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CHAPTER 1

Introduction

1.1 Motivation

Recently, there has been a surge in the global need for robust and intelligent surveil-

lance systems. For instance, according to the world’s largest market research re-

source [6], the world market for network video surveillance products reached $2 billion

in 2006, and is forecast to continually grow by at least 40% for 5 years. Since most

video surveillance systems are used to monitor human objects, automated human

detection, tracking and segmentation are the key desired function components of the

new generation video surveillance systems.

(a)
 (b)
 (c)
 (d)


Danger


Figure 1.1: Application examples for automatic human detection, tracking and seg-

mentation. (a)Surveillance systems. (b) Medical rehabilitation. Photo from [1]. (c)

Sport analysis. (d) Driver assistance

1



Human detection, tracking and segmentation are also proving to be invaluable

in athletics and medical rehabilitation. For example, they can provide a coach with

more in-depth sport video analysis by extracting biomechanics information (as shown

in Fig 1.1 c.). This information can be used to improve coaching techniques and

athlete performance. Lets see another example, in a motion analysis clinic, a typical

gait evaluation often takes a patient about 2 to 2.5 hours for data collection, such

as changing into tight-fitting shorts, and being taped with many reflective markers,

which are placed at specific anatomic locations (as shown is the Fig 1.1 b.). It usually

takes 48 hours to obtain the basic gait analysis results, and at least four weeks to

obtain the full gait analysis report [1]. Automated video-based human motion analysis

algorithms can quickly provide accurate motion and gait information, which will make

the whole diagnosis procedure much simple.

Human detection, tracking and segmentation can also have many other important

applications such as vision-based Human-Computer-Interface (HCI), robotic vision,

driver assistance (as shown in Fig 1.1 d.), vehicle navigation, animation, and so

on. Huge potential business opportunities have elicited significant interests from

both industry and academia. Automated video-based human detection, tracking and

segmentation have received intensive studies in the last decade.

1.2 Research Goals and Challenges

The objective of this research is to investigate how to achieve automated and robust

human detection tracking and segmentation. In a general definition, human detection

is to find out whether or not human objects exist in a given image or video sequence;

while human segmentation is to identify these pixels belonging to human objects.

In our research, the definition of human segmentation is to detect and segment a

human body as well as identify its limbs from a given image or a video sequence. In

order to obtain continuous information about human detection and segmentation in a
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video sequence, tracking is an often used tool to facilitate the information extraction

processing by incorporating the temporal context information in previous frames.

Today, an automated algorithm that can achieve robust human body detection,

tracking and segmentation from generic scenes does not exist. After many years

intensive studying by computer vision researchers, they remain to be ones of the

most challenging research issues largely due to the ubiquitous visual ambiguities in

images/videos. The other challenging factor is the ill-posed nature of the problems. In

general, the raw data to a computer vision system can only be low-level signals, such as

intensity or color. Sarkar and Boyer [7] classify features into four categories: the signal

level, the primitive level, the structural level and the assembly level. We know that

low-level physical features alone, such as color information, is not enough to represent

human appearance directly. The question is how to extract intermediate features to

bridge the gap between low-level features and a human object representation. The

second question is how to represent and incorporate prior knowledge into high-level

inference processing. We believe that these two questions should be well addressed

in a success human detection, tracking and segmentation approach.

1.3 Objectives and Methodology

In the instructional paper “Why progress in machine vision is so slow”, after pointing

out several impediments, Pavlidis [8] gave two suggestions for current computer vision

researchers. The first suggestion was to develop algorithms based on a functional

understanding of the Human Vision System(HVS). Since HVS can easily partition

video scenes into meaningful objects and recognize them effortlessly, we believe some

hints from biological vision studies can help us to attack these mentioned challenges in

computer vision. Therefore, we study human vision system (HVS) first and attempt

to find some hints to guide our algorithm designing. The second suggestion was to

solve very specific vision problem, which has limited context. These two suggestions
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can help us avoid several impediments in developing computer vision algorithms.

Following Pavlidis’ first suggestion, we designed our algorithms according to the

state of the art research results of cognitive psychology. According to perception or-

ganization theories [2][9][10] [11], visual perception is as a result of complex cascade

part-whole hierarchy organization of visual information that involves both low-level

and mid-level visions[12]. Low-level vision performs grouping processing and provides

intermediate elements and features without the influence of specific domain knowl-

edge. Once these intermediate elements and features have been constructed, they

are submitted to the so-called figure-ground process, which is one of mid-level vision

processes. Figure-ground process throws out the unwanted image components while

keeps the relevant elements you care about for your task. The elements identified as

figures are further grouped into more complex visual entities, by the action of at least

some of the classical Gestalt laws such as: common fate, proximity, closure, similar-

ity. These processes is called “mid-level vision”. The cascade part-whole grouping

processes in low-level and mid-level vision are often called “bottom-up” processes.

At the end, semantic “understanding” of a scene can be achieved by high-level vision

processes, which use both high-level prior knowledge and the provided information

from mid-level vision.

According to our functional understanding of the Human Vision System(HVS),

we design our three level part-whole cascaded algorithm structure and define the

algorithm objectives of each level processing as shown in the Fig 1.2.

In low-level vision, our objective is to obtain compact image representation by

grouping raw pixels into homogeneous regions. The criteria for homogeneousness

may be in the measurement of color, motion, or intensity. In order to bridge the

gap between low-level features and a human appearance representation, we expect to

obtain more meaningful homogeneous regions, which can serve as building blocks for

higher-level feature extraction. Therefore, both under-segmentation (one segmented
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Figure 1.2: Objectives of each level processes and their goal.

region has pixels belonging to different objects) and over-segmentation (one object

is segmented into too many small pieces) are detrimental to our goal. Considering

that one human figure may have different colors and one color may be shared by

both background and human objects, how to balance over-segmentation and under-

segmentation is a very difficult task for a low-level feature-based classifier. Our anal-

ysis shows that the problems of over-segmentation and under-segmentation relate to

the two kinds of no-convex classification problems for a single layer classifier. There-

fore, we extended a single-layer statistical model video segmentation algorithm into a

cascaded multi-layer classification framework. Using a split-and-merge paradigm, we

extracted mid-level region-based motion and color features to deal with the no-convex

classification problems, moveover, more meaningful segmentation results are obtained
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with less over-segmentation and under-segmentation.

Numerous low-level-feature-based bottom-up approaches have tried to fill the gap

between the low-level features and high-level knowledge representation, and have

reached the performance ceiling where there seems little room for improvement. It

seems that this gap can not be filled directly. Instead, it should have an intermediate

step, middle-level vision processing, which will act as the bridge between low and

high-level vision operations. In our work, the objective of mid-level vision processing

is to localize and segment human body parts. For each body part, the desired output

is a map image that indicates the likelihood that a body part will be at a given

location. These map images will be the inputs for the high-level processing.

For high-level vision processing, considering the huge variation of the appearance

of a human object, how to represent it in a way that can be easily understood by

computers is a crucial and challenging problem. Minsky and Papert [13] pointed out

“No machine can learn to recognize X unless it possesses, at least poten-

tially, some scheme for representing X.” (p. xiii).

Therefore, the objective of high-level vision processing is to find a proper prior knowl-

edge representation and incorporate different priors to assembly middle-level outputs

into a final recognition(decision) by inference.

We not only define the objectives of each level processing according to biological

perception theories, but we also look for biologically plausible methods to fulfill these

objectives for each level processing as shown in the Fig 1.3.

• Low-level vision: In low-level vision, guided by perception principles, we

studied feature extraction problem in a bottom-up, low-level video segmentation

process. Two kinds of non-convex video segmentation problems (related to the

balance between over-segmentation and under-segmentation) can be solved in a

hierarchy multi-layers classification framework, which is deeply inspired by the

structured perception theory of cognitive physiology.
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Figure 1.3: Objectives, challenges, and biologically plausible methods of three level

processes.

• Mid-level vision: In middle-level vision, inspired by cognitive studies about

region and edge cues, we investigated how to use the complimentary information

of region and edge cues to a combined bottom-up and top-down approach.

The success of this framework depends on the adoption of a super-pixel based

representation strategy, which is supported by a representation element theory

of cognitive psychology.

• High-level vision: In high-level vision, we studied representation problem for

high-level computer vision. By combining the advantage of two kinds of shape

representation theories in cognitive psychology, we introduced a hybrid human

pose representation, which supports a joint localization segmentation and pose

estimation framework. This framework can achieve significant improvement

in both localization and segmentation compared with some state of the art
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algorithms. In chapter 6, inspired by the two perception pathways biological

movement perception model [14, 15], there are two separate functional streams

involved in vision perception: a ventral stream for the analysis of form (the

“what” stream) and a dorsal stream for the analysis of position and motion

(the “where” stream), we investigate combine both spatial prior and temporal

together for articulated human tracking.

Following Pavlidis’ second suggestion, we do not attempt to look for a silver

bullet that will solve human segmentation in a general scene. For example, we do

not try to build one human body representation model which can be applied into the

segmentation of images that are taken from different view points or/and at different

scales. Instead, we attempt to investigate some fundamental problems of human

detection, tracking and segmentation in images/videos that are taken from one view

point.

1.4 Contributions

Before the outline of each chapter is given, we would like to summarize the main

contributions we have made. This dissertation is based on two journal article drafts,

three conference articles, and a technical report. There were certain motivations

and contributions at the times each topic was investigated. First, we will introduce

our contribution in a biologically plausible computational model for human object

detection, tracking and segmentation. Then, we will introduce our contribution in

low-level, mid-level and high-level vision guided by this computational model.

1.4.1 Comprehensive Computational Model

The purpose is to get some hints from biological vision studies to attack our problems.

Current research about biological vision usually concentrates on only certain aspects,

e.g., attention, motion perception, visual memory, low-level perception organization.
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We know that the HVS is a well organized system and different perception rules need

to cooperate together. However, very little effort has been made to develop a com-

prehensive computational model for the HVS. Moreover, biological vision studies are

still at their infancy stage. These facts make it difficult to apply perception principles

systematically in practice. In this work, we develop a comprehensive computational

model for human motion segmentation, which allows us to gain more insights to this

challenging problem.

1.4.2 Bottom-up Segmentation

For low-level and mid-level bottom-up processes, our purpose is to get compact image

representation. We extend single-layer statistical model video segmentation algorithm

into a cascaded multi-layer classification framework, which combines the merits of

both statistical modelling and graph theory approaches. Using a split-and-merge

paradigm, we extracted mid-level region-based motion and color features to deal

with the no-convex classification problems, moveover, more meaningful segmentation

results are obtained with less over-segmentation and under-segmentation.

1.4.3 Middle-level Vision: Part Detection

For mid-level combined bottom-up and top-down process, our purpose is to group

small UC regions into more semantic meaningful regions, such as body parts, and get

a confidence map for each body part. We have made three contributions.

• An effective hypothesis-and-test paradigm: We have developed an ef-

fective hypothesis-and-test paradigm for joint localization and segmentation.

Additionally, it is able to provide a posterior density map of localization, which

can support various high-level processes.

• A new semi-parametric approach for color model online learning and

figure-ground segmentation: Based on super-pixel based image represen-
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tation, we propose a new semi-parametric approach for fast online learning of

figure-ground color models aided by the region-based shape prior.

• An improved Graph-cut based segmentation method: In our work,

both region-based and edge-based shape priors are integrated into an improved

Graph-cut based framework to achieve optimal segmentation. To the best of

our knowledge, no research has been done on integrating both edge and region

priors into the Graphic-cut framework for automated segmentation.

1.4.4 High-level Vision: Recognition, Localization and Segmentation

In Image-based high-level computer vision processing, our purpose is to make a com-

prehensive decision about the position of each body part by assembling map images

according to offline learned spatial priors. We have contributions in develop hybrid

representation for integrated pose recognition, localization and segmentation:

• A hybrid human body representation: A hybrid human body representa-

tion supports the online color model learning. The online learned deformable

shape model can facilitate the segmentation of the whole body and parts. The

proposed representation absorbs recent multifaceted advances in this field and

involves shape prior guided segmentation and inference in a multi-stage fashion.

• A three-stage cascade computational flow: A three-stage cascade com-

putational flow integrates pose recognition, localization and segmentation into

a “biologically plausible” dynamic framework, in which low-level and middle

vision parameters can online dynamically adjusted according to feedback infor-

mation from high-level vision.
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1.4.5 High-level Vision: Tracking and Localization

The purpose of video-based high-level computer vision processing is to integrates

both spatial and temporal priors and is supported by online learning. We extend our

success from image-based to video-based processing by exploiting the complementary

context information in both temporal priors and spatial priors.

• Local online learning: In our work, “Back constraints” Gaussian process

latent variable model BC-GPLVM is used to online learn a compact low dimen-

sion representation of motion trajectory in the latent space and a probabilistic

reverse mapping from the low-dimension latent space to the high-dimension

pose space. Online learning is more favorable and effective to deal with human

motion with significant variability or even different activities

• Combing both temporal and spatial priors: To the best of our knowl-

edge, there is no prior research on how to combine spatial and temporal priors

in an online learning framework. The strength of our method comes from the

marriage of two popular mathematical tools: GPLVM and pictorial structure

graph model in an online learning context. This marriage bring complemen-

tary benefits to both sides. GPLVM brings in top-down temporal constraints

and model parameters for a star-structured graph model; Star-structured graph

model brings in spatial constraints for assembling bottom-up data-driven infor-

mation, which will correct top-down predictions.

It is worth noting that among numerous approaches for advanced human detec-

tion, some use segmentation in their processes, while the others do not to do so. As

compared with human detection, which has made significant progress over the last

few years, not much progress has been made in human segmentation, and the role

of segmentation has largely been ignored. In many human object related studies,

such as human pose estimation and human tracking, segmentation problem is often
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circumambulated by assuming its results are already available, or assuming segmen-

tation results can be obtained by a background subtraction process. This kind of

assumption ignored an important fact that segmentation can be an important tool to

support human object analysis in many aspects from low-level feature extraction, to

mid-level human part detection, and to high-level knowledge representation and infer-

ence. Our study focuses on an unified framework for human detection, tracking and

segmentation. One of the main distinguishing characteristics of our work is the role

played by segmentation. Segmentation is not only a goal but also a tool in our work.

In other words, our research investigates not only how to do segmentation but also

how it can help us in three level vision processes, from low-level feature extraction,

to mid-level part detection, and to high-level knowledge representation and inference

as shown in the Fig. 1.2.

1.5 Outline

In order to provide readers better understandings of the materials and subjects inves-

tigated in this dissertation, we use this section to provide the general ideas covered

in this report. The organization of this report is illustrated in Fig.1.4.

• The motivation and significance of this research as well as methodology are

presented in Chapter 1.

• Currently related biological vision studies are reviewed and categorized in the

chapter 2. Specifically, we review recent biological vision studies that are re-

lated to human motion segmentation. Our goal is to develop a practical and

biologically plausible computational framework for the segmentation of human

body in a video sequence. Specifically, we discuss the roles and interactions

of bottom-up and top-down processes in visual perception processing as well

as how to combine them synergistically in one computational model to guide
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Figure 1.4: Outline of the report.

human motion segmentation. We also examine recent research on biological

movement perception, such as neural mechanisms and functionalities for bio-

logical movement recognition and two major psychological tracking theories. We

attempt to develop a comprehensive computational model that involves both

bottom-up and top-down processing and is deeply inspired by biological motion

perception. According to this model, object segmentation, motion estimation,

and action recognition are results of recurrent feed-forward (bottom-up) and

feedback (top-down) processes. Some open technical questions are also raised

and discussed for future research.

• In Chapter 3, our research focuses on bottom-up low-level and mid-level segmen-

tation and feature extraction problems, such as joint spatial-temporal group-

ing, short/middle range motion feature extraction and grouping architecture.

We presented a perception principle guided unsupervised video segmentation

framework, which combine the merits of statistical modelling and graph theory

13



approach into a multi-stage classification architecture. Our simulation results

verify that our new framework can achieve a more meaningful segmentation re-

sult in some complex and realistic scenarios. It is also computationally effective.

• In Chapter 4, our research focuses on combined bottom-up and top-down mid-

level vision problems. We investigate how to apply the complementary informa-

tion of region and edge for the shape prior constrained figure-ground segmen-

tation. We formulate configuration estimation and figure-ground segmentation

as a MAP estimation in a Bayesian framework. In order to solve the optimiza-

tion problem, we resort to a segmentation-based hypothesis-and-test paradigm,

in which a balance between bottom-up and top-down processing is achieved

by exploiting the complementary information of region-based and edge-based

shape prior. Specifically, the shape priors are represented by an implicit shape

model, which unifies the representation of both region-based and edge-based

shape prior. Given a configuration hypothesis, the region-based shape prior is

used to guide a bottom-up segmentation. The edge-based shape prior is used

to evaluate the obtained segmentation result as well as a configuration hypoth-

esis. In this way, a correct localization will facilitate object segmentation, and a

good segmentation will enhance the confidence of a localization hypotheses. The

optimal segmentation and the spatial configuration can be obtained simultane-

ously. The obtained segmentation result is further refined through an improved

Graph-cut based method, in which both region-based and edge-based shape

priors are jointly involved. Our experiments demonstrate that this framework

leads to significant localization and segmentation performance improvements

over some state-of-the-art approaches.

• In Chapter 5, our research focuses on high-level knowledge-based human body

representation problems. We propose a hybrid body representation for inte-
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grated pose recognition, localization and segmentation of the whole body as well

as body parts in a single image. A typical pose is represented by both template-

like view information and part-based structural information. Specifically, each

body part as well as the whole body are represented by an off-line learned

shape model where both region-based and edge-based priors are combined in

a coupled shape representation. Part-based spatial priors are represented by a

“star” graphical model. This hybrid body representation can synergistically in-

tegrate pose recognition, localization and segmentation into one computational

flow. Moreover, as an important step for feature extraction and model inference,

segmentation is involved in the low-level, mid-level and high-level vision.

• In Chapter 6, We integrate spatial and temporal priors for tracking an articu-

lated human body from a monocular video sequence, where body parts can be

localized and segmented simultaneously. The spatial prior is represented by a

star-structured graphical model that is embedded in the temporal prior. The

temporal prior is represented by a motion trajectory in a low dimensional latent

space learnt from previous tracking results. The temporal prior predicts the lo-

cation of each body part, and the spatial prior is used to evaluate and correct

the prediction by assembling part-level detection. Both temporal and spatial

priors can be online learned in a seamless fashion through the Back Constrained

Gaussian Process Latent Variable Model (BC-GPLVM) that involves a moving

window for training sample selection. Experimental results show that the new

algorithm can achieve accurate tracking and localization results for different

walking subjects with significant appearance and motion variability.

• Based on our current research results in low-level, mid-level and high-level vi-

sion, Chapter 7 states future works and concludes this dissertation.
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CHAPTER 2

Related Biological Vision Studies

2.1 Overview

The human vision system (HVS) can easily partition video scenes into meaningful

objects and recognize them effortlessly. We believe that hints and inspirations for

reliable human detection, tracking and segmentation lie in examining the processes

used in many successful biological vision systems. However. biological vision studies

are still at their infancy stage. Current research about biological vision usually con-

centrates on only certain aspect, e.g., attention, motion perception, visual memory,

low-level perception organization. Although we know that the human visual system

(HVS) is a well organized system, different perception rules need to cooperate to-

gether, very little effort has been made to develop a comprehensive computational

model for HVS. This fact makes it difficult to apply perception principles system-

atically in computer vision. Still several well-understood perception principles have

been adopted in the development of computer vision algorithms, e.g., semantic video

segmentation. In this work, we will review two types of biological vision studies, i.e.,

general perception and biological movement perception, based on which we attempt

to develop a comprehensive computational model for human detection, tracking and

segmentation. This work allows us to gain more insights to this challenging problem.

Under the proposed framework, several open questions are raised and discussed for

future research. Some of them have already started to attract researchers’ attention

recently.
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2.2 General Perception Principles

Since the early 20th century, psychologists have found a set of rules that govern the

HVS. In this section, we will first introduce several important perception principles,

which are closely related to the bottom-up process for video segmentation. We then

develop a computational model and deduce some guidelines for feature selection and

classifier design. We will also discuss the top-down process in the HVS that involves

high-level knowledge or prior information for visual inferencing. State-of-the-art video

segmentation algorithms have been inspired and motivated by these vision studies to

some extent.

2.2.1 Joint Spatial-temporal Grouping Theory

Cognitive scientistic research shows that spatial and temporal groupings are jointly

involved in the HVS [10, 16, 11, 17]. In other words, human vision recognizes salient

objects in space and time simultaneously. Specifically, spatial grouping is a process

that merges spatial samples to form more complex visual entities, e.g., objects. Tem-

poral grouping is a process where visual entities are linked over time. The successive

visual entities that undergo a series of spatiotemporal groupings are called matching

units or correspondence tokens by Ullman [18], which are 3D volumes in space and

time.

Recently, Gepshtein and Kubovy suggested that the perception of a dynamic

scenes is the result of a parallel operation of spatial and temporal grouping [10]. Visual

information is sampled by small receptors in HVS. Spatial grouping is a process that

link samples across space to form more complex visual entities, such as objects and

surfaces. Temporal grouping is a process , by which visual entities are linked over

time. The successive visual entities that undergo a series spatiotemporal grouping are

called matching units or correspondence tokens by ullman[18], which are 3D volumes

in space and time. Matching units is the result of joint spatial and temporal grouping
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process, in which spatial organization and motion matching are tightly integrated.

There are also neuropsychological evidences indicating that segmentation in space

and time is an integrated function mediated by the posterior parietal cortex [17].

2.2.2 Perception Organization Theory

The study about perception organization can be traced back to the Gestalt school of

psychology in the early 20th century, and expanded by Marr [19], Palmer and Rock

[2], Palmer [9], Kubovy and Gepshtein [10, 11]. According to perception organization

theory, visual perception is as a result of complex cascade part–whole hierarchy or-

ganization of visual information that involves both low-level and middle-level vision

[12], as discussed in the following.

