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PREFACE 
 

This report summarizes the research conducted with the goal developing a Fault 

Tolerant Control (FTC) architecture capable of increasing the availability of complex 

nonlinear systems potentially subject to a wide range of fault scenarios. Motivated by an 

encompassing literature survey in the areas of fault information extraction and FTC itself, 

the proposed hierarchical architecture is composed of three levels.  

The lowest level is composed of a baseline nonlinear reconfigurable controller 

that generates identification models and new control solutions for previously unknown 

faults. To implement such a controller as well as an identifier for fault modeling, an 

adaptive critic design known as Globalized Dual Heuristic Programming (GDHP) 

manages a set of three recurrent neural networks. The use of GDHP grants the 

architecture the power to preserve system stability and as much performance as possible 

in the presence of faults that may extend the order or add crucial nonlinearities to the 

dynamics of the system. 

Operating on a middle level, a novel supervisor increases the reconfiguration 

speed of the GDHP controller for abrupt faults known at design time as well as faults 

autonomously modeled and addressed online during a previous occurrence. Moreover, 

the supervisor also increases the stability of the online GDHP reconfigurable controller 

by preventing malfunctions within its training algorithm (that would lead to divergence or 

local minima convergence) from building up to the point of degrading the tracking 
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performance of the plant. At the core of the supervisor, two innovative decision logics 

based on three quality indexes perform fault detection and diagnosis as well as controller 

malfunction detection. Modifying parameters of such quality indexes then adjusts the 

response of the supervisor to faults and controller malfunctions. The presented 

architecture counts with a procedure for initializing and tuning twelve design parameters 

to shape the supervisor’s response to comply with key practical FTC specifications, 

ranging from maximum acceptable reconfiguration delay for abrupt known faults, to the 

expected maximum measurement noise level during fault scenarios. 

Overviewing the entire architecture, a fault development rule extraction algorithm 

is positioned at the highest level. Through information gathered from the GDHP 

controller, identifier and from the supervisor, this final component’s goal is to use all 

historical data from the system to build linguistic rules that inform the human mission 

planner (e.g., user, operator or pilot) of the probability that different fault scenarios have 

of taking place at particular future time frames. Once implemented, the fault development 

rule set will present crucial information to the mission planner when deciding if the 

desired trajectory of a mission should be altered after the occurrence of a minor fault to 

reduce the chance of a major, possibly irremediable, fault occurring. Although this final 

component is not yet fully developed, critical work that sets the foundation for it is 

presented in this report, along with the encouraging simulation results. 

To substantiate the presented architecture, extensive simulation results are 

presented, covering both the workings of specific components and the integration of the 

overall architecture. The power of the algorithm can be observed in the series of proof-of-

the-concept simulated systems, ranging from SISO linear systems to MIMO nonlinear 
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systems with unobserved states. Stability concerns involving the proposed architecture 

are discussed, substantiating the design choices. 
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CHAPTER 1 – Introduction 
 

1.1 Motivation 
 

The growing complexity of physical plants and control missions inevitably leads 

to increasing occurrence, diversity and severity of faults. Availability, defined as the 

probability that a system or equipment will operate satisfactory and effectively at any 

point of time [1], becomes a factor of increasing importance. For automated production 

processes for example, availability is now considered to be the single factor with the 

highest impact on profitability [2]. 

The concept of local safety has been applied in practice over certain components 

or sub-systems of a plant to prevent continued operation or start-up if sensors (such as 

fuses and limit switches) indicate that conditions are met to enter a local shut down mode. 

Local safety though, does not necessarily lead to global fail-safe operation for the whole 

plant. In ship’s propulsion systems where local safety is widely implemented, for 

example, the lack of a global treatment of a fault has resulted in many events where 

consequences vary from irregularity to major economic loss and casualties [3].  

Fault Tolerant Control (FTC) is a field of research that aims to increase 

availability and reduce the risk of safety hazards and other undesirable consequences by 

specifically designing control algorithms capable of maintaining stability and/or 

performance despite the occurrence of faults [4].  
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In the presented work, faults are modeled as an agent of change in the plant 

dynamic structure. In some particular cases, information on certain fault scenarios (e.g., 

gear crack propagation and bearing corrosion spalling in gearbox [5]) is available 

beforehand, allowing the generation of specific control solutions during design time. 

However, the ever-growing fault diversity in complex systems makes it unrealistic to 

possess prior information on all possible cases. Fully solving the FTC problem during 

design time becomes truly intractable as we consider the fact that fault information must 

be in the form of models that represent the dynamics of fault scenarios precisely enough 

to allow the development of corresponding controllers. The general FTC problem 

demands online structural adaptation capability that goes beyond the adjustments of 

parameters in a fixed model, requiring a highly flexible reconfigurable control 

architecture. In addition, while an approximate linear model can often be derived for a 

plant operating close to its nominal point, nonlinearities introduced or augmented by a 

fault after its occurrence can become of paramount importance to achieve a successful 

new control solution [6]. Therefore, a complete FTC architecture must contain a 

reconfigurable controller with adaptive capabilities for the online generation of new 

nonlinear control solutions in response to unknown fault scenarios. 

When a change on the plant dynamics occurs due to a fault, it is necessary that 

sufficient time be given to a reconfigurable controller (independent of its particular 

implementation) to experiment with the input-output response of the new dynamics 

before it can be expected to generate a suitable control solution. Such a time during 

which performance is degraded is known as reconfiguration time and we are interested in 

minimizing it in order to increase availability. 
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Although allowing some reconfiguration time is inevitable when dealing with 

unknown faults, faster approaches can be taken for known faults. Known faults permit 

that control solutions designed beforehand be implemented directly whenever they re-

occur in the plant. However, in order to deal with known faults differently, it is necessary 

for a FTC architecture to autonomously determine when and which known fault occurs. 

Therefore, such an approach calls for a supervisor operating at a higher hierarchical level 

than the reconfigurable controller capable of performing complete Fault Detection and 

Diagnosis (FDD). 

Another critical FTC issue arises from the fact that state-of-the-art reconfigurable 

controllers flexible enough to reach the widest range of fault solutions do not possess 

online training with guaranteed stability, especially when it is taken into consideration the 

fact that abrupt faults inherently cause discontinuous changes in the plant dynamics. To 

account for such deficiency, it is possible to observe the evolution of the training under a 

similar paradigm used to perform FDD in the plant. In fact, performing Controller 

Malfunction Detection (CMD) allows the detection of structural faults within the training 

procedure. If such internal detection can be made before any measurable consequences 

reach the plant input, the supervisor can also modify the training procedure to avoid paths 

that lead to instability. 

Different plants require different responses to faults. For instance, plants with 

very restrictive safety limits require high performance even during fault scenarios, while 

in others have strict limits on the amount of time a known fault is allowed to act during 

operation before a suitable solution is implemented. Although the need to adjust the FTC 

response to the requirements of each plant is well accepted, no available FTC approach 



 4 
 

provides the means to do so. For the proposed architecture, an initialization and tuning 

procedure is introduced to adjust twelve design parameters involved in the calculation of 

the quality index and in this way shape the FTC response of the supervisor in order to 

fulfill key FTC specification, including maximum fault detection delay, maximum 

performance recovery delay for known faults, and maximum acceptable tracking error 

under a fault scenario. 

Besides the functions of the reconfigurable controller and the supervisor, one final 

function must be performed by an entity at an even higher hierarchical level in order to 

complete the proposed FTC architecture. Once a fault occurs, even if the nominal level of 

performance is recovered to the point of making the effects of it imperceptible to the 

mission planner (e.g., process operator, production manager or pilot), the fact remains 

that one or more of the plant’s subsystems is no longer operational or with its operational 

range severely reduced. In such a scenario, due to the change in the controller structure, it 

is safe to assume that the probability of occurrence of other fault scenarios will be 

changed (generally increased) while a particular fault is already active. Such a change in 

the probability of occurrence of different fault scenarios depends not only on the current 

faults active in the system at a given time, but it also depends on states of the plant and, 

most importantly, the desired trajectory set by the mission planner. 

Therefore, it is crucial for any complete FTC architecture to possess the means to 

inform the mission planner of the probability that a fault scenario may develop after a 

given time if the current desired trajectory is maintained. Furthermore, the FTC 

architecture must be capable of determining the probability of fault occurrence under 
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different trajectory alternatives before they are implemented in the plant. The following is 

an example of type of fault development rules we propose to extract: 

 

IF Fault 15 (valve seal compromised) is active AND input #5 remains very low AND 

reference #2 remains high, THEN Fault 23 (loss of valve actuator) will have a 85% 

chance of occurrence after a delay of 30 to 45 minutes. 

 

With such information available after the occurrence of a fault, a pilot may decide 

to execute a safe premature landing or an industrial process operator may decide when 

best to interrupt production for maintenance to minimize the overall cost impact. 

 

1.2 Implementation 
 

The complete FTC architecture proposed and develop in this report to attain such 

goals is shown in Figure 1.1. Adaptive Critic Designs (ACD) managing three Neural 

Networks (NN) are chosen as the reconfigurable controller due to its known effectiveness 

to work in noisy, nonlinear environments while making minimal assumptions regarding 

the nature of that environment [7]. In this report, the results of proof-of-the-concept FTC 

simulations show the power of ACDs when dealing with MIMO nonlinear systems 

subject to a multitude of challenging faults.  
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Figure 1.1. General diagram of the proposed FTC architecture. 
 

As mentioned previously, the capability of the Supervisor to improve the response 

of the reconfigurable controller rests on its competence in performing complete FDD. In 

practice, faults can be classified in many ways. If its time profile is analyzed, faults can 

be categorized into incipient (causes slow changes) or abrupt (causes immediate 

changes). Another classification approach is to divide the faults according to the amount 

of knowledge the FTC controller possesses regarding each fault scenario. Known faults 

can make use of specific counteractions built inside the FTC scheme and therefore have a 

greater potential to present a faster and surest recovery than unknown ones. Unknown 

faults require higher levels of robustness and adaptability of the controller, but may be 

made known after the first occurrence, if detected, identified and in the presence of 

appropriate online learning capabilities. If a certain fault is expected, it may be 
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predictable through a stochastic analysis [8], while an unexpected fault may occur at any 

point in time.  

In the proposed architecture, a continuously adapting identifier and a FTC 

supervisor work at a higher hierarchical level to track the performance of the plant online 

and compare its responses to a Dynamics Model Bank (DMB) within the supervisor in 

order to perform FDD. With the architecture introduced in this report, it is possible to 

detect the time of occurrence of faults, classify them into abrupt or incipient, determine if 

they are unknown or known, and, if known, identify them accordingly. In particular, FDD 

is achieved in the proposed architecture by a FDD Decision Logic nested within the 

supervisor using the information supplied by two quality indexes. A controller quality 

index measures its degree of success in tracking the desired trajectory, while an 

identification quality index measure the deviations between the models in the DMB and 

the current dynamics of the plant. 

The same FDD Decision Logic is also used to determine when to add new fault 

identification models and control solutions to the DMB as soon as a previously unknown 

fault is properly dealt with. Furthermore, the FDD Decision Logic determines when to 

make use of the knowledge previously stored in the DMB for a particular fault scenario 

by performing a switching operation in order to reduce the reconfiguration time required 

by the online adaptive controller. Speed of reconfiguration is a crucial issue since the 

occurrence of a fault will move the system away from the nominal operating regime, 

increasing the probability of additional faults to occur until properly adjusted for. By 

adjusting how information on the status of the plant is gathered by the quality indexes 

and how it is interpreted by the supervisor’s decision logics, it is possible to set the 
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supervisor to comply with the reconfiguration time requirements of each application. The 

proposed FTC architecture is presented with an offline initialization and an online tuning 

procedure for design parameters of the quality indexes that allow the FTC response to be 

adjusted to only to reconfiguration time specifications, but also to twenty four other 

identified FTC specifications. Simulation results highlighting the ability of the supervisor 

to learn the solutions to new fault scenarios online and to achieve specified 

reconfiguration times for abrupt known faults are also documented in this report. 

Although ACDs represent the best choice of a nonlinear adaptive controller due to 

its capability to deal with a large scope of changes in the dynamic structure of the plant, 

as with any other reconfigurable controller in its class, such power comes with the 

tradeoff of a lack of overall stability guarantee over all possible fault scenarios. However, 

the development of the proposed supervisor for FDD positioned at a higher hierarchical 

level than the baseline controller creates a structure capable of supporting Controller 

Malfunction Detection (CMD). In particular, the introduction of a third quality index, the 

weight quality index, combined with the information generated by the controller quality 

index allows for a CMD Decision Logic to be generated. In this manner, the supervisor 

then becomes capable of detecting malfunctions within the online adaptive controller 

before such internal malfunctions have time to build up enough to significantly 

deteriorate the operation of the plant. With such information, through a similar approach 

used for fault switching, alternative initial conditions can be supplied to the baseline 

controller to prevent that such controller malfunctions lead the adaptation process to 

either local minima trapping or to online training divergence. The process of preventing 
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controller malfunctions to develop into faults that may compromise the plant is termed 

Controller Malfunction Recovery (CMR) 

The final component of the proposed FTC architecture shown in Figure 1.1 has 

the goal of extracting fault development linguistic rules to aid in the mission planning of 

the user, operator or pilot of the system in question. To take steps toward implementing 

it, we present a novel autonomous rule extraction approach capable of obtaining temporal 

linguistic rules directly from continuous process data using Fuzzy Logic representation 

and a Multiple Objective Evolutionary Algorithm. 

This report is organized as follows. Chapter 2 provides a literature survey on the 

most relevant topics of FDD and FTC, covering a series of different existing approaches 

that go beyond the application of an adaptive controller alone. In Chapter 3 a series of 

ACDs implemented during the course of this research as the baseline nonlinear adaptive 

controller are introduced, culminating with a NN implementation of GDHP. Chapter 4 

provides a detailed explanation of the proposed supervisor and the novel FDD Decision 

Logic used in conjunction to greatly reduce the reconfiguration time of the baseline 

controller.  

Chapter 5 covers the fundamentals of the proposed CMD and CMR additions to 

the supervisor, as well as provides proof-of-the-concept results that make clear the 

benefits brought by the implementation of the proposed supervisor. Chapter 6 then 

introduces the novel autonomous linguistic rule extraction approach that will serve as the 

basis for the development of the fault development rule extraction feature. Chapter 7 

introduces extended versions of all three quality indexes and presents the methodologies 

for their offline initialization and online tuning in order to adjust the supervisor’s 
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response to match key FTC specifications and restrictions. With the proposed FTC 

architecture fully drawn, Chapter 8 offers a discussion on the overall stability of the 

approach, indicating points of concern and justifying design choices in the light of their 

application in the whole architecture. Finally, conclusions concerning the entire 

architecture and future work directions are drawn in Chapter 9. 
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CHAPTER 2 – Literature Survey 
 

2.1. Extracting fault information 
 

The performance of a controller crafted to deal with faulty systems can be largely 

affected by the amount of information it is capable of gathering about the actual status of 

the system. Techniques for extracting fault information from systems now compose an 

active field of research, and some definitions are required to be introduced before further 

discussions on the available methods and its limitations.  

As suggested by the Safeprocess Technical Committee of IFAC [7], a fault is 

defined as an unpermitted deviation of at least one characteristic property or parameter of 

the system from acceptable/usual/standard condition. Failures, on the other hand, are 

defined as the permanent interruption of a system to perform a required function under 

specific operating conditions. Under this point of view, it can be stated that the FTC’s 

goal is to, in the event of a fault, reconfigure the system dynamics to prevent the build up 

of a system failure. 

Faults can be classified in many ways. If its time profile is analyzed, faults can be 

separated into incipient (generating slow changes) and abrupt (generating fast changes) 

classes. Another classification approach is to divide the faults according to the amount of 

knowledge the FTC controller possesses regarding each fault scenario. Expected faults 

may have specific counteractions built inside the FTC scheme during the design phase 

and therefore have a greater potentiality to present a faster and surest recovery than 
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unexpected ones. Unexpected faults require higher levels of robustness and adaptability 

of the controller, but may be made expected after the first occurrence, if detected and 

identified, in the presence of automated learning capabilities. If a certain fault is 

expected, it may be predictable through a stochastic analysis [8]. 

By analyzing its sources, faults can be classified as sensor, actuator or component 

faults. This preliminary study focuses on actuator and components faults, leaving sensor 

faults to be identified and recovered in parallel by any of the currently available methods 

that have been developed exclusively to deal with this kind of faults, such as sensor 

fusion [3] and specialized filters [9]. 

 

2.1.1. Basic definitions 
 

Fault Detection (FD) determines if a fault is present in the system and the time of 

occurrence with appreciable significance. Once a fault is detected, the next step is to 

perform fault isolation. It is the goal of fault isolation to establish the type or location of 

the fault. If a detailed model of the plant is available, fault isolation may point out in 

which component, actuator or sensor the detected fault was originated. The combination 

of both leads to a Fault Detection and Isolation (FDI) scheme. 

The next step, performed by fault identification, ascertains the evolution in size 

and time of the fault [10]. The information generated by fault isolation and identification 

is referred to as fault diagnosis. If all three concepts are applied, Fault Detection and 

Diagnosis (FDD) is achieved [11]. Figure 2.1 illustrates the classification of the different 

concepts regarding the fault information extracted. 
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Figure 2.1. Terminology diagram of fault information extraction. 

 

2.1.2. Available methods 
 

The definition that a fault will alter the dynamic behavior of a system lead to 

model based approaches to implement FD [12]. Following this concept, banks of Kalman 

filters, Leunberger observers and parity space approaches [13] are tools used when 

models of the plant in the nominal conditions and under the faults of interest are known 

and well defined. The amount of prior information required can be relaxed by the use of 

system identification and parameter estimation to perform on-line adaptation. In all three 

approaches, residuals are generated by comparing state or output variables of the plant 

with those derived from the models. Signal analysis can also be used to generate fault 

indication by means of band pass filters or spectral analysis. 

Whether residuals or frequency magnitudes are being monitored, thresholds must 

be set to distinguish the effects of faults from those of signal noise and model 

uncertainties. If set too low, the thresholds will increase the chance of false alarms, while 

setting it too high decreases sensitivity, resulting in a greater misdetection rate. Although 

usually adjusted off-line, thresholds can also be adapted on-line though statistical analysis 

of the signals. 

The fault isolation problem can be regarded as a classification problem, in which 

the goal is to correctly identify the source of a fault based on the set of available 
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residuals. The residuals are in this way viewed as signatures of faults. Detailed system 

information in the form of a component level model and extensive data collected from 

fault occurrences are two possible sources of symptom/fault pairs. This data can then be 

used to design fault isolation schemes based on geometrical distance or probabilistic 

distributions, or to train an artificial neural network, with the goal of classifying 

symptoms into different fault scenarios [14]. If human specialists already possess some 

fault isolation information through experience, fuzzy logic also becomes a useful tool. 

In order to generate information according the dynamic evolution of an on-going 

fault, and in this way reach a complete fault diagnosis, a greater understanding of the 

system and its faults is mandatory. Diagnostic models, such as symptom-fault causal trees 

[15], can be used in decision making algorithms in an attempt to gain insight over the 

behavior and possible outcomes of a fault scenario. Reasoning methods based on 

probabilistic considerations, fuzzy logic and neural networks are some of the tools 

available for such a task [7]. 

A complete fault propagation analysis may generate results that surpass the scope 

of FDD, helping to identify redundancy requirements early in the designing phase and 

also leading to a structural analysis that supplies information on which avenues of 

reconfiguration are still open after a certain fault takes place [3]. 

 

2.1.3. Fault information extraction limitations 
 

As methods for FD to FDD and beyond are applied to a plant, the amount of fault 

information collected grows at the expenses of a greater need of knowledge of the plant 

and its faults. Although it is possible to perform FDI without a detailed analytical model 
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of the plant under nominal and faulty conditions, the quality of the information tends to 

be poorer than otherwise. 

On the other hand, methods that rely exclusively on models defined at the 

designing phase cannot cope with the unpredictable faults that are bound to happen in 

real world applications. Complex systems pose a problem to this approach even when 

only the characterization of known faults is considered due to the high level of precision 

required in mathematical models involving a large number of variables and system 

parameters. In practice, fault information extraction approaches based solely on fixed 

models are destined to fail due to their inability to cope with unexpected or uncertain 

parameter(s) [12]. 

One alternative way to extract knowledge over the system and its faults is to 

derive it in terms of facts and rules from the description of their structure and behavior. 

FDD can then be achieved without the need of precise analytical models, though the 

information fed to the FDD scheme may be incomplete and uncertain [16]. 

It is also important to note that most of the fault diagnosis methods are built on 

top of fault detection modules. Therefore, if a fault is misdetected, it holds no chance of 

being diagnosed. False alarms may also reduce the effectiveness of the diagnostic 

procedure, especially in algorithms designed with learning capabilities. 

As commented before, the adjustment of FD thresholds directly affects the 

detection rate and quality. If a FTC that does not make use of fault information (e.g., 

robust control) is applied over a plant, additional complications may arise. Since FTC’s 

goal is to minimize the effects of faults, it becomes possible that the residuals and the 

alterations on the signal spectrum will also be reduced, increasing the rate of 
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misdetections [17]. Although the FTC algorithm correctly addresses to the misdetected 

fault, the fact that a fault occurred may reduce the redundancy of the system. Without the 

knowledge of its occurrence, the necessary maintenance intervention may not occur 

before repeated faults deplete the available redundancy leaving the FTC scheme with no 

avenues of reconfiguration. 

 

2.2. Fault Tolerant Control 
 

Having established the relevant notions of fault information extraction, the 

literature review now focuses on the actual Fault Tolerant Control. Following an 

introduction to the fundamentals of FTC, passive and active approaches are presented and 

contrasted. Due to some properties of particular interest to this research main goal, 

further attention is given to the available methods of active FTC with special focus on 

multiple model architectures. 

 

2.2.1. Introduction to FTC 
 

Failure prevention is not a new concept in theory or practice of engineering. The 

components or machinery that form a system are often built with safety protections such 

as fuses or limit switches. Continued operation or start-up is prevented if sensors like 

those inform that conditions are met to enter a local shutdown mode. This local safety 

approach though, does not guarantee global fail-safe operation for the complete system. 

A ship propulsion system depicts an example where the application of local safety with 
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the lack of analysis of the global implications resulted in many events where 

consequences vary from irregularity to major economic loss and casualties [3]. 

Another failure prevention approach derives from the use of direct hardware 

redundancy. If three or more independent sensors are used to directly measure the same 

variable, a majority voting can be used not only to detect a fault, but also to isolate the 

faulty sensor. When only two redundant sensors are available, isolation is not necessarily 

achievable, but fault detection is still guaranteed. The remedial action to be taken is then 

simply ignoring the isolated sensor or generating an alarm when no trustable signal is 

available. 

The same principle is applied to components and actuators, though it is possible in 

those cases that more than one output from different elements operating at only a fraction 

of its total capability is used at the same time. After a fault is isolated in one of the 

elements, the failure prevention approach then becomes one of energy redistribution 

among the healthy set. 

Fault Tolerant Control’s goal is to prevent failures at system level through proper 

actions in the programmable parts of a control loop. In this approach, analytical 

redundancy can be used in place of its hardware counterpart. Analytical redundancy helps 

not only to reduce the cost involved in using extra elements, but also delivers greater 

design freedom to avoid the loss of performance that may result from direct hardware 

redundancy implementation. When sensors are considered, the use of analytical relations 

united with the actual measurements also increases the degree of confidence of the 

considered variable. Since FTC focus on the overall mission goal and aims for continuous 

system availability, different from the other failure prevention approaches mentioned 
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earlier, a loss of performance is allowed after a fault occurs. As a matter of fact, given the 

specific redundancies available in a given system, a reconfiguration to a state of inferior 

performance might be an optimal solution when the mission objective, such as stability, 

is preferred. 

 

2.2.2. Passive versus active approaches 
 

One possible way to implement fault tolerance is to design static control laws 

capable to compensate for some plant uncertainties such as disturbances and noise [18]. If 

the effects of a fault are small enough to be in the range covered by the robustness of the 

controller, no specific reconfiguration is required. Since no information about the faults is 

typically utilized by the control system, this type approach is often referred to as “passive 

fault tolerant control”. 

By utilizing fault information extracted from the system, it becomes possible to 

design a reconfigurable controller that modifies the control function (parameters or 

structure) in response to faults, characterizing an “active fault tolerant control”. This 

approach is preferable over the passive one when tolerance to a wider range of faults is 

intended since the required increase in robustness has a negative effect on the 

performance, even under nominal operation. As depicted in the generic active FTC 

diagram in Figure 2.2, it is common to separate the control algorithm into two distinct 

blocks: a baseline controller and a supervisor system. While the baseline controller 

focuses on the maintenance of the immediate control objectives, the supervisor extracts 

fault information, determines remedial action and executes them by modifying the 

baseline controller [19]. 
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Figure 2.2. A generic active fault tolerant architecture depicting the base line controller and the supervisory 
system. In the diagram: D represents a delay block, u(t) is the controlled input and R(t) is output of the 

plant. 
 

2.2.3. Active FTC methods 
 

Active FTC systems compensate for the effects of a fault either by selecting a new 

precomputed control law (projection-based methods) or by synthesizing a new control 

law on-line (on-line automatic controller redesign methods) [20]. 

Gain scheduling [21], fuzzy decision logic [22] and structural analysis [3] are 

some of the possible ways to implement projection-based active FTC. Models and pre-

computed controllers for the system under nominal conditions and under the effect of the 

faults of interest are used during the design phase to grant the controller quick and correct 

responses to the envisioned scenarios. However, since fault information at least to the 

level of isolation is essential, it is necessary for the models of the faulty scenarios to be 

accurate enough to be distinguishable under the effect of noise and disturbances. Even 

when precision is not taken into account, the mere task of off-line design of characteristic 

models for fault scenarios with a strong stochastic nature is by itself a challenging one, 

especially if complex nonlinear plants are considered. 
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On-line automatic redesign methods are of particular interest in light of the goal 

of the proposed work due to its capability of providing specific control actions even to 

fault scenarios that had not been necessarily anticipated during the design phase. 

Reconfigurable control can be used to implement on-line redesign requiring only the 

residuals generated by fault detection. Nevertheless, the flexibility gained by this 

approach comes at the expense of slower response since the controller must be allowed 

time to learn the new dynamics and modify itself. Since the reconfigurable controller 

does not require knowledge of the dynamics of the system under the effect of each 

specific fault, it is inherently immune to modeling errors and possesses a greater potential 

to deal with unmeasured disturbances and noise-corrupted data. 

A reconfiguration approach in which the eigenstructure can be directly assigned 

to the close-loop system to achieve the desired system stability and dynamic performance 

is known as Eigenstructure Assignment (EA) [23]. The conditions for exact assignment 

are the existence of a sufficient number of actuators and measurements available and that 

the desired eigenvectors reside in the achievable subspaces. The limitations of EA are 

that the system performance may not be optimal in any sense, and that the system 

requirements are often not easily specified in terms of the eigenstructure [24]. 

The Pseudo-Inverse Method (PIM), on the other hand, is a reconfiguration 

method that is optimal in the sense that it minimizes the Frobenius norm of the difference 

matrix between the original and the impaired closed-loop system transition matrices. 

Since in its initial formulation stability cannot be guaranteed, a Modified Pseudo-Inverse 

Method (MPIM) was proposed [25]. In its initial formulation however, MPIM required 

full state feedback and relied on stability bounds that could give very conservative 
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results. Those limitations were the focus of [26], where the problem was reevaluated 

from an optimization point of view while focusing on FTC application. Although the 

state feedback constraint was relaxed to output feedback, the method still requires 

residuals for each parameter of the model to be generated (comparison between transition 

matrices), limiting in the reconfigurable fault scenarios to those with the same dynamic 

structure than the nominal mode. 

However, both EA and PIM-based controllers are restricted to implementation on 

linear models. When a dynamical nonlinear structure is given and only the parameters are 

unknown, adaptive control can be used. Even to this restricted case, the assumptions that 

have to be made concerning the unknown plant to develop a stable adaptive controller 

were established only in the 1980’s [27]. The problem becomes truly formidable when 

the plant is nonlinear and the input-output characteristics are unknown and time-varying. 

