

A SUPERVISED FAULT TOLERANT CONTROL

ARCHITECTURE FOR NONLINEAR SYSTEMS

By

PEDRO GERBASE DE LIMA

Batchelor of Science

Universidade de São Paulo

São Paulo, Brazil

2000

Submitted to the Faculty of the

Graduate College of the
Oklahoma State University

in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

December, 2005

 ii

A SUPERVISED FAULT TOLERANT CONTROL

 ARCHITECTURE FOR NONLINEAR SYSTEMS

 Dissertation approved:

Dissertation Advisor

Dean of the Graduate College

Dr. Gary Yen

Dr. Martin Hagan

Dr. Rafael Fierro

Dr. R. Russell Rhinehart

Dr. A. Gordon Emslie

 iii

PREFACE

This report summarizes the research conducted with the goal developing a Fault

Tolerant Control (FTC) architecture capable of increasing the availability of complex

nonlinear systems potentially subject to a wide range of fault scenarios. Motivated by an

encompassing literature survey in the areas of fault information extraction and FTC itself,

the proposed hierarchical architecture is composed of three levels.

The lowest level is composed of a baseline nonlinear reconfigurable controller

that generates identification models and new control solutions for previously unknown

faults. To implement such a controller as well as an identifier for fault modeling, an

adaptive critic design known as Globalized Dual Heuristic Programming (GDHP)

manages a set of three recurrent neural networks. The use of GDHP grants the

architecture the power to preserve system stability and as much performance as possible

in the presence of faults that may extend the order or add crucial nonlinearities to the

dynamics of the system.

Operating on a middle level, a novel supervisor increases the reconfiguration

speed of the GDHP controller for abrupt faults known at design time as well as faults

autonomously modeled and addressed online during a previous occurrence. Moreover,

the supervisor also increases the stability of the online GDHP reconfigurable controller

by preventing malfunctions within its training algorithm (that would lead to divergence or

local minima convergence) from building up to the point of degrading the tracking

 iv

performance of the plant. At the core of the supervisor, two innovative decision logics

based on three quality indexes perform fault detection and diagnosis as well as controller

malfunction detection. Modifying parameters of such quality indexes then adjusts the

response of the supervisor to faults and controller malfunctions. The presented

architecture counts with a procedure for initializing and tuning twelve design parameters

to shape the supervisor’s response to comply with key practical FTC specifications,

ranging from maximum acceptable reconfiguration delay for abrupt known faults, to the

expected maximum measurement noise level during fault scenarios.

Overviewing the entire architecture, a fault development rule extraction algorithm

is positioned at the highest level. Through information gathered from the GDHP

controller, identifier and from the supervisor, this final component’s goal is to use all

historical data from the system to build linguistic rules that inform the human mission

planner (e.g., user, operator or pilot) of the probability that different fault scenarios have

of taking place at particular future time frames. Once implemented, the fault development

rule set will present crucial information to the mission planner when deciding if the

desired trajectory of a mission should be altered after the occurrence of a minor fault to

reduce the chance of a major, possibly irremediable, fault occurring. Although this final

component is not yet fully developed, critical work that sets the foundation for it is

presented in this report, along with the encouraging simulation results.

To substantiate the presented architecture, extensive simulation results are

presented, covering both the workings of specific components and the integration of the

overall architecture. The power of the algorithm can be observed in the series of proof-of-

the-concept simulated systems, ranging from SISO linear systems to MIMO nonlinear

 v

systems with unobserved states. Stability concerns involving the proposed architecture

are discussed, substantiating the design choices.

 vi

TABLE OF CONTENTS

Chapter Page

CHAPTER 1 – INTRODUCTION 1

1.1 Motivation 1

1.2 Implementation 5

CHAPTER 2 – LITERATURE SURVEY 11

2.1. Extracting fault information 11
2.1.1. Basic definitions 12
2.1.2. Available methods 13
2.1.3. Fault information extraction limitations 14

2.2. Fault Tolerant Control 16
2.2.1. Introduction to FTC 16
2.2.2. Passive versus active approaches 18
2.2.3. Active FTC methods 19
2.3.4. Multiple models as a framework for active FTC 23

CHAPTER 3 – BASELINE NONLINEAR ADAPTIVE CONTROLLER 35

3.1. Introduction 35

3.2. A single NN control architecture 37

3.3. A direct adaptive control architecture using two NNs 38

3.4. Heuristic Dynamic Programming 39

3.5. Dual Heuristic Programming 41

3.6. Globalized Dual Heuristic Programming 42
3.6.1. Introduction 42
3.6.2. Preliminaries 44
3.6.3. Identification Neural Network (IdNN) 45
3.6.4. Action Neural Network (AcNN) 49
3.6.5. Critic Neural Network (CrNN) 54

 vii

3.6.6. Complete GDHP algorithm 58

3.7. Simulation results 60
3.7.1. Identification using a recurrent neural network 60
3.7.2. Fault Tolerant Control using a GDHP controller 62

CHAPTER 4 – FAULT TOLERANT CONTROL SUPERVISOR 66

4.1. Proposed supervisor 66
4.1.1. Quality indexes generation layer 66
4.1.2. FDI and decision-making layer 68
4.1.3. The Dynamic Model Bank layer 71

4.2. Performance evaluation 71

4.3. Simulation studies 73
4.3.1. Discrete-time linear SISO plant 73
4.3.2. Continuous-time linear SISO plant 77
4.3.3. Continuous-time nonlinear MIMO plant 82

4.4. Summary 84

CHAPTER 5 – CONTROLLER MALFUNCTION DETECTION AND RECOVERY
 86

5.1. Introduction 86

5.2. Controller malfunction supervisor 89

5.3. Numerical example 92
5.3.1. Simulated system 93
5.3.2. Simulation results 97

5.4. Summary 107

CHAPTER 6 – LINGUISTIC RULE EXTRACTION 108

6.1. Motivation 108

6.2. Fundamental structure 110

6.3. Rule evaluation 113
6.3.1. Data pre-processing 114
6.3.2. The Truth Space Diagram 118
6.3.3. Numerical metrics 120

6.4. Rule extraction 122

 viii

6.5. Simulation results and discussion 125

6.6. Summary 129

CHAPTER 7 – DESCRIPTION, INITIALIZATION AND TUNING OF 12 FTC
DESIGN PARAMETERS 130

7.1. Introduction 130

7.2. Extended Quality Indexes 132
7.2.1. Identification quality index 133
7.2.2. Controller quality index 137
7.2.3. Weight quality index 139

7.3. FTC Design Parameters’ Initialization Process 141

7.4. Simulation Results 152
7.4.1. Adjusting initial FTC design parameter values using simulated linear faults 154
7.4.2. Applying the configured supervisor to a plant subject to nonlinear faults 164

7.5. Conclusion 172

CHAPTER 8 – STABILITY CONCERNS 174

8.1. Introduction 174

8.2. Literature Survey 175
8.2.1. Adaptive critic control with optimal solution convergence guarantee 175
8.2.2. Practical stability issues with adaptive inverse mapping control 177
8.2.3. Adaptive control solution for systems with stochastic uncertainties with
guaranteed signal boundedness in probability and almost sure convergence 179
8.2.4. Asymptotically stable Hamilton-Jacobi neural network control for constrained
systems 180
8.2.5. Globally Convergent ACD for stable linear systems 181

8.3 Handling the Stability Concerns 183

CHAPTER 9 – CONCLUSION AND FUTURE WORK 185

9.1. Conclusion 185

9.2. Future work 186
9.2.1. Improvements on supervisor – unified decision logic 186
9.2.2. Ultimate development of the Fault Development Rule Extraction module 187
9.2.3. Improvements in the initialization procedure of the FTC design parameters 190

BIBLIOGRAPHY 192

 ix

LIST OF TABLES

Table Page

Table 3.1. Pseudocode for the presented GDHP controller ... 59
Table 3.2. Sequence of changes in the dynamics of the plant applied for the identification

example ... 61
Table 3.3. Modifications in the dynamics caused by the occurrence of faults 63
Table 4.1. Plant dynamics under nominal and faulty operation conditions. 73
Table 4.2. Nominal and Fault Dynamics.. 77
Table 5.1. Complete Algorithm (GDHP and Supervisor).. 91
Table 5.2. Simulation schedule for plant dynamics ... 98
Table 6.1. MOEA pseudocode ... 123
Table 7.1. Summary of effects of the 12 design parameters on the proposed architecture.

... 142
Table 7.2. Summary of the proposed procedure for the initialization of FTC design

parameters. .. 151
Table 7.3. Summary of FTC specifications. Temporal values expressed in number of

iterations (it.) and in terms of the length of the cyclic reference period (ref.)........ 153
Table 7.4. Simulation sequence for the linear synthetic fault set................................... 155
Table 7.5. Initial values for the identification and control thresholds calculated from

observed limits. ... 157
Table 7.6. Initial values for the 12 proposed FTC design parameters. 164
Table 7.7. Simulation sequence of actual implementation... 165
Table 7.8. Information gathered and actions taken by the supervisor............................ 166
Table 7.9. Comparison of FTC specifications and achieved simulation results. 172

 x

LIST OF FIGURES

Figure Page

Figure 1.1. General diagram of the proposed FTC architecture. 6
Figure 2.1. Terminology diagram of fault information extraction................................... 13
Figure 2.2. A generic active fault tolerant architecture depicting the base line controller

and the supervisory system. In the diagram: D represents a delay block, u(t) is the
controlled input and R(t) is output of the plant... 19

Figure 2.3. Performing Multiple Model control with sparsely distributed operating
regions. O1 to O3 are operating regions around each operating point. The system is
originally in the position of the parameter spaced marked by the white star and
follows the depicted trajectory.. 27

Figure 2.4. Closely connected multiple model implementations: fixed size operating
regions (a) and plant dynamics dependant operating regions (b). In the diagrams
each rectangular section represents an operating region. The system is originally in
the position of the parameter spaced marked by the white star and follows the
depicted trajectories. ... 30

Figure 3.1. A single NN control architecture... 37
Figure 3.2. A direct adaptive control architecture using two NNs 38
Figure 3.3. Heuristic Dynamic Programming.. 41
Figure 3.4. Dual Heuristic Programming... 42
Figure 3.5. Globalized Dual Heuristic Programming .. 43
Figure 3.6. IdNN recurrent neural network architecture.. 46
Figure 3.7. AcNN recurrent neural network architecture .. 50
Figure 3.8. CrNN recurrent neural network architecture ... 55
Figure 3.9. Globalized Dual Heuristic Programming .. 59
Figure 3.10. Results of the identification simulation. Plant signals are displayed in solid

lines and the identification network output in dashed lines. 61
Figure 3.11. Successful control input sequences developed online by the GDHP

controller for each scenario the plant assumes during the simulations. Solid lines
correspond to 1()u t and dotted lines to 2 ()u t . .. 64

Figure 3.12. Plant output as the abrupt fault is introduced at iteration 5,000. 65
Figure 4.1. Decision graph of the second layer of the supervisory system. The states,

tagged 1 to 4, are defined by the quality measures)(tqc and)(tqi . The moments
when the actions of switching and adding to the database are performed are shown
on the graph... 69

Figure 4.2. The top graph brings the desired trajectory (dashed green), the output of the
plant (solid blue) and the output of the identification network while it adapts (dotted
red). The second graph displays the input to the plant as calculated by the adaptive

 xi

critic controller. The third and fourth graphs show the quality indexes)(tcq and)(tiq
respectively, along with the thresholds used. The labels (a) to (f) indicate moments
at which the supervisor acted.. 74

Figure 4.3. The top graph shows the desired trajectory (dashed) and the output of the
plant (solid). The second graph displays the input to the plant as calculated by the
GDHP controller. The third and fourth graphs show the quality indexes ()cq t and

()iq t , along with the thresholds used... 78
Figure 4.4. Four key transition sequences in the decision logic of the FTC supervisor. (a)

adding the nominal model to the DMB; (b) adding an abrupt fault model to the
DMB; (c) switching to a known solution; (d) dealing with an incipient fault. 79

Figure 4.5. Plant output (solid) and desired trajectory (dashed) display the increase in
performance and reconfiguration time brought by the application of the proposed
FTC supervisor.. 81

Figure 4.6. Two plots of the plant output as the abrupt fault is introduced at iteration
5,000. Top plot: the supervisor has no knowledge of the fault in the DMB. Bottom
plot: the supervisor accelerates reconfiguration by switching to a previously stored
solution. Reconfiguration time is indicated by the highlighted area. 83

Figure 5.1. Layered structure of the proposed Supervisor with controller malfunction
detection and recovery. ... 89

Figure 5.2. Flow chart for controller malfunction detection and response. 92
Figure 5.3. Example of reference signals 1 ()tR t (blue) and 2 ()tR t (red)............................. 94
Figure 5.4. Successful input sequences 1()u t (blue) and 2 ()u t (red) for different plant

dynamics: (a) nominal, (b) AF1, (c) IF and (d) AF2. ... 95
Figure 5.5. Abrupt return to nominal dynamics from AF1. Comparison of outputs 1()R t

(blue) and 2 ()R t red) and respective desired trajectories (dotted) of simulations
without (a) and with (b) supervisory intervention. Switching impact illustrated by
(c), the average tracking error for the simulation without (blue) and with (red)
supervisory intervention.. 100

Figure 5.6. Average tracking error during IF application. ... 101
Figure 5.7. Local minima convergence, controller malfunction detection and prevention.

Comparison of outputs 1()R t (blue) and 2 ()R t (red) and respective desired trajectories
(dotted) of simulations without (a) and with (b) supervisory intervention. Graph (c)
displays the average tracking error for the simulation without (blue) and with (red)
supervisory intervention.. 104

Figure 5.8. Controller divergence malfunction detection and prevention. Comparison of
outputs 1()R t (blue) and 2 ()R t (red) and respective desired trajectories (dotted) of
simulations without (a) and with (b) supervisory intervention. Graph (c) displays the
average tracking error for the simulation without (blue) and with (red) supervisory
intervention. .. 106

Figure 6.1. Fuzzy classification procedure for the antecedents. In this case, temperature
with centers at 10, 50 and 90oC. ... 115

Figure 6.2. Proposed physical and temporal two-step fuzzification procedure. The figure
displays a fuzzification example in which at simulation time 20 the output y1 is
evaluated for medium delay.. 117

 xii

Figure 6.3. TSD for a meaningful rule extracted from process data with sufficient
supporting evidence. ... 119

Figure 6.4. TSD for a rule that was proven inaccurate in a significant number of points in
the process data. .. 119

Figure 6.5. The hot and cold water simulator used for validation of the rule extraction
algorithm. .. 126

Figure 6.6. Distribution of individuals related to a single consequent in the metric space
at generation 200. Filled circles form the non-dominant set. 127

Figure 7.1. Unfiltered qc(t) transitory response as it returned to the nominal scenario at
iteration 65000. ... 156

Figure 7.2. Response of the unfiltered identification quality index as the plant returns to
the nominal scenario at iteration 35000. ... 156

Figure 7.3. The unfiltered identification quality index during abrupt fault 3. 157
Figure 7.4. Resulting unfiltered weight quality index from the synthetic fault sequence

simulation.. 158
Figure 7.5. Detail of the response of qw(t) during a period when no faults are active in the

plant. The minimum qw(t) response after controller convergence can be seen in this
graph. .. 158

Figure 7.6. Comparison between unfiltered and filtered identification quality indexes.
The horizontal dashed lines indicated the adjusted threshold levels. The simulation
section displayed in the graph draws attention to the introduction of an AKF at
iteration 45000. ... 159

Figure 7.7. On the top graph, the logic state, low (0) or high (1), of qi(t) throughout the
simulation. The bottom graph displays the model identified as active at each
iteration; model 1 pertains to the nominal dynamics, while 2 to 5 pertain to the four
fault scenarios. .. 160

Figure 7.8. Longest AUF identification delay (after γi
u adjustment) observed here as the

time taken by qi(t) to assume its high logic value... 160
Figure 7.9. Identification quality index logic state reacting to the introduction of an AKF

at iteration 25000. ... 161
Figure 7.10. Change in the logic state of qc(t) in response to the change in the dynamics

of the plant at iteration 65000. .. 162
Figure 7.11. Logic state of qc(t) following introduction of new dynamics at iteration

65000 and subsequent performance recovery... 162
Figure 7.12. Comparison between qc(t) before and after filtering using the chosen

parameters. .. 162
Figure 7.13. Logic values, high (1) and low (0), expressed by qc(t) throughout the

simulation.. 163
Figure 7.14. Logic state of qw(t) (low (0), normal (1) and high (2)) depicting the healthy

activity in the adaptive critic controller following the introduction of new dynamics
and subsequent convergence... 163

Figure 7.15. Comparison between filtered and unfiltered qw(t) throughout the whole
simulation.. 164

Figure 7.16. Reference tracking error during the last 5 cycles in the nominal scenario.167
Figure 7.17. The plant’s two outputs during nominal operation. Reference signals plotted

in dashed lines... 167

 xiii

Figure 7.18. Maximum reference tracking error observed during the last 5 cycles over all
fault scenarios. .. 168

Figure 7.19. The plant’s two outputs during the fault scenario with maximum observed
tracking error. Reference signals plotted in dashed lines. 169

Figure 7.20. Response of qc(t) in the first 200 iterations after introduction of abrupt fault
1. Maximum observed fault detection delay occurs at 46 iterations after the fault
introduction as the quality index crosses Hqc. .. 170

Figure 7.21. Faster reconfiguration time through switching operation on the second
occurrence of abrupt fault 1.The reconfiguration time of 1086 iterations is achieved
when qc(t) moves below Lqc. .. 171

Figure 7.22. Logic state of qc(t) (top) and unfiltered tracking error with controller
thresholds (bottom) provide a visualization of the observed minimum wait time to
add a solution to the DMB. ... 172

Figure 8.1. The CMAC control system.. 178

 1

CHAPTER 1 – Introduction

1.1 Motivation

The growing complexity of physical plants and control missions inevitably leads

to increasing occurrence, diversity and severity of faults. Availability, defined as the

probability that a system or equipment will operate satisfactory and effectively at any

point of time [1], becomes a factor of increasing importance. For automated production

processes for example, availability is now considered to be the single factor with the

highest impact on profitability [2].

The concept of local safety has been applied in practice over certain components

or sub-systems of a plant to prevent continued operation or start-up if sensors (such as

fuses and limit switches) indicate that conditions are met to enter a local shut down mode.

Local safety though, does not necessarily lead to global fail-safe operation for the whole

plant. In ship’s propulsion systems where local safety is widely implemented, for

example, the lack of a global treatment of a fault has resulted in many events where

consequences vary from irregularity to major economic loss and casualties [3].

Fault Tolerant Control (FTC) is a field of research that aims to increase

availability and reduce the risk of safety hazards and other undesirable consequences by

specifically designing control algorithms capable of maintaining stability and/or

performance despite the occurrence of faults [4].

 2

In the presented work, faults are modeled as an agent of change in the plant

dynamic structure. In some particular cases, information on certain fault scenarios (e.g.,

gear crack propagation and bearing corrosion spalling in gearbox [5]) is available

beforehand, allowing the generation of specific control solutions during design time.

However, the ever-growing fault diversity in complex systems makes it unrealistic to

possess prior information on all possible cases. Fully solving the FTC problem during

design time becomes truly intractable as we consider the fact that fault information must

be in the form of models that represent the dynamics of fault scenarios precisely enough

to allow the development of corresponding controllers. The general FTC problem

demands online structural adaptation capability that goes beyond the adjustments of

parameters in a fixed model, requiring a highly flexible reconfigurable control

architecture. In addition, while an approximate linear model can often be derived for a

plant operating close to its nominal point, nonlinearities introduced or augmented by a

fault after its occurrence can become of paramount importance to achieve a successful

new control solution [6]. Therefore, a complete FTC architecture must contain a

reconfigurable controller with adaptive capabilities for the online generation of new

nonlinear control solutions in response to unknown fault scenarios.

When a change on the plant dynamics occurs due to a fault, it is necessary that

sufficient time be given to a reconfigurable controller (independent of its particular

implementation) to experiment with the input-output response of the new dynamics

before it can be expected to generate a suitable control solution. Such a time during

which performance is degraded is known as reconfiguration time and we are interested in

minimizing it in order to increase availability.

 3

Although allowing some reconfiguration time is inevitable when dealing with

unknown faults, faster approaches can be taken for known faults. Known faults permit

that control solutions designed beforehand be implemented directly whenever they re-

occur in the plant. However, in order to deal with known faults differently, it is necessary

for a FTC architecture to autonomously determine when and which known fault occurs.

Therefore, such an approach calls for a supervisor operating at a higher hierarchical level

than the reconfigurable controller capable of performing complete Fault Detection and

Diagnosis (FDD).

Another critical FTC issue arises from the fact that state-of-the-art reconfigurable

controllers flexible enough to reach the widest range of fault solutions do not possess

online training with guaranteed stability, especially when it is taken into consideration the

fact that abrupt faults inherently cause discontinuous changes in the plant dynamics. To

account for such deficiency, it is possible to observe the evolution of the training under a

similar paradigm used to perform FDD in the plant. In fact, performing Controller

Malfunction Detection (CMD) allows the detection of structural faults within the training

procedure. If such internal detection can be made before any measurable consequences

reach the plant input, the supervisor can also modify the training procedure to avoid paths

that lead to instability.

Different plants require different responses to faults. For instance, plants with

very restrictive safety limits require high performance even during fault scenarios, while

in others have strict limits on the amount of time a known fault is allowed to act during

operation before a suitable solution is implemented. Although the need to adjust the FTC

response to the requirements of each plant is well accepted, no available FTC approach

 4

provides the means to do so. For the proposed architecture, an initialization and tuning

procedure is introduced to adjust twelve design parameters involved in the calculation of

the quality index and in this way shape the FTC response of the supervisor in order to

fulfill key FTC specification, including maximum fault detection delay, maximum

performance recovery delay for known faults, and maximum acceptable tracking error

under a fault scenario.

Besides the functions of the reconfigurable controller and the supervisor, one final

function must be performed by an entity at an even higher hierarchical level in order to

complete the proposed FTC architecture. Once a fault occurs, even if the nominal level of

performance is recovered to the point of making the effects of it imperceptible to the

mission planner (e.g., process operator, production manager or pilot), the fact remains

that one or more of the plant’s subsystems is no longer operational or with its operational

range severely reduced. In such a scenario, due to the change in the controller structure, it

is safe to assume that the probability of occurrence of other fault scenarios will be

changed (generally increased) while a particular fault is already active. Such a change in

the probability of occurrence of different fault scenarios depends not only on the current

faults active in the system at a given time, but it also depends on states of the plant and,

most importantly, the desired trajectory set by the mission planner.

Therefore, it is crucial for any complete FTC architecture to possess the means to

inform the mission planner of the probability that a fault scenario may develop after a

given time if the current desired trajectory is maintained. Furthermore, the FTC

architecture must be capable of determining the probability of fault occurrence under

 5

different trajectory alternatives before they are implemented in the plant. The following is

an example of type of fault development rules we propose to extract:

IF Fault 15 (valve seal compromised) is active AND input #5 remains very low AND

reference #2 remains high, THEN Fault 23 (loss of valve actuator) will have a 85%

chance of occurrence after a delay of 30 to 45 minutes.

With such information available after the occurrence of a fault, a pilot may decide

to execute a safe premature landing or an industrial process operator may decide when

best to interrupt production for maintenance to minimize the overall cost impact.

1.2 Implementation

The complete FTC architecture proposed and develop in this report to attain such

goals is shown in Figure 1.1. Adaptive Critic Designs (ACD) managing three Neural

Networks (NN) are chosen as the reconfigurable controller due to its known effectiveness

to work in noisy, nonlinear environments while making minimal assumptions regarding

the nature of that environment [7]. In this report, the results of proof-of-the-concept FTC

simulations show the power of ACDs when dealing with MIMO nonlinear systems

subject to a multitude of challenging faults.

 6

Figure 1.1. General diagram of the proposed FTC architecture.

As mentioned previously, the capability of the Supervisor to improve the response

of the reconfigurable controller rests on its competence in performing complete FDD. In

practice, faults can be classified in many ways. If its time profile is analyzed, faults can

be categorized into incipient (causes slow changes) or abrupt (causes immediate

changes). Another classification approach is to divide the faults according to the amount

of knowledge the FTC controller possesses regarding each fault scenario. Known faults

can make use of specific counteractions built inside the FTC scheme and therefore have a

greater potential to present a faster and surest recovery than unknown ones. Unknown

faults require higher levels of robustness and adaptability of the controller, but may be

made known after the first occurrence, if detected, identified and in the presence of

appropriate online learning capabilities. If a certain fault is expected, it may be

Supervisor

Dynamic Model Bank

D

()u t (1)R t +

()R t

Identifier

Reconfigurable
Controller

Fault Development
Rule Extraction

FAULT

User
()tR t

Plant

 7

predictable through a stochastic analysis [8], while an unexpected fault may occur at any

point in time.

In the proposed architecture, a continuously adapting identifier and a FTC

supervisor work at a higher hierarchical level to track the performance of the plant online

and compare its responses to a Dynamics Model Bank (DMB) within the supervisor in

order to perform FDD. With the architecture introduced in this report, it is possible to

detect the time of occurrence of faults, classify them into abrupt or incipient, determine if

they are unknown or known, and, if known, identify them accordingly. In particular, FDD

is achieved in the proposed architecture by a FDD Decision Logic nested within the

supervisor using the information supplied by two quality indexes. A controller quality

index measures its degree of success in tracking the desired trajectory, while an

identification quality index measure the deviations between the models in the DMB and

the current dynamics of the plant.

The same FDD Decision Logic is also used to determine when to add new fault

identification models and control solutions to the DMB as soon as a previously unknown

fault is properly dealt with. Furthermore, the FDD Decision Logic determines when to

make use of the knowledge previously stored in the DMB for a particular fault scenario

by performing a switching operation in order to reduce the reconfiguration time required

by the online adaptive controller. Speed of reconfiguration is a crucial issue since the

occurrence of a fault will move the system away from the nominal operating regime,

increasing the probability of additional faults to occur until properly adjusted for. By

adjusting how information on the status of the plant is gathered by the quality indexes

and how it is interpreted by the supervisor’s decision logics, it is possible to set the

 8

supervisor to comply with the reconfiguration time requirements of each application. The

proposed FTC architecture is presented with an offline initialization and an online tuning

procedure for design parameters of the quality indexes that allow the FTC response to be

adjusted to only to reconfiguration time specifications, but also to twenty four other

identified FTC specifications. Simulation results highlighting the ability of the supervisor

to learn the solutions to new fault scenarios online and to achieve specified

reconfiguration times for abrupt known faults are also documented in this report.

Although ACDs represent the best choice of a nonlinear adaptive controller due to

its capability to deal with a large scope of changes in the dynamic structure of the plant,

as with any other reconfigurable controller in its class, such power comes with the

tradeoff of a lack of overall stability guarantee over all possible fault scenarios. However,

the development of the proposed supervisor for FDD positioned at a higher hierarchical

level than the baseline controller creates a structure capable of supporting Controller

Malfunction Detection (CMD). In particular, the introduction of a third quality index, the

weight quality index, combined with the information generated by the controller quality

index allows for a CMD Decision Logic to be generated. In this manner, the supervisor

then becomes capable of detecting malfunctions within the online adaptive controller

before such internal malfunctions have time to build up enough to significantly

deteriorate the operation of the plant. With such information, through a similar approach

used for fault switching, alternative initial conditions can be supplied to the baseline

controller to prevent that such controller malfunctions lead the adaptation process to

either local minima trapping or to online training divergence. The process of preventing

 9

controller malfunctions to develop into faults that may compromise the plant is termed

Controller Malfunction Recovery (CMR)

The final component of the proposed FTC architecture shown in Figure 1.1 has

the goal of extracting fault development linguistic rules to aid in the mission planning of

the user, operator or pilot of the system in question. To take steps toward implementing

it, we present a novel autonomous rule extraction approach capable of obtaining temporal

linguistic rules directly from continuous process data using Fuzzy Logic representation

and a Multiple Objective Evolutionary Algorithm.

This report is organized as follows. Chapter 2 provides a literature survey on the

most relevant topics of FDD and FTC, covering a series of different existing approaches

that go beyond the application of an adaptive controller alone. In Chapter 3 a series of

ACDs implemented during the course of this research as the baseline nonlinear adaptive

controller are introduced, culminating with a NN implementation of GDHP. Chapter 4

provides a detailed explanation of the proposed supervisor and the novel FDD Decision

Logic used in conjunction to greatly reduce the reconfiguration time of the baseline

controller.

Chapter 5 covers the fundamentals of the proposed CMD and CMR additions to

the supervisor, as well as provides proof-of-the-concept results that make clear the

benefits brought by the implementation of the proposed supervisor. Chapter 6 then

introduces the novel autonomous linguistic rule extraction approach that will serve as the

basis for the development of the fault development rule extraction feature. Chapter 7

introduces extended versions of all three quality indexes and presents the methodologies

for their offline initialization and online tuning in order to adjust the supervisor’s

 10

response to match key FTC specifications and restrictions. With the proposed FTC

architecture fully drawn, Chapter 8 offers a discussion on the overall stability of the

approach, indicating points of concern and justifying design choices in the light of their

application in the whole architecture. Finally, conclusions concerning the entire

architecture and future work directions are drawn in Chapter 9.

 11

CHAPTER 2 – Literature Survey

2.1. Extracting fault information

The performance of a controller crafted to deal with faulty systems can be largely

affected by the amount of information it is capable of gathering about the actual status of

the system. Techniques for extracting fault information from systems now compose an

active field of research, and some definitions are required to be introduced before further

discussions on the available methods and its limitations.

As suggested by the Safeprocess Technical Committee of IFAC [7], a fault is

defined as an unpermitted deviation of at least one characteristic property or parameter of

the system from acceptable/usual/standard condition. Failures, on the other hand, are

defined as the permanent interruption of a system to perform a required function under

specific operating conditions. Under this point of view, it can be stated that the FTC’s

goal is to, in the event of a fault, reconfigure the system dynamics to prevent the build up

of a system failure.

Faults can be classified in many ways. If its time profile is analyzed, faults can be

separated into incipient (generating slow changes) and abrupt (generating fast changes)

classes. Another classification approach is to divide the faults according to the amount of

knowledge the FTC controller possesses regarding each fault scenario. Expected faults

may have specific counteractions built inside the FTC scheme during the design phase

and therefore have a greater potentiality to present a faster and surest recovery than

 12

unexpected ones. Unexpected faults require higher levels of robustness and adaptability

of the controller, but may be made expected after the first occurrence, if detected and

identified, in the presence of automated learning capabilities. If a certain fault is

expected, it may be predictable through a stochastic analysis [8].

By analyzing its sources, faults can be classified as sensor, actuator or component

faults. This preliminary study focuses on actuator and components faults, leaving sensor

faults to be identified and recovered in parallel by any of the currently available methods

that have been developed exclusively to deal with this kind of faults, such as sensor

fusion [3] and specialized filters [9].

2.1.1. Basic definitions

Fault Detection (FD) determines if a fault is present in the system and the time of

occurrence with appreciable significance. Once a fault is detected, the next step is to

perform fault isolation. It is the goal of fault isolation to establish the type or location of

the fault. If a detailed model of the plant is available, fault isolation may point out in

which component, actuator or sensor the detected fault was originated. The combination

of both leads to a Fault Detection and Isolation (FDI) scheme.

The next step, performed by fault identification, ascertains the evolution in size

and time of the fault [10]. The information generated by fault isolation and identification

is referred to as fault diagnosis. If all three concepts are applied, Fault Detection and

Diagnosis (FDD) is achieved [11]. Figure 2.1 illustrates the classification of the different

concepts regarding the fault information extracted.

 13

Figure 2.1. Terminology diagram of fault information extraction.

2.1.2. Available methods

The definition that a fault will alter the dynamic behavior of a system lead to

model based approaches to implement FD [12]. Following this concept, banks of Kalman

filters, Leunberger observers and parity space approaches [13] are tools used when

models of the plant in the nominal conditions and under the faults of interest are known

and well defined. The amount of prior information required can be relaxed by the use of

system identification and parameter estimation to perform on-line adaptation. In all three

approaches, residuals are generated by comparing state or output variables of the plant

with those derived from the models. Signal analysis can also be used to generate fault

indication by means of band pass filters or spectral analysis.

Whether residuals or frequency magnitudes are being monitored, thresholds must

be set to distinguish the effects of faults from those of signal noise and model

uncertainties. If set too low, the thresholds will increase the chance of false alarms, while

setting it too high decreases sensitivity, resulting in a greater misdetection rate. Although

usually adjusted off-line, thresholds can also be adapted on-line though statistical analysis

of the signals.

The fault isolation problem can be regarded as a classification problem, in which

the goal is to correctly identify the source of a fault based on the set of available

Fault Isolation

Fault Detection

Fault Identification

FD

Fault
Diagnosis

FDD

FDI

 14

residuals. The residuals are in this way viewed as signatures of faults. Detailed system

information in the form of a component level model and extensive data collected from

fault occurrences are two possible sources of symptom/fault pairs. This data can then be

used to design fault isolation schemes based on geometrical distance or probabilistic

distributions, or to train an artificial neural network, with the goal of classifying

symptoms into different fault scenarios [14]. If human specialists already possess some

fault isolation information through experience, fuzzy logic also becomes a useful tool.