• Low-level Vision Visual information is first sampled by small receptors:

photoreceptor neurons, then, they are first grouped into small intermediate

elements, which are called as Uniform Connectedness (UC) regions (closed re-

gions of homogeneous properties-such as lightness, chromatic color, motion) by

Palmer and Rock in[2]. This first stage construction process is generally called

”low-lever vision”. Although there are different viewpoints about how these

intermediate elements are constructed [20] [21], it is well accepted that the first

stage low-level processing depends on local visual properties [9]. It is affected

only by computations on immediately adjacent areas instead of by computa-

tions on distant regions of a scene [22]. It is highly parallel over space. The

retina and primary visual cortex seem wired up to perform these computations.

• Middle-level Vision According to Palmer and Rock’s theory [2] as shown in

Figure 2.1, once these intermediate elements (or UC regions) have been con-

structed, they are submitted to the so-called figure-ground process that is one

of middle level vision processes. This figure-ground process that aims at fore-

ground and background separation may be influenced by the feedbacks from a
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Figure 2.1: A flowchart representation of the relations among processes proposed

to be involved in perception organization. (Reproduced from Palmer and Rock[2],

Figure 13).

later process, especially by “common fate” grouping [23]. The elements iden-

tified as figures can be either parsed into subordinate units or further grouped

into more complex visual entities, by the action of at least some of the classical

Gestalt laws such as: common fate, proximity, closure, similarity. At the end,

semantic “understanding” of a scene can be achieved by high-level vision [24] .

2.2.3 Motion Perception Theory

Substantial evidences in biological vision systems show that the presence of motion

makes object detection, segmentation, and recognition easier, since motion cues can

provide critical information for visual perception.

• Short-range and Long-range Motion How motion cue is used in percep-

tion is an interesting question. There are several different theories about motion

perception mechanism. A dominant theoretical framework is short-range and

long-range dual process theory, which was first proposed by Braddick [25]. It

suggest that motion perception is mediated by short-range process and long-

range process. The short-range process is a low-level process, occurring at an

earlier stage in visual system, combining information over a relatively short spa-

tial and temporal range. It occurs within brief temporal intervals and small spa-
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tial neighborhood[26]. The long-range process is a higher-level process, which

operates over long distance and long durations. The outputs of short-range

process can be serve as inputs to the long-range process. Cavanagh and Mather

[27] classify motion stimuli into three categories: first order, second order, and

third order. They think that three kind of different motion perception systems

are needed to detect these three kinds of stimuli. Although there has been much

debate concerning the motion perception mechanism, a common shared idea is

that motion information is extracted and used in an hierarchy processing: from

low-level to higher-level. The outputs of low-level processing can be taken as

inputs by higher-level processing.

• Common Fate Theory

Another important finds about motion perception is common fate theory: El-

ements that move together are grouped together. According to Gestalt psy-

chology, common fate motion is a critical and robust source of information for

dynamic object segmentation. Recent research suggests that common fate mo-

tion is one of the first object segmentation cues used by young infants. It can

define objects in multiple object tracking [28]. In our research, we will explore

an important long-range visual cue: trajectory, as a mid-level feature to attack

non-convex classification problem in Chapter 3. Common fate theory is the

theoretical foundation for us to define trajectory similarity, upon which object

number will be estimated by trajectory merging process.

2.2.4 Bottom-up Processing in Visual Perception

Different aspects of the visual perception in HVS have been studied by different

researcher with different concern. From the early work by Marr [19], Witkin and

Tenenbaum [29], and Lowe [30], to more recently work by Sudeep Sarkar [7] [31] [32]

[33], different perception principles are picked to instruct artificial vision research. We
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believe that video segmentation could benefit from a comprehensive understanding

about visual perception. In order to have such a comprehensive knowledge, we will try

to combine several visual related perception theories into a systematic computational

framework, in which, different perception rules can efficiently work together, and

benefit each other.

By comparing the conception of matching units in Kubovy’s joint spatiotemporal

grouping theory[10], with that of Kalmer’s Uniform Connectedness (UC) regions, it

is obvious that Uniform Connectedness (UC) regions is one kind of matching units,

which should be the result of joint spatial and temporal grouping. Combing Brad-

dick’s motion cue study results [25] with Palmer’s UC theory, It is reasonable to

make a inference that short-range motion cue should be involved in the construction

process of UC regions, and long-range motion cue may be involved in intermediate

level grouping. Based on Palmer and Rock’s flowchart representation of the relations

among several different perception processes as shown in Figure 2.1, by incorporating

with Braddick’s motion cue study results [25] and Kubovy’s joint spatiotemporal

grouping theory [10], we develop a possible computational model for low-level and

intermediate-level (or middle-level) vision perception processing in Fig 2.2.

 optical

stimuli


Low level feature

based joint spatio-

temporal grouping


(Short-range

motion feature )


Figure-

ground


processes


Parsing


Middle-level

Feature


Extraction


Middle-level

Feature


extraction


Uniform

Connectedness


(UC)

regions


Subordinate

Unites


Superordinate Units

for Higher-level


Grouping or Modeling


Gestalt rules

such as


Common Fate


Low-level vision

High-level


vision


Middle-level feature

based joint spatio-

temporal grouping

(long-range motion


feature )


Background

UCs


Middle-level feature

based grouping


Figure

UCs


Intermediate-level

Units for Higher-level

Grouping or Modeling


Feedback
Low-level Feature

extraction by local

stimuli receptors


Intermediate-level vision (Middle-level vision)


Figure 2.2: Computational model of perception processing

In this computational model, optical stimuli are first sampled by small receptors:
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photoreceptor neurons. Low-level visual cues (including short-range motion cues) are

extracted by local stimulus receptors. Then, they are first grouped into small Uniform

Connectedness (UC) regions by joint spatiotemporal grouping. Once UC regions

have been established, they are submitted to figure-ground (fore-ground/background)

process. This figure-ground process may be influenced by feedbacks from later higher-

level grouping processes, especially by ”common fate” guided grouping [23]. These

elements identified as figures can be either parsed into subordinate units or further

grouped into more complex visual entities [2]. This grouping process may follow

the rules of the classical Gestalt laws such as: common fate, proximity, closure [2].

Long-range motion cues should be involved in this intermediate level grouping.

The goals of low-level vision is to build UC regions based on both short-range

motion cue and other physical properties of the visual environment. The main com-

putational properties of the low-level vision is local, parallel, fast, robust to input

noise, and be of bottom up [22][9].

The fundamental goals of bottom-up low-level and mid-level processes are to group

entities together hierarchically into higher-level forms, upon which higher-level rep-

resentation can be defined for higher-level vision processing. The goals of high-level

vision is to complete the job of delivering a coherent interpretation of a scene.

2.2.5 Combined Bottom-up and Top-down Processing

The bottom-up sequential perception processing model has wide influence in the

community of computer vision. But when this feed-forward model is used to process

a noisy and cluttered scene, it usually fails to identify objects that can be easily

recognized by human [34]. Bullier thought that the failure of bottom-up feed-forward

model is due to the separation between the high-level prior information and the

local bottom-up segmentation [35]. More and more evidence from neuroscience and

psychology show that the top-down modulation is essential and indispensable in visual
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perception.

In contrast to low-level vision, which is concerned with feature extraction, the top-

down modulation in high-level vision is primarily concerned with the interpretation

and use of prior knowledge and information in a scene. High-level visual processes

are performed on a selected portion of the image rather than uniformly across the

entire scene, and they often depend upon the goal of the computation and prior

knowledge related to specific objects [24]. Recently, psychologists modeled the top-

down processing in high-level vision as statistical inference [36, 37, 38]. According to

some recent neurophysiological evidences, and inspired by the most successful com-

puter vision algorithms, Lee and Mumford suggested that the interactive bottom-up

and top-down computations in visual neurons might be modelled by the mechanisms

of particle filtering and Bayesian-belief propagation algorithms [39]. Combining the

work of Lee and Mumford in [39] with these classic bottom-up sequential perception

theories aforementioned, we present a computational model for visual perception in

Fig. 2.3, where bottom-up and top-down processes are combined together.
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Figure 2.3: Computational model of combined bottom-up and top-down processing.

Within the framework of particle filtering and Bayesian-belief propagation algo-

rithms, bottom-up processing generates data-driven hypotheses and top-down pro-
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cessing provide priors to reshape the probabilistic posterior distribution of various

hypotheses. In this model, top-down processing could begin as early as the figure-

ground process stage [40]. Specifically, for motion perception of human body, the

prior knowledge and information about human body appearance pattern and motion

pattern provide prediction and top-down prior, which play an important role in the

interpretation and segmentation of human motion.

2.2.6 Application to Visual Segmentation

In the following, we will briefly review the recent research on visual segmentation,

including image and video segmentation, which has been motivated and inspired by

general perception principles.

• Joint Spatiotemporal Approaches Many video segmentation algorithms

can be grouped into the catalog of joint spatiotemporal principle, such as the

Normalize cuts graph partitioning method presented by Shi and Milk [41, 42],

the mean shift method proposed by DeMenth [43], the Gaussian Mixture Model

method proposed by Greenspan, et al [44]. A good survey of joint spatiotempo-

ral grouping techniques for video segmentation can be found in [45]. According

to the perception organization theory, low-level feature based segmentation is

just at the beginning stage, i.e., “low-level vision”. Therefore, it is not a surprise

that the results of single-stage spatiotemporal segmentation algorithms are still

far away from “semantic video segmentation” in a general scene.

• Multi-layer Bottom-up Approaches The multi-layer framework is an ef-

fective approach for video segmentation. In [46, 47, 48, 49], pixels are first

grouped into small homogeneous regions in each frame. Then, segmented 2D

regions are merged (or tracked) into 3D volumes in space and time. Recently,

some multi-layer algorithms construct 3D space-time regions at the first stage.
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They match well with both the joint spatiotemporal principle and the hierar-

chical perception organization theory. In [50], a region growing method was

proposed to construct the smallest homogeneous 3D blobs at the first stage,

then, new features such as boundary, trajectory and motion of these blobs are

extracted. Based on the extracted new features, these over-segmented small

blobs can be further grouped into more advanced structures. The 3D water-

shed method was proposed in [51] to generate 3D blobs, and these blobs are

then merged into more semantically meaningful objects. Multi-layer segmen-

tation algorithms can use relevant visual features in different layers to achieve

the final segmentation progressively. However, all multi-layer algorithms face

some problems when there is a cluttered scene or objects have complicated vi-

sual properties and behaviors. Another challenge is how to decide when the

cascaded merging processes should stop. Possible solutions to these problems

may be provided by top-down processing.

• Combined Bottom-up and Top-down Approaches Although the seg-

mentation scheme that combines both bottom-up and top-down processing is

commonly advocated in the computer vision community [52], there has not yet

been a widely accepted computational framework to achieve that goal. In [53],

Borenstein et al. proposed an example of how to combine both bottom-up

and top-down approaches into a single figure-ground image segmentation pro-

cess. The unified segmentation, detection, and recognition framework proposed

in [54] might be one of the most successful examples of applying this scheme

in image segmentation. How to apply the similar idea to video segmentation

remains to be a very challenging research topic.
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2.3 Biological Movement Perception

Until now, little work has been done in combining bottom-up and top-down pro-

cesses for semantic video segmentation, even though we know that it is one of the

most promising directions. Since we are interested in human detection, tracking and

segmentation, we will review several neurophysiological and physiological literatures

on biological movement perception, particularly human motion perception. Through

this study, we try to find some inspiring hints and general guidelines to develop a

practically plausible computational model to guide our future research.

2.3.1 Neural Mechanisms of Biological Movement Perception

• Two-pathways Vision Perception Physiological studies found that there

are two separate functional streams involved in vision perception: a ventral

stream for the analysis of form (the “what” stream) and a dorsal stream for the

analysis of position and motion (the “where” stream) [14, 15]. This discovery is

called one of the major breakthroughs of the last few decades of vision research

[55]. Inspired by this discovery, Giese and Poggio proposed a neural model

for biological movement recognition [56]. This model has two separated parallel

hierarchical pathways: form pathway and motion pathway, which are specialized

for the analysis of form and motion information respectively. This model has a

feed-forward architecture. The form and motion pathways consist of hierarchies

of neural detectors that are connected unidirectionally in a bottom-up fashion.

• Interaction and Convergence of Two Pathways Further physiological

and neuropsychological studies show that the two processing streams interact

at several levels. Oram and Perrett found evidence for the convergence of two

pathways in the anterior part of the superior temporal polysensory area (STPa)

of the macaque monkey [57]. The integration of two separate aspects of in-
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formation about a single object has been referred to as the binding problem.

In[58], Sajda and Baek describe a probabilistic approach for the binding prob-

lem, which uses a generative network model to integrate both form and motion

cues using the mechanism of belief propagation and Bayesian inference. The

discovery of the convergence of two pathways in higher-level vision neural region

is very important because the interaction of the two pathways may be realized

by a feedback from the convergence place. A similar mechanism is used to ex-

plain the exchange of information between two distant neuron regions, where

direct information exchange is inefficient or difficult [59].

2.3.2 Visual Tracking Theory

In computer vision, visual tracking is a common method for human motion and pose

estimation that can provide prior information for the next frame. This strategy is well

supported by a psychological theory called “object specific preview benefits” (OSPB)

[60], which states that the detection of a dynamic object’s features are speeded when

an earlier preview of those features occurs on the same object, .... Although the

nature of visual tracking has not been systematically studied, there are two main

theories for Multiple Object Tracking (MOT): Pylyshyn’s visual index theory [61]

and Kahneman’s “object file” theory [60]. The visual index theory matches the

construction process of 3D UC blobs very well. It is a low-level automated vision

process, and no attention is needed. In contrast with the visual index theory, the

“object file” theory suggests that the effortful attention is needed for a successful

tracking process. An object file is a middle-level visual representation stored in the

shot-term working memory, which collects spatiotemporal properties of the tracked

objects, and the content of object files will be updated when the sensory situation

changes.
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2.3.3 A Comprehensive Computational Model

Based on previous studies and discussions, we hereby propose a comprehensive com-

putational model for human detection, tracking and segmentation, as shown in Fig-

ure 2.4. This computational model is deeply inspired by previously reviewed percep-

tion principles and biological movement perception. Related to the hierarchical neural

model proposed in [56], the top flow is the bottom-up hierarchical form pathway; the

bottom flow is the hierarchical motion pathway. This model is developed from the

the general computational model as shown in Figure 2.3. Moreover, the bottom-up

processes begin from the input visual stimuli (pixels). The output of form pathway

is the appearance pattern (object segmentation), and that of motion pathway is the

motion pattern (motion estimation). Action recognition is achieved by the integration

of both pathway outputs.

Figure 2.4: A comprehensive computational model of human motion analysis.

For human motion perception, top-down processing begins from stored (or learned)

prior knowledge about the human appearance and motion patterns, and then com-

bines with the outputs of bottom-up processing to recognize human action via infer-
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ence [58]. The recognized human action (appearance+motion) is used as prior for

tracking. UC region construction is the entry-level unit for the part-whole hierarchy,

and we argue that the top-down inference should not go beyond the UC region. In

other words, the UC region is the fundamental unit for top-down tracking. In the

proposed model, Kahneman’s “object file” theory in [60] can explain visual tracking

after UC regions are generated. This is also supported by Kahneman’s suggestion

that “visual index” might be the initial phase of a sample object file. Therefore, in

the proposed model, the two tracking theories can be integrated at different levels

and in a serial flow.

2.4 Discussions and Conclusions

The model in Fig. 2.4 could help us understand some difficult problems in human de-

tection, tracking and segmentation. For example, in a bottom-up framework, motion

estimation and object segmentation are often considered as a chicken-egg problem.

Here object segmentation, motion estimation, and action recognition are results of

recurrent and interwound feedforward/feedback processes. Also, model order esti-

mation in bottom-up processing can be better understood under this framework.

According to [24]: the top-down process tells the bottom-up process where to stop.

As we mentioned earlier, particle filtering algorithms can help physiologists better

understand human perception. In turn, studies of biological vision may help us to

improve our computer vision algorithms. Guided by the model as shown in Fig. 2.4,

we also raise the following open questions for future research.

• How to combine both appearance and motion prior information about

a moving human into statistical inference? Most current particle filter

algorithms use only a dynamic appearance model, few of them consider motion

features or patterns. It has been already proved that combining both motion and

appearance information can achieve very promising results for human motion
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detection and recognition [62, 63].

• How to use bottom-up results as the inference unit in the top-down

process? In other words, how can we build a data driven particle filtering

structure to combine both bottom-up and top-down processing? In [64], Tu

and Zhu proposed a data driven method for image segmentation, where the

fundamental units for inference are pixels. In human detection, tracking and

segmentation, the UC region should be the fundamental unit for object tracking

processing.

• May we use the idea of “object file” theory to attack the occlusion

problem by registering tracked objects across frames? It is well known

that occlusion is a difficult problem for particle filtering-based human tracking.

Decomposing a complex object into several independent moving parts, tracking

them individually, and building an “object file” for each of them may be a good

way to deal with the occlusion problem. A similar idea has been implemented

in the tracking algorithm proposed in [65].

• How to use the idea of matching between adjacent frames into the

particle filter to enhance the tracking performance? In the proposed

framework, tracking acts as a bridge between objection segmentation, motion

estimation, and action recognition. Tracking processing plays a key role to

sustain and stimulate recurrent interactions among them. However, matching

between adjacent frames, as a nature of tracking in the HVS, start to received at-

tention in the community of particle filtering research. An appearance-adaptive

method proposed in [66] is an exemplary effort in this direction.

• How to represent and learn prior knowledge for statistical inference?

In general, we assume that prior knowledge is known by certain off-line learning
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algorithm. When the off-line learned prior information does not fit current ob-

servations, tracking performance could suffer. Therefore, good balance between

online and off-line learning may greatly improve the robustness and effective-

ness of tracking. In [63], Lim et. al. proposed an example of online manifold

learning, which has archived promising results.
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CHAPTER 3

Low-level Vision: Bottom-up Segmentation

3.1 Overview

As compared with human detection, which has made significant progress over the

last few years, not much progress has been made in human segmentation, and the

role of segmentation has largely been ignored. In many human object related studies,

such as human pose estimation and human tracking, segmentation problem is often

circumambulated by assuming its results are already available, or assuming segmen-

tation results can be obtained by a background subtraction process. This kind of

assumption ignored an important fact that segmentation can be an important tool

to support human object analysis in many aspects from low-level feature extraction,

to mid-level human part detection, and to high-level knowledge representation and

inference.

For low-level and mid-level bottom-up segmentation processes, our purpose is to

get compact image representation by grouping pixels into more meaningful segmen-

tation results with less over-segmentation and under-segmentation. When objects

can be depicted in term of semantical words, such as the crown of a tree, a car,or

a tree’s trunk, we call this object-based video segmentation is at semantical level or

in the term of semantical-level video segmentation. Both new multimedia standards

MPEG-4 [67] and MPEG-7 [68], which provide users with the flexibility of content-

based video representation and description, can benefit from semantically meaningful

object-based segmentation. Object-based segmentation has received intensity interest

during the past decade, but it is still one of most challenging tasks in video processing
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due to the complexity of real-world video data. We know that human vision system

(HVS) can easily partition video scenes into meaningful objects and recognize them

effortlessly. Few person doubts that good knowledge about HVS can benefit research

in video segmentation.

Cognitive science research shows that spatial grouping and temporal grouping

are jointly involved in HVS [10][16] [11]. Supported by this perception principle,

joint spatiotemporal video segmentation algorithms are particularly attractive. In

[41, 42], Shi and Milk have presented normalize cuts graph partitioning method for

joint spatiotemporal segmentation. But this classification is achieved at the cost of

heavy computational burden. Nyström method was presented by Fowlkes et al. [69]

to alleviates computational load of normalize cuts approach. In general, the major

limitations of normalize cuts approach are the heavy computational load, sensitivity

to noise, and manual estimation of the cluster number.

As an appealing alternative to graph theory methods, statistical method can also

be used for joint spatiotemporal segmentation. In general, statistical method classify

a multidimensional feature vector space. In [43], DeMenthon proposed a nonparamet-

ric statistics paradigm, in which hierarchical mean shift method was used to cluster

a seven-dimensional feature vector space. A parametric statistics paradigm was pro-

posed by Greenspan, et al [44], which is based on Gaussian Mixture Model(GMM)

learning for a six-dimensional feature space. The order of GMM is estimated by the

Minimum Description Length (MDL) criterion. This statistical modelling method

tend to be more computationally efficient and very robust to video noise. However,

it assumes each cluster has a gaussian distribution. This assumption make it be not

suit for the classification of feature space that has complicated manifold structure. In

other words, it has difficult to deal with non-convex classification problem, which can

make for a either over-segmentation or under-segmentation result. This is the main

hindrance to achieve semantically meaningful segmentation results.
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Up to now, compared with the requirement of automatic semantic-level video seg-

mentation, all the single stage low-level feature based algorithms have achieved only a

very limited success. Their results are still far away from semantically meaningful in

more complex and realistic scenarios. According to Sarkar and Boyer’s feature level

based classificatory structure [7], one step low-level feature based joint space-time

algorithms are just at the beginning stage: signal level processing.

The limitation of single layer classification is acknowledged by more and more

people. For complex classification problem, multi-classifier strategy is advocated by

many researchers, such as, Kittler[70], Fred and Jain [71]. Basically, there are two

structures for combining multiple classifiers, i.e., parallel and cascaded. Supported by

Marr’s sequential perception processing theory[19], multi-layer cascaded classification

approaches are very popular for video segmentation, in which, pixels are first grouped

into small homogeneous regions based on features such as color, position; then these

regions are further grouped according to some new features extracted from these

regions. In [46][47][48][49], segmentation is operated frame by frame at the first stage.