From a system theoretic point of view, artificial Neural Networks (NN) can be 

considered as practically implementable parametrizations of nonlinear maps from one 

finite dimension space to another. Theoretical works by several researchers have proven 

that, even with one hidden layer, neural networks can uniformly approximate at any 

degree of precision any piecewise continuous function over a compact domain, provided 

the network has a sufficient number of units, or neurons. Therefore, NN can, by their 

very nature, cope with complexity, uncertainty and nonlinearity, and NN have been used 

successfully to identify and control nonlinear dynamic systems [28]. 

Multilayer Neural Networks (MNN) and Radial Basis Functions Networks 

(RBFN) have proven extremely successful in pattern recognition problems, while 

Recurrent Neural Networks (RNN) have been used in associative memories as well as for 
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the solution of optimization problems [29]. From the theoretic point of view MNN and 

RBFN represent static nonlinear maps while RNN are represented by nonlinear dynamic 

feedback systems [30]. 

In [31] a Recurrent High Order Neural Network (RHONN) was developed with 

the goal of identification of dynamical systems displaying similar convergence properties 

of classical adaptive and robust adaptive schemes. A Lyapunov-based approach is used to 

prove the convergence property of the learning algorithm that ensures that the 

identification error converges to zero exponentially and that, if it is initially zero, it 

remains in zero during the whole identification process. Later in [30] the identifications 

capabilities of the RHONN were used to provide state information to a sliding mode 

controller to solve a tracking problem. However, the RHONN displays serious 

restrictions to its applicability to complex systems due to a lack of scalability in its 

heavily connected architecture. 

In [32] a simplified RNN is used to identify the system and its parameters used as 

input to a controller based on feedback linearization and pole placement. Stability though, 

is only assured if the controller system remains stable, a limitation that greatly decreases 

the applicability of the method to the FTC problem. 

A RNN based adaptive controller specially developed to deal with nonlinear 

systems with unknown dynamics is presented in [33]. In the proposed configuration, the 

output from the RNN adaptive controller was applied to the system summed with the 

output of a linearizing controller designed off-line to deal with the nonlinearities in the 

nominal model. The proposed learning algorithm was stable in the Lyapunov sense, but 
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the restrictions applied to achieve such proof make this approach capable only to deal 

with incipient faults. 

In order to achieve semi-global boundedness of all signals in a control loop of a 

MIMO system, a backstepping approach is used in [34] to divide the MIMO nonlinear 

model into a series of SISO nonlinear models and design controllers separately using 

RBFN’s. However, in order to achieve such degree of decoupability, it must be possible 

to describe the system in block-triangular form. Even if true for the nominal model, a 

fault may increase relationships between states that could previously be ignored, making 

it impossible for the system to fit in a block-triangular form again. 

Taking inspiration in a PID controller, a modified RNN architecture is applied in 

a model reference adaptive control framework to control an automotive engine in [35]. 

Although identification and control are performed by RNNs, the identification is 

performed off-line while only the controller is trained on-line. Therefore direct 

application of this method to systems which dynamics may be affected by faults in 

unexpected ways is not possible. 

  

2.3.4. Multiple models as a framework for active FTC 
 

Even though a reconfigurable adaptive controller is a key element without which 

solutions for unknown faults cannot be designed online, if used as a FTC architecture 

alone, it displays two major limitations. The first involves the fact that a reconfigurable 

controller makes it impossible for any available fault knowledge to be incorporated 

during design time. Although an ideal reconfigurable controller will always reach a 

solution (given its existence) for a given fault scenario, the amount of time it must be 
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allowed to learn the new dynamics and modify itself accordingly could be greatly 

reduced by the direct application of a known solution. The second major limitation is 

caused by the known tradeoff between adaptability and long-term memory. As a 

reconfigurable controller is optimized to deal with a broader scope of faults with 

minimum reconfiguration time, previously configured controllers are forgotten and the 

reconfiguration process has to be repeated even when returning to the healthy condition 

from an intermittent fault scenario. 

Multiple Models Architecture (MMA) [18,22,28] presents a framework in which 

projection-based methods and online redesign can be synergistically integrated to provide 

the fast and specific response of the first combined with the flexibility and robustness of 

the second. More specifically, in [36] and [37] it was shown that implementing a 

reconfigurable controller in a MMA has the potential to overcome the cited limitations 

for the tracking of complex nonlinear plants. Since then, MMA has been applied to FTC 

by combining fault scenarios and their respective control solutions in model banks 

coordinated by a supervisor. However, most publications so far are based on fixed model 

banks built offline and therefore are incapable of improving the controller response in the 

reoccurrence of faults that were unexpected during design time. In [38] a Dynamic Model 

Bank (DMB) is used to allow the insertion of new plant dynamics as they were identified 

online, but the use of a linear controller and the lack of a complete Fault Detection and 

Diagnosis (FDD) scheme significantly limit its applicability.  

To better understand the MMA approach, its simplest implementation, Gain 

Scheduling (GS), will first be introduced and discussed. GS is a technique that aims to 

provide control over nonlinear systems without requiring the design of nonlinear 
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controllers. The first step in GS is to linearize the model about one or more operating 

points. Then linear design methods are applied to the linearized model at each operating 

point in order to arrive at a set of linear feedback control laws that perform satisfactorily 

when the close-loop system is operating near the respective operating points. The zone of 

the state space where a controller still performs satisfactory is denoted operating region. 

The final step is the actual gain scheduling, which is intended to handle the nonlinear 

aspects of the design problem. The basic idea involves interpolating in some way the 

linear control law designs at intermediate operating conditions. It is usual in GS 

applications to choose a particular structure for the linear controllers (e.g., PID) and 

therefore its parameters (gains) are modified (scheduled) according to the states of the 

closed-loop system. 

In addition to the evident simplicity brought by the design of the controllers for 

linear approximations instead of the global non-linear models, GS also provides the 

potential to respond rapidly to changing operating conditions and its real-time 

computational burden is light [21]. However, since the design process of GS in its 

original formulation is based only in local information of a limited set of operation 

points, no global characteristic (stability, performance, robustness, etc…) can be 

guaranteed. In the same way that a well-designed set of linear controllers does not 

necessarily result in even a globally stable control law for the nonlinear system, reachable 

nonlinear systems may provide uncontrollable linearized models, preventing GS to be 

applied at all. 

Advanced MMAs make use of local nonlinear models to design its controllers, 

resulting into the operating region in which each controller remains valid potentially 
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bigger. Given enough information of the system, this property allows the main 

components of a system dynamics to be represented in a finite set of nonlinear models, 

making it possible to incorporate global stability, performance and robustness 

requirements in the design phase of multiple models. Model predictive control, feedback 

linearization and sliding mode [39] are examples of such methods. Another benefit from 

the use of nonlinear models and controllers is that it provides the possibility to 

dramatically reduce the total number of models, making it feasible to apply the MMA 

concept to systems with widely diversified complex dynamics. 

Nevertheless, independent from the linearity of the models used to generate the 

set of controllers, the quality of the end result of the application of a MMA approach is 

still largely affected by a wide range of design choices concerning how many to create, 

where to position and how to interpolate the controllers designed at each operating point 

or region. 

For a better understanding and comparison between different approaches, the 

parameter space representation presented in [36] will be used. The parameter space (S) is 

an augmented version of the state space representation that includes “states” of the 

environment that contain information of sensors present in the plant used solely to extract 

fault information. Temperature, for example, can be considered an environmental state if 

the model of the plant does not take it into account directly, but as the temperature 

deviates from the nominal condition the dynamics of the plant are altered. In the 

examples that follow, the parametric space is a bounded region that encompasses the 

physically achievable values of each state.  
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For the sake of visualization, the following discussion will be held with examples 

using two dimensional parameter spaces. The conclusions however are not limited to this 

particular case, being possible to apply all the discussed methods in higher dimensional 

spaces directly. 

Figure 2.3 brings a basic MMA setting where a set of controllers is devised for 

some specific operating regions sparsely distributed on the parameter space. Each of the 

operating regions (O1, O2 and O3) is generated around an operating point and limited by 

the range of the state space of the plant in which the corresponding controller performs 

with a minimum performance. In the dimensions of the parameter space that do not 

represent states of the plant, the operating regions represent the robustness of the 

controller. 

 

Figure 2.3. Performing Multiple Model control with sparsely distributed operating regions. O1 to O3 are 
operating regions around each operating point. The system is originally in the position of the parameter 

spaced marked by the white star and follows the depicted trajectory. 
 

If the plant is in a position in the parameter space that is close enough to an 

operating point to be inside its operating region, it is reasonable to apply the respective 

pre-computed control law. This is the case of the original position (white star) of the 
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trajectory shown in Figure 2.3. However, variations in the set-point or the occurrence of 

faults may take the system to a point away from all operating points that were considered 

off-line (black star) and the question of what control law to use is raised. As a matter of 

fact, since precise description of the operating regions is not often available in practice, 

such question may arise even while the plant is still inside the true operating region. 

Perhaps the most intuitive approach, one of the ways to generate control laws for 

in-between operating points is to assign a mean of the parameters of the controllers at 

each operating point to the parameters of the active controller, weighting it by their 

geometrical distance with respect to the present position in the parameter space. The main 

critic to this method is that it does not take into account the nonlinear characteristic of the 

system that creates a heterogeneous parameter space. In Figure 2.3 for example, since the 

plant finds itself closer to O2, weighting the sum by the geometrical distance alone would 

result in a control law more similar to the one devised for that operating point. However, 

if a strong nonlinearity existed between O2 and the present system position, the ideal 

control law may be more similar to those created for O1 and O3. 

Among the techniques that have been researched aiming to overcome this 

limitation, some are of special interest to this study as they were specifically designed for 

FTC applications. In [22] a set of IF-THEN rules was used in a fuzzy logic framework to 

compare the present position in the parameter space with the symptoms of known faults. 

The degree of similarity with each fault scenario was then used to weight the mean that 

adjusts the parameters of the controller. Assuming that knowledge is available regarding 

the status of the system that make it prone to develop each expected fault, in [18] this 
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approach was improved by applying the fuzzy algorithm only to the set of possible faults 

at a given position in the parameter space. 

A different approach was taken in [24] where the probability of occurrence of 

each expected fault was modeled in a finite-state Markov chain with known transition 

probabilities. With this information at hand, the mean of control parameters was weighted 

favorably to the most probable fault scenarios. 

Regardless of the weighting scheme chosen, it is still an approximation of the 

behavior of the system outside the considered regions of operation and as such it is 

inevitably susceptible to nonlinearities active outside those regions. One way to solve this 

deficiency is to generate closely connected models by dividing the whole parameter space 

into even operating regions as shown in Figure 2.4(a). The natural tradeoff of this method 

is that increased control performance tends to require controllers designed for smaller, 

and therefore less complex, regions. This in turn causes the final number of models 

needed to cover the whole space to grow, requiring extensive design work since a control 

law has to be designed for each model. This relationship can be clearly seen in a series of 

simulation results performed in [37]. If made small enough, each region can be 

represented by a linear model given by the linearization of the nonlinear plant on the 

center of the operating region, making it possible to apply GS. 
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Figure 2.4. Closely connected multiple model implementations: fixed size operating regions (a) and plant 
dynamics dependant operating regions (b). In the diagrams each rectangular section represents an operating 

region. The system is originally in the position of the parameter spaced marked by the white star and 
follows the depicted trajectories. 

 

Since all parameter space is covered by previously designed controllers, a basic 

closely connected MMA algorithm would be composed only of two steps: determine the 

present position of the plant in the parameter space and apply the corresponding 

controller. However, even though each controller is designed to result in a desirable 

behavior for the plant while inside its respective operating region, if no special procedure 

is performed, switching directly from one control law to another may cause all kinds of 

unwanted responses as the plant navigates from one operating region to another. In [36], 

a minimum time (or number of iterations) was set for permanence inside an operating 

region before switching takes place, creating in this way a time based hysteresis in an 

effort to prevent oscillations between adjacent operating regions. Another approach, 

requiring all controllers to possess the same structure, is to create an area on the border of 

adjacent operating regions in which the parameters of both controllers are combined 

causing one to gradually change to another. However, both methods are solely heuristic 

solutions and no proof of their efficiency, let alone deterministic way to configure their 
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design parameters, is available. A method that guarantees stability of systems when 

perform control switching has been presented in [40]. The referenced paper describes a 

way to compute a pre-transition sub-region inside an operating region from which 

stability is assured when switching to another specific operating regions. In [37], an 

adaptive controller that operates in parallel with the MMA is used to assure stability of 

the system during the transient behavior generated by switching controllers. 

If complete information on the dynamics of the nonlinear system is available 

beforehand, it is possible to divide the parameter space taking into account the sensibility 

of different areas (as shown in Figure 2.4(b)) and produce a combination of controllers 

with good performance based on a compact set of operating regions. It is important to 

notice that, independent of the number and uniformity of the regions, because no 

interpolation is fundamentally necessary, different control structures or even strategies 

can be used for each region. 

From the point of view of FTC applications that consider the occurrence of 

unexpected faults, model weighting is not an attractive technique since there is no reason 

to assume that a new fault dynamic will hold any relationship with those previously 

known. When closely connected multiple models are considered, the quality of the 

response depends on the robustness of the design of each controller and the way the 

control laws are switched from one to another. Although in this formulation an active 

FTC is being performed for expected faults, no direct action can be defined for 

unexpected dynamics. At the same time that the requirement for robustness increases, 

since the areas of sensitivity are no longer available at design time, a large number of 



 32 
 

evenly spaced operating regions have to be created making the memory requirement and 

design effort increase greatly. 

It is therefore interesting to explore yet another way to apply the MMA concept in 

which controllers are designed on-line as new operating regions are reached [37]. Since 

no information about the parameter space is supposed to be available at design time, 

nonlinear online identification is required in order to learn new operating regions 

(models) and recognize the ones to which a controller has already been designed. In this 

way, different from the previously discussed methods that adjust the controller based on 

the position of the plant in the parameter space, the on-line building of models achieves 

the same in an indirect manner by the identification error of the models designed so far. 

Therefore, if at a given moment the identification error of every known model (contained 

in a dynamic database) is high the plant is considered to be in an unknown region of the 

parameter space, while if the error of one of the models is low it indicates that the plant is 

inside the respective operating region. What is considered to be “high” or “low” depends 

on an identification threshold selected by the user. By reducing this threshold the 

operating region of each model shrinks, causing a greater number of models to be 

generated. In this sense, a parallel can be traced between the setting of the identification 

threshold and the choice of how many fixed models to have in the closely connected 

operating regions approach. 

It is interesting to notice that, due to the indirect measuring through the dynamics 

of the plant, the operating regions now span in the space of the identifier, not in the 

parameter space. If a neural network is used to approximate the plant dynamics for 

example, the operating regions span in the dimension defined by its weights. Operating 
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regions described in the parameter space possesses all its dimensions with direct physical 

meaning since they came from sensor readings. Although this property can be highly 

desirable in certain operations such as translating expert knowledge to the model 

database, changes in the dynamics are not always directly linked to the position on the 

environmental space. For example, a high temperature in a certain part of a system may 

not instantly incur in a fault, but may increase the probability of its occurrence. Since the 

identifier focus on the change in the dynamics and not on the secondary symptoms of 

faults, it does not suffer from such drawback. On the other hand, in order to extract 

information from expert sources it is necessary to duplicate the described conditions in 

simulation so that the identifier is able to produce a model in its own space. 

As with the identification models, the control laws must also be devised on-line. 

A single control strategy that modifies itself based on the identified models, such as 

approximate feedback linearization [41], is a valid approach for plants which dynamics 

do not present extreme non-linearities. When it is not the case, highly flexible nonlinear 

adaptive controllers [28] may be applicable. 

If a new model is added to the database every time the identification threshold is 

exceeded, the area of the parameter space to which the system is exposed will be filled 

with closely connected models and therefore there is no need to use the same control 

structure for every operating region. Particular solutions previously known to exist to 

particular regions of the parameter space can then be directly introduced. For example, 

fuzzy logic can be used to extract expert knowledge on the solution of a particular fault, 

while neural networks is used to generate novel control laws to cope with unexpected 

fault scenarios. 
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Sparsely connected model distribution can also be attained by the on-line MMA 

approach if a second threshold to measure model dissimilarity is created. The 

dissimilarity threshold, always greater than the identification one, indicates the regions in 

which the present dynamics of the plant are considered to be different enough from all 

the models in the database to justify the addition of a new model. Such scheme was 

implemented in [38] where the parameters of the controllers for regions not covered by 

the models in the database were adjusted by a mean of the known controllers weighted by 

the inverse of the identification error of their respective models. In this way, the control 

laws for regions between models hold more similarity to the ones devised for similar 

plant dynamics. 

Apart from the above mentioned concerns involving the transient behavior of the 

system when switching is performed, the application of MMA to FTC harbors two other 

points that require careful consideration. The first of them is the fact that the task to link 

either the present location on the parameter space or the prediction errors of identification 

models to the occurrence of a particular fault represents a FDI process and as such is 

vulnerable in all issues outlined in Section 2.1. The second point focus on FTC 

applications that require new models to be designed on-line in a continuously growing 

database. In such a scenario the nonlinear adaptive controller is required to be at the same 

time: quick to converge, highly flexible and possess guaranteed stability, often 

conflicting characteristics in practice. 
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CHAPTER 3 – Baseline Nonlinear Adaptive Controller 
 

3.1. Introduction 
 

Increased performance specifications are often achieved at the cost of amplified 

plant and control complexity. As overall complexity rises, so does the chance of 

occurrence, diversity and severity of faults. When complex systems suffer from faults, 

the original model parameters or even its own dynamic structure may change in a 

multitude of unpredictable ways. Even if the system has a satisfactory linearization 

around the nominal operation point, nonlinearities may become of paramount importance 

after a fault occurs [4]. When the stochastic nature of faults is taken into consideration 

and to predict all fault scenarios is made impossible, it becomes clear that the problem of 

interest of FTC cannot be dealt with without an on-line nonlinear adaptive control 

strategy.  

It is important to state here that, for the benefit of the discussion in this chapter, 

the required redundancy is assumed to exist in the system. Hardware redundancy requires 

two or more independent instruments that perform the same function, while analytical 

redundancy uses two components based on different principles to measure a variable, 

where at least one of them uses a mathematical model in analytical form. In either case, 

from the theoretical point of view, this assumption matches the requirement for sustained 
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observability and controllability (or global reachability for nonlinear systems) through 

fault scenarios. This condition is later relaxed in Chapter 6. 

In this section, we explore control architectures that take advantage of the 

universal approximation capability of the nonlinear maps generated by Neural Networks 

(NN). In particular, five different NN control architectures are presented in order of 

growing sophistication, starting from two basic NN architectures and leading to three 

adaptive critic approaches. The merits of each are discussed and their shortcomings 

exposed, which in turn becomes the motivation for the next. The first architecture is an 

application of a single NN with a classical training algorithm and the requirement of full 

knowledge of the plant’s dynamics at all times. The controller is then improved by the 

addition of a second NN capable of generating online a map of the plant’s dynamics, 

however the training algorithm remains fundamentally the same.  

The addition of a third NN and a change in the training paradigm leads to the 

adaptive critic architectures: Heuristic Dynamic Programming (HDP), followed by Dual 

Heuristic Programming (DHP) and finally Globalized Dual Heuristic Programming 

(GDHP). Made clear through their description, adaptive critic architectures are preferred 

for FTC implementations due to its great flexibility and known effectiveness to work in 

noisy, nonlinear environments while making minimal assumptions regarding the nature 

of such environment [7]. 
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3.2. A single NN control architecture 
 

The goal of this approach is to use a NN to generate a nonlinear map connecting 

the states of the plant ( )x t , previous inputs ( 1)u t −  and current target ( )tx t  to an input 

( )u t  that will minimize the utility function ( )U t  defined by (3.1). 

 

( ) ( )1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

Tt t TU t x t x t Q x t x t u t R u tρ= − − +  (3.1) 

 
where, Q  is a diagonal square matrix that can be used to assign different degrees of 

importance to each state, R is the equivalent matrix that penalizes the amount of control 

action used and ρ  is a scalar used to balance the minimization of the tracking error and 

the energy use during the process.  

 

Figure 3.1. A single NN control architecture 
 

In order to differentiate it from the other NNs that will be introduced in later 

architectures, this NN is named Action Neural Network (AcNN). Figure 3.1 depicts such 

architecture. When performing the training of the AcNN, the information of how its 

weights affect the states of the plant is required. However, backpropagation through the 

AcNN only provides information on how the inputs ( )u t  are affected by its weights. 

Therefore, this approach requires the availability of a differential model of the dynamics 

DD

( 1)x t +( )u t
( )tx t

( )x t

DD

PlantAcNN
( 1)u t −
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of the plant from which the information on how the states ( )x t  are affected by the inputs 

( )u t  can be extracted. As a result, this architecture is not suitable for FTC application, 

since faults are assumed to modify the dynamics of the plant in unpredictable ways, 

making it impossible to design models beforehand. 

 

3.3. A direct adaptive control architecture using two NNs 
 

Since it is not possible to offline design models of the plant dynamics for all fault 

scenarios, in this architecture a second neural network is introduced with the goal of 

performing online plant identification. Once this network has converged to represent a 

map of the dynamics of the plant, the derivative of the states with respect to the inputs 

can be extracted through standard backpropagation. Such network will be referred to as 

the Identification Neural Network (IdNN). Figure 3.2 displays this second approach. 

 

DD

( 1)x t +( )u t
( )tx t

( )x t

DD

( 1)ix t +

PlantAcNN

IdNN( )u t

( 1)u t −

( )x t

 

Figure 3.2. A direct adaptive control architecture using two NNs 
 

Although no critical restrictions prevent this architecture to be used as a solution 

to the FTC problem, its performance can still be largely improved if the training 
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algorithm for the AcNN is reevaluated. In these first two architectures, the AcNN is 

trained at each iteration with the goal of reducing the current value of the utility function 

( )U t . This is performed under the assumption that this process will ultimately lead to a 

set of weights that minimize the utility function for all times. However, this training 

approach provides no mechanisms to minimize the values that ( )U t  assumes during 

training (or the time it takes). Clearly it is of the interest of FTC to provide a new control 

solution to a fault scenario as quick as possible and with minimum performance impact. 

 

3.4. Heuristic Dynamic Programming 
 

Seeking to overcome the limitations of the previous approaches, the first adaptive 

critic controller is introduced. Adaptive critic architectures have a much greater potential 

to achieve the required degrees of reconfiguration and stability because more than the 

simple instantaneous difference between desired and actual states is available to be used 

as performance index. Due to the continuous interaction between the controller and the 

plant, the quality of a certain control strategy can only be fully measured after analyzing 

all future effects it has on the control mission, in our case trajectory tracking.  

Therefore, HDP trains the AcNN to minimize not the present utility function 

alone, but also the sum of all future values of ( )U t  with a decaying factor γ  ( 0 1γ< < ). 

Such quantity is referred to as the cost-to-go ( )J t , as defined by the Hamilton-Jacobi-

Bellman equation (3.2), and represents the core of dynamic programming [42].  

 

0
( ) ( )k

k
J t U t kγ

∞

=

= +∑  (3.2) 
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Problems formulated in this form are the main focus of dynamic programming, 

that solves it through a backward search from the final step [43]. To make the problem 

tractable to an on-line learning approach, adaptive critic designs require an estimate of 

the actual cost-to-go to be constantly determined. Although ACD’s can be implemented 

with any differentiable structure [44], neural networks have been widely used [45] due to 

their generalization and nonlinear mapping capabilities as well as having suitable 

methods for on-line learning. Given the complexity of FTC systems, dynamic or 

recurrent neural networks were chosen due to their more efficient handling of dynamic 

nonlinear mapping [30]. It is in this context that we introduce a third NN, denominated 

the Critic Neural Network (CrNN), responsible for approximating ( )J t . The resulting 

block diagram is shown in Figure 3.3.  

In other words, in adaptive critic designs, the training of the AcNN is done in the 

direction of the minimization of the cost-to-go approximation. In HDP this is 

accomplished by starting the training path of the AcNN with the information of how the 

inputs and states will affect the current cost-to-go ( )J t . Since the CrNN is trained to 

estimate it, such information can be easily extracted from the NN via backpropagation 

though time [46,47]. 
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Figure 3.3. Heuristic Dynamic Programming 
 

3.5. Dual Heuristic Programming 
 

Dual Heuristic Programming reevaluates the purpose of the CrNN and redesigns 

it. Although in HDP the CrNN is trained to estimate ( )J t , its true purpose is to provide 

the AcNN with the partial derivatives of ( )J t  with respect to the states and inputs 

(usually referred to as ( )x tλ  and ( )u tλ  respectively). In DHP architecture, as shown in 

Figure 3.4, the CrNN is trained to output such derivatives directly. Using this direct 

approach, DHP is capable of generating smoother derivatives and has shown improved 

performance when compared to HDP. Those results were presented in [44], where both 

methods were applied to a turbogenerator, characterized as a highly complex, nonlinear, 

fast-acting, multivariable system with dynamic characteristics that vary as operating 
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conditions change. These benefits, however, come with the tradeoff of a more complex 

training algorithm for the CrNN as shown in [48]. 

 

3.6. Globalized Dual Heuristic Programming 
 

3.6.1. Introduction 
 

The adaptive critic GDHP algorithm combines the HDP and DHP approaches to 

generate the most complete and powerful adaptive critic design [7]. In GDHP, xλ  and uλ  

are determined with the precision and smoothness of DHP, while improving the CrNN 

training by also estimating ( )J t  as in HDP. Figure 3.5 depicts the block diagram of this 

approach. 

 

Figure 3.4. Dual Heuristic Programming 
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Figure 3.5. Globalized Dual Heuristic Programming 
 

In this section, the adaptive critic architecture of Globalized Dual Heuristic 

Programming is presented in detail. Following this introduction, the adaptive control 

problem of interest to FTC is stated mathematically and the adopted notation introduced. 

The next three subsections are focused each on one of the neural networks that compose 

the GDHP architecture: identifier, action and critic. Each neural network has its structure 

presented, followed by a discussion on its training algorithm and the ways through which 

information required by other networks is extracted. Finally, all information contained in 

this section is summarized in the complete GDHP algorithm presented in a manner that 

can be readily applied. 
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3.6.2. Preliminaries 
 

The first step is to define ( )x t  (3.3) and ( )u t  (3.4), column vectors of the n x  

states and n u  inputs at time t , and the Tap Delay Line (TDL) vectors ( )x t  (3.5) and 

( )u t  (3.6) that combine information of xTDL  and uTDL  sampling times respectively. 

 

[ ]1 2( ) ( ) ( ) ( ) T
n xx t x t x t x t= L  (3.3) 

 

[ ]1 2( ) ( ) ( ) ( ) T
n uu t u t u t u t= L  (3.4) 

 

( ) ( ) ( 1) ( 1)
TT T T

xx t x t x t x t T D L⎡ ⎤= − − +⎣ ⎦L  (3.5) 

 

( ) ( ) ( 1) ( 1)
TT T T

uu t u t u t u t T D L⎡ ⎤= − − +⎣ ⎦L  (3.6) 

 

Given the causal plant (3.7) with nonlinear ( ).f  subject to abrupt faults 

characterized by discontinuous changes in its parameters or structure, the primary goal of 

the controller (3.8) is to make the states track the desired trajectory ( )tx t . Since particular 

fault scenarios may render regions of the state space unreachable to the plant, the 

controller is not required to reduce the tracking error to zero, but rather minimize it under 

the constrains of each particular fault. In the controller, ( ).g  is a nonlinear continuously 

differentiable approximator composed of three neural networks: identification, action and 

critic. The way each neural network is trained online and how they interact in the GDHP 

architecture is explained in detail in the following sections. 
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( )( ) ( 1) , ( 1)x t f x t u t= − −  (3.7) 

 

( )( ) ( ) , ( 1) , ( )tu t g x t u t x t= −  (3.8) 

 

3.6.3. Identification Neural Network (IdNN) 
 

The IdNN (shown in Figure 3.6) is responsible for generating a differentiable map 

that matches the dynamics of the plant. Note that, in the used notation, all variables 

related specifically to the IdNN receive the superscript i. Designed as a two-layered 

recurrent neural network [49,50] with input ( )ip t  (3.9), nhi neurons in the hidden layer 

and a tangent sigmoid transfer function (3.10), the IdNN outputs a vector of the estimated 

states ( )ix t  (3.11).  

