∂

vecNM()
T

∂
--------------------------- IQ 1R 1×⊗ I

SM⊗() vecDFM NM()∂

vecA()T∂
-------------------------------------×

⎩ ⎭
⎨ ⎬
⎧ ⎫

•=

11 Q× vec 11 Q× I
SM⊗() vecA∂

vecP()T∂
-----------------------×⎝ ⎠

⎛ ⎞⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

⎝
⎜
⎛

⎩
⎨
⎧

IQ 1
SMR 1×

⊗{ }) 1
1 SM×

⊗ }• .

IQ 1R 1×⊗ I
SM⊗() vecDFM NM()∂

vecA()T∂
-------------------------------------×

1R 1×
dfM n1

M()∂

a1
T∂

-------------------------⊗ … 0

… …

0 … 1R 1×
dfM nQ

M()∂

aQ
T∂

-------------------------⊗

=

vec 11 Q× I
SM⊗() vecA∂

vecP()T∂
-----------------------×⎝ ⎠

⎛ ⎞ vec
p1

T∂

∂a1

p2
T∂

∂a2 …
pQ

T∂

∂aQ

vec
p1

T∂

∂a1

vec
p2

T∂

∂a2

…

vec
pQ

T∂

∂aQ

= =

99

(242)

This completes the calculation of and ,

which are needed for and , i.e. Eq. (212) and

Eq. (213). Then, by Eq. (204), we obtain . By concatenating the matrix

 for all as in Eq. (203), we finally have the Jacobian

matrix . Along with Eq. (199) for , the Levenberg-Marquardt update for the

 method can be performed, using Eq. (191).

Before going to the next section, in which we will present the computation for the

Jacobian matrix in the memory save approach, the summary of the batch algorithm is

shown as follows.

11 Q× vec 11 Q× I
SM⊗() vecA∂

vecP()T∂
-----------------------×⎝ ⎠

⎛ ⎞⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

IQ 1
SMR 1×

⊗{ }•

vec
p1

T∂

∂a1 0 … 0

0 vec
p2

T∂

∂a2 … 0

… … …

0 0 … vec
pQ

T∂

∂aQ

 .=

vecE∂ vecNm()
T

∂⁄ vecDEP∂ vecNm()
T

∂⁄

vecDEP∂ vecWm()
T

∂⁄ vecDEP∂ bm()
T

∂⁄

vecDEP∂ xm()
T

∂⁄

vecDEP∂ xm()
T

∂⁄ m 1 2 … M, , ,=

J̃ x() z̃ x()

CFDA

100

Summary of Batch Calculation

STEPS FOR CFDA WITH LEVENBERG-MARQUARDT

(BATCH MODE)

1. Given inputs in , compute and by Eq.

(114) and Eq. (117).

2. Given the derivative information in , compute

by Eq. (196) and obtain using Eq. (199).

3. Compute and using Eq.

(222) and Eq. (239), respectively.

4. Backpropagate for and

by Eq. (220) and Eq. (226), respectively.

5. Compute and , using Eq.

(212) and Eq. (213), respectively. Then obtain by Eq. (204).

6. Obtain the Jacobian matrix , using Eq. (203).

7. Update the network parameters by Eq. (191).

Q P Am vecAm∂ vecP()T∂⁄

vecG∂ vecP()T∂⁄ DEP

z̃ x()

vecE∂ vecNM()
T

∂⁄ vecDEP∂ vecNM()
T

∂⁄

vecE∂ vecNm()
T

∂⁄ vecDEP∂ vecNm()
T

∂⁄

vecDEP∂ vecWm()
T

∂⁄ vecDEP∂ bm()
T

∂⁄

vecDEP∂ xm()
T

∂⁄

J̃ x()

101

Memory-save Calculation

In this section, we will present a procedure for computing the Jacobian matrix that

uses less memory than the batch algorithm presented in the previous section.

From Eq. (180), write the performance index in the form:

, (243)

where is a column vector. The gradient and the Hessian of the performance index

, i.e. and , can then be computed as

(244)

and

. (245)

From Eq. (244), by following Eq. (182) to Eq. (190), the term and

can be computed as

 and , (246)

where

(247)

F2 x()

F2 x() F2r
x()

r 1=

R

∑ z̃r
T x() z̃r x()×

r 1=

R

∑= =

z̃r x()

F2 x() F2∇ x() F2 x()∇2

F2∇ x() F2r
x()∇

r 1=

R

∑=

F2 x()∇2 F2r
x()∇2

r 1=

R

∑=

J̃
T

x()z̃ x() J̃
T

x()J̃ x()

J̃T x()z̃ x() J̃r
T x() z̃r x()×

r 1=

R

∑= J̃T x()J̃ x() J̃r
T x() J̃r x()×

r 1=

R

∑=

J̃r x()
z̃r x()∂

xT∂
--------------- .=

102

Therefore, Eq. (191) is the Levenberg-Marquardt update for this memory-save approach;

with the term and replaced by Eq. (246).

To compute and , first consider Eq. (243). By equating it with Eq.

(193), we obtain

(248)

which can be also written as

(249)

Define the matrix in Eq. (156):

. (250)

By Eq. (249) and Eq. (250), in Eq. (193) can be written as

. (251)

Equating Eq. (251) with Eq. (243), this implies

. (252)

To compute the Jacobian matrix , consider Eq. (247), which implies

J̃T x()z̃ x() J̃T x()J̃ x()

z̃r x() J̃r x()

F2r
x() ϕk r, q()

ak q,∂
pr q,∂

gk q,∂
pr q,∂

------------–⎝ ⎠
⎛ ⎞

2
,

k 1=

S M

∑
q 1=

Q

∑=

F2r
x() pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

T

pr q,∂
∂eq .×

q 1=

Q

∑=

SM Q×

DE pr
11 Q× I

SM⊗() vecE∂
pT

r∂
----------------×

pr 1,∂
∂e1

pr 2,∂
∂e2 … pr Q,∂

∂eQ=≡

F2 x()

F2 x() vecDE pr
()T vecDE pr

×

r 1=

R

∑=

z̃r x() vecDE pr
=

J̃r
T

x()

103

. (253)

By Eq. (200), can also be written

, (254)

where, by Eq. (201),

. (255)

From Eq. (200) and Eq. (253), the matrix can also be written as

, (256)

where

J̃r x()
vecDE pr
∂

xT∂

xT∂

∂
pr 1,∂

∂e1

⎝ ⎠
⎜ ⎟
⎛ ⎞

xT∂

∂
pr 2,∂

∂e2

⎝ ⎠
⎜ ⎟
⎛ ⎞

…

xT∂

∂
pr Q,∂

∂eQ

⎝ ⎠
⎜ ⎟
⎛ ⎞

= =

vecDE pr
∂ xT∂⁄

J̃r x()
vecDE pr
∂

xT∂

vecDE pr
∂

x1()
T

∂

vecDE pr
∂

x2()
T

∂
------------------------- …

vecDE pr
∂

xM()
T

∂
-------------------------= =

vecDE pr
∂

xm()
T

∂

vecDE pr
∂

vecWm()
T

∂

vecDE pr
∂

bm()
T

∂
-------------------------=

vecDE pr
∂ xT∂⁄

J̃r x()
vecDE pr
∂

xT∂

x1()
T

∂

∂
pr 1,∂

∂e1

⎝ ⎠
⎜ ⎟
⎛ ⎞

x2()
T

∂

∂
pr 1,∂

∂e1

⎝ ⎠
⎜ ⎟
⎛ ⎞

…
xM()

T
∂

∂
pr 1,∂

∂e1

⎝ ⎠
⎜ ⎟
⎛ ⎞

x1()
T

∂

∂
pr 2,∂

∂e2

⎝ ⎠
⎜ ⎟
⎛ ⎞

x2()
T

∂

∂
pr 2,∂

∂e2

⎝ ⎠
⎜ ⎟
⎛ ⎞

…
xM()

T
∂

∂
pr 2,∂

∂e2

⎝ ⎠
⎜ ⎟
⎛ ⎞

… … …

x1()
T

∂

∂
pr Q,∂

∂eQ

⎝ ⎠
⎜ ⎟
⎛ ⎞

x2()
T

∂

∂
pr Q,∂

∂eQ

⎝ ⎠
⎜ ⎟
⎛ ⎞

…
xM()

T
∂

∂
pr Q,∂

∂eQ

⎝ ⎠
⎜ ⎟
⎛ ⎞

= =

104

. (257)

To obtain , we need and . How-

ever, it will be easier if we first consider and .

Consider one element in , which is . Therefore,

from Eq. (208), can be expressed as:

(258)

The elements of are . By using Eq. (209), can

be written as

. (259)

From Eq. (258), the batch matrix can be expressed as

xm()
T

∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

vecWm()
T

∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

bm()
T

∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞=

J̃r x() vecDE pr
∂ vecWm()

T
∂⁄ vecDE pr

∂ bm()
T

∂⁄

vecWm()
T

∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

bm()
T

∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

vecWm()
T

∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

wi j,
m∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

vecWm()
T

∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

vecWm()
T

∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

1
1 Sm 1–× nq

m()
T

∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

⊗

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

aq
m 1–()

T
1

SM Sm×
⊗

⎩ ⎭
⎨ ⎬
⎧ ⎫

•=

1
1 Sm 1–× nq

m()
T

∂

∂eq⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

pr q,∂
∂aq

m 1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

T

1
SM Sm×

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

 .•+

bm()
T

∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

bi
m∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

bm()
T

∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

bm()
T

∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

nq
m()

T
∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

vecDE pr
∂ vecWm()

T
∂⁄

105

(260)

From Eq. (259), the batch matrix can be written as

. (261)

To clarify Eq. (260) and Eq. (261), note that

, (262)

and, hence

vecDE pr
∂

vecWm()
T

∂
----------------------------- 1

1 Sm 1–×

vecDE pr
∂

vecNm()
T

∂
--------------------------- 1Q 1× I

Sm⊗()×
⎝ ⎠
⎜ ⎟
⎛ ⎞

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

⎝
⎜
⎛

=

Am 1–()
T

1
SM Sm×

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

•
⎠
⎟
⎞

+

1
1 Sm 1–×

vecE∂

vecNm()
T

∂
--------------------------- 1Q 1× I

Sm⊗()×⎝ ⎠
⎛ ⎞⊗

⎩ ⎭
⎨ ⎬
⎧ ⎫

⎝
⎜
⎛

11 Q× I
Sm 1–⊗() vecAm 1–∂

pT
r∂

--------------------------×
⎝ ⎠
⎜ ⎟
⎛ ⎞ T

1
SM Sm×

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

⎠
⎟
⎞

 .•

vecDE pr
∂ bm()

T
∂⁄

vecDE pr
∂

bm()
T

∂

vecDE pr
∂

vecNm()
T

∂
--------------------------- 1Q 1× I

Sm⊗()×=

vecDE pr
∂

vecNm()
T

∂

n1
m()

T
∂

∂
pr 1,∂

∂e1

⎝ ⎠
⎜ ⎟
⎛ ⎞

0 … 0

0
n2

m()
T

∂

∂
pr 2,∂

∂e2

⎝ ⎠
⎜ ⎟
⎛ ⎞

… 0

… … …

0 0 …
nQ

m()
T

∂

∂
pr Q,∂

∂eQ

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

106

 . (263)

Note further that the product of and in Eq. (260) is al-

ready shown in Eq. (153).

Now, from Eq. (260) and Eq. (261), is the only term we

have not yet computed. We will show its computation next.

Calculation of

Consider one element of , which is . From Eq.

(224), we find

(264)

where is defined in Eq. (133) and can be computed by Eq.

vecDE pr
∂

vecNm()
T

∂
--------------------------- 1Q 1× I

Sm⊗()×

n1
m()

T
∂

∂
pr 1,∂

∂e1

⎝ ⎠
⎜ ⎟
⎛ ⎞

n2
m()

T
∂

∂
pr 2,∂

∂e2

⎝ ⎠
⎜ ⎟
⎛ ⎞

…

nQ
m()

T
∂

∂
pr Q,∂

∂eQ

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

11 Q× I
Sm 1–⊗() vecAm 1–∂ pT

r∂⁄

vecDE pr
∂ vecNm()

T
∂⁄

vecDE pr
∂ vecNm()

T
∂⁄

vecDE pr
∂ vecNm()

T
∂⁄

ni q,
m∂

∂
pr q,∂

∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

nq
m()

T
∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞ dfm nq

m()∂
pr q,∂

⎝ ⎠
⎜ ⎟
⎛ ⎞

T

1
SM 1×

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

nq
m 1+()

T
∂

∂eq Wm 1+×
⎩ ⎭
⎨ ⎬
⎧ ⎫

• +=

dfm nq
m()()

T
1

SM 1×
⊗

⎩ ⎭
⎨ ⎬
⎧ ⎫

nq
m 1+()

T
∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

Wm 1+×

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

 ,•

dfm nq
m() dfm nq

m()∂ pr q,∂⁄

107

(178) in Chapter 4. Note that Eq. (264) can be also expressed as:

(265)

However, we will use Eq. (264) as part of our computation for two reasons. First, the nota-

tions in Eq. (264) is in a similar form as Eq. (225). Second, we have already developed a

notation for the term , i.e. , thus it is more convenient

to use Eq. (264).

From Eq. (262) and Eq. (264), can be computed by:

(266)

where the term can be computed by Eq. (179). The second term in

Eq. (266) can be clarified as follow:

, and (267)

nq
m()

T
∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

nq
m 1+()

T
∂

∂eq Wm 1+ F·
m

nq
m()∂

pr q,∂
----------------------×× +=

nq
m 1+()

T
∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

Wm 1+× F·
m

nq
m()× .

f·
m

ni q,
m()∂ pr q,∂⁄ vecDFm Nm()∂ pT

r∂⁄

vecDE pr
∂ vecNm()

T
∂⁄

vecDE pr
∂

vecNm()
T

∂
--------------------------- vecDFm Nm()∂

pT
r∂

⎝ ⎠
⎜ ⎟
⎛ ⎞ T

1
SM 1×

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫ vecE∂

vecNm 1+()
T

∂
---------------------------------- IQ Wm 1+⊗()×

⎩ ⎭
⎨ ⎬
⎧ ⎫

•=

11 Q× DFm Nm()()
T

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

IQ 1
1 Sm×

⊗{ }•
⎝ ⎠
⎜ ⎟
⎛ ⎞

1
SM 1×

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

+

vecDE pr
∂

vecNm 1+()
T

∂
---------------------------------- IQ Wm 1+⊗()×

⎩ ⎭
⎨ ⎬
⎧ ⎫

• ,

vecDFm Nm()∂ pT
r∂⁄

11 Q× DFm Nm()()
T

⊗ DFm Nm()()
T

DFm Nm()()
T
… DFm Nm()()

T=

108

. (268)

Therefore, the Hadamard product of the two matrices results in

(269)

Since Eq. (266) is a backpropagation process, we need to initialize it at the output

layer, i.e. . From Eq. (234), the matrix

, (270)

where can be computed by Eq. (237). Thus, from Eq. (237) and Eq. (262),

 can be decomposed to:

(271)

IQ 1
1 Sm×

⊗

1
1 Sm×

0 … 0

0 1
1 Sm×

… 0

… …
0 0 … 1

1 Sm×

=

11 Q× DFm Nm()()
T

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

IQ 1
1 Sm×

⊗{ }•

dfm n1
m()()

T
0 … 0

0 dfm n2
m()()

T
… 0

… … …

0 0 … dfm nQ
m()()

T

 .=

m M=

nq
M()

T
∂

∂
pr q,∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr q,∂
∂

nq
M()

T
∂

∂eq

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr q,∂
∂

nq
M()

T
∂

∂aq

⎝ ⎠
⎜ ⎟
⎛ ⎞ F·

M
nq

M()∂
pr q,∂

-----------------------= = =

F·
M

nq
M()∂ pr q,∂⁄

vecDE pr
∂ vecNM()

T
∂⁄

vecDE pr
∂

vecNM()
T

∂
--------------------------- vecDFM NM()∂

vecA()T∂
------------------------------------- vecA∂

pT
r∂

---------------- 1
1 SM×

⊗
⎩ ⎭
⎨ ⎬
⎧ ⎫

 .•=

109

This completes the derivation for calculating the Jacobian matrix and the vec-

tor for the performance index with the memory save approach. In the next

section, we will compare the execution time for computing the gradient and the approxi-

mated Hessian between the standard backpropagation and the method. We summa-

rize the method with Levenberg-Marquardt using the memory save approach

below.

J̃ x()

z̃ x() CFDA

CFDA

CFDA

110

Summary of memory-save calculation

STEPS FOR CFDA WITH LEVENBERG-MARQUARDT

(MEMORY SAVE)

1. Given inputs , obtain . Initialize .

2. Obtain by Eq. (165) and Eq. (167).

3. With , compute by Eq. (157) and Eq. (250). Obtain

 by Eq. (252).

4. Compute and , using Eq.

(222) and Eq. (271), respectively.

5. Backpropagate and by

Eq. (220) and Eq. (266), respectively.

6. Compute and , using Eq.

(260) and Eq. (261), respectively. Then, obtain by Eq. (255).

7. Obtain by Eq. (254). Set , and repeat step until

.

8. Obtain and by Eq. (246).

9. Update the network parameters by Eq. (191).

Q P Am r 1=

vecAm∂ pT
r∂⁄

vecG∂ pT
r∂⁄ DE pr

z̃r x()

vecE∂ vecNM()
T

∂⁄ vecDE pr
∂ vecNM()

T
∂⁄

vecE∂ vecNm()
T

∂⁄ vecDE pr
∂ vecNm()

T
∂⁄

vecDE pr
∂ vecWm()

T
∂⁄ vecDE pr

∂ bm()
T

∂⁄

vecDE pr
∂ xm()

T
∂⁄

J̃r
T

x() r r 1+= 2 7–

r R>

J̃T x()z̃ x() J̃T x()J̃ x()

111

Speed Test

In this section, we will compare the execution time for computing the gradient and

the approximate Hessian matrix under the Levenberg-Marquardt framework in one itera-

tion in three different scenarios. These three scenarios are (see Eq. (192) and Eq. (193)):

1. The sum squared function error, i.e. , using the batch mode,

2. The sum squared derivative error, i.e. , using the batch mode, and

3. The sum squared derivative error, using the memory-save approach.

The following figure shows the relative execution time (averaging over ten runs) for com-

puting the gradient and the Jacobian for in batch and memory-save approaches, us-

ing the networks, compared to the time for computing the gradient and the

Jacobian for . Note that the number of training examples in this case was

.

Figure 7) Relative execution time for computing the gradient and Jacobian of , com-

pared to

F1 x()

F2 x()

F2 x()

R 25– 1–

F1 x()

Q 5 000,=

2 4 6 8 10 12
10

−1

10
0

10
1

10
2

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e
fo

r

Batch
Memory−Save

R

F 2
x(
)

F2 x()

F1 x()

112

From Figure 7), we can see that computing the gradient and Jacobian for

took more time than for (which was the standard training method). In batch mode,

computing the gradient and the approximated Hessian for took slightly less time

than that in memory-save approach. More operations (e.g. kronecker products) in batch

mode made it just slightly more efficient than in the memory-save approach. Once the input

dimension was greater than ten, the computer’s RAM overflowed, thus requiring data to be

sent to disk. The execution time in batch mode for this case thus was greater than that in

memory-save approach.

Summary

In this chapter, the algorithm for the method under the Levenberg-Mar-

quardt framework was derived. Two approaches were presented. The first method performs

the calculation in batch mode. The second method is the memory-save approach, which in-

tends to make the matrix size independent of the input dimension (same concept as the

memory-save approach in Chapter 4). The computation times under different conditions

were measured. The results showed that computing the gradient and approximated Hessian

for the term in the method was longer than that in standard backpropagation.

This is expected since its computation is more complicated and it involves larger matrices

than the calculation in standard backpropagation. The results also illustrated that the mem-

ory-save approach is useful in cases where computer RAM is insufficient to perform the

calculation in batch mode.

F2 x()

F1 x()

F2 x()

CFDA

R

F2 x() CFDA

113

CHAPTER 6

A NETWORK PRUNING ALGORITHM FOR CFDA

Introduction

One of the major problems in nonlinear fitting is overfitting. In Chapter 2, we brief-

ly mentioned some common techniques to prevent overfitting in function approximation.

One of the most common techniques was to prune the network (see [SiDo88] or [Reed93]).

Many methods have been proposed to efficiently prune the network. For example, optimal

brain surgeon [HaSt93] computes the product of the weight squared and the second-order

derivative of the function error with respect to the weights. A neuron is pruned if the prod-

uct is sufficiently small. [Lo99] proposed a statistical-based method, which computes the

covariance of the weights and uses the to decide which neurons to prune.

The method proposed in [Karn90] measures the sensitivity of the function error with re-

spect to the removal of each weight. The weights with low sensitivity are pruned. [Enge01]

proposed another statistical-based method, which prunes the weight with the variance in the

sensitivity not significantly different from zero over all the training data. The sensitivity is

based on the calculation of the derivatives of the network output with respect to the network

parameters. [LaFo06] analyzed the Fourier decomposition of the variance of the network

output with respect to each weight. This information is used to assess which weight will be

eliminated. Some other methods are also discussed in [SeGa00], [WaHi00] or [HuSe05].

z statistics–

114

When fitting both a function and its first-order derivatives through training

algorithms, we expect less overfitting. That is, in the local neighborhoods of training inputs,

the function response of the neural network is more accurate since the derivatives at the

training points are forced to be correct. However, we have observed new types of overfit-

ting. In this chapter, we will discuss these new types of overfitting as well as propose a

method to mitigate the problems. We will focus only on the case of fitting an

network with the training algorithms, where the transfer function of the network is

hyperbolic tangent sigmoid.

We will start this chapter by discussing the impact of the network parameters on the

function and derivative response. Then, we describe new types of overfitting for networks

trained by the algorithms. Finally, we will propose a pruning method to remove

these types of overfitting from the network responses.

 Two-Layer Network Response

In this section, we will discuss the impact of the network parameters in a

network on the function and derivative responses. Given a network, the function

response of the network can be expressed as:

, (272)

where

CFDA

R S1 1––

CFDA

CFDA

R S1 1––

R S1 1––

a1
2 w1 i,

2 ai
1

i 1=

S1

∑ b2+=

115

 and . (273)

By taking the derivative of Eq. (272) with respect to the input , we obtain

(274)

Using the chain rule of calculus, we can further express the term as:

. (275)

Substituting Eq. (275) into Eq. (274), the derivative response can be written as

. (276)

For ease of reference in this chapter, we also introduce the notation:

 and . (277)

Therefore, Eq. (272) and Eq. (276) can also be written as

 and . (278)

From Eq. (278), the terms and can be viewed as the function and derivative

responses of the neuron. The network’s function response and derivative response

ai
1 f 1 ni

1()= ni
1 wi r,

1 pr bi
1+

r 1=

R

∑=

pr

pr∂
∂a1

2

w1 i,
2

pr∂
∂ai

1

i 1=

S1

∑= .

ai
1∂ pr∂⁄

pr∂
∂ai

1

ni
1∂

∂ai
1

pr∂
∂ni

1

× f·
1

ni
1() wi r,

1×= =

pr∂
∂a1

2

w1 i,
2 wi r,

1 f·
1

ni
1()

i 1=

S1

∑=

yi w1 i,
2 f 1 ni

1()= pr∂
∂yi w1 i,

2 wi r,
1 f·

1
ni

1()=

a1
2 yi

i 1=

S1

∑ b2+= pr∂
∂a1

2

pr∂
∂yi

i 1=

S1

∑=

yi yi∂ pr∂⁄

ith a1
2

116

 are linear combinations of the terms and , respectively.