It’s outputs are 2-D regions. Then, these 2-D regions are merged (or tracked) into 3-D

volumes in the following stage operation. Very recently, some multi-stage algorithms

construct 3-D space-time regions at the first stage processing. In [50], Porikli etc.

use region growing method to construct smallest homogeneous 3-D blobs at the first

stage, then, new features such as boundary, trajectory and motion of these blobs

are extracted by so called, self descriptors. Based on extracted new features, these

over-segmented small regions can be further grouped into more advance structures

by hierarchical clustering method. Instead of region growing method, 3-D watershed

method is used by Tsai et cl. [51]to generate 3-D blobs at the first stage, then blobs

are merged by a Bayesian framework based on new features extracted from these

blobs. Unlike the single stage algorithm, multi-stage algorithms can use different

level features into classification. However, many multi-stage algorithms discard the
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conception of joint spatio-temproal grouping. Moreover, motion information, as the

important visional cue, has not been enough explored in many multi-stage algorithms.

In this chapter, we attempt to build an effective computational framework, by

which the limitations of different classifiers can be evaded by the cooperation of

each other, different level features or representation can be effectively extracted and

involved in segmentation. We extended Greenspan’s statistical modelling method

[44] into a perception principle guided multi-layer framework, which combines both

the merits of multidimensional approach for joint spatiotemporal grouping, which

was believed to be the most promising direction recently [32], and the merits of a

multi-stage process. In our algorithm, feature selection and classifier design, the

two key issues of pattern recognition, are inspired by cognitive science studies: what

and how visual cues are extracted and used in HVS and how visual information

is transformed in HVS. Guided by a possible perception computational model, no-

convex classification problem can be attacked in a cascade multi-layer classification

framework. Object number estimation is carried out at the last layer classification,

when higher-level feature: “trajectory” , which capsulate more information about

object number, is available. The most time consume operation: MDL criterion-based

model order estimation is discarded. Our simulation results verify that our new

framework can achieve a more meaningful segmentation result in some complex and

realistic scenarios. It is also computationally effective.

In Section 3.2, we will first review the Gaussian Mixture Model(GMM)-based

statistical modelling approach for video segmentation proposed by Greenspan et. al’

in [44]. In order to get some hints from HVS to attack limitations of single-layer

statistical modelling approach, we will introduce some related perception principles

in Section 3.3 and deduce some guidelines and perception computational model to

instruct our algorithm designing. The detail implementation of our algorithm is

given in Section 3.4. Experiment results are presented in Section 3.9 to validate our
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algorithm. At the end, conclusions and future work discussion will be given in Section

3.10.

3.2 Statistical Video Modelling

3.2.1 GMM-based Video Modelling

By assuming that all pixel-wise feature vectors are generated from a multivariate

Gaussian mixture model (GMM), each homogeneous region can be represented by

a multi-dimension Gaussian distribution. GMM parameters can be estimated by

the Expectation Maximization(EM) algorithm. We now give a brief review of the

statistical model-based video segmentation technique proposed by Greenspan, et al

in [44]. It has mainly three steps. First, given a video sequence, a six-dimensional

(6-D) feature vector, i.e., 3-D (L, a, b) color descriptor, 2-D position (x, y), and time

or frame index (t), is extracted for each pixel. The second step is EM-based GMM

model learning. Let o be the feature vector in Rd, the mixture density is defined as:

f(o|θ) =
∑K

j=1 pjϕj(o|pj, µj, Σj) Given a set of feature vectors o = {oi; 1 ≤ i ≤ N}, the

maximum likelihood estimation of θ is: θML = arg maxθ f(o1, ..., oN |θ). The number of

model components K value is decided according to the Minimum Description Length

(MDL) criterion [72]. Specifically, a whole set of candidate GMMs with different

component numbers ranging from kmax to kmin has been obtained by using the EM

algorithm (kmax − kmin + 1) times.

log py(y|K, θ) =
N∑

i=1

log
K∑

j=1

pjϕj(o|pj, µj, Σj), (3.1)

MDL(K, θ) = − log py(y|K, θ) +
1

2
L log NM, (3.2)

where the parameters θ = {pj, µj, Σj}K
j=1 are to be estimated and 0 < pj < 1,

∑K
j=1 pj = 1. The model of order kopt is the one that can minimize the MDL criterion.
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In other worlds, the optimal Kopt is found by searching a set of candidate models

with different orders K ranging from Kmax to Kmin. After GMM model training, the

last step is that we segment the video by assigning each pixel to the most probable

Gaussian cluster, which maximizes the a-posteriori probability(MAP). Model-based

object segmentation actually implements the MAP classification of all pixel-wise fea-

ture samples derived from a video shot. Each Gaussian component in the feature

space corresponds to a video region, whose certain properties, such as position, color,

or velocity, can be calculated by associated Gaussian model parameters.

3.2.2 Further Developments

Since the covariance matrix coefficients of GMM model can only describe the mean

direction and velocity of complex motion patterns, in order to get precise description

of nonlinear motion patterns, Greenspan [73] proposed an extended scheme, termed

Piecewise GMM framework. The computational load of these object-based segmen-

tation methods is normally very high. Recently, improved methods were proposed

by our research group [74][75][76]. We assume that there is a trade-off between effi-

ciency and robustness of the EM training. Particularly, we have introduced key-frame

extraction prior to model training, and GMM estimation is only based on a set of

pre-selected key-frames whose optimal number depends on the complexity video data.

Then trained GMM is applied to whole data set for video segmentation. It was found

that extracted key-frames can contain sufficient training samples with much reduced

redundancy and outliers, leading to robust and efficient model training.

3.2.3 More Discussions

Although these works just mentioned in last subsection can improve the video seg-

mentation performance dramatically, the statistical modelling scheme described thus

far still has several limitations which we would like to address.
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The first limitation is that the MDL-based GMMs model order estimation is not

only very time consuming, but also not suit for estimation of the number of semantic

objects. The optimal Gaussian order Kopt is found by searching a set of candidate

models, which need to run EM algorithm to learn GMMs model parameter several

time. Moreover, Low-level pixel-wise feature based MDL method can only give a

estimation of how many homogeneous regions existing in a video sequence. In general,

a sematic object may content several homogeneous regions. So, the estimation of the

number of sematic objects is not a low-level grouping issue, but need higher level

features.

The second mainly limitation is non-convex classification problem, which is the

main hindrance for achieving semantically meaningful object segmentation. A non-

convex video segmentation example is shown in Fig. 3.1. The first row is the original

video sequence. Object segmentation results are shown in the following rows. Every

row is associated with one segmented component. It is obvious that the second row

are over-segmented results of moving objects. The third and fourth row are under-

segmentation results. Non-convex classification problem always causes a either over-

segmentation or under-segmentation result. Neither over-segmentation nor under-

segmentation is our desired result. In order to achieve more meaningful segmentation

result, non-convex classification problem deserves further investigation.

In this chapter, we classify non-convex classification problem of GMM-based clus-

tering into two categories. The first kind of non-convex classification problem is shown

in Fig. 3.2(a). The learned GMMs with K = 2 and K = 3 are shown in Fig. 3.2(b)

and (c) respectively. Since one object concave into another object in feature space,

it is impossible to find two Gaussian models, by which the two objects can be cor-

rectly classified. In video segmentation, this kind of non-convex classification problem

mainly affects accuracy of object boundary segmentation, especially for background

objects, which have long and narrow shapes and concave into other objects.
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Figure 3.1: An example of non-convex video segmentation. The first row images are

several frames of the input video. The second, the third, and the fourth rows are

these detected and segmented moving objects. The third row and the fourth row are

under-segmented results.

To attack the first kinds of non-convex classification problem, we can over segment

the objects first, as showing in Fig. 3.2(c), then, according to the similarity of Gaussian

models, merge the two components, which have the shortest distance. We will get

the correct classification. Above motioned method is generally used for dealing with

non-convex classification problem. It can be found in many literatures, such as in

[77] and [78]. However, it has difficult to deal with more general case non-convex

classification problem as shown in Fig. 3.3(a).

Object I are represented by two black dot sets, which have circle shape. Other

objects are represented by light dots. Assuming the only features that we know are

position (x, y). Obviously, one step statistical modelling classification will always give

us a either over-segmentation result, like Fig. 3.3(c) or a under-segmentation result,

like Fig. 3.3(b). Since the model distance between the two circles is not the shortest

one, GMMs model distance-based merging can not correctly merge the two circles.
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(a) (b) (c)
Figure 3.2: (a) An example of the first kind of non-convex classification problem. (b)

GMM learning result for K = 2. (c) GMM learning result for K = 3. (Sofeware

provided by [3])

(a) (b) (c)
Figure 3.3: (a) An example of the second kind of non-convex classification problem.

(b) GMM learning result for K = 4. (c) GMM learning result for K = 5. (Sofeware

provided by [3])

Fig. 3.3(a) illustrates the second kind of non-convex classification problem.

Before the attempt of designing a algorithm to attack the motioned limitations

of single layer statistical modelling scheme, especially the non-convex classification

problem, let us have look at how HVS do the complex classification work in the next

Section.

3.3 Hints from Perception Principles for Video segmentation

A real-world video is usually orderly and rule-governed instead of visually chaotic.

Since the early 20th century, psychologists have found a set of rules that are followed

by HVS. In general, there are at least two kinds of perception principles, which can
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bring us inspirations for video segmentation. The first kind is about what visual

cues are used in HVS; Another is about how visual information is transformed in

HVS. These two kinds of knowledge associate with the two key issues in pattern

recognition: feature selection and classifier design. In this section, Based on the

developed computational model in Chapter 2 as shown in Fig 2.2, we deduce some

guidelines for feature selection and classifier design. Then, a possible solution for

non-convex video segmentation is given.

In a view of computational study of vision, Hildreth and Ullman [79] state that we

can take the vision process as the construction of a series of representations of visual

information with explicit computation that transforms one representation into next.

The earliest representations are first extracted simply and directly from the initial

image. Subsequent representation capture the characters of visible surfaces. Since

cognitive science conception ”representation” associates with the term of ”feature

or feature vectors” in computer vision, in this chapter, features are classified into

the following three categories: low-level feature, which is defined on pixels (such as

color,position)and can be extracted simply and directly from the initial video, mid-

level feature, which is defined on visible surfaces or homogenous small regions(such

as color, position, edges, contours), and high-level feature, which is used for more

intelligent processing. A similar feature classification was proposed by Sarkar and

Boyer’s in [7]. Another important point that we can learn from HVS is that motion

features should be extracted in the form of short-range and long-range; further more,

short-range features should be involved in the construction of UC regions. It is obvious

that low-level features alone are often insufficient for semantical video segmentation.

From the analysis in Chapter 2, we know HVS does not achieve a semantical object

segmentation of a scene in a single step. The single step low-level feature based

joint space-time algorithms are just at the beginning stage of a cascade part-whole

hierarchy visual information transform processing. These perception studies support
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a multi-layer cascade algorithm structure for semantic object-based segmentation,

where both low-level features and higher level features can be extracted and effectively

involved into classification.

From the studies of the HVS, we know that correct machine recognition depends on

sufficient feature representing. For the example shown in Fig. 3.1, depending only on

pixel-wise low level feature, we always get either under-segmented or over-segmented

results in one step classification. Therefore, we will explore an important long-range

visual cue: trajectory, as a mid-level feature to attack this non-convex classification

problem. According to common fate rule of Gestalt psychology, elements that move

together should be grouped together, elements belong to same object should move in

the same direction at every frame. So, based on the similarity of motion trajectories,

the elements that belong to same object could be merged together. In general, a

motion trajectory is extracted as a coordinate sequence, which records the region

center in every frame. So, the preliminary condition for a good trajectory feature

extraction is an over-segmented ”blob”. For example, we cannot extract trajectory

feature directly from an under-segmented blob as shown in the third row of Fig. 3.1.

From the computational model of perception process as shown in Fig. 2.2, we know

that there is parsing process before middle-level feature extraction and grouping.

After a connectivity based parsing processing, under-segmentation result as shown in

third row of Fig. 3.1 should be separated into over-segmentation blobs, upon which

trajectory can be extracted correctly. After common fate-based trajectory grouping,

moving object number could be also estimated, since common fate motion can define

objects in multiple object tracking [28].

3.4 Multi-layer Framework Video Segmentation Algorithm

Encouraged by the case studies in the previous sections, a new perception principle

guided video segmentation framework will be presented in this section. This frame-
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work is derived from the computational model shown in Fig. 2.2. The flowchart of

our designed three-layer classification framework is shown in Fig. 3.4.
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Figure 3.4: The proposed multi-layer and cascade video segmentation framework.

The first layer classification is built on recent research results of single-layer GMM-

based segmentation framework described by Greenspan [44], and our previous work

in [74]. We use key-frames-based EM algorithm to obtain GMMs model parameters.

Here, the purpose of GMM Modelling-based clustering is to segment image sequence

into small space-time Uniform Connectedness (UC) volumes or called blobs, which are

entries of the following stage processing. In the second layer classification, the output

blobs are classified into two groups: static (background) groups and dynamic groups

based on corresponded Gaussian model parameters. This top-down motion detection

process guarantees the blob merging in the last stage would not happen between static

blobs and dynamic blobs. By an another top-down process: parsing , dynamic blobs

will be split into connected regions. This splitting process can facilitate trajectory

extraction. In the third layer, still and moving regions are merged separately by using

the MST method based on different similarity measures.
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3.5 First Layer: GMM Modelling-based Segmentation

Bayesian approaches have enjoyed a great deal of recent success in their application

to problems in computer vision. Some psychologists, such as: Kersten, Knill and

Rao [36] [37] [38], also prefer a unified Bayesian framework to characterize human

perceptual organization. GMM and EM-based model training are effective and robust

in dealing with noisy multi-dimension feature space. From Section3.3, we know that

the computation within the low-level vision is local, parallel, fast, robust to input

noise, and be of bottom up. Bayesian-based Gaussian mixture model (GMM) method

has similar computational properties as low-level vision. This fact makes them an

excellent choice for the first stage classification.

The first layer classification of our framework is similar to proposed Grennspan’s

method in [44]. But there are two significant differences. The first difference is

that we use different features. Besides three-dimensional YUV color feature, and

two dimension position feature (x, y), the motion feature, i.e., the intensity change

over the time dY is used in our algorithm, instead of the time feature: frame index

t, which is used by Grennspan in [44]. The feature dy is extracted from the pixel-

wise luminance difference of two consecutive frames in a video shot. It includes

short-range motion information. The reason for us to make this feature changing

is that feature t is a uniformly distributed. According to Law et al. [80], this kind

of features make it difficult for Gaussian mixture learning algorithm to recover the

underlying clusters. Our experiments also verified Law’s statement. The involvement

of feature “t” make segmentation results without time coherence. Without feature

“t”, our segmentation results are more time coherent, therefore, we can extract a

stable mid-level feature “trajectory” for further grouping to achieve more meaningful

segmentation results. After this feature changing, our algorithm can detect one kind

of second-order motion as shown in Fig. 3.5, the detected moving object is shown in

Fig. 3.5 (d),(e) and (f), which is very difficult to be detected by Greenspan’s algorithm

44



and all the algorithms belonging to the category of segmentation with spatial priority

in the survey of Megret etc.[45].The second difference is the our GMMs learning

is based on extracted Key frames. Key-frames contain the salient and important

video content structures, therefore, not only key-frame based model training has a

faster speed, but also the learned GMMs models can better characterize salient video

content and has a better segmentation performance. For the video “UO”, as well as

the segmentation results of the first layer statistical modelling-based classification are

shown in Fig. 3.1

Figure 3.5: (a),(b),(c), are the first, third and 5th frames of a second-

order motion video sequence. (d),(e) and (f) are detected motion from

the frame (a),(b) and (c) respectively (Original video data comes from:

http://www.psych.ndsu.nodak.edu/mccourt/Psy460/)

3.6 Second Layer: Bi-partitioning and Spatial Connectivity-based

Splitting

3.6.1 Region Bi-partitioning

A bi-partitioning method is used in the second layer. Static GMM blobs and dynamic

blobs are separated by threshold of their motion magnitudes in GMMs models, which

are extracted from the first layer. Given a Gaussian component l and its motion

vector µdY , the bi-partition is implemented as follows:





If µdY > λ, it is a moving blob;

Otherwise it is a static blob,
(3.3)
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where λ is a threshold for moving object detection, and µdY is the mean value of

motion vector dY in the GMM. This step is a top-down classification process, which

makes it possible for the following layer to merge small static regions and dynamic

regions into background and moving objects respectively.

3.6.2 Spatial Connectivity-based splitting

As mentioned before, the preliminary condition for a good trajectory feature extrac-

tion is an over-segmented blob. In other words, every space-time blob contents only

one object or several parts of a single object. Because under-segmented space-time

blobs content several objects, which may have different dynamic patterns as shown

in the fourth row of Fig. 3.1, thus the extracted trajectory do not characterize any

useful information. In order to achieve a better over-segmentation result, we need

to increase GMMs model order K. However, the computational load of EM learning

is in direct proportion to K2. Therefore, it is not good idea to use very large value

k to achieve a over-segmentation result. In the proposed framework, We apply a

4-neighbor connected component labelling process to divide undersegmentation into

spatially connected components. This operation associates with the parsing process-

ing of HVS. Since artifacts often take the form of small disconnected groups, we use

size filter to eliminate noisy areas in binary map, ie. any blob smaller than a thresh-

old size is removed. Using this parsing operation, the under-segmentation example as

shown in the third row of Fig. 3.1 can be separated into two over-segmentation blobs

as shown in Fig. 3.6.

3.7 Third Layer: MST-based Merging

3.7.1 Graph-based Approach for Classification

Graph theories have long been an important tool in computer vision, especially be-

cause of their representational power and flexibility. At the later stage of classification,
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Figure 3.6: Connectivity-based splitting results of the second layer classification. The

first and second row are connectivity-based splitting results of the blob shown in the

third row of Fig. 3.1. The third row and fourth row are the connectivity-based

splitting results of the blob shown in the fourth row of Fig. 3.1.

the number of input entries is too small to use statistical grouping method to group

them. For computational convenience, we take a graph-based approach for the third

layer classification. In a typical graph-based approach such as [81, 41, 42], pixels to be

clustered are represented by an undirected adjacency graph G = (V,E); every pixel

is a vertices vj ∈ V ; edges (vi, vj) ∈ E representing the link between neighboring

vertices. Each edge (vi, vj) ∈ E is associated with a non-negative measure of dis-

similarity, called weight w((vi, vj)), which reflects the similarity between the linked

vertices. A segmentation is achieved by remove edges (vi, vj) ∈ E to form mutu-

ally exclusive subgraphs. There are different methods can be used to generate these

subgraphs, such as graph cut approach, minimum spanning tree (MST) approach.

In the third layer of our algorithm, Kruskals algorithm-based MST approach is

used to get subgraphs. Based on different similarity measures, static regions and
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dynamic regions are merged separately This MST-based merging method not only

can handle some non-convex segmentation problems, but also dramatically speed

up the segmentation process. Here the final segmentation component number is

obtained by MST-based merging that depends on the thresholds of vertex similarity.

The proposed MST-based merging method bypasses the MDL-based GMM model

retraining process, so it can save the computational load drastically.

3.7.2 MST-based Merging for Static Regions

After the secondary layer, all the static region are separated from moving regions.

Every static region corresponds to one Gaussian model in the GMMs. We consider

every Gaussian model as a vertex of a graph, G = (V, E), where G, V , and E denote

a graph, a set of vertexes, and a set of edges respectively. Every edge has a weight,

which is a similarity measurement between two Gaussian models. The detailed MST

edge weight definition for static regions is showed in Equation 3.4. Kruskals algorithm

is used to develop the MST tree. It is a typical bottom-up approach. In this layer,

MST-based clustering is performed on finite Gaussian components of the trained

GMM rather than on individual pixels. The edge weight function Ds(·) between two

static regions characterized by Gaussian models l and m is defined to be an upper

bound on the change in the MDL criterion due to the merging of two Gaussians. This

upper bound is defined as a distance between two models in [82]:

Ds(l,m) =
Nπl

2
log

|Σ(l,m)|
|Σl| +

Nπm

2
log

|Σ(l,m)|
|Σm| , (3.4)

where Σl and Σl are the covariance matrices of Gaussians l and m, respectively; Σl,m

is the covariance matrix of a new Gaussian obtained by merging Gaussians l and m;

πl and πm are two prior probabilities, and N is the number of feature samples. The

merging operation will stop if Ds(l, m) is larger than a given threshold. That means

only the merging that leads to insignificant MDL decrease will be accepted.
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3.7.3 MST-based Merging for Dynamic Regions

After the connectivity-based splitting, trajectory is extracted as a set of tuples (xn, yn);

where (xk, yk) is the center of blob in the kth frame. Dynamic blobs merging depends

on trajectory similarity, but it’s definition is very difficult, Although there are many

literatures about how to measure the trajectory similarity, (Good review can be found

in [83]), most of them deal with one dimensional and same length time-series. In video

segmentation, extracted trajectories are two dimensional time-series and in general

have different length. In our algorithm, since the final moving objects number is

decided by trajectory similarity-based merging instead of by MDL criterion, we need

a trajectory similarity definition, which has clear perception physical meaning.

Combining Gestalt rule: ”common fate” and a probabilistic perceptual principle

i.e.,the Helmholtz principle, we design a simple trajectory similarity measurement

based on motion direction. ”Common fate” rule state that elements that move to-

gether are grouped together. The Helmholtz principle is a general perception law.

it was recently applied to image feature detection by Desolneux et al. in [84]. The

Helmholtz principle states that an event is perceptible, that is to say significant, if

its occurrence being a random situation is very small.

