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PREFACE 

 
One of the most important performance measures of digital logic circuits is the 

delays of switching signals propagating through the logic gates of the circuit. Circuit 

simulators such as SPICE can find the delay by solving for the current and voltage 

waveforms as functions of time. Although SPICE can handle the complex, nonlinear 

behavior of the transistors, it takes a significant amount of computations. Usually no 

more than a few thousand transistors may be simulated in a reasonable amount of 

computation time. Simulator such as IRSIM uses the switch model to find the delay, 

which greatly improves the simulation speed and can process hundreds of thousands of 

transistors in a reasonable amount of time. But IRSIM predicts delays much less accurate 

than SPICE because of its delay model inaccuracies. 

In this paper, a piecewise linear delay model which can evaluate the propagation 

delay of a CMOS VLSI circuitry with a wide range of input slope is presented. The 

model also takes into account the influences of short circuit current and dynamic channel 

charges. By using simple piecewise linear current model and piecewise linear channel 

charge storage model, it is possible to simulate the modern digital logic circuits in a 

reasonable amount of time. Excellent agreements with SPICE simulation have been 

observed in a CMOS inverter, a two-input NAND gate, and an OAI gate cases. This 

model is applicable not only to propagation delay calculation of simple gates but also to 

that of any general circuit topology. 
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CHAPTER I 

 

INTRODUCTION 

 

Modern digital logic circuits have millions of transistors on a single silicon chip. 

It is desirable to learn the circuit performance during the design stage. One of the most 

important performance measures of digital logic circuits is the delays of switching signals 

propagating through the logic gates of the circuit. Circuit simulators such as SPICE can 

find the delay by solving for the current and voltage waveforms as functions of time. 

Although SPICE can handle the complex, nonlinear behavior of the transistors, it takes a 

significant amount of computations. Usually no more than a few thousand transistors may 

be simulated in a reasonable amount of computation time. Simulator such as IRSIM uses 

the switch model to find the delay, which greatly improves the simulation speed and can 

process hundreds of thousands of transistors in a reasonable amount of time. But IRSIM 

predicts delays much less accurate than SPICE because of its delay model inaccuracies.  

This dissertation proposes a new delay model to bridge the gap between the 

IRSIM and SPICE. By applying the new delay model, the computation efficiency is 

retained about the same order of the magnitude as IRSIM and the delay calculation 

accuracy is improved to within 10% to 15% of SPICE. 

The following section gives a brief review about the delay modeling history. 
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1.1 Delay Models Review 

The usual definition of delays is the time required for the signal response to reach 

half its final value. Elmore [1] pointed out that although this definition is useful in the 

laboratory, it is extremely awkward for making computations. Instead, he suggested that 

it is reasonable to measure the delay, DT  to the centric of area of the curve ( )e t′  , that is,  

 
0

( )DT te t dt
∞

′= ∫  (1.1) 

 
where ( )e t  is the output waveform and 

 
0

( ) 1e t dt
∞
′ =∫  (1.2) 

 
Definition in Eq. (1.1) is in fact the first moment of the impulse response. The 

Elmore delay provides a single value for the delay estimation. The Elmore delay, or the 

first moment of the impulse response, is a good approximation for the dominant time 

constant of the step response. However, such estimation does not consider the logic 

thresholds of actual MOS device. To do so require finding an approximating response 

waveform and determining the time at which the logic threshold is crossed [2].  

The first analytical delay model is proposed by [3]. The output waveform of a 

step input feeding into an inverter is obtained by solving the first order differential 

equations. A closed form expressions for the rise time and fall time are also provided. It 

is noticed that the transient response improves as the amount of current available from the 

transistors increases. To get a better feeling for the actual time involved, a characteristic 

time constant of the device is introduced which is a function of transistor geometry and 

the load capacitance. By observing the plot where the pair delay is plotted as a function 

of the threshold parameters, an approximate solution for the delay is given by  
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2 2

1 10.9
(1 ) (1 )D

N P

T τ
α β α

⎛ ⎞
≈ +⎜ ⎟− −⎝ ⎠

                                                                    (1.3) 

In Eq. (1.3), delay is proportional to the time constant τ  and is related to the 

maximum values of normalized currents for NMOS and PMOS respectively.  

Delay model (1.3) is intuitively correct in that the delay must depend on the 

response of two stages, one of which is primarily determined by the N transistor, the 

other by the P transistor. If one of the transistors is inherently much faster (higher 

current), the performance of the circuit is determined by the slower of the two transistors. 

The delay model is derived by an analytical methods rather a curve fitting. Thus, it is 

possible to generalize the delay model to more complicated circuits. And a closed form 

solution makes it possible to include the model into a simulator. However, this model 

does not consider the short circuit current and it does not include the input transition time. 

Circuit simulator, RSIM [4], uses a simple lumped RC model. In the lumped RC 

model, the delay through a stage is computed by lumping all of the resistances and 

capacitances together using the product as the delay, where the delay at node n  is 

estimated to be: 

1 1

n n

k k
k k

R Cτ
= =

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑                                                                                            (1.4) 

 

The resistances are computed as the summation of the resistance for each transistor in the 

stage and the parasitic resistances in each node. The capacitances are of those between 

the switching transistor and the output node. The lumped RC model is also included in 

circuit simulator Crystal [5] as one of the three delay models. However, there are two 

sources of error in the RC model: One is the lumping of resistances and capacitances. 
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This tends to overestimate the delays since it assumes that all capacitances must 

discharge through all resistances. The second and the most significant one comes from its 

inability to deal with waveform shape. On average, the lumped RC model can usually 

estimate the delay through a path to within 25 percent of SPICE.  

Reference [6] defines three quantities with dimensions of time: 

P kk k
k

T R C=∑                                                                                                      (1.5) 

Di ki k
k

T R C=∑                                                                                                      (1.6) 

2 /Ri ki k ii
k

T R C R⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑                                                                                            (1.7) 

None of the quantities above is equal to delay although Eq. (1.6) is what is called “delay” 

by Elmore. Upper and lower bounds are given by the quantities defined above for output 

voltages, or, equivalently, to find upper and lower bounds for the delay associated with 

each output. From calculation, the upper bounds for the unit step response are: 

( ) 1 Di
i

P

T tV t
T
−

≤ −                                                                                                  (1.8) 

( ) / /( ) 1 Di Ri Ri RiT T T t TRi
i

P

TV t e e
T

− −≤ −                                                                               (1.9) 

and the lower bounds for the unit step response  are: 

( ) 0iV t ≥                                                                                                             (1.10) 

( ) 1
i

Di
i

R

TV t
t T

≥ −
+

                                                                                               (1.11) 

( ) / /( ) 1 P Ri P PT T T t TDi
i

P

TV t e e
T

− −≥ −                                                                              (1.12) 
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So instead of solving the exact output waveform, which is difficult in most cases, 

the bound results can be used 1) to bound the delay, given the signal threshold, or 2) to 

bound the signal voltage, given a delay time, or 3) certify that a circuit is “fast enough,” 

given both the maximum delay and the voltage threshold [2]. However, in this model 

only step inputs are illustrated and initial conditions are assumed to be zero. Limits exist 

when analyzing the interconnections, in particular to include pass transistors in the 

interconnections. One pole model is incapable of evaluation the delay for non-monotone 

input response waveforms. Moreover, although the waveform bounding is theoretically 

interesting, it is difficult to be adopted in circuit simulators. 

IRSIM is a widely used switch-level simulator. It is developed based upon RSIM 

and uses the delay model proposed by [7], [8] and an improved algorithm [9]. IRSIM 

uses a single time constant model to find the delay, which is equal to the Elmore delay. 

Not all of the output waveforms can be modeled successfully with a single time constant 

due to charge sharing. For example, a circuit in Fig. 1.1 shows a simple RC tree where 

node a, b, and c are charged high initially. When the switch closes, the voltage at node b 

initially falls at its own rate; however, the rate of decay is eventually controlled by the 

dominant time constant caused by the capacitor at node c. The circuit has a low frequency 

pole-zero pair in its frequency response and the low frequency zero partially cancels the 

dominant pole. This causes the output to have a two-time-constant behavior. 

 

Fig.1. 1 A network with a low-frequency pole-zero pair 
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In [10] a two time constants model is proposed for this case, one to model the 

decay of the initial transient and the other to model the slow decay of the output tail. The 

second order estimate has three parameters: the time constants of the two poles and the 

one zero. These time constants can be related to three characteristic time constants of the 

output: the sum of the open circuit time constants, the first moment of the impulse 

response, and the second moment of the impulse response. The time constants can be 

uniquely determined by matching the coefficients of the first three terms in the node’s 

network transfer function and the moments of the real waveform. 

IRSIM groups charge sharing into two different categories: pure charge sharing 

and charge sharing with a driven path. Pure charge sharing refers to two non-driven RC 

subnets that are connected through a switch. Charge sharing with a driven path is the 

same as pure charge sharing except that a resistive path to a driving source exists for one 

of the subnets. The pure charge sharing problem was modeled in a way similar to a single 

time constant model since the transient waveform is usually dominated by a single pole. 

And the result turns out to be a degenerate version of the standard two-pole-one-zero 

model with one pole is located at the origin. For charge sharing with a driven path, the 

similar matching method as [10] is used but focuses on the two-pole-one-zero-at-the-

origin system. Delay is meaningless for nodes in driving trees because the initial and final 

voltage will be the same (grounded). Peak amplitude of the output voltage (voltage spike) 

is what is interested and can be expressed by two time constants model. The charge 

sharing models have been successfully fulfilled in the circuit simulator IRSIM. The delay 

model in IRSIM pays particular attention to the charge sharing problems in digital VLSI 

circuits which are either ignored or incorrectly computed in most simulators. But the 
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delay model ignores the signal input transition time which also has a significant impact 

on the circuit performance evaluation. And other important issues for modern VLSI 

technology, like short channel effects and velocity saturation, are not covered in the 

model.  

Delay models presented above are limited to the step input waveform only. These 

delay models are generally insufficient since they do not consider a realistic input 

waveform and consequently do not take into account the influence of the input waveform 

on the propagation delay. In a typical CMOS circuit application, the input-dependent 

propagation delay may well account for as much as 50-100 percent of the total delay.  

Reference [11] is the first to introduce the input transition time into the delay 

modeling of a CMOS inverter. The input is assumed to be a voltage ramp. To calculate an 

analytical expression for the output ramp response, the same differential equations as in 

the case of an input step voltage [12] are used. The closed form analytical delay 

expressions for fast input transitions and slow input transitions are derived.  

1( ) ( )NL L
dHL N n n

pN N

n

BC Ct A
k kμ

β
μ

−= +                                                                         (1.13) 

1( ) ( )p L L
dLH n p n

p N N

n

A C Ct B
k kμ

β
μ

−= +                                                                         (1.14) 

where NB  and PB are dependent on the input waveform. 

This model yields a better understanding of the switching behavior of the CMOS 

inverter than the step response model by considering the slope of the input waveform. 

Essentially, the propagation delay is shown to be the sum of the step response delay and 

an input dependent delay. The matching between the ramp input and the characteristic 
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input waveforms is shown to be easily performed for excellent agreement in output 

response and propagation delay. However, this model neglects the influence of the short 

circuit current by assuming that the “short-circuiting” transistor is weak compared to the 

charging/discharging transistor and did not describe the delay when the weak transistor is 

the charging/discharging transistor [13]. Therefore only one of the rise and fall delays can 

be modeled when the inverter is asymmetric. Only for the limited case of a symmetric 

inverter where both transistors have equal current driving capability, are both the rise and 

fall delays modeled. This delay model also neglects the voltage-current characteristics of 

the short-channel MOSFETs, mainly because it does not include the velocity saturation 

effects of carriers, which become eminent in the sub-micrometer regime. Consequently, 

this model is not satisfactory when applied to short-channel MOSFET circuits. 

The delay model in [11] is based on Shockley’s MOSFET model [14]. Since 

Shockley’s transistor model is simple, many formulas have been derived based on this 

model and the derived formulas are used quite frequently in VLSI initial designs and 

CAD programs. However, as discussed in the previous section, Shockley’s MOSFET 

model is not suitable for short channel devices. Sakurai et al [15] proposed a new 

MOSFET model, α -power law model, which is simple enough to be applied to the 

analytical treatments of the MOS circuits but includes the velocity saturation effects. 

α -power law model is based on four parameters: THV  (threshold voltage), α  

(velocity saturation index), 0DV (drain saturation voltage at GS DDV V= ), and 0DI (drain 

current at GS DS DDV V V= =  ). Better agreement is observed in the saturation region than the 

Shockley model. By using the α -power law model, the delay of a CMOS inverter is 

derived. 
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,
0

11( )
2 1 2

T L DD
pHL pLH T

D

v C Vt t t
Iα

−
= − +

+
                                                                     (1.15) 

 The detailed description of the parameters in Eq. (1.15) can be found in [15]. The 

delay model is a linear combination of two terms. The first term is the input waveform 

dependent term, which is proportional to the input waveform transition time, and the 

second term is the output capacitance dependent term, which is proportional to the output 

capacitance. Sakurai gives an intuitive understanding of the inverter operation and 

derives closed form equations for evaluating the propagation delay and the output rise 

and fall time. However, these equations are valid only if the input slope exceeds one-third 

of the output slope, i.e., when the inverter are reasonable loaded and when the input 

waveforms are fast-rising ramps. For relatively slow inputs and/or very low fanouts, 

Sakurai’s assumption ceases to be valid, thereby leading to inaccuracies. And short 

circuit current issue is not attacked in Sakurai’s delay model. 

References [16] and [17] extend Sakurai’s work on delay modeling of inverters to 

slow input ramps. Two different mechanisms, which can be adequately modeled 

analytically, govern the delay and the output transition time of an inverter in two extreme 

cases: infinitely fast and infinitely slow inputs. These extreme points are joined by a 

curve that can predict the delay and the output transition time for any input. 

( 1 )d in slopeb

at tr D
τ

= − + × ×                                                                                  (1.16) 

 
 where /intr foτ =  and slopeD  is the slope of the dc asymptote that the delay curve follows 

at infinite input rise times. Curve fitting method is used to get the delay and output 

transition time equation. Thus, the delay model may not be suitable to be used as a 

general equation to calculate the delay. In [17], an analytical delay model is presented for 
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an inverter with fast and slow inputs. But this delay model expression is very complicated 

and is not easy to be adopted into a simulation tool. Further more, a lot of preliminary 

work need to be done to find the appropriate set of parameters through simulations and 

curve fitting methods. Again, neither model includes the short circuit current which is 

important when the input transition time is slow. 

In [18] the slope model is suggested. The slope model incorporates information 

about waveform shape in order to make more accurate delay estimates. The key to the 

slope model is that it includes the input rise-time, the output load, and the transistor size 

into a single factor, rise-time ratio, which determines the transistor’s effective resistance. 

First, the output load and transistor size are combined into a single value called the 

intrinsic rise-time of the stage; this is the rise time that would occur at the output if the 

input were driven by a step function. The input rise-time of a stage is then divided by the 

intrinsic rise-time of the stage’s output to produce the rise time ratio for the stage. The 

rise-time ratio gives an estimate of how fully turned-on the trigger transistor is when it is 

doing its work. SPICE simulations showed that the rise-time ratio is an accurate predictor 

of the effective resistance of a transistor, independent of the specific input rise-time, 

transistor size, or output load. Reference [19] combines slope model and Penfield-

Rubenstein delay model into Penfield-Rubenstein slope model. In this model, instead of 

using the waveform boundary definitions, the average of the upper and lower bounds is 

used and is simplified to Elmore delay: 

i i
i

delay R C=∑                                                                                                 (1.17) 

This means that each separate capacitor is weighted only by the resistance 

between it and the signal source. This is an improvement comparing the delay model 
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used in RSIM, which weights all the capacitance by all the resistance. Computation 

results by Crystal [20] using the Penfield-Rubenstein slope model show that the average 

error for a single stage is 20%, and the average error over paths containing several stages 

is 6%. 

Reference [21] presented a piecewise expression for the propagation delay based 

on BSIM MOSFET model by neglecting the short circuit current. In [22], a piecewise 

solution is developed with seven operation regions for the transient response of a CMOS 

inverter based upon the α -power law model. However, no general circuitry model is 

proposed. 

In this dissertation, we propose a piecewise linear delay model which can evaluate 

the propagation delay of a circuit with a wide range of input slope. The model takes into 

account the influences of short circuit current and dynamic channel charges. This model 

is applicable not only to propagation delay calculation of a simple gate, such as an 

inverter, but also to that of any general circuit topology. 

 

1.2 Organization 

The next chapter describes the MOSFET device models used in the piecewise 

linear delay model. A simple piecewise linear current model which includes transistor 

saturation operation and a finite input transition time is proposed. A piecewise linear 

approximation of the parasitic channel transistor capacitances model is presented. The 

charge stored in the source/drain diffusions is also non-linear. We linearized it by taking 

the average of the BSIM3 diffusion capacitance model. 
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Chapter 3 discusses the way to group the circuit into different resistance 

connected regions to reduce the circuit complexity. General RC circuit dynamic 

equations are given in each piecewise linear region. Quasi-steady state solutions are used 

to derive a general solution of the output waveform at any nodes. The time constant in 

each piecewise linear region is derived based on Elmore delay. The computation of 

boundary points between different operation regions using Newton-Raphson method is 

discussed in this chapter.  

The piecewise linear delay model is applied to the inverter analysis in Chapter 4. 

Details are given for a rising input transitions. Various inverter circuit configurations are 

used to calibrate and verify the delay model. Comparison results of SPICE simulations 

and delay model computations are shown graphically.  

