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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Motivation 

 In our daily lives, we encounter problems that demand us to search for the best 

possible solutions. These problems such as planning one’s day or monthly expenditure 

can be formulated as optimization problems. These problems are described by a 

mathematical model and objective function. An optimization problem with only one 

objective function is known as the single objective optimization problem (SOP). A best 

solution is usually obtained via either minimizing or maximizing a single objective 

function. However, many optimization problems encountered in the real world technical 

disciplines involve more than one objective. Usually, these objectives are conflicting with 

each other, e.g., maximizing return while minimizing risk measures in financial portfolio 

management. In this case, finding solutions by optimizing each objective independently 

is not the best way to do. If the optimum solution is found for one of the objectives it may 

lead to a compromise in achieving lower quality solutions by the other objectives. The 

optimization problems with more than one objective are referred to as multiobjective 

optimization problems (MOPs). An example of realistic MOPs is the aircraft design, in 

which the objectives comprise of fuel efficiency, payload, range, performance, speed and 

many other design considerations. Additionally, most real world MOPs are limited by a 

set of constraints. To optimize these so called constrained MOPs (CMOPs) are much
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difficult since the set of optimum solutions (or the Pareto optimal set) are not only taken 

into consideration with trade-offs between the conflicting objectives but also must satisfy 

the constraints that impose upon the MOPs.  

 

1.2 Objective 

 Various methods are available to tackle MOPs. The common choice is to employ 

the conventional methods (e.g., weighted sum method, goal programming, linear 

programming, min-max optimum, and etc.) or aggregating approach [1,2]. Most of these 

methods used to solve for MOPs follow the same design principle where all the 

objectives are combined together into one function by any means and optimize the new 

function as if it is a single objective optimization problem. These methods are not 

efficient in dealing with MOPs since they are designed to solve for one solution at a time 

instead of finding multiple solutions at once.   

Heuristic methods, on the other hand, are favored in this case because they reduce 

the computational cost for high-dimensional optimization problems. Some of the 

heuristic methods, such as simulated annealing [3] and tabu search [4], face difficulty in 

solving MOPs, regardless of their stochastic nature, because they are not designed to find 

multiple solutions; while other heuristic methods, metaheuristics type, are better tools to 

solve MOPs. Evolutionary algorithms (EAs) are popular among the metaheuristics 

approaches [1,2,5-7]. They are population-based approach where multiple individuals 

search for a set of potential solutions in parallel and in a single run. Their design 

mechanisms reinforce their ability and flexibility in handling various types of problems 

with problem characteristics such as continuous, discontinuity, and multimodality. 
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Recently, a new metaheuristic design emerged from the field of swarm intelligence. This 

metaheuristic approach is called particle swarm optimization (PSO) [50]. It has shown 

great potential in solving single objective optimization problems [64-99] and has been 

modified necessarily to solve for MOPs [105-122]. Similar to EA, PSO also incorporates 

population-based approach and exhibits ability to deal with problems with different 

problem characteristics. The difference between PSOs and EAs is the fundamental 

mechanism design. EAs mimic the mechanism in biological evolution while the 

mechanism in PSO is inspired by the behavior of a bird flock. PSO presents two 

advantages over EA. PSO possesses faster convergence speed than EA and offers 

simplicity in implementation. Therefore, PSO is rapidly gaining attention among 

researchers. The advantages of PSO motivates this work in developing multiobjective 

optimization particle swarm optimization (MOPSO). The following discussion will relate 

to MOPSO unless specified otherwise.  

 Years of research has identified the desired attributes of a Pareto optimal set 

(solutions) that a multiobjective algorithm should achieve. A quality Pareto optimal set 

means the solutions are well extended, uniformly distributed, and near-optimal. 

Achieving such Pareto optimal set is challenging since it involves two compelling goals: 

to minimize the distance of the resulted solutions (Pareto optimal set or Pareto front) to 

the true Pareto set (or true Pareto front) and maximize the diversity of the resulted 

solutions [8]. Existing MOPSOs are designed with Pareto ranking schemes, archive 

maintenance strategies, and techniques to preserve the diversity, which guide the search 

towards a well extended, uniformly distributed, and near-optimal Pareto front.  
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However, to enhance the efficiency of a multiobjective optimization algorithm is 

not limited to develop ways to improve the convergence and techniques to promote 

diversity. In fact, the number of particles, i.e., swarm population size, to explore the 

search space in order to discover possible better solutions indirectly contributes to the 

efficiency improvement of an algorithm. The issue of determining an appropriate swarm 

population size is still at question. The easiest approach is to choose a larger population 

size since this would increase the chance for any MOPSOs to find the true Pareto front.  

A large population size, however, inevitably results in undesirable and high 

computational cost. Conversely, an insufficient swarm population size may result in 

premature convergence in MOPSO. Therefore, estimate an optimal population size 

requires many trial-and-error, especially for those MOPs with complicated landscape and 

unknown. One approach to address this disadvantage is to dynamically adjust the 

population size during the optimization process. Only few existing works under this 

research line are published, and they are all applied to MOEAs. Another approach to 

improve the performance of MOPSO is to employ the subpopulation concept. The reason 

is the swarm-like characteristic renders PSO aptness to adopt the subpopulation concept 

often referred to as multiple-swarm concept. Most publications in multiple swarms PSO 

are for single objective optimization and only a few apply this concept in multiobjective 

optimization. Therefore, the goal of this research is to study the dynamic population size 

and multiple-swarm concepts of the existing works, and develop state-of-the-art 

MOPSOs that fuse both elements to exploit possible improvement in efficiency and 

performance of existing MOPSOs. 
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The above discussion mainly focuses on multiobjective optimization algorithm to 

solve for unconstrained MOPs. Since in the real world application, many optimization 

problems involve a set of constraints (functions). Hence, an optimization tool must be 

able to handle these constraints, and also solve for the optimum solution for constrained 

optimization problems (COPs) or Pareto optimal set for constrained multiobjective 

optimization problems (CMOPs). Most EAs that are designed to solve for unconstrained 

MOPs lack a mechanism to handle constraints. In the past decade, many constraint 

handling techniques for EAs have been proposed. All these EAs are mainly aimed to 

solve for COPs and there are relatively less publications on MOEAs to solve for CMOPs. 

Since PSO is still a relatively new optimization algorithm, there is little work on applying 

PSO for COPs and applying MOPSO to solve for CMOPs. Thus, the second research 

goal is to design a MOPSO to solve for CMOPs. In order to develop the proposed 

MOPSO, it is essential to develop a PSO to handle constraint in COPs first and then 

extend the technique to design a MOPSO for CMOPs. 

 

1.3 Contributions 

 The contributions of this thesis are summarized below. 

• Develop a MOPSO that incorporates dynamic population and multiple swarm, 

in which the particles are grouped according to a user-defined number of 

swarms, for multiobjective optimization. This algorithm design involves 

dynamic swarm population strategy and adaptive local archives.  

• Develop a framework for a MOPSO that dynamically adjust the number of 

swarms needed where under certain conditions new swarms may be added or 
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some existing swarms may be eliminated. Additional designs included in this 

algorithm are modified PSO update mechanism and objective space 

compression and expansion strategy.  

• Develop a constrained PSO with design elements that exploit the key 

mechanisms to handle constraints as well as optimization of the objective 

function. The designs include updating personal best, maintaining feasible and 

infeasible global archive, adaptive acceleration constants in PSO, and 

mutation operators. These designs are also extended into a MOPSO to solve 

for CMOPs. 

                   

1.4 Outline of the Dissertation 

 This dissertation comprises of nine chapters and these chapters are organized as 

follows. 

Chapter 2 provides the essential background of multiobjective optimization. Basic 

concepts of multiobjective optimization problem formulation and Pareto optimization are 

presented. Optimization methods and main topics related to multiobjective evolutionary 

algorithms, including test functions and performance metrics, are briefly reviewed. 

 Chapter 3 presents the background of the swarm intelligence field. The main 

objective is to understand swarm behavior, its unique benefits and the fundamental 

concept that render such behavior.  Significant works of modeling the behavior of bird 

flock are reviewed since particle swarm optimization (PSO) is developed based on the 

principle of the social behavior of a bird flock. 
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 In Chapter 4, history of particle swarm optimization (PSO) was discussed is 

presented. Then, the standard PSO equations and generic algorithm are introduced. 

Finally, we review the major modifications and advancements for improving the 

performance of original PSO. Related topics include the parameter settings, modification 

of the standard PSO equations, neighborhood topology, and incorporation of multiple-

swarm concept into PSO.   

 Current works of multiobjective particle swarm optimizations (MOPSOs) that are 

relevant to this study are reviewed in Chapter 5. First, rationale of applying PSO for 

multiobjective optimization is discussed. Afterwards, a general framework of MOPSO 

along with the main themes related to the modification of MOPSOs is discussed. 

 Chapter 6 elaborates the first proposed MOPSO, namely dynamic multiobjective 

particle swarm optimization (DMOPSO). The chapter starts by discussing the role of 

population size when searching for potential solutions for a MOP. Two main concepts are 

incorporated: dynamic population and multiple swarms. Strategies to support the two 

concepts and to further improve the performance of the algorithm are detailed. 

Comparative study on the performance and computational cost of the DMOPSO against 

selected MOPSOs are analyzed. 

 Chapter 7 outlines the second MOPSO, i.e., dynamic multiple swarms in 

multiobjective particle swarm optimization (DSMOPSO). In this work, dynamic 

population concept is applied to regulate the number of swarms, which is different from 

DMOPSO in Chapter 6. Here, the number of particles in each swarm is fixed but the 

number of swarms is dynamically varied according to each contribution in searching for 

potential solutions during the search process. The development of the algorithm and key 
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design elements are described. Experiments to evaluate the performance and 

computational cost of the DSMOPSO are conducted. The chapter finishes with the 

sensitivity analysis and provides recommendation on the parameters settings.  

 In Chapter 8, a PSO and MOPSO are proposed to solve for constrained 

optimization problems. In this study, the multiobjective constraint handling formulation 

is applied. Design elements are proposed with the goal of guiding the particles towards 

feasible regions and leading them to the global optimum solution or the Pareto optimal 

set. Experiments are conducted on the benchmark functions to evaluate the performance 

of the proposed approaches. 

 Conclusions are discussed in Chapter 8. Summary of the main contributions of 

this thesis are reviewed. Limitations of the proposed works are identified and possible 

future research directions related to this study are recommended.    
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CHAPTER 2 

 

 

MULTIOBJECTIVE OPTIMIZATION 

Multiobjective optimization problems (MOPs) emerge in many fields. Difficulties 

arise when the MOPs involve multiple, conflicting objectives since the solution of the 

problems are more than one. Many conventional methods can be used to solve these 

MOPs but they are limited in certain aspects. Recent metaheuristics have brought the 

possibility of approaching MOPs in much simplistic and efficient ways. This chapter 

presents the basic concept of multiobjective optimization. In the following section, the 

background of selected optimization methods such as conventional algorithms, 

aggregating approaches and multiobjective evolutionary algorithms (MOEA) are 

elaborated. Finally, validation methodologies for MOEAs that are commonly used in 

many publications are presented. 

 

2.1 Definition  

Consider a minimization problem; the general form of the multiobjective 

optimization problem (MOPs) with k objective functions is given as follows [1,2]: 

 ( ) ( ) ( ) ( )[ ],,,,min 21 xxxxF
x

kFFF
n

K=
ℜ∈

          (2.1) 

subject to the m  inequality constraints: 

 ( ) ;,,2,1,0 mjg j K=≤x            (2.2) 

the mp − equality constraints: 
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 ( ) ;,,1,0 pmjh j K+==x            (2.3) 

and the n decision variable bounds: 

 .,,2,1, nixxx U
ii

L
i K=≤≤            (2.4) 

where  [ ] n

nxxx ℜ∈= ,,, 21 Kx .       (2.5) 

The function iF  is known as the objective function or fitness function, and ( )xiF  is 

called the fitness or fitness value of iF . x  represents a decision vector of n decision 

variables, where each decision variable is bounded by a lower L
ix , and an upper U

ix  

bound. The n  variable bounds constitute a decision space or search space, n
S ℜ⊆ , and 

the k objective functions constitute a objective space, Z . Decision vectors that minimize 

( )xF  are also referred as solutions. ( )xjg  represents the jth  inequality constraint while 

( )xjh  represents the jth equality constraint. The inequality constraints that are equal to 

zero, i.e., ( ) 0=*xjg , at the global optimum ( *x ) of a given problem are called active 

constraints. The feasible region ( SF ⊆ ) is defined by satisfying all constraints 

(Equations (2.2)-(2.4)). A solution in the feasible region ( F∈x ) is called a feasible 

solution, otherwise it is considered an infeasible solution. All the solutions that lie on the 

feasible region is called the feasible set,Φ .  Equation 2.1 presents the case of minimizing 

all the objective functions. By duality principles, any objective function can be converted 

from minimization form to maximization form or vice versa, which is given below [5]: 

 ( ) ( )( )xx ii FF −= minmax            (2.5) 

   ( ) ( )( )xx ii FF −= maxmin            (2.6) 
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2.1.1 Pareto Optimization 

For single objective optimization, the aim is to search for the best possible 

solution available, or the global optimum [6]. However, for MOPs, provided that the 

objectives functions are conflicting to each other, there is not just a single optimum 

solution but a set of optimal solutions. To obtain the set of optimum solutions, the 

concepts of Pareto dominance and Pareto optimality are adopted. The following 

discussion presents the key definitions that related to the concepts [1,2,7]: 

 

Definition 2.1 (Concept of Pareto Dominance) 

Consider a minimization problem, a decision vector ax  is said to dominate 

another decision vector bx , denoted by ba xx p , iff 

1. ( ) ( )biai FF xx ≤  for all ki ,,2,1 K=  and  

2. ( ) ( )bjaj FF xx <  for at least one ( )kj ,,2,1 K∈  

 

Definition 2.2 (Nondominated Set) 

Let Ρ  represent the set of decision vectors in the feasible region, Φ⊆Ρ , the 

nondominated set are those decision vectors in Ρ  that are not dominated by any members 

of the set Ρ , (i.e. all individuals in the nondominated set are feasible). 

 

Definition 2.3 (Pareto Optimal Set) 

A feasible decision vector *x  is Pareto optimal if there exist no feasible decision 

vector ix   for  which ( )ixF  dominates ( )*xF . The  collection  of  such  decision  vectors  
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       (a)       (b) 

Figure 2.1 The decision vectors ax , bx , and cx  in the feasible region in decision space and their 

corresponding fitness ( )axF , ( )bxF , and ( )cxF  in the objective space. 

 

that are Pareto optimal is known as the Pareto optimal set. This means that each solution 

in this set holds equal importance and is a good compromise among the trade-off 

objectives. The resulted tradeoff curve in the objective space that obtained from Pareto 

optimal set is called the Pareto front.  

 

2.1.2 Example 

Consider a minimization problem; Figure 2.1 presents a representation of the 

feasible region in the decision space and the corresponding feasible objective space. 

Referring to Figure 2.1, the decision vectors ax , bx , and cx  in the decision space  are 

mapped to the three fitness, i.e., ( )axF , ( )bxF , and ( )cxF  respectively in the objective 

space. Observe Figure 2.1(b), the solution bx dominates solution ax , since the objective 

( ) ( )ab FF xx 11 <  and ( ) ( )ab FF xx 22 < , which satisfies the two conditions of Definition 

2.1. Apply the same definition, solution cx  is also found to dominate solution ax . For 

solutions bx  and cx , both do not dominate each other because Condition 2 of Definition 

1x

2x

1F

2F
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axcx

bx ( )axF( )bxF

( )cxF

Decision space Objective space
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1x

2x
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bx ( )axF( )bxF
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2.1 is violated. In addition, solutions bx and cx are not dominated by another solution; 

hence according to Definition 2.2, bx and cx  belong to the nondominated set. The Pareto 

optimal set, also the Pareto front or the tradeoff curve, is illustrated in Figure 2.1(b). 

 

2.2 Optimization Methods  

 After the invention of the computer, research in optimization field been active 

ever since. Various optimization methods are designed and created to solve for 

optimization problems. There are two main classes: the conventional methods and the 

modern heuristics.  

Table 2.1 Examples of optimization methods under the two main classes. 

Conventional Methods Modern Heuristics 

Branch and Bound Tabu Search 

Dynamic Programming Simulated Annealing 

Linear Programming Differential Algorithm 

Min-max Optimum Evolutionary Algorithms 

Newton’s Method Cultural Algorithm 

Divide and Conquer Particle Swarm Optimization 

Goal Programming 

etc… 

Ant Colony Optimization 

etc… 

 

Conventional methods adopt the deterministic approach. During the optimization process, 

any solutions found are assumed to be exact and the computation for next set of solutions 

completely depends on the previous solutions found. That’s why conventional methods 

are also known as deterministic optimization methods. In addition, these methods involve 

certain assumptions about the formulation of the objective functions and constraint 

functions. Conventional methods include algorithms such as branch and bound, dynamic 

programming, linear programming, min-max optimum, and those listed in Table 2.1. 

There is a subclass under modern heuristics, which is called the stochastic based 
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methods. The algorithms that are categorized as stochastic based methods include 

simulated annealing, evolutionary algorithms, differential algorithm, cultural algorithm, 

and particle swarm optimization. These algorithms possess the stochastic nature while 

searching for possible solutions for a problem. In the following, elaboration on 

conventional algorithms, aggregating approach, and evolutionary algorithms are 

presented. 

 

2.2.1 Conventional Algorithms  

Conventional algorithms or classical methods have been around for at least four 

decades [1]. They possess the deterministic and predictable behavior, in which the 

techniques are designed to find the same solution if the same input sample and stopping 

criteria are applies. The search process will be much efficient and quicker if the input is 

located within some defined finite search space provided that the search space is not 

overly large. Publications have shown the success of employing these algorithms in 

solving a wide variety of problems [9-11], but not for problems that are high dimensional, 

multi-modal or NP-complete problems.  

Conventional algorithm can solve MOPs. These techniques used for handling 

MOPs share a similar spirit, which is to convert the MOPs into a single objective 

optimization problem and find a preferred Pareto optimal solution [1]. Refer to the 

classification of algorithms given by Hwang and Masud [12], these algorithms are under 

the class of priori preference [7]. The best represented algorithms include weighted-sum 

method, the Goal programming method, and the min-max optimum.  
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Weighted-sum method [1,2,7,13] – The aggregating function is derived by pre-

multiplied the multiple objectives functions with the corresponding predefined weights. 

Mathematically, the aggregating function is in the form: 

 ( ) ( )∑
=

=
k

i

ii FwF
1

xx ,            (2.7) 

where iw  are the weighting coefficients, within the range of [ ]1,0 . These weighting 

coefficients represent the relative significances of the objective functions. To maintain 

the same order of scale among the objective functions, the objective functions are 

normalized first before applying Equation (2.7).  In addition, the weighting coefficients 

are chosen such that the sum of these weighting coefficients is one, i.e.,  

∑
=

=
k

i

iw
1

1,              (2.8) 

This method has its disadvantages. It is sensitive to the weighting coefficients chosen 

heuristically, so prior knowledge is needed to predetermine the weights. In addition, it 

fails to find solutions that locate on the concave portions of the Pareto front [7]. 

 

Goal Programming Method – This method is introduced by Charnes and Cooper 

[14,15] in 1960s and due to its simplicity, is has applied to various fields [16,17]. The 

main idea is to find solutions that attain a set of predefined goals for the corresponding 

objective functions [1]. The general steps to find solutions by using this method are given 

below: 

Step 1: For MOPs with k objective functions, pre-specify a set goal, it , where 

ki ,,2,1 K=  
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Step 2: Setup k  generic constraint equations based on the given goals, types of goal 

criteria, and the corresponding k objective functions. For example, the constraint 

equations for four different types of goal criteria are given as follows [1]: 

1. Less-than-equal-to, ( ) tF ≤x : 

  Generic constraint equation: ( ) tpF ≤−x ;    (2.9) 

2. Greater-than-equal-to, ( ) tF ≥x  

  Generic constraint equation: ( ) tnF ≥+x ;    (2.10) 

3. Equal-to, ( ) tF =x  

  Generic constraint equation: ( ) tnpF =+−x ;   (2.11) 

4. Range, ( ) [ ]UL ttF ,∈x  

  Generic constraint equation: ( ) LtpF ≤−x  and ( ) UtnF ≥+x ; (2.12) 

The two new variable(s) appeared in Equations (2.9) to (2.12), i.e., p and n , are 

called the deviational variables. The aim of adding the variable(s) is to measure 

the difference between the goal and the achieved levels of the corresponding 

objective function. Detail on how Equations (2.9) to (2.12) are obtained is given 

in [1,14,15].   

Step 3: Once the constraint equations are set, optimization technique is applied to 

optimize all the deviational variables as a weighed sum single objective function 

that subject to k  constraint equations (given in Step 2). If it is a minimization 

problem, then all the deviational variables are to be minimized. There are many 

techniques available [17,18]. Among them, the common ones are the weighted 

goal programming (WGP) and the lexicographic goal programming (LGP). 
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The disadvantage of this method is need of prior knowledge to set the predefined goals 

for their corresponding objective functions. 

 

Min-max Optimum – This approach is one of the techniques used in the field of 

game theory. Due to its design to deal with conflicting situation, it has been employed in 

solving the MOPs [19]. In this method, the set of solutions found will have the minimum 

deviation between the solutions and the individual objective function. The “min-max” 

criteria are used to compare relative deviation of the current best points and the individual 

objective function at every iterations until the set of solution is found. Detailed procedure 

of this method can be found in [19]. This method is capable of discovering all optimum 

solutions for a given the MOPs regardless if the problem is convex or nonconvex [7]. The 

disadvantage of min-max optimum is applied to each of the objective functions 

individually.  

 In solving the MOPs, the goal is to find the Pareto optimal set. In this case, 

conventional algorithm can only find one solution in one run with a fixed parameter 

setting. Note that a single run means that an algorithm continues its process to search for 

solutions until it meets the stopping criteria. Hence, to find the Pareto optimal set, 

multiple runs with different parameter settings for every individual objective function are 

required. In addition, some of these algorithms such as weighted-sum method may 

require prior knowledge of the problem to predetermine some of the fixed parameters; 

while some algorithms have difficulty in solving MOPs that have convex Pareto front [2]. 
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2.2.2 Aggregating Approaches 

In aggregating approaches, techniques are employed to combine multiple 

objective functions into a single objective function using either addition, multiplication, 

or any other combination of arithmetical operations [2]. The techniques are also known as 

aggregating functions and can be either linear or nonlinear. A simple example of an 

aggregating approach is the weighted-sum method. In general, many have known that 

aggregating function poses a well-known limitation, which is the difficulty in finding the 

concave portion of the Pareto front. However, this limitation does not necessarily hold if 

a nonlinear aggregating function is adopted [6]. Hence, the limitations of the aggregating 

approach depend on the technique employed. Although an aggregating approach may be 

able to find an optimum solution at each run, many runs are needed to obtain the 

complete optimal Pareto front for a given MOPs.  

 

2.2.3 Multiobjective Evolutionary Algorithms (MOEAs) 

Since the groundbreaking work of computer simulation of evolution in 1954 [20], 

along with various researchers’ contributions in developing new computer simulations 

that merge evolution theory with computational methods, the new field of evolutionary 

computation has arisen. In evolutionary computation, the algorithms are population 

based. The population undergoes processes that iteratively guide it to achieve the desired 

goal. The processes can be inspired by concepts that are different from the mathematical 

or computer field, such as biological mechanisms of evolution or social behaviors. 

Among the computational techniques in evolutionary computation, evolutionary 

algorithms (EAs) adopted mechanism that inspired by the principle of biological 
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evolution [21]. EAs comprise of some well-known techniques [21-23], for instance, 

genetic algorithm, evolutionary programming, evolutionary strategy, and genetic 

programming where each employs the mechanisms of evolution yet differ in 

implementation. 

 The main disadvantage of using conventional algorithms and other mathematical 

programming techniques to solve MOPs are most of them are designed to solve for 

specific problems only and they find only one, at most,  optimum solution in a single run, 

multiple runs are necessary to complete the Pareto front. EAs can overcome this 

disadvantage. Research in developing evolutionary algorithms to solve MOPs have  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Main procedure of an evolutionary algorithm for single generation. 
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gained much attention for over 20 years and these algorithms are called multiobjective 

evolutionary algorithm (MOEA).  

 

2.2.3.1 General Concept 

 The main idea of evolutionary algorithm (EA) is to model the fundamental 

mechanisms of evolution and utilizes evolution concept to perform optimization process. 

Five main mechanisms mimicked and incorporated into an EA are reproduction, natural 

selection, survival of the fittest, crossover, and mutation. In EA, a candidate solution, 

denoted as an individual, is encoded as genes in the chromosomes. A set of candidate 

solutions are referred to as population. During a series of iterations, or called generations, 

the individuals are evaluated to determine their fitness value. Based on their fitness value, 

those that are considered the fitter ones are selected by the selection operator because 

they have higher probabilities to produce “fitter” individuals (offsprings). Hence, two of 

the selected individuals that are randomly chosen are denoted as parents. Next, crossover 

operation and occasionally followed by mutation operator are applied to the parents to 

produce new individuals or offsprings. This reproduction process is applied to all the 

selected individuals. Figure 2.2 illustrates the main procedure of an evolutionary 

algorithm for single generation.  

 

2.2.3.2 A Brief Tour of MOEAs 

  Various designs of MOEAs have been developed since the 1980s. The pioneering 

work of MOEA is called vector evaluated genetic algorithm (VEGA), designed by 

Shaffer [24]. At each generation, the whole population is divided into subpopulations of 

equal size. The number of subpopulations depends on the number of objective functions 
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in a MOPs. These subpopulations are combined and shuffled together. Crossover and 

mutation operators are applied to the shuffled population to obtain new population. 

Advantage of VEGA is its simplicity to implement and its disadvantage is the tendency to 

generate good solutions for one of the objective but not for all of the objectives because 

the selection operator would incline to select a subpopulation with better fitness values 

than the others. 

The mark of significant contribution to MOEAs development is after David E. 

Goldberg’s proposal of the concept of Pareto optimality [25]. His idea is to assign ranks 

to the individuals based on their relative Pareto dominance. Hence, the selection process 

is based on these rank values of the individuals. Selection pressure is imposed to guide 

the population towards the direction of the Pareto front.  Goldberg’s ranking scheme is 

known as the nondominated sorting (Figure 2.3 (a)) and have sparked the interest of 

designing Pareto based MOEAs. Several MOEAs have adopted his scheme. Among those 

are niched Pareto genetic algorithm (NPGA) [186] and nondominated sorting genetic 

algorithm (NSGA)[187]. Improved versions of Goldberg’s ranking scheme are 

introduced in several publications. Figure 2.3 shows different Pareto ranking schemes of 

[25-28]. There are Fonseca’s Pareto ranking scheme where the rank of an individual is 

corresponding to the number of other individuals that dominate it [26] (in Figure 2.3 (b)); 

ranking scheme proposed by SPEA [27] (refer to Figure 2.3 (c)) where fitness assignment 

strategy is modified to determine the “strength” of each individual, instead of rank; and 

automatic accumulated ranking scheme by [28] where individual’s rank is corresponding 

to the accumulated rank of those individual that dominate it, as shown in Figure 2.3(d).  
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 Second significant advancement in the MOEA research area is the introduction of 

elitism or archiving concept. Purpose of archive is to store the good solutions (i.e., 

nondominated solutions) found thus far from the search process. Issue of adopting 

archiving is what strategy to maintain the archive. The most popular of incorporation of 

elitism concept is introduced by Zitzler and Thiele [27]. They adopted two populations in 

their proposed MOEA, called strength Pareto evolutionary algorithm (SPEA). One 

population contains the individuals that search for solutions while the other is an external 

population or archive that stores limited nondominated soutions found at every 

generation. To maintain the archive, strength values are assigned to the solutions in the 

archive.  These  strength  values  will  play  a  role  in  computing  fitness  of  the  current  

 

 

 

 

 

                (a)                   (b) 

 

 

 

 

 

                 (c)                   (d) 

Figure 2.3 Above shows different kind of ranking schemes. (a) Goldberg’s nondominated sorting 

[25], (b) Fonseca’s ranking method [26], (c) Ranking scheme adopted in SPEA [27], and (d) 

Automatic accumulated ranking scheme proposed by [28]. 
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              (a) Fitness sharing          (b) Grid                               (c) Crowding distance  

Figure 2.4 Three diversity techniques proposed in [25,30,31] and used in various MOEAs. (a) In 

fitness sharing technique, fitness of an individual that share the same niche (dashed circles) with 

other individuals is reduced. (b) Grid approach is usually applied in archive for two purposes: 

diversity and archive maintenances. The grid regions represent a region. Individuals reside in 

crowded grid region have less chance to be selected. (c) In crowding distance scheme, distance of the 

individual, i and its two neighboring individuals (i.e. individuals of index i-1 and i+1) in each 

objective function are computed. 
 

population, which indirectly place preference to individuals that are least dominated and 

those that located in less populated region in the objective space. Clustering algorithm is 

applied to maintain the archive size and to promote diversity. Zitzler and Thiele’s [27] 

elitism concept brought interest to many researchers to incorporate this concept to their 

new MOEAs. Significant work with new elitism strategies include SPEA2 [29], PAES 

[30], NSGA-II [31], PESA [32], and micro-GA [33].  

Diversity maintenance is essential to prevent the “genetic drift” effect that causes 

the loss of diversity in the population. A number of works have proposed various 

techniques to encourage diversity. Among them, the established diversity techniques 

include fitness sharing [25], grid [30], and crowding distance [31], as illustrated in Figure 

2.4.  Please note the numbers shown next to individuals are the assigned rank values 

according to each specific design. 
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2.3 Test Functions 

It is a common practice that after a MOEA is proposed, its performance is 

validated from the standard simulated testing process. Applying the new algorithm to a 

set of test functions or benchmark problems is part of the simulated testing process to 

show the efficiency in solving the problems. Usually, the benchmark problems are 

selected from a variety of available standard test functions, which they all have their own 

representations, difficulties and properties (i.e., multifrontality, discontinuity, and 

convexity in the Pareto optimal front [2]).  

The earlier test functions designs for MOEA are simpler and often with two 

objectives [34-37]. In the last several years, several researchers have developed sets of 

test functions that have become the standard benchmark functions in many MOEA 

research publications [38-40]. Introduction of toolkits to design test functions facilitates 

constructing desired test suites [38-42]. Recall that the two key tasks that a MOEA 

should accomplish are to converge towards the optimal Pareto front and to maintain the 

diverse distribution of the optimal Pareto front solutions. Hence, in test problem design, 

these two tasks are the criteria to determine the difficulty level of the test problem. In 

[38], method to construct a test function is based on two basic functions, i.e. function 

h and function g . Consider a two objectives test function, the first objective, ( )x1F ,  

influences the level of distribution of the Pareto optimal solutions, while the second 

objective, ( )x2F , is designed from the combinations of the two basic functions and ( )x1F . 

Function h  designs the shape of the Pareto front in the objective space and function 

g controls the level of difficulty to converge towards the Pareto front. Following [38], 
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Zitzler et al.  [39] and [40] produced standard and practical benchmark problems that are 

currently used for performance testing of MOEAs in many publications.  

Another work by Okade et al. steered away from the method proposed by [38] 

and proposed their own method that can construct various benchmark functions with 

arbitrary, customized Pareto front in objective and in decision spaces [41]. They also 

proposed a distribution indicator to measure the difficulty of the benchmark functions 

based on the mapping from the decision space to the objective space. In [42], the 

limitations of the existing benchmark functions are analyzed. They recommended that a 

test suite should contain test problems with a wide range of possible features [42].   In 

addition, a toolkit (i.e. WFG Toolkit) to construct unconstrained test problems is 

proposed to provide control and flexibility to the users to design test suites that meet the 

desired features. Using WFG Toolkit, the authors designed a test suite that consists of test 

problems with various features. This new test suite may be considered complete at this 

time. Once this new test suite gains popularity, it would become one of those standard 

test functions in the MOEA field. As indicated in [6], future test functions are expected to 

be more complex and cover wider range of aspects and features that are closer to the real-

world problems.  

 

2.4 Performance Metrics 

 Metrics are applied to assess the performance of a MOEA after it finds the 

optimal Pareto front for a chosen test function. Performance metrics for MOEA are 

different from algorithms that deal with SOPs. Since the optimal solution for MOPs is a 

set of solutions, the designed metrics have to measure multiple solutions. In addition, 
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convergence and distribution of the optimal Pareto solutions produced by an algorithm 

are the key features to be measured. Due to the stochastic nature in all MOEAs, 30 to 50 

runs are often required to assess their performance using statistical analysis. In general, 

performance metrics do not just measure the quality of a new MOEA but also for 

comparison of results produced by other MOEAs. There are two types of comparison 

methods: one type is the quantitative assessment and the other is the qualitative 

assessment.  

 For quantitative assessment, the metrics are based on certain equations or theories 

as the measuring tool. Each metric is designed to measure one feature of the overall 

performance. In early MOEAs publications, performance comparisons often rely on 

qualitative assessment. The common metrics used are aimed to measure three features as 

given in [2,39]:  

1) Measure how close to the optimal Pareto front produced by a MOEA with respect 

to the true Pareto front, assuming that we know the true solutions of a MOP. An 

example metric is the generational distance (GD) [43] that calculates the distance 

between the solutions in a set of the Pareto front found and those in the true 

Pareto front.  

2) Measure how well distributed of the solutions found by a MOEA since we want to 

find the Pareto front that is well extended and uniform distributed. A popular 

metric for this measure is called Spacing (SP) [44], which measures the distance 

variance of the neighboring solutions lie along the resulted optimal Pareto front.  
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3)  Measure the number of solutions found in the optimal Pareto set belongs to the 

true Pareto set. The error ratio (ER) metric computes the percentage of the 

solutions found that belongs to the true Pareto set [45].    

The above only presents a few from a wide variety of metrics. These metrics are 

also under the category known as the unary indicators [46,47]. There are limitations for 

unary indicators. The users must know true Pareto front of a MOP in order to calculate 

the metrics. This is not practical since in real application, one does not always have 

access of the true solutions of a problem. As analyzed in [46], unary indicators are 

restricted because when comparing two MOEAs, unary indicators are able to indicate 

which algorithm is better but fail to express how much better. Recent research works 

introduce performance metrics that consider two algorithms instated of one. These 

metrics are referred to as the binary indicators in [46]. Binary indicators are different 

from unary indicators since the performance measure is based on the dominance 

relationship between two MOEAs. Hence, binary indicators are able to indicate how 

much better of an algorithm compared to the other one. Another advantage over unary 

indicators is no true Pareto front is required to apply binary indicators. Examples binary 

indicators include multiplicative epsilon indicator [46], additive epsilon indicator [46], 

two set coverage [27,47], and binary hypervolume indictor [46]. 

 Another alternative of comparing the performance of several MOEAs are through 

graphical representation, or qualitative assessment. Basically, all the optimal Pareto 

fronts produced by the MOEAs for the given same initial populatopn are presented 

graphically. Those MOEAs with good Pareto fronts are identified through visual 

judgment. This may only works for those results that are significant difference from each 
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other since they are easier to identify. For those MOEAs that produce good Pareto fronts, 

quantitative assessment can complement the difficulty in identify which MOEA is better.     
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CHAPTER 3 

 

 

SWARM INTELLIGENCE 

 The study of particle swarm optimization belongs to the field of swarm 

intelligence. It is an optimization method which bears two similar characteristics that can 

be found in evolutionary computation techniques, i.e., stochastic search and population 

based design. This chapter starts by introducing swarm intelligence and providing the 

background to understand the fundamental concept behind this field. Later, a brief history 

in modeling flocking behavior is elaborated. The aim is to familiarize with the pioneering 

works in modeling flocking behavior, which bears some connection in the history of 

particle swarm optimization. 

 

3.1 Introducing Swarm Intelligence 

 In the evolutionary computation field, the unorthodox optimization techniques are 

designed by modeling or incorporating the theories or concepts extracted from areas such 

as the natural science, psychology, or even sociology. As introduced in previous chapter, 

an evolutionary algorithm mimics the biological evolution by employing the mechanics 

of natural selection and genetics, such as mutation and recombination operations, 

selection pressure, and survival of the fitness, to find optimal solutions for the 

optimization problems. Algorithms that follow these similar mechanics [21-23] are 

genetic algorithm, evolution strategy, genetic programming, and evolutionary 
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programming. 

Swarm intelligence (SI), on the other hand, is a computational intelligence 

technique inspired by the swarming behavior of the social insects or social animals in the 

nature. Swarming behavior is how the social insects or social animals interact to 

accomplish simple goal. They stay in groups and collaborate to find food, to provide 

warning and collaborative defense against any predators. Such cooperative behavior can 

bring benefits. Benefits include increasing foraging efficiency, reducing the probability of 

each individual from becoming a prey, and acquiring information about the environment 

quickly from each other; all to allow these social insects or animals to achieve a high 

survival advantage [48]. One can observe swarming behavior in nature. For example: a 

school of fish travels together and reacts in unison when face any external threat; a flock 

of birds fly across the sky; or a swarm of African termites builds their huge termite tower. 

 

3.1.1 Fundamental Concepts 

A general term to refer a social insect or social animal is known as a simple agent. 

Hence, we can say a swarm is formed when a number of agents groups and cooperates to 

achieve their collective purpose or some goal. Interestingly, there is neither leader nor 

centralized control to dictate the behavior of these agents in a swarm. Without centralized 

control, how do the agents gather and collectively establish some kind of complex yet 

functional system to collaborate towards a common goal?  

One of the underlying concepts is the ability of the population of agents to 

undergo self-organization process. Each agent plays its role by interacting with its 

environment to gather the latest information, constantly making decision based on some 
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simple local rules and information received, and interact locally with other agents. When 

a population of agents groups together, each agent plays its own role, and eventually, this 

results in self-organization process. Consequently, the process leads to the production of 

a global behavior, or a swarming behavior.  

Another underlying concept is the division of labor. In nature, different groups of 

agents within a swarm have their own specializations and specialties to carry on certain 

tasks. These different groups of agents cooperate and perform their own tasks 

simultaneously. Tasks can range from foraging, nest building, to defending their nest. 

The typical examples are ants, bees, wasps, and termites. With division of labor, task 

performance of each specialized agent can reach its highest efficiency. If there are 

environment changes, the agents will adjust themselves to optimize their performance. 

 

3.1.2 Example Algorithms 

Understanding the principles of swarm intelligence has brought great relevance in 

different disciplines such as engineering [188], robotics [189], and telecommunication 

fields [190]. In recent years, the research area of swarm intelligence is growing rapidly. 

Two areas that have shown significant applications in solving optimization problems are 

the “swarm-like” algorithms ― ant colony optimization (ACO) [49] and particle swarm 

optimization (PSO) [50]. 