Let A and B be two moving regions co-exist in N continuous frames, we can

compute the motion trajectory of the common part of them: tA = {(xh
A, yh

A)} and

tB = {(xh
B, yh

B)}, h = 1, ..., N , which are used to calculate the trajectory similarity

between A and B. Three steps are involved as follows. First, motion sequences

mA and mB of two regions are computed based on their trajectories. For example,

mA = {uh
A, vh

A|h = 2, ..., N} where uh
A = xh

A − xh−1
A and vh

A = yh
A − yh−1

A . Then

direction sequences ΨA and ΨB are estimated for two trajectories. For example,

ΨA = {ψh
A|h = 2, ..., N} where ψh

A = arctan(uh
A/vh

A) and ψh
A ∈ [180◦,−180◦). Thirdly,

a sequence of direction matching between tA and tB, i.e., ΦA,B = {φh
A,B|h = 2, ..., N},
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is obtained as follows.

φh
l,m =





1 |ψh
l − ψh

m| ≤ α or |ψh
l − ψh

m| ≥ 360◦ − α,

0 otherwise,
(3.5)

where α is a threshold for direction matching, e.g., α = 20◦.

Let j to be the frame number of two blobs having the same moving direction.

It can be calculated by j =
∑N

h=0 φh
l,m . Assuming the object moving directions

at each frame are random, the probability of this event happening can be compute

by:Cj
Npj(1 − p)N−j , where, p = α

360
is the probability of two blobs having the same

moving direction randomly at each frame. According to Helmholtz principle, smaller

Cj
Npj(1 − p)N−j value means more significant event happened. Here, that is to say,

more likely the two trajectories are extracted from the deferent parts of a same object.

So this probability can be a distance between two trajectories. We call it Helmholtz

distance.

dhelm(l, m) = Cj
Npj(1− p)N−j (3.6)

When N and p are fixed, Cj
Npj(1 − p)N−j is only function of j. In order to

simplify calculation, we can use 1
j

to measure the trajectory distance. Considering

that different trajectory pair may have different N , we use a normalized definition N
j

as trajectory distance, which ranges from 1to ∞. When two trajectories are extracted

from different parts of a same objects, the value trajectory distance N
j

is only affected

by trajectory extraction noise. When there is no outlier, N
j

= 1. Therefore, the

distance between blobs l and m in terms of motion trajectory can be defined as in

d(l, m) = N∑n

h=0
φh

l,m

.

Usually, it is unlikely for two moving regions of distinct motion trajectories to be

one object. Similarly, it is also less likely for moving regions disconnected in space

or time to be one object. Hence we define the MST edge weight function Dd(A,B)
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between two moving regions A and B as following:

Dd(A,B) =
N − 1

(ε + 0.001)
∑N

h=2 φh
A,B

, (3.7)

when A and B are connected, ε = 1, otherwise ε = 0. This connectivity information

can be obtained in the second layer.

Figure 3.7: The trajectory-based merging results of the third layer classification. The

first and second row are moving objects. The third row are parts of background,

which are miss classified into dynamic blobs at the first layer. The fourth row are the

noise of dynamic blobs.

For the non-convex classification example shown in Fig. 3.1. The trajectory-based

merging results are shown in Fig. 3.7.The first and second row are moving objects.

The third row are parts of background, which are miss classified into dynamic blobs

at the first layer. The fourth row are the noise of dynamic blobs. From the results we

can see the two non-convex moving objects are correct segmented. In the third layer

classification, before merging process, we also check whether or not this blobs is a

static blobs according to the position variance of trajectory. all miss classified static
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blobs will be merged together as a special background blob,as shown in the last row.

So part of motion detection error happened in the first layer can be corrected at the

third layer. In the first row of Fig. 3.7, some segmentation noise still can be seen.

Most of them can be erased by sample morphological operation such as opening or

closing. The simulation results of proposed algorithm is very robust to GMMs model

order. In this example, we set GMMs model order K as 7, when K is changed from 7

to 18, we still can get the two correctly segmented moving objects. This multi-stage

classification algorithm is very computationally efficient, it take only 60 seconds to

process this 76 frames video sequence.

3.8 Further Discussion

The proposed framework does not purport to model human vision. Under the guide-

line of perception process computational model, this framework has a flexible struc-

ture. New developed technologies for feature extraction or classifier designing can be

adopted into the framework. For example, in the first layer classification, the back-

ground registration technique proposed by Chien et al. in [85] may be adopted to

extract short-range motion feature process to improve aperture problem. According

to the flowchart in Fig. 2.1, UC regions are generated by both edge detection and

region formation process. The idea in [86] may be useful for combining region and

edge information into the generation process of UC regions. There are still many open

spaces left for further research, such as how to extract more and reliable middle-level

feature to achieve more robust and meaningful segmentation. Only the first kind of

non-convex classification is discussed for background segmentation. How to extract

more middle level features and design higher-level grouping process for background

is beyond the scope of this chapter.
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3.9 Experimental Result

In order to validate the effectiveness of the proposed video segmentation algorithm,

a set of experiments is presented in this section. An efficient C-code implementation

is developed for the proposed framework. We evaluate the proposed multi-layer seg-

mentation framework by comparing it with the single-layer method proposed in [74].

Both of them was tested on a set of color video sequences. The frame size of each

sequence is 176 × 144. The test platform is a PC computer (Intel Pentium 3.0GHz

CPU and 1GB RAM). The experimental purpose is to test what kind of merits this

perception principle guided framework can bring to us, and how well the proposed

algorithm can mitigate limitations of single-layer statistical modeling algorithm as

mentioned in Section 3.2.3. All the segmentation results can be clearly observed only

in color image.

3.9.1 Computational Efficiency and Moving Object Number Estimation

As mentioned earlier, the MDL-based GMMs model order estimation is not only very

time consuming, but also not suit for estimation of the number of sematic objects.

After discarding MDL-based GMMs model order estimation, the proposed algorithm

is expected to be more computationally effective. At the same time, we expect the

common fate-based trajectory merging method could give us a robust estimation of

moving object number. We start our experiment on several video sequences, i.e.,

Car, Tennis, and Church as shown in Fig. 3.8. Performance comparisons between

the single-layer method and the multi-layer method are listed in Table 3.1. From

Table 3.1, we can see the proposed multi-layer framework is much faster than the

single layer method. This is due to the factor that we discard MDL-based model

order estimation method. We run EM algorithm only one time.

In the segmentation example of the video as shown in Fig. 3.1, when preset initial

GMMs model order K is changed from 7 to 18, the proposed multi-layer algorithm

53



Figure 3.8: Three input videos. (a),(b),(c) are the first frame of three input videos

repetitively.

Table 3.1: Performance comparisons between the single-layer method and the pro-

posed method.

Videos # Frame Time (second) β index

Single-layer Multi-layer Single-layer Multi-layer

Car 32 120 45 2.30 3.0

Tennis 47 142 50 2.30 3.08

Church 42 150 56 1.96 2.23

still can give us the two correctly segmented moving objects. In contrasty, single-

layer algorithm will give us dramatically changed segmentation results. In proposed

algorithm, object number estimation is depend on middle-level feature: “trajectory”,

which is more closely related to the number information of moving objects than low-

level pixel-wise feature such as color, position. Therefore, trajectory similarity-based

model order estimation method of the proposed algorithm is robust to preset initial

value of Gaussian model order. Low-level pixel-wise feature based MDL method can

only give a estimation of how many homogeneous regions existing in a video sequence.

We know that homogeneous region number has little relation with the number of

semantically meaningful object in a complex video sequence. Our experiment shows

that low-level pixel-wise feature based MDL method is also very sensitive to the preset

initial value of Gaussian model order. Our experiment result of MDL-based GMMs
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model order estimation method on the video sequence: Car, Tennis, and Church as

shown in Fig. 3.9.
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Figure 3.9: MDL-based GMMs model order estimation for three videos. The hori-

zontal axle shows the initialization values for a Gaussian model order. The vertical

axle shows the estimated model orders.

From Fig. 3.9, we can see that the MDL-based Gaussian model order estimation

result almost has a linear relation with the preset Gaussian model order. This ex-

perimental result further support our discarding MDL-based Gaussian model order

estimation method. In our algorithm Gaussian model order is affected only by the

desired size scale of segmented background regions.

3.9.2 Non-convex Classification

As discussed earlier, we hope our algorithm can address the non-convex classifica-

tion problem, which is one of the main limitations of single-layer algorithm. In this

work, we classify non-convex classification problem of GMM-based clustering into two

categories. In general, two kinds of non-convex classification problem exist in both

background and moving objects. For background, only the first kind of non-convex
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classification problem is addressed in our algorithm. That is, static blobs are merged

by the similarity of Gaussian models. For moving blobs, mid-level feature: trajectory

will be extracted. A trajectory-based joint spatial-temporal grouping will be used

to merge dynamic blobs into meaningful moving objects. In the following section,

we will discuss background segmentation results and foreground segmentation results

separately.

Background Segmentation Results

In this section, The goal of our experiment is to evaluate how well the proposed multi-

layer segmentation framework can mitigate the first kind of non-convex classification

problem in background segmentation. Both objective and subjective evaluations are

conducted.

In order to make a quantitative comparison between the proposed algorithm and

the single-layer algorithm proposed in [74], β index is calculated in every simulation.

β index is the ratio of total variation and inter-region variation. It is a widely used

method for classification evaluation and was first introduced by Fisher in [87]. β

index is defined as:

β =

1
n

c∑
i=1

ni∑
j=1
‖Xij −X‖

c∑
i=1

ni

n
× 1

ni

ni∑
j=1
‖Xij −Xi‖

, (3.8)

where is n is the size of a video; ni is the number of pixels in region i (i = 1, 2, ..., c);

Xi,j denotes the feature vector of jth pixel (j = 1, 2, ..., ni) in region i; X represents

mean feature vector of the video; Xi is the mean of ni feature vectors of region

i. Since the numerator is constant for an video, the value is dependent only on

the denominator. The denominator decreases with increase in homogeneity in the

region. Therefore, for a given video sequence and c value(number of region), the

higher the homogeneity within the segmented regions, the higher would be the β

value. The value of β also increases with cluster number c. For the same cluster
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number, the higher the homogeneity within the segmented regions, the higher would

be the β value. Compared with the GMM-based method proposed in [74], numerical

comparisons are presented in Table 3.1. Simulation results show that β indexes from

multi-layer method are larger than the ones from the single-layer method. This means

that, at the same cluster number, the proposed multi-layer algorithm can give a more

homogeneous segmentation than single-layer algorithm.

(f)


(b)
      (c)


(d)


(a)


(e)


Figure 3.10: (a) is one frame of original video sequence: “Car”; (b) is the segmentation

result of the proposed multi-layer method; (c) is the segmentation result of single-

layer method; (d) is the extended building region of (a); (e) is the extended building

region of (b). (f) is the extended building region of (c). (Every color represents one

segmentation component)

As we mentioned earlier, after mitigating the first kind of non-convex classification

problem, segmentation results should have a more accurate boundary. Our experi-

ment in the video sequence “Car” verify that the proposed algorithm truly can do

so. From simulation results of proposed algorithm as shown in Fig. 3.10(b)(e), we

can find the more clear-cut profile of the building and more clear boundary between

trees and sky than in Fig. 3.10(c)(f), which are generated by the single-layer algo-

rithm. From Fig. 3.10(c), we can also find that the single-layer algorithm produces

57



a lot of segmentation noise in the sky. These noise lay in the boundary region of

two different color sky. In general, the proposed multi-layer classifier can produce

more accurate background boundaries. As we mentioned before, the reason for above

results is that the multi-layer classification framework can deal with the first kind

of non-convex classification problem and generate more homogenous segmentation

results. Our observation is associated with quantitative analysis of β index.

Figure 3.11: The first frame segmentation results of the church building in video

sequence “Church”. (b) is one of the segmented components of the proposed algo-

rithm. (c) and (d) are the two segmented components of the single-layer algorithm.

Obviously, (d) is an under-segmented region, part of church building and road are

grouped into one component, which has no semantical meaning

For video sequence “Church”, the church building has a non-convex feature space.

It is composed of three different parts: gray color tower peak, white color tower roof

and red color building body. The proposed algorithm successfully merging these three

parts of church building into a one component, which has semantical meaning: church

building, as shown in Fig. 3.11(b). While single-layer algorithm gives us an under-

segmented region, part of church building and road are grouped into one component,

which has no semantical meaning , as shown in Fig. 3.11 (d).

For video sequence “Tennis”, a desired background segmentation result is the one,

in which, outside court regions should be segmented from inside court regions. From

the simulation results shown in Fig. 3.12(only one frame background segmentation
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Figure 3.12: The background segmentation results for video sequence: Tennis. The

first row (a),(b),(c),(d),(e): segmentation results of single-layer algorithm ; the second

row (f),(g),(h),(i),(j): segmentation results of the proposed algorithm.

results), we can see that the proposed multi-layer algorithm can achieve this goal

(As shown in Fig. 3.12 (g), (h), and (i)), while the single-layer algorithm fail to do

so (As shown in Fig. 3.12 (c) and (d)). Obviously, (h) represents a more complete

outside court region than (c) does. From (b) and (d), we can see that single-layer

algorithm has not segmented the outside tennis court region from the inside tennis

court region. It gives under-segmentation results, which include both inside and

outside court regions.

Therefore, not only from β index, but also visually, we can see that the pro-

posed MST-based background region merging framework has better performance than

single-layer algorithm. After mitigating the first kind of non-convex classification

problem, at the same preset component number, proposed algorithm gives us less

under-segmented results than the single-layer algorithm. In general, over-segmented

building blocks can severe as better entry-level units for higher-level video process-

ing than under-segmented blocks. With certain component number, we hope to get

over-segmented building blocks as long as possible at the low-level stage of video
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segmentation.

Moving Object Segmentation Results

The goal of our experiments on moving objects is to test whether or not the sec-

ond kind of non-convex classification can be mitigated by trajectory-based merging

process. The proposed algorithm should result in more semantically meaningful seg-

mentation results for moving objects. In order to test object segmentation results,

simulations have been carried out on several video sequences, i.e., Tennis, Multi-car,

and Multi-Pedestrian.

Figure 3.13: Video sequence: Tennis

Figure 3.14: Segmentation results of single layer classification.

In the video sequence “Tennis”, as shown in Fig. 3.13, the two tennis players wear

the same color shots and have same color skin. In a desired object segmentation,

the two player should be segmented from each other, in other word, one segmented

blob content one complete player. In order to achieve the desired segmentation, the

second kind of non-convex classification problem must be solved. Since the single

layer algorithm can not deal with the non-convex classification problem, from its
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segmentation results as shown in Fig. 3.14, we can see that the detected two dynamic

blobs are under-segmented results, which have few semantical meaning.

Figure 3.15: Connectivity-based splitting results of the second layer classification.

In the proposed algorithm, single-layer GMM modeling based classification is only

the first stage process, which associate with low-level vision. After connectivity-based

splitting in the second layer classification, we get splitting results for the two under-

segmented dynamic blobs as shown in Fig. 3.15 and Fig. 3.16 respectively.Based on

trajectory based merging at the third layer classification, we get results as shown in

Fig. 3.17. Obviously, this is our desired segmentation results. As shown in the first

and second rows of Fig. 3.17, every moving object (tennis player) is correctly and

completely segmented out as one segmentation component.

The third row of Fig. 3.17 deserved further detail description. They are the results

of false-positive classification. These objects belong to background, but mistakenly

classified as moving objects by figure-ground process in the second layer operation.

After connectivity-based splitting in the second layer, these false-positive classification

results are separated from moving objects. After middle-level feature: trajectory, is
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Figure 3.16: Connectivity-based splitting results of the second layer classification.

Figure 3.17: Segmentation results of proposed algorithm. The first and second row are

moving objects. The third row are background components, which are miss classified

into dynamic blobs at the first layer. The fourth row are the noise of dynamic blobs.
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extracted, trajectory-similarity based grouping process can detect and group all these

miss-classified background objects together, because they share the common character

of a static background object: little position changing. This correction process can

also be found in visual perception of HVS. It associates with the feedback from higher-

level grouping process to figure-ground process as shown in Fig. 2.2. This feedback

correction process can benefit our background extraction processing, and result in a

more complete background image. This statement is supported by our experiments

results as shown in Fig. 3.18. Fig. 3.18 (a) is the extracted background of the single-

layer algorithm; (b) is that of the proposed algorithm.

(a) (b)

Figure 3.18: Background extraction. (a) is the extracted background of the single-

layer algorithm; (b) is that of the proposed algorithm.

The video sequence ”Multi-car” is shown in Fig. 3.19. There are four vehicles

in this video sequence. The bus has a non-convex feature space. The results of

single layer algorithm and proposed algorithm are shown in Fig. 3.20 and Fig. 3.21

respectively. By connectivity-based splitting and trajectory-similarity based space-

time grouping, the top part and bottom part of the bus are merged together. Since

both motion information (trajectory similarity) and space information (connectivity)

are involved in our merging process; merging process happens only in two space-

connected blobs, these four vehicles are correctly segmented out in different compo-

nents, notwithstanding they have very similar trajectories.
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A more experiment is conducted on the video sequence ”Multi-pedestrian”, as

shown in Fig. 3.22. Segmentation results of single layer algorithm and proposed

algorithm are shown in Fig. 3.23 and Fig. 3.24 respectively. The proposed algorithm

truly can mitigate the second kind of non-convex classification problem, and achieve

more semantically meaningful segmentation.

3.10 Conclusions

Guided by a biologically plausible computational model, in this chapter, we extended

single-layer statistical model video segmentation algorithm into a cascaded multi-layer

classification framework. For background segmentation, the first kind non-convex

classification problem was mitigated. Its segmentation results are more homogenous

and less likely to be under-segmented than the single-layer algorithm. For dynamic

objects segmentation, both short-range and long-range motion information are used

in classification. By combining the merits of statistical modelling and graph-theoretic

approaches, the second non-convex classification problem can be attacked by the pro-

posed algorithm. Therefore, more semantically meaningful segmentation results can

be obtained, which can better support many content-based applications or higher-

level video processes, such as object recognition or behavior modelling. Experimental

results show that this cascaded multi-classifier approach is also computationally effi-

cient.

In the future, we need to look for more robust parsing process to deal with the

occlusion problem in the step of connectivity-based splitting. We know that vision

perception is a cascade processing, where high-level knowledge based top-down in-

ference play an important role for semantical video segmentation. How to develop

a top-down feedback loop or inference to guide low-level and mid-level bottom-up

classification will be discussed in the following several chapters.
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Figure 3.19: Video sequence:Multi-car

Figure 3.20: Segmentation results of Single-layer framework for video sequence:Multi-

car

Figure 3.21: Segmentation results of the proposed framework for video sequence:

Multi-car.

Figure 3.22: Video sequence:Multi-pedestrian
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Figure 3.23: Segmentation results of Single-layer framework

Figure 3.24: Segmentation results of proposed framework
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CHAPTER 4

Middle-level Vision: Part Detection

4.1 Overview

In middle-level vision, our goal is to group small UC regions into more semantic

meaningful regions, such as body parts, and get a confidence map for each body part.

In other words, we want to jointly obtain localization and segmentation of human

body parts. However, segmentation itself is an important and long-standing research

topic in the fields of image analysis and computer vision, and it can be done at dif-

ferent levels. At low-level vision, it is called image segmentation that is to group

pixels into regions of homogeneous properties based on various low-level region-based

cues (e.g., intensity, color, or texture) and/or edge-based cues (e.g., boundaries or

local gradients). Combining both region-based and edge-based cues has led to sig-

nificant successes for image segmentation due to their complementary nature [86].

At mid-level or high-level vision, segmentation is usually referred to as figure/ground

segmentation that is to partition an image into foreground and background regions

[88], where object-specific priors are usually involved, such as a shape prior. Most

current shape constrained segmentation methods, such as [53, 89, 90, 91, 92], require

manual initialization of the object configuration (position and orientation). As a sep-

arate but related topic, object localization is usually discussed outside the context of

segmentation. Our research goal is to integrate localization and figure-ground seg-

mentation into one unified framework where the two tasks can be jointly formulated

and optimized in a synergistic way.

In this chapter, the issue of joint localization and figure/gorund segmentation is
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formulated as a Bayesian estimation problem where we search for the optimal con-

figuration and segmentation of an object of interest (OOI) in the sense of maximum

a posteriori (MAP). Different from some recent techniques where figure/ground seg-

mentation is usually optimized in a spatially implicit fashion, our objective function is

directly defined and optimized in the 2-D spatial space and provides spatially explicit

indication of the existence of an OOI. In particular, we resort to a segmentation-

based hypothesis-and-test paradigm where the coupled region-edge shape priors are

involved with two different but complementary roles. Specifically, the region-based

shape prior is used to form a segmentation (given a configuration hypothesis), while

the edge-based shape prior is used to evaluate the validity of the formed segmentation

(in terms of the similarity and smoothness of the boundary). It is believed that a cor-

rect location hypothesis will encourage a valid shape-constrained segmentation while a

valid segmentation will enhance the confidence of the location hypothesis. This makes

the proposed algorithm a suitable tool for mid-level vision computation in two ways.

First, the prior knowledge about object configuration can be directly used to prune

the search space, such as in the video tracking case, where the object configuration

at the previous frame provides useful contextual information for the present frame.

Second, the algorithm outputs a map image that indicates the likelihood of an OOI

at each pixel location in an image.