In order to generate information according the dynamic evolution of an on-going

fault, and in this way reach a complete fault diagnosis, a greater understanding of the

system and its faults is mandatory. Diagnostic models, such as symptom-fault causal trees

[15], can be used in decision making algorithms in an attempt to gain insight over the

behavior and possible outcomes of a fault scenario. Reasoning methods based on

probabilistic considerations, fuzzy logic and neural networks are some of the tools

available for such a task [7].

A complete fault propagation analysis may generate results that surpass the scope

of FDD, helping to identify redundancy requirements early in the designing phase and

also leading to a structural analysis that supplies information on which avenues of

reconfiguration are still open after a certain fault takes place [3].

2.1.3. Fault information extraction limitations

As methods for FD to FDD and beyond are applied to a plant, the amount of fault

information collected grows at the expenses of a greater need of knowledge of the plant

and its faults. Although it is possible to perform FDI without a detailed analytical model

 15

of the plant under nominal and faulty conditions, the quality of the information tends to

be poorer than otherwise.

On the other hand, methods that rely exclusively on models defined at the

designing phase cannot cope with the unpredictable faults that are bound to happen in

real world applications. Complex systems pose a problem to this approach even when

only the characterization of known faults is considered due to the high level of precision

required in mathematical models involving a large number of variables and system

parameters. In practice, fault information extraction approaches based solely on fixed

models are destined to fail due to their inability to cope with unexpected or uncertain

parameter(s) [12].

One alternative way to extract knowledge over the system and its faults is to

derive it in terms of facts and rules from the description of their structure and behavior.

FDD can then be achieved without the need of precise analytical models, though the

information fed to the FDD scheme may be incomplete and uncertain [16].

It is also important to note that most of the fault diagnosis methods are built on

top of fault detection modules. Therefore, if a fault is misdetected, it holds no chance of

being diagnosed. False alarms may also reduce the effectiveness of the diagnostic

procedure, especially in algorithms designed with learning capabilities.

As commented before, the adjustment of FD thresholds directly affects the

detection rate and quality. If a FTC that does not make use of fault information (e.g.,

robust control) is applied over a plant, additional complications may arise. Since FTC’s

goal is to minimize the effects of faults, it becomes possible that the residuals and the

alterations on the signal spectrum will also be reduced, increasing the rate of

 16

misdetections [17]. Although the FTC algorithm correctly addresses to the misdetected

fault, the fact that a fault occurred may reduce the redundancy of the system. Without the

knowledge of its occurrence, the necessary maintenance intervention may not occur

before repeated faults deplete the available redundancy leaving the FTC scheme with no

avenues of reconfiguration.

2.2. Fault Tolerant Control

Having established the relevant notions of fault information extraction, the

literature review now focuses on the actual Fault Tolerant Control. Following an

introduction to the fundamentals of FTC, passive and active approaches are presented and

contrasted. Due to some properties of particular interest to this research main goal,

further attention is given to the available methods of active FTC with special focus on

multiple model architectures.

2.2.1. Introduction to FTC

Failure prevention is not a new concept in theory or practice of engineering. The

components or machinery that form a system are often built with safety protections such

as fuses or limit switches. Continued operation or start-up is prevented if sensors like

those inform that conditions are met to enter a local shutdown mode. This local safety

approach though, does not guarantee global fail-safe operation for the complete system.

A ship propulsion system depicts an example where the application of local safety with

 17

the lack of analysis of the global implications resulted in many events where

consequences vary from irregularity to major economic loss and casualties [3].

Another failure prevention approach derives from the use of direct hardware

redundancy. If three or more independent sensors are used to directly measure the same

variable, a majority voting can be used not only to detect a fault, but also to isolate the

faulty sensor. When only two redundant sensors are available, isolation is not necessarily

achievable, but fault detection is still guaranteed. The remedial action to be taken is then

simply ignoring the isolated sensor or generating an alarm when no trustable signal is

available.

The same principle is applied to components and actuators, though it is possible in

those cases that more than one output from different elements operating at only a fraction

of its total capability is used at the same time. After a fault is isolated in one of the

elements, the failure prevention approach then becomes one of energy redistribution

among the healthy set.

Fault Tolerant Control’s goal is to prevent failures at system level through proper

actions in the programmable parts of a control loop. In this approach, analytical

redundancy can be used in place of its hardware counterpart. Analytical redundancy helps

not only to reduce the cost involved in using extra elements, but also delivers greater

design freedom to avoid the loss of performance that may result from direct hardware

redundancy implementation. When sensors are considered, the use of analytical relations

united with the actual measurements also increases the degree of confidence of the

considered variable. Since FTC focus on the overall mission goal and aims for continuous

system availability, different from the other failure prevention approaches mentioned

 18

earlier, a loss of performance is allowed after a fault occurs. As a matter of fact, given the

specific redundancies available in a given system, a reconfiguration to a state of inferior

performance might be an optimal solution when the mission objective, such as stability,

is preferred.

2.2.2. Passive versus active approaches

One possible way to implement fault tolerance is to design static control laws

capable to compensate for some plant uncertainties such as disturbances and noise [18]. If

the effects of a fault are small enough to be in the range covered by the robustness of the

controller, no specific reconfiguration is required. Since no information about the faults is

typically utilized by the control system, this type approach is often referred to as “passive

fault tolerant control”.

By utilizing fault information extracted from the system, it becomes possible to

design a reconfigurable controller that modifies the control function (parameters or

structure) in response to faults, characterizing an “active fault tolerant control”. This

approach is preferable over the passive one when tolerance to a wider range of faults is

intended since the required increase in robustness has a negative effect on the

performance, even under nominal operation. As depicted in the generic active FTC

diagram in Figure 2.2, it is common to separate the control algorithm into two distinct

blocks: a baseline controller and a supervisor system. While the baseline controller

focuses on the maintenance of the immediate control objectives, the supervisor extracts

fault information, determines remedial action and executes them by modifying the

baseline controller [19].

 19

Figure 2.2. A generic active fault tolerant architecture depicting the base line controller and the supervisory
system. In the diagram: D represents a delay block, u(t) is the controlled input and R(t) is output of the

plant.

2.2.3. Active FTC methods

Active FTC systems compensate for the effects of a fault either by selecting a new

precomputed control law (projection-based methods) or by synthesizing a new control

law on-line (on-line automatic controller redesign methods) [20].

Gain scheduling [21], fuzzy decision logic [22] and structural analysis [3] are

some of the possible ways to implement projection-based active FTC. Models and pre-

computed controllers for the system under nominal conditions and under the effect of the

faults of interest are used during the design phase to grant the controller quick and correct

responses to the envisioned scenarios. However, since fault information at least to the

level of isolation is essential, it is necessary for the models of the faulty scenarios to be

accurate enough to be distinguishable under the effect of noise and disturbances. Even

when precision is not taken into account, the mere task of off-line design of characteristic

models for fault scenarios with a strong stochastic nature is by itself a challenging one,

especially if complex nonlinear plants are considered.

R(t+1)
Controller

Supervisor

Plant
u(t)

state information

D
R(t)

 20

On-line automatic redesign methods are of particular interest in light of the goal

of the proposed work due to its capability of providing specific control actions even to

fault scenarios that had not been necessarily anticipated during the design phase.

Reconfigurable control can be used to implement on-line redesign requiring only the

residuals generated by fault detection. Nevertheless, the flexibility gained by this

approach comes at the expense of slower response since the controller must be allowed

time to learn the new dynamics and modify itself. Since the reconfigurable controller

does not require knowledge of the dynamics of the system under the effect of each

specific fault, it is inherently immune to modeling errors and possesses a greater potential

to deal with unmeasured disturbances and noise-corrupted data.

A reconfiguration approach in which the eigenstructure can be directly assigned

to the close-loop system to achieve the desired system stability and dynamic performance

is known as Eigenstructure Assignment (EA) [23]. The conditions for exact assignment

are the existence of a sufficient number of actuators and measurements available and that

the desired eigenvectors reside in the achievable subspaces. The limitations of EA are

that the system performance may not be optimal in any sense, and that the system

requirements are often not easily specified in terms of the eigenstructure [24].

The Pseudo-Inverse Method (PIM), on the other hand, is a reconfiguration

method that is optimal in the sense that it minimizes the Frobenius norm of the difference

matrix between the original and the impaired closed-loop system transition matrices.

Since in its initial formulation stability cannot be guaranteed, a Modified Pseudo-Inverse

Method (MPIM) was proposed [25]. In its initial formulation however, MPIM required

full state feedback and relied on stability bounds that could give very conservative

 21

results. Those limitations were the focus of [26], where the problem was reevaluated

from an optimization point of view while focusing on FTC application. Although the

state feedback constraint was relaxed to output feedback, the method still requires

residuals for each parameter of the model to be generated (comparison between transition

matrices), limiting in the reconfigurable fault scenarios to those with the same dynamic

structure than the nominal mode.

However, both EA and PIM-based controllers are restricted to implementation on

linear models. When a dynamical nonlinear structure is given and only the parameters are

unknown, adaptive control can be used. Even to this restricted case, the assumptions that

have to be made concerning the unknown plant to develop a stable adaptive controller

were established only in the 1980’s [27]. The problem becomes truly formidable when

the plant is nonlinear and the input-output characteristics are unknown and time-varying.

From a system theoretic point of view, artificial Neural Networks (NN) can be

considered as practically implementable parametrizations of nonlinear maps from one

finite dimension space to another. Theoretical works by several researchers have proven

that, even with one hidden layer, neural networks can uniformly approximate at any

degree of precision any piecewise continuous function over a compact domain, provided

the network has a sufficient number of units, or neurons. Therefore, NN can, by their

very nature, cope with complexity, uncertainty and nonlinearity, and NN have been used

successfully to identify and control nonlinear dynamic systems [28].

Multilayer Neural Networks (MNN) and Radial Basis Functions Networks

(RBFN) have proven extremely successful in pattern recognition problems, while

Recurrent Neural Networks (RNN) have been used in associative memories as well as for

 22

the solution of optimization problems [29]. From the theoretic point of view MNN and

RBFN represent static nonlinear maps while RNN are represented by nonlinear dynamic

feedback systems [30].

In [31] a Recurrent High Order Neural Network (RHONN) was developed with

the goal of identification of dynamical systems displaying similar convergence properties

of classical adaptive and robust adaptive schemes. A Lyapunov-based approach is used to

prove the convergence property of the learning algorithm that ensures that the

identification error converges to zero exponentially and that, if it is initially zero, it

remains in zero during the whole identification process. Later in [30] the identifications

capabilities of the RHONN were used to provide state information to a sliding mode

controller to solve a tracking problem. However, the RHONN displays serious

restrictions to its applicability to complex systems due to a lack of scalability in its

heavily connected architecture.

In [32] a simplified RNN is used to identify the system and its parameters used as

input to a controller based on feedback linearization and pole placement. Stability though,

is only assured if the controller system remains stable, a limitation that greatly decreases

the applicability of the method to the FTC problem.

A RNN based adaptive controller specially developed to deal with nonlinear

systems with unknown dynamics is presented in [33]. In the proposed configuration, the

output from the RNN adaptive controller was applied to the system summed with the

output of a linearizing controller designed off-line to deal with the nonlinearities in the

nominal model. The proposed learning algorithm was stable in the Lyapunov sense, but

 23

the restrictions applied to achieve such proof make this approach capable only to deal

with incipient faults.

In order to achieve semi-global boundedness of all signals in a control loop of a

MIMO system, a backstepping approach is used in [34] to divide the MIMO nonlinear

model into a series of SISO nonlinear models and design controllers separately using

RBFN’s. However, in order to achieve such degree of decoupability, it must be possible

to describe the system in block-triangular form. Even if true for the nominal model, a

fault may increase relationships between states that could previously be ignored, making

it impossible for the system to fit in a block-triangular form again.

Taking inspiration in a PID controller, a modified RNN architecture is applied in

a model reference adaptive control framework to control an automotive engine in [35].

Although identification and control are performed by RNNs, the identification is

performed off-line while only the controller is trained on-line. Therefore direct

application of this method to systems which dynamics may be affected by faults in

unexpected ways is not possible.

2.3.4. Multiple models as a framework for active FTC

Even though a reconfigurable adaptive controller is a key element without which

solutions for unknown faults cannot be designed online, if used as a FTC architecture

alone, it displays two major limitations. The first involves the fact that a reconfigurable

controller makes it impossible for any available fault knowledge to be incorporated

during design time. Although an ideal reconfigurable controller will always reach a

solution (given its existence) for a given fault scenario, the amount of time it must be

 24

allowed to learn the new dynamics and modify itself accordingly could be greatly

reduced by the direct application of a known solution. The second major limitation is

caused by the known tradeoff between adaptability and long-term memory. As a

reconfigurable controller is optimized to deal with a broader scope of faults with

minimum reconfiguration time, previously configured controllers are forgotten and the

reconfiguration process has to be repeated even when returning to the healthy condition

from an intermittent fault scenario.

Multiple Models Architecture (MMA) [18,22,28] presents a framework in which

projection-based methods and online redesign can be synergistically integrated to provide

the fast and specific response of the first combined with the flexibility and robustness of

the second. More specifically, in [36] and [37] it was shown that implementing a

reconfigurable controller in a MMA has the potential to overcome the cited limitations

for the tracking of complex nonlinear plants. Since then, MMA has been applied to FTC

by combining fault scenarios and their respective control solutions in model banks

coordinated by a supervisor. However, most publications so far are based on fixed model

banks built offline and therefore are incapable of improving the controller response in the

reoccurrence of faults that were unexpected during design time. In [38] a Dynamic Model

Bank (DMB) is used to allow the insertion of new plant dynamics as they were identified

online, but the use of a linear controller and the lack of a complete Fault Detection and

Diagnosis (FDD) scheme significantly limit its applicability.

To better understand the MMA approach, its simplest implementation, Gain

Scheduling (GS), will first be introduced and discussed. GS is a technique that aims to

provide control over nonlinear systems without requiring the design of nonlinear

 25

controllers. The first step in GS is to linearize the model about one or more operating

points. Then linear design methods are applied to the linearized model at each operating

point in order to arrive at a set of linear feedback control laws that perform satisfactorily

when the close-loop system is operating near the respective operating points. The zone of

the state space where a controller still performs satisfactory is denoted operating region.

The final step is the actual gain scheduling, which is intended to handle the nonlinear

aspects of the design problem. The basic idea involves interpolating in some way the

linear control law designs at intermediate operating conditions. It is usual in GS

applications to choose a particular structure for the linear controllers (e.g., PID) and

therefore its parameters (gains) are modified (scheduled) according to the states of the

closed-loop system.

In addition to the evident simplicity brought by the design of the controllers for

linear approximations instead of the global non-linear models, GS also provides the

potential to respond rapidly to changing operating conditions and its real-time

computational burden is light [21]. However, since the design process of GS in its

original formulation is based only in local information of a limited set of operation

points, no global characteristic (stability, performance, robustness, etc…) can be

guaranteed. In the same way that a well-designed set of linear controllers does not

necessarily result in even a globally stable control law for the nonlinear system, reachable

nonlinear systems may provide uncontrollable linearized models, preventing GS to be

applied at all.

Advanced MMAs make use of local nonlinear models to design its controllers,

resulting into the operating region in which each controller remains valid potentially

 26

bigger. Given enough information of the system, this property allows the main

components of a system dynamics to be represented in a finite set of nonlinear models,

making it possible to incorporate global stability, performance and robustness

requirements in the design phase of multiple models. Model predictive control, feedback

linearization and sliding mode [39] are examples of such methods. Another benefit from

the use of nonlinear models and controllers is that it provides the possibility to

dramatically reduce the total number of models, making it feasible to apply the MMA

concept to systems with widely diversified complex dynamics.

Nevertheless, independent from the linearity of the models used to generate the

set of controllers, the quality of the end result of the application of a MMA approach is

still largely affected by a wide range of design choices concerning how many to create,

where to position and how to interpolate the controllers designed at each operating point

or region.

For a better understanding and comparison between different approaches, the

parameter space representation presented in [36] will be used. The parameter space (S) is

an augmented version of the state space representation that includes “states” of the

environment that contain information of sensors present in the plant used solely to extract

fault information. Temperature, for example, can be considered an environmental state if

the model of the plant does not take it into account directly, but as the temperature

deviates from the nominal condition the dynamics of the plant are altered. In the

examples that follow, the parametric space is a bounded region that encompasses the

physically achievable values of each state.

 27

For the sake of visualization, the following discussion will be held with examples

using two dimensional parameter spaces. The conclusions however are not limited to this

particular case, being possible to apply all the discussed methods in higher dimensional

spaces directly.

Figure 2.3 brings a basic MMA setting where a set of controllers is devised for

some specific operating regions sparsely distributed on the parameter space. Each of the

operating regions (O1, O2 and O3) is generated around an operating point and limited by

the range of the state space of the plant in which the corresponding controller performs

with a minimum performance. In the dimensions of the parameter space that do not

represent states of the plant, the operating regions represent the robustness of the

controller.

Figure 2.3. Performing Multiple Model control with sparsely distributed operating regions. O1 to O3 are
operating regions around each operating point. The system is originally in the position of the parameter

spaced marked by the white star and follows the depicted trajectory.

If the plant is in a position in the parameter space that is close enough to an

operating point to be inside its operating region, it is reasonable to apply the respective

pre-computed control law. This is the case of the original position (white star) of the

O1

O3

O2

S

 28

trajectory shown in Figure 2.3. However, variations in the set-point or the occurrence of

faults may take the system to a point away from all operating points that were considered

off-line (black star) and the question of what control law to use is raised. As a matter of

fact, since precise description of the operating regions is not often available in practice,

such question may arise even while the plant is still inside the true operating region.

Perhaps the most intuitive approach, one of the ways to generate control laws for

in-between operating points is to assign a mean of the parameters of the controllers at

each operating point to the parameters of the active controller, weighting it by their

geometrical distance with respect to the present position in the parameter space. The main

critic to this method is that it does not take into account the nonlinear characteristic of the

system that creates a heterogeneous parameter space. In Figure 2.3 for example, since the

plant finds itself closer to O2, weighting the sum by the geometrical distance alone would

result in a control law more similar to the one devised for that operating point. However,

if a strong nonlinearity existed between O2 and the present system position, the ideal

control law may be more similar to those created for O1 and O3.

Among the techniques that have been researched aiming to overcome this

limitation, some are of special interest to this study as they were specifically designed for

FTC applications. In [22] a set of IF-THEN rules was used in a fuzzy logic framework to

compare the present position in the parameter space with the symptoms of known faults.

The degree of similarity with each fault scenario was then used to weight the mean that

adjusts the parameters of the controller. Assuming that knowledge is available regarding

the status of the system that make it prone to develop each expected fault, in [18] this

 29

approach was improved by applying the fuzzy algorithm only to the set of possible faults

at a given position in the parameter space.

A different approach was taken in [24] where the probability of occurrence of

each expected fault was modeled in a finite-state Markov chain with known transition

probabilities. With this information at hand, the mean of control parameters was weighted

favorably to the most probable fault scenarios.

Regardless of the weighting scheme chosen, it is still an approximation of the

behavior of the system outside the considered regions of operation and as such it is

inevitably susceptible to nonlinearities active outside those regions. One way to solve this

deficiency is to generate closely connected models by dividing the whole parameter space

into even operating regions as shown in Figure 2.4(a). The natural tradeoff of this method

is that increased control performance tends to require controllers designed for smaller,

and therefore less complex, regions. This in turn causes the final number of models

needed to cover the whole space to grow, requiring extensive design work since a control

law has to be designed for each model. This relationship can be clearly seen in a series of

simulation results performed in [37]. If made small enough, each region can be

represented by a linear model given by the linearization of the nonlinear plant on the

center of the operating region, making it possible to apply GS.

 30

Figure 2.4. Closely connected multiple model implementations: fixed size operating regions (a) and plant
dynamics dependant operating regions (b). In the diagrams each rectangular section represents an operating

region. The system is originally in the position of the parameter spaced marked by the white star and
follows the depicted trajectories.

Since all parameter space is covered by previously designed controllers, a basic

closely connected MMA algorithm would be composed only of two steps: determine the

present position of the plant in the parameter space and apply the corresponding

controller. However, even though each controller is designed to result in a desirable

behavior for the plant while inside its respective operating region, if no special procedure

is performed, switching directly from one control law to another may cause all kinds of

unwanted responses as the plant navigates from one operating region to another. In [36],

a minimum time (or number of iterations) was set for permanence inside an operating

region before switching takes place, creating in this way a time based hysteresis in an

effort to prevent oscillations between adjacent operating regions. Another approach,

requiring all controllers to possess the same structure, is to create an area on the border of

adjacent operating regions in which the parameters of both controllers are combined

causing one to gradually change to another. However, both methods are solely heuristic

solutions and no proof of their efficiency, let alone deterministic way to configure their

O1 O2 O3

O4 O5 O6

O7 O8 O9

S

S

(a) (b)

 31

design parameters, is available. A method that guarantees stability of systems when

perform control switching has been presented in [40]. The referenced paper describes a

way to compute a pre-transition sub-region inside an operating region from which

stability is assured when switching to another specific operating regions. In [37], an

adaptive controller that operates in parallel with the MMA is used to assure stability of

the system during the transient behavior generated by switching controllers.

If complete information on the dynamics of the nonlinear system is available

beforehand, it is possible to divide the parameter space taking into account the sensibility

of different areas (as shown in Figure 2.4(b)) and produce a combination of controllers

with good performance based on a compact set of operating regions. It is important to

notice that, independent of the number and uniformity of the regions, because no

interpolation is fundamentally necessary, different control structures or even strategies

can be used for each region.

From the point of view of FTC applications that consider the occurrence of

unexpected faults, model weighting is not an attractive technique since there is no reason

to assume that a new fault dynamic will hold any relationship with those previously

known. When closely connected multiple models are considered, the quality of the

response depends on the robustness of the design of each controller and the way the

control laws are switched from one to another. Although in this formulation an active

FTC is being performed for expected faults, no direct action can be defined for

unexpected dynamics. At the same time that the requirement for robustness increases,

since the areas of sensitivity are no longer available at design time, a large number of

 32

evenly spaced operating regions have to be created making the memory requirement and

design effort increase greatly.

It is therefore interesting to explore yet another way to apply the MMA concept in

which controllers are designed on-line as new operating regions are reached [37]. Since

no information about the parameter space is supposed to be available at design time,

nonlinear online identification is required in order to learn new operating regions

(models) and recognize the ones to which a controller has already been designed. In this

way, different from the previously discussed methods that adjust the controller based on

the position of the plant in the parameter space, the on-line building of models achieves

the same in an indirect manner by the identification error of the models designed so far.

Therefore, if at a given moment the identification error of every known model (contained

in a dynamic database) is high the plant is considered to be in an unknown region of the

parameter space, while if the error of one of the models is low it indicates that the plant is

inside the respective operating region. What is considered to be “high” or “low” depends

on an identification threshold selected by the user. By reducing this threshold the

operating region of each model shrinks, causing a greater number of models to be

generated. In this sense, a parallel can be traced between the setting of the identification

threshold and the choice of how many fixed models to have in the closely connected

operating regions approach.

It is interesting to notice that, due to the indirect measuring through the dynamics

of the plant, the operating regions now span in the space of the identifier, not in the

parameter space. If a neural network is used to approximate the plant dynamics for

example, the operating regions span in the dimension defined by its weights. Operating

 33

regions described in the parameter space possesses all its dimensions with direct physical

meaning since they came from sensor readings. Although this property can be highly

desirable in certain operations such as translating expert knowledge to the model

database, changes in the dynamics are not always directly linked to the position on the

environmental space. For example, a high temperature in a certain part of a system may

not instantly incur in a fault, but may increase the probability of its occurrence. Since the

identifier focus on the change in the dynamics and not on the secondary symptoms of

faults, it does not suffer from such drawback. On the other hand, in order to extract

information from expert sources it is necessary to duplicate the described conditions in

simulation so that the identifier is able to produce a model in its own space.

As with the identification models, the control laws must also be devised on-line.

A single control strategy that modifies itself based on the identified models, such as

approximate feedback linearization [41], is a valid approach for plants which dynamics

do not present extreme non-linearities. When it is not the case, highly flexible nonlinear

adaptive controllers [28] may be applicable.

If a new model is added to the database every time the identification threshold is

exceeded, the area of the parameter space to which the system is exposed will be filled

with closely connected models and therefore there is no need to use the same control

structure for every operating region. Particular solutions previously known to exist to

particular regions of the parameter space can then be directly introduced. For example,

fuzzy logic can be used to extract expert knowledge on the solution of a particular fault,

while neural networks is used to generate novel control laws to cope with unexpected

fault scenarios.

 34

Sparsely connected model distribution can also be attained by the on-line MMA

approach if a second threshold to measure model dissimilarity is created. The

dissimilarity threshold, always greater than the identification one, indicates the regions in

which the present dynamics of the plant are considered to be different enough from all

the models in the database to justify the addition of a new model. Such scheme was

implemented in [38] where the parameters of the controllers for regions not covered by

the models in the database were adjusted by a mean of the known controllers weighted by

the inverse of the identification error of their respective models. In this way, the control

laws for regions between models hold more similarity to the ones devised for similar

plant dynamics.

Apart from the above mentioned concerns involving the transient behavior of the

system when switching is performed, the application of MMA to FTC harbors two other

points that require careful consideration. The first of them is the fact that the task to link

either the present location on the parameter space or the prediction errors of identification

models to the occurrence of a particular fault represents a FDI process and as such is

vulnerable in all issues outlined in Section 2.1. The second point focus on FTC

applications that require new models to be designed on-line in a continuously growing

database. In such a scenario the nonlinear adaptive controller is required to be at the same

time: quick to converge, highly flexible and possess guaranteed stability, often

conflicting characteristics in practice.

 35

CHAPTER 3 – Baseline Nonlinear Adaptive Controller

3.1. Introduction

Increased performance specifications are often achieved at the cost of amplified

plant and control complexity. As overall complexity rises, so does the chance of

occurrence, diversity and severity of faults. When complex systems suffer from faults,

the original model parameters or even its own dynamic structure may change in a

multitude of unpredictable ways. Even if the system has a satisfactory linearization

around the nominal operation point, nonlinearities may become of paramount importance

after a fault occurs [4]. When the stochastic nature of faults is taken into consideration

and to predict all fault scenarios is made impossible, it becomes clear that the problem of

interest of FTC cannot be dealt with without an on-line nonlinear adaptive control

strategy.

It is important to state here that, for the benefit of the discussion in this chapter,

the required redundancy is assumed to exist in the system. Hardware redundancy requires

two or more independent instruments that perform the same function, while analytical

redundancy uses two components based on different principles to measure a variable,

where at least one of them uses a mathematical model in analytical form. In either case,

from the theoretical point of view, this assumption matches the requirement for sustained

 36

observability and controllability (or global reachability for nonlinear systems) through

fault scenarios. This condition is later relaxed in Chapter 6.

In this section, we explore control architectures that take advantage of the

universal approximation capability of the nonlinear maps generated by Neural Networks

(NN). In particular, five different NN control architectures are presented in order of

growing sophistication, starting from two basic NN architectures and leading to three

adaptive critic approaches. The merits of each are discussed and their shortcomings

exposed, which in turn becomes the motivation for the next. The first architecture is an

application of a single NN with a classical training algorithm and the requirement of full

knowledge of the plant’s dynamics at all times. The controller is then improved by the

addition of a second NN capable of generating online a map of the plant’s dynamics,

however the training algorithm remains fundamentally the same.

The addition of a third NN and a change in the training paradigm leads to the

adaptive critic architectures: Heuristic Dynamic Programming (HDP), followed by Dual

Heuristic Programming (DHP) and finally Globalized Dual Heuristic Programming

(GDHP). Made clear through their description, adaptive critic architectures are preferred

for FTC implementations due to its great flexibility and known effectiveness to work in

noisy, nonlinear environments while making minimal assumptions regarding the nature

of such environment [7].

 37

3.2. A single NN control architecture

The goal of this approach is to use a NN to generate a nonlinear map connecting

the states of the plant ()x t , previous inputs (1)u t − and current target ()tx t to an input

()u t that will minimize the utility function ()U t defined by (3.1).

() ()1 1() () () () () () ()
2 2

Tt t TU t x t x t Q x t x t u t R u tρ= − − + (3.1)

where, Q is a diagonal square matrix that can be used to assign different degrees of

importance to each state, R is the equivalent matrix that penalizes the amount of control

action used and ρ is a scalar used to balance the minimization of the tracking error and

the energy use during the process.

Figure 3.1. A single NN control architecture

In order to differentiate it from the other NNs that will be introduced in later

architectures, this NN is named Action Neural Network (AcNN). Figure 3.1 depicts such

architecture. When performing the training of the AcNN, the information of how its

weights affect the states of the plant is required. However, backpropagation through the

AcNN only provides information on how the inputs ()u t are affected by its weights.

Therefore, this approach requires the availability of a differential model of the dynamics

DD

(1)x t +()u t
()tx t

()x t

DD

PlantAcNN
(1)u t −

 38

of the plant from which the information on how the states ()x t are affected by the inputs

()u t can be extracted. As a result, this architecture is not suitable for FTC application,

since faults are assumed to modify the dynamics of the plant in unpredictable ways,

making it impossible to design models beforehand.

3.3. A direct adaptive control architecture using two NNs

Since it is not possible to offline design models of the plant dynamics for all fault

scenarios, in this architecture a second neural network is introduced with the goal of

performing online plant identification. Once this network has converged to represent a

map of the dynamics of the plant, the derivative of the states with respect to the inputs

can be extracted through standard backpropagation. Such network will be referred to as

the Identification Neural Network (IdNN). Figure 3.2 displays this second approach.

DD

(1)x t +()u t
()tx t

()x t

DD

(1)ix t +

PlantAcNN

IdNN()u t

(1)u t −

()x t

Figure 3.2. A direct adaptive control architecture using two NNs

Although no critical restrictions prevent this architecture to be used as a solution

to the FTC problem, its performance can still be largely improved if the training

 39

algorithm for the AcNN is reevaluated. In these first two architectures, the AcNN is

trained at each iteration with the goal of reducing the current value of the utility function

()U t . This is performed under the assumption that this process will ultimately lead to a

set of weights that minimize the utility function for all times. However, this training

approach provides no mechanisms to minimize the values that ()U t assumes during

training (or the time it takes). Clearly it is of the interest of FTC to provide a new control

solution to a fault scenario as quick as possible and with minimum performance impact.

3.4. Heuristic Dynamic Programming

Seeking to overcome the limitations of the previous approaches, the first adaptive

critic controller is introduced. Adaptive critic architectures have a much greater potential

to achieve the required degrees of reconfiguration and stability because more than the

simple instantaneous difference between desired and actual states is available to be used

as performance index. Due to the continuous interaction between the controller and the

plant, the quality of a certain control strategy can only be fully measured after analyzing

all future effects it has on the control mission, in our case trajectory tracking.

Therefore, HDP trains the AcNN to minimize not the present utility function

alone, but also the sum of all future values of ()U t with a decaying factor γ (0 1γ< <).

Such quantity is referred to as the cost-to-go ()J t , as defined by the Hamilton-Jacobi-

Bellman equation (3.2), and represents the core of dynamic programming [42].

0
() ()k

k
J t U t kγ

∞

=

= +∑ (3.2)

 40

Problems formulated in this form are the main focus of dynamic programming,

that solves it through a backward search from the final step [43]. To make the problem

tractable to an on-line learning approach, adaptive critic designs require an estimate of

the actual cost-to-go to be constantly determined. Although ACD’s can be implemented

with any differentiable structure [44], neural networks have been widely used [45] due to

their generalization and nonlinear mapping capabilities as well as having suitable

methods for on-line learning. Given the complexity of FTC systems, dynamic or

recurrent neural networks were chosen due to their more efficient handling of dynamic

nonlinear mapping [30]. It is in this context that we introduce a third NN, denominated

the Critic Neural Network (CrNN), responsible for approximating ()J t . The resulting

block diagram is shown in Figure 3.3.

In other words, in adaptive critic designs, the training of the AcNN is done in the

direction of the minimization of the cost-to-go approximation. In HDP this is

accomplished by starting the training path of the AcNN with the information of how the

inputs and states will affect the current cost-to-go ()J t . Since the CrNN is trained to

estimate it, such information can be easily extracted from the NN via backpropagation

though time [46,47].

 41

Figure 3.3. Heuristic Dynamic Programming

3.5. Dual Heuristic Programming

Dual Heuristic Programming reevaluates the purpose of the CrNN and redesigns

it. Although in HDP the CrNN is trained to estimate ()J t , its true purpose is to provide

the AcNN with the partial derivatives of ()J t with respect to the states and inputs

(usually referred to as ()x tλ and ()u tλ respectively). In DHP architecture, as shown in

Figure 3.4, the CrNN is trained to output such derivatives directly. Using this direct

approach, DHP is capable of generating smoother derivatives and has shown improved

performance when compared to HDP. Those results were presented in [44], where both

methods were applied to a turbogenerator, characterized as a highly complex, nonlinear,

fast-acting, multivariable system with dynamic characteristics that vary as operating

AcNN CrNN (1)J t +
(1)ix t +

(1)tx t +
()u t

(1)u t +%

(1)ix t +AcNN CrNN (1)J t +
(1)ix t +

(1)tx t +
()u t

(1)u t +%

(1)ix t +

CrNN ()J t

DD

(1)x t +()u t
()tx t

()x t

DD

(1)ix t +

PlantAcNN

IdNN()u t

(1)u t −

()x t

()u t
()x t

 42

conditions change. These benefits, however, come with the tradeoff of a more complex

training algorithm for the CrNN as shown in [48].