 

( 1)
( 1)

( )
( 1)
1

i
i

x t
u t

p t
a t

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 (3.9) 

 

( )1( ) t a n s i g ( ) ( )i i ia t W t p t=  (3.10) 

 

2 ( )
( ) ( )

1

i
i i a t

x t W t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (3.11) 
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Figure 3.6. IdNN recurrent neural network architecture 
 

The network is trained online with the goal of minimizing the identification error 

( )iE t  subject to the relative importance matrix S  (3.12). Generally the matrix S  is set as 

the identity, however, by adjusting the magnitude of the diagonal elements, the IdNN can 

be made to focus more on the reduction of the identification error of certain states. By 

applying the steepest descent training algorithm, the weight update equation (valid for 

both layers) is given by (3.13). 

 

( ) ( )1( ) ( ) ( ) ( ) ( )
2

Ti i iE t x t x t S x t x t= − −  (3.12) 

 

( )( )( 1) ( ) ( ) ( )
Ti

i i i i
i

d x tw t w t S x t x t
d w

β
⎛ ⎞

+ = − −⎜ ⎟
⎝ ⎠

 (3.13) 

 

where iw  is a column vector of the elements of the corresponding weight matrix iW , and 

iβ  is the learning rate. Equations (3.14) to (3.16) show how the required derivatives are 

calculated.  
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( )2 1
( : , : 1)1 1

( ) 0 0
( ) ( 1)d i a g ( ( ) ) 0 0 ( )

0 0 ( )

i T
i i

i i
e n d n h i e n di i

i T

p t
d a t d a tI a t W t
d w d w

p t
− −

⎛ ⎞⎡ ⎤
⎜ ⎟−⎢ ⎥= − +⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

O  (3.14) 

 

2
( : ,1: )1 1

( ) ( )( )
i i

i
n h ii i

d x t d a tW t
d w d w

=  (3.15) 

 

2

( ) 1 0 0
( ) 0 0

0 0 ( ) 1

i T

i

i
i T

a t
d x t
d w

a t

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥
= ⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

O  (3.16) 

 

where 1iw  corresponds to the weights of the first layer and 2iw  to those of the second, 

and the standard MATLAB notation for the indication of rows and columns within a 

matrix is used. In such notation, when used by itself, the colon indicates all entities in a 

particular dimension (e.g., all rows or all columns), while when used between two 

numbers or variables it indicates the range between and containing such values in the 

corresponding dimension (e.g., all rows from 5 to nhi). 

In order to train both the AcNN and the CrNN, information on the plant dynamics 

is required. Once the IdNN has converged to an estimator of the plant, the derivative of 

the output with respect to the input calculated by Equations (3.17) to (3.19) can be used 

as an approximation to part of the plant dynamics. Equations (3.20) and (3.21) show how 

the previous derivative is used to build the complete dynamic description when xT D L  is 

greater than 1. 
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( , )
(:,1: )

( ) ( )0
( ) ( 1)

i i

nhi nu
end nu

da t da t
du t du t −

⎡ ⎤
= ⎢ ⎥
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 (3.17) 
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2
( : ,1: )

( 1) ( 1) ( 1)( 1)
( ) ( ) ( )

i i
i

n h i
d x t d x t d a tW t

d u t d u t d u t
+ + +

≈ = +  (3.19) 

 

( * , )
( : ,1: )

( ) ( )0
( ) ( 1)n x T D L x n u

e n d n u

d x t d x t
d u t d u t −

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
 (3.20) 

 

(1: ,: )

( 1)
( )( 1)

( )( )
( ) e n d n x

d x t
d u td x t

d x td u t
d u t −

+⎡ ⎤
⎢ ⎥+ ⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (3.21) 

 

The information on the plant dynamics is completed with the knowledge of how 

the current and past states affect the state on the next step. Therefore, there is also need to 

use the differential map of the IdNN to calculate the derivative of ( 1)x t +  with respect to 

( )x t . The process through which such derivative is obtained, detailed in Equations (3.22) 

to (3.26), is analogous to the one performed in (3.17) to (3.21). Note that in the process of 

calculating both derivatives, the causality of the plant is taken into consideration. 
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However, while causality restricts ( 1)
( )

dx t
du t

+  to a block upper triangular matrix, ( 1)
( )

dx t
dx t

+  

is an upper triangular matrix with ones in the diagonal. 
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3.6.4. Action Neural Network (AcNN) 
 

The core of the GDHP adaptive controller, the AcNN is responsible for the 

generation of the control input ( )u t . Similar to the IdNN, the AcNN is also built on a 
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two-layered architecture, as can be seen in Figure 3.7 and in the network description in 

equations (3.27) to (3.29). Equivalently, the superscript a is used over all variables 

specifically related to the AcNN. 

 

Figure 3.7. AcNN recurrent neural network architecture 
 

( )
( 1)

( ) ( 1)
( )
1

a a

t

x t
u t

p t a t
x t

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.27) 

 
1( ) t a n s i g( ( ) ( ) )a a aa t W t p t=  (3.28) 

 

2 ( )
( ) ( )

1

a
a a t

u t W t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (3.29) 

 

The training of the AcNN has the goal of producing the control sequence ( )u t  

that minimizes the cost function ( )J t , defined in (3.2) as the sum of all future values of 
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the utility function ( )U t  (3.1) with a decaying factor γ  ( 0 1γ< < ). The diagonal 

matrices Q  and R  have the same purpose as S  in the IdNN while ρ  adjusts the degree 

at which the amount of energy spent in the control effort is penalized relative to the 

tracking error. 

As in the IdNN, a steepest descent training algorithm was applied, resulting in the 

update equation (3.30). For reasons that will become clear in the description of the critic, 

the differentiation of ( )J t  with respect to the weights of the AcNN is not performed 

directly from the infinite sum (3.2). The relationship (3.31) is used instead, resulting in 

equation (3.32). 

 

( )( 1) ( )
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a a a
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d J tw t w t
d w
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 (3.30) 

 

( ) ( ) ( 1)J t U t J tγ= + +  (3.31) 
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where aβ  is the learning rate of the AcNN, and ( )( )
( )

x J tt
x t

λ ∂
=
∂

 and ( )( )
( )

u J tt
u t

λ ∂
=
∂

 are 

outputs of the CrNN. 

The next step is the calculation of the derivative of the input with respect to the 

weights of the AcNN. Equations (3.33-3.34) for the first layer and (3.35-3.36) for the 

second layer were derived in the same fashion as (3.14-3.16) of the IdNN. Equation 

(3.37) describes the way the full temporal derivative is obtained for both layers. It is 
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important to call for attention that, different from the IdNN, the AcNN is positioned in a 

closed loop with the plant. Therefore, in (3.33) and (3.35), the AcNN derivation path 

extends to include information on the dynamics of the plant, approximated by the IdNN. 
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On Equations (3.18) and (3.32), the derivative of the tap delayed input with 

respect to itself was required. Equations (3.38-3.42) display how those are calculated. 

Since ( 1)aW t +  is not yet available at this stage, the terms with superscript tilde are 

obtained using ( )aW t  as an approximation. Note that ( 1)ap t +  used for the calculation of 

( 1)aa t +%  can be generated by using the IdNN to estimate the future states of the plant 

assuming ( 1)tx t +  available. 
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In later developments, the information on how the future input is affected by the 

present states of the plant is required. For such purpose, Equations (3.43-3.47) are 

provided. 
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3.6.5. Critic Neural Network (CrNN) 
 

The third and final neural network, the critic is responsible for the estimation of 

the cost function ( )J t  and of its derivatives with respect to the inputs and states ( ( )u tλ  
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and ( )x tλ  respectively). Consistent with the notation of the other two NNs, all variables 

specifically related to the CrNN are marked by a superscript c. As shown from the 

network description in Figure 3.8 and Equations (3.48-3.50), the before mentioned 

derivatives are obtained directly as outputs of the network, instead of through 

backpropagation from the cost function.  
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Figure 3.8. CrNN recurrent neural network architecture 
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The GDHP critic’s weight update equation (3.51) is a combination of the training 

algorithms of HDP (minimizing the estimation error of ( )J t ) and DHP (minimizing the 

estimation error of ( )tλ ). Although the influence of the HDP and DHP algorithms can be 

decoupled in the update of the weights of the second layer, both terms equally affect all 

the weights of the first layer. This superposition of training approaches in the first layer 

of the CrNN is the main source of the synergy of GDHP [51]. 
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where cβ  is the learning rate of the CrNN and [ ]0,1η∈  is a parameter that adjusts how 

HDP and DHP are combined in GDHP. For 0η = , the training of the CrNN reduces to a 

pure HDP, while 1η =  does the same for DHP. 

Since the cost function ( )J t  is a weighted sum of present and future variables, the 

targets ( )oJ t , ( )ox tλ  and ( )ou tλ  are not analytically available when performing online 

learning. In order to generate values that will in time converge to the true targets, 

relationship (3.31) is used, resulting in Equations (3.52-3.54). 
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The next step is the calculation of the partial derivatives of the critic’s outputs 

with respect to its weights. Equations (3.55-3.57) demonstrate how those are obtained. 
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Completing the requirements of Equations (3.53-3.54), the partial derivatives of 

the utility function with respect to the states and inputs are provided in Equations (3.58-

3.59). Equation (3.60) shows how the full derivative of the utility function with respect to 

the inputs is calculated, as required in (3.32). 
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3.6.6. Complete GDHP algorithm 
 

A key issue in all adaptive critic designs implementation is how to coordinate the 

online training of the three NNs. While the IdNN is trained independently since it uses 

information of the plant alone, the training of each AcNN and CrNN depends on the 

weights of the other. If no provisions are made, both networks are forced to follow a 

moving target, making the whole process potentially slower and likely unstable. In [33], 

four different strategies were discussed and compared through the application on two 

different test beds, demonstrating the superior performance, stability and reduced training 

time of a particular one that we choose to implement. Although the original work was 

developed for the DHP architecture, the extension to GDHP is straightforward. The 

strategy of interest differs from others by the fact that it utilizes two distinct NNs to 

implement the critic. The first (CrNN#1) outputs J(t) and ( )tλ  and is trained at every 

iteration whereas the second (CrNN#2) outputs J(t+1) and ( 1)tλ +  and is updated with a 

copy of the first only once at a given period of iterations (i.e., epoch). With such training 

approach, it is possible to train both AcNN and CrNN continuously allowing the adaptive 
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critic controller to start responding to a fault as soon as it occurs. The final architecture is 

shown in Figure 3.9. 

 

Figure 3.9. Globalized Dual Heuristic Programming 

  
Table 3.1. Pseudocode for the presented GDHP controller 

1. Set 1t = , e = 1. Initialize neural networks weights and network derivatives. 
Estimate (1)ix ; 
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8. Update the weights of the AcNN by generating ( 1)aw t +  - Equations (3.30-3.37); 
9. Update the weights of the CrNN by generating ( 1)cw t +  - Equations (3.51-3.57); 
10. If e = epoch, copy the weights of CrNN#1 to CrNN#2 and set e = 1; 
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With all the mathematical content of GDHP already available in Equations (3.1) 

through (3.60), a pseudocode version of the actual algorithm is presented in a condensed 

format in Table 3.1. 

 

3.7. Simulation results 
 

In order to demonstrate the capabilities of the identification network and provide a 

better understanding of the fine interrelations between the supervisor and DHP controller, 

two numerical examples are exploited. In both examples, faults are simulated by instantly 

or gradually changing the model of the plant. To give a better insight to the challenge of 

each fault scenario, linear models of fixed order similar to those employed in [38] are 

used here. This information however, is not used in any way during the design of the fault 

tolerant controller, that continues to take the plant as possessing a generic nonlinear 

model. 

 

3.7.1. Identification using a recurrent neural network 
 

The goal of the following example is to display the capabilities of the single 

layered recurrent network to perform the identification of linear difference systems. An 

input signal is supplied in the form of a fixed frequency sine wave that changes mean and 

amplitude only once during the simulation. Since in the final application the input to the 

plant generated by the actor network is not necessarily composed of a large range of 
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frequencies, the input with a limited spectrum represents a challenging but possible 

scenario in practice. 

Four systems are presented in the sequence displayed in Table 3.2. The network is 

allowed 50 seconds for the identification of the first model, 30 for the second and 20 for 

the third. The fourth and final model is unstable and the applied sinusoidal input steeply 

drives the output to positive infinity. A variable learning rate with maximum value of 

0.004 is used. 

 

Table 3.2. Sequence of changes in the dynamics of the plant applied for the identification example 
Start time (ds) Plant dynamics 

0 )2(00566.0)1(00566.0)2(8187.0)1(810.1)( −+−+−−−= tututytyty
500 )2(00566.0)1(00566.0)2(9000.0)1(810.1)( −+−+−−−= tututytyty
800 )2(00234.0)1(00242.0)2(9048.0)1(810.1)( −+−+−−−= tututytyty

1000 )2(00234.0)1(00242.0)2(9048.0)1(919.1)( −+−−−−−= tututytyty
 

 
Figure 3.10. Results of the identification simulation. Plant signals are displayed in solid lines and the 

identification network output in dashed lines. 
 

Plant output 
& 

Identification 

Plant input 
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In Figure 3.10, the performance of the identifier can be seen. The small learning 

rate applied generates a slow initial reaction, but the identification signal remains close 

enough to the true plant output throughout the simulation in spite of the changes in the 

range of input and plant dynamics from model one to model three. As the fourth dynamic 

causes the output of the plant to grow steadily at increasing rates, it is not feasible for an 

identifier with a maximum learning rate to produce true identification indefinitely. Still 

the recurrent neural network based identifier fulfils its goal until the output becomes 45 

times larger than the normal range of operation. In the complete scheme, this would allow 

the actor network more than 70 iterations to restructure itself in any way that would at 

least decrease the rate of divergence. 

 

3.7.2. Fault Tolerant Control using a GDHP controller 
 

This subsection brings the results of the application of the GDHP controller as a 

solution to the FTC problem. The power and flexibility of the combined three NNs is 

then demonstrated in a simulation involving a nonlinear MIMO system subject to 

challenging faults. Based on a numerical testbed for adaptive control of nonlinear 

systems introduced in [36], we propose the two-input, two-output, third-order nonlinear 

system described by (3.61) as the structure for the subsequent experiments. 

 

 

 

 

 



 63 
 

( ) 1 1 1
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x t u t x t

⎛ ⎞
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A B  
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2 3 3 2
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( )( 1) ( ) 1 sin 4 ( )
1 ( )

x tx t x t x t
x t

+ = + + +
+

C  

( )( )3 1 2( 1) 3 sin 2 ( ) ( )x t x t u t+ = + +D  

[ ]1 2( 1) ( 1) ( 1) TR t x t x t+ = + + , 

 

where A, B, C and D vary according to Table 3.3, characterizing the dynamics of the 

system in the nominal condition, as well as under abrupt and incipient fault scenarios. In 

the particular case of the incipient fault, the values of A and B vary between the extremes 

shown in Table 3.3 in a continuous fashion through the course of 5,000 iterations. Note 

that the proposed faults are not limited to parameter changes alone. The introduction of 

new dynamics elements enables the GDHP controller to demonstrate its advanced 

restructuring capabilities. 

 

Table 3.3. Modifications in the dynamics caused by the occurrence of faults 

 

 

(3.61) 
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The FTC challenge is to constantly adapt the GDHP controller in order to track 

the trajectory defined by (3.62), while the system dynamics change in the following 

order: nominal → abrupt fault → nominal → incipient fault → abrupt fault. 

 

1
2 2( ) 0.5sin 0.5sin
500 250

r t tR t π π⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

2
2 2( ) 0.25sin 0.75sin
500 250

r t tR t π π⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.62) 

 

 

Figure 3.11. Successful control input sequences developed online by the GDHP controller for each 
scenario the plant assumes during the simulations. Solid lines correspond to 1( )u t  and dotted lines to 2 ( )u t . 

 

Although the GDHP controller continually fine-tunes itself to reduce the tracking 

error, an average squared tracking error of .02 is set as a performance goal. Therefore, the 

reconfiguration time is defined as the interval between the occurrence of a fault (or abrupt 

return to the nominal condition) and the recovery of the performance goal. Figure 3.11 

displays the different control efforts generated online by the GDHP controller after the 
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performance goal is achieved at the nominal and abrupt fault scenarios. The control 

inputs for the final dynamics of the incipient fault are also shown for comparison. The 

introduction of the incipient fault illustrates the capability of the GDHP of constantly 

modifying itself to account for the gradual modifications in the dynamics of the plant, 

while the performance is maintained throughout the process. For improvements brought 

by the addition of the supervisor that will become clear in the following chapter, it is 

important to note that the free running GDHP controller, during the transition from the 

abrupt fault to the nominal dynamics, required 11.4×103 iterations, and the transition 

from the incipient fault to the abrupt fault required 13.1×103 iterations. As an example, 

the output of the plant during the transition from nominal to abrupt fault is shown in 

Figure 3.12. 

 

 

Figure 3.12. Plant output as the abrupt fault is introduced at iteration 5,000. 
 

 

 

 

 

Reconfiguration Abrupt Fault 
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CHAPTER 4 – Fault Tolerant Control Supervisor 
 

4.1. Proposed supervisor 
 

In the proposed scheme, the goal of the supervisor is to monitor the system and 

manipulate the dynamic database accordingly. Measuring the quality of the control 

performance and analyzing its evolution through time indirectly detect faults. By 

augmenting this information with the knowledge of how close any model in the database 

approximates the current dynamics, faults are isolated into any of the currently known 

fault scenarios. In addition to that, faults are also automatically classified into abrupt or 

incipient, a key factor in the decision of when to switch to a control law present in the 

database. 

To better understand the details of the functionality of the supervisory system, it 

can be divided into three layers. The first one collects and analyzes data from the plant 

and the controller block. The second is responsible for the decision making and the final 

one devises ways to implement the resolutions. 

 

4.1.1. Quality indexes generation layer   
 

The first layer receives the sampled output of the plant ( )R t  and a delayed input 

( 1)u t − , computes two quality indexes and indicates the known scenario that better 
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approximates the current dynamics. The first quality index, ( )cq t , measures the 

reconfigurable controller performance by performing a decaying integration of the 

primary utility function as shown in Equation (4.1), 

 

∫ −−=
t

t
c dUetq c

0

)( )()( τττξ , (4.1) 

 

where 0 1cξ< <  is a time decay factor. In this structure, greater time decay factors will 

lead to ( )cq t  being more affected by the quality of control actions related to instances 

further into the past. Concerning the occurrence of abrupt faults, adopting a cξ  closer to 

the unity will lead to a more conservative supervisor that will observe the reconfigurable 

controller longer before adding a new solution to the DMB and will also wait for a longer 

period of poor performance before detecting a fault. 

For the calculation of the second quality index, the delayed input is then fed into 

the DMB. The DMB contains information on the plant under nominal condition and 

under all the known fault scenarios, organized in the form of copies of the IdNN, AcNN 

and CrNN used to control the plant under each situation. To guarantee their 

specialization, no additional training is performed on networks once inserted into the 

DMB. Each one of the IdNNs in the DMB is then used to generate an identification error. 

For each of those, a decaying integration similar to Equation (4.1) is used, and the results 

are compared. As shown in Equation (4.2), the smallest identification error history 

defines the identification quality index ( )iq t , and the corresponding model m  is 

appointed as the switching candidate. 
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where 0 1iξ< <  is a time decay factor, and ˆ ( )mR t  is the vector of outputs predicted by 

the IdNN m , which in turn is an element of the set of M  models in the DMB. As with 

cξ , the identification decay factor iξ  can also be used to fine-tune the behavior of the 

supervisor. Greater identification decay factors will also lead to a more conservative 

supervisor in the sense that it will require more data points to conclude that the observed 

plant dynamics match the ones described by one of the known faults. 

 

4.1.2. FDI and decision-making layer 
 

In the second layer, a threshold is defined for each of the quality indexes, dividing 

them into high ( cHq , iHq ) and low ( cLq , iLq ) values. The threshold for )(tqc  defines 

what is to be considered as an acceptable performance, while the one for )(tqi  stipulates 

the degree of likeness of the input-output behavior that should be used to consider two 

models distinct. Four states, tagged 1 to 4, are in this way defined and the decision 

process illustrated in Figure 4.1 takes place. It’s important to notice that in this 

formulation the actions of switching and adding to the database take place in the 

transition between states. This characteristic, added to the improved smoothness of the 

quality indexes bestowed by the regressive mean, aids in the generation of the hysteresis 
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required to prevent the automatic switching scheme to generate spurious oscillations 

between states. 

If both indexes are low (state 1), the current reconfigurable controller is 

performing satisfactorily over a known environment and no action is required. While in 

this state, an abrupt fault may cause the performance to be degraded enough for the 

controller quality index to surpass its threshold. In this case, )(tqi  will remain low or 

grow on the respective events of a known or unknown fault. 
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Figure 4.1. Decision graph of the second layer of the supervisory system. The states, tagged 1 to 4, are 

defined by the quality measures )(tqc  and )(tqi . The moments when the actions of switching and adding 
to the database are performed are shown on the graph. 
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If both indexes exceed the threshold (state 2), the environment has abruptly 

changed due to an unknown fault, and the supervisor is unable to provide any help to the 

DHP controller. If )(tqi  remains low, there is already a set of DHP parameters in the 

DMB previously adapted to deal with a plant with similar dynamics and to which 

switching should take place. The decision process then remains in state 4 ( cHq  and iLq ) 

until either the system is recovered or another fault takes place before that. If the 

composite fault is also a known fault, switching takes place again triggered by the change 

in the switching candidate appointed by the first decision layer. 

Incipient faults, often connected to component aging, may be gradually adjusted 

by the reconfigurable controller and eventually indicate a high )(tqi , even though )(tqc  

remains low during all the process (transition from state 1 to 3). In this case, there is no 

purpose in learning a new environment/controller pair since the parameters are 

continuously changing. As a matter of fact, if allowed to learn all the transient models, 

the database might rapidly grow to an intractable size.  

When the DHP controller is adapting to a new environment (state 2), )(tqc  is 

expected to decrease to the point where it crosses its threshold (transition to state 3) and a 

new set of parameters is added to the DMB, but two other scenarios must also be 

considered. The first one deals with the possibility of an abrupt known fault to happen 

before the first fault is completely dealt with. In this case )(tqi  reaches a low value prior 

to )(tqc  and switching to the known environment takes place. The second scenario 

addresses to the situation in which, due to the particular nature of the fault or controller 

limitations, an acceptable performance is never met for the present plant dynamics.  
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4.1.3. The Dynamic Model Bank layer 
 

The third and last layer manipulates the DMB by making new entries and 

switching to the reconfigurable controller indicated by the fist layer, when requests arrive 

from the second. Switching is implemented by loading a complete set of parameters of 

the three neural networks (i.e., identification, action and critic networks) to the DHP 

algorithm currently being used. The fact that the controller is switched to one devised to a 

similar plant and the natural generalization capabilities of neural networks add to improve 

stability when the parameters are loaded as new initial conditions to the adaptive process. 

In the database are also stored copies of all the partial derivatives required when updating 

the networks using backpropagation through time. Uploading those derivatives also 

works to increase switching smoothness since more information about the plant new 

dynamics is supplied. 

 

4.2. Performance evaluation 
 

Throughout the course of the presented study, different FTC methods will be 

implemented and applied to benchmark problems. In order to compare the performance 

of the existing approaches and evaluate the benefits brought by the proposed techniques, 

more than visual inspection of a few simulation results is required. 

Given a benchmark plant under a specific sequence of fault scenarios, the 

performance of different Fault Detection methods can be compared by the number of 
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misdetections and false alarms generated. A fault that goes undetected, even when the 

system as a whole is not significantly affected by it, reduces the available redundancy of 

the system. Since no indication of its occurrence is issued, the plant does not have the 

option of stopping for a corrective maintenance and, once the redundancy is depleted, the 

next fault will be unrecoverable and may lead to disastrous consequences. False alarms 

are generally less prone to cause such extreme consequences, however, since incorrect 

information is given to the supervisor, it may generate inappropriate control actions. The 

average and maximum detection delay times are also important parameters since 

detection is the first step to FTC and before that, no active response can be initiated by 

the controller. 

In a similar spirit, fault identification quality can also be measured quantitatively 

by counting the number of times of misidentification and incorrect identification and 

measuring the identification delays. Incorrect identification will lead to control actions 

that may be invalid for the true dynamics of the plant with possibility of aggravating the 

currently detected fault scenario. Misidentification will prevent the supervisor to supply 

the control law already available to a known fault scenario, causing longer 

reconfiguration times or even unwanted responses in the cases when specific solutions 

are added during design time to deal with particular faults. 

Representing the primary goal, availability is the most important index of success 

of a FTC scheme. In a simulated test sequence, availability concept can be better 

represented by the mean and maximum time of recovery and the number of faults a 

particular algorithm completely fails to address. Other performance evaluation indexes, 

such as required computational complexity and reconfiguration steady state performance, 
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may also be used to increase distinguishability and analyses of different techniques and 

proposed improvements.  

 

4.3. Simulation studies 
 

4.3.1. Discrete-time linear SISO plant 
 

In this subsection, a numerical example based on a discrete-time SISO linear plant 

is used to illustrate the dynamics of the proposed FTC algorithm. Special emphasis is 

given to the actions of the supervisor system, which is the intelligent core of the 

algorithm. For the sake of simplicity and understanding in this first example, the plant 

consists of a linear ARMA model, which faults reflect in changes in its parameters. The 

models, sampled at 10Hz, used to simulate the plant under nominal operation and under 

each of the artificial faults are given in Table 4.1. 

 

Table 4.1. Plant dynamics under nominal and faulty operation conditions. 
Scenario Plant dynamics 
Nominal )2(0055.0)1(0058.0)2(8187.0)1(810.1)( −+−+−−−= tututytyty  
Fault 1 )2(0060.0)1(0070.0)2(0250.0)1(000.1)( −+−+−−−= tututytyty  
Fault 2 )2(0040.0)1(0050.0)2(8187.0)1(810.1)( −+−+−−−= tututytyty  
Fault 3 )2(0078.0)1(0479.0)2(5337.0)1(515.1)( −+−−−−−= tututytyty  
Incipient )2(0044.0)1(0048.0)2(8294.0)1(810.1)( −+−+−−−= tututytyty  

 

The incipient fault occurs over the nominal model, changing its dynamics 

gradually until the one given above. The simulation was carried out with the plant being 

abruptly changed to a different model at every 10 minutes. The goal is to follow a 
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trajectory composed by a sine wave that changes the amplitude randomly at every half a 

period. The DMB is initialized with only one model corresponding to the initial 

conditions of the DHP controller (small random numbers as parameters for all networks). 

Since in this case no beforehand information about the system is given to the plant, 

initially the nominal plant is treated as an unknown fault and therefore the system begins 

in the state where both indexes are high. Figure 4.2 shows the graphs containing the 

results that are discussed in detail in the following paragraphs. 

 

         
Figure 4.2. The top graph brings the desired trajectory (dashed green), the output of the plant (solid blue) 

and the output of the identification network while it adapts (dotted red). The second graph displays the 
input to the plant as calculated by the adaptive critic controller. The third and fourth graphs show the 

quality indexes )(tcq  and )(tiq  respectively, along with the thresholds used. The labels (a) to (f) indicate 
moments at which the supervisor acted. 

 

After the initial transient response, as soon as )(tqc  indicates a low value, the 

supervisor flags a control success and adds the nominal model to the DMB (indicated by 

Nominal Fault 1 Nominal Fault 2 Fault 3 Incipient Fault 3 

Plant 
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(a) in Figure 4.2). The copy of the identification network, that is now part of the DMB, 

generates a low identification error causing )(tqi  to drop. 

The identification quality index )(tqi  remains low after a model is added even 

thought the training has been stopped and new inputs are being supplied, indicating two 

main achievements of the proposed FTC scheme. The first one is that the neural network 

used as identifier in the DHP architecture was capable of converging to represent the true 

dynamics of the system. The second is that the supervisor was able to recognize the 

proper moment when a new identifier and controller pair should be memorized. 

After the first 10 minutes of simulation the first fault occurs abruptly changing the 

dynamics of the plant. While the adaptive controller reconfigures itself to the new 

scenario, both indexes grow indicating that the system is going through an abrupt 

unknown fault. As )(tqc  drops to an acceptable level (at (b) in Figure 4.2), the first fault 

model is recorded along with the controller that was specifically designed on-line to deal 

with it.  

