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CHAPTER 1

INTRODUCTION

It is impossible to predict when a part of the power system will fail. Normally, each

component of a power system is equipped with an automatic protection system, which

take it out of service if it is operated beyond certain limit or a fault occurs. In any

event an outage of one part of the system may push some other parts of the system

to exceed their respective limits, which would result in further outages. Due to such

cascading outages, a major portion of the system or the entire system may collapse.

This situation is called system blackout.

In power systems, a contingency could be the loss of one or more transmission lines

or the loss of on-line generators. By having redundancy in design and proper flow of

power it is possible to prevent cascading failures. A system with such characteristics

is considered secure. The problem of finding the minimum-cost operating state while

maintaining security is called the security-constrained optimal power flow (SCOPF)

problem. Operating costs can be reduced by taking into account the corrective capa-

bilities of system after the occurrence of a contingency [1]. More economical solution

of system security is possible by taking security as an economic cost instead of a

constraint. Moreover, consideration of the probabilities of the contingencies would

further help to bring down the operating cost. This idea led to the formulation of

expected security cost optimal power flow (ESCOPF).

Various extensions of the standard economic dispatch problem, to be discussed

in Chapter 2, can include power system security and reliability. The optimal power

flow (OPF) considers both economic dispatch and stability, but it requires heavy
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computation [2]. As reference [3] notes

The security-constrained optimal control of an electric power system generation-

transmission network is an extremely difficult task. This difficulty tends to

increase with growth in system size, interconnection, and other operating

problems.

All forms of OPF have enormous scope and potential for on-line application as well

as off-line applications in system planning. For on-line use, computational burden is

the primary problem that we must overcome to achieve on-line OPF. This problem

can be resolved, up to a certain extent, if computational burden is divided among

several or many computers. This will speed up the solution process. The ESCOPF

problem can be decoupled into numerous subproblems, which can be distributed

among several processors. The solution can then be obtained by solving the problem

in parallel fashion, as described in Chapter 3. Application of ESCOPF has been

discussed in Chapter 4.
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CHAPTER 2

LITERATURE REVIEW

2.1 Economic Dispatch

Economic dispatch is the process of providing the required real power load demand

and losses by allocating generation among a set of on-line generating units such that

total generation cost is minimized. The objective of the problem is to minimize

the total cost of generation subject to supplying the total load demand and losses.

Mathematically the problem can be stated as [4]:

min
{PG1

,··· ,PGn}

n∑
i=1

Ci(PGi
) (2.1)

subject to:

n∑
i=1

PGi
= PD + PL(PG2 , · · · , PGn) (2.2)

Pmin
Gi

≤ PGi
≤ Pmax

Gi
, where i ∈ {1, · · · , n} (2.3)

where, C is the total generation cost, PGi
is the real power generation level of the

ith generator, PD represents the total load demand, and PL is the transmission losses

associated with a particular set of generation levels.

The first constraint implies that the sum of the output powers must equal the load

demand plus losses. The two inequality constraints imply that the power output of

each unit must be greater than or equal to the minimum power permitted and must

also be less than or equal to the maximum power permitted on that particular unit.

3



In the above formulation, we do not consider PL to be a function of PG1 , since the

slack bus generation PG1 is completely determined by the injections at other buses

and the slack bus demand PD1 . Moreover, we have suppressed the dependence of PL

on the loads {PDi
}, which are assumed to be fixed in quantity and location. The

Lagrangian function for the above mentioned problem can be written as:

L =
n∑

i=1

Ci(PGi
)− λ

[
n∑

i=1

PGi
− PD − PL(PG2 , · · · , PGn)

]
. (2.4)

Differentiating and setting to zero yields

∂L
∂PG1

= MC1 − λ = 0, and

∂L
∂PGi

= MCi − λ

(
1− ∂PL

∂PGi

)
= 0, i = 2, . . . , n

⇒ λ = MC1, and

λ = MCi
1(

1− ∂PL

∂PGi

) , i = 2, . . . , n

The quantity λ, the Lagrange multiplier, is known as the “system lambda”. It is the

cost associated with generating an additional unit of energy.

Let

Li =
1(

1− ∂PL

∂PGi

) , i = 2, . . . , n (2.5)

and L1 = 1, (2.6)

L1 and Li are called the loss-penalty factors. Condition for economic dispatch can

be written as

λ = MCi · Li, i = 1, . . . , n (2.7)

Consider a case when by increasing a generator’s output increases system losses,

4



then that generator’s entire increment of generation is not available for the load. For

example, if a generator’s output increases by 1MW but losses increase by 0.1MW.

The net real power provided by the generator to be used by the load is 0.9MW. So

the cost of this increment (1MW) is not the generator’s marginal cost but (MC/0.9)

instead, or (MC i · Li) [4]. So the penalty factor in this case will be 1.111.

Similarly, an increase in a generator’s output could result in a decrease in system

losses. Such a generator would have a loss penalty factor Li < 1, because the effective

cost of incremental generation from such a generator would be less than its actual

marginal cost.

2.2 Loadflow

The principal information obtained from the loadflow analysis is the magnitude and

phase angle of the voltage at each bus. Using these values, we can calculate real and

reactive power flows in transmission lines and transformers, and the line losses.

2.2.1 Flows on transmission systems

Consider a network of transmission lines connecting a set of buses or nodes in a power

transmission system. The notation used in this section is illustrated in figure 2.1,

following the treatment of [4]. The double-subscript notation S̄ik and ~Iik, for k 6= i,

Bus i

~Vi = Vi∠θi

-
~Iik

-S̄ik ȳik = 1/~zik
- To bus k

?~Iii ?S̄ii

ȳii = 1/z̄ii

-
~Ii

-S̄iInjection to
transmission

system

Figure 2.1: Bus i and connection to transmission system [4]

5



indicates complex power or phasor current (respectively) flowing from bus i towards

bus k along line ik. For i = k, the double subscript notations S̄ii and ~Iii indicate

complex power and phasor current flowing to ground through the shunt element

at bus i. The single subscript notations S̄i and ~Ii indicate total complex power and

phasor current injection into the transmission system at bus i. Generally, the complex

power injected at bus i will consist of power generated by any generator(s) at bus i,

minus any power consumed at bus i, or

S̄i = S̄Gi
− S̄Di

. (2.8)

Consider a line between bus i and bus k, with a series impedance of z̄ik, the series

admittance of the line will be defined as

ȳik =
1

z̄ik

. (2.9)

If there is no direct connection between bus i and bus k, then ȳik = 0. Similarly we

can define the admittance of any shunt element connecting bus i to ground as ȳii,

including line charging1 for every transmission line connected to the bus i. The

current flowing from bus i towards bus k is

~Iik =
1

z̄ik

(~Vi − ~Vk) = ȳik(~Vi − ~Vk), (2.10)

whereas the current flowing through the shunt element yii from bus i to ground is

~Iii = ȳii
~Vi, (2.11)

where ~Vi is the phasor voltage at bus i. If the total number of buses is n, the total

1Line charging is the capacitive effect due to which current flows in the transmission line whether
it is loaded or not.

6



current injected into the power transmission system at bus i is

~Ii = ȳii
~Vi +

n∑
k=1
k 6=i

ȳik

(
~Vi − ~Vk

)
, (2.12)

or, collecting the ~Vi terms,

~Ii = ~Vi

n∑

k=1

ȳik −
n∑

k=1
k 6=i

ȳik
~Vk. (2.13)

The right side of the above equation motivates the following definition:

Ȳii =
n∑

k=1

ȳik, (2.14)

Ȳik = −ȳik, i 6= k. (2.15)

So we can write

~Ii =
n∑

k=1

Ȳik
~Vk. (2.16)

The definitions in equations (2.14) and (2.15) can be written, in matrix form, as

Ȳbus =




ȳ11 + · · · ȳ1n −ȳ12 · · · −ȳ1n

−ȳ21 ȳ21 + · · · ȳ2n · · · −ȳ2n

...
. . .

...

−ȳn1 −ȳn2 · · · ȳn1 + · · · ȳnn




. (2.17)

Note that, the diagonal element ii of the Ȳbus matrix consists of the sum of all admit-

tances connected to bus i (whether they are series admittances connecting to another

bus or are shunt admittances), while the off-diagonal element ik is the negative of

the series admittance connecting bus i to bus k. If there is no transmission line con-

necting bus i with bus k, then ȳik = 0, as mentioned before. Similarly, ȳii = 0 if no

7



shunt element is present between bus i and ground.

Let us define the bus voltage and bus current injection vectors as

~V =




~V1

~V2

...

~Vn




and ~I =




~I1

~I2

...

~In




,

The equation (2.16) in matrix form can be written as:

~I = Ȳbus
~V. (2.18)

The matrix Ȳbus is called the bus admittance matrix. This matrix represents a

transmission line network, and explains how current injections into a network are

related to the bus voltage magnitudes and angles.

The complex power injection at bus i can be written in terms of Ȳbus matrix

elements as

S̄i = ~Vi
~I∗i = ~Vi

n∑

k=1

Ȳ ∗
ik

~V ∗
k , (2.19)

= Vi

n∑

k=1

VkYike
(θi−θk−δik), (2.20)

where

~Vi = Vi∠θi, ~Vk = Vk∠θk, and

Ȳik = Gik + jBik = Yik∠δik.

We can split equation (2.20) into real and reactive parts, in terms of the bus voltage

magnitudes {Vi, i = 1, . . . , n} and bus voltage angles {θi, i = 1, . . . , n}. Then the

8



real and imaginary parts of equation (2.20) become

Pi(V, θ) =
n∑

k=1

ViVkYik cos(θi − θk − δik), (2.21)

Qi(V, θ) =
n∑

k=1

ViVkYik sin(θi − θk − δik). (2.22)

2.2.2 The loadflow problem

The loadflow or powerflow problem is stated below [4, 5, 6]:

• Given a power system described by a Ȳbus matrix, and given a set of bus voltage

magnitudes, bus voltage angles, and real and reactive power bus injections,

• Determine the other voltage magnitudes and angles and real and reactive power

injections.

Let

Vi, θi: voltage magnitude and voltage angle at bus i, and

Pi, Qi: real and reactive power injected at bus i, respectively.

Then in the loadflow problem two of the four quantities Vi, θi, Pi, and Qi at each bus

are specified, and the other two are to be determined.

Once all of the variables are determined, power flows on individual transmission

lines can be easily found.

2.3 Optimal Power Flow

Generation scheduling provided by economic dispatch may overload some transmis-

sion lines or voltage magnitude on any bus may go beyond the permissible range

(typically 0.95p.u. to 1.05p.u.). Moreover, economic dispatch does not give any

information about the losses in the transmission network. Therefore, after solving

9



economic dispatch problem, a loadflow study must be performed to ensure the fea-

sibility of the dispatched power and to find the associated losses. In case no limit is

violated, using the loss-penalty factors (provided by the solution of loadflow for the

current operating state), economic dispatch changes the state so as to minimize cost.