3.6. Globalized Dual Heuristic Programming

3.6.1. Introduction

The adaptive critic GDHP algorithm combines the HDP and DHP approaches to

generate the most complete and powerful adaptive critic design [7]. In GDHP, xλ and uλ

are determined with the precision and smoothness of DHP, while improving the CrNN

training by also estimating ()J t as in HDP. Figure 3.5 depicts the block diagram of this

approach.

Figure 3.4. Dual Heuristic Programming

AcNN CrNN
(1)x tλ +(1)ix t +

(1)tx t +
()u t

(1)u t +%

(1)ix t +

CrNN

DD

(1)x t +()u t
()tx t

()x t

DD

(1)ix t +

PlantAcNN

IdNN()u t

(1)u t −

()x t

()u t
()x t

(1)u tλ +

()x tλ

()u tλ

 43

Figure 3.5. Globalized Dual Heuristic Programming

In this section, the adaptive critic architecture of Globalized Dual Heuristic

Programming is presented in detail. Following this introduction, the adaptive control

problem of interest to FTC is stated mathematically and the adopted notation introduced.

The next three subsections are focused each on one of the neural networks that compose

the GDHP architecture: identifier, action and critic. Each neural network has its structure

presented, followed by a discussion on its training algorithm and the ways through which

information required by other networks is extracted. Finally, all information contained in

this section is summarized in the complete GDHP algorithm presented in a manner that

can be readily applied.

AcNN CrNN
(1)x tλ +(1)ix t +

(1)tx t +
()u t

(1)u t +%

(1)ix t +

CrNN

DD

(1)x t +()u t
()tx t

()x t

DD

(1)ix t +

PlantAcNN

IdNN()u t

(1)u t −

()x t

()u t
()x t

(1)u tλ +

()x tλ
()u tλ

(1)J t +

()J t

 44

3.6.2. Preliminaries

The first step is to define ()x t (3.3) and ()u t (3.4), column vectors of the n x

states and n u inputs at time t , and the Tap Delay Line (TDL) vectors ()x t (3.5) and

()u t (3.6) that combine information of xTDL and uTDL sampling times respectively.

[]1 2() () () () T
n xx t x t x t x t= L (3.3)

[]1 2() () () () T
n uu t u t u t u t= L (3.4)

() () (1) (1)
TT T T

xx t x t x t x t T D L⎡ ⎤= − − +⎣ ⎦L (3.5)

() () (1) (1)
TT T T

uu t u t u t u t T D L⎡ ⎤= − − +⎣ ⎦L (3.6)

Given the causal plant (3.7) with nonlinear ().f subject to abrupt faults

characterized by discontinuous changes in its parameters or structure, the primary goal of

the controller (3.8) is to make the states track the desired trajectory ()tx t . Since particular

fault scenarios may render regions of the state space unreachable to the plant, the

controller is not required to reduce the tracking error to zero, but rather minimize it under

the constrains of each particular fault. In the controller, ().g is a nonlinear continuously

differentiable approximator composed of three neural networks: identification, action and

critic. The way each neural network is trained online and how they interact in the GDHP

architecture is explained in detail in the following sections.

 45

()() (1) , (1)x t f x t u t= − − (3.7)

()() () , (1) , ()tu t g x t u t x t= − (3.8)

3.6.3. Identification Neural Network (IdNN)

The IdNN (shown in Figure 3.6) is responsible for generating a differentiable map

that matches the dynamics of the plant. Note that, in the used notation, all variables

related specifically to the IdNN receive the superscript i. Designed as a two-layered

recurrent neural network [49,50] with input ()ip t (3.9), nhi neurons in the hidden layer

and a tangent sigmoid transfer function (3.10), the IdNN outputs a vector of the estimated

states ()ix t (3.11).

(1)
(1)

()
(1)
1

i
i

x t
u t

p t
a t

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 (3.9)

()1() t a n s i g () ()i i ia t W t p t= (3.10)

2 ()
() ()

1

i
i i a t

x t W t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (3.11)

 46

Figure 3.6. IdNN recurrent neural network architecture

The network is trained online with the goal of minimizing the identification error

()iE t subject to the relative importance matrix S (3.12). Generally the matrix S is set as

the identity, however, by adjusting the magnitude of the diagonal elements, the IdNN can

be made to focus more on the reduction of the identification error of certain states. By

applying the steepest descent training algorithm, the weight update equation (valid for

both layers) is given by (3.13).

() ()1() () () () ()
2

Ti i iE t x t x t S x t x t= − − (3.12)

()()(1) () () ()
Ti

i i i i
i

d x tw t w t S x t x t
d w

β
⎛ ⎞

+ = − −⎜ ⎟
⎝ ⎠

 (3.13)

where iw is a column vector of the elements of the corresponding weight matrix iW , and

iβ is the learning rate. Equations (3.14) to (3.16) show how the required derivatives are

calculated.

…
…

(1)x t −

(1)u t −

…
… ()ip t

1

(1)ia t −

1()iW t 2 ()iW t1
()ia t

()ix t

DD

TDLx

TDLu

 47

()2 1
(: , : 1)1 1

() 0 0
() (1)d i a g (()) 0 0 ()

0 0 ()

i T
i i

i i
e n d n h i e n di i

i T

p t
d a t d a tI a t W t
d w d w

p t
− −

⎛ ⎞⎡ ⎤
⎜ ⎟−⎢ ⎥= − +⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

O (3.14)

2
(: ,1:)1 1

() ()()
i i

i
n h ii i

d x t d a tW t
d w d w

= (3.15)

2

() 1 0 0
() 0 0

0 0 () 1

i T

i

i
i T

a t
d x t
d w

a t

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥
= ⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

O (3.16)

where 1iw corresponds to the weights of the first layer and 2iw to those of the second,

and the standard MATLAB notation for the indication of rows and columns within a

matrix is used. In such notation, when used by itself, the colon indicates all entities in a

particular dimension (e.g., all rows or all columns), while when used between two

numbers or variables it indicates the range between and containing such values in the

corresponding dimension (e.g., all rows from 5 to nhi).

In order to train both the AcNN and the CrNN, information on the plant dynamics

is required. Once the IdNN has converged to an estimator of the plant, the derivative of

the output with respect to the input calculated by Equations (3.17) to (3.19) can be used

as an approximation to part of the plant dynamics. Equations (3.20) and (3.21) show how

the previous derivative is used to build the complete dynamic description when xT D L is

greater than 1.

 48

(,)
(:,1:)

() ()0
() (1)

i i

nhi nu
end nu

da t da t
du t du t −

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
 (3.17)

()2 1
(: ,1: 1)

()
()

(1) ()d i a g ((1)) (1)
() ()

()
()

i
i i

e n d

i

d x t
d u t

d a t d u tI a t W t
d u t d u t

d a t
d u t

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+

= − + + ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.18)

2
(: ,1:)

(1) (1) (1)(1)
() () ()

i i
i

n h i
d x t d x t d a tW t

d u t d u t d u t
+ + +

≈ = + (3.19)

(* ,)
(: ,1:)

() ()0
() (1)n x T D L x n u

e n d n u

d x t d x t
d u t d u t −

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
 (3.20)

(1: ,:)

(1)
()(1)

()()
() e n d n x

d x t
d u td x t

d x td u t
d u t −

+⎡ ⎤
⎢ ⎥+ ⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (3.21)

The information on the plant dynamics is completed with the knowledge of how

the current and past states affect the state on the next step. Therefore, there is also need to

use the differential map of the IdNN to calculate the derivative of (1)x t + with respect to

()x t . The process through which such derivative is obtained, detailed in Equations (3.22)

to (3.26), is analogous to the one performed in (3.17) to (3.21). Note that in the process of

calculating both derivatives, the causality of the plant is taken into consideration.

 49

However, while causality restricts (1)
()

dx t
du t

+ to a block upper triangular matrix, (1)
()

dx t
dx t

+

is an upper triangular matrix with ones in the diagonal.

(,)
(:,1:)

() ()0
() (1)

i i

nhi nx
end nx

da t da t
dx t dx t −

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
 (3.22)

()2 1
(: ,1: 1)

()
()

(1) ()d i a g ((1)) (1)
() ()

()
()

i
i i

e n d

i

d x t
d x t

d a t d u tI a t W t
d x t d x t

d a t
d x t

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+

= − + + ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.23)

2
(: ,1:)

(1) (1) (1)(1)
() () ()

i i
i

n h i
d x t d x t d a tW t

d x t d x t d x t
+ + +

≈ = + (3.24)

()

(*(1) ,) (: ,1:)

() ()
0() (1)

n x

n x T D L x n x e n d n x

Id x t d x t
d x t d x t− −

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
 (3.25)

(1: ,:)

(1)
()(1)

()()
() e n d n x

d x t
d x td x t

d x td x t
d x t −

+⎡ ⎤
⎢ ⎥+ ⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (3.26)

3.6.4. Action Neural Network (AcNN)

The core of the GDHP adaptive controller, the AcNN is responsible for the

generation of the control input ()u t . Similar to the IdNN, the AcNN is also built on a

 50

two-layered architecture, as can be seen in Figure 3.7 and in the network description in

equations (3.27) to (3.29). Equivalently, the superscript a is used over all variables

specifically related to the AcNN.

Figure 3.7. AcNN recurrent neural network architecture

()
(1)

() (1)
()
1

a a

t

x t
u t

p t a t
x t

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.27)

1() t a n s i g(() ())a a aa t W t p t= (3.28)

2 ()
() ()

1

a
a a t

u t W t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (3.29)

The training of the AcNN has the goal of producing the control sequence ()u t

that minimizes the cost function ()J t , defined in (3.2) as the sum of all future values of

…
…

()x t

(1)u t −

…
… ()ap t

1

()tx t

(1)aa t −

1()aW t 2 ()aW t1
()aa t

()u t

DD

TDLx

TDLu

 51

the utility function ()U t (3.1) with a decaying factor γ (0 1γ< <). The diagonal

matrices Q and R have the same purpose as S in the IdNN while ρ adjusts the degree

at which the amount of energy spent in the control effort is penalized relative to the

tracking error.

As in the IdNN, a steepest descent training algorithm was applied, resulting in the

update equation (3.30). For reasons that will become clear in the description of the critic,

the differentiation of ()J t with respect to the weights of the AcNN is not performed

directly from the infinite sum (3.2). The relationship (3.31) is used instead, resulting in

equation (3.32).

()(1) ()
T

a a a
a

d J tw t w t
d w

β ⎛ ⎞+ = − ⎜ ⎟
⎝ ⎠

 (3.30)

() () (1)J t U t J tγ= + + (3.31)

() () (1) (1) ()(1) (1)
() () ()

x u
a a

d J t d U t d x t d u t d u tt t
d w d u t d u t d u t d w

γ λ γ λ
⎛ ⎞+ +

= + + + +⎜ ⎟
⎝ ⎠

 (3.32)

where aβ is the learning rate of the AcNN, and ()()
()

x J tt
x t

λ ∂
=
∂

 and ()()
()

u J tt
u t

λ ∂
=
∂

 are

outputs of the CrNN.

The next step is the calculation of the derivative of the input with respect to the

weights of the AcNN. Equations (3.33-3.34) for the first layer and (3.35-3.36) for the

second layer were derived in the same fashion as (3.14-3.16) of the IdNN. Equation

(3.37) describes the way the full temporal derivative is obtained for both layers. It is

 52

important to call for attention that, different from the IdNN, the AcNN is positioned in a

closed loop with the plant. Therefore, in (3.33) and (3.35), the AcNN derivation path

extends to include information on the dynamics of the plant, approximated by the IdNN.

()

1

2 1
(: ,1: 1)1 1

1

() (1)
(1)() 0 0

() (1)d i a g (()) 0 0 ()
0 0 ()

(1)

a
a T

a
a a

e n d n xa a
a T

a

a

d x t d u t
d u t d wp t

d a t d u tI a t W t
d w d w

p t
d a t

d w

− −

⎛ − ⎞⎡ ⎤
⎜ ⎟⎢ ⎥−⎜ ⎟⎡ ⎤ ⎢ ⎥
⎜ ⎟−⎢ ⎥ ⎢ ⎥= − +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎜ ⎟−⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

O (3.33)

2
(: ,1:)1 1

() ()()
a

a
n h aa a

d u t d a tW t
d w d w

= (3.34)

()

2

2 1
(: ,1: 1)2 2

2

() (1)
(1)

() (1)d i a g (()) ()

(1)

a

a
a a

e n d n xa a

a

a

d x t d u t
d u t d w

d a t d u tI a t W t
d w d w

d a t
d w

− −

−⎡ ⎤
⎢ ⎥−⎢ ⎥

−⎢ ⎥= − ⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.35)

2
(: ,1:)2 2

() 1 0 0
() ()0 0 ()

0 0 () 1

a T

a
a

n h aa a
a T

a t
d u t d a tW t
d w d w

a t

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥
= +⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

O (3.36)

(1: ,:)

()
()

(1)

a

a

a
end nu

du t
du t dw

du tdw
dw −

⎡ ⎤
⎢ ⎥
⎢ ⎥=

−⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.37)

 53

On Equations (3.18) and (3.32), the derivative of the tap delayed input with

respect to itself was required. Equations (3.38-3.42) display how those are calculated.

Since (1)aW t + is not yet available at this stage, the terms with superscript tilde are

obtained using ()aW t as an approximation. Note that (1)ap t + used for the calculation of

(1)aa t +% can be generated by using the IdNN to estimate the future states of the plant

assuming (1)tx t + available.

(,)
(:,1:)

() ()0
() (1)

a a

nha nu
end nu

da t da t
du t du t −

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
 (3.38)

()2 1
(: ,1: 1)

(1)
()

(1) ()d i a g ((1)) (1)
() ()

()
()

a
a a

e n d n x

a

d x t
d u t

d a t d u tI a t W t
d u t d u t

d a t
d u t

− −

⎡ ⎤+
⎢ ⎥
⎢ ⎥
⎢ ⎥+

= − + + ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

%% (3.39)

2
(: ,1: 1)

(1) (1)(1)
() ()

a
a

e n d
d u t d a tW t

d u t d u t−
+ +

= +% (3.40)

()

(*(1) ,) (: ,1:)

() ()
0() (1)

n u

n u T D L u n u e n d n u

Id u t d u t
d u t d u t− −

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
 (3.41)

(1: ,:)

(1)
()(1)

()()
() e n d n u

d u t
d u td u t

d u td u t
d u t −

+⎡ ⎤
⎢ ⎥+ ⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (3.42)

 54

In later developments, the information on how the future input is affected by the

present states of the plant is required. For such purpose, Equations (3.43-3.47) are

provided.

(,)
(:,1:)

() ()0
() (1)

a a

nha nx
end nx

da t da t
dx t dx t −

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
 (3.43)

()2 1
(: ,1: 1)

()
()

() (1)d i a g (()) ()
() ()

(1)
()

a
a a

e n d n x

a

d x t
d x t

d a t d u tI a t W t
d x t d x t

d a t
d x t

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−

= − ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.44)

2
(: ,1: 1)

() ()()
() ()

a
a

e n d
d u t d a tW t
d x t d x t−= (3.45)

(* ,)
(: ,1:)

(1) (1)0
() (1)n u T D L u n x

e n d n x

d u t d u t
d x t d x t −

⎡ ⎤− −
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
 (3.46)

(1: ,:)

()
()()

(1)()
() e n d n u

d u t
d x td u t

d u td x t
d x t −

⎡ ⎤
⎢ ⎥
⎢ ⎥=

−⎢ ⎥
⎢ ⎥
⎣ ⎦

 (3.47)

3.6.5. Critic Neural Network (CrNN)

The third and final neural network, the critic is responsible for the estimation of

the cost function ()J t and of its derivatives with respect to the inputs and states (()u tλ

 55

and ()x tλ respectively). Consistent with the notation of the other two NNs, all variables

specifically related to the CrNN are marked by a superscript c. As shown from the

network description in Figure 3.8 and Equations (3.48-3.50), the before mentioned

derivatives are obtained directly as outputs of the network, instead of through

backpropagation from the cost function.

()
()

()
(1)
1

c
c

x t
u t

p t
a t

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 (3.48)

1() t a n s i g(() ())c c ca t W t p t= (3.49)

2

()
()

() ()
1

()

x T
c

u T c

t
a t

t W t
J t

λ
λ
⎡ ⎤

⎡ ⎤⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥⎣ ⎦

 (3.50)

Figure 3.8. CrNN recurrent neural network architecture

…
…

()x t

()u t

…
… ()cp t

1

(1)ca t −

1()cW t 2 ()cW t1
()ca t ()J t

DD

TDLx

TDLu

 56

The GDHP critic’s weight update equation (3.51) is a combination of the training

algorithms of HDP (minimizing the estimation error of ()J t) and DHP (minimizing the

estimation error of ()tλ). Although the influence of the HDP and DHP algorithms can be

decoupled in the update of the weights of the second layer, both terms equally affect all

the weights of the first layer. This superposition of training approaches in the first layer

of the CrNN is the main source of the synergy of GDHP [51].

()()(1) () (1) () ()

()
()()

()() ()

T
c c c o

c

Tx T

oxxc
c

uu T ou

c

d J tw t w t J t J t
d w

d t
ttd w

td t t
d w

β η

λ
λλ

β η
λλ λ

⎛ ⎞+ = − − −⎜ ⎟
⎝ ⎠

⎡ ⎤
⎛ ⎞⎢ ⎥ ⎡ ⎤⎡ ⎤⎜ ⎟⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦

 (3.51)

where cβ is the learning rate of the CrNN and []0,1η∈ is a parameter that adjusts how

HDP and DHP are combined in GDHP. For 0η = , the training of the CrNN reduces to a

pure HDP, while 1η = does the same for DHP.

Since the cost function ()J t is a weighted sum of present and future variables, the

targets ()oJ t , ()ox tλ and ()ou tλ are not analytically available when performing online

learning. In order to generate values that will in time converge to the true targets,

relationship (3.31) is used, resulting in Equations (3.52-3.54).

() () (1)oJ t U t J tγ= + + (3.52)

() () (1) (1)() (1) (1)
() () () ()

o
ox x uJ t U t d x t d u tt t t

x t x t d x t d x t
λ γ λ λ

⎛ ⎞∂ ∂ + +
= = + + + +⎜ ⎟∂ ∂ ⎝ ⎠

 (3.53)

 57

() () (1) (1)() (1) (1)
() () () ()

o
ou x uJ t U t d x t d u tt t t

u t u t d u t d u t
λ γ λ λ

⎛ ⎞∂ ∂ + +
= = + + + +⎜ ⎟∂ ∂ ⎝ ⎠

 (3.54)

The next step is the calculation of the partial derivatives of the critic’s outputs

with respect to its weights. Equations (3.55-3.57) demonstrate how those are obtained.

()2 1
(:, : 1)1 1

() 0 0
() (1)diag(()) 0 0 ()

0 0 ()

c T
c c

c c
end nhc endc c

c T

p t
da t da tI a t W t
dw dw

p t
− −

⎛ ⎞⎡ ⎤
⎜ ⎟−⎢ ⎥= − +⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

O (3.55)

1

2
(:,1: 1)1 1

1

()

() ()()

()

x T

c

u T c
c

endc c

c

d t
dw

d t da tW t
dw dw
dJ t
dw

λ

λ
−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (3.56)

2

2

2

()

() 1 0 0
() 0 0

0 0 () 1()

x T

c a T

u T

c
a T

c

d t
dw a t

d t
dw

a tdJ t
dw

λ

λ

⎡ ⎤
⎢ ⎥

⎡ ⎤⎡ ⎤⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥
= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥

⎢ ⎥
⎣ ⎦

O (3.57)

Completing the requirements of Equations (3.53-3.54), the partial derivatives of

the utility function with respect to the states and inputs are provided in Equations (3.58-

3.59). Equation (3.60) shows how the full derivative of the utility function with respect to

the inputs is calculated, as required in (3.32).

 58

()() () ()
()

TtU t x t x t S
x t

∂
= −

∂
 (3.58)

() ()
()

TU t u t R
u t

ρ∂
=

∂
 (3.59)

() () () () ()
() () () () ()

dU t U t dx t U t du t
du t x t du t u t du t

∂ ∂
= +
∂ ∂

 (3.60)

3.6.6. Complete GDHP algorithm

A key issue in all adaptive critic designs implementation is how to coordinate the

online training of the three NNs. While the IdNN is trained independently since it uses

information of the plant alone, the training of each AcNN and CrNN depends on the

weights of the other. If no provisions are made, both networks are forced to follow a

moving target, making the whole process potentially slower and likely unstable. In [33],

four different strategies were discussed and compared through the application on two

different test beds, demonstrating the superior performance, stability and reduced training

time of a particular one that we choose to implement. Although the original work was

developed for the DHP architecture, the extension to GDHP is straightforward. The

strategy of interest differs from others by the fact that it utilizes two distinct NNs to

implement the critic. The first (CrNN#1) outputs J(t) and ()tλ and is trained at every

iteration whereas the second (CrNN#2) outputs J(t+1) and (1)tλ + and is updated with a

copy of the first only once at a given period of iterations (i.e., epoch). With such training

approach, it is possible to train both AcNN and CrNN continuously allowing the adaptive

 59

critic controller to start responding to a fault as soon as it occurs. The final architecture is

shown in Figure 3.9.

Figure 3.9. Globalized Dual Heuristic Programming

Table 3.1. Pseudocode for the presented GDHP controller

1. Set 1t = , e = 1. Initialize neural networks weights and network derivatives.
Estimate (1)ix ;

2. Sample the plant states ()x t and desired trajectory ()tx t ;
3. Update the weights of the IdNN by generating (1)iw t + - Equations (3.13-3.16);
4. Feedforward through all 3 NNs (AcNN and CrNN twice) to generate in this order:

()u t , (1)ix t + , (1)u t +% , ()x tλ , ()u tλ , ()J t , (1)x tλ + , (1)u tλ + and (1)J t + -
Equations (3.9-3.11,3.31-3.32,3.48-3.50);

5. Calculate ()U t - Equation (3.1);
6. Backpropagate to generate (1)

()
dx t

du t
+ , (1)

()
dx t

dx t
+ , (1)

()
du t

du t
+ and ()

()
du t
dx t

 - Equations

(3.17-3.26,3.38-3.47)
7. Calculate ()

()
dU t
du t

 - Equations (3.58-3.59)

8. Update the weights of the AcNN by generating (1)aw t + - Equations (3.30-3.37);
9. Update the weights of the CrNN by generating (1)cw t + - Equations (3.51-3.57);
10. If e = epoch, copy the weights of CrNN#1 to CrNN#2 and set e = 1;
11. 1t t= + , e = e + 1. Return to 2.

AcNN CrNN
(1)x tλ +(1)ix t +

(1)tx t +
()u t

(1)u t +%

(1)ix t +

CrNN

DD

(1)x t +()u t
()tx t

()x t

DD

(1)ix t +

PlantAcNN

IdNN()u t

(1)u t −

()x t

()u t
()x t

(1)u tλ +

()x tλ
()u tλ

(1)J t +

()J t

CrNN
#2

CrNN
#1

 60

With all the mathematical content of GDHP already available in Equations (3.1)

through (3.60), a pseudocode version of the actual algorithm is presented in a condensed

format in Table 3.1.

3.7. Simulation results

In order to demonstrate the capabilities of the identification network and provide a

better understanding of the fine interrelations between the supervisor and DHP controller,

two numerical examples are exploited. In both examples, faults are simulated by instantly

or gradually changing the model of the plant. To give a better insight to the challenge of

each fault scenario, linear models of fixed order similar to those employed in [38] are

used here. This information however, is not used in any way during the design of the fault

tolerant controller, that continues to take the plant as possessing a generic nonlinear

model.

3.7.1. Identification using a recurrent neural network

The goal of the following example is to display the capabilities of the single

layered recurrent network to perform the identification of linear difference systems. An

input signal is supplied in the form of a fixed frequency sine wave that changes mean and

amplitude only once during the simulation. Since in the final application the input to the

plant generated by the actor network is not necessarily composed of a large range of

 61

frequencies, the input with a limited spectrum represents a challenging but possible

scenario in practice.

Four systems are presented in the sequence displayed in Table 3.2. The network is

allowed 50 seconds for the identification of the first model, 30 for the second and 20 for

the third. The fourth and final model is unstable and the applied sinusoidal input steeply

drives the output to positive infinity. A variable learning rate with maximum value of

0.004 is used.

Table 3.2. Sequence of changes in the dynamics of the plant applied for the identification example
Start time (ds) Plant dynamics

0)2(00566.0)1(00566.0)2(8187.0)1(810.1)(−+−+−−−= tututytyty
500)2(00566.0)1(00566.0)2(9000.0)1(810.1)(−+−+−−−= tututytyty
800)2(00234.0)1(00242.0)2(9048.0)1(810.1)(−+−+−−−= tututytyty

1000)2(00234.0)1(00242.0)2(9048.0)1(919.1)(−+−−−−−= tututytyty

Figure 3.10. Results of the identification simulation. Plant signals are displayed in solid lines and the

identification network output in dashed lines.

Plant output
&

Identification

Plant input

 62

In Figure 3.10, the performance of the identifier can be seen. The small learning

rate applied generates a slow initial reaction, but the identification signal remains close

enough to the true plant output throughout the simulation in spite of the changes in the

range of input and plant dynamics from model one to model three. As the fourth dynamic

causes the output of the plant to grow steadily at increasing rates, it is not feasible for an

identifier with a maximum learning rate to produce true identification indefinitely. Still

the recurrent neural network based identifier fulfils its goal until the output becomes 45

times larger than the normal range of operation. In the complete scheme, this would allow

the actor network more than 70 iterations to restructure itself in any way that would at

least decrease the rate of divergence.

3.7.2. Fault Tolerant Control using a GDHP controller

This subsection brings the results of the application of the GDHP controller as a

solution to the FTC problem. The power and flexibility of the combined three NNs is

then demonstrated in a simulation involving a nonlinear MIMO system subject to

challenging faults. Based on a numerical testbed for adaptive control of nonlinear

systems introduced in [36], we propose the two-input, two-output, third-order nonlinear

system described by (3.61) as the structure for the subsequent experiments.

 63

() 1 1 1
1 1 1 1 22 2 2

1 1 1

1.5 () () 2 ()(1) ()sin () () ()
1 () () 1 ()

x t u t x tx t x t x t u t u t
x t u t x t

⎛ ⎞
+ = + + +⎜ ⎟+ +⎝ ⎠

A B

()() 3
2 3 3 2

3

()(1) () 1 sin 4 ()
1 ()

x tx t x t x t
x t

+ = + + +
+

C

()()3 1 2(1) 3 sin 2 () ()x t x t u t+ = + +D

[]1 2(1) (1) (1) TR t x t x t+ = + + ,

where A, B, C and D vary according to Table 3.3, characterizing the dynamics of the

system in the nominal condition, as well as under abrupt and incipient fault scenarios. In

the particular case of the incipient fault, the values of A and B vary between the extremes

shown in Table 3.3 in a continuous fashion through the course of 5,000 iterations. Note

that the proposed faults are not limited to parameter changes alone. The introduction of

new dynamics elements enables the GDHP controller to demonstrate its advanced

restructuring capabilities.

Table 3.3. Modifications in the dynamics caused by the occurrence of faults

(3.61)

 64

The FTC challenge is to constantly adapt the GDHP controller in order to track

the trajectory defined by (3.62), while the system dynamics change in the following

order: nominal → abrupt fault → nominal → incipient fault → abrupt fault.

1
2 2() 0.5sin 0.5sin
500 250

r t tR t π π⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2
2 2() 0.25sin 0.75sin
500 250

r t tR t π π⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.62)

Figure 3.11. Successful control input sequences developed online by the GDHP controller for each
scenario the plant assumes during the simulations. Solid lines correspond to 1()u t and dotted lines to 2 ()u t .

Although the GDHP controller continually fine-tunes itself to reduce the tracking

error, an average squared tracking error of .02 is set as a performance goal. Therefore, the

reconfiguration time is defined as the interval between the occurrence of a fault (or abrupt

return to the nominal condition) and the recovery of the performance goal. Figure 3.11

displays the different control efforts generated online by the GDHP controller after the

 65

performance goal is achieved at the nominal and abrupt fault scenarios. The control

inputs for the final dynamics of the incipient fault are also shown for comparison. The

introduction of the incipient fault illustrates the capability of the GDHP of constantly

modifying itself to account for the gradual modifications in the dynamics of the plant,

while the performance is maintained throughout the process. For improvements brought

by the addition of the supervisor that will become clear in the following chapter, it is

important to note that the free running GDHP controller, during the transition from the

abrupt fault to the nominal dynamics, required 11.4×103 iterations, and the transition

from the incipient fault to the abrupt fault required 13.1×103 iterations. As an example,

the output of the plant during the transition from nominal to abrupt fault is shown in

Figure 3.12.

Figure 3.12. Plant output as the abrupt fault is introduced at iteration 5,000.

Reconfiguration Abrupt Fault

 66

CHAPTER 4 – Fault Tolerant Control Supervisor

4.1. Proposed supervisor

In the proposed scheme, the goal of the supervisor is to monitor the system and

manipulate the dynamic database accordingly. Measuring the quality of the control

performance and analyzing its evolution through time indirectly detect faults. By

augmenting this information with the knowledge of how close any model in the database

approximates the current dynamics, faults are isolated into any of the currently known

fault scenarios. In addition to that, faults are also automatically classified into abrupt or

incipient, a key factor in the decision of when to switch to a control law present in the

database.

To better understand the details of the functionality of the supervisory system, it

can be divided into three layers. The first one collects and analyzes data from the plant

and the controller block. The second is responsible for the decision making and the final

one devises ways to implement the resolutions.

4.1.1. Quality indexes generation layer

The first layer receives the sampled output of the plant ()R t and a delayed input

(1)u t − , computes two quality indexes and indicates the known scenario that better

 67

approximates the current dynamics. The first quality index, ()cq t , measures the

reconfigurable controller performance by performing a decaying integration of the

primary utility function as shown in Equation (4.1),

∫ −−=
t

t
c dUetq c

0

)()()(τττξ , (4.1)

where 0 1cξ< < is a time decay factor. In this structure, greater time decay factors will

lead to ()cq t being more affected by the quality of control actions related to instances

further into the past. Concerning the occurrence of abrupt faults, adopting a cξ closer to

the unity will lead to a more conservative supervisor that will observe the reconfigurable

controller longer before adding a new solution to the DMB and will also wait for a longer

period of poor performance before detecting a fault.

For the calculation of the second quality index, the delayed input is then fed into

the DMB. The DMB contains information on the plant under nominal condition and

under all the known fault scenarios, organized in the form of copies of the IdNN, AcNN

and CrNN used to control the plant under each situation. To guarantee their

specialization, no additional training is performed on networks once inserted into the

DMB. Each one of the IdNNs in the DMB is then used to generate an identification error.

For each of those, a decaying integration similar to Equation (4.1) is used, and the results

are compared. As shown in Equation (4.2), the smallest identification error history

defines the identification quality index ()iq t , and the corresponding model m is

appointed as the switching candidate.

 68

()

0

ˆ() min () ()i

t
t m

i m M
q t e R R dξ τ τ τ τ− −

∈

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫ , (4.2)

where 0 1iξ< < is a time decay factor, and ˆ ()mR t is the vector of outputs predicted by

the IdNN m , which in turn is an element of the set of M models in the DMB. As with

cξ , the identification decay factor iξ can also be used to fine-tune the behavior of the

supervisor. Greater identification decay factors will also lead to a more conservative

supervisor in the sense that it will require more data points to conclude that the observed

plant dynamics match the ones described by one of the known faults.

4.1.2. FDI and decision-making layer

In the second layer, a threshold is defined for each of the quality indexes, dividing

them into high (cHq , iHq) and low (cLq , iLq) values. The threshold for)(tqc defines

what is to be considered as an acceptable performance, while the one for)(tqi stipulates

the degree of likeness of the input-output behavior that should be used to consider two

models distinct. Four states, tagged 1 to 4, are in this way defined and the decision

process illustrated in Figure 4.1 takes place. It’s important to notice that in this

formulation the actions of switching and adding to the database take place in the

transition between states. This characteristic, added to the improved smoothness of the

quality indexes bestowed by the regressive mean, aids in the generation of the hysteresis

 69

required to prevent the automatic switching scheme to generate spurious oscillations

between states.

If both indexes are low (state 1), the current reconfigurable controller is

performing satisfactorily over a known environment and no action is required. While in

this state, an abrupt fault may cause the performance to be degraded enough for the

controller quality index to surpass its threshold. In this case,)(tqi will remain low or

grow on the respective events of a known or unknown fault.

unknown
mode

Lqc Hqi

3

free
learning
Hqc Hqi

2

known
mode

Lqc Lqi

1

switched
learning
Hqc Lqi

4

unknown
mode

Lqc Hqi

3

free
learning
Hqc Hqi

2

known
mode

Lqc Lqi

1

switched
learning
Hqc Lqi

4

Figure 4.1. Decision graph of the second layer of the supervisory system. The states, tagged 1 to 4, are

defined by the quality measures)(tqc and)(tqi . The moments when the actions of switching and adding
to the database are performed are shown on the graph.