To illustrate how Eq. (278) works, we start with the case of a single input and as-

sume that the transfer function is hyperbolic tangent sigmoid. Observe that there are four

types of parameters contributing to the function and derivative responses: the first-layer

bias , the second-layer bias , the first-layer weight and the second-layer weight

, for . It is clear from Eq. (278) that the term shifts the entire function

response up or down, while it does not contribute to the derivative response .

Next, we will consider the impact of the other three parameters on the network responses.

Specifically, we will focus on the impact of the three parameters to the terms and

. First recall that the terms and depend on the terms and

, respectively. With the transfer function being hyperbolic tangent sigmoid, the term

 can be computed by

. (279)

The sketches of the term and are shown in Figure 8).

a1
2∂ pr∂⁄ yi yi∂ pr∂⁄

bi
1 b2 wi

1

w1 i,
2 i 1 … S1, ,= b2

a1
2 a1

2∂ pr∂⁄

yi

yi∂ pr∂⁄ yi yi∂ pr∂⁄ f 1 ni
1()

f·
1

ni
1()

f·
1

ni
1()

f·
1

ni
1() 1 ai

1()
2

–=

f 1 ni
1() f·

1
ni

1()

117

Figure 8) Sketches of and

The effect of the first-layer bias on the terms and can be seen

from Figure 8). It controls the center of the neuron response. The center at

is obtained by solving . The effect of the first-layer weight on the

terms and is shown in Figure 9).

Figure 9) Effect of the first-layer weight

From Figure 9), we can see that, as increases, the terms and change

more rapidly. For the term , we see that the width of the response is narrower as the

−1

0

1

bi
1– wi

1⁄f1
n i1
(

)

p

0

1

bi
1– wi

1⁄

f·1
n i1
(

)

p

f 1 ni
1() f·

1
ni

1()

bi
1 f 1 ni

1() f·
1

ni
1()

p bi
1– wi

1⁄=

ni
1 wi

1p bi
1+ 0= = wi

1

f 1 ni
1() f·

1
ni

1()

−1

0

1

wj
1 wi

1>

f 1 nj
1()

f 1 ni
1()

p

0

1

f·
1

ni
1()

wj
1 wi

1>

f·
1

nj
1()

p

wi
1 f 1 ni

1() f·
1

ni
1()

f·
1

ni
1()

118

magnitude of increases. In addition, from Eq. (277), affects the term by

also scaling the response of .

For the second-layer weight , its impact on the terms and can be

seen from Eq. (277), where it scales both the values of and . Figure 10) il-

lustrates the impact of when its value increases.

Figure 10) Effect of the second-layer weight

For the single-input case, we can see from Eq. (277) and Figure 10) that the maximum mag-

nitude of , which occurs at the neuron center, equals .

Now, consider the case of multiple inputs. Recall in the single-input case that the

neuron center is obtained by solving . For multiple inputs, the center

of the neuron is governed by the equation:

. (280)

That is, the center of the neuron becomes a line for two dimensional inputs, a plane for three

wi
1 wi

1 yi∂ pr∂⁄

f·
1

ni
1()

w1 i,
2 yi yi∂ pr∂⁄

f 1 ni
1() f·

1
ni

1()

w1 i,
2

0

yi

yj

w1 j,
2 w1 i,

2>

p

w1 i,
2

w1 j,
2

0

p∂
∂yj

p∂
∂yi

p

w1 i,
2 wi

1

w1 j,
2 wj

1 w1 j,
2 w1 i,

2>

yi∂ pr∂⁄ w1 i,
2 wi

1

ni
1 wi

1p bi
1+ 0= =

ni
1 wi r,

1 pr bi
1+

r 1=

R

∑ 0= =

119

dimensional inputs or a hyperplane for higher dimensions. The impact of the network pa-

rameters on the neuron’s responses for multiple inputs is similar to the single-input case.

For example, consider a case of two dimensional inputs. If we assume , ,

 and , the terms , , and in the region of

 are illustrated below.

Figure 11) Neuron’s function and derivative responses in two dimensions

In the example, the neuron center occurs along the line . The widths of the

terms and are controlled by the first-layer weights, which are now com-

posed of two elements (i.e. and). With , we can see

bi
1 0= b2 0=

w1
i()

T
5 1–= w1 i,

2 1= yi yi∂ p1∂⁄ yi∂ p2∂⁄

1 p1 p2, 1≤ ≤–

p2 p1

yi

p2 p1

p1∂
∂yi

p2 p1

p2∂
∂yi

5p1 p2– 0=

yi∂ p1∂⁄ yi∂ p2∂⁄

wi 1,
1 5= wi 2,

1 1= wi 1,
1 wi 2,

1>

120

that the responses change along much more rapidly than along . To illustrate this, let

us plot along the line (and plot along the line). The re-

sult is shown in Figure 12).

Figure 12) A cross section of the neuron’s derivative responses

From Figure 11), we see that the extreme values for and equal

 and , respectively, and they occur along the neuron center.

The magnitude of equals

. (281)

Thus, at the neuron center, the magnitude is .

In this section, we provided the fundamental concepts of how each network param-

eter contributes to the function and derivative responses of a network. With this

background, we are ready to introduce overfitting in the next section.

p1 p2

yi∂ p1∂⁄ p2 0= yi∂ p2∂⁄ p1 0=

−1 0 1
0

1

2

3

4

5

p1

p1∂
∂yi

−1 0 1
0

1

2

3

4

5

p2

p2∂
∂yi

yi∂ p1∂⁄ yi∂ p2∂⁄

w1 i,
2 wi 1,

1 5= w1 i,
2 wi 2,

1 1–=

yi∂ pT∂⁄

pT∂

∂yi
pr∂

∂yi

⎝ ⎠
⎜ ⎟
⎛ ⎞

2

r 1=

R

∑ w1 i,
2 w1

i f·
1

ni
1()××= =

w1 i,
2 w1

i

R S1 1––

CFDA

121

CFDA Overfitting

We will introduce two types of overfitting, and . For

 overfitting, the network responses produce accurate results at every training

point. However, both the function and derivative responses are inaccurate at some points

outside the training set. For overfitting, the network’s derivative responses pro-

duce accurate results at all training points. However, the network’s function response has

small errors at some training points. The two types of overfitting, as well as the guidelines

of the method to eliminate them, are discussed as follows.

Type-A

For the first type of overfitting, the network responses are accurate over the training

set. However, at some spaces between training data, the network performs very poorly,

causing very large approximation errors on both function and the first derivatives. The

problem comes from a group of neurons (greater than one), whose responses are cancelled

at all training points. That is, their responses, when combined together, produce insignifi-

cant contribution to the fitting over the training data. Unfortunately, their responses may

not cancel at some spaces between training points, thus yielding inaccurate responses at

these locations.

To illustrate the idea, consider a network. Assume that two neurons of

the network yield their function and derivative responses as shown in Figure 13). Note that

the symbol in the figure represents the location of training data.

CFDA Type A– Type B–

Type A–

Type B–

1 S1 1––

×

122

Figure 13) Responses of two neurons

If we combine the responses of these two neurons together, we obtain Figure 14).

Figure 14) Type-A Overfitting

From Figure 14), we can see that the responses from the two neurons cancel almost

exactly at training points, but not at the points in between. The remainder after cancellation

is overfitting. If these two neurons are removed, it will not produce a significant

change to the original fitting (since their responses yield almost no contribution to the train-

ing data). However, it will eliminate the overfitting. The basic idea of the pruning method

is discussed below.

From Figure 13) and Figure 14), we can see that the severity of the overfitting

(which depends on the magnitude of the remainder) in the derivative is associated with the

yj

yi

p p

p∂
∂yj

p∂
∂yi

p

y i
y j

+

p

p∂∂y
i

p∂∂y
j

+

Type A–

123

magnitude of the responses of the two neurons. Recall from the previous section that, for

the single-input case, the maximum magnitude of equals the weight product

. For multiple inputs, it equals . Therefore, the higher the weight prod-

ucts are, the worse the overfitting could be.

The weight product of a neuron is defined as “high” if it is larger than the actual

derivative of the training point closest to the neuron center. (The reason we select the train-

ing point closest to the neuron center is that it is the point to which the neuron response most

contributes.) The distance between a training point and the neuron center (at

) can be easily computed in the case of single input. For multiple inputs, it

requires the calculation illustrated in Figure 15).

Figure 15) Distance between a point to a line

From geometry, the distance from the training point to the neuron’s center (which

yi∂ p∂⁄

w1 i,
2 wi

1 w1 i,
2 w1

i

pq ith

p bi
1– wi

1⁄=

−1 0 1
−1

0

1

di q,pq

w1
i()

T
p bi

1+ 0=

p1

p 2

pq ith

124

is) is

(282)

The neuron with high weight product will be selected as a candidate that yields

 overfitting. Once the candidate is chosen, we need to search for other neurons,

whose responses will cancel the response of the candidate over the training data. Practical-

ly, it is impossible to validate every possible combination of neurons, since the number of

combinations could be extremely large. It is also not useful to verify every possible com-

bination of neurons, since neurons with centers far from the candidate’s center would not

provide the response cancellation. Therefore, checking only a set of neurons whose centers

are close to the candidate’s center would be sufficient. We thus need to define the “neigh-

bors” of the neuron candidate.

From Figure 13) and Figure 14), we can see that the largest distance between the

center of two neurons that cause overfitting is the distance between the two training points.

If the distance between the two centers is greater than or equal to the distance between the

two training points, it implies that each neuron’s response contributes to the fitting of the

two training data. Therefore, we use the maximum distance between neighboring training

points to be the threshold for deciding which neurons should be tested for response cancel-

lation. That is, any neurons whose centers are closer to the candidate center than the max-

imum distance between neighboring data points are considered the candidate’s neighbors.

In the case of single input, it is easy to calculate the distance between weight centers. For

multiple inputs, more consideration is needed.

w1
i()

T
p bi

1+ 0=

di q,
w1

i()
T
pq bi

1+

w1
i

ni q,

1

w1
i

------------= = .

Type A–

125

The definition of a neighbor for multiple inputs requires that a neuron center be

close to the candidate center, and that the two centers be parallel. Theoretically, the proba-

bility of having two centers in parallel is zero. An angle tolerance is applied in practice.

Therefore, neighbors in the case of multiple inputs are those neurons whose centers are par-

allel within a tolerance and are close to the candidate center. We fix the angle tolerance at

one degree. To compute the distance between the neuron centers, we further assume that

those centers (whose angles are within one degree) are parallel. By geometry, it can be

shown that the distance between two parallel hyperplanes, and

, is

, (283)

if and are in the same direction, or

 , (284)

if the directions of and are opposite. We can use Eq. (284) and Eq. (285) to com-

pute the distance between two parallel (within a tolerance) centers. Then, we compare the

distance against the distance threshold, specified by the maximum distance between neigh-

boring training points.

Once having a candidate and its neighbors, combinations of these neurons can be

tested. We need to verify if cancellation (over the training points) occurs for any of these

w1
i()

T
p bi

1+ 0=

w1
j()

T
p bj

1+ 0=

dHi j,

bi
1

w1
i

bj

1

w1
j

------------–=

w1
i w1

j

dHi j,

bi
1

w1
i

bj

1

w1
j

------------+=

w1
i w1

j

126

combinations. If cancellation occurs, the combination of neurons is pruned. Note that there

could exist more than one combination yielding an insignificant contribution. In this situa-

tion, the combination with highest number of neurons is pruned.

When verifying cancellation for a combination of neurons, their combined deriva-

tive response is measured over the training set. Then, the maximum magnitude of the de-

rivative response (chosen among the training points) will be compared with the true

derivative magnitude evaluated at the training point. If the maximum derivative response

from these neurons is much less than the true derivative value, we say that the derivative

response from these neurons contributes insignificantly to the fitting. Thus, these neurons

are pruned. The mathematical procedure will be described in detail after we finish discuss-

ing the other type of overfitting.

In the next section, we will introduce overfitting, as well as the method

to remove it.

Type-B

For overfitting, the network produces accurate derivative response over

the training set. However, the function response has small errors for some training data. At

some locations between training points that produce accurate function response and train-

ing points whose function response is inaccurate, the network response changes rapidly.

This produces a large derivative response between training points. This problem is caused

by a local minimum in the performance surface. Although there is a very small

function error, the derivative error is minimized. This type of overfitting could be generated

by a single neuron, or by multiple neurons.

CFDA

Type B–

Type B–

CFDA

127

To demonstrate the overfitting, consider a network. Assume

that one neuron of the network yields the function and derivative responses as shown in

Figure 16).

Figure 16) Type-B Overfitting

From Figure 16), it should be noted that the step in the function response must

be very small. (Otherwise, the function errors at the training points would be large and,

thus, the training process could further reduce these function errors.) A small step in

corresponds to a small magnitude for , i.e. a small weight product . From

the figure, the response does not contribute to the derivative fitting at the training

points, but it causes a small fluctuation at points between the training data. If this neuron is

eliminated from the network, it will not produce a significant impact on the overall deriv-

ative responses at training data. However, it would automatically improve the function re-

sponse, as well as eliminate the small fluctuation in the derivative response. The basic idea

for the pruning method is discussed next.

Type B– 1 S1 1––

p

yi

sm
al

l s
te

p

p

p∂
∂yi

yi

yi

yi∂ p∂⁄ w1 i,
2 wi

1

yi∂ p∂⁄

128

To get rid of overfitting, we want to remove neurons whose derivative

response is narrower than the distance between training points. Consider the derivative re-

sponse in Figure 17) and the corresponding buffer zone. If there are no training points with-

in the buffer zone, then that neuron may not contribute to the derivative response at the

training points. The neuron can then be further tested for potential removal.

Figure 17) Definition of Buffer Zone

Note that since the combined responses from more than one neuron could also cause

 overfitting, the neighbor search procedure (discussed earlier) is also needed. In

addition, the process of validating whether the response from a combination of neurons sig-

nificantly contributes to the derivative fitting is the same as when dealing with

overfitting.

In order to proceed with this pruning concept, we first need to define the buffer

zone. From Figure 9) and Figure 17), we can see that the width of the buffer zone depends

on the magnitude of the first-layer weight and the term . That is, the width of

Type B–

0

1

Buffer Zone

widthi x()

x

p

f·
1

ni
1()

bi
1– wi

1⁄

pl pu

Type B–

type A–

wi
1 f·

1
ni

1()

129

the zone is a function of and . To find the relationship, first let’s fix the value of

 at . From Eq. (279), we have . Solve for and recall

that . Thus, we obtain

. (285)

If , we have and . Solve

for and . Thus, the width of the buffer zone, , is

(286)

Using the fact that the inverse of hyperbolic tangent sigmoid is an odd function, i.e.

, Eq. (286) becomes

(287)

If , we have and .

Therefore, the width, , is

(288)

From Eq. (287) and Eq. (288), we finally obtain

(289)

wi
1 f·

1
ni

1()

f·
1

ni
1() x f·

1
ni

1() x 1 ai
1()

2
–= = ai

1

ai
1 f 1 ni

1() wi
1p bi

1+()tanh= =

wi
1p bi

1+()tanh 1 x–±=

wi
1 0> wi

1pu bi
1+()tanh 1 x–= wi

1pl bi
1+()tanh 1 x––=

pu pl widthi x()

widthi x() pu pl–=

1 x–()atanh bi
1–

wi
1

--
1 x––()atanh bi

1–

wi
1

---– .=

x–()atanh x()atanh–=

widthi x() 2 1 x–()atanh
wi

1
-------------------------------------- .=

wi
1 0< pu 1 x––()atanh bi

1–[] wi
1⁄= pl 1 x–()atanh bi

1–[] wi
1⁄=

widthi x()

widthi x() 2 1 x–()atanh–
wi

1
--- .=

widthi x() 2 1 x–()atanh
wi

1
-------------------------------------- ; wi

1 0 .≠=

130

For multiple inputs, by changing Eq. (285) from to and

solving, we obtain two hyperplanes making up the boundary of the buffer zone. These two

hyperplanes are parallel to the weight center, and they are

 and . (290)

To know the width of the buffer zone, we need to know the distance between the two hy-

perplanes. Therefore, from Eq. (283), the distance between the two hyperplanes in Eq.

(290) is

(291)

The range of is . For pruning, the value of could be set, for instance, at 0.5.

Once knowing the width of the buffer zone, we will be able to identify which train-

ing points are inside or outside the buffer zone, by comparing with the distance from the

training points to the weight center. Then, by counting how many training points satisfying

the condition:

, (292)

we will be able to tell whether there exist training points inside the zone. If there are none

in the zone, the neuron becomes a candidate for overfitting.

To allow no training points inside the buffer zone is a very strict condition. In prac-

tice, it is more promising to allow a small number of training points inside the zone. That

is, if the neuron response is fitting only a small fraction of the entire training set, we also

wi
1p bi

1+ w1
i()

T
p bi

1+

w1
i()

T
p bi

1+ 1 x–()atanh= w1
i()

T
p bi

1+ 1 x––()atanh=

widthi x() 2 1 x–()atanh
w1

i

-------------------------------------- ; w1
i 0 .≠=

x 0 x 1≤ ≤ x

di q,
widthi x()

2
------------------------< ; q∀

Type B–

131

presume it to be a candidate for overfitting. Therefore, the rule is now to list a

neuron as a candidate if the number of training data located inside the buffer zone is less

than a small fraction of the total number of training points. For example, the fraction could

be set at 1%. Figure 17) illustrates an example showing a few training points inside the

buffer zone for a two-dimensional case.

Figure 18) Training points and the buffer zone in a two-dimensional case

In this section, we introduced two types of overfitting produced by the

training algorithms. The general concept of the pruning algorithm that eliminates these

types of overfitting was discussed. In the next section, the steps of the algorithm will be pro-

vided in more detail.

Pruning Algorithm

In this section, we will provide more details for the steps of the pruning algorithm.

The section will be divided into two parts. First, the description of the steps of the pruning

algorithm will be provided. Second, the pseudo code of the pruning algorithm will be given.

Type B–

−1 0 1
−1

0

1

pq

w1
i()

T
p bi

1+ 0=

widthi x()

di q,

p1

p 2

CFDA

132

Description of the pruning algorithm

The steps of the pruning algorithm will be described here. We divide this section

into six parts. The first part will provide an overview of the pruning method and how it in-

terfaces with the training algorithms. The last five parts are the body of the algo-

rithm itself, which consists of:

. Initialization,

. Candidate selection,

. Neighbor search,

. Contribution check, and

. Pruning and adjusting.

Overview

Assume we have a neural network trained by a training method. Once

the training is converged, the pruning method will be executed. If the pruning method in-

dicates that the network is subjected to pruning, we will prune the network. Then, the

pruned network will be retrained by the training algorithm. This process will be re-

peated until the pruning algorithm indicates no further pruning. The flowchart of this pro-

cess is illustrated below.

CFDA

A

B

C

D

E

NN CFDA

NN

CFDA

133

Figure 19) Overview for the pruning algorithm

Next, we will describe the pruning algorithm, consisting of five processes: Initial-

ization, Candidate Selection, Neighbor Search, Contribution Check and Pruning and Ad-

justing.

CFDA Convergent
Training

CFDA Pruning

A.Initialization

B.Candidate selection

C.Neighbor search

D.Contribution check

Prune Network?

Network Trained

No

Yes
E.Pruning Adjusting⁄

134

A. Initialization

We initialize the pruning algorithm here. Assume we have a network

, completely trained by a training algorithm.

1. Initialize the set and the set .

2. Specify the thresholds:

a) is the threshold for the number of training points inside a buffer zone. We

choose a value relative to the total number of training points (e.g. 1%:).

b) is the threshold for the distance between the centers of neurons. This is to

consider whether a neuron is a neighbor to the other neuron. As previously mentioned, we

choose the maximum of the minimum distance between the training points for :

. (293)

c) is the threshold for the angle between the centers of neurons. In the case

of multiple inputs, any two neurons will be neighbors if their centers are parallel (within

the tolerance) and the distance between them is smaller than the threshold . We

choose a fixed value for of one degree: .

d) is the threshold for the contribution. The measure for contribution is com-

puted as the ratio of the maximum magnitude of the derivative response to the actual deriv-

ative magnitude evaluated at the training point. If the ratio is less than , we assume the

contribution is not significant. We choose this value to be 10%: i.e. .

R S1 1––

NN CFDA

Q 1 2 … Q, , ,{ }= S1 1 2 … S1, , ,{ }=

T1

T1 0.01=

T2

T2

T2 max min pq ' pq– ; q'∀ Q q{ }\∈() ; q∀ Q∈{ }=

T2̃

T2̃ T2

T2̃ T2̃ 1=

T3

T3

T3 0.1=

135

3. Initialize the set . The set contains the neurons that will be pruned.

4. Initialize the set . The elements of the set are the neurons already vis-

ited for candidate selection.

5. Go to step .

B. Candidate selection

1. If , go to step . Otherwise, go to step . This step is to

let the algorithm proceed if there are neurons that have not been visited for candidate selec-

tion or marked for being pruned.

2. Find the smallest element such that . Set . Note

that once neurons are pruned, we will not check them again.

3. Find the training point closest to the weight center: such that , .

4. If , mark neuron and go to step . Otherwise, go

to step .

5. Compute and using Eq. (291).

6. Compute the distance using Eq. (282), .

7. Count how many training points are inside the buffer zone using Eq. (292). Store

the number in .

8. If , mark neuron as a candidate and go to step . Otherwise, go to

step .

P ∅= P

V ∅= V

B.1

S1 P V∪{ }\ ∅∉ B.2 E.1

i i S1 P V∪{ }\∈ V V i{ }∪=

q̃i di q̃i, di q,≤ q∀

w1 i,
2 w1

i a1 q̃i,
2∂ pq̃i

T∂⁄> i C.1

B.5

w1 i,
2 w1

i widthi x()

di q, q∀

bzi

bzi T1≤ i C.1

B.1

136

C. Neighbor search

Once neuron is selected to be a candidate, perform the following steps.

1. Initialize the set . This set contains the neighbors of the candidate neu-

ron .

2. Find its neighbors:

a) For a single input, find neurons whose centers are within the maximum of the

minimum distance between neighboring training points from the candidate center. That is,

find neuron such that

, for all . (294)

b) For multiple inputs, neighbors are those neurons with parallel centers (within

a tolerance) and close to the candidate center. The angle between neuron and is com-

puted by:

, (295)

where is the inner product of and . The distance between two hyper-

planes can be computed from Eq. (283) and Eq. (284). Thus, we have two cases. First, find

neurons whose centers are pointed in the same direction as and close to the candidate cen-

ter. That is, find neuron such that

 and , for all . (296)

i

NBi ∅=

i

l

bl
1

wl
1

bi

1

wi
1

------– T2≤ l S1 i{ }\∈

l i

anglel i,
1
π

w1
l w1

i,〈 〉

w1
l w1

i

⎝ ⎠
⎜ ⎟
⎛ ⎞

acos=

w1
l w1

i,〈 〉 w1
l w1

i

l

anglel i, T2̃≤
bl

1

w1
l

bi

1

w1
i

------------– T2≤ l S1 i{ }\∈

137

Second, find neurons whose centers are pointed in the opposite direction and close to the

candidate center. In other words, find neuron such that

 and , for all . (297)

For any neuron satisfying the condition in Eq. (296) or Eq. (297), go to step

.

3. Put into the set . Then, go to step .

D. Contribution check

Assume neuron and its neighbors are established (note: could be an

empty set). We need to validate whether their response significantly contributes to the de-

rivative fitting. Perform the following steps.

1) Initialize with (the number of elements in): . Initialize the

combinadic index . Initialize .

2. Generate elements of , starting with the combinadic with highest number

of elements: . For the details of this step, see Appendix A.