Additionally, we propose two techniques that ensure the efficiency and effective-

ness of the proposed algorithm. Specifically, at the hypothesis stage where the region-

based shape prior is used, a new semi-parametric kernel-based color model learning

method is proposed that can efficiently learn the figure/ground color models online at

each hypothesized location and support effective figure/ground segmentation. At the

test stage where the edge-based shape prior is used, we develop a mixed edge-based

evaluation criterion that measures both the similarity and smoothness of the formed

boundary and is helpful to reject false positives with rugged boundaries for an OOI
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with a smooth boundary. Our study is focused on mid-level vision, where intermedi-

ate results are obtained that can support various high-level vision tasks. As a case

study, the proposed method is examined in the context of body part detection that

has many applications for human detection and tracking as well as pose recognition

and localization [5].

4.2 Related works

There is rich literature on localization and figure/ground segmentation. We will

present a brief review from two different but related perspectives, a methodological

review and a technical review. The former one focuses on the background and de-

velopment of this area, and the latter one discusses the technical connections and

distinctions between the proposed algorithm and existing ones.

4.2.1 Methodological Review

Broadly speaking, recent works on figure/ground segmentation and localization can

be classified into three categories, i.e., the bottom-up dominant approaches, the top-

down dominant ones, and the combined bottom-up/top-down ones. As a bottom-up

dominant approach, Srinivasan and Shi [93] provided a set of bottom-up parsing rules

to segment human body parts guided by a parse tree. Mori et al. [94] used the con-

tour, shape, shading, and focus cues to find the body parts by searching the optimal

segmentation from all possible combinations of super-pixel segments according to a

scale constraint defined by a rectangular-shaped bounding box. Wang et. al. [95]

proposed a shape-based object recognition and image segmentation algorithm where

a shape prior is represented in a multi-scale curvature form. Target objects are iden-

tified and segmented by grouping over-segmented image regions in a probabilistic way

that is influenced by the image information and the shape similarity constraint. Gen-

erally speaking, the bottom-up dominant approaches do not depend on a well defined
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object model, so it is robust to shape variability due to different views or poses. The

other side of the same coin is that false positives or negatives may occur because of

the limitation of using low-level features only. In contrast, the top-down dominant

approaches rely on how good an object model matches the OOI in an image. Boren-

stein and Ullman proposed a fragment-based object representation in [96] that is to

cover as closely as possible the images of different OOIs from a given class using a

set of primitive shapes. This representation was used for combined object recognition

and segmentation in [97] where a probabilistic segmentation map can be computed

as the output of top-down inference. As noted in [96], bottom-up cues could be used

to refine the boundary of a segmented OOI. This kind of extension naturally leads to

the combined approaches.

A combined bottom-up/top-down approach usually involves bottom-up features as

well as an informative object representation that can be encoded in a global template-

like view [98] or a set of fragments [88]. The template-like representation has global

shape information that well suits figure/ground segmentation. In order to accom-

modate more shape variability, various deformable template models have been de-

veloped recently [99]. The fragment-based object representation introduced in [96]

was used for combined top-down/bottom-up segmentation in [88], where Yu and Shi

proposed an integration model to integrate bottom-up pixel grouping and top-down

patch matching. It was shown that incorporating bottom-up constraints improves

the boundary smoothness of the segmented OOI compared with top-down dominant

methods and reduces the false positives/negatives compared with bottom-up domi-

nant approaches.

The combined bottom-up/top-down approaches could be further classified into

two classes according to how the OOI is localized. The methods of the first class

require manual initialization, such as the active contour model based approaches

[100], which is widely used in medical image analysis. The methods of the second class

70



can obtain segmentation and localization simultaneously. Usually, these approaches

jointly formulate the two tasks by defining one optimization problem where both low-

level features and top-down priors are integrated into an objective (energy) function,

e.g., [101, 102, 54]. There are two ways to optimize the energy function. The first way

is to optimize it in a spatially implicit space via statistical modeling and inference,

such as Conditional Random Field (CRF) [101] [102], or Monte Carlo Markov Chain

(MCMC) methods [54]. The second way is to optimize it in a spatially explicit space,

such as the hypothesis-and-test approach proposed in [103] that searches through

the 2D space to find the global solution. This kind of optimization will facilitate

the incorporation of spatial priors and provide an intermediate and spatially sensible

outputs for high-level vision tasks.

4.2.2 Technical Review

As a combined top-down and bottom-up approach, our method is inspired by prior

research. First, we adopt a segmentation-based hypothesis-and-test paradigm that is

similar in spirit with [103] where region-based segmentation is used as an intermedi-

ate step for object detection and recognition. While segmentation here is not only

the approach but also the goal where coupled region-edge shape priors are involved.

Second, we use the super-pixel-based image representation. Unlike [104, 94, 93] where

Normalized-cut is used, and we adopt the watershed transform to create super-pixels

with well defined boundaries that are essential for edge-based evaluation. Third,

for each segmentation hypothesis, an evaluation is involved to examine its validity.

Unlike [94] where the scale constraint defined by a bounding box is used for segmen-

tation optimization in a spatially implicit space, we involve edge-based segmentation

evaluation in the 2-D spatial space.

Our approach has two features that make it especially suitable for mid-level vision.

(1) In general, a segmentation-based hypothesis-and-test approach is computationally
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expensive. We propose an efficient kernel-based learning technique to online learn the

figure/ground color models at each hypothesized position that can take advantage of

the super-pixel image representation. (2) To reduce false positives for OOIs with

smooth boundaries, we develop a mixed edge-based evaluation criteria that combines

the similarity and smoothness. The synergistic use of the coupled region-edge shape

priors is the highlight of this work. The algorithm outputs a spatially sensible map

image that can be further used for various high-level vision tasks.

4.3 Overview of Our Approach

Our fundamental assumption is that the optimal shape-constrained segmentation that

maximizes the agreement with the edge-based shape prior occurs at the correctly hy-

pothesized location. The research overview is presented in Fig. 4.1. In this work, joint

localization and segmentation are formulated as a Bayesian estimation problem that

can be optimized in the 2D space by a hypothesis-and-test approach.

4.3.1 Problem Formulation

We represent an input image G by a set of super-pixels i.e., G = {Ci|i = 1, 2, ..., N}.
Given an OOI, its shape prior has two components, i.e., the region-based shape prior

Yr and the edge-based shape prior Ye, both of which are learned together from a set

of training images where the OOI has been manually segmented. Yr and Ye have a

complementary nature for shape representation. Specifically, Yr is effective for region-

based segmentation by grouping multiple super-pixels, and Ye is efficient for edge-

based evaluation to examine the boundary of the formed segmentation. Assuming an

OOI is present in an image, we look for the OOI configuration L∗ (the position and

orientation) and the optimal segmentation X∗ by maximizing the posterior probability

as follows.

{X∗, L∗} = arg max
X,L

P (X,L|G, Ye, Yr). (4.1)
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Figure 4.1: The segmentation-based hypothesis-and-test paradigm where coupled

region-edge shape priors are involved with two different roles, i.e., forming a seg-

mentation and evaluating a formed segmentation. The algorithm outputs a spatially

sensible map image that reveals the possibility of the existence of an OOI in each

position.

Using Bayes’ law, the joint probability of a segmentation X with a specific configu-

ration L is written as:

P (X, L|G, Ye, Yr) =
P (Ye|X, L, G, Yr)P (X, L|Yr, G)

P (Ye|Yr, G)
, (4.2)

where the denominator P (Ye|Yr, G) is a constant depending on the given image G

and the learned shape priors, and the second term of nominators can be written as

P (X, L|Yr, G) = P (X, |L,G, Yr)P (L|G, Yr). (4.3)

For simplicity, we omit the condition on G, and we have:

P (X,L|Ye, Yr) ∝ P (Ye|X,L, Yr)P (X, |L, Yr)P (L|Yr), . (4.4)

73



Then (4.1) becomes

{X∗, L∗} =

arg max
X,L

P (Ye|X,L, Yr)P (X|L, Yr)P (L|Yr). (4.5)

We interpret (4.5) intuitively as follows. Given the coupled region-edge shape

priors Yr and Ye, P (X|L, Yr) models the posterior probability of obtaining a seg-

mentation X that corresponds to a shape-constrained segmentation under Yr with

configuration L. Having a segmentation X, the first term P (Ye|X,L, Yr) models the

relationship between Ye and X conditioning on L. It can be approximated by the

edge-based evaluation of the formed segmentation X, and can be further computed by

checking the validity of the boundary of X with respect to Ye. The last term P (L|Yr)

is the prior of the spatial configuration that indicates the possible configurations of

the OOI in the image.

4.3.2 Optimization

We develop an effective hypothesis-and-test paradigm to optimize (4.5) that consists

of two phases: hypothesis generation and hypothesis test. The former one generates

a hypothesis of object configuration L and creates a corresponding segmentation

X based on Yr specified by L; and the latter one evaluates L by comparing the

boundary of the formed segmentation X with Ye configured by L. In the first phase,

a configuration hypothesis can be generated from a prior probability distribution

p(L|Yr) (the last term in (4.5)) that are the main focus for some research, such as

[105, 106]. In this work, we assumed p(L|Yr) to be uniform, indicating a full search

strategy. With the help of an efficient online figure/ground color model learning and

edge-based evaluation methods, the optimization process can still be computationally

feasible in practice.

Object configuration L contains two terms, position Lp and orientation Lr, both
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of which need to be estimated. A two-step estimation method is used here. First,

we marginalize Lr by summing over all possible orientation, then find the optimal L∗p

which maximizes

{X, L∗p} = arg max
X,Lp

∑

Lr

P (Ye|X, Lp, Lr, Yr)P (X|Lp, Lr, Yr), (4.6)

where X is a set of candidate segmentations corresponding to different possible orien-

tations at position L∗p. Second, the optimal rotation L∗r and the optimal segmentation

X∗ can be obtained by maximizing

{X∗, L∗r} = arg max
X,Lr

P (Ye|X, L∗p, Lr, Yr)P (X|L∗p, Lr, Yr). (4.7)

The above two-step method is embedded in the two phases of our hypothesis-and-test

approach.

4.4 Proposed Algorithm

4.4.1 Watershed-based Super-pixels

There are several commonly used algorithms for super-pixel generation, such as

Normalized-cut [104], watershed [107] and mean-shift [108]. Specifically, we choose

the watershed transform due to its many “biologically plausible” properties [109].

Moreover, it is fast, local, and has the potential for parallel processing. However,

the severe over-segmentation problem is the main concern of using the watershed

method. Many studies showed that this problem can be largely mitigated by some

preprocessing techniques, such as geodesic reconstruction [110].

Given an input image I, the immersion-based watershed algorithm [107] and

geodesic reconstruction preprocessing [111] are used to obtain Z watershed cells

I = {Ci|i = 1, 2, ..., Z}. Each watershed cell Ci consist of its pixel members Ci =

{p(i)
1 , p

(i)
2 , ..., p(i)

ηi
}, where ηi is the number of pixels in the cell. For each watershed cell

Ci, we also record its edge pixels by Γ(Ci) that will be used for edge-based evaluation.

75



Moreover, we use a 3-D Gaussian model N (x|µi, Σi) to represent its color distribution

in the L ∗ a ∗ b color space. (µi,Σi) are estimated simply by a maximum-likelihood

estimator (MLE) that will be used to online learn the color models for figure-ground

segmentation.

4.4.2 Offline Learning of Shape Priors

We use the shape histogram to represent the shape prior, in which the shape prior

is embedded implicitly into an “image” [90]. Given a set of manually aligned and

segmented OOIs defined in a window Ω, the shape histogram SH(p) can be obtained

by adding and these binary image windows followed by appropriate normalization,

i.e., SH(p) ∈ [0, 1] and p ∈ Ω is a pixel location in the window Ω where the shape

prior is defined. SH(p) reflects the the probability that pixel p ∈ Ω belongs to the

object, and 1 − SH(p) indicates the the probability that the pixel p belongs to the

background. Given a threshold ε (say 0.5), an average object boundary M can be

extracted from SH(p) by a level-set like method,

M = {p|SH(p) = ε}. (4.8)

Therefore, M defines two regions in Ω, namely the object region RM enclosed by

M and the background region Ω \ RM, as defined below:

SH(p) =





ε, if p ∈M;

> ε, if p ∈ RM;

< ε, if p ∈ Ω \ RM.

(4.9)

Given SH(p), pixels in RM more likely belong to the foreground, and those in Ω\RM

the background. Therefore, M can be used as an edge-based shape prior. Such cou-

pled shape representation by SH(p) and M facilitates the interface between region-

based segmentation (bottom-up) and edge-based evaluation (top-down).
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4.4.3 Hypothesis Step: Region-based Segmentation

Given the shape prior SP (p) p ∈ Ω for an OOI where Ω is a rectangular window,

we can use Ω as a sliding-window to scan through the whole image to examine the

existence of the OOI at each location. For a hypothesized location, we use SP (p) to

induce a local figure-ground segmentation that is composed by some watershed cells

covered by Ω. This segmentation will be used to validate the existence of the object

at that location. In order to take advantage of watershed cells and their built-in color

models, we propose a new semi-parametric kernel-based model learning techniques

to online learn the figure/ground color models from the watershed cells directly. We

treat the Gaussian model learned from a watershed cell as a kernel center, and learn

the figure/ground color models as follows,

f̂ob(x) =
Z∑

i=1,Ci∩ Ω 6=∅
αiKi(x),

f̂bg(x) =
Z∑

i=1,Ci∩ Ω 6=∅
βiKi(x), (4.10)

where x is a color vector; Ci is one of Z watershed cells that overlap with window

Ω; Ki(x) = N (x|µi, Σi) is the color model associated with Ci; αi and βi denote the

contribution of cell Ci to the object and background respectively that can be calculated

from SP (p) (p ∈ Ω) and the overlapping watershed cells as

αi =
1

T
∑

p∈(Ci∩Ω)

SP (p), (4.11)

βi =
1

T
∑

p∈(Ci∩Ω)

(1− SP (p)), (4.12)

where T is the size of shape prior window Ω. Based on the figure/ground color models,

we can use the maximum a posterior (MAP) criterion to identify the watershed cells

that belong to the object. Let τi be the class label for Ci:

τi =





1 (object), αif̂ob(µi) > βif̂bg(µi);

0 (background), αif̂ob(µi) < βif̂bg(µi).
(4.13)
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Therefore, we can obtain the corresponding segmentation for a position hypothesis

as, X = {⋃ Ci|τi = 1}. Different from the one in [103] where the shape prior is used

once for online figure-ground color model learning, here we use the region-based shape

prior SP (p) twice. The first time is for the online color model learning as defined

in (4.10), and the second time is for MAP-based segmentation as defined in (4.13).

Considering the false negative is more detrimental than the false positive at mid-

level vision, we encourage more object-like segmentations by fully incorporating the

region-base shape prior into the segmentation process. This may lead to some false

positives due to the double usage of the region-based shape prior. However, the later

edge-based evaluation will mitigate this problem.

4.4.4 Test step: Edge-based Evaluation

After segmentation X is formed, we evaluate it according the edge priorM. Let Γ(X)

to be the boundary of X, we compare Γ(X) with M in terms of shape similarity and

boundary smoothness. The score of X with respect to its compliance with M, i.e.,

ρM(X) is given by,

ρM(X) = exp(−dchamfer(Γ(X),M)) + ζ(1− S(Γ(X),M)), (4.14)

where the first term is the chamfer distance indicating the shape similarity; the second

term measures the boundary smoothness; and ζ balances the relative importance

between the two terms. It is expected that a valid segmentation should have a smooth

boundary that matches with M well. The first term is sensitive to the transition,

rotation and scale. This is desired for rejecting false hypotheses. The second term

aims to reject false segmentations with rugged boundaries for the OOI with smooth

boundary.
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(a)
 (c)
(b)


Figure 4.2: The computation of the Chamfer distance via the distance transform. (a)

and (d) show two sets of edge pixels, and (c) shows the distance transform between

(a) and (b).

Boundary Similarity

In order to eliminate the effect of outliers, we use a modified chamfer distance [112],

dchamfer(U, V ) =
1

n

∑

ui∈U

min(min
vi∈V

‖ ui − vj ‖, η), (4.15)

where η is a factor controling the tolerance of mismatching. Furthermore, Equ. (4.15)

can be efficiently computed using the distance transform (DT) [113]. Given two sets

of edge points U = {ui} and V = {vi} in a window Ω, the distance transform dV (p)

specifies the distance from each pixel p ∈ Ω to the nearest pixel vi ∈ V (as shown in

Fig. 4.2). Therefore the chamfer distance based shape similarity between U and V

can be calculated by

dchamfer(U, V ) =
1

#(U)

∑

ui∈U

dV (ui), (4.16)

where #(U) denotes the number of pixels in U , and dchamfer(U, V ) the average dis-

tance between U and V .

Boundary Smoothness

As shown in Fig. 4.3, assume that Γ(X) touches n cells {C1, ..., Cn}, and we de-

fine Hi = {h(i)
1 , ..., h(i)

ni
} to be the set of ni boundary pixels shared between Ci and

Γ(X). Let φM(p) : R2 → R be the signed Euclidian distance transform that is
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Figure 4.3: The computation of edge smoothness based on the signed Euclidian dis-

tance transform of the edge prior M, i.e., φM(p). X is a segmentation and Γ(X) is

the boundary of X that touches several watershed cells. Hi is the set of edge pixels

shared by watershed cell Ci and Γ(X). Specifically, H2 has the high parallelness (good

smoothness), while H3 has low parallelness (bad smoothness).

“+” or “-” for p inside or outside M, respectively. The maximum and minimum

distances from Hi to M are obtained by d(i)
max = max(φM(h

(i)
1 ), ..., φM(h(i)

ni
)), and

d
(i)
min = min(φM(h

(i)
1 ), ..., φM(h(i)

m )), respectively. The degree of parallelness between

Γ(X) and Hi is defined as

SM(Hi) =
d(i)

max − d
(i)
min

ni

. (4.17)

When Hi is parallel to M (e.g., H2 in Fig. 4.3(b)), SM(Hi) ∼= 0, indicating good local

smoothness. When Hi is perpendicular to M (e.g., H3 in Fig. 4.3(b)), SM(Hi) ∼= 1,

indicating poor local smoothness. In general, the smaller the value, the more parallel

between Hi and Γ(X). Therefore, we define the overall smoothness of Γ(X) as

S(Γ(X),M) =
1

n

n∑

i=1

SM(Hi). (4.18)

If a full search is involved, the score function (4.14) will return a map image that

records the existence possibility of the OOI at every pixel location. The larger the

value, the more likely there is an OOI. It is worth noting that at each position
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hypothesis, the shape prior is hypothesized with different angles around the mean

orientation, and we use the winner-take-all strategy to generate the map image. The

optimal angle at each location is also recorded.

Essentially, this computation is at mid-level vision, and it could support high-

level vision by incorporating high-level knowledge. In this work, we focus on joint

localization and segmentation of a non-articulated object with a relatively well defined

shape, such as human body parts. In the next chapter, we proposed a hybrid body

representation for integrated pose recognition, localization and segmentation, where

this algorithm is used as the inference engine at mid-level vision to locate and segment

the body parts.

4.5 Segmentation Refining via Graph-cut

Recently, the graph-cut approach has achieved considerable success in image segmen-

tation. It has the capacity to fuse both boundary and regional cues in an unified

optimization framework [114]. Several existing methods, such as [89], only incorpo-

rate a single shape prior (edge-based or region-based) into the segmentation process.

Our contribution here is to combine two shape priors into segmentation where the

image is represented by watershed cells.

Given image I = {Ci|i = 1, ..., Z}, l = {li|i = 1, ..., Z} denotes the set of binary

class labels for all watershed cells (li = 0: background and li = 1: object). Following

the segmentation energy definition from [114]

E(l) = λ.
Z∑

i=1

R(li) +
∑

Ci

⋂
Cj 6=∅

E(Hi,j)δ(li, lj), (4.19)

where R(li) is the regional term, which relates to the posteriori probability of Ci

belonging to class li; E(Hi,j) is the boundary term, which represents the consistence

between the edge-based shape prior ML∗
w and local boundary formed by two cells,

Hi,j = Ci
⋂ Cj; δ(li, lj) = 1 when li 6= lj otherwise δ(li, lj) = 0; λ specifies a relative
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importance between two terms.

The calculation of R(li) involves online learning of figure/ground color models

where region-based shape prior Yr is involved for kernel-based density estimation,

as discussed in Section 4.4.3. Let f̂
(w)
ob (x) and f̂

(w)
bg (x) be the figure/ground color

models, and α
(w)
i and β

(w)
i are computed from Yr that denote the prior probabilities

of Ci belonging to the object and background respectively. Therefore, R(li) is defined

as

R(li = 1) = − ln α
(w)
i f̂

(w)
ob (µ

(c)
i ), (4.20)

R(li = 0) = − ln β
(w)
i f̂

(w)
bg (µ

(c)
i ), (4.21)

where µ
(c)
i is the mean color vector of Ci. Using the same idea of edge-based shape

evaluation defined in (4.14), let X = Hi,j, and we can define E(Hi,j) = ρM(X), which

evaluates the consistence between Hi,j and edge-based shape prior M in terms of the

degree of parallelness and the shape similarity.

After object configuration estimation,the using of the improved Graph-Cut method

will further improve our segmentation results.

4.6 Experiments

A set of experiments were conducted to validate the proposed algorithm. The al-

gorithm was programmed in C++, and the test platform is a PC with Pentium-

IV 3.2GHz CPU and 1GB RAM. Our experiments were based on the CMU Mobo

database [115], which contains image sequences of 25 individuals walking on a tread-

mill. Each image is resized to 240 × 320 pixels. In particular, we are interested in

joint localization and segmentation of six body parts, i.e., (the head, torso, left-arm,

right-arm, left-leg, and right-leg) as our OOIs, each of which is defined in a window of
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61× 61 pixels 1. For each OOI, 200 manually segmented images from six individuals

were used for learning the coupled region-edge shape priors, and all training images

share similar poses (i.e., recoil/contact) and the same side-view. The reason of using

one pose is because that the shape of some body parts (legs and arms) may deform

under different poses, and that of using the recoil/contact poses is due to the fact

that they have the least occlusion problem compared with other poses. How to handle

shape deformation and occlusion is beyond our scope. The coupled region-edge shape

priors of six body parts are shown in Fig. 4.4.