 70

If both indexes exceed the threshold (state 2), the environment has abruptly

changed due to an unknown fault, and the supervisor is unable to provide any help to the

DHP controller. If)(tqi remains low, there is already a set of DHP parameters in the

DMB previously adapted to deal with a plant with similar dynamics and to which

switching should take place. The decision process then remains in state 4 (cHq and iLq)

until either the system is recovered or another fault takes place before that. If the

composite fault is also a known fault, switching takes place again triggered by the change

in the switching candidate appointed by the first decision layer.

Incipient faults, often connected to component aging, may be gradually adjusted

by the reconfigurable controller and eventually indicate a high)(tqi , even though)(tqc

remains low during all the process (transition from state 1 to 3). In this case, there is no

purpose in learning a new environment/controller pair since the parameters are

continuously changing. As a matter of fact, if allowed to learn all the transient models,

the database might rapidly grow to an intractable size.

When the DHP controller is adapting to a new environment (state 2),)(tqc is

expected to decrease to the point where it crosses its threshold (transition to state 3) and a

new set of parameters is added to the DMB, but two other scenarios must also be

considered. The first one deals with the possibility of an abrupt known fault to happen

before the first fault is completely dealt with. In this case)(tqi reaches a low value prior

to)(tqc and switching to the known environment takes place. The second scenario

addresses to the situation in which, due to the particular nature of the fault or controller

limitations, an acceptable performance is never met for the present plant dynamics.

 71

4.1.3. The Dynamic Model Bank layer

The third and last layer manipulates the DMB by making new entries and

switching to the reconfigurable controller indicated by the fist layer, when requests arrive

from the second. Switching is implemented by loading a complete set of parameters of

the three neural networks (i.e., identification, action and critic networks) to the DHP

algorithm currently being used. The fact that the controller is switched to one devised to a

similar plant and the natural generalization capabilities of neural networks add to improve

stability when the parameters are loaded as new initial conditions to the adaptive process.

In the database are also stored copies of all the partial derivatives required when updating

the networks using backpropagation through time. Uploading those derivatives also

works to increase switching smoothness since more information about the plant new

dynamics is supplied.

4.2. Performance evaluation

Throughout the course of the presented study, different FTC methods will be

implemented and applied to benchmark problems. In order to compare the performance

of the existing approaches and evaluate the benefits brought by the proposed techniques,

more than visual inspection of a few simulation results is required.

Given a benchmark plant under a specific sequence of fault scenarios, the

performance of different Fault Detection methods can be compared by the number of

 72

misdetections and false alarms generated. A fault that goes undetected, even when the

system as a whole is not significantly affected by it, reduces the available redundancy of

the system. Since no indication of its occurrence is issued, the plant does not have the

option of stopping for a corrective maintenance and, once the redundancy is depleted, the

next fault will be unrecoverable and may lead to disastrous consequences. False alarms

are generally less prone to cause such extreme consequences, however, since incorrect

information is given to the supervisor, it may generate inappropriate control actions. The

average and maximum detection delay times are also important parameters since

detection is the first step to FTC and before that, no active response can be initiated by

the controller.

In a similar spirit, fault identification quality can also be measured quantitatively

by counting the number of times of misidentification and incorrect identification and

measuring the identification delays. Incorrect identification will lead to control actions

that may be invalid for the true dynamics of the plant with possibility of aggravating the

currently detected fault scenario. Misidentification will prevent the supervisor to supply

the control law already available to a known fault scenario, causing longer

reconfiguration times or even unwanted responses in the cases when specific solutions

are added during design time to deal with particular faults.

Representing the primary goal, availability is the most important index of success

of a FTC scheme. In a simulated test sequence, availability concept can be better

represented by the mean and maximum time of recovery and the number of faults a

particular algorithm completely fails to address. Other performance evaluation indexes,

such as required computational complexity and reconfiguration steady state performance,

 73

may also be used to increase distinguishability and analyses of different techniques and

proposed improvements.

4.3. Simulation studies

4.3.1. Discrete-time linear SISO plant

In this subsection, a numerical example based on a discrete-time SISO linear plant

is used to illustrate the dynamics of the proposed FTC algorithm. Special emphasis is

given to the actions of the supervisor system, which is the intelligent core of the

algorithm. For the sake of simplicity and understanding in this first example, the plant

consists of a linear ARMA model, which faults reflect in changes in its parameters. The

models, sampled at 10Hz, used to simulate the plant under nominal operation and under

each of the artificial faults are given in Table 4.1.

Table 4.1. Plant dynamics under nominal and faulty operation conditions.
Scenario Plant dynamics
Nominal)2(0055.0)1(0058.0)2(8187.0)1(810.1)(−+−+−−−= tututytyty
Fault 1)2(0060.0)1(0070.0)2(0250.0)1(000.1)(−+−+−−−= tututytyty
Fault 2)2(0040.0)1(0050.0)2(8187.0)1(810.1)(−+−+−−−= tututytyty
Fault 3)2(0078.0)1(0479.0)2(5337.0)1(515.1)(−+−−−−−= tututytyty
Incipient)2(0044.0)1(0048.0)2(8294.0)1(810.1)(−+−+−−−= tututytyty

The incipient fault occurs over the nominal model, changing its dynamics

gradually until the one given above. The simulation was carried out with the plant being

abruptly changed to a different model at every 10 minutes. The goal is to follow a

 74

trajectory composed by a sine wave that changes the amplitude randomly at every half a

period. The DMB is initialized with only one model corresponding to the initial

conditions of the DHP controller (small random numbers as parameters for all networks).

Since in this case no beforehand information about the system is given to the plant,

initially the nominal plant is treated as an unknown fault and therefore the system begins

in the state where both indexes are high. Figure 4.2 shows the graphs containing the

results that are discussed in detail in the following paragraphs.

Figure 4.2. The top graph brings the desired trajectory (dashed green), the output of the plant (solid blue)

and the output of the identification network while it adapts (dotted red). The second graph displays the
input to the plant as calculated by the adaptive critic controller. The third and fourth graphs show the

quality indexes)(tcq and)(tiq respectively, along with the thresholds used. The labels (a) to (f) indicate
moments at which the supervisor acted.

After the initial transient response, as soon as)(tqc indicates a low value, the

supervisor flags a control success and adds the nominal model to the DMB (indicated by

Nominal Fault 1 Nominal Fault 2 Fault 3 Incipient Fault 3

Plant
output

Plant
input

)(tqc

)(tqi

high
low

high
low

(a) (b) (c) (d) (e) (f)

 75

(a) in Figure 4.2). The copy of the identification network, that is now part of the DMB,

generates a low identification error causing)(tqi to drop.

The identification quality index)(tqi remains low after a model is added even

thought the training has been stopped and new inputs are being supplied, indicating two

main achievements of the proposed FTC scheme. The first one is that the neural network

used as identifier in the DHP architecture was capable of converging to represent the true

dynamics of the system. The second is that the supervisor was able to recognize the

proper moment when a new identifier and controller pair should be memorized.

After the first 10 minutes of simulation the first fault occurs abruptly changing the

dynamics of the plant. While the adaptive controller reconfigures itself to the new

scenario, both indexes grow indicating that the system is going through an abrupt

unknown fault. As)(tqc drops to an acceptable level (at (b) in Figure 4.2), the first fault

model is recorded along with the controller that was specifically designed on-line to deal

with it.

After 20 minutes of simulation, the plant returns to the nominal mode. Due to the

change in the dynamics,)(tqc increases due to the drop in the performance. On the other

hand,)(tqi shows only a thin spike indicating that there already exists an element in the

DMB that was previously designed to deal with a system similar (in this case identical) to

the present one. Therefore switching takes place at (c) leading to a much faster response.

The second fault is introduced at 30 minutes. By comparing with the identifier

adapted for the nominal plant, the supervisor concludes that the dynamics are not

different enough to justify a new entry in the database. This property is of extreme

importance in order to achieve a database capable of covering all the known space while

 76

maintaining a compact set of recorded models. The third fault on the other hand, requires

a major reconfiguration in the controller, and so it is also added to the DMB after

convergence at (d).

After 50 minutes of simulation, the plant is instantly reverted to the nominal

model and the incipient fault is applied over it. Since in the initial moments the dynamics

are still similar enough to the ones of the nominal model, switching takes place at (e),

shortly after 50 minutes. As the parameters of the plant are changed, the controller is

capable of constantly reconfiguring itself and the tracking error remains low. As the

dynamics of the plant deviate farther from the nominal ones,)(tqi increases to the point

when the supervisor correctly diagnosticates the occurrence of an incipient fault. Around

57 minutes,)(tqi once again falls as the input-output relation of the plant now

approximates itself to the one stored when the first fault was learned.

To illustrate the effectiveness of the algorithm when a fault presents itself for the

second time, fault 3 is introduced again at 60 minutes. As soon as the environment is

recognized as a known one by low values of)(tqi at (f), switching takes place generating

a smother and faster response.

It is important to note that throughout this example the supervisor was capable of

correctly differentiating between small changes in the dynamics and faults that required

greater control law reconfiguration. Using the previously discussed decision logic, the

faults were successfully classified according to their time profile and knowledge stored in

the database. As the DHP controller generated identification models and control laws to

counter the unknown abrupt faults, the supervisor incorporated both to the database at the

adequate moments. As models were presented for the second time, switching to the

 77

previously adapted control laws took place to accelerate recovery and improve transient

response.

4.3.2. Continuous-time linear SISO plant

In the spirit of [38], for the sake of simplicity and understanding, the plant

consists of a simple linear model, subject to faults resulting in changes in its parameters

and order of the numerator and denominator polynomials. The models, sampled at 10Hz,

used to simulate the plant under nominal operation and under each of the artificial faults,

are given in Table 4.2.

Table 4.2. Nominal and Fault Dynamics

It is important to call to attention now that the incipient fault occurs over the

nominal dynamics, changing it gradually with time since its occurrence it (in minutes).

The simulation was carried with the plant being abruptly changed to a different model at

every 16.67 minutes (104 iterations). The goal is to follow a reference trajectory

composed of a sine wave that randomly changes the amplitude at every half a period.

 78

Figure 4.3. The top graph shows the desired trajectory (dashed) and the output of the plant (solid). The
second graph displays the input to the plant as calculated by the GDHP controller. The third and fourth

graphs show the quality indexes ()cq t and ()iq t , along with the thresholds used.

Since in this case no beforehand information about the system is given to the

plant, initially the nominal plant is treated as an unknown dynamics and therefore, as

displayed in Figure 4.3, the system begins with both quality indexes high (State 2 of the

supervisor’s decision logic). After the initial transient response, as soon as ()cq t indicates

a low value and the decision logic moves to State 3, the supervisor flags a control success

and adds the nominal model to the DMB. The copy of the identification network, that is

now part of the DMB, generates a low identification error causing ()iq t to drop sharply,

leading to State 1. This sequence of events can be traced in the decision logic’s state

transitions highlighted in Figure 4.4 (a). For more details on the transition, the readers are

referred to Figure 4.1. The identification quality index ()iq t remains low after a model is

 79

added even though the training has been stopped and new inputs are being supplied,

indicating two main achievements of the proposed FTC scheme. The first one is that the

neural network used as an IdNN in the GDHP architecture was capable of converging to

represent the true dynamics of the system. The second is that the supervisor was able to

recognize the proper moment when a new set of neural networks should be memorized.

Figure 4.4. Four key transition sequences in the decision logic of the FTC supervisor. (a) adding the
nominal model to the DMB; (b) adding an abrupt fault model to the DMB; (c) switching to a known

solution; (d) dealing with an incipient fault.

After the first 104 iterations Fault 1 is introduced, abruptly changing the dynamics

of the plant. While the reconfigurable controller adapts itself to the new scenario, both

indexes grow (State 2), indicating that the system is going through an abrupt unknown

fault. As ()cq t drops to an acceptable level (State 3), the first failure mode is recorded

 80

along with the controller that was specifically designed on-line to deal with it. The

decision logic shortly moves to State 1, as the new IdNN inside the DMB is now capable

of describing the dynamics of the first fault. This sequence of events is perceived by the

supervisor’s decision logic through the state transitions shown in Figure 4.4 (b).

At iteration 2×104, the plant returns to the nominal mode. Due to the change in the

dynamics, ()cq t increases due to the degradation in the performance. On the other hand,

()iq t shows only a thin spike indicating that there already exists an element in the DMB

that was previously designed to deal with a system similar (in this case identical) to the

present one. Following the FTC supervisor’s decision logic shown in Figure 4.4 (c),

switching takes place in the transition from State 1 to State 4, leading to a quicker and

more precise recovery. Figure 4.5 illustrates such benefits by displaying the plant output

at critical moments and comparing the results improved by supervisory action with the

outcome of a free-running GDHP controller (i.e., without the FTC supervisor

intervention) when faced with the same fault sequence.

Going back to the complete timeline shown in Figure 4.3, Fault 2 is introduced at

iteration 3×104. By comparing with the IdNN adapted for the nominal plant, the FTC

supervisor concludes that the dynamics are not different enough to justify a new entry in

the DMB. This property is of extreme importance in order to achieve a DMB capable of

covering all the known space, while maintaining a compact set of recorded models. Fault

3, on the other hand, requires major reconfiguration in the controller. At iteration 44,218

the supervisor determined that a solution to Fault 3 has been successfully designed and so

it is also added to the DMB.

 81

Figure 4.5. Plant output (solid) and desired trajectory (dashed) display the increase in performance and
reconfiguration time brought by the application of the proposed FTC supervisor.

After iteration 5×104, the plant dynamics abruptly revert to nominal and are

shortly followed by the gradual changes brought by the incipient fault. Since in the initial

moments the dynamics are still similar enough to the ones of the nominal model,

switching takes place shortly after iteration 5×104 following once again the path shown in

Figure 4.4 (c). Figure 4.5 displays the dramatic reduction in the recovery time and

oscillation brought by the switch operation. As the parameters of the plant are changing

over time during the incipient fault, the controller is capable of constantly reconfiguring

 82

itself, and the tracking error remains low. As the dynamics of the plant gradually become

more different from the nominal ones, ()iq t increases to the point when the decision

logic moves from State 1 to State 3 and the supervisor correctly diagnoses the occurrence

of an incipient fault. The response of the decision logic to an incipient fault is shown in

Figure 4.4 (d).

4.3.3. Continuous-time nonlinear MIMO plant

In this Subsection, we revisit the nonlinear MIMO plant explored in Section 3.7.2

when a GDHP controller was used as a FTC solution by itself. Recall that the plant in

question is a two-input, two-output, third-order nonlinear system described by Equation

(4.61) and the goal is to track the trajectory described by Equation (4.62) while the plant

goes through a sequence of unexpected (from the point-of-view of the supervisor) fault

scenarios.

In the first simulation, without a supervisor, the GDHP controller alone managed

to produce satisfactory results provided enough time was allowed for a solution to evolve

online. As commented previously however, although the GDHP controller is a successful

nonlinear adaptive controller, due to the lack of long-term memory, long reconfiguration

times have to be allowed even when the plant abruptly changes to previously visited

scenarios. In the particular case of the simulation presented in Chapter 3, the transition

from the abrupt fault to the nominal dynamics required 11.4×103 iterations, and the

transition from the incipient fault to the abrupt fault required 13.1×103 iterations.

 83

In this chapter the proposed supervisor is added to the architecture of the

simulated FTC solution. Knowledge of the nominal dynamics was assumed to exist

during design time, and so the DMB is initialized with knowledge of a solution for this

particular scenario. On the other hand, no knowledge about the fault dynamics is

introduced prior to the experiment.

Figure 4.6. Two plots of the plant output as the abrupt fault is introduced at iteration 5,000. Top plot: the
supervisor has no knowledge of the fault in the DMB. Bottom plot: the supervisor accelerates

reconfiguration by switching to a previously stored solution. Reconfiguration time is indicated by the
highlighted area.

The key events of the second simulation concerning the handling of the twice the

abrupt fault manifests have been summarized in Figure 4.6. Forty three iterations after the

Reconfiguration Abrupt Fault
Solution added

Switching point
Reconfiguration

 84

transition from the nominal to the abrupt fault dynamics, the supervisor declares the

occurrence of an abrupt unknown fault. As the GDHP controller converges to a

satisfactory solution for the abrupt fault scenario, the supervisor adds copies of the three

neural networks to the DMB. Having acquired the knowledge of an effective control

solution, the supervisor recognizes when the same dynamics appear in the transition from

incipient back to the abrupt fault and performs a switch operation at iteration 3.7×103

after the fault took place. The supervisor’s intervention led to a reduction of the

reconfiguration time to 5.4×103 iterations.

Performing a similar operation, the supervisor also makes use of the knowledge

provided during design time to accelerate the reconfiguration of the GDHP controller

when the plant returns to the nominal dynamics after going through the abrupt fault

scenario. Switching reduces the reconfiguration time of the transition between the abrupt

fault to the nominal dynamics to 5.2×103 iterations. When compared to the results of the

first simulation, the contribution of the supervisor reduced the reconfiguration time of the

GDHP controller by a factor greater than two in all transitions in which knowledge was

already present inside the DMB.

4.4. Summary

In this chapter, a multiple model approach to FTC based on an intelligent

Dynamic Model Bank is proposed. The application of GDHP as a reconfigurable

controller is shown to give the hierarchical algorithm the degree of flexibility required to

deal with both abrupt and incipient changes in the plant dynamics due to faults. The FTC

 85

supervisor system is used to accelerate the convergence of the method by loading new

initial conditions to the GDHP when the plant is affected by a known abrupt fault. A

decision logic is presented through which new fault scenarios are recognized and

assimilated on-line by the DMB along with parameters for the corresponding controller.

Through a synergistic integration of these essential elements the online fault tolerant

control has become feasible. Finally, these properties are successfully illustrated in the in-

depth exploration of numerical simulation examples.

 86

CHAPTER 5 – Controller Malfunction Detection and
Recovery

5.1. Introduction

In the previous chapters of this report, we have proposed, as a solution to the FTC

problem, the use of a nonlinear adaptive controller running under a FTC supervisor

shown to improve the performance of the underlining controller in the event of faults.

Since the reasoning behind the performance improvement brought by the FTC supervisor

is the same for any nonlinear adaptive controller, the choice of an adaptive critic design

as the baseline controller is based on other independent factors. In fact, adaptive critic

designs (specifically the implemented GDHP controller) are capable of achieving

superior performance by combining three different NNs: an identification NN that

produces information of the dynamics of faults as they occur, a critic NN to estimate the

impact of the underlying control strategy over time; and an action NN to generate real-

time control actions to accommodate faults as they emerge.

The questions that arise when using NNs as building blocks of an adaptive

controller are how to perform online learning in an effective manner for the most

diversified scenarios and how to guarantee stability. As for the first question, NN has

been well regarded as an effective tool in function approximation due to its universal

nonlinear mapping capability [27]. However, under the current state-of-the-art NN

 87

designs, proof of convergence still requires that widely restrictive conditions are met, as

the ones presented in [52] and [53]. Independent of its implementation, adaptation

flexibility and stability are still conflicting specifications for all nonlinear adaptive

controller paradigms and therefore a suitable compromise must be reached for each

application. Since the goal of the presented work requires that solutions be found even

when an unknown nonlinear fault becomes active, adaptation flexibility and nonlinear

mapping power are essential. Therefore, the choice of NNs as function approximators,

specially when applied in an adaptive critic architecture, is justified. However it is

important to account for the fact that the unpredictable occurrence of faults that may

assume unrestricted dynamics do not allow for any measure that will guarantee that the

online training of weights of a NN will converge to an optimal configuration.

Although a GDHP architecture using NNs as building blocks represents one of the

best available implementations of an universal nonlinear adaptive controller, there are

still no available adapting procedures for it or any other equivalent adaptive nonlinear

controller that guarantees complete stability over all fault scenarios, specially when it is

taken into consideration the fact that abrupt faults inherently cause discontinuous changes

in the plant dynamics. Independent of its particular implementation, the adaptive

nonlinear controller then becomes a vulnerable point of the FTC architecture as it may be

subject to controller malfunctions such as divergence and convergence to a local minima

through the course of its online adaptation. If left unchecked, such situation may lead to

loss of availability even when recovery of plant stability was still reachable.

In the previous chapters, we have demonstrated how a GDHP controller can be

used to autonomously generate control solutions for unexpected faults while explicitly

 88

producing input-output maps through the use of neural networks. Furthermore, located

inside the supervisor, the DMB stores, for the nominal plant and each known fault

scenario (added during design time or learned online), an input-output identification map

and a controller that has been successfully designed for each specific scenario. A key

characteristic that makes the proposed supervisor capable of such accomplishments is its

ability to perform Fault Detection and Diagnosis of the system. Such is accomplished

through a four-state decision logic based on the two previously detailed quality indexes.

In order to account for the inherent possibility of instability within the online

training procedure of the GDHP controller, we propose to add to the FDD scheme

Controller Malfunction Detection (CMD) capability within the nonlinear adaptive

controller itself. In the case of implementations involving the online training of NNs in

particular, there are two controller malfunctions that must be avoided. The first relates to

the training process converging to a local minima that prevents the NN weights to reach

the global optimal, while the second refers to weight divergence due to the application of

the training algorithm in close loop with unknown dynamics of a faulty plant. To

properly identify these two controller malfunctions and discern them from the plant

faults, a third quality index is introduced. By measuring the degree of activity within the

NNs that compose the GDHP architecture, the weight quality index is capable of adding

to the information gathered by the other two quality indexes to achieve such goals. Once

a control malfunction is detected and identified, it is then possible to use the information

from the DMB to provide the training algorithm with a new set of initial conditions that

represents the closest possible known dynamics and effectively prevent divergence and

greatly increase the chance of recovery of stability and performance.

 89

5.2. Controller malfunction supervisor

In this section the previously presented Supervisor capable of performing system

FDD is augmented to also perform CMD and suggest countermeasures for such scenarios

on-the-fly. To better understand the functionality of the supervisor, it can be divided into

three layers as shown in Figure 5.1. Key differences here are the fact that a third novel

quality index is also calculated in the first layer and that there are now two distinct

decision logics, one for FDD and another for controller malfunction detection

Figure 5.1. Layered structure of the proposed Supervisor with controller malfunction detection and

recovery.

In addition to the control quality index ()cq t and the identification quality index

()iq t , the novel quality index generated in the first layer is the weight quality index

()wq t . While the control quality index, obtained through Equation (4.1), provides a

numerical measure of how close has the GDHP controller been able to follow its goal, in

this case trajectory tracking, the weight quality index is calculated in order to measure the

amount of activity within the three continuously adapting neural networks (i.e., IdNN,

AcNN and CrNN#1) as shown in Equation (5.1).

 90

()() () () () () () ()w

s

t
t i i a a c c

w
t

q t e w w t w w t w w t dξ τ τ τ τ τ τ τ τ− − ⎡ ⎤= − − ∆ + − −∆ + − −∆⎣ ⎦∫ ,

 (5.1)

where wξ is a time decay factor in the range [0,1], t∆ is the sampling period and ts is the

time of occurrence of the latest switching operation. The presence of ts in Equation (5.1)

is a key feature to understand the interrelations between the detection and diagnosis of

faults inside the plant and the detection of faults within the controller in what is called

controller malfunctions. In essence, ts resets the memory of the filter used in the

calculation of qw to prevent the switching operations carried out by the supervisor (in

response to faults within the plant or controller) to be perceived as major changes in the

weight structure, which are associated with controller divergence during neural network

training.

As before, in the second layer, FTC design parameters are converted into

thresholds to distinguish high (,)c iHq Hq and low (,)c iLq Lq values for the control and

identification quality indexes. For the weight quality index, two thresholds are used to

distinguish between high activity wHq , standard activity wSq and low activity wLq .

Standard activity is adjusted as a broad range within which the activity of the networks

remain during successful training.

 91

Table 5.1. Complete Algorithm (GDHP and Supervisor)

As shown in Table 5.1, the controller malfunction detection takes precedence over

the FDD, ensuring that only a functional GDHP controller is used for fault recovery or

compensation and that malfunction within the IdNN do not interfere with the FDD

process. By using the information contained in the controller and the weight quality

index, it is possible to verify the condition of the GDHP nonlinear adaptive controller

over two different malfunctions. The first one relates to the online GDHP training

converging to a local minima and therefore being incapable of reaching the optimal

tracking error. Such malfunction is characterized by a high control quality index (cHq)

matched by a low weight quality index (wLq). The second malfunction relates to

controller divergence and is marked by both a high control quality index (cHq) and a

1 Set 1=t . Initialize neural networks and estimate ˆ ()R t . Initialize DMB with knowledge
of the dynamics of the healthy plant and of known fault scenarios;

2 Sample the plant output ()R t and desired trajectory ()tR t ;

3 Update IdNN in the direction of the minimization of the quadratic estimation error of
()R t ;

4
In the following order, feedforward to obtain: ()u t from AcNN, ˆ (1)+R t from IdNN,

(1)+u t from AcNN, ()J t and ()λ t from CrNN#1, (1)+J t and (1)λ +t from
CrNN#2;

5 Update AcNN in the direction of the minimization of ()J t ;

6 Update CrNN#1 in the direction of the minimization of the quadratic estimation error of
()J t and ()λ t ;

7 1= −epoch epoch . If epoch = 0, weights of CrNN#1 are copied to CrNN#2 and epoch
is reset;

8 Calculate the quality indexes ()iq t , ()cq t and ()wq t ;

9 Perform controller malfunction detection (to be shown in Figure 5.1). If divergence or
local minima convergence is detected, skip to step 11;

10 Perform Fault Detection and Diagnosis through the supervisor’s decision logic (shown
in Figure 4.2);

11 According to the decision logic, manipulate the DMB to switch to a know solution, add
a new model to it or provide a new set of initial conditions;

12 1= +t t . Return to step 2;

 92

high weight quality index (wHq). Figure 5.2 displays a flow chart that illustrates the

controller malfunction detection procedure engaged at every iteration. Note that in a

healthy training situation, a high control quality index, and therefore elevated tracking

error over time, would generate changes in the weight structure of the neural networks

that compose the GDHP controller and therefore indicate wSq . In order to increase noise

rejection and reduce the probability of false alarms, an observation time is used during

which such conditions must remain unaltered so that a controller malfunction can be

positively detected. Assuming that no control malfunctions are detected, FDD is then

performed through the decision process presented in Chapter 4.

Figure 5.2. Flow chart for controller malfunction detection and response.

5.3. Numerical example

In this section, an extensive simulation is presented and discussed. The goal is to

demonstrate the feasibility of implementation and the FTC benefits brought by the

START

Hqc

SWITCH
to closest
solution

Lqw

Hqw

END

N

Y

N

N

Y

Y

 93

proposed architecture over a controlled plant subject to one incipient and two abrupt

faults. All faults introduce strong nonlinear dynamics requiring major controller

reconfiguration. On certain key steps, we also show the results of parallel simulations that

differ only in the fact that the supervisor is deactivated. The comparison of simulations

with and without supervisory intervention serves two purposes. First, it allows for the

demonstration of the dramatic reduction on the reconfiguration time and cumulative

tracking error of the GDHP controller brought by the switching operation in the

occurrence of faults. Second, it illustrates the supervisor’s controller malfunction

detection capability and its potential to advert negative consequences of such scenarios

by providing new initial conditions to the online training GDHP controller.

5.3.1. Simulated system

The simulated plant possesses two inputs []1 2
Tu u u= , three states

[]1 2 3
Tx x x x= and two outputs []1 2

TR x x= which are expected to track two

independent trajectories 1 2

Tt t tR R R⎡ ⎤= ⎣ ⎦ . The desired trajectories are described by

Equation (5.2),

1 1() sin 0.4sin
250 125

t t tR t π πµ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2 2
(150) (190)() 0.1 sin 0.6sin

250 125
t t tR t π πµ + +⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
,

(5.2)

 94

where 1µ and 2µ assume values in the interval [0 , 0.5] randomly selected once at every

500 iterations. An example of the reference signals can be seen in Figure 5.3. For the

sake of the presented simulation, tracking is considered satisfactory if the mean error over

a cycle of 500 iterations is less than 0.001.

Figure 5.3. Example of reference signals 1 ()tR t (blue) and 2 ()tR t (red).

Under nominal conditions (i.e., no fault is active), the system’s dynamics allow

for the desired trajectories to be reached by directly inputting properly shifted reference

signals, as described by Equation (5.3). In practice, such straightforward nominal

dynamics are expected when the fault tolerant controller is mounted over a pre-designed

nominal controller. For example, the nominal dynamics of the plant simulated here could

represent the closed loop dynamics of the actual physical system and a non-adapting

inverse-dynamics controller designed off-line for the nominal operation conditions.

Furthermore, the choice of such nominal dynamics helps to make clear the impact of each

 95

particular fault scenario. A sample input sequence that achieves trajectory tracking under

the nominal scenario can be seen in Figure 5.4 (a).

1 1(1) ()+ =x t u t

2 3(1) ()+ =x t x t

3 2(1) ()+ =x t u t .

 (a) (b)

 (c) (d)

Figure 5.4. Successful input sequences 1()u t (blue) and 2 ()u t (red) for different plant dynamics: (a)
nominal, (b) AF1, (c) IF and (d) AF2.

Through the course of the simulation, we introduce two abrupt nonlinear faults:

Abrupt Fault 1 (AF1) that changes the system’s dynamics to Equation (5.4), and Abrupt

(5.3)

 96

Fault 2 (AF2) that modifies it to Equation (5.5). By displaying input sequences that lead

the system’s outputs to the desired trajectories, Figure 5.4(b) and 5.4(c) allows the reader

to visualize the amount of controller reconfiguration required under AF1 and AF2. For

both faults, the changes in the dynamics take place instantly at their time of occurrence.

Therefore, both constitute challenging scenarios for the online-adapting GDHP

controller.

()2
1 1 1 3 1(1) 1.5 () () () sin ()

4
π⎛ ⎞+ = + − − ⎜ ⎟
⎝ ⎠

x t u t x t x t u t

()
3

2 2 2 1 2
3

()(1) 0.2 () () () 2
1 ()

+ = + +
+

x tx t x t x t u t
x t

()3 2 2 1 3(1) () 0.6 ()sin 0.5 () 0.4 ()+ = + +x t u t u t x t x t .

()2
1 1 3(1) () ()+ = +x t u t x t

2 3 2 1(1) () 0.8 () ()+ = −x t x t x t u t

3 2 3(1) 1.5 () 0.5 ()+ = −x t u t x t .

To simulate the occurrence of an incipient fault (IF), the dynamics of the nominal

system are gradually modified over the course of 104 iterations as described by Equation

(5.6), where it is used to adjust the time of occurrence of the IF so that by the end of its

interval of occurrence the nonlinear terms take full effect. The use of the tansig function

creates a smooth gradual introduction of the incipient dynamics with steep changes in the

middle range. Note that not only new nonlinear dynamics are introduced, but also the

states of the system become coupled demanding more complex controller action. Figure

(5.5)

(5.4)

 97

5.4(d) displays the control action required by the final dynamics of the plant in order to

track the desired trajectory.

()
1

1 1 22
1

()(1) () 0.5 0.5 tansig ()
1500 1 ()

⎛ − ⎞⎛ ⎞+ = + + ⎜ ⎟⎜ ⎟
⎝ ⎠ +⎝ ⎠

it t x tx t u t u t
x t

()3
2 3 3

sin 4 ()
(1) () 0.5 0.5 tansig ()

1500 2
⎛ − ⎞⎛ ⎞+ = + + ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
i x tt tx t x t x t

3 2(1) ()+ =x t u t .

5.3.2. Simulation results

The simulation starts with the plant under nominal dynamics for the first 15,000

iterations. The GDHP controller is initialized with a set of weights previously designed

for the nominal dynamics. The DMB inside the supervisor is initialized with a copy of the

same nominal weights and, therefore, it is initialized with the knowledge of how to

identify and control the plant under nominal dynamics. Hence, both ()iq t and ()cq t start

with low values (,)i cLq Lq corresponding to State 1 in the FDD decision logic. In order

to demonstrate the supervisor responses to all key circumstances it is designed for, faults

were introduced into the system according to the schedule in Table 5.2. Although

displaying the entire 65,000 iterations of the simulation would be optimal for the

visualization of the complete challenge set for the proposed architecture, its length

prevents it from being printed in full and therefore only key intervals are illustrated with

the relevant graphs.