Ant colony optimization (ACO) [49] is inspired by the behavior of how natural 

ants find the shortest path from their nest to the food source. In nature, ants are able to 

find  the  shorter  path  to the  food  source  by  exchanging  communication  through  the  
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Figure 3.1 Ants’ foraging behavior in finding the shortest paths from their nest to the food source. (a) 

Ants are at the junction of the two paths that can lead to the food source from their nest. (b) The ants 

choose the path randomly. (c) Ants leave the pheromone trail while returning to their nest after find 

food. Shorter path (upper path) has higher pheromone concentration than longer path (lower path), 

which attracts more ants to choose the shorter path. (c) Eventually, All ants will end up using the 

shorter path. 

 

chemical message called pheromone, which is deposited by ants on the ground. The ants’ 

foraging behavior is illustrated in  Figure 3.1. In  Figure 3.1a, there are two paths that can 

lead to the food source from the ants nest. The ants’ goal is to go to the food source and 

have no idea which path is the better one. Hence, they choose the path randomly, as 
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shown in Figure 3.1b. Some ants choose the upper path while others choose the lower 

path. When the ant find the food, it will leave the pheromone trail along the ground while 

returning to its nest using the same path it has chosen earlier. With the pheromone trail, 

other ants from the nest will likely to follow the trail to the food source. Again, if they 

find food, in returning to their nest, the ants will leave the pheromone trail. This will 

increase the concentration of the pheromone scent and will attract more ants to follow the 

trail with higher concentration. The pheromone trail will dissipate over time, so this will 

reduce the concentration of the pheromone scent. As the ants travel the shorter path (the 

upper path), the concentration level of the pheromone will tend to become denser since 

travel duration is shorter and the pheromone concentration still remains. On the other 

hand, at longer path (lower path), the longer travel duration allow more time for the 

pheromone concentration to dissipate. Hence, by comparing the pheromone concentration 

between two paths, the ants are likely to choose the shorter path, which is illustrated in 

Figure 3.1c. As time progresses, more ants will choose the shorter path and eventually, all 

ants will end up using the shorter path (refer to Figure 3.1d). This process of how ants 

find the shortest path is the core concept of the ant colony optimization. Ant colony 

optimization has shown effective in finding optimum path for optimization problems with 

graph related such as network routing. Publications have shown ant colony optimization 

effectiveness in optimizing combinatorial optimization problems such as traveling 

salesman problems (TSP) [51] and quadratic assignment problems [52].  

Particle swarm optimization (PSO) is developed based on the principle of the 

social behavior of a bird flock. The inventor of this algorithm is Kennedy and Eberhart 

[50]. They are inspired by one of the pioneers who had researched the bird flocking 
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behavior and developed rules to model a flock. In recent years, publications on PSO have 

shown promise in solving optimization problems and many applications [188, 191-196]. 

Since the existence of PSO bears relation to modeling bird flock in the nature, the 

background of related publications on modeling flocking behavior is briefly introduced in 

the following section. 

 

3.2 Modeling the Behavior of Bird Flock 

You may have enjoyed the sight of a flock of western sandpipers over a bay stay 

close together to avoid and to confuse possible predators. When one of western 

sandpipers in the flock turns to a different direction, the rest behind this western 

sandpiper will follow and turn to the same direction in unison. Or you may have observed 

the beautiful sight of a flock of common cranes fly in a “V” formation, migrate to warmer 

regions. Flying in “V” formation is to gain social advantages and to reduce energy 

expenditure [53]. It is amazing of how the flock, without a leader, can stay or fly close 

enough and not collide into each other, change direction in unison, and group together 

after being separated into several smaller flocks by an obstacle. In recent years, 

publications show continuing research and modeling of this flocking behavior [57-60]. 

The two significant works in modeling the flocking behavior via computer simulation are 

published by [54,55] and [56] during the 1980s.  

In 1986, Craig Reynolds proposed an approach to simulate the flock motion 

[54,55]. In his approach, the resulting flock motion is contributed by the interaction 

between the behaviors of individual birds. Since the simulation is intended to model the 

flocking behavior of simple, generic agents, he referred these agents as boids. Each boid 
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has its own coordinate system and applies geometric flight model to support its flight 

movement. Geometric flight model includes translation and flight dynamic parameters of 

yaw, pitch, and banking (roll). Additional three steering behaviors (local rules) are 

incorporated in each boid. These three steering behaviors model the underlying concept 

of flocking, in which each boid desires to stay close within the flock and to avoid 

collision with others boids of the flock. Each boid has its own local neighborhood, which 

is similar to the limited perception range of birds or fishes in the nature. The 

neighborhood is determined by the distance from the center of a boid (green) and the the 

boid’s heading direction is determined by the angle as shown in Figure 3.2.  The 

flockmates within a boid’s neighborhood are referred to as the local flockmates.  

 

 

 

 

 

 

 

 

 

 
Figure 3.2 A boid’s neighborhood (in grey) and the triangular symbol (marked green) 

represents a boid [54,55]. 

 

The three steering behaviors describe the maneuverability of an individual boid [54,55]: 

(1) Separation behavior for collision avoidance (Figure 3.3(a)): The relative positions 

of a boid (green) and the local flockmates are compared. If the relative positions 

of a boid and the local flockmates are less than the minimum required separation 

distance, it indicates that the boid is too near and may collides to those local 

flockmates.The velocity and position of the boid is adjusted to steer away in order 

to avoid collision (red arrow).  

distance 

angel 

distance 
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(2) Alignment behavior for velocity matching (Figure 3.3 (b)): The velocity of a boid 

(green) is compared with the local flockmates’ velocities. Then, the boid will 

adjust its velocity to match the velocity of the local flockmates and steer towards 

the average direction (red arrow) of the local flockmates (blue). 

(3) Cohesion behavior or flock centering: Each boid attempts to steer towards the 

average position of its local flockmates. This is to ensure that the boid stays 

within the flock and doesn’t fly away from its flock. Please note the boid (green) 

and its steering direction (red arrow) in Figure 3.3(c).  

 
             (a)            (b)                        (c) 

Figure 3.3 The illustrations of the three steering behaviors of the boids. (The color in the illustrations 

are indicated as follow: the boid (in green and is attached with an red arrow), its neighborhood (in 

grey) and its local flockmates (in blue) [55]. 

 

With the three steering behaviors, Reynolds successfully developed a program that the 

simulated flock shows realistic flocking behavior and if there is an obstacle, the flock will 

bifurcate to avoid or turn away from the obstacle and later, the separated flocks will 

rejoin together. His pioneering work became the stepping stone for many researchers to 

explore in this field including a computer graphic area known as the behavior animation 

which is implemented in movies such as The Lion King (1994) and Lord of the Ring 

trilogy (2001-2003).  

 About the same time, zoologist Frank H. Heppner studied bird flock from the 

movies taken by him. Through his observation, he concluded that there is no leader in the 

flock but interestingly, the flock can maintain a stage of dynamic equilibrium [56]. Later, 
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he collaborated with applied mathematician Ulf Grenander and undergraduate computer 

wiz Daniel Potter to develop a program that simulates an artificial bird flocks. Through 

their research and observation from the movies, Heppner realized that chaotic theory can 

be used to explain the emergent behavior in flock. Hence, they designed four simple rules 

to model an individual bird’s behavior. The four rules include: 1) The attractive force is 

to allow the birds to attract each other (stay close together) and repulsive forces is to 

prevent the birds to fly too close to each other; 2) Each bird maintains the same velocity 

as its neighboring birds; 3) Occasionally, the birds’ flight path can be altered by a random 

input (craziness); 4) Any birds are attracted to a roost and the attraction increases as the 

birds are flying closer to the roost. The concept of Heppner’s roost idea is similar to the 

foraging behavior of a flock of birds. Firstly, a flock of birds are flying freely around. 

When one of the birds in the flock spots a roost area, it is attracted to the roost and flies 

towards the roost until it is finally landed on the roost. At the same time, with the 

“attraction force” rule, its nearest neighbors are being pulled towards the roost area. As 

these neighbors land on the roost, they will “attract” their nearest neighbors towards the 

roost area. This similar behavior is continued until the entire flock lands on the roost. By 

incorporating these rules in the program, the resulted simulation displays a global 

behavior of a group of the artificial birds, which is similar to the behavior of a flock 

observed in the movies. 

 The pioneering works of Reynolds and Heppner have brought a closer 

understanding of the flocking behavior using computer simulation. Following their works 

publications in modeling bird flock have appeared. There is [57] that simulates the 

Reynolds’s bird flocking model via a process-parallel approach in which each processor 
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will simulate a fixed number of birds in a portion of simulated world. Each processor is 

known as bird processor. All results produced by the bird processors are gathered into a 

central system, the drawing process, and the results are visualized via Silicon Graphic 

Machine. Another approach is the used of detail mathematic derivations and theories to 

model and analyze the collective coherent motion of a large number of self-propelled 

organisms [58]. In another publication by Spector et al. [59], the authors developed two 

systems. The first system (SwarmEvolve 1.0) aims to observe how different species evolve 

their behavior in order to achieve their respective goal. The species and motion control 

formula (from classic flocking algorithm) are hard-coded. On the other hand, for the 

second system (SwarmEvolve 2.0) the behavior of individual agent, instead of species, is 

controlled by evolved computer programs. Unlike the behavior observed in the first 

system, the experiments show that the agents, in the second system, emerge to food-

sharing behaviors in both stable and dynamic, unstable environments. Recently, a 

publication inspired by Reynolds’s work proposed four local control laws for the flocking 

agents, i.e., global alignment of velocity vector, same convergence speed, collision 

avoidance, and local minimization of agents’ artificial potential energy [60]. The authors 

applied the algebraic graph theory to support the topology interaction and 

interconnections between the agents. Simulation results showed the flocking behavior of 

the agents is maintained while robust to any arbitrary changes in the topology 

interconnections between the agents. 

 The motives of the discussed publications include study and understanding the 

distinct behavior and characteristic of flocking; development of model to explain 

coordinated movements of flock; and realizing the model via computer programming to 
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experiment and to simulate the artificial bird flocks. In terms of application domain, 

flocking simulation shows useful in animation or in developing multi-agent modeling for 

autonomous robots. In addition to Reynolds’s flocking simulation, Heppner’s roost idea 

has motivated Kennedy and Eberhart to draw the connection between flocking patterns 

(swarm-like) and roost. By understanding the connection, they synthesized the ideas into 

developing a model. Through many experiments and adjustment of their model, they 

proposed their final version of the model, particle swarm optimization [50], which 

contributes to optimization area and engineering applications. The next chapter will 

review the particle swarm optimization (PSO). 
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CHAPTER 4 

 

 

PARTICLE SWARM OPTIMIZATION 

When particle swarm optimization (PSO) was first introduced, the 

implementation focused on solving problems, mainly on single-objective optimization 

problems (SOPs). In recent years, many variations of PSO are designed and developed, 

aiming to improve its robustness and efficiency, especially on dealing with the issue of 

premature convergence, when solving the SOPs. The incentive of gaining attention in 

PSO field is also due to its simplicity and ability in solving problems closer to those in 

real world such as engineering applications, music composition, market modeling, and 

other applications. Until recently, PSO is applied to solve for multiobjective optimization, 

which is known as MOPSO. Before going into MOPSO discussions, it is necessary to 

learn the background of PSO first. This chapter will present the brief history of PSO, the 

PSO algorithm itself, and different variations of PSO.  

 

4.1 Brief History of Particle Swan Optimization 

 The models of flocking simulation by Reynolds [54,55] and Heppner and 

Grenander [56] have something in common. Both models derived from the notion in 

which the reaction and response of each individual bird is based on the local interaction 

between  its neighboring birds. Hence, as stated in [50], both models relied on continuing 

comparison  of  inter-individual  distances  and  flight  velocities  for the birds to maintain 
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optimum distance between themselves and their neighbors. 

In addition to the inspiration of these models, Kennedy and Eberhart further their 

study from Heppner’s roost idea [56, 61]. In Heppner’s bird simulation, the birds are 

attracted to the roost area until the whole flock lands on the roost. Knowing this is only in 

simulations where the roost is programmed and known by the birds. However, in nature, 

how do the birds know where to locate food (“roost”) when they are hundred feet in the 

air? This is the question that sparked their interest to explore not only the animal behavior 

but also the area of social psychology, which related to social behavior of the human 

beings. From their study, they concluded that knowledge is shared within the flock. 

While a flock of birds is flying around to look for food, the fact is they are looking for 

signs of any food; sign of other birds eating or sign of other bird are approaching their 

target. Once any of the birds within the flock notice those signs, e.g., food, they pass their 

findings and knowledge to their peers. The flock of birds responds to the knowledge and 

circles around the food area, continue to collect and share new information, until it is sure 

that the food area is safe before they decides to go for it. The concept of knowledge 

sharing among the birds is intriguing to Kennedy and Eberhart. They started with the 

simple method called cornfield vector to model the behavior of how a flock of birds seeks 

for food, i.e., in this case food is the cornfield. Basically, velocity of the agent (bird) is 

adjusted based on two conditions, which are 1) the present position, XY coordinates of 

the each agent (bird), is compared with its best position found so far (pbest); and 2) the 

present position, XY coordinates of each agent (bird), is compared with its global best 

position (gbest) found by one member in the flock so far. A simple way of speaking: 

pbest represents the agent’s desire to improve itself by remembering its best achievement 
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while gbest represents the agent’s desire to learn from the best among its flock or 

community. Through experiments with the cornfield vector model, matching velocity and 

craziness, which are from Heppners’ rules, are not necessary. The flock acts like swarm 

and is able to locate the cornfield. In addition, the cornfield vector model is expanded for 

multidimensional search. The authors apply the multidimensional cornfield vector model 

(algorithm) to train the weights of a three-layer feedforward perceptron neural network in 

solving the exclusive-or (XOR) problem. The algorithm produced good performance.  

Kennedy and Eberhart continued to improve the cornfield vector model. In one 

version, they incorporated acceleration by distance instead of comparing the conditions. 

This way, the model is simplified into one velocity equation where either the distance 

between an agent’s present position and its pbest or the distance between an agent’s 

present position and the gbest is incorporated to adjust the velocity of the agent. In their 

final version [50], they combined the pbest and gbest into one velocity equation, added 

and changed some parameters in the equation. The final version is named particle swarm 

optimization (PSO) equation and the birds are represented by a general term, called 

particles, instead of agents.  

After Kennedy and Eberhart introduced their original PSO, motivation to improve 

the original PSO has brought many researchers to design other variations of PSO [62-99]. 

One of the versions is considered the standard PSO due to its popularity in applying to 

many applications especially in optimization task. This standard PSO has a minor 

difference from the original PSO. Inertial weight is introduced to modify the velocity 

equation of the original PSO [62]. Including the inertial weight will enhance the 
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exploration in the search process, which produces better results if compare with the 

original PSO.  The standard PSO equation is given in the following section. 

 

4.2 Standard PSO Equations 

While implementing PSO algorithm to optimize a problem, the collection of 

particles, acting like a swarm, will “fly” through the search space toward the regions 

where the optimum solutions may lie. The movement of each particle is adjusted via the 

velocity and position equations. The velocity equation updates the velocity of a particle, 

which in turn provides distance and direction of the particles. It is added to the particle’s 

current position, gives the new particle’s position. The velocity and position equations are 

given as 

( ) ( ) ( )( ) ( )( )txgbestrctxpbestrctvwtv jijjijijiji ,22,,11,, 1 −××+−××+×=+     

           (4.1) 

    ( ) ( ) ( )11 ,,, ++=+ tvtxtx jijiji        (4.2) 

where ( )tx ji,  denotes the position (decision variable) for dimension j of particle i at 

iteration t; ( )tv ji,  is the  velocity for dimension j of particle i at iteration t; w  is the 

inertial weight to control the impact of the history of velocities on current velocity; 1c  

and 2c  are the acceleration constants; 1r  and 2r  are random numbers within [ ]1,0  that are 

regenerated at every iteration; jipbest ,  denotes the personal best position of dimension j 

attained by particle i thus far; and jgbest  represents the global best position of dimension 

j discover by all particles.  
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There are three components at the right hand side of Equation (4.1). The first 

component is called the momentum component where the inertial weight controls the 

impact of the previous velocity. The second component, also known as the cognitive 

component, has the parameter jipbest , . This component is related to personal desire to 

exceed its current achievement. The third component involves jgbest , is called social 

component since it represents social knowledge attained via the “collaborative” efforts of 

all the particles. In addition, it will guide particles to converge towards the attained 

optimal solution.  

 A problem faced by any optimization method is during the optimization process, 

the solution candidates may exceed outside of the decision variable bounds (i.e. Equation 

2.4). The decision variable bounds are usually determined by users before applying any 

optimization method. The reason relies on the assumption that the method (or algorithm) 

should locate the global minimum within the user defined bounds. For PSO, despite the 

fact that user defined bounds are applied; additional condition is enforced to prevent the 

particles from exceeding outside of the bounds. Either one of the following conditions are 

acceptable:  

• Position clipping criterion ― This criterion is considered as hard boundary 

condition [63] since if the particles exceed the boundary, their positions are 

clipped. The position at dimension j for the particle is bounded by the minimum 

and maximum bounds in the decision space, i.e., [ ]jj xx max,min .  ⋅  represents 

the floor function. The minimum and maximum bounds can be determined by 

user. On the other hand, the decision variables’ lower and upper bounds (Equation 
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(2.4)) can be used as the position clipping criterion if they are given by the 

problem (refer to Figure 4.1).  

 

Function positionclip ( i , j ,
L
jx ,

U
jx , jix , ) 

 

/* i  = Index for particle i 

/* j  = Dimension j of the decision variables 

/*
L
jx = Lower bound of decision variable at dimension j 

/*
U
jx = Upper bound of decision variable at dimension j 

Begin 

L
jj xx =min   

U
jj xx =max  

 /*Checking for lower bound,  

 If jji xx min, ≤    

     jji xx min, =  

 ElseIf jji xx max, ≥  

     jji xx max, =  

 EndIf 

End 

 

Figure 4.1 Position clipping criterion. 

 

• Velocity clipping criterion — Kennedy and Eberhart [50] have investigated the 

impact of applying velocity clipping criterion in PSO. Investigation revealed the 

compulsory of applying this criterion in order for the swarm to converge toward 

the global minimum. In [63], this criterion is considered as soft boundary 

condition since the particles can exist outside the boundary in the decision space 

even if their velocities are clipped. For this criterion, each particle’s velocity at 

dimension j is not allowed to exceed the user defined maximum velocity 

threshold, i.e., [ ]maxmax ,VV− . However, the user defined maximum velocity 
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threshold must not exceed the minimum and maximum bounds in the decision 

space. Figure 4.2 shows the psudocode of velocity clipping criterion. 

 

Function velocityclip ( i , j ,
L
jx ,

U
jx , jiv , , maxV ) 

 

/* i  = Index for particle i 

/* j  = Dimension j of the decision variables 

/*
L
jx = Lower bound of decision variable at dimension j 

/*
U
jx = Upper bound of decision variable at dimension j 

/* maxV  = Maximum velocity value 
Begin 

 If max, -Vv ji ≤  

     max, -Vv ji =  

 ElseIf max, Vv ji ≥  

      max, Vv ji =  

 EndIf 

End 

 

Figure 4.2 Velocity clipping criterion. 

 

4.3 The Generic PSO Algorithm 

 As stated in previous chapter, PSO possess as the same characteristics as 

evolutionary algorithms, but the behavior of the individuals known as particles operates 

like a swarm that flies through the hyperdimensional search space to reach its destination. 

The behavior of the particles is influenced by their tendency to learn from their personal 

past experience and from the success of their peers to adjust the flying speed and 

direction.  

The generic procedures are as follows: At iteration 0=t , the particles’ positions 

and their velocities are randomly generated. Next, the particles’ current best positions 

( pbest ) are recorded. During the initialization process, parameters such as total number 

of particles in a swarm, max iteration counter, 1c  , 2c , and w , are set by user. Then, the  
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Begin 

/*Initialization 

Set 0=t  

Set total number of particles in a swarm (mswarm ) 

Initialize swarm, particles’ positions are randomly generated ( x )  
Initialize velocity rabdomly 

Set 1c  , 2c , and w  

Set max iteration counter( maxt ), 

Store particles’ current position ( xpbest = ) 

While maxtt ≤  

 For 1=i tomswarm    

  Fitness Evaluation 

       Update gbest  by comparing with the current fitness values  

    /* n = Dimension size of the decision variables  

    For 1=j to n   

   Update jipbest ,  by comparing with the current fitness values 

     Update velocity Equation (Equation 4.1) 

 Update position Equation (Equation 4.2) 

 Apply positionclip() (or velocityclip())   

    EndFor 

  EndFor 

Endwhile 

End 

 

Figure 4.3 Pseudocode of the generic PSO algorithm. 

 

following steps are repeated until the maximum iteration counter is reached: 1) the fitness 

of the objective problem is evaluated; 2) update pbest  and gbest  based on the 

comparison of the current and their (recorded) fitness values; 3) update particle velocity 

and position equations; and 4) apply either position or velocity clipping criterion to 

prevent particles from leaving the bounded search space. Figure 4.3 presents the 

pseudocode for the generic PSO algorithm. 

 

4.4 Modifications in PSO 

 PSO has shown robust and efficient behavior in well known SOPs and some 

applications [188, 191-196]. However, one disadvantage posed by PSO is the lack of 

diversity and often trapped in the local optimum solution. Due to these reasons, it has 
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gained attention in researching ways to improve the performances of the original PSO. 

Modifications and improvements that are commonly found in publications involve 

several areas, i.e., parameters settings, modification of velocity and position equations, 

neighborhood topology, and multiple-swarm concept in PSO. The following sections 

provide a closer look in these modifications.   

 

4.4.1 Parameter Settings 

 The three components each contribute to the velocity of the particle. The 

momentum component relates to how much impact should the previous velocity grant to 

the particle while the cognitive and social components contribute to the change in 

direction and velocity of the particles. The parameters attached to these three components 

result in their significant contributions to the particle’s velocity, indirectly influence the 

efficiency of PSO. Knowing the importance of these parameters, various techniques are 

integrated to study the determination of these parameters. 

 

4.4.1.1 Inertial Weight 

 In the standard PSO equation, the inertial weight is user defined. Larger inertial 

weight promotes exploration and conversely, smaller inertial weight support locals 

exploitation. Promoting too much exploration will render PSO failure to converge to 

optimum solution while excessive exploitation will result in premature convergence. So, 

to determine the “right” inertial weight is not an easy task since the optimization process 

for every problem is different. Several publications have proposed different methods of 

selecting inertial weights [64-66]. In [64], the inertial weight ( w ) in Equation (4.1) is 
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replaced by a random numbers that are uniformly distributed within [ ]1,0 . Their reason is 

to facilitate both global exploration and local exploitation during the optimization 

process.  

Another version applies linearly decreasing inertial weight with respect to the 

number of iteration count [65]. This method is known as linearly varying inertia weight:  

( ) 221
max

max
w

t

tt
www +




 −
×−= ,          (4.3) 

where 1w  is the initial inertial weight with larger value; 2w  is the final inertial weight 

that has smaller value; maxt denotes the maximum iteration count; and t  represents the 

current iteration count. Here is the idea: During early iteration counts, larger inertial 

weight will encourage global exploration to locate as many quality solutions as possible. 

As number of iteration counts increases, the inertial weight reduces until it reaches the 

final inertial weight. By reducing the inertial weight, local exploitation is slowly 

dominate the search process. The logic is, as iteration count is closer to maximum 

number of iterations it is assumed that the search region is close to the optimum solution. 

Hence, local exploitation will encourage the particles towards the optimum solution and 

not roam elsewhere.    

 Qin et al. [66] proposed an adaptive inertial weight particle swarm (AIW-PSO) 

optimization. In their approach, a measure called individual search ability (ISA) to 

indicate the current situation of each particle. In other words, the measure aimed to 

determine if the particle is lack of exploration or exploitation. Based on this measure, the 

inertial weight is dynamically adjusted via a transfer function and then assigned it to the 

particle. Experiment showed that AIW-PSO performs better than other selected PSO.   
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4.4.1.2 Acceleration Constants 

 The acceleration constants ( 1c  and 2c ) control the significance of the cognitive 

and social components to the particle’s velocity. Both components play a critical role in 

guiding PSO to find the optimum solution. Hence, the balance of contribution is needed 

because a larger value of cognitive component will result in excessive exploration while a 

larger value of social component will lead to convergence toward the local solutions. 

Initially, Kennedy and Eberhart suggested that both acceleration constants should be set 

to 2 in order to bring the stochastic factor of the original PSO equation to 1 [50]. By 

doing this, the contribution of both components is balanced.  

Ratnaweera et al. apply the similar technique as the linearly varying inertia 

weight (Equation 4.3) to adjust the acceleration constants [67]. They named their method 

as time varying acceleration coefficients (TVAC). The TVAC equations are given below 

[67]. 

( ) iif c
t

tt
ccc 1111

max

max
+




 −
×−= ,          (4.4) 

( ) iif c
t

tt
ccc 2222

max

max
+




 −
×−= ,          (4.5) 

where  ic1  and fc1  are the initial and final acceleration constants for cognitive 

component; similarly, ic2  and fc2  are the initial and final acceleration constants for 

social component; maxt denotes the maximum iteration count; and t  represents the 

current iteration count. The authors suggested that 1c  should decrease from larger to 

lower values, e.g., the range from 2.5 to 0.5, and 2c  should increase from lower to higher 

values, e.g., the range from 0.5 to 2.5. The suggestion supported exploration in early 
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iteration counts with larger value of cognitive component and promoted quick 

convergence to the optimum solution in the later stage with larger value of social 

component.  

 

4.4.1.3 Clipping Criterion 

 Generally, the maximum velocity threshold in velocity clipping criterion are pre-

determined by user as discussed in Section 4.2. However, recent publication by Cui et al. 

proposed the adaptive velocity threshold idea for velocity clipping criterion [68]. Rather 

than using the same user defined maximum velocity threshold, their idea is to add a 

second maximum velocity threshold equation, where the new maximum velocity 

threshold is computed from multiplication of the current maximum velocity threshold 

with a probability density value for every iteration count. This multiplication is also 

applied to each dimension of the particle. Hence, the maximum velocity threshold is 

changed dynamically in every iteration count and in each dimension of the particle. In 

their discussion, by modifying the maximum velocity threshold dynamically, the particles 

will enhance their exploration capability with larger threshold as well as exploitation 

capability with smaller threshold.  The frequencies of larger and smaller thresholds 

depend on the selected probability density functions such as Gaussian or Cauchy.   

 In another publication, the authors investigated the effect of different boundary 

conditions or clipping criterion on PSO performance [63]. Their study involved soft and 

hard boundary conditions (velocity and position clipping criteria), including their 

integration with reflection boundary condition (RBC), and absorbing boundary condition 

(ABC). These boundaries are incorporated in the standard PSO algorithm and the 
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algorithm is applied to a sphere test function and problem of synthesizing linear array 

antennas. Results show that combining hard boundary conditions with RBC or ABC 

produced an improved version of PSO. In addition, integration of RBC or ABC with soft 

boundary conditions gives flexibility in choosing the maximum velocity thresholds in 

order for PSO to obtain better convergence performance.  

 

4.4.2 Modifications of PSO Equations 

 Since the introduction of the standard PSO, some researchers have attempted to 

improve the efficiency and performance of the standard PSO from another perspective—

to design a new PSO model or modify the standard PSO.  

 In 2002, Maurice Clerc proposed a new PSO velocity equation [69]. Through 

studying the swarm behavior of the standard PSO, he realized under certain conditions 

the swarm will converge to the optimum solution. From there, he introduced a new 

parameter, the constriction factor ( χ ) to the standard PSO. Here is the authors’s 

proposed PSO model or the Canonical PSO: 

( ) ( ) ( )( ) ( )( )( )txgbestrctxpbestrctvtv jijjijijiji ,22,,11,, 1 −××+−××+=+ χ ,  

           (4.6) 

( )42

2

−−−
=

φφφ

κ
χ ,            (4.7) 

21 cc +=φ ,             (4.8) 

where [ ]1,0∈κ  and 4>φ . The parameter κ  is a user-defined parameter and it controls 

the convergence speed to the optima. When κ  is closer to 0, χ  will be close to 0, the 

resulted velocity will be small. Smaller velocity facilitates a fine grain search, and 
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encourages convergence rate. If κ  is closer to 1, particles show high exploration 

behavior, which results in slow convergence rate. The essence is to use constriction factor 

to restrain the velocity to guarantee convergence of the particles. Note that the position 

equation is the same as Equation 4.2. Experiments showed that with constriction factor, 

the particle’s velocity is able to stay within the feasible search space and locate the 

optimum solution without even implementing the velocity clipping criterion. 

 Kennedy [70] proposed another PSO model, known as the Gaussian “bare bones” 

PSO. He studied the behavior of the velocity via simulations graphs for different versions 

of canonical PSO, and also the histogram of points tested with canonical PSO with 

gbest and pbest held constant. The study led to developing a simple PSO model that is 

based on Gaussian distribution model. This model has no velocity equation. The model is 

able to show similar behavior as canonical PSO. The model is as follow: 

 ( ) 







−

+
=+ jji

jji

ji gbestpbest
gbestpbest

Gaussiantx ,

,

, ,
2

1   (4.9) 

The author commented that this simplified model retain the fundamental characteristic of 

the PSO. The performance of Gaussian “bare bones” PSO is compared with the 

Canonical PSO in terms of progression characteristic of mean global best over 3000 

iterations and ability to find the average optima global solution at 3000 iterations for the 

six standard test functions. In overall, the results show that Canonical PSO is able to 

progress quicker towards the mean global best and to obtain better quality of average 

optima global solution by 3000 iterations. 

The above two PSO models (Equations 4.6-4.9) are derived from the study and 

analysis of the particles’ behavior. Other variations in PSO model are designed by 

integrating with other existing techniques.  [71] integrates the mutation operator to aid the 
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Gaussian PSO to escape the local minima. In the Gaussian PSO model, the velocity 

equation is 

( ) ( )( ) ( )( )txgbestrtxpbestrtv jijjijiji ,2,,1, 1 −×+−×=+      (4.10) 

In brief, during the optimization process, the particles’ velocity is updated using Equation 

(4.10) and their position is updated using Equation (4.2). The particles’ fitness are 

monitored to track the particles’ movement progression. If there is no improvement in 

fitness value, a failure counter is evoked and updated in every iteration if the particles 

still show no sign of improvement. Once the failure counter hit the predefined number, 

the Gaussian PSO is replaced by Equation (4.11), in hope that particles will “jump” to a 

new region and escape possible local minima. Mutation operator can be either Gaussian 

or Cauchy probability function.  

 ( ) ( ) ( )1,01 ,, Gaussiantxtx jiji η+=+       (4.11) 

Note that η  is a constant. The Gaussian PSO with jump strategy is tested in selected 

multimodel benchmark functions and is compared with other earlier PSO versions. 

Results showed competitive performance compared with canonical PSO [69] and self 

adaptive evolutionary programming.  Another work also incorporated the Gaussian 

mutation in the position equation, which is somewhat similar to Equation (4.11) [72]. 

There are only two differences: 1) the η  parameter is replaced by ( )tx ji, ; and 2) the 

authors use the velocity equation from Canonical PSO.   

 The vector differential operator is incorporated in the PSO velocity equation to 

boost exploration capability [73]. The vector differential operator originates from 

differential evolution (DE). In addition to the new PSO velocity, three conditions are 

proposed in the new PSO algorithm (PSO-DV) to help swarm to stay out of local minima 
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and to encourage the swarm to continue searching for potential solutions. Details of PSO-

DV algorithm can be found in [73]. 

  

4.4.3 Neighborhood Topology 

 Neighborhood topology is known as sociometry or topology of a swarm. The idea 

of employing neighborhood topology is related to how the particles in the swarm are 

connected with each other in terms of sharing their knowledge, e.g., best position. 

Usually, the convergence rate can be estimated by calculating the average distance 

between two particles in the neighborhood topology. Shorter average distance facilitates 

quick convergence speed, also resulted by lower degree of connectivity. The most basic 

topology is the gbest in the social component, which all the particles are connected in 

such that the knowledge is shared by all particles. If need to implement other 

neighborhood topologies, for example star topology, then the gbest  is replaced by star 

topology. In Suganathan’s modified PSO algorithm, the local best, lbest  replaces gbest  

in the social component [74]. The local best is the best solution in the neighborhood. The 

neighbors of a particle are selected via Hamming distance in each iteration count.  The 

neighborhood size corresponds to the increment of the iteration count. By doing so, the 

particles start with random search in early stage. Slowly, as iteration count increases, the 

particles will connect to a larger number of neighbors (i.e., larger neighborhood size), in 

order to concentrate more in localized search until they landed on the optimum solution.    

 The common neighborhood topologies are the global topology ( gbest ), ring 

topology ( lbest ), and star topology [75]. Figure 4.4 illustrates the common neighborhood 

topologies. In global topology ( gbest ), all particles in the swarm are connected to each 
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others. The movement of particles is influenced by the best particle in the swarm. Due to 

this characteristic, global topology tend to converge fast but increases potential for the 

swarm to be trapped in local optima. The particles in ring topology ( lbest ) are connected 

to their neighbors. If a particle locates a better solution, only its immediate neighbors are 

drawn towards that particle. Then, one of the immediate neighbors will pull its neighbors 

towards the direction where the better solution is located. The process repeats at every 

iteration until the optimum solution is located. Although the convergence process is much 

slower than global topology but ring topology favors exploration and has tendency of 

finding the optimum. Refer to Figure 4.4 (c), all particles are connected to a central 

particle for star topology. The central particle has the highest influence than the rest. 

When one of the particles (not central particle) finds an optimum solution, it only draws 

the central particle closer to its direction, which is the only attached particle. In the next 

iteration, the central particle will influence the rest of the particles. This topology 

converges slower than that of the global topology but faster than ring topology. 

Occasionally, it will converge towards the suboptimum solution (local optima).  

There are other topologies that are illustrated in Figure 4.5. Their movements 

associate with the connectivity, as described previously for ring and star topologies. The 

Von Neumann topology looks like square lattice connect to other square lattices around 

it. Pyramid topology has small three dimension wire frames connected together and four 

clusters topology consists of four small clusters that are interconnected with each other 

via simple connections. Unlike the common topologies listed in Figure 4.4, these 

topologies are harder to identify which ones give better performance, unless carefully 

crafted experiments on topologies influence on PSO performance are conducted. There 
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are studies that investigate the influence of topology to canonical PSO [76], both 

canonical and fully informed PSO [77], and Guaranteed Convergence PSO (GCPSO) 

[78].   

 An interesting way to implement the neighborhood topologies is suggested in [79] 

Instead of using the topologies in Figures 4.4 and 4.5, the authors proposed a randomly 

generated neighborhood topology and at a fixed amount of time, the neighborhood 

topology is re-structured into a new randomly chosen neighborhood topology.  

Simulation results showed probabilistic re-structuring neighborhood topology produces 

best results compare to the selected PSO algorithms on the chosen benchmark functions. 

Key reason of producing best results is because the diversity maintenance is enhanced by 

constantly applying different neighborhood topologies during the optimization process.    

 

 

 

 

 

 

 

 

 
       (a)                 (b)       (c) 

Figure 4.4 Graphical representation of the three common neighborhood topology [75,76]: (a) Global 

topology ( gbest ), (b) Ring topology ( lbest ), and (c) Star topology. 

 

 

 

 

 

 

 

 

 
        (a)    (b)              (c) 

Figure 4.5 Graphical representation of the other neighborhood topology [75,76]: (a) Von Neumann, 

(b) Pyramid, and (c) Four Clusters. 
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4.4.4 Multiple-swarm Concept in PSO 

PSO is designed in such the particles act a like swarm and quickly locate the 

optimum solution. The swarm-like characteristic renders PSO aptness to adopt the 

“subpopulation” framework.  Research in fusing the multiple-swarm concept into PSO is 

well established in solving single objective and multimodal problems. Within this field, 

the motivation in adopting multiple swarms in the design of PSO is categorized into three 

main groups: solving multimodel problems, tracking all optima for multimodal problem 

in dynamic environment, and improve performance of SOPs by promoting exploration 

and diversity. 

 

4.4.4.1 Solving Multimodal Problems 

One motivation is utilizing multiple-swarm approach to solve multimodal 

problems. A multimodal problem consists of many local and global solutions. As 

mentioned earlier, the swarm-like characteristic in PSO has rendered its ability to rapidly 

solve optimization problems. Built on this, a new idea has emerged, which is utilizing 

this characteristic to locate multiple solutions in a given multimodal problem.  

Several methods have been proposed. Brits et al. [80] adopted the niching 

(speciation) techniques into PSO to locate multiple solutions in a multimodal problem, 

and referred to this algorithm as niching particle swarm optimization (NichePSO). In 

NichePSO, the sequential niching algorithm and “partitioning criteria” are used as the 

indicator to form multiple subswarms from the main swarm. If any existing subswarms 

“belong” in the same niche they are merged together, and if any particles from the main 

swarm fall close to a subswarm, the subswarm can absorb these particles. Simulation 
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results show NichePSO can effectively handle high dimensional multimodal problem. 

Bird and Li [81] proposed an enhanced version of Speciation-based PSO (SPSO) [82], 

known as the ESPSO. In ESPSO, instead of using a predefined radius to form a species 

(particles that are within the species radius of the better particle), time-based measure and 

particles’ personal best are used as an indicator to identify the species. Simulation results 

showed the performance of ESPSO has improved and species radius does not affect the 

performance. Another algorithm (multi-species particle swarm optimizer (MSPSO)) [83, 

84] adopted a similar concept as [81,82]. Passaro and Starita proposed using a standard 

clustering algorithm to identify the niches in the swarm population and then restricting 

the neighborhood of each particle to the other particles in the same cluster [85]. By 

restricting the neighborhood, particles can perform local search within the cluster, which 

may discover any local minima located within the clusters. To save computational time, 

clustering procedure is only performed at a predefined interval. Seo et al. [86], in their 

multigrouped particle swarm optimization (MGPSO) suggested searching for N solutions 

of a multimodal function with a predefined parameter N, the number of groups. The 

repulsive velocity component is added to the particle updating equation, which will push 

the intruding particle out of the other group’s global best territories (radius). In addition, 

the time-varying territory concept is proposed to allow the predefined radius (territory) to 

increase linearly during the search process to avoid several groups from settling on the 

same peak. Several benchmark functions are tested and MGPSO shows promise in 

solving multimodal problems.  Zhang et al. [87] introduced a novel adaptive sequential 

niche particle swarm optimization (ASNPSO). Penalty function is adopted to modify the 

fitness values of the particles to control their influence within their subswarms in order to 
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prevent all subswarms from converging to optima. The uniqueness of this algorithm is 

that no niche radius is needed to define the “territory” of the subswarms. Experimental 

results show ASNPSO is efficient in finding all solutions for the selected test functions.  

 

4.4.4.2 Tracking All Optima for Multimodal Problems in Dynamic Environment 

Recently [88-89], multiple-swarm PSO was designed to locate and track the 

optima of a multimodal problem in a dynamic environment. Under the dynamic 

environment, the locations of all assumed optima of a multimodal problem change 

frequently. Hence, it is necessary to constantly track the optima.  