Chapter 5 extends the model application to a two-input NAND gate and an OAI 

gate. Extensive comparisons are given for different input slopes and output loading 

factors. 

Finally, Chapter 6 summarizes the contributions of this dissertation and describes 

areas for future efforts. 
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CHAPTER II  

 

PIECEWISE LINEAR TRANSISTOR MODEL 

 

Device modeling plays a very important role in the circuit performance 

evaluation. The accuracy of circuit simulators is mainly determined by the accuracy of 

the device models since the simulation algorithms and convergence techniques in circuit 

simulators have become mature. Rohrer [23] argued that device models, not internal 

algorithms, were the keys to the success of a circuit simulation program. A criterion to 

evaluate a circuit simulator is its simulation speed and accuracy. Thus, a simple and but 

accurate enough device model is desired in the circuit simulation.  

BSIM3 [24] device model used in the SPICE simulator covers the important 

physical effects in MOSFETs. It tries to illustrate all of the physical effects of MOSFET 

in a mathematical way. However, BSIM3 is too complicated to be used in a fast 

simulator. A simple piecewise linear device model [25] is proposed in this dissertation for 

transistors operating in different piecewise linear regions. This model is derived based 

upon the physical meanings of the transistor device. Simplified BSIM3 equations are 

used in modeling the source/drain diffusion capacitances and the channel storage charges. 

 

2.1 Piecewise Linear Current Model 

2.1.1 Current  Model  
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A popular technique to approximate the transistors is a voltage controlled switch 

with a series resistance. In switch model, a switching off device is represented by an open 

circuit and a switching on device is rendered as a single resistor in series connected with 

a voltage controlled switch. The switch model is shown in Fig. 2.1. 

 

Fig.2. 1 Transistor switch model 

 

This allows simple linear models to be used for the circuit dynamics once the 

switches have reached their final states. The switch model has been used very 

successfully in circuit simulation and performance optimization. However, switch model 

is not adequate enough for circuit simulation since it does not consider the transition time 

needed to switch a device on and off. Moreover, saturation behavior of the transistors has 

a significant impact on the switching waveforms. Unfortunately, there is no linear model 

that can include cutoff, ohmic, and saturation behaviors together. A simple piece-wise 

linear model is proposed as shown in Fig. 2.2. 
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Fig.2. 2 Piecewise linear current model 

 

An open switch is used to represent the transistor in the cutoff region. When the 

transistor operates in the ohmic region, it is modeled as a linear resistor whose 

conductance is a function of the transistor’s type and size. A current source that is a 

function of the input voltage is used to model the transistor in the saturation region. For 

NMOS transistors, the drain current flows from the drain to the source. The current flows 

from the source to the drain instead in a PMOS transistor. The mathematical expressions 

of the piece-wise linear model are shown in (2.1) and (2.2): 

0
,

( ) ,

GS Tn

Dn n n DS GS Tn DS DSsatn

n GS Tn GS Tn DS DSsatn

V V Cutoff
I a G V V V V V Ohmic

G V V V V V V Saturation

<⎧
⎪= > <⎨
⎪ − > >⎩

                      (2.1) 

0
,

( ) ,

GS Tp

Dp p p DS GS Tp DS DSsatp

p GS Tp GS Tp DS DSsatp
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I a G V V V V V Ohmic
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⎧ >
⎪= < >⎨
⎪ − < <⎩

                                (2.2) 
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GS Tn
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n
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a
−
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GS Tp
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p

V V
V

a
−

=                                                                                                (2.4) 
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All parameters except TpV  are positive, and TpV  is negative. TnV  and TpV  are the 

threshold voltages for NMOS and PMOS respectively. na , pa , TnV , and TpV  are process 

constants. nG  and pG  are the transistor conductance parameters and are determined by 

the transistor size and can be different for each transistor. DSsatnV  and  DSsatpV  are the drain 

to source saturation boundary voltages, which determine when the NMOS transistor and 

the PMOS transistor go to saturation region and are functions of the input voltage. 

Fig. 2.3 and 2.4 are the DS DV I−  characteristics of the piecewise linear model for a 

NMOS and a PMOS transistor of width 2.4um  and length 0.6um  using American 

Microsystems Inc. (AMI) 0.6 micron CMOS technology. The corresponding SPICE 

simulation results are overlapped in the same figures. 
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Fig.2. 3 NMOS FET DS DnV I−  characteristics ( 2.4nW um= 0.6L um= ). 

model Spice
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Fig.2. 4 PMOS FET DS DpV I− characteristics ( 4.8Wp um= 0.6L um= ) 

 

The figures above show that the piecewise linear current model is a good 

approximation to the drain current of sub-micron devices in the saturation region. In the 

saturation region, the transistor is modeled as an ideal current source which is 

independent of the drain to source voltage. The channel length modulation effect and 

body effect are ignored for simplicity purpose. However, the model is not very accurate 

in the ohmic region. Because in the piecewise linear model, a simple resistor is assumed 

when the transistor is operating in the linear region. But this is not true in reality. When 

DSV  is small, the inversion channel behaves like a simple resistor. The drain current DI  

increases linearly as the drain voltage DSV  increases. However, when DSV  is larger it will 

cause an increase of the voltage in the inversion layer at all points along the channel 

except the source. This reduces the voltage across the gate capacitor and the inversion 

charge density is reduced. The smaller amount of mobile inversion charges results in a 

decrease in channel conductance, which leads to a smaller slope in the D DSI V−  
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characteristics as DSV  increases. Fig. 2.4 also shows that the model parameters chosen do 

not fit the SPICE simulation very well. From the later chapters, we can see that the 

piecewise linear model is not sensitive to the value of the parameters, which makes the 

model robust. Better fitting can be achieved by: 1. be more carefully when choosing the 

model parameters.  2. adding more piecewise linear regions to better approximate the 

transistor current. Adding more regions to the model makes solving for the circuit 

dynamics more difficult because the node voltages must be checked at each moment in 

time to decide which piecewise model to use for each transistor in the circuit.  BSIM3v3 

uses a much more complicated linear region current model which is shown in Eq. (2.5): 

 1 ( / 2)
1 /

eff
ds eff ox gs th bulk ds ds

eff ds sat eff

W
I C V V A V V

L V E L
μ= − −

+
 (2.5) 

Although the BSIM model is more accurate in the ohmic region than the piecewise linear 

model, here the accuracy is traded off by the speed and computation complexity 

consideration. The piecewise linear current model is at least more accurate than the 

traditional switched resistor model. 

 

2.1.2 Model Parameter Extraction 

The piecewise linear current model has total of six parameters: na , pa , TnV , TpV , 

nG , and pG . They can be extracted directly from the SPICE D GSI V−  and D DSI V−  plots.  

Fig. 2.5 gives a graphical illustration of the extraction of TnV  and TpV  from the 

SPICE D GSI V−  plot. A series of curves can be drawn in the D GSI V−  coordinates by 

sweeping drain to source voltage DSV . The tangent lines of each of theses curves crosses 



 19

the axis of GSV  at 1TV , 2TV  , 3TV ,....The threshold voltage  is computed by taking the 

average of the intersection points: 

 1 2T T Tn
T

V V VV
n

+ + +
=

…  (2.6) 

where n  is the number of curves in the D GSI V−  plot. 

 

Fig.2. 5 Model parameters extraction  

 

According to Eq. (2.1) and (2.2), the slope of the D GSI V−  curve is the 

transconductance of the transistor in the saturation region. Similar to the way to find the 

threshold voltage, transistor transconductance in saturation region can be obtained by 

taking the average of the slopes of the tangent lines. 

1 2
( )

n
n p sat

Slope Slope SlopeG
n

+ + +
=

…                                                               (2.7) 

For transistor operating in the ohmic region, its conductance can be found from 

SPICE D DSI V−  plot. By estimating the slope of each curve in the low DSV  region and 

taking the average of them, we can find ( )n p ohmG . Then the value of na  and  pa  can be 

easily decided by: 
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( )
( )

( )

n p ohm
n p

n p sat

G
a

G
=                                                                                                    (2.8) 

Appendix A lists the parameters extracted from the SPICE simulations for AMI 

0.6um using the method illustrated above.  

 

2.1.3 Effective Channel Length and Width 

Electrical channel length and width of a MOSFET are different from the drawn 

channel length drawnL  and width drawnW  because of processing related reasons. As a result, 

effective channel length effL  and effective channel width effW  are used instead. In 

BSIM3v3, the definition of effW  is: 

2eff drawnW W dW= −                                                                                            (2.9) 

where 

LN WN LN WN

W WLL
INT W W W W

W WWdW W
L L L W

= + + +                                                               (2.10) 

 INTW  is a parameter extracted from experimental results. LW , WW , LNW , WNW , 

and  WLW  are additional fitting parameters available to improve the model accuracy. The 

piecewise linear model does not include the effects of those additional fitting parameters. 

In the proposed model, effW  is approximated as: 

2eff drawn INTW W W= −                                                                                          (2.11) 

In AMI 0.6um  technology, 72.0 10INTW −= ×  for NMOS transistor and 

72.6 10INTW −= × for PMOS transistor. 
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The BSIM3 model shows that DI  is approximately proportional to eff

bulk

W
A

 . If the 

short channel effect is ignored and plugging in the corresponding BSIM3 parameters, we 

found the following empirical transistor width dependences in computing DI  : 

6

6

1.41 10
1.79 10

neff
neff neff

neff

W
W W

W

−

−

+ ×
′ =

+ ×
                                                                          (2.12) 
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peff peff

peff

W
W W

W

−

−

+ ×
′ =

+ ×
                                                                         (2.13) 

Above equations are used to calculate the transistor conductance for a given sheet 

resistance.  

Similarly, effective channel length is model as: 

 2eff drawn INTL L L= −                                                                                           (2.14) 

In AMI 0.6um  technology, 83.034496 10INTL −= ×  for NMOS transistor and 

87.205014 10INTL −= ×  for PMOS transistor. 

 

2.1.4 Transistor Sheet Resistance 

Transistor conductance ( )n p ohmG  found in section 2.1.2 is dependent on the 

transistor width and length. Although a unique conductance parameter for each transistor 

will make the piecewise linear model have a better agreement with SPICE, this 

dependency makes the model implementation much more complicated. Instead, four 

transistor sheet resistance parameters represent PMOS and NMOS transistor sheet 

resistances of different transition state (rising or falling), snrR , snfR , sprR , and spfR  are 



 22

used. Thus, transistor conductance can be expressed as proportionally related to the 

effective channel width and inversely proportional to effective channel length: 

( )
1 eff

n p sat
s eff

W
G

R L
′

=                                                                                               (2.15) 

where sR  represents snrR , snfR , sprR , and spfR , rise and fall sheet resistances of NMOS 

and PMOS respectively. 

Fig. 2.6 and 2.7 compare the conductance found in section 2.1.2 from D GSI V−  

characteristic curves and the method provided by Eq. (2.15). The linear approximation 

using sheet resistances shows a great agreement with the D GSI V−  curve extraction results 

for a wide range of the transistor widths for a rising input case. However, in Fig. 2.7, it 

shows some discrepancies for NMOS transistors with a falling input. The errors exist 

mainly around the NMOS transistor width of 4.8um . The errors very much possibly 

come from the human errors. Because the conductance found in section 2.1.2 are through 

the manually drawn tangent lines of the D GSI V−  curve, which is inevitable to introduce 

some errors into the final results. However, the sheet resistance method is a good 

approximation overall. The errors like those in Fig. 2.7 can be calibrated and corrected by 

running more simple circuit simulations. 

In the piecewise linear delay model, the following sheet resistances are used to 

calculate the transistor conductance: 

TABLE 2. 1 Transistor Sheet Resistance. 

Transistor Fall ( /Ω ) Rise( /Ω ) 

NMOS 41.7 10×  41.3 10×  
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PMOS 42.1 10×  43.3 10×  
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Fig.2. 6 Transistor conductance for transistor with rising input. 
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Fig.2. 7 Transistor conductance transistor with falling input. 
 

2.2 Channel Charge Storage Model 

NMOS 

PMOS 
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The charge stored in the transistor channel is a non-linear function of the 

transistor terminal voltages. The channel charge is partitioned between the source and 

drain to obtain a simple lumped parameter model for the dynamic behavior of the 

transistor. The total charges on both side of the gate oxide are neutral. This requires, 

0G S D BQ Q Q Q+ + + =                                                                                      (2.16) 

where GQ  is the charge stored on the gate, SQ  and DQ  are the mobile carrier charges in 

the inversion channel,  and BQ  is the bulk charge in the depletion layer under the channel. 

It should be emphasized that these are not normal capacitances since the charges are 

functions of all of the transistor terminal voltages (not just a pair of them). The capacitive 

currents can be written as: 

G GS GD GB
G GS GD GB

dQ dV dV dVi C C C
dt dt dt dt

= = + +                                                 (2.17a) 

S SG SD SB
S SG SD SB

dQ dV dV dVi C C C
dt dt dt dt

= = + +                                                   (2.17b) 

DG DSD DB
D DG DS DB

dV dVdQ dVi C C C
dt dt dt dt

= = + +                                                (2.17c) 

( )B G S Di i i i= − + +                                                                                           (2.17d) 

where ijC  are all independent non-linear functions of the terminal voltages and are 

defined by: 

, , , ,i
ij

ij

QC i j G D S B
V
∂

= =
∂

                                                                              (2.18) 

In digital applications, the substrate terminal is biased at a constant voltage so that 

the derivative of the bulk voltage can be ignored during analysis. 
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Johnson [25] proposed a piecewise linear approximation of the BSIM3 channel 

storage charge model. Since it uses the same definitions of TV  and DSsatV  , the model has 

the same regions of validity as the piecewise linear current model. The channel storage 

charge models in different transistor operation regions are: 

Ohmic region: 

( ) (1 ) ( )Gohm ox GS T ox DS ox SB T FBQ C V V b aC V bC V V V= − − − + + −                          (2.19a) 

1 1( ) ( )
2 2Sohm ox GS T part ox DSQ C V V a b x b C V− = − + − −                                           (2.19b) 

1 1( ) ( )
2 2Dohm ox GS T part ox DSQ C V V a x b C V− = − − −                                                (2.19c) 

Saturation region: 

( )Gsat ox GB FBQ bC V V= −                                                                                    (2.20a) 

(1 ) ( )Ssat part ox GS TQ x bC V V− = − −                                                                     (2.20b) 

( )Dsat part ox GS TQ x bC V V− = −                                                                             (2.20c) 

Cutoff region: 

( )Goff ox GB FBQ bC V V= −                                                                                    (2.21a) 

0SoffQ− =                                                                                                        (2.21b) 

0DoffQ− =                                                                                                        (2.21c) 

Taking the derivatives of Eq. (2.19) to (2.21) with respect to t  and comparing the 

charge storage currents to Eq. (2.17), gives the following linearized results for the 

transistor capacitances. 
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 Cutoff Ohmic Saturation 
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 ox GBO GDO GSOC C C C+ + +  ox GBO

GDO GSO

bC C
C C

+
+ +

 

GSC  GSOC  (1 )( 1) ox GSOb a C C− − − +  GSOC  

GDC  GDOC  (1 ) ox GDOb aC C− +  GDOC  

SGC  GSOC  1
2 ox GSOC C+  (1 )part ox

GSO

x bC

C

−

+
 

SSC  GSOC  1 1[ ( )]
2 2 part ox GSOa b x b C C+ − − + (1 )part ox

GSO

x bC

C

−

+
 

SDC  0 1( )
2 part ox GSOa b x b C C− − +  

0 

DGC  GDOC  1
2 ox GDOC C+  part ox GDOx bC C+  

DSC  0 1 1[ ( )]
2 2 part oxa x b C− + −  part oxx bC−  

DDC  GDOC  1( )
2 part ox GDOa x b C C− +  GDOC  

 TABLE 2. 2 Linearized Parasitic Transistor Capacitances with Overlap Capacitances 

 
GSOC , GDOC , and GBOC  are gate to source, gate to drain, and gate to bulk overlap 

capacitances. As the transistor size shrinks, the overlap capacitances are becoming more 

significant in modern processes.  The BSIM model for the overlap capacitance is  

GSO gsoC WC=                                                                                                     (2.22) 

GDO gdoC WC=                                                                                                    (2.23) 

2GBO gboC LC=                                                                                                   (2.24) 
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where gsoC , gdoC , and gboC  are overlap capacitance per unit width of the MOS device. 

The inversion channel charge is partitioned into the drain and source charges. 

There are three different charge partition schemes existing in BSIM3’s charge-based 

models, 50/50, 40/60, and 0/100, which are distinguished in circuit simulation using a 

model parameter called partx . partx  is equal to 0.5 in 50/50 partition, is less than 0.5 in 

40/60 partition, and is greater than 0.5 in 0/100 partition. In the piecewise linear model, 

partx  is chosen as a fitting parameter.  

A more detailed derivation of capacitance in TABLE 2.2 can be found in 

Appendix B. 

 

2.3 Source/Drain Diffusion Capacitance Model 

As shown in Fig. 2.8, source/drain junction capacitance (normalized to per unit 

length) is composed of three components: the bottom junction capacitance jbsC  , the 

sidewall periphery junction capacitance  of the field oxide edge jbsswC , and the gate-edge 

periphery junction capacitance jbsswgC . 