(5.6)

 98

Table 5.2. Simulation schedule for plant dynamics
Plant dynamics Interval of occurrence (iterations)

nominal 1 to 15000

AF1 15000 to 25000

nominal 25000 to 35000

IF 35000 to 45000

AF1 45000 to 55000

AF2 55000 to 65000

At iteration 15,000 the plant dynamics abruptly change to those of AF1. Since the

GHDP controller is continuously adapted online, as soon as the dynamics are modified

the weights of the three neural networks start being adjusted in order to search for a

control solution for this scenario. During learning, the tracking error grows, leading to

cHq . Concomitantly, the change in the dynamics leads also to an increase in the

identification error represented by ()iq t until iHq is reached. In this manner, State 2 of

the FDD decision logic is reached and an abrupt unknown fault is detected and correctly

identified. Note that, although possible in a discrete system, both quality indexes need not

reach iHq and cHq at the same iteration. For instance, in the discussed simulation cHq

was reached before iHq , leading the FDD decision logic to transiently assume State 4 at

iteration 15,002 before reaching State 2 at iteration 15,005. The transition through State 4

leads to a momentary misdiagnosis of the fault as an abrupt known fault and issues a

switch command, however the fault diagnosis is corrected three iterations later and the

effects of the switching are almost imperceptive since the GHDP programming has not

yet had sufficient time to reconfigure from controlling the plant under nominal dynamics.

Throughout the learning process, while ()cq t is high, ()wq t remains between the low and

 99

high thresholds indication healthy levels of reconfiguration within the neural networks

and therefore no controller malfunction is detected. Indeed, at 18,475 with cLq the

GDHP controller manages to develop a satisfactory solution to the tracking problem, the

FDD decision logic goes to State 3 declaring “control success” and adding the current set

of weights to the DMB. Since now the supervisor possesses knowledge of the plant under

AF1 dynamics, ()iq t drops below its threshold and the FDD decision logic returns to

State 1 (i.e., known dynamics).

The plant returns to the nominal dynamics in an abrupt fashion at iteration 25,000,

depicting a hypothetical situation in which the cause of a fault is removed from the

system ceasing its effect on the dynamics. This transition differ from the one at iteration

15,000 discussed previously in the fact that the DMB has knowledge of the new

dynamics and therefore can switch to the known solution as soon as it is identified. To

highlight the reduction in reconfiguration time and cumulative tracking error brought by

the supervisor’s intervention, Figure 5.5(a) displays the trajectories of the output of a

parallel simulation run without the supervisor. With only the GDHP controller striving

alone to reconfigure itself, tracking performance is recovered at 1,659 iterations after the

alteration in the dynamics.

 100

Figure 5.5. Abrupt return to nominal dynamics from AF1. Comparison of outputs 1()R t (blue) and 2 ()R t
red) and respective desired trajectories (dotted) of simulations without (a) and with (b) supervisory

intervention. Switching impact illustrated by (c), the average tracking error for the simulation without
(blue) and with (red) supervisory intervention.

switch

acceptable
performance

(c)

(b)

(a)

 101

Figure 5.5 (b), on the other hand, shows the outcome of the main simulation in

which the FDD decision logic identifies the change in the dynamics as being an abrupt

known “fault” (in this case the new dynamics are of the nominal plant) at iteration 25,247

and switches the weights of all three neural networks with the ones designed for the

nominal dynamics stored in the DMB since its initialization. As a consequence, the

GHDP controller is able to reach the desired tracking performance at 734 iterations after

the change in dynamics. In comparison, switching as determined by the supervisor led to

a reduction of 55.76% in the reconfiguration time and a reduction of 74.01% in the

cumulative tracking error in the first 1,500 iterations after the alteration of the dynamics

as illustrated in Figure 5.5 (c).

Figure 5.6. Average tracking error during IF application.

In the interval between iterations 35,000 and 45,000 IF gradually modifies the

plant dynamics and is correctly identified as an incipient fault by the supervisor. The

correct fault diagnosis prevents the supervisor from switching to any solutions already

stored in the DMB, an action that in this case would disrupt the successful continuous

acceptable
performance

 102

adaptation of the GDHP controller to counter the growing effects of IF. The successful

maintenance of the tracking performance well below the acceptable level throughout this

period is illustrated in Figure 5.6.

At iteration 45,000 the plant experiences a re-occurrence of AF1. Note that this

time it transitions from IF to AF1, while in its first occurrence at 15,000 the plant was

previously under the nominal dynamics. Nevertheless, the supervisor is able to correctly

diagnose and identify the fault at 45,479, switch and recover tracking performance at

45,659, which represents a reduction of 72.96% over the reconfiguration time of the

GDHP without supervisory intervention. Moreover, the cumulative tracking error in the

first 3,000 iterations experiences a reduction of 49.34% by the switching operation. It is

important to note that, different from the first discussed switching operation involving the

nominal scenario, the solution to the AF1 was determined previously online by the

GDHP in its first occurrence and autonomously added to the DMB. In other words, this

section of the simulation illustrates that the benefits brought by the supervisor to the

GDHP training extend also to re-occurring faults whose dynamics are not known during

design time.

A more challenging transition occurs at 55,000 when the dynamics of the plant

are abruptly modified from AF1 to AF2. In order to obtain detailed simulation results,

controller malfunctions were introduced at this critical transition into the GDHP by

modifying the learning rates used for the online training of the neural networks.

Therefore, since the scenario in which the GDHP controller is trapped in a local minima

is related to a very low gradient (based on local information), we reproduce the same

effect on the training of the neural networks by drastically reducing the respective

 103

learning rates. Similar to the presentation of the impact of the supervisor in the event of

faults within the plant, Figure 5.7 shows the simulation results with (Figure 5.7 (a)) and

without (Figure 5.7 (b)) supervisory intervention. Note that in order to demonstrate the

impact of the supervisor alone, once reduced to generate the controller malfunction, the

learning rates used for both runs (with and without supervisory intervention) are the

same. As it can be seen from the simulation results, while the GDHP alone provides a

poor solution to the AF2 scenario and is incapable of significantly adapting over time,

maintaining a large tracking error as seen on Figure 5.7 (c). On the other hand, when the

same simulation is run with the presence of the supervisor, the controller malfunction

detection logic correctly determines that the online learning trapped itself in a local

minima at 1,256 iterations after the introduction of AF2 and is capable of greatly

reducing the tracking error over time (Figure 5.7 (c)) by intervening with a new set of

initial conditions much closer to the global minima.

 104

Figure 5.7. Local minima convergence, controller malfunction detection and prevention. Comparison of
outputs 1()R t (blue) and 2 ()R t (red) and respective desired trajectories (dotted) of simulations without (a)

and with (b) supervisory intervention. Graph (c) displays the average tracking error for the simulation
without (blue) and with (red) supervisory intervention.

switch
(c)

(b)

(a)

 105

For the simulation of a controller malfunction related to training algorithm

divergence we return to the same challenging transition from AF1 to AF2 at 55,000

iterations, however now all learning rates are increased by three orders of magnitude. For

the gradient descent online training algorithm used here, the effects of the large learning

rates are equivalent to the incongruent gradients that lead to controller divergence. Once

more, to better illustrate the effects of the proposed supervisor, in a first run we

deactivate it while keeping the same learning rates. By itself, the GDHP used in this

simulation fails to converge to a stable control sequence. Instead, it initiates a divergent

behavior that leads both outputs to values of the order of 103 at 42 iterations after the

introduction of AF2 at which point the simulation was terminated, as shown in Figure 5.8

(a). On the other hand, in the actual simulation with the proposed supervisor activated, a

controller malfunction was detected at 17 iterations after the introduction of AF2 and the

supervisor was able to prevent the divergence of the online training GDHP controller by

switching its weights to the dynamics witch presented the smallest identification error

among those in the DMB. In this case, the weights related to the nominal dynamics were

selected leading to the stable online learning of a solution for AF2 at 987 iterations after

the fault occurrence as depicted in Figure 5.8 (b). Figure 5.8 (c) displays the tracking

error history of both simulations as the one without supervisory intervention diverges off

the scale. In conclusion, Figure 5.8 illustrates the capability of the supervisor to correctly

identify controller malfunction in its early stages and act in a way that allows the

controller to regain a training path that will lead to a stable solution.

 106

Figure 5.8. Controller divergence malfunction detection and prevention. Comparison of outputs 1()R t
(blue) and 2 ()R t (red) and respective desired trajectories (dotted) of simulations without (a) and with (b)

supervisory intervention. Graph (c) displays the average tracking error for the simulation without (blue) and
with (red) supervisory intervention.

switch

(b)

(a)

(c)

 107

5.4. Summary

The presented work has demonstrated that the implementation of a synergistically

combination of an GDHP controller and a supervisor based on three distinct quality

indexes generates an efficient and reliable Fault Tolerant Control architecture. As

demonstrated in the nonlinear plant simulations, the introduction of the weight quality

index has made possible to distinguish between faults in the plant and controller

malfunctions caused by online training divergence or local minima convergence. Further

more, the Dynamic Model Bank was successfully used to generate new initial conditions

to the neural network training that improve their efficacy as the supervisor autonomously

acquires more nonlinear models of the plant under healthy and diverse faulty scenarios.

Although the results so far have been greatly encouraging, qualitative analysis of the

complete combined online stability and real-world complications is essential and will be

carried out in future research. In addition, the capability of efficiently combining existing

knowledge to deal with the occurrence of multiple faults is also an avenue to be explored

under the presented architecture.

 108

CHAPTER 6 – Linguistic Rule Extraction

6.1. Motivation

The collected work presented in the previous chapters amounts for a FTC solution

capable of performing FDD, armed with an adaptive critic controller for the design of

new solutions to unknown fault scenarios and possessing a supervisor capable of

increasing the controller stability, speed and efficiency when dealing with the occurrence

of faults and controller malfunctions. For a given control mission, the availability of the

plant is therefore increased as we minimize the effects of faults and the reconfiguration

time to apply a new control approach.

However, the occurrence of fault, although it may have its effect successfully

filtered out from the point of view of the user, operator or pilot, modifies the underlying

dynamics of the plant. It is safe to assume that under a fault scenario caused by the failure

of a particular component (or group of components), the remaining components may be

forced, during the course of following the overall control mission, to operate away from

their nominal ranges. Such scenario would then lead to an increase in the probability of

occurrence of other faults or the aggravation of the active fault. In the more extreme

cases, event though a suitable control solution is found for a particular fault scenario, if

under such fault scenario the control mission insists on particular extreme trajectories, a

terminal fault for which no stabilizing controller exists may develop.

 109

Therefore, a complete FTC solution must include the capability of providing

mission planners with probabilistic predictions of fault scenarios that may affect the plant

according to their choices of desired trajectories. Such probabilistic predictions should

contain not only a prediction of which fault would develop, but also when it is more

probable to become active. Furthermore, since such feature aims at providing humans

with decision support, it is also important that such information be conveyed in a format

as simplified and cognitive as possible, especially for pilot assistance. Such fault

development warnings are therefore chosen to be crafted as causal rule statements using

fuzzy logic. An example of such causal rules is:

IF Fault 15 (valve seal compromised) is active AND input #5 remains very low AND

reference #2 remains high, THEN Fault 23 (loss of valve actuator) will have a 85%

chance of occurrence after a delay of 30 to 45 minutes.

As an application example, if a FTC architecture manages to accommodate for the

effects of a particular component fault in an army helicopter in the middle of a mission,

such a feature allows mission commanders to decide whether to abort or modify such a

mission given the probability of irreversible faults to develop that would lead to loss of

the rotorcraft. On process industry, such a feature also has great applicability. The

probability of other components braking in a process line given the previous occurrence

of a particular fault and given the particular process being run supplies the operator with

a key factor to assist maintenance scheduling and therefore directly impacting

productivity and profitability.

 110

6.2. Fundamental structure

When performing process management decisions, a control algorithm makes use

of the knowledge of the plant in the form of a model. In most cases, this knowledge is

commonly derived from first-principles and/or laboratory and pilot plant experiments;

and often such “ideal” knowledge is of less than practical use under real world

complications due to unaccounted factors and modeling uncertainties.

Human operators, on the other hand, make use of another type of model when in

charge of process management decisions. After a long time in contact with the plant,

process operators are capable of attaining some understanding of what factors govern the

process and derive relationships between process variables based on intuition and past

experience. This process was best described in [54] as “a cognitive skill of experienced

process operators that fits the current facts about the process and enables the operators to

assess process behavior and predict the effects of possible control actions.” However, the

knowledge attained in this fashion also presents critical deficiencies since wrong

impressions on what is going on with the process will lead to operator misjudgment as

documented in [55]. Furthermore, incoherencies inside such knowledge propagate itself

as “mis-knowledge” or “technical folklore” are passed down from one generation of

process operators to the next.

By making use of linguistic information in the form of IF/THEN logical

statements or rules, Expert Systems and Fuzzy Logic Controllers (FLCs) are technologies

capable of enabling better process monitoring and control. FLCs have found applications

in a variety of fields such as robotics [56], automated vehicles [57] and process control

[58], to name a few. Expert Systems have been used in the Chemical Process Industry

 111

(CPI) to control, monitor [59] and understand process behaviors. Other applications of

such knowledge based systems have been in operator training and for planning and

scheduling of operations in control and maintenance [60], especially for getting a plant

back online after a failure or abnormal operating condition.

Expert Systems can be built from knowledge inserted by human experts or

acquired from historic data from the system. Knowledge bases made by polling

information from experienced personnel not only incorporate the before mentioned

“technical folklore”, but also is intrinsically incomplete. Such rules pertain only to

information that is critical or obvious to the operators; it is related to information just

necessary for them to maintain desired plant conditions. Such information does not

incorporate the knowledge of events that are lesser in significance or rarer in occurrence,

but which affect the operation of the plant nonetheless. A complete rule base should

possess information on almost all plant events that have an effect on the desired output or

may change the variable under control. Finally, knowledge collected from experts is

usually in the form of static rules loosely related to the real numerical world [61]. Due to

its lack of a mechanism to deal with the temporal behavior of the process, the rigid, non-

adaptive knowledge devised in this fashion becomes inadequate for complete supervisory

control of dynamic systems. Therefore, the solution lies on the development of an

algorithm capable of autonomously generating and improving a dynamic rule set for an

expert system directly from process data.

It is fundamental for the modeling of a dynamic system that the model used

incorporates the concept of time. Based on the widely applied Autoregressive Moving

Average (ARMA) [62] models, [63] proposed to incorporate temporal relationships into

 112

fuzzy rules by matching antecedents with consequents a fixed number of time steps in the

future. In [64] the architecture was extended to allow different discrete time delays to be

used for each antecedents in single consequent rules. Due to the usage of discrete time

delays however, the representation capability of the rule set was largely affected by the

particular choice of time delays and it displayed great sensitivity to noise, especially

related to datasets composed of data sampled from continuous systems. Displaying

applications related to the stock market and the weather, [65] applied stochastic pre-

processing techniques to improve the meaningfulness of the data provided to the rule

extraction mechanism. Based on the concept of internal clocks that biological organisms

use for the learning of period and interval timing, [66] proposed the usage of a temporal

membership function for the averaging of sampled data in order to generate crisp values

related to fuzzy time periods. Applications of such approach have been documented in

distributed adaptive routing control in packet switched communication networks [67].

Therefore, in the proposed paper, a particular fuzzy delay is assigned to the temporally

averaged consequent of each rule, generating a structure of the form:

IF condition 1 AND condition 2 AND condition 3… THEN after a certain fuzzy delay, a

control variable will be such.

The statement between the IF and the THEN conjunction is the antecedent while

the statement after the THEN conjunction is the consequent.

A crucial step in the autonomous extraction of rules is the method used to validate

and compare those that are created. An optimal rule should be accurate, properly describe

the dynamic relationship between its antecedent and consequent, and possess enough data

 113

to support it. In a methodology introduced in [68], three metrics based on a Truth Space

Diagram (TSD) capable of encapsulating and measuring each of these three goals were

introduced and tested. However, it was also shown that in the general scenario such

metrics cannot be independently optimized due to inherent conflict among them.

Multiple Objective Evolutionary Algorithm (MOEA) is a tool capable of

performing efficient searches on high dimensional spaces to locate the Pareto front, a set

of solutions that contain the best rule for each possible tradeoff between conflicting goals.

A growing research field, MOEA has already demonstrated successful applications in

solving challenging benchmark problems [69] and real world applications [70].

In the presented work, three metrics developed in [68] are used under a novel

dynamic treatment of the data to evaluate linguistic rules against process data. MOEA is

then introduced to locate inside the high dimensional rule space the Pareto front of the

antecedents that best describe (in the sense of different combination of metrics) a given

consequent.

6.3. Rule evaluation

In order to provide automate mission planning decision support, a rule must

display three basic characteristics: high accuracy, precise antecedent/consequent

relationship, and sufficient data support. However, it is seldom possible to maximize

these three characteristics at the same time. For example, if an event is observed only a

single time, it is trivial to develop a rule with 100% accuracy, however it will lack

support from historical data and the probability that it will describe a whole family of

 114

similar events with comparative accuracy is small. For this reason there is a need to

develop three qualitative metrics, each focusing on one of such competing characteristics.

In [68] a series of metrics were suggested, each capable of specifically

representing a different quality of a rule. All metrics were designed having as a core

concept an innovative rule representation denominated the Truth Space Diagram (TSD).

In the first part of this section, the efficiency of the TSD is further enhanced with the

introduction of a novel pre-processing strategy for the representation of the temporal

behavior of the plant into the linguistic rules. The concept of the TSD is then introduced

taking into consideration the enhanced temporal representation and finally the three

metrics of concern are introduced.

6.3.1. Data pre-processing

In previous applications of the TSD methodology [68], data pre-processing took

place in the following manner: 1) The consequent data was shifted backwards in time by

fixed intervals so that each set of antecedents matched three consequent values

corresponding to short, medium and long delays; 2) The crisp input-output data was

fuzzified. Fuzzification proceeded through the application of Equation (6.1) by using

triangular membership functions to classify each variable into three fuzzy categories –

low, medium and high:

, , ,

0, otherwise

j i
i j ji j

j jx

a x
x a b

a bµ
−⎧

⎡ ⎤∈⎪ ⎣ ⎦−= ⎨
⎪
⎩

, (6.1)

 115

where j=1 to 3, i=1 to n, ix is the crisp numerical value of the ith input or output variable,

,i j
xµ represents the fuzzy membership value of ix in the jth fuzzy category, aj and bj are

the fuzzy set break points for category j, and n is the maximum number of datasets in the

input-output data. Figure 6.1 illustrates the fuzzy classification of one variable into three

fuzzy categories.

Figure 6.1. Fuzzy classification procedure for the antecedents. In this case, temperature with centers at 10,

50 and 90oC.

The fuzzification of the physical crisp data in such manner leads to great

generalization capabilities, inherent noise rejection, and direct rule interpretation by

human operators. Although ideal for the treatment of the antecedents, the manner through

which the dynamic temporal element was incorporated into the consequent lacked such

benefits. In essence, consequences for plant characteristics at any given time were only

observed at discrete instants. Since a consequent’s time delay contains variability as

much as physical characteristics of a system, although rule extraction was possible, it

required extensive data in order to determine the true correlations through time.

Moreover, the previous approach relied on accurate knowledge on the inherent major

 116

delays of the plant in order to set up the number of iterations that correspond exactly to

the operator’s understanding of small, medium and long delays.

In the present work, such deficiencies are addressed by dealing with time

uncertainties in a novel manner that is different in essence from the fuzzification of

physical variables. The application of such approach leads to a meaningful linguistic

description that maintains all the previously stated benefits while better capturing the

temporal characteristics of dynamic plants. Instead of simply shifting the data to obtain a

single measurement to represent a delay, averaged values of a consequent are obtained

for each fuzzy delay region trough Equation (6.2) and it is those averaged values that are

then classified into the membership function of the consequent by Equation (6.3).

3

1

3

1

() ()
()

()

t
i

k ti
t

k t

k y t k
y t

k

δ

δ

δ

δ

δ

δ

δ

=

=

Μ ⋅ +

=

Μ

∑

∑
, (6.2)

,
,

()
()

i
ji j

y
j j

a y t
t

a b
δ

δµ
−

=
−

, (6.3)

where ()iy t is the crisp measurement of the ith consequent at time t, ()iy tδ corresponds to

its arithmetical average for a given fuzzy delay δ , δ ∈[short , medium , long], itδ are the

fuzzy set break points (i∈ [1, 2, 3]) for category δ , ()tδΜ denotes the membership

function of a fuzzy delay δ , and ,
, ()i j

y tδµ is the fuzzy membership value of the ith

consequent for a fuzzy delay δ . An example of the application of the procedure

involving Equations (2) and (3) can be seen in Figure 6.2, where the fuzzy membership

 117

value of the consequent 1()y t is calculated at time 20s for medium delay and low

temperature, i.e. 1,
, (20)l

y mµ .

Figure 6.2. Proposed physical and temporal two-step fuzzification procedure. The figure displays a
fuzzification example in which at simulation time 20 the output y1 is evaluated for medium delay.

By processing the available data from the antecedents using Equation (6.1) and

that from the consequents with Equations (6.2-6.3), crisp data is translated into linguistic

variables. It is important to note that although each antecedent relates to a single

linguistic variable, due to the introduction of the fuzzy delay, each consequent is

represented by three fuzzy variables, each related to a different delay membership

function.

1

0.5

0
10 20 30 40 ∆t 50

1

my

1y

0 10 20 30 40 50 60 70 80
t 1.0 0.5 0 µ

 118

6.3.2. The Truth Space Diagram

The TSD is a two-dimensional space in which a series of metrics capable of

quantifying the quality of a particular cause-and-effect rule can be obtained. Each TSD

relates to a single rule. For every data point extracted either from mathematical

simulations, pilot plant experiments, or real-word sensor data, a point is plotted in the

TSD according to its truth of the antecedent Ta and the truth of the consequent Tc. Both

parameters are calculated as geometrical means of the fuzzy membership function of each

variable of the antecedents and consequents. Hence, the truth space delimited by Ta and

Tc is bounded between 0 and 1 in which a value equal to 0 means absolute false while a

value of 1 means absolute true.

Designed in this fashion, the TSD represents a one-to-one mapping from the

dataset from the real (numerical) space to a new (truth) space defined by the linguistic

statements of a specific rule. The TSD can be divided into four quadrants and each

quadrant provides different information about the linguistic rule. For example, consider

point A in Figure 6.3. The values for Ta and Tc are high for this data point, i.e. the

predicted consequent follows the appointed antecedent or the cause and effect match

according to the relevant rule statement. This reveals that the information expressed in

the linguistic rule is contained within the numerical data. Hence, many points in Quadrant

II of the TSD reflect the validity of the rule in question. Consequentially, points in

Quadrant IV show that the rule statement is false, i.e. what the antecedent of the rule

express does not lead, in most cases, to the predicted consequent. An example of this can

be seen from data point B in Figure 6.4. Similarly, points in Quadrant I demonstrate the

incompleteness of the rule, since the predicted consequent was due to an event(s) other

 119

than the one expressed in the antecedents of the rule. Finally, the presence of a cluster of

points in Quadrant III show the possibility of that a rule is valid, however the amount of

data currently available does not allow yet for a conclusion to be drawn with enough

confidence. The points that lie on the vertical and horizontal axis show that either the

antecedent or the consequent of a particular rule were not expressed in the data.

Figure 6.3. TSD for a meaningful rule extracted from process data with sufficient supporting evidence.

Figure 6.4. TSD for a rule that was proven inaccurate in a significant number of points in the process data.

Quadrant Quadrant

Quadrant Quadrant

Quadrant Quadrant

Quadrant Quadrant

 120

6.3.3. Numerical metrics

As mentioned previously, the goal of the presented work is to extract rules that

present high accuracy, precise antecedent/consequent relationship, and that are supported

by sufficient data. By using the TSD, it is possible to obtain metrics for each of these

conflicting goals. In order to transform the problem into one of minimization however,

the actual metrics of interest are converted into: rule inaccuracy, antecedent/consequent

mismatch, and lack of supporting evidence in the dataset. To improve the performance of

the rule extraction algorithm, all metrics presented here are normalized to the interval

[0,1].

Metric 1: rule inaccuracy – A rule is deemed inaccurate when its antecedent is observed

but the consequence that follows after the prescribed delay does not match the predicted

behavior. As mentioned previously, in the TSD this concept relates to the points in the

Quadrant IV (i.e., set Q4), which relate to high truth of the antecedent but low truth of the

consequent. The number of data points in Q4 (i.e., 4n) can therefore be used as a relative

measure of inaccuracy, however it is necessary to normalize this number by dividing 4n

by the total number of data points in which the rule antecedents were observed with

sufficient confidence, i.e. the sum of the points in Quadrant II (2n) and in Quadrant IV

(4n). Equation (6.4) summarizes 1m , the rule inaccuracy metric.

4
2 4

2 41

, 0

1, otherwise

n n n
n nm

⎧ + >⎪ += ⎨
⎪⎩

. (6.4)

 121

Metric 2: antecedent/consequent mismatch – from a good rule it is expected that the

value of Tc should match the value of the Ta. In other words, the intensity in which the

antecedents are observed should be equal to the intensity of the resulted consequent. In

real world scenarios however, Tc is affected by both the quality of the rule and the quality

of the available data (e.g., noise corruption). By analyzing the data points in Quadrant II

(i.e., set Q2), it is possible to measure antecedent/consequent mismatch directly by

summing all distances from each data point in it to the diagonal of the TSD. Defining Tai

and Tci respectively as the truth of the antecedent and the truth consequent for rule i, .

as the Euclidian norm, and since 0.3536 is the maximum distance to the diagonal, this

second metric is stated as shown in Equation (6.5):

Q2
22

2

, 0
0.3536

1, otherwise

i i
i

Ta Tc
nm

n
∈

⎧
−⎪⎪ >= ⎨ ⋅⎪

⎪⎩

∑
. (6.5)

Metric 3: lack of supporting evidence in the dataset – Since there is a need for sufficient

information inside the available data for any conclusion to be drawn, this metric is crucial

for the success of any data driven rule extraction method. Using the TSD representation,

Equation (6.6) is built for this purpose.

3 1 TSD

data

nm
n

= − , (6.6)

 122

where nTSD is the total number of data points mapped in the TSD excluding points on the

abscissa (Ta = 0); and ndata is the total number of data points available in the dataset.

6.4. Rule extraction

Evolutionary Algorithms (EA) is commonly regarded as a family of stochastic

search procedures that is inspired by computational models of natural evolutionary

processes to develop computer based optimization problem solving systems [71]. Being a

population based algorithm, in EA each candidate solution is represented as an

individual. When evolving towards better solutions, the individuals that better meet the

optimization goal (individuals with greater fitness) have a greater probability of being

selected to take part in the creation of the individuals of the new generation.

For problems that have multiple conflicting goals that cannot be directly

combined into a single scalar measure of fitness, Multiple Objective Evolutionary

Algorithm (MOEA) provides a method through which a population of solutions can

evolve towards a set of solutions within which no solution is better than another in all

optimization goals. By defining that an individual dominates another when at least one

optimization goal is closer to the ideal values and all others are equal or closer to it, than

those of the other individual, such a set can be referred to as the non-dominant set. The

non-dominant set among all possible solutions is called the Pareto front and its

determination is then the ultimate goal of MOEA. Therefore, as shown in Equation (6.7),

in MOEA the fitness F is a vector of the optimization goals, in this case represented by

the three goodness metrics.

 123

[]1 2 3, ,F m m m= . (6.7)

In the presented work, MOEA in the form presented in [69] is used once for every

consequent to evolve an initial random population of related rules towards the Pareto

front of the tri-dimensional space defined by F. Therefore, for each consequent, a set of

equally good (in the sense of the minimization of the three previously defined metrics)

antecedents is extracted based on their relative success.

Table 6.1. MOEA pseudocode

As laid down in the pseudocode in Table 6.1, the first step of implementing an

MOEA algorithm is the generation of the initial population of candidate solutions. In

order to guarantee an unbiased and diverse population while maintaining a low

computational demand, 20 initial individuals are generated with random antecedent

values, clearly 20 is an ad hoc choice that needs to be quantified in future research. In the

following step, the three metrics are calculated for the rules formed by the antecedents of

1. Generate initial population;

2. Evaluate the metrics of all individuals and rank them;

3. for (i= 1: maximum_generation)

4. Choose parents with probability inversely proportional to their ranks;

5. Perform crossover operation on parents to generate new individuals;

6. With probability equal to the mutation rate, perform mutation
procedure;

7. Evaluate all three metrics on the new individuals;

8. Update population ranking.

 124

each individual and the consequent related to the current MOEA run. It is also in this step

that each individual is assigned a rank value according to their relative success in

minimizing the elements of the fitness vector F (i.e., the concept of Pareto optimality). In

particular, the ranking scheme discussed in [72] is implemented, in which an individual is

assigned a rank value equal to one plus the number of individuals it is dominated by.

The third step in the presented pseudocode is the first in its main loop and it

relates to the selection of two individuals that will be involved in the generation of new

individuals to the population. The selection is performed stochastically by assigning a

greater selection probability to individuals with smaller rank values, and therefore

individuals with greater fitness. The individuals in this way chosen are denominated

parents and, in Step 4, part of their individual solutions are exchanged in the operation

termed crossover. Through the crossover operation, two new individuals (solutions) are

formed, combining elements of both parents. In the following step, mutation, another

biologically inspired process, may affect with a specific probability (defined as the

mutation rate) the newly generated individuals. In MOEA, mutation takes place by

randomly modifying an arbitrary portion of the solution related to a given individual.

Independent of the occurrence of mutation in Step 5, on Step 6 the fitness vector F is

evaluated for the two new individuals, followed by the updating of the ranks of all

individuals in the population. A generation is then concluded and the algorithm returns to

Step 3 until a maximum number of generations is reached.

After MOEA generates a set of non-dominant rules for each consequent,

thresholds are used over each metric to eliminate outliers and establish minimum

acceptable performances (e.g., minimum degree of accuracy required of a rule). Another

 125

post-MOEA data processing involves removal of time-redundant information from the

rule set. If, for instance, a consequent should develop quickly and remain unchanged for a

long time throughout the dataset, the antecedents would be credited with both short and

long-term effects even though the long-term effect is only a matter of persistence. Time

redundancy then refers to rules with equal antecedents and physical consequents, but with

different consequent delays. In such cases, the rule related to the longer consequent delay

is removed.

6.5. Simulation results and discussion

To demonstrate the process of extracting temporal cause and effect relationships,

data was acquired from a Hot and Cold water simulator shown in Figure 6.5. The

simulator incorporates real world dynamics such as transport and measurement delays

and is capable of adding deviations such as measurement bias and process drifts that have

an ARMA stochastic behavior, noise and valve “sticktion”. The simulation was

nonlinear, had multiple inputs and its dynamics (such as hydrodynamic delay) depended

upon operation conditions. For the purpose of generating data, the four input variables

were manipulated, the flow of each input tube (F1 and F2) changing randomly at every 20

seconds and the input temperatures (T1 and T2) changing randomly at every 40 seconds.

The periods of manipulation of the variables were shifted so as not to lead into two

changes occurring at the same time. Their effect on the temperature at the output of the

mixer stream (T3) was measured over time. All flow variables were restricted to the

interval [0,30] kg/min and the temperature variables to [0,100] oC.

 126

Figure 6.5. The hot and cold water simulator used for validation of the rule extraction algorithm.

According to the proposed data pre-processing procedure, physical variables were

fuzzified with centers at 10, 50 and 90 oC for the temperatures and at 2.5, 15 and 25

kg/min for low, medium and high flow rates respectively. For the fuzzy delay, centers

were placed at 3, 7 and 20 seconds for short, medium and long delays respectively. Note

that long delay rules will be harder to calculate since the input variables will change

randomly at faster rates. The dataset is intentionally devised in this form to challenge the

rule extraction procedure with data of different degrees of quality.

The proposed MOEA based on the three selected metrics was implemented over

the pre-processed data generating a non-dominant set of rule candidates for each

consequent. An initial population of 20 individuals was allowed to evolve through the

course of 200 maximum generations. The individuals received a rank equal to one plus

the number of individuals it was dominated by. At each generation, parents were chosen

according to a probability inversely proportional to their rank. For the generation of new

individuals, crossover was implemented with a single crossover point and a mutation rate

of 0.01 was used. An elitism scheme was implemented to guarantee that all best solution

candidates were preserved during the evolution process. Figure 6.6 displays the obtained

 127

non-dominant set containing 13 antecedent combinations relating to high temperature at

T3 after a long delay.

Figure 6.6. Distribution of individuals related to a single consequent in the metric space at generation 200.

Filled circles form the non-dominant set.

For post-processing, the minimum acceptable accuracy of the extracted rules was

set at 90%, a minimum of 1% of the information inside the observed dataset was

necessary to validate a rule, and a maximum spread of 0.6 around the diagonal of the

TSD was allowed. In terms of the minimization metrics m1, m2, and m3, the

corresponding thresholds were 0.1, 0.99 and 0.6 respectively. Finally, rules that were

time-redundant were removed to generate the final rule set.

Through the outlined process, the presented algorithm was capable of extracting

49 rules out of a possible set of 729 rule combinations (containing both “good” and “bad”

rules). Some examples of the obtained rules are shown below:

m1

m2

m3

 128

• IF T1 is high AND F1 is medium AND T2 is medium AND F2 is low THEN after a

medium delay T3 will be high.

• IF T1 is low AND F1 is low AND T2 is low AND F2 is low THEN after a long delay T3

will be low.

• IF T1 is medium AND F1 is low AND T2 is high AND F1 is high THEN after a short

delay T3 will be high.

Good rules are those that express the phenomenologically-based, cause-and-effect

mechanism as a logical relation between their antecedent and consequent parts.