In case the results of loadflow show that the economic dispatch overloads any trans-

mission line or violates any bus voltage limit, the system dispatcher would take some

units off of the economic dispatch and manually re-dispatch them so the overload is

removed [4]. The loadflow problem is solved again. This cycle of solving economic

dispatch and loadflow continues until no constraint is violated. Following are the

disadvantages associated with this procedure.

• This procedure probably will not result in minimum operating cost

• Manual (operator assisted) cycling can occur between economic dispatch and

loadflow

• Cost minimization does not consider adjustment of bus voltages

To avoid these disadvantages optimal power flow (first stated in 1960s, [7]) was

introduced, which combines economic dispatch and loadflow into a single problem.

Optimal power flow (OPF) is an optimization problem in which economic dispatch,

optimization over voltage and reactive injections, and operational limits are combined.

The objective function is the cost function, which is minimized subject to a set of

equality constraints and a set of inequality constraints. Mathematically, the OPF

problem can be written in very general terms as:

min
Y

C(Y ) (2.23)

10



subject to:

h(Y ) = 0,

g(Y ) ≤ 0,

where

• Y : A vector of control and state variables,

• C(Y ): The objective function (operating cost of the system),

• h(Y ): Equality constraints vector function (real and reactive power flow equa-

tions),

• g(Y ): Inequality constraints vector function (transmission line limits, voltage

limits, generation capacity limits).

This is very large nonlinear programming problem. Algorithms leading to its

solution have been developed over the decades. Two well-known techniques, Newton’s

method and Primal-Dual Interior-Point (PDIP), which can lead to the solution of

OPF problem, will be discussed in following sections.

2.3.1 Optimization by Newton’s Method

Since 1960s Newton’s method, one of the so-called active set methods, has been a

standard iterative solution algorithm for the power flow problem [8, 9, 10]. This

algorithm converges very rapidly near the solution. This method relies on knowing

the final active set. But we can only guess until we solve the problem. In this

method we have to divide inequality constraints into two groups: binding and non

binding. Let us suppose set A has all of those inequality constraints which appear to

be binding at the current iteration and set Ac has those inequality constraints which

do not appear to be binding. The binding inequality constraints, i.e. the set A, are

11



treated as equality constraints. Therefore, the optimization problem stated in (2.23)

can be solved by forming a Lagrange function as shown below:

L(Y, λ, µ) = C(Y ) +
n∑

i=1

λihi(Y ) +
∑
i∈A

µigi(Y ), (2.24)

where λi is the Lagrange multiplier for the ith equality constraint and µi is the La-

grange multiplier for the ith binding inequality (equality) constraint. The multiplier

µi has the same properties as λi, except that, for all constraints present in A, µi > 0.

If µi > 0, this implies that the inequality constraint is binding, which means that it is

active [4] (gi(Y ) = 0 at the optimum). Therefore, A is also known as the active set [11]

and this method is also known as Newton’s active set method.

To optimize the objective function shown in equation (2.23), a special version of

the necessary first-order optimality conditions, called Karush-Kuhn-Tucker (KKT)

conditions, can be written as shown below:

1)
∂L
∂Yi

= 0, (2.25)

2)
∂L
∂λi

= hi = 0, (2.26)

3)
∂L
∂µA

= gA = 0, (2.27)

4) µA > 0 (2.28)

Note that gA is a set of binding inequality (active) constraints and µA is the set of

corresponding Lagrangian multipliers. The set of above equations can be written in

vector form as: 


∂L
∂Yi

∂L
∂λi

∂L
∂µA




=




∇YL

∇λL

∇µAL




= 0, (2.29)
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Let

z =




Y

λ

µA




(2.30)

So equation (2.29) can be written as:

ω(z) = ∇zL(z) = 0, (2.31)

The nonlinear equation ω(z) = 0 can be solved by the Newton-Raphson method,

which is based on the following Taylor series expansion of ω(z) about an operating

point zp as:

ω(z) = ω(zP ) +
∂ω(z)

∂z

∣∣∣∣
z=zp

· (z − zp) + higher order terms = 0, (2.32)

Ignoring higher order terms and defining ∆z = z − zp, the above equation can be

rewritten as:

ω(zp) +
∂ω(z)

∂z

∣∣∣∣
z=zp

·∆z = 0 (2.33)

⇒ ∂ω(z)

∂z

∣∣∣∣
z=zp

·∆z = −ω(zp) (2.34)

The update vector ∆z is called the Newton step. It tells how far and in which direction

the variables and multipliers should move from this current point zp to get closer to

the solution [12]. Since ω(z) is the gradient of the Lagrangian function L(z), equation

(2.34) can be written in terms of the Lagrangian function L(z) as:

∂2L(z)

∂z2

∣∣∣∣
z=zp

·∆z = − ∂L(z)

∂z

∣∣∣∣
z=zp

(2.35)
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Or, simply

W ·∆z = −ω(z) (2.36)

where W denotes the second order derivatives (or the Hessian matrix) of L(z) with

respect to z as shown below:

W =
∂2L(z)

∂z2

∣∣∣∣
z=zp

=




∂2L(z)
∂Y 2

∂2L(z)
∂Y ∂λ

∂2L(z)
∂µY ∂µA

∂2L(z)
∂λ∂Y

∂2L(z)
∂λ2

∂2L(z)
∂λ∂µA

∂2L(z)
∂µA∂Y

∂2L(z)
∂µA∂λ

∂2L(z)

∂µ2
A




z=zp

(2.37)

ω is the gradient of the Lagrangian function as shown below:

ω(z)|z=zp =




∇YL

∇λL

∇µAL




, (2.38)

Note that both W and ω(z) are evaluated at the current operating point point zp.

From equations (2.24),(2.26) and (2.27) it is obvious that

∂2L(z)

∂λ2
= 0,

∂2L(z)

∂λ∂µA
= 0,

∂2L(z)

∂µA∂λ
= 0 and

∂2L(z)

∂µ2
A

= 0,

To conveniently write matrix W, let us introduce some notation as:

HY =
∂2L(z)

∂Y 2
= Hessian of L(z) with respect to Y, (2.39)

Jh =
∂2L(z)

∂λ∂Y
= Jacobian of equality constraint functions h(Y ) = ∂h(Y )

∂Y , (2.40)

JgA =
∂2L(z)

∂µA∂Y
= Jacobian of constraint functions gA(Y ) = ∂gA(Y )

∂Y . (2.41)

14



∴ W =




HY JT
h JT

gA

Jh 0 0

JgA 0 0




Hence, equation (2.36) can be written in matrix form as:




HY JT
h JT

gA

Jh 0 0

JgA 0 0







∆Y

∆λ

∆µA




= −




∇YL

∇λL

∇µAL




, (2.42)

Initially a guess zo is chosen, i.e.

zo =




Yo

λo

µAo




,

Using this initial guess, matrix W and vector ω(z) are calculated. In case all the

elements of the vector ω(z) are very close to zero, then zo is the solution. Otherwise

we have to solve (2.36) or (2.42) to obtain the Newton step (∆z) as:

∆z = −W−1ω(z) (2.43)

Improved guess or estimated solution for the next iteration is found as:

znew = zold + α∆z, (2.44)

This procedure is repeated until the problem has converged to a solution. The scaling

coefficient, some times called the accelerating factor, α is usually 1. However, it can

be adjusted to values above or below 1 to speed up convergence or cause convergence
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in a divergent case or in our case prevent violation of inequality constraints.

As mentioned earlier that in Newton’s method we use only active inequality con-

straints in the Lagrangian function (2.24). After obtaining an updated set of variables

and multipliers, we may find that some constraints in set A are no longer binding

and some constraints in set Ac have become violated. So after each iteration we must

check all the inequality constraints in sets A & Ac and change their position as given

in [11].

• If the updated µ′s of the constraint functions in the current active set are zero

or have become negative, then the corresponding constraints must be released

from the current active set.

• If other constraint functions evaluated at the updated variables violate their

limits, then those constraints must be included in the new active set.

Once the active set has been updated, ω(zp+1) is checked for convergence. There

are several criteria for checking convergence of Newton’s method. The convergence

tolerance may be set to the maximum absolute value of elements in ω(z) i.e. the

∞ norm, or to its Euclidean norm or some other norm [13]. Newton step calculation

is repeated, with the improved guess, if the updated zp+1 does not yet satisfy the

desired convergence criterion.

2.3.2 Optimization by Primal-Dual Interior-Point Method

The primal dual interior point method (PDIP) has been very successful in solving

optimization problems in power systems as shown in references [14, 15, 16, 17, 18].

To avoid problems associated with active set methods we introduce a logarithmic

barrier function so that we can get rid of the inequality constraints. The barrier

function, being infinite on the boundary of the feasible region, forces the current

trial solution away from the boundary into the interior of the feasible region. Let us
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Figure 2.2: An optimization problem

consider the following optimization example:

min
x

F (x) = 1 + 0.5x− x2 (2.45)

subject to: x ≤ 1,

x ≥ −1.

This problem in shown in the Figure 2.2. To write the constraints in standard form

we proceed as:

First Constraint = (x ≤ 1) ⇒ (1− x ≤ 0) ⇒ g1(x) ≤ 0

g1(x) = 1− x ⇒ −g1(x) = x− 1

Second Constraint = (x ≥ −1) ⇒ (−x− 1 ≤ 0) ⇒ g2(x) ≤ 0

g2(x) = −1− x ⇒ −g2(x) = x + 1

Barrier function is formed as: B(x, ν) = F (x)− ν
∑2

i=1 ln(−gi(x)),

⇒ B(x, ν) = 1+0.5x−x2−ν ln(x−1)−ν ln(x+1), where ν is a positive number called

the barrier parameter. For ν = 0.2, the barrier function is shown in the Figure 2.3.

We start with a larger value of ν and as PDIP algorithm converges to the optimum
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Figure 2.4: Barrier function with different ν
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of B(x, ν), we gradually decrease ν to zero [15]. Figure 2.4 shows barrier function

for different values of ν. We can see that the the barrier function forces the current

trial solution away from the boundary of the feasible region into the interior of the

feasible region. The path, connecting the optimum points of the barrier function for

all values of ν is called the central path which will be discussed later.

OPF using PDIP algorithm

Let us apply primal-dual algorithm to the OPF problem shown in equation (2.23),

which is restated below:

min
Y

C(Y ) (2.46)

subject to: h(Y ) = 0,

g(Y ) ≤ 0.