3. Include neuron into the set : . Now, we want

to validate the response contribution of the neurons in the set . Perform the following

steps:

a) Create a copy of the neural network: .

l

π anglel i,– T2̃≤
bl

1

w1
l

bi

1

w1
i

------------+ T2≤ l S1 i{ }\∈

l S1 i{ }\∈

C.3

l NBi D.1

i NBi NBi

k nNBi
NBi k nNBi

=

j 0= quit 0=

P NBi()

P NBi()k j, psgen NBi k j, ,()=

i P NBi()k j, Gi i{ } P NBi()k j,∪=

Gi

NÑ NN=

138

b) Set the weights of the neurons not in for the network to be zero:

, , and , for all .

c) Compute the magnitude of the derivative response from the network

over the training data: , for all .

d) Find the training point yielding the maximum magnitude of the derivative re-

sponse: .

e) Compute the ratio of the response magnitude to the magnitude of the actual

derivative at the training point: .

f) If , set , quit this process (set) and go to step

. Otherwise, go to step g). Note that this step means if (the contribution of neu-

rons in is not significant), the neurons in are included in the set). If (the

contribution of neurons in is significant), we will form another combination of neurons.

g) If , set and go to step (we will create another

combination of neurons, where the number of neurons in the new combination will be the

same, i.e.). Otherwise, go to step h).

h) If , set and go to step (we will create another combina-

tion of neurons, but the number of neurons in the new combination is reduced by one). Oth-

erwise, quit the process by setting and go to step .

Gi NÑ

w̃1
l()

T
0= b̃l

1
0= w̃1 l,

2 0= b̃
2

0= l S1 Gi\∈

NÑ

ã1 q,
2∂ pq

T∂⁄ q Q∈

q∗ max ã1 q,
2∂ pq

T∂⁄ q∀ Q∈;()arg
q

=

r ã1 q∗,
2∂ pq∗

T∂⁄ gq∗∂ pq∗
T∂⁄⁄=

r T3< P P Gi∪= quit 1=

B.1 r T3<

Gi Gi P r T3≥

Gi

j
nNBi

k⎝ ⎠
⎛ ⎞ 1–< j j 1+= D.2

k

k 0> k k 1–= D.2

quit 1= B.1

139

E. Pruning & Adjusting

Once the set , which contains the neurons to be pruned, is completely formed

from step to , one more calculation is needed. This is to calculate the function response

of the neurons stored in . From Eq. (278), we can rewrite the derivative response of the

network evaluated at the training point as:

. (298)

This corresponds to the function response:

. (299)

The notation and denotes the term and evaluated at

the input point , respectively. After the neurons in are pruned, it will not have a sig-

nificant impact on the derivative response for all due to the contribu-

tion check (i.e. for all is small). However, it may dramatically

change the network’s function response for some , since for some

 could be large. An simple example is when the set contains a neuron with very

large step in its function response and its center is outside the training set. Pruning this neu-

ron would produce no impact on the derivative response, but it would cause a shift up/down

to the entire function response over the training set.

P

A D

P

pq

pr q,∂
∂a1 q,

2

pr q,∂
∂yi q,

i P∉
∑ pr q,∂

∂yj q,

j P∈
∑+=

a1 q,
2 yi q,

i P∉
∑ yj q,

j P∈
∑ b2+ +=

yj q, yj q,∂ pr q,∂⁄ yj q, yj q,∂ pr q,∂⁄

pq P

a1 q,
2∂ pr q,∂⁄ q Q∈

yj q,∂ pr q,∂⁄
j P∈
∑ q Q∈

a1 q,
2 q Q∈ yj q,

j P∈
∑

q Q∈ P

140

To compensate for the response (that will disappear with the neurons in),

we compute its average value computed over the entire training set: i.e.

(300)

Then, the compensation can be done by inserting to the second-layer bias .

Now, we are ready to provide the process of pruning and adjusting.

1. If , quit the pruning algorithm and return the network as the final net-

work. Otherwise, go to step .

2. Prune the neurons contained in from .

3. Set the second-layer bias of the network to Quit the pruning algo-

rithm and return the pruned network for a retraining.

We will provide the pseudo code for the algorithm in the next section.

Pseudo Code

We will provide the pseudo code in this section. The variables in the pseudo code

were already introduced in the previous section.

yj
j P∈
∑ P

bP
1
Q
---- yj q,

j P∈
∑

q 1=

Q

∑= ,

bP b2

P ∅= NN

E.2

P NN

b2 b2 bP+= .

CFDA

141

A. INITIALIZATION

Initialize and . Set and .
Specify the thresholds: , , , and .

B. CANDIDATE SELECTION

While

Find the smallest element such that

Compute .

Compute .

Set to be the number of satisfying .

Find such that , .

If or

C. NEIGHBOR SEARCH
Initialize .

For all
If

If , add to the set .

Else

Compute .

If and

Add to the set .

ElseIf and

Add to the set .

EndIf and
EndIf

EndFor

Q 1 2 … Q, , ,{ }= S1 1 2 … S1, , ,{ }= P ∅= V ∅=
T1 T2 T2

˜ T3 x

S1 P V∪{ }\ ∅∉

i i S1 P V∪{ }\∈ .

widthi x() 2 1 x–()atanh w1
i⁄=

di q, w1
i()

T
pq bi

1+ w1
i⁄= ; q∀ Q∈

bzi q Q∈ di q, widthi x() 2⁄<

q̃i Q∈ di q̃i, di q,≤ q∀ Q∈

w1 i,
2 w1

i a1 q̃i,
2∂ pq̃i

T∂⁄> bzi T1≤

NBi ∅=

l S1 i{ }\∈
R 1=

bl
1

wl
1

bi

1

wi
1

------– T2≤ l NBi

anglel i,
1
π

w1
l w1

i,〈 〉

w1
l w1

i

⎝ ⎠
⎜ ⎟
⎛ ⎞

acos=

anglel i, T2̃<
bl

1

w1
l

bi

1

w1
i

------------– T2≤

l NBi

π anglel i,– T2̃<
bl

1

w1
l

bi

1

w1
i

------------+ T2≤

l NBi

T2
˜ T2

R
l

142

D. CONTRIBUTION CHECK
Initialize , and .

While and

While and

Set .

Set

Create a network .

For all

Set , , and .
EndFor

Compute , .

Set .

Compute .

If
Set and .

EndIf
Set .

EndWhile and
Set .

EndWhile and
EndIf
Set

EndWhile

E. PRUNING & ADJUSTING

Compute

Create a network .
Prune the network , using .
Set

Return .

k nNBi
= j 0= quit 0=

quit 1≠ k 0≥

quit 1≠ j
nNBi

k⎝ ⎠
⎛ ⎞ 1–≤

P NBi()k j, psgen NBi k j, ,()=

Gi i{ } P NBi()k j,∪= .

NÑ NN=

l S1 Gi\∈

w̃1
l()

T
0= b̃l

1
0= w̃1 l,

2 0= b̃
2

0=
l

ã1 q,
2∂ pq

T∂⁄ q∀ Q∈

q∗ max ã1 q,
2∂ pq

T∂⁄ q∀ Q∈;()arg
q

=

r ã1 q∗,
2∂ pq∗

T∂⁄ gq∗∂ pq∗
T∂⁄⁄=

r T3<

P P Gi∪= quit 1=
r

j j 1+=
quit j

k k 1–=
quit k

T1

V V i{ }∪= .

S1 P V∪{ }\

bP
1
Q
---- yj q,

j P∈
∑

q 1=

Q

∑= .

NÑ NN=
NÑ P

b̃2 b2 bP+ .=

NÑ

143

Summary

In this chapter, we introduced two new types of overfitting, i.e. and

. These types of overfitting are produced by the neural networks trained by a

 training algorithm. For overfitting, the network produces accurate func-

tion and derivative response over the entire training set. However, at some points between

training points, the network responses (both function and derivative) are inaccurate. We

demonstrated that overfitting comes from two or more neurons whose centers are

close together and whose responses cancel over the entire training set. However, the re-

sponse cancellation does not occur betweeen some training points. We proposed a way to

detect this problem by first selecting neurons with high weight products. If the weight prod-

uct of a neuron is higher than the magnitude of the actual derivative evaluated at the training

point closest to the neuron center, the neuron is marked as a candidate for producing

 overfitting.

For overfitting, the network produces accurate derivative response over

the training set. However, the function response has small errors on some training data.

This problem is caused by a local minimum in the training surface. We proposed a

way to detect a neuron producing this type of overfitting by counting how many training

points are inside the neuron’s buffer zone. If there are less than a small number of training

points in the zone, the neuron is marked as a candidate for generating overfitting.

Once a candidate is selected, we search for its neighbors. The neighbors are defined

as those neurons whose centers are close to the candidate center within the maximum of the

minimum distance between training points. After locating the candidate’s neighbors, com-

Type A–

Type B–

CFDA Type A–

Type A–

Type A–

Type B–

CFDA

Type B–

144

binations of neurons from the set are formed. The derivative response from these combina-

tions are checked to see whether or not their contribution to the derivative fitting is

significant. We measure the contribution by computing the ratio of the maximum magni-

tude of the derivative response (computed at training points) to the magnitude of the true

derivative evaluated at that training point. If the ratio is smaller than the threshold (we

chose 0.1), we define the contribution as insignificant. Therefore, if a combination of neu-

rons produces insignificant contribution, this combination is pruned. After pruning the net-

work, we showed that the second-layer bias of the network must be adjusted to compensate

for the function response of the pruned neurons.

In the appendix, we provided the steps of an algorithm to form combinations of neu-

rons. In this chapter, we described the interface of the algorithm to the training

methods, as well as the steps of the pruning algorithm. Finally, the pseudo code of the prun-

ing algorithm was provided.

CFDA

145

CHAPTER 7

TRAINING RESULTS ON SIMPLE PROBLEMS

Introduction

This chapter serves four purposes. First, it describes the procedure for evaluating

and comparing the approximation accuracy of various training algorithms, for simple prob-

lems. Comparisons will be made among four groups of algorithms:

1. The standard training algorithms introduced in Chapter 2: ,

, and .

2. The gradient-based method (Chapter 4),

3. The method with Levenberg-Marquardt (Chapter 5), and

4. The methods (i.e. gradient-based and Levenberg-Marquardt) with the

pruning algorithm (Chapter 6).

Second, the choice of the parameter in the method will be analyzed. Third, the

approximation accuracy obtained from each training algorithm for these simple examples

will be shown and compared. Finally, some examples illustrating the overfitting

and demonstrating how the pruning algorithm eliminates the overfitting will be shown.

BFGS ES–

LM ES– GNBR

CFDA

CFDA

CFDA

ρ CFDA

CFDA

146

Evaluation Procedure

This section will describe the procedure for evaluating the approximation accuracy

of each training algorithm. It consists of two parts. First, the problem definitions will be in-

troduced. Second, the simulation steps will be presented.

Problem definition

We will use neural networks to approximate the four different functions (and their

derivatives) defined in Table 7. The table also shows the input ranges for generating the

training and testing data sets. The table also shows the number of training and testing data

used for each function. Each data set contains function inputs, the corresponding function

outputs and the associated first-order derivatives,

Problem Function Training
Region

No. of
Training

Test Region No. of
Testing

1 40 321
2 200 801

3 200 1601
4 , 300 , 100K

Table 7 Description of test functions

0.5πp()sin 1 p 1≤ ≤– 0.8 p 0.8≤ ≤–

1.2e 3p– 8πp()sin 0 p 1≤ ≤ 0.1 p 0.9≤ ≤

4πp()cos 1 p 1≤ ≤– 0.8 p 0.8≤ ≤–

5 10 p1
2 p2

2+()sin

10 p1
2 p2

2+
--

1 p1 1≤ ≤–

1 p2 1≤ ≤–

0.8 p1 0.8≤ ≤–

0.8 p2 0.8≤ ≤–

147

The network structure used for each problem is defined in Table 8. Note that Figure

20) illustrates the graph of the functions defined in Table 7.

Figure 20) Graph of the four test functions

Experiment design

The following steps will be repeated on each test problem for every training algo-

rithm.

Problem Network Structure
1
2
3
4

Table 8 Network structure for each problem

1 10– 1–
1 60– 1–
1 40– 1–
2 100– 1–

−1 0 1
−1

0

1

1

g 1
p(
)

p
0 0.5 1

−1

0

1

2

p

g 1
p(
)

−1 0 1
−1

0

1

3

p

g 1
p(
)

p1
p2

g 1
p 1

p 2
,

(
)

148

Simulation Steps

1. Randomly generate the testing data.

2. Randomly generate the training data.

3. If the training algorithm uses the early stopping technique, randomly divide the

training data in the previous step into two parts: training and validation. The new

training set will contain 80% of the data, and the validation set will contain 20%

of the data. If the training algorithm does not use early stopping, the training set

remains the same. Note that the data sets will be reused for every training algo-

rithm.

4. Create a neural network with the structure defined in Table 8. The network pa-

rameters are initialized by Nguyen-Widrow algorithm [NgWi90]. Note that this

initialized network will be reused for every training algorithm.

5. Train the network until the algorithm is terminated.

6. Compute Root Mean Square Error (RMSE) for the function approximation, the

first derivative approximation and the second derivative approximation on both

the training and test set. We denote

, (301)

, and (302)

RMSEF
1

QSM
----------- ek q,

2

k 1=

S M

∑
q 1=

Q

∑≡

RMSED
1

QSMR

pr q,∂
∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

2

r 1=

R

∑
k 1=

S M

∑
q 1=

Q

∑≡

149

, (303)

where . The notation is the function RMSE,

is the first-order derivative RMSE, is the second-order derivative

RMSE, and is the number of examples in a data set. The calculation of

 requires the computation of . This is presented in

Appendix B.

7. Repeat step 2) to 6) times for Monte Carlo simulation.

8. Report the sample median statistic of and , denoted

and respectively, on both training and testing sets, among the Mon-

te Carlo samples. Report the sample median statistic of , denoted

 on testing set, among the Monte Carlo samples.

The median statistic of and is the measure of the approximation

accuracy for each training algorithm. Note that the median statistic is used, rather than the

average, because it is less sensitive to outliers (e.g. poor approximation because the training

process is stuck in a local minimum). We set for Problem 1, 2 and 3, and

for Problem 4. We used a lower number for Problem 4 because of the significant computa-

tion time involved.

RMSE
D2

1
QSMN

pr' q,∂
∂

pr q,∂
∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

⎩ ⎭
⎨ ⎬
⎧ ⎫

2

r 1=

R

∑
r' r=

R

∑
k 1=

S M

∑
q 1=

Q

∑≡

N R 1+()R 2⁄= RMSEF RMSED

RMSE
D2

Q

pr' q,∂
∂

pr q,∂
∂ek q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr' q,∂
∂

pr q,∂
∂ak q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

K

RMSEF RMSED RMSEF
md

RMSED
md K

RMSE
D2

RMSE
D2
md K

RMSEF RMSED

K 25= K 10=

150

For the gradient-based method, we selected Quasi-Newton optimi-

zation (with backtracking line search). See Chapter 2 for more details of the opti-

mization. We refer to this training method as , while is the

 method with Levenberg-Marquardt optimization. In the methods, early

stopping is not used. This is because standard overfitting does not occur when fitting both

a function and its derivatives at the training points. We will discuss this in more detail later

in this document. For the methods with pruning, we denote and

 to indicate and with the pruning algorithm,

respectively.

For problems 1, 2 and 3, we will evaluate the approximation accuracy for

, , , , , and

. However, for problem 4, the evaluation will be performed only for ,

, , and . In the next section,

the parameter in the performance index will be discussed.

Parameters in CFDA

Recall that the performance index contains a parameter :

(304)

In this section, we will discuss how the value of is selected. First, we define to be:

CFDA BFGS

BFGS

CFDA BFGS– CFDA LM–

CFDA CFDA

CFDA CFDA BFGS– p

CFDA LM– p CFDA BFGS– CFDA LM–

BFGS ES– LM ES– GNBR CFDA BFGS– CFDA LM– CFDA BFGS– p

CFDA LM– p GNBR

CFDA BFGS– CFDA LM– CFDA BFGS– p CFDA LM– p

ρ CFDA

CFDA ρ

J Jf ρJd+=

1
QSM
----------- ak q, gk q,–{ }2

k 1=

S M

∑
q 1=

Q

∑
ρ

QdSd
MRd

-------------------- ϕk r, q()
ak q,∂
pr q,∂

gk q,∂
pr q,∂

------------–⎝ ⎠
⎛ ⎞

2
.

r 1=

R

∑
k 1=

S M

∑
q 1=

Q

∑+=

ρ ρ

151

(305)

where

. (306)

The terms and in Eq. (306) are the target function values and the first-

order derivative values in the training set. In this way, will account for the scale differ-

ence between the target function values and the first-order derivative values. The value of

 will then be varied to see its impact on the approximation accuracy. The following fig-

ures show the impact of on the approximation accuracy in RMSE for problem 1, 2 and

3 using the algorithm.

ρ λ

η2
------ ,=

η
max gk q,∂ pr q,∂⁄ k∀ r∀ q∀, ,;()

max gk q, k∀ q∀,;()
--=

gk q, gk q,∂ pr q,∂⁄

η

λ

λ

CFDA BFGS–

152

Figure 21) Impact of on the approximation accuracy

From these results, we determined that a robust value for would be . This val-

ue will be used for all of the subsequent cases. In the next section, the simulation results

showing the approximation accuracy in RMSE on each problem for each training algorithm

will be illustrated.

Simulation Results

We divide this section into two parts. The approximation accuracy in RMSE for

each problem obtained from every training algorithm is shown in the first part. The second

part is dedicated to illustrating how the pruning algorithm works.

10
−2

10
0

10
2

10
4

10
6

10
8

10
−10

10
−6

10
−2

λ

Training RMSEmd
F

Training RMSEmd
D

Test RMSEmd
F

Test RMSEmd
D

1

10
−2

10
0

10
2

10
4

10
6

10
8

10
−8

10
−4

10
0

λ

2

10
−2

10
0

10
2

10
4

10
6

10
8

10
−8

10
−5

10
−2

λ

3

λ

λ 104

CFDA

153

Approximation accuracy

We show the approximation accuracy for two sets of Monte Carlo samples in this

section. We used the first set to study the thresholds for the pruning algorithm.

Then, the thresholds were applied to the second set to validate its efficiency. Note that, for

 and , the retraining process (i.e. after pruning) is terminat-

ed either when the performance index is convergent or it reaches the same level

achieved before pruning.

First Set

Table 9 to Table 12 show the approximation accuracy obtained by each training al-

gorithm. Note again that, for the methods, the value of is set at . Note also

that RMSE values reported in the tables represent the median statistic among the Monte

Carlo samples. The thresholds for the pruning algorithm are , ,

 and .Table 13 shows the median number of neurons of the final pruned

networks for each case. The values following the “ / ” are the numbers of neuron in the net-

works before pruning.

K

CFDA

CFDA BFGS– p CFDA LM– p

CFDA

CFDA λ 104

K

T1 0.01= T2
˜ 1=

T3 0.1= x 0.5=

154

Training
Algorithm

Problem 1

Training Test Training Test
4.29E-06 1.12E-03 7.38E-03 1.74E-02 4.54E-01
2.48E-06 8.90E-04 6.42E-03 1.74E-02 3.88E-01
3.37E-07 1.91E-06 2.38E-05 3.45E-05 7.52E-04
1.19E-08 1.23E-08 3.75E-09 1.41E-07 6.02E-06
2.86E-09 2.89E-09 3.64E-09 1.60E-08 2.69E-07

7.98E-09 8.09E-09 2.70E-09 7.59E-08 3.51E-06
3.67E-09 3.83E-09 2.92E-09 1.73E-08 2.58E-07

Table 9 Approximation accuracy on problem 1 (First set)

Training
Algorithm

Problem 2

Training Test Training Test
5.76E-04 1.94E-02 2.45E+00 3.24E+00 9.23E+02
1.14E-05 1.16E-02 1.09E+00 1.94E+00 5.73E+02
3.68E-07 4.19E-04 4.02E-02 7.79E-02 1.95E+01
7.70E-07 3.57E-06 1.38E-06 8.01E-04 3.43E-01
6.42E-08 6.47E-08 1.16E-06 1.94E-06 3.20E-04

2.03E-07 2.92E-07 1.28E-07 4.55E-05 1.33E-02
5.68E-08 5.64E-08 5.60E-07 1.49E-06 2.08E-04

Table 10 Approximation accuracy on problem 2 (First set)

RMSEF
md RMSED

md RMSE
D2
md

BFGS ES–
LM ES–
GNBR

CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

RMSEF
md RMSED

md RMSE
D2
md

BFGS ES–
LM ES–
GNBR

CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

155

From Table 9 to Table 11, we can see that among the three standard training algo-

rithms, the method yielded best approximation accuracy on both training and test

Training
Algorithm

Problem 3

Training Test Training Test
6.41E-05 2.28E-03 4.96E-02 1.59E-01 1.83E+01
6.72E-06 2.09E-04 5.67E-03 1.12E-02 1.11E+00
6.33E-07 7.55E-06 3.83E-04 5.51E-04 5.94E-02
7.94E-08 1.10E-07 3.96E-07 2.58E-06 1.98E-04
7.14E-08 7.05E-08 3.94E-07 7.42E-07 6.97E-05

6.20E-08 7.42E-08 1.41E-07 9.64E-07 9.45E-05
3.03E-08 2.97E-08 1.80E-07 3.50E-07 2.85E-05

Table 11 Approximation accuracy on problem 3 (First set)

Training
Algorithm

Problem 4

Training Test Training Test
1.93E-06 4.26E-04 3.19E-03 5.12E-03 8.72E-02
1.73E-04 2.06E-04 4.55E-04 2.54E-03 3.24E-01
9.36E-05 1.12E-04 4.30E-04 1.16E-03 2.31E-02

2.39E-05 3.01E-05 5.47E-05 4.64E-04 1.35E-02
2.03E-05 2.61E-05 6.21E-05 3.37E-04 6.71E-03

Table 12 Approximation accuracy on problem 4 (First set)

Training
Algorithm

Problem 1 Problem 2 Problem 3 Problem 4
8/10 26/60 35/40 92/100

8/10 29/60 31/40 96/100

Table 13 Number of neurons after pruning (First set)

RMSEF
md RMSED

md RMSE
D2
md

BFGS ES–
LM ES–
GNBR

CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

RMSEF
md RMSED

md RMSE
D2
md

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

S1

CFDA BFGS– p

CFDA LM– p

GNBR

156

set. However, both methods provided lower function errors and much lower first

derivative errors on the test set than any of the standard methods. The results show that the

 methods provide improved generalization capabilities, without the need of a vali-

dation set. The yielded the smallest test error on both function and the deriv-

atives, followed by and .

It is interesting to note that, the methods yielded much smaller second de-

rivative errors than in every problem, except problem 4. In problem 4, the second

derivative errors obtained from were larger than . However, after

pruning the networks, the errors became smaller. For and ,

the approximation accuracy was better on both function and derivatives (i.e. first and sec-

ond orders) than the regular methods. However, we will validate these results

again, using the second set. Among the three standard training algorithms, consis-

tently provided the smallest approximation error in every problem. Therefore, only

will be used to compare against the two methods (with and without the pruning al-

gorithm) for the remainder of this chapter.

Second Set

For each problem, a new set of Monte Carlo samples is simulated. The purpose

is to validate the efficiency of the thresholds of the pruning algorithm we specified

in the first set. Table 14 to Table 17 show the approximation accuracy obtained for each

CFDA

CFDA

CFDA LM–

CFDA BFGS– GNBR

CFDA

GNBR

CFDA BFGS– GNBR

CFDA BFGS– p CFDA LM– p

CFDA

GNBR

GNBR

CFDA

K

CFDA

157

training algorithm. Table 18 shows the median number of neurons of the final pruned net-

works for each case.