  

Fig.2. 8 Capacitance components of the source/drain junctions 

 



 28

2.3.1 Source/Drain Diffusion Capacitance Model 

The BSIM model for the source diffusion capacitance is 

  
( )

(1 ) (1 ) ( ) (1 )j jsw

dS S jbs eff jbsswg S eff jbssw

m mmjswgSB SB SB
S j eff jswg S eff jsw

B Bswg Bsw

C A C W C P W C

V V VA C W C P W C
φ φ φ

− −−

= + + −

= + + + + − +
  (2.25) 

where jC  is the unit area bottom capacitance at the zero bias, Bφ  is the built-in potential 

of the bottom junction, jm  is capacitance grading coefficient of the bottom junction, jswC  

is the unit length periphery capacitance at the field oxide edge at zero bias, Bswφ  is the 

built-in potential of the sidewall junction at the field oxide edge, jswm  is the capacitance 

grading coefficient of the sidewall junction at the field oxide edge, jswgC  is the unit length 

periphery capacitance at the gate edge at zero bias, Bswgφ  is the built-in potential of the 

sidewall junction at the gate edge, and jswgm  is capacitance grading coefficient of the 

sidewall junction at the gate edge. 

And similarly the computation of drain diffusion capacitance just simply replace S 

with D. It will be convenient to model these capacitances as non-linear charge storage 

elements as we did for the channel charge. The charge is partitioned corresponding to 

each of the three terms above. 

dS jS jswS jswgSQ Q Q Q= + +                                                                                   (2.26) 

where 

(1 ) jmjS SB
S j

SB B

dQ VA C
dV φ

−= +  

and so forth. Assume 
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( ) 0jS BQ φ− =  

0 1jm< <  

and similarly for the other charges, then 

1 1

1

(1 ) (1 )
1 1

( )
(1 )

(1 )

j jswg

jsw

m mS j B eff jswg BswgSB SB
dS

j B jswg Bswg

meff jsw Bsw SB

jsw Bsw

A C W CV VQ
m m

Ps W C V
m

φ φ
φ φ

φ
φ

− −

−

= + + +
− −

−
+ +

−

                              (2.27) 

The charge equation is computational expensive when jm  is not a multiple of 1/2. 

Detailed circuit simulator, like SPICE, can model this. In the piecewise linear model, we 

average the diffusion capacitance over the ranges SB BV φ= −  to 0, 0SBV =  to / 2DDV , and 

/ 2SB DDV V=  to DDV . 

(0) 0

( / 2) (0) 0 / 2
/ 2

( ) ( / 2) / 2
/ 2

dS
B SB

B

dS DD dS
dS SB DD

DD

dS DD dS DD
DD SB DD

DD

Q V

Q V QC V V
V

Q V Q V V V V
V

φ
φ

⎧
− < <⎪

⎪
⎪ −

= < <⎨
⎪
⎪ −

< <⎪
⎩

                               (2.28) 

This is a simple solution because all we need to know is just the operation range 

of the transistor. The exact value of SBV  does not need for dSC  calculation.  Thus, the 

average diffusion capacitance is a constant in each piecewise linear region. The overhead 

is that we have to learn the switching state of the transistor, i.e., rise input or fall input, 

rise output or fall output in order to decide which equation to use. The three components 

of dSC  can be calculated as follows: 
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1

1 1

1 0

2 (1 ) 1 0 / 2
1 2

2 (1 ) (1 ) / 2
2

j

j j

B SB

mS j B DD
dSj SB DD

j DD B

m mB DD DD
DD SB DD

DD B B

V

A C VC V V
m V

V V V V V
V

φ

φ
φ

φ
φ φ

−

− −

⎧
− < <⎪

⎪
⎪ ⎡ ⎤⎪= + − < <⎨ ⎢ ⎥− ⎣ ⎦⎪
⎪ ⎡ ⎤⎪ + − + < <⎢ ⎥⎪ ⎣ ⎦⎩

(2.29) 

1

1 1

1 0

( ) 2 (1 ) 1 0 / 2
1 2

2 (1 ) (1 ) / 2
2

jsw

jsw jsw

Bsw SB

mS jsw Bsw DD
dSjsw SB DD

jsw DD Bsw

m mBsw DD DD
DD SB DD

DD Bsw Bsw

V

P W C VC V V
m V

V V V V V
V

φ

φ
φ

φ
φ φ

−

− −

⎧
− < <⎪

⎪
⎪− ⎡ ⎤⎪= + − < <⎨ ⎢ ⎥− ⎣ ⎦⎪
⎪ ⎡ ⎤⎪ + − + < <⎢ ⎥⎪ ⎣ ⎦⎩

1

1 1

1 0

2
(1 ) 1 0 / 2

1 2

2
(1 ) (1 ) / 2

2

jswg

jswg jswg

Bswg SB

mjswg Bswg DD
dSjswg SB DD

jswg DD Bswg

m mBswg DD DD
DD SB DD

DD Bswg Bswg

V

WC VC V V
m V

V V V V V
V

φ

φ
φ

φ
φ φ

−

− −

⎧
− < <⎪

⎪
⎪

⎡ ⎤⎪= + − < <⎢ ⎥⎨− ⎢ ⎥⎪ ⎣ ⎦
⎪ ⎡ ⎤⎪ + − + < <⎢ ⎥⎪ ⎢ ⎥⎣ ⎦⎩

 

This can be explained by considering the first half transition of an inverter since 

for a delay prediction we are only interested in the output waveform up to the / 2DDV  

point. For a rising input, DBV  of the PMOS transistor will vary from 0 to / 2DDV  and DBV  

of NMOS will change from DDV  to / 2DDV . For a falling input, DBV  of the PMOS 

transistor will vary from DDV  to / 2DDV   and DBV  of the NMOS transistor will operate on 

the low range, from 0 to / 2DDV . Thus, different equations in Eq. (2.29) are used to attack 

the drain/source diffusion capacitance for different transition waveform. We generalize 

the above conclusions to any transistor drain/source diffusion capacitance computation by 
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making the assumption that there is no difference between the source and drain when 

calculating the junction capacitance to the bulk. 

 

2.3.2 Transistor Geometry Parameters Selection 

The BSIM3 model does not implement the calculation for SA  , DA , SP , and DP   

inside the model. In order to have a fair comparison to the SPICE simulation, the 

geometry parameters used in the piecewise linear mode are extrapolated directly from the 

Cadence layout. Fig. 2.9 shows the geometry information used in Eq. (2.29) to calculate 

SA  , DA , SP , and DP   . 

  

Fig.2. 9 A simple device layout plot showing geometry parameters  

 
Below are equations used by the piecewise linear model to find the transistor 

geometry parameters. Same equations are also used in SPICE netlist file. 

5S D drawnA A Wλ= =                                                                                            (2.30) 

5 2S D drawnP P Wλ= = × +                                                                                    (2.31) 
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where drawnW  is the transistor drawn width in the Cadence layout plot; λ  is the lambda-

based design rules parameter, which characterizes the linear feature, the resolution of the 

complete wafer implementation process, and permits first-order scaling. For an AMI 

0.6um process, lambda is equal to 0.3um. 

 

2.4 Summary 

A new device model, piecewise linear model, is proposed. From the drain current 

versus the drain-to-source voltage characteristic plot, it is shown that the piecewise linear 

current model has a good agreement with SPICE when the MOSFET is operating in the 

saturation region. But it shows discrepancy when the MOSFET is in the ohmic region. 

More accuracy can be obtained if adding more piece-wise linear regions, but this will 

greatly increase the complexity of the model. 

Linearized transistor channel charge equations are used to model the charge 

stored in the transistor. This piece-wise linear model has the same regions of validity as 

the piece-wise linear current model since it uses the same definitions of TV  and DSsatV . 

Linearized transistor parasitic capacitances are derived. 

Source/drain diffusion capacitances are computed using the BSIM model. In stead 

of tracking the values of SBV  during the transition, the average diffusion capacitance over 

the variation of SBV  is found. The selection of the geometry parameters are also 

introduced in this chapter.  
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CHAPTER III 

 

CIRCUIT EQUATIONS AND OUTPUT VOLTAGE APPROXIMATION 

 

When implementing the piecewise linear delay model, a large circuit is divided 

into smaller sub-circuits according to different resistance connected regions. RC circuit 

dynamic equations in each sub-circuit are solved without considering the changes hap-

pened in other sub-circuits. Output delay is defined as the time difference between the 

mid-point of the output voltage waveform and the mid-point of the input voltage 

waveform. Since the model takes into account of the input transition time, it is more 

accurate than the IRSIM whose delay model simply assumes a step function as the input 

waveform. 

 

3.1 Resistance Connected Regions 

Modern digital logic circuits have millions or even billions of transistors on a 

single silicon chip. Circuit simulator, like SPICE, solves the whole circuit as a big matrix 

and gets the node outputs by solving for the current and voltage waveforms as function of 

time. Usually no more than a few thousand transistors may be simulated in a reasonable 

amount of computation time. 

Instead of solving for all circuit node voltages at once, it is almost always possible 

to subdivide the problem into smaller pieces which are easier to solve. Define a resistive  
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connected region as a set of circuit nodes connected by paths through the source or drain 

terminals of transistors in the ohmic region of operation.  In the ohmic region the 

transistor is modeled as a linear resistance (conductance) between the source and drain.  

When the transistor is in saturation, the transistor is modeled as a transconductance which 

has the effect of decoupling the source and drain.  Instead of solving for all circuit node 

voltages at once, the complexity of the problem is reduced by approximating the solution 

in each resistance connected region separately. 

 

3.2 Circuit Dynamic Equations 

3.2.1 Circuit Dynamic Equations 

 It is assumed that the circuit of interest consists of transistors and capacitors 

only. The m-th transistor is connected to circuit nodes mS , mD , mG , and mB . The c-th 

capacitor is connected to nodes cA  and cB  as shown in Fig. 3.1: 

 

Fig.3. 1 Circuit components 

 

where mS , mD , mG , and mB  are the nodes connected to transistor’s source, drain, gate, 

and bulk respectively. The transistors in each region of operation are approximated by the 

linear circuit as discussed in the previous section and the capacitors are approximated as 
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linear. Currents flowing through each node include the static current from Eq. (2.1) and 

Eq. (2.2), the channel storage current from Eq. (2.17), and the current charging or 

discharging the node capacitance. KCL at node i requires that 

, , , , , , ,( ) ( ) ( ) 0
m m m m m m m m m c cD i D i S G i G S i S D i D c i A i B

m m c
I i i i Iδ δ δ δ δ δ δ− + + + + − =∑ ∑ ∑      (3.1) 

where 

,

1
0i j

i j
i j

δ
=⎧

= ⎨ ≠⎩
                                                                                              (3.2) 

Plugging in the static current and channel charge storage current equations derived in 

chapter 2, Eq. (3.1) can be rewritten in matrix form as: 

0in
in in in Tn Tn Tp Tp DD DD

dVdVC C GV G V G V G V G V
dt dt

+ + + + + + =                            (3.3) 

where G  is initially a conductance matrix formed by grouping together the rows and 

columns in the same resistance connected region. The conductance matrix, G, can be 

written in block upper triangular form.  The non-zero entries in the off-diagonal blocks 

come from the gate terminals of the transistors in the resistance connected region (the 

inputs to the logic gate). In Eq. (3.3), G is further reduced by taking out the rows and col-

umns for DDV , inV , TnV , and TpV . The saturation models make the conductance matrix 

non-symmetric. G is now the on-diagonal sub-block for a single resistance connected 

region: 

{ }{ }
, , ,( )

m m m

ohm sat

ii m m i D i S m i S
m m

G a G Gδ δ δ= + +∑ ∑                                                          (3.4) 
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{ }{ }

{ }

, , , , , , ,

, ,

( ) ( )
m m m m m m m

ohm sat

m m

sat

ij m m i S j D i D j S m i D i S j G
m m

m i D j S
m

G a G G

G

δ δ δ δ δ δ δ

δ δ

= − + + −

−

∑ ∑

∑
                   (3.5) 

GTn and GTp are the parts of the original column vectors inside the resistance con-

nected region. They are formed from the original equation Eq.(3.1) by grouping together 

the conductance items inside the resistance connected region that are related to the 

threshold voltages VTn and VTp  respectively. 

{ } ,

, , ,( )
m m

n sat

i Tn m i D i S
m

G G δ δ= − −∑                                                                               (3.6) 

{ } ,

, , ,( )
m m

p sat

i Tp m i D i S
m

G G δ δ= − −∑                                                                              (3.7) 

GDD is also a column vector that is generated from the original G matrix. It 

represents the cross-coupling conductance between the nodes inside the source-drain 

connected region with the power supply node. 

{ }{ }

{ }

, , , , , , , ,

, ,

( ) ( )
m m m m m m m

ohm sat

m m

sat

i DD m m i S DD D i D DD S m i D i S DD G
m m

m i D DD S
m

G a G G

G

δ δ δ δ δ δ δ

δ δ

= − + + −

−

∑ ∑

∑
         (3.8) 

Vin is the column vector of inputs outside the resistance connected region.  Gin is 

an off-diagonal sub-block of the larger G matrix.  Since Gin represents coupling between 

nodes inside a resistance connected region to nodes outside that region through 

transistors, the nodes outside the region must be terminals of transistors with at least one 

terminal inside the region.  This leaves only the following terms in Gin. 

{ } { }
, , , , , ,( )

m m m m m

sat sat

i in m i D i S in G m i D in S
m m

G G Gδ δ δ δ δ= − −∑ ∑                                              (3.9) 
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The C matrix is rectangular in general, and includes capacitive coupling from 

nodes inside the resistance connected region to all other circuit nodes including those 

inside and outside the resistance connected region.  The rectangular C matrix prevents an 

exact solution of the node voltages within a resistance connect region without knowing 

the voltage derivatives at all other circuit nodes.   

, , , , ,( ) ( )
c c m m m m m mii c i A i B GG in G SS in S DD i D

c m
C C C C Cδ δ δ δ δ= + + + +∑ ∑                       (3.10) 

, , , , , , , ,

, , , , , , , ,

( ) ( )

( ) ( )

c c c c m m m m m m

m m m m m m m m m m m m

ij c i B j A i A j B GS i G j S SG i S j G
c m

GD i G j D DG i D j G DS i D j S SD i S j D
m m

C C C C

C C C C

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ

= − + − +

− + − +

∑ ∑

∑ ∑
       (3.11) 

We make the assumption that node voltages outside the resistance connected 

region do not change at the same time as node voltages inside the resistance connected 

region except for the input nodes driving the sources and gates of the transistors in 

saturation.  We also have CSD = 0 in saturation which prevents coupling from the drain 

back to the source.  This makes the C matrix square and leaves only the following terms 

in Cin. 

, , , , ,

, , , ,

, , , ,

, , , ,

( )

[( ) ( ) ]

[( ) ( ) ]

( )

c c c c

m m m m m m m m

m m m m m m m m

m m m m m m

i in c i B in A i A in B
c

GS GSO i G in S SG GSO i S in G
m

GD GDO i G in D DG GDO i D in G
m

DS i D in S SD i S in D
m

C C

C C C C

C C C C

C C

δ δ δ δ

δ δ δ δ

δ δ δ δ

δ δ δ δ

= − +

− + + +

− + + +

− + +

∑

∑

∑

∑

                       (3.12) 

V is a n n×  matrix in Eq. (3.3) that represents the voltage outputs of each node in 

the resistance connected region. n is the quantity of the nodes inside the resistance 
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connected region except the power supply and ground nodes. A single changing input is 

assumed in the model. However, in theory the model can handle more than one switching 

input by making Vin a column vector. The rest of the terms in Eq. (3.3), TnV , TpV , and DDV  

are constant scalars. 

In most switching transitions, the source/drain voltages do not change 

significantly until the gate voltage is at or near its final value.  Only very small errors 

result if we assume that the source/drain voltages are constant while the gate voltage 

switches. This eliminates coupling from source/drain nodes outside the resistance 

connected region through transistor gate terminals.  The reverse is not the case since a 

changing gate voltage can have significant effects through capacitive coupling on the 

source and drain voltages.  Just as we did for the conductance, we can treat the gate 

voltage as an external input to a resistance connected region which drives the nodes 

within the resistance connected region through a coupling capacitance instead of a 

transconductance.   

 

3.2.2 Ramp Input Approximation 

Rather than attempt an exact solution of (3.3) for an arbitrary input, the inputs to 

each resistance connected region will be approximated as a simple ramp as shown below. 

0 0

0 0 0 0

0

( )
( ) ( ) ( )

( )

in in in

in in in in in in in Tin

in Tin in Tin

V t t t
V t V t V t t t t t t

V t t t t

⎧ <
⎪= + − < < +⎨
⎪ > +⎩

                                        (3.13) 

where  
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0 0( ) ( )in in Tin in in
in

Tin

V t t V tV
t

+ −
=  

 

 

Fig.3. 2 Input ramp approximation 

 

For more general input approximation, the inputs to each resistance connected 

region will be approximated as a series of piece-wise linear segments as shown 

 

Fig.3. 3 Piecewise linear approximation of input waveform 
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( ) ( ) ( )
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k k k k k

k k

k k

in in in

in in in in
in in in in in in in

in in
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+

+

+

⎧
<⎪

⎪
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⎪
⎪ >
⎪⎩

(3.14) 

( )
kin inV t are determined by approximating the input waveform at a finite number of 

times, 
kint .  The accuracy of the approximation increases with the number of time points.  

Adding time points increases the amount of calculation necessary to determine the 

voltages in the resistance connected region.   

If a node, i, in one region is to be used as an input into another region, it is 

necessary to find the piece-wise approximation that best fits Vi without making the 

amount of calculation too large.   First, we will find the solution for Vi and then find 

piecewise approximations in a latter section. 