We eliminate inequality constraints by introducing the following logarithmic barrier

function

B(Y, ν) = C(Y )− ν

m∑
i=1

ln(−gi(Y )), (2.47)

With the introduction of the barrier function our problem (2.46) changes to the

following problem.

min
Y

B(Y, ν) (2.48)

subject to: hi(Y ) = 0 i = 1, · · · , n
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Note that now the optimization is subject to equality constraints only. To solve this

problem, we form the Lagrangian function as:

L = B(Y, ν) +
n∑

i=1

λihi(Y ), (2.49)

To optimize B(Y, ν), we find critical points of the Lagrangian function for our current

ν. The first order conditions, Karush-Kuhn-Tucker (KKT) conditions, can be written

as shown below:

1)
∂L
∂Yi

= ∇YL = 0,

2)
∂L
∂λi

= ∇λL = hi(Y ) = 0, i = 1, · · · , n

The gradient of L with respect to Y is given below:

∇YL = ∇Y C(Y ) +
n∑

i=1

λi∇Y hi(Y ) + ν

m∑
i=1

(
1

−gi(Y )

)
∇Y gi(Y ) (2.50)

Let us define two independent variables, si (primal slack) and µi (dual slack) as shown

below:

si = −gi(Y ), (si > 0) i = 1, · · · ,m,

µi =
ν

si

, (µi > 0) i = 1, · · · ,m,

Therefore, equation (2.50) can be written as:

∇YL = ∇Y C(Y ) +
n∑

i=1

λi∇Y hi(Y ) + ν

m∑
i=1

(
1

si

)
∇Y gi(Y )
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or

∇YL = ∇Y C(Y ) +
n∑

i=1

λi∇Y hi(Y ) +
m∑

i=1

µi∇Y gi(Y ) (2.51)

To obtain a more compact representation of equation (2.51), matrices Jh & Jg and

vectors λ & µ are introduced as:

Jh = Jacobian of equality constraint functions h(Y ) = ∂h(Y )
∂Y

, (2.52)

Jg = Jacobian of inequality constraint functions g(Y ) = ∂g(Y )
∂Y

(2.53)

and

λ =




λ1

λ2

...

λn




, µ =




µ1

µ2

...

µm




.

So

JT
h =

[
∇Y h1(Y ) ∇Y h2(Y ) · · · ∇Y hn(Y )

]
, and

JT
g =

[
∇Y g1(Y ) ∇Y g2(Y ) · · · ∇Y gm(Y )

]
.

The vector form of equation (2.51) is:

∇YL = ∇Y C(Y ) + JT
h λ + JT

g µ (2.54)

So to optimize the Lagrangian function shown in (2.49) we have to solve following set

of equations for a fixed scalar ν, starting with a initial ν and decreasing it gradually
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while keeping si > 0 and µi > 0 :

∇YL = ∇Y C(Y ) + JT
h λ + JT

g µ = 0 (2.55)

∇λL = h(Y ) = 0, (2.56)

gi(Y ) + si = 0, i = 1, · · · ,m (2.57)

µisi − ν = 0, i = 1, · · · ,m (2.58)

Newton’s iterative method can be used to solve these equations. Four sets of

variables for which these equations are to be solved are Y, λ, µ and s. So let

z =




Y

λ

µ

s




. (2.59)

We will solve the nonlinear equation ω(z) = 0 by the Newton-Raphson method. This

algorithm is based on the following Taylor series expansion of ω(z) about an operating

point zp as:

ω(z) = ω(zP ) +
∂ω(z)

∂z

∣∣∣∣
z=zp

· (z − zp) + higher order terms = 0, (2.60)

Ignoring higher order terms and defining ∆z = z − zp, the above equation can be

rewritten as:

ω(zp) +
∂ω(z)

∂z

∣∣∣∣
z=zp

·∆z = 0 (2.61)

⇒ ∂ω(z)

∂z

∣∣∣∣
z=zp

·∆z = −ω(zp) (2.62)
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Newton step ∆z is the update vector, as mentioned before. The equations needed to

find the Newton’s step for the equations (2.55 ∼ 2.58) can be written, in form similar

to (2.62), as follows:

HY ∆Y + JT
h ∆λ + JT

g µ∆ = −(∇Y C + JT
h λ + JT

g µ)

Jh∆λ = −h

Jg∆µ + I∆s = −(g + s)

S∆µ + M∆s = −(MS − νI)e

These four equations can be written as one matrix equation:




HY JT
h JT

g 0

Jh 0 0 0

Jg 0 0 I

0 0 S M







∆Y

∆λ

∆µ

∆s




= −




∇Y C + JT
h λ + JT

g µ

h

g + s

(MS − νI)e




(2.63)

or, simply

W ·∆z = −ω(z) (2.64)

where

HY = (∇2
Y C +

n∑
i=1

λi∇2
Y hi +

m∑
i=1

µi∇2
Y gi)
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and

h : A column vector of size n, containing elements hi, where i = 1, · · · , n.

g : A column vector of size m, containing elements gi, where i = 1, · · · ,m.

s : A column vector of size m, containing elements si, where i = 1, · · · ,m.

I : An identity matrix of size (m×m).

S : A diagonal matrix of size (m×m) containing elements si, where i = 1, · · · ,m.

M : A diagonal matrix of size (m×m) containing elements µi, where i = 1, · · · , m.

e : A column vector of size m, with all elements equal to 1.

Central path of the problem

The path defined by the set of solutions [zs1 , zs2 , zs3 · · · zslatest ], whose elements make

ω(z) evaluate to zero for all values of ν (ν1, ν2, ν3, · · · , ν0) respectively, is called the

central path of the problem. While solving the problem for z for any ν, it is not

necessary to force ω(z) to be zero. Actually we are interested in finding how close

we are to the central path. One way to measure the closeness from the central path

is by checking how close each product µisi is to the barrier parameter ν. ω(z) will

be sufficiently close to zero if each product µisi is close to ν and this will happen if

following inequality [19, 20] becomes true.

∥∥∥∥∥Ms− 1

m

m∑
i=1

µisi

∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥

µ1s1 − ν̂

µ2s2 − ν̂

...

µmsm − ν̂

∥∥∥∥∥∥∥∥∥∥∥∥∥
2

≤ τν (0 < τ < 1) (2.65)

or

µisi ≥ γν̂ ∀ i = 1, · · · , m, (γ = 10−3) (2.66)
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Figure 2.5: Graphical representation of central path

The duality factor ν̂ [20], which measures the average value of the pairwise products,

is given by

ν̂ =
1

m

m∑
i=1

µisi. (2.67)

Once the inequality (2.65) or (2.66) becomes true, we are close to central path of the

problem and then ν may be further reduced as shown in figure 2.5 [12].

Scaling factors involved in (PDIP)

Scaling factor α is multiplied with ∆z before updating z. This reduces the Newton

step size ∆z such that µi and si are always positive in the new updated guess

znew. That is, each µi and each si is kept strictly greater than zero when ∆µi

and ∆si is added to it, respectively. If the addition of ∆µi or ∆si violates this

condition, then all ∆µi and ∆si must be scaled by some factor α, such that

(0 < α ≤ 1), as shown in equation (2.73).

For analysis purposes we consider the possibility of different scaling factors αµ

and αs for calculating the new µi and si respectively. So µnew
i and snew

i are
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found as:

µnew
i = µold

i + αµ∆µi, i = 1, · · · ,m (2.68)

snew
i = sold

i + αs∆si, i = 1, · · · , m (2.69)

Since we need µi > 0 and si > 0 so we look for those indices i where ∆µi < 0

and ∆si < 0, respectively. The value for α is chosen as [11]:

ᾱµ = min{−µold
i

∆µi

| ∀i : ∆µi < 0} (2.70)

ᾱs = min{− sold
i

∆si

| ∀i : ∆si < 0} (2.71)

α = min{ᾱµ, ᾱs, 1} (2.72)

Initially we will take αµ = αs = α.

Scaling factor κ is slightly less then one. κ is multiplied with α so that µi and si

are prevented from being zero. Studies have suggested that κ be 0.9995 [15, 21].

The scaling factor κ forces the variables to stay inside the boundary without

touching it. Therefore, the variables are strictly feasible with respect to the

inequality constraints, i.e. ∀ i, µi > 0 and si > 0 at every iteration [11]. This

property yields the term interior-point. Therefore, the primal-dual method

becomes the primal-dual interior-point method.

Scaling factor τ is selected somewhere between 0 and 1 i.e. (0 < τ < 1). If τ is

closer to 1, this means that we go very close to the central path. If τ is closer to

zero, this means that we go close to central path, but not very close. Stephen

J. Wright [20] suggested τ = 0.5. However, there are two views:
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One view is that we should go towards the central path and when we reach very

close to it then move along the central path by decreasing ν rapidly. Problem

will converge to the solution rapidly on the central path.

Another view is that by going too close to the central path, we may unnecessarily

increase number of iterations. So perhaps we should go close enough to the

central path and then move along the central path as shown in figure 2.5 [12].

If we stay too far from the central path, the problem may not converge or it

may converge to a wrong answer. How close we should stay to the central path,

to minimize total iterations, but still converge to the solution, is yet to be fully

explored.

Scaling factor ρ is used to get new value of ν by reducing its old value. It controls

the speed of following the central path. ρ is selected such that (0 < ρ < 1).

[19] suggested ρ be (0.4). Another view is that we should not keep ρ constant,

instead it should be adjusted depending upon how much progress we make.

How it should be adjusted, is yet to be fully researched.

General description of (PDIP) algorithm

1. An initial operating point zo is chosen and initially barrier parameter ν is set

to a relatively large number.

2. Form matrix W and vector ω(z).

3. Solve W∆z = −ω(z) for ∆z, by using LU factorization and forward & backward

substitution.

4. A scaling factor α is chosen and then it is multiplied by ∆z before updating z.

This reduces the Newton step size ∆z so that µi and si remain positive when

they are updated.
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5. Improved guess for next iteration is found by:

znew = zold + κα∆z. (2.73)

To make sure that each each µnew
i and snew

i is prevented from being zero, α∆z

is multiplied by another factor κ, that is slightly less than one.

6. Check how close we are to the central path.

• The closeness from the central path is the checked by finding how close each

product µisi is to the barrier parameter ν using equation (2.65) or (2.66).

• If we are not sufficiently close to the central path go back to step 2 else go

to next step.

7. If the barrier parameter ν is sufficiently close to zero, then the current state

defined by z is the solution. Otherwise reduce the barrier parameter by using:

νnew = ρ · νold, (0 < ρ < 1), and go to step 2.

or by using:

νnew = ρ · ν̂, and go to step 2.

At each step most recent update of variables is used to calculate νnew.

Comparison of (PDIP) with Newton’s method

• The main disadvantage of Newton’s method is that we must try to identify a set

of binding inequality constraints, which are then treated as equality constraints.

These equality constraints are put in a so-called active set. This set is subject

to change when it appears that an assumed active constraint is not binding or

when the limits of a constraint previously thought to be inactive are violated.

Sometimes a constraint which is expelled from the active set is added again

and then expelled again. This can lead to a cycling behavior which can cause
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Newton method to fail. In the PDIP method, explicit identification of inequality

constraints as active or inactive is avoided by using a barrier method approach.

Since there is no active set in PDIP method, there is no question of cycling

behavior in PDIP algorithm.

• Comparing equations (2.42) and (2.63), we notice that W matrix in case of

Newton is symmetric, whereas the W matrix in case of PDIP is not symmetric.

W matrix of equation (2.63) can be made symmetric by multiplying its last

row by S−1, but then the matrix will become less well-conditioned, possibly

resulting in inaccurate results or failure to converge.

• In case of PDIP, we can tune the solution method by adjusting the factors: ν,

κ, τ , and ρ, whereas Newton’s method does not give such options.

• Because of including all the inequality constraints, PDIP has an inherent dis-

advantage that the size of the problem is much bigger than that in case of

Newton’s method.