Training
Algorithm

Problem 1

Training Test Training Test
6.72E-08 3.39E-07 4.45E-06 6.08E-06 1.71E-04
1.98E-09 3.58E-09 1.47E-09 2.55E-08 7.51E-07
7.58E-10 7.91E-10 1.75E-09 5.74E-09 1.21E-07

3.67E-09 4.37E-09 1.59E-09 4.23E-08 1.00E-06
1.02E-09 1.17E-09 1.57E-09 1.07E-08 1.73E-07

Table 14 Approximation accuracy on problem 1 (Second set)

Training
Algorithm

Problem 2

Training Test Training Test
7.18E-07 2.11E-04 8.75E-03 3.40E-02 7.11E+00
2.38E-06 6.35E-06 3.84E-06 5.43E-04 1.80E-01
1.96E-07 2.40E-07 2.87E-06 7.43E-06 9.48E-04

1.42E-07 2.06E-07 1.01E-07 2.81E-05 8.21E-03
2.16E-08 2.15E-08 3.17E-07 8.72E-07 1.22E-04

Table 15 Approximation accuracy on problem 2 (Second set)

RMSEF
md RMSED

md RMSE
D2
md

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

RMSEF
md RMSED

md RMSE
D2
md

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

158

From Table 14 to Table 17, we can see that the results are consistent with the results

in the first set. More importantly, the results showed that the pruning thresholds also

worked well for this new set. The methods and consis-

tently provided lower approximation errors on both function and derivatives than the reg-

Training
Algorithm

Problem 3

Training Test Training Test
7.98E-07 2.77E-06 1.95E-04 2.26E-04 2.04E-02
3.22E-07 3.44E-07 8.24E-07 4.62E-06 3.68E-04
1.73E-07 1.76E-07 8.24E-07 2.53E-06 1.75E-04

8.66E-08 8.63E-08 1.06E-07 1.91E-06 2.14E-04
2.24E-08 2.13E-08 1.12E-07 2.87E-07 2.37E-05

Table 16 Approximation accuracy on problem 3 (Second set)

Training
Algorithm

Problem 4

Training Test Training Test
1.92E-06 3.54E-04 3.52E-03 5.01E-03 7.58E-02
1.39E-04 1.66E-04 3.60E-04 3.13E-03 2.40E-01
7.71E-05 1.04E-04 3.47E-04 1.21E-03 2.75E-02

1.15E-05 1.29E-05 2.80E-05 1.80E-04 4.16E-03
1.12E-05 1.29E-05 2.66E-05 1.73E-04 3.86E-03

Table 17 Approximation accuracy on problem 4 (Second set)

Training
Algorithm

Problem 1 Problem 2 Problem 3 Problem 4
9/10 26/60 36/40 93/100

8/10 30/60 32/40 98/100

Table 18 Number of neurons after pruning (Second set)

RMSEF
md RMSED

md RMSE
D2
md

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

RMSEF
md RMSED

md RMSE
D2
md

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

S1

CFDA BFGS– p

CFDA LM– p

CFDA BFGS– p CFDA LM– p

159

ular methods. In addition, for problem 4, although produced

higher second derivative errors than , the pruning algorithm eventually made the er-

rors smaller.

We show the RMSEs for each Monte Carlo sample in Figure 22) to Figure 25), i.e.

for , and in problem 1 to 3, and for ,

 and in problem 4. We will also show the second deriv-

ative errors for each Monte Carlo network in problem 1 and problem 4.

Figure 22) Error comparison for problem 1

CFDA CFDA BFGS–

GNBR

GNBR CFDA LM– CFDA LM– p GNBR

CFDA BFGS– CFDA BFGS– p

1 5 10 15 20 25
10

−12

10
−7

10
−2

Monte Carlo No.

Problem 1

GNBR

CFDA−LM

CFDA−LM
p

R
M

SE
F

1 5 10 15 20 25
10

−12

10
−7

10
−2

Monte Carlo No.

Problem 1

R
M

SE
D

1 5 10 15 20 25
10

−12

10
−7

10
−2

Monte Carlo No.

Problem 1

R
M

SE
D

2

160

Figure 23) Error comparison for problem 2

1 5 10 15 20 25
10

−10

10
−3

10
4

Monte Carlo No.

Problem 2

GNBR

CFDA−LM

CFDA−LM
p

R
M

SE
F

1 5 10 15 20 25
10

−10

10
−3

10
4

Monte Carlo No.

Problem 2

R
M

SE
D

1 5 10 15 20 25
10

−10

10
−3

10
4

Monte Carlo No.

Problem 2
R

M
SE

D
2

161

Figure 24) Error comparison for problem 3

1 5 10 15 20 25
10

−10

10
−4

10
2

Monte Carlo No.

Problem 3

GNBR

CFDA−LM

CFDA−LM
p

R
M

SE
F

1 5 10 15 20 25
10

−10

10
−4

10
2

Monte Carlo No.

Problem 3

R
M

SE
D

1 5 10 15 20 25
10

−10

10
−4

10
2

Monte Carlo No.

Problem 3
R

M
SE

D
2

162

Figure 25) Error comparison for problem 4

From Figure 22) to Figure 25), we can see that the methods with the pruning algo-

rithm yielded lower approximation errors than the regular algorithms in almost ev-

ery Monte Carlo sample. Only a few networks showed slightly worse approximation errors

after pruning. Two reasons could explain this. First, it could have occurred by chance (i.e.

the test errors could slightly fluctuate up and down, even without pruning, when continuing

training around the local minimum). Second, the retraining process yielded a new local

minimum. Recall that one of the criteria to terminate the retraining process is when the

 performance index reaches the same value as before the network is pruned. This

means that the function errors could be higher, while the first derivative errors could be

lower than those before pruning (or vice versa). It is worth noting that, in problem 4,

1 5 10
10

−6

10
−2

10
2

Monte Carlo No.

Problem 4

GNBR

CFDA−BFGS

CFDA−BFGS
p

R
M

SE
F

1 5 10
10

−6

10
−2

10
2

Monte Carlo No.

Problem 4

R
M

SE
D

1 5 10
10

−6

10
−2

10
2

Monte Carlo No.

Problem 4
R

M
SE

D
2

CFDA

CFDA

CFDA

163

 produced worse second derivative errors than in almost every

Monte Carlo trial. However, the pruning algorithm made the errors smaller for every Monte

Carlo trial.

The results in this section indicated that the methods with the pruning algo-

rithm yielded the most accurate approximation, followed by the regular methods

and the standard training algorithms. Of all the methods tested, with pruning

yielded the most accurate networks. In the next section, we will demonstrate some exam-

ples, which were selected from this section, to show the overfitting and how the

pruning algorithm eliminates them.

Elimination of CFDA Overfitting

This section provides some examples that demonstrate the overfitting and

show how the pruning algorithm removes them. The plots are generated from some net-

works selected from one of the two sets of the Monte Carlo networks. There are two parts

in this section. Each part will illustrate one type of overfitting and demonstrate how

the pruning algorithm removes it. We will start with and then .

Type A

We will show two examples. First is the overfitting that occurs in problem 2 with a

network trained by . The second is from problem 4 with a network trained by

.

For the overfitting in problem 2, Figure 26) shows the true function, its first deriv-

ative and the function and derivative responses of the network trained by .

CFDA BFGS– GNBR

CFDA

CFDA

CFDA LM–

CFDA

CFDA

K

CFDA

Type A– Type B–

CFDA LM–

CFDA BFGS–

CFDA LM–

164

Figure 26) Overfitting in the function and derivative responses

The function and derivative errors are shown in Figure 27). We can see that the errors were

small everywhere, except over a very tiny region. The large errors occur between training

data. Since the area in the input space having the overfitting is very small, a validation set

would not be able to detect this. The symbol represents the location of training points.

Figure 27) Function and first derivative errors

Figure 28) and Figure 29) show how the overfitting occurred. The pruning algo-

rithm indicated that the overfitting was produced by three neurons with responses shown in

Figure 28). We can see that two of the three neurons have extremely large slope, while the

other one is smaller to compensate the difference between the two. Notice also that the cen-

ters of these neurons are close together.

0 0.5 1
−1

0

1

p

g1∂ p∂⁄
a1∂ p∂⁄

0 0.5 1
−40

0

40

p

g1∂ p∂⁄
a1∂ p∂⁄

×

0 0.5 1
−0.1

0

0.1
Before pruning

p

e1

0 0.5 1
−15

0

15
Before pruning

p

p∂
∂e1

165

Figure 28) Responses of the three neurons

When combining the responses of these three neurons, we obtain Figure 29).

Figure 29) The combined responses of the three neurons

We can see from Figure 29) that the combined response is very small everywhere, except

where the overfitting occurs. In that region, the responses of the three neurons did not can-

cel, thus yielding a large residual. By removing these three neurons, as indicated by the

pruning algorithm, the function and derivative errors right after pruning (without any

 retraining) are shown in Figure 30). The figure has two rows, both are the same but

different in scale. The first row uses the same scale as Figure 27), while the second row uses

a smaller scale.

0 0.5 1
−2

0

2

p

yi

0 0.5 1
−300

0

300

p

p∂
∂yi

0 0.5 1
−0.1

0

0.1

p

yi
i P∈
∑

0 0.5 1
−15

0

15

p

p∂
∂yi

i P∈
∑

CFDA

166

Figure 30) Function and derivative errors, right after pruning (with no retraining)

From Figure 30) in the first row, we can see that the pruning algorithm got rid of

the overfitting. However, pruning the network caused worse approximation at some train-

ing points. Therefore, a retraining process after pruning is needed. Figure 31) shows the

function and derivative errors of the final retrained network. The figure shows the errors in

the same scale as the figure in the second row of Figure 30).

0 0.5 1
−0.1

0

0.1
Right after pruning

p

e1

0 0.5 1
−15

0

15
Right after pruning

p

p∂
∂e1

0 0.5 1
−1

0

1
x 10

−3 Right after pruning

p

e1

0 0.5 1
−0.025

0

0.025
Right after pruning

p

p∂
∂e1

167

Figure 31) Function and derivative errors of the final network

We can see that we obtained much lower errors after the network was pruned. The approx-

imation was smoother, and the second derivative errors were also lower after pruning.

Next, we will demonstrate the overfitting in problem 4, which has two inputs. Fig-

ure 32) illustrates the function error and the first derivative error with respect to each input

of the network trained by .

0 0.5 1
−1

0

1
x 10

−3 After pruning and retraining

p

e1

0 0.5 1
−0.025

0

0.025
After pruning and retraining

p

p∂
∂e1

CFDA BFGS–

168

Figure 32) Function and derivative errors

We can see from Figure 32) that the errors were small everywhere, except where the over-

fitting occurred (which was along a line). We emphasize again that, since the regions where

the large errors occur is very small, the use of a validation set would not be able to detect

this. The pruning algorithm indicated that two neurons whose centers are almost parallel

caused the overfitting. Their responses are shown in Figure 33).

p1
p2

e1

p1
p2

p1∂
∂e1

p1
p2

p2∂
∂e1

169

Figure 33) Responses of the two neurons

From Figure 33), their slopes were very large, almost the same size with opposite sign.

When combining their responses, we obtain Figure 34).

p1
p2

yi

p1
p2

p1∂
∂yi

p1
p2

p2∂
∂yi

170

Figure 34) The combined responses of the two neurons

Figure 34) shows that the responses of the two neurons cancel everywhere, except in the

region close to the neurons’ centers, which is the region where the overfitting occurred. The

function and derivative errors right after pruning these two neurons from the network (with-

out a retraining) are shown in Figure 35).

p1
p2

yi
i P∈
∑

p1
p2

p1∂
∂yi

i P∈
∑

p2 p1

p2∂
∂yi

i P∈
∑

CFDA

171

Figure 35) Function and derivative errors, right after pruning (with no retraining)

From Figure 35), we can see that the overfitting disappeared (even without retrain-

ing). This is because the pruning algorithm correctly identified and removed the neurons

producing the overfitting. Figure 36) shows the errors of the final trained network.

e1

p1∂
∂e1

p2∂
∂e1

172

Figure 36) Function and derivative errors of the final network

With retraining after pruning, the final network produced a very smooth response on both

the function and its derivatives. The generalization ability of the network after pruning was

improved.

Next, some examples with overfitting will be demonstrated.

Type B

Two examples will be provided. First is from a network for problem 3. The second

network is for problem 4 (which has two input variables). Both networks were trained by

.

For the network with overfitting in problem 3, Figure 37) shows the func-

tion and derivative errors.

p1
p2

e1

p1
p2

p1∂
∂e1

p2 p1

p2∂
∂e1

Type B–

CFDA BFGS–

Type B–

173

Figure 37) Function and derivative errors

We can see from the figure that the function error had a step at a point, whereas the deriv-

ative error spiked. The step in the function error demonstrated that, even on training points

where , the training process misfits the function. The pruning algorithm indicated

that there was one neuron causing the overfitting. Its responses are shown in Figure 38).

Figure 38) Responses of the neuron causing the overfitting

From Figure 38), we can see that the neuron produced a very sharp step in the function re-

sponse, with a small step size. This implies the first-layer weight is large, while the second-

layer weight is small. Figure 39) shows the function and derivative errors right after prun-

ing the neuron (without a retraining).

−1 0 1
−2

0

2
x 10

−7 Before pruning

p

e1

−1 0 1
−2.5

0

2.5
x 10

−5 Before pruning

p

p∂
∂e1

p 0.6–<

−1 0 1
−2

0

2
x 10

−7

p

yi

−1 0 1
−2.5

0

2.5
x 10

−5

p

p∂
∂yi

CFDA

174

Figure 39) Function and derivative errors, right after pruning (with no retraining)

From Figure 39), we can see that right after pruning the neuron, the network responses were

automatically improved. That is, the step in the function response observed in Figure 37)

was smaller, while the spike in the derivative error disappeared. Figure 40) shows the errors

of the final trained network.

Figure 40) Function and derivative errors of the final network

As shown in Figure 40), the responses of the final network were more accurate on both the

function and its derivatives.

Next, we will illustrate overfitting in problem 4. Figure 41) shows the

function and derivative errors of the network, trained by .

−1 0 1
−2

0

2
x 10

−7 Right after pruning

p

e1

−1 0 1
−2.5

0

2.5
x 10

−5 Right after pruning

p

p∂
∂e1

−1 0 1
−2

0

2
x 10

−7 After pruning and retraining

p

e1

−1 0 1
−2.5

0

2.5
x 10

−5 After pruning and retraining

p

p∂
∂e1

type B–

CFDA BFGS–

yi

175

Figure 41) Function and derivative errors

From Figure 41), we can see that the errors were, although small, very jagged. The pruning

algorithm indicated that 15 neurons were involved in the overfitting. We will, however,

show only the response of three neurons, causing overfitting at three different locations, in

Figure 42).

p1
p2

e1

p1
p2

p1∂
∂e1

p1
p2

p2∂
∂e1

176

Figure 42) Responses of the three neurons

From Figure 42), we can see that these three neurons had small but very sharp steps

in the function response. This corresponds to the small spikes in the derivative response.

The combined responses of these 15 neurons are shown in Figure 43).

p1
p2

yi

p1
p2

p1∂
∂yi

p1
p2

p2∂
∂yi

177

Figure 43) The combined responses of the 15 neurons

We can see from Figure 43) that the combined response of these neurons generated the

jagged network responses. By removing these 15 neurons from the network, the function

and derivative errors after pruning (without a retraining) are shown in Figure 44).

p2 p1

yi
i P∈
∑

p2 p1

p1∂
∂yi

i P∈
∑

p2 p1

p2∂
∂yi

i P∈
∑

CFDA

178

Figure 44) Function and derivative errors, right after pruning (with no retraining)

We can see from Figure 44) that the responses after pruning the network were smoother

(even without a retraining), with all the jagged response removed. The responses of the fi-

nal trained network are shown in Figure 45).

p1
p2

e1

p1
p2

p1∂
∂e1

p1
p2

p2∂
∂e1

179

Figure 45) Function and derivative errors of the final network

Figure 45) shows that the final network produced much smoother responses than the net-

work before pruning.

We will provide a summary of this chapter next.

Summary

In this chapter, seven different algorithms for training neural networks were tested

on four simple problems. The seven training algorithms consist of , ,

, , , and . The goal

was to compare the approximation accuracy obtained from each training algorithm. We

proposed to measure the approximation accuracy by using RMSE on functions and their

p2 p1

e1

p2 p1

p1∂
∂e1

p2 p1

p2∂
∂e1

BFGS ES– LM ES–

GNBR CFDA BFGS– CFDA LM– CFDA BFGS– p CFDA LM– p

180

first and the second derivatives. The effect of the parameter in the method was

also analyzed, and was defined so as to account for the scale difference between the val-

ues of the function and the values of the first-order derivatives. An automated procedure

was developed so that could be automatically set for any problem.

The test results showed that, among the three standard training algorithms,

yielded best approximation accuracy on both training and test sets. The

and method provided even better approximation accuracy on the test set than

the other three standard training methods. In fact, the derivative approximation errors were

usually one or two orders of magnitude smaller when using the methods.

The results also showed that the training algorithms with pruning (i.e.

 and) yielded even more precise approximation than the

regular algorithms. The pruning algorithm not only provided more accurate func-

tion and the first derivative approximation, but also it produced smoother responses, as the

second derivative errors were significantly reduced. We also provided some examples

showing the two types of overfitting and how the pruning algorithm eliminates

them, for both single and multiple inputs.

Among the training algorithms tested, produced the best approxima-

tion accuracy.

ρ CFDA

ρ

ρ

GNBR

CFDA BFGS–

CFDA LM–

CFDA

CFDA

CFDA BFGS– p CFDA LM– p

CFDA

CFDA

CFDA LM– p

181

CHAPTER 8

A REAL-WORLD APPLICATION

Introduction

This chapter serves two purposes. First, we will introduce a real-world application

where neural networks can be used to approximate both a function and its first-order deriv-

atives. This application is in the field of Molecular Dynamics. We will review the general

concept of molecular dynamics, followed by a description of how neural networks can be

used in molecular dynamics. Second, the approximation accuracy of neural networks

trained by five training algorithms: , , ,

 and will be shown for three molecular-dynamics prob-

lems. An example showing the overfitting (discussed in Chapter 6) in molecular

dynamics and how the pruning algorithm works will also be illustrated.

Molecular Dynamics with Neural Networks

In Molecular Dynamics (MD), the motion of atoms and molecules in a material un-

der a given force are simulated, using known laws of physics to calculate the forces on in-

dividual atoms. This section will provide a basic review of molecular dynamics. For further

details on molecular dynamics, books such as [Raff01] and [Stei85] are recommended. We

will start by reviewing Hamilton’s equations of motion in classical mechanics. Then, the

GNBR CFDA BFGS– CFDA LM–

CFDA BFGS– p CFDA LM– p

CFDA

182

well-known stationary-state equation of quantum mechanics will be briefly

described. An additional assumption, the Born-Oppenheimer approximation, which is used

to numerically solve the stationary-state equation, will be also reviewed. Fi-

nally, we will discuss a general framework for molecular dynamics.

Classical mechanics: Hamilton’s equation of motion

For any isolated system consisting of particles, the classical Newtonian equa-

tions of motion can be used to describe the behavior of all the particles. From the three fun-

damental Newtonian postulates, the behavior of any particle in the system is described by

the Newtonian equations of motion. For example, if the system is referred in the Cartesian

coordinate system, the Newtonian equations of motion for particle are in the form:

, and , (307)

where is the mass of particle , and denotes time. The variables , and are

the positions of particle along the , and directions, respectively. The term is the

potential energy of the system, and it is a function of the position of all particles, i.e.

. The potential energy is related to the force field act-

ing on particle in the , and direction by:

 and (308)

respectively.

It is useful to express the Newtonian equations in the Hamiltonian form:

Schro··dinger

Schro··dinger

K

k

mk
t2

2

d

d xk
xk∂

∂V+ 0= mk
t2

2

d

d yk
yk∂

∂V+ 0= mk
t2

2

d

d zk
zk∂

∂V+ 0=

mk k t xk yk zk

k x y z V

V x1 y1 z1 x2 y2 z2 … xK yK zK, , , , , , , , ,()

k x y z

Fxk xk∂
∂V ,–= Fyk yk∂

∂V–= Fzk zk∂
∂V ,–=

183

(309)

where is the total energy of the system, which consists of the kinetic energy and the

potential energy . The kinetic energy depends on the velocities of the particles, and the

potential energy depends on the positions of the particles, where and are the velocity

and the position of particle .

For example, in Cartesian coordinates, the kinetic energy is in the form:

(310)

where , , represent the momentum of particle with mass and the veloci-

ties , , , along the , and coordinates, respectively. From Eq. (309) and Eq.

(310), we obtain the classical Hamilton’s equations of motion for particle :

(311)

 (312)

(313)

(314)

T v1 v2 … vK, , ,() V s1 s2 … sK, , ,()+ E ,=

E T

V K

vk sk

k

T 1
2
---mk vxk

2 vyk

2 vzk

2+ +()

k 1=

K

∑
1

2mk
--------- pxk

2 pyk

2 pzk

2+ +() ,
k 1=

K

∑= =

pxk
pyk

pzk
k mk

vxk
vyk

vzk
x y z

k

pxk
∂
∂E pxk

mk
------- vxk td

dxk ,= = =

pyk
∂
∂E pyk

mk
------- vyk td

dyk ,= = =

pzk
∂
∂E pzk

mk
------ vzk td

dzk ,= = =

xk∂
∂E

xk∂
∂V Fxk

– td

dpxk ,–= = =

184

 (315)

 (316)

It should be noted that, although written in Cartesian coordinates, Eq. (311) to Eq. (316)

hold regardless of the coordinate system used [Raff01], see the proof in [Arya90].

If we know the positions, the velocities of all particles at a particular time and the

functional form of , we can compute the entire future and past behavior of the system (i.e.

, and) by solving the Newtonian or the Hamilton’s equations of motion.

Quantum mechanics: The equation

In an isolated molecular system, electrons and nuclei are considered particles. The

classical Hamilton’s equations of motion, however, fail to explain the behavior of the par-

ticles, e.g. the behavior that the electron can stay in its orbital in a Hydrogen atom. Quantum

theories were then developed, in order to provide a better explanation of the particles’ be-

havior. The theories are based upon the fundamental postulates of quantum mechanics. The

postulates allow the existence of the wave function that follows certain mathematical prop-

erties. The wave function becomes a mathematical tool to provide a complete description

of how the particles behave. In 1926, showed how the wave function

can evolve over time. Similar to the classical Hamiltonian, showed that the

quantum mechanical Hamiltonian is the operator acting upon the wave function:

(317)

yk∂
∂E

yk∂
∂V Fyk

– td

dpyk ,–= = =

zk∂
∂E

zk∂
∂V Fzk

– td

dpzk .–= = =

V

xk t() yk t() zk t()

Schro··dinger

Erwin Schro··dinger

Schro··dinger

Hψ q t,() Eψ q t,() ,=

185

where is the wave function of a molecular system, denotes the positions of all

the particles in the coordinates used. Eq. (317) is called the time-dependent

equation. The quantum mechanical Hamiltonian and the total energy operators are:

 and . (318)

The notation is the imaginary unit, and is the Planck’s constant. The term

 is the time-dependent electric potential energy. The kinetic energy operator is

in the form (in SI unit):

(319)

where is the Laplacian operator (i.e. the second-order partial derivatives with respect

to the coordinates for particle). For example, in Cartesian coordinates, we then have

 and is in the form:

. (320)

From Eq. (317), when solved, it yields the wave function .