Blackwell and Branke [88] proposed a multiswarm algorithm that comprises 

subroutines such as exclusion, anti-convergence, and PSO updating rules to balance the 

multiple swarm interaction. Extensive experimental studies have shown the multiswarm 

algorithm is robust and outperforms the selected approaches on the same benchmark 

functions. Parrott and Li [89] proposed an extended SPSO, named the dynamic SPSO 

(DSPSO), to locate multiple optima in the dynamic environment. Two modifications of 

SPSO are devised: 1) to compare the fitness of each particle’s current local best with its 

previous record to continuously monitor the moving peaks; and 2) to use a predefined 

species population size to quantify the crowdedness of species and extra particles before 

they are reinitialized randomly in the solution space to search for new optima [89]. 

Simulation results showed that DSPSO is able to track the optima of a given test function 

at different levels of dynamism under a dynamic environment.  
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4.4.4.3 Promoting Exploration and Diversity 

For some studies, multiple-swarm PSO has shown to improve the performance of 

PSO by promoting diversity. PSO move as a swarm while finding optima in the search 

space. This resulted in lack of diversity since a swarm tends to move in one group 

towards the same direction. If we break a swarm into multiple swarms, then the 

collaborated effort of multiple swarms exploring different regions in the search space to 

look for better solutions simultaneously. This will increase the chances of finding quality 

solutions efficiently.  

Kennedy [90] adopted a clustering algorithm to cluster the swarm population into 

a certain number of clusters. Then, a particle’s local best is replaced by their cluster 

center and the particles’ global best replaced by the neighbors’ best. By clustering the 

particle swarm population, the diversity and exploration of PSO has improved, 

effectively enhancing PSO performance. A cooperative particle swarm optimizer (CPSO) 

employs cooperative behavior among multiple swarms to improve the performance of the 

PSO [91]. The whole idea is to divide the decision variables into multiple parts and 

assign different parts to different multiple swarms. These swarms will optimize the 

different parts of the decision variable [91]. The authors stated that the reason for CPSO 

to show significant improvement compared to other PSOs is due to the increased 

diversity of the cooperative swarms. A new PSO, TPSO, was proposed by Chen and Yu 

[92]. In TPSO, the population is divided into two subswarms. One subswarm will 

optimize following the global best position, while the second subswarm will move in the 

opposite direction. The updating particles’ positions are dependent on their local best, 

their corresponding subswarm’s best, and the global best collected from two subswams. 
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If the global best has not improved for 15 successive iterations, the worst particles of a 

subswarm are replaced by the best ones of the other subswarm and the subswarms switch 

their flight directions. On the contrary, to improve the diversity of the particles, [93] 

developed a multi-population cooperative optimization (MCPSO). MCPSO is based on 

the concept of master-slave mode, where the swarm population will have a master swarm 

and multiple slave swarms. The slave swarms will explore the search space 

independently to maintain diversity of particles, while the master swarm will evolve via 

the best particles collected from the slave swarms [93]. Literatures [94-96] share the 

common spirit, where they emphasize in developing information exchange strategies 

within two or more swarms to enhance the diversity of the PSO. For example, in [94] two 

subswarms are updated independently for a certain intervals, and then the best particles 

(information) in each subswarm are exchanged. This procedure is repeated till the 

stopping criterion is met. In [95], four additional methods of information exchange are 

applied to investigate the improvement from the original design in [94]. Another method 

by [96] developed an algorithm to solve multimodal functions. The difference of this 

algorithm compared to [80-87] is locating the global optima only. The algorithm has two 

routines. Initially, swarm population is clustered into a predefined number of swarms. In 

the first routine, particles’ positions are updated using their proposed PSO equation 

where three levels of communications are facilitated, i.e., personal level, global level, and 

neighborhood levels.  At every given iteration, the second routine is activated where the 

particles in a swarm (subswarm) are divided into two sets; one set of particles (send list) 

is sent to another swarm, while the other set of particles (replacement list) will replace the 

individuals in other swarms [96]. This routine supports the diversity via exchanging the 



 63 

particles between swarms, which prevents the particles from falling to the local optima. 

Despite some of the literature presented here, [90-96] indicates that multiple-swarm 

contribute to maintenance and enhancement in diversity.  

 

4.5 Other PSO Variations 

 The above covers the various efforts to improve the performance of the standard 

PSO. Those that are discussed include tuning of the parameter setting in PSO equations, 

various designs of neighborhood topology, modification in PSO equations, and 

integration of “subpopulations” concept into PSO algorithm.    

 Other PSO variations emerge from incorporation of bio-inspired mechanism, and 

incorporation of concepts from other fields. For instance, Niu et al. proposed a novel 

PSO (PSOOFT) that integrate two mechanisms of optimal foraging theory (OFT) [97]. 

The two mechanisms are the reproduction strategy and path-choice based scheme. In the 

reproductive strategy, swarm is divided into two groups. The first group consists of 

“healthy” particles, i.e., lower fitness for minimization, and the second group is the 

“unhealthy” ones with higher fitness. Those that are unhealthy will die and replaced by 

the duplication of healthy particles. The underlying idea is to place more pressure on the 

particles in finding good solutions within a lesser time frame.  Path-choice based scheme 

aims to provide balance between exploration and exploitation. All healthy particles will 

either conduct local search within their neighborhood of their pbest  position or 

“migrated” to a new region. Their search behavior depends on a probability value, which 

is similar to mutation operator. In comparing their PSOOFT with the standard PSO, this 

novel PSO shows superior in both solution quality and convergence rate. A new PSO is 
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introduced based on the theory from the quantum delta potential well model [98]. Detail 

mathematical derivations and proofs are published in [98]. An interesting publication 

incorporated some psychological factor of emotion into the standard PSO [99]. The 

authors proposed the following concepts: Each particle has two emotions, which are 

joyful and sad. The emotional state of the particles is based on the emotional factor, 

which is compared with a randomly generated value. If certain condition is met, then the 

particle is updated using the “joyful” velocity equation or else “sad” velocity equation 

will be applied. Psychological model is incorporated in both “joyful” and “sad” velocity 

equations. Particle with “joyful” behavior tend to be more vibrant and will exploit both 

pbest  and gbest  experiences to determine its velocity. On the contrary, “sad” particle 

prefers local search, which represents its depressed behavior. Simulation results show 

their proposed PSO (EPSO) is better and more efficient than the standard PSO.  

 There are many other variations. This chapter only introduces those areas that are 

already established. In the following chapter, the PSO variation designed to deal with 

MOPs is discussed.  
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CHAPTER 5 

 

 

MULTIOBJECTIVE PARTICLE SWARM OPTIMIZATION 

(MOPSO) 

 

 

Success in solving various single objective and multi-model problems has shown 

the efficiency of PSO. Additional benefit is PSO’s simplicity in implementation. In 

addition, the use of evolutionary algorithm in finding the Pareto front of MOPs has 

became very popular in recent years. Researchers have pushed the boundary of PSO by 

shifting the research direction towards designing new PSO algorithms in order to deal 

with MOPs. This chapter presents the introduction of multiobjective particle swarm 

optimization (MOPSO). General framework and literature reviews of recent works in 

developing MOPSOs are also included. 

     

5.1 Particle Swarm Optimization Algorithm for MOPs 

 Previous chapters have reviewed some population based stochastic algorithms in 

the field of computational intelligences including evolutionary computation and swarm 

intelligence. Increment in number of publications in the areas of evolutionary algorithms 

(EAs) and PSOs show the gaining of research interest in the computational intelligences 

community. Successful implementations of EA and PSO in various types of problems 

have also contributed to the popularity [100-104].  
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There are appreciable differences in the design procedures of how PSO and a 

typical EA search for solutions in the decision space. For a typical EA, the individuals in 

the population searches for good solutions in the search space in every generation. 

Selection process is applied to favor individuals that represent the best solutions. These 

selected individuals undergo crossover operation to generate new individuals that inherit 

parts of the best solutions, while mutation operation is applied occasionally to introduce 

diversity to the population. On the other hand, as discussed in Chapter 4, PSO relies on 

the two equations to guide and advance the particles to the best solution.  

Although the optimization process is different for PSO and EA, there are 

similarities between the techniques employed to support the procedure and concepts. 

Table 5.1 presents the comparison between the terminologies and techniques for EA and 

PSO.  The terminologies of swarm and particle for PSO bear similar representation for 

EA’s population and individual respectively. Fitness evaluation is the same for EA and 

PSO. Similar form of crossover operation can be found in the PSO velocity equation 

(Equation 4.1), in which mixing and exchanging information among particles occur in the 

cognitive and social components to adjust the equation (i.e., difference between 

pbest and current particle position, and difference between gbest  and current particle 

position). The random numbers in the PSO velocity equation act like the mutation 

operator to introduce diversity to the swarm.   

Table 5.1 Comparison between a typical EA and PSO. 

Evolutionary Algorithms (EA) Particle Swarm Optimization (PSO) 

Population Swarm/Swarm Population 

Individual Particle 

Fitness Fitness 

Crossover operation Cognitive and Social Components 

Mutation operation Random numbers 

Selection of best individuals Select the best knowledge (position) 
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Beside the common stochastic search mechanism similar to EAs, PSO has rapid 

convergence capability that falls short in many EAs [25-28]. Due to these reasons and its 

simplicity in implementation, PSO has recently been extended to deal with multiple 

objective optimization problems (MOPs). During the past few years, many publications 

are focused on how to modify PSO to handle multiple objective optimization problems 

[105-122]. PSO equipped to deal with MOPs is generally regarded as multiobjective 

particle swarm optimization (MOPSO). 

 

5.2 General Framework of MOPSO 

Within these few years, extensive researches in modifying and extending PSO to 

handle MOPs have shaped the conceptual framework for multiobjective particle swarm 

optimization algorithms (MOPSO) [105-122]. The MOPSO framework comprises 

features that are designed to retain the originality of PSO algorithm and to deal with 

dilemmas of typical Pareto optimizer, i.e., the two conflicting goals of achieving 

convergence and maintaining diversity to produce a well-distributed Pareto front. Figure 

5.1 presents the generic framework of MOPSO.  The framework is similar to the original 

PSO algorithm yet added a Pareto dominance scheme to assess the particles’ dominance 

relationship and their current status in the objective space. Those features, represented by 

shaded boxes and bold face, are the modifications made in the original PSO. These 

features are now the established research areas mainly to improve MOPSO capability in 

dealing with the two conflicting goals. Research areas include global leader and personal 

best selection to improve convergence and to promote diversity [111-119], the 

introduction  of  external  archive to  record  all  nondominated candidates found during a  
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Figure 5.1 Generic framework of MOPSO algorithm. 
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search process and ways to maintain it [105-110], and incorporation of genetic operators 

such as mutation and perturbation to enhance the exploration capability [120-121]. 

Recently, successful implementation of multiple-swarm concept in PSO and 

subpopulation concept in MOEA encourage new area of integrating multiple-swarm 

concept in MOPSO formulation [122]. Relevant works of these areas are reviewed in the 

following sections. 

 

5.2.1 External Archive 

The introduction of the notion of elitism in the evolutionary algorithms is called 

the second generation evolutionary algorithms [2]. These EAs are briefly discussed in 

Chapter 2.2.3.2. Archiving is also known as elitism for other EAs. In PSO, each particle’s 

flight in a search space is determined by its velocity computed from Equation (4.1). 

Especially for complicated MOPs, it is difficult to control the velocity of each particle to 

perform its optimal flight in a high-dimensional search space. Hence, for a typical 

MOPSO, external archive is often used to record any good particles found in each 

iteration.  

Hu et al. extended their previous algorithm, called dynamic neighborhood PSO 

(DSPSO), by adding an extended memory or archive to record all nondominated 

solutions found in every iteration [105]. Fieldsend and Singh [106] proposed the use of 

unconstrained archives to overcome the inefficiency caused by truncation of constrained 

Pareto archives. They developed a data structure approach known as dominated tree to 

maintain the unconstraint archives. The dominated tree consists of a list of composite 



 70 

points, and each composite point is a vector of archive members. These composite points 

are ordered by weak dominance relation [31].  

Recently, Mostaghim and Teich adapted the ε–dominance method to control the 

archive size and help to reduce computational cost [107]. To update the archive, ε–

dominance criterion is employed to evaluate the dominance relationship between the 

current particles in the swarms and the archive members. Dominated archive members or 

dominated particles in the current swarm are deleted, otherwise the archive members 

remain in the archive or the new particles are considered to join the archive. An upper 

bound equation is used to control the archive size. The equation indicates that the archive 

size depends on the upper bound of the objective values and the user-defined ε value. 

Coupled with other techniques such as sigma method for finding global leaders and 

turbulence factor to enhance exploration, experiment results shows applying ε–

dominance reduced computational time and improved the quality when compared with 

MOPSO that used clustering techniques [128]. In [108], the archive maintenance is based 

on enhanced ε–dominance since the drawback of ε–dominance method is losing solutions 

near the boundary. The concept of deleting archive members and accepting new members 

is the same as what is reported in Mostaghim and Teich approach [107] except that 

enhanced ε–dominance is employed to evaluate the dominant relationship. If neither 

archive members nor current particles dominate each other, Euclidean distance between 

particle and the vertex of ε grid is used to decide if any current particles are accepted into 

the archive. The particle that has the smallest distance is accepted. The authors explained 

that this technique influences the production of well distributed solutions, which is 

validated by their simulation results.  
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Li proposed a different approach, known as the nondominated sorting particle 

swarm optimizer (NSPSO), in which the algorithm of NSGA-II is adopted in PSO design 

[109]. Rather than having a separate external archive, the offspring and previous 

population are joined to form an overall population (with twice the population size). The 

nondominated sorting is then applied to the overall population. Only the top portion of 

population is selected for the next iteration. For diversity preservation, niche count and 

crowding distance assignment are applied to guide the particles’ selection of global 

leaders from the nondominated solution list.  

Another prominent work was contributed by Coello Coello and Lechuga [110].  

They proposed a multiple objective particle swarm optimization algorithm that 

incorporates the concept of Pareto dominance and adopts archive controller, which 

decides and stores the membership of new nondominated solutions found in each 

iteration. The deciding factor of accepting a new membership depends on the cases listed 

below: 

Case 1:  If the archive is empty (empty set), any new nondominated solutions are stored 

in the archive (Figure 5.2, case 1). 

Case 2: If there are members in the archive, then the Pareto dominance relationship 

between a new solution and all archive members is evaluated. If new solution is 

dominated by all the members in the archive, it is rejected from membership 

(Figure 5.2, case 2). 

Case 3:  If a new solution and all archive members are not dominating each other, the 

new solution is accepted (Figure 5.2, case 3). 
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Case 4:  If a new solution dominates some of the archive members, the new solution is 

accepted and those archive members that are dominated by the new solution are 

automatically discarded (Figure 5.2, case 4). 

Case 5:  If a new solution and all archive members are not dominating each other, the 

new solution is still accepted even if the archive size has reached its maximum 

limit. At this time, the adaptive grid procedure is evoked to readjust the grids 

and the hypercube size in order to fit in all the archive members and the newly 

accepted solution. Refer to Figure 5.2 (case 5), let’s consider the maximum 

archive size is 6, a new solution is accepted. The figure shows that the grid is 

adjusted while the number of hypercubes is retained. After the adjustment is 

over, to maintain archive size, those archive members that located in the most 

crowded hypercubes in the objective space will be removed. 

An adaptive grid feature based upon objective function values of archive members is 

applied to the archive with the goal of producing a well-distributed Pareto front. The key 

mechanism of the adaptive grid is to be able to adjust and recalculate the grids in the 

archive whenever the archive is updated. The adjustment of grid is essential to maintain 

uniform hypercubes formed in the archive. Archive coupled with grid feature allows 

global leaders to be selected from the archive via fitness sharing and roulette wheel 

selection.   

 

5.2.2 Global Leaders Selection Mechanism 

Global leader ( gbest ) selection mechanism is one of the key modifications to 

basic  PSO  to  solve  for MOPs.  Particles  in  the population  converge  in  a  swarm-like  
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Figure 5.2 Possible cases presented in [110]. Note that Ns denotes as nondominated solution; a no 

filled circle represents a new nondominated solution; and a filled or patterned circle represents a 

archive member. 
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In recent works, Hu and Eberhart [111] proposed a dynamic neighborhood PSO 

(DSPSO) that includes three criteria: dynamic neighbors, new global best particle 

updating strategy, and one-dimension optimization. The scheme of selecting the global 

leaders involves the particles’ neighborhood, which applies similar concept as the star 

topology ( lbest ) but the concept is modified to solve for MOPs. In every iteration, each 

particle finds its best new neighbors via calculating the distances from other particles of 

the first objective function (x-axis) in the objective space only. Then, the global leader to 

be assigned to each particle is the closest neighbor within its neighborhood. The number 

of neighbors is predetermined. Among the solutions in the neighborhood, each particle 

finds the local best particle, as the global best. Figure 5.3(a) illustrates an example of 

dynamic neighborhood procedure. The particles in the swarm are presented as circle (no 

filled) while the filled circles represent the nondominated solutions found in current 

iteration count. In this example, the number of nearest neighbors in the neighborhood is 

set to three. The neighborhood for particle A is presented in grey region. The arrows 

indicate the selected global leader from the particle’s neighborhood. Notice in Figure 

5.3(a), since the distance measure is based on the first objective, the selection of global 

leaders tends to point towards the downwards direction. Each particle’s personal best 

( pbest ) is updated only when these personal best history is dominated by a new solution. 

However, dynamic neighborhood PSO is limited in dealing with a small number of 

objective functions. 

Another work by Zhang et al. [112] has suggested a selection scheme for global 

and local leaders to improve the MOPSO performance. The scheme involves computing 

the new leaders via the proposed equation that depends upon each objective function and 
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the current iteration, and deciding whether the particles should follow their leaders based 

upon the proposed criteria.  Nonetheless, this approach did not provide a generalized 

equation to determine the new global leaders for problems with high-dimensional 

objective functions. Also, the new global and local leaders depend solely upon the global 

best and local best values that correspond to each objective function, which inadvertently 

may result in premature convergences if global best and local best corresponding to each 

objective function are very close. 

Fieldsend and Singh make use of their proposed archiving approach, i.e., 

dominated tree, for the global leader selection [106]. After the archive members (leaders) 

are ordered by weak dominance relation, with the coordinates of these composite points 

and the particles’ locations, the particles can select their global leaders based upon their 

closeness to the archive members. Hence, the global leaders are the archive members 

whose fitness values of the composite points jc  contributing to the vertex are less than or 

equal to those of the particles. However, this approach restricts the particles’ chances of 

selecting global leaders that belong to other composite points, even if some particles may 

provide better guides. Figure 5.3(b) presents Fieldsend and Singh’s method of global 

leader selection for each particle in the swarm. In the figure, the composite points are 

label as { }4321 ,,, cccc  and represented by a larger circle. The shaded regions show the 

areas that are separated or bounded by two composite points. Note that particles in the 

swarm are presented as circle (no filled) while the filled circles represent the archive 

members. The arrows show the particles select their closest archive member of composite 

point jc  as their global best leader.  
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Inspired by the Fieldsend and Singh’s method in [106], Mostaghim and Teich 

[113] introduced the sigma method to search for the global best for each particle in the 

population. The particles select their global leaders based upon the minimum distance 

from the sigma values computed for all archive member and all particles in the swarm. 

Figure 5.3(c) shows the sigma method for two objective functions. The sigma values of 

the archive members are presented as { }321 ,, σσσ , since only three archive members 

(filled circle) are shown. The arrows indicate the global leaders selected by the particles 

(no filled circle). In this report, this algorithm is referred to as sMOPSO. The sigma 

method can impose selection pressure on global leaders and since PSO has rapid 

convergence capability, this may lead to premature convergence for some MOPs. In a 

follow up work [114], combination of hybridizations of three global leader selection 

strategies, i.e., sigma, centroid, and random methods, for MOPSO are investigated. Four 

benchmark functions are selected and hypervolume indicator is used as performance 

metric. In general, simulation results indicate that hybrid selection strategies improved 

the diversity and convergence in MOPSO although no specific hybrid selection strategy 

dominated the performance since it is problem dependent. The authors suggested future 

research on hybrid selection strategies is needed.    

A new selection mechanism based on the idea of stripe is proposed to maintain 

diversity of MOPSO while solving for MOPs [115]. First, the maximum fitness value of 

an individual objective function in the archive is identified. Once the maximum fitness 

values of all objective functions are known, a “line” is estimated using these values. 

Figure 5.3 (d) illustrates the “line” drawn across the two objective functions. Then, the 

number  of  points, also  known  as  the  stripe centers, is uniformly  distributed  along the 



 77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
        (a) Dynamic neighborhood [111]               (b) Fieldsend and Singh’s method [106] 
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Figure 5.3 Figures depicting the different strategies of selecting the global leaders. The arrows 

indicate the global leaders (filled circles) selected by the particles in the swarm (circles (no filled)). 
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 “line”. By setting the maximum number of particles for each strip will provide 

distribution of particles in several stripes and to avoid excessive clustering in any 

particular stripes. The authors used the notion of clustering as stripe centers. Figure 5.1 

(d) shows an example of stripes divided based on the predetermined number of stripes. 

Note that a maximum number of three particles are set for each center of cluster. This 

strategy showed impressive simulation results when stripe method is applied to MOPSO, 

ε-MOEA and NSGA-II. However, the authors applied their proposed strategy to test 

problems with only two objective functions. For higher number of objective functions, 

stripe method may be difficult to implement. 

Gong et al. [116] introduced a strategy that is similar to the sigma method. In 

their proposed strategy, the selection of the global leader for a particle is based on the 

minimum particle angle ( min
iδ ) of a particle in the swarm and an archive member. To 

locate the minimum particle angle, particle angles ( iδ ) between a particle in the swarm 

and all the archive members are computed. The particle angle is computed by applying 

the inverse cosine function to the dot product of two fitness vectors of two particles. 

Figure 5.3 (e) presents the graphical representation of the proposed strategy. In the figure, 

the particles in the swarm are represented by circle (no filled) and archive members are 

represented by the filled circle. Arrows show which archive member is chosen by a 

particle based on the minimum particle angle. Note that the authors define the particle’s 

density as the number of particles that choose the same archive members. For example in 

Figure 5.3 (e), the particle’s density for the second archive member (middle one) is two.  



 79 

Three methods of selecting global leaders based on Pareto dominance are 

proposed by Julio et al. [117]. The following is the brief introduction of the three 

methods:  

1. ROUNDS:  This method relies on the number of particles that are dominated by a 

member of the archive to be selected as global leader. The member that 

dominated the least particles is assigned as global leader of those 

particles which it dominates. The procedure is repeated for other 

members in the archive. The idea is to bring the particles to explore 

regions with sparse population. Thus, this method aims to promote 

diversity in the swarm.  

2. RANDOM: Each particle finds a set of archive members that dominate it. Then, it 

randomly selects a global leader from the set with equal probability. If 

any particles are not dominated by any archive members, then their 

global leaders are randomly selected from the entire archive.  

3. PROB:       This method uses the same way as the RANDOM method except global 

leader selection is based on the probability that favor those archive 

members that dominate least particles.  

Experiments are conducted to compare the efficiency of the three methods and sigma 

method [113]. The methods are applied to the two benchmark functions. Pareto fronts, 

archive growth and histogram of the metric are presented to evaluate these methods. The 

authors concluded that RANDOM method yields solutions closest to the true Pareto front 

but lack of diversity; while PROB method gives the balance of both solution quality and 

diversity. Experiments are repeated with rescaling the objective functions of the two test 
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functions. Only PROB and sigma methods are tested. Results show that the performance 

of PROB method is unaffected by the rescaled objective functions, which indicates this 

method does not relies on objective space distances for global best selection.   

 

5.2.3 Personal Best Selection Mechanism 

In a typical MOPSO, particle’s personal best ( pbest ) updating mechanism is 

based on the Pareto dominance relationship between the current personal best and the 

new solution [110]. If the new solution dominates the current personal best, then only the 

personal best is replaced by the new solution. Not until recently, some research works 

introduce different strategies for updating the particle’s personal best.  

Recently, two cases of personal best updating strategies are proposed by Gong et 

al. [116]. One of the cases involves the strategy discussed early (Figure 5.1 (e)). For the 

first case, the personal best updating is strictly based on the Pareto dominance 

relationship if either the current personal best ( ipbest ) dominates the new solution 

( ( )1+tix ) or the new solution dominates the current personal best. The second case is 

executed if both current personal best and the new solution do not dominates each other. 

The steps are briefly given here:  First, both ipbest  and ( )1+tix  select their archive 

members via particle angle approach. Next, the particle density is updated for all archive 

members. To maintain the number of particles in the swarm, one of the archive members 

whose particle density has reached the maximum number (user defined) is selected. Then, 

a particle is randomly picked to check the Pareto dominance relationship with a ipbest . 

If this randomly selected particle dominates a ipbest , then delete the ipbest , otherwise 

delete the randomly selected particle. If both do not dominate each other, randomly delete 



 81 

one of them. Based on the authors observation, the process of updating personal best via 

second case will promote good distribution of particles in the objective space. 

Branke and Mostaghim [118] investigated the influence of the personal best 

particles in MOPSO. There are total nine personal best selection concepts mentioned and 

are briefly presented: 

1. Oldest: Always keep the old position in the personal best memory unless new 

solution ( ( )1+tix ) dominates the current personal best ( ipbest ). 

2. Newest: Always keep the latest position in the personal best memory except for the 

case where a ipbest  dominates ( )1+tix . 

3. Sum: The deciding factor to update either the ipbest  or ( )1+tix  depends on the sum 

of objective values. Whichever contributes better sum will be updated.  

4. Random: Randomly select a nondominated ipbest  from the personal best archive. 

5. WSum: Higher weights are assigned to particles that hold good solutions. This way, 

the selection of ipbest  will also contribute in diversity maintenance. 

6. Global: To increase the convergence rate, the selected personal best, ipbest , is the 

closest to the global best in the objective space.  

7. Diversity: To improve diversity, the ipbest  is chosen from those personal best in 

archive that are isolated from other personal best in the archive. 

8. All: Several personal bests from the archive are selected as the represented ipbest . 

9. None: All personal bests are replaced by the global best. 
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Empirical results showed keeping personal best archive and their proposed strategies in 

selecting personal best from the archive produces significantly better results than 

traditional approaches.  

 Another selection technique is introduced by Ho et al. [119]. Their idea is to 

counter the difficulty of selecting personal best ( pbest ) when a particle finds more than 

one possible Pareto solutions. They proposed two repositories: one to store the 

latest pbest while another to store age variables of the pbest , which are assigned to each 

member of pbest  in the first repository and are accumulated based on iteration counts 

(i.e., the age factor). Selection of a particle’s pbest  from the repository is done via 

weighted sum of its age variables, its fitness values and roulette wheel selection scheme. 

When a specific pbest  is selected, its age variable is reassigned to the minimum age 

value. Main idea of employing the age factor (age variables) is to improve diversity and 

provide opportunity for “unpopular” pbest  being chosen in the next iteration. The 

authors proposed the same technique to select the global best ( gbest ) from its archive. 

 

5.2.4 Incorporation of Genetic Operators 

In recent works, the incorporation of genetic operators such as mutation and 

perturbation operators has greatly enhanced the exploration capability of MOPSO. 

Although the terminologies such as mutation and perturbation operators are the same for 

many publications but the mechanism are tailored to suit the proposed MOPSOs. Inspired 

by the stochastic variable used in [50], Fieldsend and Singh integrated the turbulence 

(perturbation) to the velocity equation (Equation 4.1) to extend the exploration capability 

for MOPSO [106]. The turbulence is a random variable and also known as the craziness 
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parameter, which provides unpredictability to the particles’ flight in searching for good 

solutions in the search space. Mostaghim and Teich [107, 113] also implemented a 

turbulence factor to the particle’s updated position. Decision to apply the turbulence 

factor depends on a turbulence probability. The turbulence factor adds randomness to the 

particle’s updated position and it is represented by a random value within [ ]1,0 . Similar to 

[106] and [107,113], Ho et al. [119] incorporated both the craziness operation and 

craziness probability to the velocity equation to promote diversity of their MOPSO. The 

craziness operation is equivalent to the turbulence or perturbation operator.  

In [108], mutation procedure is added in the proposed MOPSO to deal with the 

problem of premature convergence. The execution of mutation procedure is based on a 

mutation probability, which is dependent on the iteration counts. Mutation operator is 

applied to the updated velocity value in the position equation (Equation 4.2). Parameters 

such as direction of mutation and mutation distance are included in the mutation operator.  

Coello Coello et al. [120] proposed the use of mutation operator to improve the 

exploration capability on the MOPSO presented in [110]. The authors defined the 

behavior of mutation operator to determine the number of particles in the swarm that 

affected by the mutation operator. The function that describes the behavior of mutation 

operator is also used to determine the mutation range imposed to a particle. The concept 

of the behavior is to allow more particles in the swarm affected by the mutation operator 

in early search process. The number of particles that is affected will slowly reduce as the 

iteration count increases until the mutation operator halts.  

In addition, Sierra and Coello Coello [121] suggested a new MOPSO, also known 

as OMOPSO, based upon Pareto dominance and incorporated 1) crowding factor to filter 
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out the list of available leaders, 2) mutation operators for different subdivisions of swarm, 

and 3) ε–dominance to control the archive size. Their approach is to divide the population 

into three subswarms of equal size. Each subswarm adapted to a different mutation 

operator. In doing so, the ability of exploration and exploitation was enhanced during the 

search process. The proposed idea showed good performance compared to the existing 

evolutionary algorithm. Although genetic operators are adopted by MOPSO, the selection 

of an appropriate initial population size plays an important role in homogenously 

exploring the high-dimensional search space. 

 

5.2.5 Incorporation of Multiple Swarms 

Over the years, numerous works related to subpopulation manipulation in 

multiobjective evolutionary algorithms (MOEAs) have been published [122-127]. 

Though the concept of subpopulation seems generic, various studies show convincing 

performance in adopting the subpopulation concept from different perspectives. In [122], 

the population is divided into subpopulations of equal size along one of the objective 

functions, and these subpopulations evolve separately in a parallel fashion. At some 

interval generations, the subpopulations are gathered and evolve as a whole population. 

Then the population is divided and redistributed again along a different objective 

function. In [123], an improved design known as Parallel Strength Pareto Evolutionary 

Algorithm consists of two models: in global parallelization model, each subpopulation 

performs evolutionary procedure, and in island model, the subpopulations exchange 

information using the migration concept. In another design, a subpopulation is used to 

optimize one decision variable [124]. All parameters from the first subpopulation and the 
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best individuals from the rest of the subpopulations are combined to form complete 

solutions, which will be evaluated and used to update the archive.  Unlike [124], Vector 

Evaluated Differential Evolution [125] proposed that each subpopulation is assigned to 

an objective function and information is shared among the subpopulations via migration 

of best individuals. Some publications emphasize the implementation of subpopulation to 

solve specific problems. For example, Ando and Suzuki [126] proposed a Distributed 

Multi-Objective Genetic Algorithm, which employs a multiple subpopulation approach 

and replacement scheme based on the information theoretic entropy, to improve the 

performance in solving deceptive problems; while Izumi et al. [127] reported promising 

results with their proposed Evolution Strategy (ES) wherein the arithmetical crossover is 

modified by using the subpopulation’s elite and the mean strength of that subpopulation. 

These studies [122-127] have consistently shown that their proposed MOEAs have either 

improved the performance or resulted in a highly competitive design validated through 

selected test functions. More importantly, subpopulation concept coupled with other 

ingredients often yields more efficient and effective designs, especially in enhancing the 

population diversity.  

As elaborated in Chapter 4, many publications on multiple-swarm concept are 

mainly to solve single objective and multimodal problems. This concept is still a new 

research area in MOPSO. In general, mutation operators are typically incorporated to 

boost the exploration capability of the MOPSOs.  For those MOPSOs that have no built-

in mutation operators, incorporating multiple swarms into MOPSO can effectively 

enhance the exploration. In recent work, Toscano Pulido and Coello Coello proposed a 

multi-swarm MOPSO, or simply cMOPSO, that implements the subdivision of the 
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decision variable space in multiple swarms via clustering techniques [128]. Their goal 

was to improve the diversity of solutions on the Pareto front. At some point during the 

evolution process, different subswarms exchange information as each subswarm chooses 

a different leader to preserve diversity. cMOPSO has shown promising results when 

compared to NSGA-II [31], PAES [30], and coello coello’s MOPSO [120]. Another 

proposed MOPSO design applies multi-swarm concept to cover the optimal Pareto front 

at the final stage of the search process in order to improve the quality of optimal Pareto 

front [130]. During the initial run, MOPSO employs a restricted archive size that is 

controlled using ε-dominance strategy presented in [107]. Once archive members are 

closerer to obtain the optimal Pareto front, sigma method [113] is applied to group the 

particles in the swarm according to their selected global leaders from the archive. The 

groups of particles are referred to as subswarms by the authors. These subswarms 

converge towards and cover the optimal Pareto front using their global leaders as their 

guide. The archive size in covering MOPSO is not restricted. This algorithm shows 

excellent results in producing uniform distributed and well extended Pareto fronts with 

reduced computational time for the four test functions.  

 

5.2.6 Other MOPSO Designs 

 Researches in developing MOPSOs are not limited to the areas that reviewed 

above. In recent years, publications show various research areas including redesign of 

PSO equations, incorporation of techniques, concepts, theory or model from other fields. 

Several MOPSOs with various designs are briefly introduced in this section, providing 

some information of current research trends.  
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Ho et al. [119] designed an improved velocity equation using adjusted random 

parameters to control the balance of global and local searches in their proposed MOPSO; 

another approach applied local search and clustering technique on MOPSO to improve 

convergence and maintain diversity [129]; and a co-evolutionary PSO, i.e. CMOPSO, 

implemented co-evolutionary concept and designed with co-evolutionary operator, 

competition mutation operator, and selection mechanism, is proposed by Meng et al.  

[131]. Besides incorporating techniques to MOPSO, Santana-Quintero et al. introduced a 

new MOPSO that employs some concepts from rough set theory to design a local search 

approach [132]. Their main objective is to produce well-spread and well-distributed 

Pareto front for MOPs. Another MOPSO design is the hybrid design of PSO and agent-

environment-rules (AER) model [133,134]. This new MOPSO is called intelligent PSO 

(IPSO). The proposed use of AER model aims to provide appropriate selection pressure 

to encourage convergence towards the optimal Pareto front. Key designs that insert into 

IPSO to support the goal are competition and clonal selection operators.    
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CHAPTER 6 

 

 

PROPOSED ALGORITHM 1: DYNAMIC MULTIOBJECTIVE 

PARTICLE SWARM OPTIMIZATION (DMOPSO) 

 

 

 This chapter presents the first proposed MOPSO that incorporate the dynamic 

population concept to manage the swarm population for solving MOPs in order to 

improve the efficiency of the algorithm and to address the need to “estimate” a fixed 

swarm population size sufficiently to explore the search space without incurring 

excessive computational complexity. The multiple swarm concept is also applied to the 

swarm population where the number of swarms is predefined. Hence, the swarm size, i.e., 

number of particles in each swarm, is not fixed. In addition, clustering algorithm is used 

to group the global leaders in the archive based on the predetermined number of swarms 

to provide guide in global leaders selections for each swarm and to promote diversity 

within the swarm population. This proposed algorithm is named the dynamic 

multiobjective particle swarm optimization (DMOPSO). Elaboration of the proposed 

strategies employed in DMOPSO is provided. In the final section of this chapter, 

performance metrics and benchmark test functions are used to evaluate the performance 

and the computational cost of the proposed algorithm compared to five state-of-the-art 

MOPSO algorithms.  
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6.1 Introduction 

In Chapter 5, existing MOPSO were reviewed. However, all these MOPSO 

designs adopt the notion of using a fixed population size throughout the process of 

searching for possible nondominated solutions until the Pareto optimal set is obtained. 

Although some may argue that a good algorithm design would assure a high probability 

of finding the Pareto optimal set, yet population size does indirectly contribute to the 

effectiveness and efficiency of the performance of an algorithm. One influence of 

population size on these population-based metaheuristic optimization algorithms is the 

computational cost. If an algorithm employs an overly large population size, it will 

benefit from a better chance of exploring the search space and discovering possible good 

solutions but inevitably suffer from an undesirable and high computational cost. On the 

other hand, an algorithm with an insufficient population size may result in premature 

convergence or may obtain only some sections of the Pareto front. Again, one may 

suggest that heuristically estimating an “appropriate” population size may be adequate 

since one need not know the exact fitness landscape to solve a MOP. It would be the case 

for these MOPs that possess lower numbers of objective functions or lower dimensions in 

decision space. Considering the MOPs that have large numbers of objective functions or 

large dimensions in decision space, and even of those MOPs qualified as the hard 

problems [152], this will pose a great challenge to “estimate” the population size to solve 

these MOPs without exerting a high computational cost. In addition, without a prior 

knowledge about the contour of the fitness landscape in a MOP, it might be unrealistic to 

estimate an “appropriate” population size to kickoff the search process. Hence, a 

compromised, yet effective, solution would be dynamically adjusting the population size 
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to explore the search space in balance between computational cost and the attained 

performance.  

In fact, there are few publications that tackle the issue of population size. In 

earlier work, several methods of determining an optimal population size in Genetic 

Algorithm (GA) are proposed to solve SOPs [136-138]. Nonetheless, preservation of 

population diversity is not an issue in solving SOPs but not the case if solving MOPs 

[139]. Several published works have incorporated dynamic population strategy into EAs. 

Tan et al. [135] proposed an incrementing multiobjective evolutionary algorithm 

(IMOEA) that adaptively computes an appropriate, but conservative, population size 

according to the online evolved tradeoffs and its desired population distribution density. 

Although IMOEA demands a heuristic approach to estimate the desired population size 

for the next generation, simulation results show that IMOEA can perform better than 

several state-of-the-art MOEAs. Another algorithm, dynamic population-size 

multiobjective evolutionary algorithm (DMOEA), is proposed by Yen and Lu [139-140]. 

This algorithm includes a population growing strategy that is based upon the converted 

fitness and a population declining strategy that resorts to the three types of qualitative 

indicators: age, health, and crowdness. From the simulation results, the performance of 

DMOEA is competitive or even superior to the selected MOEAs. In addition, robustness 

study shown that the population size always converges to an optimal value independent 

of the tuning parameters chosen and the complexity of the Pareto front [140]. Eskandari 

et al. also proposed a GA-based stochastic multiobjective optimization technique to 

obtain the Pareto optimal set for simulation models in a computationally efficient manner 

[141]. They introduced a few features into their algorithm: a new ranking scheme that 
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bases on the stochastic dominant concept, a new genetic operator (blended crossover 

operator and non-uniform mutation operator), dynamic expansion operator to increase 

population size, and an importation operator to explore new regions of the search space.   