 

3.3 Steady State Solution 

 Using the ramp approximation in Eq. (3.13) for the input nodes, the dynamic 

equations (3.3) become 

0 0( ) ( ) 0in in
dVC GV I t I t t
dt

+ + + − =                                                                   (3.15) 

where  

0 0( ) ( )in in in in in Tn Tn Tp Tp DD DDI t C V G V t G V G V G V= + + + +                                       (3.16) 

in in inI G V=                                                                                                         (3.17) 

The steady state solution (after the exponential terms die out), V , is of the form 
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2
0

0 0
( )( ) ( ) ( )

2
t tV t V t V t t V −

= + − +                                                                   (3.18) 

where the second order term is only necessary when G is singular as discussed later.  The 

steady state solution must also satisfy the dynamic equations which can be rewritten as 

( )in
dVGV C I
dt

= − +                                                                                          (3.19) 

where collecting terms of the same power of t gives 

0GV =                                                                                                              (3.20) 

( )inGV CV I= − +                                                                                              (3.21) 

0 0( ) ( ( ))inGV t CV I t= − +                                                                                   (3.22) 

The conductance matrix G can be singular or non-singular. Thus, the steady state 

solution is derived according to these two cases. 

 

3.3.1 Non-Singular Conductance Matrix 

The conductance matrix for a resistance connected region will be non-singular as 

long as the region includes the power or ground node.  When G is non-singular, then G-1 

can be used to find 

0V =                                                                                                                 (3.23) 

1( )inV G CV I−= − +                                                                                           (3.24) 

1
0 0( ) ( ( ))inV t G CV I t−= − +                                                                                (3.25) 

which can be rewritten as 

1
inV G I−= −                                                                                                        (3.26) 
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1 1
0 0( ) [ ( )]in inV t G CG I I t− −= − +                                                                          (3.27) 

Note that G-1 is not difficult to compute since G is a relatively small dimension 

matrix describing a single resistance connected region.  It is possible to find a steady state 

solution in each resistance connected region knowing only the ramp approximation to Vin. 

 

3.3.2 Singular Conductance Matrix 

The conductance matrix for a resistance connected region will be singular 

whenever the region does not include the power or ground node or the source node of any 

transistor in saturation.  It is easy to show that 

0ij ij
j i

G G= =∑ ∑                                                                                             (3.28) 

for a singular conductance matrix. 

It can be found that  

[ ]

( )

in i
i

ij
j i

I
V

C

−
=

∑
∑ ∑

                                                                                                 (3.29) 

The rest of the steady state solution can be found by picking any node, r, in the resistance 

connected region that has a non-zero capacitance ir
i

C∑ . The charge conservation 

equation can be used to define rV  in terms of the other node voltages.  The boundary 

condition of the initial charge can be used to define 0( )rV t  in terms of the other node 

voltages. 

The steady state solutions of the arbitrary reference node r are: 
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The steady state solutions of non-reference nodes are 
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Detailed derivation can be found in Appendix C. 
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3.4 Generalized Elmore Delay 

3.4.1 Elmore Delays for A Step Input [26] 

The usual definition of delay is the time difference between the midpoint of the 

input waveform to the midpoint of the output waveform. Thus, it is impossible to 

calculate the delay without knowing the exact input and output waveform. The Elmore 

delay can be found independent of the exact waveforms. Assume that iV , the voltage at 

node i , falls from some high value to a low value: 

 

Fig.3. 4 Elmore delay for a falling waveform 

 

Elmore defines the delay, dit , at node i as the centroid of idV
dt

− , 
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       (3.36) 

where 

( ) (0)i i iV V VΔ = ∞ −  (3.37) 
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This definition is valid only if the output voltage waveform is a monotonic 

function of t, i.e., the derivative does not change. If rewrite Eq. (3.36) by integrating by 

parts, the Elmore delay can be written as: 

0

1 ( ( ))di i i
i

t V V dt
V

∞
= − − ∞

Δ ∫                                                                               (3.38) 

This means an alternate equivalent way of defining the Elmore delay for a falling 

waveform is the area between (0)iV  and ( )iV ∞  . Same result can be obtained for a rising 

waveform as Eq. (3.38) except for an opposite sign. 

The usual Elmore delay in a circuit made from an arbitrary interconnection of 

MOSFET is: 

1[ ]i
i

i

G C V
V

τ
− Δ

=
Δ

                                                                                                (3.39) 

 
When using Eq. (3.39), several points need to be mentioned: 

1. The solution is exact for any general circuit containing only resistors and 

capacitors only. (perhaps some DC voltage sources.) 

2. For nodes with 0iVΔ = , it is not possible to solve for Elmore delay using the 

equation above. But when circuit goes into and out of different piece-wise linear regions, 

the variation of the node voltage may not be zero. A new mathematical expression for 

Elmore delay used in MOSFET circuits is introduced in next section. 

3. Elmore delay in Eq. (3.39) does not take into account of the input rising or 

falling transition time. 

 

3.4.2 Generalized Elmore Delays  
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The normal definition of Elmore is not suitable for the response of the resistance 

connected regions to a ramp input since the node voltages do not always approach a 

constant steady state value. Instead, we propose the following generalized Elmore delay 

for each node i. 
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3.4.2.1 Non-Singular Conductance Matrix 

The particular solution, ( )iV t , satisfies the dynamic equations: 

( ) ( ) 0dC V V G V V
dt

− + − =                                                                              (3.41) 

We can use (3.41) to evaluate (3.40) gives 
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Unfortunately, G and C are not constant, but changes as the switching transistors 

go into their various regions of operation. We assume that the solution beginning at 0t  

does not know that it will become invalid later, but can be extended indefinitely forward 

in time with a constant G and C. This allows upper limit in the integrals to be extended to 

infinity. 

 

3.4.2.2 Singular Conductance Matrix 
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When the conductance matrix is singular, we cannot use 1G−  to define the Elmore 

delay. Proceeding as we did for the steady state solution, we use charge conservation to 

define the transient for an arbitrary node r in terms of the other node transients. The 

Elmore delay for all nodes except node r, is 
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The Elmore delay for node r is  

0 0 0

0 0 0

( ) ( )

( ) ( )

j j j j
j r

r
r r r

C V t V t

C V t V t

τ
τ ≠

− −
=

−

∑
                                                                         (3.45) 

Detailed derivation can be found in Appendix D. 

 

3.5 Approximate Circuit Dynamics 

The solution of the circuit dynamics Eq. (3.15) is approximated by the solution of 

the equivalent first order system in each piece-wise linear region, 

0 1( ) 0i i i i i
d V V V V t t t
dt

τ − + − = < <                                                                 (3.46) 

0t  and 1t  are boundary points when the circuit enters a piecewise linear region at 

time 0t  and leaves the region at time 1t . We know 0t  from solving the previous piecewise 

linear region. They are the intersection points where the output waveform crosses the 

boundary line, which separates the whole transition into different regions. Newton-

Raphson method is used to find the boundary points. In next section, details are given for 

the Newton-Raphson method implemented in the model. 1t  is when the circuit leaves the 

current region and starts operating in the next region.  



 48

The solutions to the equivalent first order system are 

0

0 0 0( ) ( ) [ ( ) ( )] i

t t

i i i iV t V t V t V t e t tτ
−

−

− = − >                                                          (3.47) 

 

3.6 Boundaries of Piecewise Linear Regions 

The solutions in Eq. (3.47) are valid as long as all the transistors remain in the 

same region and the input slopes inV  do not change. When a transistor changes state or 

the input slopes change, the circuit will leaves the current region and enters into a new 

region. The boundary of the two different regions is determined by the switching 

transistors turning on or off and going in or out of saturation region. From (3.47), the 

starting time of each region must be known in order to find out the output voltage 

waveform in each region. In the piecewise linear delay model, these critical points are 

solved by Newton-Raphson method.  

The boundaries are the same as those defined in Eq. (2.1) to (2.4). Basically they 

correspond to the following two equations for each transistor in the source-drain 

connected region: 

GS TV V=                                                                                                             (3.48) 

GS T
DS DSsat

V VV V
a
−

= =                                                                                       (3.49) 

In theory, any one of the four terminals of the transistor could be the output node. 

And in most circuits, more than one terminal voltage output waveforms need to know in 

order to find the boundaries if those terminals are changing simultaneously. Hence, a 

general solution to find the boundary points for each node at a particular region is 
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desired. It would be more convenient to write the boundary equations in terms of the 

individual terminal voltages: 

G S TV V V− =                                                                                                       (3.50) 

( 1)G S D TV a V aV V+ − − =                                                                                   (3.51) 

From Eq. (3.50) and (3.51), the boundary points formed by the boundary lines 

crossing the terminal nodes voltage output waveforms can be calculated by Newton-

Raphson method. The idea behind the Newton-Raphson method is that usually only one 

iteration is necessary to obtain accuracy to better than a few percent. For using the 

Newton method, an initial guess Fint t=  is made. Using this initial guess, the time at the 

boundary line, Bt , can be found by: 

[ ]( ) ( )
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t t

V t V t
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= +
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                                                                 (3.52) 
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                                      (3.53) 

where Bofft  is time when the transistor turns on or off and Bsatt  is the time when the 

transistor goes in or leaves the saturation region. The node voltages and their derivatives 

can be obtained from  

0

0 0( ) [ ( ) ( )]( ) i
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i i ii Fin FinV V t V t V t et τ

−
−

+ −=                                                               (3.54) 
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i ii Fin
i

V V t V t et τ

τ

−
−

−= −                                                                      (3.55) 

where ,i G=  ,S  and D  respectively. 
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In order to achieve a better accuracy, usually 3 to 4 iterations are needed to use Newton 

method. We substitute the values of Bofft  and Bsatt  back into the equation (3.52) and 

(3.53): 

1
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Boff Boff
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V V t V t
t t
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                                 (3.57) 

where ( )G BoffV t , ( )S BoffV t , ( )G BsatV t , ( )S BsatV t , ( )D BsatV t  and their corresponding 

derivatives can be found by substitute Bofft  and Bsatt  for Fint  in (3.34) and (3.35).  In the 

model implementation, the tolerance is set as 0.001% and this is achieved by 3 to 4 

iterations of Newton method described above. 

Convergence problem met in the Newton method application is handled in the 

program by approaching the solution from right, i.e., choosing a bigger value of initial 

guess. In this dissertation, we pick { }max ,Fin Tint t τ= . 

If the output transition waveform is beyond the power supply voltages ( DDV  and 

GND ), a third boundary line i oV V δ= +  is defined to limit the overshoot of the output 

voltage, where o DDV V=  for a rising input transition and 0oV =  for a falling input 

transition. The following section presents the procedure of finding the boundary point 

where the output waveform crosses the diode like cutoff boundary line i DDV V δ= + . 

Similar method can be used to find the boundary point where the voltage output 

waveform crosses the boundary line iV δ= . 
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First we need to decide whether the output waveform will rise above the boundary 

i oV V δ= +  or not. The maximum value of the output voltage is compared to the diode 

cutoff boundary. If the maximum value is less than the boundary, the whole output 

waveform will be under the boundary and we can proceed to find other boundary points 

as defined in Eq. (3.52) and Eq. (3.53). Otherwise, the output waveform will cross the 

boundary line i oV V δ= +  at rt t= , as is shown in curve I of Fig. 3.5.  

 

Fig.3. 5 Output falling transition with boundaries and operation regions 

 

The output waveform will stay at i oV V δ= +  until qt t≥ , where qt  is the 

intersection point where the quasi-steady state solution of the output waveform crosses 

the diode like boundary. qt  can be found from Eq. (3.46) by letting 0idV
dt

=  and 

0iV V δ= + , 
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2
0 0( ) ( ) 2 ( ( ) ( ))i i i i i i i i i i

q r

i

V V V V V V V t V
t t

V

τ τ τ δ− + ± + − + − +
= +                       (3.58) 

Eq. (3.54) is the general solution to find the intersection point of the quasi-steady 

state solution of the output voltage waveform and the boundary i oV V δ= + . qt  is the 

point after which the output waveform will start fall. If q bt t> , the output voltage 

waveform will stay at oV δ+  until qt t′=  in the next region, where qt′  is obtained by Eq. 

(3.54) . For the very fast input transition, q Tint t′ > , the output will start fall at Tint t=  when 

the input ramp has arrived at its peak value. 

 

3.7 Linear Approximation of Output Waveform 

For non-singular conductance, Eq. (3.47) simplifies to 

0

0 0 0 0( ) ( ) ( ) [ ( ) ( )] i

t t

i i i i iV t V t V t t V t V t e τ
−

−

= + − + −                                                   (3.59) 

when the off-diagonal term ijG  of the G matrix is not zero, the steady state solution ( )iV t  

will be a function of output voltage of node j too. Since ( )jV t  is also an exponential 

function, this will make it very difficult to solve for the boundary points using Newton-

Raphson method. 

We can linearize Eq. (3.54)  if 

0 0 0 0( ) [ ( ) [ ( ) ( )] ]
i

i
i i i i i i i iV t V V t V V t V t e V

τ
ττ τ δ

−

+ − + + − <                                        (3.60) 

i.e., 

 0 0[ ( ) ( )i iV t V t e Vδ− < i  

and ( )jV t can be approximated as 
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3.8 Delay and Output Rise/Fall Time 

The piecewise linear model does not have a closed form solution for delay. Delay 

calculated in the piecewise linear model is the mid-point delay which is the time differ-

ence between the half- DDV  point of the input voltage waveform and the half- DDV  point of 

the output voltage waveform. The voltage output waveform can be computed from Eq. 

(3.47) in each piecewise linear region. The output voltage is compared with half- DDV  volt 

in each region and half- DDV  point of the output voltage waveform can be found using 

Newton-Raphson’s method. By comparing Eq. (3.13), the delay can be computed by: 

50 0 2
Tin

d in
tt t t= − −                                                                                              (3.62) 

The usual definition of rise time or fall time is the duration between the 10% and 

90% of the output waveform. The piecewise linear model is pretty accurate for predicting 

the output waveforms before the mid-point of the output waveform. Thus, the first half of 

the output waveform computed by the piecewise linear model is used to find the output 

rise/fall time.  

For a falling output, the time duration between the 90% and 50% is used to find 

the fall time. And for a rising output, the time duration between the 50% and 10% is used 

to find the rise time. Specifically, 

50 10( ) 2rt t t= − ×                                                                                                (3.63) 



 54

50 90( ) 2ft t t= − ×                                                                                                (3.64) 

where 50t , 10t , and 90t  are the output transition time at 0.5 DDV , 0.1 DDV , and 0.9 DDV  

respectively. 

 

3.9 Summary 

By introducing the input transition time into the delay computation, the piecewise 

linear delay model is supposed to be more accurate than the switch models. In each 

piecewise linear region, the output is represented by its delayed quasi-steady state 

solution with an exponential waveform. This chapter introduced the general RC circuit 

dynamic equation in each region and described in details each element that composes the 

general solution of the dynamic equation. Although the piecewise linear delay model 

does not provide a closed form solution for the delay, delay can be obtained by tracking 

the output voltage waveform. The first half of the output waveform is used to find the 

output slope since the piecewise linear model is accurate comparing to SPICE simulation 

results in the first half of the output transition. 
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CHAPTER IV 

 

ANALYSIS OF A CMOS INVERTER USING PIECEWISE LINEAR MODEL 

 

In the previous chapters a piecewise linear model is introduced. A general 

solution for the output voltages is derived. The piecewise linear model is applied to the 

analysis of a CMOS inverter in this chapter. Delays and the output transition rise/fall time 

predicted by the model are compared to the corresponding SPICE simulation over a wide 

range of input slopes, transistor sizes, and loading factors. 
 

4.1 CMOS Inverter Transition Analysis 

Inverter is the simplest CMOS logic gate. It consists of a PMOS and a NMOS, 

and in most cases it also has a load capacitor at its output node. Two different transitions 

are analyzed below: rising input transition and falling input transition. A ramp input is 

assumed and the delay is computed as the midpoint delay from the output waveform to 

the midpoint of the input waveform. 

 
4.1.1 Rising Input Transition 

Fig. 4.1 shows a CMOS inverter with a rising input waveform. The operation 

regions of an inverter are shown in Figure 4.2. The separation of the operation regions 
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corresponds to the different combinations of the operation modes of NMOS and PMOS 

devices. 

VDD

GND

Vout
Vin

Cload

 

Fig.4. 1 A COMS inverter 

 

 

Fig.4. 2 Output falling transition with boundaries and operation regions 

 

The operation modes of NMOS and PMOS transistors in each region are listed in 

TABLE 4.1: 
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Region NMOS PMOS Input/Output 

Region0 off ohmic in DDV V<  

Region1 saturation ohmic in DDV V<  

Region2 saturation saturation in DDV V<  

Region3 ohmic saturation in DDV V<  

Region4 saturation off in DDV V<  

Region5 ohmic off in DDV V<  

Region6 saturation off in DDV V=  

Region7 ohmic off in DDV V=  

Region8 saturation ohmic i DDV V>  

TABLE 4. 1 Inverter Falling Output Transition Regions 

 

The regions defined above are formed by nine boundary lines at which the 

transistor (transistors) changes operating states. (TABLE 4.2) The input transition falls 

into two categories in the piecewise linear model: fast input and slow input according to 

whether the PMOS turns off before NMOS goes into the ohmic region. Detailed analysis 

is given below. 

