
 MULTIOBJECTIVE PARTICLE SWARM

OPTIMIZATION: INTEGRATION OF DYNAMIC

POPULATION AND MULTIPLE-SWARM CONCEPTS

AND CONSTRAINT HANDLING

 By

 WEN FUNG LEONG

 Bachelor of Science in Electrical Engineering

 Oklahoma State University

 Stillwater, Oklahoma

 2000

 Master of Science in Electrical Engineering

 Oklahoma State University

 Stillwater, Oklahoma

 2002

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 DOCTOR OF PHILOSOPHY

 December, 2008

 ii

 MULTIOBJECTIVE PARTICLE SWARM

OPTIMIZATION: INTEGRATION OF DYNAMIC

POPULATION AND MULTIPLE-SWARM CONCEPTS

AND CONSTRAINT HANDLING

 Dissertation Approved:

Dr. Gary G. Yen

Dissertation Adviser

Dr. Guoliang Fan

Dr. Carl D. Latino

Dr. R. Russell Rhinehart

Dr. A. Gordon Emslie

 Dean of the Graduate College

 iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my advisor,

Professor Gary G. Yen. Over the course of this study, he has provided his insightful

guidance, continued motivation and unlimited patience in guiding my writing progress.

Furthermore, he has also given me other opportunities including conference and

professional experiences, and financial assistance.

My heartfelt appreciation to my committee members, Professor Guoliang Fan,

Professor Carl D. Latino, and Professor R. Russell Rhinehart, for their time, valuable

feedback, and constructive feedback.

Many thanks to Dr. Huantong Geng, from Nanjing University of Information

Science and Technology, for sharing the source code of his published journal [164].

To my past and present colleagues of Intelligent Systems and Control Laboratory

(ISCL), Sangameswar Venkatraman, Daghan Acay, Pedro Gerbase de Lima, Michel

Goldstein, Monica Wu Zheng, Xiaochen Hu, Yonas G. Woldesenbet, Biruk G. Tessema,

Kumlachew Woldemariam, Moayed Daneshyari, Ashwin Kadkol, Yared Nesrane, and

Nardos Zewde, I thank you all for the constructive discussions, the brainstorming

sessions, friendship and help. I have had the pleasure of working with Xin Zhang and I

thank her for valuable inputs and collaborative work.

I am forever thankful to my parents (W.H. Leong and K.M. Yim) and siblings

 iv

(Chew, Bun, Ting, and Zhou) for being patience, giving me their unconditional love,

financial and moral supports. Finally, my special thanks to my husband, Edmond J.O.

Poh for his encouragement, love, and giving emotional supports.

 v

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION ...1

 1.1 Motivation..1

 1.2 Objective ..2

 1.3 Contributions..5

 1.4 Outline of the Dissertation ...6

2. MULTIOBJECTIVE OPTIMIZATION..9

 2.1 Definition ...9

 2.1.1 Pareto Optimization ..11

 2.1.2 Example ..12

 2.2 Optimization Methods ...13

 2.2.1 Conventional Algorithms..14

 2.2.2 Aggregating Approach..18

 2.2.3 Multiobjective Evolutionary Algorithms (MOEAs)...............................18

 2.2.3.1 General Concept..20

 2.2.3.2 A Brief Tour of MOEAs ...20

 2.3 Test Functions..24

 2.4 Performance Metrics ..25

3. SWARM INTELLIGENCE...29

 3.1 Introducing Swarm Intelligence...29

 3.1.1 Fundamental Concepts..30

 3.1.2 Example Algorithms ...31

 3.2 Modeling the Behavior of Bird Flock..34

4. PARTICLE SWARM OPTIMIZATION...40

 4.1 Brief History of Particle Swan Optimization...40

 4.2 Standard PSO Equations ..43

 4.3 The Generic PSO Algorithm..46

 4.4 Modifications in PSO...47

 vi

Chapter Page

 4.4.1 Parameter Settings ..48

 4.4.1.1 Inertial Weight ..48

 4.4.1.2 Acceleration Constants ...50

 4.4.1.3 Clipping Criterion ...51

 4.4.2 Modifications of PSO Equations ..52

 4.4.3 Neighborhood Topology...55

 4.4.4 Multiple-swarm Concept in PSO..58

 4.4.4.1 Solving Multimodal Problems ..58

 4.4.4.2 Tracking All Optima for Multimodal problems in Dynamic

 Environment ...60

 4.4.4.3 Promoting Exploration and Diversity ...61

 4.4.5 Other PSO Variations ...63

5. MULTIOBJECTIVE PARTICLE SWARM OPTIMIZATION (MOPSO)65

 5.1 Particle Swarm Optimization Algorithm for MOPs ..65

 5.2 General Framework of MOPSO ..67

 5.2.1 External Archive ...69

 5.2.2 Global Leaders Selection Mechanism ..72

 5.2.3 Personal Best Selection Mechanism ...80

 5.2.4 Incorporation of Genetic Operators ..82

 5.2.5 Incorporation of Multiple Swarms..84

 5.2.6 Other MOPSO Designs...86

6. PROPOSED ALGORITHM 1: DYNAMIC MULTIOBJECTIVE PARTICLE

SWARM OPTIMIZATION (DMOPSO) ..88

 6.1 Introduction..89

 6.2 Proposed Algorithm Overview ..91

 6.3 Implementation Details..94

 6.3.1 Cell-based Rank Density Estimation Scheme...94

 6.3.2 Perturbation Based Swarm Population Growing Strategy......................99

 6.3.3 Swarm Population Declining Strategy..104

 6.3.4 Adaptive Local Archives and Group Leader Selection Procedures......111

 6.4 Comparative Study...114

 6.4.1 Test Function Suite ...114

 6.4.2 Parameter Settings ..116

 6.4.3 Selected Performance Metrics ..116

 6.4.4 Performance Evaluation of DMOPSO against the selected MOPSOs .119

 6.4.5 Investigation of Computational Cost of DMOPSO with Selected

 MOPSOs ...128

 vii

Chapter Page

7. PROPOSED ALGORITHM 2: DYNAMIC MULTIPLE SWARMS IN

MULTIOBJECTIVE PARTICLE SWARM OPTIMIZATION (DSMOPSO) ...130

 7.1 Introduction..131

 7.2 Proposed Algorithm Overview ..133

 7.3 Implementation Details..135

 7.3.1 Cell-based Rank Density Estimation Scheme.......................................135

 7.3.2 Identify Swarm Leaders ..136

 7.3.3 Update Local Best of Swarms...136

 7.3.4 Archive Maintenance ..137

 7.3.5 Particle Update Mechanism (Flight)...139

 7.3.6 Swarm Growing Strategy..143

 7.3.7 Swarm Declining Strategy ..150

 7.3.8 Objective Space Compression and Expansion Strategy153

 7.4 Comparative Study...157

 7.4.1 Experimental Framework..159

 7.4.2 Selected Performance Metrics ..159

 7.4.3 Performance Evaluation..160

 7.4.4 Comparison in Number of Fitness of Evaluation169

 7.4.5 Sensitivity Analysis ..170

8. PROPOSED PSO AND MOPSO FOR CONSTRAINED OPTIMIZATION......175

 8.1 Introduction..175

 8.2 Related Works..177

 8.3 Proposed Approach..183

 8.3.1 Transform a COP into an Unconstrained Bi-objective Optimization

 Problem...183

 8.3.2 Proposed PSO Algorithm to Solve COPs ...185

 8.3.2.1 Update Personal Best (Pbest) Archive......................................186

 8.3.2.2 Update Feasible and Infeasible Global Best Archive189

 8.3.2.3 Particle Update Mechanism ..191

 8.3.2.4 Mutation Operator...193

 8.3.3 Proposed Constrained MOPSO to Solve CMOPs196

 8.3.3.1 Update Personal Best Archive ..198

 8.3.3.2 Update Feasible and Infeasible Global Best Archive199

 8.3.3.3 Global Best Selection..201

 8.3.3.4 Mutation Operator...201

 8.4 Comparative Study...203

 8.4.1 Experiment 1: Performance Evaluation of the Proposed PSO for COPs....

 ...203

 8.4.1.1 Experimental Framework..203

 viii

Chapter Page

 8.4.1.2 Simulation Results and Analysis ..205

 8.4.2 Experiment 2: Performance Evaluation of the Proposed Constrained

 MOPSO...208

 8.4.2.1 Experimental Framework..208

 8.4.2.2 Selected Performance Metrics ..210

 8.4.2.3 Performance Evaluation..211

9. CONCLUSION AND FUTURE WORKS ...221

 9.1 Dynamic Population Size and Multiple-swarm Concepts221

 9.2 Constraint Handling ...225

BIBLIOGRAPHY..228

 ix

LIST OF TABLES

Table Page

 2.1 Examples of optimization methods under the two main classes......................13

 5.1 Comparison between a typical EA and PSO..66

 6.1 The six test problems used in this study. All objective functions are to be

 minimized ..115

 6.2 Parameter configurations for five selected MOPSOs116

 6.3 Parameter configurations for DMOPSO with number of iterations is based

 upon 20,000 evaluations ..117

 6.4 The computed additive binary epsilon indicator, ()BAI ,+ε , for all combination

 of H1, H2, and P as shown in Figure 6.17 ..118

 6.5 The distribution of IH values tested using Mann-Whitney rank-sum Test

[144].The table presents the z values and p-values with respect to the

alternative hypothesis (i.e., p-value < α=0.05) for each pair of DMOPSO and a

selected MOPSO. In each cell, both values are presented in a bracket: (z

value, p-value). The distribution of DMOPSO is significantly difference or

better than those selected MOPSO unless stated ...121

 6.6 The distribution of Iε+ values tested using Mann-Whitney rank-sum Test

[144].The table presents the z values and p-values with respect to the

alternative hypothesis (i.e., p-value < α=0.05) for each pair of DMOPSO and a

selected MOPSO. In each cell, both values are presented in a bracket like this:

(z value, p-value). For simplicity, DMOPSO is represented by A, and

algorithms B1 to B5 are referred to as OMOPSO, MOPSO, cMOPSO,

sMOPSO, and NSPSO, respectively. The distribution of DMOPSO is

significantly difference or better than those selected MOPSO unless stated.......

 ..122

 6.7 Average number of evaluations required per run for all test problems from all

selected algorithms and DMOPSO to achieve GD =0.001............................127

 x

Table Page

 7.1 Parameter configurations for existing MOPSOs and DSMOPSO.................160

 7.2 The distribution of IH values tested using Wilcoxon rank-sum test. The table

presents the z values and p-values, i.e., presented in the brackets as (z value,

p-value), with respect to the alternative hypothesis (i.e., p-value < α=0.05) for

each pair of DMOPSO and a selected MOPSO. Note that the distribution of

DMOPSO is significantly difference or better than those selected MOPSO

unless stated difference or better than those selected MOPSO unless stated

 ..163

 7.3 The distribution of Iε+ values tested using Wilcoxon rank-sum test. The table

presents the z values and p-values with respect to the alternative hypothesis

(i.e., p-value < α=0.05) for each pair of DMOPSO and a selected MOPSO. In

each cell, both values are presented in a bracket like this: (z value, p-value).

For simplicity in naming, DSMOPSO is represented by A, and algorithms B1

to B3 are referred to as DMOPSO, MOPSO, and cMOPSO, respectively. The

distribution of DMOPSO is significantly ..165

 7.4 Average number of evaluations computed for the test problems to achieve GD

=0.001 ..169

 8.1 Brief summary of the effects of fr , cvpbest _ , and cvgbest _ on the second

and third terms in Equation (8.6) ...193

 8.2 Summary of main characteristics of the 19 benchmark functions204

 8.3 Parameter configurations for the proposed PSO..204

 8.4 Experimental results on the 19 benchmark functions with 50 independent

runs. Note that the first column presents the test problem and its global

optimal ...206

 8.5 Comparison of the proposed algorithm with respect to SR[155],

DOM+RVPSO [172], MSPSO [179], and PESO [182] on 13 benchmark

functions. Note that the first column presents the test problem and its global

optimal ...207

 8.6 Parameter configurations for testing algorithms..208

 8.7 The 14 benchmark CMOPs used in this study. All objective functions are to

be minimized..209

 8.8 Parameter setting for CTP2-CTP8 [183] ...210

 xi

Table Page

 8.9 Summary of main characteristics of the 14 benchmark functions210

 8.10 The distribution of IH values tested using Mann-Whitney rank-sum Test. The

table presents the z values and p-values with respect to the alternative

hypothesis (i.e., p-value < α=0.05) for each pair of the proposed MOPSO and

a selected constrained MOEAs. In each cell, both values are presented in a

bracket: (z value, p-value). The distribution of the proposed MOPSO is

significantly different than those selected constrained MOEAs unless stated

 ..213

 8.11 The distribution of Iε+ values tested using Mann-Whitney rank-sum Test. The

table presents the z values and p-values with respect to the alternative

 hypothesis (i.e., p-value < α=0.05) for each pair of the proposed MOPSO and

 a selected constrained MOEAs. In each cell, both values are presented in a

bracket: (z value, p-value). The proposed MOPSO is represented by A, and

algorithms B1, B2, and B3 are referred to as NSGA-II[31], GZHW[164] and

WTY[166] respectively. The distribution of the proposed MOPSO is

 significantly difference than those selected constrained MOEAs unless

 stated ..215

 xii

LIST OF FIGURES

Figure Page

 2.1 The decision vectors ax , bx , and cx in the feasible region in decision space

and their corresponding fitness ()axF , ()bxF , and ()cxF in the objective

space...12

 2.2 Main procedure of an evolutionary algorithm for single generation19

 2.3 Above shows different kind of ranking schemes. (a) Goldberg’s nondominated

sorting [25], (b) Fonseca’s ranking method [26], (c) Ranking scheme adopted

in SPEA [27], and (d) Automatic accumulated ranking scheme proposed by

[28]...22

 2.4 Three diversity techniques proposed in [25,30,31] and used in various

MOEAs. (a) In fitness sharing technique, fitness of an individual that share the

same niche (dashed circles) with other individuals is reduced. (b) Grid

approach is usually applied in archive for two purposes: diversity and archive

maintenances. The grid regions represent a region. Individuals reside in

crowded grid region have less chance to be selected. (c) In crowding distance

scheme, distance of the individual, i and its two neighboring individuals (i.e.

individuals of index i-1 and i+1) in each objective function are computed

 ..23

 3.1 Ants’ foraging behavior in finding the shortest paths from their nest to the

food source. (a) Ants are at the junction of the two paths that can lead to the

food source from their nest. (b) The ants choose the path randomly. (c) Ants

leave the pheromone trail while returning to their nest after find food. Shorter

path (upper path) has higher pheromone concentration than longer path (lower

path), which attracts more ants to choose the shorter path. (c) Eventually, All

ants will end up using the shorter path...32

 3.2 A boid’s neighborhood (in grey) and the triangular symbol (marked green)

represents a boid [54,55]..35

 3.3 The illustrations of the three steering behaviors of the boids. (The color in the

illustrations are indicated as follow: the boid (in green and is attached with an

red arrow), its neighborhood (in grey) and its local flockmates (in blue) [55]....

 ..36

 xiii

Figure Page

 4.1 Position clipping criterion..45

 4.2 Velocity clipping criterion ...46

 4.3 Pseudocode of the generic PSO algorithm...47

 4.4 Graphical representation of the three common neighborhood topology [75,76]:

(a) Global topology (gbest), (b) Ring topology (lbest), and (c) Star topology

 ..57

 4.5 Graphical representation of the other neighborhood topology [75,76]: (a) Von

Neumann, (b) Pyramid, and (c) Four Clusters...57

 5.1 Generic framework of MOPSO algorithm...68

 5.2 Possible cases presented in [110]. Note that Ns denotes as nondominated

solution; a no filled circle represents a new nondominated solution; and a

filled or patterned circle represents a archive member73

 5.3 Figure 5.3 Figures depicting the different strategies of selecting the global

leaders. The arrows indicate the global leaders (filled circles) selected by the

particles in the swarm (circles (no filled)) ...77

 6.1 Pseudocode of DMOPSO ..93

 6.2 Illustration of cell-based rank and density estimation scheme96

 6.3 (a) Estimated objective space and divided cells, (b) initial rank value matrix of

the given objective space, and (c) initial density value matrix of the given

objective space [139,140] ..98

 6.4 (a) Initial swarm population and the location of each particle, (b) rank value

matrix of initial swarm population, and (c) density value matrix of initial

swarm population [139,140] ..98

 6.5 (a) New swarm population and the location of each particle, (b) rank value

matrix of new swarm population, and (c) density value matrix of new swarm

population [139,140]..98

 6.6 Pseudocode of cell-based rank density estimation scheme [139, 140]............99

 6.7 (a) Current swarm population and the location of each particle, (b) rank value

matrix of current swarm population, (c) density value matrix of current swarm

population, and (d) example of “potential” particles, particles D and E101

 xiv

Figure Page

 6.8 Number of perturbation per particle, np versus iteration, t............................102

 6.9 The additional distance ()brd∆ versus br ...103

 6.10 (a) Selected particles (D and E) from Figure 6(d), (b) representation of

Equation (9) in decision space, and (c) current swarm population and new

added ones in objective space ..104

 6.11 Pseudocode of population growing strategy..105

 6.12 (a) Current swarm population and the location of each particle, (b) rank matrix

of current swarm population, and (c) R values for particles F and G106

 6.13 (a) Current swarm population and the location of each particle, (b) density

matrix of current swarm population, and (c) D values for particles F and G

 ..107

 6.14 Pseudocode of population declining strategy ..109

 6.15 (a) Two group leaders are grouped via clustering algorithm, (b) two group

leaders in decision space are mapped to objective space, and (c) adaptive grid

procedure is applied to local archive of G1 ...113

 6.16 Pseudocode of adaptive local archives algorithm..113

 6.17 Sets H1, H2, and P are shown. By using the additive binary epsilon indicator,

H1 strictly dominates H2 and H1 is strictly dominated by the true Pareto front.

 ..118

 6.18 Box plot of hypervolume indicator (IH values) for all test functions (Start

from top left) by algorithms 1-6 represented (in order): DMOPSO, OMOPSO,

MOPSO, cMOPSO, sMOPSO, and NSPSO..120

 6.19 Box plot based upon additive binary epsilon indicator (Iε+ values) on test

function ZDT1 (algorithms 1-5 are referred to as OMOPSO, MOPSO,

cMOPSO, sMOPSO, and NSPSO, respectively)...122

 6.20 Box plot based upon additive binary epsilon indicator (Iε+ values) on test

function ZDT2 (algorithms 1-5 are referred to as OMOPSO, MOPSO,

cMOPSO, sMOPSO, and NSPSO, respectively)...123

 6.21 Box plot based upon additive binary epsilon indicator (Iε+ values) on test

function ZDT3 (algorithms 1-5 are referred to as OMOPSO, MOPSO,

cMOPSO, sMOPSO, and NSPSO, respectively)...123

 xv

Figure Page

 6.22 Box plot based upon additive binary epsilon indicator (Iε+ values) on test

function ZDT4 (algorithms 1-5 are referred to as OMOPSO, MOPSO,

cMOPSO, sMOPSO, and NSPSO, respectively)...123

 6.23 Box plot based upon additive binary epsilon indicator (Iε+ values) on test

function ZDT6 (algorithms 1-5 are referred to as OMOPSO, MOPSO,

cMOPSO, sMOPSO, and NSPSO, respectively)...124

 6.24 Box plot based upon additive binary epsilon indicator (Iε+ values) on test

function DTLZ2 (algorithms 1-5 are referred to as OMOPSO, MOPSO,

cMOPSO, sMOPSO, and NSPSO, respectively)...124

 6.25 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d)

cMOPSO, (e) sMOPSO, and (f) NSPSO on test function ZDT1125

 6.26 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d)

cMOPSO, (e) sMOPSO, and (f) NSPSO on test function ZDT2125

 6.27 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d)

cMOPSO, (e) sMOPSO, and (f) NSPSO on test function ZDT3126

 6.28 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d)

cMOPSO, (e) sMOPSO, and (f) NSPSO on test function ZDT4126

 6.29 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d)

cMOPSO, (e) sMOPSO, and (f) NSPSO on test function ZDT6127

 6.30 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d)

cMOPSO, (e) sMOPSO, and (f) NSPSO on test function DTLZ2................127

 7.1 Pseudocode of DSMOPSO ..134

 7.2 Pseudocode of update local best for the swarm leaders.................................138

 7.3 Pseudocode of updating the particles...142

 7.4 (a) Swarm leaders and their locations on the objective space, (b) rank matrix

(Top) and density matrix (Bottom) of the swarm leaders, and (c) R and D

values for swarm leaders E and F ..144

 7.5 (a) Swarm leaders and their locations on the objective space, (b) rank matrix

(Top) and density matrix (Bottom) of the swarm leaders, and (c) R, D, and rL

values for swarm leaders E and F ..146

 xvi

Figure Page

 7.6 Block diagram depicts how an example Voronoi diagram of eight randomly

selected particles and newx is generated...147

 7.7 Pseudocode of generating a new swarm via Voronoi procedure...................148

 7.8 Pseudocode of swarm growing strategy ..149

 7.9 Pseudocode of swarm declining strategy...152

 7.10 Illustration of objective space compression strategy (arrows in (b) signify the

objective space is compressed) ..154

 7.11 Illustration of objective space expansion strategy (arrows in (b) signify the

objective space is compressed) ..154

 7.12 Pseudocode of objective space compression and expansion strategy............158

 7.13 Box plot of hypervolume indicator (IH values) for all test functions (Start

from top left) by algorithms 1-4 represented (in order): DSMOPSO,

DMOPSO, MOPSO, and cMOPSO...162

 7.14 Box plot based upon multiplicative binary epsilon indicator (Iε+ values) all test

functions (Start from top left) (algorithm A refer to DSMOPSO; algorithms 1-

3 are referred to as DMOPSO, MOPSO, and cMOPSO, respectively)163

 7.15 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) MOPSO, and (d)

cMOPSO for ZDT1. The continuous line depicts the true Pareto front166

 7.16 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) MOPSO, and (d)

cMOPSO for ZDT2..166

 7.17 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) MOPSO, and (d)

cMOPSO for ZDT3..167

 7.18 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) OMOPSO, and

MOPSO for ZDT4 ...167

 7.19 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) MOPSO, and (d)

cMOPSO for ZDT6..168

 7.20 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) MOPSO, and (d)

cMOPSO for DTLZ2 ...168

 7.21 Box plot of hypervolume indicator (IH values) for experiment with varying

 xvii

Figure Page

 the swarm size. Note that 1-6 on x-axis represented (in order): swarm size of

2, 4, 6, 8, 12, and 20...172

 7.22 Box plot of hypervolume indicator (IH values) for experiment with varying

the grid scale (iK). Note that 1-6 on x-axis represented (in order): iK equals to

4, 5, 6, 7, 10, and 15...172

 7.23 Box plot of hypervolume indicator (IH values) for experiment with varying

the population size per cell (ppv). Note that 1-5 on x-axis represented (in

order): ppv equal to 3, 5, 8, 12, and 25 ..173

 7.24 Box plot of hypervolume indicator (IH values) for experiment with varying

the δ parameter. Note that 1-7 on x-axis represented (in order): δ is equal to

0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and 0.9..173

 7.25 Box plot of hypervolume indicator (IH values) for experiment with varying

the age threshold (thA). Note that 1-6 on x-axis represented (in order): thA is

equal to 3, 4, 5, 6, 10, and 25 ...174

 8.1 Illustration of bi-objective optimization problem (()xF). The feasible region is

mapped to the solid segment. The shaded region represents the search space. The

global optimum (black circle) is located beat the intersection of the Pareto front and

the solid segment [155] ...185

 8.2 Pseudocode of the proposed PSO algorithm to solve for COPs186

 8.3 Pseudocode of updating the particles best archive ..188

 8.4 Graph for percentage range to be reduced against T......................................195

 8.5 Pseudocode of mutation operator applies to the swarm population195

 8.6 Pseudocode of the proposed constrained MOPSO algorithm........................198

 8.7 Mutation rate (mP) versus feasibility ratio of the particles’ personal best (fr)...

 ..203

 8.8 Box plot of hypervolume indicator (IH values) for all test functions by

algorithms 1-4 represented (in order): Proposed MOPSO, NSGA-II, GZHW,

and WTY..214

 8.9 Box plot of additive binary epsilon indicator (Iε+ values) for all test functions

(algorithm A refers to the proposed MOPSO; algorithms B1-3 are referred to as

 xviii

Figure Page

 NSGA-II, GZHW, and WTY, respectively) ..216

 8.10 Pareto fronts produced by the following algorithms a-d represented (in order):

proposed MOPSO, NSGA-II, GZHW and WTY ..217

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation

 In our daily lives, we encounter problems that demand us to search for the best

possible solutions. These problems such as planning one’s day or monthly expenditure

can be formulated as optimization problems. These problems are described by a

mathematical model and objective function. An optimization problem with only one

objective function is known as the single objective optimization problem (SOP). A best

solution is usually obtained via either minimizing or maximizing a single objective

function. However, many optimization problems encountered in the real world technical

disciplines involve more than one objective. Usually, these objectives are conflicting with

each other, e.g., maximizing return while minimizing risk measures in financial portfolio

management. In this case, finding solutions by optimizing each objective independently

is not the best way to do. If the optimum solution is found for one of the objectives it may

lead to a compromise in achieving lower quality solutions by the other objectives. The

optimization problems with more than one objective are referred to as multiobjective

optimization problems (MOPs). An example of realistic MOPs is the aircraft design, in

which the objectives comprise of fuel efficiency, payload, range, performance, speed and

many other design considerations. Additionally, most real world MOPs are limited by a

set of constraints. To optimize these so called constrained MOPs (CMOPs) are much

 2

difficult since the set of optimum solutions (or the Pareto optimal set) are not only taken

into consideration with trade-offs between the conflicting objectives but also must satisfy

the constraints that impose upon the MOPs.

1.2 Objective

 Various methods are available to tackle MOPs. The common choice is to employ

the conventional methods (e.g., weighted sum method, goal programming, linear

programming, min-max optimum, and etc.) or aggregating approach [1,2]. Most of these

methods used to solve for MOPs follow the same design principle where all the

objectives are combined together into one function by any means and optimize the new

function as if it is a single objective optimization problem. These methods are not

efficient in dealing with MOPs since they are designed to solve for one solution at a time

instead of finding multiple solutions at once.

Heuristic methods, on the other hand, are favored in this case because they reduce

the computational cost for high-dimensional optimization problems. Some of the

heuristic methods, such as simulated annealing [3] and tabu search [4], face difficulty in

solving MOPs, regardless of their stochastic nature, because they are not designed to find

multiple solutions; while other heuristic methods, metaheuristics type, are better tools to

solve MOPs. Evolutionary algorithms (EAs) are popular among the metaheuristics

approaches [1,2,5-7]. They are population-based approach where multiple individuals

search for a set of potential solutions in parallel and in a single run. Their design

mechanisms reinforce their ability and flexibility in handling various types of problems

with problem characteristics such as continuous, discontinuity, and multimodality.

 3

Recently, a new metaheuristic design emerged from the field of swarm intelligence. This

metaheuristic approach is called particle swarm optimization (PSO) [50]. It has shown

great potential in solving single objective optimization problems [64-99] and has been

modified necessarily to solve for MOPs [105-122]. Similar to EA, PSO also incorporates

population-based approach and exhibits ability to deal with problems with different

problem characteristics. The difference between PSOs and EAs is the fundamental

mechanism design. EAs mimic the mechanism in biological evolution while the

mechanism in PSO is inspired by the behavior of a bird flock. PSO presents two

advantages over EA. PSO possesses faster convergence speed than EA and offers

simplicity in implementation. Therefore, PSO is rapidly gaining attention among

researchers. The advantages of PSO motivates this work in developing multiobjective

optimization particle swarm optimization (MOPSO). The following discussion will relate

to MOPSO unless specified otherwise.

 Years of research has identified the desired attributes of a Pareto optimal set

(solutions) that a multiobjective algorithm should achieve. A quality Pareto optimal set

means the solutions are well extended, uniformly distributed, and near-optimal.

Achieving such Pareto optimal set is challenging since it involves two compelling goals:

to minimize the distance of the resulted solutions (Pareto optimal set or Pareto front) to

the true Pareto set (or true Pareto front) and maximize the diversity of the resulted

solutions [8]. Existing MOPSOs are designed with Pareto ranking schemes, archive

maintenance strategies, and techniques to preserve the diversity, which guide the search

towards a well extended, uniformly distributed, and near-optimal Pareto front.

 4

However, to enhance the efficiency of a multiobjective optimization algorithm is

not limited to develop ways to improve the convergence and techniques to promote

diversity. In fact, the number of particles, i.e., swarm population size, to explore the

search space in order to discover possible better solutions indirectly contributes to the

efficiency improvement of an algorithm. The issue of determining an appropriate swarm

population size is still at question. The easiest approach is to choose a larger population

size since this would increase the chance for any MOPSOs to find the true Pareto front.

A large population size, however, inevitably results in undesirable and high

computational cost. Conversely, an insufficient swarm population size may result in

premature convergence in MOPSO. Therefore, estimate an optimal population size

requires many trial-and-error, especially for those MOPs with complicated landscape and

unknown. One approach to address this disadvantage is to dynamically adjust the

population size during the optimization process. Only few existing works under this

research line are published, and they are all applied to MOEAs. Another approach to

improve the performance of MOPSO is to employ the subpopulation concept. The reason

is the swarm-like characteristic renders PSO aptness to adopt the subpopulation concept

often referred to as multiple-swarm concept. Most publications in multiple swarms PSO

are for single objective optimization and only a few apply this concept in multiobjective

optimization. Therefore, the goal of this research is to study the dynamic population size

and multiple-swarm concepts of the existing works, and develop state-of-the-art

MOPSOs that fuse both elements to exploit possible improvement in efficiency and

performance of existing MOPSOs.

 5

The above discussion mainly focuses on multiobjective optimization algorithm to

solve for unconstrained MOPs. Since in the real world application, many optimization

problems involve a set of constraints (functions). Hence, an optimization tool must be

able to handle these constraints, and also solve for the optimum solution for constrained

optimization problems (COPs) or Pareto optimal set for constrained multiobjective

optimization problems (CMOPs). Most EAs that are designed to solve for unconstrained

MOPs lack a mechanism to handle constraints. In the past decade, many constraint

handling techniques for EAs have been proposed. All these EAs are mainly aimed to

solve for COPs and there are relatively less publications on MOEAs to solve for CMOPs.

Since PSO is still a relatively new optimization algorithm, there is little work on applying

PSO for COPs and applying MOPSO to solve for CMOPs. Thus, the second research

goal is to design a MOPSO to solve for CMOPs. In order to develop the proposed

MOPSO, it is essential to develop a PSO to handle constraint in COPs first and then

extend the technique to design a MOPSO for CMOPs.

1.3 Contributions

 The contributions of this thesis are summarized below.

• Develop a MOPSO that incorporates dynamic population and multiple swarm,

in which the particles are grouped according to a user-defined number of

swarms, for multiobjective optimization. This algorithm design involves

dynamic swarm population strategy and adaptive local archives.

• Develop a framework for a MOPSO that dynamically adjust the number of

swarms needed where under certain conditions new swarms may be added or

 6

some existing swarms may be eliminated. Additional designs included in this

algorithm are modified PSO update mechanism and objective space

compression and expansion strategy.

• Develop a constrained PSO with design elements that exploit the key

mechanisms to handle constraints as well as optimization of the objective

function. The designs include updating personal best, maintaining feasible and

infeasible global archive, adaptive acceleration constants in PSO, and

mutation operators. These designs are also extended into a MOPSO to solve

for CMOPs.

1.4 Outline of the Dissertation

 This dissertation comprises of nine chapters and these chapters are organized as

follows.

Chapter 2 provides the essential background of multiobjective optimization. Basic

concepts of multiobjective optimization problem formulation and Pareto optimization are

presented. Optimization methods and main topics related to multiobjective evolutionary

algorithms, including test functions and performance metrics, are briefly reviewed.

 Chapter 3 presents the background of the swarm intelligence field. The main

objective is to understand swarm behavior, its unique benefits and the fundamental

concept that render such behavior. Significant works of modeling the behavior of bird

flock are reviewed since particle swarm optimization (PSO) is developed based on the

principle of the social behavior of a bird flock.

 7

 In Chapter 4, history of particle swarm optimization (PSO) was discussed is

presented. Then, the standard PSO equations and generic algorithm are introduced.

Finally, we review the major modifications and advancements for improving the

performance of original PSO. Related topics include the parameter settings, modification

of the standard PSO equations, neighborhood topology, and incorporation of multiple-

swarm concept into PSO.

 Current works of multiobjective particle swarm optimizations (MOPSOs) that are

relevant to this study are reviewed in Chapter 5. First, rationale of applying PSO for

multiobjective optimization is discussed. Afterwards, a general framework of MOPSO

along with the main themes related to the modification of MOPSOs is discussed.

 Chapter 6 elaborates the first proposed MOPSO, namely dynamic multiobjective

particle swarm optimization (DMOPSO). The chapter starts by discussing the role of

population size when searching for potential solutions for a MOP. Two main concepts are

incorporated: dynamic population and multiple swarms. Strategies to support the two

concepts and to further improve the performance of the algorithm are detailed.

Comparative study on the performance and computational cost of the DMOPSO against

selected MOPSOs are analyzed.

 Chapter 7 outlines the second MOPSO, i.e., dynamic multiple swarms in

multiobjective particle swarm optimization (DSMOPSO). In this work, dynamic

population concept is applied to regulate the number of swarms, which is different from

DMOPSO in Chapter 6. Here, the number of particles in each swarm is fixed but the

number of swarms is dynamically varied according to each contribution in searching for

potential solutions during the search process. The development of the algorithm and key

 8

design elements are described. Experiments to evaluate the performance and

computational cost of the DSMOPSO are conducted. The chapter finishes with the

sensitivity analysis and provides recommendation on the parameters settings.

 In Chapter 8, a PSO and MOPSO are proposed to solve for constrained

optimization problems. In this study, the multiobjective constraint handling formulation

is applied. Design elements are proposed with the goal of guiding the particles towards

feasible regions and leading them to the global optimum solution or the Pareto optimal

set. Experiments are conducted on the benchmark functions to evaluate the performance

of the proposed approaches.

 Conclusions are discussed in Chapter 8. Summary of the main contributions of

this thesis are reviewed. Limitations of the proposed works are identified and possible

future research directions related to this study are recommended.

 9

CHAPTER 2

MULTIOBJECTIVE OPTIMIZATION

Multiobjective optimization problems (MOPs) emerge in many fields. Difficulties

arise when the MOPs involve multiple, conflicting objectives since the solution of the

problems are more than one. Many conventional methods can be used to solve these

MOPs but they are limited in certain aspects. Recent metaheuristics have brought the

possibility of approaching MOPs in much simplistic and efficient ways. This chapter

presents the basic concept of multiobjective optimization. In the following section, the

background of selected optimization methods such as conventional algorithms,

aggregating approaches and multiobjective evolutionary algorithms (MOEA) are

elaborated. Finally, validation methodologies for MOEAs that are commonly used in

many publications are presented.

2.1 Definition

Consider a minimization problem; the general form of the multiobjective

optimization problem (MOPs) with k objective functions is given as follows [1,2]:

 () () () ()[],,,,min 21 xxxxF
x

kFFF
n

K=
ℜ∈

 (2.1)

subject to the m inequality constraints:

 () ;,,2,1,0 mjg j K=≤x (2.2)

the mp − equality constraints:

 10

 () ;,,1,0 pmjh j K+==x (2.3)

and the n decision variable bounds:

 .,,2,1, nixxx U
ii

L
i K=≤≤ (2.4)

where [] n

nxxx ℜ∈= ,,, 21 Kx . (2.5)

The function iF is known as the objective function or fitness function, and ()xiF is

called the fitness or fitness value of iF . x represents a decision vector of n decision

variables, where each decision variable is bounded by a lower L
ix , and an upper U

ix

bound. The n variable bounds constitute a decision space or search space, n
S ℜ⊆ , and

the k objective functions constitute a objective space, Z . Decision vectors that minimize

()xF are also referred as solutions. ()xjg represents the jth inequality constraint while

()xjh represents the jth equality constraint. The inequality constraints that are equal to

zero, i.e., () 0=*xjg , at the global optimum (*x) of a given problem are called active

constraints. The feasible region (SF ⊆) is defined by satisfying all constraints

(Equations (2.2)-(2.4)). A solution in the feasible region (F∈x) is called a feasible

solution, otherwise it is considered an infeasible solution. All the solutions that lie on the

feasible region is called the feasible set,Φ . Equation 2.1 presents the case of minimizing

all the objective functions. By duality principles, any objective function can be converted

from minimization form to maximization form or vice versa, which is given below [5]:

 () ()()xx ii FF −= minmax (2.5)

 () ()()xx ii FF −= maxmin (2.6)

 11

2.1.1 Pareto Optimization

For single objective optimization, the aim is to search for the best possible

solution available, or the global optimum [6]. However, for MOPs, provided that the

objectives functions are conflicting to each other, there is not just a single optimum

solution but a set of optimal solutions. To obtain the set of optimum solutions, the

concepts of Pareto dominance and Pareto optimality are adopted. The following

discussion presents the key definitions that related to the concepts [1,2,7]:

Definition 2.1 (Concept of Pareto Dominance)

Consider a minimization problem, a decision vector ax is said to dominate

another decision vector bx , denoted by ba xx p , iff

1. () ()biai FF xx ≤ for all ki ,,2,1 K= and

2. () ()bjaj FF xx < for at least one ()kj ,,2,1 K∈

Definition 2.2 (Nondominated Set)

Let Ρ represent the set of decision vectors in the feasible region, Φ⊆Ρ , the

nondominated set are those decision vectors in Ρ that are not dominated by any members

of the set Ρ , (i.e. all individuals in the nondominated set are feasible).

Definition 2.3 (Pareto Optimal Set)

A feasible decision vector *x is Pareto optimal if there exist no feasible decision

vector ix for which ()ixF dominates ()*xF . The collection of such decision vectors

 12

 (a) (b)

Figure 2.1 The decision vectors ax , bx , and cx in the feasible region in decision space and their

corresponding fitness ()axF , ()bxF , and ()cxF in the objective space.

that are Pareto optimal is known as the Pareto optimal set. This means that each solution

in this set holds equal importance and is a good compromise among the trade-off

objectives. The resulted tradeoff curve in the objective space that obtained from Pareto

optimal set is called the Pareto front.

2.1.2 Example

Consider a minimization problem; Figure 2.1 presents a representation of the

feasible region in the decision space and the corresponding feasible objective space.

Referring to Figure 2.1, the decision vectors ax , bx , and cx in the decision space are

mapped to the three fitness, i.e., ()axF , ()bxF , and ()cxF respectively in the objective

space. Observe Figure 2.1(b), the solution bx dominates solution ax , since the objective

() ()ab FF xx 11 < and () ()ab FF xx 22 < , which satisfies the two conditions of Definition

2.1. Apply the same definition, solution cx is also found to dominate solution ax . For

solutions bx and cx , both do not dominate each other because Condition 2 of Definition

1x

2x

1F

2F

Pareto optimal set

axcx

bx ()axF()bxF

()cxF

Decision space Objective space

Feasible region

1x

2x

1F

2F

Pareto optimal set

axcx

bx ()axF()bxF

()cxF

Decision space Objective space

Feasible region

 13

2.1 is violated. In addition, solutions bx and cx are not dominated by another solution;

hence according to Definition 2.2, bx and cx belong to the nondominated set. The Pareto

optimal set, also the Pareto front or the tradeoff curve, is illustrated in Figure 2.1(b).

2.2 Optimization Methods

 After the invention of the computer, research in optimization field been active

ever since. Various optimization methods are designed and created to solve for

optimization problems. There are two main classes: the conventional methods and the

modern heuristics.

Table 2.1 Examples of optimization methods under the two main classes.

Conventional Methods Modern Heuristics

Branch and Bound Tabu Search

Dynamic Programming Simulated Annealing

Linear Programming Differential Algorithm

Min-max Optimum Evolutionary Algorithms

Newton’s Method Cultural Algorithm

Divide and Conquer Particle Swarm Optimization

Goal Programming

etc…

Ant Colony Optimization

etc…

Conventional methods adopt the deterministic approach. During the optimization process,

any solutions found are assumed to be exact and the computation for next set of solutions

completely depends on the previous solutions found. That’s why conventional methods

are also known as deterministic optimization methods. In addition, these methods involve

certain assumptions about the formulation of the objective functions and constraint

functions. Conventional methods include algorithms such as branch and bound, dynamic

programming, linear programming, min-max optimum, and those listed in Table 2.1.

There is a subclass under modern heuristics, which is called the stochastic based

 14

methods. The algorithms that are categorized as stochastic based methods include

simulated annealing, evolutionary algorithms, differential algorithm, cultural algorithm,

and particle swarm optimization. These algorithms possess the stochastic nature while

searching for possible solutions for a problem. In the following, elaboration on

conventional algorithms, aggregating approach, and evolutionary algorithms are

presented.

2.2.1 Conventional Algorithms

Conventional algorithms or classical methods have been around for at least four

decades [1]. They possess the deterministic and predictable behavior, in which the

techniques are designed to find the same solution if the same input sample and stopping

criteria are applies. The search process will be much efficient and quicker if the input is

located within some defined finite search space provided that the search space is not

overly large. Publications have shown the success of employing these algorithms in

solving a wide variety of problems [9-11], but not for problems that are high dimensional,

multi-modal or NP-complete problems.

Conventional algorithm can solve MOPs. These techniques used for handling

MOPs share a similar spirit, which is to convert the MOPs into a single objective

optimization problem and find a preferred Pareto optimal solution [1]. Refer to the

classification of algorithms given by Hwang and Masud [12], these algorithms are under

the class of priori preference [7]. The best represented algorithms include weighted-sum

method, the Goal programming method, and the min-max optimum.

 15

Weighted-sum method [1,2,7,13] – The aggregating function is derived by pre-

multiplied the multiple objectives functions with the corresponding predefined weights.

Mathematically, the aggregating function is in the form:

 () ()∑
=

=
k

i

ii FwF
1

xx , (2.7)

where iw are the weighting coefficients, within the range of []1,0 . These weighting

coefficients represent the relative significances of the objective functions. To maintain

the same order of scale among the objective functions, the objective functions are

normalized first before applying Equation (2.7). In addition, the weighting coefficients

are chosen such that the sum of these weighting coefficients is one, i.e.,

∑
=

=
k

i

iw
1

1, (2.8)

This method has its disadvantages. It is sensitive to the weighting coefficients chosen

heuristically, so prior knowledge is needed to predetermine the weights. In addition, it

fails to find solutions that locate on the concave portions of the Pareto front [7].

Goal Programming Method – This method is introduced by Charnes and Cooper

[14,15] in 1960s and due to its simplicity, is has applied to various fields [16,17]. The

main idea is to find solutions that attain a set of predefined goals for the corresponding

objective functions [1]. The general steps to find solutions by using this method are given

below:

Step 1: For MOPs with k objective functions, pre-specify a set goal, it , where

ki ,,2,1 K=

 16

Step 2: Setup k generic constraint equations based on the given goals, types of goal

criteria, and the corresponding k objective functions. For example, the constraint

equations for four different types of goal criteria are given as follows [1]:

1. Less-than-equal-to, () tF ≤x :

 Generic constraint equation: () tpF ≤−x ; (2.9)

2. Greater-than-equal-to, () tF ≥x

 Generic constraint equation: () tnF ≥+x ; (2.10)

3. Equal-to, () tF =x

 Generic constraint equation: () tnpF =+−x ; (2.11)

4. Range, () []UL ttF ,∈x

 Generic constraint equation: () LtpF ≤−x and () UtnF ≥+x ; (2.12)

The two new variable(s) appeared in Equations (2.9) to (2.12), i.e., p and n , are

called the deviational variables. The aim of adding the variable(s) is to measure

the difference between the goal and the achieved levels of the corresponding

objective function. Detail on how Equations (2.9) to (2.12) are obtained is given

in [1,14,15].

Step 3: Once the constraint equations are set, optimization technique is applied to

optimize all the deviational variables as a weighed sum single objective function

that subject to k constraint equations (given in Step 2). If it is a minimization

problem, then all the deviational variables are to be minimized. There are many

techniques available [17,18]. Among them, the common ones are the weighted

goal programming (WGP) and the lexicographic goal programming (LGP).

 17

The disadvantage of this method is need of prior knowledge to set the predefined goals

for their corresponding objective functions.

Min-max Optimum – This approach is one of the techniques used in the field of

game theory. Due to its design to deal with conflicting situation, it has been employed in

solving the MOPs [19]. In this method, the set of solutions found will have the minimum

deviation between the solutions and the individual objective function. The “min-max”

criteria are used to compare relative deviation of the current best points and the individual

objective function at every iterations until the set of solution is found. Detailed procedure

of this method can be found in [19]. This method is capable of discovering all optimum

solutions for a given the MOPs regardless if the problem is convex or nonconvex [7]. The

disadvantage of min-max optimum is applied to each of the objective functions

individually.

 In solving the MOPs, the goal is to find the Pareto optimal set. In this case,

conventional algorithm can only find one solution in one run with a fixed parameter

setting. Note that a single run means that an algorithm continues its process to search for

solutions until it meets the stopping criteria. Hence, to find the Pareto optimal set,

multiple runs with different parameter settings for every individual objective function are

required. In addition, some of these algorithms such as weighted-sum method may

require prior knowledge of the problem to predetermine some of the fixed parameters;

while some algorithms have difficulty in solving MOPs that have convex Pareto front [2].

 18

2.2.2 Aggregating Approaches

In aggregating approaches, techniques are employed to combine multiple

objective functions into a single objective function using either addition, multiplication,

or any other combination of arithmetical operations [2]. The techniques are also known as

aggregating functions and can be either linear or nonlinear. A simple example of an

aggregating approach is the weighted-sum method. In general, many have known that

aggregating function poses a well-known limitation, which is the difficulty in finding the

concave portion of the Pareto front. However, this limitation does not necessarily hold if

a nonlinear aggregating function is adopted [6]. Hence, the limitations of the aggregating

approach depend on the technique employed. Although an aggregating approach may be

able to find an optimum solution at each run, many runs are needed to obtain the

complete optimal Pareto front for a given MOPs.

2.2.3 Multiobjective Evolutionary Algorithms (MOEAs)

Since the groundbreaking work of computer simulation of evolution in 1954 [20],

along with various researchers’ contributions in developing new computer simulations

that merge evolution theory with computational methods, the new field of evolutionary

computation has arisen. In evolutionary computation, the algorithms are population

based. The population undergoes processes that iteratively guide it to achieve the desired

goal. The processes can be inspired by concepts that are different from the mathematical

or computer field, such as biological mechanisms of evolution or social behaviors.

Among the computational techniques in evolutionary computation, evolutionary

algorithms (EAs) adopted mechanism that inspired by the principle of biological

 19

evolution [21]. EAs comprise of some well-known techniques [21-23], for instance,

genetic algorithm, evolutionary programming, evolutionary strategy, and genetic

programming where each employs the mechanisms of evolution yet differ in

implementation.

 The main disadvantage of using conventional algorithms and other mathematical

programming techniques to solve MOPs are most of them are designed to solve for

specific problems only and they find only one, at most, optimum solution in a single run,

multiple runs are necessary to complete the Pareto front. EAs can overcome this

disadvantage. Research in developing evolutionary algorithms to solve MOPs have

Figure 2.2 Main procedure of an evolutionary algorithm for single generation.

9

10

7
1

6
3

Population Fitness

Fitness

Evaluation

Selection

Mutation

Crossover

Offspring

Mutated

9

10

7
1

6
3

9

10

7
1

6
3

Population Fitness

Fitness

Evaluation

Selection

Mutation

Crossover

Offspring

Mutated

 20

gained much attention for over 20 years and these algorithms are called multiobjective

evolutionary algorithm (MOEA).

2.2.3.1 General Concept

 The main idea of evolutionary algorithm (EA) is to model the fundamental

mechanisms of evolution and utilizes evolution concept to perform optimization process.

Five main mechanisms mimicked and incorporated into an EA are reproduction, natural

selection, survival of the fittest, crossover, and mutation. In EA, a candidate solution,

denoted as an individual, is encoded as genes in the chromosomes. A set of candidate

solutions are referred to as population. During a series of iterations, or called generations,

the individuals are evaluated to determine their fitness value. Based on their fitness value,

those that are considered the fitter ones are selected by the selection operator because

they have higher probabilities to produce “fitter” individuals (offsprings). Hence, two of

the selected individuals that are randomly chosen are denoted as parents. Next, crossover

operation and occasionally followed by mutation operator are applied to the parents to

produce new individuals or offsprings. This reproduction process is applied to all the

selected individuals. Figure 2.2 illustrates the main procedure of an evolutionary

algorithm for single generation.

2.2.3.2 A Brief Tour of MOEAs

 Various designs of MOEAs have been developed since the 1980s. The pioneering

work of MOEA is called vector evaluated genetic algorithm (VEGA), designed by

Shaffer [24]. At each generation, the whole population is divided into subpopulations of

equal size. The number of subpopulations depends on the number of objective functions

 21

in a MOPs. These subpopulations are combined and shuffled together. Crossover and

mutation operators are applied to the shuffled population to obtain new population.

Advantage of VEGA is its simplicity to implement and its disadvantage is the tendency to

generate good solutions for one of the objective but not for all of the objectives because

the selection operator would incline to select a subpopulation with better fitness values

than the others.

The mark of significant contribution to MOEAs development is after David E.

Goldberg’s proposal of the concept of Pareto optimality [25]. His idea is to assign ranks

to the individuals based on their relative Pareto dominance. Hence, the selection process

is based on these rank values of the individuals. Selection pressure is imposed to guide

the population towards the direction of the Pareto front. Goldberg’s ranking scheme is

known as the nondominated sorting (Figure 2.3 (a)) and have sparked the interest of

designing Pareto based MOEAs. Several MOEAs have adopted his scheme. Among those

are niched Pareto genetic algorithm (NPGA) [186] and nondominated sorting genetic

algorithm (NSGA)[187]. Improved versions of Goldberg’s ranking scheme are

introduced in several publications. Figure 2.3 shows different Pareto ranking schemes of

[25-28]. There are Fonseca’s Pareto ranking scheme where the rank of an individual is

corresponding to the number of other individuals that dominate it [26] (in Figure 2.3 (b));

ranking scheme proposed by SPEA [27] (refer to Figure 2.3 (c)) where fitness assignment

strategy is modified to determine the “strength” of each individual, instead of rank; and

automatic accumulated ranking scheme by [28] where individual’s rank is corresponding

to the accumulated rank of those individual that dominate it, as shown in Figure 2.3(d).