In this study, the goal is to incorporate dynamic population size into a MOPSO 

since particle swarm optimization (PSO) has an advantage over evolutionary algorithm, 

in which, PSO has a rapid convergence capability. However, PSO often faces the 

problem of premature convergence. Hence, multiple-swarm MOPSO is employed to 

promote diversity within the swarm population to deal with the problem of premature 

convergence. In this chapter, the proposed MOPSO design involves two key concepts, 

which are dynamic swarm population size and multiple swarms. Design aspects that are 

incorporated in the proposed MOPSO include 1) strategy to facilitate access the status of 

the particles when the swarm population size varies ; 2) strategies to dynamically adjust 

the swarm population in order to provide the needs of computational resources at 

different stages and, at the same time, to promote the competition among the swarms so 

that convergence toward the optimal solutions and the diversity characteristics are 

preserved; and 3) adaptive local archive procedure to promote diversity within each 

swarm. 

 

6.2 Proposed Algorithm Overview 

Discussed in Chapters 4 and 5, PSO poses two unique characteristics that particles 

tend to move as a swarm and converge quickly toward the Pareto front. Both 

characteristics may present a problem when encountering complex MOPs in which the 

Pareto fronts may be composed of a set of solutions located at the disconnected segments 
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in the decision space. For such cases, the movement of particles as a single swarm and 

the fast convergence property may lead the swarm population toward only a segment of 

the Pareto front. To deal with this problem, Toscano Pulido and Coello Coello proposed 

the multiple swarms MOPSO (cMOPSO) [128]. Inspired by their work, the skeleton of 

DMOPSO is built on cMOPSO. In addition, DMOPSO incorporates four proposed 

strategies: 1) cell-based rank density estimation scheme to keep track of the rank and 

density values of the particles; 2) population growing strategy to increase the population 

size to promote exploration capability; 3) population declining strategy to prevent the 

population size from growing excessively; and 4) adaptive local archives design to 

improve the distributed solutions along the sections of the Pareto Front that associate 

with each subswarm. Figure 6.1 presents the pseudocode of DMOPSO involving four 

newly developed strategies highlighted in boldface. 

The generic steps of DMOPSO are as follows. First, based upon a preset number 

of subswarms, every subswarm of particles is initialized and cell-based rank density 

estimation scheme is applied to initialize the rank and density values of the particles. 

Second, the group leaders of each subswarm are determined by the rank matrix. Third, all 

of the group leaders from subswarms are collected to form the set of global leaders 

(Gleader ). A clustering algorithm is applied to Gleader  to group the leaders, where the 

number of groups is determined by the number of subswarms. Note that the clustering is 

done with respect to closeness in the decision space [128].  Next the resulting groups are 

assigned to their subswarm on condition that the number of internal iteration does not 

reach the user-defined maximum internal iteration value. Otherwise, the resulting groups 

are  randomly  assigned  to any  subswarm  and  the internal iteration  is reset to zero. The  
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Begin 

Parameters initialization for cell-based rank density estimation 

scheme, population growing strategy, population declining strategy, 

and adaptive local archives. 

 

/*Swarm Population Initialization 

Set no. of subswarms ( swarmn ).  

Initialize subswarms. 

Set Maximum internal iterations ( maxst ).  

Set Maximum iterations ( maxt ).  

Set iteration 0=t . Set internal iteration 0=st . 

Rank_and_density_estimation()  

 

For each subswarm 

  For each particle 

      Fitness evaluation.  

Store local best ( ipbest ). 

  EndFor        

  Store all found group leaders. 

EndFor 

  Combine swarmn  of group leaders to Gleader .    

  1=t  

While maxtt <  

Apply clustering algorithm to Gleader . 

If maxstst <  

 Assign group leaders to the subswarm. 

 1+= stst  

Else 

 Randomly assign group leaders to a subswarm.  

 0=st  

EndIf 

Population_growing_strategy() 

For each subswarm 

 Adaptive_local_archives()  

For each particle 

     Select leader from group leaders.  

 Flight.  

 Fitness evaluation. 

     Rank_and_density_estimation()                

         Update local best ( ipbest ). 

       EndFor 

       Store all group leaders. 

   EndFor 

   Combine swarmn of group leaders toGleader .      

       Population_declining_strategy() 

    1+= tt  

EndWhile 

     Report results in Gleader . 

End  

 

Figure 6.1 Pseudocode of DMOPSO. 
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internal iteration provides a chance for all of the subswarms to share their group leaders. 

Then, population growing strategy is applied to increase the number of particles while 

adaptive local archives scheme is applied to the group leaders of each subswarm to 

preserve the diversity. Next, the particles in each subswarm will select the leaders from 

their group leaders. As soon as the leader selection process is completed, the particles 

perform flight and update their local best ( ipbest ). Again, the following steps are 

repeated for all of the particles in their subswarm: 1) the particles’ information is updated 

via the cell-based rank density estimation scheme; 2) the group leaders from subswarms 

are determined; and 3) all the group leaders are combined to Gleader . After these steps 

are finished, population declining strategy is performed to reduce the swarm population 

size, if justified. These steps are performed until they reach the maximum iteration.  

 

6.3 Implementation Details 

  Unique designs of four strategies (highlighted in Figure 6.1) in supporting 

dynamic population are elaborated in this section. 

 

6.3.1 Cell-based Rank Density Estimation Scheme 

With a dynamic population size, adding or removing particles will affect Pareto 

rank of the existing particles and the population density of certain areas located on the 

objective space.  This poses a problem of needing to recalculate the Pareto rank and 

density values of the particles to keep up the changes of the swarm population size.  To 

counter the problem, we employed an existing scheme, cell-based rank and density 

estimation scheme, which has proved effective in DMOEA [139, 140]. 
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Here, a briefly review of the cell-based rank and density estimation scheme is 

presented [139, 140]. The scheme consists of three main procedures: Setting up the cells, 

identify particles’ home addresses, and updating rank and density matrices.  

Setting Up the Cells: Divide the original k-dimensional objective space into 

kKKK ××× K21 cells (i.e., grids), thus the cell width in the ith objective dimension, id , 

can be calculated as 

i
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where id  is the width of the cell in the ith dimension, iF  refers to the ith objective, 
i

K  

denotes the number of cells designated for the ith dimension, x  is taken from the whole 

decision space S , and we denote 
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The grid scales 
i

K , mi ,...,1= , are chosen heuristically and a prior knowledge would be 

desired in the choice of the grid scales. The iF  must be chosen large enough to 

accommodate the corresponding boundary range of the decision variables, x , because if 

iF  is chosen too small, then min

iF and max

iF wouldn’t be sufficiently small or large enough 

to include particles that are out of range in the objective space. Hence, the limitation of 

min

iF  and max

iF  must at least meet some minimum values that correspond to the boundary 

range of the decision variables, x .  

Identify Particles’ Home Addresses: As shown in Figure 6.2, point c is denoted as 

the origin of the current objective space. In other words, c is the cross point of all the 

lower boundaries of an k-dimensional objective space. The position of c is denoted as 
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[ ]minmin

2

min

1 ,,, kFFF K . For a newly generated particle Q, whose position is [ ]kqqq ,,, 21 K  

in the objective space, the distance between point Q and point c will be measured in each 

dimension in the objective space as ],,,[ 21 kttt K , where  

min

iii Fqt −= , ki ,...,1= .                (6.3) 

Therefore, the “home address” of particle S in the ith dimension is calculated as  

1),mod( += iii dth , ki ,...,1= ,                            (6.4) 

where function ),mod( yx  represents the modulus (integer part) after division yx / . 

Therefore, by this setting, finding the grid location (home address) of a single solution 

requires only k “division” operations. For example, in Figure 6.2, the “home address” for 

particle Q is (4, 5) and the other particles who share the same “home address” as Q are its 

“family members.”  

 

 

 

 

 

 

 

 

 
Figure 6.2 Illustration of cell-based rank and density estimation scheme. 

 

Updating Rank and Density Matrices: The density value of a specific cell is 

referred to as the density value of the “home.” The number of “family members” that 

share the same “home address” will be counted and saved as the density value of the 

“home.” To update the rank values in the rank matrix, the ranking technique, known as 

Automatic Accumulated Ranking Strategy (AARS) is used [13].  
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Figures 6.3 to 6.5 present an example to demonstrate the cell-based rank and 

density scheme [13,139,140]. Assume two-dimensional objective space, k = 2, the 

objective space is determined via Equation (6.1) and divided into 66×  cells using 

Equation (6.2).  Figure 6.3(a) shows the initially setup of the objective space. Then, the 

center position of each cell is obtained, and two matrices are set up following the same 

cell configuration as Figure 6.3(a). These two matrices store the rank and density values 

of each cell, which initially has all 1’s and 0’s, respectively (shown in Figure 6.3(b)-(c)). 

Now, consider the initial population is generated and is mapped to the objective space 

(Figure 6.4(a)). The particles’ home addresses are identified using Equations (6.3) and 

(6.4) and the rank and density matrices in Figure 6.4(b)-(c) show how the information of 

the particles are stored.  When a new particle is generated and accepted, i.e., particle C in 

Figure 6.5(a), its “home address” can be located easily by following Equations (6.3) and 

(6.4). With its “home address”, the rank values of the cells dominated by its “home” will 

be increased by one (Figure 6.5(b)), and the density value of its “home” will increase by 

one (Figure 6.5(c)). Meanwhile, if an existing individual is removed (example: particle B 

in Figure 6.4(a) is removed in Figure 6.5(a)), its “home” will be notified, and the rank 

values of the cells dominated by its “home” will be decreased by one, and the density 

value of its “home” will be decreased by one, correspondingly. Therefore, at each 

iteration, a particle can access its “home address” and then obtain the corresponding rank 

and density values. The “home address” is merely a “pointer” to locate a particle and to 

access its rank and density values. For instance, as shown in Figure 6.5, the “home 

address,” rank and density values of particle A are (5,2), 2, and 1, respectively.  
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                  (a)              (b)                      (c)  

Figure 6.3 (a) Estimated objective space and divided cells, (b) initial rank value matrix of the 

given objective space, and (c) initial density value matrix of the given objective space [139,140]. 

 

 

 

 

 

                  (a)              (b)                      (c)  

Figure 6.4 (a) Initial swarm population and the location of each particle, (b) rank value matrix of 

initial swarm population, and (c) density value matrix of initial swarm population [139,140]. 

 

 

 

 

 

 

                  (a)              (b)                          (c)  

Figure 6.5 (a) New swarm population and the location of each particle, (b) rank value matrix of new 

swarm population, and (c) density value matrix of new swarm population [139,140]. 

 

With this scheme, fitter particles can be identified easily, since they just need to 

provide their “home addresses,” and the current rank or density values of their home 

addresses. The cell-based rank and density estimation scheme is quite effective in 

managing a dynamic swarm population size in DMOPSO. The pseudocode of cell-based 

rank density estimation scheme is presented in Figure 6.6.  
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Function Rank_and_density_estimation ( t , Pop , ),,( minmin
1 kFF K , ),,( maxmax

1 kFF K , 

( )kKK ,,1 K ) 

 
/* t = current iteration 

/* Pop = current swarm population size 

/* ),,( minmin
1 kFF K = user-defined lower boundaries in m dimensional   

        objective space 

/* ),,( maxmax
1 kFF K = user-defined upper boundaries in m dimensional  

    objective space 

/* ( )kKK ,,1 K  = grid scales 

   

Begin 

 If 0=t , 

/*Calculate the cell rank and density values for initial              

swarm population. 

    For 1=i to k  

      Calculate cell width from Equation (6.1) 

    EndFor  

    
kKKKmatrixRank ×××=

K21
1_   

    
kKKKmatrixDensity ×××= K21

0_  

      /*Determine their home addresses. 

    For each particle 

  Compute Equation (6.3) 

  Compute Equation (6.4) 

    EndFor 

    /*Update rank and density value. 

            

[ ] [ ]( ) [ ] [ ]( ) 1,,_,,_ 1111 += kkkk KhKhmatrixRankKhKhmatrixRank KKKKKK

( ) ( ) 1,,_,,_ 11 += kk hhmatrixDensityhhmatrixDensity KK  

End 

 
Figure 6.6 Pseudocode of cell-based rank density estimation scheme [139, 140]. 

 

6.3.2 Perturbation Based Swarm Population Growing Strategy 

Tan et al., have proposed an incremental multiobjective evolutionary algorithm 

with dynamic population size that adaptively discovers the tradeoff surface and its 

desired population distribution density [135]. Among other proposed features, authors 

proposed a method of fuzzy boundary local perturbation to perturb the nondominated 

individuals to grow the population size. A similar concept is adopted in the proposed 

population growing strategy. A set of procedures is proposed to facilitate exploration and 
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exploitation capabilities for DMOPSO and, at the same time, to increase the swarm 

population size.  

Procedure 1: The potential particles to be perturbed must have the highest 

possibility of producing new particles that will improve the convergence towards the 

Pareto front. In this case, the nondominated set is considered as candidate particles to 

produce new ones since they have a higher chance of producing fitter particles which will 

improve the convergence towards the Pareto front. However, selecting all particles in the 

nondominated set may result in excessive swarm population growth and, consequently, 

produce an uncontrollably large swarm population size.  To solve this problem, the user 

can set a fixed parameter that will serve as the guideline for selecting the number of 

potential particles from the nondominated set. Instead of choosing a fixed parameter, a 

random number is used to stochastically determine the number of potential particles from 

the nondominated set to be chosen. The number of potential particles can be calculated 

using the following equation: 

 ( ) setednondominatinparticlesofnototalrns a .×= ,   (6.5) 

where ar  denotes a random number obtained from a uniform distribution within [0, 1], 

and ns denotes the number of particles to be selected to perturb.  ⋅  represents the floor 

function. Once ns is determined, ns number of potential particles are randomly selected 

from the nondominated set. For example, refer to Figures 6.7(a)-(c). Based upon the 

information presented in the rank and density matrices, the total number of particles in 

the nondominated set of the current swarm population is equal to five. Assume ns is 

chosen to be 2, two particles (D and E) are randomly chosen as the candidate particles 

(Figure 6.7(d)). Note that these potential particles are referred to as selected particles. 
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                  (a)     (b)                                  (c)                                                (d) 

Figure 6.7 (a) Current swarm population and the location of each particle, (b) rank value matrix of 

current swarm population, (c) density value matrix of current swarm population, and (d) example of  

“potential” particles, particles D and E. 

 

Procedure 2: The number of perturbations of the selected particle is adaptively 

determined in every iteration. Each selected particle’s responsibility is to generate a 

certain number of new particles from the selected particle. A probability value is used to 

determine the number of perturbations adaptively in which the number of perturbations 

(number of new particles to be generated) is bound by the minimum and maximum 

number of perturbations, which is predefined by the user. Assuming at iteration t, the 

number of perturbations for each selected particle, ( )tnp , is determined by Equation (6.6):  
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where maxt  is denoted as the maximum iterations, lnp  is the minimum number of 

perturbations, and unp  is the maximum number of perturbations. unp  is determined by 

maximum allowable perturbations for each particle, while lnp  is determined based upon 

the minimum number of perturbations required for neighborhood exploration. Figure 6.8 

is the illustration of Equation (6.6). 
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Figure 6.8 Number of perturbation per particle, np versus iteration, t. 

 

Procedure 3: The concept of perturbations within and beyond the neighborhood 

to balance the exploitation and exploration capabilities of DMOPSO is adopted. To avoid 

generating too many new particles from being too far away from the selected particles, it 

is necessary to generate a larger number of new particles within the neighborhood than 

outside of the neighborhood. In order to achieve this goal, a set of equations is proposed 

as follows: 

( )( )
9

1,0Gaussianabsrb = ,          (6.7)  

L

jxrldld ×= ,         (6.8) 
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jxrudud ×= ,        (6.9)  
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( )bjiji rdxx ∆+= ,, .        (6.11) 

Equation (6.7) is used to determine the additional distance from the selected particle 

corresponding to the decision space. The d∆  is defined according to the function of 

br (see Figure 6.9).  Several  parameters  are  needed  to compute  Equation (6.10).  These  
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Figure 6.9  The additional distance ( )brd∆ versus br . 

 

parameters are ld , ud and br  in which they can be computed via Equations (6.7) to (6.9), 

respectively. In Equation (6.8), ld is denoted as the minimum additional distance. It is 

computed by multiplying the parameters rld  and L

jx , where rld  is the user-defined 

lower bound ratio and L

jx  is the lower bound of the decision variable x  in dimension j. 

Parameter ud is denoted as the maximum additional distance. Equation (6.9) shows how 

the parameter ud is calculated where rud  is the user-defined upper bound ratio and U

jx  

is the upper bound of the decision variable x  in dimension j. In this paper, the parameters 

rld  and rud  are selected within the range of [ ]02.0,0  and ( ]7.0,02.0 , respectively. 

Presented in Equation (6.7), the parameter br  is the absolute value of a random 

number in which the random number is drawn from the Gaussian distribution with zero 

mean and a variance of 91 . With the mean 0 and variance ( )2σ , 91 , more random 

numbers will be generated near the lower end of the range, i.e. [ ]
2

3,0 σ , while less 

random numbers will be generated near the upper range, i.e., ( ]σσ 3,
2

3 . Once the d∆ is 

computed, it is added to the decision variable of the selected particle i at dimension j,  

15.0

ud

ld

br
0

( )brd∆

inside neighborhood outside neighborhood

2
dldu +

15.0

ud

ld

br
0

( )brd∆

inside neighborhood outside neighborhood

2
dldu +



 104 

 

 

 

 

 

                (a)                                                 (b)                                       (c)  

Figure 6.10 (a) Selected particles (D and E) from Figure 6(d), (b) representation of Equation (9) in 

decision space, and (c) current swarm population and new added ones in objective space. 
 

i.e., jix ,  (Equation (6.11)). Notice that since the resulted br  value is more likely to be 

lower than or equal to 0.5 (according to Equation (6.10)), it is more likely that d∆ will be 

small (Figure 9). Consequently, the new jix ,  value will likely lie within the neighborhood 

rather than outside of the neighborhood. Figure 6.10(a)-(c) is the illustration of Procedure 

3. In Figure 6.10(b), the inside neighborhood of particle E (from Figure 6.10(a)) in the 

decision space is bounded by the circumference of the inner circle. The outside 

neighborhood is the area between the inner circle and the outer circle, where the radius of 

the outer circle is ud (as presented in Figure 6.9). Figure 6.10(b) also shows a new 

particle is generated by computing Equations (6.7)-(6.11), and it is denoted as particle 

E1. Particle E1 is mapped to the objective space illustrated in Figure 6.10(c). Observed in 

Figure 6.10(c), using Procedure 3, particles E1 and E2 are generated by particle E while 

particles D1 and D2 are generated by particle D. Figure 6.11 presents the pseudocode of 

population growing strategy. 

 

6.3.3 Swarm Population Declining Strategy 

To prevent the extensive growth in swarm population size, a population declining 

strategy  is  proposed  to control  the swarm  population  size. In DMOPSO, the necessary  
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Function Population_growing_strategy (rank_m,density_m, lnp , unp , maxt ,t, 

rld , rud ) 

 
/*rank_m  = rank matrix; density_m = density matrix 

/* lnp = the minimum number of perturbations;  

/* unp = the maximum number of perturbations; 

/* maxt = denoted as the maximum iteration; t = current iteration 

   /* rld = the user-defined lower bound ratio;  

   /* rud = the user-defined upper bound ratio;  

 

Begin 

 [ ]1,0randrb =  

 Obtain nondominated set from rank_m and density_m. 

 Calculate ns from Equation (6.5),  
 Randomly select potential particles (or selected particles).  

 Compute Equation (6.6), ( )tnp  

 For 1 to ns , 

     For 1 to ( )tnp ,  

  Generate br  using Equation (6.7) 

 Compute Equations (6.8)-(6.9) for ld  and ud . 

  Compute d∆ using Equation (6.10). 

  Add d∆ to jix ,  (where i represents the selected particle i). 

  Update rank_m and density_m. 

     EndFor  

 EndFor 

End 

 
Figure 6.11 Pseudocode of swarm population growing strategy. 

 

condition to remove a particle depends upon the rank and crowdedness indicators. In this 

case, the values in the rank and density matrices are used to determine whether the 

particles in a cell are to be removed. In addition, a selection ratio is implemented to 

regulate the number of particles to be removed and to provide some sort of diversity 

preservation at the same time.  

Rank Indicator: Imposed in this indicator is the idea that particles far from the 

nondominated front will have less of a chance to survive to the next iteration since they 

have a higher chance of “losing” their leaders. This means the particles far from the 

nondominated front are likely to be eliminated. The rank value of a cell obtained from the 
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rank matrix is converted into a rank indicator in order to measure the dominance status of 

a cell compared to the others. Figure 6.12(b) presents the rank matrix of the current 

swarm population depicted in Figure 6.12(a). Assume at iteration t, the cell c in which 

particle i is located has the rank value of ( )tcrank i , , the rank indicator of particle i 

located at cell c at iteration t, ( )tiR , , is given as 

 ( )
( )tcrank

tiR
i ,

1
, = .        (6.12) 

Equation (6.12) indicates that a particle that resides in the cell with rank value “1” (e.g., 

particle F in Figure 6.12(a)) will have its R value equal to 1 as shown in Figure 6.12(c). 

The particle in a cell with a higher rank value will result in a lower R value. Refer to 

Figure 6.12(b); the rank value of particle G is higher than the rank value of particle F and 

Figure 6.12(c) shows that the resulted R value is much lower, which is 0.11. Hence, as 

the R value of a particle decreases, this implies that the particle has an increasing chance 

of being eliminated, since it is farther from the nondominated front. 

 

 

 

 

 

 

 
       (a)              (b)               (c) 

Figure 6.12 (a) Current swarm population and the location of each particle, (b) rank matrix of 

current swarm population, and (c) R values for particles F and G. 

 

Crowdedness Indicator: This indicator involves the control of local population 

size, i.e., population size per cell. The population size per cell is regarded as the density 

value of a cell, which is defined as the number of particles located in a cell. Using the 

current density information of a concerned cell in which the information can be found in 
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the density matrix, the crowdedness indicator of a particle in a concern cell can be 

computed. Figure 6.13(b) shows the density matrix of the current population, which is 

illustrated in Figure 6.13(a). At iteration t, the cell c in which particle i is located has the 

density value ( )tcdensity i , . The crowdedness indicator of particle i located at cell c at 

iteration t, ( )tiD , , is defined as 

( ) ( )
( )







>−
=

otherwise

ppvtcdensity
tcdensity

ppv

tiD i

i

,0

,if,
,

1
, .    (6.13) 

Note that ppv value represents the desired particle size per cell and it is a user-defined 

parameter. Equation (6.13) shows that a cell with high density value will have a higher D 

value closer to 1. In Figure 6.13(b), the density value of particle F is equal to 3. With the 

ppv value set to 2, the D value of particle F is equal to 0.33 (refer to Figure 6.13(c)). On 

the other hand, if a cell has density value lower than or equal to ppv, then the D value is 

equal to 0 (particle G in Figure 6.13(c)). This indicates that if the particles reside in a 

concern cell that has more than the desired particle size, then these particles are likely to 

be eliminated to reduce the level of congestion in the concern cell.  Note that ( )tiR ,  and 

( )tiD ,  are between zero and one. 

 

 

 

 

 

 

 
        (a)               (b)               (c) 

Figure 6.13 (a) Current swarm population and the location of each particle, (b) density matrix of 

current swarm population, and (c) D values for particles F and G. 
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Likelihood of Removing the Particle: At iteration t, the likelihood that the particle 

i with rank value ( )tiR ,  and density value ( )tiD ,  is to be eliminated is computed using 

the following equation: 

 ( ) ( ) ( )tiDtiRtiL ,),1(, ×−= .       (6.14) 

Equation (6.14) implies that for those particles that have low R values (i.e., away from 

the nondominated front) or have high D values (i.e., located in the crowded cells), these 

particles will have high likelihood value, L. Refer to Figures 6.12 and 6.13; the L values 

for particle F and G are both 0, implying they are either located in a nondominated front 

or a non-crowded cell. To determine whether a selected particle i will be removed, a 

random number with uniform distribution between [ ]1,0  is generated to compare with the 

likelihood ( )tiL , . If the likelihood is larger than the random number, then particle i is 

selected as a potential candidate to be eliminated from the swarm population. Note that at 

iteration t, all selected particles to be eliminated are stored in a temporary memory, Mt. 

Then, the selection ratio is applied to determine the exact number of particles in Mt to be 

eliminated from the swarm population. 

Selection Ratio: If the removal of particles is only based upon the L value, then 

there is a possibility of eliminating an excessively large quantity of particles in which 

some may carry unique schema to contribute in the search process. A selection ratio 

inspired by [142] is used to stochastically allocate a small percentage of particles in the 

swarm population for removal. Hence, given a selection ratio, [ ]1,0∈rS , at iteration t, the 

equation to compute the number of particles with high likelihood L to be eliminated is 

given as  

( )
trremove MStPop ×= ,       (6.15) 
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where ( )tPop remove  is the allocated number of particles in the population for elimination 

and tM  denotes the population size in Mt at iteration t. Note that the choice of the 

selection ratio is dependent upon the user’s preference, where it can be a function of the 

swarm population size at each iteration or it can be a fixed ratio. For this study, the 

selection ratio is a fixed number, which is set to be a small number, i.e., 2.0≤rS . With a 

small selection ratio, there is a possibility that those selected particles in Mt may not be 

eliminated. In other words, some of the selected particles in  Mt whose rank values are 

low or who are located in crowded cells may survive to the next iteration. In addition, a 

small selection ratio can prevent the removal of an uncontrollable, large number of 

particles while providing some degree of diversity preservation. Figure 6.14 presents the  

 

Function Population_declining_strategy (rank_m, density_m, S , Pop , ppv ) 

 
/*rank_m  = rank matrix; density_m = density matrix 

/* S  = selection ratio 

/* Pop = current swarm population size in Mt. 

/* ppv = desired population size per cell 

 

Begin 

 [ ]1,0randrc =  

 For each particle 

     Compute Rank Indicator, R, using rank_m. 

     Compute Crowdedness Indicator, D, using density_m and ppv . 

     Compute Likelihood of removing the particle, L. 

     If 5rL >  

  Store particle to Mt. 

     EndIf 

 EndFor 

 ( ) tremove MStPop ×=  

 Randomly choose removePop  number of particles from Mt.  

 Remove the chosen particles. 

End 

 
Figure 6.14 Pseudocode of swarm population declining strategy. 
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pseudocode of population declining strategy. In the following, some observations are 

drawn.  

1. It is obvious that the setting of ppv value depends on the grid scales, iK , ki ,,1 K= . 

For instance, if the grid scale is very small (e.g., 2=iK , ki ,,1 K= ), then the ppv 

value should be large enough to balance the small grid scale. Otherwise the frequency 

of locating “crowded” cell (with high density value) will be high and may increase 

likelihood of removing those particles in the “crowded” cell. In fact, the minimum 

appropriate ppv value has an inverse relationship with the grid scale, considering that 

all iK  are set to the same number. In addition, if each iK  is set to a different value, 

then it unnecessarily complicates the setting of ppv value. To avoid such situation, the 

selection ratio, rS , is implemented and the choice of ppv value will not solely affect 

the elimination of the particles. 

2. At each iteration, the most undesirable particles will be chosen to be eliminated 

according to likelihood value, L, which is based on their rank value and density 

condition. These undesirable particles have either low R value or high D value. This 

implies that these particles are either not contributing to the search process or they are 

too many particles located in the confined area. By employing the likelihood of 

removing the particle scheme, these redundant particles will likely be eliminated. On 

the contrary, those particles with either high R value or low D value will have a 

chance to survive to the next iteration. In fact, particles with high R value are 

preserved because they will most likely contribute to the search process by bringing 

other particles to help in finding better solutions. Particles with low D value are also 
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preserved so that they are given a chance to explore the “isolated” area or may even 

discover the potential “undiscovered” area in the search space.  

3. The selection ratio, rS , has to be a small number because if the S is too big (e.g., 0.9), 

during the initial stage where the swarm population size is significantly small, high S 

will result in deleting most of the undesirable particles in Mt. Eliminating too many 

undesirable particles in Mt  in the early stage of the evolutionary process may cause 

inefficiency in the optimization search because some of the undesirable particles may 

offer unique schema in the following iterations. In the initial stage, more particles 

imply a better chance in finding good solutions. As the swarm population size grows 

larger, high rS will result in excessively deleting undesirable particles in Mt. As a 

result, the algorithm may incur more computational load to locate the optimal Pareto 

front since, at each iteration, the resulted swarm population size is considerably low. 

Hence, the selection ratio is suggested to be at most 0.2, which is less than 20 percent 

of the swarm population size in Mt. The criterion to choose a value for the selection 

ratio depends upon ( )ldud −  in Equation (6.10). If the gap of ( )ldud − is large, then 

the population growing rate will increase in a fast pace and to control the fast rate of 

growth, the selection ratio, rS , should be chosen slightly higher but no more than 0.2. 

 

6.3.4 Adaptive Local Archive and Group Leader Selection Procedures 

In cMOPSO [128], based upon a probability value, the particles in a subswarm 

randomly select the assigned group leaders since all resulting group leaders are grouped 

via a clustering algorithm. Random selection can provide equal probability of group 

leaders being chosen as the leader for a particle, and has a higher probability of achieving 
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tightly grouped solutions that are close to the true Pareto front [117]. Yet the resulting 

Pareto front may not well extend into the complete Pareto front. For this reason, the idea 

of local search procedure is adopted and the aim is similar to [143], which is used to 

improve the solutions in each swarm. Hence, the idea of local search procedure known as 

the adaptive local archive is proposed. Similar to the adaptive grid procedure proposed in 

[30] and [120], the aim of adaptive local archive is to improve the diversity in sections of 

Pareto front that associate with each subswarm. The following presents the adaptive local 

archive and group leader selection procedures. 

Adaptive Local Archive Procedure: Once clustering algorithm is applied to the 

Gleader  to group the leaders in the decision space, each group leader is now referred to 

as the local archive. Each local archive contains the group leaders that correspond to their 

subswarm (e.g., G1 and G2 shown in Figure 6.15(a)-(b)). For the purpose of 

visualization, m is chosen to be 2 in Figure 6.15. In each local archive, with the group 

leaders’ objective values, the objective space is divided into a set of cells using the 

adaptive grid procedure. Then, each particle chooses its group leader by following the 

Group Leader Selection Procedure. In each local archive, the number of particles that the 

cell contains is recorded. At each iteration, if any new group leaders lie outside the 

current bound of the grid, then the objective space is re-divided based upon the new 

fitness values. Each particle is relocated to its nearest cell, and the number of particles 

that the cell contains is also updated. For simplicity, in this paper, the number of cells is 

predetermined from a user-defined number of grid subdivisions or Ka for all dimensions. 

This means that the m-dimensional objective space is divided into 

aam KKKKKK
a

×××=××× KK21
 cells. Figure 6.15(c) shows the number of grid 
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subdivisions, Ka , is equal to 4. Figure 6.16 presents the pseudocode of adaptive local 

archive procedure. 

 

 

 

 

 

 

 

 

 

 

 

 
    (a)     (b)     (c) 

Figure 6.15 (a) Two group leaders are grouped via clustering algorithm, (b) two group leaders in 

decision space are mapped to objective space, and (c) adaptive grid procedure is applied to local 

archive of G1. 

 

 
Function Adaptive_local_archives (Ka, swarmn , leaderg _ ) 

 
/* Ka = Number of grid subdivisions;  

/* swarmn  = Number of subswarms; 

/* leaderg _ = group leaders 

 

Begin 

 For swarmnj :1=  

 Generate hypercubes based upon the Ka value and the fitness 

value of    

 its group leaders. 

    For each member in ( )jleaderg _  

        Search for its nearest cell based upon the fitness value. 

          Update number of particles (leaders) in the cell. 

    EndFor 

 EndFor 

End 

Figure 6.16 Pseudocode of adaptive local archives algorithm. 

 

Group Leader Selection Procedure: After the adaptive local archive procedure is 

completed, the information on the number of “occupants” in the cells of the local archive 

is utilized.  These cells that contain more than one particle are first assigned a fixed value. 

With the idea of fitness sharing, the fixed values of the cells are divided by the number of 
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particles they contain. For simplicity, each resulted value of a cell will be defined as 

( )aFA , where a represents a cell in the local archive. Next, by using all available AF  

values, roulette wheel selection is applied to select the cell. In the selected cell, particle i 

will randomly select one of the “occupants” within the cell. The idea of applying the 

fitness sharing is to measure the level of congestion in each cell. Those cells that are 

highly congested will have low AF  values or vice versa. With roulette wheel selection, 

this selection scheme favors the least congested cell. As a result, the particle will choose 

one of the group leaders that reside in the least congested cell. Therefore, the leaders are 

selected in such a way that diversity is preserved. 

 

6.4. Comparative Study 

In this section, two studies are conducted. In the first study, presented in 

Subsection 6.4.4, the performance of the DMOPSO is compared with five state-of-the-art 

MOPSO algorithms: OMOPSO [121], MOPSO [120], Cluster-MOPSO (cMOPSO) 

[128], Sigma-MOPSO (sMOPSO) [113], and NSPSO [109]. The comparison is done on 

the standard test suit. The second study, presented in Subsection 6.4.5, investigates the 

computational cost of the proposed algorithm and the selected MOPSOs. 

 

6.4.1 Test Function Suite 

To compare the performance of DMOPSO with the five selected MOPSOs, the 

standard ZDT test suite and an additional test function selected from the DTLZ test suite 

are used [39,70]. The test functions are presented in Table 6.1. As noted in the comments 

column, the test functions possess different characteristics to test the performance of the 
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algorithms.  The first five test functions are two-objective minimization problems and the 

number of decision variables used here is 100, i.e., 100=n . The sixth test function or 

DTLZ2 is three objective functions with 12 decision variables. 

 

Table 6.1 The six test problems used in this study. All objective functions are to be minimized. 

Problems Objective Functions 
Variable 

Bounds 
Comments 

ZDT1 

( )
( ) ( ) ( ) ( )[ ]
( ) ∑

=−
+=

−=

=

n

i

ix
n

c

cFcF

xF

2

12

11

1

9
1

1

x

xxxx

x
 

[ ]
ni

xi

,,1

1,0

K=

∈
 

It has the convex Pareto fronts. 

It challenges the algorithm’s 

ability to find and produce a 

quality spread of Pareto front. 

ZDT2 

( )
( ) ( ) ( ) ( )( )[ ]
( ) ∑

=−
+=

−=

=

n

i

ix
n

c

cFcF
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2

2

12

11

1

9
1

1

x

xxxx

x
 

[ ]
ni

xi

,,1

1,0

K=

∈
 

It has the non-convex Pareto 

fronts. 

It challenges the algorithm’s 

ability to find and produce a 

quality spread of Pareto front. 

ZDT3 

( )

( ) ( ) ( ) ( ) ( )
( )

( )( )

( ) ∑
=−

+=





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
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i
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[ ]
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,,1
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It possesses a convex and 

disconnected Pareto front. 

It exploits the algorithms’ ability 

to search for all of the 

disconnected regions and to 

maintain a uniform spread on 

those regions. 

ZDT4 
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The difficulty is finding the global 

Pareto front in all of the 21
9
 local 

segments. 

It is also a multifrontal problem 

where it presents a complexity 

with multi-modality characteristic. 

ZDT6 
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It has a nonconvex Pareto front.  

Its difficulties rest on the low 

density of solutions across the 

non-convex Pareto front and the 

non-uniform spread of solutions 

along the Pareto front.  
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Its true Pareto front is on the first 

quadrant of a unit sphere. Since 

the true Pareto front is a surface, 

this test function poses a 

challenge for MOPSOs to search 

for the true Pareto front. 
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6.4.2 Parameter Settings 

Each algorithm is set to perform 20,000 fitness function evaluations. The 

parameter configurations for all selected MOPSO algorithms are summarized in Table 

6.2, while Table 6.3 presents the DMOPSO’s parameter configurations for each test 

function. Note that all of the algorithms produced final Pareto fronts of fixed size swarm 

population except for cMOPSO and DMOPSO, which do not have fixed archive sizes. 

All of the algorithms are implemented in Matlab. In this study, all of the algorithms use a 

real-number representation for decision variables. However, binary representation of 

decision variables can be easily adopted, if necessary. For each experiment, 50 

independent runs were conducted to collect the statistical results.  

Table 6.2 Parameter configurations for five selected MOPSOs. 

 

Internal 

population 

size 

Archive 

size 

No. of 

iterations 
Other parameters or remarks 

OMOPSO 100 100 200 

Mutation probability = codesize1  and the 

values of w, c1 and c2 are random values (as 

proposed in [121]) 

ε = 0.0075 (Note: For ZDT6, ε = 0.001) 

MOPSO 100 100 200 
50 divisions adaptive grid; mutation probability 

= 0.5, (as proposed in [120]) 

cMOPSO 40 
Not 

fixed 
100 

No. subswarms, 4=swarmn ; internal iterations, 

5maxst =  (as proposed in [128]) 

sMOPSO 200 200 100 
Fixed inertial weight value, w = 0.4; Turbulence 

Factor, R is [ ]1,1−  

NSPSO 200 - 100 Fixed inertial weight value, w = 0.4 

 

6.4.3 Selected Performance Metrics 

Both quantitative and qualitative comparisons are made to validate the proposed 

DMOPSO against the five selected MOPSOs. For qualitative comparison, the plots of 

final Pareto fronts are presented for visualization. As for quantitative comparison, two 

performance metrics are taken into consideration to measure the performance of 
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algorithms with respect to dominance relations. The results are illustrated by statistical 

box plots.   

 

Table 6.3 Parameter configurations for DMOPSO with number of iterations is based upon 20,000 

evaluations. 

Test 

Suites 

Internal 

populatio

n size 

Archive 

size 

Parameter settings 

Special  remarks 

ZDT1 
5 per 

swarm 

Not 

fixed 

No. subswarms, 4=
swarm

n ; grid scale, 2,1,100 == iiK ; 5maxst = ; 

unp = 3, lnp = 1; rud = 0.7;  rld = 0.02 ; ppv = 10; S = 0.02; and Ka = 

10. 

ZDT2 
20 per 

swarm 

Not 

fixed 

No. subswarms, 2=
swarm

n ; grid scale, 2,1,100 == iiK ; 5maxst = ; 

unp = 3, lnp = 1; rud = 0.7;  rld = 0.02 ; ppv = 10; S = 0.02; and Ka = 

40. 

ZDT3 
6 per 

swarm 

Not 

fixed 

No. subswarms, 3=
swarm

n ; grid scale, 2,1,100 == iiK ; 5maxst = ; 

unp = 3, lnp = 1; rud = 0.7;  rld = 0.02 ; ppv = 10; S = 0.02; and Ka = 

15. 

ZDT4 
20 per 

swarm 

Not 

fixed 

No. subswarms, 2=
swarm

n ; grid scale, 2,1,100 == iiK ; 5maxst = ; 

unp = 5, lnp = 1; rud = 0.9;  rld = 0.02 ; ppv = 10; S = 0.02; and Ka = 

40. 