Boundary Boundary Line Comments 

Boundary1 GS TnV V=  NMOS on/off 

Boundary2 DS DSsatpV V=  PMOS in/out saturation 

Boundary3 GS TpV V=  PMOS on/off 
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Boundary4 DS DSsatnV V=  NMOS in/out saturation 

Boundary5 in DDV V=  Input done transition 

Boundary6 DS DSsatnV V=  Input done transition 

NMOS in/out saturation 

Boundary7 GS TpV V= (Rev) PMOS s/d reversed 

Boundary8 i DDV V=  Power line 

Boundary9 i DDV V δ= +  Diode-like cutoff 

TABLE 4. 2 Boundary Lines 

 

4.1.1.1 Slow Input 

The curve I  in Fig. 4.2 is an output transition for a slow input. As seen from Fig. 

4.2, curve I  passes Region 0, Region 1, Region 2, Region 3, Region 5, and Region 7. 

The input changes from low to high for a given transition time Tint .  

In Region 0, the NMOS transistor is off since GSn TnV V< . PMOS transistor is in 

the ohmic region because GSp TpV V<  and DSp DSsatpV V> . Part of the charge from the input 

which is injected through the coupling capacitance causes an overshoot at the early part 

of the output voltage waveform. This charge has the major influence on the output in 

Region0. Because the output voltage is greater than the power supply voltage, the source 

and drain of the PMOS are reversed, i.e., the output node becomes the source node of the 

PMOS transistor and the power supply node becomes the drain. 

In Region 1, the NMOS transistor is saturated and the PMOS transistor is still in 

the ohmic region. As the input voltage keeps increasing, the voltage at the output node 
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decreases, which results in a decreasing of the drain to source voltage of the PMOS. 

When DSp DSsatpV V<  , PMOS is saturated. As we can see from Fig. 4.2, when the voltage 

output waveform hit the boundary line DS DSsatpV V= , the PMOS changes its operation 

region to saturation region. Although the output voltage decreases, the NMOS is still 

operating in the high DSV  region which is far greater than DSsatnV  . After PMOS switching 

the operation state, the inverter works in the transition Region 2 in Fig. 4.2. 

In between Region 0 and Region 1, there is another region Region 8. As in 

Region 1, the NMOS transistor is saturated and the PMOS transistor is in the ohmic 

region. The only difference between Region 1 and Region 8 is that in Region 8, the 

output voltage is greater than the power supply voltage, DDV . Thus, PMOS reverses its 

source and drain. 

In Region 2, both transistors are saturated. When the input voltage increases 

further, the drain voltage of the NMOS will drop more. If DSn DSsatnV V< , NMOS will 

operate in the ohmic region. This is reflected in Fig. 4.2 when the output waveform 

reaches the boundary line, DSn DSsatnV V=  . Meanwhile, the drain to source voltage of the 

PMOS is more negative and much less than DSsatpV . Since the gate to source voltage is 

less than the threshold voltage of the PMOS,  PMOS is still in the saturation region. 

Based on the analysis above, the inverter leaves Region 2 and enters Region 3. 

In Region 3, the NMOS transistor is in the ohmic region and the PMOS transistor 

is saturated. Since the source of the PMOS is connected to the power supply, the gate to 

source voltage of the PMOS is increasing when the input voltage waveform rises. When 

the gate to source voltage is big enough comparing to the threshold voltage TpV , PMOS is 
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off. As the output voltage keeps falling, the drain to source voltage of the NMOS 

decreases too. And since the drain to source voltage of the NMOS is less than the drain to 

source saturation voltage, the NMOS is still in the ohmic region. In Fig. 4.2, the output 

voltage waveform leaves Region3 and hits the boundary of GS TpV V= , and enters into 

Region 5. 

In Region 5, the NMOS transistor is saturated and the PMOS transistor is off. 

When the input voltage has finished its transition at Sin Tint t t= +  , the input voltage does 

not change any more and stays at in DDV V= . NMOS continues to operate in the low DSV  

region. The gate to source voltage for PMOS is 0 which is always greater than the 

negative TpV . In Fig. 4.2, the output voltage waveform crosses the boundary of in DDV V= , 

and enters into Region 7. 

In Region 7, the operation modes of NMOS and PMOS are the same as region 5 

with NMOS in the ohmic region and PMOS in the cutoff region except that the input 

voltage stops changing. The inverter will stay in Region 7 as long as the input voltage 

stays at in DDV V= . 

 

4.1.1.2 Fast Input 

Above is the output transition analysis for an inverter with a slow rising input. 

When the input transition is very fast or the output load is very big, the PMOS transistor 

will turn off before the NMOS transistor goes into the ohmic region. We call it fast input 

transition. 

Curve II  in Fig. 4.2 is the output voltage transition for a fast input. It crosses 

Region 0, Region 1, Region 2, Region 4, Region 5, and Region 7. 
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The transition analysis for Region 0, Region 1, and Region 2 are exactly the same 

as what we did for a slow input. NMOS transistor changes from off state to be saturated 

and PMOS changes from the ohmic region to the saturation region. Thus, Region 0, 

Region 1, and Region 2 appear in both of the slow input transition path and fast input 

transition path I and II   in Fig. 4.2. 

What make the difference between the slow input and the fast input are the 

transitions after the Region 2. 

For a fast input since the gate input voltage changes very fast comparing to the 

output voltage drop. Gate to source voltage of the PMOS, GSpV , increases faster than the 

drain to source voltage drop, DSnV , of the NMOS transistor . PMOS is cut off as long as 

the gate to source voltage is equal to the PMOS transistor threshold voltage , at which 

time the drain to source voltage of the NMOS transistor has not dropped below the DSsatnV  

yet. The inverter circuit thus enters into an operation region that does not exist in the slow 

input. In this region, Region 4, NMOS is saturated and PMOS is off. In Fig 4.2, the 

voltage output waveform hits the boundary GS TpV V=  instead of the NMOS saturation 

boundary DS DSsatnV V= . 

Due to the different changing rate of NMOS drain to source voltage and PMOS 

gate to source voltage, the output waveform may enter into two different regions. Curve 

II  in Fig. 4.2 shows one of the two cases. If the output voltage of the NMOS drops much 

faster than the input transition speed, the NMOS enters into ohmic region once its drain 

to source voltage is less than its drain to source saturation voltage. Since the gate to 

source voltage of the PMOS is increasing and is greater than the threshold voltage of the 

PMOS, PMOS is still in the cutoff region. In Fig. 4.2, the output waveform leaves Region 
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4 and enters into Region 5. The transition following the Region 5 is the same as slow 

input transition case. With the input voltage arrives at its final transition value DDV  , 

NMOS operates in the ohmic region and PMOS in the cutoff region. 

Another case is that the input voltages reaches to its final value DDV  before the 

drain to source voltage of the NMOS transistor, DSnV , falls below its drain to source 

saturation voltage value, DSsatnV . The output voltage waveform enters into Region 6 first 

instead of Region 5 in Fig. 4.2. In Region 6, NMOS transistor is saturated and PMOS 

transistor stays cutoff. The inverter stays in this region until the drain to source voltage of 

the NMOS, DSnV , is less than the DSsatnV . When DS DSsatnV V<  , the NMOS changes its 

operation region from saturation to ohmic region. This is shown in Fig. 4.2 as the output 

voltage waveform hits the boundary DS DSsatnV V=  and goes into final region Region 7. 

The rest of the transitions are the same as previous case. 

 

4.1.2 Falling Input Transition 

The Analysis of the output transition for a falling input is similar to that of a rising 

input. Different regions are formed by different boundary lines which are shown in 

Fig.4.3. 

The operating states of the PMOS and NMOS in each region are defined in 

TABLE 4.3. 

The output transition also falls into two categories: fast input and slow input. 

They are distinguished by whether the NMOS transistor turns off first (fast input) or the 

PMOS transistor goes into the ohmic region first (slow input). In other words, if the 
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voltage output waveform hits the boundary line GS TnV V=  first in Fig. (4.3), the input is a 

fast input. Otherwise, if the output waveform hits the boundary line DS DSsatpV V=  first, the 

input is a slow input. 

 

 

Fig.4. 3 Output rising transition with boundaries and operation regions 

 
Region NMOS PMOS Input/Output 

Region0 ohmic off 0inV >  

Region1 ohmic saturation 0inV >  

Region2 saturation saturation 0inV >  

Region3 saturation  ohmic 0inV >  

Region4 off  saturation 0inV >  
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Region5 off  ohmic 0inV >  

Region6 off  saturation 0inV =  

Region7 off  ohmic 0inV =  

Region8 ohmic  saturation 0iV <  

TABLE 4. 3 Inverter Rising Output Transition Regions 

 
In Fig. 4.3, Curve I is a slow input transition. It crosses the Region 0, Region 8, 

Region 1, Region 2, Region 3, Region 5, and Region 7. Curve II and III are fast input 

transitions, instead of going to Region 3 as in the slow input case, they pass the Region 4, 

Region 5, Region 6, and Region 7. 

The rest of the analysis is similar to the rising input and will not be stated here. 

 

4.1.3 Special Issues 

 In the previous two sections, we have discussed the output transitions in details 

for an inverter with rising and falling input respectively. In this section, we will discuss 

the diode-like cutoff boundary in Fig. 4.2 and 4.3. 

In Fig. 4.2, the starting portion of the transition is above DDV  . This is caused by 

the cross-coupling capacitance between the transistor gate and drain. As shown in Fig. 

4.4, for a very fast input, the voltage accumulated on the gate side due to a rising input 

will also cause a voltage rise on the drain side of the cross-coupling capacitance. So the 

output node voltage is actually rising at the beginning of the transition for a given rising 

input.  
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Fig.4. 4 Gate-drain cross-coupling capacitance 

 

In the real circuits, the output voltage swings within some certain voltage range 

rather than an undefined one. In the piece-wise linear model, two diode-like limits are set 

to model the finite output voltage swing:  i DDV V δ= +  for a falling output transition and 

iV δ= −  for a rising output transition. The idea behind these two boundaries is to provide 

substrate diodes to limit the drain voltage in the circuit as shown in Fig. 4.5: 

 

Fig.4. 5 Substrate diodes 
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The threshold voltage of the diodes in Fig. 4.5 is set to δ . Whenever the output 

voltage is greater than DDV δ+  , the upper diode conducts current and the voltage drops 

to below DDV δ+  . This diode functions like the boundary line i DDV V δ= +  in Fig. 4.2.  

For a rising output, when the output voltage is less than GND δ− , the lower 

diode conducts current and the output voltage rises to above GND δ− . The lower diode 

functions like the boundary line iV δ= −  . 

 

4.2 Model Evaluation and Calibration 

The merit of the piecewise linear model lies on its introduction of the input 

transition time. Instead of a simple step input assumption, the circuit delay calculation 

includes the finite input transition time. Thus, the piecewise linear model is more 

accurate than the simulator like IRSIM which is based on the switch model. In this 

section, delays of various inverter circuits are compared between SPICE simulation 

results and the piecewise linear model predictions. Important factors like different PMOS 

to NMOS ratios, load conditions, and input slopes that have huge effects on the circuit 

performance are considered to evaluate the piecewise linear model.  

 

4.2.1 An Inverter Drives a Constant Capacitance Load 

The schematic diagram of the circuit is shown in Fig. 4.6: 

 
Fig.4. 6 An inverter drives a constant capacitance load. 
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In this circuit, an inverter is driving a constant capacitance load 100 fF . The 

reason to choose a big constant capacitance load is two folds. First of all, it is used to 

overshadow the impacts of the source/drain diffusion capacitance and the gate to drain 

capacitance to the delay. As has mentioned before, the piecewise linear model increases 

the accuracy of the circuits performance evaluation by taking into account of the input 

transition time. By reducing the effects of other factors, the impacts of the input transition 

time to the delay are more prominent. Secondly, a big load capacitance makes it easy to 

calibrate the transistor conductance. The time constant for a step input can be 

approximated as int( )loadR C Cτ = + . If the load capacitance is much bigger than the 

intrinsic capacitances like source/drain diffusion capacitance, the time constant can be 

written as loadRCτ ≈ . Thus, if the delay for a step input is known from the SPICE 

simulation, a rough estimation of the quantity of transistor resistance can be obtained by 

dividing the load capacitance. In this way, we can calibrate the model parameters that 

were found by the transistor I V−  characteristics diagram. 

k  is the ratio of PMOS transistor width to NMOS transistor width with the value 

of 1, 2, 4, and 0.5. One may choose any widths of PMOS and NMOS for a given ratio. 

Instead we make some restrictions on the selection of transistors width when doing the 

simulation and the delay computation for a better model evaluation purpose. For a rising 

input, the output node capacitance is discharged through the pull down circuit (NMOS). 

NMOS transistor plays a more important role in the delay calculation. Theoretically 

speaking, for different ratios if the NMOS sizes are all the same the delay for a step input 

will be about the same. Thus, the NMOS transistor width is selected as a constant 2.4um 

while the PMOS transistor width varying from 1.2um, 2.4um, 4.8um, to 9.6um. For a 
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falling input, the output node gets charged through the pull-up circuit (PMOS) during the 

transition. PMOS is a dominant factor in delay computation. For a falling step input the 

delay for all the ratios should be the same if the PMOS width is the same. In the falling 

input simulation and model calculation, PMOS width keeps constant as 4.8um while the 

NMOS width varying from 1.2um, 2.4um, 4.8um, to 9.6um. In this way, the piecewise 

linear model parameter G  is calibrated more accurately. 

 

4.2.1.1 Delay Results Comparison 

The delay calculated here is the mid-point delay, i.e. the delay from the mid-point 

of the output voltage waveform to the mid-point of the input voltage waveform. Fig. 4.7 

and 4.8 illustrate the SPICE simulation results and the delay computed by the piecewise 

linear model for circuit in Fig. 4.6. The input transition time varies in a wide range from a 

step input ( 10Tint ps= ) to a very slow input ( 2500Tint ps= ). The width ratio of PMOS 

transistor to NMOS transistor changes from 0.5 to 4. The piecewise linear model shows a 

great agreement overall with respect to the SPICE simulation results. The overall average 

relative error of the piecewise linear model is -1.34% of SPICE. The maximum relative 

error of the piecewise linear model is -10.35% of SPICE. 

From Fig. 4.7 and 4.8, one can see that it is important to include the effects of 

input slope in the circuit performance evaluation. Without considering the input slope, the 

delay for different input transition time is just a constant value which is equal to the delay 

of a step input (delay in Fig. 4.7 and 4.8 where 0Tint ps=  ).  
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Fig.4. 7 Delay comparison of an inverter with rising input and constant 
capacitance load. 
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Fig.4. 8 Delay comparison of an inverter with falling input and constant 
capacitance load 

 

The delays of the step input with different transistor ratios do not converge into a 

single point in SPICE simulations even though the pull-down transistor sizes are the 

same. This is because although the load capacitance is relatively big, the contributions of 
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the gate-drain capacitance and the varying drain diffusion capacitances due to the 

different PMOS sizes are not trivial. By including the input capacitance model, the piece-

wise linear model has a better fit for a step input.  

The sheet resistances of the switching on transistors are calibrated according to 

the SPICE simulation of a step input. Different sets of sheet resistances are used for rising 

and falling input transitions in order to have a better fit. In the piece-wise linear mode, 

sheet resistance of NMOS, snR , for a rising input transition is equal to 41.3 10 /× Ω  . 

The sheet resistance of PMOS, spR , for a falling input transition is equal to 42.1 10 /× Ω . 

 

4.2.1.2 Output Rise/Fall Time 

The SPICE simulation results for rise time and fall time shown here are not the 

traditional definitions. Instead, they follow the definitions in Eq. (4.8) and (4.9) for the 

piecewise linear model. Fig. 4.9 and 4.10 plot the output rise time and fall time calculated 

by the piecewise linear model and its corresponding SPICE simulation results for the 

circuit illustrated in Fig. 4.6. The model agrees well in general with the SPICE with 

average relative error of -4.81% and maximum relative error of -10.24% in the range of 

0Tint ps=  to 1200Tint ps= . 
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Fig.4. 9 Output fall time comparison of an inverter with falling input and constant 
capacitance load. 
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Fig.4. 10 Output rise time comparison of an inverter with falling input and 
constant capacitance load. 

 

4.2.1.3 Output Waveform 



 72

 

0

1

2

3

4

5

6

0 1000 2000 3000

Time (ps)

Vi
 (v

)

Model (k=4)

SPICE

 
Fig.4. 11 Output waveform comparison of an inverter with rising input and 
constant capacitance load. 100Tint ps= . 
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Fig.4. 12 Output waveform comparison of an inverter with rising input and 
constant capacitance load. 2500Tint ps= . 

 

Fig. 4.11 and Fig. 4.12 plot the output waveforms of SPICE simulation and 

piecewise linear model prediction for the circuit shown in Fig. 4.6. The width ratio of 

PMOS transistor to NMOS transistor is 4k = . Two extreme cases are plot here, one is 

with very fast input transition ( 100Tint ps= ) and another is with very slow input 
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transition ( 2500Tint ps= ). The piecewise linear model is pretty accurate in predicting the 

output waveform for a very large range of rising input transition. 
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Fig.4. 13 Output waveform comparison of an inverter with falling input and 
constant capacitance load. 100Tint ps=  
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Fig.4. 14 Output waveform comparison of an inverter with falling input and 
constant capacitance load. 2500Tint ps=  

 

In Fig. 4.13 and Fig. 4.14, we plot the output waveforms of a very fast falling 

input transition (100ps) and a very slow falling input transition (2500ps) which are 

predicted by the piecewise linear model together with their corresponding SPICE 
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simulation results. The width ratio of PMOS transistor to NMOS transistor is 0.5k = . 