 22

 Second significant advancement in the MOEA research area is the introduction of

elitism or archiving concept. Purpose of archive is to store the good solutions (i.e.,

nondominated solutions) found thus far from the search process. Issue of adopting

archiving is what strategy to maintain the archive. The most popular of incorporation of

elitism concept is introduced by Zitzler and Thiele [27]. They adopted two populations in

their proposed MOEA, called strength Pareto evolutionary algorithm (SPEA). One

population contains the individuals that search for solutions while the other is an external

population or archive that stores limited nondominated soutions found at every

generation. To maintain the archive, strength values are assigned to the solutions in the

archive. These strength values will play a role in computing fitness of the current

 (a) (b)

 (c) (d)

Figure 2.3 Above shows different kind of ranking schemes. (a) Goldberg’s nondominated sorting

[25], (b) Fonseca’s ranking method [26], (c) Ranking scheme adopted in SPEA [27], and (d)

Automatic accumulated ranking scheme proposed by [28].

1F

2F

1F

2F

1

1

1
1

2

2

2

3 1

1

1
1

3

2

2

4

43

1F

2F

1F

2F

1F

2F

1F

2F

1

1

1
1

2

2

2

3 1

1

1
1

3

2

2

4

43

1F

2F

6

2

6

4

6

2

0

6

12
6

12

6

10

6

12

6

8

1F

2F

1

1

1
1

3

2

8

5

2

1F

2F

6

2

6

4

6

2

0

6

12
6

12

6

10

6

12

6

8

1F

2F

1F

2F

1

1

1
1

3

2

8

5

2

 23

 (a) Fitness sharing (b) Grid (c) Crowding distance

Figure 2.4 Three diversity techniques proposed in [25,30,31] and used in various MOEAs. (a) In

fitness sharing technique, fitness of an individual that share the same niche (dashed circles) with

other individuals is reduced. (b) Grid approach is usually applied in archive for two purposes:

diversity and archive maintenances. The grid regions represent a region. Individuals reside in

crowded grid region have less chance to be selected. (c) In crowding distance scheme, distance of the

individual, i and its two neighboring individuals (i.e. individuals of index i-1 and i+1) in each

objective function are computed.

population, which indirectly place preference to individuals that are least dominated and

those that located in less populated region in the objective space. Clustering algorithm is

applied to maintain the archive size and to promote diversity. Zitzler and Thiele’s [27]

elitism concept brought interest to many researchers to incorporate this concept to their

new MOEAs. Significant work with new elitism strategies include SPEA2 [29], PAES

[30], NSGA-II [31], PESA [32], and micro-GA [33].

Diversity maintenance is essential to prevent the “genetic drift” effect that causes

the loss of diversity in the population. A number of works have proposed various

techniques to encourage diversity. Among them, the established diversity techniques

include fitness sharing [25], grid [30], and crowding distance [31], as illustrated in Figure

2.4. Please note the numbers shown next to individuals are the assigned rank values

according to each specific design.

1F

2F

1F

2F

1F

2F

i-1

i+1

i

cuboid

1F

2F

1F

2F

1F

2F

1F

2F

1F

2F

i-1

i+1

i

cuboid

1F

2F

i-1

i+1

i

cuboid

 24

2.3 Test Functions

It is a common practice that after a MOEA is proposed, its performance is

validated from the standard simulated testing process. Applying the new algorithm to a

set of test functions or benchmark problems is part of the simulated testing process to

show the efficiency in solving the problems. Usually, the benchmark problems are

selected from a variety of available standard test functions, which they all have their own

representations, difficulties and properties (i.e., multifrontality, discontinuity, and

convexity in the Pareto optimal front [2]).

The earlier test functions designs for MOEA are simpler and often with two

objectives [34-37]. In the last several years, several researchers have developed sets of

test functions that have become the standard benchmark functions in many MOEA

research publications [38-40]. Introduction of toolkits to design test functions facilitates

constructing desired test suites [38-42]. Recall that the two key tasks that a MOEA

should accomplish are to converge towards the optimal Pareto front and to maintain the

diverse distribution of the optimal Pareto front solutions. Hence, in test problem design,

these two tasks are the criteria to determine the difficulty level of the test problem. In

[38], method to construct a test function is based on two basic functions, i.e. function

h and function g . Consider a two objectives test function, the first objective, ()x1F ,

influences the level of distribution of the Pareto optimal solutions, while the second

objective, ()x2F , is designed from the combinations of the two basic functions and ()x1F .

Function h designs the shape of the Pareto front in the objective space and function

g controls the level of difficulty to converge towards the Pareto front. Following [38],

 25

Zitzler et al. [39] and [40] produced standard and practical benchmark problems that are

currently used for performance testing of MOEAs in many publications.

Another work by Okade et al. steered away from the method proposed by [38]

and proposed their own method that can construct various benchmark functions with

arbitrary, customized Pareto front in objective and in decision spaces [41]. They also

proposed a distribution indicator to measure the difficulty of the benchmark functions

based on the mapping from the decision space to the objective space. In [42], the

limitations of the existing benchmark functions are analyzed. They recommended that a

test suite should contain test problems with a wide range of possible features [42]. In

addition, a toolkit (i.e. WFG Toolkit) to construct unconstrained test problems is

proposed to provide control and flexibility to the users to design test suites that meet the

desired features. Using WFG Toolkit, the authors designed a test suite that consists of test

problems with various features. This new test suite may be considered complete at this

time. Once this new test suite gains popularity, it would become one of those standard

test functions in the MOEA field. As indicated in [6], future test functions are expected to

be more complex and cover wider range of aspects and features that are closer to the real-

world problems.

2.4 Performance Metrics

 Metrics are applied to assess the performance of a MOEA after it finds the

optimal Pareto front for a chosen test function. Performance metrics for MOEA are

different from algorithms that deal with SOPs. Since the optimal solution for MOPs is a

set of solutions, the designed metrics have to measure multiple solutions. In addition,

 26

convergence and distribution of the optimal Pareto solutions produced by an algorithm

are the key features to be measured. Due to the stochastic nature in all MOEAs, 30 to 50

runs are often required to assess their performance using statistical analysis. In general,

performance metrics do not just measure the quality of a new MOEA but also for

comparison of results produced by other MOEAs. There are two types of comparison

methods: one type is the quantitative assessment and the other is the qualitative

assessment.

 For quantitative assessment, the metrics are based on certain equations or theories

as the measuring tool. Each metric is designed to measure one feature of the overall

performance. In early MOEAs publications, performance comparisons often rely on

qualitative assessment. The common metrics used are aimed to measure three features as

given in [2,39]:

1) Measure how close to the optimal Pareto front produced by a MOEA with respect

to the true Pareto front, assuming that we know the true solutions of a MOP. An

example metric is the generational distance (GD) [43] that calculates the distance

between the solutions in a set of the Pareto front found and those in the true

Pareto front.

2) Measure how well distributed of the solutions found by a MOEA since we want to

find the Pareto front that is well extended and uniform distributed. A popular

metric for this measure is called Spacing (SP) [44], which measures the distance

variance of the neighboring solutions lie along the resulted optimal Pareto front.

 27

3) Measure the number of solutions found in the optimal Pareto set belongs to the

true Pareto set. The error ratio (ER) metric computes the percentage of the

solutions found that belongs to the true Pareto set [45].

The above only presents a few from a wide variety of metrics. These metrics are

also under the category known as the unary indicators [46,47]. There are limitations for

unary indicators. The users must know true Pareto front of a MOP in order to calculate

the metrics. This is not practical since in real application, one does not always have

access of the true solutions of a problem. As analyzed in [46], unary indicators are

restricted because when comparing two MOEAs, unary indicators are able to indicate

which algorithm is better but fail to express how much better. Recent research works

introduce performance metrics that consider two algorithms instated of one. These

metrics are referred to as the binary indicators in [46]. Binary indicators are different

from unary indicators since the performance measure is based on the dominance

relationship between two MOEAs. Hence, binary indicators are able to indicate how

much better of an algorithm compared to the other one. Another advantage over unary

indicators is no true Pareto front is required to apply binary indicators. Examples binary

indicators include multiplicative epsilon indicator [46], additive epsilon indicator [46],

two set coverage [27,47], and binary hypervolume indictor [46].

 Another alternative of comparing the performance of several MOEAs are through

graphical representation, or qualitative assessment. Basically, all the optimal Pareto

fronts produced by the MOEAs for the given same initial populatopn are presented

graphically. Those MOEAs with good Pareto fronts are identified through visual

judgment. This may only works for those results that are significant difference from each

 28

other since they are easier to identify. For those MOEAs that produce good Pareto fronts,

quantitative assessment can complement the difficulty in identify which MOEA is better.

 29

CHAPTER 3

SWARM INTELLIGENCE

 The study of particle swarm optimization belongs to the field of swarm

intelligence. It is an optimization method which bears two similar characteristics that can

be found in evolutionary computation techniques, i.e., stochastic search and population

based design. This chapter starts by introducing swarm intelligence and providing the

background to understand the fundamental concept behind this field. Later, a brief history

in modeling flocking behavior is elaborated. The aim is to familiarize with the pioneering

works in modeling flocking behavior, which bears some connection in the history of

particle swarm optimization.

3.1 Introducing Swarm Intelligence

 In the evolutionary computation field, the unorthodox optimization techniques are

designed by modeling or incorporating the theories or concepts extracted from areas such

as the natural science, psychology, or even sociology. As introduced in previous chapter,

an evolutionary algorithm mimics the biological evolution by employing the mechanics

of natural selection and genetics, such as mutation and recombination operations,

selection pressure, and survival of the fitness, to find optimal solutions for the

optimization problems. Algorithms that follow these similar mechanics [21-23] are

genetic algorithm, evolution strategy, genetic programming, and evolutionary

 30

programming.

Swarm intelligence (SI), on the other hand, is a computational intelligence

technique inspired by the swarming behavior of the social insects or social animals in the

nature. Swarming behavior is how the social insects or social animals interact to

accomplish simple goal. They stay in groups and collaborate to find food, to provide

warning and collaborative defense against any predators. Such cooperative behavior can

bring benefits. Benefits include increasing foraging efficiency, reducing the probability of

each individual from becoming a prey, and acquiring information about the environment

quickly from each other; all to allow these social insects or animals to achieve a high

survival advantage [48]. One can observe swarming behavior in nature. For example: a

school of fish travels together and reacts in unison when face any external threat; a flock

of birds fly across the sky; or a swarm of African termites builds their huge termite tower.

3.1.1 Fundamental Concepts

A general term to refer a social insect or social animal is known as a simple agent.

Hence, we can say a swarm is formed when a number of agents groups and cooperates to

achieve their collective purpose or some goal. Interestingly, there is neither leader nor

centralized control to dictate the behavior of these agents in a swarm. Without centralized

control, how do the agents gather and collectively establish some kind of complex yet

functional system to collaborate towards a common goal?

One of the underlying concepts is the ability of the population of agents to

undergo self-organization process. Each agent plays its role by interacting with its

environment to gather the latest information, constantly making decision based on some

 31

simple local rules and information received, and interact locally with other agents. When

a population of agents groups together, each agent plays its own role, and eventually, this

results in self-organization process. Consequently, the process leads to the production of

a global behavior, or a swarming behavior.

Another underlying concept is the division of labor. In nature, different groups of

agents within a swarm have their own specializations and specialties to carry on certain

tasks. These different groups of agents cooperate and perform their own tasks

simultaneously. Tasks can range from foraging, nest building, to defending their nest.

The typical examples are ants, bees, wasps, and termites. With division of labor, task

performance of each specialized agent can reach its highest efficiency. If there are

environment changes, the agents will adjust themselves to optimize their performance.

3.1.2 Example Algorithms

Understanding the principles of swarm intelligence has brought great relevance in

different disciplines such as engineering [188], robotics [189], and telecommunication

fields [190]. In recent years, the research area of swarm intelligence is growing rapidly.

Two areas that have shown significant applications in solving optimization problems are

the “swarm-like” algorithms ― ant colony optimization (ACO) [49] and particle swarm

optimization (PSO) [50].

Ant colony optimization (ACO) [49] is inspired by the behavior of how natural

ants find the shortest path from their nest to the food source. In nature, ants are able to

find the shorter path to the food source by exchanging communication through the

 32

 (a)

 (b)

 (c)

 (d)

Figure 3.1 Ants’ foraging behavior in finding the shortest paths from their nest to the food source. (a)

Ants are at the junction of the two paths that can lead to the food source from their nest. (b) The ants

choose the path randomly. (c) Ants leave the pheromone trail while returning to their nest after find

food. Shorter path (upper path) has higher pheromone concentration than longer path (lower path),

which attracts more ants to choose the shorter path. (c) Eventually, All ants will end up using the

shorter path.

chemical message called pheromone, which is deposited by ants on the ground. The ants’

foraging behavior is illustrated in Figure 3.1. In Figure 3.1a, there are two paths that can

lead to the food source from the ants nest. The ants’ goal is to go to the food source and

have no idea which path is the better one. Hence, they choose the path randomly, as

Nest FoodNest Food

Nest FoodNest Food

Nest FoodNest Food

Nest FoodNest Food

 33

shown in Figure 3.1b. Some ants choose the upper path while others choose the lower

path. When the ant find the food, it will leave the pheromone trail along the ground while

returning to its nest using the same path it has chosen earlier. With the pheromone trail,

other ants from the nest will likely to follow the trail to the food source. Again, if they

find food, in returning to their nest, the ants will leave the pheromone trail. This will

increase the concentration of the pheromone scent and will attract more ants to follow the

trail with higher concentration. The pheromone trail will dissipate over time, so this will

reduce the concentration of the pheromone scent. As the ants travel the shorter path (the

upper path), the concentration level of the pheromone will tend to become denser since

travel duration is shorter and the pheromone concentration still remains. On the other

hand, at longer path (lower path), the longer travel duration allow more time for the

pheromone concentration to dissipate. Hence, by comparing the pheromone concentration

between two paths, the ants are likely to choose the shorter path, which is illustrated in

Figure 3.1c. As time progresses, more ants will choose the shorter path and eventually, all

ants will end up using the shorter path (refer to Figure 3.1d). This process of how ants

find the shortest path is the core concept of the ant colony optimization. Ant colony

optimization has shown effective in finding optimum path for optimization problems with

graph related such as network routing. Publications have shown ant colony optimization

effectiveness in optimizing combinatorial optimization problems such as traveling

salesman problems (TSP) [51] and quadratic assignment problems [52].

Particle swarm optimization (PSO) is developed based on the principle of the

social behavior of a bird flock. The inventor of this algorithm is Kennedy and Eberhart

[50]. They are inspired by one of the pioneers who had researched the bird flocking

 34

behavior and developed rules to model a flock. In recent years, publications on PSO have

shown promise in solving optimization problems and many applications [188, 191-196].

Since the existence of PSO bears relation to modeling bird flock in the nature, the

background of related publications on modeling flocking behavior is briefly introduced in

the following section.

3.2 Modeling the Behavior of Bird Flock

You may have enjoyed the sight of a flock of western sandpipers over a bay stay

close together to avoid and to confuse possible predators. When one of western

sandpipers in the flock turns to a different direction, the rest behind this western

sandpiper will follow and turn to the same direction in unison. Or you may have observed

the beautiful sight of a flock of common cranes fly in a “V” formation, migrate to warmer

regions. Flying in “V” formation is to gain social advantages and to reduce energy

expenditure [53]. It is amazing of how the flock, without a leader, can stay or fly close

enough and not collide into each other, change direction in unison, and group together

after being separated into several smaller flocks by an obstacle. In recent years,

publications show continuing research and modeling of this flocking behavior [57-60].

The two significant works in modeling the flocking behavior via computer simulation are

published by [54,55] and [56] during the 1980s.

In 1986, Craig Reynolds proposed an approach to simulate the flock motion

[54,55]. In his approach, the resulting flock motion is contributed by the interaction

between the behaviors of individual birds. Since the simulation is intended to model the

flocking behavior of simple, generic agents, he referred these agents as boids. Each boid

 35

has its own coordinate system and applies geometric flight model to support its flight

movement. Geometric flight model includes translation and flight dynamic parameters of

yaw, pitch, and banking (roll). Additional three steering behaviors (local rules) are

incorporated in each boid. These three steering behaviors model the underlying concept

of flocking, in which each boid desires to stay close within the flock and to avoid

collision with others boids of the flock. Each boid has its own local neighborhood, which

is similar to the limited perception range of birds or fishes in the nature. The

neighborhood is determined by the distance from the center of a boid (green) and the the

boid’s heading direction is determined by the angle as shown in Figure 3.2. The

flockmates within a boid’s neighborhood are referred to as the local flockmates.

Figure 3.2 A boid’s neighborhood (in grey) and the triangular symbol (marked green)

represents a boid [54,55].

The three steering behaviors describe the maneuverability of an individual boid [54,55]:

(1) Separation behavior for collision avoidance (Figure 3.3(a)): The relative positions

of a boid (green) and the local flockmates are compared. If the relative positions

of a boid and the local flockmates are less than the minimum required separation

distance, it indicates that the boid is too near and may collides to those local

flockmates.The velocity and position of the boid is adjusted to steer away in order

to avoid collision (red arrow).

distance

angel

distance

angle

 36

(2) Alignment behavior for velocity matching (Figure 3.3 (b)): The velocity of a boid

(green) is compared with the local flockmates’ velocities. Then, the boid will

adjust its velocity to match the velocity of the local flockmates and steer towards

the average direction (red arrow) of the local flockmates (blue).

(3) Cohesion behavior or flock centering: Each boid attempts to steer towards the

average position of its local flockmates. This is to ensure that the boid stays

within the flock and doesn’t fly away from its flock. Please note the boid (green)

and its steering direction (red arrow) in Figure 3.3(c).

 (a) (b) (c)

Figure 3.3 The illustrations of the three steering behaviors of the boids. (The color in the illustrations

are indicated as follow: the boid (in green and is attached with an red arrow), its neighborhood (in

grey) and its local flockmates (in blue) [55].

With the three steering behaviors, Reynolds successfully developed a program that the

simulated flock shows realistic flocking behavior and if there is an obstacle, the flock will

bifurcate to avoid or turn away from the obstacle and later, the separated flocks will

rejoin together. His pioneering work became the stepping stone for many researchers to

explore in this field including a computer graphic area known as the behavior animation

which is implemented in movies such as The Lion King (1994) and Lord of the Ring

trilogy (2001-2003).

 About the same time, zoologist Frank H. Heppner studied bird flock from the

movies taken by him. Through his observation, he concluded that there is no leader in the

flock but interestingly, the flock can maintain a stage of dynamic equilibrium [56]. Later,

 37

he collaborated with applied mathematician Ulf Grenander and undergraduate computer

wiz Daniel Potter to develop a program that simulates an artificial bird flocks. Through

their research and observation from the movies, Heppner realized that chaotic theory can

be used to explain the emergent behavior in flock. Hence, they designed four simple rules

to model an individual bird’s behavior. The four rules include: 1) The attractive force is

to allow the birds to attract each other (stay close together) and repulsive forces is to

prevent the birds to fly too close to each other; 2) Each bird maintains the same velocity

as its neighboring birds; 3) Occasionally, the birds’ flight path can be altered by a random

input (craziness); 4) Any birds are attracted to a roost and the attraction increases as the

birds are flying closer to the roost. The concept of Heppner’s roost idea is similar to the

foraging behavior of a flock of birds. Firstly, a flock of birds are flying freely around.

When one of the birds in the flock spots a roost area, it is attracted to the roost and flies

towards the roost until it is finally landed on the roost. At the same time, with the

“attraction force” rule, its nearest neighbors are being pulled towards the roost area. As

these neighbors land on the roost, they will “attract” their nearest neighbors towards the

roost area. This similar behavior is continued until the entire flock lands on the roost. By

incorporating these rules in the program, the resulted simulation displays a global

behavior of a group of the artificial birds, which is similar to the behavior of a flock

observed in the movies.

 The pioneering works of Reynolds and Heppner have brought a closer

understanding of the flocking behavior using computer simulation. Following their works

publications in modeling bird flock have appeared. There is [57] that simulates the

Reynolds’s bird flocking model via a process-parallel approach in which each processor

 38

will simulate a fixed number of birds in a portion of simulated world. Each processor is

known as bird processor. All results produced by the bird processors are gathered into a

central system, the drawing process, and the results are visualized via Silicon Graphic

Machine. Another approach is the used of detail mathematic derivations and theories to

model and analyze the collective coherent motion of a large number of self-propelled

organisms [58]. In another publication by Spector et al. [59], the authors developed two

systems. The first system (SwarmEvolve 1.0) aims to observe how different species evolve

their behavior in order to achieve their respective goal. The species and motion control

formula (from classic flocking algorithm) are hard-coded. On the other hand, for the

second system (SwarmEvolve 2.0) the behavior of individual agent, instead of species, is

controlled by evolved computer programs. Unlike the behavior observed in the first

system, the experiments show that the agents, in the second system, emerge to food-

sharing behaviors in both stable and dynamic, unstable environments. Recently, a

publication inspired by Reynolds’s work proposed four local control laws for the flocking

agents, i.e., global alignment of velocity vector, same convergence speed, collision

avoidance, and local minimization of agents’ artificial potential energy [60]. The authors

applied the algebraic graph theory to support the topology interaction and

interconnections between the agents. Simulation results showed the flocking behavior of

the agents is maintained while robust to any arbitrary changes in the topology

interconnections between the agents.

 The motives of the discussed publications include study and understanding the

distinct behavior and characteristic of flocking; development of model to explain

coordinated movements of flock; and realizing the model via computer programming to

 39

experiment and to simulate the artificial bird flocks. In terms of application domain,

flocking simulation shows useful in animation or in developing multi-agent modeling for

autonomous robots. In addition to Reynolds’s flocking simulation, Heppner’s roost idea

has motivated Kennedy and Eberhart to draw the connection between flocking patterns

(swarm-like) and roost. By understanding the connection, they synthesized the ideas into

developing a model. Through many experiments and adjustment of their model, they

proposed their final version of the model, particle swarm optimization [50], which

contributes to optimization area and engineering applications. The next chapter will

review the particle swarm optimization (PSO).

 40

CHAPTER 4

PARTICLE SWARM OPTIMIZATION

When particle swarm optimization (PSO) was first introduced, the

implementation focused on solving problems, mainly on single-objective optimization

problems (SOPs). In recent years, many variations of PSO are designed and developed,

aiming to improve its robustness and efficiency, especially on dealing with the issue of

premature convergence, when solving the SOPs. The incentive of gaining attention in

PSO field is also due to its simplicity and ability in solving problems closer to those in

real world such as engineering applications, music composition, market modeling, and

other applications. Until recently, PSO is applied to solve for multiobjective optimization,

which is known as MOPSO. Before going into MOPSO discussions, it is necessary to

learn the background of PSO first. This chapter will present the brief history of PSO, the

PSO algorithm itself, and different variations of PSO.

4.1 Brief History of Particle Swan Optimization

 The models of flocking simulation by Reynolds [54,55] and Heppner and

Grenander [56] have something in common. Both models derived from the notion in

which the reaction and response of each individual bird is based on the local interaction

between its neighboring birds. Hence, as stated in [50], both models relied on continuing

comparison of inter-individual distances and flight velocities for the birds to maintain

 41

optimum distance between themselves and their neighbors.

In addition to the inspiration of these models, Kennedy and Eberhart further their

study from Heppner’s roost idea [56, 61]. In Heppner’s bird simulation, the birds are

attracted to the roost area until the whole flock lands on the roost. Knowing this is only in

simulations where the roost is programmed and known by the birds. However, in nature,

how do the birds know where to locate food (“roost”) when they are hundred feet in the

air? This is the question that sparked their interest to explore not only the animal behavior

but also the area of social psychology, which related to social behavior of the human

beings. From their study, they concluded that knowledge is shared within the flock.

While a flock of birds is flying around to look for food, the fact is they are looking for

signs of any food; sign of other birds eating or sign of other bird are approaching their

target. Once any of the birds within the flock notice those signs, e.g., food, they pass their

findings and knowledge to their peers. The flock of birds responds to the knowledge and

circles around the food area, continue to collect and share new information, until it is sure

that the food area is safe before they decides to go for it. The concept of knowledge

sharing among the birds is intriguing to Kennedy and Eberhart. They started with the

simple method called cornfield vector to model the behavior of how a flock of birds seeks

for food, i.e., in this case food is the cornfield. Basically, velocity of the agent (bird) is

adjusted based on two conditions, which are 1) the present position, XY coordinates of

the each agent (bird), is compared with its best position found so far (pbest); and 2) the

present position, XY coordinates of each agent (bird), is compared with its global best

position (gbest) found by one member in the flock so far. A simple way of speaking:

pbest represents the agent’s desire to improve itself by remembering its best achievement

 42

while gbest represents the agent’s desire to learn from the best among its flock or

community. Through experiments with the cornfield vector model, matching velocity and

craziness, which are from Heppners’ rules, are not necessary. The flock acts like swarm

and is able to locate the cornfield. In addition, the cornfield vector model is expanded for

multidimensional search. The authors apply the multidimensional cornfield vector model

(algorithm) to train the weights of a three-layer feedforward perceptron neural network in

solving the exclusive-or (XOR) problem. The algorithm produced good performance.

Kennedy and Eberhart continued to improve the cornfield vector model. In one

version, they incorporated acceleration by distance instead of comparing the conditions.

This way, the model is simplified into one velocity equation where either the distance

between an agent’s present position and its pbest or the distance between an agent’s

present position and the gbest is incorporated to adjust the velocity of the agent. In their

final version [50], they combined the pbest and gbest into one velocity equation, added

and changed some parameters in the equation. The final version is named particle swarm

optimization (PSO) equation and the birds are represented by a general term, called

particles, instead of agents.

After Kennedy and Eberhart introduced their original PSO, motivation to improve

the original PSO has brought many researchers to design other variations of PSO [62-99].

One of the versions is considered the standard PSO due to its popularity in applying to

many applications especially in optimization task. This standard PSO has a minor

difference from the original PSO. Inertial weight is introduced to modify the velocity

equation of the original PSO [62]. Including the inertial weight will enhance the

 43

exploration in the search process, which produces better results if compare with the

original PSO. The standard PSO equation is given in the following section.

4.2 Standard PSO Equations

While implementing PSO algorithm to optimize a problem, the collection of

particles, acting like a swarm, will “fly” through the search space toward the regions

where the optimum solutions may lie. The movement of each particle is adjusted via the

velocity and position equations. The velocity equation updates the velocity of a particle,

which in turn provides distance and direction of the particles. It is added to the particle’s

current position, gives the new particle’s position. The velocity and position equations are

given as

() () ()() ()()txgbestrctxpbestrctvwtv jijjijijiji ,22,,11,, 1 −××+−××+×=+

 (4.1)

 () () ()11 ,,, ++=+ tvtxtx jijiji (4.2)

where ()tx ji, denotes the position (decision variable) for dimension j of particle i at

iteration t; ()tv ji, is the velocity for dimension j of particle i at iteration t; w is the

inertial weight to control the impact of the history of velocities on current velocity; 1c

and 2c are the acceleration constants; 1r and 2r are random numbers within []1,0 that are

regenerated at every iteration; jipbest , denotes the personal best position of dimension j

attained by particle i thus far; and jgbest represents the global best position of dimension

j discover by all particles.

 44

There are three components at the right hand side of Equation (4.1). The first

component is called the momentum component where the inertial weight controls the

impact of the previous velocity. The second component, also known as the cognitive

component, has the parameter jipbest , . This component is related to personal desire to

exceed its current achievement. The third component involves jgbest , is called social

component since it represents social knowledge attained via the “collaborative” efforts of

all the particles. In addition, it will guide particles to converge towards the attained

optimal solution.

 A problem faced by any optimization method is during the optimization process,

the solution candidates may exceed outside of the decision variable bounds (i.e. Equation

2.4). The decision variable bounds are usually determined by users before applying any

optimization method. The reason relies on the assumption that the method (or algorithm)

should locate the global minimum within the user defined bounds. For PSO, despite the

fact that user defined bounds are applied; additional condition is enforced to prevent the

particles from exceeding outside of the bounds. Either one of the following conditions are

acceptable:

• Position clipping criterion ― This criterion is considered as hard boundary

condition [63] since if the particles exceed the boundary, their positions are

clipped. The position at dimension j for the particle is bounded by the minimum

and maximum bounds in the decision space, i.e., []jj xx max,min . ⋅ represents

the floor function. The minimum and maximum bounds can be determined by

user. On the other hand, the decision variables’ lower and upper bounds (Equation

 45

(2.4)) can be used as the position clipping criterion if they are given by the

problem (refer to Figure 4.1).

Function positionclip (i , j ,
L
jx ,

U
jx , jix ,)

/* i = Index for particle i

/* j = Dimension j of the decision variables

/*
L
jx = Lower bound of decision variable at dimension j

/*
U
jx = Upper bound of decision variable at dimension j

Begin

L
jj xx =min

U
jj xx =max

 /*Checking for lower bound,

 If jji xx min, ≤

 jji xx min, =

 ElseIf jji xx max, ≥

 jji xx max, =

 EndIf

End

Figure 4.1 Position clipping criterion.

• Velocity clipping criterion — Kennedy and Eberhart [50] have investigated the

impact of applying velocity clipping criterion in PSO. Investigation revealed the

compulsory of applying this criterion in order for the swarm to converge toward

the global minimum. In [63], this criterion is considered as soft boundary

condition since the particles can exist outside the boundary in the decision space

even if their velocities are clipped. For this criterion, each particle’s velocity at

dimension j is not allowed to exceed the user defined maximum velocity

threshold, i.e., []maxmax ,VV− . However, the user defined maximum velocity

 46

threshold must not exceed the minimum and maximum bounds in the decision

space. Figure 4.2 shows the psudocode of velocity clipping criterion.

Function velocityclip (i , j ,
L
jx ,

U
jx , jiv , , maxV)

/* i = Index for particle i

/* j = Dimension j of the decision variables

/*
L
jx = Lower bound of decision variable at dimension j

/*
U
jx = Upper bound of decision variable at dimension j

/* maxV = Maximum velocity value
Begin

 If max, -Vv ji ≤

 max, -Vv ji =

 ElseIf max, Vv ji ≥

 max, Vv ji =

 EndIf

End

Figure 4.2 Velocity clipping criterion.

4.3 The Generic PSO Algorithm

 As stated in previous chapter, PSO possess as the same characteristics as

evolutionary algorithms, but the behavior of the individuals known as particles operates

like a swarm that flies through the hyperdimensional search space to reach its destination.

The behavior of the particles is influenced by their tendency to learn from their personal

past experience and from the success of their peers to adjust the flying speed and

direction.

The generic procedures are as follows: At iteration 0=t , the particles’ positions

and their velocities are randomly generated. Next, the particles’ current best positions

(pbest) are recorded. During the initialization process, parameters such as total number

of particles in a swarm, max iteration counter, 1c , 2c , and w , are set by user. Then, the

 47

Begin

/*Initialization

Set 0=t

Set total number of particles in a swarm (mswarm)

Initialize swarm, particles’ positions are randomly generated (x)
Initialize velocity rabdomly

Set 1c , 2c , and w

Set max iteration counter(maxt),

Store particles’ current position (xpbest =)

While maxtt ≤

 For 1=i tomswarm

 Fitness Evaluation

 Update gbest by comparing with the current fitness values

 /* n = Dimension size of the decision variables

 For 1=j to n

 Update jipbest , by comparing with the current fitness values

 Update velocity Equation (Equation 4.1)

 Update position Equation (Equation 4.2)

 Apply positionclip() (or velocityclip())

 EndFor

 EndFor

Endwhile

End

Figure 4.3 Pseudocode of the generic PSO algorithm.

following steps are repeated until the maximum iteration counter is reached: 1) the fitness

of the objective problem is evaluated; 2) update pbest and gbest based on the

comparison of the current and their (recorded) fitness values; 3) update particle velocity

and position equations; and 4) apply either position or velocity clipping criterion to

prevent particles from leaving the bounded search space. Figure 4.3 presents the

pseudocode for the generic PSO algorithm.

4.4 Modifications in PSO

 PSO has shown robust and efficient behavior in well known SOPs and some

applications [188, 191-196]. However, one disadvantage posed by PSO is the lack of

diversity and often trapped in the local optimum solution. Due to these reasons, it has

 48

gained attention in researching ways to improve the performances of the original PSO.

Modifications and improvements that are commonly found in publications involve

several areas, i.e., parameters settings, modification of velocity and position equations,

neighborhood topology, and multiple-swarm concept in PSO. The following sections

provide a closer look in these modifications.

4.4.1 Parameter Settings

 The three components each contribute to the velocity of the particle. The

momentum component relates to how much impact should the previous velocity grant to

the particle while the cognitive and social components contribute to the change in

direction and velocity of the particles. The parameters attached to these three components

result in their significant contributions to the particle’s velocity, indirectly influence the

efficiency of PSO. Knowing the importance of these parameters, various techniques are

integrated to study the determination of these parameters.

4.4.1.1 Inertial Weight

 In the standard PSO equation, the inertial weight is user defined. Larger inertial

weight promotes exploration and conversely, smaller inertial weight support locals

exploitation. Promoting too much exploration will render PSO failure to converge to

optimum solution while excessive exploitation will result in premature convergence. So,

to determine the “right” inertial weight is not an easy task since the optimization process

for every problem is different. Several publications have proposed different methods of

selecting inertial weights [64-66]. In [64], the inertial weight (w) in Equation (4.1) is

 49

replaced by a random numbers that are uniformly distributed within []1,0 . Their reason is

to facilitate both global exploration and local exploitation during the optimization

process.

Another version applies linearly decreasing inertial weight with respect to the

number of iteration count [65]. This method is known as linearly varying inertia weight:

() 221
max

max
w

t

tt
www +

 −
×−= , (4.3)

where 1w is the initial inertial weight with larger value; 2w is the final inertial weight

that has smaller value; maxt denotes the maximum iteration count; and t represents the

current iteration count. Here is the idea: During early iteration counts, larger inertial

weight will encourage global exploration to locate as many quality solutions as possible.

As number of iteration counts increases, the inertial weight reduces until it reaches the

final inertial weight. By reducing the inertial weight, local exploitation is slowly

dominate the search process. The logic is, as iteration count is closer to maximum

number of iterations it is assumed that the search region is close to the optimum solution.

Hence, local exploitation will encourage the particles towards the optimum solution and

not roam elsewhere.

 Qin et al. [66] proposed an adaptive inertial weight particle swarm (AIW-PSO)

optimization. In their approach, a measure called individual search ability (ISA) to

indicate the current situation of each particle. In other words, the measure aimed to

determine if the particle is lack of exploration or exploitation. Based on this measure, the

inertial weight is dynamically adjusted via a transfer function and then assigned it to the

particle. Experiment showed that AIW-PSO performs better than other selected PSO.

 50

4.4.1.2 Acceleration Constants

 The acceleration constants (1c and 2c) control the significance of the cognitive

and social components to the particle’s velocity. Both components play a critical role in

guiding PSO to find the optimum solution. Hence, the balance of contribution is needed

because a larger value of cognitive component will result in excessive exploration while a

larger value of social component will lead to convergence toward the local solutions.

Initially, Kennedy and Eberhart suggested that both acceleration constants should be set

to 2 in order to bring the stochastic factor of the original PSO equation to 1 [50]. By

doing this, the contribution of both components is balanced.

Ratnaweera et al. apply the similar technique as the linearly varying inertia

weight (Equation 4.3) to adjust the acceleration constants [67]. They named their method

as time varying acceleration coefficients (TVAC). The TVAC equations are given below

[67].

() iif c
t

tt
ccc 1111

max

max
+

 −
×−= , (4.4)

() iif c
t

tt
ccc 2222

max

max
+

 −
×−= , (4.5)

where ic1 and fc1 are the initial and final acceleration constants for cognitive

component; similarly, ic2 and fc2 are the initial and final acceleration constants for

social component; maxt denotes the maximum iteration count; and t represents the

current iteration count. The authors suggested that 1c should decrease from larger to

lower values, e.g., the range from 2.5 to 0.5, and 2c should increase from lower to higher

values, e.g., the range from 0.5 to 2.5. The suggestion supported exploration in early

 51

iteration counts with larger value of cognitive component and promoted quick

convergence to the optimum solution in the later stage with larger value of social

component.

4.4.1.3 Clipping Criterion

 Generally, the maximum velocity threshold in velocity clipping criterion are pre-

determined by user as discussed in Section 4.2. However, recent publication by Cui et al.

proposed the adaptive velocity threshold idea for velocity clipping criterion [68]. Rather

than using the same user defined maximum velocity threshold, their idea is to add a

second maximum velocity threshold equation, where the new maximum velocity

threshold is computed from multiplication of the current maximum velocity threshold

with a probability density value for every iteration count. This multiplication is also

applied to each dimension of the particle. Hence, the maximum velocity threshold is

changed dynamically in every iteration count and in each dimension of the particle. In

their discussion, by modifying the maximum velocity threshold dynamically, the particles

will enhance their exploration capability with larger threshold as well as exploitation

capability with smaller threshold. The frequencies of larger and smaller thresholds

depend on the selected probability density functions such as Gaussian or Cauchy.

 In another publication, the authors investigated the effect of different boundary

conditions or clipping criterion on PSO performance [63]. Their study involved soft and

hard boundary conditions (velocity and position clipping criteria), including their

integration with reflection boundary condition (RBC), and absorbing boundary condition

(ABC). These boundaries are incorporated in the standard PSO algorithm and the

 52

algorithm is applied to a sphere test function and problem of synthesizing linear array

antennas. Results show that combining hard boundary conditions with RBC or ABC

produced an improved version of PSO. In addition, integration of RBC or ABC with soft

boundary conditions gives flexibility in choosing the maximum velocity thresholds in

order for PSO to obtain better convergence performance.

4.4.2 Modifications of PSO Equations

 Since the introduction of the standard PSO, some researchers have attempted to

improve the efficiency and performance of the standard PSO from another perspective—

to design a new PSO model or modify the standard PSO.

 In 2002, Maurice Clerc proposed a new PSO velocity equation [69]. Through

studying the swarm behavior of the standard PSO, he realized under certain conditions

the swarm will converge to the optimum solution. From there, he introduced a new

parameter, the constriction factor (χ) to the standard PSO. Here is the authors’s

proposed PSO model or the Canonical PSO:

() () ()() ()()()txgbestrctxpbestrctvtv jijjijijiji ,22,,11,, 1 −××+−××+=+ χ ,

 (4.6)

()42

2

−−−
=

φφφ

κ
χ , (4.7)

21 cc +=φ , (4.8)

where []1,0∈κ and 4>φ . The parameter κ is a user-defined parameter and it controls

the convergence speed to the optima. When κ is closer to 0, χ will be close to 0, the

resulted velocity will be small. Smaller velocity facilitates a fine grain search, and

 53

encourages convergence rate. If κ is closer to 1, particles show high exploration

behavior, which results in slow convergence rate. The essence is to use constriction factor

to restrain the velocity to guarantee convergence of the particles. Note that the position

equation is the same as Equation 4.2. Experiments showed that with constriction factor,

the particle’s velocity is able to stay within the feasible search space and locate the

optimum solution without even implementing the velocity clipping criterion.

 Kennedy [70] proposed another PSO model, known as the Gaussian “bare bones”

PSO. He studied the behavior of the velocity via simulations graphs for different versions

of canonical PSO, and also the histogram of points tested with canonical PSO with

gbest and pbest held constant. The study led to developing a simple PSO model that is

based on Gaussian distribution model. This model has no velocity equation. The model is

able to show similar behavior as canonical PSO. The model is as follow:

 ()

−

+
=+ jji

jji

ji gbestpbest
gbestpbest

Gaussiantx ,

,

, ,
2

1 (4.9)

The author commented that this simplified model retain the fundamental characteristic of

the PSO. The performance of Gaussian “bare bones” PSO is compared with the

Canonical PSO in terms of progression characteristic of mean global best over 3000

iterations and ability to find the average optima global solution at 3000 iterations for the

six standard test functions. In overall, the results show that Canonical PSO is able to

progress quicker towards the mean global best and to obtain better quality of average

optima global solution by 3000 iterations.

The above two PSO models (Equations 4.6-4.9) are derived from the study and

analysis of the particles’ behavior. Other variations in PSO model are designed by

integrating with other existing techniques. [71] integrates the mutation operator to aid the

 54

Gaussian PSO to escape the local minima. In the Gaussian PSO model, the velocity

equation is

() ()() ()()txgbestrtxpbestrtv jijjijiji ,2,,1, 1 −×+−×=+ (4.10)

In brief, during the optimization process, the particles’ velocity is updated using Equation

(4.10) and their position is updated using Equation (4.2). The particles’ fitness are

monitored to track the particles’ movement progression. If there is no improvement in

fitness value, a failure counter is evoked and updated in every iteration if the particles

still show no sign of improvement. Once the failure counter hit the predefined number,

the Gaussian PSO is replaced by Equation (4.11), in hope that particles will “jump” to a

new region and escape possible local minima. Mutation operator can be either Gaussian

or Cauchy probability function.

 () () ()1,01 ,, Gaussiantxtx jiji η+=+ (4.11)

Note that η is a constant. The Gaussian PSO with jump strategy is tested in selected

multimodel benchmark functions and is compared with other earlier PSO versions.

Results showed competitive performance compared with canonical PSO [69] and self

adaptive evolutionary programming. Another work also incorporated the Gaussian

mutation in the position equation, which is somewhat similar to Equation (4.11) [72].

There are only two differences: 1) the η parameter is replaced by ()tx ji, ; and 2) the

authors use the velocity equation from Canonical PSO.

 The vector differential operator is incorporated in the PSO velocity equation to

boost exploration capability [73]. The vector differential operator originates from

differential evolution (DE). In addition to the new PSO velocity, three conditions are

proposed in the new PSO algorithm (PSO-DV) to help swarm to stay out of local minima

 55

and to encourage the swarm to continue searching for potential solutions. Details of PSO-

DV algorithm can be found in [73].

4.4.3 Neighborhood Topology

 Neighborhood topology is known as sociometry or topology of a swarm. The idea

of employing neighborhood topology is related to how the particles in the swarm are

connected with each other in terms of sharing their knowledge, e.g., best position.

Usually, the convergence rate can be estimated by calculating the average distance

between two particles in the neighborhood topology. Shorter average distance facilitates

quick convergence speed, also resulted by lower degree of connectivity. The most basic

topology is the gbest in the social component, which all the particles are connected in

such that the knowledge is shared by all particles. If need to implement other

neighborhood topologies, for example star topology, then the gbest is replaced by star

topology. In Suganathan’s modified PSO algorithm, the local best, lbest replaces gbest

in the social component [74]. The local best is the best solution in the neighborhood. The

neighbors of a particle are selected via Hamming distance in each iteration count. The

neighborhood size corresponds to the increment of the iteration count. By doing so, the

particles start with random search in early stage. Slowly, as iteration count increases, the

particles will connect to a larger number of neighbors (i.e., larger neighborhood size), in

order to concentrate more in localized search until they landed on the optimum solution.

 The common neighborhood topologies are the global topology (gbest), ring

topology (lbest), and star topology [75]. Figure 4.4 illustrates the common neighborhood

topologies. In global topology (gbest), all particles in the swarm are connected to each

 56

others. The movement of particles is influenced by the best particle in the swarm. Due to

this characteristic, global topology tend to converge fast but increases potential for the

swarm to be trapped in local optima. The particles in ring topology (lbest) are connected

to their neighbors. If a particle locates a better solution, only its immediate neighbors are

drawn towards that particle. Then, one of the immediate neighbors will pull its neighbors

towards the direction where the better solution is located. The process repeats at every

iteration until the optimum solution is located. Although the convergence process is much

slower than global topology but ring topology favors exploration and has tendency of

finding the optimum. Refer to Figure 4.4 (c), all particles are connected to a central

particle for star topology. The central particle has the highest influence than the rest.

When one of the particles (not central particle) finds an optimum solution, it only draws

the central particle closer to its direction, which is the only attached particle. In the next

iteration, the central particle will influence the rest of the particles. This topology

converges slower than that of the global topology but faster than ring topology.

Occasionally, it will converge towards the suboptimum solution (local optima).

There are other topologies that are illustrated in Figure 4.5. Their movements

associate with the connectivity, as described previously for ring and star topologies. The

Von Neumann topology looks like square lattice connect to other square lattices around

it. Pyramid topology has small three dimension wire frames connected together and four

clusters topology consists of four small clusters that are interconnected with each other

via simple connections. Unlike the common topologies listed in Figure 4.4, these

topologies are harder to identify which ones give better performance, unless carefully

crafted experiments on topologies influence on PSO performance are conducted. There

 57

are studies that investigate the influence of topology to canonical PSO [76], both

canonical and fully informed PSO [77], and Guaranteed Convergence PSO (GCPSO)

[78].

 An interesting way to implement the neighborhood topologies is suggested in [79]

Instead of using the topologies in Figures 4.4 and 4.5, the authors proposed a randomly

generated neighborhood topology and at a fixed amount of time, the neighborhood

topology is re-structured into a new randomly chosen neighborhood topology.

Simulation results showed probabilistic re-structuring neighborhood topology produces

best results compare to the selected PSO algorithms on the chosen benchmark functions.

Key reason of producing best results is because the diversity maintenance is enhanced by

constantly applying different neighborhood topologies during the optimization process.

 (a) (b) (c)

Figure 4.4 Graphical representation of the three common neighborhood topology [75,76]: (a) Global

topology (gbest), (b) Ring topology (lbest), and (c) Star topology.

 (a) (b) (c)

Figure 4.5 Graphical representation of the other neighborhood topology [75,76]: (a) Von Neumann,

(b) Pyramid, and (c) Four Clusters.

 58

4.4.4 Multiple-swarm Concept in PSO

PSO is designed in such the particles act a like swarm and quickly locate the

optimum solution. The swarm-like characteristic renders PSO aptness to adopt the

“subpopulation” framework. Research in fusing the multiple-swarm concept into PSO is

well established in solving single objective and multimodal problems. Within this field,

the motivation in adopting multiple swarms in the design of PSO is categorized into three

main groups: solving multimodel problems, tracking all optima for multimodal problem

in dynamic environment, and improve performance of SOPs by promoting exploration

and diversity.

4.4.4.1 Solving Multimodal Problems

One motivation is utilizing multiple-swarm approach to solve multimodal

problems. A multimodal problem consists of many local and global solutions. As

mentioned earlier, the swarm-like characteristic in PSO has rendered its ability to rapidly

solve optimization problems. Built on this, a new idea has emerged, which is utilizing

this characteristic to locate multiple solutions in a given multimodal problem.

Several methods have been proposed. Brits et al. [80] adopted the niching

(speciation) techniques into PSO to locate multiple solutions in a multimodal problem,

and referred to this algorithm as niching particle swarm optimization (NichePSO). In

NichePSO, the sequential niching algorithm and “partitioning criteria” are used as the

indicator to form multiple subswarms from the main swarm. If any existing subswarms

“belong” in the same niche they are merged together, and if any particles from the main

swarm fall close to a subswarm, the subswarm can absorb these particles. Simulation

 59

results show NichePSO can effectively handle high dimensional multimodal problem.

Bird and Li [81] proposed an enhanced version of Speciation-based PSO (SPSO) [82],

known as the ESPSO. In ESPSO, instead of using a predefined radius to form a species

(particles that are within the species radius of the better particle), time-based measure and

particles’ personal best are used as an indicator to identify the species. Simulation results

showed the performance of ESPSO has improved and species radius does not affect the

performance. Another algorithm (multi-species particle swarm optimizer (MSPSO)) [83,

84] adopted a similar concept as [81,82]. Passaro and Starita proposed using a standard

clustering algorithm to identify the niches in the swarm population and then restricting

the neighborhood of each particle to the other particles in the same cluster [85]. By

restricting the neighborhood, particles can perform local search within the cluster, which

may discover any local minima located within the clusters. To save computational time,

clustering procedure is only performed at a predefined interval. Seo et al. [86], in their

multigrouped particle swarm optimization (MGPSO) suggested searching for N solutions

of a multimodal function with a predefined parameter N, the number of groups. The

repulsive velocity component is added to the particle updating equation, which will push

the intruding particle out of the other group’s global best territories (radius). In addition,

the time-varying territory concept is proposed to allow the predefined radius (territory) to

increase linearly during the search process to avoid several groups from settling on the

same peak. Several benchmark functions are tested and MGPSO shows promise in

solving multimodal problems. Zhang et al. [87] introduced a novel adaptive sequential

niche particle swarm optimization (ASNPSO). Penalty function is adopted to modify the

fitness values of the particles to control their influence within their subswarms in order to

 60

prevent all subswarms from converging to optima. The uniqueness of this algorithm is

that no niche radius is needed to define the “territory” of the subswarms. Experimental

results show ASNPSO is efficient in finding all solutions for the selected test functions.

4.4.4.2 Tracking All Optima for Multimodal Problems in Dynamic Environment

Recently [88-89], multiple-swarm PSO was designed to locate and track the

optima of a multimodal problem in a dynamic environment. Under the dynamic

environment, the locations of all assumed optima of a multimodal problem change

frequently. Hence, it is necessary to constantly track the optima.

Blackwell and Branke [88] proposed a multiswarm algorithm that comprises

subroutines such as exclusion, anti-convergence, and PSO updating rules to balance the

multiple swarm interaction. Extensive experimental studies have shown the multiswarm

algorithm is robust and outperforms the selected approaches on the same benchmark

functions. Parrott and Li [89] proposed an extended SPSO, named the dynamic SPSO

(DSPSO), to locate multiple optima in the dynamic environment. Two modifications of

SPSO are devised: 1) to compare the fitness of each particle’s current local best with its

previous record to continuously monitor the moving peaks; and 2) to use a predefined

species population size to quantify the crowdedness of species and extra particles before

they are reinitialized randomly in the solution space to search for new optima [89].

Simulation results showed that DSPSO is able to track the optima of a given test function

at different levels of dynamism under a dynamic environment.

 61

4.4.4.3 Promoting Exploration and Diversity

For some studies, multiple-swarm PSO has shown to improve the performance of

PSO by promoting diversity. PSO move as a swarm while finding optima in the search

space. This resulted in lack of diversity since a swarm tends to move in one group

towards the same direction. If we break a swarm into multiple swarms, then the

collaborated effort of multiple swarms exploring different regions in the search space to

look for better solutions simultaneously. This will increase the chances of finding quality

solutions efficiently.