ZDT6 
5 per 

swarm 

Not 

fixed 

No. subswarms, 4=swarmn ; grid scale, 2,1,100 == iiK ; 5maxst = ; 

unp = 3, lnp = 1;; rud = 0.9;  rld = 0.02 ; ppv = 10; S = 0.02; and Ka 

= 40. 

DTLZ2 
5 per 

swarm 

Not 

fixed 

No. subswarms, 4=swarmn ; grid scale, 3,2,1,80 == iiK ; 5maxst = ; 

unp = 3, lnp = 1; rud = 0.7;  rld = 0.02 ; ppv = 10; S = 0.02; and Ka = 

10. 

 

Hypervolume Indicator (S Metric) [47]:  Assuming a minimization problem, this unary 

indicator calculates the size of the region covered by a reference point. Larger value 

indicates that the nondominated set produced is better. The advantage of this indicator is 

able to measure both diversity and how well the algorithm converges to the true Pareto 

front. Given two nondominated sets, A and B, with the same reference point, then the 

hypervolume indicator of A is denoted as ( )AI H and the hypervolume indicator of B is 

denoted as ( )BI H . If ( ) ( )BIAI HH > , then B is not better than A for all pairs. This means 

a certain portion of objective space is dominated by A and not by B. However, a 

reference point is required to compute this indicator. In this chapter, the method to 
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determine the reference point is as follow: First, the collection of both nondominated sets 

is combined into a single set. Second, from this set, the worst objective function values of 

m-dimension are found, and they are shifted by a fixed parameter. Then, the shifted 

version of these worst values is used as the reference point. Mann-Whitney rank-sum test 

is implemented to test for significant difference between two independent samples [144].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.17 Sets H1, H2, and P are shown. By using the additive binary epsilon indicator, H1 strictly 

dominates H2 and H1 is strictly dominated by the true Pareto front. 
 
Table 6.4 The computed additive binary epsilon indicator, ( )BAI ,+ε , for all combination of  H1, H2, 

and P as shown in Figure 6.17. 

A 

          H1                    H2                       P 

1 2 0 

-1 1 -1 

B 

 

H1 

H2 

P 2 4 1 

 

Additive Binary Epsilon Indicator [46]: This binary indicator aims to detect whether a 

nondominated set is better than another. Given two nondominated sets, A and B, the 

additive binary epsilon indicator for the pair are denoted as ( )BAI ,+ε  and ( )ABI ,+ε . If 

( ) 0, <+ BAI ε  and ( ) 0, >+ ABI ε , then A is strictly better than B. If ( ) 0, ≤+ ABI ε  and 

( ) ( )ABIBAI ,, ++ < εε , then this implies that A weakly dominates B. Lastly, if 
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( ) 0, >+ BAI ε and ( ) 0, >+ ABI ε , then BA || , which indicates that A and B are 

incomparable. Again, Mann-Whitney rank-sum test is implemented to check if there is 

significant difference between the two distributions for ( )BAI ,+ε  and ( )ABI ,+ε . For 

example, Table 6.4 shows the computed indicator, +εI , for the sets H1, H2, and P, which 

are showed in Figure 6.17. From Table 6.4, it can shows that H1 strictly dominates H2 

since ( ) 12,1 −=+ HHIε  and ( ) 21,2 =+ HHIε , and P strictly dominates H1 since 

( ) 01, =+ HPIε  and ( ) 2,1 =+ PHIε . Similar conclusion, P strictly dominates H2. Again, 

Mann-Whitney rank-sum test is implemented to check if there is significant difference 

between the two distributions for ( )BAI ,+ε and ( )ABI ,+ε  [144]. 

 

6.4.4 Performance Evaluation of DMOPSO against the selected MOPSOs 

The performance metric for hypervolume indicator (IH value) is computed for 

each MOPSO over 50 independent runs. Figure 6.18 presents the box plots of IH values 

found in all MOPSOs considered. The figure shows that DMOPSO and MOPSO share 

the highest IH values for most test functions except for test function DTLZ2. DMOPSO 

achieves the highest IH value for DTLZ2. Higher IH value indicates the ability of the 

algorithm to dominate a larger region in the objective space. It is hard to determine 

whether DMOPSO is significantly better than MOPSO for test functions ZDT1, ZDT2, 

ZDT3, ZDT4, and ZDT6 since they attain the relative close IH values from Figure 6.18. 

Hence, the Mann-Whitney rank-sum test is used to examine the distribution of the IH 

values. The tested results are presented in Table 6.5. Observe the results in Table 6.5: 

DMOPSO and MOPSO share the same victory for test functions ZDT1, ZDT2, ZDT3, 

and ZDT4. Only for function ZDT2 does OMOPSO share the winner’s slot with 
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DMOPSO and MOPSO. For the rest of the MOPSOs (i.e., cMOPSO, sMOPSO, and 

NSPSO), DMOPSO clearly performed better. In addition, Figure 6.18 shows that the 

standard deviations for DMOPSO are consistently lower, which indicates DMOPSO is 

more reliable in producing better solutions than those selected MOPSOs.  

 

 

 

 

 

 

 

 
      IH  values for ZDT1                   IH  values for ZDT2  IH  values for ZDT3 

 

 

 
 

 

 

 

 

      IH  values for ZDT4                   IH  values for ZDT6  IH  values for DTLZ2  

Figure 6.18 Box plot of hypervolume indicator (IH  values) for all test functions (Start from top left) 

by algorithms 1-6 represented (in order): DMOPSO, OMOPSO, MOPSO, cMOPSO, sMOPSO, and 

NSPSO. 

 

Figures 6.19-6.24 illustrate the results (in box plots) for additive binary ε-

indicator where each figure gives the results for a test function. Each figure presents two 

box plots of ( )51,DMOPSO −+ XIε  and ( )DMOPSO,51−+ XIε , in which algorithms 1-5 

represent OMOPSO, MOPSO, cMOPSO, sMOPSO, and NSPSO, respectively.  It seems 

that DMOPSO performs relatively better with respect to dominance relation than most of 

the MOPSOs (i.e., OMOPSO, cMOPSO, sMOPSO, and NSPSO) for functions ZDT1 to 

ZDT6. For  example,  Figure 6.19  shows  that  DMOPSO  strictly  dominates  NSPSO on  
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Table 6.5 The distribution of IH  values tested using Mann-Whitney rank-sum Test [144]. The table 

presents the z values and p-values with respect to the alternative hypothesis (i.e., p-value < α=0.05) 

for each pair of DMOPSO and a selected MOPSO.  In each cell, both values are presented in a 

bracket: (z value, p-value). The distribution of DMOPSO is significantly difference or better than 

those selected MOPSO unless stated. 

IH (DMOPSO)  AND 
Test 

Functions 
IH (OMOPSO) IH (MOPSO) IH (cMOPSO) IH (sMOPSO) IH (NSPSO) 

ZDT1 
(-4.6455,  

3.4E-06) 

(-0.4148,>0.05) 

no difference 

(-4.6455,  

3.4E-06) 

(-4.6455,  

3.4E-06) 

(-4.6455,  

3.4E-06) 

ZDT2 
(-0.9125,>0.05) 

no difference 

(-0.4977,>0.05) 

no difference 

(-4.4796, 

7.5E-06) 

 (-3.9404,  

8.1E-06) 

(-4.6455,  

3.4E-06) 

ZDT3 
(-4.6455,  

3.4E-06) 

(-0.1585,>0.05) 

no difference 

(-4.6455,  

3.4E-06) 

(-4.6455,  

3.4E-06) 

(-4.6455,  

3.4E-06) 

ZDT4 
(-4.6455,  

3.4E-06) 

(-0.2903,>0.05) 

no difference 

(-4.6455,  

3.4E-06) 

(-4.6455,  

3.4E-06) 

(-4.6455,  

3.4E-06) 

ZDT6 
(-4.6455,  

3.4E-06) 

(-4.6041, 

4.1E-06) 

(-4.6455,  

3.4E-06) 

(-4.6455,  

3.4E-06) 

(-4.6455,  

3.4E-06) 

DTLZ2 
(-4.6614,  

3.1E-06) 

(-4.8124,  

1.5E-06) 

(-3.6046,  

3.1E-04) 

(-3.6046,  

3.1E-04) 

(-4.3595,  

1.3E-05) 

 

 

function ZDT1 since the ( ) 0,DMOPSO 5 ≈+ XIε  and ( ) 0DMOPSO,5 >>+ XIε , similarly, 

this  applies  to  all  algorithms. Figures 6.19-6.24  show that algorithm MOPSO seems to 

perform as well as DMOPSO for functions ZDT1 to ZDT6. Moreover, we can observe 

that DMOPSO has lower standard deviations, which are consistent with those shown in 

Figure 6.17. The box plot on DTLZ2 in Figure 6.24 may show that DMOPSO does not 

strictly dominate the rest of the MOPSOs since ( ) 0,DMOPSO 51 >−+ XIε  and 

( ) 0DMOPSO,51 >−+ XIε . For further analysis, the distributions of +εI  values are tested 

using the Mann-Whitney rank-sum test, which are presented in Table 6.6. Table 6.6 also 

confirms that MOPSO performs equally well as DMOPSO on function ZDT2. Hence, 

when we combine results given in Figure 6.24 and Table 6.6 for function DTLZ2, we can 

conclude that DMOPSO weakly dominates algorithms OMOPSO, MOPSO, cMOPSO, 
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and sMOPSO. In general, results in Table 6.6 and Figures 6.19-6.24 confirm that 

DMOPSO is significantly better than most or even all of the MOPSOs in terms of 

performance on all test functions.   

 

Table 6.6 The distribution of Iε+  values tested using Mann-Whitney rank-sum Test [144]. The table 

presents the z values and p-values with respect to the alternative hypothesis (i.e., p-value < α=0.05) 

for each pair of DMOPSO and a selected MOPSO. In each cell, both values are presented in a 

bracket like this: (z value, p-value). For simplicity, DMOPSO is represented by A, and algorithms B1 

to B5 are referred to as OMOPSO, MOPSO, cMOPSO, sMOPSO, and NSPSO, respectively. The 

distribution of DMOPSO is significantly difference or better than those selected MOPSO unless 

stated. 

Test 

Functions 

Iε+ (A,B1) and 

Iε+ (B1,A) 

Iε+ (A,B2) and 

Iε+ (B2,A) 

Iε+ (A,B3) and 

Iε+ (B3,A) 

Iε+ (A,B4) and 

Iε+ (B4,A) 

Iε+ (A,B5) and 

Iε+ (B5,A) 

ZDT1 
(-4.6637,  

3.1E-06) 

(-2.6546,  

8.0E-03) 

(-4.6896,  

2.7E-06) 

(--4.6896, 

2.7E-06) 

(-4.6896,  

2.7E-06) 

ZDT2 
(-2.1983,  

2.8E-02) 

(-1.2029,>0.05) 

no difference 

(-4.4401,  

9.0E-06) 

(-2.8169,  

4.8E-03) 

(-4.7088,  

2.5E-06) 

ZDT3 
(-4.6637,  

3.1E-06) 

(-3.2353,  

1.0E-03) 

(-4.6637,  

3.1E-06) 

(-4.6748,  

2.9E-06) 

(-4.6748,  

2.9E-06) 

ZDT4 
(-4.7088,  

2.5E-06) 

(-4.1063,  

4.0E-05) 

(-4.6896,  

2.7E-06) 

(-4.7332,  

2.2E-06) 

(-4.7636,  

1.9E-06) 

ZDT6 
(-4.6455,  

3.4E-06) 

(-2.8205, 

4.8E-03) 

(-4.6455,  

3.4E-06) 

(-4.6455,  

3.4E-06) 

(-4.6455,  

3.4E-06) 

DTLZ2 
(-4.6614,  

3.1E-06) 

(-4.8124,  

1.5E-06) 

(-4.8124,  

1.5E-06) 

(-2.3968,  

1.6E-02) 

(-1.6419,>0.05) 

no difference 

 

 

 

 

 

 

 

 

 

 

 

 
                   ( )51, −+ XDMOPSOIε                                  ( )DMOPSOXI ,51−+ε           

Figure 6.19 Box plot based upon additive binary epsilon indicator (Iε+ values) on test function ZDT1 

(algorithms 1-5 are referred to as OMOPSO, MOPSO, cMOPSO, sMOPSO, and NSPSO, 

respectively). 
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                  ( )
51

, −+ XDMOPSOIε                                      ( )DMOPSOXI ,
51−+ε           

Figure 6.20 Box plot based upon additive binary epsilon indicator (Iε+ values) on test function ZDT2 

(algorithms 1-5 are referred to as OMOPSO, MOPSO, cMOPSO, sMOPSO, and NSPSO, 

respectively). 

 

 

 

 

 

 

 

 

 

 

 

 
                   ( )51, −+ XDMOPSOIε                                  ( )DMOPSOXI ,51−+ε           

Figure 6.21 Box plot based upon additive binary epsilon indicator (Iε+ values) on test function ZDT3 

(algorithms 1-5 are referred to as OMOPSO, MOPSO, cMOPSO, sMOPSO, and NSPSO, 

respectively). 

 

 

 

 

 

 

 

 

 

 

 

 
                  ( )51, −+ XDMOPSOIε                                     ( )DMOPSOXI ,51−+ε           

Figure 6.22 Box plot based upon additive binary epsilon indicator (Iε+ values) on test function ZDT4 

(algorithms 1-5 are referred to as OMOPSO, MOPSO, cMOPSO, sMOPSO, and NSPSO, 

respectively). 
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                    ( )
51

, −+ XDMOPSOIε                                  ( )DMOPSOXI ,
51−+ε           

Figure 6.23 Box plot based upon additive binary epsilon indicator (Iε+ values) on test function ZDT6 

(algorithms 1-5 are referred to as OMOPSO, MOPSO, cMOPSO, sMOPSO, and NSPSO, 

respectively). 

 

 

 

 

 

 

 

 

 

                ( )51, −+ XDMOPSOIε                                     ( )DMOPSOXI ,51−+ε           

Figure 6.24 Box plot based upon additive binary epsilon indicator (Iε+ values) on test function DTLZ2 

(algorithms 1-5 are referred to as OMOPSO, MOPSO, cMOPSO, sMOPSO, and NSPSO, 

respectively). 
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towards the true Pareto front, especially for functions ZDT1 to ZDT6 with high-

dimensional decision spaces.  

 

 

 

 

 

 

 

 
   (a)                 (b)               (c) 

 

 

 

 

 

 

 

 

 
  (d)                (e)               (f) 

Figure 6.25 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d) cMOPSO, (e) 

sMOPSO, and (f) NSPSO on test function ZDT1. 
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  (d)                (e)                (f) 

Figure 6.26 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d) cMOPSO, (e) 

sMOPSO, and (f) NSPSO on test function ZDT2. 
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      (a)                 (b)                (c) 

 

 

 

 

 

 

 

 

 
               (d)                 (e)               (f) 

Figure 6.27 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d) cMOPSO, (e) 

sMOPSO, and (f) NSPSO on test function ZDT3. 
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                  (d)                 (e)                (f) 

Figure 6.28 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d) cMOPSO, (e) 

sMOPSO, and (f) NSPSO on test function ZDT4. 
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             (a)                (b)               (c) 

 

 

 

 

 

 

 

 

 
                  (d)                 (e)                (f) 

Figure 6.29 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d) cMOPSO, (e) 

sMOPSO, and (f) NSPSO on test function ZDT6. 
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             (d)               (e)            (f) 

Figure 6.30 Pareto fronts produced by (a) DMOPSO, (b) OMOPSO, (c) MOPSO, (d) cMOPSO, (e) 

sMOPSO, and (f) NSPSO on test function DTLZ2. 
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6.4.5 Investigation of Computational Cost of DMOPSO with Selected MOPSOs 

By introducing the dynamic population approach, DMOPSO produces better 

performances overall as compared to the selected MOPSOs. However, it is essential to 

investigate whether the dynamic population approach will increase the computational 

complexity.   

 
Table 6.7 Average number of evaluations required per run for all test problems from all selected 

algorithms and DMOPSO to achieve GD =0.001. 

 GD =0.001 DMOPSO OMOPSO MOPSO cMOPSO sMOPSO NSPSO 

ZDT1 
Average No. 

Evaluations 
7270.6 16140 7510 500000 500000 500000 

ZDT2 
Average No. 

Evaluations 
2983.3 9060 4572 500000 500000 500000 

ZDT3 
Average No. 

Evaluations 
500000 500000 500000 500000 500000 500000 

ZDT4 
Average No. 

Evaluations 
8856.2 500000 9580 500000 500000 500000 

ZDT6 
Average No. 

Evaluations 
3190.8 23880 5340 500000 500000 500000 

DTLZ2 
Average No. 

Evaluations 
18234 23200 500000 59840 500000 268480 

 

The investigation simply compares the required number of fitness evaluations 

needed by DMOPSO and the selected MOPSOs to achieve the targeted generational 

distance [45], GD, of 0.001 for the selected test problems. To avoid any MOPSO that 

could consume excessive computations to reach the goal set in GD, a limit of 500,000 

fitness evaluations is imposed as the stopping criterion. To obtain the running time, a 

Matlab function is used to measure the time elapsed for each MOPSO. Each MOPSO 

performs 50 independent runs to collect the statistical results. All parameter settings for 

the chosen MOPSOs are the same as those shown in Table 6.2 and Table 6.3. Table 6.7 

presents the average number of fitness evaluations and time needed per run for all of the 

selected MOPSOs and DMOPSO. Table 6.7 shows that DMOPSO demands the least 

average number of fitness evaluations as opposed to other selected MOPSOs to reach the 
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desired GD values for ZDT1, ZDT2, ZDT4, ZDT6, and DTLZ2. Except for ZDT3, all of 

the MOPSOs are unable to find the Pareto front with the targeted GD value of 0.001 

within 500,000 fitness evaluations. Overall, it is observed that DMOPSO can save at least 

8 percents of the required computational complexity in terms of number of fitness 

evaluation. In other words, DMOPSO delivers better performance with less 

computational complexity.  
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CHAPTER 7 

 

 

PROPOSED ALGORITHM 2: DYNAMIC MULTIPLE SWARMS IN 

MULTIOBJECTIVE PARTICLE SWARM OPTIMIZATION 

(DSMOPSO) 

 

. The second proposed MOPSO, called DSMOPSO, is described in this chapter. 

In this proposed algorithm, dynamic population concept is applied but in a different 

perspective. Instead of changing the population size as discussed in Chapter 6, number of 

swarms is adapted dynamically throughout the search process and the swarm size, i.e. 

number of particles in a swarm, is fixed and predefined by user. The objective is to 

promote diversity and local search capability to enhance the solution quality on the 

optimal Pareto front, and to eliminate the need to estimate an initial number of swarms to 

improve the computational cost without compromising the performance of the algorithm. 

In DSMOPSO, three novel strategies are incorporated: the dynamic swarm strategy to 

allocate an appropriate number of swarms as needed and justified, the modified PSO 

update mechanism to better manage the convergence and communication among and 

within swarms, and objective space compression and expansion strategy to progressively 

exploit the objective space during different stages of the search process. Experiments are 

conducted to evaluate the performance, as well as the required computational cost, of 

DSMOPSO against the selected MOPSOs. Sensitivity of the algorithm towards the 

setting of the involved parameters is also investigated. 
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7.1 Introduction 

The multiple-swarm PSO bears a remarkable resemblance with the mixed-species 

flocking. In nature, there are certain bird species joined together in a flock to travel, to 

feed, and to collectively defend against any predators. Evidence indicates that increase in 

feeding efficiency may be the key motivation of rendering the formation of mixed-

species flocks [153]. The birds in different species collaborate and share information 

among each other if any food sources are located. Different bird species may prefer 

different foods and acquire different foraging techniques. In addition, different species 

act as flock leaders under various environments to lead and influence the flocking 

behavior of a variety of bird species [154]. The number of species in a flock may vary 

depending upon the types of food sources available and the degree of competition among 

them. By analogy, the bird species join together in a flock to achieve certain foraging 

behaviors that will benefit each other, which is similar to the notion that multiple swarms 

in PSO explore the search space together to attain the objective of finding the optimal 

solutions, while different food preference in mixed species flocking corresponds to the 

tendency of multiple-swarm PSO in locating possible solutions in different regions in a 

fitness landscape. In addition, different species that assume the leadership under various 

environments is analogous to the notion that multiple swarms in PSO select their global 

leaders that would lead and influence their movement toward the best solution found so 

far. The information shared within a species and among species is also closely portrayed 

in multi-swarm PSO movement. 

These evidences of analogy are found in publications, as discussed in Chapters 4 

and 5, wherein multiple-swarm PSO is used to solve different optimization problems, 

particularly in multimodal function optimization [80-87], multimodal function 



 132 

optimization in dynamic environments [88,89], single objective optimization problems 

(SOPs) [90-96], and more recently, multiobjective optimization problems (MOPs) [128]. 

Unlike what biology indicates in mixed-species flocking that the number of species 

involved varies dynamically, all of these multiple-swarm PSOs adopt the notion of using 

a heuristically chosen number of swarms with a fixed swarm size throughout the search 

process. Although a good algorithm design would guarantee a high probability of finding 

the Pareto optimal set, the number of swarms with a fixed swarm size indirectly 

contributes to the effectiveness and efficiency of the performance of an algorithm, 

particularly on the computational cost. If a multiple-swarm PSO employs an overly large 

number of swarms with a fixed swarm size, it will enjoy a better chance of discovering 

possible good solutions that lead to the optimal Pareto set, but inevitably suffer from an 

undesirable, high computational cost. This implies a limited food source that might 

induce excessive competition among a large number of bird species. On the other hand, 

an insufficient number of swarms will undermine chances of exploring the search space 

to discover potential good solutions, and coupled with PSO’s high speed in convergence; 

this may lead to undesirable premature convergence or result in degraded quality of the 

optimal Pareto set. Again, one may suggest that a rough estimate of an “appropriate” 

population size may be adequate for a good design since one need not know the exact 

“optimal” number of swarms to solve an optimization problem. It would be the case for 

many single objective or multimodal problems, and for some MOPs that have lower 

numbers of objective functions or lower dimension of decision variables. Considering the 

cases where the MOPs have a large number of objective functions or a large dimension in 

decision variables, and even those MOPs qualified as the hard problems [152], this will 
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pose a great challenge to “estimate” an appropriate number of swarms to solve these 

MOPs without exerting excessive computational cost. In addition, without prior 

knowledge about the topology of the fitness landscape for an MOP, it might be 

unrealistic to expect an “appropriate” number of swarms can be determined to kickoff the 

search process. Hence, a compromised, yet effective, solution would be to dynamically 

adjust the number of swarms (with a fixed swarm size) to explore the search space in 

balance between computational cost and the attained performance throughout the search 

process. Hence, this motivated us to propose a multiobjective particle swarm 

optimization (MOPSO) that adaptively adjusts the number of swarms needed throughout 

the search process. This proposed algorithm is named dynamic multiple swarms in 

multiobjective particle swarm optimization (DSMOPSO). 

 

7.2 Proposed Algorithm Overview 

The proposed algorithm, dynamic multiple swarms in multiobjective particle 

swarm optimization (DSMOPSO), involves two key strategies: swarm growing strategy 

to allocate more swarms if necessary and justified, and swarm declining strategy to 

eliminate swarms that wouldn’t contribute in search for Pareto front. Additional designs 

are included to support the above two strategies. These designs include 1) cell-based rank 

density estimation scheme to effectively keep track of the rank and density values of the 

particles (swarm members); 2) objective space compression and expansion strategy to 

adjust the size of the objective space whenever needed to progressively search for high 

precision true Pareto front; 3) PSO updating equation is modified to exploit its usefulness 
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and to accommodate the multiple-swarm concept; and  4) swarm local best archive is 

updated based on the progression of their swarm representative, the swarm leaders.  

 
Begin 

Parameters initialization for cell-based rank density estimation 

scheme, crowdedness indicator, age indicator, and objective space 

compression and expansion strategy. 

 

/*Initialization 

Set swarm size 

Randomly generate one swarm 

Set Maximum iterations ( maxt ) 

Set iteration 0=t  

 

For each particle 

    Fitness evaluation 

    Rank_and_density_estimation()  

EndFor 

Identify swarm leaders 

Update_swarms_localbest() 

Archive_maintenance 

 

1=t  

While maxtt <  

    Objective_space_compression_expansion_strategy() 

    Swarm_growing_strategy() 

    Swarm_declining_strategy() 

 

    For each swarm 

      For each particle 

            Flight() 

            Fitness evaluation 

            Rank_and_density_estimation()       

        EndFor 

        Identify swarm leaders 

        Update_swarms_localbest() 

        Archive_maintenance 

    EndFor 

    1+= tt    

EndWhile 

Report results in archive 

End  

 
Figure 7.1 Pseudocode of DSMOPSO. 

 

The generic steps of DSMOPSO are as follows: At iteration 0=t , with 

predefined swarm size, a single swarm is generated, and cell-based rank density 

estimation scheme is calculated to setup the rank and density values of the swarm 
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members. Next, the swarm leader is identified. Third, every swarm local best is recorded 

and the fittest swarm members are stored in the archive. When iteration step is increased, 

the condition to evoke the objective space compression and expansion strategy is 

checked. If the condition is satisfied, objective space compression expansion strategy is 

performed. Otherwise, we jump to the next step. Swarm growing strategy is applied to 

increase the number of swarms while swarm declining strategy is employed to control the 

number of swarms in the swarm population. Then, the swarms perform flight.  Again, the 

following steps are repeated for all swarms: 1) update the swarms’ information via the 

cell-based rank density estimation scheme; 2) identify swarm leaders; 3) update their 

local best; and 4) perform archive maintenance. Then, the loop goes back to objective 

space compression expansion strategy subroutine. Once maximum iteration is achieved, 

the solutions in the archive are the best Pareto front found.  

 

7.3 Implementation Details 

The detail of all the key steps in Figure 7.1 is elaborated in the following 

subsections. 

 

7.3.1 Cell-based Rank Density Estimation Scheme 

As the number of swarms varies every iteration, the swarm population size will 

modify as well. This modification, i.e., adding or removing particles, will affect Pareto 

rank of the existing particles and the population density of certain areas located in the 

objective space.  This poses a problem of needing to recalculate the Pareto rank and 

density values of the particles to keep up the changes of the swarm population size.  To 
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counter the problem, we employed an existing scheme, cell-based rank and density 

estimation scheme, which has been discussed in Subsection 6.3.1. 

 

7.3.2 Identify Swarm Leaders  

Every swarm has its own set of “swarm members.” The number of “swarm 

members,” also called swarm size, is determined by a user-specified parameter, ssize. 

Each swarm has its own representative; the representative is named “swarm leader.” The 

swarm leaders are decided based on the idea of best “candidate” among its “swarm 

members.” Hence, to choose a swarm leader, it has to have the best rank value (i.e., least 

rank value for minimization problems). If more than one swarm member shares the same 

best rank value, a swarm leader is randomly chosen among them. Selection of swarm 

leaders is done at every iteration. Choosing swarm leaders based on their rank values 

indicates how much the swarms have progressed in finding the optimal Pareto front.  In 

addition, these swarm leaders will be the deciding factor for some of the procedures such 

as updating swarms’ local bests and dynamic swarm number strategy. In this chapter, the 

notation for the swarm leader of swarm n is represented by n
sLeader  

 

7.3.3 Update Local Best of Swarms 

As mentioned in Subsection 7.2, PSO equation is modeled in such that the 

particles learn from their own experiences and from the success of their peers. To achieve 

the former objective, the particles’ own personal best positions attained so far are updated 

at every iteration step, wherein this information is later used to update particle velocities 

and the particle positions in the search space. For multiple swarms, a similar procedure is 
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applied here and the term ‘swarm local best archive’ is used to indicate the swarms’ own 

personal best positions. Figure 7.2 summarizes the steps involved for updating the swarm 

local best archive. The procedure to update the swarms’ local best position by comparing 

the rank values of swarm leaders in the current iteration with those recorded in the swarm 

local best archive. Consider minimization problems, the procedures are summarized as 

below: 

• If the swarm local best archive is empty or the reinitialized parameter ( St ) is 

triggered, record rank values of all swarm leaders, their corresponding positions, and 

the positions of their respective swarm members. 

• If the swarm local best archive is nonempty, the rank values of the swarm leaders 

( Lprank ) in the current iteration are compared with those recorded in the swarm 

local best archive. Any of the current swarm leaders that have lesser rank values are 

identified; their rank values, their positions, and the positions of their corresponding 

swarm members ( Lpbest ) will replace the recorded ones. If the rank values of a 

current swarm and its recorded swarm leader have the same rank value, then pure 

Pareto ranking method [38] is applied to both of the swarm leaders. If the current 

swarm dominates the recorded swarm leader, then the current one will replace the 

recorded one. If both do not dominate each other, one of them is randomly chosen to 

update the swarm local best archive. 

 

7.3.4 Archive Maintenance 

A fixed size archive is implemented in DSMOPSO to record any good particles 

(nondominated  solutions)  found  during  the  search process  and  these solutions  in  the 
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Function Update_swarms_localbest(Lrank, LPrank, LPbest, t , St , swarmn , 

swarms) 

 
/*Lrank = current rank value of swarm leaders 
/*LPrank = rank of local best for swarm leaders 

/*LPbest = local best of the swarm leaders’ groups 

/* t = current iteration; 

/* St = parameter indicate a need to reinitialize Lprank  and Lpbest  

/* swarmn = number of swarms 

/*swarms = current swarms  

Begin 

 If ( ) ( )00 =∪= Stt  

    LPbest = swarms 

    LPrank = Lrank 

 Else 

    For i=1 to swarmn  

  If Lrank(i) < LPrank(i) 

      Update LPrank(i) and LPbest(i) 

 ElseIf Lrank(i) = LPrank(i) 

    Find swarm leader(i) current position, Lswarm 

    Find swarm leader(i) local best position, LPbest(i)      
                Compute the fitness values for Lswarm and LPbest(i) 

      Check Pareto dominance of the fitness values 

      Update LPbest(i) if fitness of Lswarm is better 

  EndIf 

    EndFor 

 EndIf 

End 

 
Figure 7.2 Pseudocode of update local best for the swarm leaders. 

 

 

archive serve as potential global best candidates ( gbest ) for the particles. At each 

iteration count, new solutions are compared with respect to any members in the archive. 

If new solutions are not dominated by any archive members, they are accepted into the 

archive. Similarly, any archive members dominated by any new solutions are removed 

from the archive. If the archive population size exceeds the allocated archive size, then 

crowding distance [31] is applied to remove the crowded members and to maintain 

uniform distribution among the archive members. There are existing methods for the 

particles to select their global leaders ( gbest ) [106,112,113,115-117]. In this paper, the 

crowding distance values of the archive members are used to guide the particles to select 
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their gbest . Larger crowding distance values imply archive members are less crowded, 

and are likely to be selected as particles’ gbest . Once the search process is terminated, the 

solutions in archive become the final Pareto front. 

 

7.3.5 Particle Update Mechanism (Flight) 

A major problem in employing multiple-swarm concept is the need to exchange 

information among swarms, especially if no mutation operator is incorporated. Without 

information exchange, the particles may find several disconnected segments of a Pareto 

front due to lack of diversity among swarms. Hence, information exchange among 

swarms is vital in promoting diversity among swarms.  In recent work, Yen and 

Daneshyari [96] adopted a three-level PSO updating rule wherein the particles learn their 

experiences based on personal, neighborhood, and global levels to adjust their flying 

speed and direction in the search space. The idea is to further enhance the information 

sharing among particles by incorporating the concept of neighborhood in the updating 

PSO equation.  

Though diversity among swarms is essential, diversity within a swarm is equally 

important. In [88], the swarm members of each swarm are splitted according to the user 

defined configuration, i.e., the swarm members composed of either neutral and charged 

particles or neutral and quantum particles. For example, for the formal configuration, for 

a given swarm size, part of the swarm members are neutral particles and the remaining 

are charged particles. Based on the configuration, the particle updating rule is dependent 

on the particle’s types, which are neutral, charged, or quantum particles.  By employing 

this strategy, the diversity within a swarm is encouraged.  
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Inspired by both forms of swarms interaction discussed above, we propose revised 

PSO update rules. The rules involve three forms of communication as follows:  

PSO update rule 1: Allow particles in a swarm to update using three-level PSO 

updating rule. This will allow swarms to share information from the global leaders 

(archive), their swarm leaders, and their personal best achievement. The new velocity and 

position equations are given. 

( ) ( ) ( )( )
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txpbestrctvwtv

n

ji

n

j

n

jij

n

ji

n

ji

n

ji

n

ji

,33,22

,,11,, 1

−××+−××

+−××+×=+
    (7.1) 

( ) ( ) ( )11 ,,, ++=+ tvtxtx
n

ji

n

ji

n

ji        (7.2) 

 

where ( )tv
n

ji ,  is the jth dimensional velocity of swarm member i of swarm n in iteration t; 

( )tx
n

ji ,  is the jth dimensional position of swarm member i of swarm n in iteration t; 

n

jipbest ,  denotes the  jth dimensional local best position of the swarm members i of 

swarm n in iteration t; jgbest  is the jth dimensional global best selected from archive in 

iteration t; n

jLpbest  is the jth dimensional local best position of swarm leader of swarm n 

in iteration t; 1r , 2r , and 3r are random numbers within [ ]1,0  that are regenerated every 

time they occur; w  is the inertial weight; and 1c , 2c and 3c are the acceleration constants. 

Note that the each of the acceleration constants is randomly varied between 1.5 and 2 at 

every iteration to provide different emphasis on the components in Equation (7.1) and to 

deal with the difficulty in choosing the “optimal” settings for these constants to prevent 

the particles’ velocities from exploding. The inertial weight is randomly varied between 

0.1 and 0.5 to encourage exploration and local search in different iteration counts. 
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PSO update rule 2: Allow particles in a swarm to update via perturbation around 

their corresponding swarm leader. This will facilitate local search and promote diversity 

within a swarm. Basically, this rule can be achieved via perturbation concept. The area of 

perturbation is determined by parameter dr , a random number generated from a Gaussian 

distribution with zero mean ( )0=µ  and a variance ( )2σ . For simplicity, parameter 2σ is 

set to 0.1 to limit the perturbation region around the swarm leader and to prevent swarm 

members from moving too far from each other. Note that the setting for parameter 

2σ depends on the user’s preference and the size of the decision space.  The center point 

of this area is the swarm leader as shown in Equation (7.4). Both Equations (7.3) and 

(7.4) are similar to the quantum particle updating rule in [145], 

         ( )1.0,0Gaussianrd =        (7.3) 

         ( ) b
n
j

n
ji rLpbesttx +=+1,        (7.4) 

PSO update rule 3: Under some conditions, the particles should exchange information 

with a leader other than their own. Equations (7.1) and (7.2) are implemented to update 

the particles in each swarm. The only modification is the n
jLpbest  term in Equation (7.1) 

is replaced by n

jLpbest
~

, in which the superscript n~ is to indicate that the swarm members 

can choose any swarm leaders other than their own swarm leader. 

Randomly splitting the swarm members and delegating them to both PSO updating 

rules 1 and 2 encourage the swarm members to contribute two separate goals since PSO 

updating rule 1 promotes convergence, discovery, and improves good solutions; while 

PSO updating rule 2 encourages local search and diversity within a swarm. On the other 

hand, PSO updating rule 3 promotes convergence and diversity among swarms. For 
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simplicity, a random number er  with uniform distribution between [ ]1,0 is generated to 

decide which PSO update rule(s) to carry out. If 5.0>er , the swarms are updated by 

PSO update rules 1 and 2. The first half of the swarm members in a swarm is updated via 

rule 1, while the rest are updated using rule 2. On the other hand, if 5.0≤er , then the 

swarm members are updated using PSO rule 3. Figure 7.3  presents the pseudocode of 

updating the particles (flight). Note that 0.5 is chosen without any prior knowledge as the 

deciding factor to provide equal probability for information exchange within a swarm and 

among swarms. 

 

Function Flight(swarms, swarmn , ssize) 

 
/*swarms = current swarms 

/* swarmn = number of swarms 

/*ssize = swarm size 

Begin 

  If ssize is even 

    2ssize=N  

        Else 

    ( ) 5.02ssize +=N  

  EndIf 

   For each swarm 

    [ ]1,0randre =  

    If ( ) ( )25.0 >∩> swarme nr   

  N:1 particles are updated via Equations (7.1) and (7.2) 

     Generate dr  using Equation (7.3) 

  ( ) ssizeN :1+ particles are updated via Equation (7.4)        

    Else 

  Particles are updated via Equations (7.1) and (7.2) with a 

randomly assigned swarm leader 

 EndIf     

  EndFor 

End 

 
Figure 7.3 Pseudocode of updating the particles. 
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7.3.6 Swarm Growing Strategy 

DSMOPSO employs two independent strategies—swarm growing strategy and 

swarm declining strategy to manage the number of swarms needed during the different 

stages of search process. Similar to the motivation given in [140], the first strategy aims 

to increase the number of swarms and to ensure every swarm to survive a sufficient 

number of iterations so that it can contribute to the search process in finding better 

solutions, while swarm declining strategy is applied to control the number of swarm from 

growing excessively. In this subsection, swarm growing strategy is discussed and swarms 

declining strategy will be discussed next. 

In previous chapter, DMOPSO proposed a population growing strategy based on 

the concept proposed by Tan et al. [135]. The design involves procedures such as 

selecting potential particles to be perturbed, determining number of perturbations, and 

deciding where to perform perturbation. The improved design in DSMOPSO carefully 

addresses this deficiency and includes utilizing rank and crowdedness indicators to select 

potential candidates for swarm leaders and applying Voronoi diagram to generate a 

swarm of particles from a swarm template. First, rank and crowdedness indicators are 

introduced, and then the procedures for swarm growing strategy are elaborated. 

The rank and crowdedness indicators are the same as elaborated in Subsection 

6.3.4. The only difference is these indicators are applied to the swarm leaders instated of 

the particles in the swarm population presented in Chapter 6. Figure 7.4 shows how the R 

and D values of the swarm leaders E and F are determined. Refer to Figure 7.4, the 

swarm leader E (in Figure 7.4(a)) resides in the cell with rank value “1” (rank matrix in 

Figure 7.4(b)). Hence,  apply  Equation (6.12), its R value equal to 1 as  shown  in  Figure  
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           (a)                                  (b)                                              (c) 

Figure 7.4 (a) Swarm leaders and their locations on the objective space, (b) rank matrix (Top) 

and density matrix (Bottom) of the swarm leaders, and (c) R and D values for swarm leaders E 

and F. 