Consequentially, bad rules are defined as those that are inconsistent with the process

phenomena. Therefore, in order to evaluate the quality of the 49 extracted rules, each one

of them had its antecedents implemented in the simulator and those that demonstrated

matching consequents were deemed good rules. As a result, 5 of those rules were rejected

demonstrating a success ratio of 89.8% of the proposed rule extraction algorithm.

Moreover, most rejected rules pointed to borderline consequents (e.g., the measured T3

would be 78oC, when the maximum value acceptable for a medium fuzzy range was

70oC). Such scenarios reflect the choice of fuzzy membership function centers, left at the

discretion of the operator.

As mentioned previously, any rule extraction procedure can only produce results

as good as the data provided. This simulation was intentionally designed to provide much

sparser and more noise corrupted data for the extraction of rules related to long delays.

Among the 44 good rules in the final set, only 6 of those portrayed long delays, while the

expected from a fully representative dataset would be one third of the total. Since the

 129

algorithm minimizes inaccuracy (m1) while at the same time evaluating the amount of

supporting evidence (m3), the lower number of long delay rules extracted demonstrates

the success of the procedure in avoiding unsupported rules to be presented to the operator

in the final set.

6.6. Summary

As demonstrated though the application of the procedure on the data collected

from the simulated hot and cold water mixer, the proposed rule extraction procedure

succeeded in autonomously generating a viable rule set from a less than completely

representative data set. The use of MOEA as an optimization algorithm allowed for three

conflicting metrics to be evaluated simultaneously leading to the final extraction of

optimal non-dominant rule sets. Both pre-processing, involving the representation of each

rule inside a TSD, and post-processing, which allowed for the removal of time-redundant

rules, were applied successfully and with beneficial outcomes. The presented work

represents the foundations of an ultimate goal to achieve rules capable of describing the

probability of a fault to occur after a certain time range given the choice of desired

trajectories and their related plant input signals. Integration with the FDD/CMD

Supervisor is also a crucial step to be taken.

 130

CHAPTER 7 – Description, Initialization and Tuning of
12 FTC Design Parameters

7.1. Introduction

Every control problem has a set of goals and constrains specific to itself that

affect the choice of the control paradigm to be applied and the actual implementation the

chosen approach. Maximum overshot, maximum acceptable reference tracking error and

actuator saturation limits are common example of such peculiarities that in the practice of

control systems translate to controller design parameters. Even though not all control

design approaches are capable of converting all forms of real world specifications

directly into design parameters, most will at least recognize their importance and discuss

how different design decisions affect such particular points of interest. For instance, even

though we might know at design time the saturation limits of an actuator, there is no

readily available design parameter in classical PID control that will lead directly to a

design of a controller that will not overstep such boundaries during the course of its

operation. However, if after implementation the actuator saturation is interfering in a

significant way with the main control goals, there are guidelines of how to modify the

existing control parameters in order to generally reduce the chance that such limits are

reached.

 131

The design process of a fault tolerant controller also starts from gathering a list of

control goals, specifications and constrains and then translating those into design

parameters that will tune each fault tolerant controller to its particular application.

Specifications related to FDD include fault detection delay [73], AKF identification dealy

[74], and maximum false alarm and miss-diagnosis rates [75]. Examples of specifications

related to the controller response to a fault also exist in the literature, including maximum

controller reconfiguration delay [76], maximum acceptable performance loss under a

fault scenario [77], maximum increase in control effort under a fault scenario [78] and

maximum overshot during reconfiguration [3]. However, two major problems can be

seen in the field nowadays. First, no single approach in the field has provided enough

design flexibility to cover a significant number of FTC specifications, nor clearly

indicated how particular design choices affect each and every one of those. Second, to the

best of our knowledge, no FTC approach has provided any design procedure through

which its parameters can be adjusted to achieve a specific set of FTC goals.

In this chapter we aim to address the two previously stated deficiencies in the

proposed FTC architecture. To accomplish such, the first step is to modify the quality

indices used by the FTC supervisor in order to improve their capability to represent the

various aspects related to FDD and the switching and learning operations governed by the

supervisor’s two decision logics. Such modifications then result in the creation of 12 FTC

design parameters, which lead to sufficient design flexibility to affect a series of FTC

goals, such as maximum fault detection delay and maximum acceptable tracking error

under a fault scenario.

 132

After detailed description of the effect of each design parameter in twenty six

different aspects of the final FTC response, an offline procedure for the determination of

values for all 12 design parameters is presented. Since the proposed FTC approach is

designed to deal with AUFs, there is not sufficient information at design time to

guarantee that the offline determined design parameters will fulfill all FTC specifications

once applied in the real world. Instead, the offline parameter design determination

procedure provides suitable initial conditions and a table look-up method is proposed for

efficient parameter tuning during actual implementation.

This chapter is divided as follows. Section 7.2 introduces extended versions of all

three quality indexes, each offering 4 design parameters, and details how modifications in

each design parameter affect the final FTC response. Section 7.3 presents the proposed

offline procedure for the generation of suitable initial conditions for the FTC design

parameters and describes the online tuning procedure. Section 7.4 then presents the

results of the application of the proposed methodology to fulfill the FTC specifications os

a simulated plant subject to nonlinear AUFs. This chapter is closed by final conclusions

in Section 7.5.

7.2. Extended Quality Indexes

In its original formulation the supervisor gathered the necessary information from

the plant in order to perform FDD through two distinct quality indexes, termed controller

and identifier quality indexes. In a subsequent chapter, a third quality index, the weight

quality index, was introduced in order to gather information on the health of the

 133

adaptation process an in this manner provide advanced information fundamental to CMD.

Although successful in performing their duties as stated in their respective chapters, the

quality indexes in their original formulation lack the flexibility to address the FTC

application concerns raised in the previous section of this chapter. Therefore, before

discussing how to adjust our FTC architecture to the requirements of each FTC

application, modifications to all three quality indexes will be introduced. Such

modifications do not alter their nature, but increase the number of design parameters to

make it possible for the user to, for example, adjust how fast AUF are classified without

affecting the classification speed of AKF.

This section discusses the particular effect of each of the proposed design

parameters on the ultimate response of the proposed FTC solution. The reader is assumed

to be familiar with the role of each quality index and the workings of both FDD and

CMD decision logics presented on earlier chapters.

7.2.1. Identification quality index

Focusing first on the identification quality index, one of the key aspects of its new

formulation is that it contains a set of two distinct filter parameters, applied to the filter

depending if the measured identification error is greater (γi
u) or smaller (γi

d) than the

value of qi(t-1). Also, instead of using a single threshold to create the logic regions of

high and low values of qi(t), two distinct thresholds are used: the Hqi that signals that the

quality index is high after it goes beyond it, and Lqi that signals that the quality index is

low after it goes below it. The use of the two threshold levels not only allows for different

 134

responses to be adjusted, but also creates a hysteresis region that contributes to the index

noise rejection. Equation (7.1) brings the new formulation in its discrete form.

ˆ() min () () (1) (1)m
i i i im M

q t R t R t q tγ γ
∈

= − + − − , (7.1)

where M is the total number of models present in the DMB at time t, R(t) is the output of

the plant, ˆ ()mR t is the output of the plant predicted by the DMB model m, the norm ⋅ is

defined as the sum of the absolute value of all vector elements, and iγ assumes the value

of γi
d if ˆmin () () (1)m

im M
R t R t q t

∈
− ≤ − or γi

u otherwise.

In this manner, the identification quality index presents the user with four design

parameters that can be adjusted independently in order to modify the response of the fault

tolerant controller to match its goals in a given application. The ultimate adjustment of

each design parameter is the subject of the next section, but first it is important to explore

how changes in each one of the identification design parameters affects the response of

the fault tolerant controller as a whole. For instance, since γi
u is used when the

identification error over all models in the DMB is increasing, using a greater value leads

to faster AUF classification. On the other hand, by decreasing its value we obtain greater

noise rejection since (7.1) acts as a low pass filter on the identification error, which is

directly affected by the quality of the plant’s output signal. Moreover, by decreasing γi
u,

significant identification error is required to be present for a greater length in time in

order to substantially impact qi(t) decreasing the chance of AKFs being transitorily

misclassified as AUFs in the interactions immediately after the occurrence of a fault

before a sufficient amount of input-output data is collected.

 135

The effects of the other quality index filter parameter γid
, on the other hand, are

different. Since it dictates how fast a low identification error can affect qi(t), increasing it

leads to faster AKF classification. However, decreasing its value reduces the chance of

AKF misclassification before a significant number of input-output data points are

collected. This point is particularly interesting because it is conceivable that certain fault

scenarios only demonstrate a significant impact on the plant dynamics at very specific

regions of the state space and therefore it is important not to draw precocious

classifications before at least one reference cycle is observed in full. On the other hand,

although the length of time of a reference cycle is known, as the plant dynamics change

abruptly due to a fault, there are no guarantees on the section of the state space the plant

will cover during the controller adaptation process. Moreover, adjusting the filter

parameter only alters the rate of decay. The actual time that the quality index qi(t) takes to

assume a low logic value is a function of Lqi value as well as the actual identification

error history.

The limit over which values of qi(t) are considered high is determined by the Hqi

threshold. Increasing its value leads to higher noise rejection, but different than the

decrease of γi
u which leads to the rejection of high frequency noise, higher values of Hqi

reject noise based on its amplitude. Increasing the value of this design parameter also

decreases the chance of transitory misclassification of AKFs as AUFs caused by peaks in

qi(t) after the occurrence of a fault and before a model with low identification error can

be fully expressed. On the other hand, decreasing its value also has two beneficial effects.

First, a lower Hqi value leads to faster classification of AUFs. Second, it also causes a

 136

reduction on the chance of transitory and permanent misclassification of AUFs as

variations of AKFs already stored in the DMB.

Finally, we focus on the fourth identification design parameter: the lower qi(t)

threshold Lqi. Increasing its value leads to faster AKF classification since the threshold

will be reached sooner as qi(t) decreases. Also, an increase in its value leads to an

expansion on the region that accounts for the variability of each particular fault scenario.

If this threshold is made too small, two instances of the same fault, an increase in the

friction of an actuator joint for example, can be classified as two separate faults, each

with their own model and control solution in the DMB, if the friction coefficient were to

differ slightly. Situations such as these are undesirable since the control solutions are

close enough from each other that the difference can be quickly dealt with by the

underlying adaptive controller, but the DMB would be incapable of providing closed

initial conditions through switching because the second occurrence would be classified as

an AUF. Moreover, the high specificity of the models within the DMB cause by too low

Lqi causes a greater number of models to be added to the DMB, which may result into

serious memory and processing issues. On the other hand, decreasing the value of Lqi

leads to better discernment (less chance of misclassification) between fault scenarios and

the nominal dynamics, as well as overall greater noise rejection due to the increase of the

hysterisis region.

 137

7.2.2. Controller quality index

The controller quality index (qc(t)) is reformulated into a structure similar to the

novel identification quality index presented in (7.1). As it can be seen in (7.2), qc(t) also

makes use of two distinct filter parameters (γc
u and γc

d), making it possible for the quality

index to respond differently for increasing and decreasing tracking errors. As with its

identification counterpart, two thresholds, Hqc and Lqc, are used to respectively determine

levels of logic high and low values independently.

() () (1) (1)c c c cq t U t q tγ γ= + − − , (7.2)

where U(t) is the value of the utility function at time t, and cγ assumes the value of γc
d if

() (1)cU t q t≤ − or γc
u otherwise.

Within the proposed supervisor, the pair formed by qi(t) and qc(t) are responsible

for the determination of the four states that compose the FDD decision logic. Therefore,

as outlined for the identification quality index, the values of the four design parameters of

qc(t) will also have a direct impact on the supervisor’s estimation of the plant’s health and

determination of when to perform the actions of switching and adding.

Following the same order of analysis used in the identification design parameters,

we start by focusing on γc
u. As it can be expected, increasing its value makes higher

tracking errors to translate more quickly into higher qc(t) values, making the detection of

all faults faster. Furthermore, higher values will also increase the chance of detecting

faults with short persistence, whose detrimental effect might go unnoticed if the tracking

error with short time span is filtered out before completely expressed. On the other hand,

 138

smaller values of γc
u provide greater noise rejection, preventing high frequency measure

and transmission noise to be interpreted as faults in the plant.

As for the filter parameter for decreasing qc(t) values, γc
d, increasing it leads to a

faster detection that the acceptable operational performance has been recovered, a

situation that leads to the addition of a new fault solution to the DMB in the event of an

AUF. It is important to make reach this decision fast enough so that an effective way to

respond to a particular fault can be learned before the dynamics of the plant change once

more due to an aggravation of the fault or in the event that the fault is transitory by

nature. However, if set too high, this filter parameter will lead to a greater chance of a

control solution to be added to the DMB before an entire reference cycle is covered,

leading to the learning of incorrect solutions in the event of faults that only affect the

dynamics of the plant in strong enough fashion in certain regions of the state space. As

for noise rejection in the determination of the plant’s health, smaller values of γc
d will

grant it for a similar reason as γc
u provides noise rejection to fault detection.

Once qc(t) extends beyond Hqc, its high logic value is associated in the decision

logic with situations of free and switched learning. Increasing Hqc leads to a greater

margin of acceptance of suboptimal tracking error and amount of control effort. This also

leads to greater noise rejection in all frequency range when performing fault detection.

Smaller values for the Hqc threshold lead to faster fault detection and higher chance of

successful detection. As a matter of fact, it set too high, Hqc can cause less detrimental

faults not be detectable, independent of the amount of time the fault remains active.

The controller quality index lower threshold Lqc, makes the decision to add a new

control solution to the DMB to be reached sooner if its value is increased. Increasing it

 139

also leads to a greater chance of adding such solutions independent of the time required.

In extreme circumstances, if made too small, the Lqc threshold may not allow a control

solution to be added to the DMB if the fault is severe enough that the minimum reachable

U(t) is higher than the adjusted threshold. On the other hand, decreasing the value of Lqc

leads to a smaller chance of adding a new solution before the whole reference cycle has

been covered. Smaller levels for this threshold also provide solutions with greater quality

and greater specificity, while also granting increased noise rejection.

7.2.3. Weight quality index

The primary role of the weight quality index (qw(t)) is to provide measure of the

degree of activity within the weights of the neural networks that compose the ACD

controller. This information is then used in conjunction with qc(t) in the CMD decision

logic to determine the health of the adaptation process of the base line controller. As with

the previous two quality indexes, qw(t) was also extended to admit different filter

responses for increases (γw
u) and decreases (γw

d) in the amount of network activity, as

shown in (7.3) in its discrete formulation. Different than the other two quality index, qw(t)

already possessed two distinct thresholds (Lqw and Hqw) since it was already important

for the CMD decision logic to distinguish between high, low and normal levels of

activity.

() () (1) (1)w w w wq t w t q tγ γ= ∆ + − − , (7.3)

 140

where wγ assumes the value of γw
d if () (1)ww t q t∆ ≤ − or γw

u otherwise, and the variation

of the weights of the identification, action and critic NNs ()w t∆ is defined in Equation

(7.4).

() () (1) () (1) () (1)i i a a c cw t w t w t w t w t w t w t∆ = − − + − − + − − (7.4)

Varying the four weight design parameters modifies how qw(t) interprets the

degree of activity within the NNs. Starting with γw
u, increasing it leads to a faster

detection of controller malfunction due to online training algorithm divergence and a

faster representation of the actual NN activity after a switching event by the supervisor.

On the other hand, due to the same switching events and also due to abrupt changes in the

plant dynamics caused by faults, spikes of high activity might surface in the NNs even

during healthy operation and decreasing γw
u leads to smaller chances that such spikes will

translate to incorrect identification of adaptation divergence.

Similarly, if increased, γw
d leads to a faster CMD in the event of local minima

convergence. However, if decreased, it leads to a smaller chance of incorrect stagnation

or incorrect true minima convergence detection before all state space covered by the

reference cycle is explored.

Because the weight update equation in the backpropagation online training

algorithm of GDHP is a function of the weights in the previous iteration, training

divergence leads to a steady growth in the activity of the NNs as defined in (7.3).

Therefore, independent of the value chosen for Hqw, a divergent controller will always

lead qw(t) over it, correctly detecting and identifying the controller malfunction.

 141

However, decreasing it leads to a faster detection and therefore greater chance that the

recovery process can take place while the diverging pattern is restricted to the internal

weights of the NNs and has not yet affected the input to the plant severely. On the other

hand, increasing its value reduces the chance of incorrectly detecting a divergent

behavior during normal training activity as a result of an abrupt fault.

Modifications on Lqw have effects similar to the ones of the high threshold.

Increasing it leads to faster CMD in the event of local minima convergence. On the other

hand, decreasing it provides lesser chance that the adaptation process is seen as if had

already converged while significant adaptation is still taking place, constituting a

controller malfunction misdetection.

A summary of the effects on the performance of the proposed FTC architecture

caused by all weight quality index design parameters as well as those from qc(t) and qi(t)

can be found in Table 7.1.

7.3. FTC Design Parameters’ Initialization Process

In the previous section, the three quality index used by the proposed FTC

supervisor were revised to extended formulations that possess a total of 12 design

parameters. While such flexibility is necessary in order to allow the user to adjust the

response supervisor to each particular FTC application, it also creates the challenge of

how to proceed in the adjustment of each and all parameters. As shown previously, each

one of the design parameters affects the response of the supervisor in multiple and

 142

sometimes conflicting ways, making the offline adjustment of such parameters non-

trivial.

Table 7.1. Summary of effects of the 12 design parameters on the proposed architecture.
 Lqi Hqi γi

d γi
u

in
cr

ea
se

 • Faster AKF
classification.
• Expansion on the
region that accounts
for fault variability.

• Less chance of
transitory
misclassification of
AKFs as AUFs.
• Greater noise
rejection (amplitude).

• Faster AKF
classification.

• Faster AUF
classification.

de
cr

ea
se

• Less chance of
misclassification by
model generalization.
• Greater noise
rejection (amplitude).

• Faster classification
of AUFs.
• Less chance of
transitory and
permanent
misclassification of
AUFs as AKFs
variations.

• Less chance of
transitory AKF
misclassification.
• Greater noise
rejection (frequency).

• Greater noise
rejection (frequency).
• Less chance of
transitory
misclassification of
AKFs as AUFs.

 Lqc Hqc γc
d γc

u

in
cr

ea
se

• Faster decision to
add a new solution to
the DMB.
• Greater chance of
adding suboptimal
solutions to the DMB.

• Greater margin of
acceptance of
suboptimal tracking
error and/or amount
of control effort.
• Greater noise
rejection (amplitude).

• Faster decision to
add a new solution to
the DMB.

• Faster fault
detection.
• Greater chance of
detecting faults with
short persistence.

de
cr

ea
se

 • Less chance adding
solutions to the DMB
before all reference
cycle is explored.
• Greater noise
rejection (amplitude).

• Faster fault
detection.
• Higher chance of
successful detection.

• Less chance adding
solutions to the DMB
before all reference
cycle is explored.
• Greater noise
rejection (frequency).

• Greater noise
rejection (frequency).

 Lqw Hqw γw
d γw

u

in
cr

ea
se

 • Faster detection of
controller malfunction
(local minima).

• Less chance of
incorrectly detecting a
divergent behavior
during normal
adaptation activity.

• Faster detection of
controller malfunction
(local minima).

• Faster detection of
controller malfunction
(divergence).
• Faster representation
of actual NN activity
after switching.

de
cr

ea
se

 • Less chance that the
adaptation process is
seen as if had already
converged while
significant adaptation
is still in progress.

• Faster detection of
controller malfunction
(divergence).

• Less chance of
incorrect convergence
detection before all
reference cycle is
explored.

• Less chance that
high activity spikes
are misclassified as
divergent behaviors.

 143

As a matter of fact, to precisely determine the value of all design parameters at

design time can be impossible to perform in applications that concern themselves with

the occurrence of unknown faults. Therefore, the proposed procedure for the

determination of the 12 design parameters that fulfill user defined FTC specification is

performed in two parts: offline determination of initial values and online parameter

tuning.

In the offline determination of initial values, a sequence of synthetic faults is

simulated over the plant’s nominal dynamics and the supervisor’s design parameters are

adjusted one at a time through the intricate procedure introduced in this section in order

to generate a simulation response that achieves the following key user’s FTC

specifications:

• Maximum acceptable tracking error and/or permissible control effort under

the nominal scenario: this specification determines the actual control goal of the

plant under nominal operation conditions, not to be compromised by the addition

of the FTC adaptive controller or supervisor.

• Maximum acceptable tracking error and/or permissible control effort under

a fault scenario: in this specification the focus is on the performance of the plant

under fault scenarios, which in some applications can be allowed to be somewhat

smaller than the nominal scenario and still be considered an applicable solution.

• Maximum fault detection delay: fault detection is the first step in any active

intervention by the FTC supervisor or human operator and therefore must be the

fastest information to be gathered.

 144

• Maximum acceptable reconfiguration time for AKFs: faults that are known

during design time have pre-computed solutions that can be used to quickly

recover the performance of the plant. The proposed FTC supervisor is capable of

achieving this goal by switching to a solution stored in the DMB, but only after

the AKF is correctly identified and classified.

• Maximum fault identification delay for AUF: although faster to be identified

than known faults, AUFs present a greater FTC challenge since the baseline

controller must by itself determine a solution through online adaptation.

Identifying AUFs early allows more time for human operators to perform changes

in the control mission or consider initiating safe shut-down procedure in the event

of an uncontrollable fault.

• Minimum observation time before adding a new model to the DMB: this last

specification depends mainly on the length of the desired reference cycle, but can

also be determined by the frequency in which an intermittent known fault affects

the plant.

Since the offline simulation makes use of the same adaptive critic controller used

in the online application, it is expected to behave similarly when facing the synthetic fault

set and the actual faults it will encounter in real world operation. However, unmodeled

factors of the nominal plant (such as measurement noise) and specific effects of particular

fault scenarios can make a set of offline determined design parameters to violate some of

the before mentioned specifications. Furthermore, other effects of the design parameters

listed in Table 7.1 that are not as crucial to the efficiency of the approach or are harder to

 145

express in numbers at design time, such as how generic should each model within the

DMB be or the amount of measurement noise present during a fault scenario, cannot be

adjusted prior to actual application of the FTC architecture to the plant. Therefore, the

goal of the offline simulation is to generate a set of initial values that can be fine tuned

during actual operation by using Table 7.1 as a guideline.

The process of offline determination of initial values start with the generation of

the synthetic fault sequence. Since ACD base line controller is based on a universal

approximator structure, it makes no assumptions on the structures of the faults and

therefore there is no need to implement overly complex dynamics for the synthetic faults.

As a matter of fact, in the example demonstrated in the following section, even though

the plant is expected to face nonlinear faults in actual application, the synthetic fault set is

composed exclusively of faults with linear dynamics. It is important however that the

synthetic faults have equal number of inputs and outputs that the nominal plant dynamics.

One important design choice to be taken prior to the procedure for determination

of initial values of the design parameters is to establish the complexity of the base line

adaptive controller. In the case of the proposed architecture, this translates to choosing

the size and architecture of the three NNs that compose the GDHP adaptive controller.

The number of weights, their configuration and choice of training algorithm will all have

an effect on how the design parameters affect the response of the supervisor, so it is

essential to select the appropriate values in advance.

Having set the complexity of the base line adaptive controller, the next step is to

simulate the synthetic linear fault sequence and record the responses of the three quality

indexes. In order to observe the reaction of the indexes to both known and unknown

 146

faults, as well as allow full expression of the adaptive controller training process, the

supervisor’s operations of switching and adding are disabled during the simulation.

The simulation starts with the plant with the nominal dynamics, where it remains

until the base line adaptive controller provides a control solution that provides a

performance level equal or higher to the minimum acceptable under nominal conditions.

Once such level is reached, the simulation is paused and the developed nominal control

solution and identification model are added to the DMB. Doing so provides the

supervisor with a control solution for the nominal scenario that fulfills one of its FTC

specification and also makes all subsequent times the plant assumes the nominal

dynamics to be interpreted as a known scenario by the supervisor and generate the related

responses in all quality indexes. As part of the information required later for the

determination of initial values for the filter parameters of qi(t), through the course of the

simulation, store in file (not within the DMB) copies of the weights of the IdNN after

convergence is reached in each presented fault scenario.

As made clear in Table 7.1, although relevant distinctions exist, many threshold

alteration effects are shared with the filter parameters of the same quality index.

Therefore, in the proposed methodology, initial values for thresholds are defined first

based on exclusively individual effects, followed by the filter parameters, whose

determination focuses primarily on temporal effects. For this reason, during the

simulation all filter parameters are set to 1, resulting in filters with no memory and in

practice allowing the threshold to be set according to the unfiltered information.

The methodology for the determination of suitable initial values for the thresholds

involves the gathering of responses in the simulations that represent limits in the

 147

expression of the unfiltered quality indexes during certain situations relevant to each

threshold. For the identification and controller ones, these limits cannot be used directly

as the thresholds as they cannot be expected to represent overall limits for all possible

fault scenarios, including those unknown during design time. In order to provide suitable

initial conditions that, once again, can be fine tuned once applied in practice, the actual

initial condition values for the identification and controller thresholds are obtained from

within the range defined by the obtained limits. We have found in simulated experiments

that using 25% and 75% of the gap between the measured limits produce suitable values

for the low and high thresholds respectively. An over bar is adopted in the notation to

indicate a threshold limit, as in iLq being the measured limit of iLq , the lower

identification quality index threshold.

The next steps deal with obtaining the threshold limits from the simulation data

for the identification and controller thresholds. Justifications for the setting of such limits

are intrinsically connected to the information they contribute to the FDD decision logic,

described in detail in Section 4.1.2. Starting with the lower identification threshold, as it

is related to the identification of known faults, iLq is obtained from the maximum

observed value (after the transitory response) when the plant enters a known scenario, in

this case, when the plant returns to the nominal scenario from a fault scenario. In order to

obtain iHq , it is necessary to first measure the maximum value assumed by qi(t) in each

fault (and therefore unknown) scenario. The limit for the higher identification threshold is

the obtained from the minimum of such measurement, as it indicated the minimum

response expressed by an AUF.

 148

The determination of the limit cLq can actually be made directly from the FTC

specifications, by taking the value of the utility function U(t) that corresponds to the

minimum acceptable performance under a fault scenario. On the other hand, cHq is

related to the transient performance degradation used to, among other things, detect the

occurrence of a fault, and therefore must be obtained from the simulation data. In

particular, it assumes the value of the minimum qc(t) peak observed following a change in

the dynamics caused by either the introduction of a fault scenario or a return to the

nominal dynamics.

The weight quality index threshold is involved exclusively in the CMD decision

logic presented in Section 5.2. Different from the previously discussed thresholds, the

ones related to qw(t) deal with the extreme situations of controller malfunction due to

divergence and local minima convergence and therefore can have initial values

extrapolated directly from the data. The lower threshold purpose is to inform the CMD

decision logic of when all NNs have converged. Therefore, a suitable initial value can be

obtained from the overall minimum among the maximum values assumed by qw(t) during

the last reference cycles in each scenario. The higher threshold, on the other hand, serves

the purpose of detecting divergent behavior within the NNs characterized by an increased

degree of activity. Due to the nature of NN learning algorithm divergence, the activity

within a NN, as translated into qw(t), continuously increases. Therefore, any threshold

value applied to wHq will eventually be crossed in the event of a divergent controller

malfunction. However, the smaller the value attributed to it, the sooner qw(t) will indicate

to the CMD decision logic that the learning process is no longer stable and greater are the

chances that corrective measure can be taken while the effects of the malfunction remain

 149

internal and before the operation of the plant is compromised. Nevertheless, it is

important to ensure that this threshold will not in any event be achieved during healthy

adaptive controller operation, otherwise its efficiency could be compromised due to

incorrect supervisory intervention. Therefore, the initial value for wHq is chosen as one

order of magnitude higher than the maximum qw(t) value observed throughout the

simulation.

Having adjusted all 6 thresholds to suitable values given the levels observed in the

simulated response, the next half of the proposed approach involves the adjustment of

filter parameters that will control the time for the quality indexes to cross their respective

thresholds in a manner to fulfill the temporal FTC specifications. Although adjusting the

filter parameters may seem a computationally expensive process, testing for different

filter values required few computations since for qc(t) and qw(t) the signals to be filtered

are already available as the unfiltered versions obtained during simulation, and the filters

themselves are not more complex than first order low pass filters. Starting with the filter

parameters of qc(t), γc
d should be adjusted so that, from the last moment the U(t) peaks

over the higher threshold, at least one reference cycle is covered before the filtered

quality index reaches its lower threshold level, as observed in all scenario transitions. The

reason for this build-in delay of one cycle is that a low value of qc(t), among other

functions, indicates that a suitable solution was found for an AUF and that therefore such

solution can be added to the DMB. In the event that a fault becomes significantly active

only in a portion of the state space traveled by the reference cycle, it is possible that a

controller will display a poor performance only in such portion. Unless a complete cycle

 150

is observed before fully judging the efficacy of the control solution, a model that do not

properly address to region-specific fault may be erroneously added to the DMB.

The desired fault detection time can be achieved by adjusting γc
u in order to

regulate the delay between the introduction of a fault scenario and the time the filtered

qc(t) reaches its higher threshold. Adjusting the filter parameter to provide a fault

detection delay less or equal to the specified one in all fault scenarios in the simulations

provides a suitable initial value. For the weight quality index, γw
d should be adjusted in

order to provide a wait at least three reference cycles before allowing the lower threshold

to be reached. As it can be expected, the reasoning behind this step is similar to the

determination of the initial value of γc
d, with the difference that more reference cycles are

required due to the manner these two quality indexes interact in the CMD decision logic.

For γw
u, a value of 1 can be maintained as an initial value for this design parameter due to

the fact that the higher threshold is already positioned far from signals obtained during

healthy learning and to the fact that early CMD is critical for its recovery.

The calculation of the effect of different filtering values on the response of qi(t) is

slightly more computationally expensive than the other two quality indexes since in order

to provide sufficient data, the identification quality index must be calculated as if all fault

scenarios were AKF. It is with this purpose that the weights of the IdNN at the end of

each scenario are store and used here to calculate the identification error of all models

throughout the simulation. For γi
d, experiment with different values in order to provide

less than the maximum acceptable identification delay for AKFs as observed in all

scenario changes in the simulation. Note that this delay has a direct impact on the

specification for the maximum acceptable reconfiguration time for AKFs since the

 151

supervisor can only increase the reconfiguration speed of such faults after they were

correctly identified and classified. Finally, adjust γi
u so as to provide less than the

maximum permissible identification delay for AUFs.

Table 7.2. Summary of the proposed procedure for the initialization of FTC design parameters.
Simulation Setup

• Start the simulation with the plant under the nominal scenario until the baseline controller
produces a solution capable of providing the plant with a tracking performance equal or
superior to the required nominal performance.

• Switching is deactivated in the supervisor. Adding models and solutions to the DMB is also
deactivated after a model of the nominal dynamics is added in the first part of the simulation.

• Store the unfiltered values of qw(t) and qc(t) so that different filter parameters can be applied
later without the need of further data acquisition.

• Pre-set all filter parameters to 1 (no memory)
• Apply a series of linear synthetic faults, compensating for the application’s number of inputs,

outputs and order of the nominal dynamics.
• Store in file (not in the DMB) copies of the weights of the IdNN at the last iteration within

each fault scenario.
FTC Design Parameters’ Initialization Procedure

1. Obtain iLq from the maximum value observed (after the transitory response) when the plant
returns to the nominal scenario from a fault scenario.

2. Measure the maximum qi(t) value observed during each fault scenario after the initial
transitory peak. Obtain iHq from the lesser of such measurements.

3. Calculate cLq using the desired U(t) level that corresponds to the acceptable performance
when the plant is under a fault scenario.

4. Obtain cHq from the minimum qc(t) peak observed following a change in the dynamics of the
plant.

5. Obtain iLq and iHq by setting them at respectively 25% and 75% from the difference
between iLq and iHq . Do the same for the qc(t) equivalents.

6. Set Lqw to the minimum among the maximum qw(t) value observed in the last reference cycles
of each scenario.

7. Set Hqw to one order of magnitude higher that the maximum observed qw(t) value.
8. Using the previously defined control thresholds and the stored qc(t):

8.1. Set γc
d so that at least one full reference cycle is covered before Lqc is reached.

8.2. Set γc
u in order to provide less that the permissible maximum fault detection delay.

9. Using the previously defined weight thresholds and the stored qw(t):
9.1. Set γw

d so that at least three reference cycles are covered before Lqw is reached.
9.2. Set γw

u to 1 (no memory).
10. Retrieve the copies of the weights of the IdNN obtained for each fault scenario and use those

to again generate qi(t) as if the supervisor had solutions for the nominal as well as all fault
scenarios within the DMB during simulation time. Using the previously defined identification
thresholds and the stored identification models:
10.1. Set γi

d to provide less than the maximum permissible AKFs identification delay. (direct
impact on maximum permissible AKFs reconfiguration delay).