Kennedy [90] adopted a clustering algorithm to cluster the swarm population into

a certain number of clusters. Then, a particle’s local best is replaced by their cluster

center and the particles’ global best replaced by the neighbors’ best. By clustering the

particle swarm population, the diversity and exploration of PSO has improved,

effectively enhancing PSO performance. A cooperative particle swarm optimizer (CPSO)

employs cooperative behavior among multiple swarms to improve the performance of the

PSO [91]. The whole idea is to divide the decision variables into multiple parts and

assign different parts to different multiple swarms. These swarms will optimize the

different parts of the decision variable [91]. The authors stated that the reason for CPSO

to show significant improvement compared to other PSOs is due to the increased

diversity of the cooperative swarms. A new PSO, TPSO, was proposed by Chen and Yu

[92]. In TPSO, the population is divided into two subswarms. One subswarm will

optimize following the global best position, while the second subswarm will move in the

opposite direction. The updating particles’ positions are dependent on their local best,

their corresponding subswarm’s best, and the global best collected from two subswams.

 62

If the global best has not improved for 15 successive iterations, the worst particles of a

subswarm are replaced by the best ones of the other subswarm and the subswarms switch

their flight directions. On the contrary, to improve the diversity of the particles, [93]

developed a multi-population cooperative optimization (MCPSO). MCPSO is based on

the concept of master-slave mode, where the swarm population will have a master swarm

and multiple slave swarms. The slave swarms will explore the search space

independently to maintain diversity of particles, while the master swarm will evolve via

the best particles collected from the slave swarms [93]. Literatures [94-96] share the

common spirit, where they emphasize in developing information exchange strategies

within two or more swarms to enhance the diversity of the PSO. For example, in [94] two

subswarms are updated independently for a certain intervals, and then the best particles

(information) in each subswarm are exchanged. This procedure is repeated till the

stopping criterion is met. In [95], four additional methods of information exchange are

applied to investigate the improvement from the original design in [94]. Another method

by [96] developed an algorithm to solve multimodal functions. The difference of this

algorithm compared to [80-87] is locating the global optima only. The algorithm has two

routines. Initially, swarm population is clustered into a predefined number of swarms. In

the first routine, particles’ positions are updated using their proposed PSO equation

where three levels of communications are facilitated, i.e., personal level, global level, and

neighborhood levels. At every given iteration, the second routine is activated where the

particles in a swarm (subswarm) are divided into two sets; one set of particles (send list)

is sent to another swarm, while the other set of particles (replacement list) will replace the

individuals in other swarms [96]. This routine supports the diversity via exchanging the

 63

particles between swarms, which prevents the particles from falling to the local optima.

Despite some of the literature presented here, [90-96] indicates that multiple-swarm

contribute to maintenance and enhancement in diversity.

4.5 Other PSO Variations

 The above covers the various efforts to improve the performance of the standard

PSO. Those that are discussed include tuning of the parameter setting in PSO equations,

various designs of neighborhood topology, modification in PSO equations, and

integration of “subpopulations” concept into PSO algorithm.

 Other PSO variations emerge from incorporation of bio-inspired mechanism, and

incorporation of concepts from other fields. For instance, Niu et al. proposed a novel

PSO (PSOOFT) that integrate two mechanisms of optimal foraging theory (OFT) [97].

The two mechanisms are the reproduction strategy and path-choice based scheme. In the

reproductive strategy, swarm is divided into two groups. The first group consists of

“healthy” particles, i.e., lower fitness for minimization, and the second group is the

“unhealthy” ones with higher fitness. Those that are unhealthy will die and replaced by

the duplication of healthy particles. The underlying idea is to place more pressure on the

particles in finding good solutions within a lesser time frame. Path-choice based scheme

aims to provide balance between exploration and exploitation. All healthy particles will

either conduct local search within their neighborhood of their pbest position or

“migrated” to a new region. Their search behavior depends on a probability value, which

is similar to mutation operator. In comparing their PSOOFT with the standard PSO, this

novel PSO shows superior in both solution quality and convergence rate. A new PSO is

 64

introduced based on the theory from the quantum delta potential well model [98]. Detail

mathematical derivations and proofs are published in [98]. An interesting publication

incorporated some psychological factor of emotion into the standard PSO [99]. The

authors proposed the following concepts: Each particle has two emotions, which are

joyful and sad. The emotional state of the particles is based on the emotional factor,

which is compared with a randomly generated value. If certain condition is met, then the

particle is updated using the “joyful” velocity equation or else “sad” velocity equation

will be applied. Psychological model is incorporated in both “joyful” and “sad” velocity

equations. Particle with “joyful” behavior tend to be more vibrant and will exploit both

pbest and gbest experiences to determine its velocity. On the contrary, “sad” particle

prefers local search, which represents its depressed behavior. Simulation results show

their proposed PSO (EPSO) is better and more efficient than the standard PSO.

 There are many other variations. This chapter only introduces those areas that are

already established. In the following chapter, the PSO variation designed to deal with

MOPs is discussed.

 65

CHAPTER 5

MULTIOBJECTIVE PARTICLE SWARM OPTIMIZATION

(MOPSO)

Success in solving various single objective and multi-model problems has shown

the efficiency of PSO. Additional benefit is PSO’s simplicity in implementation. In

addition, the use of evolutionary algorithm in finding the Pareto front of MOPs has

became very popular in recent years. Researchers have pushed the boundary of PSO by

shifting the research direction towards designing new PSO algorithms in order to deal

with MOPs. This chapter presents the introduction of multiobjective particle swarm

optimization (MOPSO). General framework and literature reviews of recent works in

developing MOPSOs are also included.

5.1 Particle Swarm Optimization Algorithm for MOPs

 Previous chapters have reviewed some population based stochastic algorithms in

the field of computational intelligences including evolutionary computation and swarm

intelligence. Increment in number of publications in the areas of evolutionary algorithms

(EAs) and PSOs show the gaining of research interest in the computational intelligences

community. Successful implementations of EA and PSO in various types of problems

have also contributed to the popularity [100-104].

 66

There are appreciable differences in the design procedures of how PSO and a

typical EA search for solutions in the decision space. For a typical EA, the individuals in

the population searches for good solutions in the search space in every generation.

Selection process is applied to favor individuals that represent the best solutions. These

selected individuals undergo crossover operation to generate new individuals that inherit

parts of the best solutions, while mutation operation is applied occasionally to introduce

diversity to the population. On the other hand, as discussed in Chapter 4, PSO relies on

the two equations to guide and advance the particles to the best solution.

Although the optimization process is different for PSO and EA, there are

similarities between the techniques employed to support the procedure and concepts.

Table 5.1 presents the comparison between the terminologies and techniques for EA and

PSO. The terminologies of swarm and particle for PSO bear similar representation for

EA’s population and individual respectively. Fitness evaluation is the same for EA and

PSO. Similar form of crossover operation can be found in the PSO velocity equation

(Equation 4.1), in which mixing and exchanging information among particles occur in the

cognitive and social components to adjust the equation (i.e., difference between

pbest and current particle position, and difference between gbest and current particle

position). The random numbers in the PSO velocity equation act like the mutation

operator to introduce diversity to the swarm.

Table 5.1 Comparison between a typical EA and PSO.

Evolutionary Algorithms (EA) Particle Swarm Optimization (PSO)

Population Swarm/Swarm Population

Individual Particle

Fitness Fitness

Crossover operation Cognitive and Social Components

Mutation operation Random numbers

Selection of best individuals Select the best knowledge (position)

 67

Beside the common stochastic search mechanism similar to EAs, PSO has rapid

convergence capability that falls short in many EAs [25-28]. Due to these reasons and its

simplicity in implementation, PSO has recently been extended to deal with multiple

objective optimization problems (MOPs). During the past few years, many publications

are focused on how to modify PSO to handle multiple objective optimization problems

[105-122]. PSO equipped to deal with MOPs is generally regarded as multiobjective

particle swarm optimization (MOPSO).

5.2 General Framework of MOPSO

Within these few years, extensive researches in modifying and extending PSO to

handle MOPs have shaped the conceptual framework for multiobjective particle swarm

optimization algorithms (MOPSO) [105-122]. The MOPSO framework comprises

features that are designed to retain the originality of PSO algorithm and to deal with

dilemmas of typical Pareto optimizer, i.e., the two conflicting goals of achieving

convergence and maintaining diversity to produce a well-distributed Pareto front. Figure

5.1 presents the generic framework of MOPSO. The framework is similar to the original

PSO algorithm yet added a Pareto dominance scheme to assess the particles’ dominance

relationship and their current status in the objective space. Those features, represented by

shaded boxes and bold face, are the modifications made in the original PSO. These

features are now the established research areas mainly to improve MOPSO capability in

dealing with the two conflicting goals. Research areas include global leader and personal

best selection to improve convergence and to promote diversity [111-119], the

introduction of external archive to record all nondominated candidates found during a

 68

Figure 5.1 Generic framework of MOPSO algorithm.

Start

End

Archive Maintenance

Update Personal Best

Update PSO Equations

(Velocity and Position Equations)

Evaluate Particles

(Fitness and Pareto Dominance)

Initialization

Initialize Particles (Swarm)

Initialize Velocity

Store nondominated

solutions in Archive

Evaluate Particles

(Fitness and Pareto Dominance)

Achieve Goal?

YES

NO

Perturbation/Mutation

Global Leaders &

Personal Best Selection

Start

End

Archive Maintenance

Update Personal Best

Update PSO Equations

(Velocity and Position Equations)

Evaluate Particles

(Fitness and Pareto Dominance)

Initialization

Initialize Particles (Swarm)

Initialize Velocity

Store nondominated

solutions in Archive

Evaluate Particles

(Fitness and Pareto Dominance)

Achieve Goal?

YES

NO

Perturbation/Mutation

Global Leaders &

Personal Best Selection

 69

search process and ways to maintain it [105-110], and incorporation of genetic operators

such as mutation and perturbation to enhance the exploration capability [120-121].

Recently, successful implementation of multiple-swarm concept in PSO and

subpopulation concept in MOEA encourage new area of integrating multiple-swarm

concept in MOPSO formulation [122]. Relevant works of these areas are reviewed in the

following sections.

5.2.1 External Archive

The introduction of the notion of elitism in the evolutionary algorithms is called

the second generation evolutionary algorithms [2]. These EAs are briefly discussed in

Chapter 2.2.3.2. Archiving is also known as elitism for other EAs. In PSO, each particle’s

flight in a search space is determined by its velocity computed from Equation (4.1).

Especially for complicated MOPs, it is difficult to control the velocity of each particle to

perform its optimal flight in a high-dimensional search space. Hence, for a typical

MOPSO, external archive is often used to record any good particles found in each

iteration.

Hu et al. extended their previous algorithm, called dynamic neighborhood PSO

(DSPSO), by adding an extended memory or archive to record all nondominated

solutions found in every iteration [105]. Fieldsend and Singh [106] proposed the use of

unconstrained archives to overcome the inefficiency caused by truncation of constrained

Pareto archives. They developed a data structure approach known as dominated tree to

maintain the unconstraint archives. The dominated tree consists of a list of composite

 70

points, and each composite point is a vector of archive members. These composite points

are ordered by weak dominance relation [31].

Recently, Mostaghim and Teich adapted the ε–dominance method to control the

archive size and help to reduce computational cost [107]. To update the archive, ε–

dominance criterion is employed to evaluate the dominance relationship between the

current particles in the swarms and the archive members. Dominated archive members or

dominated particles in the current swarm are deleted, otherwise the archive members

remain in the archive or the new particles are considered to join the archive. An upper

bound equation is used to control the archive size. The equation indicates that the archive

size depends on the upper bound of the objective values and the user-defined ε value.

Coupled with other techniques such as sigma method for finding global leaders and

turbulence factor to enhance exploration, experiment results shows applying ε–

dominance reduced computational time and improved the quality when compared with

MOPSO that used clustering techniques [128]. In [108], the archive maintenance is based

on enhanced ε–dominance since the drawback of ε–dominance method is losing solutions

near the boundary. The concept of deleting archive members and accepting new members

is the same as what is reported in Mostaghim and Teich approach [107] except that

enhanced ε–dominance is employed to evaluate the dominant relationship. If neither

archive members nor current particles dominate each other, Euclidean distance between

particle and the vertex of ε grid is used to decide if any current particles are accepted into

the archive. The particle that has the smallest distance is accepted. The authors explained

that this technique influences the production of well distributed solutions, which is

validated by their simulation results.

 71

Li proposed a different approach, known as the nondominated sorting particle

swarm optimizer (NSPSO), in which the algorithm of NSGA-II is adopted in PSO design

[109]. Rather than having a separate external archive, the offspring and previous

population are joined to form an overall population (with twice the population size). The

nondominated sorting is then applied to the overall population. Only the top portion of

population is selected for the next iteration. For diversity preservation, niche count and

crowding distance assignment are applied to guide the particles’ selection of global

leaders from the nondominated solution list.

Another prominent work was contributed by Coello Coello and Lechuga [110].

They proposed a multiple objective particle swarm optimization algorithm that

incorporates the concept of Pareto dominance and adopts archive controller, which

decides and stores the membership of new nondominated solutions found in each

iteration. The deciding factor of accepting a new membership depends on the cases listed

below:

Case 1: If the archive is empty (empty set), any new nondominated solutions are stored

in the archive (Figure 5.2, case 1).

Case 2: If there are members in the archive, then the Pareto dominance relationship

between a new solution and all archive members is evaluated. If new solution is

dominated by all the members in the archive, it is rejected from membership

(Figure 5.2, case 2).

Case 3: If a new solution and all archive members are not dominating each other, the

new solution is accepted (Figure 5.2, case 3).

 72

Case 4: If a new solution dominates some of the archive members, the new solution is

accepted and those archive members that are dominated by the new solution are

automatically discarded (Figure 5.2, case 4).

Case 5: If a new solution and all archive members are not dominating each other, the

new solution is still accepted even if the archive size has reached its maximum

limit. At this time, the adaptive grid procedure is evoked to readjust the grids

and the hypercube size in order to fit in all the archive members and the newly

accepted solution. Refer to Figure 5.2 (case 5), let’s consider the maximum

archive size is 6, a new solution is accepted. The figure shows that the grid is

adjusted while the number of hypercubes is retained. After the adjustment is

over, to maintain archive size, those archive members that located in the most

crowded hypercubes in the objective space will be removed.

An adaptive grid feature based upon objective function values of archive members is

applied to the archive with the goal of producing a well-distributed Pareto front. The key

mechanism of the adaptive grid is to be able to adjust and recalculate the grids in the

archive whenever the archive is updated. The adjustment of grid is essential to maintain

uniform hypercubes formed in the archive. Archive coupled with grid feature allows

global leaders to be selected from the archive via fitness sharing and roulette wheel

selection.

5.2.2 Global Leaders Selection Mechanism

Global leader (gbest) selection mechanism is one of the key modifications to

basic PSO to solve for MOPs. Particles in the population converge in a swarm-like

 73

 Case 1 Case 2

 Case 3 Case 4

 Case 5

Figure 5.2 Possible cases presented in [110]. Note that Ns denotes as nondominated solution; a no

filled circle represents a new nondominated solution; and a filled or patterned circle represents a

archive member.

manner toward an optimal solution by following their best leader or the best particle

within the population. However, for solving MOPs, the goal is to search for a set of

Pareto optimal solutions. Hence, the particles in the population must follow a set of

candidate best leaders that will lead them toward the optimal solutions. The selection

design must balance between diversity preservation and faster convergence.

Ns

Ns
p

NsNs

Ns
p

Ns
pp

Ns
p

Ns
p

Ns
p

Ns
pp

Ns
p

Ns
p

 74

In recent works, Hu and Eberhart [111] proposed a dynamic neighborhood PSO

(DSPSO) that includes three criteria: dynamic neighbors, new global best particle

updating strategy, and one-dimension optimization. The scheme of selecting the global

leaders involves the particles’ neighborhood, which applies similar concept as the star

topology (lbest) but the concept is modified to solve for MOPs. In every iteration, each

particle finds its best new neighbors via calculating the distances from other particles of

the first objective function (x-axis) in the objective space only. Then, the global leader to

be assigned to each particle is the closest neighbor within its neighborhood. The number

of neighbors is predetermined. Among the solutions in the neighborhood, each particle

finds the local best particle, as the global best. Figure 5.3(a) illustrates an example of

dynamic neighborhood procedure. The particles in the swarm are presented as circle (no

filled) while the filled circles represent the nondominated solutions found in current

iteration count. In this example, the number of nearest neighbors in the neighborhood is

set to three. The neighborhood for particle A is presented in grey region. The arrows

indicate the selected global leader from the particle’s neighborhood. Notice in Figure

5.3(a), since the distance measure is based on the first objective, the selection of global

leaders tends to point towards the downwards direction. Each particle’s personal best

(pbest) is updated only when these personal best history is dominated by a new solution.

However, dynamic neighborhood PSO is limited in dealing with a small number of

objective functions.

Another work by Zhang et al. [112] has suggested a selection scheme for global

and local leaders to improve the MOPSO performance. The scheme involves computing

the new leaders via the proposed equation that depends upon each objective function and

 75

the current iteration, and deciding whether the particles should follow their leaders based

upon the proposed criteria. Nonetheless, this approach did not provide a generalized

equation to determine the new global leaders for problems with high-dimensional

objective functions. Also, the new global and local leaders depend solely upon the global

best and local best values that correspond to each objective function, which inadvertently

may result in premature convergences if global best and local best corresponding to each

objective function are very close.

Fieldsend and Singh make use of their proposed archiving approach, i.e.,

dominated tree, for the global leader selection [106]. After the archive members (leaders)

are ordered by weak dominance relation, with the coordinates of these composite points

and the particles’ locations, the particles can select their global leaders based upon their

closeness to the archive members. Hence, the global leaders are the archive members

whose fitness values of the composite points jc contributing to the vertex are less than or

equal to those of the particles. However, this approach restricts the particles’ chances of

selecting global leaders that belong to other composite points, even if some particles may

provide better guides. Figure 5.3(b) presents Fieldsend and Singh’s method of global

leader selection for each particle in the swarm. In the figure, the composite points are

label as { }4321 ,,, cccc and represented by a larger circle. The shaded regions show the

areas that are separated or bounded by two composite points. Note that particles in the

swarm are presented as circle (no filled) while the filled circles represent the archive

members. The arrows show the particles select their closest archive member of composite

point jc as their global best leader.

 76

Inspired by the Fieldsend and Singh’s method in [106], Mostaghim and Teich

[113] introduced the sigma method to search for the global best for each particle in the

population. The particles select their global leaders based upon the minimum distance

from the sigma values computed for all archive member and all particles in the swarm.

Figure 5.3(c) shows the sigma method for two objective functions. The sigma values of

the archive members are presented as { }321 ,, σσσ , since only three archive members

(filled circle) are shown. The arrows indicate the global leaders selected by the particles

(no filled circle). In this report, this algorithm is referred to as sMOPSO. The sigma

method can impose selection pressure on global leaders and since PSO has rapid

convergence capability, this may lead to premature convergence for some MOPs. In a

follow up work [114], combination of hybridizations of three global leader selection

strategies, i.e., sigma, centroid, and random methods, for MOPSO are investigated. Four

benchmark functions are selected and hypervolume indicator is used as performance

metric. In general, simulation results indicate that hybrid selection strategies improved

the diversity and convergence in MOPSO although no specific hybrid selection strategy

dominated the performance since it is problem dependent. The authors suggested future

research on hybrid selection strategies is needed.

A new selection mechanism based on the idea of stripe is proposed to maintain

diversity of MOPSO while solving for MOPs [115]. First, the maximum fitness value of

an individual objective function in the archive is identified. Once the maximum fitness

values of all objective functions are known, a “line” is estimated using these values.

Figure 5.3 (d) illustrates the “line” drawn across the two objective functions. Then, the

number of points, also known as the stripe centers, is uniformly distributed along the

 77

 (a) Dynamic neighborhood [111] (b) Fieldsend and Singh’s method [106]

 (c) Sigma method [113] (d) Stripes method [115]

 (e) Minimum particle angle [116]

Figure 5.3 Figures depicting the different strategies of selecting the global leaders. The arrows

indicate the global leaders (filled circles) selected by the particles in the swarm (circles (no filled)).

1F

2F

min
1δ

min
2σ

1F

2F

min
1δ

min
2σ

1F

2F

c1

c2

c4

A

BC

D

c3

Composite point1F

2F

A

1F

2F

c1

c2

c4

A

BC

D

c3

Composite point 1F

2F

c1

c2

c4

A

BC

D

c3

Composite point1F

2F

A

1F

2F

A

1F

2F

1σ
2σ

3σ

1F

2F

Center of the clusters1F

2F

1σ
2σ

3σ

1F

2F

1σ
2σ

3σ

1F

2F

Center of the clusters 1F

2F

Center of the clusters

 78

 “line”. By setting the maximum number of particles for each strip will provide

distribution of particles in several stripes and to avoid excessive clustering in any

particular stripes. The authors used the notion of clustering as stripe centers. Figure 5.1

(d) shows an example of stripes divided based on the predetermined number of stripes.

Note that a maximum number of three particles are set for each center of cluster. This

strategy showed impressive simulation results when stripe method is applied to MOPSO,

ε-MOEA and NSGA-II. However, the authors applied their proposed strategy to test

problems with only two objective functions. For higher number of objective functions,

stripe method may be difficult to implement.

Gong et al. [116] introduced a strategy that is similar to the sigma method. In

their proposed strategy, the selection of the global leader for a particle is based on the

minimum particle angle (min
iδ) of a particle in the swarm and an archive member. To

locate the minimum particle angle, particle angles (iδ) between a particle in the swarm

and all the archive members are computed. The particle angle is computed by applying

the inverse cosine function to the dot product of two fitness vectors of two particles.

Figure 5.3 (e) presents the graphical representation of the proposed strategy. In the figure,

the particles in the swarm are represented by circle (no filled) and archive members are

represented by the filled circle. Arrows show which archive member is chosen by a

particle based on the minimum particle angle. Note that the authors define the particle’s

density as the number of particles that choose the same archive members. For example in

Figure 5.3 (e), the particle’s density for the second archive member (middle one) is two.

 79

Three methods of selecting global leaders based on Pareto dominance are

proposed by Julio et al. [117]. The following is the brief introduction of the three

methods:

1. ROUNDS: This method relies on the number of particles that are dominated by a

member of the archive to be selected as global leader. The member that

dominated the least particles is assigned as global leader of those

particles which it dominates. The procedure is repeated for other

members in the archive. The idea is to bring the particles to explore

regions with sparse population. Thus, this method aims to promote

diversity in the swarm.

2. RANDOM: Each particle finds a set of archive members that dominate it. Then, it

randomly selects a global leader from the set with equal probability. If

any particles are not dominated by any archive members, then their

global leaders are randomly selected from the entire archive.

3. PROB: This method uses the same way as the RANDOM method except global

leader selection is based on the probability that favor those archive

members that dominate least particles.

Experiments are conducted to compare the efficiency of the three methods and sigma

method [113]. The methods are applied to the two benchmark functions. Pareto fronts,

archive growth and histogram of the metric are presented to evaluate these methods. The

authors concluded that RANDOM method yields solutions closest to the true Pareto front

but lack of diversity; while PROB method gives the balance of both solution quality and

diversity. Experiments are repeated with rescaling the objective functions of the two test

 80

functions. Only PROB and sigma methods are tested. Results show that the performance

of PROB method is unaffected by the rescaled objective functions, which indicates this

method does not relies on objective space distances for global best selection.

5.2.3 Personal Best Selection Mechanism

In a typical MOPSO, particle’s personal best (pbest) updating mechanism is

based on the Pareto dominance relationship between the current personal best and the

new solution [110]. If the new solution dominates the current personal best, then only the

personal best is replaced by the new solution. Not until recently, some research works

introduce different strategies for updating the particle’s personal best.

Recently, two cases of personal best updating strategies are proposed by Gong et

al. [116]. One of the cases involves the strategy discussed early (Figure 5.1 (e)). For the

first case, the personal best updating is strictly based on the Pareto dominance

relationship if either the current personal best (ipbest) dominates the new solution

(()1+tix) or the new solution dominates the current personal best. The second case is

executed if both current personal best and the new solution do not dominates each other.

The steps are briefly given here: First, both ipbest and ()1+tix select their archive

members via particle angle approach. Next, the particle density is updated for all archive

members. To maintain the number of particles in the swarm, one of the archive members

whose particle density has reached the maximum number (user defined) is selected. Then,

a particle is randomly picked to check the Pareto dominance relationship with a ipbest .

If this randomly selected particle dominates a ipbest , then delete the ipbest , otherwise

delete the randomly selected particle. If both do not dominate each other, randomly delete

 81

one of them. Based on the authors observation, the process of updating personal best via

second case will promote good distribution of particles in the objective space.

Branke and Mostaghim [118] investigated the influence of the personal best

particles in MOPSO. There are total nine personal best selection concepts mentioned and

are briefly presented:

1. Oldest: Always keep the old position in the personal best memory unless new

solution (()1+tix) dominates the current personal best (ipbest).

2. Newest: Always keep the latest position in the personal best memory except for the

case where a ipbest dominates ()1+tix .

3. Sum: The deciding factor to update either the ipbest or ()1+tix depends on the sum

of objective values. Whichever contributes better sum will be updated.

4. Random: Randomly select a nondominated ipbest from the personal best archive.

5. WSum: Higher weights are assigned to particles that hold good solutions. This way,

the selection of ipbest will also contribute in diversity maintenance.

6. Global: To increase the convergence rate, the selected personal best, ipbest , is the

closest to the global best in the objective space.

7. Diversity: To improve diversity, the ipbest is chosen from those personal best in

archive that are isolated from other personal best in the archive.

8. All: Several personal bests from the archive are selected as the represented ipbest .

9. None: All personal bests are replaced by the global best.

 82

Empirical results showed keeping personal best archive and their proposed strategies in

selecting personal best from the archive produces significantly better results than

traditional approaches.

 Another selection technique is introduced by Ho et al. [119]. Their idea is to

counter the difficulty of selecting personal best (pbest) when a particle finds more than

one possible Pareto solutions. They proposed two repositories: one to store the

latest pbest while another to store age variables of the pbest , which are assigned to each

member of pbest in the first repository and are accumulated based on iteration counts

(i.e., the age factor). Selection of a particle’s pbest from the repository is done via

weighted sum of its age variables, its fitness values and roulette wheel selection scheme.

When a specific pbest is selected, its age variable is reassigned to the minimum age

value. Main idea of employing the age factor (age variables) is to improve diversity and

provide opportunity for “unpopular” pbest being chosen in the next iteration. The

authors proposed the same technique to select the global best (gbest) from its archive.

5.2.4 Incorporation of Genetic Operators

In recent works, the incorporation of genetic operators such as mutation and

perturbation operators has greatly enhanced the exploration capability of MOPSO.

Although the terminologies such as mutation and perturbation operators are the same for

many publications but the mechanism are tailored to suit the proposed MOPSOs. Inspired

by the stochastic variable used in [50], Fieldsend and Singh integrated the turbulence

(perturbation) to the velocity equation (Equation 4.1) to extend the exploration capability

for MOPSO [106]. The turbulence is a random variable and also known as the craziness

 83

parameter, which provides unpredictability to the particles’ flight in searching for good

solutions in the search space. Mostaghim and Teich [107, 113] also implemented a

turbulence factor to the particle’s updated position. Decision to apply the turbulence

factor depends on a turbulence probability. The turbulence factor adds randomness to the

particle’s updated position and it is represented by a random value within []1,0 . Similar to

[106] and [107,113], Ho et al. [119] incorporated both the craziness operation and

craziness probability to the velocity equation to promote diversity of their MOPSO. The

craziness operation is equivalent to the turbulence or perturbation operator.

In [108], mutation procedure is added in the proposed MOPSO to deal with the

problem of premature convergence. The execution of mutation procedure is based on a

mutation probability, which is dependent on the iteration counts. Mutation operator is

applied to the updated velocity value in the position equation (Equation 4.2). Parameters

such as direction of mutation and mutation distance are included in the mutation operator.

Coello Coello et al. [120] proposed the use of mutation operator to improve the

exploration capability on the MOPSO presented in [110]. The authors defined the

behavior of mutation operator to determine the number of particles in the swarm that

affected by the mutation operator. The function that describes the behavior of mutation

operator is also used to determine the mutation range imposed to a particle. The concept

of the behavior is to allow more particles in the swarm affected by the mutation operator

in early search process. The number of particles that is affected will slowly reduce as the

iteration count increases until the mutation operator halts.

In addition, Sierra and Coello Coello [121] suggested a new MOPSO, also known

as OMOPSO, based upon Pareto dominance and incorporated 1) crowding factor to filter

 84

out the list of available leaders, 2) mutation operators for different subdivisions of swarm,

and 3) ε–dominance to control the archive size. Their approach is to divide the population

into three subswarms of equal size. Each subswarm adapted to a different mutation

operator. In doing so, the ability of exploration and exploitation was enhanced during the

search process. The proposed idea showed good performance compared to the existing

evolutionary algorithm. Although genetic operators are adopted by MOPSO, the selection

of an appropriate initial population size plays an important role in homogenously

exploring the high-dimensional search space.

5.2.5 Incorporation of Multiple Swarms

Over the years, numerous works related to subpopulation manipulation in

multiobjective evolutionary algorithms (MOEAs) have been published [122-127].

Though the concept of subpopulation seems generic, various studies show convincing

performance in adopting the subpopulation concept from different perspectives. In [122],

the population is divided into subpopulations of equal size along one of the objective

functions, and these subpopulations evolve separately in a parallel fashion. At some

interval generations, the subpopulations are gathered and evolve as a whole population.

Then the population is divided and redistributed again along a different objective

function. In [123], an improved design known as Parallel Strength Pareto Evolutionary

Algorithm consists of two models: in global parallelization model, each subpopulation

performs evolutionary procedure, and in island model, the subpopulations exchange

information using the migration concept. In another design, a subpopulation is used to

optimize one decision variable [124]. All parameters from the first subpopulation and the

 85

best individuals from the rest of the subpopulations are combined to form complete

solutions, which will be evaluated and used to update the archive. Unlike [124], Vector

Evaluated Differential Evolution [125] proposed that each subpopulation is assigned to

an objective function and information is shared among the subpopulations via migration

of best individuals. Some publications emphasize the implementation of subpopulation to

solve specific problems. For example, Ando and Suzuki [126] proposed a Distributed

Multi-Objective Genetic Algorithm, which employs a multiple subpopulation approach

and replacement scheme based on the information theoretic entropy, to improve the

performance in solving deceptive problems; while Izumi et al. [127] reported promising

results with their proposed Evolution Strategy (ES) wherein the arithmetical crossover is

modified by using the subpopulation’s elite and the mean strength of that subpopulation.

These studies [122-127] have consistently shown that their proposed MOEAs have either

improved the performance or resulted in a highly competitive design validated through

selected test functions. More importantly, subpopulation concept coupled with other

ingredients often yields more efficient and effective designs, especially in enhancing the

population diversity.

As elaborated in Chapter 4, many publications on multiple-swarm concept are

mainly to solve single objective and multimodal problems. This concept is still a new

research area in MOPSO. In general, mutation operators are typically incorporated to

boost the exploration capability of the MOPSOs. For those MOPSOs that have no built-

in mutation operators, incorporating multiple swarms into MOPSO can effectively

enhance the exploration. In recent work, Toscano Pulido and Coello Coello proposed a

multi-swarm MOPSO, or simply cMOPSO, that implements the subdivision of the

 86

decision variable space in multiple swarms via clustering techniques [128]. Their goal

was to improve the diversity of solutions on the Pareto front. At some point during the

evolution process, different subswarms exchange information as each subswarm chooses

a different leader to preserve diversity. cMOPSO has shown promising results when

compared to NSGA-II [31], PAES [30], and coello coello’s MOPSO [120]. Another

proposed MOPSO design applies multi-swarm concept to cover the optimal Pareto front

at the final stage of the search process in order to improve the quality of optimal Pareto

front [130]. During the initial run, MOPSO employs a restricted archive size that is

controlled using ε-dominance strategy presented in [107]. Once archive members are

closerer to obtain the optimal Pareto front, sigma method [113] is applied to group the

particles in the swarm according to their selected global leaders from the archive. The

groups of particles are referred to as subswarms by the authors. These subswarms

converge towards and cover the optimal Pareto front using their global leaders as their

guide. The archive size in covering MOPSO is not restricted. This algorithm shows

excellent results in producing uniform distributed and well extended Pareto fronts with

reduced computational time for the four test functions.

5.2.6 Other MOPSO Designs

 Researches in developing MOPSOs are not limited to the areas that reviewed

above. In recent years, publications show various research areas including redesign of

PSO equations, incorporation of techniques, concepts, theory or model from other fields.

Several MOPSOs with various designs are briefly introduced in this section, providing

some information of current research trends.

 87

Ho et al. [119] designed an improved velocity equation using adjusted random

parameters to control the balance of global and local searches in their proposed MOPSO;

another approach applied local search and clustering technique on MOPSO to improve

convergence and maintain diversity [129]; and a co-evolutionary PSO, i.e. CMOPSO,

implemented co-evolutionary concept and designed with co-evolutionary operator,

competition mutation operator, and selection mechanism, is proposed by Meng et al.

[131]. Besides incorporating techniques to MOPSO, Santana-Quintero et al. introduced a

new MOPSO that employs some concepts from rough set theory to design a local search

approach [132]. Their main objective is to produce well-spread and well-distributed

Pareto front for MOPs. Another MOPSO design is the hybrid design of PSO and agent-

environment-rules (AER) model [133,134]. This new MOPSO is called intelligent PSO

(IPSO). The proposed use of AER model aims to provide appropriate selection pressure

to encourage convergence towards the optimal Pareto front. Key designs that insert into

IPSO to support the goal are competition and clonal selection operators.

 88

CHAPTER 6

PROPOSED ALGORITHM 1: DYNAMIC MULTIOBJECTIVE

PARTICLE SWARM OPTIMIZATION (DMOPSO)

 This chapter presents the first proposed MOPSO that incorporate the dynamic

population concept to manage the swarm population for solving MOPs in order to

improve the efficiency of the algorithm and to address the need to “estimate” a fixed

swarm population size sufficiently to explore the search space without incurring

excessive computational complexity. The multiple swarm concept is also applied to the

swarm population where the number of swarms is predefined. Hence, the swarm size, i.e.,

number of particles in each swarm, is not fixed. In addition, clustering algorithm is used

to group the global leaders in the archive based on the predetermined number of swarms

to provide guide in global leaders selections for each swarm and to promote diversity

within the swarm population. This proposed algorithm is named the dynamic

multiobjective particle swarm optimization (DMOPSO). Elaboration of the proposed

strategies employed in DMOPSO is provided. In the final section of this chapter,

performance metrics and benchmark test functions are used to evaluate the performance

and the computational cost of the proposed algorithm compared to five state-of-the-art

MOPSO algorithms.

 89

6.1 Introduction

In Chapter 5, existing MOPSO were reviewed. However, all these MOPSO

designs adopt the notion of using a fixed population size throughout the process of

searching for possible nondominated solutions until the Pareto optimal set is obtained.

Although some may argue that a good algorithm design would assure a high probability

of finding the Pareto optimal set, yet population size does indirectly contribute to the

effectiveness and efficiency of the performance of an algorithm. One influence of

population size on these population-based metaheuristic optimization algorithms is the

computational cost. If an algorithm employs an overly large population size, it will

benefit from a better chance of exploring the search space and discovering possible good

solutions but inevitably suffer from an undesirable and high computational cost. On the

other hand, an algorithm with an insufficient population size may result in premature

convergence or may obtain only some sections of the Pareto front. Again, one may

suggest that heuristically estimating an “appropriate” population size may be adequate

since one need not know the exact fitness landscape to solve a MOP. It would be the case

for these MOPs that possess lower numbers of objective functions or lower dimensions in

decision space. Considering the MOPs that have large numbers of objective functions or

large dimensions in decision space, and even of those MOPs qualified as the hard

problems [152], this will pose a great challenge to “estimate” the population size to solve

these MOPs without exerting a high computational cost. In addition, without a prior

knowledge about the contour of the fitness landscape in a MOP, it might be unrealistic to

estimate an “appropriate” population size to kickoff the search process. Hence, a

compromised, yet effective, solution would be dynamically adjusting the population size

 90

to explore the search space in balance between computational cost and the attained

performance.

In fact, there are few publications that tackle the issue of population size. In

earlier work, several methods of determining an optimal population size in Genetic

Algorithm (GA) are proposed to solve SOPs [136-138]. Nonetheless, preservation of

population diversity is not an issue in solving SOPs but not the case if solving MOPs

[139]. Several published works have incorporated dynamic population strategy into EAs.

Tan et al. [135] proposed an incrementing multiobjective evolutionary algorithm

(IMOEA) that adaptively computes an appropriate, but conservative, population size

according to the online evolved tradeoffs and its desired population distribution density.

Although IMOEA demands a heuristic approach to estimate the desired population size

for the next generation, simulation results show that IMOEA can perform better than

several state-of-the-art MOEAs. Another algorithm, dynamic population-size

multiobjective evolutionary algorithm (DMOEA), is proposed by Yen and Lu [139-140].

This algorithm includes a population growing strategy that is based upon the converted

fitness and a population declining strategy that resorts to the three types of qualitative

indicators: age, health, and crowdness. From the simulation results, the performance of

DMOEA is competitive or even superior to the selected MOEAs. In addition, robustness

study shown that the population size always converges to an optimal value independent

of the tuning parameters chosen and the complexity of the Pareto front [140]. Eskandari

et al. also proposed a GA-based stochastic multiobjective optimization technique to

obtain the Pareto optimal set for simulation models in a computationally efficient manner

[141]. They introduced a few features into their algorithm: a new ranking scheme that

 91

bases on the stochastic dominant concept, a new genetic operator (blended crossover

operator and non-uniform mutation operator), dynamic expansion operator to increase

population size, and an importation operator to explore new regions of the search space.

In this study, the goal is to incorporate dynamic population size into a MOPSO

since particle swarm optimization (PSO) has an advantage over evolutionary algorithm,

in which, PSO has a rapid convergence capability. However, PSO often faces the

problem of premature convergence. Hence, multiple-swarm MOPSO is employed to

promote diversity within the swarm population to deal with the problem of premature

convergence. In this chapter, the proposed MOPSO design involves two key concepts,

which are dynamic swarm population size and multiple swarms. Design aspects that are

incorporated in the proposed MOPSO include 1) strategy to facilitate access the status of

the particles when the swarm population size varies ; 2) strategies to dynamically adjust

the swarm population in order to provide the needs of computational resources at

different stages and, at the same time, to promote the competition among the swarms so

that convergence toward the optimal solutions and the diversity characteristics are

preserved; and 3) adaptive local archive procedure to promote diversity within each

swarm.

6.2 Proposed Algorithm Overview

Discussed in Chapters 4 and 5, PSO poses two unique characteristics that particles

tend to move as a swarm and converge quickly toward the Pareto front. Both

characteristics may present a problem when encountering complex MOPs in which the

Pareto fronts may be composed of a set of solutions located at the disconnected segments

 92

in the decision space. For such cases, the movement of particles as a single swarm and

the fast convergence property may lead the swarm population toward only a segment of

the Pareto front. To deal with this problem, Toscano Pulido and Coello Coello proposed

the multiple swarms MOPSO (cMOPSO) [128]. Inspired by their work, the skeleton of

DMOPSO is built on cMOPSO. In addition, DMOPSO incorporates four proposed

strategies: 1) cell-based rank density estimation scheme to keep track of the rank and

density values of the particles; 2) population growing strategy to increase the population

size to promote exploration capability; 3) population declining strategy to prevent the

population size from growing excessively; and 4) adaptive local archives design to

improve the distributed solutions along the sections of the Pareto Front that associate

with each subswarm. Figure 6.1 presents the pseudocode of DMOPSO involving four

newly developed strategies highlighted in boldface.

The generic steps of DMOPSO are as follows. First, based upon a preset number

of subswarms, every subswarm of particles is initialized and cell-based rank density

estimation scheme is applied to initialize the rank and density values of the particles.

Second, the group leaders of each subswarm are determined by the rank matrix. Third, all

of the group leaders from subswarms are collected to form the set of global leaders

(Gleader). A clustering algorithm is applied to Gleader to group the leaders, where the

number of groups is determined by the number of subswarms. Note that the clustering is

done with respect to closeness in the decision space [128]. Next the resulting groups are

assigned to their subswarm on condition that the number of internal iteration does not

reach the user-defined maximum internal iteration value. Otherwise, the resulting groups

are randomly assigned to any subswarm and the internal iteration is reset to zero. The

 93

Begin

Parameters initialization for cell-based rank density estimation

scheme, population growing strategy, population declining strategy,

and adaptive local archives.

/*Swarm Population Initialization

Set no. of subswarms (swarmn).

Initialize subswarms.

Set Maximum internal iterations (maxst).

Set Maximum iterations (maxt).

Set iteration 0=t . Set internal iteration 0=st .

Rank_and_density_estimation()

For each subswarm

 For each particle

 Fitness evaluation.

Store local best (ipbest).

 EndFor

 Store all found group leaders.

EndFor

 Combine swarmn of group leaders to Gleader .

 1=t

While maxtt <

Apply clustering algorithm to Gleader .

If maxstst <

 Assign group leaders to the subswarm.

 1+= stst

Else

 Randomly assign group leaders to a subswarm.

 0=st

EndIf

Population_growing_strategy()

For each subswarm

 Adaptive_local_archives()

For each particle

 Select leader from group leaders.

 Flight.

 Fitness evaluation.

 Rank_and_density_estimation()

 Update local best (ipbest).

 EndFor

 Store all group leaders.

 EndFor

 Combine swarmn of group leaders toGleader .

 Population_declining_strategy()

 1+= tt

EndWhile

 Report results in Gleader .

End

Figure 6.1 Pseudocode of DMOPSO.

 94

internal iteration provides a chance for all of the subswarms to share their group leaders.

Then, population growing strategy is applied to increase the number of particles while

adaptive local archives scheme is applied to the group leaders of each subswarm to

preserve the diversity. Next, the particles in each subswarm will select the leaders from

their group leaders. As soon as the leader selection process is completed, the particles

perform flight and update their local best (ipbest). Again, the following steps are

repeated for all of the particles in their subswarm: 1) the particles’ information is updated

via the cell-based rank density estimation scheme; 2) the group leaders from subswarms

are determined; and 3) all the group leaders are combined to Gleader . After these steps

are finished, population declining strategy is performed to reduce the swarm population

size, if justified. These steps are performed until they reach the maximum iteration.

6.3 Implementation Details

 Unique designs of four strategies (highlighted in Figure 6.1) in supporting

dynamic population are elaborated in this section.

6.3.1 Cell-based Rank Density Estimation Scheme

With a dynamic population size, adding or removing particles will affect Pareto

rank of the existing particles and the population density of certain areas located on the

objective space. This poses a problem of needing to recalculate the Pareto rank and

density values of the particles to keep up the changes of the swarm population size. To

counter the problem, we employed an existing scheme, cell-based rank and density

estimation scheme, which has proved effective in DMOEA [139, 140].

 95

Here, a briefly review of the cell-based rank and density estimation scheme is

presented [139, 140]. The scheme consists of three main procedures: Setting up the cells,

identify particles’ home addresses, and updating rank and density matrices.

Setting Up the Cells: Divide the original k-dimensional objective space into

kKKK ××× K21 cells (i.e., grids), thus the cell width in the ith objective dimension, id ,

can be calculated as

i

i
S

i
S

i
K

FF
d

)(min)(max xx
xx ∈∈

−
= , ki ,...,1= , (6.1)

where id is the width of the cell in the ith dimension, iF refers to the ith objective,
i

K

denotes the number of cells designated for the ith dimension, x is taken from the whole

decision space S , and we denote

)(minmin x
x

i
S

i FF
∈

= ,)(maxmax x
x

i
S

i FF
∈

= , ki ,...,1= , (6.2)

The grid scales
i

K , mi ,...,1= , are chosen heuristically and a prior knowledge would be

desired in the choice of the grid scales. The iF must be chosen large enough to

accommodate the corresponding boundary range of the decision variables, x , because if

iF is chosen too small, then min

iF and max

iF wouldn’t be sufficiently small or large enough

to include particles that are out of range in the objective space. Hence, the limitation of

min

iF and max

iF must at least meet some minimum values that correspond to the boundary

range of the decision variables, x .

Identify Particles’ Home Addresses: As shown in Figure 6.2, point c is denoted as

the origin of the current objective space. In other words, c is the cross point of all the

lower boundaries of an k-dimensional objective space. The position of c is denoted as

 96

[]minmin

2

min

1 ,,, kFFF K . For a newly generated particle Q, whose position is []kqqq ,,, 21 K

in the objective space, the distance between point Q and point c will be measured in each

dimension in the objective space as],,,[21 kttt K , where

min

iii Fqt −= , ki ,...,1= . (6.3)

Therefore, the “home address” of particle S in the ith dimension is calculated as

1),mod(+= iii dth , ki ,...,1= , (6.4)

where function),mod(yx represents the modulus (integer part) after division yx / .

Therefore, by this setting, finding the grid location (home address) of a single solution

requires only k “division” operations. For example, in Figure 6.2, the “home address” for

particle Q is (4, 5) and the other particles who share the same “home address” as Q are its

“family members.”

Figure 6.2 Illustration of cell-based rank and density estimation scheme.

Updating Rank and Density Matrices: The density value of a specific cell is

referred to as the density value of the “home.” The number of “family members” that

share the same “home address” will be counted and saved as the density value of the

“home.” To update the rank values in the rank matrix, the ranking technique, known as

Automatic Accumulated Ranking Strategy (AARS) is used [13].

min

1F

min

2F
max

1F
max

1F

max

2F
max

2F

min

1F

min

2F

S(4,5)

1t

2t

1d
c

2d

min

1F

min

2F
max

1F
max

1F
max

1F
max

1F

max

2F
max

2F
max

2F
max

2F

min

1F

min

2F

Q(4,5)

1t

2t

1d

2d

min

1F

min

2F
max

1F
max

1F
max

1F
max

1F

max

2F
max

2F
max

2F
max

2F

min

1F

min

2F

S(4,5)

1t

2t

1d
c

2d

min

1F

min

2F
max

1F
max

1F
max

1F
max

1F

max

2F
max

2F
max

2F
max

2F

min

1F

min

2F

Q(4,5)

1t

2t

1d

2d

 97

Figures 6.3 to 6.5 present an example to demonstrate the cell-based rank and

density scheme [13,139,140]. Assume two-dimensional objective space, k = 2, the

objective space is determined via Equation (6.1) and divided into 66× cells using

Equation (6.2). Figure 6.3(a) shows the initially setup of the objective space. Then, the

center position of each cell is obtained, and two matrices are set up following the same

cell configuration as Figure 6.3(a). These two matrices store the rank and density values

of each cell, which initially has all 1’s and 0’s, respectively (shown in Figure 6.3(b)-(c)).

Now, consider the initial population is generated and is mapped to the objective space

(Figure 6.4(a)). The particles’ home addresses are identified using Equations (6.3) and

(6.4) and the rank and density matrices in Figure 6.4(b)-(c) show how the information of

the particles are stored. When a new particle is generated and accepted, i.e., particle C in

Figure 6.5(a), its “home address” can be located easily by following Equations (6.3) and

(6.4). With its “home address”, the rank values of the cells dominated by its “home” will

be increased by one (Figure 6.5(b)), and the density value of its “home” will increase by

one (Figure 6.5(c)). Meanwhile, if an existing individual is removed (example: particle B

in Figure 6.4(a) is removed in Figure 6.5(a)), its “home” will be notified, and the rank

values of the cells dominated by its “home” will be decreased by one, and the density

value of its “home” will be decreased by one, correspondingly. Therefore, at each

iteration, a particle can access its “home address” and then obtain the corresponding rank

and density values. The “home address” is merely a “pointer” to locate a particle and to

access its rank and density values. For instance, as shown in Figure 6.5, the “home

address,” rank and density values of particle A are (5,2), 2, and 1, respectively.

 98

 (a) (b) (c)

Figure 6.3 (a) Estimated objective space and divided cells, (b) initial rank value matrix of the

given objective space, and (c) initial density value matrix of the given objective space [139,140].

 (a) (b) (c)

Figure 6.4 (a) Initial swarm population and the location of each particle, (b) rank value matrix of

initial swarm population, and (c) density value matrix of initial swarm population [139,140].

 (a) (b) (c)

Figure 6.5 (a) New swarm population and the location of each particle, (b) rank value matrix of new

swarm population, and (c) density value matrix of new swarm population [139,140].

With this scheme, fitter particles can be identified easily, since they just need to

provide their “home addresses,” and the current rank or density values of their home

addresses. The cell-based rank and density estimation scheme is quite effective in

managing a dynamic swarm population size in DMOPSO. The pseudocode of cell-based

rank density estimation scheme is presented in Figure 6.6.

0 0 0 0 0 0
0 0 0 1 0 0
0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 1 0 0 1 0

0 0 0 0 0 00 0 0 0 0 0
0 0 0 1 0 00 0 0 1 0 0
0 0 2 0 0 00 0 2 0 0 0

0 0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 0
0 1 0 0 1 00 1 0 0 1 0

1 2 4 5 6 6
1 2 4 4 6 6
1 2 2 4 5 5

1 1 1 1 1 1

1 2 2 2 3 3
1 1 2 2 2 3

1 2 4 5 6 61 2 4 5 6 6
1 2 4 4 6 61 2 4 4 6 6
1 2 2 4 5 51 2 2 4 5 5

1 1 1 1 1 11 1 1 1 1 1

1 2 2 2 3 31 2 2 2 3 3
1 1 2 2 2 31 1 2 2 2 3

max

2F

max

1F
min

1F

min

2F

A

B

max

2F

max

1F
min

1F

min

2F

A

B

0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 1 0

0 0 0 0 0 0

1 0 0 0 0 0
0 1 0 0 1 0

0 0 0 0 0 00 0 0 0 0 0
0 0 0 1 0 00 0 0 1 0 0
0 0 1 0 1 00 0 1 0 1 0

0 0 0 0 0 00 0 0 0 0 0

1 0 0 0 0 01 0 0 0 0 0
0 1 0 0 1 00 1 0 0 1 0

2 3 4 5 6 6
2 3 4 4 6 6
2 3 3 4 5 5

1 1 1 1 1 1

1 3 3 3 4 4
1 1 2 2 2 3

2 3 4 5 6 62 3 4 5 6 6
2 3 4 4 6 62 3 4 4 6 6
2 3 3 4 5 52 3 3 4 5 5

1 1 1 1 1 11 1 1 1 1 1

1 3 3 3 4 41 3 3 3 4 4
1 1 2 2 2 31 1 2 2 2 3

max

2F

max

1F
min

1F

min

2F

A
C

max

2F

max

1F
min

1F

min

2F

A
C

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 0
0 0 0 0 0 00 0 0 0 0 0
0 0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 0
0 0 0 0 0 00 0 0 0 0 0

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 11 1 1 1 1 1
1 1 1 1 1 11 1 1 1 1 1
1 1 1 1 1 11 1 1 1 1 1

1 1 1 1 1 11 1 1 1 1 1

1 1 1 1 1 11 1 1 1 1 1
1 1 1 1 1 11 1 1 1 1 1

max

1F

max

2F

min

1F

min

2F
max

1F

max

2F

min

1F

min

2F

 99

Function Rank_and_density_estimation (t , Pop ,),,(minmin
1 kFF K ,),,(maxmax

1 kFF K ,

()kKK ,,1 K)

/* t = current iteration

/* Pop = current swarm population size

/*),,(minmin
1 kFF K = user-defined lower boundaries in m dimensional

 objective space

/*),,(maxmax
1 kFF K = user-defined upper boundaries in m dimensional

 objective space

/* ()kKK ,,1 K = grid scales

Begin

 If 0=t ,

/*Calculate the cell rank and density values for initial

swarm population.