Head Torso Left-leg Right-leg Left-arm Right-arm

Figure 4.4: The coupled region-edge shape priors for six body parts.

Our algorithm was evaluated in two aspects, i.e., localization and segmentation.

For localization, the competing algorithm is the state-of-the-art edge histogram (EH)

method in [116] that is a mid-level computation and generates an intermediate lo-

calization map image for an OOI. For segmentation where the online learning of

figure/ground color models is the key issue, we compare our semi-parametric tech-

nique with the Fast Gaussian transform (FGT) that is a non-parametric learning

technique [117]. 180 test images are from six individuals that have the similar poses

with the training data, and we also manually obtained the ground-truth segmentation

and localization information for all test images with respect to six body parts.

1For simplicity, Left and right here are defined according to the relative position of two arms or

legs to the viewer.
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4.6.1 Localization

As a mid-level vision task, our algorithm outputs a map image of a given OOI in an

image. Its pixel value indicates the likelihood or confidence of the OOI at each pixel

location in the image. Given a map image, we expect that its maximum value locates

at (or close enough to) the ground truth position. In order to evaluate the quality

or saliency of map images, we define a localization accuracy function that shows the

relationship between the tolerance error and the hit rate. A tolerance error defines

an acceptable region around the ground truth position, and the hit rate records the

percentage of the optimal values fall in the acceptable region. As shown in Fig. 4.5,

our algorithm is compared with the SH method in terms of localization accuracy

for six body parts. Specifically, we further analyze our algorithm by considering the

case with (Seg-H-T-WS) and without the smoothness term (Seg-H-T-WOS) in the

edge-based segmentation evaluation in (4.14).
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Figure 4.5: The comparison of localization results for six body parts.
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There are two observations from Fig. 4.5. (1) the Seg-H-T offers better localization

precision (i.e., higher hit rates at small tolerance errors) for all six body parts, while

the EH method is more robust (i.e., higher hit rates at large tolerance errors). This

is understandable due to the nature of the two methods. One uses deterministic

edge-based evaluation, and the other involves statistical edge histograms. (2) The

smoothness term is more useful for the OOI with smooth boundaries, such as the

head and two arms. As for the OOIs with less well defined boundaries, such as the

two leg (due to different shoes and pants worn by the subjects), the smoothness term

is less useful. It is is possible that the usefulness of the smoothness term may not be

fully exploited because the imperfect segmentation (with rugged boundaries) at the

true location could be mis-judged by edge-based evaluation.

On the other hand, the EH method is more efficient due to a direct 2D convolution

involved, while the Seg-H-T involves a segmentation at each pixel location. Some

preprocessing could be used to trim the candidate locations. For example, we used a

simple shape matching method that convolves the edge map (consists of all watershed

boundaries) with the edge-based shape prior (under different orientations) and selects

only 2% pixel locations of the best shape matching. Then it takes about 10 seconds

per image for the Seg-H-T, and about 1 second for the EH method. It is interesting to

find out that there is little chance for both methods to achieve successful localization

in the same image at low tolerance errors. It implies that there is a complementary

nature between the two methods, and they could be combined together for more

accurate (due to Seg-H-T) and efficient (due to EH) localization.

As mentioned before, the proposed Seg-H-T method accomplishes a mid-level

computation, and Fig. 4.5 only partially reveals its advantages over the EH method

for localization. We have compared the two methods in their usefulness for high-level

vision, such as pose recognition and localization, in [5], where we incorporated the

spatial prior of six body parts represented by a “start” model proposed in [116]. It was
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Figure 4.6: Segmentation examples of five body parts (from left to right: the left/right

arms, the torso, and left/right legs) where super-pixels and the edge-based shape prior

is shown.

shown that the new method provides significant advantages over the EH method for

pose recognition and whole-part localization. Here, we show part localization results

in Fig. 6.1 which is obtained by averaging the results over a walking cycle, H-point,

Contact, and Passing. We can see that significant improvements are achieved for

two arms and two legs that undergo major movement during a walking cycle. The

proposed Seg-H-T offers salient mid-level outputs, i.e., map images, which ensures

precise body/part localization. At the same time, we can achieve the segmentation

results for each body part given the correct localization which are not available from

the EH-based method [116].

Table 4.1: The comparison of localization errors (in pixel) in one walking cycle.

Methods Head Torso L-arm R-arm L-leg R-leg

EH 5.23 6.83 12.17 11.07 12.73 12.77

Seg-H-T 5.07 6.03 9.80 8.63 4.83 5.63

Improvement 3% 11.7% 19.5% 22.0% 62.1% 55.9%
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4.6.2 Segmentation

One key idea in our Seg-H-T approach is the semi-parametric kernel-based method for

online color model learning that takes advantage of the super-pixel representation and

supports efficient figure/ground segmentation at each hypothesized position. This is

essential to the computation at mid-level vision. We compare the proposed color

model learning technique with the Fast Gauss Transform (FGT) [117] that was used

for non-parametric color model learning and tracking in [118]. We have downloaded

the online FGT code from [119], and used it for comparative studies. Also, we have

implemented the pixel-wise FGT (FGT-P) and super-pixel-wise FGT (FGT-SP). We

evaluate the three segmentation algorithms on 180 test images for six body parts

within the 7 × 7 region centered around the ground truth position. Segmentation

results are evaluated by the ratio of the falsely detected region size (including both

false positives and false negatives) to the object size [120]. The experimental results

are shown in the Table 4.2.

Table 4.2: The comparison of segmentation errors (%) for different shape prior guided

methods at ground truth location.

Methods Time Torso Head L-arm R-arm L-leg R-leg

FGT-P 150 ms 35.8 31.18 43.59 51.63 34.04 33.35

FGT-SP 25 ms 3.83 1.85 17.74 9.89 7.72 6.55

Our method 2.3 ms 3.08 1.49 15.90 7.77 7.26 6.36

From Table 4.2, we can see that significant improvements can be achieved by using

super-pixels in stead of raw image pixels and our method slightly outperforms the

FGT-SP approach. One possible reason is that our method uses soft decision while the

FGT involves hard decision to learn the color models. Moveover, it costs only about

2.3 ms for our method, and 150 and 25 ms for the FGT-P and FGT-SP methods
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respectively, making the new method more appropriate in the hypothesis-and-test

paradigm. Some segmentation examples of the head for the three methods are shown

in Fig. 4.7, where the first column shows the input images where the watershed cells

and the edge-based shape prior are shown.

More segmentation results for other body parts are shown in Fig. 4.6. There

are two main possible causes to the segmentation errors. (1) Some super-pixels are

under-segmented which cover both the foreground and background regions (e.g., the

arms in the second row); (2) The OOI has an irregular shape that violates the shape

prior (e.g., the legs in the first row).

4.6.3 Graph-cut Based Segmentation Refining

Table 4.3: The segmentation comparison.

Methods Torso Head Left arm Right arm Left leg Right leg

Our method 4.52% 4.14% 4.36% 4.1% 5.31% 4.74%

OriGCUT 7.16% 3.85% 4.39% 5.2% 7.18 5.20%

In this chapter, we introduced both region-based and edge-based shape priors into

a Graph-cut framework for segmentation through the two terms of the energy function

defined in (4.19). In order to evaluate our approach, it is necessary to compare

it with the standard method proposed in [114](OriGCUT), where the second term

of energy function(4.19) is replaced by a standard color similarity-based boundary

penalty term. We performed Graph-cut segmentation with (λ = 1/30 in (4.19)) on

184 test images for six objects ( the head, torso, left-arm, right-arm, left-leg, and right-

leg). Segmentation results are evaluated by the ratio of the falsely detected region

size ( including both false positives and false negatives) to the ground truth region

size. The same evaluation method is used in [120]. Statistical segmentation results

are shown in Table 4.3. The results of our method are listed in the first row, and
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the standard method proposed in [114] without using the edge-based shape prior are

listed in the second row. From Table 4.3, significant segmentation improvement can

be observed for the Torso and Legs. Since the segmentation results of the standard

method are already very good for the object of Head, only a slight improvement can

be achieved by our method. Fig. 4.6.3,Fig. 4.6.3 and Fig. 4.6.3 show some examples of

segmentation results from our method and the standard Graph-cut method proposed

in [114]. Watershed cells, which belong to the object, are marked with dot array.

It is worth noting that not all the properties of using an edge-based shape prior are

desirable. As shown in the (c.) of Fig. 4.6.3, a more smoother segmentation boundary

ia obtained at the cost of a false negative segmentation.

4.7 Conclusion and Future Research

In this chapter, we have presented a new joint localization and figure/ground segmen-

tation algorithm that involves coupled region-edge shape priors and is implemented

in a segmentation-based hypothesis-and-test paradigm. Specifically, our research fo-

cuses on mid-level vision and can produce a spatially sensible map image that reveals

the possibility of the existence of an OOI in each pixel location. One possible im-

provement of this work is to introduce a deformable shape model or a more powerful

edge-based shape representation, such as the multiscale-curvature shape model used

in [95], which could enhance the flexibility and adaptability of edge-based segmen-

tation evaluation. The proposed method can be incorporated into other high-level

vision research tasks [121][122][123][124][125], where the human body is modeled as an

assembly of body parts. It can also be directly used for part-based human detection,

pose recognition, localization, tracking and segmentation.
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(a)
 (b)
 (c)
 (d)


Figure 4.7: Segmentation results for the input images (a) using the FGT-P (b), FGT-

SP (c), and our method (d).
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(a)
 (b)
 (c)


Figure 4.8: Right leg Segmentation results. (a): Edge-based shape prior at the

detected configuration. (b): The segmentation results of without using edge-based

shape prior. The top one is the segmented binary image in the size of 61x61 pixel;

(c): The segmentation results of using edge-based shape prior.

False negative


(a)
 (b)
 (c)


Figure 4.9: Right leg Segmentation results. (a): Edge-based shape prior at the

detected configuration. (b): The segmentation results of without using edge-based

shape prior. (c): The segmentation results of using edge-based shape prior.
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(a)
 (c)
(b)


False negetive


Figure 4.10: Torso segmentation results. (a): Edge-based shape prior at the detected

configuration. (b): The segmentation results of without using edge-based shape prior.

(c): The segmentation results of using edge-based shape prior.
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CHAPTER 5

High-level vision: Recognition, Localization and Segmentation

5.1 Overview

Based on middle-level vision processing output results: map images, in this chapter,

we consider a comprehensive decision about the position of each body part. We will

deal with pose recognition, localization and segmentation of the whole body as well

as body parts in a single image. Our objective is to develop a hybrid human represen-

tation and the corresponding processing to assemble three tasks into one integrated

framework. We propose a hybrid body representation, as shown in Fig. 5.1, where

the four images show the input image represented by watershed cells, the proposed

hybrid body representation, the online learned whole shape prior, and the part/whole

segmentation results, respectively. Specifically, segmentation is involved for learning

and inference, since more and more evidences show that segmentation can boost the

recognition and localization performance.

The proposed research is deeply inspired and motivated by shape representation

theories in cognitive psychology where there are two prevailing theories, i.e., the

structural description-based and the view-based representations [126]. The former

one suggests that a complex object is represented by a collection of simpler elements

with specific inter-relationships. The latter one postulates a very simple template-

like representation in which an objects is holistically represented by a simple vector

or matrix feature without an intermediate representational step. Current cognitive

studies indicate that none of these two representation schemes alone can provide a

complete characterization of the human vision system for object recognition [127].
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Figure 5.1: The input image represented by watershed cells, the hybrid body rep-

resentation, the online learned whole shape prior, and the part-whole segmentation

results (from left to right).

5.2 Related work

Similarly as in cognitive psychology studies, existing shape representations in com-

puter vision can be roughly grouped into two categories. One is template-like or

silhouette-based methods, which are suitable for shape prior-based segmentation. The

other is the part-based methods, which can capture the intra-class variability. The

main idea of our research is to integrate both view-based and structural description-

based models into a hybrid body representation to support integrated pose recognition,

localization, and segmentation. Particularly, it can facilitate shape prior guided seg-

mentation, by which bottom-up features can be extracted to drive the top-down

inference in a cascade fashion. Additionally, both off-line and online learning are

involved to learn general and subject-specific knowledge respectively, including the

colors, shapes and spatial structure.

Existing pose recognition, localization, and segmentation methods can be broadly

grouped into three major categories according the way how the body is represented:

the representation-free methods, the view-based methods, and the structural descriptions-

based methods.

The first category mainly contains some bottom-up approaches, in which there is
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no explicit shape prior representation, [94] and [93]. All the information used is a

series of region grouping rules established according to physical constraints such as

the body part proximity. In general, these approaches focus on exploiting bottom-up

cues.

The second category includes all silhouette-based pose analysis methods. In [128],

a specific view-based approach was proposed where pose information is implicitly

embodied into a classifier learned from SIFT-like features. In general, no intermediate

feature or color is used in these approaches. All view-based approaches normally aim

at detecting particular body pose without extracting body parts. Thus it cannot

recover anthropometric information.

The pictorial structure model proposed [122] is a typical approach belonging to

the third category, in which the human body is described by several parts with their

appearances and spatial relationships. This kind of approach usually requires a robust

part detector. The edge histogram [116] and other SIFT-like features are widely used

to represent parts. Very recently, a region-based deformable model is used to represent

parts [129] where segmentation was used to verify the object hypothesis. The method

in [129] is similar in spirit to the part-level inference proposed here. However, in our

approach, where an image is represented by small building blocks (watershed cells),

the coupled shape model is involved in a hypothesis-and-test paradigm where the

region prior forms a segmentation given a position hypothesis and the edge prior

evaluates the formed segmentation.

As the name suggests, the hybrid human body representation proposed here ab-

sorbs recent multifaceted advances in the field. The proposed representation involves

shape prior guided segmentation and inference in a multi-stage fashion. Unlike pre-

vious methods, we use segmentation to extract bottom-up features to drive the top-

down inference. Our contributions in this work include: (1) a hybrid human body

representation that supports the online color model learning and involves an online
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learned deformable shape model to segment the whole body and parts, (2) an effective

hypothesis-and-test paradigm for the part-level inference that involves the coupled

region-edge shape priors, (3) a three-stage cascade computational flow to integrate

pose recognition, localization and segmentation into a “biologically plausible” frame-

work, and (4) a new watershed-based Graphic-cut segmentation where both region

and edge shape priors are used for optimal segmentation.

5.3 Proposed Approach
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Figure 5.2: Overview of our approach.

The proposed hybrid body representation synergistically integrates pose recog-
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nition, localization and segmentation of the whole body as well as body parts in

an image, as shown in Fig. 5.2. Several key issues are addressed. Off-line and

online learning: Off-line and online learning are used to obtain both general and

subject-specific information, respectively. The former one acquires the general shape

and spatial priors for both body parts and the whole body, and the latter one cap-

tures the subject specific information, including colors and shapes. Part-whole

organization: Parts and the whole are two complementary components for object

representation. The part-level inference produces the map images that are assembled

to localize the whole body as well as body parts. The detected body parts will be

further used to create a subject specific shape model for whole body segmentation.

Coupled region-edge shape model: The coupled region-edge shape representa-

tion supports a hypothesis-and-test paradigm, where the region-based prior is used

to form a segmentation and the edge-based prior is used to evaluate the formed seg-

mentation. After the online learning of the whole body, both priors are used in a

new Graph-cut segmentation framework for an optimal segmentation. Balance of

bottom-up and top-down: Bottom-up and top-down flows are well balanced in

a cascade fashion. From weak to strong, the top-down information is incorporated

into the bottom-up processes at low-level, middle-level and high-level vision through

segmentation and inference. Moreover, two feedback loops make our approach to be

a dynamic computational framework.

5.4 Hybrid Human Body Representation

Consider a walking cycle with K typical poses W = {W (k)|k = 1, ..., K}, We model

each pose W (k) by both part-based and whole-based statistical representations W (k) =

{V (k)
1:d ,L(k), SW

(k)
off}, where V

(k)
1:d are shape priors of d part, L(k) is a set of statistical pa-

rameters that encode the spatial relationships between parts in a star graphical model,

and SW
(k)
off is the off-line learned shape prior of the whole body. The shape prior of
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each part V
(k)
i is represented by the region-based shape prior SP

(k)
i , the edge-based

shape prior M(k)
i , and the average orientation θ̄

(k)
i , i.e., V

(k)
i = {SP

(k)
i ,M(k)

i , θ̄
(k)
i }.

Moreover, during the inference processes, the part-based and whole-based color mod-

els as well as the subject specific whole shape model will be online learned as part of

the hybrid body representation. For clearness, we may omit the pose index (k), in

some places below.

5.4.1 Part-based Shape Prior Learning

Following the same learning method as introduced in the provirus chapter section4.5,

for each body part Vi, we have obtained a set of training images (pre-segmented

binary images with a fixed window size and the measured orientation). Let θ̄i be the

average orientation of part Vi. All training images have been aligned to the average

orientation first. Let {Ωj
i (p)|j = 1, ..., Q} denote the aligned training images, the

shape prior SPi(p) can be obtained by adding all aligned training images.

SPi(p) =
1

Q

Q∑

j=1

Ωj
i (p).

SPi(p) and 1 − SPi(p) reflect the the probability of pixel p belonging to the object

and background respectively. Given a threshold ε, an average object boundary Mi

can be extracted from the learned region-based shape prior SPi(p) by a level-set like

method,

Mi = {p|SPi(p) = ε}. (5.1)

5.4.2 Part-based Spatial Prior

We use the spatial prior model proposed in [116] to characterize the variability of

spatial configuration of body parts. For pose k, we define the part-based spatial

prior by a start graphical model as shown in the second figure of Fig. 5.1 that is

parameterized by L(k) = {µ(k)
i , Σ

(k)
i |i = 1, ...., d, i 6= r}. Specifically, {µ(k)

i , Σ
(k)
i |i 6= r}
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denote the Gaussian priors for the relative locations between the non-reference part i

and the reference part r. These statistical parameters can be obtained by a maximum-

likelihood estimator (MLE) from labeled training data. Given a particular spatial

configuration of d parts, L = (l1, ..., ld), the joint distribution of d parts with respect

to pose k can be written as the following:

pL(k)(L) = pL(k)(l1, ..., ld) = pL(k)(lr)
∏

i6=r

pL(k)(li|lr). (5.2)

The same as in [116], we assume that pL(k)(L) is Gaussian. Therefore, the condi-

tional distribution pL(k)(li|lr) is still Gaussian. As defined above, µ
(k)
i and Σ

(k)
i are the

mean and covariance for the spatial distribution (relative) of part i in pose k. Then,

for each non-reference part i, the conditional distribution of its position with respect

to pose k is defined below,

pL(k)(li|lr) = N (li − lr|µ(k)
i , Σ

(k)
i ). (5.3)

5.4.3 Whole Body Shape Prior

On line

Localization


+


Average position and

orientation of parts


T
 1
 
T


Off-line learning
 On-line learning


Figure 5.3: The learning of the whole body shape prior.
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For each pose, a whole body shape prior is needed for body segmentation after

pose recognition and localization. Both off-line and online learning are involved for

generating shape models that capture the general representation as well as the subject

specific information, as shown in Fig. 5.3.

• Off-line learning The off-line learning is similar to that of parts, except that

a part-based alignment is needed due to the spatial variability of each pose. For

each pose, we can compute the average location and orientation for all parts.

For each training image with a segmented body and parts, we want to find a

set of control points based on which the training image can be deformed in

a way that all parts are transformed to the average location and orientation.

To preserve the shape information of parts, we will use the edge points of all

parts to be control points which can be transformed to a target image via 2-D

rigid transformations obtained from the averaged locations and orientations.

After we get control points in both source and target images, the multilevel

B-spline method [130] is used to obtain non-linear transformations by which all

pixels in the source image are mapped to the target image. Small holes can

be filled by simple morphological operations. These aligned biliary images are

used construct a whole body shape prior, i.e., SWoff (p).

• Online learning The online learning is used to create a subject specific shape

model SWon(p) after all parts are localized. The goal is to deform SWoff (p)

in a way that the detected parts are reflected in the shape prior. The similar

technique described above for off-line learning is used here to find the non-

linear transformation functions for every pixel in SWoff (p) by which SWoff (p)

is converted to SWon(p) that carries a subject specific shape model. It is worth

noting that SWoff (p), unlike the training image in the off-line learning, is not

a binary image and an appropriate interpolation is needed to fill possible holes

in SWon(p).
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5.5 Low-level Vision: Watershed Transform

Grouping pixels into small homogenous regions is becoming a popular pre-processing

for many computer vision tasks. This is well supported by the cognitive theory pro-

posed by [2] that considers uniform connectedness (UC) regions as the building block

for object representation. In this work, we chose the watershed transform [107] be-

cause of its many “biologically plausible” properties, such as fast, local computation.

More importantly, both boundary and regional information are available for each

cell. To overcome the over-segmentation problem, the geodesic reconstruction pre-

processing [110] is used to control the watershed size through some morphological

parameters, which can be dynamically adjusted according to the feedback from the

high-level vision (as shown in Fig. 5.2.

A given an image I, is represented by Z watershed cells I = {Ci|i = 1, 2, ..., Z}.
Each cell consists of a set of pixels Ci = {p(i)

1 , p
(i)
2 , ..., p(i)

ηi
}, where ηi is the number

of pixels. Moreover, we use a 3-D Gaussian model {µ(c)
i ,Σ

(c)
i } to represent the color

distribution in the L ∗a ∗ b color space for cell Ci. The watershed cells are used as the

building blocks in the following processes.