For many problems, the electric potential energy does not depend on time, writ-

ten . In addition, assume that the wave function can be separable and written as

. (321)

By substituting Eq. (321) into Eq. (317) and solving it, the wave function is obtained:

ψ q t,() q

Schro··dinger

H E

H T V q t,()+= E ih̃ t∂
∂=

i h̃ h 2π⁄= h

V q t,() T

T h̃2

2mk
---------∇k

2–
k 1=

K

∑ ,=

∇k
2

k

q x1 y1 z1 x2 y2 z2 … xK yK zK, , , , , , , , ,()= T

T h̃2

2mk

xk
2

2

∂

∂

yk
2

2

∂

∂

zk
2

2

∂

∂+ +
⎝ ⎠
⎜ ⎟
⎛ ⎞

–
k 1=

K

∑=

ψ q t,()

V

V q()

ψ q t,() φ q()ϕ t()=

186

, (322)

where is a constant and the real constant is

(323)

By using Eq. (322), it has been shown that the constant is the expected total energy of

the system operating on the wave function, denoted by :

, (324)

where is the volume over the coordinates , e.g. if the Cartesian coor-

dinate is used. is the complex conjugate of . Since is the expected total

energy of the system, it is customary to write Eq. (323) in the form:

, (325)

and this is called the stationary-state equation. When Eq. (325) is solved, it

yields the wave function . Then, by Eq. (322), the time-dependent wave function

 is finally obtained.

The stationary-state equation can be analytically solved only in very

simple problems, such as the system consisting of one Hydrogen atom (see [Raff01] for de-

tails), or the problem of a particle in a box (see [Matt93] for details and more problems). It

is impossible to analytically solve Eq. (325) for more complex systems. An approximation

to the solution is needed.

ψ q t,() Cφ q() iEt
h̃

-------–⎝ ⎠
⎛ ⎞exp=

C E

E Hφ q()
φ q()

---------------- .=

E

E〈 〉

E〈 〉
ψ∗ q t,()Eψ q t,() τd∫
ψ∗ q t,()ψ q t,() τd∫

--- E= =

dτ q dτ dxdydz=

ψ∗ q t,() ψ q t,() E

Hφ q() Eφ q()=

Schro··dinger

φ q()

ψ q t,()

Schro··dinger

187

To obtain approximated solutions of Eq. (325) for a general system, further assump-

tions and numerical methods are needed. Before introducing the assumptions, let us rewrite

the stationary-state equation in a more general form. Consider an -particle

system consisting of electrons and nuclei, i.e. . Let be the vector rep-

resenting the position of electron , and be the vector representing the position of nucle-

us . The Hamiltonian operator in Eq. (325) can be rewritten as:

, (326)

where, from Eq. (319),

 and (327)

are the kinetic energy operator of all electrons and that of all nuclei, respectively. The term

 is the mass of electron , and is the mass of nucleus . The Laplacian operator in

 and is with respect to and , respectively. The electric potential energy

can be computed, by the Coulomb’s law, in SI unit as:

(328)

where is the permittivity of the vacuum, and is the charge magnitude (electrons and

Schro··dinger N

L K N L K+= rl

l sk

k

H Te Tn V r s,()+ +=

Te
h̃2

2ml
---------∇l

2

l 1=

L

∑–= Tn
h̃2

2Mk
----------∇k

2

k 1=

K

∑–=

ml l Mk k

Te Tn rl sk V r s,()

V r s,() Vne r s,() Vee r() Vnn s()+ +=

Zk e2

4πε0 sk rl–

l 1=

L

∑
k 1=

K

∑– 1
2
--- e2

4πε0 rl rl'–

l' l 1+=

L

∑
l 1=

L 1–

∑+=

1
2

ZkZk' e
2

4πε0 sk sk'–

k' k 1+=

K

∑
k 1=

K 1–

∑ ,+

ε0 e

188

protons have equal charge magnitudes that are opposite in sign). The term is elec-

tron-nuclei attraction, the term is electron-electron repulsion, and the term

is nuclei-nuclei repulsion. The notation is the 2-norm of the vector , or the distance

between the two vectors in the 2-norm. The notation is the atomic number of nucleus

. In atomic units, Eq. (327) reduces to:

 and (329)

while Eq. (328) reduces to

(330)

To numerically solve Eq. (325), a well-known assumption, called the Born-Oppen-

heimer approximation, is first needed. We will discuss the Born-Oppenheimer approxima-

tion in the next section.

Born-Oppenheimer Approximation

To solve Eq. (325) numerically, Max Born and Robert J. Oppenheimer first as-

sumed that the wave function can be separable to

, (331)

where the electronic wave function is a function of electron coordinates and it

depends parametrically on . This means that, at a fixed nuclear position , the electronic

wave function depends only on the coordinates ; however, the shape of the electronic

Vne r s,()

Vee r() Vnn s()

x x

Zk

k

Te
1
2
---∇l

2

l 1=

L

∑–= Tn
1

2Mk
----------∇k

2

k 1=

K

∑– ,=

V r s,()
Zk

sk rl–

l 1=

L

∑
k 1=

K

∑– 1
2
--- 1

rl rl'–
------------------- 1

2

ZkZk'
sk sk'–

k' k 1+=

K

∑
k 1=

K 1–

∑ .+
l' l 1+=

L

∑
l 1=

L 1–

∑+=

φ r s,()

φ r s,() φe r s;()φn s()≈

φe r s;() r

s s

r

189

wave function is changed as the nuclei’s position changes. The term is the nuclear

wave function, depending only on the position of all nuclei. From Eq. (325) to Eq. (331),

Eq. (325) can be written as:

. (332)

From Eq. (332), first note that, since is the operator only on , then

. (333)

In addition, recall from Eq. (329) that is the second order derivative operator, thus

(334)

Here comes the second approximation. Born and Oppenheimer used that fact that

nuclei are much heavier than electrons, i.e. . This assumption makes the bracket-

ed term in Eq. (334) negligible (see [Stei85]); resulting in

. (335)

Plugging Eq. (333) and Eq. (335) into Eq. (332), and rearranging the terms, we obtain

(336)

For a fixed position of nuclei , the third term in Eq. (336) depends only on the elec-

tron coordinates . This forms the electronic equation:

, (337)

s φn s()

Te Tn Vne r s,() Vee r() Vnn s()+ + + +[]φe r s;()φn s() Eφe r s;()φn s()=

Te r

Teφe r s;()φn s() φn s()Teφe r s;()=

Tn

Tnφe r s;()φn s() φe r s;()Tnφn s()=

1
2Mk
---------- 2∇kφn s()∇kφe r s;() φn s()∇k

2φe r s;()+{ }
k
∑⎝ ⎠
⎜ ⎟
⎛ ⎞

 .–

Mk ml>>

Tnφe r s;()φn s() φe r s;()Tnφn s()≈

φe r s;()Tnφn s() Vnn s()φe r s;()φn s() φn s() Te Vne r s,() Vee r()+ +[]φe r s;()+ +

Eφe r s;()φn s() .=

s̃

r Schro··dinger

Te Vne r s̃;() Vee r()+ +[]φe r s̃;() Heφe r s̃;() Ee s̃()φe r s̃;()= =

190

where the real constant is the expected electronic energy at the given nuclear posi-

tion . It should be noted that, although written as a function of nuclear position, this energy

value changes as the nuclear configuration (i.e. distances and/or angles between nuclei)

changes. This means that two different nuclear positions with the same nuclear configura-

tion produce the same value of the electronic energy. We will mention this point again

when we want to rewrite the energy as the function of nuclear configuration, rather than the

nuclear position. Similar to Eq. (324), the term can then be computed by:

(338)

By substituting Eq. (337) into Eq. (336), we obtain

(339)

and rearranging Eq. (339) yields the nuclear equation:

, (340)

where the term is the expected total energy at the fixed nuclear position . Eq. (340)

implies that the nuclei are considered to be moving in the potential generated by the moving

electrons and the nuclei repulsion . Note again that the energy and the

nuclei repulsion change as the nuclear configuration changes.

The steps for solving Eq. (325) using the Born-Oppenheimer approximation can be

summarized as follows. First, assume Eq. (331). Second, the nuclei are considered to be

Ee s̃()

s̃

Ee s̃()

Ee s̃()
φe∗ r s̃;()Heφe r s̃;() rd∫
φe∗ r s̃;()φe r s̃;() rd∫

-- .=

φe r s̃;()Tnφn s̃() Vnn s̃()φe r s̃;()φn s̃() φn s̃()Ee s̃()φe r s̃;()+ +

E s̃()φe r s̃;()φn s̃()= ,

Schro··dinger

Tn Vnn s̃() Ee s̃()++[]φn s̃() Hnφn s̃() E s̃()φn s̃()= =

E s̃() s̃

Ee s̃() Vnn s̃() E s̃()

Vnn s̃()

191

fixed at a configuration . Third, solve the electronic equation, i.e Eq. (337),

and obtain from Eq. (338). Fourth, use and solve the nuclear

equation, i.e. Eq. (340). Finally, infinitesimally change the nuclear configuration and repeat

the procedure.

With the assistance of the Born-Oppenheimer approximation, we are now ready to

explain molecular dynamics.

Molecular Dynamics

In molecular dynamics, the motion of atoms is of interest. By the Born-Oppenhe-

imer approximation, this is equivalent to changing nuclei position in the potential of the

moving electrons and nuclei repulsion. However, to perform molecular dynamics, we need

further approximations. First, recall that we need to solve using Eq. (338). Unfortu-

nately, we cannot analytically solve it, since the electronic wave function is un-

known. One way to overcome this problem is to create a predefined mathematical model

for the electronic wave function. Let represent the mathematical model used in

approximating the true electronic wave function . The model is a func-

tion of all of the electrons’ position and a set of model parameters , at the fixed nuclei

position . We use to notation to represent the expected electronic energy of the

system using the guessed model . Similar to Eq. (340), is then comput-

ed by:

s̃ Schro··dinger

Ee s̃() Ee s̃() Schro··dinger

Ee s̃()

φe r s̃;()

ϒ r Ω s;,()

φe r s;() ϒ r Ω s̃;,()

r Ω

s̃ Ee
ˆ s̃ Ω,()

ϒ r Ω s̃;,() Ee
ˆ s̃ Ω,()

192

(341)

Nature always adjusts the electrons in the most stable orbitals possible, thus its true energy

is lowest. Therefore, for any values of ,

, (342)

and the equality holds when . This inequality is called Rayleigh-Ritz

Variational Principle. Hence, given the nuclei position , we adjust the parameters in

the model so as to minimize the energy . This is an optimization pro-

cess, with respect to the parameters in the model . Once minimized, we obtain

, i.e. that produces the minimum value of . We use and to

denote the model and the value of , evaluated at . The energy

approximates the true electronic energy of the system . Examples of models that have

been used for approximating the electronic wave function are Slater type orbitals (STO)

and Gaussian type orbitals (GTO). There are several methods that have been used to obtain

 and , such as the Hartree-Fock method and the electron correlation methods (e.g.

-Plesset Perturbation theory (MP) [MoPl34], and the density functional theory

(DFT) [HoKo64]). The details of the models and methods can be found in Chapter 14 in

[Raff01]. To solve using Eq. (341), some models provide the solution in analytic

form. For the models that do not provide the analytic form of solution, numerical integra-

Ee
ˆ s̃ Ω,()

ϒ∗ r Ω s̃;,()Heϒ r Ω s̃;,() rd∫
ϒ∗ r Ω s̃,()ϒ r Ω s̃;,() rd∫

-- .=

Ω

Ee
ˆ s̃ Ω,() Ee s̃()≥

ϒ r Ω s̃;,() φe r s̃;()=

s̃ Ω

ϒ r Ω s̃;,() Ee
ˆ s̃ Ω,()

Ω ϒ r Ω s̃;,()

Ω∗ Ω Ee
ˆ s̃ Ω,() ϒ r s̃;() Ee

ˆ s̃()

ϒ r Ω s̃;,() Ee
ˆ s̃ Ω,() Ω∗ Ee

ˆ s̃()

Ee s̃()

Ω∗ Ee
ˆ s̃()

M∅ller

Ee
ˆ s̃()

193

tion is needed.

In addition to the electronic energy approximation, we also need one more approx-

imation to perform molecular dynamics. Recall that once obtaining the electronic energy

 (which is now estimated by), we need to solve Eq. (340). However, in molec-

ular dynamics, we rather assume that the nuclei motion is treated using classical Newtonian

equations of motion. From Eq. (307) and Eq. (340), this means that we treat the nuclei as

classical particles in the potential energy . For nucleus , this takes the

form:

. (343)

The first term is simply , where is the acceleration of nucleus in the coordinates

used. The computation for the term is straightforward, using Eq. (330). The

term can be computed by considering at a fixed nuclei position and calcu-

lating

, (344)

where

. (345)

Again, numerical integration is needed to solve Eq. (344), unless the analytic form of solu-

Ee s̃() Ee
ˆ s̃()

Vnn s() Ee
ˆ s()+ k

Mk
t2

2

d

d sk

sk∂
∂ Vnn s() Ee

ˆ s()+{ }+ 0=

Mkak ak k

Vnn s()∂ sk∂⁄

Ee
ˆ s()∂ sk∂⁄ s̃

sk∂
∂ Ee

ˆ s̃()
sk∂
∂ Ee

ˆ s()

s s̃=

≡

ϒ∗ r s̃;()
sk∂
∂ Vne r s̃;()⎝ ⎠

⎛ ⎞ ϒ r s̃;() rd∫
ϒ∗ r s̃;()ϒ r s̃;() rd∫

---=

sk∂
∂ Vne r s̃;()

sk∂
∂ Vne r s;()

s s̃=

≡

194

tion exists (and this depends on the model used). Similar to Eq. (308), the force field acting

on the nucleus , at the nuclei position , is

 (346)

where is the nuclear potential energy:

. (347)

Before summarizing the steps for molecular dynamics, first consider Eq. (343). In-

tegrating the equation yields the velocity and position of each nucleus (or equivalently each

atom). Several well-known algorithms have been used to perform the numerical integra-

tion, for example Verlet algorithm [Verl67], Leapfrog algorithm [Finc92], velocity Verlet

algorithm [SwAn82], Beeman’s algorithm [Beem76].

The steps of molecular dynamics can be summarized as follow, for a system con-

sisting of nuclei (or atoms) and electrons. Suppose Beeman’s algorithm is used for

numerically integrating the classical Newtonian equation of motion.

1. Initialize, for atom for all , the position and velocity

over the coordinates used. Initialize . Set and time . Choose small

time step (e.g.).

2. Given , i.e. the position for all , we obtain by minimizing Eq.

(341) with respect to .

k s̃

Fk s̃()
sk∂
∂ V s()

s s̃=

– ,=

V s()

V s() Vnn s() Ee
ˆ s()+=

K L

k k 1 2 … K, , ,= sk
0() vk

0()

ak
1–() 0= n 0= t 0=

t∆ t∆ 10 7–=

s n() sk
n() k Ee

ˆ s n()()

Ω

195

3. Compute using Eq. (328). Then, obtain the nuclear potential energy

 using Eq. (347).

4. Calculate the force field , for all , by Eq. (344) and Eq. (346).

5. The acceleration can be computed by , where is the

mass of nucleus .

6. For all , move atom , using Beeman’s algorithm, by:

. (348)

7. Perform step 2) to step 5) with given, and obtain (this is a part of

Beeman’s algorithm).

8. Update the velocity for all , by Beeman’s algorithm:

. (349)

9. Move time forward: . Set .

10. Repeat step 2) to step 9) as long as we need.

Note that, it is common to write the potential energy as a function of nuclear configuration,

rather than the nuclei position (i.e. the potential value is the same for the same configura-

tion, regardless where the system is). This means that we can write the nuclear potential

energy as , for the nuclear configuration (i.e. distances and/or angles between

nuclei) associated with the nuclei position . The force field acting on the nucleus , as

Vnn s n()()

V s n()()

Fk s n()() k

ak
n() ak

n() Fk s n()() Mk⁄= Mk

k

k k

sk
n 1+() sk

n() vk
n() t∆ 2

3
---ak

n() t∆()2 1
6
---ak

n 1–() t∆()2–+ +=

sk
n 1+() ak

n 1+()

k

vk
n 1+() vk

n() 1
3
---ak

n 1+() t∆ 5
6
---ak

n() t∆ 1
6
---ak

n 1–() t∆–+ +=

t t t∆+= n n 1+=

V h n()() h n()

s n() k

196

calculated by Eq. (346), can then be computed using the chain rule of calculus:

. (350)

Thus, we write the force field acting on the system:

. (351)

This molecular dynamics procedure is generally called ab initio quantum dynamics (or di-

rect dynamics). Since it involves an optimization process in every iteration, the method is

very time-consuming. Although involving with many approximations to obtain the nuclear

potential energy and the force field , they are currently considered to be the

most accurate simulations. Note that the process to obtain the nuclear potential energy, i.e.

Eq. (330), Eq. (341) and Eq. (347), and the force field, i.e. Eq. (344) and Eq. (351), at a

certain nuclear configuration, is called ab initio quantum calculation.

Another method, which is much faster than direct dynamics, is to create an analytic

empirical nuclear potential energy surface. There are several well-known surfaces avail-

able, e.g. the Tersoff model for Carbon [Ters88] and for Silicon [Ters89], the Finnis-Sin-

clair model for metals and alloys [FiSi84], or the Morse potential for covalently bonded

diatomic molecules [Mors29]. Molecular dynamics is then performed on the empirical sur-

face, where the forces can be obtained by calculating the analytic derivatives of the surface

with respect to the distances and/or angles between nuclei.

Another approach is to evaluate the nuclear potential energy and the force field

 only at the nuclear configurations of interest. The energy surface can be then fitted based

sk∂
∂ V s n()()

sk∂
∂ V h n()()

h∂
∂ V h n()()– sk∂

∂h

s s n()
=

×= =

F h n()()
h∂
∂ V h n()()–

h∂
∂ V h()

h h n()
=

–= =

V h() F h()

V

F

197

on the data. Subsequently, the molecular dynamics can be performed on the fitted surface.

However, it is not easy to determine which part of the configuration hyperspace we should

evaluate. This problem can be overcome by first performing the molecular dynamics pro-

cess on an analytic empirical surface, then select only the configurations of interest. After

obtaining the configurations of interest, the quantum calculation is then performed only for

these configurations. Then, based on the data from the quantum calculation, the energy sur-

face can be created by nonlinear regression. Once the surface is created, the dynamics can

be performed. It should be noted that the accuracy of the dynamics depends on the force

field , since the force determines the future configuration of the system.

Since the MFNN is a universal approximator [HoSt89], it can be used to create the

energy surface based on the data from quantum calculations. Let denote the ener-

gy surface formed by a neural network, whose inputs are the nuclear configuration. Several

authors, for example [RaMa05], [AgSa05] and [AgRa06], used neural networks trained by

a standard training algorithm to produce the energy surface, by fitting only on the potential

energy. To perform dynamics, the force field in [AgRa06] was approximated by numerical

differentiation on the surface .

In this research, we are using neural networks to fit not only the potential energy,

but also the force field simultaneously. The conditions that allow us to do this were dis-

cussed in Chapter 2. We will then compare the approximation accuracy of the energy sur-

face obtained from neural networks trained by , and ,

where the force field is computed by differentiating the energy surface network

F

VNN h()

VNN h()

GNBR CFDA BFGS– CFDA LM–

VNN h()

198

with respect to the distances and/or angles, i.e. . See Eq. (114)

in Chapter 4 for how to differentiate the networks. This means that we are going to compare

the accuracy of neural networks trained by the three algorithms in approximating the po-

tential energy (i.e. function) and the force fields (i.e. the negative of the first-order deriva-

tives). Note that we will not perform dynamics in this research, as the goal is to approximate

the energy surfaces by neural networks. To perform dynamics on the created energy sur-

faces, the potential energy can be obtained by evaluating . The forces can be com-

puted by using Eq. (350) and Eq. (351), with replaced by and replaced

by . It should be noted that the accuracy of dynamics depends on the approximation

accuracy of the energy surface (i.e. the potential energy and the force fields). In this exper-

iment, we will approximate the energy surfaces of three compounds: , and .

In the next section, we will illustrate the accuracy of the potential energy and the

force field approximated by neural networks trained with , ,

, and for the three different molecular sys-

tems: , and .

Simulation results

This section is divided into two main parts. First, the approximation accuracy of the

energy surface and the force field produced by neural networks trained by five training al-

gorithms will be compared on three molecular dynamics problems, which are , and

. The five training algorithms are (see Chapter 2), (see

FNN h() VNN h() h∂⁄∂–=

VNN h()

V h() VNN h() F h()

FNN h()

Si3 Si5 H2Br

GNBR CFDA BFGS–

CFDA LM– CFDA BFGS– p CFDA LM– p

Si3 Si5 H2Br

Si3 Si5

H2Br GNBR CFDA BFGS–

199

Chapter 4), (see Chapter 5) and the methods with the pruning algo-

rithm discussed in Chapter 6, i.e. and . As mentioned in

Chapter 7, the unknown factor in the performance index is set according to Eq.

(305) and Eq. (306) with . Note that the retraining process (i.e. after prun-

ing) is terminated either when the total performance index is convergent or it reaches the

same level achieved before pruning. Second, we will illustrate an example to show the

 overfitting and how the pruning algorithm eliminates it.

Approximation accuracy

Compound

For , a molecular system consists of three silicon atoms. Since it is a three-body

system, the coordinates specifying the system’s configuration could be the bond distances

and angle between the three atoms, i.e. , and . Therefore, the energy surface for

this compound is a function of these three input variables. The following figure shows a

silicon molecule, along with the distances and angle used in defining a configuration.

Figure 46) Configuration of three-body silicon

The configurations of interest were first drawn by performing molecular dynamics on the

Tersoff model [Ters89]. Then, a novelty sampling method [RaMa05] is used to collect

CFDA LM– CFDA

CFDA BFGS– p CFDA LM– p

ρ CFDA

λ 104= CFDA

CFDA

Si3

Si3

r1 r2 θ V

θ

r2 r1

Si
Si

Si

200

more configurations. Once obtaining the final set of configurations, the potential energy

and the force field are computed from the Tersoff model. The total number of configura-

tions in this case is 10,000. Note that, in this case, since the data were obtained from the

empirical potential energy surface (not from ab initio quantum calculations), this is equiv-

alent to fitting neural networks to an analytic function.

We created two test conditions. The first case randomly samples con-

figurations for the training set, and the rest is for testing. The second case randomly samples

 configurations for training, and the rest is for testing. Since we are using neu-

ral networks to approximate a function of three input variables, the input vector entering

the network is three. The network structure for this compound is chosen to be .

The following tables show the approximation accuracy in RMSE of the energy surface ap-

proximated by neural networks trained by three different algorithms. Note that, in each

case, the network trained by each training algorithm was initialized with the same network

parameters, using the method proposed in [NgWi90]. Recall again that is the func-

tion (or the potential energy) RMSE, and is the first-order derivative (or the force

field) RMSE. The is given in electron volts (). However, there is no unit for

, since some derivatives have units of electron volts per angstrom () and

other derivatives have units of electron volts per radian (). Note also that the range

of the potential energy is in between and , whereas the range of the force

fields is between and , and between and .

Q 3 000,=

Q 1 500,=

3 100– 1–

RMSEF

RMSED

RMSEF eV

RMSED eV A°⁄

eV rad⁄

5.31– 4.74– eV

1.73– 2.28 eV A°⁄ 1.06– 0.40 eV rad⁄

201

From the results shown in Table 19 and Table 20, we can see that both of the

 methods, i.e. and , produced smaller approximation

errors than on the test set for both the function and the derivatives, for both cases.