10.2. Set γi
u to provide less than the maximum permissible identification delay for all AUFs.

 152

Table 7.2 summarizes the simulation details and the procedure to generate

suitable initial conditions for all 12 FTC thresholds and filter parameters as described in

detail above. Having concluded this stage, the supervisor is configured to be applied to

the actual plant. As mentioned previously, it is possible that in the event of AUFs not all

FTC specifications will be fulfilled, as it is possible that unmodeled system properties,

such as measurement noise, will cause the quality indexes to respond inaccurately. To

correct such, the user is directed to use Table 7.1 as a look up table and make the

necessary adjustments on the design parameters to rectify specific deficiencies. The only

exception is the case in which after implementation, the chosen baseline adaptive

controller fails to have the complexity necessary to provide solutions with less than the

minimum acceptable performance to AUFs. In such a case there is need to repeat the

presented offline procedure for the determination of a new set of initial values based on a

more powerful adaptive controller (e.g. increased number of layers or neurons).

7.4. Simulation Results

In this section we demonstrate how the proposed procedure can be used in

practice to configure the 12 FTC design parameters of the described approach before its

actual application to the nonlinear complex plant we ultimately desire to provide fault

tolerance. In particular, the plant of interest has 2 outputs, 2 inputs, 3 states, and will be

subject to nonlinear faults that will greatly change its dynamics. The offline simulation

procedure will be conducted by applying a sequence of synthetic linear faults to the

nominal model of the plant in order to generate information to be used to produce initial

 153

values for 12 FTC design parameters that aim at achieving the FTC specifications listed

in Table 7.3.

Table 7.3. Summary of FTC specifications. Temporal values expressed in number of iterations (it.) and in
terms of the length of the cyclic reference period (ref.).

FTC specification limit
Maximum acceptable tracking error under the nominal scenario 0.02
Maximum acceptable tracking error under a fault scenario 0.05
Maximum fault detection delay 75 it. (0.15 ref.)
Maximum fault identification delay for AUF 100 it. (0.2 ref.)
Maximum acceptable reconfiguration time for AKFs 3500 it. (7 ref.)
Minimum observation time before adding a new model to the DMB 750 it. (1.5 ref.)

For the sake of understanding, we assume in this simulation that the plant already

has a stable efficient controller designed for the nominal dynamics and that the FTC

architecture is mounted over the loop containing the plant and the nominal controller.

Under these circumstances, we can assume without any loss of applicability, that the

nominal dynamics are described by Equation (7.4).

1 1

2 3

3 2

(1) ()
(1) ()
(1) ()

x t u t
x t x t
x t u t

+ =⎧
⎪ + =⎨
⎪ + =⎩

 (7.4)

where 1()u t and 2 ()u t are the inputs of the plant and the states 1()x t and 2 ()x t compose

the output of the plant, also represented in vector form in []1 2() () () TR t x t x t= .

In this demonstration, we assume that the desired minimum performance of the

plant under the nominal scenario corresponds to U(t)=0.02, where U(t) is chosen as

shown in (7.5) focusing exclusively on the tracking error of the output. On the other

hand, a performance of U(t)=0.05 is still considered acceptable under a fault scenario.

 154

() ()() () () () ()
Tt tU t R t R t R t R t= − − (7.5)

where ()tR t is the desired reference signal with a cycle of 500 iterations described in

Equation (7.6)

() ()

2sin 0.4sin
250 250

()
20.1 sin 150 0.6sin 190

250 250

t

t t
R t

t t

π π

π π

⎡ ⎤⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞ ⎛ ⎞+ + + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

 (7.6)

7.4.1. Adjusting initial FTC design parameter values using simulated linear
faults

Directly from the FTC specifications in table 7.3 it is possible to directly set

0.05cLq = , however in order to set the values of the remaining thresholds, it is necessary

to run a simulation sequence using the same adaptive controller we seek to apply to deal

with faults in the actual plant. Taking into consideration the presence of 3 states, 2 inputs

and 2 outputs, and assuming a certain degree of complexity for the unknown fault

scenarios, all three neural networks that compose the ACD adaptive controller are created

as 2 layered recurrent neural networks with 40 hidden neurons. Having set the base line

adaptive controller, the next step is to determine a simulation sequence with synthetic

faults represented by linear systems with the same dimensions as the nominal plant.

Equations (7.7) to (7.10) describe the dynamics of abrupt faults 1 to 4 respectively. Table

(7.4) displays the simulation sequence and the timing of each fault.

 155

1 1 2 3 1

2 3 2

3 1

(1) 0.44 () 0.09 () 0.01 () 2 ()
(1) () 2 ()
(1) ()

x t x t x t x t u t
x t x t u t
x t x t

+ = − − − +⎧
⎪ + = −⎨
⎪ + =⎩

 (7.7)

1 1 3 1

2 2 2

3 1

(1) 0.67 () 0.11 () 5 ()
(1) 0.1 () 2 ()
(1) 0.3 ()

x t x t x t u t
x t x t u t
x t x t

+ = − − +⎧
⎪ + = +⎨
⎪ + =⎩

 (7.8)

1 1 2 3 1

2 1 2

3 2 1

(1) 0.19 () 0.1 () 0.17 () 1.2 ()
(1) 0.9 () 1.32 ()
(1) () 0.7 ()

x t x t x t x t u t
x t x t u t
x t x t u t

+ = − − − +⎧
⎪ + = +⎨
⎪ + = −⎩

 (7.9)

1 1 2 3 1

2 1 2

3 2 1

(1) 0.2 () 0.96 () 0.4 () ()
(1) 0.9 () 1.5 ()
(1) () ()

x t x t x t x t u t
x t x t u t
x t x t u t

+ = − + +⎧
⎪ + = +⎨
⎪ + = +⎩

 (7.10)

Table 7.4. Simulation sequence for the linear synthetic fault set.
Active time interval Plant dynamics

0 to 15000 Nominal - Equation (7.4)
15000 to 25000 Abrupt Fault 1 - Equation (7.7)
25000 to 35000 Abrupt Fault 2 - Equation (7.8)
35000 to 45000 Nominal - Equation (7.4)
45000 to 55000 Abrupt Fault 3 - Equation (7.9)
55000 to 65000 Abrupt Fault 4 - Equation (7.10)
65000 to 75000 Nominal - Equation (7.4)

Following the directives laid down in the previous section, the simulation was run

for the total 75000 iterations. Analyzing the transitory behavior of qc(t) after the

introduction of each scenario, the minimum peak value was observed when the plant

returned to the nominal scenario at iteration 65000 (Figure 7.1), setting cHq at 0.860.

 156

6.45 6.5 6.55 6.6 6.65 6.7 6.75 6.8

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

qc
 (u

nf
ilt

er
ed

)

Figure 7.1. Unfiltered qc(t) transitory response as it returned to the nominal scenario at iteration 65000.

After the transitory response, the maximum value of qi(t) observed while in the

nominal scenario was of 0.318, establishing in this manner iLq . The measurement,

obtained in the first time the plant returned to the nominal scenario after 35000 iterations,

can be seen in Figure 7.2. Moving forward, Figure 7.3 shows the response of qi(t) while

abrupt fault 3 is active. The maximum value observed in this scenario (after the transitory

response generated by the abrupt change in dynamics) was the minimum among all other

scenarios, determining the limit of the high qi(t) threshold, iHq , to be set at 0.575.

3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

qi
 (u

nf
ilt

er
ed

)

Figure 7.2. Response of the unfiltered identification quality index as the plant returns to the nominal

scenario at iteration 35000.

 157

4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5

x 104

0

0.5

1

1.5

qi
 (u

nf
ilt

er
ed

)

Figure 7.3. The unfiltered identification quality index during abrupt fault 3.

Having obtained the limits for the identification and controller thresholds, it is

then possible to determine the initial value recommendations for these thresholds as

described in the previous section. The calculation results lead to the values listed in Table

7.5.

Table 7.5. Initial values for the identification and control thresholds calculated from observed limits.
Threshold Initial Value

cLq 0.253

cHq 0.658

iLq 0.382

iHq 0.511

In order to determine the initial values for the weight quality index thresholds, an

exploration of the unfiltered qw(t) generated during the simulation (Figure 7.4) is

required. The maximum observed peak value of the weight quality index during

operation in the absence of controller malfunctions was 566.5, leading to the adjustment

of the higher threshold wHq to 5665. For the lower threshold, we focus on the maximum

 158

response observed after controller convergence at each scenario. Figure 7.5 displays the

minimum of such measurements, adjusting the initial value of the lower weight threshold

wLq to 3.75.

0 1 2 3 4 5 6 7

x 104

0

100

200

300

400

500

600

700

qw
 (u

nf
ilt

er
ed

)

Figure 7.4. Resulting unfiltered weight quality index from the synthetic fault sequence simulation.

6.5 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3 7.4 7.5

x 104

0

1

2

3

4

5

6

7

qw
 (u

nf
ilt

er
ed

)

Figure 7.5. Detail of the response of qw(t) during a period when no faults are active in the plant. The

minimum qw(t) response after controller convergence can be seen in this graph.

Having set initial values for all thresholds, the next step is the configuration of the

filter parameters. In order to generate the relevant data, identification models of all

synthetic linear scenarios visited in the simulation were added to the DMB through the

process described in the previous section. The identification quality index was then

recalculated independently to allow different filter parameters to be tested in order to

 159

fulfill the FTC specifications. Figure 7.6 illustrates the distinct difference between qi(t)

before and after filtering with its initial parameters. On Figure 7.7 it is possible to see

how, using the thresholds defined previously, the filtered qi(t) correctly identifies all

scenarios as known and classifies correctly which of the models in the DMB represents

the current observed dynamics. Note also that all transitory periods during which the

models are misclassified occur within period during which qi(t) transitorily misidentifies

an AKF as an AUF. This behavior is expected and desired since neither correct

identification nor classification can occur until sufficient data is made available and while

an AKF remains transitorily misidentified as an AUF the switching command is not

issued by the FTC decision logic.

4.4 4.5 4.6 4.7 4.8 4.9 5

x 104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

qi

unfiltered
filtered

Figure 7.6. Comparison between unfiltered and filtered identification quality indexes. The horizontal

dashed lines indicated the adjusted threshold levels. The simulation section displayed in the graph draws
attention to the introduction of an AKF at iteration 45000.

Hqi

Lqi

 160

0 1 2 3 4 5 6 7

x 104

0

2

4

6

Id
en

tif
ie

d
M

od
el

0 1 2 3 4 5 6 7

x 104

0

0.5

1

Lo
gi

c
S

ta
te

 o
f q

i

Figure 7.7. On the top graph, the logic state, low (0) or high (1), of qi(t) throughout the simulation. The
bottom graph displays the model identified as active at each iteration; model 1 pertains to the nominal

dynamics, while 2 to 5 pertain to the four fault scenarios.

Adjusting γi
u to 0.8 provided a maximum AUF identification delay of 68 iterations

(less than the specified 100 iterations), observed after the system’s dynamics abruptly

changed at iteration 65000 (Figure 7.8). In order to provide the means for the final

configured supervisor to be able to comply with the desired maximum reconfiguration

time for AKF, correct fault identification must occur before a switching operation takes

place. Therefore, γi
d was set to 0.002, which produced a maximum AKF identification

delay of 3204 iterations among all scenario changes experienced in the linear dynamics

simulation (as shown in Figure 7.9).

6.5 6.502 6.504 6.506 6.508 6.51 6.512 6.514 6.516 6.518 6.52

x 104

0

0.2

0.4

0.6

0.8

1

lo
gi

c
st

at
e

of
 q

i

Figure 7.8. Longest AUF identification delay (after γi

u adjustment) observed here as the time taken by qi(t)
to assume its high logic value.

 161

2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3

x 104

0

0.2

0.4

0.6

0.8

1

lo
gi

c
st

at
e

of
 q

i

Figure 7.9. Identification quality index logic state reacting to the introduction of an AKF at iteration

25000.

In order to achieve fault detection under the specified maximum delay, γc
u was set

to 0.6, resulting in a maximum observed fault detection delay of 55 iterations (less than

the required 75 iterations). Triggered by a high logic value of qc(t), the maximum

observed fault detection delay can be seen in Figure 7.10. A series of values for γc
d were

tested, checking for the resulting minimum number of iterations observed before a

control success is declared by a return of the logic value of qc(t) to low. Adjusting the

parameter to 0.002 provided a minimum observation time of 853 iterations (beyond the

specified 750 iterations) as seen in Figure 7.11. The resulting filtered qc(t) can be seen in

Figure 7.12 and the resulting state transitions throughout the simulation base on the

previously defined thresholds are displayed in Figure 7.13.

 162

6.5 6.505 6.51 6.515

x 104

0

0.2

0.4

0.6

0.8

1

Lo
gi

c
S

ta
te

 o
f q

c

Figure 7.10. Change in the logic state of qc(t) in response to the change in the dynamics of the plant at
iteration 65000.

6.5 6.52 6.54 6.56 6.58 6.6 6.62 6.64 6.66 6.68 6.7

x 104

0

0.2

0.4

0.6

0.8

1

Lo
gi

c
S

ta
te

 o
f q

c

Figure 7.11. Logic state of qc(t) following introduction of new dynamics at iteration 65000 and subsequent

performance recovery.

0 1 2 3 4 5 6 7

x 104

0

5

10

15

20

25

30

35

qc

unfiltered
filtered

Figure 7.12. Comparison between qc(t) before and after filtering using the chosen parameters.

 163

0 1 2 3 4 5 6 7

x 104

0

0.2

0.4

0.6

0.8

1

Lo
gi

c
S

ta
te

 o
f q

c

Figure 7.13. Logic values, high (1) and low (0), expressed by qc(t) throughout the simulation.

Following the proposed procedure, the adjustment of the final two design

parameters take place by keeping γw
u as 1 (unfiltered) and varying γw

d in order to prevent

a low logic value to be expressed before sufficient observation time is allowed. In this

case, given the specified minimum observation time for models to be added to the DMB,

γw
d was modified until a minimum observation time of 1620 iterations was obtained,

leading to a value of 0.0007 for the filter parameter (Figure 7.14). A comparison of the

response of the filtered and unfiltered qw(t) though the course of the entire simulation can

be seen in Figure 7.15.

6.5 6.55 6.6 6.65 6.7 6.75 6.8 6.85 6.9 6.95 7

x 104

0

0.2

0.4

0.6

0.8

1

Lo
gi

c
S

ta
te

 o
f q

w

Figure 7.14. Logic state of qw(t) (low (0), normal (1) and high (2)) depicting the healthy activity in the

adaptive critic controller following the introduction of new dynamics and subsequent convergence.

 164

0 1 2 3 4 5 6 7

x 104

0

50

100

150

200

250

qw

unfiltered
filterd

Figure 7.15. Comparison between filtered and unfiltered qw(t) throughout the whole simulation.

Having concluded the determination of initial values for all 12 proposed FTC

design parameters, Table 7.6 summarizes the results as they would be used in practice to

configure the FTC supervisor for application to the real world plant.

Table 7.6. Initial values for the 12 proposed FTC design parameters.
Threshold Initial Value Filter Parameter Initial Value

cLq 0.253 γi
u 0.8

cHq 0.658 γi
d 0.002

iLq 0.382 γc
u 0.6

iHq 0.511 γc
d 0.002

wLq 3.75 γw
u 1

wHq 5665 γw
d 0.0007

7.4.2. Applying the configured supervisor to a plant subject to nonlinear
faults

In this demonstration, the real world plant was simulated by a plant subjected to

nonlinear fault scenarios of greater complexity than the linear ones used in the linear

synthetic fault sequence. Through the course of the simulation, the plant was subject to

two novel AUFs and one incipient fault. It is important to note that no incipient faults

were present in the synthetic linear fault set used for initialization of the design

 165

parameters. In addition, one of the AUFs was presented twice in order to present the FTC

architecture with the challenge to learn a solution for an AUF in its first occurrence, and

then apply it directly once the fault is recognized as an AKF in its second occurrence.

The timeline for introduction of fault scenarios can be seen in Table 7.7.

Equations (7.11) and (7.12) describe the dynamics of abrupt fault 1 and abrupt fault 2,

respectively. Finally, the incipient fault is described as a gradual change in the nominal

dynamics (Equation (7.4)) leading to the dynamics described in Equation (7.13) at the

end of its active interval.

Table 7.7. Simulation sequence of actual implementation.
Active time interval Plant dynamics

0 to 15000 Nominal - Equation (7.4)
15000 to 25000 Abrupt Fault 1 - Equation (7.11)
25000 to 35000 Nominal - Equation (7.4)
35000 to 45000 Incipient Fault
45000 to 55000 Abrupt Fault 2 - Equation (7.12)
55000 to 65000 Abrupt Fault 1 - Equation (7.11)

2
1 3 1

2 3 2 2

3 3 2

(1) () ()
(1) () 0.8 () ()
(1) 0.5 () 1.5 ()

x t x t u t
x t x t x t u t
x t x t u t

+ = +
+ = −
+ = − +

 (7.11)

2
1 1 3 1 1

2
2 3 2 1 2

3

1
3 3 2 2

(1) 0.5 () 0.7 () 1.5 () 0.001sin ()
4

()(1) 2 () () () 0.2
1 ()

()(1) 0.04 () () 0.6 ()sin
2

x t x t x t u t u t

x tx t x t x t u t
x t

x tx t x t u t u t

π⎛ ⎞+ = − + − ⎜ ⎟
⎝ ⎠

+ = + +
+

⎛ ⎞+ = + + ⎜ ⎟
⎝ ⎠

 (7.12)

 166

()()

1
1 1 2 2

1

2 3 3

3 2

()(1) () 1.25 ()
1 ()

(1) 1 0.5sin 4 () ()

(1) ()

x tx t u t u t
x t

x t x t x t

x t u t

+ = + +
+

+ = +

+ =

 (7.13)

Throughout the simulation, the supervisor, operating with the design parameters

stipulated in the previous subsection, was capable of correctly identifying all fault

scenarios and perform the operations of adding new models to the database and switching

to known solutions in a manner to increase the efficiency of the FTC response. Table 7.8

provides a timeline of the supervisor’s responses, including the information made

available to the user and the actions taken in interaction with the base line controller and

the DMB.

Table 7.8. Information gathered and actions taken by the supervisor.
Iteration Supervisor’s Responses
15002 Abrupt Unknown Fault
18936 Control Success - ADD model 2
18937 Performance recovered (model 2)
25046 Abrupt Known Fault - SWITCH to model 2
25087 Abrupt Unknown Fault
25513 Abrupt Known Fault - SWITCH to model 1
25930 Performance recovered (model 1)
43896 Incipient Fault
45012 Abrupt Unknown Fault
48470 Control Success – ADD model 3
48471 Performance recovered (model 3)
55035 Incipient Fault
55046 Abrupt Unknown Fault
55503 Abrupt Known Fault - SWITCH to model 2
56086 Performance recovered (model 2)

 167

The first specification posed in this demonstration indicates a maximum

acceptable tracking error for the plant during nominal operation. Comparing the two

times the nominal scenario becomes active during the simulation, the largest observed

tracking error after the transient response caused by the change in dynamics was of 0.004,

safely below the desired 0.02. Figure 7.16 displays the value of the instantaneous tracking

error (as available in U(t)) during the last 5 cycles of the referred scenario, while Figure

7.17 displays the actual outputs of the plant as they closely follow the desired sinusoidal

trajectories.

3.25 3.3 3.35 3.4 3.45 3.5

x 104

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

R
ef

er
en

ce
 T

ra
ck

in
g

E
rro

r

Figure 7.16. Reference tracking error during the last 5 cycles in the nominal scenario.

3.4 3.41 3.42 3.43 3.44 3.45 3.46 3.47 3.48 3.49 3.5

x 104

-1.5

-1

-0.5

0

0.5

1

1.5

O
ut

pu
t R

(t)

Figure 7.17. The plant’s two outputs during nominal operation. Reference signals plotted in dashed lines.

 168

The tracking error during a fault scenario was also a concern in the specification

for this demonstration. The maximum observed tracking error in the last 5 cycles among

all fault scenarios was observed at the reintroduction of abrupt fault 1. The measured

value of 0.034, although higher than the one achieved during nominal operation, is still

below the specified maximum of 0.05. Figure 7.18 display the referred tracking error, and

Figure 7.19 brings the slightly deteriorated, but still acceptable, outputs of the plant under

the same fault scenario. Had the baseline controller failed to fulfill any of these first two

specifications, the designer would have to expand the NN structures and/or modify

learning parameters and obtain new initialization values for the design parameters

through the same process taken in the previous subsection. Being not the case, the

analysis of the FTC response continues.

6.25 6.3 6.35 6.4 6.45 6.5

x 104

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

R
ef

er
en

ce
 T

ra
ck

in
g

E
rro

r

Figure 7.18. Maximum reference tracking error observed during the last 5 cycles over all fault scenarios.

 169

6.4 6.41 6.42 6.43 6.44 6.45 6.46 6.47 6.48 6.49 6.5

x 104

-1.5

-1

-0.5

0

0.5

1

1.5

O
ut

pu
t R

(t)

Figure 7.19. The plant’s two outputs during the fault scenario with maximum observed tracking error.
Reference signals plotted in dashed lines.

The maximum observed fault detection delay can be obtained directly from Table

7.8 by measuring the maximum time gap between the introduction of a fault scenario and

the time the supervisor detects a fault. It is important to clarify that the goal of fault

detection is merely to indicate that a fault is present, not to identify it. Frequently, due to

the fact that the quality indexes measure independent signals and are independently

configured, on the process of moving to the correct state within the decision logic,

depending on which quality index responds faster, a series of transitory responses may be

reached. For instance, it is possible for an AKF to be transitorily identified as an AUF in

the first moments after its detection before qi(t) drops enough for the supervisor to

determine if the fault scenario is already known within the DMB. The presence of

responses such as these are expected and both proposed decision logics are built taking

such transitory behavior in account. Therefore, fault detection delay is measured until the

detection of a fault, independent if it was correctly identified at the onset or not. With this

in mind, the maximum observed fault detection delay was of 42 iterations (below the

specified maximum of 75 iterations), recorded at the re-introduction of abrupt fault 1.

 170

The referred event can also be graphically seen in Figure 7.20 as fault detection takes

place in the instant qc(t) crosses over the its high threshold.

5.5 5.502 5.504 5.506 5.508 5.51 5.512 5.514 5.516 5.518 5.52

x 104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

qc
(t)

Figure 7.20. Response of qc(t) in the first 200 iterations after introduction of abrupt fault 1. Maximum

observed fault detection delay occurs at 46 iterations after the fault introduction as the quality index crosses
Hqc.

For the maximum AUF identification delay we focus on the supervisory response

(as shown in Table 7.8) during the first occurrence of the two abrupt faults at iterations

15000 and 45000. The maximum observed delay was of 12 iterations, well below the

specified limit of 100 iterations.

One key aspect of the proposed FTC architecture and an FTC specification in this

demonstration is the amount of time allowed for reconfiguration of an AKF. In the

simulation, the abrupt fault 1 is introduced twice and the supervisor must successfully

learn a solution in the fault’s first occurrence, autonomously add it to the DMB and

present it in the fault’s second occurrence fast enough in order to provide a shorter

reconfiguration delay. In the simulation, an actual reconfiguration delay for AKFs of

1086 iterations was achieved, making it less than one third the specified maximum of

3500 iterations and almost one fourth of the reconfiguration time taken during the first

occurrence of 3937 iterations. A graphical indication of how important the choice of

Hqc

Lqc

 171

suitable thresholds and filter parameters is for the efficiency of the supervisor can be

found in Figure 7.21, which depicts the response of the controller quality index during the

second occurrence of the abrupt fault 1.

5.5 5.55 5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95 6

x 104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

qc
(t)

Figure 7.21. Faster reconfiguration time through switching operation on the second occurrence of abrupt

fault 1.The reconfiguration time of 1086 iterations is achieved when qc(t) moves below Lqc.

The final FTC specification of this demonstration deals with the minimum time

desired for observation of the behavior of the plant before a new solution is added to the

DMB. This time gap is obtained from the last moment the tracking error goes below the

value specified by the lower qc(t) threshold, until the time the new control solution is

added to the DMB. This process occurs twice in the simulation, once for each abrupt

fault. As seen in Figure 7.22, the minimum observed wait time for the addition of a new

model to the DMB occurred during abrupt fault 2 and had the value of 1948 iterations, a

number safely larger than the required minimum of 750 iterations. Table 7.9 summarizes

the results of this demonstration by comparing the stipulated FTC specifications and the

achieved results. The methodology for generating suitable initial values for all design

parameters was successful in configuring a FTC supervisor capable of achieving all

specifications without the need of further tuning.

Hqc

Lqc

 172

4.5 4.55 4.6 4.65 4.7 4.75 4.8 4.85 4.9

x 104

0

0.5

1

Lo
gi

c
S

ta
te

 o
f q

c(
t)

4.5 4.55 4.6 4.65 4.7 4.75 4.8 4.85 4.9

x 104

0

0.2

0.4

0.6

0.8

1

Tr
ac

ki
ng

 E
rro

r

Figure 7.22. Logic state of qc(t) (top) and unfiltered tracking error with controller thresholds (bottom)

provide a visualization of the observed minimum wait time to add a solution to the DMB.

Table 7.9. Comparison of FTC specifications and achieved simulation results.
FTC specification desired achieved

Maximum acceptable tracking error under the
nominal scenario

0.02 0.004

Maximum acceptable tracking error under a fault
scenario

0.05 0.034

Maximum fault detection delay 75 it. (0.15 ref.) 46 it. (0.09 ref.)

Maximum fault identification delay for AUF 100 it. (0.2 ref.) 12 it. (0.02 ref.)

Maximum acceptable reconfiguration time for
AKFs

3500 it. (7 ref.) 1086 it. (2.17 ref.)

Minimum observation time before adding a new
model to the DMB

750 it. (1.5 ref.) 1948 it. (3.89 ref.)

7.5. Conclusion

Although any successful FTC approach must be tuned to address faults in specific

ways to match the requirements of each plant, no existing approach provides neither

sufficient flexibility, nor a guideline of how to adjust design parameters in order to fulfill

fundamental FTC specifications. In this chapter, all quality indexes used by the

supervisor in the proposed architecture were extended in order to provide a sufficient

degree of flexibility to the supervisor’s response. Then, in order to regulate the response

 173

of the supervisor to match six key FTC specifications, a methodology for the generation

of suitable initial conditions for 12 design parameters was presented, along with a look-

up table approach for the fine tuning of such parameters during actual implementation.

An evaluation of a simulated implementation of the methodology reveals that the initial

conditions set for the design parameters successfully adjusted the supervisor, providing a

FTC response that fulfills all specifications even when previously unknown nonlinear

faults are introduced.

 174

CHAPTER 8 – Stability Concerns

8.1. Introduction

After the introduction of all major elements of the proposed FTC architecture,

including the base line adaptive critic nonlinear controller and the FDD & CMD

supervisor, it is now possible to better discuss the stability issues involved in certain

building blocks of the architecture and the reasoning behind the choices that lead this

research to make use of them.

One important aspect of out work is the capability of handling AUFs and the fact

that we aim at making as little restrictions as possible on the nature and form of such

faults. As a consequence, the dynamics of the plant we desire to make fault tolerant may

change greatly form one instant to another, at any instant, and such change may bring

previously unknown nonlinearities that may be of paramount importance for its control

within the region of the state space traveled by the desired trajectory. It is clear then that

to accomplish fault tolerance under such scenario there is need to employ an adaptive

controller. Moreover, since the dynamics of the faults under consideration are not known

at design time, such adaptation must occur online, updated constantly at every iteration.

And finally, since no assumptions are made on the format of the nonlinearities introduced

by the AUF, the required adaptive controller should possess universal approximation

 175

capabilities in order to have the power to develop suitable control solutions provided their

existence.

8.2. Literature Survey

To this day, Neural Networks have already been applied to a large number of

control problems. The existence of training algorithms that can be used for online

adaptation and their known universal approximation capability make them strong

candidates for a base line adaptive controller for the FTC problem we outlined

previously. However, stability and convergence of NN controllers for FTC applications

remains an issue. The goal of this section is to explore and discuss some of the prominent

research conducted on stable and convergent NN architectures, taking special focus on

ACDs, and analyze them for their capability of handling AUFs.

8.2.1. Adaptive critic control with optimal solution convergence guarantee

Using a similar approach than used previously for Q-learning [79], Liu and

Balakrishnan [80] approached the online training of the action and critic neural networks

in a throughout mathematical study leading to the necessary conditions for the neural

network to converge to proven optimal solution.

In their study they have limited themselves to the regulation problem of fully

observable linear time-invariant, discrete, multivariable systems. In addition, an initial

stabilizing linear controller is assumed to exist before the adaptation takes place.

 176

Furthermore, a full accurate model of the plant is assumed to be available, the reason why

the convergence of an IdNN or its effect on the convergence of the remaining two NNs

was not studied. Such restrictions allowed the authors to explore in detail the adaptation

equations of the AcNN and CrNN of a DHP-equivalent adaptive critic design.

Two conditions were identified as necessary to guarantee the convergence of the

NNs when trained together in an iterative manner. In particular, one of the conditions that

focuses specifically on the AcNN was shown to be relaxed by the addition of a learning

rate parameter. The formulation makes clear that adjusting such learning rate is capable

of directly affecting the convergence of the method. However, its determination is linked

to the previously mentioned restrictions of the study.

As a final result, it was also shown that the ultimate two conditions can be re-

written in the form of the well known discrete algebraic Riccati equation and the process

to adapt such networks in the direction of the optimal solution is equivalent to the

iterative method to solve the aforementioned equation.

Although an interesting result to the field of ACD in the sense that it confirms the

soundness of the approach in its basic sense, it provides no means of extension to the

control of systems with nonlinear dynamics as several of the discarded higher order

derivatives would have to be considered and further interaction between the NNs could

provide training deadlocks. More important to its application to FTC, it does not consider

the fact that an IdNN must be adapted concomitantly in the event of faults, nor the

implications of not possessing precise the plant’s dynamics information at all times.

 177

8.2.2. Practical stability issues with adaptive inverse mapping control

This approach focuses on the application of an online adapting algorithm to

generate an inverse map to be applied in parallel to a predetermined sub-optimal

controller with the goal of increasing tracking performance. Chen and Chang [81] have

explored some practical stability issues related to the implementation of such control

architecture to the control of nonlinear time-invariant discrete-time systems. Although the

discussion applies to any other NN structure used to generate such maps, the published

work focuses on a Cerebellar Model Articulation Controller (CMAC), which is

essentially an adaptable look-up-table method.

Fundamental to the approach is the sub-optimal stabilizing controller (e.g. a PID

controller) designed off-line and fully capable of generating an acceptable control

solution to the plant. Once inserted however, CMAC takes over the main part of the

control action, leaving the off-line computed controller to address to fine-tuning, leading

to a reported great increase in tracking performance. The architecture that combines the

sub-optimal stabilizing controller and the CMAC can be seen in Figure 8.1. It is

interesting to note that the formulation of the method requires yt(t+1) to be available at

time t, a requirement shared by the ACD formulation presented in this thesis. Through a

series of simulation experiments, Chen and Chang studied the effects on the CMAC

adaptation stability of the aggressiveness of the off-line designed controller, the CMAC

learning rate and its quantization and generalization parameters.

 178

Figure 8.1. The CMAC control system.

As a conclusion, it was reported that the major cause of instability in the online

learning of CMAC in an inverse mapping architecture rests on its continued training after

the tracking error has been reduced. A deadzone was then created around the inverse

dynamics identification error, effectively stopping training after a certain performance is

reached. Although the approach was effective in simulations to prevent the training to

diverge, the authors raise two difficulties with its implementation. First, it can be difficult

to determine when to stop CMAC learning to achieve optimal or near-optimal tracking

error. Second, once the CMAC stops learning it becomes incapable of responding to

further changes in the reference.

One could implement such deadzone approach to any NN control architecture,

including the ACD architectures in the work presented in this thesis. However, due to

constant interaction between the three NNs in a full ACD, instability may still occur even

after training is stopped. Furthermore, when faults are capable to change the dynamics of

a system at any time, the question of when to stop adaptation and when to resume it

 179

becomes even more complex. Moreover, the approach proposed in the literature that

involves off-line experimentation for the determination of the deadzone size become

infeasible when unknown faults are considered.

8.2.3. Adaptive control solution for systems with stochastic uncertainties
with guaranteed signal boundedness in probability and almost sure
convergence

This approach focuses on the regulation problem of SISO systems in strict-

feedback form subject to time-varying uncertainties. Such uncertainties are assumed to be

linearly parameterized , where the unmeasured parameters are generated by stochastic

differential equations. The work developed by Arslan and Basar [82] builds up on

previous work extending stability proofs to additive and multiplicative uncertainties by

using non deterministic notions of stability and performance.

As for the strict-feedback controller itself, although it is perceived that an optimal

solution to the problem can only be achieved by a stochastic nonlinear adaptive

controller, the literature so far has limited itself to tackle the stability issues of simpler

linear in the parameter adaptive controllers which lead to tractable, however sub-optimal,

controllers.

It is important to note that although such formulation shares with faults their

stochastic nature, the stochastic uncertainties here discussed are well described in

structure and operate over systems with fully known dynamics. On the other hand, the

work developed in this area holds similarities to the application of ACD in the presented

work in the sense that the regulation efficiency is measured by a “risk-sensitive cost”, a

 180

sum of all future regulation errors equivalent to the HBJ equation. Having said that, it is

important to note that for the stated problem proof of boundedness in probability and

asymptotically zero convergence has been developed, provided that all random sources of

parameter uncertainty are independent and that all sources of parameter uncertainty

vanish after the origin is reached. Clearly such conditions cannot be satisfied in the field

of FTC since faults are prone to interact with each other leading to consequences

different than their additive effect and also cannot be expected to stop affecting the

system after its effect has been dealt with by the controller. Nevertheless, stochastic

notions of stability and performance may hold the key to providing sound guarantees in

the face of unknown fault scenarios.