5.6 Mid-level Vision: Part-based Inference

The goal of the mid-level vision is to generate immediate part detection results that

will be useful for the high-level vision. What we need here is a map image that

indicates how likely there is an object (i.e., a body part) at each location. How to

obtain this kind of a map images has already been introduced in the previous chapter.

We will not repeat it here. We use g
(k)
i (I, li) to represent the map image for part i of

pose k in image I, and li denotes an arbitrary position in the given image I.
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5.7 High-level Vision: Recognition/Localization

With the obtained map images g
(k)
i (I, li) from mid-level vision processes, let I(k)

maps =

{g(k)
i (I, li), ..., g

(k)
d (I, ld)} denotes the set of d map images, part localization and pose

recognition are formulated as an inference process guided by the spatial priors of

different poses represented by {L(k)|k = 1, ..., K}. Using Bayes law, the posterior

distribution for pose k can be written in terms of the map images I(k)
maps and the

spatial prior defined in (6.6) as ,

pL(k)(L|I(k)
maps) ∝ pL(k)(I(k)

maps|L).pL(k)(L). (5.4)

Let PL(k)(I(k)
maps|L) =

∏i=d
i=1 g

(k)
i (I, li), by manipulating the terms in (6.17), we have

pL(k)(L|I(k)
maps) ∝ pL(k)(lr)g

(k)
r (I, lr)

∏

i6=r

pLk
(li|lr)g(k)

i (I, li). (5.5)

Then pose recognition and part localization can be jointly obtained by the following

optimization:

{k∗, L∗} = arg max
k,L

pL(k)(L|I(k)
maps). (5.6)

However, the direct evaluation of (6.16) is computationally prohibitive. We use the

efficient inference engine proposed in [116] to obtain the solution here. For any non-

reference part i of pose k, the quality of an optimal location can be,

ε∗k,i(lr) = max
li

pL(k)(li|lr)g(k)
i (I, li). (5.7)

Given pL(k)(li|lr) is Gaussian, ε∗i,k(lr) can be computed by the generalized distance

transform. Then, the posterior probability of an optimal configuration for pose k

can be expressed in terms of the reference location lr and ε∗i . Then the posterior

probability in (5.5) will become,

pLk
(L|I(k)

maps) ∝ pLk
(lr)g

(k)
r (I, lr)

∏

i 6=r

ε∗k,i(lr), (5.8)

which will lead to a new map image Gk(I, lr) that indicates how likely the reference

part of pose k is in each location. This new map image Gk(I, lr) is the pooling
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results of all the map images in I(k)
maps via the spatial prior model of pose k, i.e.,

L(k). Therefore, pose recognition and reference part localization can be efficiently

implemented by

{k∗, l∗r} = arg max
k,lr

Gk=1:K(I, lr). (5.9)

After the reference part is located, the position of each non-reference part can be

obtained by

l∗i = arg max
li

p(li|l∗r)g(k∗)
i (I, li). (5.10)

According to the maximum value of obtained new map images Gk∗(I, l∗r), we design

a feedback loop to adjust the size of watershed cells in low-level vision, as shown in

Fig. 5.2.

5.8 Whole Body Segmentation via Graph-cut

After pose recognition and localization, online learned whole body shape priors,

SWL∗
on (p), ML∗

w and pose configuration L∗ can be obtained. Given image I = {Ci|i =

1, ..., Z}, τ = {τi|i = 1, ..., Z} denotes the set of binary class labels for all watershed

cells (τi = 0: background and τi = 1: object). Following the segmentation energy

definition from [114]

E(τ) = λ.
Z∑

i=1

R(τi) +
∑

Ci

⋂
Cj 6=∅

E(Hi,j)δ(τi, τj), (5.11)

where R(τi) is the regional term, which relates to the posteriori probability of Ci

belonging to class τi; E(Hi,j) is the boundary term, which represents the consistence

between the edge-based shape prior ML∗
w and local boundary formed by two cells,

Hi,j = Ci
⋂ Cj; δ(τi, τj) = 1 when τi 6= τj otherwise δ(τi, τj) = 0; λ specifies a relative

importance between two terms.

The calculation of R(τi) involves online learning of figure/ground color models

where region-based shape prior SWL∗
on (p) is involved for kernel-based density estima-

tion, as discussed in Section 4.4.3. Let f̂
(w)
ob (x) and f̂

(w)
bg (x) be the figure/ground color
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models, and α
(w)
i and β

(w)
i are computed from SWon(p) that denote the prior proba-

bilities of Ci belonging to the object and background respectively. Therefore, R(τi) is

defined as

R(τi = 1) = − ln α
(w)
i f̂

(w)
ob (µ

(c)
i ), (5.12)

R(τi = 0) = − ln β
(w)
i f̂

(w)
bg (µ

(c)
i ), (5.13)

where µ
(c)
i is the mean color vector of Ci. Using the same idea of edge-based shape

evaluation defined in (4.14), let X = Hi,j, and we can define E(Hi,j) = ρM(X), which

evaluates the consistence between Hi,j and edge-based shape prior ML∗
w in terms of

the degree of parallelness and the shape similarity.

In a similar way, all body parts can also be segmented. Moreover, the segmentation

in the high-level vision stage will help us extract more useful features to prune possible

false positives. For example, false positives can be identified by checking the color

similarity between the two arms or legs. The feedback loop from segmentation to

localization (as shown in in Fig. 5.2) makes our framework a dynamic system that

has potential to be further optimized.

5.9 Experimental Results

Here we validate the effectiveness of the proposed approach on the CMU Mobo

database [115], which contains 25 individuals walking on a treadmill. The image

is reduced to the size of 240 × 320, and each body part is defined in a window of

61 × 61. For each pose, there are totally six parts (the head, torso, left-arm, right-

arm, left-leg, and right-leg), and 200 manually segmented biliary images are used

for the off-line learning of part-based and whole body shape priors. The number of

training images can be greatly reduced if we adopt a distance transform based shape

prior learning method [131]. The algorithm was programmed in C++, and the test

platform is Pentium 4 3.2GHz and 1GB RAM. The evaluation is conducted in three
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aspects, i.e., pose recognition, localization and segmentation. We will compare the

proposed method with the “1-fan” method in [116] in terms of their performance

of pose recognition and localization. Although our approach is a dynamic process

with potential for further optimization, we have fixed the watershed transform in all

experiments (without the feedback from high-level vision to fine tune the watershed

transform as shown in Fig.5.2).

Contact
Recoil
Passing
High-point


Figure 5.4: Pose definitions [4].

5.9.1 Pose Recognition

In a walking cycle, the human pose is a continuous time-varying variable. Following

the pose definition of [4], we describe a walking cycle by four distinct pose couples,

Contact, Recoil, Passing and High-point, as shown in Fig. 5.4. In our experiments,

we combine poses Recoil and Contact together due to their strong similarity. It is

possible to obtain finer pose classes after taking advantages of segmentation results.

For each of the three poses, the torso is used as the reference part, and 230 labeled
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training data are collected for learning the part-based spatial prior. It was found

that the proposed approach achieves the recognition rate of 98% for the three poses

over 144 test images from 21 persons. The mis-classification only occurs for pose

passing that sometimes is very similar to other two poses. The only way to improve

the recognition for this pose is to incorporate the motion information from video

sequences. The “1-fan” method in [116] achieved the recognition rate of 93%.

5.9.2 Localization

Based on the same test images used for pose recognition, we have tested two methods

on the localization of three poses, i.e., High-point (H-point), Contact and Passing.

The comparative results are shown in Tables 6.1 where we have two findings. The

two methods are comparable in localizing the Head and Torso; and the proposed

approach shows significant improvements in localizing the legs and arms.

Table 5.1: The localization comparison for three poses.

Poses Methods Head Torso Larm Rarm Lleg Rleg

H-point 1-fan 6.7 7.9 10.7 13 16.4 15.4

hybrid 6.2 6.2 6.4 9.2 6.2 9.3

Contact 1-fan 3.4 6.4 13.9 10.4 8.7 10

hybrid 5.4 5.6 11.8 9.6 3.8 4.4

Passing 1-fan 5.6 6.2 11.9 9.8 13.1 12.9

hybrid 6.2 6.3 11.2 7.1 4.5 3.2

The reason for the first findings is because that the relative position between

the head and torso has least variability, and the part-based spatial prior that is

shared by the two methods plays the major role for part localization, leading to the

similar results. However, there is drastic (relative) spatial variability, both positional

and orientational, for the arms and legs, and the improvements from the proposed
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method are significant due to the enhanced saliency of the part-based map images

generated by the segmentation-based hypothesis-and-test paradigm. Overall, the

localization accuracy of the torso, i.e, the whole body localization, is improved due

to the enhancement of each individual part-based map image. Some part localization

results of three poses are shown in Fig. 5.5 (the first three rows), where the proposed

method successfully detects (and segments) all body parts despite the significant

variability.

Figure 5.5: Part localization of three poses and online learned whole body shape

models that are used for the whole body segmentation.
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5.9.3 Segmentation

After localization, an online learned subject specific shape prior (as shown in the

last row of Fig. 5.5) is used in the new Graph-cut algorithm where both region and

edge priors are involved in the energy function defined in (5.11). For comparison, we

also did one experiment where the second term (5.11) is replaced by a standard color

similarity-based boundary penalty term [114] without using the edge-based shape

prior. For pose Contact, we performed Graph-cut segmentation with (λ = 1/30 in

(5.11)) on 60 test images for which we also obtained the ground-truth segmentation

masks for objective and quantitative evaluation. Segmentation results are evaluated

by the ratio between the falsely detected region size (including both false positives and

false negatives) and the ground truth region size. The error rate of the segmentation

using both region-based and edge-based priors is 17.2%, while that of the one without

using the edge-based shape prior is 38.1%. Therefore, we have obtained more than

50% improvement. These segmentation results may be further improved if more

dedicated 2-D deformation methods are involved.

More localization, on-line shape learning, and segmentation results are shown in

the Fig 5.6 and Fig 5.7

5.10 Conclusion

In this chapter, we have proposed a hybrid body representation that supports an

integrated pose recognition, localization and segmentation framework. Particularly,

segmentation, as a bridge between bottom-up cues and top-down information, plays

an important role in all three levels of vision. At low-level vision, the watershed-based

image representation facilitates the subsequent learning and inference. At mid-level

vision, the segmentation-based hypothesis-and-test paradigm enhances the saliency of

map images obtained from the part-level inference and leads to accurate localization

of both parts and the whole body. At high-level vision, a subject specific shape
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Figure 5.6: More localization, on-line shape learning, and segmentation results

prior is learned online based on part localization results and used in the new Graph-

cut algorithm where both region and edge priors are jointly utilized to optimize the

segmentation. The proposed framework is essentially a dynamic system with feedback

loops that has potential to be further optimized. In the next chapter, research will

focus on extending the proposed body representation to be a dynamic human body

representation that supports video-based pose recognition, localization, tracking and

segmentation.
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Figure 5.7: More localization, on-line shape learning, and segmentation results
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CHAPTER 6

High-level vision: Tracking and Localization

6.1 Overview

In the previous chapter, we proposed a promising human recognition, localization

and segmentation algorithm for images. But it uses only appearance and spatial con-

strains, which are represented in a pictorial structure model. We know that temporal

consistency is an essential property of human body appearing in a video sequence,

which makes body part detection and tracking in a video sequence different from re-

peated application of an image-based detection algorithm. Therefore, how to combine

both spatial and temporal constrains into human localization and segmentation in a

video sequence is the objective of this chapter. In other words, the purpose of this

chapter is to exploit the complementary context information in both temporal priors

and spatial priors for human tracking.

Human tracking and body part localization are among the most challenging re-

search issues largely due to the ambiguity, complexity and non-linearity in observed

video sequences as well as the ill-posed nature of the problem. Using appropriate

prior knowledge (such as motion pattern or shape) would make the problem better

defined and hopefully easier to tackle. The major advantages of using priors are to

reduce the search space by taking advantages of various constraints and to ensure

a plausible solution that is consistent with prior knowledge. Two commonly used

priors are spatial and temporal priors, both of which play very important roles for

human detection and tracking, and have been well studied by many computer vision

researchers in different context.
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Spatial priors are usually defined on body parts and characterize the spatial con-

figuration of a certain pose [116]. One important question is how to make one spatial

prior adaptable to a large number of pose variations. One straightforward extension

is to train separate spatial priors for several typical poses [132]. Generally speaking, a

spatial prior representation that can only handle a discrete pose variable has difficult

to characterize the smooth and continuous pose transition in a video sequence. On

the other hand, temporal priors specify certain dynamic constraint of human motion

[133], and they can ensure the temporal continuation across adjacent poses. Most

temporal models do not impose a strong spatial constraint among body parts or treat

each part independently for tracking [134]. How to learn the two priors are also of

great interest. There are two kinds of learning strategies. Off-line learning normally

requires sufficient and/or diverse training samples and usually leads to the learned

priors that favor the training data. Online learning can learn the priors “on-the-fly”

on the testing data. Recent studies show that online learning is more favorable and

effective to deal with human motion with significant variability even from different

activities [135].

In this work, we propose a new framework for articulated human tracking that

integrates both spatial and temporal priors and is supported by online learning. The

idea of combining both priors has been well acknowledged and incorporated into

most tracking algorithms where both priors are usually learned off-line and one prior

often overshadows the other one during inference. In our work, the spatial prior is

embedded in the temporal prior, and both priors are learned online from past tracking

history in an incremental way. Specifically, the temporal prior can predict the pose

for the next frame that induces a pose specific spatial prior. This spatial prior in

return is used to evaluate and correct the pose prediction by assembling part-level

detection. Our approach distinguishes itself from others in that it incorporates both

online learned spatial and temporal priors in one integrated inference framework. The
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proposed algorithm is able to track subjects with significant shape/color variability,

and can also deal with abnormal motion patterns.

6.2 Related Works

The biological vision model proposed in [14, 15] suggested two perception pathways in

motion perception, the appearance pathway and the motion pathway. It was consid-

ered as one of the major breakthroughs in recent vision research [55], and motivates

researchers to involve both spatial (appearance) and temporal (motion) priors in their

tracking algorithms. Broadly speaking, related work can be classified into two groups:

the temporal-prior dominated approaches and the spatial-prior dominated approaches.

In [132], a unified spatial-temporal articulated model was proposed for human

tracking, where the pose is a discrete variable and defined as the hidden state of a

hidden Markov model (HMM). The temporal prior is incorporated as a state transition

matrix, and then the tracking task is formulated as a Bayesian estimation problem. In

[136], a single pictorial structure graph model was extended into a dynamic Bayesian

network (DBN), where the probabilistic relationships between joints at a given time

instant as well as those over time can be learned from motion capture data. Then

belief propagation is used as the inference engine to effectively incorporate the top-

down spatial prior with bottom-up part detection for articulated human tracking.

Along the same venue, a temporal pictorial structure model was developed in [137],

which mainly relies on appearance priors for human tracking. Above methods are

considered as the spatial-prior dominated ones where the spatial prior plays a more

important role and only weak temporal priors are involved for dealing with activity

variation.

The human pose can be represented in a high dimensional (HD) parameter space

where the distribution of plausible human poses is very sparse. Various non-linear di-

mensionality reduction (DR) techniques were proposed to explore the low-dimensional
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(LD) intrinsic structures for a compact pose representation. The Gaussian Process La-

tent Variable Model (GPLVM) [138] is an effective DR technique that offers a smooth

mapping from the LD latent space to the HD kinematic space. Several GPLVM vari-

ants were developed for temporal series analysis. For examples, Gaussian Processing

Dynamic Models (GPDM) [133] were specifically designed for human motion tracking

by introducing a dynamic model on the latent variable that can be used to produce

tracking hypothesis in a latent space[134]. Back Constrained-GPLVM (BC-GPLVM)

[139] improves the continuity in the latent space by enforcing the local proximities

in both the LD and HD spaces. Consequentially, BC-GPLVM produces a smooth

motion trajectory in the latent space that can be used as a non-parametric dynamic

model for human tracking [140]. All of above DR methods focus on the exploration

and exploitation of temporal priors of human motion, and they do not involve spatial

(kinematic) priors explicitly. Therefore, we consider them as temporal-prior domi-

nated approaches.

Motivated by previous research, we want to take advantage of the complementary

nature of the above two methodologies. On the one hand, our work is similar to

[132, 137] in the sense of how the spatial prior is represented. But we involve a strong

temporal prior that can handle a continuous pose variable. On the other hand, our

algorithm inherits some ideas from [140, 141] regarding how the temporal prior is

developed for top-down prediction. However, we use a structured spatial prior that

fuses part detection results to evaluate and correct the prediction. Moreover, we

explore the synergy between the two priors in the context of online learning, which is

inspired by the local mixed Gaussian process regressors proposed in [135]. To the best

of our knowledge, there is no prior research on how to combine spatial and temporal

priors in an online learning framework.
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6.3 Background Knowledge

We firstly briefly review the two major building blocks regarding the representations

of temporal and spatial priors.

6.3.1 Temporal Prior Modeling: GPLVM

The Gaussian process latent variable model (GPLVM) [138] is an effective method to

learn X = {xi}N
i=1 in a LD latent space from Y = {yi}N

i=1,yi ∈ RD (D >> q) in a

HD observation space, and it also provides a probabilistic mapping from X to Y . We

refer the readers to [138, 142] for more details. Assuming each observed data point,

yi is generated through a noisy process from a latent variable xi,

yi = f(xi) + ε, (6.1)

where ε ∼ N(0, β−1I). Assuming a Gaussian distribution over functions f ∼ N(0, k(xi,xj)).

The covariance k(xi,xj) characterizes the nature of the functions. One widely used

covariance function is

k(xi,xj) = θ1e
− θ2

2
‖xi−xj‖2 + θ3 + β−1δi,j, (6.2)

where the parameters are given by Φ = {θ1, θ2, θ3, β} and δi,j is the Kronecker’s delta

function. The scalar k(xi,xj) models the proximity between two points xi and xj.

After GPLVM learning, given a new latent variable x∗, the likelihood of the cor-

responding HD data point y∗ is:

p(y∗|X,x∗) = N(y∗|µ, σ2), (6.3)

where

µ = Y T K−1
X,XkX,x∗ , (6.4)

where KX,X = {Ki,j = k(xi,xj)}, and kX,x∗ is a column vector developed from

computing the elements of the kernel matrix between the learn latent state data X
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and the new point x∗. The variance that is then given below will increase as x∗

deviates from the training data X.

σ2 = k(x∗,x∗)− kT
X,x∗K

−1
X,XkX,x∗ . (6.5)

To ensure a smooth trajectory in the latent state space for temporal series data,

BC-GPLVM was proposed in [139] that enforces local proximities in both the LD and

HD spaces. In our work, BC-GPLVM is used to learn a compact LD representation

of human motion in the latent space and a probabilistic reverse mapping from the

LD latent space to the HD observation space. We adopt the BC-GPLVM to a local

online learning strategy [135].

6.3.2 Spatial prior: Star-structured Graphic Model

The pictorial structure based spatial prior representation has become an increasingly

compelling approach for articulated human body tracking. Following [116], we rep-

resent the spatial prior for a pose by a star-structured graphical model Ψ. Let us

regard pose y = (l1, ..., ld) as a vector of 2D configuration (position and orientation)

of d body parts. The joint distribution of d part configuration with respect to pose

y can be written as the following:

pΨ(y) = pΨ(l1, ..., ld) = pΨ(lr)
∏

k 6=r

pΨ(lk|lr), (6.6)

where lk and lr are the configuration parameters for non-reference part k and the ref-

erence part r respectively. By assuming the conditional probability density functions

for pΨ(lk|lr) following the Gaussian distribution. Then, for each non-reference part

k, the conditional distribution of its configuration with respect to pose Ψ is defined

below,

pΨ(lk|lr) = N (lk − lr|µk, Σk). (6.7)

We can also assume a Gaussian distribution for p(lr).

pΨ(lr) = N (lr|µr, Σr). (6.8)
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In an off-line learning framework, the parameters of the start model are often

obtained by a maximum-likelihood estimator (MLE) from the labeled training data.

For a test image, this spatial prior is used to assembly part detection results, or

called map images, which indicate the confidence of the existence of each part at

every pixel location. Edge histogram-based part detection was used in [116] where a

distance transform-based fast inference algorithm is also developed to assemble map

images for detection and localization. In [5], a segmentation-based hypothesis-and-

test method was proposed to produce more salient map images for part detection

that improves the whole-part localization accuracy. We will make two extensions to

the start model-based spatial prior in this work. (1) The spatial prior is time variant

and is able to handle a continuous pose variable rather than a discrete pose variable

in [132, 5]. (2) The spatial prior is embedded in the temporal prior, and can be

constructed “on-the-fly” based on the temporal prediction for every incoming frame

rather than learned offline [116].

6.4 Proposed Research

6.4.1 Research Overview

Our algorithm is featured by the marriage of two powerful mathematical tools, BC-

GPLVM and the star-structured graphical model, which is elaborated in the context

of online learning. The synergy between the two priors is explored by embedding

the spatial prior into the temporal prior and learning them together. The proposed

algorithm involves four major steps as follows.

• Online learning and Pose Prediction: From past tracking history, we learn a

smooth motion trajectory in the latent space via BC-GPLVM, as shown in

Fig. 6.1(a), which can be used as a non-parametric dynamic model to predict

the next pose in the latent space by B-spine extrapolation.
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(a)
 (b)
 (c)
 (d)


Figure 6.1: The algorithm flow. (a) Online learning and dynamic prediction in the

latent space. (b) Pose prediction in the observation space and construction of the

start model. (c) Local part detection according to the prediction. (d) Localization

by assembling the part detection results via the start model.

• Spatial Prior Construction: Based on the prediction in the latent space, we

can predict the next pose in the HD observation space via the LD-HD reverse

mapping, as shown in Fig. 6.1(b). The predicted pose specifies the possible

location of each body part in the next frame that enables the efficient local

search of body parts. Also, a star model is constructed accordingly to represent

the pose specific spatial prior.