2.4 Security of Power Systems

A contingency in a power system means the loss of a major piece of equipment, such

as a power transmission line or a generator. If a fault occurs on a transmission

line, the line is automatically disconnected from the system by the protection system.

Contingencies can also occur due to equipment failure at the generation facility which

may result in the loss of an on-line generator.

A secure power system is one which can serve load, without violating the operat-

ing limits of the system, after the occurrence of a contingency. After the contingency,

operating limits may be increased to their “emergency limits”. Operation above the

normal limits but below the emergency limits is not acceptable for continuous oper-

ation, but may be tolerated for a short time (say 15 min or 1 hour) in an emergency.
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The system can then be redispatched/reconfigured to remove any overloads (as long

as they don’t exceed the emergency limits) in a more leisurely fashion, assuming the

system has survived the contingency. We assume this slower redispatch is possible

once the contingency is survived.

Two or more contingencies may occur at the same time, although this is unlikely

if the contingencies are independent. Each contingency will cause changes in the

power system state variables: magnitude and angle of voltages on buses and real and

reactive power on the lines. In the post-contingency state, if these variables are not

within the permissible limits, further contingencies will occur which may lead to a

cascading outage or blackout [22].

In last section we learned how to dispatch power in optimal fashion. However, our

statement of the problem did not include any constraint regarding the security of the

power system. Therefore, the OPF was not able to provide a secure power system

operating point.

Power system security is maintained by having spinning reserves on generators

and redundancy in designing the transmission system so that the system can be

rescheduled, while being within the allowed operational limits, after the occurrence

of a contingency.

2.4.1 Security-Constrained Optimal Power Flow (SCOPF)

Programs which can make adjustments to the pre-contingency operation to prevent vi-

olations in the post-contingency conditions at the minimum cost are called “security-

constrained optimal power flow” (SCOPF) or contingency-constrained OPF. Such

programs take count of many contingencies and calculate adjustments to genera-

tors MW, generator voltages, transformer taps etc [23].

To find out which of the credible contingencies has a significant impact on the sce-

nario under study, contingency analysis is performed at the current operating point.
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Contingency analysis checks all lines and voltages in the system with respect to their

respective limits and identifies the contingency cases with violations or near violations.

These selected contingency cases are then included in the OPF problem statement.

Therefore in mathematical model of SCOPF, OPF problem is stated subject to both

the pre-contingency (base-case) constraints, and to the post-contingency constraints

of credible contingencies [3].

To mathematically state the SCOPF problem, let us assume that superscripts (·)0

and (·)k denote the normal operating state and the post contingency state, respec-

tively. The SCOPF problem can be stated as:

min
Y 0

C(Y 0) (2.74)

subject to:

h0(Y 0) = 0,

g0(Y 0) ≤ 0,

hk(Y k) = 0, k = 1, · · · , K

gk(Y k) ≤ 0, k = 1, · · · , K

where

Y 0:Vector of pre-contingency state and control variables,

C(Y 0):Cost of pre-contingency system operation,

Y k:Vector of post-contingency state and control variables,

h0:Pre-contingency equality constraint vector functions,

g0:Pre-contingency inequality constraint vector functions,
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hk:Post-contingency equality constraint vector functions,

gk:Post-contingency inequality constraint vector functions,

K:Total number of credible contingencies.

2.4.2 SCOPF with post-contingency rescheduling

Studies [1] have shown that the security-constrained dispatch as defined above is

conservative, because it does not take into account the system corrective capabili-

ties in the post-contingency state. These corrective capabilities include generation

rescheduling, partially dropping the load etc. Costs can be reduced by considering

the post-contingency rescheduling.

To consider the post-contingency rescheduling we add some constraints, which

couple pre-contingency and post contingency states, to the SCOPF problem. These

constraints are called coupling constraints . One example of coupling constraint is the

amount by which a generator can be ramped up (or down), in a specified amount

of time, from pre-contingency state to post-contingency state. Mathematically these

constraints can be written as:

P k
Gi − P 0

Gi ≤ ∆+
maxPGi (2.75)

P 0
Gi − P k

Gi ≤ ∆−
maxPGi (2.76)

∆+
maxPGi is the amount by which the real power output of a generator at bus i can

be increased, and is called ramp up capacity2 of the generator. Similarly ∆−
maxPGi is

the amount by which the real power output of a generator at bus i can be decreased,

and is called ramp down capacity of the generator. Partially dropping the customer

2Maximum change of real power generation, of a generator, within a specified period of time is
called the ramping rate of that generator.
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load is another coupling constraint and can be written as:

P k
Li ≤ P 0

Li (2.77)

where PLi is the load being served at bus i. From (2.76) and (2.77) it can be noticed

that these constraints contain the pre-contingency variables and also limit the post-

contingency adjustments to the variables. Therefore, such constraints are function of

both the pre-contingency and the post-contingency state. The general form of the

coupling inequality constraints is:

dk(Y k, Y 0) ≤ 0. (2.78)

The SCOPF problem (2.74) with post-contingency rescheduling can be stated as:

min
Y 0

C(Y 0) (2.79)

subject to:

h0(Y 0) = 0,

g0(Y 0) ≤ 0,

hk(Y k) = 0, k = 1, · · · , K

gk(Y k) ≤ 0, k = 1, · · · , K

dk(Y k, Y 0) ≤ 0, k = 1, · · · , K.

2.5 Expected Security Cost Optimal Power Flow

In security constrained optimal power flow, OPF problem is solved by taking security

as a constraint. Reference [24] showed that if the security issue is taken care of by
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taking security as an economic cost instead of a constraint, then the solution would

have a lower expected cost, or increased social welfare. A OPF model was introduced

which handles security constraints, at post-contingency states, in terms of economic

costs.

When a credible contingency occurs, the power system must re-dispatch from

the current operating point to survive the contingency. As a result the new cost of

system operation, in the post-contingency state, is obtained. This new cost under

the post-contingency state is called the security cost . Since post-contingency state

is associated with each contingency, therefore each contingency has a security cost

that depends upon the pre-contingency state. In post-contingency state, the system

might be operating at the emergency limits instead of the normal operating limits.

Moreover, the post-contingency rescheduling is taken into account, which could be

generator rescheduling or demand side rescheduling i.e. customer load interruption.

If security costs of all credible contingencies are taken into account, the system would

dispatch in the pre-contingency state such that the security costs would be as low as

possible when the contingencies occur. However, the information on security costs

alone is not sufficient to determine the optimal pre-contingency state because during

the normal operating state, one does not know which contingency will occur [11].

Each contingency k has a different probability of occurrence, say πk. A contingency

that results in high security cost may be unlikely, while a contingency with lower

security cost may be more likely. The pre-contingency optimal dispatch process should

consider the significance of all contingencies by taking into account the respective

post-contingency security costs and their probabilities of occurrence. Therefore the

security cost associated with each constraint is multiplied with its probability of

occurrence. This leads to the expected security cost optimal power flow (ESCOPF)

problem, which is an OPF problem which takes into account the system security in

terms of the expected security costs.
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The objective of the ESCOPF problem is to minimize the expected system op-

erating cost, which is the sum of the expected pre-contingency cost and expected

post-contingency costs [22]. The pre-contingency cost is multiplied by the probability

of operating in the pre-contingency state, and each post-contingency cost is multi-

plied by the probability of the contingency occurring. The sum of these costs is the

expected cost of secured system operation. Let us consider following notation:

• C0(Y 0): Cost of operating the system in normal or pre-contingency state Y 0

• π0: Probability of operating the system in normal or pre-contingency state,

• Ck(Y 0, Y k): Cost of operating the system in post-contingency state Y k,after a con-

tingency k, with a pre-contingency operating state Y 0

• πk: Probability that contingency k will occur

Contingencies are assumed to be independent. The chances of two contingencies

occurring simultaneously is so small that we commonly assume the K contingencies

to be mutually exclusive. Therefore the probability of normal operation can be written

as:

π0 = 1−
K∑

k=1

πk (2.80)

So π0C0(Y 0) and πkCk(Y 0, Y k) will be the expected costs of system operation in pre-

contingency and post-contingency state of contingency k, respectively. Therefore,

the total cost of secured system operation will be
(
π0C0(Y 0) +

∑K
k=1 πkCk(Y 0, Y k)

)
.
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Hence the ESCOPF problem can be stated as:

min
{Y 0,Y 1,...,Y K}

π0C0(Y 0) +
K∑

k=1

πkCk(Y 0, Y K) (2.81)

subject to:

πkhk(Y k) = 0, k = 0, 1, . . . , K

πkgk(Y k) ≤ 0, k = 0, 1, . . . , K

πkdk(Y 0, Y k) ≤ 0, k = 1, . . . , K,

h0: Pre-contingency equality constraints,

g0: Pre-contingency inequality constraints,

hk: Post-contingency equality constraints,

gk: Post-contingency inequality constraints,

dk: Post-contingency coupling constraints, which include variables from both the pre-

contingency and post contingency states.

Reference [11] attempted to solve the problem (3.23) by decoupling the problem

in to main problem and K subproblems. Security cost of operating the system in

post-contingency state Y k, Ck(Y 0, Y k) is obtained by allowing the system to opti-

mally redispatch from the pre-contingency state (Y 0), when the contingency k occurs.

The minimum security cost associated with a contingency k can be obtained by solv-

ing the OPF for the post-contingency system3, given the pre-contingency state. So

each Ck(Y 0, Y k) can be evaluated separately. The evaluation of each Ck(Y 0, Y k) is

called the contingency subproblem of the ESCOPF problem. The decoupled ESCOPF

3The structure of the post-contingency system will be different from that of the pre-contingency
system due to the outage of an on-line equipment.
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problem can be stated as:

min
Y 0

π0C0(Y 0) +
K∑

k=1

πkCk∗(Y 0) (2.82)

subject to: π0h0(Y 0) = 0, (2.83)

π0g0(Y 0) ≤ 0, (2.84)

where, for each k = {1, . . . , K}, πkC
k∗(Y 0) is the solution of the subproblem:

Ck∗(Y 0) = min
Y k

Ck(Y 0, Y k) (2.85)

subject to: hk(Y k) = 0, (2.86)

gk(Y k) ≤ 0, (2.87)

dk(Y 0, Y k) ≤ 0, (2.88)

The author of [11] tried to solve the decoupled ESCOPF problem (2.82) by Newton

method but found that cycling occurred for some cases, in which a small number of

constraints repeatedly entered and left the active set of binding constraints. She

then explored the application of the PDIP method to the decoupled problem. The

algorithm worked well with the decoupled 3-bus case. However, for 5-bus and 14 bus

systems the algorithm did not converge.

Therefore, she applied the PDIP to the integrated ESCOPF problem (3.23), which

combines the main and the subproblems together, just to see if it worked. While the

PDIP failed to solve the cases bigger then 3-bus systems with the decoupled method,

because of the reasons discussed below, the corresponding integrated problems of

those systems were successfully solved.
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2.6 Applications

Whether loadflow/economic dispatch, OPF, loadflow with contingency analysis, SCOPF

or ESCOPF is the preferred tool, there are two major applications of these tools.