The piecewise linear model is pretty accurate in predicting the output waveform for a 

very large range of rising input transition. Again, the model is very accurate in predicting 

the output waveform just like the rising input transition case. 

 

4.2.2 An Inverter Drives a Constant Inverter Load 

The schematic diagram of the circuit is shown in Fig. 4.15: 

  

Fig.4. 15 An inverter drives a constant inverter load 

 
Just like the previous case, the driver inverter is varying the ratio k  . And for a 

rising input transition, the pull-down circuits are of the same size for different k  values. 

For a falling input transition, the pull-up circuits are of the same size. The load inverter 

used has a constant PMOS to NMOS width ratio 4.8
2.4

umk
um

= . The load capacitance is not 

a dominant factor any more since the load inverter size is comparable to the driver 

inverter size. The drain diffusion capacitance now has more impacts to the delay than the 

previous case. Thus, the circuit in Fig. 4.15 is suitable for calibrating the source/drain 

diffusion capacitance model. 

 

4.2.2.1 Delay Results Comparison 



 75

-200

-100

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500

Input rise time (ps)

De
la

y 
(p

s)

SPICE (k=1) Delay Model
SPICE (k=2) Delay Model
SPICE (k=4) Delay Model
SPICE (k=0.5) Delay Model

 
Fig.4. 16 Delay comparison of an inverter with rising input and constant inverter 
load 
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Fig.4. 17 Delay comparison of an inverter with falling input and constant inverter 
load. 

 

Fig. 4.16 and 4.17 are the delay results obtained by the SPICE simulation and the 

piecewise linear model computation for the circuit described in Fig. 4.15. It is obvious 

that one cannot ignore the input slope effect when models the delay. It is impossible for a 
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simple step input assumption to model the delays which span from negative -100ps to 

600ps. Even the linear assumption that the delay is just proportional to the input slope 

like most delay model did is not accurate. The piecewise linear model can: 1. predict the 

delay in a large input transition range. 2. predict the negative delay. 3. predict the 

curvature of the delay curve. The average absolute error predicted by the piecewise linear 

model for the circuit in Fig. 4.15 is 1.83ps and the maximum absolute error of the model 

is -30.34ps.  

 

4.2.2.2 Output Rise/Fall Time 
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Fig.4. 18 Output fall time comparison of an inverter with falling input and 
constant inverter load. 

 

Fig. 4.18 and Fig. 4.19 show the output fall time and rise time of the circuit in Fig. 

4.15. The input transition is in the range of 10ps to 1200ps. The average relative output 

rise/fall time error is -9.74% and the maximum relative error is -27% with respect to 

SPICE simulation. 
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Fig.4. 19 Output rise time comparison of an inverter with falling input and 
constant inverter load. 

 

4.2.2.3 Output Waveform 

Fig. 4.20 through Fig. 4.23 plot the output rise and fall waveforms of the circuit in 

Fig. 4.15. As in the previous case, a very fast input transition (100ps) and a very slow 

input transition (2500ps) are used to test the accuracy of the piecewise linear model. The 

width ratio of PMOS transistor to NMOS transistor is 0.5k =  and 4k =  respectively. 

The piecewise linear model fits the SPICE simulation very well for a very large range of 

input slopes. 

 

4.3 Summary 

 The input transitions fall into two categories: fast input and slow input, which 

are distinguished by different output transition regions they underwent. These regions are 

formed by the boundary lines which decide the transistors’ operation state. The circuit 
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dynamics in each region is approximated by its quasi-steady state solution and the initial 

conditions in each region. 

The simplest CMOS circuit, an inverter, is utilized to fulfill two purposes: 1. to 

check the accuracy of the piecewise linear model. 2. to calibrate the piecewise linear 

model so that it will fit the SPICE simulation results within a reasonable error range.  

An inverter drives a big constant capacitance load, Fig. 4.6, gives us an overview 

of the importance of the input slope to the delay modeling and also provides a rough 

estimation on the sheet resistances. The source/drain diffusion capacitance model is 

calibrated via the circuit shown in Fig. 4.15. The piecewise linear model agrees well with 

the SPICE simulation. The model shows that the errors are within 5% or 17ps of the 

SPICE simulations. 

The piecewise linear model shows relatively bigger errors when calculates the 

output rise time and fall time. This is because the rise time and fall time are defined by 

the first half of the output transition in the piecewise linear model since the model has a 

better fit during this portion of the transition. This is not the normal definition of the rise 

time and fall time though. A better approach needs to be found in this category. 
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Fig.4. 20 Output waveform comparison of an inverter with rising input and 
constant inverter load. 100Tint ps=  
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Fig.4. 21 Output waveform comparison of an inverter with rising input and constant 
inverter load. 2500Tint ps=  
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Fig.4. 22 Output waveform comparison of an inverter with falling input and 
constant inverter load. 100Tint ps=  
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Fig.4. 23 Output waveform comparison of an inverter with falling input and 
constant inverter load. 2500Tint ps=  
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CHAPTER V 

 

MORE CIRCUITS ON MODEL APPLICATION 

 

In Chapter IV, the piecewise linear model is applied to the inverter delay analysis. 

The model shows great agreement with regard to the SPICE simulation. The piecewise 

linear model is applicable not only to propagation delay of a simple gate, such as an 

inverter but also to that of any general circuit topology. The model is also scalable by 

using different set of model parameters for different technologies. And the model is 

suitable to a fast simulator application.  

In this chapter, we extend the application of piecewise linear model to two-input 

NAND gate and OAI gate. Similar to the inverter analysis, delays and output rise and fall 

time predicted by the model are compared to the corresponding SPICE simulation by 

varying the input slope, switching gate, transistor size, and the loading factors.  

 

5.1 Two-Input NAND Gate Analysis 

5.1.1 Two-Input NAND Gate with Constant Capacitance Load 

Fig. 5.1 shows a CMOS implementation of two-input NAND gate with input 

signals A and B. The gate drives a constant capacitance load, 100loadC fF= . We will 

assume that only one gate is switching at any time. Multiple inputs can be handled by 

making inV  a column matrix. The pull-up transistors are of the same size and so are the 
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pull-down transistors. The width ratio of PMOS transistors to NMOS transistors varies 

from 0.5k = , 1, 2 to 4.  

VDD

GND

Vout

Cload

A

B

A B

2

1

 

Fig.5. 1 Two-input NAND gate with constant capacitance load 

 

5.1.1.1 0 1A = → , 1B =  

 In this case, the input node A of the upper NMOS transistor is switching from low 

to high, a rising input transition, and the node B of the lower NMOS transistor stays at 

B DDV V= .  

Fig. 5.2 shows the delay versus the input rise time of the circuit described above. 

The input rise time varies from 10 ps  to 2500 ps . The width ratio of PMOS transistors to 

NMOS transistors varies from 0.5k = , 1, 2 to 4.  The average relative error of the 

piecewise linear model is -1.69% with respect to SPICE simulation. The maximum 

relative error is 6.88%. 
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Fig.5. 2 Delay comparison a two-input NAND with rising input and constant 
capacitance load, 0 1A = → , 1B =  
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Fig.5. 3 Output fall time comparison of a two-input NAND with rising input and 
constant capacitance load, 0 1A = → , 1B = . 

 

The output fall time versus the input rise time of the same transition is shown in 

Fig. 5.3. The input rise time varies from10 ps  to 1200 ps . The average relative error of 
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the piecewise linear model is -5.68% with respect to SPICE simulation. The maximum 

relative error is -7.34%. 
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Fig.5. 4 Output waveforms comparison of a two-input NAND with rising input 
and constant capacitance load. 100Tint ps= . 0 1A = → , 1B =  

 

In Fig. 5.4 and 5.5, the output waveforms of the output node (V1) and the internal 

node (V2) of a fast input transition ( 100Tint ps= ) and a slow input transition 

( 1500Tint ps= ) are plot. The piecewise linear model is very accurate in predicting the 

waveforms of the circuit nodes over a wide range. 

 

5.1.1.2 1 0A = → , 1B =  

In this case, the input node A of the upper NMOS transistor is switching from 

high to low, a falling input transition, and the node B of the lower NMOS transistor stays 

at B DDV V= .  
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Fig.5. 5 Output waveforms comparison of a two-input NAND with rising input 
and constant capacitance load. 1500Tint ps= . 0 1A = → , 1B =  

 

Fig. 5.6 shows the delay versus the input fall time of the circuit described above. 

The input fall time varies from 10 ps  to 2500 ps . The widths of the PMOS transistors are 

chosen as 4.8um  and the widths of the NMOS transistors vary from 1.2nW um= , 2.4um , 

4.8um , and 9.6um . Hence, the width ratio of PMOS transistors to NMOS transistors 

varies from 0.5k = , 1, 2 to 4. The average relative error of the piecewise linear model is 

0.38% with respect to SPICE simulation. The maximum relative error is 11.4%. 

The output rise time versus the input fall time of the same transition is shown in 

Fig. 5.7. The input fall time varies from 10 ps  to 1200 ps . The average relative error of 

the piecewise linear model is -5.58% with respect to SPICE simulation. The maximum 

relative error is -10.5%. 
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Fig.5. 6 Delay comparison of two-input NAND with falling input and constant 
capacitance load, 1 0A = → , 1B =  
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Fig.5. 7 Output rise time comparison of a two-input NAND with falling input and 
constant capacitance load, 1 0A = → , 1B = . 

 

Fig. 5.8 and 5.9 plot the output waveforms of the output node (V1) and the 

internal node (V2) of a fast input transition ( 100Tint ps= ) and a slow input transition 



 87

( 2500Tint ps= ). The piecewise linear model is capable of predicting the waveforms of 

the circuit nodes over a wide range of input slope. 
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Fig.5. 8 Output waveforms comparison of a two-input NAND with falling input 
and constant capacitance load. 100Tint ps= . 1 0A = → , 1B =  
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Fig.5. 9 Output waveforms comparison of a two-input NAND with falling input 
and constant capacitance load. 2500Tint ps= . 1 0A = → , 1B =  
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5.1.1.3 1A = , 0 1B = →  

The input node A of the upper NMOS transistor stays at A DDV V= . The node B of 

the lower NMOS transistor switches from low to high.  

Fig. 5.10 shows the delay versus the input rise time of the transition described 

above. The input rise time varies from 10 ps  to 2500 ps . The widths of the NMOS 

transistors are chosen as 2.4um  and the widths of the PMOS transistors vary from 

1.2pW um= , 2.4um , 4.8um , and 9.6um . Hence, the width ratio of PMOS transistors to 

NMOS transistors varies from 0.5k = , 1, 2 to 4. The average relative error of the 

piecewise linear model is -7.31% with respect to SPICE simulation. The maximum 

relative error is -9.44%. 
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Fig.5. 10 Delay comparison of a two-input NAND with rising input and constant 
capacitance load, 1A = , 0 1B = → . 

 

The output fall time versus the input rise time of the same transition is shown in 

Fig. 5.11. The input fall time varies from 10 ps  to 1200 ps . The average relative error of 
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the piecewise linear model is -7.31% with respect to SPICE simulation. The maximum 

relative error is -10.8%. 
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Fig.5. 11 Output fall time comparison of a two-input NAND with rising input and 
constant capacitance load, 1A = , 0 1B = → . 
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Fig.5. 12 Output waveforms comparison of a two-input NAND with rising input 
and constant capacitance load. 100Tint ps= . 1A = , 0 1B = → . 
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Fig.5. 13 Output waveforms comparison of a two-input NAND with rising input 
and constant capacitance load. 2500Tint ps= . 1A = , 0 1B = → . 

 

Fig. 5.12 and 5.13 plot the voltage output transient response of the output node 

(V1) and the internal node (V2) of a fast input transition ( 100Tint ps= ) and a slow input 

transition ( 2500Tint ps= ).  

 

5.1.1.4 1A = , 1 0B = →  

The input node A of the upper NMOS transistor stays at A DDV V= . The node B of 

the lower NMOS transistor switches from high to low.  

Fig. 5.14 shows the delay versus the input fall time of the transition described 

above. The input fall time varies from 10 ps  to 2500 ps . The widths of the PMOS 

transistors are chosen as 4.8um  and the widths of the NMOS transistors vary from 

1.2nW um= , 2.4um , 4.8um , and 9.6um . Hence, the width ratio of PMOS transistors to 

NMOS transistors varies from 0.5k = , 1, 2 to 4. The average relative error of the 
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piecewise linear model is -0.28% with respect to SPICE simulation. The maximum 

relative error is 9.7%. 
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Fig.5. 14 Delay comparison of a two-input NAND with falling input and constant 
capacitance load, 1A = , 1 0B = →  

 

The output rise time versus the input fall time of the same transition is shown in 

Fig. 5.15. The input fall time varies from 10 ps  to 1200 ps . The average relative error of 

the piecewise linear model is -4.14% with respect to SPICE simulation. The maximum 

relative error is -10.11%. 

Fig. 5.16 and 5.17 plot the voltage output transient response of the output node 

(V1) and the internal node (V2) of a fast input transition ( 100Tint ps= ) and a slow input 

transition ( 2500Tint ps= ).  
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Fig.5. 15 Output rise time comparison of a two-input NAND with falling input 
and constant capacitance load, 1A = , 1 0B = → . 
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Fig.5. 16 Output waveforms comparison of a two-input NAND with rising input 
and constant capacitance load. 100Tint ps= . 1A = , 1 0B = → . 
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Fig.5. 17 Output waveforms comparison of a two-input NAND with rising input 
and constant capacitance load. 2500Tint ps= . 1A = , 1 0B = → . 

 

5.1.2 Two-Input NAND Gate with Constant Inverter Load 

 
Fig.5. 18  Two-input NAND gate with constant inverter load 

 

Fig. 5.18 shows a CMOS implementation of two-input NAND gate with input 

signals A and B. The gate drives a constant inverter load, / 4.8 / 2.4p nW W um um= . This 
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circuit gives a more realistic load effect than the constant capacitance case. We will 

assume that only one gate is switching at any time. Multiple inputs can be handled by 

making inV  a column matrix. The pull-up transistors are of the same size and so are the 

pull-down transistors. The width ratio of PMOS transistors to NMOS transistors varies 

from 0.5k = , 1, 2 to 4.  The test procedures are the same as the previous circuit. We 

alternate the switching gates, vary the transition (rise or fall), and change the input slope. 

We introduce the absolute error in this section to evaluate the model accuracy 

because for a small inverter load, the delay is a relative small number (in picoseconds).  It 

makes more sense to find the absolute error between model and SPICE simulation in this 

case. For comparison purpose, we will list both the relative error and absolute error. 

 

5.1.2.1 0 1A = → , 1B =  

The input node A of the upper NMOS transistor switches from low to high. The 

node B of the lower NMOS transistor stays at B DDV V= .  

Fig. 5.19 shows the delay versus the input rise time of the transition described 

above. The input rise time varies from 10 ps  to 2500 ps . The widths of the PMOS 

transistors are chosen as 4.8um  and the widths of the NMOS transistors vary from 

1.2nW um= , 2.4um , 4.8um , and 9.6um . Hence, the width ratio of PMOS transistors to 

NMOS transistors varies from 4k = , 2, 1 to 0.5. The average relative error of the 

piecewise linear model is -3.63% with respect to SPICE simulation. The maximum 

relative error is 50.7%. The average absolute error of the piecewise linear model is 3.20ps 

with respect to SPICE simulation. The maximum absolute error is 19.3ps. 
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Fig.5. 19 Delay comparison of a two-input NAND with rising input and constant 
inverter load, 0 1A = → , 1B =  
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Fig.5. 20 Output fall time comparison of a two-input NAND with rising input and 
constant inverter load, 0 1A = → , 1B = . 

 

The output fall time versus the input rise time of the same transition is shown in 

Fig. 5.20. The input rise time varies from 10 ps  to 2500 ps . The average relative error of 

the piecewise linear model is -1.73% with respect to SPICE simulation. The maximum 
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relative error is -12.9%. The average absolute error of the piecewise linear model is -

8.1ps with respect to SPICE simulation. The maximum absolute error is -65.8ps. 
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Fig.5. 21 Output waveforms comparison of a two-input NAND with rising input 
and constant inverter load. 100Tint ps= . 0 1A = → , 1B = . 

 

Fig. 5.21 plots the voltage output transient response of the output node (V1) and 

the internal node (V2) of an input transition time of 100Tint ps= .  

 

5.1.2.2 1 0A = → , 1B =  

 The input node A of the upper NMOS transistor switches from high to low, a 

falling input transition. The node B of the lower NMOS transistor stays at B DDV V= .  

Fig. 5.22 shows the delay versus the input fall time of the transition described 

above. The input fall time varies from 10 ps  to 2500 ps . The widths of the PMOS 

transistors are chosen as 4.8um  and the widths of the NMOS transistors vary from 

1.2nW um= , 2.4um , 4.8um , and 9.6um . Hence, the width ratio of PMOS transistors to 
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NMOS transistors varies from 4k = , 2, 1 to 0.5. The average relative error of the 

piecewise linear model is 8.48% with respect to SPICE simulation. The maximum 

relative error is 814%. The average absolute error of the piecewise linear model is -

10.69ps with respect to SPICE simulation. The maximum absolute error is 100.8ps. 
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Fig.5. 22 Delay comparison of a two-input NAND with falling input and constant 
inverter load, 1 0A = → , 1B = . 