After 20 minutes of simulation, the plant returns to the nominal mode. Due to the 

change in the dynamics, )(tqc  increases due to the drop in the performance. On the other 

hand, )(tqi  shows only a thin spike indicating that there already exists an element in the 

DMB that was previously designed to deal with a system similar (in this case identical) to 

the present one. Therefore switching takes place at (c) leading to a much faster response. 

The second fault is introduced at 30 minutes. By comparing with the identifier 

adapted for the nominal plant, the supervisor concludes that the dynamics are not 

different enough to justify a new entry in the database. This property is of extreme 

importance in order to achieve a database capable of covering all the known space while 
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maintaining a compact set of recorded models. The third fault on the other hand, requires 

a major reconfiguration in the controller, and so it is also added to the DMB after 

convergence at (d). 

After 50 minutes of simulation, the plant is instantly reverted to the nominal 

model and the incipient fault is applied over it. Since in the initial moments the dynamics 

are still similar enough to the ones of the nominal model, switching takes place at (e), 

shortly after 50 minutes. As the parameters of the plant are changed, the controller is 

capable of constantly reconfiguring itself and the tracking error remains low. As the 

dynamics of the plant deviate farther from the nominal ones, )(tqi  increases to the point 

when the supervisor correctly diagnosticates the occurrence of an incipient fault. Around 

57 minutes, )(tqi  once again falls as the input-output relation of the plant now 

approximates itself to the one stored when the first fault was learned. 

To illustrate the effectiveness of the algorithm when a fault presents itself for the 

second time, fault 3 is introduced again at 60 minutes. As soon as the environment is 

recognized as a known one by low values of )(tqi  at (f), switching takes place generating 

a smother and faster response. 

It is important to note that throughout this example the supervisor was capable of 

correctly differentiating between small changes in the dynamics and faults that required 

greater control law reconfiguration. Using the previously discussed decision logic, the 

faults were successfully classified according to their time profile and knowledge stored in 

the database. As the DHP controller generated identification models and control laws to 

counter the unknown abrupt faults, the supervisor incorporated both to the database at the 

adequate moments. As models were presented for the second time, switching to the 
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previously adapted control laws took place to accelerate recovery and improve transient 

response. 

 

4.3.2. Continuous-time linear SISO plant 
 

In the spirit of [38], for the sake of simplicity and understanding, the plant 

consists of a simple linear model, subject to faults resulting in changes in its parameters 

and order of the numerator and denominator polynomials. The models, sampled at 10Hz, 

used to simulate the plant under nominal operation and under each of the artificial faults, 

are given in Table 4.2. 

 

Table 4.2. Nominal and Fault Dynamics 

 

 

It is important to call to attention now that the incipient fault occurs over the 

nominal dynamics, changing it gradually with time since its occurrence it  (in minutes). 

The simulation was carried with the plant being abruptly changed to a different model at 

every 16.67 minutes (104 iterations). The goal is to follow a reference trajectory 

composed of a sine wave that randomly changes the amplitude at every half a period. 
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Figure 4.3. The top graph shows the desired trajectory (dashed) and the output of the plant (solid). The 
second graph displays the input to the plant as calculated by the GDHP controller. The third and fourth 

graphs show the quality indexes ( )cq t  and ( )iq t , along with the thresholds used. 
 

Since in this case no beforehand information about the system is given to the 

plant, initially the nominal plant is treated as an unknown dynamics and therefore, as 

displayed in Figure 4.3, the system begins with both quality indexes high (State 2 of the 

supervisor’s decision logic). After the initial transient response, as soon as ( )cq t  indicates 

a low value and the decision logic moves to State 3, the supervisor flags a control success 

and adds the nominal model to the DMB. The copy of the identification network, that is 

now part of the DMB, generates a low identification error causing ( )iq t  to drop sharply, 

leading to State 1. This sequence of events can be traced in the decision logic’s state 

transitions highlighted in Figure 4.4 (a). For more details on the transition, the readers are 

referred to Figure 4.1. The identification quality index ( )iq t  remains low after a model is 
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added even though the training has been stopped and new inputs are being supplied, 

indicating two main achievements of the proposed FTC scheme. The first one is that the 

neural network used as an IdNN in the GDHP architecture was capable of converging to 

represent the true dynamics of the system. The second is that the supervisor was able to 

recognize the proper moment when a new set of neural networks should be memorized. 

 

 

Figure 4.4. Four key transition sequences in the decision logic of the FTC supervisor. (a) adding the 
nominal model to the DMB; (b) adding an abrupt fault model to the DMB; (c) switching to a known 

solution; (d) dealing with an incipient fault. 
 

After the first 104 iterations Fault 1 is introduced, abruptly changing the dynamics 

of the plant. While the reconfigurable controller adapts itself to the new scenario, both 

indexes grow (State 2), indicating that the system is going through an abrupt unknown 

fault. As ( )cq t  drops to an acceptable level (State 3), the first failure mode is recorded 
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along with the controller that was specifically designed on-line to deal with it. The 

decision logic shortly moves to State 1, as the new IdNN inside the DMB is now capable 

of describing the dynamics of the first fault. This sequence of events is perceived by the 

supervisor’s decision logic through the state transitions shown in Figure 4.4 (b). 

At iteration 2×104, the plant returns to the nominal mode. Due to the change in the 

dynamics, ( )cq t  increases due to the degradation in the performance. On the other hand, 

( )iq t  shows only a thin spike indicating that there already exists an element in the DMB 

that was previously designed to deal with a system similar (in this case identical) to the 

present one. Following the FTC supervisor’s decision logic shown in Figure 4.4 (c), 

switching takes place in the transition from State 1 to State 4, leading to a quicker and 

more precise recovery. Figure 4.5 illustrates such benefits by displaying the plant output 

at critical moments and comparing the results improved by supervisory action with the 

outcome of a free-running GDHP controller (i.e., without the FTC supervisor 

intervention) when faced with the same fault sequence. 

Going back to the complete timeline shown in Figure 4.3, Fault 2 is introduced at 

iteration 3×104. By comparing with the IdNN adapted for the nominal plant, the FTC 

supervisor concludes that the dynamics are not different enough to justify a new entry in 

the DMB. This property is of extreme importance in order to achieve a DMB capable of 

covering all the known space, while maintaining a compact set of recorded models. Fault 

3, on the other hand, requires major reconfiguration in the controller. At iteration 44,218 

the supervisor determined that a solution to Fault 3 has been successfully designed and so 

it is also added to the DMB. 
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Figure 4.5. Plant output (solid) and desired trajectory (dashed) display the increase in performance and 
reconfiguration time brought by the application of the proposed FTC supervisor. 

 

After iteration 5×104, the plant dynamics abruptly revert to nominal and are 

shortly followed by the gradual changes brought by the incipient fault. Since in the initial 

moments the dynamics are still similar enough to the ones of the nominal model, 

switching takes place shortly after iteration 5×104 following once again the path shown in 

Figure 4.4 (c). Figure 4.5 displays the dramatic reduction in the recovery time and 

oscillation brought by the switch operation. As the parameters of the plant are changing 

over time during the incipient fault, the controller is capable of constantly reconfiguring 
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itself, and the tracking error remains low. As the dynamics of the plant gradually become 

more different from the nominal ones, ( )iq t  increases to the point when the decision 

logic moves from State 1 to State 3 and the supervisor correctly diagnoses the occurrence 

of an incipient fault. The response of the decision logic to an incipient fault is shown in 

Figure 4.4 (d). 

 

4.3.3. Continuous-time nonlinear MIMO plant 
 

In this Subsection, we revisit the nonlinear MIMO plant explored in Section 3.7.2 

when a GDHP controller was used as a FTC solution by itself. Recall that the plant in 

question is a two-input, two-output, third-order nonlinear system described by Equation 

(4.61) and the goal is to track the trajectory described by Equation (4.62) while the plant 

goes through a sequence of unexpected (from the point-of-view of the supervisor) fault 

scenarios. 

In the first simulation, without a supervisor, the GDHP controller alone managed 

to produce satisfactory results provided enough time was allowed for a solution to evolve 

online. As commented previously however, although the GDHP controller is a successful 

nonlinear adaptive controller, due to the lack of long-term memory, long reconfiguration 

times have to be allowed even when the plant abruptly changes to previously visited 

scenarios. In the particular case of the simulation presented in Chapter 3, the transition 

from the abrupt fault to the nominal dynamics required 11.4×103 iterations, and the 

transition from the incipient fault to the abrupt fault required 13.1×103 iterations. 
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In this chapter the proposed supervisor is added to the architecture of the 

simulated FTC solution. Knowledge of the nominal dynamics was assumed to exist 

during design time, and so the DMB is initialized with knowledge of a solution for this 

particular scenario. On the other hand, no knowledge about the fault dynamics is 

introduced prior to the experiment. 

 

 

Figure 4.6. Two plots of the plant output as the abrupt fault is introduced at iteration 5,000. Top plot: the 
supervisor has no knowledge of the fault in the DMB. Bottom plot: the supervisor accelerates 

reconfiguration by switching to a previously stored solution. Reconfiguration time is indicated by the 
highlighted area. 

 

The key events of the second simulation concerning the handling of the twice the 

abrupt fault manifests have been summarized in Figure 4.6. Forty three iterations after the 
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transition from the nominal to the abrupt fault dynamics, the supervisor declares the 

occurrence of an abrupt unknown fault. As the GDHP controller converges to a 

satisfactory solution for the abrupt fault scenario, the supervisor adds copies of the three 

neural networks to the DMB. Having acquired the knowledge of an effective control 

solution, the supervisor recognizes when the same dynamics appear in the transition from 

incipient back to the abrupt fault and performs a switch operation at iteration 3.7×103 

after the fault took place. The supervisor’s intervention led to a reduction of the 

reconfiguration time to 5.4×103 iterations.  

Performing a similar operation, the supervisor also makes use of the knowledge 

provided during design time to accelerate the reconfiguration of the GDHP controller 

when the plant returns to the nominal dynamics after going through the abrupt fault 

scenario. Switching reduces the reconfiguration time of the transition between the abrupt 

fault to the nominal dynamics to 5.2×103 iterations. When compared to the results of the 

first simulation, the contribution of the supervisor reduced the reconfiguration time of the 

GDHP controller by a factor greater than two in all transitions in which knowledge was 

already present inside the DMB. 

 

4.4. Summary 
 

In this chapter, a multiple model approach to FTC based on an intelligent 

Dynamic Model Bank is proposed. The application of GDHP as a reconfigurable 

controller is shown to give the hierarchical algorithm the degree of flexibility required to 

deal with both abrupt and incipient changes in the plant dynamics due to faults. The FTC 
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supervisor system is used to accelerate the convergence of the method by loading new 

initial conditions to the GDHP when the plant is affected by a known abrupt fault. A 

decision logic is presented through which new fault scenarios are recognized and 

assimilated on-line by the DMB along with parameters for the corresponding controller. 

Through a synergistic integration of these essential elements the online fault tolerant 

control has become feasible. Finally, these properties are successfully illustrated in the in-

depth exploration of numerical simulation examples.  
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CHAPTER 5 – Controller Malfunction Detection and 
Recovery 

 

5.1. Introduction 
 

In the previous chapters of this report, we have proposed, as a solution to the FTC 

problem, the use of a nonlinear adaptive controller running under a FTC supervisor 

shown to improve the performance of the underlining controller in the event of faults. 

Since the reasoning behind the performance improvement brought by the FTC supervisor 

is the same for any nonlinear adaptive controller, the choice of an adaptive critic design 

as the baseline controller is based on other independent factors. In fact, adaptive critic 

designs (specifically the implemented GDHP controller) are capable of achieving 

superior performance by combining three different NNs: an identification NN that 

produces information of the dynamics of faults as they occur, a critic NN to estimate the 

impact of the underlying control strategy over time; and an action NN to generate real-

time control actions to accommodate faults as they emerge.  

The questions that arise when using NNs as building blocks of an adaptive 

controller are how to perform online learning in an effective manner for the most 

diversified scenarios and how to guarantee stability. As for the first question, NN has 

been well regarded as an effective tool in function approximation due to its universal 

nonlinear mapping capability [27]. However, under the current state-of-the-art NN 
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designs, proof of convergence still requires that widely restrictive conditions are met, as 

the ones presented in [52] and [53]. Independent of its implementation, adaptation 

flexibility and stability are still conflicting specifications for all nonlinear adaptive 

controller paradigms and therefore a suitable compromise must be reached for each 

application. Since the goal of the presented work requires that solutions be found even 

when an unknown nonlinear fault becomes active, adaptation flexibility and nonlinear 

mapping power are essential. Therefore, the choice of NNs as function approximators, 

specially when applied in an adaptive critic architecture, is justified. However it is 

important to account for the fact that the unpredictable occurrence of faults that may 

assume unrestricted dynamics do not allow for any measure that will guarantee that the 

online training of weights of a NN will converge to an optimal configuration. 

Although a GDHP architecture using NNs as building blocks represents one of the 

best available implementations of an universal nonlinear adaptive controller, there are 

still no available adapting procedures for it or any other equivalent adaptive nonlinear 

controller that guarantees complete stability over all fault scenarios, specially when it is 

taken into consideration the fact that abrupt faults inherently cause discontinuous changes 

in the plant dynamics. Independent of its particular implementation, the adaptive 

nonlinear controller then becomes a vulnerable point of the FTC architecture as it may be 

subject to controller malfunctions such as divergence and convergence to a local minima 

through the course of its online adaptation. If left unchecked, such situation may lead to 

loss of availability even when recovery of plant stability was still reachable. 

In the previous chapters, we have demonstrated how a GDHP controller can be 

used to autonomously generate control solutions for unexpected faults while explicitly 
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producing input-output maps through the use of neural networks. Furthermore, located 

inside the supervisor, the DMB stores, for the nominal plant and each known fault 

scenario (added during design time or learned online), an input-output identification map 

and a controller that has been successfully designed for each specific scenario. A key 

characteristic that makes the proposed supervisor capable of such accomplishments is its 

ability to perform Fault Detection and Diagnosis of the system. Such is accomplished 

through a four-state decision logic based on the two previously detailed quality indexes.  

In order to account for the inherent possibility of instability within the online 

training procedure of the GDHP controller, we propose to add to the FDD scheme 

Controller Malfunction Detection (CMD) capability within the nonlinear adaptive 

controller itself. In the case of implementations involving the online training of NNs in 

particular, there are two controller malfunctions that must be avoided. The first relates to 

the training process converging to a local minima that prevents the NN weights to reach 

the global optimal, while the second refers to weight divergence due to the application of 

the training algorithm in close loop with unknown dynamics of a faulty plant. To 

properly identify these two controller malfunctions and discern them from the plant 

faults, a third quality index is introduced. By measuring the degree of activity within the 

NNs that compose the GDHP architecture, the weight quality index is capable of adding 

to the information gathered by the other two quality indexes to achieve such goals. Once 

a control malfunction is detected and identified, it is then possible to use the information 

from the DMB to provide the training algorithm with a new set of initial conditions that 

represents the closest possible known dynamics and effectively prevent divergence and 

greatly increase the chance of recovery of stability and performance. 
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5.2. Controller malfunction supervisor 
 

In this section the previously presented Supervisor capable of performing system 

FDD is augmented to also perform CMD and suggest countermeasures for such scenarios 

on-the-fly. To better understand the functionality of the supervisor, it can be divided into 

three layers as shown in Figure 5.1. Key differences here are the fact that a third novel 

quality index is also calculated in the first layer and that there are now two distinct 

decision logics, one for FDD and another for controller malfunction detection 

 

 
Figure 5.1. Layered structure of the proposed Supervisor with controller malfunction detection and 

recovery. 
 

In addition to the control quality index ( )cq t  and the identification quality index 

( )iq t , the novel quality index generated in the first layer is the weight quality index 

( )wq t . While the control quality index, obtained through Equation (4.1), provides a 

numerical measure of how close has the GDHP controller been able to follow its goal, in 

this case trajectory tracking, the weight quality index is calculated in order to measure the 

amount of activity within the three continuously adapting neural networks (i.e., IdNN, 

AcNN and CrNN#1) as shown in Equation (5.1). 
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( )( ) ( ) ( ) ( ) ( ) ( ) ( )w

s

t
t i i a a c c

w
t

q t e w w t w w t w w t dξ τ τ τ τ τ τ τ τ− − ⎡ ⎤= − − ∆ + − −∆ + − −∆⎣ ⎦∫ ,  

 (5.1) 

 

where wξ  is a time decay factor in the range [0,1], t∆  is the sampling period and ts is the 

time of occurrence of the latest switching operation. The presence of ts in Equation (5.1) 

is a key feature to understand the interrelations between the detection and diagnosis of 

faults inside the plant and the detection of faults within the controller in what is called 

controller malfunctions. In essence, ts resets the memory of the filter used in the 

calculation of qw to prevent the switching operations carried out by the supervisor (in 

response to faults within the plant or controller) to be perceived as major changes in the 

weight structure, which are associated with controller divergence during neural network 

training. 

As before, in the second layer, FTC design parameters are converted into 

thresholds to distinguish high ( , )c iHq Hq  and low ( , )c iLq Lq  values for the control and 

identification quality indexes. For the weight quality index, two thresholds are used to 

distinguish between high activity wHq , standard activity wSq  and low activity wLq . 

Standard activity is adjusted as a broad range within which the activity of the networks 

remain during successful training.  
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Table 5.1. Complete Algorithm (GDHP and Supervisor) 

 
 

As shown in Table 5.1, the controller malfunction detection takes precedence over 

the FDD, ensuring that only a functional GDHP controller is used for fault recovery or 

compensation and that malfunction within the IdNN do not interfere with the FDD 

process. By using the information contained in the controller and the weight quality 

index, it is possible to verify the condition of the GDHP nonlinear adaptive controller 

over two different malfunctions. The first one relates to the online GDHP training 

converging to a local minima and therefore being incapable of reaching the optimal 

tracking error. Such malfunction is characterized by a high control quality index ( cHq ) 

matched by a low weight quality index ( wLq ). The second malfunction relates to 

controller divergence and is marked by both a high control quality index ( cHq ) and a 

1 Set 1=t . Initialize neural networks and estimate ˆ ( )R t . Initialize DMB with knowledge 
of the dynamics of the healthy plant and of known fault scenarios; 

2 Sample the plant output ( )R t  and desired trajectory ( )tR t ; 

3 Update IdNN in the direction of the minimization of the quadratic estimation error of 
( )R t ; 

4 
In the following order, feedforward to obtain: ( )u t  from AcNN, ˆ ( 1)+R t  from IdNN, 

( 1)+u t  from AcNN, ( )J t  and ( )λ t  from CrNN#1, ( 1)+J t  and ( 1)λ +t  from 
CrNN#2; 

5 Update AcNN in the direction of the minimization of ( )J t ; 

6 Update CrNN#1 in the direction of the minimization of the quadratic estimation error of 
( )J t  and ( )λ t ; 

7 1= −epoch epoch . If epoch = 0, weights of CrNN#1 are copied to CrNN#2 and epoch 
is reset; 

8 Calculate the quality indexes ( )iq t , ( )cq t  and ( )wq t ; 

9 Perform controller malfunction detection (to be shown in Figure 5.1). If divergence or 
local minima convergence is detected, skip to step 11; 

10 Perform Fault Detection and Diagnosis through the supervisor’s decision logic (shown 
in Figure 4.2); 

11 According to the decision logic, manipulate the DMB to switch to a know solution, add 
a new model to it or provide a new set of initial conditions; 

12 1= +t t . Return to step 2; 
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high weight quality index ( wHq ). Figure 5.2 displays a flow chart that illustrates the 

controller malfunction detection procedure engaged at every iteration. Note that in a 

healthy training situation, a high control quality index, and therefore elevated tracking 

error over time, would generate changes in the weight structure of the neural networks 

that compose the GDHP controller and therefore indicate wSq . In order to increase noise 

rejection and reduce the probability of false alarms, an observation time is used during 

which such conditions must remain unaltered so that a controller malfunction can be 

positively detected. Assuming that no control malfunctions are detected, FDD is then 

performed through the decision process presented in Chapter 4. 

 

 
Figure 5.2. Flow chart for controller malfunction detection and response. 

 

5.3. Numerical example 
 

In this section, an extensive simulation is presented and discussed. The goal is to 

demonstrate the feasibility of implementation and the FTC benefits brought by the 
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proposed architecture over a controlled plant subject to one incipient and two abrupt 

faults. All faults introduce strong nonlinear dynamics requiring major controller 

reconfiguration. On certain key steps, we also show the results of parallel simulations that 

differ only in the fact that the supervisor is deactivated. The comparison of simulations 

with and without supervisory intervention serves two purposes. First, it allows for the 

demonstration of the dramatic reduction on the reconfiguration time and cumulative 

tracking error of the GDHP controller brought by the switching operation in the 

occurrence of faults. Second, it illustrates the supervisor’s controller malfunction 

detection capability and its potential to advert negative consequences of such scenarios 

by providing new initial conditions to the online training GDHP controller. 

 

5.3.1. Simulated system 
 

The simulated plant possesses two inputs [ ]1 2
Tu u u= , three states 

[ ]1 2 3
Tx x x x=  and two outputs [ ]1 2

TR x x=  which are expected to track two 

independent trajectories 1 2

Tt t tR R R⎡ ⎤= ⎣ ⎦ . The desired trajectories are described by 

Equation (5.2), 

 

1 1( ) sin 0.4sin
250 125

t t tR t π πµ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

2 2
( 150) ( 190)( ) 0.1 sin 0.6sin

250 125
t t tR t π πµ + +⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
,

(5.2)
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where 1µ  and 2µ  assume values in the interval [0 , 0.5] randomly selected once at every 

500 iterations. An example of the reference signals can be seen in Figure 5.3. For the 

sake of the presented simulation, tracking is considered satisfactory if the mean error over 

a cycle of 500 iterations is less than 0.001. 

 

 

Figure 5.3. Example of reference signals 1 ( )tR t  (blue) and 2 ( )tR t  (red). 
 

Under nominal conditions (i.e., no fault is active), the system’s dynamics allow 

for the desired trajectories to be reached by directly inputting properly shifted reference 

signals, as described by Equation (5.3). In practice, such straightforward nominal 

dynamics are expected when the fault tolerant controller is mounted over a pre-designed 

nominal controller. For example, the nominal dynamics of the plant simulated here could 

represent the closed loop dynamics of the actual physical system and a non-adapting 

inverse-dynamics controller designed off-line for the nominal operation conditions. 

Furthermore, the choice of such nominal dynamics helps to make clear the impact of each 



 95 
 

particular fault scenario. A sample input sequence that achieves trajectory tracking under 

the nominal scenario can be seen in Figure 5.4 (a). 

 

1 1( 1) ( )+ =x t u t  

2 3( 1) ( )+ =x t x t  

3 2( 1) ( )+ =x t u t . 

 

 

 (a) (b) 

 

 (c) (d) 

Figure 5.4. Successful input sequences 1( )u t  (blue) and 2 ( )u t  (red) for different plant dynamics: (a) 
nominal, (b) AF1, (c) IF and (d) AF2. 

 

Through the course of the simulation, we introduce two abrupt nonlinear faults: 

Abrupt Fault 1 (AF1) that changes the system’s dynamics to Equation (5.4), and Abrupt 

(5.3)
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Fault 2 (AF2) that modifies it to Equation (5.5). By displaying input sequences that lead 

the system’s outputs to the desired trajectories, Figure 5.4(b) and 5.4(c) allows the reader 

to visualize the amount of controller reconfiguration required under AF1 and AF2. For 

both faults, the changes in the dynamics take place instantly at their time of occurrence. 

Therefore, both constitute challenging scenarios for the online-adapting GDHP 

controller. 

 

( )2
1 1 1 3 1( 1) 1.5 ( ) ( ) ( ) sin ( )

4
π⎛ ⎞+ = + − − ⎜ ⎟
⎝ ⎠

x t u t x t x t u t  

( )
3

2 2 2 1 2
3

( )( 1) 0.2 ( ) ( ) ( ) 2
1 ( )

+ = + +
+

x tx t x t x t u t
x t

 

( )3 2 2 1 3( 1) ( ) 0.6 ( )sin 0.5 ( ) 0.4 ( )+ = + +x t u t u t x t x t .

 

( )2
1 1 3( 1) ( ) ( )+ = +x t u t x t  

2 3 2 1( 1) ( ) 0.8 ( ) ( )+ = −x t x t x t u t  

3 2 3( 1) 1.5 ( ) 0.5 ( )+ = −x t u t x t .

 

To simulate the occurrence of an incipient fault (IF), the dynamics of the nominal 

system are gradually modified over the course of 104 iterations as described by Equation 

(5.6), where it  is used to adjust the time of occurrence of the IF so that by the end of its 

interval of occurrence the nonlinear terms take full effect. The use of the tansig function 

creates a smooth gradual introduction of the incipient dynamics with steep changes in the 

middle range. Note that not only new nonlinear dynamics are introduced, but also the 

states of the system become coupled demanding more complex controller action. Figure 

(5.5)

(5.4)
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5.4(d) displays the control action required by the final dynamics of the plant in order to 

track the desired trajectory. 

 

( )
1

1 1 22
1

( )( 1) ( ) 0.5 0.5 tansig ( )
1500 1 ( )

⎛ − ⎞⎛ ⎞+ = + + ⎜ ⎟⎜ ⎟
⎝ ⎠ +⎝ ⎠

it t x tx t u t u t
x t

 

( )3
2 3 3

sin 4 ( )
( 1) ( ) 0.5 0.5 tansig ( )

1500 2
⎛ − ⎞⎛ ⎞+ = + + ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
i x tt tx t x t x t  

3 2( 1) ( )+ =x t u t . 

 

5.3.2. Simulation results 
 

The simulation starts with the plant under nominal dynamics for the first 15,000 

iterations. The GDHP controller is initialized with a set of weights previously designed 

for the nominal dynamics. The DMB inside the supervisor is initialized with a copy of the 

same nominal weights and, therefore, it is initialized with the knowledge of how to 

identify and control the plant under nominal dynamics. Hence, both ( )iq t  and ( )cq t  start 

with low values ( , )i cLq Lq  corresponding to State 1 in the FDD decision logic. In order 

to demonstrate the supervisor responses to all key circumstances it is designed for, faults 

were introduced into the system according to the schedule in Table 5.2. Although 

displaying the entire 65,000 iterations of the simulation would be optimal for the 

visualization of the complete challenge set for the proposed architecture, its length 

prevents it from being printed in full and therefore only key intervals are illustrated with 

the relevant graphs. 

 

 

(5.6)
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Table 5.2. Simulation schedule for plant dynamics 
Plant dynamics Interval of occurrence (iterations) 

nominal 1 to 15000 

AF1 15000 to 25000 

nominal 25000 to 35000 

IF 35000 to 45000 

AF1 45000 to 55000 

AF2 55000 to 65000 

 

At iteration 15,000 the plant dynamics abruptly change to those of AF1. Since the 

GHDP controller is continuously adapted online, as soon as the dynamics are modified 

the weights of the three neural networks start being adjusted in order to search for a 

control solution for this scenario. During learning, the tracking error grows, leading to 

cHq . Concomitantly, the change in the dynamics leads also to an increase in the 

identification error represented by ( )iq t  until iHq  is reached. In this manner, State 2 of 

the FDD decision logic is reached and an abrupt unknown fault is detected and correctly 

identified. Note that, although possible in a discrete system, both quality indexes need not 

reach iHq  and cHq  at the same iteration. For instance, in the discussed simulation cHq  

was reached before iHq , leading the FDD decision logic to transiently assume State 4 at 

iteration 15,002 before reaching State 2 at iteration 15,005. The transition through State 4 

leads to a momentary misdiagnosis of the fault as an abrupt known fault and issues a 

switch command, however the fault diagnosis is corrected three iterations later and the 

effects of the switching are almost imperceptive since the GHDP programming has not 

yet had sufficient time to reconfigure from controlling the plant under nominal dynamics. 

Throughout the learning process, while ( )cq t  is high, ( )wq t  remains between the low and 
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high thresholds indication healthy levels of reconfiguration within the neural networks 

and therefore no controller malfunction is detected. Indeed, at 18,475 with cLq  the 

GDHP controller manages to develop a satisfactory solution to the tracking problem, the 

FDD decision logic goes to State 3 declaring “control success” and adding the current set 

of weights to the DMB. Since now the supervisor possesses knowledge of the plant under 

AF1 dynamics, ( )iq t  drops below its threshold and the FDD decision logic returns to 

State 1 (i.e., known dynamics). 