The first application is in operations, where one would like to know if the current

operating state is both secure and efficient (least costly) and, if not, how to adjust

the system to make it so. This is information which systems dispatchers should

have at all times, and, since the system state is in constant flux, such analyses must

be done in near-real time (every 5–15 minutes). Solving any of these problems, but

especially SCOPF or ESCOPF, is computationally very demanding. Such algorithms

are useless if they require too much time, so a near-real-time method is required.

In system planning, predictions of load growth are combined with planned modifi-

cations in generation, transmission and distribution to determine whether additional

capacity or other changes must be made to the system over the planning period (one

year, two years, five years or possibly even longer). Although planning studies obvi-

ously do not require near-real-time speeds, they are often more detailed or cover larger

geographical area than what is expected to be available in an operations context, so

reasonable speeds are still required even for large problem sizes.
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CHAPTER 3

DECOUPLED ESCOPF WITH PARALLEL COMPUTATION

3.1 Advantages associated with distributed and parallel computation of

ESCOPF

Reference [11] solved the ESCOPF problem by combining the main and the subprob-

lems together. However, for larger power systems it will take a lot of time because

of the size of the problem. If K is the total number of contingencies, the integrated

problem will have (K + 1) sets of variables: Y 0 and Y k, where the contingency in-

dex k denotes operation in the kth contingency (k ∈ {1, . . . K}) and k = 0 denotes

operation without any contingency occurring, and each set of variables is itself large.

For large power systems, the decoupled method has an advantage over the in-

tegrated method because of its ability to divide the ESCOPF problem into smaller

subproblems. Let us suppose the size of the matrix to be factorized in the integrated

case is (n × n). If L is the number of nonzero entries in a typical row, this takes

about 1
3
n2L flops,1 or floating point operations, for the factorization and about 1

2
nL

operations2 for a forward or backward substitution (so about nL operations for a

linear solve once the LU factors of the matrix are known), so for large n the time

it takes to factor a matrix is the main influence on solution time. If the problem is

decomposed into a main problem and K subproblems, then each problem will have

size n
(K+1)

× n
(K+1)

or n×n
(K+1)2

. So each factorization will take about
1
3
(n2L)

(K+1)2
flops. Since

there are (K + 1) subproblems, each (n×n) factorization is replaced by (K + 1) smaller

1For our purposes flops means one multiplication and one addition.
2These numbers would be about 1

3n3 and 1
2n2 if the matrix were dense; given values for sparse

matrices ignore fill-ins during factorization.
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factorizations, which together take
1
3
L(n×n)

(K+1)2
(K + 1)=

1
3
Ln2

(K+1)
flops. This means that the

decoupled solution will have to perform (K + 1) less floating point operations per fac-

torization as compared to the integrated solution. Therefore the decoupled solution

is as much as (K + 1) times faster than the integrated solution. In case we have M

machines responsible for working on the decoupled problem then this will further

reduce the computation time by as much as M times. So a problem solved using

distributed and parallel computation techniques will be as much as M × (K + 1) times

faster than the integrated solution technique.

3.2 Problem to be solved

3.2.1 Nonlinear (“AC”) ESCOPF Problem

In order to calculate the power operation costs, we need the cost of real power pro-

duction and the benefit received due to real power consumption. The cost of real

power production is obtained from the generator cost curve, which gives the cost as

a function of the amount of real power production. The generator cost function is

assumed to be of the form

C(PGi) = γGiP
2
Gi + βGiPGi + αGi. (3.1)

Similarly the benefit received by a consumer is obtained from the consumer benefit

curve, which gives the benefit (in dollars) as a function of real power consumption.

The consumer benefit function is assumed to be of the form

B(PLi) = γLiP
2
Li + βLiPLi + αLi. (3.2)

We would like to maximize the expected social welfare, defined as expected total

benefit minus total cost, but, to be consistent with other OPF literature, we will
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minimize expected cost, treating benefits as a negative cost. The ESCOPF problem

statement can be written as follows:

min
Y 0,Y k

{
π0C0(Y 0) +

K∑

k=1

πkCk(Y 0, Y k)

}
(3.3)

subject to pre-contingency equality constraints:

P 0
i (X0) = P 0

Gi − P 0
Li : ∀ i,

Q0
i (X

0) = Q0
Gi −Q0

Li(P
0
Li) : ∀ i,

(3.4)

pre-contingency inequality constraints:

X0
min ≤ X0 ≤ X0

max,

P 0
Gimin

≤ P 0
Gi ≤ P 0

Gimax
: ∀ i ∈ G,

Q0
Gimin

≤ Q0
Gi ≤ Q0

Gimax
: ∀ i ∈ G,

∣∣Iij(X0)
∣∣ ≤ I0

ijmax
: ∀ ij,

0 ≤ P 0
Li : ∀ i ∈ {I ∪ U},

(3.5)

post-contingency equality constraints:

P k
i (Xk) = P k

Gi − P k
Li : ∀ i,

Qk
i (X

k) = Qk
Gi −Qk

Li(P
k
Li) : ∀ i,

(3.6)

post-contingency inequality constraints:

Xk
min ≤ Xk ≤ Xk

max,

P k
Gimin

≤ P k
Gi ≤ P k

Gimax
: ∀ i ∈ G,

Qk
Gimin

≤ Qk
Gi ≤ Qk

Gimax
: ∀ i ∈ G,

∣∣Iij(Xk)
∣∣ ≤ Ik

ijmax
: ∀ ij,

0 ≤ P k
Li : ∀ i ∈ {I ∪ U},

(3.7)
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and coupling constraints:

P 0
Gi −∆−

maxPGi ≤ P k
Gi ≤ P 0

Gi + ∆+
maxPGi : ∀ i ∈ G,

P 0
Li −∆−

maxPLi ≤ P k
Li ≤ P 0

Li : ∀ i ∈ I.
(3.8)

where

C0(Y 0) =
∑

i∈G
CGi(P 0

Gi)−
∑

i∈I
BIi(P 0

Li)−
∑

i∈U
BUi(P 0

Li) (3.9)

Ck(Y k, Y 0) =
∑

i∈G

[
CGi(P k

Gi) + CRi · (
∣∣∣P k

Gi − P 0
Gi

∣∣∣)
]

+
∑

i∈I

[
CIi · (P 0

Li − P k
Li)−BIi(P k

Li)
]
−

∑

i∈U
BUi(P 0

Li). (3.10)

The model, expressed in (3.3)-(3.10), represents the ESCOPF objective function

and constraints. This ESCOPF problem consists of two parts. The first part is

minimization of the cost of operating in pre-contingency state, C0Y 0 (3.9), sub-

ject to equality constraints (3.4) and inequality constraints (3.5). Equality con-

straints are pre-contingency power balance equations and inequality constraints are

pre-contingency system operating limits, which include limits on voltage, tap ratios,

phase shifters, power (real and reactive) generation, line flows, and real power con-

sumption. Y 0 represents variables in pre-contingency state. It consists of vector of

control variables X0, which includes voltage magnitudes, voltage angles, transformer

tap rations and phase shifters, and vector of state variables, which include real power

generation P 0
Gi, reactive power generation Q0

Gi, and real power consumed by the loads

P 0
Li. Power injections at each bus and line currents are function of the control vari-

ables X0.

The probability of operating in pre-contingency state is π0 (2.80) and πk is the

probability of occurrence of contingency k, k ∈ {1, · · · , K}. We consider two types of

groups of consumers U and I. Loads for consumers in group U are uninterruptible

when a contingency occurs, whereas loads for consumers in group I can be interrupted
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after a contingency occurs. The benefit functions of U and I are BUi and BIi, which

are included in the objective function with negative sign. Equation 3.4 represents real

and reactive power flow or power balance equations for every bus i, in pre-contingency

state. P 0
Gi and P 0

Li represent real power generated and real power consumed at each

bus i. Similarly Q0
Gi and Q0

Li represent reactive power generated and reactive power

consumed as each bus i. Due to the power factor of the load, reactive power load

at any load bus is a function of the real power load at that bus i.e Q0
Li(P

0
Li). In

equality constraints (3.5) are power system operating constraints in pre-contingency

state. These constraints place limits on the control variables X0 and state variables,

which are adjusted so as to minimize the objective function without violating the

power balance equations and without exceeding their limits.

The second component of the ESCOPF problem is the minimization of the cost

of operating in post-contingency state Ck(Y k, Y 0) (3.9), subject to post-contingency

power balance equations (3.6), post-contingency operating limits (3.7), and coupling

constraints (3.8). Y k is the vector of control variables Xk and vector of state variables

(P k
Gi,Q

k
Gi,& P k

Li). Ck
Gi(P

k
Gi) is the cost of generation in post-contingency state. Cost of

ramping a generator up or down when a contingency occurs is called the ramping cost

CRi

∣∣P k
Gi − P 0

Gi

∣∣, which is a function of the change in the real power generation from

pre-contingency to post-contingency state. For convenience, we assume that costs of

ramping up are same as costs of ramping down. Group I of consumers agree that

their loads are interruptible but in the event of an interruption they experience an

economic loss beyond the foregone benefit of consumption, called load interruption

cost CIi, which is a function of the amount of load interrupted (P 0
Li − P k

Li).

Equation (3.6) represents real and reactive power flow equations for every bus i,

in the post-contingency state. In equality constraints (3.7) place limits on the control

variables Xk and the state variables of the post contingency subproblem. System

operating limits in the post-contingency state are emergency limits. P 0
Li ≥ 0 and
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P k
Li ≥ 0 means that real power consumed cannot be negative, which means that loads

cannot act as generators.

Coupling constraints are represented by (3.8), which take care of the generator

ramp up limits ∆+
maxPGi, generator ramp down limits ∆−

maxPGi, and load interruption

limits ∆−
maxPLi. These constraints are functions of both pre-contingency and post

contingency operating point. Real power generation at each bus i has two upper

limits and two lower limits. Due to the upper limits, real power generation cannot

rise above the maximum emergency generation capacity P k
Gimax, and it cannot ramp

up by more then ∆+
maxPGi. Real power generation would be limited by either of the

limits, whichever is hit first. Similarly one of the lower limits prevents real power

generation level from dropping below some minimum generation level and the other

lower limit prevents ramping down by more than ∆−
maxPGi.

For each load of the group I, no more than ∆−
maxPLi can be interrupted. P k

Li ≤ P 0
Li

means that real power consumed by a load in the post-contingency state cannot exceed

the pre-contingency real power consumption.