• Local Part Detection: Based on the pose prediction, local part detection is

performed for d (the number of body parts) body parts that results in d localized

map images that are shown together in Fig. 6.1(c).

• Pose Correction: The pose specific start model is used to assemble the part

detection outputs and produce the final localization results for the whole body

as well as body parts, as shown Fig. 6.1(d).
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6.4.2 Problem Formulation

Given N image frames Ii=1:N , we want to estimate the pose yi = (l
(i)
1 , ..., l

(i)
d ) for

each frame where yi is a vector of 2D configuration (position and orientation) of

d body parts at frame i. Let xi to be the latent state associated with yi. Let

Pi = {p(i)
1 , ..., p

(i)
d } be the appearance models (e.g., an object template) of the d

body parts. Given the pose estimation results of N previous frames, i.e., Y1:N =

{y1, ...,yN}, current body part models pN and next frame IN+1, part localization

(tracking) results can be obtained by maximize the posterior probability:

y∗N+1 = arg max
yN+1

P (yN+1|IN+1, PN ,y1:N). (6.9)

Generally, it is intractable to find the y∗N+1 directly due to its HD nature. Hence

we use a prediction-and-correction framework to attack this problem, as shown in

Fig. 6.2.
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Figure 6.2: Problem formulation by a graphical model.

Assume we can learn a smooth motion trajectory X1:N = {x1, ...,xN} in the

latent space via BC-GPLVM based on past tracking history Y1:N . We can predict

the next pose in the latent space first, x̂N+1, which can be converted to ŷN+1 in
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the image space. ŷN+1 has two implications. First, it can be used to produce d

localized map images, M(N+1)
maps = {M (N+1)

1 , ..., M
(N+1)
d }. Second, it defines a pose

specific spatial prior represented by a start model ΨN+1. Following the same idea as

in [116], these map images can be assembled by ΨN+1 in the form of star-structured

graphical model. Then the tracking problem can be reformulated as maximizing the

posterior probability:

y∗N+1 = arg max
yN+1

P (yN+1|M(N+1)
maps , ΨN+1), (6.10)

where ΨN+1 is the spatial prior represented in (6.6). The optimization problem of

(6.10) can be efficiently solved using the fast inference algorithm developed in [116].

Then yN+1 can be used to achieve the updated appearance models PN+1 based on

IN+1, and will be involved in the next step BC-GPLVM learning to predict yN+2 as

the slide window moves forward one frame.

6.5 Learning and Inference

In this section, we detail the four major steps for learning and inference in our tracking

algorithm.

6.5.1 Online Learning and Pose Prediction

In general, a pose yi can be represented by a HD vector that records joint angles or

positions. Here we use a simple body representation with six body parts where each

part is specified by the 2D position and orientation in the image domain. Given a pose

series Y1:N , BC-GPLVM can be used to learn the kernel parameters Φ = {θ1, θ2, θ3, β}
and the latent variable series X1:N . Different from off-line learning, we use a slide

window to involve recently estimated poses for online (local) BC-GPLVM learning.

The learned model is only used once for pose prediction for the next frame.
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As shown in Fig. 6.3, although there is no explicit dynamic model in the latent

space after BC-GPLVM learning, the temporal constraint is well-reflected by the

smooth motion trajectory in the LD latent space. We can extrapolate this motion

trajectory to predict the pose for the next frame.
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B


Predicted latent

state x
N+1


x
1
 x
2


x
N


x
N-1


+


Figure 6.3: An example of BC-GPLVM online learning and dynamic prediction via

B-spline extrapolation in the 2D latent space.

Let xi = (ai, bi)
T , we can apply the B-spline regression process on the latent states

X = {xi}N
i=1, as shown in Fig. 6.3. The two obtained B-spline functions A(·) and

B(·) will satisfy the following constraints:





A(i) ∼= ai,

B(i) ∼= bi, .
(6.11)

where i = 1, ..., N . Then through B-spline extrapolation aN+1 = A(N + 1) and

bN+1 = B(N + 1), we can compute the predicted latent state for the next frame

(N + 1) as xN+1 = (aN+1, bN+1)
T , (as indicated by the circled marker in Fig. 6.3).

From the predicted latent variable xN+1, the associated pose in the image space yN+1
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can be constructed through the reverse LD-HD mapping given in (6.4), and defined

as:

ŷN+1 = Y T K−1
X,XkX,xN+1

. (6.12)

6.5.2 Constructing the Spatial Prior

The uncertainty of ŷN+1 is reflected by the variance defined in (6.5). So far, it is

assumed that the configurations of d parts are independent, indicating a weak spa-

tial constraint if only the temporal prior is used. In order to incorporate the spatial

constraint among body parts, we need to construct the pose specific spatial prior

represented by the start model from ŷN+1. That means we need to estimate the con-

ditional distributions between each non-reference part and the reference part, which

can be derived straightforwardly from the Gaussian assumption of ŷN+1. Therefore,

the conditional distribution defined in (6.7) will become:

pΨ(lk|lr) = N (lk − lr|yk
(N+1) − yr

(N+1), 2σ
2 · I), (6.13)

where σ2 is given (6.5), yr
(N+1) is the configuration of the reference part, and yk

(N+1) is

the relative configuration of non-reference part k with respect to the reference part.

Similar to (6.8), the distribution of the reference part will become:

pΨ(lr) = N (lr|yr
(N+1), σ

2 · I)). (6.14)

Strictly speaking, the covariance matrices of (6.13) and (6.14) need to be added

with the additional error terms to accommodate the prediction error in the latent

space. In this work, the value of this prediction error term is set by experiment, and

it is found that the tracking performance is not very sensitive to the choice of this

value.
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Two arms Head Torso Two legs

Figure 6.4: Off-line leaned part shape models where the average orientation of each

part is also given.

6.5.3 Part Detection

The predicted pose ŷN+1 specifies the possible locations of d body parts that could

define a search region for each part. Ideally, each search region should be isotropic

and determined by (6.5). For simplicity, we use a square region of 21 × 21 for local

part detection which is centered with the part position encoded in ŷN+1. Similar to

[5], we resort to a segmentation-based hypothesis-and-test method for part detection

where off-line learned shape models are used, as shown in Fig. 6.4. These shape

models can be further represented by the coupled region-edge shape priors which are

used to compute map images given an image represented by watershed cells. At each

hypothesized location, the region prior is used to form a segmentation by merging

watershed cells, while the edge prior is applied to evaluate the formed segmentation

in terms of shape similarity and boundary smoothness.

To take advantage of localization results in the previous frame, we modify the eval-

uation criterion for computing the map images by replacing the boundary smoothness

with the template matching score. Given a segmentation Z formed in a location, we

represent the boundary of Z by Γ(Z), and the new evaluation score for Z is given by

ρM(Z) = −d(Γ(Z),M)) + ζSAD(I(N+1), PN), (6.15)

where the first term is the chamfer distance indicating the shape similarity between

Γ(Z) and the off-line learned edge prior M, and the second term is the SAD (Sum

of absolute differences) that reflects the degree of match between the online learned

123



template PN and I(N+1). ζ balances the relative importance between the off-line and

online learned part priors. Some part detection examples are shown in Fig. 6.5(b)

where a dark pixel value indicates a high possibility of the existence of a part. The

computation of these map images can be very efficient due to local part detection

constrained by ŷN+1, instead of the full search used in [116, 5].

(a)
 (b)


Figure 6.5: Part detection results. (a) An image with predicted local search regions.

(b) The localized map images for six body parts.

6.5.4 Pose Correction

The part-based map images will be assembled by the online learned spatial prior

through the star-structured graphical model. The same as in [116], given the set of

map images M(N+1)
map = {M (N+1)

k |k = 1, ..., d}, the optimal y(N+1) can be obtained by

re-writing (6.10) as,

y∗(N+1) = arg max
y(N+1)

pΨ(y(N+1)|M(N+1)
maps ). (6.16)
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Using Bayes law,

pΨ(y(N+1)|M(N+1)
maps ) ∝ pΨ(M(N+1)

maps |y(N+1)), pΨ(y(N+1)). (6.17)

where

PΨ(M(N+1)
maps |y(N+1)) =

k=d∏

k=1

M
(N+1)
k

(
yk

(N+1)

)
,

where M
(N+1)
k

(
yk

(N+1)

)
is the value of the map image of part k in location yk

(N+1).

Also pΨ(y(N+1)) can be evaluated through the learned star-structured graphical model

defined in (6.6). A fast distance transform based inference method can be used to

solve this problem efficiently [116].

6.6 Occlusion Handling

Occlusion handling is an important issue for articulated human tracking where some

body parts may be invisible for some poses. In this work, we are interested self-

occlusion, and our method is inspired by the multi-object tracking theory proposed in

[60], where the notion of “object files” was developed to store episodic representations

for real-world objects. Each object file contains the joint spatio-temporal information

(such as appearance and motion) about a particular object in a scene. An “object

file” is established for each body part being tracked that plays an important role for

occlusion handling. The algorithm flow is shown in Fig. 6.6 where three occlusion-

related issues are addressed.

Occlusion detection: The map images can be directly used for occlusion de-

tection. Given a detection threshold S, if minMo(·) > S, we can declare that part o

is occluded. The position estimation of part o only depends on the prior knowledge

encoded in the graphical model Ψ.

Prediction of an occluded part: Given part o that is declared in IN , its “object

file” can be used for predicting its position in IN+1 as follows:

ŷo
(N+1) = ŷr

(N+1) + ∆lo, (6.18)
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Figure 6.6: The flow of tracking and occlusion handling.

where ŷr
(N+1) is the predicted position of the reference part (assuming the reference

part is never occluded), and ∆lo is the relative configuration between part o and the

reference part r that can be retrieved from the “object file” of part o.

Learning and inference for occlusion: When part o is occluded in IN , we

disable its map image by setting Mo(.) = 0. Its configuration (given by the spatial

prior) will be ignored in the online BC-GPLVM learning for IN+1.

The above occlusion handling technique is simple yet effective, and could be ex-

tended to handle more sophisticated cases. The synergistic use of spatial and temporal

priors allows the tracking algorithm to have more flexibility and capability of handling

occlusion.
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6.7 Experiment Results and Conclusion:

We used the CMU Mobo database for algorithm validation [115], which includes

video sequences captured from 25 individuals walking on a treadmill. Our algorithm

was tested on four side-view sequences: vr03 7, vr08 7, vr21 7 and vr14 7 as shown

in Fig.6.7, and we selected a walking cycle of 33 frames for each sequence. The

first three have a normal walking style with different appearances (body shapes and

colors), and the last one has an abnormal pattern where the subject touched his nose

during walking. We have three specific experiments. The first one evaluates the

tracking accuracy that is measured by the localization accuracy of each body part

over a complete cycle. The second shows the capability of handling an unseen activity

with an occluded body part. The last one presents body part segmentation that is

part of online appearance learning.

The proposed method was implemented in C++, and the testbed is a PC computer

with a Core 2 Duo E4700/2.6GHz CPU and 2GB RAM. One feature of this work is

its capability of online simultaneous learning of temporal and spatial priors, where

the size of the slide window for training sample selection has to be determined. We

found that a number between 5-12 frames is acceptable. It takes about 200 ms for

BC-GPLVM training (100 iterations) over 12 frames. Part-based evaluation is about

200 ms per frame that include the localization and segmentation of each body part.

After the initialization on the first 5-12 frames, the proposed tracking algorithm can

run at about 2 fps for the following frames.

6.7.1 Part Localization

To evaluate the accuracy of articulated human tracking, we have manually obtained

the ground-truth (position and orientation) of six body parts in all test video frames,

i.e., the Head, Torso, Right arm (R arm), Left arm (L arm), Right leg (R leg), Left leg

(L leg). Similar to [136], we evaluate the tracking accuracy by comparing the esti-
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(d) vr14_7
(c) vr21_7
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Figure 6.7: Four test video sequences (320 × 240, 33 frames).

Figure 6.8: The comparison of part localization between the hybrid approach [5] (top)

and the proposed one (bottom) for three continuous frames from two test videos.

mated position/orientation with the ground-truth ones. There are two competing

algorithms both of which only involve the same part-bard spatial prior that has to

been trained off-line for each typical pose (i.e., High-point, Contact and Passing).

One is the 1-fan method [116] that involves the edge histogram for part detection,

and the other is the hybrid approach [5] where coupled edge-region shape priors are

used for part detection. Both algorithms require several pose specific spatial priors

that are learned off line, and they do not involve any temporal prior by treating each

frame independently. Although the hybrid approach improves the localization accu-

racy for six body parts compared with the 1-fan method, it is time-consuming due

to the fact that segmentation is involved in part detection. The proposed algorithm
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is much more efficient and effective because the combined spatio-temporal priors are

online learnt for each pose (a continuous variable) and dramatically narrows the local

search for part detection.

The comparative results are shown in Table 6.1, where the results from the 1-fan

and hybrid approaches are the averages over three typical poses, while that of ours

is the average over a complete walking cycle. Our algorithm demonstrates significant

improvements over the two competing algorithms in tracking accuracy and efficiency.

The localization performance is quite consistent over all three test videos. Also, we

report the results of orientation estimation for each body part in Table 6.2. Some

visual comparisons for two test videos can be seen from Fig. 6.8, where we can see

obvious advantages of our method even under occlusion.

The comparison above shows the advantage of using the combined spatio-temporal

priors over one with the spatial prior alone. One may wonder how about the tracking

results of using the temporal prior only. It was shown in our experiments, when the

background is clean and no occlusion, the temporal prior alone could be sufficient

given reasonable part-based appearance models. However, when the background is

cluttered (with many false alarms) or occlusion occurs, the contribution from the

spatial prior cannot be neglected. Or in the other words, although there is some

redundancy by using the two priors together, this redundancy is essential to the

tracker’s robustness and adaptability.

6.7.2 Special Case Handling

One major advantage of online learning is the ability to handle unseen motion patterns

and even occlusion. Sequence vr14 7 shows an abnormal walking pattern that is

hard to cope with for a tracker that relies on off-line learning. Moreover, one arm

is occluded most of time during the walking cycle. The two competing algorithms

fails in this case since the spatial prior learned off line is not able to deal with this
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Table 6.1: The comparison of localization error (in pixel).

Methods Head Torso R arm L arm R leg L leg

1-fan [116] 5.3 6.8 12.2 11.1 12.7 12.8

hybrid [5] 5.9 6.0 9.8 8.6 4.8 5.6

vr03 7 0.6 0.9 1.3 1.8 1.3 1.0

vr08 7 0.6 1.8 0.9 4.8 1.7 1.1

vr21 7 0.9 1.0 1.5 7.4 2.7 2.7

Average 0.7 1.3 1.2 4.7 1.9 1.6

Table 6.2: The orientation estimation error (◦) of proposed method.

Videos Head Torso R arm L arm R leg L leg

vr03 7 7.1 1.8 1.0 1.1 3.1 2.5

vr08 7 2.3 2.4 1.1 1.0 1.3 2.2

vr21 7 2.9 2.2 1.3 3.8 3.8 4.3

abnormality. However, the proposed algorithm can accurately detect all visible body

parts, regardless of the unusual motion pattern and one occluded arm. Some tracking

results are shown in Fig. 6.9. It is shown that the proposed tracker can effectively

localize the arm that deviates from its normal motion pattern, proving the usefulness

of online learning. Although the majority of one arm is occluded in most frames,

the tracking results of other body parts are not affected, showing the effectiveness of

occlusion handling.

6.7.3 Part Segmentation

The proposed algorithm can also online learn part-based appearance models from

frame to frame during tracking. Part detection in this work is similar to the one used

in [5]. After we localize the whole body (we use the Torso as the reference part) in
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Figure 6.9: Tracking results for an abnormal activity.

the current frame, we can localize and segment each body part correspondingly. The

segmented body parts can be used to speed-up part detection by providing an object

template that can be updated sequentially by the tracker. Some examples of online

learned part appearances are shown in Fig. 6.10. Although each body parts exhibit

significant shape/color variability among four test sequences, the segmentation results

are quite accurate and robust.
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Figure 6.10: Online learned part appearance.

6.8 Conclusion

In this chapter, based on our low-level and middle-level vision study results, we have

proposed a new algorithm for articulated human tracking that combines both the

spatial and temporal priors in an online learning framework. Compared with prior

efforts, we want to fully take advantage of both the spatial and temporal priors in a

balanced way in order to optimize the tracking performance. Although there might

be certain redundancy between the two priors, the synergistic use of them greatly

enhances the robustness and adaptability of the tracker, especially in a challeng-

ing environment with complex background or occluded pats. The online learning

mechanism makes the proposed algorithm effective to track subjects with significant

appearance and motion variability. All of these makes our algorithm a promising tool

to support video-based human motion analysis in a general setting.
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CHAPTER 7

Conclusions and Future Works

7.1 Conclusions

In this dissertation, we have studied human detection, tracking and segmentation,

where the research issues range from low-level vision to high-level vision. We first

build a biologically plausible computational model for our algorithm based on our

functional understanding of the HVS. Guided by this model, we investigate some

low-level vision problems, such as joint spatial-temporal grouping, short/middle-range

motion feature extraction and two kinds of non-convex classification problems. Then

we investigate some mid-level vision problems, such as the usage of the complimen-

tary information of region and edge features in a combined bottom-up and top-down

framework. At the end, our research focuses on high-level vision problems. First,

we propose a hybrid body representation for integrated pose recognition, localization

and segmentation of the whole body, as well as body parts, in a single image. Then,

we extend our success from image-based to video-based processing by exploiting the

complementary context information in both temporal priors and spatial priors. Our

simulation results show that our current algorithm can successfully detect and seg-

ment all body parts despite the significant variability. We conclude this dissertation

as follows.

• We show that a biologically plausible comprehensive computational model can

guide computer vision algorithm designing to achieve significant performance

improvement.
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• For low-level and middle-level bottom-up processing, we advocate UC-region(or

called super-pixel) based compact image/video representation. We suggest a

cascaded multi-stage classification architecture which can combine the merits

of both statistical modeling and graph theory approaches. Using a split-and-

merge paradigm, extracted mid-level region-based motion and color features

can be used to deal with the no-convex classification problems, more meaningful

segmentation results can be obtained with less over-segmentation and under-

segmentation in some complex and realistic scenarios. This cascaded multi-stage

classification frame work is also computationally effective.

• For middle-level vision, we suggest an effective segmentation based hypothesis-

and-test paradigm based on coupled region-edge shape prior which unifies the

representation of both region-based and edge-based shape prior. Given a con-

figuration hypothesis, the region-based shape prior is used to guide a bottom-up

segmentation. The edge-based shape prior is used to evaluate the obtained seg-

mentation result as well as a configuration hypothesis. In this way, a correct

localization will facilitate object segmentation, and a good segmentation will

enhance the confidence of a localization hypotheses. The optimal segmentation

and the spatial configuration can be obtained simultaneously. The obtained seg-

mentation result can be further refined through an improved Graph-cut based

method, in which both region-based and edge-based shape priors are jointly

involved. Our experiments demonstrate that this framework leads to significant

localization and segmentation performance improvements over some state-of-

the-art approaches.

• For high-level vision image based processing, we advocate a hybrid body repre-

sentation for integrated pose recognition, localization and segmentation of the

whole body as well as body parts in a single image. A typical pose is represented
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by both template-like view information and part-based structural information.

Specifically, each body part as well as the whole body are represented by an

off-line learned shape model where both region-based and edge-based priors

are combined in a coupled shape representation. Part-based spatial priors are

represented by a “star” graphical model. This hybrid body representation can

synergistically integrate pose recognition, localization and segmentation into

one computational flow.

• For high-level vision video based processing, we point out that integrate spa-

tial and temporal priors is essential to robust tracking an articulated human

body from a monocular video sequence. The spatial prior represented by a

star-structured graphical model is embedded in the temporal prior. Both tem-

poral and spatial priors can be online learned in a seamless fashion through the

Back Constrained Gaussian Process Latent Variable Model (BC-GPLVM) that

involves a moving window for training sample selection. Experimental results

show that the new algorithm can achieve accurate tracking and localization

results for different walking subjects with significant appearance and motion

variability.

Our research provides practical tools for human motion analysis from the image

based initialization step to video-based analysis. This research will lead to a sig-

nificant progress for human-oriented video analysis technologies that are playing an

increasingly important role in homeland security and many other human-based video

applications. However, human tracking and segmentation problem is far away from

solved. Our algorithms still leave many aspects that can be further improved in the

future.
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7.2 Future Research

In order to achieve fast, robust tracking and segmentation, the future research will

focus on the following issues:

7.2.1 Combining Both Appearance and Motion Information

According to the “two-pathway” theory [14, 15], we know that that both appearance

and motion information are involved in motion perception in the HVS. However, our

current work do not explicitly exploit motion information. The main reason is that the

robust motion feature extraction is a nontrivial task. The current pixel-based motion

feature extraction methods, such as optical-flow, have difficulty providing reliable

motion features. Some studies [143] [144] advocate region-based motion estimation

approaches, which can extract more reliable and robust motion features. Since our

approach can provide body part segmentations, so motion vector of these body parts

might be easily estimated. Therefore, our framework has the potential to combine

both appearance and motion information. Fully exploiting this potential may greatly

boost the performance of our algorithm, which is an interesting topic for further study.

7.2.2 Building a Joint Spatio-temporal Inference Framework

Our current framework for human detection, tracking and segmentation is still an im-

age based approach. Pose configuration is estimated and body parts are segmented

frame by frame instead of in a spatio-temporal blob. Considering this point, our

current approach is only a partially “biologically plausible” approach. For a joint

spatio-temporal processing, pose configuration estimation and body part segmenta-

tion should be performed in a spatio-temporal blob. How to develop an effective

inference and prior learning framework for this spatio-temporal processing is still an

open issue.
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