 

The output rise time versus the input fall time of the same transition is shown in 

Fig. 5.23. The input fall time varies from 10 ps  to 1200 ps . The average relative error of 

the piecewise linear model is -12.87% with respect to SPICE simulation. The maximum 

relative error is -27.2%. The average absolute error of the piecewise linear model is -

48.3ps with respect to SPICE simulation. The maximum absolute error is -125.3ps. 

Fig. 5.24 plots the voltage output transient response of the output node (V1) and 

the internal node (V2) of an input transition time of 100Tint ps= . 4k = . 
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Fig.5. 23 Output fall time comparison of a two-input NAND with rising input and 
constant inverter load, 1 0A = → , 1B = . 
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Fig.5. 24 Output waveforms comparison of a two-input NAND with falling input 
and constant inverter load. 100Tint ps= . 1 0A = → , 1B = . 

 

5.1.2.3 1A = , 0 1B = →  

 The input node A of the upper NMOS transistor stays at A DDV V= . The node B 

of the lower NMOS transistor switches from low to high, a rising input transition. 
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Fig. 5.25 shows the delay versus the input rise time of the transition described 

above. The input rise time varies from 10 ps  to 2500 ps . The widths of the NMOS 

transistors are chosen as 2.4um  and the widths of the PMOS transistors vary from 

1.2pW um= , 2.4um , 4.8um , and 9.6um . Hence, the width ratio of PMOS transistors to 

NMOS transistors varies from 0.5k = , 1, 2 to 4. The average relative error of the 

piecewise linear model is -4.46% with respect to SPICE simulation. The maximum 

relative error is 110.1%. The average absolute error of the piecewise linear model is -

14.8ps with respect to SPICE simulation. The maximum absolute error is 36.2ps. 
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Fig.5. 25 Delay comparison of a two-input NAND with rising input and constant 
inverter load, 1A = , 0 1B = →  

 

The output fall time versus the input rise time of the same transition is shown in 

Fig. 5.26. The input rise time varies from 10 ps  to 1200 ps . The average relative error of 

the piecewise linear model is -11.17% with respect to SPICE simulation. The maximum 

relative error is -17.2%. The average absolute error of the piecewise linear model is -

37.12ps with respect to SPICE simulation. The maximum absolute error is -68.8ps. 
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Fig.5. 26 Output fall time comparison of a two-input NAND with rising input and 
constant inverter load, 1A = , 0 1B = → . 

 

Fig. 5.27 plots the voltage output transient response of the output node (V1) and 

the internal node (V2) of an input transition time of 100Tint ps= . 4k = . 
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Fig.5. 27 Output waveforms comparison of a two-input NAND with rising input 
and constant inverter load. 100Tint ps= . 1A = , 0 1B = → . 

 

5.1.2.4 1A = , 1 0B = →  
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The input node A of the upper NMOS transistor stays at A DDV V= . The node B of 

the lower NMOS transistor switches from high to low, a falling input transition. 
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Fig.5. 28 Delay comparison of a two-input NAND with falling input and constant 
inverter load, 1A = , 1 0B = → . 

 

Fig. 5.28 shows the delay versus the input fall time of the transition described 

above. The input fall time varies from 10 ps  to 2500 ps . The widths of the PMOS 

transistors are chosen as 4.8um  and the widths of the NMOS transistors vary from 

1.2nW um= , 2.4um , 4.8um , and 9.6um . Hence, the width ratio of PMOS transistors to 

NMOS transistors varies from 4k = , 2, 1, to 0.5. The average relative error of the 

piecewise linear model is -8.93% with respect to SPICE simulation. The maximum 

relative error is -790.3%. The average absolute error of the piecewise linear model is -

15.46ps with respect to SPICE simulation. The maximum absolute error is 26.08ps. 

The output rise time versus the input fall time of the same transition is shown in 

Fig. 5.29. The input fall time varies from 10 ps  to 1200 ps . The average relative error of 

the piecewise linear model is -9.38% with respect to SPICE simulation. The maximum 
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relative error is -27.7%. The average absolute error of the piecewise linear model is -

31.81ps with respect to SPICE simulation. The maximum absolute error is -143.8ps. 
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Fig.5. 29 Output rise time comparison of a two-input NAND with falling input 
and constant inverter load, 1A = , 1 0B = → . 

 

Fig. 5.30 plots the voltage output transient response of the output node (V1) and 

the internal node (V2) of an input transition time of 100Tint ps= . 0.5k = . 
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Fig.5. 30 Output waveforms comparison of a two-input NAND with falling input 
and constant inverter load. 100Tint ps= . 1A = , 1 0B = → . 

 



 103

5.2 OAI Gate Analysis 

5.2.1 OAI Gate with Constant Capacitance Load 

Fig. 5.31 shows a CMOS implementation of OAI gate with input signals A, B, and 

C. The gate drives a constant capacitance load, 100loadC fF= . We will assume that only 

one input signal is switching at any time. Multiple inputs can be handled by making inV  a 

column matrix. The pull-up transistors are of the same size and so are the pull-down 

transistors. The width ratio of PMOS transistors to NMOS transistors varies from 

0.5k = , 1,  2 to 4.  
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Fig.5. 31 OAI gate with constant capacitance load 

 

5.2.1.1 0 1A = → , 1B = , and 0C =  

The input node A of the transistor M1 switches from low to high, a rising 

transition. M1 switches on and M4 switches off. The node B stays at B DDV V=  so the 
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NMOS transistor M2 is on and the PMOS transistor M6 if off. The node C connects to 

the ground so the NMOS transistor M3 is off and PMOS transistor M5 is on. 

Fig. 5.32 shows the delay versus the input rise time of the transition described 

above. The input rise time varies from 10 ps  to 2500 ps . The widths of the NMOS 

transistors are chosen as 2.4um  and the widths of the NMOS transistors vary from 

1.2pW um= , 2.4um , 4.8um , and 9.6um . Hence, the width ratio of PMOS transistors to 

NMOS transistors varies from 0.5k = , 1, 2 to 4. The average relative error of the 

piecewise linear model is -2.03% with respect to SPICE simulation. The maximum 

relative error is -8.4%. 
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Fig.5. 32 Delay comparison of an OAI gate with rising input and constant 
capacitance load, 0 1A = → , 1B = , and 0C = . 

 

The output fall time versus the input rise time of the same transition is shown in 

Fig. 5.33. The input rise time varies from 10 ps  to 1200 ps . The average relative error of 

the piecewise linear model is -7.27% with respect to SPICE simulation. The maximum 

relative error is -7.68%.  
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Fig.5. 33 Output fall time comparison of an OAI gate with rising input and 
constant capacitance load, 0 1A = → , 1B = , and 0C = . 

 

Fig. 5.34 plots the voltage output transient response of the output node (V1) and 

the internal node (V2) of an input transition time of 100Tint ps= . 4k = . 
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Fig.5. 34 Output waveforms comparison of an OAI gate with rising input and 
constant capacitance load. 100Tint ps= . 0 1A = → , 1B = , and 0C = . 

 

 
5.2.1.2 1 0A = → , 1B = , and 0C =  



 106

 The input node A of the transistor M1 switches from high to low, a falling 

transition. M1 switches off and M4 switches on. The node B stays at B DDV V=  so the 

NMOS transistor M2 is on and the PMOS transistor M6 if off. The node C connects to 

the ground so the NMOS transistor M3 is off and PMOS transistor M5 is on. 

Fig. 5.35 shows the delay versus the input fall time of the transition described 

above. The input fall time varies from 10 ps  to 2500 ps . The widths of the PMOS 

transistors are chosen as 4.8um  and the widths of the NMOS transistors vary from 

1.2nW um= , 2.4um , 4.8um , and 9.6um . Hence, the width ratio of PMOS transistors to 

NMOS transistors varies from 4k = , 2, 1 to 0.5. The average relative error of the 

piecewise linear model is -0.63% with respect to SPICE simulation. The maximum 

relative error is 10.39%. 
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Fig.5. 35 Delay comparison of an OAI gate with falling input and constant 
capacitance load, 1 0A = → , 1B = , and 0C = . 

 



 107

350

400

450

500

550

600

650

700

750

800

0 200 400 600 800 1000 1200

Input fall time (ps)

O
ut

pu
t r

is
e 

tim
e 

(p
s)

SPICE (k=1) Delay Model
SPICE (k=2) Delay Model
SPICE (k=4) Delay Model
SPICE (k=0.5) Delay Model

 
Fig.5. 36 Output rise time comparison an OAI gate with falling input and constant 
capacitance load, 1 0A = → , 1B = , and 0C = . 

 

The output rise time versus the input fall time of the same transition is shown in 

Fig. 5.36. The input fall time varies from 10 ps  to 1200 ps . The average relative error of 

the piecewise linear model is -5.71% with respect to SPICE simulation. The maximum 

relative error is -10.7%.  

Fig. 5.37 plots the voltage output transient response of the output node (V1) and 

the internal node (V2) of an input transition time of 100Tint ps= . 4k = . 
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Fig.5. 37 Output waveforms comparison of an OAI gate with falling input and 
constant capacitance load. 100Tint ps= . 1 0A = → , 1B = , and 0C = . 
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5.2.1.3 1A = , 0B = , and 0 1C = →  

The input node A of the transistor M1 stays at A DDV V=  so the NMOS transistor 

M1 is on and the PMOS transistor M4 is off. The node B connects to the ground so the 

NMOS transistor M2 is off and PMOS transistor M6 is on. The node C switches from 

low to high, a rising transition. M3 switches on and M5 switches off. 

Fig. 5.38 shows the delay versus the input rise time of the transition described 

above. The input rise time varies from 10 ps  to 2500 ps . The widths of the NMOS 

transistors are chosen as 2.4um  and the widths of the PMOS transistors vary from 

1.2pW um= , 2.4um , 4.8um , and 9.6um . Hence, the width ratio of PMOS transistors to 

NMOS transistors varies from 0.5k = , 1, 2 to 4. The average relative error of the 

piecewise linear model is -8.0% with respect to SPICE simulation. The maximum relative 

error is -13.4%. 
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Fig.5. 38 Delay comparison of an OAI gate with rising input and constant 
capacitance load, 1A = , 0B = , and 0 1C = → . 
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The output fall time versus the input rise time of the same transition is shown in 

Fig. 5.39. The input rise time varies from 10 ps  to 1200 ps . The average relative error of 

the piecewise linear model is -6.92% with respect to SPICE simulation. The maximum 

relative error is -9.27%.  

Fig. 5.40 plots the voltage output transient response of the output node V1 and the 

internal nodes V2 and V3 of an input transition time of 1000Tint ps= . 4k = . 
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Fig.5. 39 Output fall time comparison of an OAI gate with rising input and 
constant capacitance load, 1A = , 0B = , and 0 1C = → . 
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Fig.5. 40 Output waveforms comparison of an OAI gate with rising input and 
constant capacitance load. 1000Tint ps= . 1A = , 0B = , and 0 1C = → . 
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5.2.1.4 1A = , 0B = , and 1 0C = →  

The input node A of the transistor M1 stays at A DDV V=  so the NMOS transistor 

M1 is on and the PMOS transistor M4 is off. The node B connects to the ground so the 

NMOS transistor M2 is off and PMOS transistor M6 is on. The node C switches from 

high to low, a falling transition. M3 switches off and M5 switches on. 
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Fig.5. 41 Delay comparison of an OAI gate with falling input and constant 
capacitance load, 1A = , 0B = , and 1 0C = → . 

 

Fig. 5.41 shows the delay versus the input fall time of the transition described 

above. The input fall time varies from 10 ps  to 2500 ps . The widths of the PMOS 

transistors are chosen as 4.8um  and the widths of the NMOS transistors vary from 

1.2nW um= , 2.4um , 4.8um , and 9.6um . Hence, the width ratio of PMOS transistors to 

NMOS transistors varies from 4k = , 2, 1 to 0.5. The average relative error of the 

piecewise linear model is -12.9% with respect to SPICE simulation. The maximum 

relative error is -22.8%. 
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The output rise time versus the input fall time of the same transition is shown in 

Fig. 5.42. The input fall time varies from 10 ps  to 1200 ps . The average relative error of 

the piecewise linear model is -8.54% with respect to SPICE simulation. The maximum 

relative error is -15.45%.  
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Fig.5. 42 Output rise time comparison of an OAI gate with falling input and 
constant capacitance load, 1A = , 0B = , and 1 0C = → . 
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Fig.5. 43 Output waveforms comparison of an OAI gate with falling input and 
constant capacitance load. 100Tint ps= . 1A = , 0B = , and 1 0C = → . 
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Fig. 5.43 plots the voltage output transient response of the output node V1 and the 

internal nodes V2 and V3 of an input transition time of 100Tint ps= . 4k = . 

 

5.2.2 Special Issue on the Selection of the Substrate Cutoff Boundary 

As we have noticed, when modeling the OAI gate with bottom NMOS switching, 

during the fast input transition region, the delay curve predicted by the piecewise linear 

model shows concave up behavior. Although this behavior also shows in the SPICE 

simulation, the model seems to overestimate this effect. This can be shown more clearly 

in the following circuit: 

Fig. 5.44 shows a CMOS implementation of OAI gate with input signals A, B, and 

C. The gate drives a constant inverter load, / 4.8 / 2.4p nW W um um= . We will assume that 

only one input signal is switching at any time. Multiple inputs can be handled by making 

inV a column matrix. The pull-up transistors are of the same size and so are the pull-down 

transistors. The width ratio of PMOS transistors to NMOS transistors varies from 

0.5k = , 1, 2 to 4.  

The input transition is 1A = , 0B = , and 1 0C = → . The input node A of the 

transistor M1 stays at A DDV V=  so the NMOS transistor M1 is on and the PMOS 

transistor M4 is off. The node B connects to the ground so the NMOS transistor M2 is off 

and PMOS transistor M6 is on. The node C switches from high to low, a falling 

transition. M3 switches off and M5 switches on. The delay curve is shown in Fig. 5.45. 

The concave up behavior is very obvious in Fig. 5.45. Further investigation found 

that the one of the model parameters δ , the value of the substrate cutoff boundary is 

somehow related to this behavior or at least has the effect on the very fast input 
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transition. Fig. 5.45 is the plot with δ = ∞ , i.e., no cutoff boundary is set. The output 

waveforms look like Fig. 5.46. 
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Fig.5. 44 An OAI gate with constant inverter load 
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Fig.5. 45 Delay comparison of an OAI gate with falling input and constant 
inverter load, 1A = , 0B = , and 1 0C = → . No cutoff boundary. 
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Fig.5. 46 Output waveforms comparison of an OAI gate with falling input and 
constant capacitance load. 10Tint ps= . 1A = , 0B = , and 1 0C = → . No cutoff 

boundary. 

 

It can be seen that the node voltages of node 1 and node 2 drop as low as about -2 

volts during the transition which are unrealistic in real circuits. Normally due to the 

substrate diode, the overshoot cannot be over 0.6 volts. In the following case, we set the 

cutoff boundary 0.6vδ = , the delay curve now looks like: 
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Fig.5. 47 Delay comparison of an OAI gate with falling input and constant 
inverter load, 1A = , 0B = , and 1 0C = → . 0.6δ = . 
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And the output waveforms are shown in Fig. 5.48. 
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Fig.5. 48 Output waveforms comparison of an OAI gate with falling input and 
constant capacitance load. 10Tint ps= . 1A = , 0B = , and 1 0C = → . 0.6vδ = . 

 

In Fig. 5.47,  after adding the cutoff boundary, the model fits better in the very 

fast input region. The voltage overshoot in Fig. 5.48 is only as small as -0.6 volt which is 

closer to the SPICE simulation results. Although the concave up behavior still exists in 

Fig. 5.47, further improvement can be made by: 1. further decrease the cutoff boundary 

and make it comparable to SPICE. 2. add more piecewise linear regions . 

The average relative error of the piecewise linear model is -16.78% with respect 

to SPICE simulation. The maximum relative error is -31.09%.  The average absolute 

error of the piecewise linear model is -59.56ps with respect to SPICE simulation. The 

maximum absolute error is -154.02ps. 

Observing the SPICE simulation, we found that the maximum overshoot of the 

SPICE simulation is around 0.3v− . In order to test the sensitivity of the model parameter 

δ , we further reduced the cutoff boundary to 0.3vδ = , the delay curve looks like 
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And the output waveforms are shown in Fig. 5.50. 
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Fig.5. 49 Delay comparison of an OAI gate with falling input and constant 
inverter load, 1A = , 0B = , and 1 0C = → . 0.3δ = . 
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Fig.5. 50 Output waveforms comparison of an OAI gate with falling input and 
constant capacitance load. 10Tint ps= . 1A = , 0B = , and 1 0C = → . 0.3vδ = . 
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As expected, further decreasing the value of δ , the predicted delay value for the 

very fast input transitions decreases. The delay curves in Fig. 5.49 even show the 

property of concave down in the fast transition regions. The minimal output voltage 

values shown in Fig. 5.50 are limited to 0.3v−  due to the cutoff boundary. 

Pushing the cutoff boundary further to the extremity at 0vδ = , i.e., no output 

curves allow rise or fall beyond DDV  and GND , this behavior of delay dropping in the 

fast input transition regions is getting more obvious. 
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Fig.5. 51 Delay comparison of an OAI gate with falling input and constant 
inverter load, 1A = , 0B = , and 1 0C = → . 0δ = . 

 

 

Fig. 5.51 shows that the concave down effect is getting worse if we set the cutoff 

boundary the same as the ground line. The model prediction has an obvious lead time 

with regard to the SPICE simulations for a 10ps input fall time in Fig. 5.52.  