 

7.4(c). Meanwhile, those swarm leaders located in cell with higher rank values will result 

in a lower R value.  For example, Figure 7.4(a) shows swarm leader F resides in cell with 

rank value “8”, which is higher rank value than swarm leader E. So, its R value is much 

lower, which is 0.125. Hence, the R value can be used to quantify the chances for a 

swarm of being eliminated or to decide if a swarm leader is chosen as potential candidate 

for generating new swarms. Now, refer to the density matrix in Figure 7.4(b), the density 

value for swarm leaders E and F are 3 and 2 respectively. With the ppv value set to 2, 

Equation (6.13) indicates that the D value of swarm leader E is 0.33 while since the 

density value is lower or equal to ppv, the D value of swarm leader F is 0 (refer to Figure 

7.4(c)). Hence, crowdedness indicator can be use to measure if the swarm leaders reside 

in a congested cells by comparing their density values with the ppv value.  

The following three procedures outline the swarm growing strategy proposed. 

Procedure 1: Identify potential swarm leaders from the swarm local best archive 

to generate “swarm templates” that will be used to create new swarms. The chosen 

swarm leaders should have the highest probability of producing new swarms that will 
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improve convergence toward the Pareto front and land on the unexplored areas in the 

objective space. In this paper, rank and crowdedness indicators are used to quantify the 

potential of the swarm leaders. First, gather the swarm leaders from the swarm local best 

archive.  Second, the R and D values of the swarm leaders are computed using Equations 

(6.12) and (6.13). Third, for those cells that have more than one swarm leader, their local 

pure Pareto rank values are calculated using the Pareto ranking scheme proposed by 

Goldberg [146]. The local pure Pareto rank values are denoted as Lr . If only one swarm 

leader is in the cell, then Lr  is equal to one by default. Finally, at iteration t, the 

likelihood that the swarm leader i with ( )tiR , , ( )tiD ,  and ( )tirL , , to be chosen is 

computed using the following equation: 

 ( ) ( )
( )

( )( )tiD
tir

tiRtil
L

g ,1
,

1
,, −×








×= .        (7.5) 

Equation (7.5) implies that those swarm leaders with higher R, lower D, or lower 

Lr values will have a high likelihood value, gl .  Those swarm leaders with higher 

likelihood value, gl  have a higher chance of being selected as potential candidates to 

generate the “swarm templates.” Refer to Figure 7.5(c), the gl values for swarm leaders E 

and F are 0.335 and 0.125, respectively. Based on the gl values, swarm leader E has a 

higher chance of being chosen as the potential swarm leader compared to swarm leader 

F. To determine whether a swarm leader i will be chosen, a random number with uniform 

distribution between [ ]1,0  is generated to compare with the likelihood ( )til g , . If the 

likelihood is larger than the random number, then swarm leader i is selected as a potential 

candidate to generate a “swarm template,” newx . The swarm template ( newx ) is generated 
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via a uniform mutation operator with the mutation rate equal to 

spacedecisioninensionsdimofnumber1  [49]. 

 

 

 

 

 

 

 

 

 

 

 

 
            (a)                            (b)                                                    (c) 

 
Figure 7.5 (a) Swarm leaders and their locations on the objective space, (b) rank matrix (Top) 

and density matrix (Bottom) of the swarm leaders, and (c) R, D, and rL values for swarm leaders 

E and F. 

 

Procedure 2: Once the swarm template ( newx ) is generated via Procedure 1, the 

template is perturbed to generate a swarm of particles. In order for perturbation to 

happen, the perturbation region centered around newx  needs to be defined. In this design, 

the motivation of employing Voronoi diagram [147] to determine the perturbation region 

is as follow: 1) the shape of the perturbation region is self-adapted and depends on the 

distribution of the solutions in the chosen dimensions; and 2) no user-defined parameter 

or a fixed model to define the perturbation region as proposed in DMOPSO is required.  

There are three key steps in this procedure to generate a member in the new swarm. 
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Figure 7.6 Block diagram depicts how an example Voronoi diagram of eight randomly selected 

particles and newx  is generated. 

 

within the total number of dimensions in the decision space are randomly selected. These 

selected dimensions are denoted as aj  and bj . Third, the dimension aj  and bj  of the 

selected particles and newx  represent the data points and are used to generate the Voronoi 

mesh, as presented in the reduced two dimensional space in Figure 7.6. Refer to Figure 

7.6, the selected particles and newx  are represented as “circle.” Also, the x-axis 

corresponds to dimension aj  and the y-axis corresponds to dimension bj . In this study, 

only two dimensions are selected to build the Voronoi diagram for computational 

simplicity.  

2) Determine the Perturbation Region: The black circle in Figure 7.6 represents the 

coordinate of newx , i.e., ( )
ba jnew,jnew, xx , . Since there are more than two corners around 

the coordinate of newx  (i.e., represented with ‘x’ symbol and labeled as Z1 to Z6 in 

Figure 7.6), a corner is randomly selected. In Figure 6, the selected corner is Z2 and 

denoted as vcell . The distance between the center and Z2, i.e., d∆ , is computed to 

form the perturbation region of newx . 
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Function newswarm = Generate_Swarm( newx , ssize, swarms) 

 

/* newx  = a new swarm template 

/*ssize = swarm size 

/*swarms = current swarms  

 

Begin 

 For 1 to ssize 

    Randomly choose a particle from every swarm 

    Store chosen particles to T 

Randomly choose two dimensions,[ja,jb], from [1 max(dimension of 

newx )] 

Draw out the two dimensions from every particle in T              

Draw out the two dimensions from newx , i.e. ( )
ba jnew,jnew, xx ,      

    Use all drawn values to calculate the Voronoi diagram 

          Randomly choose a coordinate ( vcell ) around the Voronoi cell,   

  where ( )
ba jnew,jnew, xx ,  coordinate is its center 

    Find distance ( d∆ ) between vcell and ( )
ba jnew,jnew, xx ,  coordinate   

    Compute Equations (7.6), gr  

    [ ]1,0randrg =  

    If 5.0>gr  

  Add ( )grd ×∆ to 
ajnew,x  

   Else 

  Add ( )grd ×∆ to 
bjnew,x  

    EndIf 

 EndFor 

End 

 
Figure 7.7 Pseudocode of generating a new swarm via Voronoi procedure. 

 

3) Generate a Swarm Member: Once a corner is selected, a swarm member is generated 

by applying the following equations: 

( )1.0,0Gaussianrg = ,       (7.6) 

 ( ) ( ) ( )
gjnew,jnew, rdtt

aa
×∆+= xx        (7.7a) 

( ) ( ) ( )
gjnew,jnew, rdtt

bb
×∆+= xx ,             (7.7b) 

( ) ( )tt jnew,jnew, xx = ,      ),,,,1( ba jjjjNj ≠≠= K ,    (7.7c)  
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where gr  is a random number generated from a Gaussian distribution with zero 

mean ( )0=µ  and a variance ( )2σ  of 0.1 (Equation (7.6)); and d∆ is the distance between 

the center and the selected corner.  Equations (7.7a) - (7.7c) are applied to generate a new 

swarm member. Please note only two chosen dimensions will be perturbed, while other 

dimensions remain the same as those in newx . This procedure is repeated until all the 

swarm members in a newly created swarm are generated. Figure 7.7 presents the 

pseudocode of generating a new swarm via Voronoi procedure. 

 
Function Swarm_growing_strategy(LPrank, LPden, ppv , Lh , ssize, swarms) 

 
/*LPrank = rank of local best for swarm leaders 

/*LPden = density of local best for swarm leaders 

/* ppv = desired population size per cell 

/* Lh = home address of swarm leaders 

/*ssize = swarm size 

/*swarms = current swarms  

 

Begin 

 Compute Rank Indicator, R, using LPrank 

 Compute Crowdedness Indicator, D, using LPden and ppv  

 Compute local rank value, Lr  using Lh and Pareto ranking scheme 

 Compute Rank Indicator for local rank value, LR , using Lr  

 Compute gl  using Equation (7.5) 

 [ ]1,0randrh =  

 If hg rl >  

     Find and store ‘chosen’ swarm leaders to P 

     Number of ‘chosen’ swarm leader = ns  
 EndIf 

 While nscount ≤   

     Select a swarm leader, x  from P 

     Generate a new particle (seed), newx , by applying perturbation 

     newswarm = Generate_Swarm( newx ,ssize, swarms) 

     1+= countcount  

 EndWhile 

Collect all the new swarms   

End 

 
Figure 7.8 Pseudocode of swarm growing strategy 
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Applying Voronoi concept to determine the perturbation region presents a unique 

advantage as we do not need to define the perturbation region using a user-specified 

parameter or a fixed model. When the number of swarms is small in the early stage, the 

resulted Voronoi diagram will have large Voronoi mesh, which leads to a large 

perturbation region. Hence, support in generating swarms with swarm members farther 

away from each other promotes diversity within a swarm and allows the swarm members 

to explore larger unvisited regions in the objective space. On the other hand, when the 

number of swarms is large, which is often the case as the swarms are approaching the 

Pareto front, the area of perturbation region will be small according to the above design. 

A smaller perturbation region will generate swarms with swarm members closer to each 

other. This will encourage a local search within the swarm members towards the later 

stage of the search. Figure 7.8 presents the pseudocode of swarm growing strategy. 

 

7.3.7 Swarm Declining Strategy 

As mentioned earlier, the swarm declining strategy is proposed to control the 

number of swarms from growing excessively. The condition to remove a swarm is based 

on three qualitative indicators. Two of the three indicators are introduced in subsection 

6.3.3, i.e., Equations (6.12) and (6.13). An additional indicator is known as the age 

indicator, which is used to measure the “lifespan” of the swarms. The age indicator 

ensures that those swarms generated recently, especially those newly generated swarms, 

will have enough lifespan to contribute to the search process. Assume at iteration t, the 

age of swarm leader i is denoted as ( )tiage ,  and its age indicator at iteration t, ( )tiA , , is 

given by 
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         ( ) ( )
( )







>−
=

otherwise

Atiageif
tiage

A

tiA th

th

,0

,,
,

1
, ,    (7.8) 

where thA is the predetermined age threshold. Equation (7.8) implies that any swarms’ 

ages smaller than thA will not be removed. When a particle is created, its age will be set at 

0 and its age will be increased by one if it survives another iteration. Simulation study 

also indicates the performance of the DSMOPSO is not sensitive to the choice of the age 

threshold. 

Two different likelihoods of removing swarms, utilizing three indicators 

mentioned above, are applied here. These indicators for the swarm leaders in swarm local 

best archive are computed.  Two different likelihoods are as follows: 

1) Likelihood of Removing the Swarms with Higher Rank Values: At iteration t, the 

likelihood that the swarm leader i with rank indicator ( )tiR ,  and age indicator ( )tiA , , 

to be eliminated is computed using the following equation: 

  ( ) ( ) ( )tiAtiRtil ,),1(,1 ×−= .            (7.9) 

Equation (7.9) implies that for those swarm leaders located farther away from the 

non-dominated solution and have exceeded the age threshold, thA , should have a 

higher likelihood of being eliminated. This implies any bird species that fail to catch 

up with the mixed-species flock after traveling together for some time will likely be 

lost from the flock. 

2) Likelihood of Removing the Swarms in the Same Cell with Rank Values Having 

Reached One: At  iteration t,  the likelihood  that  the swarm leader i with  local  rank  
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Function Swarm_declining_strategy(age, LPrank, LPden, ppv , t , thA , Lh ) 

 

/*age = age value of swarms 

/*LPrank = rank of local best for swarm leaders 

/*LPden = density of local best for swarm leaders 

/* ppv = desired population size per cell 

/* t = current iteration 

/* thA = age threshold 

/* Lh = home address of swarm leaders 

Begin 

 For each swarm 

     [ ]1,0randrk =  

     [ ]1,0randrl =  

     Compute Rank Indicator, R, using Lprank  

     Compute Crowdedness Indicator, D, using LPden and ppv  

     Compute Age Indicator, A, using age and thA  

     Compute local rank value, Lr , using Lh and Pareto ranking 

scheme 

     Compute Rank Indicator for local rank value, LR , using Lr  

     Compute 1l  and 2l  using Equations (7.9) and (7.10) 

respectively 

     If lk rlrl >∪> 21  

  Record swarms index to M 

     EndIf 

 EndFor 

 Remove swarms recorded in M 

End 

 
Figure 7.9 Pseudocode of swarm declining strategy. 

 

value ( )tirL , , density indicator ( )tiD , , and age indicator ( )tiA , , will be eliminated is 

given by 

  ( )
( )

( )( ) ( )tiAtiD
tir

til
L

,1,
,

1
1,2 ×−×








−= ,         (7.10) 

where ( )tirL ,  is the local Pareto rank values computed using the Pareto ranking 

scheme [146]. For those swarm leaders that are residing in cells with rank indicator 

( )tiR ,  equal to one, the logical choice is to delete those swarms with higher local 

Pareto rank values, ( )tirL ,  that reside in the crowded cell and exceed the age 
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threshold, thA . This also implies that some bird species in the mixed-species flock 

that have traveled together for some time may compete for the limited food source in 

an enclosed area 

The first likelihood removes swarms that are not likely to contribute the progression 

towards the Pareto front, while the second likelihood acts like a diversity mechanism to 

encourage diversity among swarms.  Two random numbers with uniform distribution 

between [ ]1,0  are generated to compare with 1l  and 2l . All the swarms that have either 1l  

or 2l  greater than the two random numbers are removed from the swarm population.  

Figure 7.9 presents the pseudocode of swarm declining strategy. 

 

7.3.8 Objective Space Compression and Expansion Strategy  

The disadvantage of implementing the cell-based rank density scheme is the 

inability to assure the needed resolution of the resulting Pareto front, because an 

individual’s rank value is represented by the rank value of its “home address,” not by its 

own dominance status [140], even this is a very effective design in determining the 

ranking relationship during the evolutionary process. The reason is the boundaries of the 

objective, i.e., min

iF and max

iF , are usually selected large enough, sometimes too large, to 

ensure that the entire true Pareto front is included within these boundaries. In addition to 

this, if the predetermined cell scales, mKKK ××× K21
, are not chosen to be 

correspondingly large enough, then the cell width is too spacious compared to the true 

Pareto front, which may result in an inaccurate Pareto optimal set [140]. One logical 

choice to counter this problem is to increase the cell scales to a very large number. 

However, this approach will increase the computational complexity unnecessarily.  
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    (a)              (b) 

Figure 7.10 Illustration of objective space compression strategy (arrows in (b) signify the objective 

space is compressed). 

 

 

 

 

 

 

 

 

 
               (a)            (b)  

Figure 7.11 Illustration of objective space expansion strategy (arrows in (b) signify the objective 

space is compressed). 

 

 

Inspired by DMOEA, DSMOPSO proposes the objective space compression and 

expansion strategy. This strategy is designed to adjust the size of the objective space 

based on some criteria and to ensure that swarms progressively find the true Pareto front. 

This design is to counter two problems: 1) at early iterations, the swarm leaders’ local 

bests tend to quickly converge prematurely to the cells with rank value equal to 1. If this 

happens, the swarm population will not progress since they are stuck in those cells under 

the assumption that they had “found” the true Pareto front. Hence, objective space 

compression strategy is applied to reinforce the swarms’ progression. Illustrated in Figure 

7.10(a), the grey cells have rank value of 1. The swarm leaders G and H are located in a 
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grey cell. After the objective space is compressed, the location of grey cells is updated 

and only swarm leader G now resides in a grey cell while the rank value of swarm leader 

H is 2 (refer to Figure 7.10(b)). This will encourage swarm leader H to move toward the 

true Pareto front; 2) when the objective space compression strategy is applied several 

times at early iterations, there is a possibility that the objective space is overly 

compressed and can cause the boundaries of the objective to not cover the true Pareto 

front (refer to Figure 7.11(a)). For this case, the objective space expansion strategy is 

applied to enlarge the boundaries of the objective until the true Pareto front is 

approached. 

The implementation of the objective space compression and expansion strategy is given 

below: 

Compression Strategy: At iteration t, the lower and upper boundaries of the ith 

dimension of the objective space and current population are denoted as min

iF ,  

max

iF , min

iP and max

iP  [140].  The criteria to implement objective space compression 

strategy are: 

C1-All those swarms with minimum age value greater than the age threshold, thA ,  

C2-Their maximum cell rank of the swarm leaders in swarm local best archive is 

equal to one, and 

C3a- For upper boundary: ( )minmaxmaxmax

iiii FFPF −>− δ  and/or 

C3b- For lower boundary: ( )minmaxminmin

iiii FFPF −>− δ .  

The third criterion controls the sensitivity of triggering the objective space compression 

strategy. The ratio δ is within [0,1] and it implies that the objective space will compress 
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if there is at least a ( )%100×δ space in any dimension. An example is shown in Figure 

7.10(a), i.e., distance between max

1F  and max

1P , and distance between max

2F  and max

2P . If 

the criteria are satisfied, then the new boundaries of the ith dimension of the objective 

space are adjusted as follow: 

For upper boundary: 
2

maxmax

max ii

i

PF
F

+
=  (given criteria C1, C2 and C3a are satisfied) or    

           (7.11a) 

For lower boundary: 
2

minmin
min ii

i

PF
F

+
= (given criteria C1, C2 and C3b are satisfied).  

(7.11b) 

Equations (7.11a) and (7.11b) indicate that the distance of the upper and lower 

boundaries are reduced by half of its original value.  

Expansion Strategy: The criteria to implement objective space compression strategy 

are given: 

E1- All those swarms with minimum age value greater than the age threshold, thA ,  

E2- Their maximum cell rank of the swarm leaders in swarm local best archive is 

equal to one, and 

E3a- For upper boundary: ( )minmaxmaxmax 005.0 iiii FFPF −≤−  and/or 

E3b- For lower boundary: ( )minmaxminmin 005.0 iiii FFPF −≤− .  

The third criterion implies that the objective will be expanded if there is at most 0.5 

percent space in any dimension, which also means that the distance between the upper 

boundary of objective space and the upper boundary of current population is too small as 

depicted in Figure 7.11(a). Note that 0.5 percent is chosen for practical purposes. If this 
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criterion is satisfied, then the new boundaries of the ith dimension of the objective space 

are adjusted as follows: 

For upper boundary: 
( )

2

maxmax

maxmax ii

ii

PF
FF

+
+= (given criteria E1, E2 and E3a are 

satisfied) or              (7.12a) 

For lower boundary: 
( )

2

minmin

minmin ii

ii

PF
FF

+
−= (given criteria E1, E2 and E3b are 

satisfied).               (7.12b) 

Equations (7.12a) and (7.12b) indicate that the distance of the upper and lower 

boundaries are expanded by half of its original value.  

After the compression or expansion strategy is performed, the “home address” of each 

swarm, the rank and density matrices are recalculated because they may not be the same 

as before. In addition, the swarm local best archive is reinitialized again. In the 

pseudocode presented in Figure 7.12, a parameter St  is set to 0, indicating that the 

objective space compression and expansion strategy has been performed. 

 

7.4 Comparative Study 

 Three studies are conducted. The first study aims to evaluate the performance of 

the DSMOPSO against the selected algorithms. Performance evaluation is determined 

using the standard test suits and both qualitative and quantitative metrics. In the second 

study, the comparison on the computational cost of the proposed algorithm and selected 

MOPSOs is presented in Subsection 7.4.4. Lastly, in Subsection 7.4.5, a series of 

experiments are performed to investigate the effect of the parameter settings on the 

proposed algorithm. 
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Function Objective_space_compression_expansion_strategy(δ , A
F , age, thA , 

pop
F , ),,( minmin

1 mFF K , ),,( maxmax
1 mFF K , LPrank) 

 

/*δ  = user defined parameters  

/*
A

F = fitness values of particles in Archive 

/*age = age value of swarms 

/* thA = age threshold 

/*
pop

F = fitness values of swarm population (from all swarms) 

/* ),,( minmin
1 mFF K = all lower boundaries in m dimensional objective space 

/* ),,( maxmax
1 mFF K = all upper boundaries in m dimensional objective 

space 

/*LPrank = rank of local best for swarm leaders 

 

Begin 

   Find all swarm leaders that have age thA> , ageL  

   If LPrank of ageL  are equal to 1, 

    Find [ ]popA
m FFPP ,min),,( minmin

1 =K  

    Find [ ]popA
m FFPP ,max),,( maxmax

1 =K  

    For 1=i tom  

     /*For upper boundary 

     If ( ) 005.0maxmax >− ii PFabs ,   /* compression-max 

         If ( ) ( )minmaxmaxmax
iiii FFPFabs −×>− δ  

            Compute Equation (7.11a)  
         EndIf 

     Else                      /* expansion-max 

         Compute Equations (7.12a) 
     EndIf 

 

     /*For lower boundary 

     If ( ) 005.0minmin >− ii PFabs ,   /* compression-min 

         If ( ) ( )minmaxminmin
iiii FFPFabs −×>− δ  

            Compute Equation (7.11b) 

         EndIf 

     Else                      /* expansion-min 

            Compute Equations (7.12b) 
     EndIf 

      Endfor 

   EndIf 

   Set 0=St  

   Rank_and_density_estimation() 

End 

 

Figure 7.12 Pseudocode of objective space compression and expansion strategy. 
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7.4.1 Experimental Framework 

Three MOPSOs are selected for performance and computational cost comparison. 

Among those three MOPSOs, cMOPSO [128] and DMOPSO are state-of-the-art 

multiple-swarm MOPSOs; while MOPSO [120] is selected since it has produced good 

performance. Each algorithm is set to perform only 30,000 fitness evaluations as 

suggested in [49]. The parameter configurations for all MOPSOs are summarized in 

Table 7.1. All of the algorithms are implemented in Matlab. All of the algorithms use a 

real number representation for decision variables. However, binary representation of 

decision variables can be easily adopted, if necessary. For each experiment, 50 

independent runs were conducted to collect the statistical results. The algorithms are 

tested on the ZDT test suite, which is listed in Table 6.1 and we set the number of 

variables equal to 30, i.e., 30=n . 

 

7.4.2 Selected Performance Metrics 

Similar to Chapter 6, all comparisons are based on both quantitative and 

qualitative measures. Quantitative comparison is based on the plots of the final Pareto 

fronts in a given run. For quantitative comparison, two performance metrics are taken 

into consideration to measure the quality of algorithms with respect to dominance 

relations. The results are illustrated by statistical box plots.  The performance metrics 

used here are same as given in Subsection 6.4.3: hypervolume indicator (S Metric) and 

additive binary epsilon indicator. 
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Table 7.1 Parameter configurations for existing MOPSOs and DSMOPSO. 

 Parameters Settings for MOPSO 

cMOPSO 

[128] 

No. swarms = 4; Internal iterations, 5maxst = ; Population size = 40; Archive 

size = Not fixed; No. of iterations = 150 

MOPSO 

[120] 

50 divisions adaptive grid; Mutation probability = 0.5; Population size = 100; 

Archive size = 100; No. of iterations = 300 

DMOPSO 

Test Function ZDT1 

No. swarms = 4; Swarm size = 5; 2,1,50 == iK i ; Archive size = Not fixed; 

5maxst = ; unp = 3, lnp = 1; 5.0== βα ; rud = 0.7;  rld = 0.02 ; 10=ppv ; S = 

0.02; and Ka = 10. 

Test Function ZDT2 

No. swarms = 2; Swarm size = 20; 2,1,50 == iK i ; Archive size = Not fixed; 

5maxst = ; unp = 3, lnp = 1; 5.0== βα ; rud = 0.7;  rld = 0.02 ; 10=ppv ; S = 

0.02; and Ka = 40. 

Test Function ZDT3 

No. swarms = 3; Swarm size = 6; 2,1,50 == iK i ; Archive size = Not fixed; 

5maxst = ; unp = 3, lnp = 1; 5.0== βα ; rud = 0.7;  rld = 0.02 ; 10=ppv ; S = 

0.02; and Ka = 15. 

Test Function ZDT4 

No. swarms = 2; Swarm size = 20; 2,1,50 == iK i ; Archive size = Not fixed; 

5maxst = ; unp = 5, lnp = 1; 5.0== βα ; rud = 0.9;  rld = 0.02 ; 10=ppv ; S = 

0.02; and Ka = 40. 

Test Function ZDT6 

No. swarms = 4; Swarm size = 5; 2,1,50 == iK i ; Archive size = Not fixed; 

5maxst = ; unp = 3, lnp = 1; 5.0== βα ; rud = 0.9;  rld = 0.02 ; 10=ppv ; S = 

0.02; and Ka = 40. 

Test Function DTLZ2 

No. swarms = 4; Swarm size = 5; 2,1,50 == iK i ; Archive size = Not fixed; 

5maxst = ; unp = 3, lnp = 1; 5.0== βα ; rud = 0.7;  rld = 0.02 ; 10=ppv ; S = 

0.02; and Ka = 10. 

*DSMOPSO Swarm size = 6; 2,1,6 == iK i ; 3=thA ; 3=ppv ; 1.0=δ ; Archive size = 100 

 

7.4.3 Performance Evaluation 

Figure 7.13  presents the box plots of hypervolume indicator, i.e., the IH values, 

found by all chosen MOPSOs for all test problems. The figure shows DSMOPSO, 

DMOPSO, and MOPSO achieve high IH values for all test problems. Higher IH values 

indicate the solutions found by an algorithm are able to dominate a larger region in the 

objective space. In Figure 7.13, the IH values of MOPSOs are normalized for each test 

problem. So, the highest IH value will equal one. Comparing the IH values of DSMOPSO 

with DMOPSO and MOPSO for ZDT1, ZDT3, and DTLZ2, DSMOPSO is slightly 
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lower, which is also confirmed by the tested result computed using the Wilcoxon rank-

sum test in Table 7.2. However, the results in Table 7.2 show DSMOPSO is better than 

DMOPSO for ZDT2 and ZDT6, and performs better than MOPSO for ZDT2. Only for 

ZDT4, did DSMOPSO share the same victory with DMOPSO and MOPSO. For the case 

of DTLZ2, although the IH values of DSMOPSO are lower than the rest of MOPSOs, the 

difference in IH values are very small. In addition, the results in Table 7.2 indicate that 

there are no significant difference between the solutions found by DSMOPSO and the 

rest of the MOPSOs. Overall, both box plots and results in Table 7.2 clearly show that the 

performance of DSMOPSO is significantly better than cMOPSO. Lastly, the low 

standard deviation for all test problems in Figure 7.13 shows DSMOPSO can produce 

reliable solutions. 

The results for additive binary ε-indicator for all test functions are presented in 

Figure 7.14. The results for each test function are summarized into two box plots, 

( )31, −+ BAIε  and ( )ABI ,31−+ε , in which A denotes DSMOPSO, while B1-3 corresponds to 

algorithms DMOPSO, MOPSO, and cMOPSO, respectively. Both ( )31, −+ BAIε  and 

( )ABI ,31−+ε  have to be taken into account to decide whether DSMOPSO dominates (or is 

better than) any of the selected MOPSOs. Wilcoxon rank-sum test is applied to evaluate 

the distribution of the +εI values, and the results are presented in Table 7.3. Combine box 

plots of Figure 7.14 and results from Table 7.3, the following analysis is given: 

DSMOPSO weakly dominates DMOPSO and MOPSO for ZDT1, ZDT2, ZDT3, and 

ZDT6 because ( ) 0, 21 ≈−+ BAI ε  and ( ) 0,21 >−+ ABI ε . Only for ZDT4 and DTLZ2, does 

DSMOPSO share the same success as DMOPSO, especially indicated in Table 7.3 where 

there are no significant differences between DSMOPSO and DMOPSO. Also, same level  
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      IH  values for ZDT4                   IH  values for ZDT5  IH  values for DTLZ2 

  

Figure 7.13 Box plot of  hypervolume indicator (IH  values) for all test functions (Start from top left) 

by algorithms 1-4 represented (in order): DSMOPSO, DMOPSO, MOPSO, and cMOPSO. 

 

of performance is achieved by DSMOPSO and MOPSO for ZDT4 with the verification in 

Figure 7.14 and Table 7.3. DSMOPSO strictly dominates cMOPSO for ZDT1, ZDT2, 

ZDT3, ZDT4, and DTLZ2 because the ( ) 0, 3 ≤+ BAI ε  and ( ) 0,3 >+ ABI ε , except for 

ZDT6 in which DSMOPSO weakly dominates cMOPSO. Overall, DSMOPSO shows a 

better performance compared to the selected MOPSOs. 

For qualitative comparison, the resulting Pareto fronts generated by the selected 

MOPSOs from a single run given the same initial population are presented in Figures 

7.15-7.20. The resulted Pareto fronts obtained by DSMOPSO are comparatively well 

expanded and near optimal Pareto fronts. DMOPSO and MOPSO are able to find 

satisfactory Pareto fronts. However, cMOPSO either has difficulty converging to the true 

Pareto front for ZDT1, ZDT4, and ZDT6, or it partially obtains part of the solutions of 
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the optimal Pareto front. Only for DTLZ2, the resulting Pareto front of DSMOPSO is 

slightly not better than DMOPSO’s. In general, both quantitative and qualitative results 

conclude that the performance of DSMOPSO is highly competitive with respect to the 

selected state-of-the-art MOPSOs for a selected set of test functions. 

 

Table 7.2 The distribution of IH  values tested using Wilcoxon rank-sum test. The table presents the z 

values and p-values, i.e., presented in the brackets as (z value, p-value), with respect to the 

alternative hypothesis (i.e., p-value < α=0.05) for each pair of DMOPSO and a selected MOPSO. 

Note that the distribution of DMOPSO is significantly difference or better than those selected 

MOPSO unless stated. 

IH (DSMOPSO)  AND 
Test 

Functions 
IH (DMOPSO) IH (MOPSO) IH (cMOPSO) 

ZDT1 (-3.6283, 2.9E-04) (-6.0537, 1.9E-09) (3.9776, 6.9E-05) 

ZDT2 (2.8620, 4.0E-02) (2.8620, 4.2E-02) (4.6455,3.4E-06) 

ZDT3 (-6.5569, 5.5E-11) (-6.6318, 3.3E-11) (6.5421, 6.1E-11) 

ZDT4 
(3.8575,>0.05) 

no difference 

(0.290,>0.05) 

no difference 
(4.6455, 3.4E-06) 

ZDT6 (-2.7837, 5.0E-03) 
(0.8087,>0.05) 

no difference 
(5.5674, 2.6E-06) 

DTLZ2 
(0.5127,>0.05) 

no difference 

(0.5681,>0.05) 

no difference 

(0.5589,>0.05) 

no difference 
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Figure 7.14 Box plot based upon multiplicative binary epsilon indicator (Iε+ values) all test functions 

(Start from top left) (algorithm A refer to DSMOPSO; algorithms 1-3 are referred to as 

DMOPSO, MOPSO, and cMOPSO, respectively). 

 

 

 

 
Table 7.3 The distribution of Iε+  values tested using Wilcoxon rank-sum test. The table presents the z 

values and p-values with respect to the alternative hypothesis (i.e., p-value < α=0.05) for each 

pair of DMOPSO and a selected MOPSO. In each cell, both values are presented in a bracket 

like this: (z value, p-value). For simplicity in naming, DSMOPSO is represented by A, and 

algorithms B1 to B3 are referred to as DMOPSO, MOPSO, and cMOPSO, respectively. The 

distribution of DMOPSO is significantly difference or better than those selected MOPSO unless 

stated. 

Test 

Functions 

Iε+ (A,B1) and 

Iε+ (B1,A) 

Iε+ (A,B2) and 

Iε+ (B2,A) 

Iε+ (A,B3) and 

Iε+ (B3,A) 

ZDT1 (-6.0537, 1.5E-04) (-6.0537, 1.4E-04) (-4.3553, 1.3E-05) 

ZDT2 
(0,>0.05) 

no difference 
(-2.7790, 5.5E-03) (-4.4382, 9.1E-06) 

ZDT3 (-6.2464, 4.2E-04) (-6.5717, 5.0E-06) (-6.6979, 2.1E-06) 

ZDT4 
(-0.001,>0.05) 

no difference  

(-0.015,>0.05) 

no difference 
(-4.4055, 3.4E-04) 

ZDT6 (-6.0028, 1.9E-06) (-6.5315, 6.5E-06) (-5.3496, 8.8E-06) 

DTLZ2 
(0,>0.05) 

no difference 
(-5.2337, 3.1E-04) (-5.7395, 1.6E-04) 
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Figure 7.15 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) MOPSO, and (d) cMOPSO 

for ZDT1. The continuous line depicts the true Pareto front. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.16 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) MOPSO, and (d) cMOPSO 

for ZDT2. 
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Figure 7.17 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) MOPSO, and (d) cMOPSO 

for ZDT3. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.18 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) OMOPSO, and MOPSO for 

ZDT4. 
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Figure 7.19 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) MOPSO, and (d) cMOPSO 

for ZDT6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.20 Pareto fronts produced by (a) DSMOPSO, (b) DMOPSO, (c) MOPSO, and (d) cMOPSO 

for DTLZ2. 
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7.4.4 Comparison in Number of Fitness Evaluation 

Table 7.4 Average number of evaluations computed for the test problems to achieve GD =0.001. 

 GD =0.001 *DSMOPSO DMOPSO MOPSO cMOPSO 

ZDT1 
Average No. 

Evaluations 
20,252 464.8 3,267 3,264 

ZDT2 
Average No. 

Evaluations 
10,003 998.9 2,900 500,000 

ZDT3 
Average No. 

Evaluations 
25,886 500,000 500,000 500,000 

ZDT4 
Average No. 

Evaluations 
851 12,781.6 22,149 500,000 

ZDT6 
Average No. 

Evaluations 
1,490 2,584 5,340 500,000 

DTLZ2 
Average No. 

Evaluations 
83,568 18234 500000 59840 

 

 

In this experiment, the computational cost of DSMOPSO is compared with the 

selected MOPSOs. In [148], an algorithm called ParEGO has shown efficient in solving 

nine relatively low-dimensional, real-valued test functions using a very low number of  

function evaluations. A targeted generational distance [45], GD value, is set to 0.001 for 

all of the test problems. A limit of 500,000 evaluations is used as stopping criteria. Each 

MOPSO performs 50 independent runs and the total number of evaluations to reach the 

targeted GD value is recorded for each run. All parameter configurations for MOPSO are 

shown in Table 7.1. The average number of evaluations is recorded for each MOPSO and 

is presented in Table 7.4. Overall, MOPSO designs coupled with dynamic population 

concepts show saving in computational cost compared to the standard MOPSOs. 

DMOPSO demands less computational cost for ZDT1, ZDT2, and DTLZ2 than 

DSMOPSO. However, DSMOPSO is able to achieve less computational cost for more 

challenging problems in ZDT3, ZDT4, and ZDT6 compared to the rest of the MOPSOs. 

From observations, it seems that DSMOPSO needs less computational cost for test 

problems with disconnected Pareto front and with multiple local optima. For connected 
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Pareto fronts, the results seem to indicate that DSMOPSO requires more evaluations than 

DMOPSO, MOPSO, and cMOPSO, most likely due to the process involved in adapting 

the number of swarms needed. 

 

7.4.5 Sensitivity Analysis 

Analysis of how sensitive DSMOPSO is with respect to the setting of the design 

parameters is presented herein. The same six test functions are used and hypervolume 

indicator is adopted.  A limit of 30,000 evaluations is used as stopping criterion, and 30 

independent runs are performed. Five experiments are conducted. In every experiment 

one parameter is varied while the rest of the parameter configurations remain the same as 

shown in Table 7.1. Box plots of hypervolume indicator for all test functions are showed 

for the five experiments. 

1) Effect of Varying the Swarm Size: Figure 7.21 presents the box plots of 

hypervolume indicator for swarm size varied from 2 to 20. By observation, the IH  

values obtained from all test functions are relatively high with small variations 

except for ZDT2, no result is obtained for swarm size equal to 2 because it failed 

to obtain the Pareto front. In overall, the figure shows that swarm size between 4 

to 6 yield high IH  values for all test functions except for ZDT4 and DTLZ2, the IH  

values is slightly lesser than the IH  value obtained by swarm size equal to 2 (the 

difference is about 0.01 to 0.05). Hence, we recommend setting the swarm size 

between 4 and 6.  

2) Effect of Varying the Grid Scale: Figure 7.22 shows the impact of the grid scale 

on the performance of DSMOPSO. Looking at the figure, the results yielded 

indicate that the performance of DSMOPSO is not affected. However, if compare 
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the results among the test problems, ZDT3, ZDT6, and DTLZ2 do not show any 

patterns associated with different grid scales; while ZDT1, ZDT2, and ZDT4 

shows good results for different grid scales in terms of high IH  values and very 

low standard deviations. Hence, based on this observation, the algorithm is 

believed to be insensitive to the grid scale.  

3) Effect of Varying the Population Size Per Cell: The population size per cell varies 

from 3 to 25. Figure 7.23 shows DSMOPSO is able to achieve high IH  values 

with small standard deviation (i.e. the maximum deviation is about 0.1) for all test 

functions regardless of any population size per cell. Among those values, it is 

shown that IH  values are consistently highest for all test functions when the 

population size per cell equals 3. Based on the results, we recommend using 

population size per cell equal to 3. 

4) Effect of  Varying the δ Parameter: Refer to Figure 7.24, the  IH  values remains 

very close to 1 as δ increases for each test function except for ZDT3 and DTLZ2, 

which have relatively lower IH  values. The results also show the standard 

deviations are generally low in overall, indicating δ  parameter does not 

significantly influence the reliability of the solutions. Based on the results, any 

settings for δ  will work for those test functions. 

5) Effect of Varying the Age Threshold thA : The experimental results of varying the 

age threshold between 3 and 25 are presented in Figure 7.25.  Again, the result 

shows any setting for age threshold is able to deliver good performance, i.e., high 

IH values varied between 0.94 to 1. Hence, any age threshold settings are allowed.  
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      IH  values for ZDT4                   IH  values for ZDT5  IH  values for DTLZ2 

Figure 7.21 Box plot of  hypervolume indicator (IH  values) for experiment with varying the swarm 

size. Note that 1-6 on x-axis represented (in order): swarm size of 2, 4, 6, 8, 12, and 20. 
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      IH  values for ZDT4                   IH  values for ZDT5  IH  values for DTLZ2 

Figure 7.22 Box plot of  hypervolume indicator (IH  values) for experiment with varying the grid scale 

( iK ). Note that 1-6 on x-axis represented (in order): iK  equals to 4, 5, 6, 7, 10, and 15. 
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      IH  values for ZDT4                   IH  values for ZDT5  IH  values for DTLZ2 

Figure 7.23 Box plot of  hypervolume indicator (IH  values) for experiment with varying the 

population size per cell ( ppv ). Note that 1-5 on x-axis represented (in order): ppv  equal to 3, 5, 8, 

12, and 25. 
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      IH  values for ZDT4                   IH  values for ZDT5  IH  values for DTLZ2 

Figure 7.24 Box plot of  hypervolume indicator (IH  values) for experiment with varying the 

δ parameter. Note that 1-7 on x-axis represented (in order): δ is equal to 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 

and 0.9. 
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Figure 7.25 Box plot of  hypervolume indicator (IH  values) for experiment with varying the age 

threshold ( thA ). Note that 1-6 on x-axis represented (in order): thA  is equal to 3, 4, 5, 6, 10, and 25. 
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CHAPTER 8 

 

 

PROPOSED PSO AND MOPSO FOR CONSTRAINED 

OPTIMIZATION 

 

Chapters 6 and 7 incorporated the dynamic population concept into swarm 

population to solve for unconstrained MOPs. However, in real world applications, most 

of the optimization problems involve constraints. To optimize the constrained problems is 

challenging since the optimum solution(s) must be feasible or else the solutions found 

will be useless. In this chapter, the goal is to design a constrained MOPSO to solve for 

constrained multiobjective optimization problems. In order to achieve this goal, a 

constrained PSO is designed to solve for constrained optimization problems, as a basic 

step. Then, the proposed constrained PSO is extended into a constrained MOPSO. Details 

on the two proposed algorithms are elaborated and experiments are conducted to evaluate 

the performance of the proposed algorithms.   