8.2.4. Asymptotically stable Hamilton-Jacobi neural network control for
constrained systems

Outside of the ACD scope, Hamilton-Jacobi equations have also been applied

with reported success to other neural control applications. One example of such is the

work of Lewis and Abu-Khalaf [83], which pertains to the offline design of static

nonlinear neural controllers for constrained systems. In particular, their work focused on

linear [83] and nonlinear [84] systems subject to input saturation, constrained states and

limited disturbances. For such, a state feedback controller was devised through

successive iterations between the AcNN and the Hamilton-Jacobi equation.

In order to guarantee asymptotically stability in this particular design, the

nonlinear dynamics of the system are assumed to be known and to be Lipschitz

continuous. Furthermore, an initial stabilizing control is required as the neural network

 181

solution development is restricted to a compact set within the initial controller’s

asymptotic stability region.

The capability to generate asymptotically convergent controllers to nonlinear

systems under the effect of disturbances and constrains can be interesting to this thesis

research as a passive FTC approach or offline refinement tool to known faults control.

However, it is important to spell out that this methodology cannot tackle nonlinear

systems that can make some of the interactive equations unsolvable, even though they are

controllable. Furthermore, although designed to address constrained systems, a common

effect of faults on healthy sub-systems, the method only provides simulation results that

show that with its application the states are less likely to go over the constrains bounds

than the original stable controller.

8.2.5. Globally Convergent ACD for stable linear systems

While still in its very early stages, research on proven stable and convergent

online adaptation approaches for ACDs has already produced some promising

preliminary results. In particular, we call for attention the work of Murray, Cox, Saeks

and Lendaris [42] developed in collaboration between the academic and corporate

organizations. The focus of such work was the development of a globally convergent

nonlinear ACD (referred as an approximate dynamic programming architecture) to be

applied to the very practical problem of designing of a controller for the autolander of the

NASA X-43 research aircraft, without a priori knowledge of its flight dynamics.

 182

It is important to note though that although the controller is nonlinear in its

formulation, its stability and convergence were only proven to be fully applicable for the

control of stabilizable time-invariant linear systems. Focusing on linear systems

simplified the approach taken in two significant points. The first point deals with the off-

line training of the controller. Such training relies on a training set of input-output of the

plant and therefore can only cover a limited portion of the state space. For nonlinear

systems, any convergence proof following the presented methodology remains true only

for the space covered by the training set, however for a linear plant it is possible to extend

the result of a bounded set of training points to all state space, making the results global.

The second simplification point rests on the fact that for a linear plant the proposed

training algorithm reduces itself to the Newton-Raphson iterative method for solving the

Riccati Equation.

Furthermore, it is also necessary that the states of the plant be available for

feedback and that, in order for no information at all of the dynamics of the plant be

necessary, the plant must be augmented with a known pre-compensator at the cost of

increasing its dimensionality. Finally, the plant is also assumed to be exponentially stable

at the origin.

With all restriction mentioned, the proof of global convergence follows through a

Liapunov approach that guarantees the decay of both controller error signal and

convergence of the cost-to-go estimate. Since the result provides a decay statement only,

it is implied also that a stabilizing cost functional / control law pair be pre-designed in

order to serve as initialization parameters for the algorithm. What makes it possible to

apply the Liapunov-based approach to an unknown system is the construction of a linear

 183

model of the plant based on n input-output pairs collected from the plant, where n is

equal to the number of dimensions of the plant. Clearly though, this identification process

crucial to the controller development must be carried out off-line.

Provided that the plant dynamics are known and that all other assumption are

observed, the authors argue that it is possible to apply the same off-line controller design

with guaranteed convergence for nonlinear systems, although the solution to the

interactive procedure for controller and critic design might not have a solution as

tractable as the one for the Riccati Equation. From the perspective of FTC, perhaps the

greatest limitation however rests on the fact that the controller design procedure must be

carried out off-line, providing no means to manage time varying systems.

8.3 Handling the Stability Concerns

The goal of this section was not to list all work develop on the subject of stability

and convergence of NNs in control, but to cover enough relevant recent achievements of

some of the leaders in the field to paint a picture of the current state-of-the-art. In so

doing, we have shown that significant results have been achieved, producing NN

controllers capable of achieving their goals with both stability and guaranteed

convergence. However, such results come with severe limitations on the NN capabilities

and restrictions on the problems they are capable of tackling. In particular, we have

discussed results that are limited to linear plants, nonlinear plants with known dynamics

and very strict and limited parameter variation, and learning algorithms that are only

applicable off-line.

 184

Although such restrictions may seem overly limiting, it is still possible today to

make use of some proven stable NN control architectures in conjunction with the

proposed Supervisor in order to design FTC solutions, provided the system for which the

FTC is designed and its goals are equally restricted. For instance, one could implement

the previously discussed results in [42] to develop control solutions for a linear system

and a series of linear AKF and use the proposed supervisor to switch between those. The

stability and convergence results of [42] could then be extended to the switched system

using an approach such as the one developed in [28], or perhaps by extending the

concepts of stochastic stability presented in [82].

 However, our major goal is to study the feasibility of a FTC solution

capable of handling faults that not only can be nonlinear, but also are unknown at design

time. Online training and the ability to respond to AUF are fundamental capabilities that

we seek to achieve. For that, we make use of NNs as the building blocks of our nonlinear

controllers due to the existence of online training algorithms and their universal

approximator property [85]. And in order to manage the unknown dynamics with

potential elevated degree of complexity, we have chosen to implement NN control in the

most advanced ACD architecture, GDHP. And although no complete stable and

convergent approach exists today to tackle the objectives we have set, it is important to

make clear that the developed architecture can also be used on smaller scale in

conjunction with more restrictive adaptive controllers for projects with narrower goals.

 185

CHAPTER 9 – Conclusion and Future Work

9.1. Conclusion

The presented work has demonstrated that the implementation of a synergistic

combination of a reconfigurable controller and a FDD/CMD supervisor based on three

distinct quality indexes generates an efficient and reliable FTC architecture. Based on a

multiple model approach, the proposed architecture is centered on an intelligent Dynamic

Model Bank for fault models and control solutions. The application of adaptive critic

designs as reconfigurable controllers is shown to give the hierarchical algorithm the

degree of flexibility required to deal with both abrupt and incipient unknown changes in

the plant dynamics due to faults. The proposed supervisor system is used to accelerate the

convergence of the method by loading new initial conditions to the GDHP when the plant

is affected by a known abrupt fault. Moreover, the developed FDD decision logic is

capable of recognizing new fault scenarios and assimilating them on-line to the DMB,

along with parameters for the corresponding controller. The introduction of the weight

quality index has made possible to distinguish between faults in the plant and controller

malfunctions caused by online training divergence or local minima convergence.

Furthermore, the Dynamic Model Bank was successfully used to generate new initial

conditions to the neural network training that improve their efficacy as the supervisor

autonomously acquires more nonlinear models of the plant under healthy and diverse

 186

faulty scenarios. Directly affecting the response of the supervisor and its manipulation of

the DMB, a methodology for initializing and tuning distinct parameters of the quality

indexes that allows for application-specific key FTC specifications to be achieved was

presented. Finally, a series of key steps that form the basis for the fault development

information extraction module capable of providing the probability of occurrence of

future faults to the user, were also addressed in this report.

9.2. Future work

9.2.1. Improvements on supervisor – unified decision logic

As presented earlier, the supervisor is instrumental in managing a series of key

features in the proposed FTC architecture. By manipulating the DMB, the supervisor is

able to reduce the reconfiguration time of abrupt known faults as well as prevent

controller malfunctions from developing to the point of degrading the plant’s tracking

performance significantly. However, neither benefit can take place as fast as or as

accurately as the FDD and CMD decision logics can ascertain the current status of the

plant. Performing both FDD and CMD in a way to match the specifications and

requirements of each plant is critical to the success of the whole FTC architecture.

Moreover, it is fundamental that the supervisor be capable of distinguishing between

plant faults and controller malfunctions since the counteraction for each scenario is

different.

At the present stage, at every interaction CMD is performed first and then,

provided no controller malfunctions are detected, the FDD decision logic is used to

 187

evaluate the status of the plant. Although justifiable, this sequential approach may cause

additional delay on the detection of faults and/or controller malfunctions when they occur

close to each other in time. More importantly, the currently implemented approach does

not account for all possible transitions from states within one decision logic to states

within the other. For example, if a fault in the plant occurs after a controller malfunction

is detected, it will only be detected by the FDD decision logic once the referred controller

malfunction is addressed properly.

Combining both decision logics into a single structure requires the analysis of all

possible 24 directional transitions between the 3 states of the CMD decision logic and the

4 states of the FDD decision logic. Once all transitions are analyzed for their significance

and assigned different actions (e.g., add and switch) as required, a new paradigm must be

used to express such connections since the graphical tools used so far will reach their

representational limit. With benefits to the response of the whole FTC architecture, we

feel that such supervisor improvements are a critical avenue for future work.

9.2.2. Ultimate development of the Fault Development Rule Extraction
module

As the first step in the direction of developing the final component of the

proposed FTC architecture capable of providing the user with fault development

probabilities, a novel method for linguistic rule extraction was presented in Chapter 6.

Making use of an innovative TSD representation, a multiple objective rule search and

temporal fuzzyfication, rules such as the following example can be extracted directly

from raw sensor data:

 188

IF T1 is high AND F1 is medium AND T2 is medium AND F2 is low THEN after a

medium delay T3 will be high.

Although many of the key aspects have already been tackled, such as temporal

information extraction and representation, some additional work must be taken to reach

ultimate fault development rules such as:

IF Fault 15 (valve seal compromised) is active AND input #5 remains very low AND

reference #2 remains high, THEN Fault 23 (loss of valve actuator) will have a 85%

chance of occurrence after a delay of 30 to 45 minutes.

In particular, there is a need to add a probabilistic estimate of occurrence in the

model of the consequent (predicted fault). Such a probability must account not only for

the chance of a fault to occur or not, but also for the probability of it taking place within

the indicated time frame.

Moreover, in order to be able to infer on the chance of occurrence of a fault, it

becomes much more meaningful to take into consideration the number of independent

occurrences of the fault, as opposed to the time spent by the plant in all occurrences of

the fault as currently being measured by the first metric. In the TSD representation, an

isolated fault occurrence, given a particular set of antecedents stated by a rule,

corresponds to data points moving over time into the second quadrant, remaining inside

of it for a period of time and leaving it. It is then possible to call dynamic behaviors of

 189

data points within the TSD a trip. A trip into and out of the second quadrant (2trip)

corresponds to an occurrence of the fault as dictated by the rule, while a trip involving the

fourth quadrant (4trip) corresponds to an event marked by a fault warning being issued

(antecedents are observed) without being followed by the occurrence of the fault after the

stated delay (consequent not observed). Therefore, a more meaningful metric to measure

rule inaccuracy for the extraction of fault development information might be Equation

(7.1) in substitution of Equation (6.4).

4
2 4'

2 41

, 0

1, otherwise

trip trip trip
trip tripm

⎧ + >⎪ += ⎨
⎪⎩

, (7.1)

A final point worth mentioning in this plan of future work pertains to the temporal

fuzzyfication. While in general a linguistic fuzzy term might be ideal for providing a

human with a fuzzy delay, for FTC application it is crucial to clearly state the time frame

another fault is expected to occur. Changing the fuzzy linguistic term to a specific range

involves, in a first level, the use of a different membership function shape for the

temporal fuzzyfication. More advanced and innovative approaches such as probabilistic

temporal histograms might also be considered in order to better transmit to the user the

probabilistic distribution of the chance of occurrence of a fault over time.

 190

9.2.3. Improvements in the initialization procedure of the FTC design
parameters

Although the presented methodology for the adjustment of the extended quality

indexes produced satisfactory simulation results achieving all desired specifications, there

are still points that can be improved, both in the offline initialization and the online

tuning procedures. For instance, it could be possible to isolate certain specific design

parameters, such as the filter parameters of the controller quality index, and produce

worst case calculations of their impact on the affected specifications based on the

previous choice of threshold levels. Although such calculations would necessarily

produce conservative estimates of the impacts of different values, they may represent

even more computationally efficient ways to calculate filter parameters, which are

proposed here to be obtained through successive trials using the data obtained during the

simulation of the synthetic linear fault set.

Another potential point of improvement rests on the indentification quality index.

In the current architecture, qi(t) is used both in the FDD decision logic to determine when

the system is operating in a known scenario and to determine which specific dynamics is

active. Therefore, while adjusting for the maximum fault identification delay for AKFs,

the discernment among fault scenarios is also being affected. The problem with this

approach is that it is only possible to clearly determine which of the known scenarios is

currently active by applying qi(t) filter parameters within a certain range. For example, if

γi
d is set too high, models that may produce low prediction error in only certain portions

of the state space, may be temporarily indicated as match to the current dynamics and

will deteriorate the base-line controller response when switched to an incorrect solution.

 191

Therefore, it may be interesting to study in future work the possibility of separating the

model identification task from the identification quality index with the goal of increasing

is specificity and allowing greater flexibility of its parameters. Such a task would not be

trivial though, since there would be need to somehow ensure that qi(t) would only

determine that a known fault had occurred after the independent measure determined that

the current model had been correctly isolated.

 192

BIBLIOGRAPHY

1. K. Åström, P. Albertos, M. Blanke, A. Isidori, W. Schaufelberger and R. Sanz

(Eds.), Control of Complex Systems, Springer, London, UK, 2001.

2. M. Blanke, R. Izadi-Zamanabadi, S. Bøgh and C. Lunau, “Fault-tolerant control

systems – a holistic view,” Control Engineering Practice, vol. 5, no. 5, pp. 693-

702, 1997.

3. M. Blanke, R. Izadi-Zamanabadi and T. Lootsma, “Fault monitoring and re-

configurable control for a ship propulsion plant,” International Journal of

Adaptive Control Signal Processing, vol. 12, pp. 671-688, 1998.

4. M. Blanke, M. Staroswiecki and N. Wu, “Concepts and methods in fault-tolerant

control,” Proc. American Control Conference, pp. 2606-2620, 2001.

5. G. Yen and P. Meesad, “An effective neural-fuzzy paradigm for machinery

condition health monitoring,” IEEE Trans. System, Man and Cybernetics, Part B:

Cybernetics, vol. 31, no. 4, pp. 523-536, 2001.

6. Y. Diao, “Fault tolerant systems design using adaptive estimation and control,”

PhD dissertation, The Ohio State University, Columbus, OH, 2000.

7. D. Prokhorov, R. Santiago and D. Wunsch, “Adaptive critic designs: a case study

for neurocontrol,” Neural Networks, vol. 8, no. 9, pp. 1367-1372, 1995.

8. A. Kokkinaki and K. Valavanis, “Error specification, monitoring and recovery in

computer-integrated manufacturing: an analytic approach,” Proc. IEE Conference

on Control Theory and Applications, pp. 499-508, 1996.

9. S. Qin and W. Li, “Detection and identification of faulty sensors with maximized

sensitivity,” Proc. American Control Conference, pp. 613-617, 1999.

10. P. Kabore and H. Wang, “Using an equivalent feedback control of the residuals

for fault detection and identification,” Proc. Conference on Decision and Control,

pp. 4466-4471, 1999.

 193

11. R. Isermann and P. Ballé, “Trends in the application of model-based fault

detection and diagnosis of technical processes,” Control Engineering Practice,

vol. 5, no. 5, pp. 709-719, 1997.

12. S. Edwards, A. Lees and M. Friswell, “Fault diagnosis of rotating machinery,”

Shock and Vibration Digest, vol. 30, no. 1, pp. 4-13, 1998.

13. H. Aldridge, “Robot position sensor fault tolerance,” NASA Technical

Memorandum 110314, Langley Research Center, Hampton, VA, 1997.

14. S. Leonhardt and M. Ayoubi, “Methods of fault diagnosis,” Control Engineering

Practice, vol. 5, no. 5, pp. 683-692, 1997.

15. D. Juričić, A. Žnidaršić and D. Füssel, “Generation of diagnostic trees by means

of simplified process models and machine learning,” Engineering Applications of

Artificial Intelligence, vol. 10, no. 1, pp. 15-29, 1997.

16. P. Frank and B. Köppen-Seliger, “New developments using AI in fault

diagnosis,” Engineering Applications of Artificial Intelligence, vol. 10, no. 1, pp.

3-14, 1997.

17. Y. Zhang and J. Jiang, “An interacting multiple model based fault detection,

diagnosis and fault-tolerant control approach,” Proc. Conference on Decision and

Control, pp. 3593-3598, 1999.

18. Y. Diao and K. Passino, “Intelligent fault tolerant control using adaptive schemes

and multiple model,” Proc. American Control Conference, pp. 2854-2859, 2001.

19. S. Bøgh, “Fault tolerant control systems – a development method and real-life

case study,” PhD dissertation, Aalborg University, Aalborg, Denmark, 1997.

20. M. Mahmoud, J. Jiang and Y. Zhang, “Analysis of the stochastic stability of fault

tolerant control systems,” Proc. Conference on Decision and Control, pp. 3188-

3193, 1999.

21. W. Rugh, “Analytical framework for gain scheduling,” IEEE Control Systems

Magazine, vol. 11, no 1, pp. 79-84, 1991.

22. C. Lopez-Toribio and R. Patton, “Takagi-Sugeno fuzzy fault-tolerant control of a

non-linear system,” Proc. Conference on Decision and Control, pp. 4368-4373,

1999.

 194

23. I. Konstantopoulos and P. Antsaklis, “An eigenstructure assignment approach to

control reconfiguration,” Proc. IEEE Mediterranean Symposium of Control and

Automation, pp. 328-333, 1996.

24. Y. Zhang and J. Jiang, “An interacting multiple-model based fault tolerant

detection, diagnosis and fault-tolerant control approach,” Proc. Conference on

Decision and Control, pp. 3593-3598, 1999.

25. S. Kanev and M. Verhaegen, “A bank of reconfigurable LQG controllers for

linear systems subjected to failures,” Proc. Conference on Decision and Control,

vol. 4, pp. 3684-3689, 2000.

26. I. Konstantopoulos and P. Antsaklis, “An optimization approach to control

reconfiguration,” Dynamics and Control, vol. 9, no. 3, pp. 255-270, 1999.

27. K. Narendra and S. Mukhopadhyay, “Adaptive control of nonlinear multivariable

systems using neural networks,” Neural Networks, vol. 7, no. 5, pp. 737-752,

1994.

28. K. Narendra and O. Driollet, “Adaptive control using multiple models, switching,

and tuning,” Proc. Adaptive Systems for Signal Processing, Communications, and

Control Symposium, pp. 159-164, 2000.

29. K. Narendra and K. Parthasarathy, “Identification and control of dynamical

systems using neural networks,” IEEE Trans. on Neural Networks, vol. 1, no. 1,

pp. 4-27, 1990.

30. E. Sanchez and M. Bernal, “Adaptive recurrent neural control for nonlinear

systems tracking,” IEEE Trans. on Systems, Man and Cybernetics, vol. 30, no. 6,

pp. 886-889, 2000.

31. E. Kosmatopoulos, M. Christodoulou and P. Ioannou, “Dynamical neural

networks that ensure exponential identification error convergence,” Neural

Networks, vol. 10, no. 2, pp. 299-314, 1997.

32. G. Kulawski and M. Brdyś, “Stable adaptive control with recurrent networks,”

Automatica, vol. 36, pp. 5-22, 2000.

33. C. Hwang and C. Lin, “A discrete-time multivariable neuro-adaptive control for

nonlinear unknown dynamic systems,” IEEE Trans. on Systems, Man and

Cybernetics, vol. 30, no. 6, pp. 865-877, 2000.

 195

34. S. Ge, C. Wang and Y. Tan, “Adaptive control of partially known nonlinear

multivariable systems using neural networks,” Proc. IEEE International

Symposium on Intelligent Control, pp. 292-297, 2001.

35. G. Puskorius and L. Feldkamp, “Automotive engine idle speed control with

recurrent neural networks,” Proc. American Control Conference, pp. 311-316,

1993.

36. K. Narendra, J. Balakrishnan and M. Ciliz, “Adaptation and learning using

multiple models, switching and tuning,” IEEE Control Systems Magazine, vol. 15,

no. 3, pp. 37-51, 1995.

37. J. Boskovic, S. Liu and R. Mehra, “On-line failure detection and identification

(FDI) and adaptive reconfiguration control (ARC) in aerospace applications,”

Proceedings of the American Control Conference, pp. 2625-2626, 2001.

38. D. Filev and T. Larsson, “Intelligent adaptive control using multiple models,”

Proc. IEEE International Symposium on Intelligent Control, pp. 314-319, 2001.

39. R. Murray-Smith and T. Johansen (Eds.), Multiple Model Approaches to

Modeling Control, Taylor and Francis, Basingstoke, UK, 1997.

40. H. Pei and B. Krogh, “Stability regions for systems with mode transitions,” Proc.

American Control Conference, pp.4834-4839, 2001.

41. K. Narendra and S. Mukhopadhyay, “Adaptive control using neural networks and

approximate models,” IEEE Trans. on Neural Networks, vol. 8, no. 3, pp. 475-

485, 1997.

42. J. Murray, C. Cox, R. Saeks and G. Lendaris, “Globally convergent approximate

dynamic programming applied to an autolander,” Proc. American Control

Conference, pp. 2901-2906, 2001.

43. D. Prokhorov and D. Wunsch, “Adaptive critic designs,” IEEE Trans. on Neural

Networks, vol. 8, no. 5, pp. 997-1007, 1997.

44. G. Venayagamoorthy, R. Harley and D. Wunsch, “Comparison of a heuristic

programming and a dual heuristic programming based adaptive critics

neurocontroller for a turbogenerator,” Proc. International Joint Conference on

Neural Networks, vol. 3, pp. 233-238, 2000.

 196

45. P. Werbos, “Stable adaptive control using new critic designs,” available at

xxx.lanl.gov/abs/adap-org/9810001, 1998.

46. P. Werbos, “Backpropagation though time: what it does and how to do it,” Proc.

IEEE, vol. 78, no. 10, pp. 1550-1560,1990.

47. O. Jesús and M. Hagan, “Backpropagation through time for a general class of

recurrent network,” Proc. International Joint Conference on Neural Networks, pp.

2638-2643, 2001.

48. G. Lendaris and C. Paintz, “Training strategies for critic and action neural

networks in dual heuristic programming method,” Proc. International Joint

Conference on Neural Networks, pp. 712-717, 1997.

49. R. Williams, “Training recurrent networks using the extended Kalman filter,”

Proc. International Joint Conference on Neural Networks, pp. 241-246, 1992.

50. M. Livstone, J. Farrell and W. Baker, “A computationally efficient algorithm for

training recurrent connectionists networks,” Proc. American Control Conference,

pp. 555-561, 1992.

51. G. Lendaris, C. Paintz and T. Shannon, “More on training strategies for critic and

action neural networks in dual heuristic programming method,” Proc. IEEE

International Conference on Systems, Man and Cybernetics, pp 3067-3072, 1997.

52. H. Qi and L. Qi, “Deriving sufficient conditions for global asymptotic stability of

delayed neural networks via nonsmooth analysis,” IEEE Transactions on Neural

Networks, vol. 15, no. 1, pp. 99-109, 2004.

53. Y. Xia and J. Wang, “A recurrent neural network for nonlinear convex

optimization subject to nonlinear inequality constraints,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 51, no. 7, pp. 1385-1394, 2004.

54. G. Stephanopoulos and C. Han, “Intelligent systems in process engineering: a

review,” Computers & Chemical Engineering, vol. 20, no. 6-7, pp. 743-791,

1996.

55. E. Oshima, “Computer aided plant operation,” Computers & Chemical

Engineering, vol. 7, no. 4, pp. 311-329, 1983.

 197

56. C. Collewet, G. Rault, S. Quellec and P. Marchal, “Fuzzy adaptive controller

design for the joint space control of an agricultural robot,” Fuzzy Sets and

Systems, vol. 99, no. 1, pp. 1-25, 1998.

57. K. Cheng and J. Chen, “A fuzzy-nets training scheme for controlling nonlinear

systems,” Computers & Industrial Engineering, vol. 31, no. 1-2, pp. 425-428,

1996.

58. R. Rhinehart and P. Murugan, “Improve process control using fuzzy logic,”

Chemical Engineering Process, vol. 91, no. 11, pp. 60-65, 1996.

59. C. Cimander, T. Bachinger and C. Mandenius, “Integration of distributed multi-

analizer monitoring and control in bioprocessing based on a real-time expert

system,” Journal of Biotechnology, vol. 103, no. 3, pp. 327-248, 2003.

60. D. Fonseca and G. Knapp, “An expert system for reliability centered maintenance

in the chemical industry,” Expert Systems with Applications, vol. 19, no. 1, pp.

45-57, 2000.

61. A. Kordon, “Hybrid intelligent systems for industrial data analysis,” Seminar

given at MCEC meeting, Sep. 2002.

62. K. Astrom and T. Soderstrom, “Uniqueness of the maximum likelihood estimates

of the parameters of an ARMA model,” IEEE Transactions on Automated

Control, vol. 19, no. 6, pp. 769 – 773, 1974.

63. C. Tsai and S. Wu, “A study for second-order modeling of fuzzy time series,”

Proceedings of the IEEE International Fuzzy Systems Conference, vol. 2, pp. 719-

725, 1999.

64. N. Sisman and F. Alpaslan, “Temporal neurofuzzy MAR algorithm for time series

data in rule-based systems,” Proceedings of the International Conference on

Knowledge-Based Intelligent Electronic Systems, vol.2, pp. 316-320, 1998.

65. M. Last, Y. Klein and A. Kandel, “Knowledge discovery in time series

databases,” IEEE Transactions no System, Man and Cybernetics, vol. 31, no. 1,

pp. 160-169, 2001.

66. B. Carse and T. Fogarty, “Evolutionary learning of temporal behavior using

discrete and fuzzy classifier systems,” Proceedings of the International

Symposium on Intelligent Control, pp. 183-188, 1995.

 198

67. B. Carse, T. Fogarty and A. Munro, “Distributed adaptive routing control in

communication networks using a temporal fuzzy classifier system,” Proceedings

of the IEEE International Conference on Fuzzy Systems, vol. 3, pp. 2201 – 2207,

1996.

68. N. Sharma, “Metrics for evaluation of the goodness of linguistic rules,” MS

Thesis, Oklahoma State University, School of Chemical Engineering, 2003.

69. G. Yen and H. Lu, “Dynamic multiobjective evolutionary algorithm: adaptive

cell-based rank and density estimation,” IEEE Transactions on Evolutionary

Computation, vol. 7, no. 3, pp. 253-274, 2003.

70. F. Chen, Z. Chen and Z. Jiao, “A novel processing for multiple gases detection,”

Proceedings of the World Congress on Intelligent Control and Automation, vol. 3,

pp. 2186-2189, 2002.

71. M. South, C. Bancroft, M. Willis and M. Tham, “System identification via genetic

programming,” Proceedings of the UKACC International Conference on Control,

vol. 2, pp. 912-917, 1996.

72. C. Fonseca and P. Fleming, “Genetic algorithms for multiobjective optimization:

formulation, discussion and generalization,” Proceedings of the International

Conference on Genetic Algorithms, pp. 416-423, 1993.

73. E. Mosca and T. Agnoloni, “Switching supervisory control based on controller

falsification and closed-loop performance inference,” Journal of Process Control,

vol. 12, no.4, pp. 457-466, 2002.

74. E. Wilson, C. Lages and R. Mah, “Gyro-based maximum-likelihood thruster fault

detection and identification” Proceedings of the American Control Conference,

vol. 6, pp. 4525 - 4530, 2002.

75. C. Bonivento, A. Paoli and L. Marconi, “Fault-tolerant control of the ship

propulsion system benchmark,” Control Engineering Practice, vol. 11, no.5, pp.

483-492, 2003.

76. W. Liu, “An on-line expert system-based fault-tolerant control system,” Expert

Systems With Applications, vol. 11, no. 1, pp. 59-64, 1996.

 199

77. R. Izadi-Zamanabadi and M. Blanke, “A ship propulsion system as a benchmark

for fault-tolerant control,” Control Engineering Practice, vol. 7, no. 2, pp. 227-

239, 1999.

78. X. Liu and A. Dexter, “Fault-tolerant supervisory control of VAV air-

conditioning system,” Energy and Buildings, vol. 3, no. 4, pp. 379-389, 2001.

79. S. J. Bradtke, B. E. Ydstie, and A. G. Barto, “Adaptive linear quadratic control

using policy iteration,” Proceedings of the American Control Conference, pp.

3475-3479, 1994.

80. X. Liu and S. Balakrishnan, “Convergence analysis of adaptive critic based

optimal control,” Proceedings of the American Control Conference, pp. 1929-

1933, 2000.

81. F. C. Chen and C. H. Chang, “Practical stability issues in CMAC neural network

control system,” IEEE Transactions on Control Systems Technology, vol. 4, no.1,

pp. 86-91, 1996.

82. G. Arslan and T. Basar, “Disturbance attenuation controller design for strict-

feedback systems with structurally unknown dynamics,” Automatica, vol. 37, no.

8, pp. 1175-1188, 2001.

83. F. Lewis and M. Abu-Khalaf, “A Hamilton-Jacobi setup for constrained neural

network control,” Proceedings of the IEEE International Symposium on

Intelligent Control, pp. 1-15, 2003.

84. F. Lewis and M. Abu-Khalaf, “Nearly optimal state feedback control of

constrained nonlinear systems using a neural network approach,” IFAC

International Conference on Intelligent Control Systems and Signal Processing,

plenary paper, 2003.

85. F. L. Lewis, S. Jagannathan and A. Yesildirek, Neural Network Control of Robot

Manipulators and Nonlinear Systems, Taylor & Francis, 1999.

VITA

Pedro Gerbase de Lima

Candidate for the Degree of

Doctor of Philosophy

Thesis: A SUPERVISED FAULT TOLERANT CONTROL
 ARCHITECTURE FOR NONLINEAR SYSTEMS

Major Field: Electrical and Computer Engineering

Biographical:

 Education: Graduated from The University of Sao Paulo with the degree of

Bachelor of Science in Electrical Engineering in December, 2000. Completed
the Requirements for the Ph.D. degree at Oklahoma State University in
December, 2005.

 Experience: employed at the University of Sao Paulo in the Biomedical

Engineering Laboratory as an undergraduate research intern from 1999 to
2000. Later, from 2001 to 2005, employed at the Intelligent Systems and
Control Laboratory at the Department of Electrical and Computer
Engineering, Oklahoma State University as a graduate research assistant.
During the Fall of 2005, employed at Oklahoma State University as an
instructor for an electrical engineering senior level course.

 Professional Memberships: Student member of the Institute of Electrical and

Electronics Engineers (IEEE) since 2001; member of the IEEE Computational
Intelligence Society since 2005.

Name: Pedro Gerbase de Lima Date of Degree: December, 2005

Institution: Oklahoma State University Location: Stillwater, Oklahoma, USA

Title of Study: A SUPERVISED FAULT TOLERANT CONTROL
 ARCHITECTURE FOR NONLINEAR SYSTEMS

Pages in Study: 199 Candidate for the Degree of Doctor of Philosophy

Major Field: Electrical and Computer Engineering

Scope: The growing complexity of physical plants and control missions inevitably leads to increasing
occurrence, diversity and severity of faults. Availability, defined as the probability that a system or
equipment will operate satisfactory and effectively at any point of time, becomes a factor of
increasing importance. Fault Tolerant Control (FTC) is a field of research that aims to increase
availability and reduce the risk of safety hazards and other undesirable consequences by
specifically designing control algorithms capable of maintaining stability and/or performance
despite the occurrence of faults. This report presents a novel FTC solution based on a hierarchical
architecture in which an adaptive critic controller is overseen by a supervisor managing a dynamic
model bank of fault solutions.

Findings and Conclusions: The presented work has demonstrated that the implementation of a synergistic

combination of a reconfigurable controller and a fault diagnosis and controller malfunction
detection supervisor based on three distinct quality indexes generates an efficient and reliable FTC
architecture. The application of adaptive critic designs as reconfigurable controllers is shown to
give the hierarchical algorithm the degree of flexibility required to deal with both abrupt and
incipient unknown changes in the plant dynamics due to faults. The proposed supervisor system is
used to accelerate the convergence of the method by loading new initial conditions to the
controller when the plant is affected by a known abrupt fault. Moreover, the developed fault
diagnosis decision logic is capable of recognizing new fault scenarios and assimilating them on-
line to the dynamic model bank, along with parameters for the corresponding controller. The
introduction of the weight quality index has made possible to distinguish between faults in the
plant and controller malfunctions caused by online training divergence or local minima
convergence. In order to achieve application-specific key FTC specifications, a methodology for
initializing and tuning twelve distinct parameters of the quality indexes was also developed.
Finally, a series of key steps that form the basis for the fault development information extraction
module capable of providing the probability of occurrence of future faults to the user, are also
included in this report.

Advisor’s Approval: Dr. Gary G. Yen _