3.2.2 Linearized (“DC”) ESCOPF Problem

For the linearized approximation, called “DC” approximation of a power system,

following assumptions are made:

1. Bus voltage magnitudes are approximately 1 per unit,

2. Bus voltage angle differences are small,

3. Transmission line resistances are ignored.

Due to the first two assumptions, reactive power flows are zero and due to the 3rd

assumption, real power losses in the transmission lines are absent. Real power flow
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on a transmission line ij can be found as:

Pij = −bij(θi − θj) (3.11)

where bij is the series susceptance connecting bus i and bus j (in per unit) and θi is

the voltage angle at bus i in radians. Therefore, the total real power injected at bus i

can be expressed as:

Pi(θ) =
∑

j

Pij =
∑

j

−bij(θi − θj). (3.12)

The model, expressed in (3.13)-(3.20), represents a DC version of ESCOPF problem.

min
Y 0,Y k

{
π0C0(Y 0) +

K∑

k=1

πkCk(Y 0, Y k)

}
(3.13)

subject to pre-contingency equality constraints:

P 0
i (θ0) = P 0

Gi − P 0
Li : ∀ i, (3.14)

pre-contingency inequality constraints:

P 0
Gimin

≤ P 0
Gi ≤ P 0

Gimax
: ∀ i ∈ G,

∣∣∣P 0
ij

∣∣∣ ≤ P 0
ijmax

: ∀ ij,

0 ≤ P 0
Li : ∀ i ∈ {I ∪ U},

(3.15)

post-contingency equality constraints:

P k
i (θk) = P k

Gi − P k
Li : ∀ i, (3.16)
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post-contingency inequality constraints:

P k
Gimin

≤ P k
Gi ≤ P k

Gimax
: ∀ i ∈ G,

∣∣∣P k
ij

∣∣∣ ≤ P k
ijmax

: ∀ ij,

0 ≤ P k
Li : ∀ i ∈ {I ∪ U},

(3.17)

and coupling constraints:

P 0
Gi −∆−

maxPGi ≤ P k
Gi ≤ P 0

Gi + ∆+
maxPGi : ∀ i ∈ G,

P 0
Li −∆−

maxPLi ≤ P k
Li ≤ P 0

Li : ∀ i ∈ I.
(3.18)

where

C0(Y 0) =
∑

i∈G
CGi(P 0

Gi)−
∑

i∈I
BIi(P 0

Li)−
∑

i∈U
BUi(P 0

Li) (3.19)

Ck(Y k, Y 0) =
∑

i∈G

[
CGi(P k

Gi) + CRi · (
∣∣∣P k

Gi − P 0
Gi

∣∣∣)
]

+
∑

i∈I

[
CIi · (P 0

Li − P k
Li)−BIi(P k

Li)
]
−

∑

i∈U
BUi(P 0

Li). (3.20)

The ESCOPF model without the assumptions is referred to as AC-ESCOPF. In

DC case, Y 0 is same as in AC case, except that variables regarding reactive power

and voltages are not present. Objective function remains the same, however, we get

rid of constraints related to reactive power and voltages. Moreover, the nonlinear

constraints are now linear.
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3.3 Decoupled solution method

The ESCOPF problem is stated in a more compact notation as:

min
{Y 0,Y 1,...,Y K}

π0C0(Y 0)︸ ︷︷ ︸
Pre-contingency

case

+
K∑

k=1

πkCk(Y 0, Y K)

︸ ︷︷ ︸
All contingencies

(3.21)

subject to:

π0h0(Y 0) = 0,

π0g0(Y 0) = 0,

πkhk(Y k) = 0, k = 1, . . . , K.

πkgk(Y k) ≤ 0, k = 1, . . . , K.

πkdk(Y 0, Y k) ≤ 0, k = 1, . . . , K.

h0: Pre-contingency equality constraints,

g0: Pre-contingency inequality constraints,

hk: Post-contingency equality constraints,

gk: Post-contingency inequality constraints,

dk: Post-contingency coupling constraints, which include variables from both the pre-

contingency and post contingency states.

To get rid of inequality constraints we use barrier function as:

B(Y 0, Y 1, ..., Y K , λ0, λ1, ..., λK , ν) = π0C0(Y 0)− ν ln(−π0g0(Y 0))

+
K∑

k=1

πkCk(Y k, Y 0)− ν

K∑

k=1

ln(−πkgk(Y k))− ν

K∑

k=1

ln(−πkdk(Y k, Y 0)). (3.22)
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So the new problem can be stated as:

min
{Y 0,Y 1,...,Y K ,ν}

B(Y 0, Y 1, ..., Y K , λ0, λ1, ..., λK , ν) (3.23)

subject to:

π0h0(Y 0) = 0, (3.24)

πkhk(Y k) = 0, k = 1, . . . , K

The superscript k = 0 denotes the main problem, while k = 1, . . . , K denotes sub-

problem 1 to K. The Lagrangian function can be written as:

L = π0C0(Y 0) + π0λ0T

h0(Y 0)− ν ln(−π0g0(Y 0)) +
K∑

k=1

πkCk(Y k, Y 0) +
K∑

k=1

πkλkT

hk(Y k)

− ν

K∑

k=1

ln(−πkgk(Y k))− ν

K∑

k=1

ln(−πkdk(Y k, Y 0)) (3.25)

The gradient of the Lagrangian function with respect to variables Y 0 and Y k, and

Lagrangian multipliers λ0 and λk, are:

∇Y 0L = π0∂C0(Y 0)

∂Y 0
+ π0λ0T ∂h0(Y 0)

∂Y 0
− ν

[
1

−g0(Y 0)

−∂g0(Y 0)

∂Y 0

]

+
K∑

k=1

πk ∂Ck(Y k, Y 0)

∂Y 0
− ν

K∑

k=1

[
1

−dk(Y k, Y 0)

−∂dk(Y k, Y 0)

∂Y 0

]
, (3.26)

∇Y kL = πk ∂Ck(Y k, Y 0)

∂Y k
+ πkλkT ∂hk(Y k)

∂Y k
− ν

1

−gk(Y k)

−∂gk(Y k)

∂Y k

− ν
1

−dk(Y k, Y 0)

−∂dk(Y k, Y 0)

∂Y k
, (3.27)

∇λ0L = π0h0(Y 0), (3.28)

∇λkL = πkhk(Y k). (3.29)
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The primal and dual slacks are defined as follows:

s0 = −g0(Y 0) (3.30)

sk = −gk(Y k); k = 1, . . . , K (3.31)

sk
d = −dk(Y k, Y 0); k = 1, . . . , K (3.32)

µ0 =
ν

−g0(Y 0)
=

ν

s0
(3.33)

µk
d =

ν

−dk(Y k, Y 0)
=

ν

sk
d

; k = 1, . . . , K (3.34)

After using the primal and dual slacks in the gradients of Lagrangian function, we

get the following equations which have to be solved to reach the solution. For the

base case we have to solve:

π0∂C0(Y 0)

∂Y 0
+ π0λ0T ∂h0(Y 0)

∂Y 0
+ µ0T ∂g0(Y 0)

∂Y 0
+

K∑

k=1

πk ∂Ck(Y k, Y 0)

∂Y 0

+
K∑

k=1

µkT

d

∂dk(Y k, Y 0)

∂Y 0
= 0, (3.35)

π0h0(Y 0) = 0, (3.36)

g0(Y 0) + s0 = 0, (3.37)

(M0 S0 − νI)e = 0 (3.38)

and for each contingency we have to solve:

πk ∂Ck(Y k, Y 0)

∂Y k
+ πkλkT ∂hk(Y k)

∂Y k
+ µkT ∂gk(Y k)

∂Y k
+ µkT

d

∂dk(Y k, Y 0)

∂Y k
= 0, (3.39)
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πkhk(Y k) = 0; k = 1, . . . , K, (3.40)

gk(Y k) + sk = 0; k = 1, . . . , K, (3.41)

(Mk Sk − νI)ek = 0; k = 1, . . . , K, (3.42)

dk(Y k, Y 0) + sk
d = 0; k = 1, . . . , K, (3.43)

(Mk
d Sk

d − νI)ek
d = 0; k = 1, . . . , K, (3.44)

and

µ0, µk, µk
d ≥ 0; k = 1, . . . , K, (3.45)

s0, sk, sk
d ≥ 0; k = 1, . . . , K, (3.46)

where

S0 : A diagonal matrix containing elements s0,

M0 : A diagonal matrix containing elements µ0,

I : An identity matrix,

e : A vector with all elements equal to one,

Sk : A diagonal matrix containing elements sk,

Mk : A diagonal matrix containing elements µk,

Sd
k : A diagonal matrix containing elements sd

k,

Md
k : A diagonal matrix containing elements µd

k.

In order to solve the equations (3.35) to (3.44), we need to find the gradients of these

equations with respect to all variables, Lagrangian multipliers and primal and dual
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slacks. The update equation would have the following structure:




W0 W01 W02 · · · W0k

W10 W1 0 0 0

W20 0 W2 0 0

... 0 0
. . . 0

Wk0 0 0 0 WK







∆z0

∆z1

∆z2

...

∆zK




= −




ω0(z)

ω1(z)

ω2(z)

...

ωK(z)




(3.47)

where

W0: Hessian-like matrix of the main problem,

Wk: Hessian-like matrix of subproblem k, (k = 1, · · · , K),

W0k: The effects on the main problem due to the changes in subproblem k,

Wk0: The effects on the subproblem due to the changes in main problem.

We notice a bordered-block-diagonal structure of the W matrix. The matrices in the

diagonal blocks are the Hessian-like matrices of the main and all the subproblems.

W0 =




H0 π0J0T

h J0T

g 0

π0J0
h 0 0 0

J0
g 0 0 I

0 0 S0 M0




(3.48)

H0 = π0∇2
Y 0C0(Y 0) + π0

n∑
i=1

λ0
i∇2

Y 0h0
i +

m∑
i=1

µi∇2
Y 0g0

i
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J0
h : Jacobian of equality constraint functions h0(Y 0),

J0
g : Jacobian of inequality constraint functions g0(Y 0),

Wk =




Hk πkJkT

h JkT

g 0 DT

Y k 0

πkJk
h 0 0 0 0 0

Jk
g 0 0 I 0 0

0 0 Sk Mk 0 0

DY k 0 0 0 0 I

0 0 0 0 Sk
d Mk

d




(3.49)

where

Hk = πk∇2
Y kC

k(Y k, Y 0) + πk

n∑
i=1

λk
i∇2

Y kh
k
i +

m∑
i=1

µi∇2
Y kg

k
i ,

Jk
h : Jacobian of equality constraint functions hk(Y k),

Jk
g : Jacobian of inequality constraint functions gk(Y k),

DY k : Jacobian of coupling constraint functions dk(Y k, Y 0) w.r.t. Y k.

The effects of the coupling constraints appear only in the blocks, on the top and

left borders of the matrix W. These blocks have a very sparse structure due to very few

coupling constraints in the optimality conditions. The other blocks are zero because

there are no coupling constraints among the subproblems.

The matrices W01, · · · ,W0k can be interpreted as a measure of how much the

changes in the variables of subproblem k affect the variables of the main problem.

On other hand matrices W10, · · · , Wk0 can be interpreted as how the changes in the

variables of the main problem affect the variables of the subproblem k. Note that
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Wik = W T
ki if i 6= k.

Wk0 = W T
0k =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

DY 0 0 0 0

0 0 0 0




(3.50)

DY 0 : Jacobian of coupling constraint functions dk(Y k, Y 0) w.r.t. Y 0.