Training
Algorithm

Training Testing Training Testing
2.86E-07 2.97E-07 4.08E-06 4.74E-06
2.91E-07 2.87E-07 3.97E-07 4.53E-07
2.91E-07 2.87E-07 3.92E-07 4.53E-07

2.91E-07 2.87E-07 2.90E-07 3.05E-07
2.91E-07 2.87E-07 2.90E-07 3.03E-07

Table 19 Approximation RMSE of three-body silicon, 3000 training points

Training
Algorithm

Training Testing Training Testing
2.68E-07 3.69E-07 1.09E-05 1.68E-05
2.84E-07 2.91E-07 4.42E-07 1.23E-06
2.83E-07 2.91E-07 4.46E-07 9.77E-07

2.83E-07 2.90E-07 2.81E-07 3.63E-07
2.82E-07 2.90E-07 2.81E-07 3.16E-07

Table 20 Approximation RMSE of three-body silicon, 1500 training points

Training
Algorithm

64/100 69/100

63/100 69/100

Table 21 Number of neurons after pruning, for three-body silicon

Q 3 000,=
RMSEF RMSED

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

Q 1 500,=
RMSEF RMSED

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

S1

Q 3 000,= Q 1 500,=
CFDA BFGS– p

CFDA LM– p

CFDA CFDA BFGS– CFDA LM–

GNBR

202

The derivative test errors obtained from the methods, for both cases, were at least

one order of magnitude less than the errors from . The pruning algorithm yielded

slightly lower approximation errors than the regular methods. The small difference

in errors between the regular and the with pruning indicates two phenom-

ena. First, there was no severe overfitting. Second, the overfitting may occur, but we do not

have test points over the region of overfitting (since that the area of overfitting is tiny). Ta-

ble 21 shows the number of neurons after pruning the network for each case. We conclude

that the methods (with or without pruning) provided more accurate energy surfaces

and force fields than . In addition, is the most accurate method.

Compound

The system consists of five silicon atoms. For the system of five atoms, a con-

figuration is defined by the four bond distances (i.e. , , and), the three angles

(i.e. , and), and the two dihedral angles (i.e. and). Note that

 is the angle between the bond and the bond, and the dihedral angle

is the angle between the plane formed by the atoms and the plane formed by the

atoms . The configurations of interest were first collected by performing molecu-

lar dynamics on the Tersoff model [Ters89]. After the modified novelty sampling technique

[RaMa05] is used, the final set of configurations is obtained. Then, the potential energy and

the forces were computed from ab initio quantum calculation for these configurations, us-

ing the Gaussian 03 program [FrTr04]. The total number of configurations in this case is

CFDA

GNBR

CFDA

CFDA CFDA

CFDA

GNBR CFDA LM– p

Si5

Si5

r12 r13 r14 r15

θ312 θ412 θ512 Θ4123 Θ5124

θ312 3 1– 1 2– Θ4123

4 1– 2–

1 2– 3–

203

10,000. The following figure shows the structure of the five-body silicon system, where

each circle represents a silicon atom.

Figure 47) Configuration of five-body silicon

We created two test conditions. The first case randomly samples con-

figurations for the training set, and the rest is for testing. The second case randomly samples

 configurations for training, and the rest is for testing. Since we are using neu-

ral networks to approximate a function of nine input variables, the input vector entering the

network is nine. The network structure for this compound is chosen to be , fol-

lowing [RaMa05]. The network trained by each algorithm was initialized to have the same

network parameters, using the method in [NgWi90]. The following tables show the approx-

imation accuracy in RMSE of the potential energy (in). Again, there is no unit for the

RMSE of the force fields (as and were mixed in the RMSE computation).

1

5 2

4 3

Q 3 000,=

Q 1 500,=

9 45– 1–

eV

eV A°⁄ eV deg⁄

204

Note that the range of the potential energy is between and . The range

of the force fields is to , and to .

Training
Algorithm

Training Testing Training Testing
8.18E-05 1.00E-04 1.75E-03 1.76E-03
1.23E-04 1.23E-04 8.09E-04 8.20E-04
1.23E-04 1.23E-04 8.08E-04 8.19E-04

1.16E-04 1.15E-04 7.16E-04 7.27E-04
1.18E-04 1.18E-04 7.36E-04 7.50E-04

Table 22 Approximation RMSE of five-body silicon, 3000 training points

Training
Algorithm

Training Testing Training Testing
7.40E-05 1.49E-04 2.31E-03 2.45E-03
1.36E-04 1.37E-04 9.69E-04 1.01E-03
1.36E-04 1.36E-04 9.63E-04 1.01E-03

1.13E-04 1.21E-04 7.57E-04 8.16E-04
1.17E-04 1.23E-04 7.56E-04 8.10E-04

Table 23 Approximation RMSE of five-body silicon, 1500 training points

Training
Algorithm

44/45 40/45

43/45 42/45

Table 24 Number of neurons after pruning, for five-body silicon

15.02– 14.20– eV

1.97– 1.38 eV A°⁄ 9.86 10 2–×– 8.23 10 2–× eV deg⁄

Q 3 000,=
RMSEF RMSED

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

Q 1 500,=
RMSEF RMSED

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

S1

Q 3 000,= Q 1 500,=
CFDA BFGS– p

CFDA LM– p

205

From the results shown in Table 22 and Table 23, we can see that the function test

errors obtained from all training algorithms were similar, for both cases. However, the de-

rivative test errors obtained from the methods were lower than the errors from

, for both cases. The approximation errors from the pruning method were also in the

same level as the regular methods. Again, this implies that we may not have over-

fitting, or the overfitting may occur but the test points were not over the overfitting areas.

Table 24 shows the number of neurons after pruning the network for each case. We con-

clude that the methods (with and without pruning) yield more accurate energy sur-

faces than . For this compound, yielded the most accurate function

approximation, whereas produced the most accurate derivative approxima-

tion.

Compound

The molecular system is a three-body system. It consists of two Hydrogen

atoms and one Bromine atom. As a three-body system, the coordinates defining a configu-

ration could be either two bond distances and one angle, like Figure 46), or three bond dis-

tances between the three atoms, i.e. , and as shown in Figure 48). (Note that the

conversion between the two coordinate systems is performed through the law of cosines:

.)

CFDA

GNBR

CFDA

CFDA

GNBR CFDA LM–

CFDA LMp–

H2Br

H2Br

r1 r2 r3

r3
2 r1

2 r2
2 2r1r2 θcos–+=

206

Figure 48) Configuration of

We opted for the three bond distances as the coordinates, since the empirical poten-

tial energy , proposed by Kuntz et. al. [KuNe66], is a function of the three bond distances.

The parameters in the Kuntz’s model were proposed by [SuRa84]. (The detail of the

Kuntz’s model is in Appendix C.)

A main problem in generating configurations from the Kuntz’s model is that

the model is of class (see the proof in Appendix C). This violates the conditions to use

neural networks for simultaneously and uniformly approximating both a function and its

first derivatives (see Chapter 2). To avoid sampling configurations near the discontinuity

in the first-order derivatives, the configurations of interests were first generated by the ap-

proach in [PuMa09]. Using the approach, we generated approximately 470,000 configura-

tions. Then, the potential energy and the force field associated with the generated

configurations are computed from the model.

Four test conditions are created; each uses a different number of configurations for

training, . We set , , and for the four cases.

In each case, a Monte Carlo simulation is performed with trials. We set . In

each trial, we randomly sample configurations for training and use the rest for testing.

 r3

 r2 r1

H

Br
H

H2Br

H2Br

V

H2Br

C0

Q Q 3 000,= Q 1 500,= Q 750= Q 375=

M M 10=

Q

207

The network structure for this problem is chosen to be . The network parame-

ters are then initialized by Nguyen-Widrow algorithm [NgWi90]. The initialized network

will be reused for every training algorithm. Once the training for a trial is completed, the

approximation accuracy in terms of , and will be computed.

The is given in electron volts . The is provided in electron volts per

angstrom , while the unit of is electron volts per angstrom squared

. The median statistic is used to report the approximation accuracy over the

trials. The range of the potential energy is from to , while the range of the

force fields is from to . The range of the second derivatives of the mod-

el is from to . Table 25 to Table 28 show the approximation accuracy

of the neural networks trained by the five training algorithms for the four test conditions.

Table 29 shows the median number of neurons after pruning the networks for each case.

Training
Algorithm

Training Test Training Test
1.01E-04 4.65E-04 1.55E-02 7.71E-03 1.10E-01
2.33E-04 2.71E-04 1.29E-03 2.76E-03 4.95E-02
2.80E-04 2.76E-04 1.29E-03 2.51E-03 4.54E-02

1.39E-04 1.52E-04 5.31E-04 1.69E-03 2.76E-02
1.91E-04 1.64E-04 5.76E-04 1.53E-03 2.67E-02

Table 25 Approximation RMSE of , 3000 training points

3 150– 1–

RMSEF RMSED RMSE
D2

RMSEF eV() RMSED

eV A°⁄() RMSE
D2

eV A° 2⁄() K

4.73– 2.72– eV

4.61– 7.67 eV A°⁄

6.73– 76.83 eV A° 2⁄

Q 3 000,=

RMSEF
md RMSED

md RMSE
D2
md

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

H2Br

208

Training
Algorithm

Training Test Training Test
5.16E-05 1.27E-03 8.48E-03 1.39E-02 1.09E-01
2.25E-04 1.12E-03 1.27E-03 7.24E-03 8.18E-02
2.52E-04 9.14E-04 1.27E-03 7.13E-03 8.22E-02

2.07E-04 9.82E-04 8.92E-04 7.49E-03 5.65E-02
3.68E-04 1.05E-03 8.92E-04 7.24E-03 5.70E-02

Table 26 Approximation RMSE of , 1500 training points

Training
Algorithm

Training Test Training Test
3.44E-05 3.52E-03 1.68E-02 2.28E-02 2.00E-01
4.76E-04 5.87E-03 1.30E-03 1.93E-02 1.46E-01
4.24E-04 3.82E-03 1.30E-03 1.47E-02 1.09E-01

2.99E-04 2.22E-03 6.94E-04 1.19E-02 9.81E-02
2.46E-04 3.57E-03 6.94E-04 1.40E-02 9.20E-02

Table 27 Approximation RMSE of , 750 training points

Training
Algorithm

Training Test Training Test
8.81E-05 2.13E-02 9.08E-02 1.03E-01 7.72E-01
2.20E-03 3.57E-02 7.04E-04 2.75E-01 3.11E+00
1.33E-03 1.41E-02 8.38E-04 9.54E-02 1.28E+00

3.28E-03 1.45E-02 5.93E-04 8.22E-02 7.91E-01
2.19E-03 1.16E-02 7.56E-04 6.53E-02 6.42E-01

Table 28 Approximation RMSE of , 375 training points

Q 1 500,=

RMSEF
md RMSED

md RMSE
D2
md

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

H2Br

Q 750=

RMSEF
md RMSED

md RMSE
D2
md

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

H2Br

Q 375=

RMSEF
md RMSED

md RMSE
D2
md

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

H2Br

209

From Table 25 to Table 27, the approximation errors obtained from meth-

ods were lower than . In addition, the errors of the pruned networks were even lower

than the networks with no pruning. These results were consistent with the previous

cases. However, one may observe that, in the case of (see Table 28), the errors

from and the second derivative errors from were higher,

compared to . We investigated these results and found that the major contribution

to larger approximation errors in the methods come from some data points outside

the region of training data, i.e. extrapolation. Neural networks have no capability to correct-

ly predict the function characteristics outside the region of training data, and the approxi-

mation errors at extrapolation is unpredictably large.

Thus far, there have been methods developed for detecting extrapolation. However,

it is not the main objective of this research to have the best method to detect extrapolation.

We only want to rule out some extrapolation effects that may mislead the result compari-

son, like Table 28. We detected and removed extrapolations by visual inspection, using the

following steps:

Training
Algorithm

136/150 141/150 136/150 108/150

138/150 144/150 137/150 126/150

Table 29 Number of neurons after pruning, for

S1

Q 3 000,= Q 1 500,= Q 750= Q 375=
CFDA BFGS– p

CFDA LM– p

H2Br

CFDA

GNBR

CFDA

Q 375=

CFDA BFGS– CFDA LM–

GNBR

CFDA

210

1. Collect the test points yielding large first derivative errors (we define “large” as

first derivative errors greater than) from a network trained by . Put

these points into the set .

2. Plot the location of the test points in . Visually inspect the locations of the

test points to see whether or not they are outside the training region. If there are test points

inside the training region, exclude them from .

3. Repeat step 1) and 2) for the networks trained by (create the set

) and (create the set).

4. Combine the three sets, i.e. , and . Put them in the set .

5. Remove the test points in from the original test set for this trial.

Keep in mind that these five steps do not guarantee the removal of every single ex-

trapolation point. It only eliminates some test points that may mislead the comparison of

the approximation accuracy for interpolation (i.e. points inside the training region). An ex-

ample of the extrapolation points in a trial, using these five steps, is illustrated in Figure

49). The symbol represents the training points for this trial. The symbol represents the

points with large derivative errors.

0.5 eV A°⁄ GNBR

XBR
k

XBR
k

XBR
k

CFDA BFGS–

XBFGS
k CFDA LM– XLM

k

XBR
k XBFGS

k XLM
k X k

X k

× •

211

Figure 49) Extrapolation in a Monte Carlo trial, with

After performing the steps to eliminate some extrapolation, we recalculated the ap-

proximation errors on the new test set. Table 30 shows the median approximation test errors

after removing extrapolation (for). Compare this with Table 28.

We can see from Table 30 that the errors from the methods are now lower than

. They were higher in Table 28. Another interesting issue is the pruning method im-

proved the approximation accuracy, indicating that the error improvement also occurs at in-

Training
Algorithm

6.99E-03 5.19E-02 6.27E-01
3.10E-03 2.54E-02 5.54E-01
1.24E-03 1.16E-02 2.12E-01

4.24E-03 3.07E-02 3.96e-01
1.59E-03 1.28E-02 1.88E-01

Table 30 Approximation RMSE of , after some extrapolation elimination

p1p2

p3

Q 375=

Q 375=

Q 375=

RMSEF
md RMSED

md RMSE
D2
md

GNBR
CFDA BFGS–
CFDA BFGS– p

CFDA LM–
CFDA LM– p

H2Br

CFDA

GNBR

212

terpolation points. The results in Table 30 are now consistent with the other problems. In

this case, the produced the lowest function and first derivative approxi-

mation errors, while yielded the most accurate second derivative approxi-

mation. Figure 50) illustrates the error comparison for every Monte Carlo trial between

, and for , after extrapolation removal.

Figure 50) Error comparison for with

From Figure 50), we can see that the approximation errors from the method were

consistently lower than for almost every trial. In addition, the pruning algorithm

also improved the accuracy for the method in every trial.

CFDA BFGSp–

CFDA LMp–

GNBR CFDA LM– CFDA LM– p Q 375=

1 5 10
10

−5

10
−2

10
1

Monte Carlo No.

GNBR

CFDA−LM
p

CFDA−LM

R
M

SE
F

1 5 10
10

−5

10
−2

10
1

Monte Carlo No.

R
M

SE
D

1 5 10
10

−5

10
−2

10
1

Monte Carlo No.

R
M

SE
D

2

H2Br Q 375=

CFDA

GNBR

CFDA

213

In the next section, we will show an example illustrating the overfitting in

molecular dynamics and how the pruning algorithm gets rid of it.

Elimination of CFDA Overfitting

We will illustrate an example of the overfitting and how the pruning algo-

rithm eliminates it in problem. This example is selected from a network (with

) trained with the algorithm.

The pruning algorithm indicated that 21 neurons are to be pruned in this network.

However, we will demonstrate the two types of overfitting developed from only three neu-

rons. Figure 51) shows the input spaces in a three-dimensional plot, where represents the

training set. In the case of three-dimensional inputs, the neuron center

becomes a plane. The centers of the three neurons are also presented in the figure.

Figure 51) The three neuron centers

Neuron and develop overfitting, while neuron causes . In order

CFDA

CFDA

H2Br

Q 375= CFDA BFGS–

×

w1
i()

T
p bi

1+ 0=

w1
l()

T
p bl

1+ 0=

w1
j()

T
p bj

1+ 0=

w1
k()

T
p bk

1+ 0=⎩
⎨
⎧

p1p2

p3

j k Type A– l Type B–

214

to easily visualize the overfitting, we will take a cross section of the network response along

the cross-section line shown in Figure 51). The cross section is at ,

and angstroms (Note that this is associated with , and

 in the normalized input space). We will first illustrate overfitting,

followed by overfitting, using the three neurons. Then, we will show the final

outcome.

Type A

The network function and derivative responses (with respect to) of neuron

and along the cross-section line are shown in Figure 52).

Figure 52) Function and derivative responses of the two neurons along the cross section

When combining the responses of these two neurons, we obtain Figure 53).

p1 2.73= p2 1.42=

1.27 p3 4≤ ≤ p1 0.25= p2 0.9–=

1– p3 1≤ ≤ Type A–

Type B–

p3 j

k

1 2 3 4
−2

0

2

p3

yj

yk

1 2 3 4
−100

0

100

p3

p3∂
∂ yj

p3∂
∂ yk

215

Figure 53) The combined responses

From Figure 53), we can see that the responses from the two neurons cancel almost every-

where, except at a tiny region close to their centers. Figure 54) illustrates the function and

derivative errors (with respect to) before and right after pruning the network (without

retraining).

Figure 54) Errors before and right after pruning the two neurons

Figure 54) shows that the spikes of the function and derivative errors, which were observed

before pruning the neurons, are eliminated.

Next, we will illustrate overfitting.

1 2 3 4
−0.02

0

0.02

p3

yj yk+

1 2 3 4
−0.5

0

0.5

p3

p3∂
∂ yj

p3∂
∂ yk+

p3

1 2 3 4
−0.02

0

0.02
Before Pruning
Right After Pruning

p3

e1

1 2 3 4
−0.5

0

0.5
Before Pruning
Right After Pruning

p3

p3∂
∂e1

Type B–

216

Type B

Along the cross section, the function and derivative responses of neuron are

shown in Figure 55).

Figure 55) Function and derivative response of the neuron

The function and derivative errors before and right after pruning the neuron (with no re-

training) are illustrated in Figure 56).

Figure 56) Errors before and right after pruning the neuron

We can see from Figure 56) that the spike in the derivative errors, which were observed in

the original errors, disappears once pruning the neuron.

Next, we will show the final outcome.

l

1 2 3 4
−0.02

0

0.02

p3

yl

1 2 3 4
−0.5

0

0.5

p3

p3∂
∂yl

1 2 3 4
−0.02

0

0.02
Before Pruning
Right After Pruning

p3

e1

1 2 3 4
−0.5

0

0.5
Before Pruning
Right After Pruning

p3

p3∂
∂e1

217

Final outcome

The pruning algorithm indicated the elimination of 21 neurons. Figure 57) com-

pares the errors before and right after pruning all of the 21 neurons.

Figure 57) Errors before and right after pruning the 21 neurons

After pruning the 21 neurons and retraining the network, the errors before and after

applying the pruning algorithm are shown in Figure 58).

Figure 58) Errors before and after performing the pruning algorithm

From Figure 58), it is clear that the function and derivative errors with the pruning algo-

rithm are much smaller and smoother. The error plots in Figure 58) imply that the second

derivative approximation from the pruned network would be also more accurate. This is an-

other example illustrating that the pruning algorithm successfully improves the approxima-

1 2 3 4
−0.02

0

0.02
Before Pruning
Right After Pruning

p3

e1

1 2 3 4
−0.5

0

0.5
Before Pruning
Right After Pruning

p3

p3∂
∂e1

CFDA

1 2 3 4
−0.02

0

0.02
Before Pruning
After Retraining

p3

e1

1 2 3 4
−0.5

0

0.5
Before Pruning
After Retraining

p3

p3∂
∂e1

218

tion accuracy for the function, first derivative and second derivatives of neural networks

trained by the methods.

Summary

In this chapter, we reviewed the general concept of molecular dynamics. This is an

application in which it is important to approximate both a function and its first-order deriv-

atives. We started the review by describing classical mechanics. The Newtonian or Hamil-

tonian equations of motion are used to determine the motion of particles.

However, to explain the behavior of atomic-level particles, the equa-

tion is used. For time-independent problems including molecular dynamics, the stationary-

state equation is used, where the wave function and the potential energy are

independent of time. It is impossible to obtain analytic solutions for a general system. To

obtain approximate solutions, the Born-Oppenheimer approximation is used. The electron-

ic energy is first solved at a fixed nuclear configuration. Then, given the electronic energy,

the nuclear energy at the nuclear configuration is solved. To solve for the nuclear energy,

the nuclear wave function must be known. Unfortunately, since the nuclear wave function

is unknown, we replace it with a mathematical model. By using the Rayleigh-Ritz varia-

tional principle, we obtain the approximated nuclear energy at a fixed nuclear configura-

tion.

In molecular dynamics, we treat the motion of nuclei using classical mechanics. To

calculate the motion of nuclei using the Newtonian equations of motion, we need to know

the force fields acting on the nuclei. This can be computed by taking the negative of the

CFDA

Schro··dinger

Schro··dinger

219

first-order derivatives of the potential energy with respect to the nuclei position. Once ob-

taining the forces, the acceleration on the nuclei can be computed. Subsequently, the veloc-

ity and the position of the nuclei can be updated by performing numerical integration. We

summarized the general procedure of molecular dynamics, using the Beeman’s algorithm

for numerically integrating the Newtonian equations of motion.

Then, we discussed how neural networks can be used in molecular dynamics. We

explained that, since the force is the negative first-order derivatives of the potential energy,

neural networks can be used to predict both the potential energy and the force fields. We

compared the approximation accuracy of the potential energy and the force fields obtained

by neural networks trained by five algorithms: , , ,

 and , in three molecular dynamics problems: , and

. The results showed that the methods produced more accurate potential en-

ergy surfaces and force fields than . In addition, the approximation accuracy in the

regular methods could be improved by applying the pruning algorithm. The most

accurate method was . Finally, we illustrated the overfitting in mo-

lecular dynamics and how the pruning algorithm removed it, through an example. The re-

sults in this chapter also indicate that overfitting occurs only rarely in molecular

dynamics problems. overfitting appears to occur less often as the dimension of the

input space increases.

GNBR CFDA BFGS– CFDA LM–

CFDA BFGS– p CFDA LM– p Si3 Si5

H2Br CFDA

GNBR

CFDA

CFDA LM– p CFDA

CFDA

CFDA

220

CHAPTER 9

CONCLUSIONS

Objective

In this chapter, we will present the summary of the study, and also discuss the future

work.

Summary

The objective of this research was to develop training algorithms for neural net-

works to fit both a function and its first derivatives. We also wanted to compare the approx-

imation accuracy obtained from the new training methods with the standard training

methods (which are used to fit only the function). The new training algorithms are

 and (Chapter 3), (Chapter 4),

(Chapter 5), and the methods with the pruning algorithm, i.e. and

 (Chapter 6). The standard training methods are , and

.

We first reviewed the general concept of neural networks and the three standard

training algorithms used for function approximation. Then, the conditions under which

neural networks can simultaneously and uniformly approximate a function and its first de-

rivatives were presented. The conditions require that the true function and its first deriva-

LM ES1– LM ES2– CFDA BFGS– CFDA LM–

CFDA CFDA BFGS– p

CFDA LM– p BFGS ES– LM ES–

GNBR

221

tives be continuous, while the transfer function in the hidden layer of the neural networks

be sufficiently differentiable and the transfer function in the output layer be linear. These

materials were discussed in Chapter 2.

To approximate both a function and its first derivatives, we first introduced two val-

idation-related methods in Chapter 3. These two methods use the standard backpropagation

algorithm with early stopping. The first method, i.e. , modified the validation

performance measure so that it includes two terms: the function error and the derivative er-

ror of the validation set. The derivative error term is also multiplied by a weighting factor.