The plant returns to the nominal dynamics in an abrupt fashion at iteration 25,000, 

depicting a hypothetical situation in which the cause of a fault is removed from the 

system ceasing its effect on the dynamics. This transition differ from the one at iteration 

15,000 discussed previously in the fact that the DMB has knowledge of the new 

dynamics and therefore can switch to the known solution as soon as it is identified. To 

highlight the reduction in reconfiguration time and cumulative tracking error brought by 

the supervisor’s intervention, Figure 5.5(a) displays the trajectories of the output of a 

parallel simulation run without the supervisor. With only the GDHP controller striving 

alone to reconfigure itself, tracking performance is recovered at 1,659 iterations after the 

alteration in the dynamics. 
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Figure 5.5. Abrupt return to nominal dynamics from AF1. Comparison of outputs 1( )R t  (blue) and 2 ( )R t  
red) and respective desired trajectories (dotted) of simulations without (a) and with (b) supervisory 

intervention. Switching impact illustrated by (c), the average tracking error for the simulation without 
(blue) and with (red) supervisory intervention. 

switch 

acceptable 
performance 

(c) 

(b) 

(a) 



 101 
 

Figure 5.5 (b), on the other hand, shows the outcome of the main simulation in 

which the FDD decision logic identifies the change in the dynamics as being an abrupt 

known “fault” (in this case the new dynamics are of the nominal plant) at iteration 25,247 

and switches the weights of all three neural networks with the ones designed for the 

nominal dynamics stored in the DMB since its initialization. As a consequence, the 

GHDP controller is able to reach the desired tracking performance at 734 iterations after 

the change in dynamics. In comparison, switching as determined by the supervisor led to 

a reduction of 55.76% in the reconfiguration time and a reduction of 74.01% in the 

cumulative tracking error in the first 1,500 iterations after the alteration of the dynamics 

as illustrated in Figure 5.5 (c). 

 

 
Figure 5.6. Average tracking error during IF application. 

 

In the interval between iterations 35,000 and 45,000 IF gradually modifies the 

plant dynamics and is correctly identified as an incipient fault by the supervisor. The 

correct fault diagnosis prevents the supervisor from switching to any solutions already 

stored in the DMB, an action that in this case would disrupt the successful continuous 

acceptable 
performance 
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adaptation of the GDHP controller to counter the growing effects of IF. The successful 

maintenance of the tracking performance well below the acceptable level throughout this 

period is illustrated in Figure 5.6. 

At iteration 45,000 the plant experiences a re-occurrence of AF1. Note that this 

time it transitions from IF to AF1, while in its first occurrence at 15,000 the plant was 

previously under the nominal dynamics. Nevertheless, the supervisor is able to correctly 

diagnose and identify the fault at 45,479, switch and recover tracking performance at 

45,659, which represents a reduction of 72.96% over the reconfiguration time of the 

GDHP without supervisory intervention. Moreover, the cumulative tracking error in the 

first 3,000 iterations experiences a reduction of 49.34% by the switching operation. It is 

important to note that, different from the first discussed switching operation involving the 

nominal scenario, the solution to the AF1 was determined previously online by the 

GDHP in its first occurrence and autonomously added to the DMB. In other words, this 

section of the simulation illustrates that the benefits brought by the supervisor to the 

GDHP training extend also to re-occurring faults whose dynamics are not known during 

design time. 

A more challenging transition occurs at 55,000 when the dynamics of the plant 

are abruptly modified from AF1 to AF2. In order to obtain detailed simulation results, 

controller malfunctions were introduced at this critical transition into the GDHP by 

modifying the learning rates used for the online training of the neural networks. 

Therefore, since the scenario in which the GDHP controller is trapped in a local minima 

is related to a very low gradient (based on local information), we reproduce the same 

effect on the training of the neural networks by drastically reducing the respective 
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learning rates. Similar to the presentation of the impact of the supervisor in the event of 

faults within the plant, Figure 5.7 shows the simulation results with (Figure 5.7 (a)) and 

without (Figure 5.7 (b)) supervisory intervention. Note that in order to demonstrate the 

impact of the supervisor alone, once reduced to generate the controller malfunction, the 

learning rates used for both runs (with and without supervisory intervention) are the 

same. As it can be seen from the simulation results, while the GDHP alone provides a 

poor solution to the AF2 scenario and is incapable of significantly adapting over time, 

maintaining a large tracking error as seen on Figure 5.7 (c). On the other hand, when the 

same simulation is run with the presence of the supervisor, the controller malfunction 

detection logic correctly determines that the online learning trapped itself in a local 

minima at 1,256 iterations after the introduction of AF2 and is capable of greatly 

reducing the tracking error over time (Figure 5.7 (c)) by intervening with a new set of 

initial conditions much closer to the global minima. 
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Figure 5.7. Local minima convergence, controller malfunction detection and prevention. Comparison of 
outputs 1( )R t  (blue) and 2 ( )R t  (red) and respective desired trajectories (dotted) of simulations without (a) 

and with (b) supervisory intervention. Graph (c) displays the average tracking error for the simulation 
without (blue) and with (red) supervisory intervention. 
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(c) 

(b) 
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For the simulation of a controller malfunction related to training algorithm 

divergence we return to the same challenging transition from AF1 to AF2 at 55,000 

iterations, however now all learning rates are increased by three orders of magnitude. For 

the gradient descent online training algorithm used here, the effects of the large learning 

rates are equivalent to the incongruent gradients that lead to controller divergence. Once 

more, to better illustrate the effects of the proposed supervisor, in a first run we 

deactivate it while keeping the same learning rates. By itself, the GDHP used in this 

simulation fails to converge to a stable control sequence. Instead, it initiates a divergent 

behavior that leads both outputs to values of the order of 103 at 42 iterations after the 

introduction of AF2 at which point the simulation was terminated, as shown in Figure 5.8 

(a). On the other hand, in the actual simulation with the proposed supervisor activated, a 

controller malfunction was detected at 17 iterations after the introduction of AF2 and the 

supervisor was able to prevent the divergence of the online training GDHP controller by 

switching its weights to the dynamics witch presented the smallest identification error 

among those in the DMB. In this case, the weights related to the nominal dynamics were 

selected leading to the stable online learning of a solution for AF2 at 987 iterations after 

the fault occurrence as depicted in Figure 5.8 (b). Figure 5.8 (c) displays the tracking 

error history of both simulations as the one without supervisory intervention diverges off 

the scale. In conclusion, Figure 5.8 illustrates the capability of the supervisor to correctly 

identify controller malfunction in its early stages and act in a way that allows the 

controller to regain a training path that will lead to a stable solution. 
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Figure 5.8. Controller divergence malfunction detection and prevention. Comparison of outputs 1( )R t  
(blue) and 2 ( )R t  (red) and respective desired trajectories (dotted) of simulations without (a) and with (b) 

supervisory intervention. Graph (c) displays the average tracking error for the simulation without (blue) and 
with (red) supervisory intervention. 
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5.4. Summary 
 

The presented work has demonstrated that the implementation of a synergistically 

combination of an GDHP controller and a supervisor based on three distinct quality 

indexes generates an efficient and reliable Fault Tolerant Control architecture. As 

demonstrated in the nonlinear plant simulations, the introduction of the weight quality 

index has made possible to distinguish between faults in the plant and controller 

malfunctions caused by online training divergence or local minima convergence. Further 

more, the Dynamic Model Bank was successfully used to generate new initial conditions 

to the neural network training that improve their efficacy as the supervisor autonomously 

acquires more nonlinear models of the plant under healthy and diverse faulty scenarios. 

Although the results so far have been greatly encouraging, qualitative analysis of the 

complete combined online stability and real-world complications is essential and will be 

carried out in future research. In addition, the capability of efficiently combining existing 

knowledge to deal with the occurrence of multiple faults is also an avenue to be explored 

under the presented architecture.  
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CHAPTER 6 – Linguistic Rule Extraction 
 

6.1. Motivation 
 

The collected work presented in the previous chapters amounts for a FTC solution 

capable of performing FDD, armed with an adaptive critic controller for the design of 

new solutions to unknown fault scenarios and possessing a supervisor capable of 

increasing the controller stability, speed and efficiency when dealing with the occurrence 

of faults and controller malfunctions. For a given control mission, the availability of the 

plant is therefore increased as we minimize the effects of faults and the reconfiguration 

time to apply a new control approach. 

However, the occurrence of fault, although it may have its effect successfully 

filtered out from the point of view of the user, operator or pilot, modifies the underlying 

dynamics of the plant. It is safe to assume that under a fault scenario caused by the failure 

of a particular component (or group of components), the remaining components may be 

forced, during the course of following the overall control mission, to operate away from 

their nominal ranges. Such scenario would then lead to an increase in the probability of 

occurrence of other faults or the aggravation of the active fault. In the more extreme 

cases, event though a suitable control solution is found for a particular fault scenario, if 

under such fault scenario the control mission insists on particular extreme trajectories, a 

terminal fault for which no stabilizing controller exists may develop. 
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Therefore, a complete FTC solution must include the capability of providing 

mission planners with probabilistic predictions of fault scenarios that may affect the plant 

according to their choices of desired trajectories. Such probabilistic predictions should 

contain not only a prediction of which fault would develop, but also when it is more 

probable to become active. Furthermore, since such feature aims at providing humans 

with decision support, it is also important that such information be conveyed in a format 

as simplified and cognitive as possible, especially for pilot assistance. Such fault 

development warnings are therefore chosen to be crafted as causal rule statements using 

fuzzy logic. An example of such causal rules is: 

 

IF Fault 15 (valve seal compromised) is active AND input #5 remains very low AND 

reference #2 remains high, THEN Fault 23 (loss of valve actuator) will have a 85% 

chance of occurrence after a delay of 30 to 45 minutes. 

 

As an application example, if a FTC architecture manages to accommodate for the 

effects of a particular component fault in an army helicopter in the middle of a mission, 

such a feature allows mission commanders to decide whether to abort or modify such a 

mission given the probability of irreversible faults to develop that would lead to loss of 

the rotorcraft. On process industry, such a feature also has great applicability. The 

probability of other components braking in a process line given the previous occurrence 

of a particular fault and given the particular process being run supplies the operator with 

a key factor to assist maintenance scheduling and therefore directly impacting 

productivity and profitability. 
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6.2. Fundamental structure 
 

When performing process management decisions, a control algorithm makes use 

of the knowledge of the plant in the form of a model. In most cases, this knowledge is 

commonly derived from first-principles and/or laboratory and pilot plant experiments; 

and often such “ideal” knowledge is of less than practical use under real world 

complications due to unaccounted factors and modeling uncertainties. 

Human operators, on the other hand, make use of another type of model when in 

charge of process management decisions. After a long time in contact with the plant, 

process operators are capable of attaining some understanding of what factors govern the 

process and derive relationships between process variables based on intuition and past 

experience. This process was best described in [54] as “a cognitive skill of experienced 

process operators that fits the current facts about the process and enables the operators to 

assess process behavior and predict the effects of possible control actions.”  However, the 

knowledge attained in this fashion also presents critical deficiencies since wrong 

impressions on what is going on with the process will lead to operator misjudgment as 

documented in [55]. Furthermore, incoherencies inside such knowledge propagate itself 

as “mis-knowledge” or “technical folklore” are passed down from one generation of 

process operators to the next. 

By making use of linguistic information in the form of IF/THEN logical 

statements or rules, Expert Systems and Fuzzy Logic Controllers (FLCs) are technologies 

capable of enabling better process monitoring and control. FLCs have found applications 

in a variety of fields such as robotics [56], automated vehicles [57] and process control 

[58], to name a few. Expert Systems have been used in the Chemical Process Industry 
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(CPI) to control, monitor [59] and understand process behaviors. Other applications of 

such knowledge based systems have been in operator training and for planning and 

scheduling of operations in control and maintenance [60], especially for getting a plant 

back online after a failure or abnormal operating condition. 

Expert Systems can be built from knowledge inserted by human experts or 

acquired from historic data from the system. Knowledge bases made by polling 

information from experienced personnel not only incorporate the before mentioned 

“technical folklore”, but also is intrinsically incomplete. Such rules pertain only to 

information that is critical or obvious to the operators; it is related to information just 

necessary for them to maintain desired plant conditions. Such information does not 

incorporate the knowledge of events that are lesser in significance or rarer in occurrence, 

but which affect the operation of the plant nonetheless. A complete rule base should 

possess information on almost all plant events that have an effect on the desired output or 

may change the variable under control. Finally, knowledge collected from experts is 

usually in the form of static rules loosely related to the real numerical world [61]. Due to 

its lack of a mechanism to deal with the temporal behavior of the process, the rigid, non-

adaptive knowledge devised in this fashion becomes inadequate for complete supervisory 

control of dynamic systems. Therefore, the solution lies on the development of an 

algorithm capable of autonomously generating and improving a dynamic rule set for an 

expert system directly from process data. 

It is fundamental for the modeling of a dynamic system that the model used 

incorporates the concept of time. Based on the widely applied Autoregressive Moving 

Average (ARMA) [62] models, [63] proposed to incorporate temporal relationships into 
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fuzzy rules by matching antecedents with consequents a fixed number of time steps in the 

future. In [64] the architecture was extended to allow different discrete time delays to be 

used for each antecedents in single consequent rules. Due to the usage of discrete time 

delays however, the representation capability of the rule set was largely affected by the 

particular choice of time delays and it displayed great sensitivity to noise, especially 

related to datasets composed of data sampled from continuous systems. Displaying 

applications related to the stock market and the weather, [65] applied stochastic pre-

processing techniques to improve the meaningfulness of the data provided to the rule 

extraction mechanism. Based on the concept of internal clocks that biological organisms 

use for the learning of period and interval timing, [66] proposed the usage of a temporal 

membership function for the averaging of sampled data in order to generate crisp values 

related to fuzzy time periods. Applications of such approach have been documented in 

distributed adaptive routing control in packet switched communication networks [67]. 

Therefore, in the proposed paper, a particular fuzzy delay is assigned to the temporally 

averaged consequent of each rule, generating a structure of the form: 

 

IF condition 1 AND condition 2 AND condition 3… THEN after a certain fuzzy delay, a 

control variable will be such. 

 

The statement between the IF and the THEN conjunction is the antecedent while 

the statement after the THEN conjunction is the consequent. 

A crucial step in the autonomous extraction of rules is the method used to validate 

and compare those that are created. An optimal rule should be accurate, properly describe 

the dynamic relationship between its antecedent and consequent, and possess enough data 
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to support it. In a methodology introduced in [68], three metrics based on a Truth Space 

Diagram (TSD) capable of encapsulating and measuring each of these three goals were 

introduced and tested. However, it was also shown that in the general scenario such 

metrics cannot be independently optimized due to inherent conflict among them. 

Multiple Objective Evolutionary Algorithm (MOEA) is a tool capable of 

performing efficient searches on high dimensional spaces to locate the Pareto front, a set 

of solutions that contain the best rule for each possible tradeoff between conflicting goals. 

A growing research field, MOEA has already demonstrated successful applications in 

solving challenging benchmark problems [69] and real world applications [70]. 

In the presented work, three metrics developed in [68] are used under a novel 

dynamic treatment of the data to evaluate linguistic rules against process data. MOEA is 

then introduced to locate inside the high dimensional rule space the Pareto front of the 

antecedents that best describe (in the sense of different combination of metrics) a given 

consequent.  

 

6.3. Rule evaluation 
 

In order to provide automate mission planning decision support, a rule must 

display three basic characteristics: high accuracy, precise antecedent/consequent 

relationship, and sufficient data support. However, it is seldom possible to maximize 

these three characteristics at the same time. For example, if an event is observed only a 

single time, it is trivial to develop a rule with 100% accuracy, however it will lack 

support from historical data and the probability that it will describe a whole family of 
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similar events with comparative accuracy is small. For this reason there is a need to 

develop three qualitative metrics, each focusing on one of such competing characteristics. 

In [68] a series of metrics were suggested, each capable of specifically 

representing a different quality of a rule. All metrics were designed having as a core 

concept an innovative rule representation denominated the Truth Space Diagram (TSD). 

In the first part of this section, the efficiency of the TSD is further enhanced with the 

introduction of a novel pre-processing strategy for the representation of the temporal 

behavior of the plant into the linguistic rules. The concept of the TSD is then introduced 

taking into consideration the enhanced temporal representation and finally the three 

metrics of concern are introduced. 

 

6.3.1. Data pre-processing 
 

In previous applications of the TSD methodology [68], data pre-processing took 

place in the following manner: 1) The consequent data was shifted backwards in time by 

fixed intervals so that each set of antecedents matched three consequent values 

corresponding to short, medium and long delays; 2) The crisp input-output data was 

fuzzified. Fuzzification proceeded through the application of Equation (6.1) by using 

triangular membership functions to classify each variable into three fuzzy categories – 

low, medium and high: 
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where j=1 to 3, i=1 to n, ix  is the crisp numerical value of the ith input or output variable, 

,i j
xµ represents the fuzzy membership value of ix  in the jth fuzzy category, aj and bj are 

the fuzzy set break points for category j, and n is the maximum number of datasets in the 

input-output data. Figure 6.1 illustrates the fuzzy classification of one variable into three 

fuzzy categories. 

 

 
Figure 6.1. Fuzzy classification procedure for the antecedents. In this case, temperature with centers at 10, 

50 and 90oC. 
 

The fuzzification of the physical crisp data in such manner leads to great 

generalization capabilities, inherent noise rejection, and direct rule interpretation by 

human operators. Although ideal for the treatment of the antecedents, the manner through 

which the dynamic temporal element was incorporated into the consequent lacked such 

benefits. In essence, consequences for plant characteristics at any given time were only 

observed at discrete instants. Since a consequent’s time delay contains variability as 

much as physical characteristics of a system, although rule extraction was possible, it 

required extensive data in order to determine the true correlations through time. 

Moreover, the previous approach relied on accurate knowledge on the inherent major 
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delays of the plant in order to set up the number of iterations that correspond exactly to 

the operator’s understanding of small, medium and long delays.  

In the present work, such deficiencies are addressed by dealing with time 

uncertainties in a novel manner that is different in essence from the fuzzification of 

physical variables. The application of such approach leads to a meaningful linguistic 

description that maintains all the previously stated benefits while better capturing the 

temporal characteristics of dynamic plants. Instead of simply shifting the data to obtain a 

single measurement to represent a delay, averaged values of a consequent are obtained 

for each fuzzy delay region trough Equation (6.2) and it is those averaged values that are 

then classified into the membership function of the consequent by Equation (6.3). 
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where ( )iy t  is the crisp measurement of the ith consequent at time t, ( )iy tδ  corresponds to 

its arithmetical average for a given fuzzy delay δ , δ ∈[short , medium , long], itδ  are the 

fuzzy set break points ( i∈ [1, 2, 3]) for category δ , ( )tδΜ  denotes the membership 

function of a fuzzy delay δ , and ,
, ( )i j

y tδµ  is the fuzzy membership value of the ith 

consequent for a fuzzy delay δ . An example of the application of the procedure 

involving Equations (2) and (3) can be seen in Figure 6.2, where the fuzzy membership 
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value of the consequent 1( )y t  is calculated at time 20s for medium delay and low 

temperature, i.e. 1,
, (20)l

y mµ .  

 

 
Figure 6.2. Proposed physical and temporal two-step fuzzification procedure. The figure displays a 
fuzzification example in which at simulation time 20 the output y1 is evaluated for medium delay. 

 

By processing the available data from the antecedents using Equation (6.1) and 

that from the consequents with Equations (6.2-6.3), crisp data is translated into linguistic 

variables. It is important to note that although each antecedent relates to a single 

linguistic variable, due to the introduction of the fuzzy delay, each consequent is 

represented by three fuzzy variables, each related to a different delay membership 

function. 

 

1 

0.5 

0 
10 20 30 40 ∆t 50 

1

my  

1y  

0                 10               20                30               40               50                60               70               80 
t 1.0                 0.5                 0 µ 



 118 
 

6.3.2. The Truth Space Diagram 
 

The TSD is a two-dimensional space in which a series of metrics capable of 

quantifying the quality of a particular cause-and-effect rule can be obtained. Each TSD 

relates to a single rule. For every data point extracted either from mathematical 

simulations, pilot plant experiments, or real-word sensor data, a point is plotted in the 

TSD according to its truth of the antecedent Ta and the truth of the consequent Tc. Both 

parameters are calculated as geometrical means of the fuzzy membership function of each 

variable of the antecedents and consequents. Hence, the truth space delimited by Ta and 

Tc is bounded between 0 and 1 in which a value equal to 0 means absolute false while a 

value of 1 means absolute true. 

Designed in this fashion, the TSD represents a one-to-one mapping from the 

dataset from the real (numerical) space to a new (truth) space defined by the linguistic 

statements of a specific rule. The TSD can be divided into four quadrants and each 

quadrant provides different information about the linguistic rule. For example, consider 

point A in Figure 6.3. The values for Ta and Tc are high for this data point, i.e. the 

predicted consequent follows the appointed antecedent or the cause and effect match 

according to the relevant rule statement. This reveals that the information expressed in 

the linguistic rule is contained within the numerical data. Hence, many points in Quadrant 

II of the TSD reflect the validity of the rule in question. Consequentially, points in 

Quadrant IV show that the rule statement is false, i.e. what the antecedent of the rule 

express does not lead, in most cases, to the predicted consequent. An example of this can 

be seen from data point B in Figure 6.4. Similarly, points in Quadrant I demonstrate the 

incompleteness of the rule, since the predicted consequent was due to an event(s) other 
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than the one expressed in the antecedents of the rule. Finally, the presence of a cluster of 

points in Quadrant III show the possibility of that a rule is valid, however the amount of 

data currently available does not allow yet for a conclusion to be drawn with enough 

confidence. The points that lie on the vertical and horizontal axis show that either the 

antecedent or the consequent of a particular rule were not expressed in the data. 

 

 
Figure 6.3. TSD for a meaningful rule extracted from process data with sufficient supporting evidence. 

 

 

Figure 6.4. TSD for a rule that was proven inaccurate in a significant number of points in the process data. 
 

 

Quadrant Quadrant 
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Quadrant Quadrant 
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6.3.3. Numerical metrics 
 

As mentioned previously, the goal of the presented work is to extract rules that 

present high accuracy, precise antecedent/consequent relationship, and that are supported 

by sufficient data. By using the TSD, it is possible to obtain metrics for each of these 

conflicting goals. In order to transform the problem into one of minimization however, 

the actual metrics of interest are converted into: rule inaccuracy, antecedent/consequent 

mismatch, and lack of supporting evidence in the dataset. To improve the performance of 

the rule extraction algorithm, all metrics presented here are normalized to the interval 

[0,1]. 

 

Metric 1: rule inaccuracy – A rule is deemed inaccurate when its antecedent is observed 

but the consequence that follows after the prescribed delay does not match the predicted 

behavior. As mentioned previously, in the TSD this concept relates to the points in the 

Quadrant IV (i.e., set Q4), which relate to high truth of the antecedent but low truth of the 

consequent. The number of data points in Q4 (i.e., 4n ) can therefore be used as a relative 

measure of inaccuracy, however it is necessary to normalize this number by dividing 4n  

by the total number of data points in which the rule antecedents were observed with 

sufficient confidence, i.e. the sum of the points in Quadrant II ( 2n ) and in Quadrant IV 

( 4n ). Equation (6.4) summarizes 1m , the rule inaccuracy metric. 
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Metric 2: antecedent/consequent mismatch – from a good rule it is expected that the 

value of Tc should match the value of the Ta. In other words, the intensity in which the 

antecedents are observed should be equal to the intensity of the resulted consequent. In 

real world scenarios however, Tc is affected by both the quality of the rule and the quality 

of the available data (e.g., noise corruption). By analyzing the data points in Quadrant II 

(i.e., set Q2), it is possible to measure antecedent/consequent mismatch directly by 

summing all distances from each data point in it to the diagonal of the TSD. Defining Tai 

and Tci respectively as the truth of the antecedent and the truth consequent for rule i, .  

as the Euclidian norm, and since 0.3536 is the maximum distance to the diagonal, this 

second metric is stated as shown in Equation (6.5): 
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Metric 3: lack of supporting evidence in the dataset – Since there is a need for sufficient 

information inside the available data for any conclusion to be drawn, this metric is crucial 

for the success of any data driven rule extraction method. Using the TSD representation, 

Equation (6.6) is built for this purpose. 
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where nTSD is the total number of data points mapped in the TSD excluding points on the 

abscissa (Ta = 0); and ndata is the total number of data points available in the dataset. 

 

6.4. Rule extraction 
 

Evolutionary Algorithms (EA) is commonly regarded as a family of stochastic 

search procedures that is inspired by computational models of natural evolutionary 

processes to develop computer based optimization problem solving systems [71]. Being a 

population based algorithm, in EA each candidate solution is represented as an 

individual. When evolving towards better solutions, the individuals that better meet the 

optimization goal (individuals with greater fitness) have a greater probability of being 

selected to take part in the creation of the individuals of the new generation.  

For problems that have multiple conflicting goals that cannot be directly 

combined into a single scalar measure of fitness, Multiple Objective Evolutionary 

Algorithm (MOEA) provides a method through which a population of solutions can 

evolve towards a set of solutions within which no solution is better than another in all 

optimization goals. By defining that an individual dominates another when at least one 

optimization goal is closer to the ideal values and all others are equal or closer to it, than 

those of the other individual, such a set can be referred to as the non-dominant set. The 

non-dominant set among all possible solutions is called the Pareto front and its 

determination is then the ultimate goal of MOEA. Therefore, as shown in Equation (6.7), 

in MOEA the fitness F is a vector of the optimization goals, in this case represented by 

the three goodness metrics. 
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[ ]1 2 3, ,F m m m= . (6.7) 

 

In the presented work, MOEA in the form presented in [69] is used once for every 

consequent to evolve an initial random population of related rules towards the Pareto 

front of the tri-dimensional space defined by F. Therefore, for each consequent, a set of 

equally good (in the sense of the minimization of the three previously defined metrics) 

antecedents is extracted based on their relative success.  

 
Table 6.1. MOEA pseudocode 

 
 

As laid down in the pseudocode in Table 6.1, the first step of implementing an 

MOEA algorithm is the generation of the initial population of candidate solutions. In 

order to guarantee an unbiased and diverse population while maintaining a low 

computational demand, 20 initial individuals are generated with random antecedent 

values, clearly 20 is an ad hoc choice that needs to be quantified in future research. In the 

following step, the three metrics are calculated for the rules formed by the antecedents of 

 

1. Generate initial population; 

2. Evaluate the metrics of all individuals and rank them; 

3. for (i= 1: maximum_generation) 

4.    Choose parents with probability inversely proportional to their ranks; 

5.    Perform crossover operation on parents to generate new individuals; 

6.    With probability equal to the mutation rate, perform mutation 
procedure; 

7.    Evaluate all three metrics on the new individuals; 

8.    Update population ranking. 
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each individual and the consequent related to the current MOEA run. It is also in this step 

that each individual is assigned a rank value according to their relative success in 

minimizing the elements of the fitness vector F (i.e., the concept of Pareto optimality). In 

particular, the ranking scheme discussed in [72] is implemented, in which an individual is 

assigned a rank value equal to one plus the number of individuals it is dominated by. 

The third step in the presented pseudocode is the first in its main loop and it 

relates to the selection of two individuals that will be involved in the generation of new 

individuals to the population. The selection is performed stochastically by assigning a 

greater selection probability to individuals with smaller rank values, and therefore 

individuals with greater fitness. The individuals in this way chosen are denominated 

parents and, in Step 4, part of their individual solutions are exchanged in the operation 

termed crossover. Through the crossover operation, two new individuals (solutions) are 

formed, combining elements of both parents. In the following step, mutation, another 

biologically inspired process, may affect with a specific probability (defined as the 

mutation rate) the newly generated individuals. In MOEA, mutation takes place by 

randomly modifying an arbitrary portion of the solution related to a given individual. 

Independent of the occurrence of mutation in Step 5, on Step 6 the fitness vector F is 

evaluated for the two new individuals, followed by the updating of the ranks of all 

individuals in the population. A generation is then concluded and the algorithm returns to 

Step 3 until a maximum number of generations is reached. 