So the piecewise linear model is sensitive to the choice of cutoff boundary. The 

suitable value of cutoff boundary δ  is the one that best fits the SPICE simulations. 
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Fig.5. 52 Output waveforms comparison of an OAI gate with falling input and 
constant capacitance load. 10Tint ps= . 1A = , 0B = , and 1 0C = → . 0δ = . 

 

5.3 Conclusion 

In this chapter, extensive tests have been made on a two-input NAND gate and an 

OAI gate. We compare the piecewise linear model with respect to SPICE simulation by 

considering the different input transition slopes, direction of transitions (rising input or 

falling input), pull-up and pull-down transistor ratios, and loading effects. The piecewise 

linear model shows a good agreement with SPICE simulation in general. The piecewise 

linear model can also predict the output waveforms of different nodes in the circuit and 

shows good fit to the SPICE output waveform over a very wide of input transition range. 

Thus, it is possible to utilize the piecewise linear model to model the circuit power 

consumptions. 

We also discussed the concave up problems shown in the delay characteristic 

curves and proposed some possible solutions. 
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CHAPTER VI 

 

CONCLUSION 

 

A VLSI circuit which contains millions of transistors can be divided into smaller 

resistance connected regions. The delay through the circuit is just the sum of the delays in 

each resistance connected region. The delay model used in a fast simulator must satisfy 

two criteria: simple and accurate.  

This dissertation presented a piecewise linear delay model which includes the 

signal input slope in the delay computation. Circuit enters into different piecewise linear 

regions when the transistors turning on and off or going in and out of the saturation 

region. Circuit dynamic equations are solved in each piecewise linear region by using 

steady state solution. The piecewise linear delay model is a single time constant model. In 

each piecewise linear region, the time constant is a modified version of Elmore delay. 

Since the output waveform is known in each piecewise linear region, the circuit 

delay and the output slope can be easily obtained from the output waveform. The delay 

computed in the piecewise linear delay model is the mid-point delay which is decided by 

the time when the output voltage waveform hits the half- DDV  point. Output slope is 

determined by the first half of the output transition waveform. 

Extensive comparisons have been made between the piecewise linear model and 

the SPICE simulations for simple gates, such as an inverter, a two-input NAND, and an
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OAI gate. Excellent accuracies have been observed. The piecewise linear model is 

capable of predicting the output waveforms and the propagation delay over a variety of 

input and output conditions.  

The piecewise linear model can handle large complicated circuits by introducing 

smaller resistance connected regions. The piecewise linear model is also scalable from 

one technology to another by choosing different set of technology related model 

parameters. 

The model has the simulation speed advantages over SPICE since usually each 

resistance connected region has only a limited number of transistors and nodes. Hence the 

matrix operations based on the smaller resistance connected region are faster than SPICE. 

The simulation speed of the piecewise linear model will be comparable to switch models 

like the one used in IRSIM. However, the piecewise linear delay model will be slower 

than IRSIM since IRSIM has a much simpler timing model.  

In general, it is possible to implement a fast circuit simulator based on the 

piecewise linear model or include the piecewise linear model into an existing circuit 

simulator such as IRSIM because of its accuracy and speed advantages.  

This dissertation is focus on the accuracy of the delay model. A comprehensive 

test has been made on the simple gates to verify the circuit accuracy. Unfortunately, we 

have not tested the simulation speed of the piecewise linear model yet. So one of the 

important research works need to be done next is to compare the simulation speed of the 

model with respect to the SPICE simulation over some large circuits or test benches.  

The piecewise linear model is applicable to any general circuit topology. More 

works need to be done for the delay of complicated circuits or more general cases.  
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Another thought is that we claim that the piecewise linear is scalable by picking different 

model parameters for different technology. However, all the researches done so far are 

for AMI 0.6u technology, no work has been conducted to verify the scalability of the 

model. 
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APPENDIX A 

 

PIECEWISE LINEAR MODEL PARAMETERS 

 

A.1 Current Model Related Parameters 

 

pW (um) spR ( /Ω ) TpV (v) pa  

1.2 42.1 10×  -1.8 1.251763 

2.4 42.1 10×  -1.6 1.396283 

4.8 42.1 10×  -1.49 1.348792 

9.6 42.1 10×  -1.386 1.352994 

TABLE A. 1  Falling Input PMOS Parameters 

 

pW (um) spR ( /Ω ) TpV (v) pa  

1.2 43.3 10×  -1.292 2.9 

2.4 43.3 10×  -1.241 2.8 

4.8 43.3 10×  -1.243 2 

9.6 43.3 10×  -1.161 1.2 

TABLE A. 2  Rising Input PMOS Parameters 
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nW (um) snR ( /Ω ) TnV (v) na  

1.2 41.7 10×  1.34 1.38442 

2.4 41.7 10×  1.1 1.64235 

4.8 41.7 10×  0.99 1.03714 

9.6 41.7 10×  0.96 1.43759 

TABLE A. 3  Falling Input NMOS Parameters 

 

nW (um) snR ( /Ω ) TnV (v) na  

1.2 41.3 10×  1.6 1.747667 

2.4 41.3 10×  1.24 1.726266 

4.8 41.3 10×  1.2 1.741734 

9.6 41.3 10×  1.09 1.706108 

TABLE A. 4  Rising Input NMOS Parameters 

 

A.2 Other Model Related Parameters 

3 22.449 10 /oxC F m−= ×  [gate oxide capacitance per unit area] 

0.3partnx =   [NMOS channel charge partition parameter] 

0.3partpx =   [PMOS channel charge partition parameter] 

0.6δ =    [substrate cutoff boundary] 

5DDV v=   [power supply voltage] 
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APPENDIX B 

 

CHANNEL CHARGE STORAGE MODEL 

 

The capacitive currents into the charge storage elements are: 

G GS GD GB
G GS GD GB

dQ dV dV dVi C C C
dt dt dt dt

= = + +                                                    (B.1) 

S SG SD SB
S SG SD SB

dQ dV dV dVi C C C
dt dt dt dt

= = + +                                                      (B.2) 

DG DSD DB
D DG DS DB

dV dVdQ dVi C C C
dt dt dt dt

= = + +                                                   (B.3) 

( )B G S Di i i i= − + +                                                                                               (B.4)    

 where ijC  are all independent non-linear functions of the terminal voltages and 

are defined by the following: 

, , , ,i
ij

ij

QC i j G D S B
V
∂

= =
∂

                                                                               (B.5) 

It is most convenient to use these equations rewritten in terms of the individual terminal 

voltages GV , SV  , DV  , and BV . 

G G S D B
G GG GS GD GB

dQ dV dV dV dVi C C C C
dt dt dt dt dt

= = − − −                                       (B.5) 

S G S D B
S SG SS SD SB

dQ dV dV dV dVi C C C C
dt dt dt dt dt

= = − + − −                                       (B.6) 
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G SD D B
D DG DS DD DB

dV dVdQ dV dVi C C C C
dt dt dt dt dt

= = − − + −                                    (B.7) 

( )B G S Di i i i= − + +                                                                                               (B.8)   

where 

GG GS GD GBC C C C= + +                                                                                        (B.9) 

SS SG SD SBC C C C= + +                                                                                       (B.10) 

DD DG DS DBC C C C= + +                                                                                     (B.11) 

In digital applications, the substrate terminal is biased at a constant voltage so that 

the last column in Eq. (B.1) to (B.4) can be ignored. 

The following is a piece-wise linear approximation of the BSIM model. Since it 

uses the same definitions of TV  and DSsatV , the model has the same regions of validity as 

the piece-wise linear current model. 

Ohmic region: 

( ) ( ) ( )Gohm ox GS T S D ox DS SB ox SB T FBQ C V V a a C V b C V V V= − − + + + −                      (B.12) 

1 ( )
2Sohm ox GS T S ox DSQ C V V a C V− = − −                                                                  (B.13) 

1 ( )
2Dohm ox GS T D ox DSQ C V V a C V− = − −                                                                 (B.14) 

Saturation region: 

( ) ( )Gsat ox GB FB SB ox SB T FBQ bC V V b C V V V= − + + −                                                (B.15) 

(1 ) ( )Ssat part GS ox GS TQ x b C V V− = − −                                                                    (B.16) 

( )Dsat part GS ox GS TQ x b C V V− = −                                                                           (B.17) 

Cutoff region: 
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( )Goff SB ox GB FBQ b C V V= −                                                                                   (B.18) 

0SoffQ− =                                                                                                          (B.19) 

0DoffQ− =                                                                                                         (B.20) 

Using continuity of charge at the ohmic-saturation boundary and equating Eq. (B.13) and 

(B.16), we find: 

1( (1 ) )
2S part GSa a x b= − −                                                                                   (B.21) 

Similarly, by equating Eq. (B.14) and (B.17), we find: 

1( )
2D part GSa a x b= −                                                                                          (B.22) 

Putting back the values for TV , Sa , and Da  back into Eq. (B.12) and (B.15) gives: 

( ) (1 ) ( )Gohm ox GS T ox DS ox SB T FBQ C V V b aC V bC V V V= − − − + + −                           (B.23) 

( )Gsat ox GB FBQ bC V V= −                                                                                     (B.24) 

( )Goff ox GB FBQ bC V V= −                                                                                     (B.25) 

The BSIM model uses 2
3

b =  gives the best fit in the ohmic and saturation 

regions. These values leave GQ , and therefore the gate current, dependent on DSV  and 

SBV  when the transistor is on. This dependence greatly complicates the evaluation of the 

model. Rather than choosing the values for b  which best fit the BSIM model, we choose 

values that leave  GQ   independent of DSV  and SBV . Choosing 1b =  , Eq. (B.12) to (B.20) 

can be written as: 

( )G ox GB FBQ C V V= −                                                                                          (B.26) 
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1 1( ) ( )
2 2Sohm ox GS T part ox DSQ C V V a b x b C V− = − + − −                                            (B.27) 

1 1( ) ( )
2 2Dohm ox GS T part ox DSQ C V V a x b C V− = − − −                                                 (B.28) 

(1 ) ( )Ssat part ox GS TQ x bC V V− = − −                                                                       (B.29) 

( )Dsat part ox GS TQ x bC V V− = −                                                                              (B.30) 

 Taking the derivative of Eq.(B.26) to (B.30) with respect to t , the charge storage 

currents are: 

G
Goff ox

dVi bC
dt

=                                                                                                (B.31) 

(1 )( 1) (1 )G S D
Gohm ox

dV dV dVi C b a b a
dt dt dt

⎡ ⎤= + − − − −⎢ ⎥⎣ ⎦
                                        (B.32) 

1 1 1 1[ ( )] ( )
2 2 2 2

G S D
Sohm ox part part

dV dV dVi C a b x b a b x b
dt dt dt

⎡ ⎤= − + + − − − − −⎢ ⎥⎣ ⎦
       (B.33) 

1 1 1 1[ ( )] ( )
2 2 2 2

G S D
Dohm ox part part

dV dV dVi C a x b a x b
dt dt dt

⎡ ⎤= − + − − + −⎢ ⎥⎣ ⎦
                 (B.34) 

G
Gsat ox

dVi bC
dt

=                                                                                                 (B.35) 

(1 ) (1 ) ]G S
Ssat ox part part

dV dVi C x b x b
dt dt

⎡ ⎤= − − + −⎢ ⎥⎣ ⎦
                                               (B.36) 

G S
Dsat ox part part

dV dVi C x b x b
dt dt

⎡ ⎤= − +⎢ ⎥⎣ ⎦
                                                               (B.37) 

Comparing with the derivatives in (B.5) to (B.8) gives the linearized results for 

the transistor capacitances in TABLE 2.2. 
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APPENDIX C 

 

STEADY STATE SOLUTION FOR SINGULAR CONDUCTANCE MATRIX 

 

The conductance matrix for a resistance connected region will be singular 

whenever the region does not include the power or ground node or the source node of any 

transistor in saturation.  It is easy to show that 

0ij ij
j i

G G= =∑ ∑                                                                                               (C.1) 

for a singular conductance matrix. This kind of singular G  matrix allows non-zero 

V solutions have the form 

1
[ ]

1
V V

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

…                                                                                                        (C.2) 

V  is the same for each node i since 

1
[ ] 0

1
i ij ij

j j
GV G V V G

⎡ ⎤
⎢ ⎥= = =⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑…                                                                    (C.3) 

The capacitance matrix is not singular since there will always be capacitive 

coupling to ground through the substrate. Taking the sum of all rows of the dynamic 

equation (3.15) gives 
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0 0( ) [ ( ) ( )] 0j
ij in in i

j i i

dV
C I t I t t

dt
+ + − =∑ ∑ ∑                                                       (C.4) 

which represents charge conservation, the first term being the rate of change of the total 

charge stored on all of the internal capacitances in the resistance connected region and the 

second term being current leaving the resistance connected region. Equating terms of the 

same power of t gives 

( ) [ ]ij j in i
j i i

C V I= −∑ ∑ ∑                                                                                    (C.5) 

0( ) [ ( )]ij j in i
j i i

C V I t= −∑ ∑ ∑                                                                               (C.6) 

V is independent of j, then 

[ ]

( )

in i
i

ij
j i

I
V

C

−
=

∑
∑ ∑

                                                                                                  (C.7) 

The rest of the steady state solution can be found by picking any reference node, 

r, in the resistance connected region that has a non-zero capacitance ir
i

C∑ . The charge 

conservation equation can be used to define rV  in terms of the other node voltages. Using 

terms in (C.4) independent of t gives 

0( ) [ ( )]

( )

ij j in i
j r i i

r
ir

i

C V I t
V

C
≠

− −
=
∑ ∑ ∑

∑
             (C.8) 

The boundary condition of the initial charge 

0 0( ) ( ) ( ) ( )ij j ij j
j i j i

C V t C V t=∑ ∑ ∑ ∑                                                                    (C.9) 

can be used to define 0( )rV t  in terms of the other node voltages. 
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0 0

0 0

( )( ( ) ( ))
( ) ( )

( )

ij j j
j r i

r r
ir

i

C V t V t
V t V t

C
≠

−
= +

∑ ∑
∑

                                                     (C.10) 

Any other node, i r≠ , must still satisfy the constraints from the original dynamic 

equation. 

( )r r r r inGV G V CV C V I+ = − + +                                                                       (C.11) 

            0 0 0( ) ( ) ( ( ))r r r r inGV t G V t CV C V I t+ = − + +                                                       (C.12) 

where G and C matrices are now further reduced by removing the row and columns 

corresponding to node r. The reduced G matrix is now non-singular and its inverse can be 

used to find the steady state solution. rG  and rC  are the column matrices for column r in 

the original G and C matrices. 

[ ]r i ir ij
j r

G G G
≠

= = −∑                                                                                         (C.13) 

[ ]r i irC C=                                                                                                         (C.14) 

Define 

 
'

'

'
'

,
ir i j

i
ij ij

i r
i

G C
G i r j r

C
Γ = − ≠ ≠

∑
∑

                                                                 (C.15) 

substituting for rV  gives the solution for i rV ≠  

0 ' '
1' '

'
'' ' ' '

' ' ' '

[ ( )] [ ]
( [ ] )

( )

in i in i
i i

i r ij jj in j
j r ji j i j

j i j i

I t I
V C I

C C
−

≠
≠

= − + Γ −
∑ ∑

∑ ∑∑ ∑ ∑∑
                                (C.16) 

Plug into (C.8), 
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'0
'1

' ' ' '
' ' " '

' "
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≠ ≠
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   (C.17) 

The same procedure is repeated to find ( )0i rV t≠ , 

' 0 0 '
' 1 '
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'' ' '

' ' '
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'1 1
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' '' '

' ''
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≠
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≠
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∑
∑ ∑ ∑∑

                 (C.18) 

where χ  is defined similar to Γ  as 

'
'

'
'

,
ir i j

i
ij ij

i r
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C C
C i r j r

C
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                                                                    (C.19) 
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(C.20) 
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APPENDIX D 

 

ELMORE DELAY FOR SINGULAR CONDUCTANCE MATRIX 

 

When the conductance matrix is singular, we cannot use 1G−  to define the Elmore 

delay. Proceeding as we did for the steady state solution, we use charge conservation to 

define the transient for an arbitrary node r in terms of the other node transients. 

[ ( ) ( ) ] 0i
i

dC V V G V V
dt

− + − =∑                                                                       (D.1) 

0 0( )( ) ( )( ( ) ( ))ij j j ij j j
j i j i

C V V C V t V t− = −∑ ∑ ∑ ∑                                                (D.2) 

Now use charge conservation to define the transient for an arbitrary node r in 

terms of the other node transients. 

( )( )ij j j
j r i

r r
ir

i

C V V
V V

C
≠

− −
− =

∑ ∑
∑

                                                                          (D.3) 

substituting for r rV V−  from Eq. (3.41) gives 

( ) ( ) ( ) ( )r r r r r r
d dG V V G V V C V V C V V
dt dt

− + − = − − − −                                    (D.4) 

( ) ( )dV V V V
dt

χΓ − = − −                                                                                   (D.5) 

1( ) ( )dV V V V
dt

χ−− = −Γ −                                                                                (D.6)
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Then we can get the Elmore delay for all nodes except node r, 

1
0 0

0 0

[ ( ) ( ) ]

( ) ( )
i r

i r
i r i r

V t V t

V t V t

χ
τ

−
≠

≠
≠ ≠

Γ −
=

−
                                                                                        (D.7) 

and the Elmore delay for node r, 

0 0 0

0 0 0

( ) ( )

( ) ( )

j j j j
j r

r
r r r

C V t V t

C V t V t

τ
τ ≠

− −
=

−

∑
                                                                                      (D.8) 
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