With different values of the weighting factor, the simulation results on approximating an-

alytic functions showed that there was no improvement in the approximation over the stan-

dard training methods. In the second method (), the validation performance

measure is changed from the function errors in the validation set to the derivative errors in

the training set. The simulation results on approximating the analytic functions showed that

the new validation measure sometimes terminates the training process sooner than the stan-

dard early stopping, causing worse approximation.

Another proposed method, to fit both a function and its first derivatives, changes the

training performance index so that it contains the squared function errors and the squared

derivative errors. The squared derivative error is multiplied by the weighting factor . This

method is called Combined Function and Derivative Approximation, or . To mini-

mize the performance index using any gradient-based optimization method, the

gradient of the performance index with respect to the network parameters is required. In

Chapter 4, we derived two approaches to calculate the gradient: the batch mode and the

LM ES1–

LM ES2–

ρ

CFDA

CFDA

222

memory-save method. The execution time for computing the gradient of the per-

formance index under several scenarios was measured, and the results showed that the

batch mode took from 0.5 to 370 times as long as the standard method. The memory-save

approach took from 0.5 to 6.2 times as long as the standard method. The batch mode per-

formed faster than the memory-save approach, unless the computer’s memory overflowed.

In this research, we chose optimization as the gradient-based method of choice. We

call this method .

The performance index can also be minimized by the Levenberg-Marquardt

algorithm. However, extra calculations for the Jacobian matrix of the derivative error term

are needed. In Chapter 5, we derived two approaches to obtain the new Jacobian matrix: the

batch mode and the memory-save method. The execution times for computing the gradient

and the Jacobian matrix of the derivative error term, under several scenarios, were mea-

sured, and the results showed that the batch mode took from 0.9 to 35.4 times as long as the

standard Levenberg-Marquardt method. The memory-save approach took from 0.9 to 8.4

times as long as the standard Levenberg-Marquardt method. The batch mode performed

slightly faster than the memory-save approach, unless the computer’s memory overflowed.

We name this method .

Although the methods force the first derivatives of neural networks to the

correct values, new overfitting has been observed. In Chapter 6, we proposed two new

types of overfitting: and . The overfitting is developed from

the responses of more than one neuron. The responses cancel each other at training points,

but not the points in between. The overfitting can be developed from one neuron

CFDA

BFGS

CFDA BFGS–

CFDA

CFDA LM–

CFDA

Type A– Type B– Type A–

Type B–

223

or more, and it is caused by a local minimum in the training surface. We introduced

an algorithm to prune neurons producing the overfitting. The pruning algorithm can be ap-

plied to any networks, trained by the methods with the hyperbolic tan-

gent sigmoid transfer function. By incorporating the pruning algorithm to the two

training methods above, we name them and .

In Chapter 7, we proposed to set the weighting factor in the performance

index to be , where is the ratio of the maximum absolute derivative value to

the maximum absolute function value in the training set. We chose , since it yield-

ed robust results for many problems. The simulation results on approximating four analytic

functions showed that the regular methods provided more accurate results and bet-

ter generalization, for the both function and its first derivatives, than the standard training

methods. The methods with pruning produced even better approximation accuracy

than the regular methods. The improvement (for the function, first derivatives and

second derivatives) was as high as several orders of magnitude for some problems, where

the overfitting was extreme. The results showed that yielded the most accu-

rate approximation and the best generalization (for both the function, first derivatives and

second derivatives) among the other tested methods, which are , ,

, , , , and .

Molecular dynamics is an application where neural networks can be used to fit both

a function and its first-order derivatives. Neural networks can be used to construct the po-

CFDA

R S1 1–– CFDA

CFDA

CFDA BFGS– p CFDA LM– p

CFDA

ρ λ η2⁄= η

λ 104=

CFDA

CFDA

CFDA

CFDA LM– p

BFGS ES– LM ES–

GNBR LM ES1– LM ES2– CFDA BFGS– CFDA LM– CFDA BFGS– p

224

tential energy surface, while the negative of the first-order derivatives are the forces. The

ab initio quantum calculations are used to compute the true potential energy and the forces.

Unfortunately, it is very time-consuming to evaluate the true potential energy and the forces

for a given input, as it involves an optimization process. Thus, the advantage of using neural

networks instead of the ab initio function is the reduction in computation time, which can

be several orders of magnitude. In Chapter 8, we compared the approximation accuracy of

neural networks trained by five training algorithms: , ,

, and for three molecular dynamics prob-

lems. The simulation results showed that the regular methods yielded better gener-

alization than . The algorithms with pruning consistently improved the

approximation accuracy when compared to the regular methods. The outcomes of

the three molecular dynamics problems showed that the method provided

the most promising results in terms of approximation accuracy (for the function, first de-

rivatives and second derivatives) among the five training methods.

Examples illustrating the overfitting and how the pruning algorithm elimi-

nates it were demonstrated in both Chapter 7 (for simple analytic functions) and Chapter 8

(for molecular dynamics).

Future work

There is more work to be done. The most critical assumption required to produce

the excellent results shown in this research is the availability of the correct values of the

function and its first derivatives. Although several real-world applications follow this pre-

GNBR CFDA BFGS–

CFDA LM– CFDA BFGS– p CFDA LM– p

CFDA

GNBR CFDA

CFDA

CFDA LM– p

CFDA

225

sumption, the interest would be even broader if the assumption is more relaxed. Many ap-

plications do not assume having the correct values of the function and its first derivatives,

since the values may come from imperfect measurements. That is, noise can corrupt the da-

ta. However, it is currently not clear how the noise levels in the function and its first deriv-

atives are associated. Understanding this may lead to constructing an appropriate objective

function for training neural networks to approximate both the function and its first deriva-

tives under high noise situations.

Although the pruning algorithm produced promising results, it can only be applied

to a two-layer network with one output. Generalizing the method so that it can be used with

any multilayer feedforward networks with any number of outputs would be desirable. To

achieve this, more work is needed to analyze how the overfitting in a layer affects the next

layer and how the overfitting is developed in multiple outputs.

226

APPENDIX

 A. PSGEN algorithm

The algorithm is used in the pruning method to form combinations of neu-

rons after a candidate and its neighbors are created. The derivative response for each of

these combinations will be evaluated to verify whether or not it provides a significant con-

tribution. We will describe the algorithm in such a way that it solves a general prob-

lem, not specific to the pruning method. However, at the end of this section, we will

describe how to apply this algorithm to the pruning method. Note that the algorithm was

proposed by [McCa06].

Given a set with distinct elements (the set could be an empty set), the

 algorithm generates an element of the power set of , denoted by . There exist

 elements in . To generate all of these elements, we first assign an index to each

element of . The index is an integer starting from zero to , i.e. . For

psgen

psgen

S nS S

psgen S P S()

2
nS P S() iS

S nS 1– 0 iS nS 1–≤ ≤

227

example, assume the set . We define the index to each element according to

the table below:

For the given set , the power set of is

,

where denotes the empty set. To represent each element of , we can use a binary

sequence with the length of (where the least significant bit is the zeroth and the most

significant bit is the). This results in different sequences, where each will be

used to represent an element of . The mapping between a sequence and an element of

 can be done using the index and a new set, called the .

A combinadic is a set containing the bit location of the ones in the binary sequence.

(Thus, elements in a combinadic range from zero to .) Once we have a combinadic,

the associated element of can be realized by using the assigned index . In other

words, the elements in a combinadic are the indices . Therefore, by mapping the index

 with the element of , the element of can be generated. For our example, Table

Element of Element Index

0
1
2

Table 31 Elements of and their index

S a b c, ,{ }=

S iS

a
b
c

S iS

S S

P S() ∅{ } a{ } b{ } c{ } a b,{ } a c,{ } b c,{ } a b c, ,{ }, , , , , , ,{ }=

∅ P S()

nS

nS 1–()th 2
nS

P S()

P S() iS combinadic

nS 1–

P S() iS

iS

iS S P S()

228

32 illustrates the mapping from the binary sequence to the associated elements of

through the combinadic, using the index defined in Table 31.l

Therefore, once the indices of elements in are defined, we are instantly able to gener-

ate all possible elements of .

Another problem is raised when one wants to generate only some elements of ,

given that they have exactly elements from the set (where). This corre-

sponds to generating the combinadics that contain exactly elements. Given this condi-

tion, there are totally possible combinadics. To specify each of these combinadics, we

first assign an index to each of them starting from zero to , i.e. .

The zeroth index is assigned to the combinadic with the smallest value of its associated bi-

nary sequence. The largest index is assigned to the combinadic with the highest value of its

associated binary sequence. For our example, assume we are interested in generating only

Binary Sequence Combinadic Element of
000
001
010
011
100
101
110
111

Table 32 The binary sequences, combinadics and the associated elements of

P S()

iS

P S()

∅{ } ∅{ }

0{ } a{ }

1{ } b{ }

1 0,{ } a b,{ }

2{ } c{ }

2 0,{ } a c,{ }

2 1,{ } b c,{ }

2 1 0, ,{ } a b c, ,{ }

P S()

iS S

P S()

P S()

k S 0 k nS≤ ≤

k

nS
k⎝ ⎠

⎛ ⎞

ic
nS
k⎝ ⎠

⎛ ⎞ 1– 0 ic
nS
k⎝ ⎠

⎛ ⎞ 1–≤ ≤

229

the combinadics with two elements, i.e. , and . Given the binary se-

quence in Table 32, Table 33 demonstrates the combinadics and their index ,

With the index , we are also able to introduce a notation to represent each combi-

nadic. We use to represent the combinadic with elements, i.e.

, assigned by index , generated for the set (which has ele-

ments). Thus, given the binary sequences and combinadics in Table 32, the associated no-

tations are shown in Table 34.

Combinadic Combinadic Index

0
1
2

Table 33 Combinadics and their index

Binary Sequence Combinadic Notation

000

001

010

011

100

101

110

111

Table 34 Notations for the combinadics

1 0,{ } 2 0,{ } 2 1,{ }

ic

ic

1 0,{ }

2 0,{ }

2 1,{ }

ic

ic

M nS k,() ic() k

mk 1– mk 2– … m0, , ,{ } ic S nS

M nS k,() ic()

M nS k,() ic()

∅{ } M 3 0,() 0()

0{ } M 3 1,() 0()

1{ } M 3 1,() 1()

1 0,{ } M 3 2,() 0()

2{ } M 3 1,() 2()

2 0,{ } M 3 2,() 1()

2 1,{ } M 3 2,() 2()

2 1 0, ,{ } M 3 3,() 0()

230

Given a set , the values of and , the algorithm can generate the com-

binadic . Consequently, once obtaining , we can easily convert it to

the associated elements of (by mapping from the index to the element of). We

use to denote the associated element of . Now, we are ready to provide the

steps of the algorithm.

Steps for psgen

1. Given the set , define index to each element of , where . (For

example, if the elements of are numeric, we can first sort these elements in ascending

order. Then, assign index zero to the smallest element and index to the largest ele-

ment.)

2. Initialize . Define if . This definition will be used only in step

3 to step 6.

3. Find the largest element , where such that .

4. Set and .

5. If , set .

6. Set .

7. If , set and go back to step 3). Otherwise, go to step 8 with

.

S k ic psgen

M nS k,() i() M nS k,() i()

P S() iS S

P S()k i, P S()

psgen

S iS S 0 iS nS 1–≤ ≤

S

nS 1–

i 1= n
k⎝ ⎠
⎛ ⎞ 0≡ n k<

mk i– 0 mk i– nS 1–≤ ≤
mk i–

k⎝ ⎠
⎛ ⎞ ic≤

nS mk i–= ic ic
mk i–

k⎝ ⎠
⎛ ⎞–=

ic 0< ic 0=

k k 1–=

k 0> i i 1+=

M nS k,() ic() mk 1– mk 2– … m0, , ,{ }=

231

8. By using the index assigned in step 1 to map from the elements in

to the elements of , obtain and return .

Note that we will not provide the detail of algorithm in pseudo code for the

pruning method. However, wherever the algorithm is needed, we will use

 to denote the function that takes the set , the values of and , performs

these eight steps, and returns .

As previously mentioned, we use the algorithm when we want to form com-

binations of neurons. That is, once the candidate neuron and its neighbors are established,

we will put the neighbors into the set . By specifying the values of and , the

algorithm will provide the corresponding set of neighbor neurons. Then, a combination of

neurons are formed by including the candidate neuron with the set of neighbor neurons.

Then, the derivative response generated from this combination of neurons will be evaluated

to see whether or not its contribution is significant. We can repeat this process for different

values of and , if necessary.

iS M nS k,() ic()

S P S()k ic,

psgen

psgen

psgen S k ic, ,() S k ic

P S()k ic,

psgen

S k ic psgen

k ic

232

 B. Calculation for the second derivatives of neural networks

We will show the calculation for the second derivatives of neural networks, with re-

spect to the inputs, evaluated at , i.e. . In Chapter 4, we have shown the

calculation for the first derivatives of neural networks with respect to the inputs. That is,

recall from Eq. (109) in Chapter 4 that

.

By taking the derivative of Eq. (109) with respect to , we obtain

(352)

From Eq. (352), the only term we have not shown the calculation is . (Note

that the calculation for the term is expressed in Eq. (144).) Therefore, we

will focus on the calculation of the term .

First note that the calculation in Eq. (352) is a forward propagation. Therefore, we

need to initialize . We have the calculation for in Eq. (115):

pq pr' q,∂
∂

pr q,∂
∂ak q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr q,∂
∂aj q,

m

f· m nj q,
m() wj l,

m
pr q,∂

∂al q,
m 1–

×
⎝ ⎠
⎜ ⎟
⎛ ⎞

l 1=

S
m 1–

∑=

pr'

pr'∂
∂

pr q,∂
∂aj q,

m

⎝ ⎠
⎜ ⎟
⎛ ⎞ f· m nj q,

m()∂
pr'∂

---------------------- wj l,
m

pr q,∂
∂al q,

m 1–

×
⎝ ⎠
⎜ ⎟
⎛ ⎞

l
∑ f· m nj q,

m() wj l,
m

pr'∂
∂

pr q,∂
∂al q,

m 1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

×
⎩ ⎭
⎨ ⎬
⎧ ⎫

l
∑ .+=

pr'∂
∂

pr q,∂
∂al q,

m 1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

f· m nj q,
m()∂ pr'∂⁄

pr'∂
∂

pr q,∂
∂al q,

m 1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr'∂
∂

pr q,∂
∂aj q,

0

⎝ ⎠
⎜ ⎟
⎛ ⎞

aj q,
0∂ pr q,∂⁄

233

 By taking the derivative of Eq. (115) with respect to , we obtain

. (353)

Recall that . Therefore, we obtain the second derivatives of the network

 by propagating Eq. (352) until .

pr q,∂
∂aj q,

0
1 ; if j r .=
0 ; if j r . ≠⎩

⎨
⎧

=

pr'

pr'∂
∂

pr q,∂
∂aj q,

0

⎝ ⎠
⎜ ⎟
⎛ ⎞

0=

ak q, ak q,
M=

pr' q,∂
∂

pr q,∂
∂ak q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

m M=

234

 C. Class of model

We will provide a proof showing that the model is of class . That is, the

function itself is continuous, while the first-order derivatives are not continuous. The loca-

tion of the discontinuity in the first-order derivatives will also be specified.

According to [KuNe66] and [SuRa84], the potential energy surface of can be

written as:

(354)

where

 and (355)

The function is

, (356)

and the function is

(357)

The condition for the input space is , . The parameters , , and are spec-

ified below.

, , , ,

0.26 0.06 1.027 0.9588 4.7466 3.918 1.402 2.673
Table 35 Parameters of the model

H2Br

H2Br C0

H2Br

V r1 r2 r3, ,() Q r1() Q r2() Q r3() J2 r1() J2 r2() J2 r3()+ +[–+ +=

J r1()J r2()– J r2()J r3()– J r1()J r3()]– 1 2⁄ ,

Q ri() 1
2
--- E1 ri()

1 ai–()
1 ai+()

------------------E2 ri()+
⎩ ⎭
⎨ ⎬
⎧ ⎫

= J ri() 1
2
--- E1 ri()

1 ai–()
1 ai+()

------------------E2 ri()–
⎩ ⎭
⎨ ⎬
⎧ ⎫

 .=

E1 ri()

E1 ri() Di 2αi ri rci
–{ }–()exp 2 αi ri rci

–{ }–()exp–[]=

E2 ri()

E2 ri() 1
2
---Di 2αi ri rci

–{ }–()exp 2 αi ri rci
–{ }–()exp+[] .=

ri 0> i∀ ai αi Di rci

a1 a2 a3 α1 α2 α3 D1 D2 D3 rc1
rc2

rc3

235

Note that the units for are electron volts, the units for are , and the units for

are , where (or atomic unit) equals angstroms.

Two major properties of the function are of interest, i.e. continuity and differentia-

bility. We will show that the function is continuous, but it is not differentiable. However,

the derivatives ; are neither continuous nor differentiable. First, for ease of ref-

erence, define

, and (358)

(359)

Therefore,

. (360)

By taking the derivative of Eq. (360) with respect to , we obtain

. (361)

For the second derivatives, we take the derivative of Eq. (361) with respect to , and obtain

(362)

From Eq. (361) and Eq. (362), we can see the locations where we should focus on the con-

tinuity and differentiability of the function are at the points yielding . The inputs

 yielding are denoted . Excluding , the function , and

Di αi au 1– rci

au au 0.529

V

V∂ ri∂⁄ i∀

TQ r() Q r1() Q r2() Q r3()+ +≡

TJ r() J2 r1() J2 r2() J2 r3() J r1()J r2()– J r2()J r3()– J r1()J r3()–+ + .≡

V r() TQ r() TJ
1 2⁄ r()+=

ri

V∂
ri∂

ri∂

∂TQ 1
2
---TJ

1 2⁄–

ri∂
∂TJ+=

ri

V2
∂
ri rj∂∂

ri rj∂

2

∂
∂ TQ 1

4
---TJ

3 2⁄–

ri∂
∂TJ

rj∂
∂TJ 1

2
---TJ

1 2⁄–

ri rj∂

2

∂
∂ TJ+– .=

TJ r() 0=

r TJ r() 0= r̃ r̃ V V∂ ri∂⁄

236

 are continuous and differentiable.

We will divide the proof into four parts. First, we will show that is continuous.

Second, we will locate . Third, we will prove that is not continuous at . Finally,

the differentiability of and at will be discussed.

Proof

A. Continuity of

It is easy to prove that is continuous. Since is a function composed of several

continuous functions (i.e. exponential functions), consequently is continuous, following

a fundamental theorem of calculus. Note that, at , the values of are simply (since

).

B. Location of

We will locate . At , recall that . Therefore, from Eq. (359), we can

write

. (363)

A possibility to make Eq. (363) hold is when

. (364)

From Table 35, we can see that the parameters for and are the same, thus causing

 whenever . Therefore, we can conclude that is a condi-

V2
∂ ri∂ rj∂⁄

V

r̃ V∂ ri∂⁄ r̃

V V∂ ri∂⁄ r̃

V

V V

V

r̃ V TQ r̃()

TJ r̃() 0=

r̃

r̃ r̃ TJ r̃() 0=

J2 r̃1() J2 r̃2() J2 r̃3() J r̃1()J r̃2()– J r̃2()J r̃3()– J r̃1()J r̃3()–+ + 0=

J r̃1() J r̃2() J r̃3()= =

r2 r3

J r2() J r3()= r2 r3= r̃2 r̃3=

237

tion that yields . Now, we need to find the condition for that produces

 satisfying Eq. (363). Given and Eq. (355), we can write it as

(365)

By substituting the terms and in Eq. (365), using Eq. (356) and Eq. (357),

and rearranging all of the terms, we obtain

(366)

where

, , (367)

and

. (368)

From Eq. (366), we can solve for . By using Eq. (368), we obtain the value of :

. (369)

Therefore, the location of is at when and satisfying Eq. (369).

C. Continuity of

We will show that ; , is not continuous at . We will prove this by show-

ing that the points are a jump discontinuity. There are two parts of proof in this section.

J r̃2() J r̃3()= r1

J r̃1() J r̃1() J r̃2()=

J r̃1() 1
2
--- E1 r̃1()

1 a1–()
1 a1+()

-------------------E2 r̃1()–
⎩ ⎭
⎨ ⎬
⎧ ⎫

J r̃2() .= =

E1 r̃1() E2 r̃1()

k1x2 k2x 2J r̃2()–+ 0 ,=

k1 D1
1
2
---D1

1 a1–()
1 a1+()

-------------------– 2α1rc1
()exp= k2 2D1 D1

1 a1–()
1 a1+()

-------------------+ α1rc1
()exp–=

x α1 r̃1–()exp=

x r̃1

r̃1
1
α1
------–

k2
2k1
--------– 1

2

k2
k1
-----⎝ ⎠
⎛ ⎞

2 8J r̃2()
k1

----------------+±
⎝ ⎠
⎜ ⎟
⎛ ⎞

ln=

r̃ r2 r3= r1

V∂ ri∂⁄

V∂ ri∂⁄ i∀ r̃

r̃

238

First, we need to show that and ; at . By taking

the derivative of Eq. (359) with respect to , we have

; , and . (370)

However, at , we have . Therefore the term

 in Eq. (370) is zero. Thus, we obtain ; , at . By

taking the derivative of Eq. (370) with respect to , we obtain, if ,

(371)

and, if ,

. (372)

At , since , then Eq. (371) and Eq. (372) reduce to

(373)

From Eq. (373), the terms ; , are not necessarily zero at .

TJ r()∂ ri∂⁄ 0= ri rj∂

2

∂
∂ TJ 0≠ i j,∀ r̃

ri

ri∂
∂TJ 2J ri() J rj()– J rk()–[]

J ri()∂
ri∂

-------------- = i∀ j k, i≠ j k≠

r̃ J r̃1() J r̃2() J r̃3()= =

2J r̃i() J r̃j()– J r̃k()– TJ r()∂ ri∂⁄ 0= i∀ r̃

rj i j≠

ri rj∂

2

∂
∂ TJ 2J ri() J rj()– J rk()–[]

rj∂
∂ J ri()∂

ri∂
--------------⎝ ⎠
⎛ ⎞ J rj()∂

rj∂

J ri()∂
ri∂

--------------– ,=

i j=

ri
2

2

∂

∂ TJ 2J ri() J rj()– J rk()–[]
J ri()2∂

ri
2∂

---------------- 2
J ri()∂

ri∂
--------------⎝ ⎠
⎛ ⎞

2
+=

r̃ 2J r̃i() J r̃j()– J r̃k()– 0=

ri rj∂

2

∂
∂ TJ

2
J ri()∂

ri∂
--------------⎝ ⎠
⎛ ⎞

2
 ; if i j= .