 For 1=i to k

 Calculate cell width from Equation (6.1)

 EndFor

kKKKmatrixRank ×××=

K21
1_

kKKKmatrixDensity ×××= K21

0_

 /*Determine their home addresses.

 For each particle

 Compute Equation (6.3)

 Compute Equation (6.4)

 EndFor

 /*Update rank and density value.

[] []() [] []() 1,,_,,_ 1111 += kkkk KhKhmatrixRankKhKhmatrixRank KKKKKK

() () 1,,_,,_ 11 += kk hhmatrixDensityhhmatrixDensity KK

End

Figure 6.6 Pseudocode of cell-based rank density estimation scheme [139, 140].

6.3.2 Perturbation Based Swarm Population Growing Strategy

Tan et al., have proposed an incremental multiobjective evolutionary algorithm

with dynamic population size that adaptively discovers the tradeoff surface and its

desired population distribution density [135]. Among other proposed features, authors

proposed a method of fuzzy boundary local perturbation to perturb the nondominated

individuals to grow the population size. A similar concept is adopted in the proposed

population growing strategy. A set of procedures is proposed to facilitate exploration and

 100

exploitation capabilities for DMOPSO and, at the same time, to increase the swarm

population size.

Procedure 1: The potential particles to be perturbed must have the highest

possibility of producing new particles that will improve the convergence towards the

Pareto front. In this case, the nondominated set is considered as candidate particles to

produce new ones since they have a higher chance of producing fitter particles which will

improve the convergence towards the Pareto front. However, selecting all particles in the

nondominated set may result in excessive swarm population growth and, consequently,

produce an uncontrollably large swarm population size. To solve this problem, the user

can set a fixed parameter that will serve as the guideline for selecting the number of

potential particles from the nondominated set. Instead of choosing a fixed parameter, a

random number is used to stochastically determine the number of potential particles from

the nondominated set to be chosen. The number of potential particles can be calculated

using the following equation:

 () setednondominatinparticlesofnototalrns a .×= , (6.5)

where ar denotes a random number obtained from a uniform distribution within [0, 1],

and ns denotes the number of particles to be selected to perturb. ⋅ represents the floor

function. Once ns is determined, ns number of potential particles are randomly selected

from the nondominated set. For example, refer to Figures 6.7(a)-(c). Based upon the

information presented in the rank and density matrices, the total number of particles in

the nondominated set of the current swarm population is equal to five. Assume ns is

chosen to be 2, two particles (D and E) are randomly chosen as the candidate particles

(Figure 6.7(d)). Note that these potential particles are referred to as selected particles.

 101

 (a) (b) (c) (d)

Figure 6.7 (a) Current swarm population and the location of each particle, (b) rank value matrix of

current swarm population, (c) density value matrix of current swarm population, and (d) example of

“potential” particles, particles D and E.

Procedure 2: The number of perturbations of the selected particle is adaptively

determined in every iteration. Each selected particle’s responsibility is to generate a

certain number of new particles from the selected particle. A probability value is used to

determine the number of perturbations adaptively in which the number of perturbations

(number of new particles to be generated) is bound by the minimum and maximum

number of perturbations, which is predefined by the user. Assuming at iteration t, the

number of perturbations for each selected particle, ()tnp , is determined by Equation (6.6):

()
() ()

() ()

≤<

−
+

 −
××−

≤≤

−
+

×−×−

=

tmaxttmax/2
lnpunp

lnp

tmax

tmaxt
lnpunp

tmax/2t
lnpunp

lnp

tmax

t
lnpunp

tnp

,2

0,21

2

2

,

 (6.6)

where maxt is denoted as the maximum iterations, lnp is the minimum number of

perturbations, and unp is the maximum number of perturbations. unp is determined by

maximum allowable perturbations for each particle, while lnp is determined based upon

the minimum number of perturbations required for neighborhood exploration. Figure 6.8

is the illustration of Equation (6.6).

0 3 0 0 1 0
0 0 0 0 0 0

2 0 0 0 0 0
0 0 2 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

1 1 4 4 4 5
1 1 1 1 1 1

1 6 6 6 7 7
3 6 6 8 9 9
3 6 8 8 1010
3 6 8 9 1010

max

1F
min

1F

min

2F

max

2F

max

1F
min

1F

min

2F

max

2F

D

E0 3 0 0 1 0
0 0 0 0 0 0

2 0 0 0 0 0
0 0 2 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

0 3 0 0 1 00 3 0 0 1 0
0 0 0 0 0 00 0 0 0 0 0

2 0 0 0 0 02 0 0 0 0 0
0 0 2 0 1 00 0 2 0 1 0
0 0 0 1 0 00 0 0 1 0 0
0 0 0 0 0 00 0 0 0 0 0

1 1 4 4 4 5
1 1 1 1 1 1

1 6 6 6 7 7
3 6 6 8 9 9
3 6 8 8 1010
3 6 8 9 1010

1 1 4 4 4 51 1 4 4 4 5
1 1 1 1 1 11 1 1 1 1 1

1 6 6 6 7 71 6 6 6 7 7
3 6 6 8 9 93 6 6 8 9 9
3 6 8 8 10103 6 8 8 1010
3 6 8 9 10103 6 8 9 1010

max

1F
min

1F

min

2F

max

2F

max

1F
max

1F
min

1F
min

1F

min

2F
min

2F

max

2F
max

2F

max

1F
min

1F

min

2F

max

2F

D

E

max

1F
max

1F
min

1F
min

1F

min

2F
min

2F

max

2F
max

2F

D

E

 102

Figure 6.8 Number of perturbation per particle, np versus iteration, t.

Procedure 3: The concept of perturbations within and beyond the neighborhood

to balance the exploitation and exploration capabilities of DMOPSO is adopted. To avoid

generating too many new particles from being too far away from the selected particles, it

is necessary to generate a larger number of new particles within the neighborhood than

outside of the neighborhood. In order to achieve this goal, a set of equations is proposed

as follows:

()()
9

1,0Gaussianabsrb = , (6.7)

L

jxrldld ×= , (6.8)

U

jxrudud ×= , (6.9)

()
() ()

() ()()

≤≤

−

+−×−×−

≤≤

−

+××−
=∆

15.0,121

5.00,2

2

2

bb

bb

b

r
ldud

ld
rldud

r
ldud

ld
rldud

rd , (6.10)

()bjiji rdxx ∆+= ,, . (6.11)

Equation (6.7) is used to determine the additional distance from the selected particle

corresponding to the decision space. The d∆ is defined according to the function of

br (see Figure 6.9). Several parameters are needed to compute Equation (6.10). These

np

0
t

2
tmax

unp

lnp

tmax

2
lnpunp+

np

0
t

2
tmax

unp

lnp

tmax

2
lnpunp+

 103

Figure 6.9 The additional distance ()brd∆ versus br .

parameters are ld , ud and br in which they can be computed via Equations (6.7) to (6.9),

respectively. In Equation (6.8), ld is denoted as the minimum additional distance. It is

computed by multiplying the parameters rld and L

jx , where rld is the user-defined

lower bound ratio and L

jx is the lower bound of the decision variable x in dimension j.

Parameter ud is denoted as the maximum additional distance. Equation (6.9) shows how

the parameter ud is calculated where rud is the user-defined upper bound ratio and U

jx

is the upper bound of the decision variable x in dimension j. In this paper, the parameters

rld and rud are selected within the range of []02.0,0 and (]7.0,02.0 , respectively.

Presented in Equation (6.7), the parameter br is the absolute value of a random

number in which the random number is drawn from the Gaussian distribution with zero

mean and a variance of 91 . With the mean 0 and variance ()2σ , 91 , more random

numbers will be generated near the lower end of the range, i.e. []
2

3,0 σ , while less

random numbers will be generated near the upper range, i.e., (]σσ 3,
2

3 . Once the d∆ is

computed, it is added to the decision variable of the selected particle i at dimension j,

15.0

ud

ld

br
0

()brd∆

inside neighborhood outside neighborhood

2
dldu +

15.0

ud

ld

br
0

()brd∆

inside neighborhood outside neighborhood

2
dldu +

 104

 (a) (b) (c)

Figure 6.10 (a) Selected particles (D and E) from Figure 6(d), (b) representation of Equation (9) in

decision space, and (c) current swarm population and new added ones in objective space.

i.e., jix , (Equation (6.11)). Notice that since the resulted br value is more likely to be

lower than or equal to 0.5 (according to Equation (6.10)), it is more likely that d∆ will be

small (Figure 9). Consequently, the new jix , value will likely lie within the neighborhood

rather than outside of the neighborhood. Figure 6.10(a)-(c) is the illustration of Procedure

3. In Figure 6.10(b), the inside neighborhood of particle E (from Figure 6.10(a)) in the

decision space is bounded by the circumference of the inner circle. The outside

neighborhood is the area between the inner circle and the outer circle, where the radius of

the outer circle is ud (as presented in Figure 6.9). Figure 6.10(b) also shows a new

particle is generated by computing Equations (6.7)-(6.11), and it is denoted as particle

E1. Particle E1 is mapped to the objective space illustrated in Figure 6.10(c). Observed in

Figure 6.10(c), using Procedure 3, particles E1 and E2 are generated by particle E while

particles D1 and D2 are generated by particle D. Figure 6.11 presents the pseudocode of

population growing strategy.

6.3.3 Swarm Population Declining Strategy

To prevent the extensive growth in swarm population size, a population declining

strategy is proposed to control the swarm population size. In DMOPSO, the necessary

max

1F
min

1F

min

2F

max

2F

E

D

E1

E2
D1

D2

x
1

x2

E

ud

max

1F
min

1F

min

2F

max

2F

D

E

Objective space
Decision space Objective space

Compute Equations (6.7) to (6.11)

E1

map

max

1F
min

1F

min

2F

max

2F

E

D

E1

E2
D1

D2

max

1F
max

1F
min

1F
min

1F

min

2F
min

2F

max

2F
max

2F

EE

D

E1E1

E2E2
D1D1

D2D2

x
1

x2

EE

udud

max

1F
min

1F

min

2F

max

2F

D

E

Objective space

max

1F
max

1F
min

1F
min

1F

min

2F
min

2F

max

2F
max

2F

D

EE

Objective space
Decision space Objective space

Compute Equations (6.7) to (6.11)

E1E1

map

 105

Function Population_growing_strategy (rank_m,density_m, lnp , unp , maxt ,t,

rld , rud)

/*rank_m = rank matrix; density_m = density matrix

/* lnp = the minimum number of perturbations;

/* unp = the maximum number of perturbations;

/* maxt = denoted as the maximum iteration; t = current iteration

 /* rld = the user-defined lower bound ratio;

 /* rud = the user-defined upper bound ratio;

Begin

 []1,0randrb =

 Obtain nondominated set from rank_m and density_m.

 Calculate ns from Equation (6.5),
 Randomly select potential particles (or selected particles).

 Compute Equation (6.6), ()tnp

 For 1 to ns ,

 For 1 to ()tnp ,

 Generate br using Equation (6.7)

 Compute Equations (6.8)-(6.9) for ld and ud .

 Compute d∆ using Equation (6.10).

 Add d∆ to jix , (where i represents the selected particle i).

 Update rank_m and density_m.

 EndFor

 EndFor

End

Figure 6.11 Pseudocode of swarm population growing strategy.

condition to remove a particle depends upon the rank and crowdedness indicators. In this

case, the values in the rank and density matrices are used to determine whether the

particles in a cell are to be removed. In addition, a selection ratio is implemented to

regulate the number of particles to be removed and to provide some sort of diversity

preservation at the same time.

Rank Indicator: Imposed in this indicator is the idea that particles far from the

nondominated front will have less of a chance to survive to the next iteration since they

have a higher chance of “losing” their leaders. This means the particles far from the

nondominated front are likely to be eliminated. The rank value of a cell obtained from the

 106

rank matrix is converted into a rank indicator in order to measure the dominance status of

a cell compared to the others. Figure 6.12(b) presents the rank matrix of the current

swarm population depicted in Figure 6.12(a). Assume at iteration t, the cell c in which

particle i is located has the rank value of ()tcrank i , , the rank indicator of particle i

located at cell c at iteration t, ()tiR , , is given as

 ()
()tcrank

tiR
i ,

1
, = . (6.12)

Equation (6.12) indicates that a particle that resides in the cell with rank value “1” (e.g.,

particle F in Figure 6.12(a)) will have its R value equal to 1 as shown in Figure 6.12(c).

The particle in a cell with a higher rank value will result in a lower R value. Refer to

Figure 6.12(b); the rank value of particle G is higher than the rank value of particle F and

Figure 6.12(c) shows that the resulted R value is much lower, which is 0.11. Hence, as

the R value of a particle decreases, this implies that the particle has an increasing chance

of being eliminated, since it is farther from the nondominated front.

 (a) (b) (c)

Figure 6.12 (a) Current swarm population and the location of each particle, (b) rank matrix of

current swarm population, and (c) R values for particles F and G.

Crowdedness Indicator: This indicator involves the control of local population

size, i.e., population size per cell. The population size per cell is regarded as the density

value of a cell, which is defined as the number of particles located in a cell. Using the

current density information of a concerned cell in which the information can be found in

max

1F
min

1F

min

2F

max

2F

G

F
1 1 4 5 5 6
1 1 1 1 1 1

1 6 7 7 9 9
3 7 8 101213
3 8 10101314
3 8 10111314

max

1F
min

1F

min

2F

max

2F

G

F

(R(G,t) = 0.11)

(R(F,t) = 1)

max

1F
min

1F

min

2F

max

2F

G

F
max

1F
max

1F
min

1F
min

1F

min

2F
min

2F

max

2F
max

2F

G

F
1 1 4 5 5 6
1 1 1 1 1 1

1 6 7 7 9 9
3 7 8 101213
3 8 10101314
3 8 10111314

1 1 4 5 5 61 1 4 5 5 6
1 1 1 1 1 11 1 1 1 1 1

1 6 7 7 9 91 6 7 7 9 9
3 7 8 1012133 7 8 101213
3 8 101013143 8 10101314
3 8 101113143 8 10111314

max

1F
max

1F
min

1F
min

1F

min

2F
min

2F

max

2F
max

2F

G

F

(R(G,t) = 0.11)

(R(F,t) = 1)

 107

the density matrix, the crowdedness indicator of a particle in a concern cell can be

computed. Figure 6.13(b) shows the density matrix of the current population, which is

illustrated in Figure 6.13(a). At iteration t, the cell c in which particle i is located has the

density value ()tcdensity i , . The crowdedness indicator of particle i located at cell c at

iteration t, ()tiD , , is defined as

() ()
()

>−
=

otherwise

ppvtcdensity
tcdensity

ppv

tiD i

i

,0

,if,
,

1
, . (6.13)

Note that ppv value represents the desired particle size per cell and it is a user-defined

parameter. Equation (6.13) shows that a cell with high density value will have a higher D

value closer to 1. In Figure 6.13(b), the density value of particle F is equal to 3. With the

ppv value set to 2, the D value of particle F is equal to 0.33 (refer to Figure 6.13(c)). On

the other hand, if a cell has density value lower than or equal to ppv, then the D value is

equal to 0 (particle G in Figure 6.13(c)). This indicates that if the particles reside in a

concern cell that has more than the desired particle size, then these particles are likely to

be eliminated to reduce the level of congestion in the concern cell. Note that ()tiR , and

()tiD , are between zero and one.

 (a) (b) (c)

Figure 6.13 (a) Current swarm population and the location of each particle, (b) density matrix of

current swarm population, and (c) D values for particles F and G.

0 3 1 0 1 0
0 0 0 0 0 0

2 1 0 0 0 1
0 1 2 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

max

1F
min

1F

min

2F

max

2F

G

F
max

1F
min

1F

min

2F

max

2F

G

F

(D(G,t) = 0)

(D(F,t) = 0.33)

2=ppvNote: set

0 3 1 0 1 0
0 0 0 0 0 0

2 1 0 0 0 1
0 1 2 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

0 3 1 0 1 00 3 1 0 1 0
0 0 0 0 0 00 0 0 0 0 0

2 1 0 0 0 12 1 0 0 0 1
0 1 2 0 1 00 1 2 0 1 0
0 0 0 1 0 00 0 0 1 0 0
0 0 0 0 0 00 0 0 0 0 0

max

1F
min

1F

min

2F

max

2F

G

F
max

1F
max

1F
min

1F
min

1F

min

2F
min

2F

max

2F
max

2F

G

F
max

1F
max

1F
min

1F
min

1F

min

2F
min

2F

max

2F
max

2F

G

F

(D(G,t) = 0)

(D(F,t) = 0.33)

2=ppvNote: set

 108

Likelihood of Removing the Particle: At iteration t, the likelihood that the particle

i with rank value ()tiR , and density value ()tiD , is to be eliminated is computed using

the following equation:

 () () ()tiDtiRtiL ,),1(, ×−= . (6.14)

Equation (6.14) implies that for those particles that have low R values (i.e., away from

the nondominated front) or have high D values (i.e., located in the crowded cells), these

particles will have high likelihood value, L. Refer to Figures 6.12 and 6.13; the L values

for particle F and G are both 0, implying they are either located in a nondominated front

or a non-crowded cell. To determine whether a selected particle i will be removed, a

random number with uniform distribution between []1,0 is generated to compare with the

likelihood ()tiL , . If the likelihood is larger than the random number, then particle i is

selected as a potential candidate to be eliminated from the swarm population. Note that at

iteration t, all selected particles to be eliminated are stored in a temporary memory, Mt.

Then, the selection ratio is applied to determine the exact number of particles in Mt to be

eliminated from the swarm population.

Selection Ratio: If the removal of particles is only based upon the L value, then

there is a possibility of eliminating an excessively large quantity of particles in which

some may carry unique schema to contribute in the search process. A selection ratio

inspired by [142] is used to stochastically allocate a small percentage of particles in the

swarm population for removal. Hence, given a selection ratio, []1,0∈rS , at iteration t, the

equation to compute the number of particles with high likelihood L to be eliminated is

given as

()
trremove MStPop ×= , (6.15)

 109

where ()tPop remove is the allocated number of particles in the population for elimination

and tM denotes the population size in Mt at iteration t. Note that the choice of the

selection ratio is dependent upon the user’s preference, where it can be a function of the

swarm population size at each iteration or it can be a fixed ratio. For this study, the

selection ratio is a fixed number, which is set to be a small number, i.e., 2.0≤rS . With a

small selection ratio, there is a possibility that those selected particles in Mt may not be

eliminated. In other words, some of the selected particles in Mt whose rank values are

low or who are located in crowded cells may survive to the next iteration. In addition, a

small selection ratio can prevent the removal of an uncontrollable, large number of

particles while providing some degree of diversity preservation. Figure 6.14 presents the

Function Population_declining_strategy (rank_m, density_m, S , Pop , ppv)

/*rank_m = rank matrix; density_m = density matrix

/* S = selection ratio

/* Pop = current swarm population size in Mt.

/* ppv = desired population size per cell

Begin

 []1,0randrc =

 For each particle

 Compute Rank Indicator, R, using rank_m.

 Compute Crowdedness Indicator, D, using density_m and ppv .

 Compute Likelihood of removing the particle, L.

 If 5rL >

 Store particle to Mt.

 EndIf

 EndFor

 () tremove MStPop ×=

 Randomly choose removePop number of particles from Mt.

 Remove the chosen particles.

End

Figure 6.14 Pseudocode of swarm population declining strategy.

 110

pseudocode of population declining strategy. In the following, some observations are

drawn.

1. It is obvious that the setting of ppv value depends on the grid scales, iK , ki ,,1 K= .

For instance, if the grid scale is very small (e.g., 2=iK , ki ,,1 K=), then the ppv

value should be large enough to balance the small grid scale. Otherwise the frequency

of locating “crowded” cell (with high density value) will be high and may increase

likelihood of removing those particles in the “crowded” cell. In fact, the minimum

appropriate ppv value has an inverse relationship with the grid scale, considering that

all iK are set to the same number. In addition, if each iK is set to a different value,

then it unnecessarily complicates the setting of ppv value. To avoid such situation, the

selection ratio, rS , is implemented and the choice of ppv value will not solely affect

the elimination of the particles.

2. At each iteration, the most undesirable particles will be chosen to be eliminated

according to likelihood value, L, which is based on their rank value and density

condition. These undesirable particles have either low R value or high D value. This

implies that these particles are either not contributing to the search process or they are

too many particles located in the confined area. By employing the likelihood of

removing the particle scheme, these redundant particles will likely be eliminated. On

the contrary, those particles with either high R value or low D value will have a

chance to survive to the next iteration. In fact, particles with high R value are

preserved because they will most likely contribute to the search process by bringing

other particles to help in finding better solutions. Particles with low D value are also

 111

preserved so that they are given a chance to explore the “isolated” area or may even

discover the potential “undiscovered” area in the search space.

3. The selection ratio, rS , has to be a small number because if the S is too big (e.g., 0.9),

during the initial stage where the swarm population size is significantly small, high S

will result in deleting most of the undesirable particles in Mt. Eliminating too many

undesirable particles in Mt in the early stage of the evolutionary process may cause

inefficiency in the optimization search because some of the undesirable particles may

offer unique schema in the following iterations. In the initial stage, more particles

imply a better chance in finding good solutions. As the swarm population size grows

larger, high rS will result in excessively deleting undesirable particles in Mt. As a

result, the algorithm may incur more computational load to locate the optimal Pareto

front since, at each iteration, the resulted swarm population size is considerably low.

Hence, the selection ratio is suggested to be at most 0.2, which is less than 20 percent

of the swarm population size in Mt. The criterion to choose a value for the selection

ratio depends upon ()ldud − in Equation (6.10). If the gap of ()ldud − is large, then

the population growing rate will increase in a fast pace and to control the fast rate of

growth, the selection ratio, rS , should be chosen slightly higher but no more than 0.2.

6.3.4 Adaptive Local Archive and Group Leader Selection Procedures

In cMOPSO [128], based upon a probability value, the particles in a subswarm

randomly select the assigned group leaders since all resulting group leaders are grouped

via a clustering algorithm. Random selection can provide equal probability of group

leaders being chosen as the leader for a particle, and has a higher probability of achieving

 112

tightly grouped solutions that are close to the true Pareto front [117]. Yet the resulting

Pareto front may not well extend into the complete Pareto front. For this reason, the idea

of local search procedure is adopted and the aim is similar to [143], which is used to

improve the solutions in each swarm. Hence, the idea of local search procedure known as

the adaptive local archive is proposed. Similar to the adaptive grid procedure proposed in

[30] and [120], the aim of adaptive local archive is to improve the diversity in sections of

Pareto front that associate with each subswarm. The following presents the adaptive local

archive and group leader selection procedures.

Adaptive Local Archive Procedure: Once clustering algorithm is applied to the

Gleader to group the leaders in the decision space, each group leader is now referred to

as the local archive. Each local archive contains the group leaders that correspond to their

subswarm (e.g., G1 and G2 shown in Figure 6.15(a)-(b)). For the purpose of

visualization, m is chosen to be 2 in Figure 6.15. In each local archive, with the group

leaders’ objective values, the objective space is divided into a set of cells using the

adaptive grid procedure. Then, each particle chooses its group leader by following the

Group Leader Selection Procedure. In each local archive, the number of particles that the

cell contains is recorded. At each iteration, if any new group leaders lie outside the

current bound of the grid, then the objective space is re-divided based upon the new

fitness values. Each particle is relocated to its nearest cell, and the number of particles

that the cell contains is also updated. For simplicity, in this paper, the number of cells is

predetermined from a user-defined number of grid subdivisions or Ka for all dimensions.

This means that the m-dimensional objective space is divided into

aam KKKKKK
a

×××=××× KK21
 cells. Figure 6.15(c) shows the number of grid

 113

subdivisions, Ka , is equal to 4. Figure 6.16 presents the pseudocode of adaptive local

archive procedure.

 (a) (b) (c)

Figure 6.15 (a) Two group leaders are grouped via clustering algorithm, (b) two group leaders in

decision space are mapped to objective space, and (c) adaptive grid procedure is applied to local

archive of G1.

Function Adaptive_local_archives (Ka, swarmn , leaderg _)

/* Ka = Number of grid subdivisions;

/* swarmn = Number of subswarms;

/* leaderg _ = group leaders

Begin

 For swarmnj :1=

 Generate hypercubes based upon the Ka value and the fitness

value of

 its group leaders.

 For each member in ()jleaderg _

 Search for its nearest cell based upon the fitness value.

 Update number of particles (leaders) in the cell.

 EndFor

 EndFor

End

Figure 6.16 Pseudocode of adaptive local archives algorithm.

Group Leader Selection Procedure: After the adaptive local archive procedure is

completed, the information on the number of “occupants” in the cells of the local archive

is utilized. These cells that contain more than one particle are first assigned a fixed value.

With the idea of fitness sharing, the fixed values of the cells are divided by the number of

0min

2

min

1 == FF

x1

x2

G2

G1

A
C

3

2

1

4

5

10 2 3 4

6

5 6 F1

F2

G1

G2

Decision space Objective space

Note: G1 – Group leaders for subswarm-1; G2 – Group leaders for subswarm-2

map

F1

F2

3

5

1 2

G1

c

Local archive of G1

No. of grid subdivision, K
a

= 4

Apply grid procedure to local archive

6max

2

max

1 == FF0min

2

min

1 == FF

x1

x2

G2

G1

A
C

3

2

1

4

5

10 2 3 4

6

5 6 F1

F2

A
C

3

2

1

4

5

10 2 3 4

6

5 6 F1

F2

G1

G2

Decision space Objective space

Note: G1 – Group leaders for subswarm-1; G2 – Group leaders for subswarm-2

map

F1

F2

3

5

1 2

G1G1

c

Local archive of G1

No. of grid subdivision, K
a

= 4

Apply grid procedure to local archive Apply grid procedure to local archive

6max

2

max

1 == FF

 114

particles they contain. For simplicity, each resulted value of a cell will be defined as

()aFA , where a represents a cell in the local archive. Next, by using all available AF

values, roulette wheel selection is applied to select the cell. In the selected cell, particle i

will randomly select one of the “occupants” within the cell. The idea of applying the

fitness sharing is to measure the level of congestion in each cell. Those cells that are

highly congested will have low AF values or vice versa. With roulette wheel selection,

this selection scheme favors the least congested cell. As a result, the particle will choose

one of the group leaders that reside in the least congested cell. Therefore, the leaders are

selected in such a way that diversity is preserved.

6.4. Comparative Study

In this section, two studies are conducted. In the first study, presented in

Subsection 6.4.4, the performance of the DMOPSO is compared with five state-of-the-art

MOPSO algorithms: OMOPSO [121], MOPSO [120], Cluster-MOPSO (cMOPSO)

[128], Sigma-MOPSO (sMOPSO) [113], and NSPSO [109]. The comparison is done on

the standard test suit. The second study, presented in Subsection 6.4.5, investigates the

computational cost of the proposed algorithm and the selected MOPSOs.

6.4.1 Test Function Suite

To compare the performance of DMOPSO with the five selected MOPSOs, the

standard ZDT test suite and an additional test function selected from the DTLZ test suite

are used [39,70]. The test functions are presented in Table 6.1. As noted in the comments

column, the test functions possess different characteristics to test the performance of the

 115

algorithms. The first five test functions are two-objective minimization problems and the

number of decision variables used here is 100, i.e., 100=n . The sixth test function or

DTLZ2 is three objective functions with 12 decision variables.

Table 6.1 The six test problems used in this study. All objective functions are to be minimized.

Problems Objective Functions
Variable

Bounds
Comments

ZDT1

()
() () () ()[]
() ∑

=−
+=

−=

=

n

i

ix
n

c

cFcF

xF

2

12

11

1

9
1

1

x

xxxx

x

[]
ni

xi

,,1

1,0

K=

∈

It has the convex Pareto fronts.

It challenges the algorithm’s

ability to find and produce a

quality spread of Pareto front.

ZDT2

()
() () () ()()[]
() ∑

=−
+=

−=

=

n

i

ix
n

c

cFcF

xF

2

2

12

11

1

9
1

1

x

xxxx

x

[]
ni

xi

,,1

1,0

K=

∈

It has the non-convex Pareto

fronts.

It challenges the algorithm’s

ability to find and produce a

quality spread of Pareto front.

ZDT3

()

() () () () ()
()

()()

() ∑
=−

+=

−−=

=

n

i

ix
n

c

F
c

F
cFcF

xF

2

1
1

12

11

1

9
1

10sin1

x

x
x

x
xxxx

x

π

[]
ni

xi

,,1

1,0

K=

∈

It possesses a convex and

disconnected Pareto front.

It exploits the algorithms’ ability

to search for all of the

disconnected regions and to

maintain a uniform spread on

those regions.

ZDT4

()
() () () ()[]
() () ()()∑

=

−+−+=

−=

=

n

i

ii xxnc

cFcF

xF

2

2

12

11

4cos101101

1

πx

xxxx

x
 []

[]
ni

x

x

i

,,2

5,5

1,01

K=

−∈

∈

The difficulty is finding the global

Pareto front in all of the 21
9
 local

segments.

It is also a multifrontal problem

where it presents a complexity

with multi-modality characteristic.

ZDT6

() () ()
() () () ()()[]
() ()

25.0

2

2

12

1

6

11

191

1

6sin4exp1

−

+=

−=

−=

∑
=

nxc

cFcF

xxF

n

i

ix

xxxx

x π

[]
ni

xi

,,1

1,0

K=

∈

It has a nonconvex Pareto front.

Its difficulties rest on the low

density of solutions across the

non-convex Pareto front and the

non-uniform spread of solutions

along the Pareto front.

DTLZ2

() ()()

() ()()

() ()()

() ()∑
=

−=

+=

+=

+=

n

i

ixc

x
cF

xx
cF

xx
cF

1

2

1
3

21
2

21
1

5.0

2
sin1

2
sin

2
cos1

2
cos

2
cos1

x

xx

xx

xx

π

ππ

ππ

[]

ni

xi

,,1

1,0

K=

∈

Its true Pareto front is on the first

quadrant of a unit sphere. Since

the true Pareto front is a surface,

this test function poses a

challenge for MOPSOs to search

for the true Pareto front.

 116

6.4.2 Parameter Settings

Each algorithm is set to perform 20,000 fitness function evaluations. The

parameter configurations for all selected MOPSO algorithms are summarized in Table

6.2, while Table 6.3 presents the DMOPSO’s parameter configurations for each test

function. Note that all of the algorithms produced final Pareto fronts of fixed size swarm

population except for cMOPSO and DMOPSO, which do not have fixed archive sizes.

All of the algorithms are implemented in Matlab. In this study, all of the algorithms use a

real-number representation for decision variables. However, binary representation of

decision variables can be easily adopted, if necessary. For each experiment, 50

independent runs were conducted to collect the statistical results.

Table 6.2 Parameter configurations for five selected MOPSOs.

Internal

population

size

Archive

size

No. of

iterations
Other parameters or remarks

OMOPSO 100 100 200

Mutation probability = codesize1 and the

values of w, c1 and c2 are random values (as

proposed in [121])

ε = 0.0075 (Note: For ZDT6, ε = 0.001)

MOPSO 100 100 200
50 divisions adaptive grid; mutation probability

= 0.5, (as proposed in [120])

cMOPSO 40
Not

fixed
100

No. subswarms, 4=swarmn ; internal iterations,

5maxst = (as proposed in [128])

sMOPSO 200 200 100
Fixed inertial weight value, w = 0.4; Turbulence

Factor, R is []1,1−

NSPSO 200 - 100 Fixed inertial weight value, w = 0.4

6.4.3 Selected Performance Metrics

Both quantitative and qualitative comparisons are made to validate the proposed

DMOPSO against the five selected MOPSOs. For qualitative comparison, the plots of

final Pareto fronts are presented for visualization. As for quantitative comparison, two

performance metrics are taken into consideration to measure the performance of

 117

algorithms with respect to dominance relations. The results are illustrated by statistical

box plots.

Table 6.3 Parameter configurations for DMOPSO with number of iterations is based upon 20,000

evaluations.

Test

Suites

Internal

populatio

n size

Archive

size

Parameter settings

Special remarks

ZDT1
5 per

swarm

Not

fixed

No. subswarms, 4=
swarm

n ; grid scale, 2,1,100 == iiK ; 5maxst = ;

unp = 3, lnp = 1; rud = 0.7; rld = 0.02 ; ppv = 10; S = 0.02; and Ka =

10.

ZDT2
20 per

swarm

Not

fixed

No. subswarms, 2=
swarm

n ; grid scale, 2,1,100 == iiK ; 5maxst = ;

unp = 3, lnp = 1; rud = 0.7; rld = 0.02 ; ppv = 10; S = 0.02; and Ka =

40.

ZDT3
6 per

swarm

Not

fixed

No. subswarms, 3=
swarm

n ; grid scale, 2,1,100 == iiK ; 5maxst = ;

unp = 3, lnp = 1; rud = 0.7; rld = 0.02 ; ppv = 10; S = 0.02; and Ka =

15.

ZDT4
20 per

swarm

Not

fixed

No. subswarms, 2=
swarm

n ; grid scale, 2,1,100 == iiK ; 5maxst = ;

unp = 5, lnp = 1; rud = 0.9; rld = 0.02 ; ppv = 10; S = 0.02; and Ka =

40.

ZDT6
5 per

swarm

Not

fixed

No. subswarms, 4=swarmn ; grid scale, 2,1,100 == iiK ; 5maxst = ;

unp = 3, lnp = 1;; rud = 0.9; rld = 0.02 ; ppv = 10; S = 0.02; and Ka

= 40.

DTLZ2
5 per

swarm

Not

fixed

No. subswarms, 4=swarmn ; grid scale, 3,2,1,80 == iiK ; 5maxst = ;

unp = 3, lnp = 1; rud = 0.7; rld = 0.02 ; ppv = 10; S = 0.02; and Ka =

10.

Hypervolume Indicator (S Metric) [47]: Assuming a minimization problem, this unary

indicator calculates the size of the region covered by a reference point. Larger value

indicates that the nondominated set produced is better. The advantage of this indicator is

able to measure both diversity and how well the algorithm converges to the true Pareto

front. Given two nondominated sets, A and B, with the same reference point, then the

hypervolume indicator of A is denoted as ()AI H and the hypervolume indicator of B is

denoted as ()BI H . If () ()BIAI HH > , then B is not better than A for all pairs. This means

a certain portion of objective space is dominated by A and not by B. However, a

reference point is required to compute this indicator. In this chapter, the method to

 118

determine the reference point is as follow: First, the collection of both nondominated sets

is combined into a single set. Second, from this set, the worst objective function values of

m-dimension are found, and they are shifted by a fixed parameter. Then, the shifted

version of these worst values is used as the reference point. Mann-Whitney rank-sum test

is implemented to test for significant difference between two independent samples [144].

Figure 6.17 Sets H1, H2, and P are shown. By using the additive binary epsilon indicator, H1 strictly

dominates H2 and H1 is strictly dominated by the true Pareto front.

Table 6.4 The computed additive binary epsilon indicator, ()BAI ,+ε , for all combination of H1, H2,

and P as shown in Figure 6.17.

A

 H1 H2 P

1 2 0

-1 1 -1

B

H1

H2

P 2 4 1

Additive Binary Epsilon Indicator [46]: This binary indicator aims to detect whether a

nondominated set is better than another. Given two nondominated sets, A and B, the

additive binary epsilon indicator for the pair are denoted as ()BAI ,+ε and ()ABI ,+ε . If

() 0, <+ BAI ε and () 0, >+ ABI ε , then A is strictly better than B. If () 0, ≤+ ABI ε and

() ()ABIBAI ,, ++ < εε , then this implies that A weakly dominates B. Lastly, if

2F

True Pareto

Front

0 5 10

5

9

1F

H1

P

H2

2F

True Pareto

Front

0 5 10

5

9

1F

H1

P

H2

H1

P

H2

 119

() 0, >+ BAI ε and () 0, >+ ABI ε , then BA || , which indicates that A and B are

incomparable. Again, Mann-Whitney rank-sum test is implemented to check if there is

significant difference between the two distributions for ()BAI ,+ε and ()ABI ,+ε . For

example, Table 6.4 shows the computed indicator, +εI , for the sets H1, H2, and P, which

are showed in Figure 6.17. From Table 6.4, it can shows that H1 strictly dominates H2

since () 12,1 −=+ HHIε and () 21,2 =+ HHIε , and P strictly dominates H1 since

() 01, =+ HPIε and () 2,1 =+ PHIε . Similar conclusion, P strictly dominates H2. Again,

Mann-Whitney rank-sum test is implemented to check if there is significant difference

between the two distributions for ()BAI ,+ε and ()ABI ,+ε [144].

6.4.4 Performance Evaluation of DMOPSO against the selected MOPSOs

The performance metric for hypervolume indicator (IH value) is computed for

each MOPSO over 50 independent runs. Figure 6.18 presents the box plots of IH values

found in all MOPSOs considered. The figure shows that DMOPSO and MOPSO share

the highest IH values for most test functions except for test function DTLZ2. DMOPSO

achieves the highest IH value for DTLZ2. Higher IH value indicates the ability of the

algorithm to dominate a larger region in the objective space. It is hard to determine

whether DMOPSO is significantly better than MOPSO for test functions ZDT1, ZDT2,

ZDT3, ZDT4, and ZDT6 since they attain the relative close IH values from Figure 6.18.

Hence, the Mann-Whitney rank-sum test is used to examine the distribution of the IH

values. The tested results are presented in Table 6.5. Observe the results in Table 6.5:

DMOPSO and MOPSO share the same victory for test functions ZDT1, ZDT2, ZDT3,

and ZDT4. Only for function ZDT2 does OMOPSO share the winner’s slot with

 120

DMOPSO and MOPSO. For the rest of the MOPSOs (i.e., cMOPSO, sMOPSO, and

NSPSO), DMOPSO clearly performed better. In addition, Figure 6.18 shows that the

standard deviations for DMOPSO are consistently lower, which indicates DMOPSO is

more reliable in producing better solutions than those selected MOPSOs.

 IH values for ZDT1 IH values for ZDT2 IH values for ZDT3

 IH values for ZDT4 IH values for ZDT6 IH values for DTLZ2

Figure 6.18 Box plot of hypervolume indicator (IH values) for all test functions (Start from top left)

by algorithms 1-6 represented (in order): DMOPSO, OMOPSO, MOPSO, cMOPSO, sMOPSO, and

NSPSO.

Figures 6.19-6.24 illustrate the results (in box plots) for additive binary ε-

indicator where each figure gives the results for a test function. Each figure presents two

box plots of ()51,DMOPSO −+ XIε and ()DMOPSO,51−+ XIε , in which algorithms 1-5

represent OMOPSO, MOPSO, cMOPSO, sMOPSO, and NSPSO, respectively. It seems

that DMOPSO performs relatively better with respect to dominance relation than most of

the MOPSOs (i.e., OMOPSO, cMOPSO, sMOPSO, and NSPSO) for functions ZDT1 to

ZDT6. For example, Figure 6.19 shows that DMOPSO strictly dominates NSPSO on

1 2 3 4 5 6

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

1 2 3 4 5 6

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

1 2 3 4 5 6

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

1 2 3 4 5 6

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

1 2 3 4 5 6

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

1 2 3 4 5 6

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

1 2 3 4 5 6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

1 2 3 4 5 6

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

1 2 3 4 5 6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

1 2 3 4 5 6

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

1 2 3 4 5 6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

1 2 3 4 5 6

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

Column Number

 121

Table 6.5 The distribution of IH values tested using Mann-Whitney rank-sum Test [144]. The table

presents the z values and p-values with respect to the alternative hypothesis (i.e., p-value < α=0.05)

for each pair of DMOPSO and a selected MOPSO. In each cell, both values are presented in a

bracket: (z value, p-value). The distribution of DMOPSO is significantly difference or better than

those selected MOPSO unless stated.

IH (DMOPSO) AND
Test

Functions
IH (OMOPSO) IH (MOPSO) IH (cMOPSO) IH (sMOPSO) IH (NSPSO)

ZDT1
(-4.6455,

3.4E-06)

(-0.4148,>0.05)

no difference

(-4.6455,

3.4E-06)

(-4.6455,

3.4E-06)

(-4.6455,

3.4E-06)

ZDT2
(-0.9125,>0.05)

no difference

(-0.4977,>0.05)

no difference

(-4.4796,

7.5E-06)

 (-3.9404,

8.1E-06)

(-4.6455,

3.4E-06)

ZDT3
(-4.6455,

3.4E-06)

(-0.1585,>0.05)

no difference

(-4.6455,

3.4E-06)

(-4.6455,

3.4E-06)

(-4.6455,

3.4E-06)

ZDT4
(-4.6455,

3.4E-06)

(-0.2903,>0.05)

no difference

(-4.6455,

3.4E-06)

(-4.6455,

3.4E-06)

(-4.6455,

3.4E-06)

ZDT6
(-4.6455,

3.4E-06)

(-4.6041,

4.1E-06)

(-4.6455,

3.4E-06)

(-4.6455,

3.4E-06)

(-4.6455,

3.4E-06)

DTLZ2
(-4.6614,

3.1E-06)

(-4.8124,

1.5E-06)

(-3.6046,

3.1E-04)

(-3.6046,

3.1E-04)

(-4.3595,

1.3E-05)

function ZDT1 since the () 0,DMOPSO 5 ≈+ XIε and () 0DMOPSO,5 >>+ XIε , similarly,

this applies to all algorithms. Figures 6.19-6.24 show that algorithm MOPSO seems to

perform as well as DMOPSO for functions ZDT1 to ZDT6. Moreover, we can observe

that DMOPSO has lower standard deviations, which are consistent with those shown in

Figure 6.17. The box plot on DTLZ2 in Figure 6.24 may show that DMOPSO does not

strictly dominate the rest of the MOPSOs since () 0,DMOPSO 51 >−+ XIε and

() 0DMOPSO,51 >−+ XIε . For further analysis, the distributions of +εI values are tested

using the Mann-Whitney rank-sum test, which are presented in Table 6.6. Table 6.6 also

confirms that MOPSO performs equally well as DMOPSO on function ZDT2. Hence,

when we combine results given in Figure 6.24 and Table 6.6 for function DTLZ2, we can

conclude that DMOPSO weakly dominates algorithms OMOPSO, MOPSO, cMOPSO,

 122

and sMOPSO. In general, results in Table 6.6 and Figures 6.19-6.24 confirm that

DMOPSO is significantly better than most or even all of the MOPSOs in terms of

performance on all test functions.

Table 6.6 The distribution of Iε+ values tested using Mann-Whitney rank-sum Test [144]. The table

presents the z values and p-values with respect to the alternative hypothesis (i.e., p-value < α=0.05)

for each pair of DMOPSO and a selected MOPSO. In each cell, both values are presented in a

bracket like this: (z value, p-value). For simplicity, DMOPSO is represented by A, and algorithms B1

to B5 are referred to as OMOPSO, MOPSO, cMOPSO, sMOPSO, and NSPSO, respectively. The

distribution of DMOPSO is significantly difference or better than those selected MOPSO unless

stated.

Test

Functions

Iε+ (A,B1) and

Iε+ (B1,A)

Iε+ (A,B2) and

Iε+ (B2,A)

Iε+ (A,B3) and

Iε+ (B3,A)

Iε+ (A,B4) and

Iε+ (B4,A)

Iε+ (A,B5) and

Iε+ (B5,A)

ZDT1
(-4.6637,

3.1E-06)

(-2.6546,

8.0E-03)

(-4.6896,

2.7E-06)

(--4.6896,

2.7E-06)

(-4.6896,

2.7E-06)

ZDT2
(-2.1983,

2.8E-02)

(-1.2029,>0.05)

no difference

(-4.4401,

9.0E-06)

(-2.8169,

4.8E-03)

(-4.7088,

2.5E-06)

ZDT3
(-4.6637,

3.1E-06)

(-3.2353,

1.0E-03)

(-4.6637,

3.1E-06)

(-4.6748,

2.9E-06)

(-4.6748,

2.9E-06)

ZDT4
(-4.7088,

2.5E-06)

(-4.1063,

4.0E-05)

(-4.6896,

2.7E-06)

(-4.7332,

2.2E-06)

(-4.7636,

1.9E-06)

ZDT6
(-4.6455,

3.4E-06)

(-2.8205,

4.8E-03)

(-4.6455,

3.4E-06)

(-4.6455,

3.4E-06)

(-4.6455,

3.4E-06)

DTLZ2
(-4.6614,

3.1E-06)

(-4.8124,

1.5E-06)

(-4.8124,

1.5E-06)

(-2.3968,

1.6E-02)

(-1.6419,>0.05)

no difference

 ()51, −+ XDMOPSOIε ()DMOPSOXI ,51−+ε

Figure 6.19 Box plot based upon additive binary epsilon indicator (Iε+ values) on test function ZDT1

(algorithms 1-5 are referred to as OMOPSO, MOPSO, cMOPSO, sMOPSO, and NSPSO,

respectively).

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

 123

 ()
51

, −+ XDMOPSOIε ()DMOPSOXI ,
51−+ε

Figure 6.20 Box plot based upon additive binary epsilon indicator (Iε+ values) on test function ZDT2

(algorithms 1-5 are referred to as OMOPSO, MOPSO, cMOPSO, sMOPSO, and NSPSO,

respectively).

 ()51, −+ XDMOPSOIε ()DMOPSOXI ,51−+ε

Figure 6.21 Box plot based upon additive binary epsilon indicator (Iε+ values) on test function ZDT3

(algorithms 1-5 are referred to as OMOPSO, MOPSO, cMOPSO, sMOPSO, and NSPSO,

respectively).

 ()51, −+ XDMOPSOIε ()DMOPSOXI ,51−+ε

Figure 6.22 Box plot based upon additive binary epsilon indicator (Iε+ values) on test function ZDT4

(algorithms 1-5 are referred to as OMOPSO, MOPSO, cMOPSO, sMOPSO, and NSPSO,

respectively).

1 2 3 4 5

0

0.5

1

1.5

2

2.5

1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5

0

0.5

1

1.5

2

2.5

1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

1 2 3 4 5

0

0.5

1

1.5

2

2.5

1 2 3 4 5

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

1 2 3 4 5

0

0.5

1

1.5

2

2.5

1 2 3 4 5

-0.05

0

0.05

0.1

0.15

1 2 3 4 5

0

10

20

30

40

50

60

1 2 3 4 5

-0.05

0

0.05

0.1

0.15

1 2 3 4 5

0

10

20

30

40

50

60

 124

 ()
51

, −+ XDMOPSOIε ()DMOPSOXI ,
51−+ε

Figure 6.23 Box plot based upon additive binary epsilon indicator (Iε+ values) on test function ZDT6

(algorithms 1-5 are referred to as OMOPSO, MOPSO, cMOPSO, sMOPSO, and NSPSO,

respectively).

 ()51, −+ XDMOPSOIε ()DMOPSOXI ,51−+ε

Figure 6.24 Box plot based upon additive binary epsilon indicator (Iε+ values) on test function DTLZ2

(algorithms 1-5 are referred to as OMOPSO, MOPSO, cMOPSO, sMOPSO, and NSPSO,

respectively).

For qualitative comparison, the resulting Pareto fronts (from a single run) of the

six MOPSOs on all test functions from the same initial population are illustrated in

Figures 6.25-6.30. The figures show DMOPSO is able to find the well-extended, near-

optimal Pareto fronts despite a large number of decision variables for test functions

ZDT1 to ZDT6. MOPSO comes up second, where it can produce quality Pareto fronts

similar to those produced by DMOPSO except for function DTLZ2. cMOPSO, sMOPSO,

and NSPSO produce the worst Pareto fronts since they have difficulty in converging

1 2 3 4 5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4 5

0

2

4

6

8

10

12

1 2 3 4 5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4 5

0

2

4

6

8

10

12

1 2 3 4 5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

 125

towards the true Pareto front, especially for functions ZDT1 to ZDT6 with high-

dimensional decision spaces.

 (a) (b) (c)

 (d) (e) (f)

Figure 6.25 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d) cMOPSO, (e)

sMOPSO, and (f) NSPSO on test function ZDT1.

 (a) (b) (c)

 (d) (e) (f)

Figure 6.26 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d) cMOPSO, (e)

sMOPSO, and (f) NSPSO on test function ZDT2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

 126

 (a) (b) (c)

 (d) (e) (f)

Figure 6.27 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d) cMOPSO, (e)

sMOPSO, and (f) NSPSO on test function ZDT3.

 (a) (b) (c)

 (d) (e) (f)

Figure 6.28 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d) cMOPSO, (e)

sMOPSO, and (f) NSPSO on test function ZDT4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

 127

 (a) (b) (c)

 (d) (e) (f)

Figure 6.29 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d) cMOPSO, (e)

sMOPSO, and (f) NSPSO on test function ZDT6.

 (a) (b) (c)

 (d) (e) (f)

Figure 6.30 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d) cMOPSO, (e)

sMOPSO, and (f) NSPSO on test function DTLZ2.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

0
0.2

0.4
0.6

0.8
1

0

1

2

3

4

0

0.5

1

1.5

2

2.5

3

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

1

2

3

4

0

0.5

1

1.5

2

2.5

3

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

0
0.2

0.4
0.6

0.8
1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

 128

6.4.5 Investigation of Computational Cost of DMOPSO with Selected MOPSOs

By introducing the dynamic population approach, DMOPSO produces better

performances overall as compared to the selected MOPSOs. However, it is essential to

investigate whether the dynamic population approach will increase the computational

complexity.

Table 6.7 Average number of evaluations required per run for all test problems from all selected

algorithms and DMOPSO to achieve GD =0.001.

 GD =0.001 DMOPSO OMOPSO MOPSO cMOPSO sMOPSO NSPSO

ZDT1
Average No.

Evaluations
7270.6 16140 7510 500000 500000 500000

ZDT2
Average No.