Since in our case the coupling constraints are linear, therefore, these matrices are

not only very sparse but also constant. Hence, the integrated problem is almost de-

coupled. Very little communication is required between the main and the subproblems

during their iterative solution. First equation in (3.47) is:

W0∆z0 +
K∑

i=1

W0i∆zi = −ω0(z) (3.51)

or ∆z0 = −W−1
0 (ω0(z) +

K∑
i=1

W0i∆zi) (3.52)

Considering any ith row in (3.47), except the first, one we can write:

Wi0∆z0 + Wi∆zi = −ωi(z) (3.53)

or Wi∆zi = −{ωi(z) + Wi0∆z0}︸ ︷︷ ︸
ω̃i(z)

(3.54)

or ∆zi = −W−1
i {ωi(z) + Wi0∆z0} (3.55)
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Substituting (3.55) in equation (3.51) we obtain:

W0∆z0 +
K∑

i=1

W0i[−W−1
i {ωi(z) + Wi0∆z0}] = −ω0(z) (3.56)

⇒ {W0 −
K∑

i=1

W0iW
−1
i Wi0}

︸ ︷︷ ︸
W̃0

∆z0 = −{ω0(z)−
K∑

i=1

W0iW
−1
i ωi(z)

︸ ︷︷ ︸
ω̃0(z)

} (3.57)

or W̃0∆z0 = −ω̃0(z)

The approximation (3.57) can be used as the update equation for the pre-contingency

case. It can be seen that the update ∆z0 is affected by each subproblem’s ∆zi. Using

equations (3.52) and (3.53) we get:

Wi0{−W−1
0 (ω0(z) +

K∑
i=1

W0i∆zi)}+ Wi∆zi = −ωi(z)

⇒ −Wi0W
−1
0 ω0(z)−

K∑
i=1

Wi0W
−1
0 W0i∆zi + Wi∆zi = −ωi(z)

−Wi0W
−1
0 ω0(z)−Wi0W

−1
0 W0i∆zi−

k∑
j=1
j 6=i

Wj0W
−1
0 W0j∆zj

︸ ︷︷ ︸
ignore

+ Wi∆zi = −ωi(z) (3.58)

⇒ {Wi −Wi0W
−1
0 W0i}︸ ︷︷ ︸

W̃i

∆zi = −{ωi(z)−Wi0W
−1
0 ω0(z)}︸ ︷︷ ︸

ω̃i(z)

(3.59)

or W̃i∆zi = −ω̃i(z) (3.60)

Equation (3.60) is the update equation for the ith, i ∈ {1, · · · , K} post-contingency

subproblem. Each subproblem calculation result ∆zi will have an impact on the main

problem’s update ∆z0, which will in turn cause the subproblem to adjust its update

to take the feedback into account. We must ignore ∆zj in distributed setting. The

information that how ∆z0 is affected by ∆zi is used to improve the increment ∆z0,

for that iteration. It can be noticed that ∆zi can be calculated by two ways. One

way is to use equation (3.60) and the other way is to use equation (3.55). Therefore,
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we have two algorithms to solve the decoupled ESCOPF problem.

3.3.1 Algorithm I

First W0 and ω0(z) can be calculated in master machine of the computer cluster.

This information can be passed to each of the slave machines for the calculation of

Wi, ωi(z), Wi0 and ∆zi, where i ∈ {1, · · · , K}. Computation for ∆zi is performed

using equation (3.60). W̃i and ω̃i(z) are derived from Wi and ωi(z) by incorporating

an estimate of the direction of the main problem. The information from all slave

machines responsible for all contingencies is collected and sent back to the master

machine which can perform the calculations for ∆z0, using equation (3.57). W̃0 and

ω̃0(z) are derived from W0 and ω0(z) by considering the effect of all the subproblems

on the main problem. This procedure, shown in Figure 3.1, can be repeated in each

iteration until convergence of the problem.

3.3.2 Algorithm II

First W0 and ω0(z) can be calculated in master machine and Wi, ωi(z) and, Wi0

can be computed in slave machines in parallel fashion. The information from all

slave machines is collected and sent back to the master machine. Master machine

performs the computation for ∆z0, using equation (3.57), which is sent to all the

slave machines for the calculation for ∆zi for each contingency. Computation for ∆zi

is performed by using equation (3.54). ω̃i(z) appearing in equation (3.54) is different

from that appearing in equation (3.60). Both incorporate the effect of the direction

of main problem. However, in case of equation (3.60), we consider an estimate of the

direction of main problem, while in the case of equation (3.54), we use the exact step

taken by the main problem. After the calculation of ∆zi, all the results from all the

slaves are gathered in the master machine. This procedure, shown in Figure 3.2, can

be repeated in each iteration until the problem is converged.
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Figure 3.1: Flow chart for algorithm I
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Figure 3.2: Flow chart for algorithm II
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3.3.3 Comparison of the two algorithms

The advantage associated with algorithm I is that it requires less communication

among the machines of the cluster. However, ignoring terms as shown in equa-

tion (3.58), it requires more iterations to reach the solution for smaller test cases.

For larger test cases it get gets close to the correct solution but does not quite con-

verge. In comparison to algorithm I, algorithm II needs more communication per

iteration but it does converge in relatively small number of iterations.

The idea of the decoupled ESCOPF was successfully implemented for both nonlin-

ear and linear cases by using a Linux-based computer cluster. For the small problems

it was noticed that the cluster took more time than the integrated method on a single

machine, but as the problem size grew, the time taken by the cluster to solve the

problem was significantly less than the time taken by the integrated method.

58



3.4 Speed up the computation of ESCOPF

3.4.1 Parallel processing

Flynn’s Taxonomy

Flynn’s Taxonomy, proposed by Michael J. Flynn, is the best-known classification of

parallel computer architectures [25, 26]. In this scheme, based upon the number of

instruction streams and the number of data streams, there are four classifications of

computer systems:

• Single-instruction, single-data (SISD): This category refers to computers which

can execute one instruction at a time on one piece of data.

• Single-instruction, multiple-data (SIMD): This category refers to computers

which have a central controller that broadcasts the instruction stream to all

the subordinate processing elements. Subordinate processors perform the same

operation on different data.

• Multiple-instruction, single-data (MISD): This category refers to multiple pro-

cessors applying different instructions to single data. This class is generally

deemed impractical [26].

• Multiple-instruction, multiple-data (MIMD): This category refers to multiple

processors simultaneously executing different instructions on different data stream.

MIMD systems support parallel solutions that require processors to operate in

an autonomous manner. Most modern parallel computers fall into this category.

MIMD systems are further divided into shared-memory and distributed-memory

systems.
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Figure 3.3: Distributed-memory MIMD architecture

Shared-Memory MIMD

Shared memory computer architectures accomplish interprocess communication by

using one memory accessible to all processors. There are two major shared memory

MIMD interconnection schemes:

• Bus-Based Architectures: All processors are connected to a common memory

through a bus3. The main disadvantage of these architectures is that large num-

ber of processors cannot be used because of the limited bandwidth of the bus.

• Switch-Based Architectures: Such architectures rely on switch-based intercon-

nection network. Unfortunately, this scheme tends to be very expensive because

of the large number of hardware switches.

Distributed-Memory MIMD

A distributed-memory system has processors with their own private memory as shown

in Figure 3.3. Each node has an autonomous processor and its local memory. All

nodes are connected to a processor-to-processor interconnection network. Nodes share

data by passing messages through the interconnection network, since there is no

shared memory [26]. The main disadvantage of distributed-memory MIMD systems

3In computer terminology bus means the route along which data and instructions travel. In
power systems, a bus is simply a node.
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is that they are very difficult to program. Software must have the ability to define

how and when data is communicated among the processors. The common approach

to programming MIMD systems is single-program, multiple-data (SPMD). In this

approach the effect of executing different programs is obtained by using conditional

branches in the code.

Message Passing

The most commonly used method of programming distributed-memory MIMD sys-

tems is message passing, in which processes4 coordinate their activities by sending

and receiving messages [27]. The MPI (Message Passing Interface) standard is the

most popular message-passing specification for parallel programming [25]. It is a

computer communications protocol. It is a standard for communication among the

nodes running a parallel program on a distributed memory system. The Parallel Vir-

tual Machine (PVM)5 is also a software tool for parallel networking of computers.

It is designed to allow a network of heterogeneous machines to be used as a single

distributed parallel processor. PVM was a significant step towards modern trends in

distributed processing. However, it is not being actively developed.

Matlab is very popular because of its high productivity. One line of Matlab code

can typically replace 10 lines of C language [28]. The most common mechanism

used for parallel programming is to translate the Matlab code into C, parallelize the

resulting C code using MPI and then execute it on a high performance computer.

This is an expensive, error-prone and time-consuming activity [29].

MatlabMPI is one of the leading technologies for writing parallel Matlab codes.

It was developed by Dr. Jeremy Kepner at Lincoln Laboratory of Massachusetts

4Process is a fundamental unit of a parallel software. It is an instance of a program that is
executed on a physical processor. A program is parallel if, at any time during its execution, it can
executes more than one process [27].

5PVM was developed by the University of Tennessee, The Oak Ridge National Laboratory and
Emory University.
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Figure 3.4: MatlabMPI vs. MPI Bandwidth (Courtesy of Dr. Jeremy Kepner)

Institute of Technology. MatlabMPI is a Matlab implementation of the MPI standard

and allows any Matlab program to use multiple processors [28]. Using MatlabMPI,

MPI communication calls can be embedded in Matlab code. MatlabMPI can run on

any combination of computers that Matlab supports. According to reference [29],

MatlabMPI has grown quickly in popularity among Department of Defense scientists

and engineers.

One issue associated with MatlabMPI is the number of Matlab licenses required to

run the parallel program. To overcome this difficulty, Dr. John Nehrbass6 developed

a version of MatlabMPI that would work with Matlab Compiler toolbox and generate

executable code, which can be launched for parallel operation and would require zero

licenses [29]. This technology is referred to as MatlabMPI compiler technology and

it was incorporated in the latest version of MatlabMPI.

Reference [28] compared the performance of C MPI and MatlabMPI. It was found

that for large messages (∼ 1 M Byte) MatlabMPI is able to match the performance

of C MPI as shown in Figure 3.4.
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Figure 3.5: OSU Power Beowulf Cluster

Linux cluster

A Linux cluster, a group of computers which work together toward a final goal, has

been constructed. We have used Beowulf cluster, originally developed at NASA [30],

which is a design for high-performance parallel computing clusters on personal com-

puter hardware. Beowulf systems are now being used worldwide, mainly for the

purposes of scientific computing.

Currently our computer cluster is composed of eight machines. One is the mas-

ter machine and other seven are slave machines as shown in Figure 3.5. The slave

machines are given the names power1 through power7. The specifications of the

machines in the cluster are given in Table 3.1. The main machine is assigned the

main problem and machines power2—power7 are given the task of handling the post-

contingency problems. Each machine is assigned a post-contingency problem to solve,

6Dr. John Nehrbass is a Senior Systems Developer/Engineer at Ohio supercomputer center.
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Name Processor Speed GHz Memory (RAM) MHz

Master 1.20 368
Power 1 0.45 384
Power 2 0.45 384
Power 3 1.20 248
Power 4 0.50 384
Power 5 0.50 384
Power 6 0.45 448
Power 7 0.50 384

Table 3.1: Specifications of the machines in the cluster.

except power3, which is given two post-contingency problems to solve because of its

faster processor, and power1, which monitors the CPU load on each machine in the

cluster and displays it using xload7. All the slave machines can work on subproblems

simultaneously before the exchange of the information. The main machine is not only

responsible for the calculation of pre-contingency case but also for distributing work

among other machines in the cluster.