J rj()∂
rj∂

J ri()∂

ri∂
-------------- ; if i j . ≠–

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

ri rj∂

2

∂
∂ TJ i j,∀ r̃

239

Second, from Eq. (361), the value at is in an indeterminate form because

both and are zero at . To find the values of at using L’Ho-

pital’s rule, we need to find , where

(374)

Unfortunately, the denominator of is not differentiable at , since its derivative

(375)

does not exist (as its value is). Thus, L’Hopital’s rule cannot be directly used to find

. To overcome this problem, we find . Now, both the numerator and denom-

inator of are both differentiable, and their values at are both zero. Therefore,

. (376)

From L’Hopital’s rule, by taking the derivative of the numerator and the denominator in

Eq. (376) with respect to , we obtain

. (377)

By Eq. (373), Eq. (377) becomes

. (378)

V∂ ri∂⁄ r̃

TJ r() TJ r()∂ ri∂⁄ r̃ V∂ ri∂⁄ r̃

y
r r̃→
lim

y
TJ∂ ri∂⁄

TJ
1 2⁄

------------------- .≡

TJ
1 2⁄ y r̃

ri∂
∂TJ

1 2⁄
1
2
---TJ

1– 2⁄

ri∂
∂TJ=

0 0⁄

y
r r̃→
lim y2

r r̃→
lim

y2 r̃

y2

r r̃→
lim

TJ∂ ri∂⁄()2

TJ

r r̃→
lim=

ri

y2

r r̃→
lim

2 TJ∂ ri∂⁄() T2
J∂ ri

2∂⁄()
TJ∂ ri∂⁄

r r̃→
lim 2 T2

J∂ ri
2∂⁄()

r r̃→
lim= =

y2

r r̃→
lim 4

J ri()∂
ri∂

--------------⎝ ⎠
⎛ ⎞

2
=

240

Therefore, we obtain

(379)

Thus, from Eq. (361) and Eq. (379), we have

(380)

This implies that ; , do not exist, as the limit converges to two values. Thus,

 is not continuous at . From Eq. (380), we conclude that the points are a jump

discontinuity in . As , the values of converge to at one

end, and at the other end.

D. Differentiability of and

It is easy to prove that the function (which is continuous) is not differentiable. A

continuous function is differentiable if its derivatives exist and are continuous. However,

we proved that does not exist and it is not continuous at . Therefore is not dif-

ferentiable at . Finally, we want to show that is not differentiable. Since

is not continuous at , thus it is not differentiable at . (Another proof: At , we have

y
r r̃→
lim 2

J ri()∂
ri∂

r r̃=

± .=

V∂
ri∂

r r̃→
lim ri∂

∂TQ J ri()∂
ri∂

---------------±
⎝ ⎠
⎜ ⎟
⎛ ⎞

r r̃=

 .=

V∂ ri∂⁄
r r̃→
lim i∀

V∂ ri∂⁄ r̃ r̃

V∂ ri∂⁄ r r̃→ V∂ ri∂⁄ ri∂
∂TQ J ri()∂

ri∂
---------------+

ri∂
∂TQ J ri()∂

ri∂
---------------–

V V∂ ri∂⁄

V

V∂ ri∂⁄ r̃ V

r̃ V∂ ri∂⁄ V∂ ri∂⁄

r̃ r̃ r̃

241

 from Eq. (373) but . Thus, in Eq. (362) converges

to infinity. Consequently, is not differentiable at .)

Summary of the proof: is a continuous function, but the first derivatives

; , are discontinuous at . Therefore, we conclude that the function ;

, is of class . If are excluded from the input domain, the function and

 are both continuous and differentiable.

T2
J∂ ri

2∂⁄ 0≠ TJ r̃() 0= V2
∂ ri

2∂⁄
r r̃→
lim

V∂ ri∂⁄ r̃

V r()

V∂ ri∂⁄ i∀ r̃ V r()

r∀ 0> C0 r̃ V

V∂ ri∂⁄

242

 D. Scaled and true derivatives

When training neural networks, the input space and/or the output space of the train-

ing data are sometimes normalized to the range between and . Consequently, this pro-

duces an impact on the scales of the derivatives. The conversion between the scaled and the

true derivatives will be discussed. We will focus only on the conversion of the first and sec-

ond derivatives, since they are the orders discussed in this research.

We use to denote the normalized function value evaluated at the input,

associated to the true function value . The notations and denote the mini-

mum and the maximum values of for all the training points, respectively. That is, for

,

 and . (381)

The relationship between and is

, (382)

or, equivalently,

. (383)

For the conversion of the input space, the relationship between and is real-

ized by simply replacing every with in Eq. (382) and Eq. (383). (That is, change

1– 1

gk q,
n kth qth

gk q, gkmn
gkmx

gk

Q 1 2 … Q, , ,{ }=

gkmn
min gk q, ; q∀ Q∈()= gkmx

max gk q, ; q∀ Q∈()=

gk q, gk q,
n

gk q,
1
2
--- gk q,

n 1+() gkmx
gkmn

–() gkmn
+=

gk q,
n

2 gk q, gkmn
–()

gkmx
gkmn

–
---------------------------------- 1–=

rth pr q, pr q,
n

gk pr gk q,
n

243

to , change to , change to and change to .)

We will first discuss the conversion between the scaled and the true values for the

first derivatives, followed by the second derivatives.

First derivatives

In this section, we are interested in the conversion between to

. By taking the derivative of Eq. (382) with respect to , we obtain

(384)

By using the chain rule of calculus to the term , we have

. (385)

By the relationship in Eq. (383), we can compute :

(386)

Thus, Eq. (384) becomes

(387)

Next, we will discuss the conversion for the second derivatives.

pr q,
n gk q, pr q, gkmn

prmn
gkmx

prmx

gk q,
n∂ pr q,

n∂⁄

gk q,∂ pr q,∂⁄ pr

pr q,∂
∂gk q, 1

2
--- gkmx

gkmn
–() pr q,∂

∂gk q,
n

 .=

gk q,
n∂ pr q,∂⁄

pr q,∂
∂gk q,

n

pr q,
n∂

∂gk q,
n

pr q,∂
∂pr q,

n

×=

pr q,
n∂ pr q,∂⁄

pr q,∂
∂pr q,

n
2

prmx
prmn

–
-------------------------- .=

pr q,∂
∂gk q,

gkmx
gkmn

–

prmx
prmn

–

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr q,
n∂

∂gk q,
n

× .=

244

Second derivatives

In this section, we want to know the conversion between and

. By taking the derivative of Eq. (387) with respect to , we obtain

(388)

If the network is trained with the normalized inputs , the term is a function

of . By using the chain rule of calculus to the last term in Eq. (388), we have

(389)

By substituting Eq. (386) into Eq. (389), Eq. (388) becomes

(390)

pr' q,∂
∂

pr q,∂
∂gk q,

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr' q,
n∂

∂
pr q,

n∂

∂gk q,
n

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr'

pr' q,∂
∂

pr q,∂
∂gk q,

⎝ ⎠
⎜ ⎟
⎛ ⎞ gkmx

gkmn
–

prmx
prmn

–

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr' q,∂
∂

pr q,
n∂

∂gk q,
n

⎝ ⎠
⎜ ⎟
⎛ ⎞

× .=

pn gk q,
n∂ pr q,

n∂⁄

pn

pr' q,∂
∂

pr q,
n∂

∂gk q,
n

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr' q,
n∂

∂
pr q,

n∂

∂gk q,
n

⎝ ⎠
⎜ ⎟
⎛ ⎞

pr' q,∂
∂pr' q,

n

× .=

pr' q,∂
∂

pr q,∂
∂gk q,

⎝ ⎠
⎜ ⎟
⎛ ⎞ 2 gkmx

gkmn
–()

prmx
prmn

–() pr'mx
pr'mn

–()
--

pr' q,
n∂

∂
pr q,

n∂

∂gk q,
n

⎝ ⎠
⎜ ⎟
⎛ ⎞

× .=

245

REFERENCES

[AgRa06] Agrawal, P. M., Raff, L. M., Hagan, M. T., and Komanduri, R., “Molec-
ular dynamics investigations of the dissociation of on ab initio
potential energy surface obtained using neural network methods,” The
Journal of Chemical Physics, vol. 124, 134306, 2006.

[AgSa05] Agrawal, P. M., Samadh, A. N. A., Raff, L. M., Hagan, M., Bukkapat-
nam, S. T., and Komanduri, R., “Prediction of molecular-dynamics sim-
ulation results using feedforward neural networks: Reaction of a C2
dimer with an activated diamond (100) surface,” The Journal of Chemi-
cal Physics, vol. 123, 224711, 2005.

[Arya90] Arya, A. P., Introduction to Classical Mechanics, Allyn and Bacon,
Needham Haights, MA, 1990.

[AtPa97] Attali, J. G., and Pages, G., “Approximation of functions by a multilayer
perceptron: a new approach,” Neural Networks, vol. 10, pp. 1069-1081,
1997.

[BaEn99] Basson, E. and Engelbrecht, A. P., “Approximation of a function and its
derviatives in feedforward neural networks,” International Joint Confer-
ence on Neural Networks, Washington, Vol. 1, pp. 419-421, July 1999.

[Beem76] Beeman, D., “Some multistep methods for use in molecular dynamics
calculations,” Journal of Computational Physics, vol. 20, pp. 130-139,
1976.

[Bish95] Bishop, C. M., “Training with noise is equivalent to Tikhonov regular-
ization,” Neural Computation, Vol. 7, No. 1, pp. 108-116, 1995.

[ChHa99] Chen, D., and Hagan, M. T., “Optimal use of regularization and cross-
validation in neural network modeling,” International Joint Conference
on Neural Networks, Washington, paper no. 323, July 1999.

[DeSc83] Dennis, J. E., and Schnabel, R. B., Numerical Methods for Uncontrained
Optimization and Nonlinear Equations, Englewood Cliffs, Prentice-
Hall, 1983.

SiO2

246

[DyLo99] Dyck, D., Lowther, D. A., Malik, Z., Spence, R., and Nelder, J.,
“Response surface models of electromagnetic devices and their applica-
tion to design,” IEEE Transaction on Magnetics, vol. 35, no. 3, pp.
1821-1824, May, 1999.

[Enge01] Engelbrecht, A. P., “A new pruning heuristic based on variance analysis
of sensitivity information,” IEEE Transaction on neural networks, vol.
12, no. 6, pp. 1386-1399, November, 2001.

[FeSt05] Ferrari, S., and Stengel, R. F., “Smooth function approximation using
neural networks,” IEEE Transactions on Neural Networks, Vol. 16, No.
1, pp. 24-38, January 2005.

[Finc92] Fincham, D., “Leapfrog rotational algorithms,” Mol. Simul, vol. 8, pp.
165-178, 1992.

[FiSi84] Finnis, M. W., and Sinclair, J. E., “A simple empirical N-body potential
for transition metals,” Philos. Mag. A, 50, 45-55, 1984.

[FoHa97] Foresee, D., and Hagan, M. T., “Gauss-Newton approximation to Baye-
sian learning,” Proceedings of the 1997 International Joint Conference
on Neural Networks, pp. 1930-1935, 1997.

[FrTr04] Frisch, M. J., Trucks, G. W., Schlegel, H. B., et al., GAUSSIAN 03
(Revision C.02), Gaussian, Inc., Wallingford, CT, 2004.

[GaWh92] Gallant, A. R., and White, H., “On learning the derivatives of an
unknown mapping with multilayer feedforward neural networks,” Neu-
ral Networks, vol. 6, pp. 12-138, 1992.

[GiMo92] Gilbert, J. R., Moler, C., and Schreiber, R., “Sparse matrices in MAT-
LAB: Design and Implementation,” SIAM Journal on Matrix Analysis
and Applications, Vol. 13, issue 1, pp. 333-356, 1992.

[GiMu81] Gill, P., Murray, W., and Wright, M. H., Practical Optimization, Aca-
demic Press, London, U.K., 1981.

[GiPo76] Gibbs, N. E., Poole, W. G., and Stockmeyer, P. K. Jr., “A comparison of
several bandwidth and profile reduction algorithms,” ACM Transactions
on Mathematical Software, vol. 2, issue 4, pp. 322-330, 1976.

[HaDe96] Hagan, M. T., Demuth, H. B., and Beale, M., Neural Network Design,
PWS Publishing Co., Boston, MA, 1996.

[HaMe94] Hagan, M. T., and Menhaj, M., “Training feedforward networks with the
Marquardt algorithm,” IEEE Transactions on Neural Networks, vol. 5,
no. 6, pp. 989-993, November 1994.

247

[HaSt93] Hassibi, B., Stork, D. G., and Wolff, G. J., “Optimal brain surgeon and
general network pruning,” IEEE International Conference on Neural
networks, San Francisco, CA, vol. 1, pp. 293-299, 1993.

[HaZa99] Hanselmann, T., Zaknich, A., and Attikiouzel, Y., “Learning functions
and their derivatives using Taylor series and neural networks,” Interna-
tional Joint Conference on Neural Networks, Washington, vol. 1, pp.
409-412, July 1999.

[HeKr91] Hertz, J., Krogh, A., and Plamer, R. G., Introduction to the Theory of
Neural Computation, Addison Wesley, Redwood City, CA, 1991.

[HoJo94] Horn, R., and Johnson, C. R., Topics in Matrix Analysis, Cambridge,
MA, 1994.

[HoKo64] Hohenberg, P., and Kohn, W., “Inhomogenous electron gas,” Phys. Rev.,
136, B864, 1964.

[Horn91] Hornik, K., “Approximation capabilities of multilayer feedforward net-
works,” Neural Networks, vol. 4, pp. 1069-1072, 1991.

[HoSt89] Hornik, K., Stinchcombe, M. and White, H., “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, pp.
359-366, 1989.

[HoSt90] Hornik, K., Stinchcombe, M. and White, H., “Universal approximation
of an unknown mapping and its derivatives using multilayer feedforward
networks,” Neural Networks, vol. 3, pp. 551-560, 1990.

[HuSe05] Huynh, T. Q., and Setiono, R., “Effective neural network pruning using
cross-validation,” Proceedings of International Joint Conference on
Neural Networks, Montreal, Canada, 2005.

[Ito93] Ito, Y., “Approximation of differentiable functions and their derivatives
on compact sets by neural networks,” Math. Scient., 18, pp. 11-19, 1993.

[Karn90] Karnin, E. D., “A simple procedure for pruning back-propagation
trained neural networks,” IEEE Transactions on Neural Networks, vol.
1, no. 2, pp. 239-242, 1990.

[KuNe66] Kuntz, P. J., Nemeth, E. M., Polanyi, J. C., Rosner, S. D., and Young, C.
E., The Journal of Chemical Physics, vol. 44, 1168, 1966.

[LaFo06] Lauret, P., Fock, E., and Mara T. A., “A node pruning algorithm based
on a Fourier amplitude sensitivity test method,” IEEE Transactions on
Neural Networks, vol. 17, no. 2, pp. 273-293, 2006.

248

[Lee07] Lee, Kun-Chou, “Application of neural network and its extension of
derivative to scattering from a nonlinearly loaded antenna,” IEEE Trans-
action on Antenna and Propagation, vol. 55, no. 3, pp. 990-993, 2007.

[Leve44] Levenberg, K., “A method for the solution of certain non-linear prob-
lems in least squares”, The Quarterly of Applied Mathematics, vol. 2,
1944, pp. 164-168

[Li96] Li, X., “Simultaneuous approximations of multivariate functions and
their derivatives by neural networks with one hidden layer,” Neurocom-
puting, 12, pp. 327-343, 1996.

[Lo99] Lo, J. T., “Statistical method of pruning neural networks,” Proceedings
of international joint conference on neural networks, pp. 1678-1680,
July, 1999.

[Marq63] Marquardt, D. W., “An algorithm for least-square estimation of nonlin-
ear parameters”, SIAM Journal on Numerical Analysis, vol. 11, no. 2,
1963.

[McCa06] McCaffrey, J., .NET Test Automation Recipes: A Problem-solution
Approach, Apress, Inc., Berkeley, CA, 2006.

[MacK92] MacKay, D. J. C., “Bayesian Interpolation,” Neural Computation, vol. 4,
pp. 415-447, 1992.

[MaDy99] Malik, Z., Dyck, D., Nelder, J., Spence, J., and Lowther, D., “Modelling
with gradient information,” Proc Instn Mech Engrs - Part B, vol. 213,
pp. 209-213, 1999.

[MaNe99] Magnus, J. R., and Neudecker, H., Matrix differential calculus with
applications in statistics and econometrics, Revised edition, Wiley,
Chickester, U.K., 1999.

[Matt93] Mattis, D. C., The Many-Body Problem: An Encyclopedia of Exactly
Solved Models in One Dimension, World Scientific, 1993.

[MoPl34] M ller, C., and Plesset, M. S., “Note on an approximation treatment for
many-electron systems,” Phys. Rev., 46, 618, 1934.

[Mors29] Morse, P. M., “Diatomic molecules according to the wave mechanics II
vibrational levels,” Phys. Rev., 34, 57-64, 1929.

[NgTr99] Nguyen-Thien, T., and Tran-Cong, T., “Approximation of functions and
their derivatives: A neural network implementation with applications,”
Appl. Math. Modelling, vol. 23, pp. 687-704, 1999.

∅

249

[NgWi90] Nguyen, D., and Widrow, B., “Improving the learning speed of 2-layer
neural networks by choosing initial values of the adaptive weights,”
International Joint Conference on Neural Networks, San Diego, CA,
vol. 3, pp. 21-26, 1990.

[OgHe07] Ogunniyi, A. J., Henriquez, S. L., Karangu, C. W., Dickens, C., and
White, C., “Accurate modelling of drain current derivatives of MES-
FET/HEMT devices for intermodulation analysis,” IEEE International
Symposium on Circuits and Systems, pp. 1013-1016, May, 2007.

[Pink99] Pinkus, A., “Approximation theory of the MLP model in neural net-
works,” Acta Numerica, 8, pp. 143-195, 1999.

[PuMa09] Pukrittayakamee, A., Malshe, M., Hagan, M., Raff, L., Bukkapatnam,
S., and Komanduri, R., “Simultaneous fitting of a potential-energy sur-
face and its corresponding force fields using feedforward neural net-
works,” The Journal of Chemical Physics, 130, 134101, 2009.

[Raff01] Raff, L. M., Principles of Physical Chemistry, Prentice Hall, New Jersy,
2001.

[RaMa05] Raff, L.M., Malshe, M., Hagan, M., Doughan, D.I., Rockley, M.G., and
Komanduri, R., “Ab initio potential-energy surfaces for complex, multi-
channel systems using modified novelty sampling and feedforward neu-
ral networks,” The Journal of Chemical Physics, vol. 122, 084104, 2005.

[Reed93] Reed, R., “Pruning algorithm - A survey,” IEEE Transaction on Neural
Networks, vol. 4, no. 5, pp. 740-747, September 1993.

[SeGa00] Setiono, R., and Gaweda, A., “Neural network pruning for function
approximation,” Proceedings of the International Joint Conference on
Neural Networks, vol. 6, 2000.

[SiDo88] Sietsma, J., and Dow, R J F., “Neural net pruning - why and how,” IEEE
International Conference on Neural Networks, San Diego, CA, vol. 1,
pp. 325-333, 1988.

[SiDo91] Sietsma, J., and Dow, R J F., “Creating aritificial neural networks that
gneralize,” Neural Networks, vol. 4, pp. 67-69, 1991.

[Stei85] Steinfeld, J. I., Molecules and Radiation: An Introduction to Modern
Molecular Spectroscopy, second edition, MIT Press, Cambridge, MA,
1985.

[SuRa84] Sudhakaran, M. P., and Raff, L. M., “Quasiclassical trajectory studies of
HD + HBr(DBr) abstraction and exachange reactions,” The Journal of
Chemical Physics, vol, 95, pp. 165-177, 1985.

250

[SwAn82] Swope, W. C., Andersen, H. C., Berens, P. H., and Wilson, K. R., “A
computer simulation method for the calculation of equilibrium constants
for the formation of physical clusters of molecules: Application to small
water clusters,” The Journal of Chemical Physics, vol. 76, pp. 637-649,
1982.

[Ters88] Tersoff, J., “Empirical interatomic potential for Carbon, with applica-
tions to amorphous Carbon,” Phys. Rev. Lett 61, pp. 2879, 1988.

[Ters89] Tersoff, B., “Modelling soild-state chemistry: Interatomic potentials for
multicomponent systems”, Phys. Rev. B, vol. 39, pp. 5566 - 5568, 1989.

[TiAr77] Tikhonov, A. N., and Arsenin, V. Y., Solutions of Ill-posed Problems, V
H Winston and sons, Washington D.C., 1977.

[Verl67] Verlet, L., “Computer experiments on classical fluids,” Phys. Rev., vol.
165, pp. 201-214, 1967.

[WaHi00] Wan, W., Hirasawa K., Hu, J., and Jin, C., “A new method to prune the
neural network,” Proceedings of the International Joint Conference on
Neural Networks, vol. 6, 2000.

[Werb88] Werbos. P., “Backpropagation: Past and future,” Proceedings of the
IEEE International Conference on Neural Networks, pp. 343-353. IEEE
Press, 1988.

[XuYa03] Xu, J., Yagoub, M. C. E., Ding, R., and Zhang, Q. J., “Exact adjoint sen-
sitivity analysis for neural-based microwave modeling and desing,”
IEEE Transaction on Microwave Theory and Techniques, vol. 51, no. 1,
January, 2003.

VITA

Arjpolson Pukrittayakamee

Candidate for the Degree of

Doctor of Philosophy

Thesis: FITTING FUNCTIONS AND THEIR DERIVATIVES WITH NEURAL

NETWORKS

Major Field: Electrical and Computer Engineering

Biographical:

Personal Data: Born in Bangkok, Thailand, on June 10, 1977, the son of Ongarj
Pukrittayakamee and Boontida Pukrittayakamee.

Education: Graduated from Triam Udom Suksa School, Bangkok, Thailand, in
April 1993; received Bachelor of Engineering degree in Electrical Engineer-
ing from Chulalongkorn University, Bangkok, Thailand, in May 1997; re-
ceived Master of Sciences degree in Electrical and Computer Engineering
from Oklahoma State University, Stillwater, Oklahoma, in December 2001.
Completed the requirements for the Doctor of Philosophy degree in Electri-
cal and Computer Engineering at Oklahoma State University, Stillwater,
Oklahoma, in July 2009.

Experience: Employed by National Electronics and Computer Technology Center
as an Assistant Researcher from 1997 to 1999; employed by Oklahoma
State University as a Research Assistant from 2000 to 2002; employed by
Thaicom Satellite Plc. as an Engineering Specialist from 2002 to 2005; em-
ployed by Oklahoma State University as a Research Associate from 2005 to
present.

Professional Status and Membership: Member of Institute of Electrical and Elec-
tronic Engineers, and International Neural Network Society.

ADVISER’S APPROVAL:

Name: Arjpolson Pukrittayakamee Date of Degree: July, 2009

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: FITTING FUNCTIONS AND THEIR DERIVATIVES WITH NEURAL

NETWORKS

Pages in Study: 250 Candidate for the Degree of Doctor of Philosophy

Major Field: Electrical and Computer Engineering

Scope and Method of Study: The objective of this work was to study methods of simulta-
neously approximating functions and their first-order derivatives using multilayer
feedforward neural networks. There are a few methods proposed today to simulta-
neously approximate both functions and their first derivatives, but they require
modifications to the network structure. The new method works with any multilayer
feedfoward neural network, by forming a new performance index that combines
both the function error and the first derivative error. We tested and analyzed the re-
sults of the proposed method on both analytic and real-world problems.

Findings and Conclusions: We selected two optimization procedures for the new perfor-
mance index. The first procedure was for any gradient-based optimization, while
the other was implemented under the Levenberg-Marquardt framework. For each
procedure, extra backpropagation calculations were derived to force the first deriv-
ative response of the neural network to match the desired derivative target. More-
over, we discovered two new types of overfitting from neural networks trained with
the proposed performance index. We analyzed and illustrated how the overfitting
develops. A network pruning algorithm was proposed to eliminate these types of
overfitting. The simulation results tested on four analytic problems and three sys-
tems in Molecular Dynamics consistently showed that the approximation accuracy
of neural networks trained by the new performance index significantly outper-
formed the use of standard training methods. In addition, the network generalization
was even further improved with the incorporation of the pruning algorithm. We
found that the most promising method yielding the most accurate approximation
and the best generalization was to optimize the new performance index under the
Levenberg-Marquardt framework along with the use of the pruning algorithm.

Dr. Martin T. Hagan