Evaluations
2983.3 9060 4572 500000 500000 500000

ZDT3
Average No.

Evaluations
500000 500000 500000 500000 500000 500000

ZDT4
Average No.

Evaluations
8856.2 500000 9580 500000 500000 500000

ZDT6
Average No.

Evaluations
3190.8 23880 5340 500000 500000 500000

DTLZ2
Average No.

Evaluations
18234 23200 500000 59840 500000 268480

The investigation simply compares the required number of fitness evaluations

needed by DMOPSO and the selected MOPSOs to achieve the targeted generational

distance [45], GD, of 0.001 for the selected test problems. To avoid any MOPSO that

could consume excessive computations to reach the goal set in GD, a limit of 500,000

fitness evaluations is imposed as the stopping criterion. To obtain the running time, a

Matlab function is used to measure the time elapsed for each MOPSO. Each MOPSO

performs 50 independent runs to collect the statistical results. All parameter settings for

the chosen MOPSOs are the same as those shown in Table 6.2 and Table 6.3. Table 6.7

presents the average number of fitness evaluations and time needed per run for all of the

selected MOPSOs and DMOPSO. Table 6.7 shows that DMOPSO demands the least

average number of fitness evaluations as opposed to other selected MOPSOs to reach the

 129

desired GD values for ZDT1, ZDT2, ZDT4, ZDT6, and DTLZ2. Except for ZDT3, all of

the MOPSOs are unable to find the Pareto front with the targeted GD value of 0.001

within 500,000 fitness evaluations. Overall, it is observed that DMOPSO can save at least

8 percents of the required computational complexity in terms of number of fitness

evaluation. In other words, DMOPSO delivers better performance with less

computational complexity.

 130

CHAPTER 7

PROPOSED ALGORITHM 2: DYNAMIC MULTIPLE SWARMS IN

MULTIOBJECTIVE PARTICLE SWARM OPTIMIZATION

(DSMOPSO)

. The second proposed MOPSO, called DSMOPSO, is described in this chapter.

In this proposed algorithm, dynamic population concept is applied but in a different

perspective. Instead of changing the population size as discussed in Chapter 6, number of

swarms is adapted dynamically throughout the search process and the swarm size, i.e.

number of particles in a swarm, is fixed and predefined by user. The objective is to

promote diversity and local search capability to enhance the solution quality on the

optimal Pareto front, and to eliminate the need to estimate an initial number of swarms to

improve the computational cost without compromising the performance of the algorithm.

In DSMOPSO, three novel strategies are incorporated: the dynamic swarm strategy to

allocate an appropriate number of swarms as needed and justified, the modified PSO

update mechanism to better manage the convergence and communication among and

within swarms, and objective space compression and expansion strategy to progressively

exploit the objective space during different stages of the search process. Experiments are

conducted to evaluate the performance, as well as the required computational cost, of

DSMOPSO against the selected MOPSOs. Sensitivity of the algorithm towards the

setting of the involved parameters is also investigated.

 131

7.1 Introduction

The multiple-swarm PSO bears a remarkable resemblance with the mixed-species

flocking. In nature, there are certain bird species joined together in a flock to travel, to

feed, and to collectively defend against any predators. Evidence indicates that increase in

feeding efficiency may be the key motivation of rendering the formation of mixed-

species flocks [153]. The birds in different species collaborate and share information

among each other if any food sources are located. Different bird species may prefer

different foods and acquire different foraging techniques. In addition, different species

act as flock leaders under various environments to lead and influence the flocking

behavior of a variety of bird species [154]. The number of species in a flock may vary

depending upon the types of food sources available and the degree of competition among

them. By analogy, the bird species join together in a flock to achieve certain foraging

behaviors that will benefit each other, which is similar to the notion that multiple swarms

in PSO explore the search space together to attain the objective of finding the optimal

solutions, while different food preference in mixed species flocking corresponds to the

tendency of multiple-swarm PSO in locating possible solutions in different regions in a

fitness landscape. In addition, different species that assume the leadership under various

environments is analogous to the notion that multiple swarms in PSO select their global

leaders that would lead and influence their movement toward the best solution found so

far. The information shared within a species and among species is also closely portrayed

in multi-swarm PSO movement.

These evidences of analogy are found in publications, as discussed in Chapters 4

and 5, wherein multiple-swarm PSO is used to solve different optimization problems,

particularly in multimodal function optimization [80-87], multimodal function

 132

optimization in dynamic environments [88,89], single objective optimization problems

(SOPs) [90-96], and more recently, multiobjective optimization problems (MOPs) [128].

Unlike what biology indicates in mixed-species flocking that the number of species

involved varies dynamically, all of these multiple-swarm PSOs adopt the notion of using

a heuristically chosen number of swarms with a fixed swarm size throughout the search

process. Although a good algorithm design would guarantee a high probability of finding

the Pareto optimal set, the number of swarms with a fixed swarm size indirectly

contributes to the effectiveness and efficiency of the performance of an algorithm,

particularly on the computational cost. If a multiple-swarm PSO employs an overly large

number of swarms with a fixed swarm size, it will enjoy a better chance of discovering

possible good solutions that lead to the optimal Pareto set, but inevitably suffer from an

undesirable, high computational cost. This implies a limited food source that might

induce excessive competition among a large number of bird species. On the other hand,

an insufficient number of swarms will undermine chances of exploring the search space

to discover potential good solutions, and coupled with PSO’s high speed in convergence;

this may lead to undesirable premature convergence or result in degraded quality of the

optimal Pareto set. Again, one may suggest that a rough estimate of an “appropriate”

population size may be adequate for a good design since one need not know the exact

“optimal” number of swarms to solve an optimization problem. It would be the case for

many single objective or multimodal problems, and for some MOPs that have lower

numbers of objective functions or lower dimension of decision variables. Considering the

cases where the MOPs have a large number of objective functions or a large dimension in

decision variables, and even those MOPs qualified as the hard problems [152], this will

 133

pose a great challenge to “estimate” an appropriate number of swarms to solve these

MOPs without exerting excessive computational cost. In addition, without prior

knowledge about the topology of the fitness landscape for an MOP, it might be

unrealistic to expect an “appropriate” number of swarms can be determined to kickoff the

search process. Hence, a compromised, yet effective, solution would be to dynamically

adjust the number of swarms (with a fixed swarm size) to explore the search space in

balance between computational cost and the attained performance throughout the search

process. Hence, this motivated us to propose a multiobjective particle swarm

optimization (MOPSO) that adaptively adjusts the number of swarms needed throughout

the search process. This proposed algorithm is named dynamic multiple swarms in

multiobjective particle swarm optimization (DSMOPSO).

7.2 Proposed Algorithm Overview

The proposed algorithm, dynamic multiple swarms in multiobjective particle

swarm optimization (DSMOPSO), involves two key strategies: swarm growing strategy

to allocate more swarms if necessary and justified, and swarm declining strategy to

eliminate swarms that wouldn’t contribute in search for Pareto front. Additional designs

are included to support the above two strategies. These designs include 1) cell-based rank

density estimation scheme to effectively keep track of the rank and density values of the

particles (swarm members); 2) objective space compression and expansion strategy to

adjust the size of the objective space whenever needed to progressively search for high

precision true Pareto front; 3) PSO updating equation is modified to exploit its usefulness

 134

and to accommodate the multiple-swarm concept; and 4) swarm local best archive is

updated based on the progression of their swarm representative, the swarm leaders.

Begin

Parameters initialization for cell-based rank density estimation

scheme, crowdedness indicator, age indicator, and objective space

compression and expansion strategy.

/*Initialization

Set swarm size

Randomly generate one swarm

Set Maximum iterations (maxt)

Set iteration 0=t

For each particle

 Fitness evaluation

 Rank_and_density_estimation()

EndFor

Identify swarm leaders

Update_swarms_localbest()

Archive_maintenance

1=t

While maxtt <

 Objective_space_compression_expansion_strategy()

 Swarm_growing_strategy()

 Swarm_declining_strategy()

 For each swarm

 For each particle

 Flight()

 Fitness evaluation

 Rank_and_density_estimation()

 EndFor

 Identify swarm leaders

 Update_swarms_localbest()

 Archive_maintenance

 EndFor

 1+= tt

EndWhile

Report results in archive

End

Figure 7.1 Pseudocode of DSMOPSO.

The generic steps of DSMOPSO are as follows: At iteration 0=t , with

predefined swarm size, a single swarm is generated, and cell-based rank density

estimation scheme is calculated to setup the rank and density values of the swarm

 135

members. Next, the swarm leader is identified. Third, every swarm local best is recorded

and the fittest swarm members are stored in the archive. When iteration step is increased,

the condition to evoke the objective space compression and expansion strategy is

checked. If the condition is satisfied, objective space compression expansion strategy is

performed. Otherwise, we jump to the next step. Swarm growing strategy is applied to

increase the number of swarms while swarm declining strategy is employed to control the

number of swarms in the swarm population. Then, the swarms perform flight. Again, the

following steps are repeated for all swarms: 1) update the swarms’ information via the

cell-based rank density estimation scheme; 2) identify swarm leaders; 3) update their

local best; and 4) perform archive maintenance. Then, the loop goes back to objective

space compression expansion strategy subroutine. Once maximum iteration is achieved,

the solutions in the archive are the best Pareto front found.

7.3 Implementation Details

The detail of all the key steps in Figure 7.1 is elaborated in the following

subsections.

7.3.1 Cell-based Rank Density Estimation Scheme

As the number of swarms varies every iteration, the swarm population size will

modify as well. This modification, i.e., adding or removing particles, will affect Pareto

rank of the existing particles and the population density of certain areas located in the

objective space. This poses a problem of needing to recalculate the Pareto rank and

density values of the particles to keep up the changes of the swarm population size. To

 136

counter the problem, we employed an existing scheme, cell-based rank and density

estimation scheme, which has been discussed in Subsection 6.3.1.

7.3.2 Identify Swarm Leaders

Every swarm has its own set of “swarm members.” The number of “swarm

members,” also called swarm size, is determined by a user-specified parameter, ssize.

Each swarm has its own representative; the representative is named “swarm leader.” The

swarm leaders are decided based on the idea of best “candidate” among its “swarm

members.” Hence, to choose a swarm leader, it has to have the best rank value (i.e., least

rank value for minimization problems). If more than one swarm member shares the same

best rank value, a swarm leader is randomly chosen among them. Selection of swarm

leaders is done at every iteration. Choosing swarm leaders based on their rank values

indicates how much the swarms have progressed in finding the optimal Pareto front. In

addition, these swarm leaders will be the deciding factor for some of the procedures such

as updating swarms’ local bests and dynamic swarm number strategy. In this chapter, the

notation for the swarm leader of swarm n is represented by n
sLeader

7.3.3 Update Local Best of Swarms

As mentioned in Subsection 7.2, PSO equation is modeled in such that the

particles learn from their own experiences and from the success of their peers. To achieve

the former objective, the particles’ own personal best positions attained so far are updated

at every iteration step, wherein this information is later used to update particle velocities

and the particle positions in the search space. For multiple swarms, a similar procedure is

 137

applied here and the term ‘swarm local best archive’ is used to indicate the swarms’ own

personal best positions. Figure 7.2 summarizes the steps involved for updating the swarm

local best archive. The procedure to update the swarms’ local best position by comparing

the rank values of swarm leaders in the current iteration with those recorded in the swarm

local best archive. Consider minimization problems, the procedures are summarized as

below:

• If the swarm local best archive is empty or the reinitialized parameter (St) is

triggered, record rank values of all swarm leaders, their corresponding positions, and

the positions of their respective swarm members.

• If the swarm local best archive is nonempty, the rank values of the swarm leaders

(Lprank) in the current iteration are compared with those recorded in the swarm

local best archive. Any of the current swarm leaders that have lesser rank values are

identified; their rank values, their positions, and the positions of their corresponding

swarm members (Lpbest) will replace the recorded ones. If the rank values of a

current swarm and its recorded swarm leader have the same rank value, then pure

Pareto ranking method [38] is applied to both of the swarm leaders. If the current

swarm dominates the recorded swarm leader, then the current one will replace the

recorded one. If both do not dominate each other, one of them is randomly chosen to

update the swarm local best archive.

7.3.4 Archive Maintenance

A fixed size archive is implemented in DSMOPSO to record any good particles

(nondominated solutions) found during the search process and these solutions in the

 138

Function Update_swarms_localbest(Lrank, LPrank, LPbest, t , St , swarmn ,

swarms)

/*Lrank = current rank value of swarm leaders
/*LPrank = rank of local best for swarm leaders

/*LPbest = local best of the swarm leaders’ groups

/* t = current iteration;

/* St = parameter indicate a need to reinitialize Lprank and Lpbest

/* swarmn = number of swarms

/*swarms = current swarms

Begin

 If () ()00 =∪= Stt

 LPbest = swarms

 LPrank = Lrank

 Else

 For i=1 to swarmn

 If Lrank(i) < LPrank(i)

 Update LPrank(i) and LPbest(i)

 ElseIf Lrank(i) = LPrank(i)

 Find swarm leader(i) current position, Lswarm

 Find swarm leader(i) local best position, LPbest(i)
 Compute the fitness values for Lswarm and LPbest(i)

 Check Pareto dominance of the fitness values

 Update LPbest(i) if fitness of Lswarm is better

 EndIf

 EndFor

 EndIf

End

Figure 7.2 Pseudocode of update local best for the swarm leaders.

archive serve as potential global best candidates (gbest) for the particles. At each

iteration count, new solutions are compared with respect to any members in the archive.

If new solutions are not dominated by any archive members, they are accepted into the

archive. Similarly, any archive members dominated by any new solutions are removed

from the archive. If the archive population size exceeds the allocated archive size, then

crowding distance [31] is applied to remove the crowded members and to maintain

uniform distribution among the archive members. There are existing methods for the

particles to select their global leaders (gbest) [106,112,113,115-117]. In this paper, the

crowding distance values of the archive members are used to guide the particles to select

 139

their gbest . Larger crowding distance values imply archive members are less crowded,

and are likely to be selected as particles’ gbest . Once the search process is terminated, the

solutions in archive become the final Pareto front.

7.3.5 Particle Update Mechanism (Flight)

A major problem in employing multiple-swarm concept is the need to exchange

information among swarms, especially if no mutation operator is incorporated. Without

information exchange, the particles may find several disconnected segments of a Pareto

front due to lack of diversity among swarms. Hence, information exchange among

swarms is vital in promoting diversity among swarms. In recent work, Yen and

Daneshyari [96] adopted a three-level PSO updating rule wherein the particles learn their

experiences based on personal, neighborhood, and global levels to adjust their flying

speed and direction in the search space. The idea is to further enhance the information

sharing among particles by incorporating the concept of neighborhood in the updating

PSO equation.

Though diversity among swarms is essential, diversity within a swarm is equally

important. In [88], the swarm members of each swarm are splitted according to the user

defined configuration, i.e., the swarm members composed of either neutral and charged

particles or neutral and quantum particles. For example, for the formal configuration, for

a given swarm size, part of the swarm members are neutral particles and the remaining

are charged particles. Based on the configuration, the particle updating rule is dependent

on the particle’s types, which are neutral, charged, or quantum particles. By employing

this strategy, the diversity within a swarm is encouraged.

 140

Inspired by both forms of swarms interaction discussed above, we propose revised

PSO update rules. The rules involve three forms of communication as follows:

PSO update rule 1: Allow particles in a swarm to update using three-level PSO

updating rule. This will allow swarms to share information from the global leaders

(archive), their swarm leaders, and their personal best achievement. The new velocity and

position equations are given.

() () ()()
()() ()()txLpbestrctxgbestrc

txpbestrctvwtv

n

ji

n

j

n

jij

n

ji

n

ji

n

ji

n

ji

,33,22

,,11,, 1

−××+−××

+−××+×=+
 (7.1)

() () ()11 ,,, ++=+ tvtxtx
n

ji

n

ji

n

ji (7.2)

where ()tv
n

ji , is the jth dimensional velocity of swarm member i of swarm n in iteration t;

()tx
n

ji , is the jth dimensional position of swarm member i of swarm n in iteration t;

n

jipbest , denotes the jth dimensional local best position of the swarm members i of

swarm n in iteration t; jgbest is the jth dimensional global best selected from archive in

iteration t; n

jLpbest is the jth dimensional local best position of swarm leader of swarm n

in iteration t; 1r , 2r , and 3r are random numbers within []1,0 that are regenerated every

time they occur; w is the inertial weight; and 1c , 2c and 3c are the acceleration constants.

Note that the each of the acceleration constants is randomly varied between 1.5 and 2 at

every iteration to provide different emphasis on the components in Equation (7.1) and to

deal with the difficulty in choosing the “optimal” settings for these constants to prevent

the particles’ velocities from exploding. The inertial weight is randomly varied between

0.1 and 0.5 to encourage exploration and local search in different iteration counts.

 141

PSO update rule 2: Allow particles in a swarm to update via perturbation around

their corresponding swarm leader. This will facilitate local search and promote diversity

within a swarm. Basically, this rule can be achieved via perturbation concept. The area of

perturbation is determined by parameter dr , a random number generated from a Gaussian

distribution with zero mean ()0=µ and a variance ()2σ . For simplicity, parameter 2σ is

set to 0.1 to limit the perturbation region around the swarm leader and to prevent swarm

members from moving too far from each other. Note that the setting for parameter

2σ depends on the user’s preference and the size of the decision space. The center point

of this area is the swarm leader as shown in Equation (7.4). Both Equations (7.3) and

(7.4) are similar to the quantum particle updating rule in [145],

 ()1.0,0Gaussianrd = (7.3)

 () b
n
j

n
ji rLpbesttx +=+1, (7.4)

PSO update rule 3: Under some conditions, the particles should exchange information

with a leader other than their own. Equations (7.1) and (7.2) are implemented to update

the particles in each swarm. The only modification is the n
jLpbest term in Equation (7.1)

is replaced by n

jLpbest
~

, in which the superscript n~ is to indicate that the swarm members

can choose any swarm leaders other than their own swarm leader.

Randomly splitting the swarm members and delegating them to both PSO updating

rules 1 and 2 encourage the swarm members to contribute two separate goals since PSO

updating rule 1 promotes convergence, discovery, and improves good solutions; while

PSO updating rule 2 encourages local search and diversity within a swarm. On the other

hand, PSO updating rule 3 promotes convergence and diversity among swarms. For

 142

simplicity, a random number er with uniform distribution between []1,0 is generated to

decide which PSO update rule(s) to carry out. If 5.0>er , the swarms are updated by

PSO update rules 1 and 2. The first half of the swarm members in a swarm is updated via

rule 1, while the rest are updated using rule 2. On the other hand, if 5.0≤er , then the

swarm members are updated using PSO rule 3. Figure 7.3 presents the pseudocode of

updating the particles (flight). Note that 0.5 is chosen without any prior knowledge as the

deciding factor to provide equal probability for information exchange within a swarm and

among swarms.

Function Flight(swarms, swarmn , ssize)

/*swarms = current swarms

/* swarmn = number of swarms

/*ssize = swarm size

Begin

 If ssize is even

 2ssize=N

 Else

 () 5.02ssize +=N

 EndIf

 For each swarm

 []1,0randre =

 If () ()25.0 >∩> swarme nr

 N:1 particles are updated via Equations (7.1) and (7.2)

 Generate dr using Equation (7.3)

 () ssizeN :1+ particles are updated via Equation (7.4)

 Else

 Particles are updated via Equations (7.1) and (7.2) with a

randomly assigned swarm leader

 EndIf

 EndFor

End

Figure 7.3 Pseudocode of updating the particles.

 143

7.3.6 Swarm Growing Strategy

DSMOPSO employs two independent strategies—swarm growing strategy and

swarm declining strategy to manage the number of swarms needed during the different

stages of search process. Similar to the motivation given in [140], the first strategy aims

to increase the number of swarms and to ensure every swarm to survive a sufficient

number of iterations so that it can contribute to the search process in finding better

solutions, while swarm declining strategy is applied to control the number of swarm from

growing excessively. In this subsection, swarm growing strategy is discussed and swarms

declining strategy will be discussed next.

In previous chapter, DMOPSO proposed a population growing strategy based on

the concept proposed by Tan et al. [135]. The design involves procedures such as

selecting potential particles to be perturbed, determining number of perturbations, and

deciding where to perform perturbation. The improved design in DSMOPSO carefully

addresses this deficiency and includes utilizing rank and crowdedness indicators to select

potential candidates for swarm leaders and applying Voronoi diagram to generate a

swarm of particles from a swarm template. First, rank and crowdedness indicators are

introduced, and then the procedures for swarm growing strategy are elaborated.

The rank and crowdedness indicators are the same as elaborated in Subsection

6.3.4. The only difference is these indicators are applied to the swarm leaders instated of

the particles in the swarm population presented in Chapter 6. Figure 7.4 shows how the R

and D values of the swarm leaders E and F are determined. Refer to Figure 7.4, the

swarm leader E (in Figure 7.4(a)) resides in the cell with rank value “1” (rank matrix in

Figure 7.4(b)). Hence, apply Equation (6.12), its R value equal to 1 as shown in Figure

 144

 (a) (b) (c)

Figure 7.4 (a) Swarm leaders and their locations on the objective space, (b) rank matrix (Top)

and density matrix (Bottom) of the swarm leaders, and (c) R and D values for swarm leaders E

and F.

7.4(c). Meanwhile, those swarm leaders located in cell with higher rank values will result

in a lower R value. For example, Figure 7.4(a) shows swarm leader F resides in cell with

rank value “8”, which is higher rank value than swarm leader E. So, its R value is much

lower, which is 0.125. Hence, the R value can be used to quantify the chances for a

swarm of being eliminated or to decide if a swarm leader is chosen as potential candidate

for generating new swarms. Now, refer to the density matrix in Figure 7.4(b), the density

value for swarm leaders E and F are 3 and 2 respectively. With the ppv value set to 2,

Equation (6.13) indicates that the D value of swarm leader E is 0.33 while since the

density value is lower or equal to ppv, the D value of swarm leader F is 0 (refer to Figure

7.4(c)). Hence, crowdedness indicator can be use to measure if the swarm leaders reside

in a congested cells by comparing their density values with the ppv value.

The following three procedures outline the swarm growing strategy proposed.

Procedure 1: Identify potential swarm leaders from the swarm local best archive

to generate “swarm templates” that will be used to create new swarms. The chosen

swarm leaders should have the highest probability of producing new swarms that will

0 3 1 0 1 0
0 0 0 0 0 0

2 1 0 0 0 1
0 1 2 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

1 1 4 5 5 6
1 1 1 1 1 1

1 6 7 7 9 9
3 7 8101213
3 8 10101314
3 8 10111314

Rank matrix

Density matrix

max

1F

max

2F

min

1F

min

2F

True Pareto

Front

F

E

2=ppvNote: set

max

1F

max

2F

min

1F

min

2F

True Pareto

Front

(R(E,t) = 1); (D(E,t) = 0.33)
F

E

(R(F,t) = 0.125); (D(F,t) = 0)

0 3 1 0 1 0
0 0 0 0 0 0

2 1 0 0 0 1
0 1 2 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

0 3 1 0 1 00 3 1 0 1 0
0 0 0 0 0 00 0 0 0 0 0

2 1 0 0 0 12 1 0 0 0 1
0 1 2 0 1 00 1 2 0 1 0
0 0 0 1 0 00 0 0 1 0 0
0 0 0 0 0 00 0 0 0 0 0

1 1 4 5 5 6
1 1 1 1 1 1

1 6 7 7 9 9
3 7 8101213
3 8 10101314
3 8 10111314

1 1 4 5 5 61 1 4 5 5 6
1 1 1 1 1 11 1 1 1 1 1

1 6 7 7 9 91 6 7 7 9 9
3 7 81012133 7 8101213
3 8 101013143 8 10101314
3 8 101113143 8 10111314

Rank matrix

Density matrix

max

1F

max

2F

min

1F

min

2F

True Pareto

Front

F

E

max

1F

max

2F

min

1F

min

2F

True Pareto

Front

F

E

2=ppvNote: set

max

1F

max

2F

min

1F

min

2F

True Pareto

Front

(R(E,t) = 1); (D(E,t) = 0.33)
F

E

(R(F,t) = 0.125); (D(F,t) = 0)

2=ppvNote: set 2=ppvNote: set

max

1F

max

2F

min

1F

min

2F

True Pareto

Front

(R(E,t) = 1); (D(E,t) = 0.33)
F

E

(R(F,t) = 0.125); (D(F,t) = 0)

 145

improve convergence toward the Pareto front and land on the unexplored areas in the

objective space. In this paper, rank and crowdedness indicators are used to quantify the

potential of the swarm leaders. First, gather the swarm leaders from the swarm local best

archive. Second, the R and D values of the swarm leaders are computed using Equations

(6.12) and (6.13). Third, for those cells that have more than one swarm leader, their local

pure Pareto rank values are calculated using the Pareto ranking scheme proposed by

Goldberg [146]. The local pure Pareto rank values are denoted as Lr . If only one swarm

leader is in the cell, then Lr is equal to one by default. Finally, at iteration t, the

likelihood that the swarm leader i with ()tiR , , ()tiD , and ()tirL , , to be chosen is

computed using the following equation:

 () ()
()

()()tiD
tir

tiRtil
L

g ,1
,

1
,, −×

×= . (7.5)

Equation (7.5) implies that those swarm leaders with higher R, lower D, or lower

Lr values will have a high likelihood value, gl . Those swarm leaders with higher

likelihood value, gl have a higher chance of being selected as potential candidates to

generate the “swarm templates.” Refer to Figure 7.5(c), the gl values for swarm leaders E

and F are 0.335 and 0.125, respectively. Based on the gl values, swarm leader E has a

higher chance of being chosen as the potential swarm leader compared to swarm leader

F. To determine whether a swarm leader i will be chosen, a random number with uniform

distribution between []1,0 is generated to compare with the likelihood ()til g , . If the

likelihood is larger than the random number, then swarm leader i is selected as a potential

candidate to generate a “swarm template,” newx . The swarm template (newx) is generated

 146

via a uniform mutation operator with the mutation rate equal to

spacedecisioninensionsdimofnumber1 [49].

 (a) (b) (c)

Figure 7.5 (a) Swarm leaders and their locations on the objective space, (b) rank matrix (Top)

and density matrix (Bottom) of the swarm leaders, and (c) R, D, and rL values for swarm leaders

E and F.

Procedure 2: Once the swarm template (newx) is generated via Procedure 1, the

template is perturbed to generate a swarm of particles. In order for perturbation to

happen, the perturbation region centered around newx needs to be defined. In this design,

the motivation of employing Voronoi diagram [147] to determine the perturbation region

is as follow: 1) the shape of the perturbation region is self-adapted and depends on the

distribution of the solutions in the chosen dimensions; and 2) no user-defined parameter

or a fixed model to define the perturbation region as proposed in DMOPSO is required.

There are three key steps in this procedure to generate a member in the new swarm.

1) Generate a Voronoi Diagram: Firstly, in addition to newx , a particle from every

swarm is randomly selected. For example, Figure 7.6 shows eight randomly selected

particles from eight different swarms in addition to newx . Second, two dimensions

0 3 1 0 1 0
0 0 0 0 0 0

2 1 0 0 0 1
0 1 2 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

1 1 4 5 5 6
1 1 1 1 1 1

1 6 7 7 9 9
3 7 8101213
3 8 10101314
3 8 10111314

Rank matrix

Density matrix

max

1F

max

2F

min

1F

min

2F

True Pareto

Front

F

E

2=ppvNote: set

(R(F,t) = 0.125); (D(F,t) = 0)

max

1F

max

2F

min

1F

min

2F

True Pareto

Front

(R(E,t) = 1); (D(E,t) = 0.33)
F

E
(rL(E,t) = 2)

(rL(F,t) = 1)

C1

C2

0 3 1 0 1 0
0 0 0 0 0 0

2 1 0 0 0 1
0 1 2 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

0 3 1 0 1 00 3 1 0 1 0
0 0 0 0 0 00 0 0 0 0 0

2 1 0 0 0 12 1 0 0 0 1
0 1 2 0 1 00 1 2 0 1 0
0 0 0 1 0 00 0 0 1 0 0
0 0 0 0 0 00 0 0 0 0 0

1 1 4 5 5 6
1 1 1 1 1 1

1 6 7 7 9 9
3 7 8101213
3 8 10101314
3 8 10111314

1 1 4 5 5 61 1 4 5 5 6
1 1 1 1 1 11 1 1 1 1 1

1 6 7 7 9 91 6 7 7 9 9
3 7 81012133 7 8101213
3 8 101013143 8 10101314
3 8 101113143 8 10111314

Rank matrix

Density matrix

max

1F

max

2F

min

1F

min

2F

True Pareto

Front

F

E

max

1F

max

2F

min

1F

min

2F

True Pareto

Front

F

E

2=ppvNote: set

(R(F,t) = 0.125); (D(F,t) = 0)

max

1F

max

2F

min

1F

min

2F

True Pareto

Front

(R(E,t) = 1); (D(E,t) = 0.33)
F

E
(rL(E,t) = 2)

(rL(F,t) = 1)

2=ppvNote: set 2=ppvNote: set

(R(F,t) = 0.125); (D(F,t) = 0)

max

1F

max

2F

min

1F

min

2F

True Pareto

Front

(R(E,t) = 1); (D(E,t) = 0.33)
F

E
(rL(E,t) = 2)

(rL(F,t) = 1)

C1

C2

 147

Figure 7.6 Block diagram depicts how an example Voronoi diagram of eight randomly selected

particles and newx is generated.

within the total number of dimensions in the decision space are randomly selected. These

selected dimensions are denoted as aj and bj . Third, the dimension aj and bj of the

selected particles and newx represent the data points and are used to generate the Voronoi

mesh, as presented in the reduced two dimensional space in Figure 7.6. Refer to Figure

7.6, the selected particles and newx are represented as “circle.” Also, the x-axis

corresponds to dimension aj and the y-axis corresponds to dimension bj . In this study,

only two dimensions are selected to build the Voronoi diagram for computational

simplicity.

2) Determine the Perturbation Region: The black circle in Figure 7.6 represents the

coordinate of newx , i.e., ()
ba jnew,jnew, xx , . Since there are more than two corners around

the coordinate of newx (i.e., represented with ‘x’ symbol and labeled as Z1 to Z6 in

Figure 7.6), a corner is randomly selected. In Figure 6, the selected corner is Z2 and

denoted as vcell . The distance between the center and Z2, i.e., d∆ , is computed to

form the perturbation region of newx .

Randomly select a

particle from each

swarm

Randomly select two

dimensions in

decision space

newxSwarm template,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

()
ba jnew,jnew, xx ,

Z1

Z2

Z4

Z6

Z3

dimension ja

d
im

en
si

o
n

j b

vcell

d∆

Perturbation region

Coordinates of selected particles

Corners around ()
ba jnew,jnew, xx ,

Z5

Randomly select a

particle from each

swarm

Randomly select two

dimensions in

decision space

newxSwarm template, newxSwarm template,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

()
ba jnew,jnew, xx ,

Z1

Z2

Z4

Z6

Z3

dimension ja

d
im

en
si

o
n

j b

vcell

d∆

Perturbation region

Coordinates of selected particles

Corners around ()
ba jnew,jnew, xx ,

Z5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

()
ba jnew,jnew, xx ,

Z1

Z2

Z4

Z6

Z3

dimension ja

d
im

en
si

o
n

j b

vcell

d∆

Perturbation region

Coordinates of selected particles

Corners around ()
ba jnew,jnew, xx ,

Perturbation region

Coordinates of selected particles

Corners around ()
ba jnew,jnew, xx ,

Z5

 148

Function newswarm = Generate_Swarm(newx , ssize, swarms)

/* newx = a new swarm template

/*ssize = swarm size

/*swarms = current swarms

Begin

 For 1 to ssize

 Randomly choose a particle from every swarm

 Store chosen particles to T

Randomly choose two dimensions,[ja,jb], from [1 max(dimension of

newx)]

Draw out the two dimensions from every particle in T

Draw out the two dimensions from newx , i.e. ()
ba jnew,jnew, xx ,

 Use all drawn values to calculate the Voronoi diagram

 Randomly choose a coordinate (vcell) around the Voronoi cell,

 where ()
ba jnew,jnew, xx , coordinate is its center

 Find distance (d∆) between vcell and ()
ba jnew,jnew, xx , coordinate

 Compute Equations (7.6), gr

 []1,0randrg =

 If 5.0>gr

 Add ()grd ×∆ to
ajnew,x

 Else

 Add ()grd ×∆ to
bjnew,x

 EndIf

 EndFor

End

Figure 7.7 Pseudocode of generating a new swarm via Voronoi procedure.

3) Generate a Swarm Member: Once a corner is selected, a swarm member is generated

by applying the following equations:

()1.0,0Gaussianrg = , (7.6)

 () () ()
gjnew,jnew, rdtt

aa
×∆+= xx (7.7a)

() () ()
gjnew,jnew, rdtt

bb
×∆+= xx , (7.7b)

() ()tt jnew,jnew, xx = ,),,,,1(ba jjjjNj ≠≠= K , (7.7c)

 149

where gr is a random number generated from a Gaussian distribution with zero

mean ()0=µ and a variance ()2σ of 0.1 (Equation (7.6)); and d∆ is the distance between

the center and the selected corner. Equations (7.7a) - (7.7c) are applied to generate a new

swarm member. Please note only two chosen dimensions will be perturbed, while other

dimensions remain the same as those in newx . This procedure is repeated until all the

swarm members in a newly created swarm are generated. Figure 7.7 presents the

pseudocode of generating a new swarm via Voronoi procedure.

Function Swarm_growing_strategy(LPrank, LPden, ppv , Lh , ssize, swarms)

/*LPrank = rank of local best for swarm leaders

/*LPden = density of local best for swarm leaders

/* ppv = desired population size per cell

/* Lh = home address of swarm leaders

/*ssize = swarm size

/*swarms = current swarms

Begin

 Compute Rank Indicator, R, using LPrank

 Compute Crowdedness Indicator, D, using LPden and ppv

 Compute local rank value, Lr using Lh and Pareto ranking scheme

 Compute Rank Indicator for local rank value, LR , using Lr

 Compute gl using Equation (7.5)

 []1,0randrh =

 If hg rl >

 Find and store ‘chosen’ swarm leaders to P

 Number of ‘chosen’ swarm leader = ns
 EndIf

 While nscount ≤

 Select a swarm leader, x from P

 Generate a new particle (seed), newx , by applying perturbation

 newswarm = Generate_Swarm(newx ,ssize, swarms)

 1+= countcount

 EndWhile

Collect all the new swarms

End

Figure 7.8 Pseudocode of swarm growing strategy

 150

Applying Voronoi concept to determine the perturbation region presents a unique

advantage as we do not need to define the perturbation region using a user-specified

parameter or a fixed model. When the number of swarms is small in the early stage, the

resulted Voronoi diagram will have large Voronoi mesh, which leads to a large

perturbation region. Hence, support in generating swarms with swarm members farther

away from each other promotes diversity within a swarm and allows the swarm members

to explore larger unvisited regions in the objective space. On the other hand, when the

number of swarms is large, which is often the case as the swarms are approaching the

Pareto front, the area of perturbation region will be small according to the above design.

A smaller perturbation region will generate swarms with swarm members closer to each

other. This will encourage a local search within the swarm members towards the later

stage of the search. Figure 7.8 presents the pseudocode of swarm growing strategy.

7.3.7 Swarm Declining Strategy

As mentioned earlier, the swarm declining strategy is proposed to control the

number of swarms from growing excessively. The condition to remove a swarm is based

on three qualitative indicators. Two of the three indicators are introduced in subsection

6.3.3, i.e., Equations (6.12) and (6.13). An additional indicator is known as the age

indicator, which is used to measure the “lifespan” of the swarms. The age indicator

ensures that those swarms generated recently, especially those newly generated swarms,

will have enough lifespan to contribute to the search process. Assume at iteration t, the

age of swarm leader i is denoted as ()tiage , and its age indicator at iteration t, ()tiA , , is

given by

 151

 () ()
()

>−
=

otherwise

Atiageif
tiage

A

tiA th

th

,0

,,
,

1
, , (7.8)

where thA is the predetermined age threshold. Equation (7.8) implies that any swarms’

ages smaller than thA will not be removed. When a particle is created, its age will be set at

0 and its age will be increased by one if it survives another iteration. Simulation study

also indicates the performance of the DSMOPSO is not sensitive to the choice of the age

threshold.

Two different likelihoods of removing swarms, utilizing three indicators

mentioned above, are applied here. These indicators for the swarm leaders in swarm local

best archive are computed. Two different likelihoods are as follows:

1) Likelihood of Removing the Swarms with Higher Rank Values: At iteration t, the

likelihood that the swarm leader i with rank indicator ()tiR , and age indicator ()tiA , ,

to be eliminated is computed using the following equation:

 () () ()tiAtiRtil ,),1(,1 ×−= . (7.9)

Equation (7.9) implies that for those swarm leaders located farther away from the

non-dominated solution and have exceeded the age threshold, thA , should have a

higher likelihood of being eliminated. This implies any bird species that fail to catch

up with the mixed-species flock after traveling together for some time will likely be

lost from the flock.

2) Likelihood of Removing the Swarms in the Same Cell with Rank Values Having

Reached One: At iteration t, the likelihood that the swarm leader i with local rank

 152

Function Swarm_declining_strategy(age, LPrank, LPden, ppv , t , thA , Lh)

/*age = age value of swarms

/*LPrank = rank of local best for swarm leaders

/*LPden = density of local best for swarm leaders

/* ppv = desired population size per cell

/* t = current iteration

/* thA = age threshold

/* Lh = home address of swarm leaders

Begin

 For each swarm

 []1,0randrk =

 []1,0randrl =

 Compute Rank Indicator, R, using Lprank

 Compute Crowdedness Indicator, D, using LPden and ppv

 Compute Age Indicator, A, using age and thA

 Compute local rank value, Lr , using Lh and Pareto ranking

scheme

 Compute Rank Indicator for local rank value, LR , using Lr

 Compute 1l and 2l using Equations (7.9) and (7.10)

respectively

 If lk rlrl >∪> 21

 Record swarms index to M

 EndIf

 EndFor

 Remove swarms recorded in M

End

Figure 7.9 Pseudocode of swarm declining strategy.

value ()tirL , , density indicator ()tiD , , and age indicator ()tiA , , will be eliminated is

given by

 ()
()

()() ()tiAtiD
tir

til
L

,1,
,

1
1,2 ×−×

−= , (7.10)

where ()tirL , is the local Pareto rank values computed using the Pareto ranking

scheme [146]. For those swarm leaders that are residing in cells with rank indicator

()tiR , equal to one, the logical choice is to delete those swarms with higher local

Pareto rank values, ()tirL , that reside in the crowded cell and exceed the age

 153

threshold, thA . This also implies that some bird species in the mixed-species flock

that have traveled together for some time may compete for the limited food source in

an enclosed area

The first likelihood removes swarms that are not likely to contribute the progression

towards the Pareto front, while the second likelihood acts like a diversity mechanism to

encourage diversity among swarms. Two random numbers with uniform distribution

between []1,0 are generated to compare with 1l and 2l . All the swarms that have either 1l

or 2l greater than the two random numbers are removed from the swarm population.

Figure 7.9 presents the pseudocode of swarm declining strategy.

7.3.8 Objective Space Compression and Expansion Strategy

The disadvantage of implementing the cell-based rank density scheme is the

inability to assure the needed resolution of the resulting Pareto front, because an

individual’s rank value is represented by the rank value of its “home address,” not by its

own dominance status [140], even this is a very effective design in determining the

ranking relationship during the evolutionary process. The reason is the boundaries of the

objective, i.e., min

iF and max

iF , are usually selected large enough, sometimes too large, to

ensure that the entire true Pareto front is included within these boundaries. In addition to

this, if the predetermined cell scales, mKKK ××× K21
, are not chosen to be

correspondingly large enough, then the cell width is too spacious compared to the true

Pareto front, which may result in an inaccurate Pareto optimal set [140]. One logical

choice to counter this problem is to increase the cell scales to a very large number.

However, this approach will increase the computational complexity unnecessarily.

 154

 (a) (b)

Figure 7.10 Illustration of objective space compression strategy (arrows in (b) signify the objective

space is compressed).

 (a) (b)

Figure 7.11 Illustration of objective space expansion strategy (arrows in (b) signify the objective

space is compressed).

Inspired by DMOEA, DSMOPSO proposes the objective space compression and

expansion strategy. This strategy is designed to adjust the size of the objective space

based on some criteria and to ensure that swarms progressively find the true Pareto front.

This design is to counter two problems: 1) at early iterations, the swarm leaders’ local

bests tend to quickly converge prematurely to the cells with rank value equal to 1. If this

happens, the swarm population will not progress since they are stuck in those cells under

the assumption that they had “found” the true Pareto front. Hence, objective space

compression strategy is applied to reinforce the swarms’ progression. Illustrated in Figure

7.10(a), the grey cells have rank value of 1. The swarm leaders G and H are located in a

max

1F

max

2F

min

1F

min

2F

max

2P

max

1P

min

2P

min

1P

True Pareto

Front

G H

max

1F

max

2F

min

1F

min

2F

True Pareto

Front

G H

max

1F

max

2F

min

1F

min

2F

max

2P

max

1P

min

2P

min

1P

True Pareto

Front

G H

max

1F

max

2F

min

1F

min

2F

max

2P

max

1P

min

2P

min

1P

True Pareto

Front

G H

max

1F

max

2F

min

1F

min

2F

True Pareto

Front

G H

max

1F

max

2F

min

1F

min

2F

True Pareto

Front

G H

max

1F

max

2F

min

1F

min

2F

True

Pareto Front
max

1F

max

2F

min

1F

min

2F

True

Pareto Front

max

1P
min

1P
max

2P

min

2P

max

1F

max

2F

min

1F

min

2F

True

Pareto Front
max

1F

max

2F

min

1F

min

2F

True

Pareto Front
max

1F

max

2F

min

1F

min

2F

True

Pareto Front

max

1P
min

1P
max

2P

min

2P

max

1F

max

2F

min

1F

min

2F

True

Pareto Front

max

1P
min

1P
max

2P

min

2P

 155

grey cell. After the objective space is compressed, the location of grey cells is updated

and only swarm leader G now resides in a grey cell while the rank value of swarm leader

H is 2 (refer to Figure 7.10(b)). This will encourage swarm leader H to move toward the

true Pareto front; 2) when the objective space compression strategy is applied several

times at early iterations, there is a possibility that the objective space is overly

compressed and can cause the boundaries of the objective to not cover the true Pareto

front (refer to Figure 7.11(a)). For this case, the objective space expansion strategy is

applied to enlarge the boundaries of the objective until the true Pareto front is

approached.

The implementation of the objective space compression and expansion strategy is given

below:

Compression Strategy: At iteration t, the lower and upper boundaries of the ith

dimension of the objective space and current population are denoted as min

iF ,

max

iF , min

iP and max

iP [140]. The criteria to implement objective space compression

strategy are:

C1-All those swarms with minimum age value greater than the age threshold, thA ,

C2-Their maximum cell rank of the swarm leaders in swarm local best archive is

equal to one, and

C3a- For upper boundary: ()minmaxmaxmax

iiii FFPF −>− δ and/or

C3b- For lower boundary: ()minmaxminmin

iiii FFPF −>− δ .

The third criterion controls the sensitivity of triggering the objective space compression

strategy. The ratio δ is within [0,1] and it implies that the objective space will compress

 156

if there is at least a ()%100×δ space in any dimension. An example is shown in Figure

7.10(a), i.e., distance between max

1F and max

1P , and distance between max

2F and max

2P . If

the criteria are satisfied, then the new boundaries of the ith dimension of the objective

space are adjusted as follow:

For upper boundary:
2

maxmax

max ii

i

PF
F

+
= (given criteria C1, C2 and C3a are satisfied) or

 (7.11a)

For lower boundary:
2

minmin
min ii

i

PF
F

+
= (given criteria C1, C2 and C3b are satisfied).

(7.11b)

Equations (7.11a) and (7.11b) indicate that the distance of the upper and lower

boundaries are reduced by half of its original value.

Expansion Strategy: The criteria to implement objective space compression strategy

are given:

E1- All those swarms with minimum age value greater than the age threshold, thA ,

E2- Their maximum cell rank of the swarm leaders in swarm local best archive is

equal to one, and

E3a- For upper boundary: ()minmaxmaxmax 005.0 iiii FFPF −≤− and/or

E3b- For lower boundary: ()minmaxminmin 005.0 iiii FFPF −≤− .

The third criterion implies that the objective will be expanded if there is at most 0.5

percent space in any dimension, which also means that the distance between the upper

boundary of objective space and the upper boundary of current population is too small as

depicted in Figure 7.11(a). Note that 0.5 percent is chosen for practical purposes. If this

 157

criterion is satisfied, then the new boundaries of the ith dimension of the objective space

are adjusted as follows:

For upper boundary:
()

2

maxmax

maxmax ii

ii

PF
FF

+
+= (given criteria E1, E2 and E3a are

satisfied) or (7.12a)

For lower boundary:
()

2

minmin

minmin ii

ii

PF
FF

+
−= (given criteria E1, E2 and E3b are

satisfied). (7.12b)

Equations (7.12a) and (7.12b) indicate that the distance of the upper and lower

boundaries are expanded by half of its original value.

After the compression or expansion strategy is performed, the “home address” of each

swarm, the rank and density matrices are recalculated because they may not be the same

as before. In addition, the swarm local best archive is reinitialized again. In the

pseudocode presented in Figure 7.12, a parameter St is set to 0, indicating that the

objective space compression and expansion strategy has been performed.

7.4 Comparative Study

 Three studies are conducted. The first study aims to evaluate the performance of

the DSMOPSO against the selected algorithms. Performance evaluation is determined

using the standard test suits and both qualitative and quantitative metrics. In the second

study, the comparison on the computational cost of the proposed algorithm and selected

MOPSOs is presented in Subsection 7.4.4. Lastly, in Subsection 7.4.5, a series of

experiments are performed to investigate the effect of the parameter settings on the

proposed algorithm.

 158

Function Objective_space_compression_expansion_strategy(δ , A
F , age, thA ,

pop
F ,),,(minmin

1 mFF K ,),,(maxmax
1 mFF K , LPrank)

/*δ = user defined parameters

/*
A

F = fitness values of particles in Archive

/*age = age value of swarms

/* thA = age threshold

/*
pop

F = fitness values of swarm population (from all swarms)

/*),,(minmin
1 mFF K = all lower boundaries in m dimensional objective space

/*),,(maxmax
1 mFF K = all upper boundaries in m dimensional objective

space

/*LPrank = rank of local best for swarm leaders

Begin

 Find all swarm leaders that have age thA> , ageL

 If LPrank of ageL are equal to 1,

 Find []popA
m FFPP ,min),,(minmin

1 =K

 Find []popA
m FFPP ,max),,(maxmax

1 =K

 For 1=i tom

 /*For upper boundary

 If () 005.0maxmax >− ii PFabs , /* compression-max

 If () ()minmaxmaxmax
iiii FFPFabs −×>− δ

 Compute Equation (7.11a)
 EndIf

 Else /* expansion-max

 Compute Equations (7.12a)
 EndIf

 /*For lower boundary

 If () 005.0minmin >− ii PFabs , /* compression-min

 If () ()minmaxminmin
iiii FFPFabs −×>− δ

 Compute Equation (7.11b)

 EndIf

 Else /* expansion-min

 Compute Equations (7.12b)
 EndIf

 Endfor

 EndIf

 Set 0=St

 Rank_and_density_estimation()

End

Figure 7.12 Pseudocode of objective space compression and expansion strategy.

 159

7.4.1 Experimental Framework

Three MOPSOs are selected for performance and computational cost comparison.

Among those three MOPSOs, cMOPSO [128] and DMOPSO are state-of-the-art

multiple-swarm MOPSOs; while MOPSO [120] is selected since it has produced good

performance. Each algorithm is set to perform only 30,000 fitness evaluations as

suggested in [49]. The parameter configurations for all MOPSOs are summarized in

Table 7.1. All of the algorithms are implemented in Matlab. All of the algorithms use a

real number representation for decision variables. However, binary representation of

decision variables can be easily adopted, if necessary. For each experiment, 50

independent runs were conducted to collect the statistical results. The algorithms are

tested on the ZDT test suite, which is listed in Table 6.1 and we set the number of

variables equal to 30, i.e., 30=n .

7.4.2 Selected Performance Metrics

Similar to Chapter 6, all comparisons are based on both quantitative and

qualitative measures. Quantitative comparison is based on the plots of the final Pareto

fronts in a given run. For quantitative comparison, two performance metrics are taken

into consideration to measure the quality of algorithms with respect to dominance

relations. The results are illustrated by statistical box plots. The performance metrics

used here are same as given in Subsection 6.4.3: hypervolume indicator (S Metric) and

additive binary epsilon indicator.

 160

Table 7.1 Parameter configurations for existing MOPSOs and DSMOPSO.

 Parameters Settings for MOPSO

cMOPSO

[128]

No. swarms = 4; Internal iterations, 5maxst = ; Population size = 40; Archive

size = Not fixed; No. of iterations = 150

MOPSO

[120]

50 divisions adaptive grid; Mutation probability = 0.5; Population size = 100;

Archive size = 100; No. of iterations = 300

DMOPSO

Test Function ZDT1

No. swarms = 4; Swarm size = 5; 2,1,50 == iK i ; Archive size = Not fixed;

5maxst = ; unp = 3, lnp = 1; 5.0== βα ; rud = 0.7; rld = 0.02 ; 10=ppv ; S =

0.02; and Ka = 10.

Test Function ZDT2

No. swarms = 2; Swarm size = 20; 2,1,50 == iK i ; Archive size = Not fixed;

5maxst = ; unp = 3, lnp = 1; 5.0== βα ; rud = 0.7; rld = 0.02 ; 10=ppv ; S =

0.02; and Ka = 40.

Test Function ZDT3

No. swarms = 3; Swarm size = 6; 2,1,50 == iK i ; Archive size = Not fixed;

5maxst = ; unp = 3, lnp = 1; 5.0== βα ; rud = 0.7; rld = 0.02 ; 10=ppv ; S =

0.02; and Ka = 15.

Test Function ZDT4

No. swarms = 2; Swarm size = 20; 2,1,50 == iK i ; Archive size = Not fixed;

5maxst = ; unp = 5, lnp = 1; 5.0== βα ; rud = 0.9; rld = 0.02 ; 10=ppv ; S =

0.02; and Ka = 40.

Test Function ZDT6

No. swarms = 4; Swarm size = 5; 2,1,50 == iK i ; Archive size = Not fixed;

5maxst = ; unp = 3, lnp = 1; 5.0== βα ; rud = 0.9; rld = 0.02 ; 10=ppv ; S =

0.02; and Ka = 40.