After MOEA generates a set of non-dominant rules for each consequent, 

thresholds are used over each metric to eliminate outliers and establish minimum 

acceptable performances (e.g., minimum degree of accuracy required of a rule). Another 
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post-MOEA data processing involves removal of time-redundant information from the 

rule set. If, for instance, a consequent should develop quickly and remain unchanged for a 

long time throughout the dataset, the antecedents would be credited with both short and 

long-term effects even though the long-term effect is only a matter of persistence. Time 

redundancy then refers to rules with equal antecedents and physical consequents, but with 

different consequent delays. In such cases, the rule related to the longer consequent delay 

is removed. 

 

6.5. Simulation results and discussion 
 

To demonstrate the process of extracting temporal cause and effect relationships, 

data was acquired from a Hot and Cold water simulator shown in Figure 6.5. The 

simulator incorporates real world dynamics such as transport and measurement delays 

and is capable of adding deviations such as measurement bias and process drifts that have 

an ARMA stochastic behavior, noise and valve “sticktion”. The simulation was 

nonlinear, had multiple inputs and its dynamics (such as hydrodynamic delay) depended 

upon operation conditions. For the purpose of generating data, the four input variables 

were manipulated, the flow of each input tube (F1 and F2) changing randomly at every 20 

seconds and the input temperatures (T1 and T2) changing randomly at every 40 seconds. 

The periods of manipulation of the variables were shifted so as not to lead into two 

changes occurring at the same time. Their effect on the temperature at the output of the 

mixer stream (T3) was measured over time. All flow variables were restricted to the 

interval [0,30] kg/min and the temperature variables to [0,100] oC. 
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Figure 6.5. The hot and cold water simulator used for validation of the rule extraction algorithm. 

 

According to the proposed data pre-processing procedure, physical variables were 

fuzzified with centers at 10, 50 and 90 oC for the temperatures and at 2.5, 15 and 25 

kg/min for low, medium and high flow rates respectively. For the fuzzy delay, centers 

were placed at 3, 7 and 20 seconds for short, medium and long delays respectively. Note 

that long delay rules will be harder to calculate since the input variables will change 

randomly at faster rates. The dataset is intentionally devised in this form to challenge the 

rule extraction procedure with data of different degrees of quality. 

The proposed MOEA based on the three selected metrics was implemented over 

the pre-processed data generating a non-dominant set of rule candidates for each 

consequent. An initial population of 20 individuals was allowed to evolve through the 

course of 200 maximum generations. The individuals received a rank equal to one plus 

the number of individuals it was dominated by. At each generation, parents were chosen 

according to a probability inversely proportional to their rank. For the generation of new 

individuals, crossover was implemented with a single crossover point and a mutation rate 

of 0.01 was used. An elitism scheme was implemented to guarantee that all best solution 

candidates were preserved during the evolution process. Figure 6.6 displays the obtained 
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non-dominant set containing 13 antecedent combinations relating to high temperature at 

T3 after a long delay. 

 

 
Figure 6.6. Distribution of individuals related to a single consequent in the metric space at generation 200. 

Filled circles form the non-dominant set. 
 

For post-processing, the minimum acceptable accuracy of the extracted rules was 

set at 90%, a minimum of 1% of the information inside the observed dataset was 

necessary to validate a rule, and a maximum spread of 0.6 around the diagonal of the 

TSD was allowed. In terms of the minimization metrics m1, m2, and m3, the 

corresponding thresholds were 0.1, 0.99 and 0.6 respectively. Finally, rules that were 

time-redundant were removed to generate the final rule set. 

Through the outlined process, the presented algorithm was capable of extracting 

49 rules out of a possible set of 729 rule combinations (containing both “good” and “bad” 

rules). Some examples of the obtained rules are shown below: 

m1 

m2 

m3 



 128 
 

 

•  IF T1 is high AND F1 is medium AND T2 is medium AND F2 is low THEN after a 

medium delay T3 will be high. 

 

•  IF T1 is low AND F1 is low AND T2 is low AND F2 is low THEN after a long delay T3 

will be low. 

 

•  IF T1 is medium AND F1 is low AND T2 is high AND F1 is high THEN after a short 

delay T3 will be high. 

 

Good rules are those that express the phenomenologically-based, cause-and-effect 

mechanism as a logical relation between their antecedent and consequent parts. 

Consequentially, bad rules are defined as those that are inconsistent with the process 

phenomena. Therefore, in order to evaluate the quality of the 49 extracted rules, each one 

of them had its antecedents implemented in the simulator and those that demonstrated 

matching consequents were deemed good rules. As a result, 5 of those rules were rejected 

demonstrating a success ratio of 89.8% of the proposed rule extraction algorithm. 

Moreover, most rejected rules pointed to borderline consequents (e.g., the measured T3 

would be 78oC, when the maximum value acceptable for a medium fuzzy range was 

70oC). Such scenarios reflect the choice of fuzzy membership function centers, left at the 

discretion of the operator. 

As mentioned previously, any rule extraction procedure can only produce results 

as good as the data provided. This simulation was intentionally designed to provide much 

sparser and more noise corrupted data for the extraction of rules related to long delays. 

Among the 44 good rules in the final set, only 6 of those portrayed long delays, while the 

expected from a fully representative dataset would be one third of the total. Since the 
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algorithm minimizes inaccuracy (m1) while at the same time evaluating the amount of 

supporting evidence (m3), the lower number of long delay rules extracted demonstrates 

the success of the procedure in avoiding unsupported rules to be presented to the operator 

in the final set. 

 

6.6. Summary 
 

As demonstrated though the application of the procedure on the data collected 

from the simulated hot and cold water mixer, the proposed rule extraction procedure 

succeeded in autonomously generating a viable rule set from a less than completely 

representative data set. The use of MOEA as an optimization algorithm allowed for three 

conflicting metrics to be evaluated simultaneously leading to the final extraction of 

optimal non-dominant rule sets. Both pre-processing, involving the representation of each 

rule inside a TSD, and post-processing, which allowed for the removal of time-redundant 

rules, were applied successfully and with beneficial outcomes. The presented work 

represents the foundations of an ultimate goal to achieve rules capable of describing the 

probability of a fault to occur after a certain time range given the choice of desired 

trajectories and their related plant input signals. Integration with the FDD/CMD 

Supervisor is also a crucial step to be taken. 
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CHAPTER 7 – Description, Initialization and Tuning of 
12 FTC Design Parameters 

 

7.1. Introduction 
 

Every control problem has a set of goals and constrains specific to itself that 

affect the choice of the control paradigm to be applied and the actual implementation the 

chosen approach. Maximum overshot, maximum acceptable reference tracking error and 

actuator saturation limits are common example of such peculiarities that in the practice of 

control systems translate to controller design parameters. Even though not all control 

design approaches are capable of converting all forms of real world specifications 

directly into design parameters, most will at least recognize their importance and discuss 

how different design decisions affect such particular points of interest. For instance, even 

though we might know at design time the saturation limits of an actuator, there is no 

readily available design parameter in classical PID control that will lead directly to a 

design of a controller that will not overstep such boundaries during the course of its 

operation. However, if after implementation the actuator saturation is interfering in a 

significant way with the main control goals, there are guidelines of how to modify the 

existing control parameters in order to generally reduce the chance that such limits are 

reached. 
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The design process of a fault tolerant controller also starts from gathering a list of 

control goals, specifications and constrains and then translating those into design 

parameters that will tune each fault tolerant controller to its particular application. 

Specifications related to FDD include fault detection delay [73], AKF identification dealy 

[74], and maximum false alarm and miss-diagnosis rates [75]. Examples of specifications 

related to the controller response to a fault also exist in the literature, including maximum 

controller reconfiguration delay [76], maximum acceptable performance loss under a 

fault scenario [77], maximum increase in control effort under a fault scenario [78] and 

maximum overshot during reconfiguration [3]. However, two major problems can be 

seen in the field nowadays. First, no single approach in the field has provided enough 

design flexibility to cover a significant number of FTC specifications, nor clearly 

indicated how particular design choices affect each and every one of those. Second, to the 

best of our knowledge, no FTC approach has provided any design procedure through 

which its parameters can be adjusted to achieve a specific set of FTC goals. 

In this chapter we aim to address the two previously stated deficiencies in the 

proposed FTC architecture. To accomplish such, the first step is to modify the quality 

indices used by the FTC supervisor in order to improve their capability to represent the 

various aspects related to FDD and the switching and learning operations governed by the 

supervisor’s two decision logics. Such modifications then result in the creation of 12 FTC 

design parameters, which lead to sufficient design flexibility to affect a series of FTC 

goals, such as maximum fault detection delay and maximum acceptable tracking error 

under a fault scenario. 
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After detailed description of the effect of each design parameter in twenty six 

different aspects of the final FTC response, an offline procedure for the determination of 

values for all 12 design parameters is presented. Since the proposed FTC approach is 

designed to deal with AUFs, there is not sufficient information at design time to 

guarantee that the offline determined design parameters will fulfill all FTC specifications 

once applied in the real world. Instead, the offline parameter design determination 

procedure provides suitable initial conditions and a table look-up method is proposed for 

efficient parameter tuning during actual implementation.  

This chapter is divided as follows. Section 7.2 introduces extended versions of all 

three quality indexes, each offering 4 design parameters, and details how modifications in 

each design parameter affect the final FTC response. Section 7.3 presents the proposed 

offline procedure for the generation of suitable initial conditions for the FTC design 

parameters and describes the online tuning procedure. Section 7.4 then presents the 

results of the application of the proposed methodology to fulfill the FTC specifications os 

a simulated plant subject to nonlinear AUFs. This chapter is closed by final conclusions 

in Section 7.5. 

 

7.2. Extended Quality Indexes 
 

In its original formulation the supervisor gathered the necessary information from 

the plant in order to perform FDD through two distinct quality indexes, termed controller 

and identifier quality indexes. In a subsequent chapter, a third quality index, the weight 

quality index, was introduced in order to gather information on the health of the 
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adaptation process an in this manner provide advanced information fundamental to CMD. 

Although successful in performing their duties as stated in their respective chapters, the 

quality indexes in their original formulation lack the flexibility to address the FTC 

application concerns raised in the previous section of this chapter. Therefore, before 

discussing how to adjust our FTC architecture to the requirements of each FTC 

application, modifications to all three quality indexes will be introduced. Such 

modifications do not alter their nature, but increase the number of design parameters to 

make it possible for the user to, for example, adjust how fast AUF are classified without 

affecting the classification speed of AKF. 

This section discusses the particular effect of each of the proposed design 

parameters on the ultimate response of the proposed FTC solution. The reader is assumed 

to be familiar with the role of each quality index and the workings of both FDD and 

CMD decision logics presented on earlier chapters. 

 

7.2.1. Identification quality index 
 

Focusing first on the identification quality index, one of the key aspects of its new 

formulation is that it contains a set of two distinct filter parameters, applied to the filter 

depending if the measured identification error is greater (γi
u) or smaller (γi

d) than the 

value of qi(t-1). Also, instead of using a single threshold to create the logic regions of 

high and low values of qi(t), two distinct thresholds are used: the Hqi that signals that the 

quality index is high after it goes beyond it, and Lqi that signals that the quality index is 

low after it goes below it. The use of the two threshold levels not only allows for different 
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responses to be adjusted, but also creates a hysteresis region that contributes to the index 

noise rejection. Equation (7.1) brings the new formulation in its discrete form. 

 

ˆ( ) min ( ) ( ) (1 ) ( 1)m
i i i im M

q t R t R t q tγ γ
∈

= − + − − , (7.1) 

 

where M is the total number of models present in the DMB at time t, R(t) is the output of 

the plant, ˆ ( )mR t  is the output of the plant predicted by the DMB model m, the norm ⋅  is 

defined as the sum of the absolute value of all vector elements, and iγ assumes the value 

of γi
d if ˆmin ( ) ( ) ( 1)m

im M
R t R t q t

∈
− ≤ −  or γi

u otherwise. 

In this manner, the identification quality index presents the user with four design 

parameters that can be adjusted independently in order to modify the response of the fault 

tolerant controller to match its goals in a given application. The ultimate adjustment of 

each design parameter is the subject of the next section, but first it is important to explore 

how changes in each one of the identification design parameters affects the response of 

the fault tolerant controller as a whole. For instance, since γi
u is used when the 

identification error over all models in the DMB is increasing, using a greater value leads 

to faster AUF classification. On the other hand, by decreasing its value we obtain greater 

noise rejection since (7.1) acts as a low pass filter on the identification error, which is 

directly affected by the quality of the plant’s output signal. Moreover, by decreasing γi
u, 

significant identification error is required to be present for a greater length in time in 

order to substantially impact qi(t) decreasing the chance of AKFs being transitorily 

misclassified as AUFs in the interactions immediately after the occurrence of a fault 

before a sufficient amount of input-output data is collected. 
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The effects of the other quality index filter parameter γid
, on the other hand, are 

different. Since it dictates how fast a low identification error can affect qi(t), increasing it 

leads to faster AKF classification. However, decreasing its value reduces the chance of 

AKF misclassification before a significant number of input-output data points are 

collected. This point is particularly interesting because it is conceivable that certain fault 

scenarios only demonstrate a significant impact on the plant dynamics at very specific 

regions of the state space and therefore it is important not to draw precocious 

classifications before at least one reference cycle is observed in full. On the other hand, 

although the length of time of a reference cycle is known, as the plant dynamics change 

abruptly due to a fault, there are no guarantees on the section of the state space the plant 

will cover during the controller adaptation process. Moreover, adjusting the filter 

parameter only alters the rate of decay. The actual time that the quality index qi(t) takes to 

assume a low logic value is a function of Lqi value as well as the actual identification 

error history. 

The limit over which values of qi(t) are considered high is determined by the Hqi 

threshold. Increasing its value leads to higher noise rejection, but different than the 

decrease of γi
u which leads to the rejection of high frequency noise, higher values of Hqi 

reject noise based on its amplitude. Increasing the value of this design parameter also 

decreases the chance of transitory misclassification of AKFs as AUFs caused by peaks in 

qi(t) after the occurrence of a fault and before a model with low identification error can 

be fully expressed. On the other hand, decreasing its value also has two beneficial effects. 

First, a lower Hqi value leads to faster classification of AUFs. Second, it also causes a 
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reduction on the chance of transitory and permanent misclassification of AUFs as 

variations of AKFs already stored in the DMB. 

Finally, we focus on the fourth identification design parameter: the lower qi(t) 

threshold Lqi. Increasing its value leads to faster AKF classification since the threshold 

will be reached sooner as qi(t) decreases. Also, an increase in its value leads to an 

expansion on the region that accounts for the variability of each particular fault scenario. 

If this threshold is made too small, two instances of the same fault, an increase in the 

friction of an actuator joint for example, can be classified as two separate faults, each 

with their own model and control solution in the DMB, if the friction coefficient were to 

differ slightly. Situations such as these are undesirable since the control solutions are 

close enough from each other that the difference can be quickly dealt with by the 

underlying adaptive controller, but the DMB would be incapable of providing closed 

initial conditions through switching because the second occurrence would be classified as 

an AUF. Moreover, the high specificity of the models within the DMB cause by too low 

Lqi causes a greater number of models to be added to the DMB, which may result into 

serious memory and processing issues. On the other hand, decreasing the value of Lqi 

leads to better discernment (less chance of misclassification) between fault scenarios and 

the nominal dynamics, as well as overall greater noise rejection due to the increase of the 

hysterisis region. 
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7.2.2. Controller quality index 
 

The controller quality index (qc(t)) is reformulated into a structure similar to the 

novel identification quality index presented in (7.1). As it can be seen in (7.2), qc(t) also 

makes use of two distinct filter parameters (γc
u and γc

d), making it possible for the quality 

index to respond differently for increasing and decreasing tracking errors. As with its 

identification counterpart, two thresholds, Hqc and Lqc, are used to respectively determine 

levels of logic high and low values independently.  

 

( ) ( ) (1 ) ( 1)c c c cq t U t q tγ γ= + − − , (7.2) 
 

where U(t) is the value of the utility function at time t, and cγ assumes the value of γc
d if 

( ) ( 1)cU t q t≤ −  or γc
u otherwise. 

Within the proposed supervisor, the pair formed by qi(t) and qc(t) are responsible 

for the determination of the four states that compose the FDD decision logic. Therefore, 

as outlined for the identification quality index, the values of the four design parameters of 

qc(t) will also have a direct impact on the supervisor’s estimation of the plant’s health and 

determination of when to perform the actions of switching and adding.  

Following the same order of analysis used in the identification design parameters, 

we start by focusing on γc
u. As it can be expected, increasing its value makes higher 

tracking errors to translate more quickly into higher qc(t) values, making the detection of 

all faults faster. Furthermore, higher values will also increase the chance of detecting 

faults with short persistence, whose detrimental effect might go unnoticed if the tracking 

error with short time span is filtered out before completely expressed. On the other hand, 
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smaller values of γc
u provide greater noise rejection, preventing high frequency measure 

and transmission noise to be interpreted as faults in the plant. 

As for the filter parameter for decreasing qc(t) values, γc
d, increasing it leads to a 

faster detection that the acceptable operational performance has been recovered, a 

situation that leads to the addition of a new fault solution to the DMB in the event of an 

AUF. It is important to make reach this decision fast enough so that an effective way to 

respond to a particular fault can be learned before the dynamics of the plant change once 

more due to an aggravation of the fault or in the event that the fault is transitory by 

nature. However, if set too high, this filter parameter will lead to a greater chance of a 

control solution to be added to the DMB before an entire reference cycle is covered, 

leading to the learning of incorrect solutions in the event of faults that only affect the 

dynamics of the plant in strong enough fashion in certain regions of the state space. As 

for noise rejection in the determination of the plant’s health, smaller values of γc
d will 

grant it for a similar reason as γc
u provides noise rejection to fault detection. 

Once qc(t) extends beyond Hqc, its high logic value is associated in the decision 

logic with situations of free and switched learning. Increasing Hqc leads to a greater 

margin of acceptance of suboptimal tracking error and amount of control effort. This also 

leads to greater noise rejection in all frequency range when performing fault detection. 

Smaller values for the Hqc threshold lead to faster fault detection and higher chance of 

successful detection. As a matter of fact, it set too high, Hqc can cause less detrimental 

faults not be detectable, independent of the amount of time the fault remains active. 

The controller quality index lower threshold Lqc, makes the decision to add a new 

control solution to the DMB to be reached sooner if its value is increased. Increasing it 
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also leads to a greater chance of adding such solutions independent of the time required. 

In extreme circumstances, if made too small, the Lqc threshold may not allow a control 

solution to be added to the DMB if the fault is severe enough that the minimum reachable 

U(t) is higher than the adjusted threshold. On the other hand, decreasing the value of Lqc 

leads to a smaller chance of adding a new solution before the whole reference cycle has 

been covered. Smaller levels for this threshold also provide solutions with greater quality 

and greater specificity, while also granting increased noise rejection. 

 

7.2.3. Weight quality index 
 

The primary role of the weight quality index (qw(t)) is to provide measure of the 

degree of activity within the weights of the neural networks that compose the ACD 

controller. This information is then used in conjunction with qc(t) in the CMD decision 

logic to determine the health of the adaptation process of the base line controller. As with 

the previous two quality indexes, qw(t) was also extended to admit different filter 

responses for increases (γw
u) and decreases (γw

d) in the amount of network activity, as 

shown in (7.3) in its discrete formulation. Different than the other two quality index, qw(t) 

already possessed two distinct thresholds (Lqw and Hqw) since it was already important 

for the CMD decision logic to distinguish between high, low and normal levels of 

activity.  

 

( ) ( ) (1 ) ( 1)w w w wq t w t q tγ γ= ∆ + − − , (7.3) 
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where wγ  assumes the value of γw
d if ( ) ( 1)ww t q t∆ ≤ −  or γw

u otherwise, and the variation 

of the weights of the identification, action and critic NNs ( )w t∆  is defined in Equation 

(7.4). 

 

( ) ( ) ( 1) ( ) ( 1) ( ) ( 1)i i a a c cw t w t w t w t w t w t w t∆ = − − + − − + − −  (7.4) 
 

Varying the four weight design parameters modifies how qw(t) interprets the 

degree of activity within the NNs. Starting with γw
u, increasing it leads to a faster 

detection of controller malfunction due to online training algorithm divergence and a 

faster representation of the actual NN activity after a switching event by the supervisor. 

On the other hand, due to the same switching events and also due to abrupt changes in the 

plant dynamics caused by faults, spikes of high activity might surface in the NNs even 

during healthy operation and decreasing γw
u leads to smaller chances that such spikes will 

translate to incorrect identification of adaptation divergence. 

Similarly, if increased, γw
d leads to a faster CMD in the event of local minima 

convergence. However, if decreased, it leads to a smaller chance of incorrect stagnation 

or incorrect true minima convergence detection before all state space covered by the 

reference cycle is explored. 

Because the weight update equation in the backpropagation online training 

algorithm of GDHP is a function of the weights in the previous iteration, training 

divergence leads to a steady growth in the activity of the NNs as defined in (7.3). 

Therefore, independent of the value chosen for Hqw, a divergent controller will always 

lead qw(t) over it, correctly detecting and identifying the controller malfunction. 
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However, decreasing it leads to a faster detection and therefore greater chance that the 

recovery process can take place while the diverging pattern is restricted to the internal 

weights of the NNs and has not yet affected the input to the plant severely. On the other 

hand, increasing its value reduces the chance of incorrectly detecting a divergent 

behavior during normal training activity as a result of an abrupt fault. 

Modifications on Lqw have effects similar to the ones of the high threshold. 

Increasing it leads to faster CMD in the event of local minima convergence. On the other 

hand, decreasing it provides lesser chance that the adaptation process is seen as if had 

already converged while significant adaptation is still taking place, constituting a 

controller malfunction misdetection. 

A summary of the effects on the performance of the proposed FTC architecture 

caused by all weight quality index design parameters as well as those from qc(t) and qi(t) 

can be found in Table 7.1. 

 

7.3. FTC Design Parameters’ Initialization Process 
 

In the previous section, the three quality index used by the proposed FTC 

supervisor were revised to extended formulations that possess a total of 12 design 

parameters. While such flexibility is necessary in order to allow the user to adjust the 

response supervisor to each particular FTC application, it also creates the challenge of 

how to proceed in the adjustment of each and all parameters. As shown previously, each 

one of the design parameters affects the response of the supervisor in multiple and 
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sometimes conflicting ways, making the offline adjustment of such parameters non-

trivial. 

 

Table 7.1. Summary of effects of the 12 design parameters on the proposed architecture. 
 Lqi Hqi γi

d γi
u 

in
cr

ea
se

 • Faster AKF 
classification. 
• Expansion on the 
region that accounts 
for fault variability. 

• Less chance of 
transitory 
misclassification of 
AKFs as AUFs. 
• Greater noise 
rejection (amplitude). 

• Faster AKF 
classification. 
 

• Faster AUF 
classification. 
 

de
cr

ea
se

 

• Less chance of 
misclassification by 
model generalization. 
• Greater noise 
rejection (amplitude). 

• Faster classification 
of AUFs. 
• Less chance of 
transitory and 
permanent 
misclassification of 
AUFs as AKFs 
variations. 

• Less chance of 
transitory AKF 
misclassification. 
• Greater noise 
rejection (frequency). 

• Greater noise 
rejection (frequency). 
• Less chance of 
transitory 
misclassification of 
AKFs as AUFs. 

 Lqc Hqc γc
d γc

u 

in
cr

ea
se

 

• Faster decision to 
add a new solution to 
the DMB. 
• Greater chance of 
adding suboptimal 
solutions to the DMB. 

• Greater margin of 
acceptance of 
suboptimal tracking 
error and/or amount 
of control effort. 
• Greater noise 
rejection (amplitude). 

• Faster decision to 
add a new solution to 
the DMB. 
 
 

• Faster fault 
detection. 
• Greater chance of 
detecting faults with 
short persistence. 
 

de
cr

ea
se

 • Less chance adding 
solutions to the DMB 
before all reference 
cycle is explored. 
• Greater noise 
rejection (amplitude). 

• Faster fault 
detection. 
• Higher chance of 
successful detection. 
 

• Less chance adding 
solutions to the DMB 
before all reference 
cycle is explored. 
• Greater noise 
rejection (frequency). 

• Greater noise 
rejection (frequency). 
 

 Lqw Hqw γw
d γw

u 

in
cr

ea
se

 • Faster detection of 
controller malfunction 
(local minima). 
 

• Less chance of 
incorrectly detecting a 
divergent behavior 
during normal 
adaptation activity. 

• Faster detection of 
controller malfunction 
(local minima). 
 
 
 

• Faster detection of 
controller malfunction 
(divergence). 
• Faster representation 
of actual NN activity 
after switching. 

de
cr

ea
se

 • Less chance that the 
adaptation process is 
seen as if had already 
converged while 
significant adaptation 
is still in progress. 

• Faster detection of 
controller malfunction 
(divergence). 
 

• Less chance of 
incorrect convergence 
detection before all 
reference cycle is 
explored. 

• Less chance that 
high activity spikes 
are misclassified as 
divergent behaviors. 
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As a matter of fact, to precisely determine the value of all design parameters at 

design time can be impossible to perform in applications that concern themselves with 

the occurrence of unknown faults. Therefore, the proposed procedure for the 

determination of the 12 design parameters that fulfill user defined FTC specification is 

performed in two parts: offline determination of initial values and online parameter 

tuning. 

In the offline determination of initial values, a sequence of synthetic faults is 

simulated over the plant’s nominal dynamics and the supervisor’s design parameters are 

adjusted one at a time through the intricate procedure introduced in this section in order 

to generate a simulation response that achieves the following key user’s FTC 

specifications: 

 

• Maximum acceptable tracking error and/or permissible control effort under 

the nominal scenario: this specification determines the actual control goal of the 

plant under nominal operation conditions, not to be compromised by the addition 

of the FTC adaptive controller or supervisor. 

• Maximum acceptable tracking error and/or permissible control effort under 

a fault scenario: in this specification the focus is on the performance of the plant 

under fault scenarios, which in some applications can be allowed to be somewhat 

smaller than the nominal scenario and still be considered an applicable solution. 

• Maximum fault detection delay: fault detection is the first step in any active 

intervention by the FTC supervisor or human operator and therefore must be the 

fastest information to be gathered. 



 144 
 

• Maximum acceptable reconfiguration time for AKFs: faults that are known 

during design time have pre-computed solutions that can be used to quickly 

recover the performance of the plant. The proposed FTC supervisor is capable of 

achieving this goal by switching to a solution stored in the DMB, but only after 

the AKF is correctly identified and classified.  

• Maximum fault identification delay for AUF: although faster to be identified 

than known faults, AUFs present a greater FTC challenge since the baseline 

controller must by itself determine a solution through online adaptation. 

Identifying AUFs early allows more time for human operators to perform changes 

in the control mission or consider initiating safe shut-down procedure in the event 

of an uncontrollable fault. 

• Minimum observation time before adding a new model to the DMB: this last 

specification depends mainly on the length of the desired reference cycle, but can 

also be determined by the frequency in which an intermittent known fault affects 

the plant. 

 

Since the offline simulation makes use of the same adaptive critic controller used 

in the online application, it is expected to behave similarly when facing the synthetic fault 

set and the actual faults it will encounter in real world operation. However, unmodeled 

factors of the nominal plant (such as measurement noise) and specific effects of particular 

fault scenarios can make a set of offline determined design parameters to violate some of 

the before mentioned specifications. Furthermore, other effects of the design parameters 

listed in Table 7.1 that are not as crucial to the efficiency of the approach or are harder to 
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express in numbers at design time, such as how generic should each model within the 

DMB be or the amount of measurement noise present during a fault scenario, cannot be 

adjusted prior to actual application of the FTC architecture to the plant. Therefore, the 

goal of the offline simulation is to generate a set of initial values that can be fine tuned 

during actual operation by using Table 7.1 as a guideline. 

The process of offline determination of initial values start with the generation of 

the synthetic fault sequence. Since ACD base line controller is based on a universal 

approximator structure, it makes no assumptions on the structures of the faults and 

therefore there is no need to implement overly complex dynamics for the synthetic faults. 