 

8.1 Introduction 

In real world applications, most optimization problems are subjected to different types of 

constraints. These problems are known as the constrained optimization problems (COPs) 

or if more than one objective functions are involved, it is called constrained 

multiobjective optimization problems (CMOPs). Although publication records have 

proven that evolutionary algorithms (EAs) are effective tools in solving different types of 

optimization problems, EAs in their original design are unable to solve constrained
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optimization problems effectively. Hence, in the past decade, many researchers have 

developed a variety of constraint handling techniques to counter this deficiency. These 

techniques are mainly incorporated within evolutionary algorithm designs (EAs), 

particularly genetic algorithm, to solve COPs [155,156] and CMOPs [157-166]. Recently, 

EA based on multiobjective optimization formulation for COPs gains much attention 

since it requires neither penalty factors that need heuristic tuning nor the need to balance 

the right proportion of feasible and infeasible solutions in the population via selection 

criteria [157,164].  

PSO has advantages over evolutionary algorithms, which are its simplicity, easy 

implementation, and rapid convergence capability. So, the number of researches on PSO 

design to solve for unconstrained SOPs and MOPS has gradually gain momentum in the 

past few years. However, there are relatively fewer works that apply PSO for COPs [167-

175]. Similar to EAs, the original PSO design also lacks a mechanism to handle 

constraints in order to solve COPs. Most of the proposed PSO designs adopted the 

popular constraint handling techniques that are build for EAs. Evidence shows in recent 

publications on constraint handling with PSO including penalty methods [167], selection 

criteria based on feasible and constraint violation [168-170], lexicographic order [171], 

and multiobjective constraint handling method [172-175], to name a few.  

Nevertheless, many real world problems are often multiobjective in nature. The 

ultimate goal is to develop multiobjective particle swarm optimization algorithms 

(MOPSOs) that effectively solve CMOPs. In addition to this perspective, the recent 

successes of MOPSOs in solving unconstrained MOPs have further motivated us to 
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design a constrained MOPSO to solve CMOPs. To achieve this goal, the constrained PSO 

is proposed to deal with COPs as a basic step towards the design of constrained MOPSO.  

In this design, we integrate the multiobjective optimization techniques in PSO for 

constraint handling. Three main design elements are incorporated to the proposed PSO: 

1) the updating personal best archive procedure has two separate conditions. The first 

condition targets the infeasible personal best in the archive. For this case, a simple 

formula based on the particles’ Pareto rank and their constraint violation is designed to 

update the infeasible personal best. The second condition aims for the feasible personal 

best and the updating rule is based on Pareto ranks or fitness. 2) Feasible and infeasible 

global best archives are used to store both feasible and infeasible nondominated 

solutions. The purpose is to make use of these solutions to guide the particles to 

feasibility and then towards the global optimum solution. Procedure to maintain these 

archives are discussed. 3) The acceleration constants in the PSO equation are controlled 

by a feasibility ratio and the constraint violations of the personal best and global best 

archives’ members. This will encourage the particles to search for feasible regions and 

the global optimum solution.  These design elements are adopted to solve for CMOPs. 

Different mutation procedures are incorporated in both proposed constrained PSO and 

MOPSO. 

 

8.2 Related Works 

In this section, relevant works of PSO adopting multiobjective optimization 

formulation to solve for COPs are reviewed first. Then, a brief review on the various 

constraint handling techniques designed for multiobjective evolutionary algorithms 
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(MOEAs) is presented, as there exist no prominent constrained MOPSO design in 

literature, to our best knowledge.    

Multiobjective constraint handling formulation (also called multiobjective 

optimization techniques to handling constraints) are based on multiobjective optimization 

concepts. The idea is to convert the constraints into one or more unconstrained objective 

functions and handle them via Pareto dominance relation. From the comprehensive 

survey conducted by Mezura-Montes and Coello Coello [176], they grouped the 

techniques available into two main categories.  

For the first category, a COP is converted into an unconstrained bi-objective 

optimization problem where the first objective is the original objective function and the 

second objective is the sum of the constraint violations. The following works fall into this 

category: Lu and Chen [172] proposed a novel constraint handling technique, called 

dynamic objective method (DOM), which can be easily incorporated into a variety of 

PSO algorithms. DOM does not apply Pareto dominance relation, but incorporates a 

threshold to control when to start the process of optimizing the objective function from 

the process of minimizing the sum of constraint violations. The threshold is used to 

update personal and global bests. In addition, the same authors also proposed a restricted 

velocity particle swarm optimization (RVPSO), in which the PSO equation is modified to 

incorporate the impact of feasible region on the velocity equation. Experiment results 

show DOM is efficient in handling constraints and the combined algorithm 

(DOM+RVPSO) shows competitive in solving COPs. However, how sensitive for the 

choice of thresholds to impact the performance over different test problems is not 

discussed. Li et al. [173] incorporated goal oriented programming concept to guide the 
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search towards the global optimum (feasible) solution. A feasible tolerance parameter is 

defined to determine how minimum does the constraint violations should allow. Selection 

rules based on Pareto dominance relationship and comparison of constraint violations are 

proposed to update personal and neighborhood bests. Perturbation with minor probability 

is applied for diversity maintenance. Simulation results show competitive performance 

but require prior knowledge of true solution and user settings of feasible tolerance 

parameter. 

For the second category, a COP is converted into an unconstrained multiobjective 

optimization problem (MOP), i.e., original objective function and each constraint is 

treated as a separate objective function. Hence, we will have p+1 unconstrained objective 

functions and the parameter p refers to the total number of constraints (see Equations 

(2.2) and (2.3)). Liang and Suganathan [174] proposed a dynamic particle multi-swarm 

optimization (DMS-PSO). In their design, a sub-swarm or several subswarms are 

assigned to optimize one objective selected from the objective functions and constrained 

functions. The assignment of these subswarms changes adaptively and the assignment 

depends on the complexity of the constraints, e.g. more number of subswarms will be 

assigned to work on difficult constraints.  In addition, the authors applied a local search 

with sequential quadratic programming (SQP) on a set of five randomly chosen particles’ 

personal best (pbest).  Twenty-four benchmark functions are tested and the algorithm is 

able to obtain the global (feasible) solution efficiently. The drawback is that the user-

defined parameters need to be tuned heuristically. In [175], the COP is converted into 

p+1 unconstrained objective functions and optimizes these functions as MOPs. The 

author exploited the information of the “worst” solutions by adding a global worst term 
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on the original velocity equation. The idea is to inform the particles to slightly move 

away from the center of the least feasible solutions found so far and head towards the 

direction of global best. The initial experimental results show this approach can produce 

good results for certain benchmark functions. The drawback is the ‘global worst’ is 

defined in terms of the solution with the worst constraint violation and the author plans to 

incorporate the worst objective function values in the future. 

During the past decade, researchers are interested in the design of MOEAs for 

unconstrained MOPs and only a handful of MOEA designs is specifically for handling 

constraints.  

In [158], the constraint handling is incorporated within a decision making 

framework based on goals and priority, in which the constraints are given higher priority 

than the objective functions during the search process. Hence, emphasis is given to 

searching for feasible solutions first then to only searching for global solution next. 

Coello Coello and Christiansen [159] developed two new MOEAs based on the 

notion of min-max optimum to solve CMOPs. These MOEAs only optimize feasible 

solutions since only feasible solutions will survive to the next generation and the 

crossover and mutation operators are designed in such only to produce feasible solutions. 

However, their algorithms may face difficulty in producing a set of feasible solutions at 

the initialization step and require large computational time if the feasible region is small.   

In [160], Multiobjective Evolutionary Strategy (MOBES) is proposed. This 

design includes dividing the infeasible individuals into different classes according to their 

“nearness” to the feasible region, ranking the infeasible individuals based on the class, 

computing fitness values according to proportion of feasible and/or infeasible individuals 
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in the population, and incorporating a mechanism to maintain a set of feasible Pareto 

optimum solutions in every generation. Experimental results on some benchmark 

functions indicate MOBES is efficient in handling constraints in CMOPs. 

Deb et al. [31] introduced a constrained domination principle to handle constraint 

in their NSGA-II. An individual i is said to constrained-dominate an individual j 1) if 

individual i is feasible and individual j is infeasible; 2) if both individuals i and j are 

infeasible and individual i has smaller constraint violations; and 3) if both individuals i 

and j are feasible and individual i dominates individual j. All feasible individuals are 

ranked via usual Pareto dominance relationship while all infeasible individuals are ranked 

according to their amount of constraint violation. This constraint handling technique is 

also adopted in micorgenetic algorithm (microGA) by Coello Coello and Pulido [177], 

and a MOPSO that is proposed by Coello Coello et al. [120]. 

Another novel MOEAs called Evolutionary Algorithm of Non-dominated Sorting 

with Radial Slots (ENORA) is proposed by Jimenéz et al. [161]. Their proposed 

constraint handling technique involves allowing feasible solutions to evolve towards 

optimality while infeasible solutions to evolve towards feasibility using the min-max 

formulation. The diversity mechanism divides the decision space into a set of radial slots 

along with the successive populations generated. Ray and Won [162] also employ 

standard min-max formulation for constraint handling and divides the objective space 

into a predefined number of radial slots where the solutions will compete with members 

in the same slot for existence.  

Harada et al. proposed Pareto Descent Repair Operator (PDR) to repair the 

infeasible solution by searching for feasible solution closest to the infeasible solutions in 
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the constraint function space [163]. Their idea is to reduce all violated constraints 

simultaneously.  

Geng et al. [164] proposed a new constraint handling strategy to address the 

deficiency of Deb’s constrained domination principle in NSGA-II [31]. In their proposal, 

infeasible elitists are kept to act as a bridge connecting any isolated feasible regions 

during the evolution process. In addition, they adopted the stochastic ranking [155] to 

obtain a good balance in selecting between the feasible and infeasible elitists. Their idea 

is applied to NSGA-II and compared the performance with the original NSGA-II on six 

benchmark CMOPs. Their proposed strategy shows significant improvement in terms of 

distributions and quality of the Pareto fronts on benchmark problems with disconnected 

feasible regions.     

In [165], the authors proposed two algorithms to solve CMOPs. For the first 

algorithm, Objective Exchange Genetic Algorithm for Design Optimization (OEGADO), 

each single-objective GA optimizes one objective or constraint function with independent 

population. Since there are several objectives and constraint functions, several GAs will 

run concurrently. At certain generations, the solutions found by all GAs will exchange 

information with each other. On the contrary, for the second algorithm, Objective 

Switching Genetic Algorithm for Design Optimization (OSGADO), a single-objective 

GA optimizes several objective functions in a sequential order, in which, one objective is 

optimized for a certain number of fitness evaluations, then switch to the next objective to 

optimize for a certain number of fitness evaluations, and this continues until the fitness 

evaluation for the last objective is completed. The process is repeated starting from the 

first objective to the last objective until the maximum number of fitness evaluations is 
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reached. Based on the experimental study, OEGADO shows better and consistent 

performance. 

Recently, Woldesenbet et al. [166] proposed an adaptive penalty function [27] 

that exploits the information of the solutions to guide the solutions towards the feasible 

region and search for optimum solution. They proposed a modified objective function 

value that consists of two key components: distance measure and adaptive penalty. Then, 

the dominance relation of the solutions is checked using the modified objective function 

values. Their idea is incorporated in NSGA-II, but can be easily extended to any MOEAs. 

Simulation results show the superiority of their proposed algorithm in performance 

compared to the selected MOEAs. 

  

8.3 Proposed Approach 

 Based on what we learn, the proposed approaches involve adopting an 

existing constraint handling technique and modify the mechanism in the original PSO to 

simultaneously handle constraints as well as optimize the objective functions. For the 

following subsections, the design elements of the proposed constrained PSO are 

discussed first, and then the designs are extended into a MOPSO.  

 

8.3.1 Transform a COP into an Unconstrained Bi-objective Optimization Problem 

 In Chapter 2, the general form of the multiobjective optimization problem 

(MOPs) is defined by Equations (2.1)-(2.4). From these equations, by setting k equal to 1 

(since there is only one objective function), we defined a general single constrained 

optimization problem (COP). To transform a COP into unconstrained bi-objective 
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optimization problem, both the inequality and equality constraints (i.e., ( )xjg  and ( )xjh  

respectively) are treated as one objective and the other objective is the original objective 

function ( )xF . Hence, Equations (2.1), (2.2) and (2.3) are transformed into the following 

general form of an unconstrained bi-objective optimization problem: 

Minimize ( ) ( ) ( )[ ]xxxF Fcv ,= ,         (8.1) 

where )(xcv  is the scalar constraint violation of a decision vector x (or particle) and it is 

mathematically formulated as below: 

 ∑
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Parameter δ  is the tolerance allowed for equality constraints, usually δ  is set to 0.001 or 

0.0001. If a particle or solution ( x ) satisfies the jth constraints, then )(xjcv  is set to zero, 

otherwise it is greater than zero. Finally, j
cmax  represents the maximum constraint 

violation of each constraint in the swarm population. The goal of computing Equation 

(8.2) is to treat each constraint equally and the )(xcv value lies between 0 and 1 [178].  

In solving MOPs, our final goal is to find a set of optimum solutions or the Pareto 

optimal set. Although the Pareto dominance relation is used to solve the bi-objective 

optimization problem in Equation (8.1), in this case, we only need to find one global 

optimum (feasible) solution. This is because if the solution found is infeasible (i.e., 

0)( >xcv ), it is unacceptable no matter how optimal is the fitness value ( ( )xF ). Only the 
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solutions that are landed on the feasible region (i.e., 0)( =xcv ) are considered potential 

solutions. Figure 8.1 illustrates the feasible region, Pareto front, search space, and the 

global optimum solution.  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 8.1. Illustration of bi-objective optimization problem ( ( )xF ). The feasible region is mapped to 

the solid segment. The shaded region represents the search space. The global optimum (black circle) 

is located beat the intersection of the Pareto front and the solid segment [155].   

 

8.3.2 Proposed PSO Algorithm to Solve COPs 

All of the existing constraint handling techniques have two goals: 1) to search for 

feasible solutions and to guide infeasible solutions towards feasibility; and 2) to converge 

to the global optimal solution or Pareto front. In view of this fact, we have proposed the 

essential design elements to achieve these goals: 1) updating personal best procedure 

based on the rank in the swarm population and constraint violation; 2) maintaining 

feasible and infeasible global best archive to preserve both feasible and infeasible 

nondominated solutions, respectively; 3) the acceleration constants in the PSO equation 

are adjusted based on the feasibility ratio and the constraint violations correspond to the 

members in personal best archive and global best archive; 4) a mutation procedure is 

applied in such the range of each decision variable covered for mutation is adaptively 
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reduced as the number of iterations increases to encourage exploration in early iterations 

and promote exploitation via fine tuning in the later iterations. 

Figure 8.2 presents the pseudocode of the proposed PSO algorithm, where t  

represents the iteration count and the parameter fr  is the feasibility ratio of the particles’ 

personal best (pbest). In the following, the key procedures (highlighted in boldface in 

Figure 8.2) are elaborated in the following subsections. 

Begin 

/*Initialization 

Initialize swarm population and velocity 

Set Maximum iterations ( maxt ) 

Set iteration 0=t  

Store Personal Best (pbest) 

 

While maxtt <  

    Calculate Fitness and Constrain violation 

    Apply Pareto dominance Concept 

    Update Personal Best (pbest) 

     Calculate fr  

   Update Feasible and Infeasible Global Best Archive  

     Particle Update Mechanism 

    Mutation Operator 

    1+= tt    

EndWhile 

Report optimum solution in Feasible Global Best Archive 

End  
 

Figure 8.2 Pseudocode of the proposed PSO algorithm to solve for COPs. 

 

8.3.2.1 Update Personal Best (Pbest) Archive 

In [173], the personal best is updated based on the two selection rules: 1) 

nondominated particles are better than dominated ones; and 2) a particle with lower 

constraint violation is better than a particle with higher constraint violation. The 

drawback of these rules is to determine which rule should be prioritized first. If rule one 

is given higher priority, the progress of searching for feasible regions may slow down 

since personal best indirectly influence the particles’ search behavior in the swarm 



 187 

population. On the contrary, if rule two is given higher priority, all infeasible solutions 

will quickly land on the feasible regions but this will indirectly degrade the diversity in 

the swarm population and may results in premature convergence. Hence it is important to 

update personal best using both rules at the same time to maintain a balance between 

convergence to fitter particles and search of feasible regions.   

In this study, we propose the following equation to incorporate the rank value and 

scalar constraint violation of a particle (with decision vector x ) to update the personal 

best if the latest recorded personal best of a particle is in infeasible region.  

( )
( )

( )x
x

x cv
rank

RC +







−=

1
1 ,                     (8.4) 

where ( )xRC  is the rank-constraint violation indicator of particle with decision vector x , 

( )xrank  represents the current rank value, while )(xcv  refers to the scalar constraint 

violation of the particle with decision vector x .  The rank values are obtained from 

applying the Pareto ranking [25] to the swarm population. Refer to Equation (8.4), the 

first term indicates the dominant relationship of the particles comparing the others and it 

is mapped between zero and one, where zero indicates non-dominated particles and any 

values greater than zero indicates particle is dominated in various degrees. The purpose is 

to search for the non-dominated solutions regardless of if the solutions are infeasible, and 

these solutions will possibly indirectly influence the improvement of the particles in the 

next iterations in terms of convergence. However, this does not guarantee that the 

particles will move towards the feasible regions easily since most of the time the 

searching is spent in the infeasible regions [155]. So, the second term is added to 

Equation (8.4) to emphasize the current state of the particles in terms of their feasibility 
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or the degree of infeasibility in the current population. Note that the range of RC  is 

between 0 and 2, and a particle with smaller RC  value indicates better solution in terms 

of its convergence and feasibility status.  

The updating procedures, perform in every iteration, are summarized in Figure 

8.3.  

Function UpdatePbestArchive(particle,Pbest_Archive, ( )xF , )(xcv ) 

 

/* particle = a particles (with decision vector x )  in the swarm population 
/* Pbest_Archive = Previously recoded personal best 

/* ( )xF  = a Particle’s fitness value 

/* )(xcv  = scalar constraint violation of a particle 

Begin 

  If Pbest_Archive={ }  /*an empty set 

  ComputeRC value (Equation 8.4) 

  Record RC value ( )(_ xRCpbest ) 

  Record particle’s position ( )(xpbest ) 

  Record particle’s fitness value ( )(_ xfitnesspbest ) 

Record particle’s constraint violation (Pbest_cv or 

))(( xpbestcv )  

  Else 

    If ))(( xpbestcv >0  /*infeasible 

   If ( ) )(_ xx RCpbestRC ≤   

      Update )(_ xRCpbest  

      Update )(xpbest  

      Update )(_ xfitnesspbest  

   Update Pbest_cv or ))(( xpbestcv  

   EndIf 

    Else   /*If iPbest is feasible 

   If ( )( ) ( ) ( )( ){ }xxxxx essPbest_fitn≤≤= ForRCpbestRCandcv )(_0)(  

      Update )(_ xRCpbest  

      Update )(xpbest  

      Update )(_ xfitnesspbest  

   Update Pbest_cv or ))(( xpbestcv  

   EndIf 

    EndIf 

   EndIf 

End 

 

Figure 8.3 Pseudocode of updating the particles best archive. 
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Refer to Figure 8.3, when a recorded personal best is infeasible, then the updating step 

depends on Equation (8.4). On the other hand, if it is feasible, then the updating is done 

by comparing the rank values (because 0)( =xcv ) or fitness values of the particles in the 

swarm population with those recorded in the personal best archive. The updating of 

infeasible recorded personal best is based on RC  values in order to emphasize both 

convergence and feasibility; while the updating of feasible recorded personal best is 

based on dominance relationship in order to support the convergence towards the global 

optimum in the feasible region. 

Once the updating procedure is completed, the feasibility ratio of the particles’ 

personal best ( fr ) is updated via the following equation: 

sizepopulationswarm

feasiblearethatbestpersonalparticlesofnumber
r f

'
= .    (8.5) 

 

8.3.2.2 Update Feasible and Infeasible Global Best Archive 

 Recent studies have realized the advantage of using infeasible solutions to search 

for global optimum solution [165,166,179]. One purpose is to promote diversity during 

the search process through a balance between feasible and infeasible solutions [157,165]. 

Another purpose is to use the infeasible solutions as the bridge to explore isolated 

feasible regions in order to search for better feasible solutions and to deal with the case 

where the proportional feasible region is relatively smaller compared to the entire search 

space. Hence we propose a fixed size global best archive that stores only the best feasible 

solution found so far and the infeasible nondominated solutions that have minimum 

scalar constraint violation found so far. 
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There are two separate procedures to update the global best archive and they are 

summarized here: 

• Procedure to update the best feasible solution:  If there is no feasible solution in the 

archive, the best feasible solution (feasible solution with minimum fitness) is 

immediately accepted in the archive. If the achieve has recorded the best feasible 

solution in the pervious iteration, then the new best feasible solution in the current 

iteration is compared. If the recorded one has larger fitness value, then the current best 

feasible solution will replace the recorded one, otherwise the current one is removed. 

• Procedure to update the infeasible nondominated solutions: If the archive is empty 

or has no infeasible members, the infeasible nondominated solutions are accepted to fill 

up the archive. If there are infeasible members in the archive, the scalar constraint 

violation of the new infeasible nondominated solutions is compared with the particle 

with the largest scalar constraint violation stored in the archive. Those new infeasible 

nondominated solutions with scalar constraint violation exceed the largest scalar 

constraint violation stored in the archive are removed. Then, the remaining new 

infeasible nondominated solutions are compared with respect to any infeasible 

members in the archive. If any infeasible new solutions are not dominated by any 

archive infeasible members, they are accepted into the archive. Similarly, any archive 

infeasible members dominated by any new infeasible solutions are removed from the 

archive.  

Once the two procedures are completed and if the archive size exceeds the 

allocated size, then Harmonic distance [180] is applied to remove the crowded members 

and to maintain diversity among the archive members. Afterwards, the crowded 
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tournament selection operator is applied to select the global best leaders ( gbest ) from 

achieve to update the particle velocity and position equations (see Equations (8.6) and 

(8.7)). Note also that the archive will be used on mutation operator procedure. 

 

8.3.2.3 Particle Update Mechanism 

In the original PSO design, the particles modeled the swarm behavior and flew 

through the hyperdimensional space to search for possible optimal solutions. The 

movement of particles is influenced by their past experiences, i.e., their personal past 

experience and successful experience attained by their peers. Cushman [175] added a 

global worst term (Gworst) with a very low acceleration constant (suggested 0.0001) to 

nudge the particles away from the center of the least feasible solution. Lu and Chen [172] 

replaced the inertial term with personal and global bests in order to restrict the velocity 

term so that those feasible particles (solutions) will not be moved away from the feasible 

regions. 

In our design, we make use of the scalar constraint violation and the feasibility ratio 

( fr ) (i.e., Equation 8.5) to adjust the acceleration constants. The purpose is to guide the 

particles towards feasibility first and then influence them to search for global optimal 

solution. The scalar constraint violation belongs to the members in personal best and 

global best archives.  The new PSO equation and its new acceleration constants are 

formulated as follow: 

( ) ( ) ( ) ( )( ) ( )( )txgbestrctxtpbestrctvwtv jijjijijiji ,22,,11,, 1 −××+−××+×=+  

           (8.6) 

( ) ( ) ( )11 ,,, ++=+ tvtxtx jijiji         (8.7) 
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where 

 ( ) ( )( )( )tcvpbestrc if _115.01 −+−×=      (8.8a)  

 ( )( )cvgbestrc f _15.02 −+×=        (8.8b) 

( )tv ji ,  is the jth dimensional velocity of particle i in iteration t; ( )tx ji ,  is the jth 

dimensional position of particle i in iteration t; ( )tpbest ji ,  denotes the  jth dimensional 

personal best position of the particle i in iteration t; ( )tcvpbest i_  is the scalar constraint 

violation of the personal best of particle i in iteration t, jgbest  is the jth dimensional 

global best selected from the global best archive; cvgbest _  represents the scalar 

constraint violation of the selected gbest ; 1r  and 2r  are a random numbers within [ ]1,0  

that are regenerated every time they occur; w  is the inertial weight, set to varied between 

0.1 to 0.7 (as suggested in [121] to eliminate the difficulty of fine tuning the inertial 

weight); and 1c  and 2c  are the acceleration constants. Please note the PSO flight 

equations stress the update mechanism of a particle i (so the variable t and subscript i are 

used). On the other hand, Equations (8.1)-(8.3) emphasizes the scalar constraint violation 

of a particle with decision vector x . Specifically, ( )tcvpbest i_  refers to ))(( xpbestcv in 

iteration t. 

Adjustment of acceleration constants: Refer to Equations (8.8a) and (8.8b), the 

values of 1c  and 2c  are influenced by the feasibility ratio of the particles’ personal best 

( fr ) and the amount of constraint violations of the pbest  and gbest .  In general, if 1c  is 

larger than 2c , the second term in Equation (8.6), i.e., ( ) ( )( )txtpbestrc jiji ,,11 −×× , is 

emphasized, in which, the movement of a particle depends more on their personal past 
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experience than the global experiences attained by the whole swarm population. Table 

8.1 briefly summarizes the effect of  fr ,  cvpbest _ , and cvgbest _  on the second and 

third terms in Equation (8.6). Observing Table 1, we can generally conclude that small fr  

will influence the particles to favor on searching for feasible regions instead of optimum 

solution, while with small cvgbest _  and large 
f

r , the particles are inclined to search for 

optimum solution.  However, both cvpbest _  and cvgbest _  will also guide the particles 

towards feasibility but in an indirect manner.   

 

Table 8.1  Brief summary of the effects of  fr ,  cvpbest _ , and cvgbest _  on the second and third 

terms in Equation (8.6) 

fr  cvpbest _  cvgbest _  Comments 

small small small 21 cc > ; slightly emphasize on the second term  

(Both terms will guide the particle towards feasibility) 

small small large 21 cc >> ; emphasize on the second term  

(Second term guides the particle towards feasibility) 

small large small 
21 cc ≈ ; both terms may have equal emphasis 

(Both terms will guide the particle towards feasibility and 

find better solutions) 

small large large 21 cc > ; emphasize on the second term 

(Second term guides the particle towards feasibility) 

large small small 21 cc < ; emphasize on the third term  

(Third term guides the particle to find better solutions) 

large small large 
21 cc ≈ ; both terms may have equal emphasis 

(Both terms will guide the particle towards feasibility and 

find better solutions) 

large large small 21 cc << ; emphasize on the third term  

(Third term guides the particle to find better solutions) 

large large large 21 cc < ; slightly emphasize on the third term  

(Third term guides the particle to find better solutions) 

 

 

8.3.2.4 Mutation Operator 

In this chapter, the mutation procedure proposed in [120] is applied. The 

procedure is performed in the randomly selected dimension(s) of the decision variables in 
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order to bring the particles from being trapped in the local optima. However, in [120], the 

mutation covers the full range (upper and lower bound of the decision variables in 

Equation (2.4)). In our approach, the range covered for mutation is adaptively reduced as 

the number of iterations increases. The idea is as follow: Initially, the mutation operator 

covers the full range to allow the particles to explore the whole search space, hoping to 

search for feasible region or better solutions. As the number of iteration increases, the 

range of the search space covered reduces via a nonlinear equation to reduce the effect of 

mutation operation in the sense of global search, and encourage fine tuning of the local 

search. The following presents the nonlinear equation to control the range covered: 
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 where  
iablesdecisionofnumber

lb
var

β
=  and    (8.10) 

iterationsofnumbermaximum

iterationCurrent
T = .        (8.11) 

lb is the lowest percentage allowable parameter to narrow the search space with a quick 

pace, before entering the finely narrowing the search space and β  is user defined 

parameter; while α is another user defined parameter control how fast to finely narrow 

the range covered. Figure 8.4 depicts the Equation (8.9). Observing in Figure 8.4, the 

range covered is slowly decreases from 0 to 25% of the maximum iterations, provide 

opportunity for the particles to explore the entire search space. Next, the mutation range 

covered decrease quickly within 25% and 40% of the maximum iterations to narrow 
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down the exploration in the search space since at this stage the global particles will either 

closer or in the feasible region. Lastly, for the remaining iteration count the mutation 

range covered is slowly reduced to create a path way to provide changes for the mutated 

particles to explore locally and towards the global optimum.   

 

 

 

 

 

 

 

 

 

 

 
Figure 8.4 Graph for percentage range to be reduced against T. 

 

Function MutateParticles(particles, current and previous best 

solutions) 

 

/* particles = current particles in the swarm population 

/*Note: Mutation operator procedure see [120]. 

Begin 

 Randomly select particles from half of the swarm population 

 Calculate reducedRange _%  from Equations (8.9-8.11) 

 For each selected particle 

        If Previous best solution equals to current best solution 

       If rand<0.8  /* mutation rate of 0.8 

        Apply mutation operator on best solution 

       Else 

        Apply mutation operator on the current particle 

       EndIf 

               Replace the current particle with the mutated one 

   Else 

       Apply mutation operator on the current particle 

               Replace the current particle with the mutated one 

              EndIf     

  EndFor 

End 

 

Figure 8.5 Pseudocode of mutation operator applies to the swarm population. 

 

The mutation procedure is applied to half of the population size. The particles to 

be mutated are chosen randomly. In addition, during the later stage of the search process, 

%Range_reduced

0 T

1

lb

10.40.25
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0 T

1

lb
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the particles may trap in the local optimal. Hence, the best solution from previous 

iteration and the best solution from current iteration are compared. If they are the same, 

then with a higher probability, the mutation operator is applied to the best solution and 

replaces the mutated one with a selected particle in the swarm population. The idea is to 

push the particles to advance towards the global optimum solution. The following 

pseudocode (Figure 8.5) shows how the mutation operator is applied to the swarm 

population.   

 

8.3.3 Proposed Constrained MOPSO to Solve CMOPs 

In this section, we extended the proposed PSO to a constrained MOPSO for 

CMOPs. In the proposed MOPSO, the technique of converting a COP into an 

unconstrained bi-objective optimization problem is applied to transform the CMOPs into 

an unconstrained tri-objective optimization problem. Note that we use the term ‘tri-

objective optimization problem’ since in this study, CMOPs with two objective functions 

are considered.  For this technique, both the inequality and equality constraints (i.e., 

Equations (2.2) and (2.3), respectively) are treated as one objective and the other 

objectives are the original two objective functions. Hence, Equations (2.1)-(2.3) are 

transformed into the following general form of an unconstrained tri-objective 

optimization problem: 

Minimize ( ) ( ) ( ) ( )[ ]xxxxF 21 ,, FFcv= ,              (8.12) 

where )(xcv  is the scalar constraint violation of a decision vector x (or particle) and it is 

mathematically formulated as below: 
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where  
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Parameter δ  is the tolerance allowed for equality constraints, usually δ  is set to 0.001 or 

0.0001. If a particle or solution ( x ) satisfies the jth constraints, then )(xjcv  is set to zero, 

otherwise it is greater than zero. In solving MOPs, our final goal is to find the Pareto 

optimum set. Although the Pareto dominance relation is used to solve the tri-objective 

optimization problem in Equation (8.12), in this case, we only need to find the Pareto 

front of two objective functions. This is because if the set of nondominated solutions 

found is infeasible (i.e., 0)( >xcv ), it is unacceptable no matter how high quality the 

Pareto front of the three objective functions is produced. Only the set of nondominated 

solutions that are landed on the feasible regions (i.e., 0)( =xcv ) are considered potential 

Pareto front.  

The general design procedure of the proposed constrained MOPSO is the 

extension of the proposed constrained PSO. The same designs elements are employed 

with exception of the mutation procedure. The brief summary of the essential design 

elements in the proposed MOPSO are given: 1) updating personal best procedure based 

on the rank in the swarm population and constraint violation; 2) maintaining feasible and 

infeasible global best archive to preserve both feasible and infeasible nondominated 

solutions, respectively; 3) the acceleration constants in the PSO equation are adjusted 

based on the feasibility ratio and the constraint violations correspond to the members in 

personal best archive and global best archive; and 4) the mutation rate is adaptively 

updated based on the feasibility ratio, in which a higher frequency of applying mutation 
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operator to the swarm population if there are few feasible particles to promote 

exploration, otherwise a lower frequency on activating the mutation operator if there are 

many feasible particles.  Mutation operators that support global and local searches are 

used.  

Although the same design elements are adopted but some modifications on these 

design elements are needed to accommodate the nature of MOPs. Figure 8.6 presents the 

pseudocode of the proposed constrained MOPSO. Procedures that are slightly modified 

are highlighted in bold and are discussed below.  

 

Begin 

/*Initialization 

Initialize swarm population and velocity 

Set Maximum iterations ( maxt ) 

Set iteration 0=t  

Store Personal Best (pbest) 

 

While maxtt <  

    Calculate Fitness and Constrain violation 

    Apply Pareto dominance Concept 

    Update Personal Best (pbest) 

     Calculate fr  

   Update Feasible and Infeasible Global Best Archive 

   Global Best Selection 

   Particle Update Mechanism 

          Mutation Operator 

    1+= tt    

EndWhile 

Report optimal Pareto front in Feasible Global Best Archive 

End  
 

Figure 8.6 Pseudocode of the proposed constrained MOPSO algorithm. 
 

 

8.3.3.1 Updating Personal Best Archive  

The updating of personal best archive procedures are slightly modified and are 

summarized below. Note that the procedures are done in every iteration.  
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• If the personal best archive is empty, record all computed RC  values of all particles, 

including their corresponding positions ( pbest ) and their degree of constraint 

violations ( cvpbest _ ). 

• If the personal best archive is nonempty, then for those recorded personal best that are 

infeasible, their recorded RC  values are compared with the RC values of their 

corresponding particles in the swarm population. Any of the current particles with 

smaller RC  values will replace the recorded ones, including updating the 

corresponding RC  values, pbest , and cvpbest _ . However, for those recorded 

personal best that are feasible (i.e., 0)( =xcv ), pure Pareto ranking [25] is applied to 

these personal best and their corresponding particles in the swarm population. If the 

current particle dominates their corresponding personal best, then the current one will 

replace the recorded one. If both do not dominate each other, one of them is randomly 

chosen to update the personal best archive. Similarly, the updating of personal best 

archive includes updating the RC values, pbest , and cvpbest _ . 

The updating of infeasible recorded personal best is based on RC  values in order to 

emphasize both convergence and feasibility; while the updating of feasible recorded 

personal best is based on dominance relationship in order to support the convergence 

towards the Pareto front in the feasible region. 

 

8.3.3.2 Updating Feasible and Infeasible Global Best Archive 

For the proposed constrained MOPSO, we propose two fixed size global best 

archives, i.e., feasible and infeasible global best archives. Feasible global best archive 

stores only the best feasible solution found so far, while infeasible global best archive 
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stores the infeasible solutions that have minimum scalar constraint violation found so far. 

The solutions in both archives serve as potential global best candidates ( gbest ) for the 

particle flight update. 

To maintain the archive, first the new nondominated particles from the swarm 

population are found. Then, these new nondominated particles are divided into new 

feasible nondominated solutions and infeasible nondominated solutions. The procedures 

to maintain both global best archives are summarized below: 

• Maintaining Feasible Global Best Archive: At each iteration count, new feasible 

nondominated solutions are compared with respect to any members in the archive. If 

new feasible solutions are not dominated by any archive members, they are accepted 

into the archive. Similarly, any archive members dominated by any new feasible 

solutions are removed from the archive. If the archive population size exceeds the 

allocated archive size, then harmonic distance [180] is applied to remove the crowded 

members and to maintain diversity among the archive members.  

• Maintaining Infeasible Global Best Archive: In the first procedure, the scalar 

constraint violation of the new infeasible nondominated solutions is compared with 

the largest scalar constraint violation stored in the archive. Those new infeasible 

nondominated solutions with scalar constraint violation exceed the largest scalar 

constraint violation stored in the archive are removed. Then, in the second procedure, 

the remaining new infeasible nondominated solutions are compared with respect to 

any members in the archive. If any new solutions are not dominated by any archive 

members, they are accepted into the archive. Similarly, any archive members 

dominated by any new solutions are removed from the archive. If the archive 
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population size exceeds the allocated archive size, then harmonic distance [180] is 

applied to remove the crowded members and to maintain diversity among the archive 

members. 

 

8.3.3.3 Global Best Selection  

As mentioned in previous subsection, the infeasible global best archive plays a 

vital role in finding the global optimum because the infeasible members will lead the 

particles towards the feasible regions especially if the feasible region is very small 

compared to the entire objective space or act as a bridge to bring the particles from 

infeasible regions to other isolated feasible regions. The members from the feasible 

global best archive will guide the particles to search for global optimum in the feasible 

regions. With equal probability, gbest  is selected either from feasible global best archive 

or infeasible global best archive. This is to give equal probability of utilizing the feasible 

and infeasible gbest  to guide the particles. Unless one of the archives is empty, then by 

default the gbest  is selected from remaining nonempty archive. Once which archive is 

chosen, the crowding distance values of the archive members are used to guide the 

particles to select their gbest . 

 

8.3.3.4 Mutation Operator  

In this approach, two mutation operators are applied, i.e., uniform and Gaussian 

mutation operators. Uniform mutation aims to encourage exploration in the swarm 

population and is presented in Equation (8.15), while Gaussian mutation in Equation 
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(8.16) promotes exploitation among the particles in the swarm population via local search 

characteristics. 

 ( ) ( )L

ji

U

jiuji xxrtx ,,, −=          (8.15) 

( ) ( ) ijiji txtx β+= ,,          (8.16) 

where ( )tx ji ,  is the jth dimensional position of particle i in iteration t; ur  is a random 

number within [ ]1,0 ; U

jix ,  and L

jix ,  are the jth dimensional upper and lower bound of 

particle i; and iβ  represents a random number in which it is drawn from the Gaussian 

distribution, ( )( )L

ji

U

jim xxPGaussian ,,,0 − .  Parameter mP  is computed using Equations 

(8.17) and (8.18) [135]. 
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The mP  parameter represents the mutation rate and is adaptively determined by the 

feasibility ratio of the particles’ personal best ( fr ). The idea is to allow for a higher 

mutation rate when there are fewer feasible particles ( fr  is small) or vice versa. Figure 

8.7 is the illustration of Equation (8.18). lb  represents the minimum allowable mutation 

rate and is determined from Equation (8.14). If 1=fr , mutation rate will remain lb . For 

simplicity, a random number nr  with uniform distribution between [ ]1,0  is generated to 

decide which mutation operator is applied. If 5.0<nr , uniform mutation is applied, 

otherwise Gaussian mutation is applied. 