Test Function DTLZ2

No. swarms = 4; Swarm size = 5; 2,1,50 == iK i ; Archive size = Not fixed;

5maxst = ; unp = 3, lnp = 1; 5.0== βα ; rud = 0.7; rld = 0.02 ; 10=ppv ; S =

0.02; and Ka = 10.

*DSMOPSO Swarm size = 6; 2,1,6 == iK i ; 3=thA ; 3=ppv ; 1.0=δ ; Archive size = 100

7.4.3 Performance Evaluation

Figure 7.13 presents the box plots of hypervolume indicator, i.e., the IH values,

found by all chosen MOPSOs for all test problems. The figure shows DSMOPSO,

DMOPSO, and MOPSO achieve high IH values for all test problems. Higher IH values

indicate the solutions found by an algorithm are able to dominate a larger region in the

objective space. In Figure 7.13, the IH values of MOPSOs are normalized for each test

problem. So, the highest IH value will equal one. Comparing the IH values of DSMOPSO

with DMOPSO and MOPSO for ZDT1, ZDT3, and DTLZ2, DSMOPSO is slightly

 161

lower, which is also confirmed by the tested result computed using the Wilcoxon rank-

sum test in Table 7.2. However, the results in Table 7.2 show DSMOPSO is better than

DMOPSO for ZDT2 and ZDT6, and performs better than MOPSO for ZDT2. Only for

ZDT4, did DSMOPSO share the same victory with DMOPSO and MOPSO. For the case

of DTLZ2, although the IH values of DSMOPSO are lower than the rest of MOPSOs, the

difference in IH values are very small. In addition, the results in Table 7.2 indicate that

there are no significant difference between the solutions found by DSMOPSO and the

rest of the MOPSOs. Overall, both box plots and results in Table 7.2 clearly show that the

performance of DSMOPSO is significantly better than cMOPSO. Lastly, the low

standard deviation for all test problems in Figure 7.13 shows DSMOPSO can produce

reliable solutions.

The results for additive binary ε-indicator for all test functions are presented in

Figure 7.14. The results for each test function are summarized into two box plots,

()31, −+ BAIε and ()ABI ,31−+ε , in which A denotes DSMOPSO, while B1-3 corresponds to

algorithms DMOPSO, MOPSO, and cMOPSO, respectively. Both ()31, −+ BAIε and

()ABI ,31−+ε have to be taken into account to decide whether DSMOPSO dominates (or is

better than) any of the selected MOPSOs. Wilcoxon rank-sum test is applied to evaluate

the distribution of the +εI values, and the results are presented in Table 7.3. Combine box

plots of Figure 7.14 and results from Table 7.3, the following analysis is given:

DSMOPSO weakly dominates DMOPSO and MOPSO for ZDT1, ZDT2, ZDT3, and

ZDT6 because () 0, 21 ≈−+ BAI ε and () 0,21 >−+ ABI ε . Only for ZDT4 and DTLZ2, does

DSMOPSO share the same success as DMOPSO, especially indicated in Table 7.3 where

there are no significant differences between DSMOPSO and DMOPSO. Also, same level

 162

 IH values for ZDT1 IH values for ZDT2 IH values for ZDT3

 IH values for ZDT4 IH values for ZDT5 IH values for DTLZ2

Figure 7.13 Box plot of hypervolume indicator (IH values) for all test functions (Start from top left)

by algorithms 1-4 represented (in order): DSMOPSO, DMOPSO, MOPSO, and cMOPSO.

of performance is achieved by DSMOPSO and MOPSO for ZDT4 with the verification in

Figure 7.14 and Table 7.3. DSMOPSO strictly dominates cMOPSO for ZDT1, ZDT2,

ZDT3, ZDT4, and DTLZ2 because the () 0, 3 ≤+ BAI ε and () 0,3 >+ ABI ε , except for

ZDT6 in which DSMOPSO weakly dominates cMOPSO. Overall, DSMOPSO shows a

better performance compared to the selected MOPSOs.

For qualitative comparison, the resulting Pareto fronts generated by the selected

MOPSOs from a single run given the same initial population are presented in Figures

7.15-7.20. The resulted Pareto fronts obtained by DSMOPSO are comparatively well

expanded and near optimal Pareto fronts. DMOPSO and MOPSO are able to find

satisfactory Pareto fronts. However, cMOPSO either has difficulty converging to the true

Pareto front for ZDT1, ZDT4, and ZDT6, or it partially obtains part of the solutions of

1 2 3 4

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4

98.95

99

99.05

99.1

99.15

99.2

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4

98.95

99

99.05

99.1

99.15

99.2

 163

the optimal Pareto front. Only for DTLZ2, the resulting Pareto front of DSMOPSO is

slightly not better than DMOPSO’s. In general, both quantitative and qualitative results

conclude that the performance of DSMOPSO is highly competitive with respect to the

selected state-of-the-art MOPSOs for a selected set of test functions.

Table 7.2 The distribution of IH values tested using Wilcoxon rank-sum test. The table presents the z

values and p-values, i.e., presented in the brackets as (z value, p-value), with respect to the

alternative hypothesis (i.e., p-value < α=0.05) for each pair of DMOPSO and a selected MOPSO.

Note that the distribution of DMOPSO is significantly difference or better than those selected

MOPSO unless stated.

IH (DSMOPSO) AND
Test

Functions
IH (DMOPSO) IH (MOPSO) IH (cMOPSO)

ZDT1 (-3.6283, 2.9E-04) (-6.0537, 1.9E-09) (3.9776, 6.9E-05)

ZDT2 (2.8620, 4.0E-02) (2.8620, 4.2E-02) (4.6455,3.4E-06)

ZDT3 (-6.5569, 5.5E-11) (-6.6318, 3.3E-11) (6.5421, 6.1E-11)

ZDT4
(3.8575,>0.05)

no difference

(0.290,>0.05)

no difference
(4.6455, 3.4E-06)

ZDT6 (-2.7837, 5.0E-03)
(0.8087,>0.05)

no difference
(5.5674, 2.6E-06)

DTLZ2
(0.5127,>0.05)

no difference

(0.5681,>0.05)

no difference

(0.5589,>0.05)

no difference

1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.0119
0.0078 0

1 2 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.0627

0.0271

0.1654

1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.0119
0.0078 0

1 2 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.0627

0.0271

0.1654

()31, −+ BAIε for ZDT1 ()ABI ,31−+ε for ZDT1

 164

1 2 3

0

0.5

1

1.5

0.0216 0.0207
-0.0026

1 2 3

0

0.5

1

1.5

0.0221

0.0355

 1.0311

1 2 3

0

0.5

1

1.5

0.0216 0.0207
-0.0026

1 2 3

0

0.5

1

1.5

0.0221

0.0355

 1.0311

()31, −+ BAIε for ZDT2 ()ABI ,31−+ε for ZDT2

1 2 3
0

0.5

1

1.5

0.0079 0.0082 0

1 2 3

0

0.5

1

1.5

0.0361
0.0242

0.7959

1 2 3
0

0.5

1

1.5

0.0079 0.0082 0

1 2 3

0

0.5

1

1.5

0.0361
0.0242

0.7959

()31, −+ BAIε for ZDT3 ()ABI ,31−+ε for ZDT3

1 2 3
0

0.5

1

1.5

2

2.5

3

0.0076 0.0102 -0.0019

1 2 3

0

0.5

1

1.5

2

2.5

3

0.0683

0.0251

2.4983

1 2 3
0

0.5

1

1.5

2

2.5

3

0.0076 0.0102 -0.0019

1 2 3

0

0.5

1

1.5

2

2.5

3

0.0683

0.0251

2.4983

()31, −+ BAIε for ZDT4 ()ABI ,31−+ε for ZDT4

1 2 3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.0077

0.0117 0.0140

1 2 3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.0428

0.0625

0.0299

1 2 3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.0077

0.0117 0.0140

1 2 3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.0428

0.0625

0.0299

()31, −+ BAIε for ZDT6 ()ABI ,31−+ε for ZDT6

 165

Figure 7.14 Box plot based upon multiplicative binary epsilon indicator (Iε+ values) all test functions

(Start from top left) (algorithm A refer to DSMOPSO; algorithms 1-3 are referred to as

DMOPSO, MOPSO, and cMOPSO, respectively).

Table 7.3 The distribution of Iε+ values tested using Wilcoxon rank-sum test. The table presents the z

values and p-values with respect to the alternative hypothesis (i.e., p-value < α=0.05) for each

pair of DMOPSO and a selected MOPSO. In each cell, both values are presented in a bracket

like this: (z value, p-value). For simplicity in naming, DSMOPSO is represented by A, and

algorithms B1 to B3 are referred to as DMOPSO, MOPSO, and cMOPSO, respectively. The

distribution of DMOPSO is significantly difference or better than those selected MOPSO unless

stated.

Test

Functions

Iε+ (A,B1) and

Iε+ (B1,A)

Iε+ (A,B2) and

Iε+ (B2,A)

Iε+ (A,B3) and

Iε+ (B3,A)

ZDT1 (-6.0537, 1.5E-04) (-6.0537, 1.4E-04) (-4.3553, 1.3E-05)

ZDT2
(0,>0.05)

no difference
(-2.7790, 5.5E-03) (-4.4382, 9.1E-06)

ZDT3 (-6.2464, 4.2E-04) (-6.5717, 5.0E-06) (-6.6979, 2.1E-06)

ZDT4
(-0.001,>0.05)

no difference

(-0.015,>0.05)

no difference
(-4.4055, 3.4E-04)

ZDT6 (-6.0028, 1.9E-06) (-6.5315, 6.5E-06) (-5.3496, 8.8E-06)

DTLZ2
(0,>0.05)

no difference
(-5.2337, 3.1E-04) (-5.7395, 1.6E-04)

1 2 3

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.0333

0 0

1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0274

0.4330

0.3562

1 2 3

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.0333

0 0

1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0274

0.4330

0.3562

()31, −+ BAIε for DTLZ2 ()ABI ,31−+ε for DTLZ2

 166

Figure 7.15 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) MOPSO, and (d) cMOPSO

for ZDT1. The continuous line depicts the true Pareto front.

Figure 7.16 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) MOPSO, and (d) cMOPSO

for ZDT2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DSMOPSO DMOPSO

MOPSO cMOPSO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DSMOPSO DMOPSO

MOPSO cMOPSO

 167

Figure 7.17 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) MOPSO, and (d) cMOPSO

for ZDT3.

Figure 7.18 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) OMOPSO, and MOPSO for

ZDT4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

DSMOPSO DMOPSO

MOPSO cMOPSO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DSMOPSO DMOPSO

MOPSO cMOPSO

 168

Figure 7.19 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) MOPSO, and (d) cMOPSO

for ZDT6.

Figure 7.20 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) MOPSO, and (d) cMOPSO

for DTLZ2.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

DSMOPSO DMOPSO

MOPSO cMOPSO

0
0.2

0.4
0.6

0.8
1

1.2
1.4

0

0.5

1

1.5

0

0.5

1

1.5

0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0
0.2

0.4
0.6

0.8
1

1.2
1.4

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0
0.2

0.4
0.6

0.8
1

1.2
1.4

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0
0.2

0.4
0.6

0.8
1

1.2
1.4

0

0.5

1

1.5

0

0.5

1

1.5

0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0
0.2

0.4
0.6

0.8
1

1.2
1.4

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0
0.2

0.4
0.6

0.8
1

1.2
1.4

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

DSMOPSO DMOPSO

MOPSO cMOPSO

 169

7.4.4 Comparison in Number of Fitness Evaluation

Table 7.4 Average number of evaluations computed for the test problems to achieve GD =0.001.

 GD =0.001 *DSMOPSO DMOPSO MOPSO cMOPSO

ZDT1
Average No.

Evaluations
20,252 464.8 3,267 3,264

ZDT2
Average No.

Evaluations
10,003 998.9 2,900 500,000

ZDT3
Average No.

Evaluations
25,886 500,000 500,000 500,000

ZDT4
Average No.

Evaluations
851 12,781.6 22,149 500,000

ZDT6
Average No.

Evaluations
1,490 2,584 5,340 500,000

DTLZ2
Average No.

Evaluations
83,568 18234 500000 59840

In this experiment, the computational cost of DSMOPSO is compared with the

selected MOPSOs. In [148], an algorithm called ParEGO has shown efficient in solving

nine relatively low-dimensional, real-valued test functions using a very low number of

function evaluations. A targeted generational distance [45], GD value, is set to 0.001 for

all of the test problems. A limit of 500,000 evaluations is used as stopping criteria. Each

MOPSO performs 50 independent runs and the total number of evaluations to reach the

targeted GD value is recorded for each run. All parameter configurations for MOPSO are

shown in Table 7.1. The average number of evaluations is recorded for each MOPSO and

is presented in Table 7.4. Overall, MOPSO designs coupled with dynamic population

concepts show saving in computational cost compared to the standard MOPSOs.

DMOPSO demands less computational cost for ZDT1, ZDT2, and DTLZ2 than

DSMOPSO. However, DSMOPSO is able to achieve less computational cost for more

challenging problems in ZDT3, ZDT4, and ZDT6 compared to the rest of the MOPSOs.

From observations, it seems that DSMOPSO needs less computational cost for test

problems with disconnected Pareto front and with multiple local optima. For connected

 170

Pareto fronts, the results seem to indicate that DSMOPSO requires more evaluations than

DMOPSO, MOPSO, and cMOPSO, most likely due to the process involved in adapting

the number of swarms needed.

7.4.5 Sensitivity Analysis

Analysis of how sensitive DSMOPSO is with respect to the setting of the design

parameters is presented herein. The same six test functions are used and hypervolume

indicator is adopted. A limit of 30,000 evaluations is used as stopping criterion, and 30

independent runs are performed. Five experiments are conducted. In every experiment

one parameter is varied while the rest of the parameter configurations remain the same as

shown in Table 7.1. Box plots of hypervolume indicator for all test functions are showed

for the five experiments.

1) Effect of Varying the Swarm Size: Figure 7.21 presents the box plots of

hypervolume indicator for swarm size varied from 2 to 20. By observation, the IH

values obtained from all test functions are relatively high with small variations

except for ZDT2, no result is obtained for swarm size equal to 2 because it failed

to obtain the Pareto front. In overall, the figure shows that swarm size between 4

to 6 yield high IH values for all test functions except for ZDT4 and DTLZ2, the IH

values is slightly lesser than the IH value obtained by swarm size equal to 2 (the

difference is about 0.01 to 0.05). Hence, we recommend setting the swarm size

between 4 and 6.

2) Effect of Varying the Grid Scale: Figure 7.22 shows the impact of the grid scale

on the performance of DSMOPSO. Looking at the figure, the results yielded

indicate that the performance of DSMOPSO is not affected. However, if compare

 171

the results among the test problems, ZDT3, ZDT6, and DTLZ2 do not show any

patterns associated with different grid scales; while ZDT1, ZDT2, and ZDT4

shows good results for different grid scales in terms of high IH values and very

low standard deviations. Hence, based on this observation, the algorithm is

believed to be insensitive to the grid scale.

3) Effect of Varying the Population Size Per Cell: The population size per cell varies

from 3 to 25. Figure 7.23 shows DSMOPSO is able to achieve high IH values

with small standard deviation (i.e. the maximum deviation is about 0.1) for all test

functions regardless of any population size per cell. Among those values, it is

shown that IH values are consistently highest for all test functions when the

population size per cell equals 3. Based on the results, we recommend using

population size per cell equal to 3.

4) Effect of Varying the δ Parameter: Refer to Figure 7.24, the IH values remains

very close to 1 as δ increases for each test function except for ZDT3 and DTLZ2,

which have relatively lower IH values. The results also show the standard

deviations are generally low in overall, indicating δ parameter does not

significantly influence the reliability of the solutions. Based on the results, any

settings for δ will work for those test functions.

5) Effect of Varying the Age Threshold thA : The experimental results of varying the

age threshold between 3 and 25 are presented in Figure 7.25. Again, the result

shows any setting for age threshold is able to deliver good performance, i.e., high

IH values varied between 0.94 to 1. Hence, any age threshold settings are allowed.

 172

 IH values for ZDT1 IH values for ZDT2 IH values for ZDT3

 IH values for ZDT4 IH values for ZDT5 IH values for DTLZ2

Figure 7.21 Box plot of hypervolume indicator (IH values) for experiment with varying the swarm

size. Note that 1-6 on x-axis represented (in order): swarm size of 2, 4, 6, 8, 12, and 20.

 IH values for ZDT1 IH values for ZDT2 IH values for ZDT3

 IH values for ZDT4 IH values for ZDT5 IH values for DTLZ2

Figure 7.22 Box plot of hypervolume indicator (IH values) for experiment with varying the grid scale

(iK). Note that 1-6 on x-axis represented (in order): iK equals to 4, 5, 6, 7, 10, and 15.

1 2 3 4 5 6

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Not Available

1 2 3 4 5 6

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Not Available

1 2 3 4 5 6

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1 2 3 4 5 6

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1 2 3 4 5 6

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

 173

 IH values for ZDT1 IH values for ZDT2 IH values for ZDT3

 IH values for ZDT4 IH values for ZDT5 IH values for DTLZ2

Figure 7.23 Box plot of hypervolume indicator (IH values) for experiment with varying the

population size per cell (ppv). Note that 1-5 on x-axis represented (in order): ppv equal to 3, 5, 8,

12, and 25.

 IH values for ZDT1 IH values for ZDT2 IH values for ZDT3

 IH values for ZDT4 IH values for ZDT5 IH values for DTLZ2

Figure 7.24 Box plot of hypervolume indicator (IH values) for experiment with varying the

δ parameter. Note that 1-7 on x-axis represented (in order): δ is equal to 0.1, 0.2, 0.3, 0.4, 0.5, 0.7,

and 0.9.

1 2 3 4 5

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1 2 3 4 5

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5

0.8

0.85

0.9

0.95

1

1 2 3 4 5

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1 2 3 4 5

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6 7

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1 2 3 4 5 6 7

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6 7

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1 2 3 4 5 6 7

0.8

0.85

0.9

0.95

1

1 2 3 4 5

0.98

0.985

0.99

0.995

1

1 2 3 4 5

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5

0.98

0.985

0.99

0.995

1

1 2 3 4 5

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5

0.98

0.985

0.99

0.995

1

1 2 3 4 5

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6 7

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6 7

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6 7

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6 7

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6 7

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

 174

 IH values for ZDT1 IH values for ZDT2 IH values for ZDT3

 IH values for ZDT4 IH values for ZDT5 IH values for DTLZ2

Figure 7.25 Box plot of hypervolume indicator (IH values) for experiment with varying the age

threshold (thA). Note that 1-6 on x-axis represented (in order): thA is equal to 3, 4, 5, 6, 10, and 25.

1 2 3 4 5 6

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6
0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6
0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6

0.94

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4 5 6

0.9

0.92

0.94

0.96

0.98

1

 175

CHAPTER 8

PROPOSED PSO AND MOPSO FOR CONSTRAINED

OPTIMIZATION

Chapters 6 and 7 incorporated the dynamic population concept into swarm

population to solve for unconstrained MOPs. However, in real world applications, most

of the optimization problems involve constraints. To optimize the constrained problems is

challenging since the optimum solution(s) must be feasible or else the solutions found

will be useless. In this chapter, the goal is to design a constrained MOPSO to solve for

constrained multiobjective optimization problems. In order to achieve this goal, a

constrained PSO is designed to solve for constrained optimization problems, as a basic

step. Then, the proposed constrained PSO is extended into a constrained MOPSO. Details

on the two proposed algorithms are elaborated and experiments are conducted to evaluate

the performance of the proposed algorithms.

8.1 Introduction

In real world applications, most optimization problems are subjected to different types of

constraints. These problems are known as the constrained optimization problems (COPs)

or if more than one objective functions are involved, it is called constrained

multiobjective optimization problems (CMOPs). Although publication records have

proven that evolutionary algorithms (EAs) are effective tools in solving different types of

optimization problems, EAs in their original design are unable to solve constrained

 176

optimization problems effectively. Hence, in the past decade, many researchers have

developed a variety of constraint handling techniques to counter this deficiency. These

techniques are mainly incorporated within evolutionary algorithm designs (EAs),

particularly genetic algorithm, to solve COPs [155,156] and CMOPs [157-166]. Recently,

EA based on multiobjective optimization formulation for COPs gains much attention

since it requires neither penalty factors that need heuristic tuning nor the need to balance

the right proportion of feasible and infeasible solutions in the population via selection

criteria [157,164].

PSO has advantages over evolutionary algorithms, which are its simplicity, easy

implementation, and rapid convergence capability. So, the number of researches on PSO

design to solve for unconstrained SOPs and MOPS has gradually gain momentum in the

past few years. However, there are relatively fewer works that apply PSO for COPs [167-

175]. Similar to EAs, the original PSO design also lacks a mechanism to handle

constraints in order to solve COPs. Most of the proposed PSO designs adopted the

popular constraint handling techniques that are build for EAs. Evidence shows in recent

publications on constraint handling with PSO including penalty methods [167], selection

criteria based on feasible and constraint violation [168-170], lexicographic order [171],

and multiobjective constraint handling method [172-175], to name a few.

Nevertheless, many real world problems are often multiobjective in nature. The

ultimate goal is to develop multiobjective particle swarm optimization algorithms

(MOPSOs) that effectively solve CMOPs. In addition to this perspective, the recent

successes of MOPSOs in solving unconstrained MOPs have further motivated us to

 177

design a constrained MOPSO to solve CMOPs. To achieve this goal, the constrained PSO

is proposed to deal with COPs as a basic step towards the design of constrained MOPSO.

In this design, we integrate the multiobjective optimization techniques in PSO for

constraint handling. Three main design elements are incorporated to the proposed PSO:

1) the updating personal best archive procedure has two separate conditions. The first

condition targets the infeasible personal best in the archive. For this case, a simple

formula based on the particles’ Pareto rank and their constraint violation is designed to

update the infeasible personal best. The second condition aims for the feasible personal

best and the updating rule is based on Pareto ranks or fitness. 2) Feasible and infeasible

global best archives are used to store both feasible and infeasible nondominated

solutions. The purpose is to make use of these solutions to guide the particles to

feasibility and then towards the global optimum solution. Procedure to maintain these

archives are discussed. 3) The acceleration constants in the PSO equation are controlled

by a feasibility ratio and the constraint violations of the personal best and global best

archives’ members. This will encourage the particles to search for feasible regions and

the global optimum solution. These design elements are adopted to solve for CMOPs.

Different mutation procedures are incorporated in both proposed constrained PSO and

MOPSO.

8.2 Related Works

In this section, relevant works of PSO adopting multiobjective optimization

formulation to solve for COPs are reviewed first. Then, a brief review on the various

constraint handling techniques designed for multiobjective evolutionary algorithms

 178

(MOEAs) is presented, as there exist no prominent constrained MOPSO design in

literature, to our best knowledge.

Multiobjective constraint handling formulation (also called multiobjective

optimization techniques to handling constraints) are based on multiobjective optimization

concepts. The idea is to convert the constraints into one or more unconstrained objective

functions and handle them via Pareto dominance relation. From the comprehensive

survey conducted by Mezura-Montes and Coello Coello [176], they grouped the

techniques available into two main categories.

For the first category, a COP is converted into an unconstrained bi-objective

optimization problem where the first objective is the original objective function and the

second objective is the sum of the constraint violations. The following works fall into this

category: Lu and Chen [172] proposed a novel constraint handling technique, called

dynamic objective method (DOM), which can be easily incorporated into a variety of

PSO algorithms. DOM does not apply Pareto dominance relation, but incorporates a

threshold to control when to start the process of optimizing the objective function from

the process of minimizing the sum of constraint violations. The threshold is used to

update personal and global bests. In addition, the same authors also proposed a restricted

velocity particle swarm optimization (RVPSO), in which the PSO equation is modified to

incorporate the impact of feasible region on the velocity equation. Experiment results

show DOM is efficient in handling constraints and the combined algorithm

(DOM+RVPSO) shows competitive in solving COPs. However, how sensitive for the

choice of thresholds to impact the performance over different test problems is not

discussed. Li et al. [173] incorporated goal oriented programming concept to guide the

 179

search towards the global optimum (feasible) solution. A feasible tolerance parameter is

defined to determine how minimum does the constraint violations should allow. Selection

rules based on Pareto dominance relationship and comparison of constraint violations are

proposed to update personal and neighborhood bests. Perturbation with minor probability

is applied for diversity maintenance. Simulation results show competitive performance

but require prior knowledge of true solution and user settings of feasible tolerance

parameter.

For the second category, a COP is converted into an unconstrained multiobjective

optimization problem (MOP), i.e., original objective function and each constraint is

treated as a separate objective function. Hence, we will have p+1 unconstrained objective

functions and the parameter p refers to the total number of constraints (see Equations

(2.2) and (2.3)). Liang and Suganathan [174] proposed a dynamic particle multi-swarm

optimization (DMS-PSO). In their design, a sub-swarm or several subswarms are

assigned to optimize one objective selected from the objective functions and constrained

functions. The assignment of these subswarms changes adaptively and the assignment

depends on the complexity of the constraints, e.g. more number of subswarms will be

assigned to work on difficult constraints. In addition, the authors applied a local search

with sequential quadratic programming (SQP) on a set of five randomly chosen particles’

personal best (pbest). Twenty-four benchmark functions are tested and the algorithm is

able to obtain the global (feasible) solution efficiently. The drawback is that the user-

defined parameters need to be tuned heuristically. In [175], the COP is converted into

p+1 unconstrained objective functions and optimizes these functions as MOPs. The

author exploited the information of the “worst” solutions by adding a global worst term

 180

on the original velocity equation. The idea is to inform the particles to slightly move

away from the center of the least feasible solutions found so far and head towards the

direction of global best. The initial experimental results show this approach can produce

good results for certain benchmark functions. The drawback is the ‘global worst’ is

defined in terms of the solution with the worst constraint violation and the author plans to

incorporate the worst objective function values in the future.

During the past decade, researchers are interested in the design of MOEAs for

unconstrained MOPs and only a handful of MOEA designs is specifically for handling

constraints.

In [158], the constraint handling is incorporated within a decision making

framework based on goals and priority, in which the constraints are given higher priority

than the objective functions during the search process. Hence, emphasis is given to

searching for feasible solutions first then to only searching for global solution next.

Coello Coello and Christiansen [159] developed two new MOEAs based on the

notion of min-max optimum to solve CMOPs. These MOEAs only optimize feasible

solutions since only feasible solutions will survive to the next generation and the

crossover and mutation operators are designed in such only to produce feasible solutions.

However, their algorithms may face difficulty in producing a set of feasible solutions at

the initialization step and require large computational time if the feasible region is small.

In [160], Multiobjective Evolutionary Strategy (MOBES) is proposed. This

design includes dividing the infeasible individuals into different classes according to their

“nearness” to the feasible region, ranking the infeasible individuals based on the class,

computing fitness values according to proportion of feasible and/or infeasible individuals

 181

in the population, and incorporating a mechanism to maintain a set of feasible Pareto

optimum solutions in every generation. Experimental results on some benchmark

functions indicate MOBES is efficient in handling constraints in CMOPs.

Deb et al. [31] introduced a constrained domination principle to handle constraint

in their NSGA-II. An individual i is said to constrained-dominate an individual j 1) if

individual i is feasible and individual j is infeasible; 2) if both individuals i and j are

infeasible and individual i has smaller constraint violations; and 3) if both individuals i

and j are feasible and individual i dominates individual j. All feasible individuals are

ranked via usual Pareto dominance relationship while all infeasible individuals are ranked

according to their amount of constraint violation. This constraint handling technique is

also adopted in micorgenetic algorithm (microGA) by Coello Coello and Pulido [177],

and a MOPSO that is proposed by Coello Coello et al. [120].

Another novel MOEAs called Evolutionary Algorithm of Non-dominated Sorting

with Radial Slots (ENORA) is proposed by Jimenéz et al. [161]. Their proposed

constraint handling technique involves allowing feasible solutions to evolve towards

optimality while infeasible solutions to evolve towards feasibility using the min-max

formulation. The diversity mechanism divides the decision space into a set of radial slots

along with the successive populations generated. Ray and Won [162] also employ

standard min-max formulation for constraint handling and divides the objective space

into a predefined number of radial slots where the solutions will compete with members

in the same slot for existence.

Harada et al. proposed Pareto Descent Repair Operator (PDR) to repair the

infeasible solution by searching for feasible solution closest to the infeasible solutions in

 182

the constraint function space [163]. Their idea is to reduce all violated constraints

simultaneously.

Geng et al. [164] proposed a new constraint handling strategy to address the

deficiency of Deb’s constrained domination principle in NSGA-II [31]. In their proposal,

infeasible elitists are kept to act as a bridge connecting any isolated feasible regions

during the evolution process. In addition, they adopted the stochastic ranking [155] to

obtain a good balance in selecting between the feasible and infeasible elitists. Their idea

is applied to NSGA-II and compared the performance with the original NSGA-II on six

benchmark CMOPs. Their proposed strategy shows significant improvement in terms of

distributions and quality of the Pareto fronts on benchmark problems with disconnected

feasible regions.

In [165], the authors proposed two algorithms to solve CMOPs. For the first

algorithm, Objective Exchange Genetic Algorithm for Design Optimization (OEGADO),

each single-objective GA optimizes one objective or constraint function with independent

population. Since there are several objectives and constraint functions, several GAs will

run concurrently. At certain generations, the solutions found by all GAs will exchange

information with each other. On the contrary, for the second algorithm, Objective

Switching Genetic Algorithm for Design Optimization (OSGADO), a single-objective

GA optimizes several objective functions in a sequential order, in which, one objective is

optimized for a certain number of fitness evaluations, then switch to the next objective to

optimize for a certain number of fitness evaluations, and this continues until the fitness

evaluation for the last objective is completed. The process is repeated starting from the

first objective to the last objective until the maximum number of fitness evaluations is

 183

reached. Based on the experimental study, OEGADO shows better and consistent

performance.

Recently, Woldesenbet et al. [166] proposed an adaptive penalty function [27]

that exploits the information of the solutions to guide the solutions towards the feasible

region and search for optimum solution. They proposed a modified objective function

value that consists of two key components: distance measure and adaptive penalty. Then,

the dominance relation of the solutions is checked using the modified objective function

values. Their idea is incorporated in NSGA-II, but can be easily extended to any MOEAs.

Simulation results show the superiority of their proposed algorithm in performance

compared to the selected MOEAs.

8.3 Proposed Approach

 Based on what we learn, the proposed approaches involve adopting an

existing constraint handling technique and modify the mechanism in the original PSO to

simultaneously handle constraints as well as optimize the objective functions. For the

following subsections, the design elements of the proposed constrained PSO are

discussed first, and then the designs are extended into a MOPSO.

8.3.1 Transform a COP into an Unconstrained Bi-objective Optimization Problem

 In Chapter 2, the general form of the multiobjective optimization problem

(MOPs) is defined by Equations (2.1)-(2.4). From these equations, by setting k equal to 1

(since there is only one objective function), we defined a general single constrained

optimization problem (COP). To transform a COP into unconstrained bi-objective

 184

optimization problem, both the inequality and equality constraints (i.e., ()xjg and ()xjh

respectively) are treated as one objective and the other objective is the original objective

function ()xF . Hence, Equations (2.1), (2.2) and (2.3) are transformed into the following

general form of an unconstrained bi-objective optimization problem:

Minimize () () ()[]xxxF Fcv ,= , (8.1)

where)(xcv is the scalar constraint violation of a decision vector x (or particle) and it is

mathematically formulated as below:

 ∑
=

=
p

j
j

j

cv

cv

p
cv

1 max

)(1
)(

x
x (8.2)

where
()()
()() ,

,,1,,0max

,,1,,0max
)(

+=−

=
=

pmjh

mjg
cv

j

j

j
K

K

δx

x
x (8.3a)

 ()x
x

j

j
cvcv

S∈
= maxmax . (8.3b)

Parameter δ is the tolerance allowed for equality constraints, usually δ is set to 0.001 or

0.0001. If a particle or solution (x) satisfies the jth constraints, then)(xjcv is set to zero,

otherwise it is greater than zero. Finally, j
cmax represents the maximum constraint

violation of each constraint in the swarm population. The goal of computing Equation

(8.2) is to treat each constraint equally and the)(xcv value lies between 0 and 1 [178].

In solving MOPs, our final goal is to find a set of optimum solutions or the Pareto

optimal set. Although the Pareto dominance relation is used to solve the bi-objective

optimization problem in Equation (8.1), in this case, we only need to find one global

optimum (feasible) solution. This is because if the solution found is infeasible (i.e.,

0)(>xcv), it is unacceptable no matter how optimal is the fitness value (()xF). Only the

 185

solutions that are landed on the feasible region (i.e., 0)(=xcv) are considered potential

solutions. Figure 8.1 illustrates the feasible region, Pareto front, search space, and the

global optimum solution.

Figure 8.1. Illustration of bi-objective optimization problem (()xF). The feasible region is mapped to

the solid segment. The shaded region represents the search space. The global optimum (black circle)

is located beat the intersection of the Pareto front and the solid segment [155].

8.3.2 Proposed PSO Algorithm to Solve COPs

All of the existing constraint handling techniques have two goals: 1) to search for

feasible solutions and to guide infeasible solutions towards feasibility; and 2) to converge

to the global optimal solution or Pareto front. In view of this fact, we have proposed the

essential design elements to achieve these goals: 1) updating personal best procedure

based on the rank in the swarm population and constraint violation; 2) maintaining

feasible and infeasible global best archive to preserve both feasible and infeasible

nondominated solutions, respectively; 3) the acceleration constants in the PSO equation

are adjusted based on the feasibility ratio and the constraint violations correspond to the

members in personal best archive and global best archive; 4) a mutation procedure is

applied in such the range of each decision variable covered for mutation is adaptively

()xcv

()xf

Global Optimum

Pareto Front

Feasible Region

0 1

Search Space

 186

reduced as the number of iterations increases to encourage exploration in early iterations

and promote exploitation via fine tuning in the later iterations.

Figure 8.2 presents the pseudocode of the proposed PSO algorithm, where t

represents the iteration count and the parameter fr is the feasibility ratio of the particles’

personal best (pbest). In the following, the key procedures (highlighted in boldface in

Figure 8.2) are elaborated in the following subsections.

Begin

/*Initialization

Initialize swarm population and velocity

Set Maximum iterations (maxt)

Set iteration 0=t

Store Personal Best (pbest)

While maxtt <

 Calculate Fitness and Constrain violation

 Apply Pareto dominance Concept

 Update Personal Best (pbest)

 Calculate fr

 Update Feasible and Infeasible Global Best Archive

 Particle Update Mechanism

 Mutation Operator

 1+= tt

EndWhile

Report optimum solution in Feasible Global Best Archive

End

Figure 8.2 Pseudocode of the proposed PSO algorithm to solve for COPs.

8.3.2.1 Update Personal Best (Pbest) Archive

In [173], the personal best is updated based on the two selection rules: 1)

nondominated particles are better than dominated ones; and 2) a particle with lower

constraint violation is better than a particle with higher constraint violation. The

drawback of these rules is to determine which rule should be prioritized first. If rule one

is given higher priority, the progress of searching for feasible regions may slow down

since personal best indirectly influence the particles’ search behavior in the swarm

 187

population. On the contrary, if rule two is given higher priority, all infeasible solutions

will quickly land on the feasible regions but this will indirectly degrade the diversity in

the swarm population and may results in premature convergence. Hence it is important to

update personal best using both rules at the same time to maintain a balance between

convergence to fitter particles and search of feasible regions.

In this study, we propose the following equation to incorporate the rank value and

scalar constraint violation of a particle (with decision vector x) to update the personal

best if the latest recorded personal best of a particle is in infeasible region.

()
()

()x
x

x cv
rank

RC +

−=

1
1 , (8.4)

where ()xRC is the rank-constraint violation indicator of particle with decision vector x ,

()xrank represents the current rank value, while)(xcv refers to the scalar constraint

violation of the particle with decision vector x . The rank values are obtained from

applying the Pareto ranking [25] to the swarm population. Refer to Equation (8.4), the

first term indicates the dominant relationship of the particles comparing the others and it

is mapped between zero and one, where zero indicates non-dominated particles and any

values greater than zero indicates particle is dominated in various degrees. The purpose is

to search for the non-dominated solutions regardless of if the solutions are infeasible, and

these solutions will possibly indirectly influence the improvement of the particles in the

next iterations in terms of convergence. However, this does not guarantee that the

particles will move towards the feasible regions easily since most of the time the

searching is spent in the infeasible regions [155]. So, the second term is added to

Equation (8.4) to emphasize the current state of the particles in terms of their feasibility

 188

or the degree of infeasibility in the current population. Note that the range of RC is

between 0 and 2, and a particle with smaller RC value indicates better solution in terms

of its convergence and feasibility status.

The updating procedures, perform in every iteration, are summarized in Figure

8.3.

Function UpdatePbestArchive(particle,Pbest_Archive, ()xF ,)(xcv)

/* particle = a particles (with decision vector x) in the swarm population
/* Pbest_Archive = Previously recoded personal best

/* ()xF = a Particle’s fitness value

/*)(xcv = scalar constraint violation of a particle

Begin

 If Pbest_Archive={ } /*an empty set

 ComputeRC value (Equation 8.4)

 Record RC value ()(_ xRCpbest)

 Record particle’s position ()(xpbest)

 Record particle’s fitness value ()(_ xfitnesspbest)

Record particle’s constraint violation (Pbest_cv or

))((xpbestcv)

 Else

 If))((xpbestcv >0 /*infeasible

 If ())(_ xx RCpbestRC ≤

 Update)(_ xRCpbest

 Update)(xpbest

 Update)(_ xfitnesspbest

 Update Pbest_cv or))((xpbestcv

 EndIf

 Else /*If iPbest is feasible

 If ()() () ()(){ }xxxxx essPbest_fitn≤≤= ForRCpbestRCandcv)(_0)(

 Update)(_ xRCpbest

 Update)(xpbest

 Update)(_ xfitnesspbest

 Update Pbest_cv or))((xpbestcv

 EndIf

 EndIf

 EndIf

End

Figure 8.3 Pseudocode of updating the particles best archive.

 189

Refer to Figure 8.3, when a recorded personal best is infeasible, then the updating step

depends on Equation (8.4). On the other hand, if it is feasible, then the updating is done

by comparing the rank values (because 0)(=xcv) or fitness values of the particles in the

swarm population with those recorded in the personal best archive. The updating of

infeasible recorded personal best is based on RC values in order to emphasize both

convergence and feasibility; while the updating of feasible recorded personal best is

based on dominance relationship in order to support the convergence towards the global

optimum in the feasible region.

Once the updating procedure is completed, the feasibility ratio of the particles’

personal best (fr) is updated via the following equation:

sizepopulationswarm

feasiblearethatbestpersonalparticlesofnumber
r f

'
= . (8.5)

8.3.2.2 Update Feasible and Infeasible Global Best Archive

 Recent studies have realized the advantage of using infeasible solutions to search

for global optimum solution [165,166,179]. One purpose is to promote diversity during

the search process through a balance between feasible and infeasible solutions [157,165].

Another purpose is to use the infeasible solutions as the bridge to explore isolated

feasible regions in order to search for better feasible solutions and to deal with the case

where the proportional feasible region is relatively smaller compared to the entire search

space. Hence we propose a fixed size global best archive that stores only the best feasible

solution found so far and the infeasible nondominated solutions that have minimum

scalar constraint violation found so far.

 190

There are two separate procedures to update the global best archive and they are

summarized here:

• Procedure to update the best feasible solution: If there is no feasible solution in the

archive, the best feasible solution (feasible solution with minimum fitness) is

immediately accepted in the archive. If the achieve has recorded the best feasible

solution in the pervious iteration, then the new best feasible solution in the current

iteration is compared. If the recorded one has larger fitness value, then the current best

feasible solution will replace the recorded one, otherwise the current one is removed.

• Procedure to update the infeasible nondominated solutions: If the archive is empty

or has no infeasible members, the infeasible nondominated solutions are accepted to fill

up the archive. If there are infeasible members in the archive, the scalar constraint

violation of the new infeasible nondominated solutions is compared with the particle

with the largest scalar constraint violation stored in the archive. Those new infeasible

nondominated solutions with scalar constraint violation exceed the largest scalar

constraint violation stored in the archive are removed. Then, the remaining new

infeasible nondominated solutions are compared with respect to any infeasible

members in the archive. If any infeasible new solutions are not dominated by any

archive infeasible members, they are accepted into the archive. Similarly, any archive

infeasible members dominated by any new infeasible solutions are removed from the

archive.

Once the two procedures are completed and if the archive size exceeds the

allocated size, then Harmonic distance [180] is applied to remove the crowded members

and to maintain diversity among the archive members. Afterwards, the crowded

 191

tournament selection operator is applied to select the global best leaders (gbest) from

achieve to update the particle velocity and position equations (see Equations (8.6) and

(8.7)). Note also that the archive will be used on mutation operator procedure.

8.3.2.3 Particle Update Mechanism

In the original PSO design, the particles modeled the swarm behavior and flew

through the hyperdimensional space to search for possible optimal solutions. The

movement of particles is influenced by their past experiences, i.e., their personal past

experience and successful experience attained by their peers. Cushman [175] added a

global worst term (Gworst) with a very low acceleration constant (suggested 0.0001) to

nudge the particles away from the center of the least feasible solution. Lu and Chen [172]

replaced the inertial term with personal and global bests in order to restrict the velocity

term so that those feasible particles (solutions) will not be moved away from the feasible

regions.

In our design, we make use of the scalar constraint violation and the feasibility ratio

(fr) (i.e., Equation 8.5) to adjust the acceleration constants. The purpose is to guide the

particles towards feasibility first and then influence them to search for global optimal

solution. The scalar constraint violation belongs to the members in personal best and

global best archives. The new PSO equation and its new acceleration constants are

formulated as follow:

() () () ()() ()()txgbestrctxtpbestrctvwtv jijjijijiji ,22,,11,, 1 −××+−××+×=+

 (8.6)

() () ()11 ,,, ++=+ tvtxtx jijiji (8.7)

 192

where

 () ()()()tcvpbestrc if _115.01 −+−×= (8.8a)

 ()()cvgbestrc f _15.02 −+×= (8.8b)

()tv ji , is the jth dimensional velocity of particle i in iteration t; ()tx ji , is the jth

dimensional position of particle i in iteration t; ()tpbest ji , denotes the jth dimensional

personal best position of the particle i in iteration t; ()tcvpbest i_ is the scalar constraint

violation of the personal best of particle i in iteration t, jgbest is the jth dimensional

global best selected from the global best archive; cvgbest _ represents the scalar

constraint violation of the selected gbest ; 1r and 2r are a random numbers within []1,0

that are regenerated every time they occur; w is the inertial weight, set to varied between

0.1 to 0.7 (as suggested in [121] to eliminate the difficulty of fine tuning the inertial

weight); and 1c and 2c are the acceleration constants. Please note the PSO flight

equations stress the update mechanism of a particle i (so the variable t and subscript i are

used). On the other hand, Equations (8.1)-(8.3) emphasizes the scalar constraint violation

of a particle with decision vector x . Specifically, ()tcvpbest i_ refers to))((xpbestcv in

iteration t.

Adjustment of acceleration constants: Refer to Equations (8.8a) and (8.8b), the

values of 1c and 2c are influenced by the feasibility ratio of the particles’ personal best

(fr) and the amount of constraint violations of the pbest and gbest . In general, if 1c is

larger than 2c , the second term in Equation (8.6), i.e., () ()()txtpbestrc jiji ,,11 −×× , is

emphasized, in which, the movement of a particle depends more on their personal past

 193

experience than the global experiences attained by the whole swarm population. Table

8.1 briefly summarizes the effect of fr , cvpbest _ , and cvgbest _ on the second and

third terms in Equation (8.6). Observing Table 1, we can generally conclude that small fr

will influence the particles to favor on searching for feasible regions instead of optimum

solution, while with small cvgbest _ and large
f

r , the particles are inclined to search for

optimum solution. However, both cvpbest _ and cvgbest _ will also guide the particles

towards feasibility but in an indirect manner.

Table 8.1 Brief summary of the effects of fr , cvpbest _ , and cvgbest _ on the second and third

terms in Equation (8.6)

fr cvpbest _ cvgbest _ Comments

small small small 21 cc > ; slightly emphasize on the second term

(Both terms will guide the particle towards feasibility)

small small large 21 cc >> ; emphasize on the second term

(Second term guides the particle towards feasibility)

small large small
21 cc ≈ ; both terms may have equal emphasis

(Both terms will guide the particle towards feasibility and

find better solutions)

small large large 21 cc > ; emphasize on the second term

(Second term guides the particle towards feasibility)

large small small 21 cc < ; emphasize on the third term

(Third term guides the particle to find better solutions)

large small large
21 cc ≈ ; both terms may have equal emphasis

(Both terms will guide the particle towards feasibility and

find better solutions)

large large small 21 cc << ; emphasize on the third term

(Third term guides the particle to find better solutions)

large large large 21 cc < ; slightly emphasize on the third term

(Third term guides the particle to find better solutions)

8.3.2.4 Mutation Operator

In this chapter, the mutation procedure proposed in [120] is applied. The

procedure is performed in the randomly selected dimension(s) of the decision variables in

 194

order to bring the particles from being trapped in the local optima. However, in [120], the

mutation covers the full range (upper and lower bound of the decision variables in

Equation (2.4)). In our approach, the range covered for mutation is adaptively reduced as

the number of iterations increases. The idea is as follow: Initially, the mutation operator

covers the full range to allow the particles to explore the whole search space, hoping to

search for feasible region or better solutions. As the number of iteration increases, the

range of the search space covered reduces via a nonlinear equation to reduce the effect of

mutation operation in the sense of global search, and encourage fine tuning of the local

search. The following presents the nonlinear equation to control the range covered:

() ()

() ()

()()

≤≤−−×

≤<

−

+−××−

≤≤

−

+×−×−

=

14.,4.01

4.25.,
1

1221

25.0,
1

2211

_%
2

2

T0Tlb

0T0
lb

lb
Tlb

0T
lb

lb
Tlb

reducedRange

α

, (8.9)

 where
iablesdecisionofnumber

lb
var

β
= and (8.10)

iterationsofnumbermaximum

iterationCurrent
T = . (8.11)

lb is the lowest percentage allowable parameter to narrow the search space with a quick

pace, before entering the finely narrowing the search space and β is user defined

parameter; while α is another user defined parameter control how fast to finely narrow

the range covered. Figure 8.4 depicts the Equation (8.9). Observing in Figure 8.4, the

range covered is slowly decreases from 0 to 25% of the maximum iterations, provide

opportunity for the particles to explore the entire search space. Next, the mutation range

covered decrease quickly within 25% and 40% of the maximum iterations to narrow

 195

down the exploration in the search space since at this stage the global particles will either

closer or in the feasible region. Lastly, for the remaining iteration count the mutation

range covered is slowly reduced to create a path way to provide changes for the mutated

particles to explore locally and towards the global optimum.

Figure 8.4 Graph for percentage range to be reduced against T.

Function MutateParticles(particles, current and previous best

solutions)

/* particles = current particles in the swarm population

/*Note: Mutation operator procedure see [120].

Begin

 Randomly select particles from half of the swarm population

 Calculate reducedRange _% from Equations (8.9-8.11)

 For each selected particle

 If Previous best solution equals to current best solution

 If rand<0.8 /* mutation rate of 0.8

 Apply mutation operator on best solution

 Else

 Apply mutation operator on the current particle

 EndIf

 Replace the current particle with the mutated one

 Else

 Apply mutation operator on the current particle

 Replace the current particle with the mutated one

 EndIf

 EndFor

End

Figure 8.5 Pseudocode of mutation operator applies to the swarm population.

The mutation procedure is applied to half of the population size. The particles to

be mutated are chosen randomly. In addition, during the later stage of the search process,

%Range_reduced

0 T

1

lb

10.40.25

%Range_reduced

0 T

1

lb

10.40.25

 196

the particles may trap in the local optimal. Hence, the best solution from previous

iteration and the best solution from current iteration are compared. If they are the same,

then with a higher probability, the mutation operator is applied to the best solution and

replaces the mutated one with a selected particle in the swarm population. The idea is to

push the particles to advance towards the global optimum solution. The following

pseudocode (Figure 8.5) shows how the mutation operator is applied to the swarm

population.

8.3.3 Proposed Constrained MOPSO to Solve CMOPs

In this section, we extended the proposed PSO to a constrained MOPSO for

CMOPs. In the proposed MOPSO, the technique of converting a COP into an

unconstrained bi-objective optimization problem is applied to transform the CMOPs into

an unconstrained tri-objective optimization problem. Note that we use the term ‘tri-

objective optimization problem’ since in this study, CMOPs with two objective functions

are considered. For this technique, both the inequality and equality constraints (i.e.,

Equations (2.2) and (2.3), respectively) are treated as one objective and the other

objectives are the original two objective functions. Hence, Equations (2.1)-(2.3) are

transformed into the following general form of an unconstrained tri-objective

optimization problem:

Minimize () () () ()[]xxxxF 21 ,, FFcv= , (8.12)

where)(xcv is the scalar constraint violation of a decision vector x (or particle) and it is

mathematically formulated as below:

 ∑
=

=
p

j
j

j

cv

cv

p
cv

1 max

)(1
)(

x
x (8.13)

 197

where
()()
()() ,

,,1,,0max

,,1,,0max
)(

+=−

=
=

pmjh

mjg
cv

j

j

j
K

K

δx

x
x (8.14a)

 ()x
x

j

j
cvcv

S∈
= maxmax . (8.14b)

Parameter δ is the tolerance allowed for equality constraints, usually δ is set to 0.001 or

0.0001. If a particle or solution (x) satisfies the jth constraints, then)(xjcv is set to zero,

otherwise it is greater than zero. In solving MOPs, our final goal is to find the Pareto

optimum set. Although the Pareto dominance relation is used to solve the tri-objective

optimization problem in Equation (8.12), in this case, we only need to find the Pareto

front of two objective functions. This is because if the set of nondominated solutions

found is infeasible (i.e., 0)(>xcv), it is unacceptable no matter how high quality the

Pareto front of the three objective functions is produced. Only the set of nondominated

solutions that are landed on the feasible regions (i.e., 0)(=xcv) are considered potential

Pareto front.