As a matter of fact, in the example demonstrated in the following section, even though 

the plant is expected to face nonlinear faults in actual application, the synthetic fault set is 

composed exclusively of faults with linear dynamics. It is important however that the 

synthetic faults have equal number of inputs and outputs that the nominal plant dynamics.  

One important design choice to be taken prior to the procedure for determination 

of initial values of the design parameters is to establish the complexity of the base line 

adaptive controller. In the case of the proposed architecture, this translates to choosing 

the size and architecture of the three NNs that compose the GDHP adaptive controller. 

The number of weights, their configuration and choice of training algorithm will all have 

an effect on how the design parameters affect the response of the supervisor, so it is 

essential to select the appropriate values in advance. 

Having set the complexity of the base line adaptive controller, the next step is to 

simulate the synthetic linear fault sequence and record the responses of the three quality 

indexes. In order to observe the reaction of the indexes to both known and unknown 
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faults, as well as allow full expression of the adaptive controller training process, the 

supervisor’s operations of switching and adding are disabled during the simulation. 

The simulation starts with the plant with the nominal dynamics, where it remains 

until the base line adaptive controller provides a control solution that provides a 

performance level equal or higher to the minimum acceptable under nominal conditions. 

Once such level is reached, the simulation is paused and the developed nominal control 

solution and identification model are added to the DMB. Doing so provides the 

supervisor with a control solution for the nominal scenario that fulfills one of its FTC 

specification and also makes all subsequent times the plant assumes the nominal 

dynamics to be interpreted as a known scenario by the supervisor and generate the related 

responses in all quality indexes. As part of the information required later for the 

determination of initial values for the filter parameters of qi(t), through the course of the 

simulation, store in file (not within the DMB) copies of the weights of the IdNN after 

convergence is reached in each presented fault scenario. 

As made clear in Table 7.1, although relevant distinctions exist, many threshold 

alteration effects are shared with the filter parameters of the same quality index. 

Therefore, in the proposed methodology, initial values for thresholds are defined first 

based on exclusively individual effects, followed by the filter parameters, whose 

determination focuses primarily on temporal effects. For this reason, during the 

simulation all filter parameters are set to 1, resulting in filters with no memory and in 

practice allowing the threshold to be set according to the unfiltered information. 

The methodology for the determination of suitable initial values for the thresholds 

involves the gathering of responses in the simulations that represent limits in the 
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expression of the unfiltered quality indexes during certain situations relevant to each 

threshold. For the identification and controller ones, these limits cannot be used directly 

as the thresholds as they cannot be expected to represent overall limits for all possible 

fault scenarios, including those unknown during design time. In order to provide suitable 

initial conditions that, once again, can be fine tuned once applied in practice, the actual 

initial condition values for the identification and controller thresholds are obtained from 

within the range defined by the obtained limits. We have found in simulated experiments 

that using 25% and 75% of the gap between the measured limits produce suitable values 

for the low and high thresholds respectively. An over bar is adopted in the notation to 

indicate a threshold limit, as in iLq  being the measured limit of iLq , the lower 

identification quality index threshold. 

The next steps deal with obtaining the threshold limits from the simulation data 

for the identification and controller thresholds. Justifications for the setting of such limits 

are intrinsically connected to the information they contribute to the FDD decision logic, 

described in detail in Section 4.1.2. Starting with the lower identification threshold, as it 

is related to the identification of known faults, iLq  is obtained from the maximum 

observed value (after the transitory response) when the plant enters a known scenario, in 

this case, when the plant returns to the nominal scenario from a fault scenario. In order to 

obtain iHq , it is necessary to first measure the maximum value assumed by qi(t) in each 

fault (and therefore unknown) scenario. The limit for the higher identification threshold is 

the obtained from the minimum of such measurement, as it indicated the minimum 

response expressed by an AUF. 



 148 
 

The determination of the limit cLq  can actually be made directly from the FTC 

specifications, by taking the value of the utility function U(t) that corresponds to the 

minimum acceptable performance under a fault scenario. On the other hand, cHq  is 

related to the transient performance degradation used to, among other things, detect the 

occurrence of a fault, and therefore must be obtained from the simulation data. In 

particular, it assumes the value of the minimum qc(t) peak observed following a change in 

the dynamics caused by either the introduction of a fault scenario or a return to the 

nominal dynamics.  

The weight quality index threshold is involved exclusively in the CMD decision 

logic presented in Section 5.2. Different from the previously discussed thresholds, the 

ones related to qw(t) deal with the extreme situations of controller malfunction due to 

divergence and local minima convergence and therefore can have initial values 

extrapolated directly from the data. The lower threshold purpose is to inform the CMD 

decision logic of when all NNs have converged. Therefore, a suitable initial value can be 

obtained from the overall minimum among the maximum values assumed by qw(t) during 

the last reference cycles in each scenario. The higher threshold, on the other hand, serves 

the purpose of detecting divergent behavior within the NNs characterized by an increased 

degree of activity. Due to the nature of NN learning algorithm divergence, the activity 

within a NN, as translated into qw(t), continuously increases. Therefore, any threshold 

value applied to wHq  will eventually be crossed in the event of a divergent controller 

malfunction. However, the smaller the value attributed to it, the sooner qw(t) will indicate 

to the CMD decision logic that the learning process is no longer stable and greater are the 

chances that corrective measure can be taken while the effects of the malfunction remain 
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internal and before the operation of the plant is compromised. Nevertheless, it is 

important to ensure that this threshold will not in any event be achieved during healthy 

adaptive controller operation, otherwise its efficiency could be compromised due to 

incorrect supervisory intervention. Therefore, the initial value for wHq  is chosen as one 

order of magnitude higher than the maximum qw(t) value observed throughout the 

simulation. 

Having adjusted all 6 thresholds to suitable values given the levels observed in the 

simulated response, the next half of the proposed approach involves the adjustment of 

filter parameters that will control the time for the quality indexes to cross their respective 

thresholds in a manner to fulfill the temporal FTC specifications. Although adjusting the 

filter parameters may seem a computationally expensive process, testing for different 

filter values required few computations since for qc(t) and qw(t) the signals to be filtered 

are already available as the unfiltered versions obtained during simulation, and the filters 

themselves are not more complex than first order low pass filters. Starting with the filter 

parameters of qc(t), γc
d should be adjusted so that, from the last moment the U(t) peaks 

over the higher threshold, at least one reference cycle is covered before the filtered 

quality index reaches its lower threshold level, as observed in all scenario transitions. The 

reason for this build-in delay of one cycle is that a low value of qc(t), among other 

functions, indicates that a suitable solution was found for an AUF and that therefore such 

solution can be added to the DMB. In the event that a fault becomes significantly active 

only in a portion of the state space traveled by the reference cycle, it is possible that a 

controller will display a poor performance only in such portion. Unless a complete cycle 
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is observed before fully judging the efficacy of the control solution, a model that do not 

properly address to region-specific fault may be erroneously added to the DMB. 

The desired fault detection time can be achieved by adjusting γc
u in order to 

regulate the delay between the introduction of a fault scenario and the time the filtered 

qc(t) reaches its higher threshold. Adjusting the filter parameter to provide a fault 

detection delay less or equal to the specified one in all fault scenarios in the simulations 

provides a suitable initial value. For the weight quality index, γw
d should be adjusted in 

order to provide a wait at least three reference cycles before allowing the lower threshold 

to be reached. As it can be expected, the reasoning behind this step is similar to the 

determination of the initial value of γc
d, with the difference that more reference cycles are 

required due to the manner these two quality indexes interact in the CMD decision logic. 

For γw
u, a value of 1 can be maintained as an initial value for this design parameter due to 

the fact that the higher threshold is already positioned far from signals obtained during 

healthy learning and to the fact that early CMD is critical for its recovery. 

The calculation of the effect of different filtering values on the response of qi(t) is 

slightly more computationally expensive than the other two quality indexes since in order 

to provide sufficient data, the identification quality index must be calculated as if all fault 

scenarios were AKF. It is with this purpose that the weights of the IdNN at the end of 

each scenario are store and used here to calculate the identification error of all models 

throughout the simulation. For γi
d, experiment with different values in order to provide 

less than the maximum acceptable identification delay for AKFs as observed in all 

scenario changes in the simulation. Note that this delay has a direct impact on the 

specification for the maximum acceptable reconfiguration time for AKFs since the 
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supervisor can only increase the reconfiguration speed of such faults after they were 

correctly identified and classified. Finally, adjust γi
u so as to provide less than the 

maximum permissible identification delay for AUFs. 

 

Table 7.2. Summary of the proposed procedure for the initialization of FTC design parameters. 
Simulation Setup 

• Start the simulation with the plant under the nominal scenario until the baseline controller 
produces a solution capable of providing the plant with a tracking performance equal or 
superior to the required nominal performance. 

• Switching is deactivated in the supervisor. Adding models and solutions to the DMB is also 
deactivated after a model of the nominal dynamics is added in the first part of the simulation. 

• Store the unfiltered values of qw(t) and qc(t) so that different filter parameters can be applied 
later without the need of further data acquisition. 

• Pre-set all filter parameters to 1 (no memory) 
• Apply a series of linear synthetic faults, compensating for the application’s number of inputs, 

outputs and order of the nominal dynamics. 
• Store in file (not in the DMB) copies of the weights of the IdNN at the last iteration within 

each fault scenario. 
FTC Design Parameters’ Initialization Procedure 

1. Obtain iLq  from the maximum value observed (after the transitory response) when the plant 
returns to the nominal scenario from a fault scenario. 

2. Measure the maximum qi(t) value observed during each fault scenario after the initial 
transitory peak. Obtain iHq  from the lesser of such measurements. 

3. Calculate cLq  using the desired U(t) level that corresponds to the acceptable performance 
when the plant is under a fault scenario. 

4. Obtain cHq  from the minimum qc(t) peak observed following a change in the dynamics of the 
plant.  

5. Obtain iLq  and iHq  by setting them at respectively 25% and 75% from the difference 
between iLq  and iHq . Do the same for the qc(t) equivalents. 

6. Set Lqw to the minimum among the maximum qw(t) value observed in the last reference cycles 
of each scenario. 

7. Set Hqw to one order of magnitude higher that the maximum observed qw(t) value. 
8. Using the previously defined control thresholds and the stored qc(t): 

8.1. Set γc
d so that at least one full reference cycle is covered before Lqc is reached. 

8.2. Set γc
u in order to provide less that the permissible maximum fault detection delay. 

9. Using the previously defined weight thresholds and the stored qw(t): 
9.1. Set γw

d so that at least three reference cycles are covered before Lqw is reached. 
9.2. Set γw

u to 1 (no memory). 
10. Retrieve the copies of the weights of the IdNN obtained for each fault scenario and use those 

to again generate qi(t) as if the supervisor had solutions for the nominal as well as all fault 
scenarios within the DMB during simulation time. Using the previously defined identification 
thresholds and the stored identification models: 
10.1. Set γi

d to provide less than the maximum permissible AKFs identification delay. (direct 
impact on maximum permissible AKFs reconfiguration delay). 

10.2. Set γi
u to provide less than the maximum permissible identification delay for all AUFs. 
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Table 7.2 summarizes the simulation details and the procedure to generate 

suitable initial conditions for all 12 FTC thresholds and filter parameters as described in 

detail above. Having concluded this stage, the supervisor is configured to be applied to 

the actual plant. As mentioned previously, it is possible that in the event of AUFs not all 

FTC specifications will be fulfilled, as it is possible that unmodeled system properties, 

such as measurement noise, will cause the quality indexes to respond inaccurately. To 

correct such, the user is directed to use Table 7.1 as a look up table and make the 

necessary adjustments on the design parameters to rectify specific deficiencies. The only 

exception is the case in which after implementation, the chosen baseline adaptive 

controller fails to have the complexity necessary to provide solutions with less than the 

minimum acceptable performance to AUFs. In such a case there is need to repeat the 

presented offline procedure for the determination of a new set of initial values based on a 

more powerful adaptive controller (e.g. increased number of layers or neurons). 

 

7.4. Simulation Results 
 

In this section we demonstrate how the proposed procedure can be used in 

practice to configure the 12 FTC design parameters of the described approach before its 

actual application to the nonlinear complex plant we ultimately desire to provide fault 

tolerance. In particular, the plant of interest has 2 outputs, 2 inputs, 3 states, and will be 

subject to nonlinear faults that will greatly change its dynamics. The offline simulation 

procedure will be conducted by applying a sequence of synthetic linear faults to the 

nominal model of the plant in order to generate information to be used to produce initial 
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values for 12 FTC design parameters that aim at achieving the FTC specifications listed 

in Table 7.3. 

 

Table 7.3. Summary of FTC specifications. Temporal values expressed in number of iterations (it.) and in 
terms of the length of the cyclic reference period (ref.). 

FTC specification limit 
Maximum acceptable tracking error under the nominal scenario 0.02 
Maximum acceptable tracking error under a fault scenario 0.05 
Maximum fault detection delay 75 it. (0.15 ref.) 
Maximum fault identification delay for AUF 100 it. (0.2 ref.) 
Maximum acceptable reconfiguration time for AKFs 3500 it. (7 ref.) 
Minimum observation time before adding a new model to the DMB 750 it. (1.5 ref.) 

 

For the sake of understanding, we assume in this simulation that the plant already 

has a stable efficient controller designed for the nominal dynamics and that the FTC 

architecture is mounted over the loop containing the plant and the nominal controller. 

Under these circumstances, we can assume without any loss of applicability, that the 

nominal dynamics are described by Equation (7.4). 

 

1 1

2 3

3 2

( 1) ( )
( 1) ( )
( 1) ( )

x t u t
x t x t
x t u t

+ =⎧
⎪ + =⎨
⎪ + =⎩

 (7.4) 

 

where 1( )u t  and 2 ( )u t  are the inputs of the plant and the states 1( )x t  and 2 ( )x t  compose 

the output of the plant, also represented in vector form in [ ]1 2( ) ( ) ( ) TR t x t x t= . 

In this demonstration, we assume that the desired minimum performance of the 

plant under the nominal scenario corresponds to U(t)=0.02, where U(t) is chosen as 

shown in (7.5) focusing exclusively on the tracking error of the output. On the other 

hand, a performance of U(t)=0.05 is still considered acceptable under a fault scenario. 
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( ) ( )( ) ( ) ( ) ( ) ( )
Tt tU t R t R t R t R t= − −  (7.5) 

 

where ( )tR t  is the desired reference signal with a cycle of 500 iterations described in 

Equation (7.6) 

 

( ) ( )

2sin 0.4sin
250 250

( )
20.1 sin 150 0.6sin 190

250 250

t

t t
R t

t t

π π

π π

⎡ ⎤⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞ ⎛ ⎞+ + + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

 (7.6) 

 

7.4.1. Adjusting initial FTC design parameter values using simulated linear 
faults 

 

Directly from the FTC specifications in table 7.3 it is possible to directly set 

0.05cLq = , however in order to set the values of the remaining thresholds, it is necessary 

to run a simulation sequence using the same adaptive controller we seek to apply to deal 

with faults in the actual plant. Taking into consideration the presence of 3 states, 2 inputs 

and 2 outputs, and assuming a certain degree of complexity for the unknown fault 

scenarios, all three neural networks that compose the ACD adaptive controller are created 

as 2 layered recurrent neural networks with 40 hidden neurons. Having set the base line 

adaptive controller, the next step is to determine a simulation sequence with synthetic 

faults represented by linear systems with the same dimensions as the nominal plant. 

Equations (7.7) to (7.10) describe the dynamics of abrupt faults 1 to 4 respectively. Table 

(7.4) displays the simulation sequence and the timing of each fault. 
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1 1 2 3 1

2 3 2

3 1
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x t x t u t
x t x t
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x t x t x t u t
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1 1 2 3 1

2 1 2

3 2 1

( 1) 0.19 ( ) 0.1 ( ) 0.17 ( ) 1.2 ( )
( 1) 0.9 ( ) 1.32 ( )
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x t x t x t x t u t
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1 1 2 3 1

2 1 2

3 2 1

( 1) 0.2 ( ) 0.96 ( ) 0.4 ( ) ( )
( 1) 0.9 ( ) 1.5 ( )
( 1) ( ) ( )

x t x t x t x t u t
x t x t u t
x t x t u t

+ = − + +⎧
⎪ + = +⎨
⎪ + = +⎩

 (7.10) 

 

Table 7.4. Simulation sequence for the linear synthetic fault set. 
Active time interval Plant dynamics 

0 to 15000 Nominal - Equation (7.4) 
15000 to 25000 Abrupt Fault 1 - Equation (7.7) 
25000 to 35000 Abrupt Fault 2 - Equation (7.8) 
35000 to 45000 Nominal - Equation (7.4) 
45000 to 55000 Abrupt Fault 3 - Equation (7.9) 
55000 to 65000 Abrupt Fault 4 - Equation (7.10) 
65000 to 75000 Nominal - Equation (7.4) 

 

Following the directives laid down in the previous section, the simulation was run 

for the total 75000 iterations. Analyzing the transitory behavior of qc(t) after the 

introduction of each scenario, the minimum peak value was observed when the plant 

returned to the nominal scenario at iteration 65000 (Figure 7.1), setting cHq  at 0.860. 
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Figure 7.1. Unfiltered qc(t) transitory response as it returned to the nominal scenario at iteration 65000. 

 

After the transitory response, the maximum value of qi(t) observed while in the 

nominal scenario was of 0.318, establishing in this manner iLq . The measurement, 

obtained in the first time the plant returned to the nominal scenario after 35000 iterations, 

can be seen in Figure 7.2. Moving forward, Figure 7.3 shows the response of qi(t) while 

abrupt fault 3 is active. The maximum value observed in this scenario (after the transitory 

response generated by the abrupt change in dynamics) was the minimum among all other 

scenarios, determining the limit of the high qi(t) threshold, iHq , to be set at 0.575. 
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Figure 7.2. Response of the unfiltered identification quality index as the plant returns to the nominal 

scenario at iteration 35000. 
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Figure 7.3. The unfiltered identification quality index during abrupt fault 3. 

 

Having obtained the limits for the identification and controller thresholds, it is 

then possible to determine the initial value recommendations for these thresholds as 

described in the previous section. The calculation results lead to the values listed in Table 

7.5. 

 

Table 7.5. Initial values for the identification and control thresholds calculated from observed limits. 
Threshold Initial Value 

cLq  0.253 

cHq  0.658 

iLq  0.382 

iHq  0.511 
 

In order to determine the initial values for the weight quality index thresholds, an 

exploration of the unfiltered qw(t) generated during the simulation (Figure 7.4) is 

required. The maximum observed peak value of the weight quality index during 

operation in the absence of controller malfunctions was 566.5, leading to the adjustment 

of the higher threshold wHq  to 5665. For the lower threshold, we focus on the maximum 
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response observed after controller convergence at each scenario. Figure 7.5 displays the 

minimum of such measurements, adjusting the initial value of the lower weight threshold 

wLq  to 3.75. 
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Figure 7.4. Resulting unfiltered weight quality index from the synthetic fault sequence simulation. 
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Figure 7.5. Detail of the response of qw(t) during a period when no faults are active in the plant. The 

minimum qw(t) response after controller convergence can be seen in this graph. 
 

Having set initial values for all thresholds, the next step is the configuration of the 

filter parameters. In order to generate the relevant data, identification models of all 

synthetic linear scenarios visited in the simulation were added to the DMB through the 

process described in the previous section. The identification quality index was then 

recalculated independently to allow different filter parameters to be tested in order to 
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fulfill the FTC specifications. Figure 7.6 illustrates the distinct difference between qi(t) 

before and after filtering with its initial parameters. On Figure 7.7 it is possible to see 

how, using the thresholds defined previously, the filtered qi(t) correctly identifies all 

scenarios as known and classifies correctly which of the models in the DMB represents 

the current observed dynamics. Note also that all transitory periods during which the 

models are misclassified occur within period during which qi(t) transitorily misidentifies 

an AKF as an AUF. This behavior is expected and desired since neither correct 

identification nor classification can occur until sufficient data is made available and while 

an AKF remains transitorily misidentified as an AUF the switching command is not 

issued by the FTC decision logic. 
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Figure 7.6. Comparison between unfiltered and filtered identification quality indexes. The horizontal 

dashed lines indicated the adjusted threshold levels. The simulation section displayed in the graph draws 
attention to the introduction of an AKF at iteration 45000. 
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Figure 7.7. On the top graph, the logic state, low (0) or high (1), of qi(t) throughout the simulation. The 
bottom graph displays the model identified as active at each iteration; model 1 pertains to the nominal 

dynamics, while 2 to 5 pertain to the four fault scenarios. 
 

Adjusting γi
u to 0.8 provided a maximum AUF identification delay of 68 iterations 

(less than the specified 100 iterations), observed after the system’s dynamics abruptly 

changed at iteration 65000 (Figure 7.8). In order to provide the means for the final 

configured supervisor to be able to comply with the desired maximum reconfiguration 

time for AKF, correct fault identification must occur before a switching operation takes 

place. Therefore, γi
d was set to 0.002, which produced a maximum AKF identification 

delay of 3204 iterations among all scenario changes experienced in the linear dynamics 

simulation (as shown in Figure 7.9). 
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Figure 7.8. Longest AUF identification delay (after γi

u adjustment) observed here as the time taken by qi(t) 
to assume its high logic value. 
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Figure 7.9. Identification quality index logic state reacting to the introduction of an AKF at iteration 

25000. 
 

In order to achieve fault detection under the specified maximum delay, γc
u was set 

to 0.6, resulting in a maximum observed fault detection delay of 55 iterations (less than 

the required 75 iterations). Triggered by a high logic value of qc(t), the maximum 

observed fault detection delay can be seen in Figure 7.10. A series of values for γc
d were 

tested, checking for the resulting minimum number of iterations observed before a 

control success is declared by a return of the logic value of qc(t) to low. Adjusting the 

parameter to 0.002 provided a minimum observation time of 853 iterations (beyond the 

specified 750 iterations) as seen in Figure 7.11. The resulting filtered qc(t) can be seen in 

Figure 7.12 and the resulting state transitions throughout the simulation base on the 

previously defined thresholds are displayed in Figure 7.13. 
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Figure 7.10. Change in the logic state of qc(t) in response to the change in the dynamics of the plant at 
iteration 65000. 
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Figure 7.11. Logic state of qc(t) following introduction of new dynamics at iteration 65000 and subsequent 

performance recovery. 
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Figure 7.12. Comparison between qc(t) before and after filtering using the chosen parameters. 
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Figure 7.13. Logic values, high (1) and low (0), expressed by qc(t) throughout the simulation. 
 

Following the proposed procedure, the adjustment of the final two design 

parameters take place by keeping γw
u as 1 (unfiltered) and varying γw

d in order to prevent 

a low logic value to be expressed before sufficient observation time is allowed. In this 

case, given the specified minimum observation time for models to be added to the DMB, 

γw
d was modified until a minimum observation time of 1620 iterations was obtained, 

leading to a value of 0.0007 for the filter parameter (Figure 7.14). A comparison of the 

response of the filtered and unfiltered qw(t) though the course of the entire simulation can 

be seen in Figure 7.15. 
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Figure 7.14. Logic state of qw(t) (low (0), normal (1) and high (2)) depicting the healthy activity in the 

adaptive critic controller following the introduction of new dynamics and subsequent convergence.  
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Figure 7.15. Comparison between filtered and unfiltered qw(t) throughout the whole simulation. 

 

Having concluded the determination of initial values for all 12 proposed FTC 

design parameters, Table 7.6 summarizes the results as they would be used in practice to 

configure the FTC supervisor for application to the real world plant.  

Table 7.6. Initial values for the 12 proposed FTC design parameters. 
Threshold Initial Value Filter Parameter Initial Value 

cLq  0.253 γi
u 0.8 

cHq  0.658 γi
d 0.002 

iLq  0.382 γc
u 0.6 

iHq  0.511 γc
d 0.002 

wLq  3.75 γw
u 1 

wHq  5665 γw
d 0.0007 

 

7.4.2. Applying the configured supervisor to a plant subject to nonlinear 
faults 

 

In this demonstration, the real world plant was simulated by a plant subjected to 

nonlinear fault scenarios of greater complexity than the linear ones used in the linear 

synthetic fault sequence. Through the course of the simulation, the plant was subject to 

two novel AUFs and one incipient fault. It is important to note that no incipient faults 

were present in the synthetic linear fault set used for initialization of the design 
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parameters. In addition, one of the AUFs was presented twice in order to present the FTC 

architecture with the challenge to learn a solution for an AUF in its first occurrence, and 

then apply it directly once the fault is recognized as an AKF in its second occurrence. 

The timeline for introduction of fault scenarios can be seen in Table 7.7. 

Equations (7.11) and (7.12) describe the dynamics of abrupt fault 1 and abrupt fault 2, 

respectively. Finally, the incipient fault is described as a gradual change in the nominal 

dynamics (Equation (7.4)) leading to the dynamics described in Equation (7.13) at the 

end of its active interval.  

 

Table 7.7. Simulation sequence of actual implementation. 
Active time interval Plant dynamics 

0 to 15000 Nominal - Equation (7.4) 
15000 to 25000 Abrupt Fault 1 - Equation (7.11) 
25000 to 35000 Nominal - Equation (7.4) 
35000 to 45000 Incipient Fault 
45000 to 55000 Abrupt Fault 2 - Equation (7.12) 
55000 to 65000 Abrupt Fault 1 - Equation (7.11) 
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Throughout the simulation, the supervisor, operating with the design parameters 

stipulated in the previous subsection, was capable of correctly identifying all fault 

scenarios and perform the operations of adding new models to the database and switching 

to known solutions in a manner to increase the efficiency of the FTC response. Table 7.8 

provides a timeline of the supervisor’s responses, including the information made 

available to the user and the actions taken in interaction with the base line controller and 

the DMB. 

 

Table 7.8. Information gathered and actions taken by the supervisor. 
Iteration Supervisor’s Responses 
15002 Abrupt Unknown Fault  
18936 Control Success - ADD model 2  
18937 Performance recovered  (model 2) 
25046 Abrupt Known Fault - SWITCH to model 2  
25087 Abrupt Unknown Fault  
25513 Abrupt Known Fault - SWITCH to model 1  
25930 Performance recovered  (model 1) 
43896 Incipient Fault  
45012 Abrupt Unknown Fault  
48470 Control Success – ADD model 3 
48471 Performance recovered (model 3) 
55035 Incipient Fault  
55046 Abrupt Unknown Fault  
55503 Abrupt Known Fault - SWITCH to model 2  
56086 Performance recovered (model 2) 
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The first specification posed in this demonstration indicates a maximum 

acceptable tracking error for the plant during nominal operation. Comparing the two 

times the nominal scenario becomes active during the simulation, the largest observed 

tracking error after the transient response caused by the change in dynamics was of 0.004, 

safely below the desired 0.02. Figure 7.16 displays the value of the instantaneous tracking 

error (as available in U(t)) during the last 5 cycles of the referred scenario, while Figure 

7.17 displays the actual outputs of the plant as they closely follow the desired sinusoidal 

trajectories. 
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Figure 7.16. Reference tracking error during the last 5 cycles in the nominal scenario. 
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Figure 7.17. The plant’s two outputs during nominal operation. Reference signals plotted in dashed lines. 
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The tracking error during a fault scenario was also a concern in the specification 

for this demonstration. The maximum observed tracking error in the last 5 cycles among 

all fault scenarios was observed at the reintroduction of abrupt fault 1. The measured 

value of 0.034, although higher than the one achieved during nominal operation, is still 

below the specified maximum of 0.05. Figure 7.18 display the referred tracking error, and 

Figure 7.19 brings the slightly deteriorated, but still acceptable, outputs of the plant under 

the same fault scenario. Had the baseline controller failed to fulfill any of these first two 

specifications, the designer would have to expand the NN structures and/or modify 

learning parameters and obtain new initialization values for the design parameters 

through the same process taken in the previous subsection. Being not the case, the 

analysis of the FTC response continues. 
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Figure 7.18. Maximum reference tracking error observed during the last 5 cycles over all fault scenarios. 

 



 169 
 

6.4 6.41 6.42 6.43 6.44 6.45 6.46 6.47 6.48 6.49 6.5

x 104

-1.5

-1

-0.5

0

0.5

1

1.5

O
ut

pu
t R

(t)
 

Figure 7.19. The plant’s two outputs during the fault scenario with maximum observed tracking error. 
Reference signals plotted in dashed lines. 