 203 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 8.7 Mutation rate ( mP ) versus feasibility ratio of the particles’ personal best ( fr ). 

 

 

8.4 Comparative Study 

Two experiments are performed. The first experiment evaluates the performance 

of the proposed PSO for COPs and compares the results against the selected constrained 

approaches, while the second experiment evaluates the performance of the proposed 

constrained MOPSO against two state-of-the-art constrained MOEAs. 

 

8.4.1 Experiment 1: Performance Evaluation of the Proposed PSO for COPs 

8.4.1.1 Experimental Framework 

Thirteen well-known benchmark functions [181] are used to test the performance 

of the proposed constrained PSO. Table 8.2 presents the summary of the main 

characteristics of all teat functions. It provides the type of objective functions (i.e., linear, 

nonlinear, cubit, quadratic) and their types of constraint functions (i.e., linear inequality 

(LI), nonlinear inequality (NI), linear equality (LE), and nonlinear equality (NE)). The 

parameter n represents the number of decision variables, and parameter a represents the 

number of inequality constraints that are active. The parameter ρ  is called feasibility 

ratio. This ratio is determined by calculating the percentage of feasible solutions out of 
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1,000,000 randomly generated solutions in the entire search space [157]. If the feasibility 

ratio is very small, this challenges the algorithms to search for feasible solutions.  

 

Table 8.2 Summary of main characteristics of the 19 benchmark functions. 

Problems n Type of function ρ  LI NI LE NE a 

g01 13 Quadratic 0.0111% 9 0 0 0 6 

g02 20 Nonlinear 99.9971% 1 1 0 0 1 

g03 10 Nonlinear 0.0000% 0 0 0 1 1 

g04 5 Quadratic 52.1230% 0 6 0 0 2 

g05 4 Cubic 0.0000% 2 0 0 3 3 

g06 2 Cubic 0.0066% 0 2 0 0 2 

g07 10 Quadratic 0.0003% 3 5 0 0 6 

g08 2 Nonlinear 0.8560% 0 2 0 0 0 

g09 7 Nonlinear 0.5121% 0 4 0 0 2 

g10 8 Linear 0.0010% 3 3 0 0 3 

g11 2 Quadratic 0.0000% 0 0 0 1 1 

g12 3 Quadratic 4.7713% 0 9
3 

0 0 0 

g13 5 Nonlinear 0.0000% 0 0 0 3 3 

g14 10 Nonlinear 0.0000% 0 0 3 0 3 

g15 3 Quadratic 0.0000% 0 0 1 1 2 

g16 5 Nonlinear 0.0204% 4 34 0 0 4 

g17 6 Nonlinear 0.0000% 0 0 0 4 4 

g18 9 Quadratic 0.0000% 0 13 0 0 6 

g19 15 Cubic 33.1761% 0 5 0 0 0 

 

 

 

 

Table 8.3. Parameter configurations for the proposed PSO. 

Parameter settings 
Test Problems 

β  α  

g02, g10, g19 1 10 

g04, g12, g16 1 15 

g11 1 16 

g01, g06 1 20 

g03, g08 0.1 10 

g18 0.1 11 

g07, g13, g14, g15, g17 0.1 15 

g09 0.1 20 

g05 0.1 25 

 

Parameter configurations of the proposed PSO for each test function are presented 

in Table 8.3. For each test function, we perform 300,000 fitness function evaluations and 

conduct 30 independent runs [155]. The experiment is implemented in Matlab software. 
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8.4.1.2 Simulation Results and Analysis 

Table 3 presents the best, median, worst, and mean results obtained by the 

proposed constrained PSO for each test function. Among the nineteen test problems, the 

proposed PSO is able to obtain the optimal for g01, g04, g06, g08, g11, g12, g15, and 

g16. The following test problems: g02, g03, and g18 have the best results that are very 

close to the optimum. From Table 8.4, we can note that only g17 has one infeasible run 

among the 30 independent runs. This means among 30 runs, only run that the proposed 

constrained PSO is unable to find any feasible solutions. This case is rare and considered 

an extreme case. In addition, the constrain violation for the infeasible run is extremely 

low, which is 1.7859E-05.  

The proposed constrained PSO is compared against the four selected approaches. 

They are: Stochastic Ranking method (SR) [155], dynamic-objective method and 

restricted velocity particle swarm optimization (DOM+RVPSO) [172], master-slave 

particle swarm optimization (MSPSO) [179], and feasibility tournament and perturbing 

the particle’s memory (PESO) [182]. The experiment results for the thirteen test 

problems are listed  in Table 8.5. Observed Table 8.5, our algorithm can achieve the same 

or better performance than some of the selected approaches for the following test 

problems, g01, g03, g04, g06, g08, g11, and g12. The proposed algorithm is unable to 

obtain  the  best  performance compared  to some of  the selected  approaches for  the test 

problems: g02, g05, g07, g09, g10, and g13. However, the proposed algorithm is able to 

performance  better  than MSPSO  for test problems g05, g07, and g09, and obtains better 

performance than DOM+RVPSO for test problems g02 and g13. For test problem g13, 
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the proposed algorithm obtains the better results for mean and worst when compared to 

SR. 

 

Table 8.4 Experimental results on the 19 benchmark functions with 50 independent runs. Note that 

the first column presents the test problem and its global optimal. 

Problems/ 

optimal 
Best Median Worst Mean Std 

Infeasible 

Runs 

g01/ 

-15.000000 
-15.000000 -15.000000 -13.000000 -14.840000 5.54E-01 0 

g02/ 

-0.803619 
-0.803618 -0.793081 -0.772503 -0.792893 7.45E-03 0 

g03/ 

-1.0005001 
-1.0004927 -1.0004739 -1.0003476 -1.0004554 4.42E-05 0 

g04/ 

-30665.539 
-30665.539 -30665.539 -30665.538 -30665.539 8.39E-05 0 

g05/ 

5126.4981 
5126.5753 5137.4183 5199.3823 5143.8872 1.82E+01 0 

g06/ 

-6961.8138 
-6961.8138 -6961.8132 -6961.8078 -6961.8128 1.12E+03 0 

g07/ 

24.3062091 
24.346823 24.734355 25.248314 24.765756 2.26E+01 0 

g08/ 

-0.095825 
-0.095825 -0.095825 -0.095825 -0.095825 9.65E-13 0 

g09/ 

680.63006 
680.63260 680.65159 680.73852 680.65835 2.07E-02 0 

g10/ 

7049.248 
7086.0745 7427.0046 7627.0983 7408.8877 1.12E+02 0 

g11/ 

0.7499000 
0.7499000 0.7499001 0.7499051 0.7499006 1.19E-06 0 

g12/ 

-1.000000 
-1.000000 -1.000000 -1.000000 -1.000000 0 0 

g13/ 

0.0539498 
0.0539645 0.0568509 0.1121465 0.0607371 1.19E-01 0 

g14/ 

-47.764888 
-47.326592 -45.232864 -43.439452 -45.357137 9.91E-01 0 

g15/ 

961.71502 
961.71502 961.71759 961.99117 961.73767 5.69E-02 0 

g16/ 

-1.905155 
-1.905155 -1.905155 -1.905154 -1.905155 3.35E-07 0 

g17/ 

8853.53967 
8854.0298 8927.6184 8975.5617 8912.7110 4.96E+01 1 

g18/ 

-0.866025 
-0.866021 -0.865341 -0.858935 -0.864311 2.25E-03 0 

g19/ 

32.655592 
33.707518 36.240328 40.272815 36.329895 1.81E+00 0 
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Table 8.5 Comparison of the proposed algorithm with respect to SR[155], DOM+RVPSO [172], 

MSPSO [179], and PESO [182] on 13 benchmark functions. Note that the first column presents the 

test problem and its global optimal. 

Problems/ 

optimal 
 SR[153] 

DOM+RVPSO 

[170] 
MSPSO [177] PESO [180] Proposed 

g01/ 

-15.000 

Best 

Mean 

Worst 

St. dev 

-15.000 

-15.000 

-15.000 
1.3E-13 

-15.000 

-14.419 

-12.453 

8.5E-01 

-15.000 

-15.000 

-15.000 
4.12E-04 

-15.000 

-15.000 

-15.000 

0 

-15.000 

-14.840 

-13.000 

5.54E-01 

g02/ 

-0.803619 

Best 

Mean 

Worst 

St. dev 

-0.803619 
-0.772078 

-0.683055 

2.6E-02 

-0.664028 

-0.413257 

-0.259980 

1.2E-01 

-0.803020 

-0.800418 

-0.799342 

1.51E-03 

-0.803619 

-0.801320 
-0.786566 

4.59E-03 

-0.803618 

-0.792893 

-0.772503 

7.45E-03 

g03/ 

-1.001 

Best 

Mean 

Worst 

St. dev 

-1.001 

-1.001 

-1.001 

6.0E-09 

-1.005 

-1.003 

-0.933 

1.3E-02 

1.000 

0.998 

0.996 

1.58E-03 

-1.001 

-1.001 

-1.000 

3.15E-07 

-1.001 

-1.001 

-1.000 

4.42E-05 

g04/ 

-30665.539 

Best 

Mean 

Worst 

St. dev 

-30665.539 

-30665.539 

-30665.539 
2.2E-11 

-30665.539 

-30665.539 

-30665.539 
1.2E-11 

-30665.537 

-30663.010 

-30658.300 

2.79E+00 

-30665.539 

-30665.539 

-30665.539 

0 

-30665.539 

-30665.539 

-30665.538 

8.39E-05 

g05/ 

5126.4981 

Best 

Mean 

Worst 

St. dev 

5126.497 

5126.497 

5126.497 

6.2E-12 

5126.4842 

5241.0549 

5708.2250 

1.8E+02 

5126.6051 

5129.8001 

5157.2247 

1.25E+01 

5126.4981 

5126.4981 

5126.4981 

0 

5126.5753 

5143.8872 

5199.3823 

1.82E+01 

g06/ 

-6961.814 

Best 

Mean 

Worst 

St. dev 

-6961.814 

-6961.814 

-6961.814 
6.4E-12 

-6961.814 

-6961.814 

-6961.814 
4.6E-12 

-6961.830 

-6957.760 

-6954.650 

2.69E+00 

-6961.814 

-6961.814 

-6961.814 

0 

-6961.814 

-6961.813 

-6961.808 

1.12E+03 

g07/ 

24.306 

Best 

Mean 

Worst 

St. dev 

24.306 

24.306 
24.308 

2.7E-04 

24.306 

24.317 

24.385 

2.4E-02 

24.373 

24.180 

23.750 

2.53E-01 

24.306 

24.306 

24.306 

3.34E-06 

24.347 

24.766 

25.248 

2.26E+01 

g08/ 

-0.095825 
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8.4.2. Experiment 2: Performance Evaluation of the Proposed Constrained MOPSO  

8.4.2.1. Experimental Framework 

Table 8.6 Parameter configurations for testing algorithms. 

Algorithms Parameter Settings 

NSGA-II  

[31] 

Population size =100; crossover probability = 0.9; mutation probability = n1 ; SBX 

crossover parameter = 20; polynomial mutation parameter = 20.  

GZHW  

[164] 

Population size =100; crossover probability = 0.9; mutation probability = n1 ; SBX 

crossover parameter = 20; polynomial mutation parameter = 20; comparison probability 

= 0.45; penalty parameters, 1=
j

w , 1=β . 

WTY  

[166] 

Population size =100; 
Test Functions BNH. CTP1-CTP8,  

Crossover probability = 0.9; mutation probability = n1 ; SBX crossover parameter = 10; 

polynomial mutation parameter = 20. 
Test Functions SRN, TNK, OSY, CONSTR, and Welded Beam  

Crossover probability = 0.9; mutation probability = n1 ; SBX crossover parameter = 5; 

polynomial mutation parameter = 5. 

Proposed 

MOPSO 
Population size =100; feasible and infeasible Gbest archive size = 100. 

 

As stated earlier these exist no prominent constrained MOPSO for CMOPs. 

Instead, three state-of-the-art constrained MOEAs are chosen for performance 

comparison. They are NSGA-II [31], Geng et al. [164],  (indicated by GZHW), and 

Woldesenbet et al. [166] (indicated by WTY).  Each algorithm is set to perform 50,000 

fitness function evaluations. The parameter configurations for all testing algorithms are 

summarized in Table 8.6. The fourteen benchmark problems are chosen to evaluate the 

performance of the proposed MOPSO with the selected MOEAs. All the benchmark 

problems are two objectives minimization problems and they are listed in Tables 8.7 and 

8.8: BNH [160], SRN [161], TNK [183], OSY [184], CTP1-CTP8 [185], CONSTR [1], 

and Welded Beam [165]. Similar to Table 8.2, the summary of the main characteristics of 

these benchmark problems are presented in Table 8.9. All algorithms use a real-number 

representation for decision variables. For each experiment, 50 independent runs were 
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conducted to collect the statistical results, and the results are illustrated by statistical box 

plots. 

 

Table 8.7 The 14 benchmark CMOPs used in this study. All objective functions are to be minimized. 
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Table 8.8 Parameter setting for CTP2-CTP8 [183]. 

Problems θ  a b c d e 

CTP2 π2.0−  0.2 10 1 6 1 

CTP2 π2.0−  0.1 10 1 0.5 1 

CTP2 π2.0−  0.75 10 1 0.5 1 

CTP2 π2.0−  0.1 10 2 0.5 1 

CTP2 π1.0  40 0.5 1 2 -2 

CTP7 π05.0−  40 5 1 6 0 

CTP8 
π1.0  

π05.0−  

40 

40 

0.5 

2 

1 

1 

2 

6 

-2 

0 

 

Table 8.9 Summary of main characteristics of the 14 benchmark functions. 

Problems Objective Functions n ρ  LI NI LE NE a 

BNH 2 2 93.61% 0 2 0 0 0 

SRN 2 2 16.18% 1 1 0 0 0 

TNK 2 2 5.09% 0 2 0 0 1 

OSY 2 6 3.25% 4 2 0 0 6 

CTP1 2 2 99.58% 0 2 0 3 1 

CTP2 2 2 78.65% 0 1 0 0 1 

CTP3 2 2 76.85% 0 1 0 0 1 

CTP4 2 2 58.17% 0 1 0 0 1 

CTP5 2 2 77.54% 0 1 0 0 1 

CTP6 2 2 0.40% 0 1 0 0 1 

CTP7 2 2 36.68% 0 1 0 0 0 

CTP8 2 2 17.86% 0 2 0 0 1 

CONSTR 2 2 52.52% 2 0 0 0 1 

Welded Beam 2 4 18.67% 1 3 0 0 0 

 

 

 

8.4.2.2 Selected Performance Metrics 

All comparisons are based on both quantitative and qualitative measures. 

Quantitative comparison is based on the plots of the final Pareto fronts in a given run. For 

quantitative comparison, two performance metrics are taken into consideration to 

measure the quality of algorithms with respect to dominance relations. The results are 

illustrated by statistical box plots.  The performance metrics used here are the same as 

given in Subsection 6.4.3: hypervolume indicator (S Metric) and additive binary epsilon 

indicator. 
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8.4.2.3 Performance Evaluation 

The box plots of hypervolume indicator (the IH values) are summarized in Figure 

8.8. The algorithm with higher IH values indicates the ability to dominate a larger region 

in the objective space and with better diversity. In Figure 8.8, the IH values are 

normalized for each test problem. So, the highest IH value will equal one. The figure 

shows that in general, the proposed MOPSO has high IH values, with at least higher than 

0.9. The proposed MOPSO has the highest IH value for test problem CTP5. The proposed 

MOPSO obtains a higher IH values than GZHW for test problems SRN, CTP1, CTP2, 

CTP8, and Welded Beam, while it has higher IH values than NSGA-II for test problem 

OSY. In addition, the proposed MOPSO has comparable IH values with WTY for test 

problems CTP3, CTP4, CTP7, and Welded Beam since they attain the relative close IH 

values. Hence, the Mann-Whitney rank-sum test is used to examine the distribution of the 

IH values. The tested results are presented in Table 8.10. From Table 8.10, we concluded 

that the proposed MOPSO and WTY share the same victory for test problem CTP4 while 

the results also show there is no difference in performance on test function OSY for the 

proposed MOPSO and GZHW. Refer to Figure 8.8, the box plots indicate that the 

proposed MOPSO and NSGA-II show comparable IH values for test problems CTP7 but 

it is not confirmed by the Mann-Whitney rank-sum test in Table 8.10. Although we 

observed in Figure 3 that the proposed MOPSO shows the lowest IH values for test 

problems BNH, SRN, TNK, CTP2, CTP6, CTP8, and CONSTR compared to the selected 

MOEAs, the proposed MOPSO does not fall short in terms of performance because it has 

IH values higher than 0.99 and the difference between its IH values compared to those 

achieved by the selected MOEAs are very small. From the analysis, we concluded that 
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the proposed MOPSO is competitive in terms of performance compared to the selected 

MOEAs. In addition, Figure 8.8 shows that the standard deviations for the proposed 

MOPSO are consistently low; this indicates its ability of producing reliable solutions for 

the benchmark problems. 

Figure 8.9 illustrates the results (summarized in box plots) of additive binary ε-

indicator. For each test problem, there are two box plots, i.e., ( )
31

,
−+ BAIε  and 

( )ABI ,31−+ε , in which the proposed MOPSO is represented by A and the algorithm 31−B  

represent NSGA-II, GZHW, and WTY, respectively. Observe Figure 4, it seems the 

proposed MOPSO performs slightly better with respect to dominance relation than all of 

the MOEAs for test functions CTP5 since the ( ) 031, ≈−+ BAIε  and  ( ) 0,31 >−+ ABIε . 

Similarly, it performs better than GZHW for test function Welded Beam. However, for 

test functions OSY, CTP4, and CTP7, the performance of the proposed MOPSO slightly 

fell short than one or some of the selected MOEAs. Otherwise, the proposed MOPSOs 

does not strictly dominate the rest of the MOEAs for test problems BNH, SRN, TNK, 

CTP1, CTP2, CTP6, CTP8, and CONSTR since box plots seem to show ( ) 0
31

, >
−+ BAIε  

and ( ) 0,31 >−+ ABIε .  The results in Table 8.11 also indicate the following conclusions: the 

proposed MOPSO performs equally well as NSGA-II for test problems SRN, CTP2, 

CTP7, and Welded beam; it also shares the same performance with  GZHW for test 

problems TNK, OSY, CTP2, CTP6, and CTP8, and finally WTY performs equally well 

as the proposed MOPSO on test problem CTP1. In summary, we conclude that the 

proposed MOPSO performs equally well as the selected MOEAs. 

For qualitative comparison, the resulted Pareto fronts generated by all the 

algorithms from a  single run  given  the same  initial population  are  presented in  Figure 
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Table 8.10 The distribution of IH  values tested using Mann-Whitney rank-sum Test. The table 

presents the z values and p-values with respect to the alternative hypothesis (i.e., p-value < α=0.05) 

for each pair of the proposed MOPSO and a selected constrained MOEAs.  In each cell, both values 

are presented in a bracket: (z value, p-value). The distribution of the proposed MOPSO is 

significantly different than those selected constrained MOEAs unless stated. 

IH (Proposed)  AND Test 

Functions 
IH (NSGA-II) IH (GZHW) IH (WTY)  

BNH (-8.6139, 7.1E-18) (-7.7038, 1.3E-14) (7.6529, 2.0E-14) 

SRN (-4.8715, 1.1E-06) (3.7774, 1.6E-04) (-7.1040, 1.2E-12) 

TNK (-6.6458, 3.0E-11) (-3.2156, 1.3E-03) (-7.1040, 1.2E-12) 

OSY (2.3612, 1.8E-02) 
(0.3027, >0.05) 

no difference 
(3.3644, 7.6E-04) 

CTP1 (-7.7454, 9.5E-15) (1.9751, 4.8E-02) (7.0403, 1.9E-12) 

CTP2 (-8.6072, 7.5E-18) (6.0011, 2.0E-19) (7.6529, 2.0E-14) 

CTP3 (-6.0771, 1.2E-09) (-8.6138, 7.1E-18) (3.9771, 7.0E-05) 

CTP4 (-8.6140, 7.1E-18) (-8.4415, 3.1E-17) 
(0.7633, >0.05) 

no difference 

CTP5 (7.3900, 1.5E-13) (6.5569, 5.5E-11) (7.1040, 1.2E-12) 

CTP6 (-8.5450, 1.2E-17) (-4.7602, 1.9E-06) (7.6529, 2.0E-14) 

CTP7 (-3.2505, 1.2E-03) (8.6138, 7.1E-18) (3.3644, 7.7E-04) 

CTP8 (-7.0904, 1.3E-12) (3.9329, 8.4E-05) (7.6529, 2.0E-14) 

CONSTR (-8.6140, 7.1E-18) (-8.6138, 7.1E-18) (7.6324, 2.3E-14) 

Welded Beam (-3.8073, 1.4E-04) (6.6456, 3.0E-11) (-6.6299, 3.6E-11) 

 

 

8.10. For every test problem, four plots are presented and the labels (a)-(d) represent the 

following algorithms: the proposed MOPSO, NSGA-II, GZHW, and WTY respectively. 

Figure 8.10 shows the proposed MOPSO is able to produce equal quality Pareto fronts 

compared to the selected MOEAs for most of the test problems except for test problems 

OSY and Welded beam. In such cases, the proposed MOPSO produces worse Pareto 

fronts than NSGA-II and WTY due to the characteristic of the Pareto optimal region. The 

Pareto optimal front for OSY constitutes by five separate regions, in which there is at 

least one active constraint in each region. For Welded Beam, the difficulty lies on the 

nonlinear constraints and the curve of the Pareto front consists of extreme regions. That is 
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why it is difficult to obtain good distribution on those regions. However, for those two 

test problems, the proposed MOPSO shares the same performance with GZHW.  
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Figure 8.8 Box plot of  hypervolume indicator (IH  values) for all test functions by algorithms 1-4 

represented (in order): Proposed MOPSO, NSGA-II, GZHW, and WTY. 
 

 

 

Table 8.11 The distribution of Iε+  values tested using Mann-Whitney rank-sum Test. The table 

presents the z values and p-values with respect to the alternative hypothesis (i.e., p-value < α=0.05) 

for each pair of the proposed MOPSO and a selected constrained MOEAs. In each cell, both values 

are presented in a bracket: (z value, p-value). The proposed MOPSO is represented by A, and 

algorithms B1, B2, and B3 are referred to as NSGA-II[31], GZHW[164] and WTY[166] respectively. 

The distribution of the proposed MOPSO is significantly difference than those selected constrained 

MOEAs unless stated. 

Test 

Functions 

Iε+ (A,B1) and 

Iε+ (B1,A) 

Iε+ (A,B2) and 

Iε+ (B2,A) 

Iε+ (A,B3) and 

Iε+ (B3,A) 

BNH (5.8916, 3.8E-09) (5.0637, 4.1E-07) (6.6456, 3.0E-11) 

SRN 
(0.2905, >0.05) 

no difference 
(-6.1281, 8.9E-10) (2.2398, 2.5E-02) 

TNK (4.3244, 1.5E-05) 
(0.3183, >0.05) 

no difference 
(6.6456, 3.0E-11) 

OSY (-3.4078, 6.5E-04) 
(0.2340, >0.05) 

no difference 
(4.3984, 1.1E-05) 

CTP1 (4.7532, 2.0E-06) (-2.0772, 3.8E-02) 
(0.9565, >0.05) 

no difference 

CTP2 
(0.1413, >0.05) 

no difference 

(0.0933, >0.05) 

no difference 
(6.1577, 7.4E-10) 

CTP3 (6.6456, 3.1E-11) (6.6456, 3.0E-11) (6.6457, 3.0E-11) 

CTP4 (6.6508, 2.9E-11) (6.6456, 3.0E-11) (6.6457, 3.0E-11) 

CTP5 (-6.4386, 1.2E-10) (-6.6012, 4.1E-11) (-6.4386, 1.2E-10) 

CTP6 (5.6994, 1.2E-08) 
(-1.2345, >0.05) 

no difference 
(6.4978, 8.2E-11) 

CTP7 
(0.2957, >0.05) 

no difference 
(4.4279, 9.5E-06) (6.6456, 3.0E-11) 

CTP8 (4.3984, 1.1E-05) 
(-1.7224, >0.05) 

no difference 
(2.4320, 1.5E-02) 

CONSTR (5.4333, 5.5E-08) (2.8016, 5.1E-03) (6.2095, 5.3E-10) 

Welded 

Beam 

(-1.5154, >0.05) 

no difference 
(-6.6456, 3.0E-11) (5.5072, 3.7E-08) 
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               ( )31, −+ BAIε  and ( )ABI ,31−+ε for BNH   ( )31, −+ BAIε  and ( )ABI ,31−+ε for SRN 

 

 

 

 

 

 

 

               ( )31, −+ BAIε  and ( )ABI ,31−+ε for TNK   ( )31, −+ BAIε  and ( )ABI ,31−+ε for OSY 

 

 

 

 

 

 

 

               ( )31, −+ BAIε  and ( )ABI ,31−+ε for CTP1  ( )31, −+ BAIε  and ( )ABI ,31−+ε for CTP2 

 

 

 

 

 

 

 

               ( )31, −+ BAIε  and ( )ABI ,31−+ε for CTP3  ( )31, −+ BAIε  and ( )ABI ,31−+ε for CTP4 

 

 

 

 

 

 

 

               ( )31, −+ BAIε  and ( )ABI ,31−+ε for CTP5  ( )31, −+ BAIε  and ( )ABI ,31−+ε for CTP6 
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               ( )31, −+ BAIε  and ( )ABI ,31−+ε for CTP7  ( )31, −+ BAIε  and ( )ABI ,31−+ε for CTP8 

 

 

 

 

 

 

               ( )31, −+ BAIε  and ( )ABI ,31−+ε for CONSTR         ( )31, −+ BAIε  and ( )ABI ,31−+ε for Welded Beam 

Figure 8.9 Box plot of additive binary epsilon indicator (Iε+ values) for all test functions (algorithm A 

refers to the proposed MOPSO; algorithms B1-3 are referred to as NSGA-II, GZHW, and 

WTY, respectively). 

 

 

 

 

 

 

 
         (a)          (b)         (c)        (d) 

Pareto fronts for BNH 

 

 

 

 

 

 

 

 
         (a)          (b)         (c)        (d) 

Pareto fronts for SRN 

 

 

 

 

 

 

 

 
         (a)          (b)         (c)        (d) 

Pareto fronts for TNK 
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         (a)          (b)         (c)        (d) 

Pareto fronts for OSY 

 

 

 

 

 

 

 

 
         (a)          (b)         (c)        (d) 

Pareto fronts for CTP1 

 

 

 

 

 

 

 

 

 
         (a)          (b)         (c)        (d) 

Pareto fronts for CTP2 

 

 

 

 

 

 

 

 
         (a)          (b)         (c)        (d) 

Pareto fronts for CTP3 

 

 

 

 

 

 

 

 
         (a)          (b)         (c)        (d) 

Pareto fronts for CTP4 
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Pareto fronts for CTP5 
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Pareto fronts for CTP6 

 

 

 

 

 

 

 

 
         (a)          (b)         (c)        (d) 

Pareto fronts for CTP7 
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Pareto fronts for CTP8 
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Pareto fronts for CONSTR 
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         (a)          (b)         (c)        (d) 

Pareto fronts for Welded Beam 

 
Figure 8.10 Pareto fronts produced by the following algorithms a-d represented (in order): proposed 

MOPSO, NSGA-II, GZHW and WTY.  
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CHAPTER 9 

 

 

CONCLUSION AND FUTURE WORKS 

Many real world problems are often multiobjective in nature. Most of them are 

subjected by a set of constraints. In this thesis, the objective is to develop multiobjective 

particle swarm optimization algorithms to deal with both unconstrained and constrained 

multiobjective optimization problems. In addition to the objective, the inherited 

mechanisms of particle swarm optimization are studied to exploit the key mechanism to 

solve for unconstrained multiobejctive optimization problems and handle constraints. 

 

9.1 Dynamic Population Size and Multiple-swarm Concepts 

Recently, various multiobjective particle swarm optimization (MOPSO) 

algorithms have been developed to efficiently and effectively solve unconstrained 

multiobjective optimization problems. However, the existing MOPSO designs generally 

adopt the need to “estimate” a fixed population size sufficiently to explore the search 

space without incurring excessive computational complexity. Existing works of MOEAs 

that adopted the idea of adaptively adjust the population size during the course of finding 

the optimal Parato front have inspired the designs of the two MOPSO algorithms that 

proposed in this study. Coupled with the idea of dynamic population size, the two 

proposed MOPSO algorithms also integrate the multiple swarms concept to exploit the 

“swarm-like” characteristic of the PSO and to enhance their potential to achieve better 
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performance. Although both proposed algorithms integrate dynamic population size and 

multiple swarms concepts, the design perspectives are different.  

 In the first proposed algorithm, the number of particles or swarm population size 

is dynamically changed but the number of swarms is user defined. Hence, the number of 

particles in each swarm (or swarm size) depends on the swarm population size. The basic 

skeleton of this algorithm, multiobjective particle swarm optimization algorithm 

(DMOPSO), is based on the design of cMOPSO [128]. Additionally, three proposed 

features are incorporated into the algorithm: 1) a cell-based rank density estimation 

scheme to quickly update the location of the new particles in the objective space and to 

provide easy access to the rank and density information of the particles; 2) a population 

growing strategy that adaptively grows new particles with enhanced exploration and 

exploitation capabilities; 3) a population declining strategy to balance and control the 

dynamic population size; and 4) adaptive local archives to improve the selection of group 

leaders to produce a better distributed Pareto front associated with each swarm. A 

comparative study of DMOPSO with five selected state-of-the-art MOPSOs on six 

benchmark test problems is presented. The results of applying two performance metrics 

clearly indicate that DMOPSO is highly competitive and even outperforms most of the 

selected MOPSOs. In addition, qualitative results also show that DMOPSO has the ability 

to produce relatively better Pareto fronts compared to most of the selected MOPSOs for 

all six benchmark test functions In fact, dynamic population strategy has contributed in 

improved performance. The reasons are as follows: First, dynamic population strategy 

provides some flexibility in preserving good particles and removing those that will not 

contribute to the search process for the following iterations. Second, the design 
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guarantees to grow new potential particles that will either improve the search process or 

land on unexplored regions to discover better solutions. This will speed the process in 

finding better solutions and indirectly save computational cost. Third, multiple swarms 

approach provides some degrees of local search. This greatly enhances the quality of 

convergence toward optimal Pareto front. To avoid the excessive use of local search, 

adaptive local archive is incorporated to maintain the diversity within each swarm, at 

least in a local sense.  

However, there are two disadvantages in DMOPSO. Clustering algorithm is 

applied to group the leaders in the archive according to the predefined number of swarms. 

This adds additional computational complexity to the algorithm, especially if the number 

of swarms is set too high. Another weakness of DMOPSO is the parameter settings and 

dealing with the question of how to optimally choose the parameters. We suggest fixing 

some of the parameters such as lnp = 1; rud = 0.7;  rld = 0.02 and ppv =10. For grid scale, 

K, we suggest starting at 100 first and then tuning the value up or down depending on the 

resolution of the resulting Pareto front needed. The setting of parameter, Ka, depends on 

the number of sub-swarms. If the number of swarms is high, then parameter, Ka, can be 

tuned down and vice versa. Lastly, parameters rb, unp and selection ratio are 

interdependent. Currently, these parameters are selected ad hoc.   

 Due to the disadvantages of DMOPSO discussed above, a new multiobjective 

particle swarm optimization, called DSMOPSO is proposed. This algorithm, however, 

dynamically adjusts the number of swarms instead of the swarm population size, and 

fixes the swarm size for each swarm. The design of this algorithm involves three main 

contributions. First, the swarm growing and declining strategies are developed to 
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dynamically grow new potential swarms and to remove swarms with least contribution to 

the search process. These strategies promote diversity by placing new swarms into 

unexplored areas and by eliminating swarms that reside in crowded regions. Second, PSO 

updating rule is modified to improve the interaction among swarms and particles within a 

swarm. Third, the objective space compression and expansion strategy is proposed to 

allow adjustment of the size of the objective space to ensure the swarms progressively 

find the true Pareto front. Experiments show DSMOPSO is competitive in terms of 

performance, compared to selected MOPSOs, in both qualitative and quantitative 

measures for the selected test functions. In the study investigating the computational cost 

exerted by DSMOPSO, it appears that DSMOPSO demands less computational cost for 

test problems with disconnected Pareto front or with multiple local optima. In a future 

study, which types of problem characteristics work best for DSMOPSO in terms of 

performance and computational cost will be further investigated. Lastly, sensitivity 

analysis is conducted to study the impact of the tuning parameters on DSMOPSO. From 

the results, we have recommended various parameter settings that will deliver good 

performance for the selected test functions. There are advantages of DSMOPSO over the 

first proposed algorithm, DMOPSO. Only two user-defined parameters are in the swarm 

growing and declining strategies as opposed to six user-defined parameters in DMOPSO. 

With lesser user-defined parameters, this reduces the difficulty of tuning the parameters 

and the dependency among the parameters, which reduces the impact of the tuning 

parameters on the algorithm’s performance. In addition, the objective space compression 

and expansion strategy will reduce the dependency on setting the grid scale parameter, K. 

With multiple swarms concept directly applies to the search process, both local and 



 225 

global searches are encouraged during process of searching for the optimal Pareto front. 

Hence, clustering algorithm is no longer needed. Despite of the advantages, DSMOPSO 

has its limitations. Through observation, one of its limitation is the search progression is 

slower, which render larger computational cost. This may due to two possible reasons. 

The growth rate for number of swarms is not high enough and the lacking of good 

strategy to enhance the communication among and within swarms. Another problem is 

the need to effectively trigger the objective space compression and expansion routine in 

order to reduce its frequency.  

 In the near future works, study to deal with the disadvantages of DSMOPSO is 

highly desired and investigation on the performance of DSMOPSO for test functions 

more than two objectives is required. For DMOPSO, It will be interesting to study how 

well DMOPSO will handle the combinatorial optimization problems since several 

publications have proved successful in applying PSO to solve for combinatorial 

optimization problems like multiobjective knapsack or TSP [149-151]. 

 

9.2 Constraint Handling   

 For constraint optimization, the main challenges are to optimize the objective 

function(s) and simultaneously handle constraints. The design of constrained MOPSO is 

achieved in two steps. First the constrained PSO with key design elements is proposed for 

COPs then with the design elements, it is extended to a MOPSO to solve for CMOPs. 

This proposed constrained PSO adopts a multiobjective constraint handling technique, in 

which the COP is converted into an unconstrained bi-objective optimization problem. It 

incorporates the following design features: 1) separate procedures to update the infeasible 
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and feasible personal best in the personal best archive in order to guide the infeasible 

particles towards the feasible regions while promote search for better solutions; 2) an 

infeasible global best archive is adopted to make use of the infeasible nondominated 

solutions for searching possible isolated feasible regions or a very small feasible region 

while the feasible global best archive aims to guide the particles to find better solutions; 

and 3) the adjustment of the accelerated constants in the PSO equation is based on the 

number of feasible personal best in the personal best archive and the constraint violations 

of personal best and global best. The adjustment will influence the search process either 

to find more feasible solutions (particles) or to search for better solutions; and the 

frequency of applying the mutation operators are based on the feasibility ratio of the 

particles’ personal best. This feasibility ratio is exploited to encourage more exploration 

characteristic to search possible feasible regions when there are few feasible particles’ 

personal best, while reduce the exploration rate when most of the particles’ personal best 

are feasible to support convergence toward Pareto optimal front. In addition, a mutation 

operator with the mutated range covered is narrowed overtime to encourage global search 

in early iterations and fine tune local search in later iterations. From the simulation study, 

the proposed constrained PSO is capable to obtain quality feasible solutions for most of 

the test problems, while the performance achieved is competitive when compared with 

selected state-of-the-art approaches. In our future work, further improvement is 

considered to improve the solution quality and to solve for those problems that 

occasionally do not find feasible optima, such as test problem g17.  

 For the proposed constrained MOPSO, same design as the constrained PSO is 

incorporated except that the mutation operator is modified. In this design, both uniform 
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and Gaussian mutation operators are used to encourage local and global search. 

Furthermore, the mutation rate for both mutation operators is adaptively determined by 

the feasibility ratio of the particles’ personal best, in which the frequency of applying the 

mutation operators depends on the number of feasible personal best in the archive. A 

comparative study of the proposed MOPSO and three state-of-the-art constrained 

MOEAs on 14 benchmark test problems are presented. The simulation results show the 

proposed constrained MOPSO is highly competitive and able to obtain quality Pareto 

fronts for most of the test problems. However, the proposed constrained MOPSO is still 

fail in solving test problems OSY and Welded Beam by observing the simulation results. 

Several suggestions for future works: improve the diversity mechanism in the design 

elements, apply the proposed constrained MOPSO to other CMOPs, e.g., problems with 

equality constraints, and incorporate dynamic population concept or multiple swarms 

approach in the proposed constrained MOPSO. 
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Scope and Method of Study: Over the years, most multiobjective particle swarm 

optimization (MOPSO) algorithms are developed to effectively and efficiently 

solve unconstrained multiobjective optimization problems (MOPs). However, in 

the real world application, many optimization problems involve a set of 

constraints (functions). In this study, the first research goal is to develop state-of-

the-art MOPSOs that incorporated the dynamic population size and multiple-

swarm concepts to exploit possible improvement in efficiency and performance of 

existing MOPSOs in solving the unconstrained MOPs. The proposed MOPSOs 

are designed in two different perspectives: 1) dynamic population size of 

multiple-swarm MOPSO (DMOPSO) integrates the dynamic swarm population 

size with a fixed number of swarms and other strategies to support the concepts; 

and 2) dynamic multiple swarms in multiobjective particle swarm optimization 

(DSMOPSO), dynamic swarm strategy is incorporated wherein the number of 

swarms with a fixed swarm size is dynamically adjusted during the search 

process. The second research goal is to develop a MOPSO with design elements 

that utilize the PSO’s key mechanisms to effectively solve for constrained 

multiobjective optimization problems (CMOPs). 

 

Findings and Conclusions:  DMOPSO shows competitive to selected MOPSOs in 

producing well approximated Pareto front with improved diversity and 

convergence, as well as able to contribute reduced computational cost while 

DSMOPSO shows competitive results in producing well extended, uniformly 

distributed, and near optimum Pareto fronts, with reduced computational cost for 

some selected benchmark functions. Sensitivity analysis is conducted to study the 

impact of the tuning parameters on the performance of DSMOPSO and to provide 

recommendation on parameter settings. For the proposed constrained MOPSO, 

simulation results indicate that it is highly competitive in solving the constrained 

benchmark problems. 

 

 

 