The general design procedure of the proposed constrained MOPSO is the

extension of the proposed constrained PSO. The same designs elements are employed

with exception of the mutation procedure. The brief summary of the essential design

elements in the proposed MOPSO are given: 1) updating personal best procedure based

on the rank in the swarm population and constraint violation; 2) maintaining feasible and

infeasible global best archive to preserve both feasible and infeasible nondominated

solutions, respectively; 3) the acceleration constants in the PSO equation are adjusted

based on the feasibility ratio and the constraint violations correspond to the members in

personal best archive and global best archive; and 4) the mutation rate is adaptively

updated based on the feasibility ratio, in which a higher frequency of applying mutation

 198

operator to the swarm population if there are few feasible particles to promote

exploration, otherwise a lower frequency on activating the mutation operator if there are

many feasible particles. Mutation operators that support global and local searches are

used.

Although the same design elements are adopted but some modifications on these

design elements are needed to accommodate the nature of MOPs. Figure 8.6 presents the

pseudocode of the proposed constrained MOPSO. Procedures that are slightly modified

are highlighted in bold and are discussed below.

Begin

/*Initialization

Initialize swarm population and velocity

Set Maximum iterations (maxt)

Set iteration 0=t

Store Personal Best (pbest)

While maxtt <

 Calculate Fitness and Constrain violation

 Apply Pareto dominance Concept

 Update Personal Best (pbest)

 Calculate fr

 Update Feasible and Infeasible Global Best Archive

 Global Best Selection

 Particle Update Mechanism

 Mutation Operator

 1+= tt

EndWhile

Report optimal Pareto front in Feasible Global Best Archive

End

Figure 8.6 Pseudocode of the proposed constrained MOPSO algorithm.

8.3.3.1 Updating Personal Best Archive

The updating of personal best archive procedures are slightly modified and are

summarized below. Note that the procedures are done in every iteration.

 199

• If the personal best archive is empty, record all computed RC values of all particles,

including their corresponding positions (pbest) and their degree of constraint

violations (cvpbest _).

• If the personal best archive is nonempty, then for those recorded personal best that are

infeasible, their recorded RC values are compared with the RC values of their

corresponding particles in the swarm population. Any of the current particles with

smaller RC values will replace the recorded ones, including updating the

corresponding RC values, pbest , and cvpbest _ . However, for those recorded

personal best that are feasible (i.e., 0)(=xcv), pure Pareto ranking [25] is applied to

these personal best and their corresponding particles in the swarm population. If the

current particle dominates their corresponding personal best, then the current one will

replace the recorded one. If both do not dominate each other, one of them is randomly

chosen to update the personal best archive. Similarly, the updating of personal best

archive includes updating the RC values, pbest , and cvpbest _ .

The updating of infeasible recorded personal best is based on RC values in order to

emphasize both convergence and feasibility; while the updating of feasible recorded

personal best is based on dominance relationship in order to support the convergence

towards the Pareto front in the feasible region.

8.3.3.2 Updating Feasible and Infeasible Global Best Archive

For the proposed constrained MOPSO, we propose two fixed size global best

archives, i.e., feasible and infeasible global best archives. Feasible global best archive

stores only the best feasible solution found so far, while infeasible global best archive

 200

stores the infeasible solutions that have minimum scalar constraint violation found so far.

The solutions in both archives serve as potential global best candidates (gbest) for the

particle flight update.

To maintain the archive, first the new nondominated particles from the swarm

population are found. Then, these new nondominated particles are divided into new

feasible nondominated solutions and infeasible nondominated solutions. The procedures

to maintain both global best archives are summarized below:

• Maintaining Feasible Global Best Archive: At each iteration count, new feasible

nondominated solutions are compared with respect to any members in the archive. If

new feasible solutions are not dominated by any archive members, they are accepted

into the archive. Similarly, any archive members dominated by any new feasible

solutions are removed from the archive. If the archive population size exceeds the

allocated archive size, then harmonic distance [180] is applied to remove the crowded

members and to maintain diversity among the archive members.

• Maintaining Infeasible Global Best Archive: In the first procedure, the scalar

constraint violation of the new infeasible nondominated solutions is compared with

the largest scalar constraint violation stored in the archive. Those new infeasible

nondominated solutions with scalar constraint violation exceed the largest scalar

constraint violation stored in the archive are removed. Then, in the second procedure,

the remaining new infeasible nondominated solutions are compared with respect to

any members in the archive. If any new solutions are not dominated by any archive

members, they are accepted into the archive. Similarly, any archive members

dominated by any new solutions are removed from the archive. If the archive

 201

population size exceeds the allocated archive size, then harmonic distance [180] is

applied to remove the crowded members and to maintain diversity among the archive

members.

8.3.3.3 Global Best Selection

As mentioned in previous subsection, the infeasible global best archive plays a

vital role in finding the global optimum because the infeasible members will lead the

particles towards the feasible regions especially if the feasible region is very small

compared to the entire objective space or act as a bridge to bring the particles from

infeasible regions to other isolated feasible regions. The members from the feasible

global best archive will guide the particles to search for global optimum in the feasible

regions. With equal probability, gbest is selected either from feasible global best archive

or infeasible global best archive. This is to give equal probability of utilizing the feasible

and infeasible gbest to guide the particles. Unless one of the archives is empty, then by

default the gbest is selected from remaining nonempty archive. Once which archive is

chosen, the crowding distance values of the archive members are used to guide the

particles to select their gbest .

8.3.3.4 Mutation Operator

In this approach, two mutation operators are applied, i.e., uniform and Gaussian

mutation operators. Uniform mutation aims to encourage exploration in the swarm

population and is presented in Equation (8.15), while Gaussian mutation in Equation

 202

(8.16) promotes exploitation among the particles in the swarm population via local search

characteristics.

 () ()L

ji

U

jiuji xxrtx ,,, −= (8.15)

() () ijiji txtx β+= ,, (8.16)

where ()tx ji , is the jth dimensional position of particle i in iteration t; ur is a random

number within []1,0 ; U

jix , and L

jix , are the jth dimensional upper and lower bound of

particle i; and iβ represents a random number in which it is drawn from the Gaussian

distribution, ()()L

ji

U

jim xxPGaussian ,,,0 − . Parameter mP is computed using Equations

(8.17) and (8.18) [135].

n

lb
1.0

= , n = number of decision variables (8.17)

()

() ()

≤<

−

+−××−

≤≤

−

+×−×−
=

1r0
lb

lb
rlb

0r
lb

lb
rlb

P

ff

ff

m

5.,
5.0

125.0

5.0,
5.0

215.0

2

2

 (8.18)

The mP parameter represents the mutation rate and is adaptively determined by the

feasibility ratio of the particles’ personal best (fr). The idea is to allow for a higher

mutation rate when there are fewer feasible particles (fr is small) or vice versa. Figure

8.7 is the illustration of Equation (8.18). lb represents the minimum allowable mutation

rate and is determined from Equation (8.14). If 1=fr , mutation rate will remain lb . For

simplicity, a random number nr with uniform distribution between []1,0 is generated to

decide which mutation operator is applied. If 5.0<nr , uniform mutation is applied,

otherwise Gaussian mutation is applied.

 203

Figure 8.7 Mutation rate (mP) versus feasibility ratio of the particles’ personal best (fr).

8.4 Comparative Study

Two experiments are performed. The first experiment evaluates the performance

of the proposed PSO for COPs and compares the results against the selected constrained

approaches, while the second experiment evaluates the performance of the proposed

constrained MOPSO against two state-of-the-art constrained MOEAs.

8.4.1 Experiment 1: Performance Evaluation of the Proposed PSO for COPs

8.4.1.1 Experimental Framework

Thirteen well-known benchmark functions [181] are used to test the performance

of the proposed constrained PSO. Table 8.2 presents the summary of the main

characteristics of all teat functions. It provides the type of objective functions (i.e., linear,

nonlinear, cubit, quadratic) and their types of constraint functions (i.e., linear inequality

(LI), nonlinear inequality (NI), linear equality (LE), and nonlinear equality (NE)). The

parameter n represents the number of decision variables, and parameter a represents the

number of inequality constraints that are active. The parameter ρ is called feasibility

ratio. This ratio is determined by calculating the percentage of feasible solutions out of

P
m

0
r

f

0.5

lb

2
5. lb0 +

0.5 1

P
m

0
r

f

0.5

lb

2
5. lb0 +

0.5 1

 204

1,000,000 randomly generated solutions in the entire search space [157]. If the feasibility

ratio is very small, this challenges the algorithms to search for feasible solutions.

Table 8.2 Summary of main characteristics of the 19 benchmark functions.

Problems n Type of function ρ LI NI LE NE a

g01 13 Quadratic 0.0111% 9 0 0 0 6

g02 20 Nonlinear 99.9971% 1 1 0 0 1

g03 10 Nonlinear 0.0000% 0 0 0 1 1

g04 5 Quadratic 52.1230% 0 6 0 0 2

g05 4 Cubic 0.0000% 2 0 0 3 3

g06 2 Cubic 0.0066% 0 2 0 0 2

g07 10 Quadratic 0.0003% 3 5 0 0 6

g08 2 Nonlinear 0.8560% 0 2 0 0 0

g09 7 Nonlinear 0.5121% 0 4 0 0 2

g10 8 Linear 0.0010% 3 3 0 0 3

g11 2 Quadratic 0.0000% 0 0 0 1 1

g12 3 Quadratic 4.7713% 0 9
3

0 0 0

g13 5 Nonlinear 0.0000% 0 0 0 3 3

g14 10 Nonlinear 0.0000% 0 0 3 0 3

g15 3 Quadratic 0.0000% 0 0 1 1 2

g16 5 Nonlinear 0.0204% 4 34 0 0 4

g17 6 Nonlinear 0.0000% 0 0 0 4 4

g18 9 Quadratic 0.0000% 0 13 0 0 6

g19 15 Cubic 33.1761% 0 5 0 0 0

Table 8.3. Parameter configurations for the proposed PSO.

Parameter settings
Test Problems

β α

g02, g10, g19 1 10

g04, g12, g16 1 15

g11 1 16

g01, g06 1 20

g03, g08 0.1 10

g18 0.1 11

g07, g13, g14, g15, g17 0.1 15

g09 0.1 20

g05 0.1 25

Parameter configurations of the proposed PSO for each test function are presented

in Table 8.3. For each test function, we perform 300,000 fitness function evaluations and

conduct 30 independent runs [155]. The experiment is implemented in Matlab software.

 205

8.4.1.2 Simulation Results and Analysis

Table 3 presents the best, median, worst, and mean results obtained by the

proposed constrained PSO for each test function. Among the nineteen test problems, the

proposed PSO is able to obtain the optimal for g01, g04, g06, g08, g11, g12, g15, and

g16. The following test problems: g02, g03, and g18 have the best results that are very

close to the optimum. From Table 8.4, we can note that only g17 has one infeasible run

among the 30 independent runs. This means among 30 runs, only run that the proposed

constrained PSO is unable to find any feasible solutions. This case is rare and considered

an extreme case. In addition, the constrain violation for the infeasible run is extremely

low, which is 1.7859E-05.

The proposed constrained PSO is compared against the four selected approaches.

They are: Stochastic Ranking method (SR) [155], dynamic-objective method and

restricted velocity particle swarm optimization (DOM+RVPSO) [172], master-slave

particle swarm optimization (MSPSO) [179], and feasibility tournament and perturbing

the particle’s memory (PESO) [182]. The experiment results for the thirteen test

problems are listed in Table 8.5. Observed Table 8.5, our algorithm can achieve the same

or better performance than some of the selected approaches for the following test

problems, g01, g03, g04, g06, g08, g11, and g12. The proposed algorithm is unable to

obtain the best performance compared to some of the selected approaches for the test

problems: g02, g05, g07, g09, g10, and g13. However, the proposed algorithm is able to

performance better than MSPSO for test problems g05, g07, and g09, and obtains better

performance than DOM+RVPSO for test problems g02 and g13. For test problem g13,

 206

the proposed algorithm obtains the better results for mean and worst when compared to

SR.

Table 8.4 Experimental results on the 19 benchmark functions with 50 independent runs. Note that

the first column presents the test problem and its global optimal.

Problems/

optimal
Best Median Worst Mean Std

Infeasible

Runs

g01/

-15.000000
-15.000000 -15.000000 -13.000000 -14.840000 5.54E-01 0

g02/

-0.803619
-0.803618 -0.793081 -0.772503 -0.792893 7.45E-03 0

g03/

-1.0005001
-1.0004927 -1.0004739 -1.0003476 -1.0004554 4.42E-05 0

g04/

-30665.539
-30665.539 -30665.539 -30665.538 -30665.539 8.39E-05 0

g05/

5126.4981
5126.5753 5137.4183 5199.3823 5143.8872 1.82E+01 0

g06/

-6961.8138
-6961.8138 -6961.8132 -6961.8078 -6961.8128 1.12E+03 0

g07/

24.3062091
24.346823 24.734355 25.248314 24.765756 2.26E+01 0

g08/

-0.095825
-0.095825 -0.095825 -0.095825 -0.095825 9.65E-13 0

g09/

680.63006
680.63260 680.65159 680.73852 680.65835 2.07E-02 0

g10/

7049.248
7086.0745 7427.0046 7627.0983 7408.8877 1.12E+02 0

g11/

0.7499000
0.7499000 0.7499001 0.7499051 0.7499006 1.19E-06 0

g12/

-1.000000
-1.000000 -1.000000 -1.000000 -1.000000 0 0

g13/

0.0539498
0.0539645 0.0568509 0.1121465 0.0607371 1.19E-01 0

g14/

-47.764888
-47.326592 -45.232864 -43.439452 -45.357137 9.91E-01 0

g15/

961.71502
961.71502 961.71759 961.99117 961.73767 5.69E-02 0

g16/

-1.905155
-1.905155 -1.905155 -1.905154 -1.905155 3.35E-07 0

g17/

8853.53967
8854.0298 8927.6184 8975.5617 8912.7110 4.96E+01 1

g18/

-0.866025
-0.866021 -0.865341 -0.858935 -0.864311 2.25E-03 0

g19/

32.655592
33.707518 36.240328 40.272815 36.329895 1.81E+00 0

 207

Table 8.5 Comparison of the proposed algorithm with respect to SR[155], DOM+RVPSO [172],

MSPSO [179], and PESO [182] on 13 benchmark functions. Note that the first column presents the

test problem and its global optimal.

Problems/

optimal
 SR[153]

DOM+RVPSO

[170]
MSPSO [177] PESO [180] Proposed

g01/

-15.000

Best

Mean

Worst

St. dev

-15.000

-15.000

-15.000
1.3E-13

-15.000

-14.419

-12.453

8.5E-01

-15.000

-15.000

-15.000
4.12E-04

-15.000

-15.000

-15.000

0

-15.000

-14.840

-13.000

5.54E-01

g02/

-0.803619

Best

Mean

Worst

St. dev

-0.803619
-0.772078

-0.683055

2.6E-02

-0.664028

-0.413257

-0.259980

1.2E-01

-0.803020

-0.800418

-0.799342

1.51E-03

-0.803619

-0.801320
-0.786566

4.59E-03

-0.803618

-0.792893

-0.772503

7.45E-03

g03/

-1.001

Best

Mean

Worst

St. dev

-1.001

-1.001

-1.001

6.0E-09

-1.005

-1.003

-0.933

1.3E-02

1.000

0.998

0.996

1.58E-03

-1.001

-1.001

-1.000

3.15E-07

-1.001

-1.001

-1.000

4.42E-05

g04/

-30665.539

Best

Mean

Worst

St. dev

-30665.539

-30665.539

-30665.539
2.2E-11

-30665.539

-30665.539

-30665.539
1.2E-11

-30665.537

-30663.010

-30658.300

2.79E+00

-30665.539

-30665.539

-30665.539

0

-30665.539

-30665.539

-30665.538

8.39E-05

g05/

5126.4981

Best

Mean

Worst

St. dev

5126.497

5126.497

5126.497

6.2E-12

5126.4842

5241.0549

5708.2250

1.8E+02

5126.6051

5129.8001

5157.2247

1.25E+01

5126.4981

5126.4981

5126.4981

0

5126.5753

5143.8872

5199.3823

1.82E+01

g06/

-6961.814

Best

Mean

Worst

St. dev

-6961.814

-6961.814

-6961.814
6.4E-12

-6961.814

-6961.814

-6961.814
4.6E-12

-6961.830

-6957.760

-6954.650

2.69E+00

-6961.814

-6961.814

-6961.814

0

-6961.814

-6961.813

-6961.808

1.12E+03

g07/

24.306

Best

Mean

Worst

St. dev

24.306

24.306
24.308

2.7E-04

24.306

24.317

24.385

2.4E-02

24.373

24.180

23.750

2.53E-01

24.306

24.306

24.306

3.34E-06

24.347

24.766

25.248

2.26E+01

g08/

-0.095825

Best

Mean

Worst

St. dev

-0.095825

-0.095825

-0.095825
4.2E-17

-0.095825

-0.095825

-0.095825
1.4E-17

0.095825

0.095825

0.095825

0

0.095825

0.095825

0.095825

0

-0.095825

-0.095825

-0.095825
2.07E-02

g09/

680.630

Best

Mean

Worst

St. dev

680.630

680.630

680.630

4.6E-13

680.630

680.630

680.630

5.4E-13

680.660

681.002

684.113

1.48E+00

680.630

680.630

680.630

0

680.633

680.658

680.739

2.07E-02

g10/

7049.248

Best

Mean

Worst

St. dev

7049.248

7049.249

7049.296

4.9E-03

7049.2480
7049.2701

7049.5969

7.9E-02

7051.690

7054.710

7059.280

2.84E+00

7049.248

7049.249

7049.264
3.61E-03

7086.075

7408.888

7627.098

1.12E+02

g11/

0.750

Best

Mean

Worst

St. dev

0.750

0.750

0.750
1.8E-15

0.749

0.749

0.749

2.4E-12

0.750

0.750

0.750

0

0.750

0.750

0.750

0

0.750

0.750

0.750
1.19E-06

g12/

-1.000

Best

Mean

Worst

St. dev

-1.000

-1.000

-1.000
9.6E-10

-1.000

-1.000

-1.000

0

NA

NA

NA

NA

-1.000

-1.000

-1.000

0

-1.000

-1.000

-1.000

0

g13/

0.0539498

Best

Mean

Worst

St. dev

0.053942

0.096276

0.438803

1.2E-01

0.0538666

0.0681124

2.0428924

4.0E-01

NA

NA

NA

NA

0.053950

0.053950

0.053965

2.76E-06

0.0539645

0.0607371

0.1121465

1.19E-01

 208

8.4.2. Experiment 2: Performance Evaluation of the Proposed Constrained MOPSO

8.4.2.1. Experimental Framework

Table 8.6 Parameter configurations for testing algorithms.

Algorithms Parameter Settings

NSGA-II

[31]

Population size =100; crossover probability = 0.9; mutation probability = n1 ; SBX

crossover parameter = 20; polynomial mutation parameter = 20.

GZHW

[164]

Population size =100; crossover probability = 0.9; mutation probability = n1 ; SBX

crossover parameter = 20; polynomial mutation parameter = 20; comparison probability

= 0.45; penalty parameters, 1=
j

w , 1=β .

WTY

[166]

Population size =100;
Test Functions BNH. CTP1-CTP8,

Crossover probability = 0.9; mutation probability = n1 ; SBX crossover parameter = 10;

polynomial mutation parameter = 20.
Test Functions SRN, TNK, OSY, CONSTR, and Welded Beam

Crossover probability = 0.9; mutation probability = n1 ; SBX crossover parameter = 5;

polynomial mutation parameter = 5.

Proposed

MOPSO
Population size =100; feasible and infeasible Gbest archive size = 100.

As stated earlier these exist no prominent constrained MOPSO for CMOPs.

Instead, three state-of-the-art constrained MOEAs are chosen for performance

comparison. They are NSGA-II [31], Geng et al. [164], (indicated by GZHW), and

Woldesenbet et al. [166] (indicated by WTY). Each algorithm is set to perform 50,000

fitness function evaluations. The parameter configurations for all testing algorithms are

summarized in Table 8.6. The fourteen benchmark problems are chosen to evaluate the

performance of the proposed MOPSO with the selected MOEAs. All the benchmark

problems are two objectives minimization problems and they are listed in Tables 8.7 and

8.8: BNH [160], SRN [161], TNK [183], OSY [184], CTP1-CTP8 [185], CONSTR [1],

and Welded Beam [165]. Similar to Table 8.2, the summary of the main characteristics of

these benchmark problems are presented in Table 8.9. All algorithms use a real-number

representation for decision variables. For each experiment, 50 independent runs were

 209

conducted to collect the statistical results, and the results are illustrated by statistical box

plots.

Table 8.7 The 14 benchmark CMOPs used in this study. All objective functions are to be minimized.

Problems Objective Functions Constraints
Variable

Bounds

BNH

[160]

()
() () ()22

2
12

2
2

2
11

55

44

−+−=

+=

xxF

xxF

x

x () ()
() () () 7.738

255

2
2

2
12

2
2

2
11

≥++−=

≤+−=

xxg

xxg

x

x []
[]3,0

5,0

2

1

∈

∈

x

x

SRN

[161]

() () ()
() ()2212

2
2

2
11

19

122

−−=

−+−+=

xxF

xxF

x

x

()
() 0103

225

212

2
2

2
11

≤+−=

≤+=

xxg

xxg

x

x []
2,1

20,20

=

−∈

i

xi

TNK

[183]

()
() 22

11

xF

xF

=

=

x

x ()

() () () 5.05.05.0

0tan16cos1.01

2
2

2
12

2

112
2

2
11

≤−+−=

≥

−−+= −

xxg

x

x
xxg

x

x []
2,1

,0

=

∈

i

xi π

OSY

[184]

() () () ()
() ()

() 2
6

2
5

2
4

2
3

2
2

2
12

2
5

2
4

2
3

2
2

2
1

1
14

12225

xxxxxxF

xx

xxx
F

+++++=

−+−+

−+−+−
−=

x

x

()
()
()
()
() ()
() () 043

034

032

02

06

02

6
2

56

4
2

35

214

123

212

211

≥−+−=

≥−−−=

≥+−=

≥+−=

≥−−=

≥−+=

xxg

xxg

xxg

xxg

xxg

xxg

x

x

x

x

x

x

[]

[]

[]6,0

5,3

5,1

6,2,1

10,0

4 ∈

=

∈

=

∈

x

j

x

i

x

j

i

CTP1

[185]

()

() () ()
()

() 2

1
2

11

1

exp

xc

c

F
cF

xF

+=

−=

=

x

x

x
xx

x

() () ()()
() () ()() 0295.0exp728.0

0541.0exp858.0

122

121

≥−−=

≥−−=

xxx

xxx

FFg

FFg []
2,1

1,01

=

∈

i

x

CTP2-

CTP8

[185]

()

() () ()
()

() 2

1
2

11

1

1

xc

c

F
cF

xF

+=

−=

=

x

x

x
xx

x

() () ()[] () ()

() ()() () ()[]{ }d
c

FeFba

FeFg

xx

xxx

12

12

cossinsin

sincos

θθπ

θθ

+−

≥−−=

**See Table 8.8 for parameter setting

for CTP test problems

[]
2,1

1,01

=

∈

i

x

Note for CTP8:

[]
[]10,0

1,0

2

1

∈

∈

x

x

CONSTR

[1]

()

()
1

2
2

11

1

x

x
F

xF

+
=

=

x

x

()
() 19

69

122

121

≥+−=

≥+=

xxg

xxg

x

x []
[]5,0

1,1.0

2

1

∈

∈

x

x

Welded

Beam

Design

[165]

() ()

()
2

3
4

2

3243
2
11

1952.2

1404811.010471.1

xx
F

xxxxxF

=

++=

x

x

() ()
() ()
()
() () 06000

0

030000

013600

4

123

2

1

≥−=

≥−=

≥−=

≥−=

xx

x

xx

xx

cPg

xxg

g

g

σ

τ

() () ()
()()

()

() () ()()
()

()

() () 3
244

2
2
4

2
41

2
3

31

2
41

2
33

31

2
41

2
3

322

0282346.01022.64746

504000

25.0
12

22

25.05.0146000

2

6000

25.0

xxxP

xx

xx
x

xx

xxxx

xx

xxx

x

c −=

=

++

+++
=′′

=′

++

′′′
+′′+′=

x

x

x

x

x

σ

τ

τ

ττ
τττ

[]
[]
[]
[]10,1.0

10,1.0

5,125.0

5,125.0

4

3

2

1

∈

∈

∈

∈

x

x

x

x

 210

Table 8.8 Parameter setting for CTP2-CTP8 [183].

Problems θ a b c d e

CTP2 π2.0− 0.2 10 1 6 1

CTP2 π2.0− 0.1 10 1 0.5 1

CTP2 π2.0− 0.75 10 1 0.5 1

CTP2 π2.0− 0.1 10 2 0.5 1

CTP2 π1.0 40 0.5 1 2 -2

CTP7 π05.0− 40 5 1 6 0

CTP8
π1.0

π05.0−

40

40

0.5

2

1

1

2

6

-2

0

Table 8.9 Summary of main characteristics of the 14 benchmark functions.

Problems Objective Functions n ρ LI NI LE NE a

BNH 2 2 93.61% 0 2 0 0 0

SRN 2 2 16.18% 1 1 0 0 0

TNK 2 2 5.09% 0 2 0 0 1

OSY 2 6 3.25% 4 2 0 0 6

CTP1 2 2 99.58% 0 2 0 3 1

CTP2 2 2 78.65% 0 1 0 0 1

CTP3 2 2 76.85% 0 1 0 0 1

CTP4 2 2 58.17% 0 1 0 0 1

CTP5 2 2 77.54% 0 1 0 0 1

CTP6 2 2 0.40% 0 1 0 0 1

CTP7 2 2 36.68% 0 1 0 0 0

CTP8 2 2 17.86% 0 2 0 0 1

CONSTR 2 2 52.52% 2 0 0 0 1

Welded Beam 2 4 18.67% 1 3 0 0 0

8.4.2.2 Selected Performance Metrics

All comparisons are based on both quantitative and qualitative measures.

Quantitative comparison is based on the plots of the final Pareto fronts in a given run. For

quantitative comparison, two performance metrics are taken into consideration to

measure the quality of algorithms with respect to dominance relations. The results are

illustrated by statistical box plots. The performance metrics used here are the same as

given in Subsection 6.4.3: hypervolume indicator (S Metric) and additive binary epsilon

indicator.

 211

8.4.2.3 Performance Evaluation

The box plots of hypervolume indicator (the IH values) are summarized in Figure

8.8. The algorithm with higher IH values indicates the ability to dominate a larger region

in the objective space and with better diversity. In Figure 8.8, the IH values are

normalized for each test problem. So, the highest IH value will equal one. The figure

shows that in general, the proposed MOPSO has high IH values, with at least higher than

0.9. The proposed MOPSO has the highest IH value for test problem CTP5. The proposed

MOPSO obtains a higher IH values than GZHW for test problems SRN, CTP1, CTP2,

CTP8, and Welded Beam, while it has higher IH values than NSGA-II for test problem

OSY. In addition, the proposed MOPSO has comparable IH values with WTY for test

problems CTP3, CTP4, CTP7, and Welded Beam since they attain the relative close IH

values. Hence, the Mann-Whitney rank-sum test is used to examine the distribution of the

IH values. The tested results are presented in Table 8.10. From Table 8.10, we concluded

that the proposed MOPSO and WTY share the same victory for test problem CTP4 while

the results also show there is no difference in performance on test function OSY for the

proposed MOPSO and GZHW. Refer to Figure 8.8, the box plots indicate that the

proposed MOPSO and NSGA-II show comparable IH values for test problems CTP7 but

it is not confirmed by the Mann-Whitney rank-sum test in Table 8.10. Although we

observed in Figure 3 that the proposed MOPSO shows the lowest IH values for test

problems BNH, SRN, TNK, CTP2, CTP6, CTP8, and CONSTR compared to the selected

MOEAs, the proposed MOPSO does not fall short in terms of performance because it has

IH values higher than 0.99 and the difference between its IH values compared to those

achieved by the selected MOEAs are very small. From the analysis, we concluded that

 212

the proposed MOPSO is competitive in terms of performance compared to the selected

MOEAs. In addition, Figure 8.8 shows that the standard deviations for the proposed

MOPSO are consistently low; this indicates its ability of producing reliable solutions for

the benchmark problems.

Figure 8.9 illustrates the results (summarized in box plots) of additive binary ε-

indicator. For each test problem, there are two box plots, i.e., ()
31

,
−+ BAIε and

()ABI ,31−+ε , in which the proposed MOPSO is represented by A and the algorithm 31−B

represent NSGA-II, GZHW, and WTY, respectively. Observe Figure 4, it seems the

proposed MOPSO performs slightly better with respect to dominance relation than all of

the MOEAs for test functions CTP5 since the () 031, ≈−+ BAIε and () 0,31 >−+ ABIε .

Similarly, it performs better than GZHW for test function Welded Beam. However, for

test functions OSY, CTP4, and CTP7, the performance of the proposed MOPSO slightly

fell short than one or some of the selected MOEAs. Otherwise, the proposed MOPSOs

does not strictly dominate the rest of the MOEAs for test problems BNH, SRN, TNK,

CTP1, CTP2, CTP6, CTP8, and CONSTR since box plots seem to show () 0
31

, >
−+ BAIε

and () 0,31 >−+ ABIε . The results in Table 8.11 also indicate the following conclusions: the

proposed MOPSO performs equally well as NSGA-II for test problems SRN, CTP2,

CTP7, and Welded beam; it also shares the same performance with GZHW for test

problems TNK, OSY, CTP2, CTP6, and CTP8, and finally WTY performs equally well

as the proposed MOPSO on test problem CTP1. In summary, we conclude that the

proposed MOPSO performs equally well as the selected MOEAs.

For qualitative comparison, the resulted Pareto fronts generated by all the

algorithms from a single run given the same initial population are presented in Figure

 213

Table 8.10 The distribution of IH values tested using Mann-Whitney rank-sum Test. The table

presents the z values and p-values with respect to the alternative hypothesis (i.e., p-value < α=0.05)

for each pair of the proposed MOPSO and a selected constrained MOEAs. In each cell, both values

are presented in a bracket: (z value, p-value). The distribution of the proposed MOPSO is

significantly different than those selected constrained MOEAs unless stated.

IH (Proposed) AND Test

Functions
IH (NSGA-II) IH (GZHW) IH (WTY)

BNH (-8.6139, 7.1E-18) (-7.7038, 1.3E-14) (7.6529, 2.0E-14)

SRN (-4.8715, 1.1E-06) (3.7774, 1.6E-04) (-7.1040, 1.2E-12)

TNK (-6.6458, 3.0E-11) (-3.2156, 1.3E-03) (-7.1040, 1.2E-12)

OSY (2.3612, 1.8E-02)
(0.3027, >0.05)

no difference
(3.3644, 7.6E-04)

CTP1 (-7.7454, 9.5E-15) (1.9751, 4.8E-02) (7.0403, 1.9E-12)

CTP2 (-8.6072, 7.5E-18) (6.0011, 2.0E-19) (7.6529, 2.0E-14)

CTP3 (-6.0771, 1.2E-09) (-8.6138, 7.1E-18) (3.9771, 7.0E-05)

CTP4 (-8.6140, 7.1E-18) (-8.4415, 3.1E-17)
(0.7633, >0.05)

no difference

CTP5 (7.3900, 1.5E-13) (6.5569, 5.5E-11) (7.1040, 1.2E-12)

CTP6 (-8.5450, 1.2E-17) (-4.7602, 1.9E-06) (7.6529, 2.0E-14)

CTP7 (-3.2505, 1.2E-03) (8.6138, 7.1E-18) (3.3644, 7.7E-04)

CTP8 (-7.0904, 1.3E-12) (3.9329, 8.4E-05) (7.6529, 2.0E-14)

CONSTR (-8.6140, 7.1E-18) (-8.6138, 7.1E-18) (7.6324, 2.3E-14)

Welded Beam (-3.8073, 1.4E-04) (6.6456, 3.0E-11) (-6.6299, 3.6E-11)

8.10. For every test problem, four plots are presented and the labels (a)-(d) represent the

following algorithms: the proposed MOPSO, NSGA-II, GZHW, and WTY respectively.

Figure 8.10 shows the proposed MOPSO is able to produce equal quality Pareto fronts

compared to the selected MOEAs for most of the test problems except for test problems

OSY and Welded beam. In such cases, the proposed MOPSO produces worse Pareto

fronts than NSGA-II and WTY due to the characteristic of the Pareto optimal region. The

Pareto optimal front for OSY constitutes by five separate regions, in which there is at

least one active constraint in each region. For Welded Beam, the difficulty lies on the

nonlinear constraints and the curve of the Pareto front consists of extreme regions. That is

 214

why it is difficult to obtain good distribution on those regions. However, for those two

test problems, the proposed MOPSO shares the same performance with GZHW.

 IH values for BNH IH values for SRN IH values for TNK

 IH values for OSY IH values for CTP1 IH values for CTP2

 IH values for CTP3 IH values for CTP4 IH values for CTP5

 IH values for CTP6 IH values for CTP7 IH values for CTP8

1 2 3 4

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1 2 3 4

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1 2 3 4

0.99

0.992

0.994

0.996

0.998

1

1 2 3 4

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1 2 3 4

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1 2 3 4

0.99

0.992

0.994

0.996

0.998

1

1 2 3 4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4

0.988

0.99

0.992

0.994

0.996

0.998

1

1 2 3 4
0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1 2 3 4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4

0.988

0.99

0.992

0.994

0.996

0.998

1

1 2 3 4
0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1 2 3 4

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1 2 3 4

0.995

0.996

0.997

0.998

0.999

1

1 2 3 4

0.998

0.9982

0.9984

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

1 2 3 4

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1 2 3 4

0.995

0.996

0.997

0.998

0.999

1

1 2 3 4

0.998

0.9982

0.9984

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

1 2 3 4

0.85

0.9

0.95

1

1 2 3 4

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4

0.85

0.9

0.95

1

1 2 3 4

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

 215

 IH values for CONSTR IH values for Welded Beam

Figure 8.8 Box plot of hypervolume indicator (IH values) for all test functions by algorithms 1-4

represented (in order): Proposed MOPSO, NSGA-II, GZHW, and WTY.

Table 8.11 The distribution of Iε+ values tested using Mann-Whitney rank-sum Test. The table

presents the z values and p-values with respect to the alternative hypothesis (i.e., p-value < α=0.05)

for each pair of the proposed MOPSO and a selected constrained MOEAs. In each cell, both values

are presented in a bracket: (z value, p-value). The proposed MOPSO is represented by A, and

algorithms B1, B2, and B3 are referred to as NSGA-II[31], GZHW[164] and WTY[166] respectively.

The distribution of the proposed MOPSO is significantly difference than those selected constrained

MOEAs unless stated.

Test

Functions

Iε+ (A,B1) and

Iε+ (B1,A)

Iε+ (A,B2) and

Iε+ (B2,A)

Iε+ (A,B3) and

Iε+ (B3,A)

BNH (5.8916, 3.8E-09) (5.0637, 4.1E-07) (6.6456, 3.0E-11)

SRN
(0.2905, >0.05)

no difference
(-6.1281, 8.9E-10) (2.2398, 2.5E-02)

TNK (4.3244, 1.5E-05)
(0.3183, >0.05)

no difference
(6.6456, 3.0E-11)

OSY (-3.4078, 6.5E-04)
(0.2340, >0.05)

no difference
(4.3984, 1.1E-05)

CTP1 (4.7532, 2.0E-06) (-2.0772, 3.8E-02)
(0.9565, >0.05)

no difference

CTP2
(0.1413, >0.05)

no difference

(0.0933, >0.05)

no difference
(6.1577, 7.4E-10)

CTP3 (6.6456, 3.1E-11) (6.6456, 3.0E-11) (6.6457, 3.0E-11)

CTP4 (6.6508, 2.9E-11) (6.6456, 3.0E-11) (6.6457, 3.0E-11)

CTP5 (-6.4386, 1.2E-10) (-6.6012, 4.1E-11) (-6.4386, 1.2E-10)

CTP6 (5.6994, 1.2E-08)
(-1.2345, >0.05)

no difference
(6.4978, 8.2E-11)

CTP7
(0.2957, >0.05)

no difference
(4.4279, 9.5E-06) (6.6456, 3.0E-11)

CTP8 (4.3984, 1.1E-05)
(-1.7224, >0.05)

no difference
(2.4320, 1.5E-02)

CONSTR (5.4333, 5.5E-08) (2.8016, 5.1E-03) (6.2095, 5.3E-10)

Welded

Beam

(-1.5154, >0.05)

no difference
(-6.6456, 3.0E-11) (5.5072, 3.7E-08)

1 2 3 4

0.985

0.99

0.995

1

1 2 3 4

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4

0.985

0.99

0.995

1

1 2 3 4

0.9

0.92

0.94

0.96

0.98

1

 216

 ()31, −+ BAIε and ()ABI ,31−+ε for BNH ()31, −+ BAIε and ()ABI ,31−+ε for SRN

 ()31, −+ BAIε and ()ABI ,31−+ε for TNK ()31, −+ BAIε and ()ABI ,31−+ε for OSY

 ()31, −+ BAIε and ()ABI ,31−+ε for CTP1 ()31, −+ BAIε and ()ABI ,31−+ε for CTP2

 ()31, −+ BAIε and ()ABI ,31−+ε for CTP3 ()31, −+ BAIε and ()ABI ,31−+ε for CTP4

 ()31, −+ BAIε and ()ABI ,31−+ε for CTP5 ()31, −+ BAIε and ()ABI ,31−+ε for CTP6

1 2 3

1

1.2

1.4

1.6

1.8

2

2.2

1 2 3

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3

1

1.2

1.4

1.6

1.8

2

2.2

1 2 3

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

1 2 3

2

3

4

5

6

7

8

9

10

11

1 2 3

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

1 2 3

2

3

4

5

6

7

8

9

10

11

1 2 3

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

1 2 3

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

1 2 3

0

5

10

15

20

25

30

35

1 2 3

0

20

40

60

80

100

120

1 2 3

0

5

10

15

20

25

30

35

1 2 3

0

20

40

60

80

100

120

1 2 3

0.005

0.01

0.015

0.02

0.025

0.03

1 2 3

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 2 3

0.005

0.01

0.015

0.02

0.025

0.03

1 2 3

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 2 3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

x 10
-3

1 2 3

3

4

5

6

7

8

9

10

x 10
-3

1 2 3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

x 10
-3

1 2 3

3

4

5

6

7

8

9

10

x 10
-3

1 2 3

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3

-0.015

-0.01

-0.005

0

0.005

0.01

1 2 3

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3

-0.015

-0.01

-0.005

0

0.005

0.01

1 2 3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

1 2 3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

1 2 3

2

3

4

5

6

7

8

9

10

x 10
-3

1 2 3

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 2 3

2

3

4

5

6

7

8

9

10

x 10
-3

1 2 3

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 2 3

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

x 10
-3

1 2 3

1

1.5

2

2.5

3

x 10
-3

1 2 3

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

x 10
-3

1 2 3

1

1.5

2

2.5

3

x 10
-3

 217

 ()31, −+ BAIε and ()ABI ,31−+ε for CTP7 ()31, −+ BAIε and ()ABI ,31−+ε for CTP8

 ()31, −+ BAIε and ()ABI ,31−+ε for CONSTR ()31, −+ BAIε and ()ABI ,31−+ε for Welded Beam

Figure 8.9 Box plot of additive binary epsilon indicator (Iε+ values) for all test functions (algorithm A

refers to the proposed MOPSO; algorithms B1-3 are referred to as NSGA-II, GZHW, and

WTY, respectively).

 (a) (b) (c) (d)

Pareto fronts for BNH

 (a) (b) (c) (d)

Pareto fronts for SRN

 (a) (b) (c) (d)

Pareto fronts for TNK

1 2 3

0

0.02

0.04

0.06

0.08

0.1

1 2 3

0

0.02

0.04

0.06

0.08

0.1

1 2 3

0

0.02

0.04

0.06

0.08

0.1

1 2 3

0

0.02

0.04

0.06

0.08

0.1

1 2 3

0.006

0.008

0.01

0.012

0.014

0.016

1 2 3

0.01

0.015

0.02

0.025

1 2 3

0.006

0.008

0.01

0.012

0.014

0.016

1 2 3

0.01

0.015

0.02

0.025

1 2 3

0

0.005

0.01

0.015

0.02

0.025

0.03

1 2 3

0

0.005

0.01

0.015

0.02

0.025

0.03

1 2 3

0

0.005

0.01

0.015

0.02

0.025

0.03

1 2 3

0

0.005

0.01

0.015

0.02

0.025

0.03

1 2 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3

0

1

2

3

4

5

6

1 2 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3

0

1

2

3

4

5

6

0 50 100 150 200 250
-250

-200

-150

-100

-50

0

50

f1

f2

0 50 100 150 200 250
-250

-200

-150

-100

-50

0

50

f1

f2

0 50 100 150 200 250
-250

-200

-150

-100

-50

0

50

f1

f2

0 50 100 150 200 250
-250

-200

-150

-100

-50

0

50

f1

f2

0 50 100 150 200 250
-250

-200

-150

-100

-50

0

50

f1

f2

0 50 100 150 200 250
-250

-200

-150

-100

-50

0

50

f1

f2

0 50 100 150 200 250
-250

-200

-150

-100

-50

0

50

f1

f2

0 50 100 150 200 250
-250

-200

-150

-100

-50

0

50

f1

f2

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

f1

f2

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

f1

f2

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

f1

f2

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

f1

f2

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

f1

f2

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

f1

f2

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

f1

f2

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

f1

f2

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

50

f1

f2

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

50

f1

f2

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

50

f1

f2

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

50

f1

f2

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

50

f1

f2

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

50

f1

f2

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

50

f1

f2

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

50

f1

f2

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

50

f1

f2

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

50

f1

f2

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

50

f1

f2

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

45

50

f1

f2

 218

 (a) (b) (c) (d)

Pareto fronts for OSY

 (a) (b) (c) (d)

Pareto fronts for CTP1

 (a) (b) (c) (d)

Pareto fronts for CTP2

 (a) (b) (c) (d)

Pareto fronts for CTP3

 (a) (b) (c) (d)

Pareto fronts for CTP4

-300 -250 -200 -150 -100 -50 0
0

10

20

30

40

50

60

70

80

90

f1

f2

-300 -250 -200 -150 -100 -50 0
0

10

20

30

40

50

60

70

80

f1

f2

-300 -250 -200 -150 -100 -50 0
0

10

20

30

40

50

60

70

80

90

f1

f2

-300 -250 -200 -150 -100 -50 0
0

10

20

30

40

50

60

70

80

f1

f2

-300 -250 -200 -150 -100 -50 0
0

10

20

30

40

50

60

70

80

f1

f2

-300 -250 -200 -150 -100 -50 0
0

10

20

30

40

50

60

70

80

f1

f2

-300 -250 -200 -150 -100 -50 0
0

10

20

30

40

50

60

70

80

f1

f2

-300 -250 -200 -150 -100 -50 0
0

10

20

30

40

50

60

70

80

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

 219

 (a) (b) (c) (d)

Pareto fronts for CTP5

 (a) (b) (c) (d)

Pareto fronts for CTP6

 (a) (b) (c) (d)

Pareto fronts for CTP7

 (a) (b) (c) (d)

Pareto fronts for CTP8

 (a) (b) (c) (d)

Pareto fronts for CONSTR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0.85

0.9

0.95

1

1.05

1.1

f1

f2

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0.85

0.9

0.95

1

1.05

1.1

f1

f2

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0.85

0.9

0.95

1

1.05

1.1

f1

f2

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0.85

0.9

0.95

1

1.05

1.1

f1

f2

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0.85

0.9

0.95

1

1.05

1.1

f1

f2

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0.85

0.9

0.95

1

1.05

1.1

f1

f2

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0.85

0.9

0.95

1

1.05

1.1

f1

f2

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0.85

0.9

0.95

1

1.05

1.1

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

f1

f2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

f1

f2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

f1

f2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

f1

f2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

f1

f2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

f1

f2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

f1

f2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

f1

f2

 220

 (a) (b) (c) (d)

Pareto fronts for Welded Beam

Figure 8.10 Pareto fronts produced by the following algorithms a-d represented (in order): proposed

MOPSO, NSGA-II, GZHW and WTY.

0 5 10 15 20 25 30 35 40
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

f1

f2

0 5 10 15 20 25 30 35 40
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

f1

f2

0 5 10 15 20 25 30 35 40
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

f1

f2

0 5 10 15 20 25 30 35 40
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

f1

f2

0 5 10 15 20 25 30 35 40
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

f1

f2

0 5 10 15 20 25 30 35 40
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

f1

f2

0 5 10 15 20 25 30 35 40
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

f1

f2

0 5 10 15 20 25 30 35 40
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

f1

f2

 221

CHAPTER 9

CONCLUSION AND FUTURE WORKS

Many real world problems are often multiobjective in nature. Most of them are

subjected by a set of constraints. In this thesis, the objective is to develop multiobjective

particle swarm optimization algorithms to deal with both unconstrained and constrained

multiobjective optimization problems. In addition to the objective, the inherited

mechanisms of particle swarm optimization are studied to exploit the key mechanism to

solve for unconstrained multiobejctive optimization problems and handle constraints.

9.1 Dynamic Population Size and Multiple-swarm Concepts

Recently, various multiobjective particle swarm optimization (MOPSO)

algorithms have been developed to efficiently and effectively solve unconstrained

multiobjective optimization problems. However, the existing MOPSO designs generally

adopt the need to “estimate” a fixed population size sufficiently to explore the search

space without incurring excessive computational complexity. Existing works of MOEAs

that adopted the idea of adaptively adjust the population size during the course of finding

the optimal Parato front have inspired the designs of the two MOPSO algorithms that

proposed in this study. Coupled with the idea of dynamic population size, the two

proposed MOPSO algorithms also integrate the multiple swarms concept to exploit the

“swarm-like” characteristic of the PSO and to enhance their potential to achieve better

 222

performance. Although both proposed algorithms integrate dynamic population size and

multiple swarms concepts, the design perspectives are different.

 In the first proposed algorithm, the number of particles or swarm population size

is dynamically changed but the number of swarms is user defined. Hence, the number of

particles in each swarm (or swarm size) depends on the swarm population size. The basic

skeleton of this algorithm, multiobjective particle swarm optimization algorithm

(DMOPSO), is based on the design of cMOPSO [128]. Additionally, three proposed

features are incorporated into the algorithm: 1) a cell-based rank density estimation

scheme to quickly update the location of the new particles in the objective space and to

provide easy access to the rank and density information of the particles; 2) a population

growing strategy that adaptively grows new particles with enhanced exploration and

exploitation capabilities; 3) a population declining strategy to balance and control the

dynamic population size; and 4) adaptive local archives to improve the selection of group

leaders to produce a better distributed Pareto front associated with each swarm. A

comparative study of DMOPSO with five selected state-of-the-art MOPSOs on six

benchmark test problems is presented. The results of applying two performance metrics

clearly indicate that DMOPSO is highly competitive and even outperforms most of the

selected MOPSOs. In addition, qualitative results also show that DMOPSO has the ability

to produce relatively better Pareto fronts compared to most of the selected MOPSOs for

all six benchmark test functions In fact, dynamic population strategy has contributed in

improved performance. The reasons are as follows: First, dynamic population strategy

provides some flexibility in preserving good particles and removing those that will not

contribute to the search process for the following iterations. Second, the design

 223

guarantees to grow new potential particles that will either improve the search process or

land on unexplored regions to discover better solutions. This will speed the process in

finding better solutions and indirectly save computational cost. Third, multiple swarms

approach provides some degrees of local search. This greatly enhances the quality of

convergence toward optimal Pareto front. To avoid the excessive use of local search,

adaptive local archive is incorporated to maintain the diversity within each swarm, at

least in a local sense.

However, there are two disadvantages in DMOPSO. Clustering algorithm is

applied to group the leaders in the archive according to the predefined number of swarms.

This adds additional computational complexity to the algorithm, especially if the number

of swarms is set too high. Another weakness of DMOPSO is the parameter settings and

dealing with the question of how to optimally choose the parameters. We suggest fixing

some of the parameters such as lnp = 1; rud = 0.7; rld = 0.02 and ppv =10. For grid scale,

K, we suggest starting at 100 first and then tuning the value up or down depending on the

resolution of the resulting Pareto front needed. The setting of parameter, Ka, depends on

the number of sub-swarms. If the number of swarms is high, then parameter, Ka, can be

tuned down and vice versa. Lastly, parameters rb, unp and selection ratio are

interdependent. Currently, these parameters are selected ad hoc.

 Due to the disadvantages of DMOPSO discussed above, a new multiobjective

particle swarm optimization, called DSMOPSO is proposed. This algorithm, however,

dynamically adjusts the number of swarms instead of the swarm population size, and

fixes the swarm size for each swarm. The design of this algorithm involves three main

contributions. First, the swarm growing and declining strategies are developed to

 224

dynamically grow new potential swarms and to remove swarms with least contribution to

the search process. These strategies promote diversity by placing new swarms into

unexplored areas and by eliminating swarms that reside in crowded regions. Second, PSO

updating rule is modified to improve the interaction among swarms and particles within a

swarm. Third, the objective space compression and expansion strategy is proposed to

allow adjustment of the size of the objective space to ensure the swarms progressively

find the true Pareto front. Experiments show DSMOPSO is competitive in terms of

performance, compared to selected MOPSOs, in both qualitative and quantitative

measures for the selected test functions. In the study investigating the computational cost

exerted by DSMOPSO, it appears that DSMOPSO demands less computational cost for

test problems with disconnected Pareto front or with multiple local optima. In a future

study, which types of problem characteristics work best for DSMOPSO in terms of

performance and computational cost will be further investigated. Lastly, sensitivity

analysis is conducted to study the impact of the tuning parameters on DSMOPSO. From

the results, we have recommended various parameter settings that will deliver good

performance for the selected test functions. There are advantages of DSMOPSO over the

first proposed algorithm, DMOPSO. Only two user-defined parameters are in the swarm

growing and declining strategies as opposed to six user-defined parameters in DMOPSO.

With lesser user-defined parameters, this reduces the difficulty of tuning the parameters

and the dependency among the parameters, which reduces the impact of the tuning

parameters on the algorithm’s performance. In addition, the objective space compression

and expansion strategy will reduce the dependency on setting the grid scale parameter, K.

With multiple swarms concept directly applies to the search process, both local and

 225

global searches are encouraged during process of searching for the optimal Pareto front.

Hence, clustering algorithm is no longer needed. Despite of the advantages, DSMOPSO

has its limitations. Through observation, one of its limitation is the search progression is

slower, which render larger computational cost. This may due to two possible reasons.

The growth rate for number of swarms is not high enough and the lacking of good

strategy to enhance the communication among and within swarms. Another problem is

the need to effectively trigger the objective space compression and expansion routine in

order to reduce its frequency.