 

The maximum observed fault detection delay can be obtained directly from Table 

7.8 by measuring the maximum time gap between the introduction of a fault scenario and 

the time the supervisor detects a fault. It is important to clarify that the goal of fault 

detection is merely to indicate that a fault is present, not to identify it. Frequently, due to 

the fact that the quality indexes measure independent signals and are independently 

configured, on the process of moving to the correct state within the decision logic, 

depending on which quality index responds faster, a series of transitory responses may be 

reached. For instance, it is possible for an AKF to be transitorily identified as an AUF in 

the first moments after its detection before qi(t) drops enough for the supervisor to 

determine if the fault scenario is already known within the DMB. The presence of 

responses such as these are expected and both proposed decision logics are built taking 

such transitory behavior in account. Therefore, fault detection delay is measured until the 

detection of a fault, independent if it was correctly identified at the onset or not. With this 

in mind, the maximum observed fault detection delay was of 42 iterations (below the 

specified maximum of 75 iterations), recorded at the re-introduction of abrupt fault 1. 
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The referred event can also be graphically seen in Figure 7.20 as fault detection takes 

place in the instant qc(t) crosses over the its high threshold.  
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Figure 7.20. Response of qc(t) in the first 200 iterations after introduction of abrupt fault 1. Maximum 

observed fault detection delay occurs at 46 iterations after the fault introduction as the quality index crosses 
Hqc. 

 

For the maximum AUF identification delay we focus on the supervisory response 

(as shown in Table 7.8) during the first occurrence of the two abrupt faults at iterations 

15000 and 45000. The maximum observed delay was of 12 iterations, well below the 

specified limit of 100 iterations. 

One key aspect of the proposed FTC architecture and an FTC specification in this 

demonstration is the amount of time allowed for reconfiguration of an AKF. In the 

simulation, the abrupt fault 1 is introduced twice and the supervisor must successfully 

learn a solution in the fault’s first occurrence, autonomously add it to the DMB and 

present it in the fault’s second occurrence fast enough in order to provide a shorter 

reconfiguration delay. In the simulation, an actual reconfiguration delay for AKFs of 

1086 iterations was achieved, making it less than one third the specified maximum of 

3500 iterations and almost one fourth of the reconfiguration time taken during the first 

occurrence of 3937 iterations. A graphical indication of how important the choice of 

Hqc 

Lqc 
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suitable thresholds and filter parameters is for the efficiency of the supervisor can be 

found in Figure 7.21, which depicts the response of the controller quality index during the 

second occurrence of the abrupt fault 1. 
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Figure 7.21. Faster reconfiguration time through switching operation on the second occurrence of abrupt 

fault 1.The reconfiguration time of 1086 iterations is achieved when qc(t) moves below Lqc. 
 

The final FTC specification of this demonstration deals with the minimum time 

desired for observation of the behavior of the plant before a new solution is added to the 

DMB. This time gap is obtained from the last moment the tracking error goes below the 

value specified by the lower qc(t) threshold, until the time the new control solution is 

added to the DMB. This process occurs twice in the simulation, once for each abrupt 

fault. As seen in Figure 7.22, the minimum observed wait time for the addition of a new 

model to the DMB occurred during abrupt fault 2 and had the value of 1948 iterations, a 

number safely larger than the required minimum of 750 iterations. Table 7.9 summarizes 

the results of this demonstration by comparing the stipulated FTC specifications and the 

achieved results. The methodology for generating suitable initial values for all design 

parameters was successful in configuring a FTC supervisor capable of achieving all 

specifications without the need of further tuning. 

Hqc 

Lqc 
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Figure 7.22. Logic state of qc(t) (top) and unfiltered tracking error with controller thresholds (bottom) 

provide a visualization of the observed minimum wait time to add a solution to the DMB. 
 

Table 7.9. Comparison of FTC specifications and achieved simulation results. 
FTC specification desired achieved 

Maximum acceptable tracking error under the 
nominal scenario 

0.02 0.004 

Maximum acceptable tracking error under a fault 
scenario 

0.05 0.034 

Maximum fault detection delay 75 it. (0.15 ref.) 46 it. (0.09 ref.) 

Maximum fault identification delay for AUF 100 it. (0.2 ref.) 12 it. (0.02 ref.) 

Maximum acceptable reconfiguration time for 
AKFs 

3500 it. (7 ref.) 1086 it. (2.17 ref.) 

Minimum observation time before adding a new 
model to the DMB 

750 it. (1.5 ref.) 1948 it. (3.89 ref.) 

 

7.5. Conclusion 
 

Although any successful FTC approach must be tuned to address faults in specific 

ways to match the requirements of each plant, no existing approach provides neither 

sufficient flexibility, nor a guideline of how to adjust design parameters in order to fulfill 

fundamental FTC specifications. In this chapter, all quality indexes used by the 

supervisor in the proposed architecture were extended in order to provide a sufficient 

degree of flexibility to the supervisor’s response. Then, in order to regulate the response 
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of the supervisor to match six key FTC specifications, a methodology for the generation 

of suitable initial conditions for 12 design parameters was presented, along with a look-

up table approach for the fine tuning of such parameters during actual implementation. 

An evaluation of a simulated implementation of the methodology reveals that the initial 

conditions set for the design parameters successfully adjusted the supervisor, providing a 

FTC response that fulfills all specifications even when previously unknown nonlinear 

faults are introduced. 
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CHAPTER 8 – Stability Concerns 
 

8.1. Introduction 
 

After the introduction of all major elements of the proposed FTC architecture, 

including the base line adaptive critic nonlinear controller and the FDD & CMD 

supervisor, it is now possible to better discuss the stability issues involved in certain 

building blocks of the architecture and the reasoning behind the choices that lead this 

research to make use of them.  

One important aspect of out work is the capability of handling AUFs and the fact 

that we aim at making as little restrictions as possible on the nature and form of such 

faults. As a consequence, the dynamics of the plant we desire to make fault tolerant may 

change greatly form one instant to another, at any instant, and such change may bring 

previously unknown nonlinearities that may be of paramount importance for its control 

within the region of the state space traveled by the desired trajectory. It is clear then that 

to accomplish fault tolerance under such scenario there is need to employ an adaptive 

controller. Moreover, since the dynamics of the faults under consideration are not known 

at design time, such adaptation must occur online, updated constantly at every iteration. 

And finally, since no assumptions are made on the format of the nonlinearities introduced 

by the AUF, the required adaptive controller should possess universal approximation 
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capabilities in order to have the power to develop suitable control solutions provided their 

existence.  

 

8.2. Literature Survey 
 

To this day, Neural Networks have already been applied to a large number of 

control problems. The existence of training algorithms that can be used for online 

adaptation and their known universal approximation capability make them strong 

candidates for a base line adaptive controller for the FTC problem we outlined 

previously. However, stability and convergence of NN controllers for FTC applications 

remains an issue. The goal of this section is to explore and discuss some of the prominent 

research conducted on stable and convergent NN architectures, taking special focus on 

ACDs, and analyze them for their capability of handling AUFs. 

 

8.2.1. Adaptive critic control with optimal solution convergence guarantee 
 

Using a similar approach than used previously for Q-learning [79], Liu and 

Balakrishnan [80] approached the online training of the action and critic neural networks 

in a throughout mathematical study leading to the necessary conditions for the neural 

network to converge to proven optimal solution.  

In their study they have limited themselves to the regulation problem of fully 

observable linear time-invariant, discrete, multivariable systems. In addition, an initial 

stabilizing linear controller is assumed to exist before the adaptation takes place. 
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Furthermore, a full accurate model of the plant is assumed to be available, the reason why 

the convergence of an IdNN or its effect on the convergence of the remaining two NNs 

was not studied. Such restrictions allowed the authors to explore in detail the adaptation 

equations of the AcNN and CrNN of a DHP-equivalent adaptive critic design. 

Two conditions were identified as necessary to guarantee the convergence of the 

NNs when trained together in an iterative manner. In particular, one of the conditions that 

focuses specifically on the AcNN was shown to be relaxed by the addition of a learning 

rate parameter. The formulation makes clear that adjusting such learning rate is capable 

of directly affecting the convergence of the method. However, its determination is linked 

to the previously mentioned restrictions of the study. 

As a final result, it was also shown that the ultimate two conditions can be re-

written in the form of the well known discrete algebraic Riccati equation and the process 

to adapt such networks in the direction of the optimal solution is equivalent to the 

iterative method to solve the aforementioned equation.  

Although an interesting result to the field of ACD in the sense that it confirms the 

soundness of the approach in its basic sense, it provides no means of extension to the 

control of systems with nonlinear dynamics as several of the discarded higher order 

derivatives would have to be considered and further interaction between the NNs could 

provide training deadlocks. More important to its application to FTC, it does not consider 

the fact that an IdNN must be adapted concomitantly in the event of faults, nor the 

implications of not possessing precise the plant’s dynamics information at all times.  
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8.2.2. Practical stability issues with adaptive inverse mapping control 
 

This approach focuses on the application of an online adapting algorithm to 

generate an inverse map to be applied in parallel to a predetermined sub-optimal 

controller with the goal of increasing tracking performance. Chen and Chang [81] have 

explored some practical stability issues related to the implementation of such control 

architecture to the control of nonlinear time-invariant discrete-time systems. Although the 

discussion applies to any other NN structure used to generate such maps, the published 

work focuses on a Cerebellar Model Articulation Controller (CMAC), which is 

essentially an adaptable look-up-table method. 

Fundamental to the approach is the sub-optimal stabilizing controller (e.g. a PID 

controller) designed off-line and fully capable of generating an acceptable control 

solution to the plant. Once inserted however, CMAC takes over the main part of the 

control action, leaving the off-line computed controller to address to fine-tuning, leading 

to a reported great increase in tracking performance. The architecture that combines the 

sub-optimal stabilizing controller and the CMAC can be seen in Figure 8.1. It is 

interesting to note that the formulation of the method requires yt(t+1) to be available at 

time t, a requirement shared by the ACD formulation presented in this thesis. Through a 

series of simulation experiments, Chen and Chang studied the effects on the CMAC 

adaptation stability of the aggressiveness of the off-line designed controller, the CMAC 

learning rate and its quantization and generalization parameters.  
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Figure 8.1. The CMAC control system. 
 

As a conclusion, it was reported that the major cause of instability in the online 

learning of CMAC in an inverse mapping architecture rests on its continued training after 

the tracking error has been reduced. A deadzone was then created around the inverse 

dynamics identification error, effectively stopping training after a certain performance is 

reached. Although the approach was effective in simulations to prevent the training to 

diverge, the authors raise two difficulties with its implementation. First, it can be difficult 

to determine when to stop CMAC learning to achieve optimal or near-optimal tracking 

error. Second, once the CMAC stops learning it becomes incapable of responding to 

further changes in the reference.  

One could implement such deadzone approach to any NN control architecture, 

including the ACD architectures in the work presented in this thesis. However, due to 

constant interaction between the three NNs in a full ACD, instability may still occur even 

after training is stopped. Furthermore, when faults are capable to change the dynamics of 

a system at any time, the question of when to stop adaptation and when to resume it 
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becomes even more complex. Moreover, the approach proposed in the literature that 

involves off-line experimentation for the determination of the deadzone size become 

infeasible when unknown faults are considered.  

 

8.2.3. Adaptive control solution for systems with stochastic uncertainties 
with guaranteed signal boundedness in probability and almost sure 
convergence 

 

This approach focuses on the regulation problem of SISO systems in strict-

feedback form subject to time-varying uncertainties. Such uncertainties are assumed to be 

linearly parameterized , where the unmeasured parameters are generated by stochastic 

differential equations. The work developed by Arslan and Basar [82] builds up on 

previous work extending stability proofs to additive and multiplicative uncertainties by 

using non deterministic notions of stability and performance.  

As for the strict-feedback controller itself, although it is perceived that an optimal 

solution to the problem can only be achieved by a stochastic nonlinear adaptive 

controller, the literature so far has limited itself to tackle the stability issues of simpler 

linear in the parameter adaptive controllers which lead to tractable, however sub-optimal, 

controllers.  

It is important to note that although such formulation shares with faults their 

stochastic nature, the stochastic uncertainties here discussed are well described in 

structure and operate over systems with fully known dynamics. On the other hand, the 

work developed in this area holds similarities to the application of ACD in the presented 

work in the sense that the regulation efficiency is measured by a “risk-sensitive cost”, a 
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sum of all future regulation errors equivalent to the HBJ equation. Having said that, it is 

important to note that for the stated problem proof of boundedness in probability and 

asymptotically zero convergence has been developed, provided that all random sources of 

parameter uncertainty are independent and that all sources of parameter uncertainty 

vanish after the origin is reached. Clearly such conditions cannot be satisfied in the field 

of FTC since faults are prone to interact with each other leading to consequences 

different than their additive effect and also cannot be expected to stop affecting the 

system after its effect has been dealt with by the controller. Nevertheless, stochastic 

notions of stability and performance may hold the key to providing sound guarantees in 

the face of unknown fault scenarios. 

 

8.2.4. Asymptotically stable Hamilton-Jacobi neural network control for 
constrained systems 

 

Outside of the ACD scope, Hamilton-Jacobi equations have also been applied 

with reported success to other neural control applications. One example of such is the 

work of Lewis and Abu-Khalaf [83], which pertains to the offline design of static 

nonlinear neural controllers for constrained systems. In particular, their work focused on 

linear [83] and nonlinear [84] systems subject to input saturation, constrained states and 

limited disturbances. For such, a state feedback controller was devised through 

successive iterations between the AcNN and the Hamilton-Jacobi equation.  

In order to guarantee asymptotically stability in this particular design, the 

nonlinear dynamics of the system are assumed to be known and to be Lipschitz 

continuous. Furthermore, an initial stabilizing control is required as the neural network 
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solution development is restricted to a compact set within the initial controller’s 

asymptotic stability region.  

The capability to generate asymptotically convergent controllers to nonlinear 

systems under the effect of disturbances and constrains can be interesting to this thesis 

research as a passive FTC approach or offline refinement tool to known faults control. 

However, it is important to spell out that this methodology cannot tackle nonlinear 

systems that can make some of the interactive equations unsolvable, even though they are 

controllable. Furthermore, although designed to address constrained systems, a common 

effect of faults on healthy sub-systems, the method only provides simulation results that 

show that with its application the states are less likely to go over the constrains bounds 

than the original stable controller.  

 

8.2.5. Globally Convergent ACD for stable linear systems 
 

While still in its very early stages, research on proven stable and convergent 

online adaptation approaches for ACDs has already produced some promising 

preliminary results. In particular, we call for attention the work of Murray, Cox, Saeks 

and Lendaris [42] developed in collaboration between the academic and corporate 

organizations. The focus of such work was the development of a globally convergent 

nonlinear ACD (referred as an approximate dynamic programming architecture) to be 

applied to the very practical problem of designing of a controller for the autolander of the 

NASA X-43 research aircraft, without a priori knowledge of its flight dynamics.  
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It is important to note though that although the controller is nonlinear in its 

formulation, its stability and convergence were only proven to be fully applicable for the 

control of stabilizable time-invariant linear systems. Focusing on linear systems 

simplified the approach taken in two significant points. The first point deals with the off-

line training of the controller. Such training relies on a training set of input-output of the 

plant and therefore can only cover a limited portion of the state space. For nonlinear 

systems, any convergence proof following the presented methodology remains true only 

for the space covered by the training set, however for a linear plant it is possible to extend 

the result of a bounded set of training points to all state space, making the results global. 

The second simplification point rests on the fact that for a linear plant the proposed 

training algorithm reduces itself to the Newton-Raphson iterative method for solving the 

Riccati Equation.  

Furthermore, it is also necessary that the states of the plant be available for 

feedback and that, in order for no information at all of the dynamics of the plant be 

necessary, the plant must be augmented with a known pre-compensator at the cost of 

increasing its dimensionality. Finally, the plant is also assumed to be exponentially stable 

at the origin.  

With all restriction mentioned, the proof of global convergence follows through a 

Liapunov approach that guarantees the decay of both controller error signal and 

convergence of the cost-to-go estimate. Since the result provides a decay statement only, 

it is implied also that a stabilizing cost functional / control law pair be pre-designed in 

order to serve as initialization parameters for the algorithm. What makes it possible to 

apply the Liapunov-based approach to an unknown system is the construction of a linear 
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model of the plant based on n input-output pairs collected from the plant, where n is 

equal to the number of dimensions of the plant. Clearly though, this identification process 

crucial to the controller development must be carried out off-line. 

Provided that the plant dynamics are known and that all other assumption are 

observed, the authors argue that it is possible to apply the same off-line controller design 

with guaranteed convergence for nonlinear systems, although the solution to the 

interactive procedure for controller and critic design might not have a solution as 

tractable as the one for the Riccati Equation. From the perspective of FTC, perhaps the 

greatest limitation however rests on the fact that the controller design procedure must be 

carried out off-line, providing no means to manage time varying systems. 

 

8.3 Handling the Stability Concerns 
 

The goal of this section was not to list all work develop on the subject of stability 

and convergence of NNs in control, but to cover enough relevant recent achievements of 

some of the leaders in the field to paint a picture of the current state-of-the-art. In so 

doing, we have shown that significant results have been achieved, producing NN 

controllers capable of achieving their goals with both stability and guaranteed 

convergence. However, such results come with severe limitations on the NN capabilities 

and restrictions on the problems they are capable of tackling. In particular, we have 

discussed results that are limited to linear plants, nonlinear plants with known dynamics 

and very strict and limited parameter variation, and learning algorithms that are only 

applicable off-line.  
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Although such restrictions may seem overly limiting, it is still possible today to 

make use of some proven stable NN control architectures in conjunction with the 

proposed Supervisor in order to design FTC solutions, provided the system for which the 

FTC is designed and its goals are equally restricted. For instance, one could implement 

the previously discussed results in [42] to develop control solutions for a linear system 

and a series of linear AKF and use the proposed supervisor to switch between those. The 

stability and convergence results of [42] could then be extended to the switched system 

using an approach such as the one developed in [28], or perhaps by extending the 

concepts of stochastic stability presented in [82]. 

 However, our major goal is to study the feasibility of a FTC solution 

capable of handling faults that not only can be nonlinear, but also are unknown at design 

time. Online training and the ability to respond to AUF are fundamental capabilities that 

we seek to achieve. For that, we make use of NNs as the building blocks of our nonlinear 

controllers due to the existence of online training algorithms and their universal 

approximator property [85]. And in order to manage the unknown dynamics with 

potential elevated degree of complexity, we have chosen to implement NN control in the 

most advanced ACD architecture, GDHP. And although no complete stable and 

convergent approach exists today to tackle the objectives we have set, it is important to 

make clear that the developed architecture can also be used on smaller scale in 

conjunction with more restrictive adaptive controllers for projects with narrower goals. 
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CHAPTER 9 – Conclusion and Future Work 
 

9.1. Conclusion 
 

The presented work has demonstrated that the implementation of a synergistic 

combination of a reconfigurable controller and a FDD/CMD supervisor based on three 

distinct quality indexes generates an efficient and reliable FTC architecture. Based on a 

multiple model approach, the proposed architecture is centered on an intelligent Dynamic 

Model Bank for fault models and control solutions. The application of adaptive critic 

designs as reconfigurable controllers is shown to give the hierarchical algorithm the 

degree of flexibility required to deal with both abrupt and incipient unknown changes in 

the plant dynamics due to faults. The proposed supervisor system is used to accelerate the 

convergence of the method by loading new initial conditions to the GDHP when the plant 

is affected by a known abrupt fault. Moreover, the developed FDD decision logic is 

capable of recognizing new fault scenarios and assimilating them on-line to the DMB, 

along with parameters for the corresponding controller. The introduction of the weight 

quality index has made possible to distinguish between faults in the plant and controller 

malfunctions caused by online training divergence or local minima convergence. 

Furthermore, the Dynamic Model Bank was successfully used to generate new initial 

conditions to the neural network training that improve their efficacy as the supervisor 

autonomously acquires more nonlinear models of the plant under healthy and diverse 
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faulty scenarios. Directly affecting the response of the supervisor and its manipulation of 

the DMB, a methodology for initializing and tuning distinct parameters of the quality 

indexes that allows for application-specific key FTC specifications to be achieved was 

presented. Finally, a series of key steps that form the basis for the fault development 

information extraction module capable of providing the probability of occurrence of 

future faults to the user, were also addressed in this report. 

 

9.2. Future work 
 

9.2.1. Improvements on supervisor – unified decision logic 
 

As presented earlier, the supervisor is instrumental in managing a series of key 

features in the proposed FTC architecture. By manipulating the DMB, the supervisor is 

able to reduce the reconfiguration time of abrupt known faults as well as prevent 

controller malfunctions from developing to the point of degrading the plant’s tracking 

performance significantly. However, neither benefit can take place as fast as or as 

accurately as the FDD and CMD decision logics can ascertain the current status of the 

plant. Performing both FDD and CMD in a way to match the specifications and 

requirements of each plant is critical to the success of the whole FTC architecture. 

Moreover, it is fundamental that the supervisor be capable of distinguishing between 

plant faults and controller malfunctions since the counteraction for each scenario is 

different. 

At the present stage, at every interaction CMD is performed first and then, 

provided no controller malfunctions are detected, the FDD decision logic is used to 
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evaluate the status of the plant. Although justifiable, this sequential approach may cause 

additional delay on the detection of faults and/or controller malfunctions when they occur 

close to each other in time. More importantly, the currently implemented approach does 

not account for all possible transitions from states within one decision logic to states 

within the other. For example, if a fault in the plant occurs after a controller malfunction 

is detected, it will only be detected by the FDD decision logic once the referred controller 

malfunction is addressed properly. 

Combining both decision logics into a single structure requires the analysis of all 

possible 24 directional transitions between the 3 states of the CMD decision logic and the 

4 states of the FDD decision logic. Once all transitions are analyzed for their significance 

and assigned different actions (e.g., add and switch) as required, a new paradigm must be 

used to express such connections since the graphical tools used so far will reach their 

representational limit. With benefits to the response of the whole FTC architecture, we 

feel that such supervisor improvements are a critical avenue for future work.   

 

9.2.2. Ultimate development of the Fault Development Rule Extraction 
module 

 

As the first step in the direction of developing the final component of the 

proposed FTC architecture capable of providing the user with fault development 

probabilities, a novel method for linguistic rule extraction was presented in Chapter 6. 

Making use of an innovative TSD representation, a multiple objective rule search and 

temporal fuzzyfication, rules such as the following example can be extracted directly 

from raw sensor data: 
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IF T1 is high AND F1 is medium AND T2 is medium AND F2 is low THEN after a 

medium delay T3 will be high. 

 

Although many of the key aspects have already been tackled, such as temporal 

information extraction and representation, some additional work must be taken to reach 

ultimate fault development rules such as: 

 

IF Fault 15 (valve seal compromised) is active AND input #5 remains very low AND 

reference #2 remains high, THEN Fault 23 (loss of valve actuator) will have a 85% 

chance of occurrence after a delay of 30 to 45 minutes. 

 

In particular, there is a need to add a probabilistic estimate of occurrence in the 

model of the consequent (predicted fault). Such a probability must account not only for 

the chance of a fault to occur or not, but also for the probability of it taking place within 

the indicated time frame.  

Moreover, in order to be able to infer on the chance of occurrence of a fault, it 

becomes much more meaningful to take into consideration the number of independent 

occurrences of the fault, as opposed to the time spent by the plant in all occurrences of 

the fault as currently being measured by the first metric. In the TSD representation, an 

isolated fault occurrence, given a particular set of antecedents stated by a rule, 

corresponds to data points moving over time into the second quadrant, remaining inside 

of it for a period of time and leaving it. It is then possible to call dynamic behaviors of 
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data points within the TSD a trip. A trip into and out of the second quadrant ( 2trip ) 

corresponds to an occurrence of the fault as dictated by the rule, while a trip involving the 

fourth quadrant ( 4trip ) corresponds to an event marked by a fault warning being issued 

(antecedents are observed) without being followed by the occurrence of the fault after the 

stated delay (consequent not observed). Therefore, a more meaningful metric to measure 

rule inaccuracy for the extraction of fault development information might be Equation 

(7.1) in substitution of Equation (6.4). 

  

4
2 4'

2 41

, 0

1, otherwise

trip trip trip
trip tripm

⎧ + >⎪ += ⎨
⎪⎩

,  (7.1) 

 

A final point worth mentioning in this plan of future work pertains to the temporal 

fuzzyfication. While in general a linguistic fuzzy term might be ideal for providing a 

human with a fuzzy delay, for FTC application it is crucial to clearly state the time frame 

another fault is expected to occur. Changing the fuzzy linguistic term to a specific range 

involves, in a first level, the use of a different membership function shape for the 

temporal fuzzyfication. More advanced and innovative approaches such as probabilistic 

temporal histograms might also be considered in order to better transmit to the user the 

probabilistic distribution of the chance of occurrence of a fault over time. 
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9.2.3. Improvements in the initialization procedure of the FTC design 
parameters 

 

Although the presented methodology for the adjustment of the extended quality 

indexes produced satisfactory simulation results achieving all desired specifications, there 

are still points that can be improved, both in the offline initialization and the online 

tuning procedures. For instance, it could be possible to isolate certain specific design 

parameters, such as the filter parameters of the controller quality index, and produce 

worst case calculations of their impact on the affected specifications based on the 

previous choice of threshold levels. Although such calculations would necessarily 

produce conservative estimates of the impacts of different values, they may represent 

even more computationally efficient ways to calculate filter parameters, which are 

proposed here to be obtained through successive trials using the data obtained during the 

simulation of the synthetic linear fault set. 

Another potential point of improvement rests on the indentification quality index. 

In the current architecture, qi(t) is used both in the FDD decision logic to determine when 

the system is operating in a known scenario and to determine which specific dynamics is 

active. Therefore, while adjusting for the maximum fault identification delay for AKFs, 

the discernment among fault scenarios is also being affected. The problem with this 

approach is that it is only possible to clearly determine which of the known scenarios is 

currently active by applying qi(t) filter parameters within a certain range. For example, if 

γi
d is set too high, models that may produce low prediction error in only certain portions 

of the state space, may be temporarily indicated as match to the current dynamics and 

will deteriorate the base-line controller response when switched to an incorrect solution. 
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Therefore, it may be interesting to study in future work the possibility of separating the 

model identification task from the identification quality index with the goal of increasing 

is specificity and allowing greater flexibility of its parameters. Such a task would not be 

trivial though, since there would be need to somehow ensure that qi(t) would only 

determine that a known fault had occurred after the independent measure determined that 

the current model had been correctly isolated. 
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Scope: The growing complexity of physical plants and control missions inevitably leads to increasing 
occurrence, diversity and severity of faults. Availability, defined as the probability that a system or 
equipment will operate satisfactory and effectively at any point of time, becomes a factor of 
increasing importance. Fault Tolerant Control (FTC) is a field of research that aims to increase 
availability and reduce the risk of safety hazards and other undesirable consequences by 
specifically designing control algorithms capable of maintaining stability and/or performance 
despite the occurrence of faults. This report presents a novel FTC solution based on a hierarchical 
architecture in which an adaptive critic controller is overseen by a supervisor managing a dynamic 
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Findings and Conclusions: The presented work has demonstrated that the implementation of a synergistic 

combination of a reconfigurable controller and a fault diagnosis and controller malfunction 
detection supervisor based on three distinct quality indexes generates an efficient and reliable FTC 
architecture. The application of adaptive critic designs as reconfigurable controllers is shown to 
give the hierarchical algorithm the degree of flexibility required to deal with both abrupt and 
incipient unknown changes in the plant dynamics due to faults. The proposed supervisor system is 
used to accelerate the convergence of the method by loading new initial conditions to the 
controller when the plant is affected by a known abrupt fault. Moreover, the developed fault 
diagnosis decision logic is capable of recognizing new fault scenarios and assimilating them on-
line to the dynamic model bank, along with parameters for the corresponding controller. The 
introduction of the weight quality index has made possible to distinguish between faults in the 
plant and controller malfunctions caused by online training divergence or local minima 
convergence. In order to achieve application-specific key FTC specifications, a methodology for 
initializing and tuning twelve distinct parameters of the quality indexes was also developed. 
Finally, a series of key steps that form the basis for the fault development information extraction 
module capable of providing the probability of occurrence of future faults to the user, are also 
included in this report. 
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