 In the near future works, study to deal with the disadvantages of DSMOPSO is

highly desired and investigation on the performance of DSMOPSO for test functions

more than two objectives is required. For DMOPSO, It will be interesting to study how

well DMOPSO will handle the combinatorial optimization problems since several

publications have proved successful in applying PSO to solve for combinatorial

optimization problems like multiobjective knapsack or TSP [149-151].

9.2 Constraint Handling

 For constraint optimization, the main challenges are to optimize the objective

function(s) and simultaneously handle constraints. The design of constrained MOPSO is

achieved in two steps. First the constrained PSO with key design elements is proposed for

COPs then with the design elements, it is extended to a MOPSO to solve for CMOPs.

This proposed constrained PSO adopts a multiobjective constraint handling technique, in

which the COP is converted into an unconstrained bi-objective optimization problem. It

incorporates the following design features: 1) separate procedures to update the infeasible

 226

and feasible personal best in the personal best archive in order to guide the infeasible

particles towards the feasible regions while promote search for better solutions; 2) an

infeasible global best archive is adopted to make use of the infeasible nondominated

solutions for searching possible isolated feasible regions or a very small feasible region

while the feasible global best archive aims to guide the particles to find better solutions;

and 3) the adjustment of the accelerated constants in the PSO equation is based on the

number of feasible personal best in the personal best archive and the constraint violations

of personal best and global best. The adjustment will influence the search process either

to find more feasible solutions (particles) or to search for better solutions; and the

frequency of applying the mutation operators are based on the feasibility ratio of the

particles’ personal best. This feasibility ratio is exploited to encourage more exploration

characteristic to search possible feasible regions when there are few feasible particles’

personal best, while reduce the exploration rate when most of the particles’ personal best

are feasible to support convergence toward Pareto optimal front. In addition, a mutation

operator with the mutated range covered is narrowed overtime to encourage global search

in early iterations and fine tune local search in later iterations. From the simulation study,

the proposed constrained PSO is capable to obtain quality feasible solutions for most of

the test problems, while the performance achieved is competitive when compared with

selected state-of-the-art approaches. In our future work, further improvement is

considered to improve the solution quality and to solve for those problems that

occasionally do not find feasible optima, such as test problem g17.

 For the proposed constrained MOPSO, same design as the constrained PSO is

incorporated except that the mutation operator is modified. In this design, both uniform

 227

and Gaussian mutation operators are used to encourage local and global search.

Furthermore, the mutation rate for both mutation operators is adaptively determined by

the feasibility ratio of the particles’ personal best, in which the frequency of applying the

mutation operators depends on the number of feasible personal best in the archive. A

comparative study of the proposed MOPSO and three state-of-the-art constrained

MOEAs on 14 benchmark test problems are presented. The simulation results show the

proposed constrained MOPSO is highly competitive and able to obtain quality Pareto

fronts for most of the test problems. However, the proposed constrained MOPSO is still

fail in solving test problems OSY and Welded Beam by observing the simulation results.

Several suggestions for future works: improve the diversity mechanism in the design

elements, apply the proposed constrained MOPSO to other CMOPs, e.g., problems with

equality constraints, and incorporate dynamic population concept or multiple swarms

approach in the proposed constrained MOPSO.

 228

BIBIOGRAPHY

[1] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John Wiley

& Sons, Ltd, England, 2001.

[2] C.A. Coello Coello, “Recent trends in evolutionary multiobjective optimization,”

Ajith Abraham, Lakhimi Jain, Robert Goldberg (Editors), Evolutionary

Multiobjective Optimization Theoretical Advances and Application, Springer-

Verlag London Limited, USA, 2005.

[3] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, “Optimization by simulated

annealing,” Science, Vol 220, No. 4598, pp. 671-680, 1983.

[4] D. Cvijovic and J. Klinowski, “Taboo search: An approach to the multiple

minima problem,” Science, Vol. 267, No. 5198, pp. 664-666, 1995.

[5] Joshua D. Knowles, “Local-search and hybrid evolutionary algorithms for Pareto

optimization,” PhD thesis, The University of Reading, Reading, UK, January

2002.

[6] C.A. Coello Coello, “Evolutionary multi-objective optimization: A historical view

of the field,” IEEE Computational Intelligence Magazine, February, pp.29-36,

2006.

[7] K.C. Tan, E.F. Khor, and T.H. Lee, Multiobjective Evolutionary Algorithms and

Application, Springer-Verlag London Limited, 2005.

[8] A. Abraham and L. Jain, “Evolutionary multiobjective optimization,” Ajith

Abraham, Lakhimi Jain, Robert Goldberg (Editors), Evolutionary Multiobjective

Optimization Theoretical Advances and Application, Springer-Verlag London

Limited, USA, 2005.

[9] M. Schniederjans, Goal Programming: Methodology and Applications, Kluwer

Academic Publishers, Mar 1995.

[10] Saul I. Gass, Linear Programming: Methods and Applications, Fifth Edition,

Dover Publications, 2003.

[11] E. Papadopoulou and D.T. Lee, “The Min-Max Voronoi diagram of polygons and

applications in VLSI manufacturing,” Proceedings of 13th Annual International

 229

 Symposium on Algorithms and Computation, Vancouver, Canada, pp. 511-522,

2002.

[12] C.L. Hwang and A.S.M. Masud, Multiple Objective Decision Making – Methods

and Applications, Springer-Verlag, NY, 1979.

[13] Haiming Lu, “State-of-the-art multiobjective evolutionary algorithms - Pareto

ranking, density estimation and dynamic population,” PhD Thesis, Oklahoma

State University, Stillwater, Oklahoma, August 2002.

[14] A. Charnes and W.W Cooper, Management models and industrial applications of

linear programming, Wiley, New York, 1961.

[15] Y. Ijiri, Management Goals and Accounting for Control, Rand-McNally, Chicago,

1965.

[16] M. Tamiz and D.F. Jones, "Expanding the flexibility of goal programming via

preference modelling techniques", Omega - The International Journal of

Management Science, Vol. 23, No 1, pp. 41-48, 1995.

[17] D.F. Jones and M. Tamiz Goal programming in the period 1990-2000, in

Multiple Criteria Optimization: State of the art annotated bibliographic surveys,

M. Ehrgott and X.Gandibleux (Eds.), pp. 129-170. Kluwer, 2002.

[18] C. Romero, Handbook of critical issues in goal programming, Pergamon Press,

Oxford, 1991.

[19] C.A. Coello Coello and A.D. Christiansen, “Two new GA-based methods for

multiobjective optimization,” Civil Engineering Systems, Vol. 15, No. 3, pp. 207-

243, 1998.

[20] N.A. Barricelli, "Esempi numerici di processi di evoluzione, " Methodos, pp. 45-

68, 1954.

[21] T. Bäck, Evolutionary Algorithms in Theory and Practice, Oxford University

Press, Inc., New York, 1996.

[22] D.E. Goldberg, The Design of Innovation Lessons from and for Competent

Genetic Algorithm, Kluwer Academic Publishers, USA, 2002.

[23] W.B. Langdon, R. Poli, Foundations of Genetic Programming, Springer-Verlag,

2002.

[24] J.D. Schaffer, “Multiple objective optimization with vector evaluated genetic

algorithm,” Genetic Algorithms and Their Applications: Proceedings of the First

International Conference on Genetic Algorithms, pp. 93-100, 1985.

 230

[25] D.E. Goldberg, Genetic Algorithm in Search, Optimization and Machine

Learning, Addison-Westley Publishing Company, Reading, Massachusetts, 1989.

[26] C. Fonseca and P. Fleming, “Genetic algorithms for multiobjective optimization:

Formulation, discussion and generalization,” Proceedings of 5
th

 International

Conference in Genetic Algorithms, Urbana-Champaign, IL, pp. 416-423, 1993.

[27] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithm: A comparative

case study and the strength pareto approach,” IEEE Transactions on Evolutionary

Computations, Vol.3, No. 4, pp. 257-271, Nov, 1999.

[28] H. Lu and G.G. Yen, “Rank-density-based multiobjective genetic algorithm and

benchmark test function study,” IEEE Transactions on Evolutionary

Computations, Vol. 7, No. 4, pp. 325- 343, 2003.

[29] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving the strength Pareto

evolutionary algorithm,” Swiss Federal Institute of Technology, Zurich,

Switzerland, Technical Report, TIK-Rep. 103, 2001.

[30] J.D. Knowles and D.W. Corne, “Approximating the nondominated front using the

Pareto archived evolution strategy,” Evolutionary Computation, Vol. 8, No. 2, pp.

149-172, 2000.

[31] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist

multiobjective genetic algorithm: NSGA-II," ,” IEEE Transactions on

Evolutionary Computations, Vol. 6, no. 2, pp. 182-197, 2002.

[32] D.W. Corne, J.D. Knowles, and M.J. Oates, “The pareto envelope-based selection

algorithm for multiobjective optimization,” M. Schoenauer, K. Deb, G. Rudolph,

X. Yao, E. Lutton, J.J. Merelo, and H-P. Schwefel (Editors), Proceedings of the

Parallel Problem Solving from Nature VI Conference, Paris, France, Vol. 1917,

pp. 839-848, 2000.

[33] C.A. Coello Coello and G. Toscazo Pulido, “A micro-genetic algorithm for

multiobjective optimization,” E. Zitzler, K. Deb, L. Thiele, C.A. Coello Coello,

and D. Corne (Editors), Proceedings of the First International Conference on

Evolutionary Multi-criterion Optimization, Zurich, Switzerland, Vol. 1993, pp.

126-140, 2001.

[34] J.D. Schaffer, “Some experiments in machine learning using vector evaluated

genetic algorithm,” Ph.D. Thesis, Vanderbilt University, 1984.

[35] F. Kursawe, “A variant of evolution strategies for vector optimization,” Parallel

Problem Solving in Nature I, Dortmund, Germany, pp. 193-197, 1990.

 231

[36] C. Poloni, A. Giurgevich, L. Onesti, and V. Pediroda, “Hybridization of a

multiobjective genetic algorithm, a neural network and a classical optimizer for

complex design problem in fluid dynamic,” Computer Methods in Applied

Mechanics and Engineering, Vol. 186, No. 2-4, pp. 403-420, 2000.

[37] C.M. Fonseca and P.J, Fleming, “An overview of evolutionary algorithms in

multiobjective optimization,” Evolutionary Computation Journal, Vol. 3, No. 1,

pp. 1-16, 1995.

[38] K. Deb, “Multi-objective genetic algorithms: Problem difficulties and

construction of test problems,” Evolutionary Computation Journal, Vol. 7, No.3,

pp. 205-230, 1999.

[39] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary

algorithms: Empirical results,” Evolutionary Computation Journal, Vol. 8, No.2,

pp. 173-195, 2000.

[40] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test problems for

evolutionary multiobjective optimization,” Evolutionary Computation Based

Multi-Criteria Optimization: Theoretical Advances and Applications. Springer,

pp. 105-145, 2005.

[41] T. Okabe, Y. Jin, M. Olhofer, and B. Sendhoff, “On test functions for

evolutionary multi-objective optimization,” Proceedings of Parallel Problem

Solving from Nature-VIII, Birmingham, UK, Vol. 3242, pp. 792-802, 2004.

[42] S. Huband, P. Hingston, L. Barone, and L. While, “A review of multiobjective

test problems and a scalable test problem toolkit,” IEEE Transactions on

Evolutionary Computation, Vol. 10, No. 5, pp. 477-506,Oct, 2006.

[43] D.A. Van Veldhuizen and G.B. Lamount, “Multiobjective evolutionary algorithm

research: A history and analysis,” Department of Electrical Computer

Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Technical

Report TR-98-03, 1998.

[44] J.R. Schott, “Fault tolerant design using single and multicriteria genetic algorithm

optimization,” Master Thesis, Department of Aeronautics and Astronautics,

Massachusetts Institute of Technology, Cambridge, MA, May, 1995.

[45] D.A. Van Veldhuizen, “Multiobjective evolutionary algorithms: Classifications,

analyses, and new innovations,” Ph.D. Thesis, Department of Electrical and

Computer Engineering, Air Force Institute of Technology, Wright-Patterson AFB,

OH, May 1999.

[46] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca and V.G. da Fonseca,

“Performance assessment of multiobjective optimizers: an analysis and review,”

 232

IEEE Transactions on Evolutionary Computation, Vol. 7, No. 2, pp.117-132,

April 2003.

[47] E. Zitler, “Evolutionary Algorithms for multiobjective optimization: methods and

applications,” Ph.D dissertation, Shaker Verlag, Aachen, Germany, 1999.

[48] J. Kennedy, and R. C. Eberhart, Swarm Intelligence, ISBN 1-55860-595-9,

Academic Press, 2001.

[49] M. Dorigo, Optimization, Learning and Natural Algorithms, PhD thesis,

Politecnico di Milano, Italy, 1992.

[50] J. Kennedy and R.C. Eberhart, “Particle swarm optimization,” Proceedings of

IEEE International Conference of Neural Networks, Perth, Australia, pp. 1942-

1948, 1995.

[51] M. Dorigo and L.M. Gambardella, "Ant colony system: A cooperative learning

approach to the traveling salesman problem," IEEE Transactions on Evolutionary

Computation, Vol. 1, No. 1, pp. 53–66, 1997.

[52] V. Maniezzo, A.Colorni, and M.Dorigo, “The ant system applied to the quadratic

assignment problem,” Tech. Rep. IRIDIA/94-28, Université Libre de Bruxelles,

Belgium, 1994.

[53] H. Weimerskirch. (December, August,16). Bird flight explained. BBC News

World Edition. Available: http://news.bbc.co.uk/2/hi/science/nature/1608251.stm

[54] C.W. Reynolds, “Flocks, herds, and schools: A distributed behavioral model, in

computer graphics,” Proceedings of the 14th Annual Conference on Computer

Graphics and Interactive Techniques, Vol. 21, No.4, pp. 25-34, 1987.

[55] C.W. Reynolds. Boids: Background and update. Available:

http://www.red3d.com/cwr/boids/

[56] F. Heppner, and U. Grenander, "A stochastic nonlinear model for coordinated bird

flocks," The Ubiquity of Chaos, ed. S. Krasner, AAAS Publications, Washington,

DC, 1990.

[57] H. Lorek and M. White, “Parallel Bird Flocking Simulation,” Proceedings of BCS

Conference on Parallel Processing for Graphics and Scientific Visualization,

Edinburgh, May 1993.

[58] J. Toner and Y. Tu, “Flocks, herds, and schools: A quantitative theory of

flocking,” Physical Review E, Vol. 58, No. 4, pp. 4828-4858, 1999.

 233

[59] L. Spector, J. Klein, C. Perry, M. Feinstein, “Emergence of Collective Behavior in

Evolving Populations of Flying Agents,” Genetic Programming and Evolvable

Machines, Vol. 6, No. 1, pp. 111-125, 2005.

[60] H. G. Tanner, A. Jadbabaie and G. J. Pappas, "Flocking Agents with Varying

Interconnection Topology", Automatica, 2004.

[61] Paul Pomeroy, An Introduction to Particle Swarm Optimization,

AdpativeView.com, March, 2003.

[62] Y. Shi and R.C. Eberhart, “A modified particle swarm optimizer,” Proceedings of

IEEE International Conference on Evolutionary Computation, Anchorage,

Alaska, pp. 303-308, 1997.

[63] S. Mikki and A. Kishk, “Improved particle swarm optimization technique using

hard boundary conditions,” Microwave and Optical Technology Letters, Vol. 46,

No.5, pp.422-426, 2005.

[64] L. Zhang, H. Yu, and S. Hu, “A new approach to improve particle swarm

optimization,” Proceedings of the Genetic and Evolutionary Computation

Conference, Chicago, Il, Vol. 2723, pp. 134-142, 2003.

[65] Y. Shi and R.C. Eberhart, “Empirical study of particle swarm optimization,”

Proceedings of International Congress on Evolutionary Computation,

Piscataway, NJ, Vol. 3, pp. 101-106, 1999.

[66] Z. Qin, F. Yu, Z.W. Shi, and Y. Wang, “Adaptive inertia weight particle swarm

optimization,” Proceedings of Artificial Intelligence and Soft Computing,

Zakopane, Poland, Vol. 4029, pp. 450-459, 2006.

[67] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing

hierarchical particle swarm optimizer with time-varying acceleration constants,”

IEEE Transactions on Evolutionary Computations, Vol. 8, No. 3, pp. 240- 255,

2004.

[68] Z.H. Cui, J.C. Zeng, and G.J. Sun, “Adaptive velocity threshold particle swarm

optimization,” Proceedings of Rough Sets and Knowledge Technology,

Chongquing, China, Vol. 4062, pp. 327-332, 2006.

[69] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and

convergence in a multidimensional complex space,” IEEE Transactions on

Evolutionary Computation, Vol. 6, pp. 58-73, 2002.

[70] J. Kennedy, “Bare bones particle swarms,” Proceedings of Swarm Intelligence

Symposium, Indianapolis, Indiana, pp. 80-87, 2003.

 234

[71] R. A. Krohling, “Gaussian particle swarm with jumps,” Proceedings of Congress

on Evolutionary Computation, Vol. 2, Edinburgh, UK, pp. 1226- 1231, 2005.

[72] N. Higashi and H. Iba, “Particle swarm optimization with Gaussian mutation,”

Proceedings of Swarm Intelligence Symposium, Indianapolis, Indiana, pp. 72-79,

2003.

[73] S. Das, A. Konar, U. K. Chakraborty, “Improving particle swarm optimization

with differentially perturbed velocity,” Proceedings of Genetic and Evolutionary

Computation Conference, Washington, DC, pp. 177-184, 2005.

[74] P.N. Suganthan, “Particle swarm optimiser with neighborhood operator,”

Proceedings of Congress on Evolutionary Computation, Washington, DC, pp.

1958-1962, 1999.

[75] J. Kennedy and R. Mendes, “Topological structure and particle swarm

performance,” Proceedings of the Fourth Congress on Evolutionary Computation,

Honolulu, Hawaii, pp. 1671–1676, 2002.

[76] R. Mendes, J. Kennedy, J. Neves, “Watch thy neighbor or how the swarm can

learn from its environment,” Proceedings of Swarm Intelligence Symposium,

Indianapolis, Indiana, pp. 88- 93, 2003.

[77] James Kennedy and R. Mendes, “Neighborhood topologies in fully informed and

best-of-neighborhood particle swarm,” IEEE Transaction on Systems, Man and

Cybernetics–Part C: Applications and Reviews , Vol. 36, No. 4, pp. 515-519,

2006.

[78] E.S. Peer, F. van den Bergh, A.P. Engelbrecht, “Using neighborhoods with

guaranteed convergence PSO,” Proceedings of Swarm Intelligence Symposium,

Indianapolis, Indiana, pp. 235- 242, 2003.

[79] A.S. Mohais, R. Mendes, C. Ward, and C. Posthoff, “Neighborhood Re-

structuring in Particle Swarm Optimization,” Proceedings of 18th Australian Joint

Conference on Artificial Intelligence, Vol. 3809, pp. 776-785, 2005.

[80] R. Brits, A. Engelbrecht, and F. van den Bergh, “Scalability of Niche PSO,”

Proceedings of Swarm Intelligence Symposium, Indianapolis, IN, pp. 228-234,

2003.

[81] S. Bird and X. Li, “Enhancing the robustness of a speciation-based PSO,”

Proceedings of Congress on Evolutionary Computation, Vancouver, Canada, pp.

3185-3192, 2006.

 235

[82] X. Li, “Adaptively choosing neighborhood bests using species in a particle swarm

optimizer for multimodal function optimization,” Proceedings of Genetic and

Evolutionary Computation Conference, Seattle, WA, pp.105-116, 2004.

[83] M. Iwamatsu, “Multi-species particle swarm optimizer for multimodal function

optimization,” IEICE Transactions on Information and Systems, Vol. E89D, No.

3, pp. 1181-1187, 2006.

[84] M. Iwamatsu, “Locating all the global minima using multi-species particle swarm

optimizer: the inertial weight and the constriction factor variants,” Proceedings of

Congress on Evolutionary Computation, Vancouver, Canada, pp. 3158-3164,

2006.

[85] A. Passaro and A. Starita, “Clustering particles for multimodal function

optimization,” Proceedings of ECAI Workshop on Evolutionary Computation,

Riva del Garda, Italy, pp. 124-131, 2006.

[86] J.H. Seo, C.H. Im, C.G. Heo, J.K. Kim, H.K. Jung, and C.C. Lee, “Multimodal

function optimization based on particle swarm optimization,” IEEE Transactions

on Magnetics, Vol. 42, No. 4, pp. 244-252, 2006.

[87] J. Zhang, D.S, Huang, T.M. Lok, and M.R. Lyu, “A novel adaptive sequential

niche technique for multimodal function optimization,” Neurocomputing, Vol. 69,

pp. 2396-2401, 2006.

[88] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-convergence in

dynamic environments,” IEEE Transactions on Evolutionary Computation, Vol.

10, No. 4, pp. 459-472, 2006.

[89] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima by a

particle swarm model using speciation,” IEEE Transactions on Evolutionary

Computations, Vol. 10, No. 4, pp. 440-458, 2006.

[90] J. Kennedy, “Stereotyping: Improving particle swarm performance with cluster

analysis,” Proceedings of Congress on Evolutionary Computation, San Diego,

CA, pp. 1507-1512, 2000.

[91] F. van den Bergh and A.P. Engelbrecht, “A cooperative approach to particle

swarm optimization,” IEEE Transactions on Evolutionary Computations, Vol. 8,

No. 3, pp. 225-239, 2004.

[92] G. Chen and J. Yu, “Two sub-swarms particle swarm optimization algorithm,”

Proceeding of International Conference on Natural Computation, Changsha,

China, pp. 515-524, 2005.

 236

[93] B. Niu, Y. Zhu, and X. He, “Multi-population cooperative particle swarm

optimization,” Proceeding of European Conference on Artificial Life, Canterbury,

UK, pp. 874-883, 2005.

[94] M. El-Abd and M. Kamel, “Information exchange in multiple cooperating

swarms,” Proceedings of Swarm Intelligence Symposium, Pasadena, CA, pp. 138-

142, 2005.

[95] M. El-Abd and M.S. Kamel, “On the convergence of information exchange

methods in multiple cooperating swarms,” Proceedings of Congress on

Evolutionary Computation, Vancouver, Canada, pp. 3797-3801, 2006.

[96] G.G. Yen and M. Daneshyari, “Diversity-based information exchange among

multiple swarms in particle swarm optimization,” Proceedings of Congress on

Evolutionary Computation, Vancouver, Canada, pp. 1686-1693, 2006.

[97] B. Niu, Y.L. Zhu, K.Y. Hu, S.F. Li, X.X. He, “A novel particle swarm optimizer

using optimal foraging theory,” Proceedings of Computational Intelligence and

Bioinformatics, Part 3, Kunming, China , Vol. 4115, pp. 61-71, 2006.

[98] J. Sun, B. Feng, and W. Xu, “Particle swarm optimization with particles having

quantum behavior,” Proceedings of Congress on Evolutionary Computation,

Portland, OR, pp. 325-331, 2004.

[99] G. Yang and R. Zhang, “An emotional particle swarm optimization,” Proceedings

of First International Conference of Advances in Natural Computation, Part 3,

Changsha, China, Vol. 3612, pp. 553-561, 2005.

[100] Z. Wang, G.L. Durst, R.C. Eberhart, D.B. Boyd, and Z. Ben Miled, “Particle

swarm optimization and neural network application for QSAR,” Proceedings of

Third IEEE International Workshop on High Performance Computational

Biology, Santa Fe, NM, in HiCOMB 2004 Online proceeding, 2004.

[101] M. P. Wachowiak, R. Smolikova, Y. Zheng, J. M. Zurada, and A. S. Elmaghraby,

“An approach to multimodal biomedical image registration utilizing particle

swarm optimization,” IEEE Transaction on Evolutionary Computation, Vol. 8,

No. 3, pp. 289-301, June 2004.

[102] J. Tillett, S.J. Yang, R. Rao, and F. Sahin, “Application of particle swarm

techniques in sensor network configuration,” Proceedings of SPIE International

Society for Optical Engineering, Vol. 5796, pp. 363-373, 2005.

[103] H. Liu, S. Sun, and A. Abraham, “Particle swarm approach to scheduling work-

flow applications in distributed data-intensive computing environments,”

Proceedings of the Sixth International Conference on Intelligent Systems Design

and Applications, Jinan. Shandong, China, Vol. 2, pp. 661-666, 2006.

 237

[104] K.C. Lee and J.Y. Jhang, “Application of particle swarm algorithm to the

optimization of unequally spaced antenna arrays,” Journal of Electromagnetic

Waves and Applications, Vol. 20, No. 14, pp. 2001-2012, 2006.

[105] X. Hu, R.C. Eberhart and Y. Shi, “Particle swarm with extended memory for

multiobjective optimization,” Proceedings of Swarm Intelligence Symposium,

Indianapolis, IN, pp. 193-198, 2003.

[106] J.E. Fieldsand and S. Singh, “A multi-objective algorithm based upon particle

swarm optimization, an efficient data structure and turbulence,” Proceedings of

UK Workshop on Computational Intelligence, Birmingham, UK, pp. 37-44, 2002.

[107] S. Mostaghim and J. Teich, “The role of ε–dominance in multi objective particle

swarm optimization methods,” Proceedings of Congress on Evolutionary

Computation, Canberra, Australia, pp. 1764-1771, 2003.

[108] Hao Jiang, Jin-hua Zheng, and Liang-jun Chen, “Multi-objective particle swarm

optimization algorithm based on enhanced ε-dominance,” Proceedings of IEEE

International Conference on Engineering of Intelligent Systems, Islamabad,

Pakistan, pp.1-5, April, 2006.

[109] X. Li, “A non-dominated sorting particle swarm optimizer for multiobjective

optimization,” Proceedings of Genetic and Evolutionary Computation

Conference, Vol. 2723, pp. 37-48, 2003.

[110] C.A. Coello Coello, and M.S. Lechuga, “MOPSO: A proposal for multiple

objective particle swarm optimization,” Proceedings of Congress on Evolutionary

Computation, Honolulu, HI., pp. 1051-1056, 2002.

[111] X. Hu and R.C. Eberhart, “ Multiobjective optimization using dynamic

neighborhood particle swarm optimization,” Proceedings of Congress on

Evolutionary Computation, Honolulu, HI, pp. 1677-1681, 2002.

[112] L.B. Zhang, C.G. Zhou, X.H. Liu, Z.Q. Ma, M. Ma, and Y.C. Liang, “Solving

multi objective problems using particle swarm optimization,” Proceedings of

Congress on Evolutionary Computation, Canberra, Australia, pp. 2400-2405,

2003.

[113] S. Mostaghim and J. Teich, “Strategies for finding good local guides in multi-

objective particle swarm optimization,” Proceedings of Swarm Intelligence

Symposium, Indianapolis, IN, pp. 26-33, 2003.

[114] D. Ireland, A, Lewis, S. Mostaghim, and Jun Wei Lu, “Hybrid particle guide

selection methods in multi-objective particle swarm optimization,” Proceedings

of Second IEEE International Conference on e-Science and Grid Computing,

Amsterdam, Netherlands, pp. 116 – 116. 2006.

 238

[115] M.A. Villalobos-Arias, G.T. Pulido, and C.A. Coello Coello, “A proposal to use

stripes to maintain diversity in a multi-objective particle swarm optimizer,”

Proceedings of Swarm Intelligence Symposium, Pasadena, CA, pp. 22-29, 2005.

[116] D.W. Gong, Y. Zhang, and J.H. Zhang, “Multi-objective particle swarm

optimization based on minimal particle angle,” Proceedings of International

Conference on Intelligent Computing, Hefei, China, pp. 571-580, 2005.

[117] J.E. Alvarez-Benitez, R.M. Everson, and J.E. Fieldsend, “A MOPSO algorithm

based exclusively on Pareto dominance concepts,” Proceedings of Evolutionary

Multi-Criterion Optimization Conference, Guanajuato, Mexico, pp. 459-473,

2005.

[118] Jürgen Branke and Sanaz Mostaghim, “About selecting the personal best in multi-

objective particle swarm optimization,” Proceedings of the 9th International

Conference Parallel Problem Solving from Nature, Reykjavik, Iceland, Vol.

4193, pp. 523-532, 2006.

[119] S.L. Ho, Shiyou Yang, Guangzheng Ni, E.W.C. Lo, and H.C. Wong, “A particle

swarm optimization-based method for multiobjective design optimizations,” IEEE

Transactions on Magnetics, Vol. 41, No. 5, pp. 1756 – 1759, 2005.

[120] C.A. Coello Coello, G. Toscano Pulido, and M.S. Lechuga, “Handling multiple

objectives with particle swarm optimization,” IEEE Transactions on Evolutionary

Computation, Vol. 8, No. 3, pp. 256-279, 2004.

[121] M.R. Sierra and C.A. Coello Coello, “Improving PSO-based multi-objective

optimization using crowding, mutation and ε–dominance,” Proceedings of

Evolutionary Multi-Criterion Optimization Conference, Guanajuato, Mexico, Vol.

3410, pp. 505-519, 2005.

[122] F. de Toro, J. Ortega, and B. Paechter, “Parallel single front genetic algorithm:

performance analysis in a cluster system,” Proceedings of International Parallel

and Distributed Processing Symposium, Nice, France, pp. 143-148, 2003.

[123] S. Xiong and F. Li, “Parallel strength Pareto multi-objective evolutionary

algorithm for optimization problems,” Proceedings of Congress on Evolutionary

Computation, Canberra, Australia, pp. 2712- 2718, 2003.

[124] K.C. Tan, T.H. Lee, Y.J. Yang, and D.S. Liu, “A cooperative coevolutionary

algorithm for multiobjective optimization,” Proceedings of IEEE International

Conference on Systems, Man, and Cybernetic, The Hague, The Netherlands, pp.

1926-1931, 2004.

[125] K.E. Parsopoulos, D.K. Tasoulis, N.G. Pavlidis, V.P. Plagianakos, and M.N.

Vrahatis, “Vector evaluated differential evolution for multiobjective

 239

optimization,” Proceedings of Congress on Evolutionary Computation, Portland,

OR, pp. 204-211, 2004.

[126] S. Ando and E, Suzuki, “Distributed multi-objective GA for generating

comprehensive Pareto front in deceptive optimization problems,” Proceedings of

Congress on Evolutionary Computation, Vancouver, Canada, pp. 1569-1576,

2006.

[127] K. Izumi, M.M.A. Hashem, and K. Watanabe, “An evolution strategy with

competing subpopulations,” Proceedings of IEEE International Symposium on

Computational Intelligence in Robotics and Automation, Monterey, CA, pp. 306-

311, 1997.

[128] G. Toscano Pulido and C.A. Coello Coello, “Using clustering techniques to

improve the performance of a particle swarm optimizer,” Proceedings of Genetic

and Evolutionary Computation Conference, Vol. 3102, Seattle, WA, pp. 225-237,

2004.

[129] S. Mostaghim and J. Teich, “Covering Pareto-optimal fronts by subswarms in

multi-objective particle swarm optimization,” Proceedings of Congress on

Evolutionary Computation, Portland, OR, pp. 1404-1411, 2004.

[130] Ching-Shih Tsou, Hsiao-Hua Fang, Hsu-Hwa Chang, and Chia-Hung Kao, “An

improved particle swarm Pareto optimizer with local search and clustering,”

Proceedings of the 6th International Conference on Simulated Evolution and

Learning, Hefei, China, Vol. 4247, pp. 400-407, 2006.

[131] Hong-yun Meng, Xiao-hua Zhang, and San-yang Liu, “A co-evolutionary particle

swarm optimization-based method for multiobjective optimization,” Proceedings

of the 18th Australian Joint Conference on Artificial Intelligence, Sydney,

Australia, Vol. 3809, pp. 349-359, 2005.

[132] L.V. Santana-Quintero, N. Ramirez-Santiago, and C.A. Coello Coello, “A new

proposal for multiobjective optimization using particle swarm optimization and

rough sets theory,” Proceedings of the 9th International Conference Parallel

Problem Solving from Nature, Reykjavik, Iceland, Vol. 4193, pp. 483-492, 2006.

[133] Xiaohua Zhang, Hongyun Meng, and Licheng Jiao, “Intelligent particle swarm

optimization in multiobjective optimization,” Proceedings of Congress on

Evolutionary Computation, Edinburgh, Scotland, Vol. 1, pp. 714- 719, 2005.

[134] Xiaohua Zhang, Hongyun Meng, and Licheng Jiao, “Improving PSO-based

multiobjective optimization using competition and immunity clonal,” Proceedings

of International Conference of Computational Intelligence and Security, Xi'an,

China, Vol. 3801, pp. 839-845, 2005.

 240

[135] K.C. Tan, T.H. Lee and E.F. Khor, “Evolutionary algorithms with dynamic

population size and local exploration for multiobjective optimization,” IEEE

Transactions on Evolutionary Computation, Vol. 5, No. 6, pp. 565-588, 2001.

[136] J. Arabas, Z. Michalewicz and J. Mulawka, “GAVaPS- a genetic algorithm with

varying population size,” Proceedings of Congress on Evolutionary Computation,

Orlando, FL, pp. 73-74, 1994.

[137] N. Zhuang, M. Benten and P. Cheung, “Improved variable ordering of BBDS

with novel genetic algorithm,” Proceedings of IEEE International Symposium on

Circuits and Systems, Atlanta, GA, pp. 414-417, 1996.

[138] J. Grefenstette, “Optimization of control parameters for genetic algorithms,” IEEE

Transaction on Systems, Man and Cybernetics, Vol. 16, No. 1, pp. 122-128, 1986.

[139] H. Lu and G.G. Yen, “Dynamic population size in multiobjective evolutionary

algorithms,” Proceedings of Congress on Evolutionary Computation, Honolulu,

HI, pp 1648-1653, 2002.

[140] G.G. Yen and H. Lu, “Dynamic multiobjective evolutionary algorithm: adaptive

cell-based rank and density estimation,” IEEE Transactions on Evolutionary

Computations, Vol. 7, No. 3, pp. 253-274, 2003.

[141] H. Eskandari, L. Rabelo, and M. Mollaghasemi, “Multiobjective simulation

optimization using an enhanced genetic algorithm,” Proceedings of the 37th

Winter Simulation Conference, Orlando, FL, pp. 833-841, 2005.

[142] C.A. Coello Coello and E.M. Montes, “Constraint-handling in genetic algorithms

through the use of dominance-based tournament selection,” Advanced

Engineering Information, Vol. 16, pp. 193-203, 2002.

[143] J.D. Knowles and D.W. Corne, “M-PAES: A memetic algorithm for

multiobjective optimization,” Proceedings of Congress on Evolutionary

Computation, La Jolla, CA, pp. 325-332, 2000.

[144] J.D. Knowles, L. Thiele and E. Zitzler, “A tutorial on performance assessment of

stochastic multiobjective optimizers,” TIK-Report No. 214 (revised version),

Computer Engineering and Network Laboratory, ETH Zurich, Switzerland, pp. 1-

35, February 2006.

[145] P.S. Andrews, “An investigation into mutation operators for particle swarm

optimization,” Proceedings of Congress on Evolutionary Computation,

Vancouver, Canada, pp 3789-3796, 2006.

[146] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. Reading, MA: Addison-Wesley, 1989.

 241

[147] T. Okabe, Y. Jin, B. Sendhoff, and M.Olhofer, “Voronoi-based estimation of

distribution algorithm for multi-objective optimization,” Proceedings of Congress

on Evolutionary Computation, Portland, OR, pp. 1594-1601, 2004.

[148] J.D. Knowles, “ParEGO: A hybrid algorithm with on-line landscape

approximation for expensive multiobjective optimization problems,” IEEE

Transactions on Evolutionary Computation, Vol. 10, No. 1, pp.50-66, 2005.

[149] C. Grosan, C. Dumitrescu, and D. Lazar, “A particle swarm optimization for

solving 0/1 knapsack problem.” Proceedings of International Conference on

Computers and Communications, Oradea, Romania, pp. 200-204, 2004.

[150] H.S. Lope and L.S. Coelho “Particle swarm optimization with fast local search

for the blind traveling salesman problem,” Proceedings of the International

Conference on Hybrid Intelligent Systems, Brazil, pp. 245-250, 2005.

[151] S.A Zonouz, J. Habibi, and M. Saniee, “A hybrid PS-based optimization

algorithm for solving traveling salesman problem,” Proceedings of the IEEE

International Symposium on Frontiers in Networking with Applications, Austria,

pp. 245-250, 2006.

[152] R.L. Becerra, C.A. Coello Coello, A.G. Hernández-Diaz, R. Caballero, and J.

Molina, “Alternative technique to solve hard multi-objective optimization

problems,” Proceedings of Genetic and Evolutionary Computation Conference,

London, UK, pp. 757-764, 2007.

[153] P.R. Ehrlich, D.S. Dobkin, and D. Wheye. Mixed-species flocking. Birds of

Stanford. Available: http://www.stanford.edu/group/stanfordbirds/text/essays/Mix

edSpecies_Flocking.html

[154] F. Backhouse, “Chapter 7: Relationships with other species,” Woodpeckers of

North America. Firefly Books, Ontario, Canada, pp. 101-114, 2005.

[155] T.P. Runarsson and X. Yao, “Search biases in constrained evolutionary

optimization,” IEEE Transactions On Evolutionry Computation, Vol. 35, No. 2,

pp. 233-243, 2005.

[156] T. Takahama and S. Sakai, “Constrained optimization by the ε constrained

differential evolution with gradient-based mutation and feasible elites,”

Proceedings of Congress on Evolutionary Computation, Vancouver, Canada,

pp.1-8, 2006.

[157] Z. Cai and Y. Wang, “A multiobjective optimization-based evolutionary

algorithm for constrained optimization,” IEEE Transactions on Evolutionary

Computation, Vol. 10, No. 6, pp. 658-674, 2006.

 242

[158] C.M. Fonseca and P.J. Fleming, “Multiobjective optimization and multiple

constraint handling with evolutionary algorithms, I: a unified formulation,” IEEE

Transactions on Systems, Man, and Cybernetics, Part A, Vol. 28, No.1, pp. 26-

37, 1998.

[159] C.A. Coello Coello and A.D. Christiansen, “MOSES: A multiobjective

optimization tool for engineering design,” Engineering Optimization, Vol. 31, pp.

337-368, 1999.

[160] T. Binh and U. Korn, “MOBES: A multiobjective evolution strategy for

constrained optimization problems,” Proceedings of the 3rd International

Conference on Genetic Algorithms, Brno, Czech Republic, pp. 176-182, 1997.

[161] F. Jimenéz, A.F. Gomez-Skarmeta, G. Sanchez and K. Deb, “An evolutionary

algorithm for constrained multiobjective optimization,” Proceedings of Congress

on Evolutionary Computation, Honolulu, HI, pp. 1133-1138, 2002.

[162] T. Ray and K.S. Won, “An evolutionary algorithm for constrained bi-objective

optimization using radial slots,” Proceedings of the 9th International Conference

of Knowledge-Based Intelligent Information and Engineering Systems,

Melbourne, Australia, pp. 49-56, 2005.

[163] K. Harada, J. Sakuma, I. Ono and S. Kobayashi, “Constraint-handling method for

multi-objective function optimization: Pareto descent repair operator,”

Proceedings of the 4th International Conference of Evolutionary Multi-Criterion

Optimization, Matsushima/Sendai, Japan, pp.156-170, 2007.

[164] H. Geng, M. Zhang, L. Huang and X. Wang, “Infeasible elitists and stochastic

ranking selection in constrained evolutionary multi-objective optimization,”

Proceedings of the 6th International Conference of Simulated Evolution and

Learning, Hefei, China, pp. 336-344, 2006.

[165] D. Chafekar, J. Xuan and K. Rasheed, “Constrained multi-objective optimization

using steady state genetic algorithms,” Proceedings of Genetic and Evolutionary

Computation Conference, Chicago, Illinois, pp. 813-824, 2003.

[166] Y.G. Woldesenbet, B.G. Tessema and G.G. Yen, “Constraint handling in multi-

objective evolutionary optimization,” Proceedings of Congress on Evolutionary

Computation. Singapore, pp. 3077-3084, 2007.

[167] K.E. Parsopoulus and M.N. Vrahatis, “Particle swarm optimization method for

constrained optimization problems,” Technologies - Theory and Applications:

New Trends in Intelligent Technologies, pp. 214-220, 2002.

 243

[168] K. Zielinski and R. Laur, “Constrained single-objective optimization using

particle swarm optimization,” Proceedings of Congress on Evolutionary

Computation, B.C. Canada, pp. 443-450, 2006.

[169] Q. He and L. Wang, “A hybrid particle swarm optimization with a feasibility-

based rule for constrained optimization,” Applied Mathematics and Computation,

Vol. 186, pp. 1407-1422, 2007.

[170] G.T. Pulido, C.A. Coello Coello, “A constraint-handling mechanism for particle

swarm optimization,” Proceedings of Congress on Evolutionary Computation,

Vol. 2, California, USA, pp. 1396 - 1403, 2004

[171] Z. Liu, C. Wang, and J. Li, “Solving Constrained Optimization via a Modified

Genetic Particle Swarm Optimization,” International Workshop on Knowledge

Discovery and Data Mining, Adelaide, Austrilia, pp. 217-220, 2008.

[172] H. Lu and W. Chen, “Dynamic-objective particle swarm optimization for

constrained optimization problems,” Journal of combinatorial optimization, Vol

2, No. 4, pp. 409-419, 2006.

[173] L.D. Li, X. Li, and X. Yu, “A multi-objective constraint-handling method with

PSO algorithm for constrained engineering optimization problems,” Proceedings

of IEEE Congress on Evolutionary Computation, Hong Kong, China, pp. 1528-

1535, 2008.

[174] J.J. Liang and P.N. Suganthan, “Dynamic multi-swarm particle swarm optimizer

with a novel constraint-handling mechanism,” Proceedings of Congress on

Evolutionary Computation, B.C. Canada, pp. 9-16, 2006.

[175] D.L. Cushman, A particle swarm approach to constrained optimization informed

by ‘Global Worst’, Pennsylvania State University, Pennsylvania, 2007.

[176] E. Mezura-Montes and C.A. Coello Coello, “A survey of constraint-handling

techniques based on evolutionary multiobjective optimization,” Technical Report

EVOCINV-04-2006, CINVESTAV-IPN, Mexico City, México, 2006.

[177] C.A. Coello Coello and G.T. Pulido, “Multiobjective optimization using a micro-

genetic algorithm,” Proceedings of Genetic and Evolutionary Computation

Conference, San Francisco, California, pp. 274-282, 2001.

[178] S. Venkatraman and G.G. Yen, “A generic framework for constrained

optimization using genetic algorithms,” IEEE Transactions on Evolutionary

Computation, Vol. 9, No. 4, pp. 424-435,2005.

[179] B. Yang, Y. Chen, Z. Zhao, and Q. Han, “A master-slave particle swarm

optimization algorithm for solving constrained optimization problems,”

 244

Proceedings of the 6
th

 World Congress on Intelligent Control and Automation,

Dalian, China, pp. 3208-3212, 2006.

[180] V.L. Huang, P.N. Suganthan, A.K. Qin and S. Baskar, “Multiobjective differential

evolution with external archive and harmonic distance-based diversity measure,”

Technical Report MODE-2005, School of Electrical and Electronic Engineering,

Nanyang Technological University, Singapore, 2005.

[181] J.J. Liang, T.P. Runarsson, E. Mezura-Montes, M. Clere, P.N. Suganthan, C.A.

Coello Coello, and K. Deb, “Problem definitions and evaluation criteria for

CEC2006 special session on constrained real-parameter optimization,” 2006.

[182] A.M. Zavala, A.H. Aguirre, and E.V. Diharce, “Robust PSO-based constrained

optimization by perturbing the particle’s memory,” Swarm Intelligence: Focus on

ant and particle swarm optimization, Felix T. S. Chan and Manoj Kumar Tiwari,

Ed. I-Tech Education and Publishing, 2007, pp. 57-76.

[183] M. Tanaka, “GA-based decision support system for multi-criteria optimization,”

Proceeding of International Conference on Evolutionary Multi-Criteria

Optimization, Guanajuato, Mexico, pp. 1556-1561, 1995.

[184] A. Osyezka and S. Kundu, “A new method to solve generalized multi-criteria

optimization problems using the simple genetic algorithm,” Structural

Optimization, Vol. 10, No. 2, pp. 94-99, 1995.

[185] K. Deb, A. Pratap and T. Meyarivan, “Constrained test problems for multi-

objective evolutionary optimization,” Proceeding of the First International

Conference of Evolutionary Multi-Criterion Optimization, Zurich, Switzerland,

pp.284-298, 2001.

[186] J. Horn, N. Nafpliotis, and D.E. Goldberg “A niched Pareto genetic algorithm for

multiobjective optimization,” Proceedings of the First IEEE Conference on

Evolutionary Computation, IEEE World Congress on Computational Intelligence,

Piscatawaym NJ, pp.82-87,1994.

[187] N. Srinivas and K. Deb, “Multiobjective optimizatiom using nondominated

sorting in genetic algorithm,” Evolutionary Computation, Vol. 2, No. 3, pp/ 221-

248, 1994.

[188] S.N. Omkar, Dheevatsa Mudigere, G. Narayana Naik, and S. Gopalakrishnan,

“Vector evaluated particle swarm optimization (VEPSO) for multi-objective

design optimization of composite structures,” Computers and Structures, Vol. 86,

No. 1-2, pp. 1-14, 2008.

 245

[189] T.H. Labella, M. Dorigo, and J.-L. Deneubourg, “Division of labour in a group of

robots inspired by ants' foraging behaviour,” ACM Transactions on Autonomous

and Adaptive Systems, Vol. 1, No. 1, pp. 4-25, 2006.

[190] G. Di Caro, F. Ducatelle, and L.M. Gambardella, “AntHocNet: An Adaptive

Nature-Inspired Algorithm for Routing in Mobile Ad Hoc Networks,” European

Transactions on Telecommunications, Special Issue on Self Organization in

Mobile Networking, Vol. 16, No. 5, pp. 443-455, 2005.

[191] M.P. Wachowiak, R. Smolikova, Yufeng Zheng, J.M. Zurada, and A.S.

Elmaghraby, “An approach to multimodal biomedical image registration utilizing

particle swarm optimization,” IEEE Transactions on Evolutionary Computation,

Vol. 8, No. 3, pp. 289-301, 2004.

[192] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in

electromagnetics,” IEEE Transactions on Antennas and Propagation, Vol. 52,

No. 2, pp. 397-407, 2004.

[193] X. Shi, K.S. Yeo, J.-G. Ma, M.A. Do, and E. Li, “Scalable model of on-wafer

interconnects for high-speed CMOS ICs,” IEEE Transactions on Advanced

Packaging, Vol. 29, No. 4, pp. 770-776, 2006.

[194] N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for

antenna designs: real-number, binary, single-objective and multiobjective

implementations,” IEEE Transactions on Antennas and Propagation, Vol. 55, No.

3 I, pp. 556-567, 2007.

[195] C.-M. Huang, C.-J. Huang, and M.-L. Wang, “A particle swarm optimization to

identifying the ARMAX model for short-term load forecasting,” IEEE

Transactions on Power Systems, Vol. 20, No. 2, pp. 1126-1133, 2005.

[196] L. Messerschmidt and A. Engelbrecht, “Learning to play games using a PSO-

based competitive learning approach,” IEEE Transactions on Evolutionary

Computation, Vol. 8, No. 3, pp. 280–288, 2004.

VITA

Wen Fung Leong

Candidate for the Degree of

Doctor of Philosophy

Dissertation: MULTIOBJECTIVE PARTICLE SWARM OPTIMIZATION:

INTEGRATION OF DYNAMIC POPULATION AND MULTIPLE-SWARM

CONCEPTS AND CONSTRAINT HANDLING

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Seremban, Malaysia, the daughter of W.H. Leong and

K.M. Yim.

Education: Received Bachelors of Science degree in Electrical Engineering

from Oklahoma State University, Stillwater, Oklahoma in July,

2000.

 Received Master of Science degree in Electrical Engineering from

Oklahoma State University, Stillwater, Oklahoma in May, 2002.

Completed the requirements for the Doctor of Philosophy degree

with major at Oklahoma State University, Stillwater, Oklahoma in

December, 2008.

Experience: Research Assistance, Intelligent Systems and Control Laboratory

(ISCL), Oklahoma State University.

 Webmaster for WCCI 2006 conference webpage.

 Teaching Assistant, Electrical and Computer Engineer Department,
Oklahoma State University.

Professional Memberships: IEEE Computational Intelligence Society

ADVISER’S APPROVAL: Dr. Gary G. Yen

Name: Wen Fung Leong Date of Degree: December, 2008

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: MULTIOBJECTIVE PARTICLE SWARM OPTIMIZATION:

INTEGRATION OF DYNAMIC POPULATION AND MULTIPLE-

SWARM CONCEPTS AND CONSTRAINT HANDLING

Pages in Study: 245 Candidate for the Degree of Doctor of Philosophy

Major Field: Electrical Engineering

Scope and Method of Study: Over the years, most multiobjective particle swarm

optimization (MOPSO) algorithms are developed to effectively and efficiently

solve unconstrained multiobjective optimization problems (MOPs). However, in

the real world application, many optimization problems involve a set of

constraints (functions). In this study, the first research goal is to develop state-of-

the-art MOPSOs that incorporated the dynamic population size and multiple-

swarm concepts to exploit possible improvement in efficiency and performance of

existing MOPSOs in solving the unconstrained MOPs. The proposed MOPSOs

are designed in two different perspectives: 1) dynamic population size of

multiple-swarm MOPSO (DMOPSO) integrates the dynamic swarm population

size with a fixed number of swarms and other strategies to support the concepts;

and 2) dynamic multiple swarms in multiobjective particle swarm optimization

(DSMOPSO), dynamic swarm strategy is incorporated wherein the number of

swarms with a fixed swarm size is dynamically adjusted during the search

process. The second research goal is to develop a MOPSO with design elements

that utilize the PSO’s key mechanisms to effectively solve for constrained

multiobjective optimization problems (CMOPs).

Findings and Conclusions: DMOPSO shows competitive to selected MOPSOs in

producing well approximated Pareto front with improved diversity and

convergence, as well as able to contribute reduced computational cost while

DSMOPSO shows competitive results in producing well extended, uniformly

distributed, and near optimum Pareto fronts, with reduced computational cost for

some selected benchmark functions. Sensitivity analysis is conducted to study the

impact of the tuning parameters on the performance of DSMOPSO and to provide

recommendation on parameter settings. For the proposed constrained MOPSO,

simulation results indicate that it is highly competitive in solving the constrained

benchmark problems.