Figure 3.6 shows the screen shot of power1 just after the integrated AC ESCOPF

has been solved for the IEEE 30 bus test case, using only one of the machines (mas-

ter) in the cluster. Figure 3.7 shows the screen shot of power1 after the decoupled

AC ESCOPF has been solved, for IEEE 30 bus case, by using seven machines of the

cluster. Here, power1 only monitors the CPU load on each machine of the cluster, so

the xload display corresponding to power1 shows that it is not very busy. Comparing

Figure 3.6 and Figure 3.7 it can be noticed that the time taken to solve the ESCOPF

using the decoupled solution method is much less than the time taken to solve the

ESCOPF using the integrated solution method.

7xload is a CPU load monitoring tool, commonly used in Unix. It displays the load of a CPU
along y-axis versus time along x-axis.

64



Figure 3.6: Screen shot after completion of the integrated AC ESCOPF for IEEE30
BUS case
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Figure 3.7: Screen shot after completion of the decoupled AC ESCOPF for IEEE30
BUS case (same time scale as that of Figure3.6)
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3.4.2 Time Comparison between Integrated and Decoupled ESCOPF meth-

ods

Parallel computing can reduce the time to solve a problem but it adds overhead due

to the communication involved among the machines. Therefore, for very small prob-

lems, which are less computationally intensive, the parallel implementation takes

longer than the integrated version of the algorithm, since the computational sav-

ings are wiped out by the communication overhead required by the use of multiple

processors. But as the size of the computational intensity increases, the communica-

tion overhead becomes a small part of the solutions time, so the significant speedup

due to parallelism becomes apparent. Integrated (AC & DC) ESCOPF and decou-

pled (AC & DC) ESCOPF were solved for IEEE 5, 14 and 30 bus cases. Table 3.2

shows the average time taken to solve different test cases. For each test case, Fig-

ure 3.8 shows the average solution time versus the size of Zo, which is a vector of

variables to be found for the base-case. It can be noticed that in case of 5 and 14 bus

DC ESCOPF cases, the integrated solution time is less than the decoupled solution

time. Moreover, for 5 bus AC ESCOPF we see the same situation. But for rest of

the three cases the cluster takes less time to solve the problem. Therefore, as the

computational intensity increases, the time saved by the cluster increases.

It may seem that the 30 bus DC case is more complex than the 14 bus AC case, but

actually it is not. The AC versions of the problem not only has non-linear constraints

Case Type Using Integrated Method Using Decoupled Method

5 Bus DC-ESCOPF 6.01 29.23
5 Bus AC-ESCOPF 18.95 35.24
14 Bus DC-ESCOPF 15.91 33.53
14 Bus AC-ESCOPF 125.35 52.99
30 Bus DC-ESCOPF 47.49 41.71
30 Bus AC-ESCOPF 1904.72 252.84

Table 3.2: Average time (Seconds) taken to solve different test cases.
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Figure 3.8: Time Comparison (Time versus size of Zo)

but also more constraints than in the DC case, since in the DC case we ignore the

voltage and reactive power limits. Due to the non-linear constraints, the Jacobian of

equality and inequality constraints are complex to compute in AC case as compared

to that in the DC case. In the DC case the elements of the Jacobians are zeros or ones

or imaginary part of Y-bus matrix. Moreover, in case of DC there are no Hessians

but in case of AC version, we must compute the Hessian matrices of the non-linear

constraints. Therefore, the 14 bus AC case is computationally intensive as compared

to the 30 bus case.

Another reason that the cluster takes more time than a single machine for smaller

cases is the excessive overhead for communication in MatlabMPI for small message

Case Type Largest Message Size (MB)

5 Bus DC-ESCOPF 0.035
5 Bus AC-ESCOPF 0.057
14 Bus DC-ESCOPF 0.085
14 Bus AC-ESCOPF 0.137
30 Bus DC-ESCOPF 0.163
30 Bus AC-ESCOPF 0.264

Table 3.3: Message sizes for different test cases.
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Figure 3.9: Communication Performance of OSU Power Beowulf Cluster

sizes as shown by Figure 3.4. As the size of the problem to be solved grows, the size

of the messages communicated between the machines of cluster also increases. Ta-

ble 3.3 shows the approximate size of messages for different cases. The communication

performance of the OSU power cluster is shown in Figure 3.9.
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CHAPTER 4

DESCRIPTION OF RESULTS

4.1 Implementation

To solve the decoupled ESCOPF problem several Matlab functions were written.

These functions performed the following major tasks:

• Read data from the ASCII text files

• Assign Matlab variable names to data

• Create indices for decision variables, Lagrange multipliers, primal and dual

variables

• Initialize the Matlab variables

• Execute the primal-dual interior-point algorithm to solve ESCOPF problem

• Communicate data among different processes for parallel processing

Power system data is present in ASCII text files .cdf, .gdf, and .ldf (see Appendix A.4).

In this chapter the results for 5 bus case (AC & DC) have been described. These re-

sults have been obtained by using the decoupled ESCOPF solution method. Dr. Dam-

rongkulkamjorn [11] obtained the same results using integrated ESCOPF solution

method.
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PGimin PGimax ∆+
maxPGi ∆−

maxPGi

Gen 1 45 MW 250 MW 50 MW 50 MW
Gen 2 15 MW 150 MW 35 MW 35 MW

Table 4.1: Characteristics of generators in 5-bus system in pre-contingency state.

4.2 Description of the results of DC ESCOPF for 5-bus system

The DC ESCOPF model formulated in Chapter 3 was tested on a 5-bus power sys-

tem, which is modified from the IEEE 14-bus system by removing the low voltage

buses 6 to 14 and associated transmission lines. Please see Appendix A.4 and A.5 for

the data. The characteristics of the 5-bus system are shown by figure 4.1.

This power system consists of two generators connected to bus 1 and bus 2. A

synchronous condenser, which supplies only reactive power, is connected to bus 3.

Buses 2, 3, 4, and, 5 are load buses. CGi is the cost curve of generator i, BLi is the

benefit curve of consumer load at bus i, and Pijmax is the maximum capacity of line ij.

PGimax and PGimin
are the maximum and minimum capacity limits of generator i,

respectively. These capacity limits are given in Table 4.1. When a contingency occurs,

flow of power in each transmission line is allowed to slightly exceed its capacity limit

for a short time. The flow limit after the occurrence contingency, called emergency

limit, is shown in parentheses next to PGimax in Figure 4.1. Maximum ramp up

capacity ∆+
maxPGi and maximum ramp down capacity ∆−

maxPGi is given in Table 4.1.

CIi is the interruption cost of load i. Probability of line outage contingency for line

ij is represented by πij. The seven contingencies and the corresponding probabilities

of occurrence are given in Table 4.2.

4.2.1 Optimized pre-contingency state

Figure 4.2 shows the solution, for the normal operation, for the IEEE 5 bus system

using decoupled ESCOPF method. This case was solved using the “DC” approxi-
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Contingency Lines πk

1 1 - 2 0.01
2 1 - 5 0.01
3 2 - 3 0.01
4 2 - 4 0.01
5 2 - 5 0.01
6 3 - 4 0.01
7 4 - 5 0.01

Table 4.2: Contingencies of 5-bus system and their probabilities.

mation. Marginal costs1 for generators and marginal benefits2 for loads are shown.

At each bus, λi, bus price, is shown, which is also the Lagrange multiplier for the

real power balance equation for the ith bus. Detailed solution can be seen in Ap-

pendix B.1. For brevity, the constraints which pertain only to the case subproblem

(i.e. not coupling) will be called local constraints. If the local constraints are binding,

the text will be shown as blue and if the coupling constraints are binding, the text

will be shown as red. The text is shown as purple if both types of constraints are

binding.

Generator at bus 1 provides 146.44 MW and generator at bus 2 provides 115.0 MW.

The generation capacity limits for generator at bus 1 are: PG1max = 250 MW and

PG1min
= 45 MW (see Table 4.1). After the occurrence of a contingency, generator-1

may not be able to enjoy these capacity limits because of the ramp up and ramp

down constraints. The capacity limits for generator-1 in the post-contingency state

are: PG1max = 146.44 + 50 = 196.44 MW and PG1min
= 146.44 − 50 = 96.44 MW.

Similarly the capacity limits for generator-2 in post-contingency state are: PG2max =

115 + 35 = 150 MW and PG2min
= 115.44 − 35 = 80.44 MW, while the nameplate

capacity limits for generator-2 are : PG2max = 150 MW and PG2min
= 15 MW. So in

the post-contingency state generator-2 is able to use its maximum generation capacity

1Marginal cost is the change in total cost when the power generator is changed by one unit
i.e MC(PGi) =

dC(PGi)
dPGi

.
2Marginal benefit is the change in total benefit when the power consumed is changed by one unit

i.e MB(PLi) =
dB(PLi)

dPGi
.
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of 150 MW, but cannot go as low as 15 MW.

4.2.2 Post-contingency state with line 1-2 out

In the normal state, Figure 4.2, transmission line connecting bus-1 and bus-2 was

the busiest line with Pik = 85.12 MW. Loss of such a line usually forces adjacent

lines to reach their maximum capacity limits. This is what happens in this case.

The generator at bus-1 has to ramp down by 146.44 − 110 = 36.44 MW because

the emergency power carrying capacity of the only line (between bus-1 and bus-5)

connected to generator is 110 MW. So generator-1 will provide 110 MW. Note that

the total load being served in the normal state was 261.44 MW. Since 110 MW is

provided by generator-1 so generator-2 is now responsible for the rest of the load

which is 151.44 MW. However, generator-2 cannot provide more then 150 MW, as we

discussed in section 4.2.1. So we have to interrupt 1.44 MW of the load. The Load at

bus-2 is interrupted by 0.29 MW and the load at bus-5 is interrupted by 1.15 MW.

There are five constraints which bind the optimal solution for this problem. These

constraints are listed in the Matlab-generated solution (Appendix B.1), with their cor-

responding multipliers3. The first constraint is the capacity limit for the line connect-

ing bus-1 and bus-5, as discussed above. The multiplier for this constraint is 101.22,

which shows that if one more MW is allowed to flow in the transmission line, the ob-

jective function of the post-contingency constraints would improve by 101.22 $/h. The

second constraint is generator maximum power generation limit. The corresponding

multiplier for this constraint is 10.42, which shows that the optimal objective function

would improve by 10.42 $/h, if the generator-2 were to generate one more MW in

the post contingency state. Third constraint is due to the ramp up capacity of the

generator-2. The corresponding multiplier for this constraint is (89.74). This shows

that if the ramp up limit of generator is increased by one MW, then the objective

3A constraint multiplier shows the improvement in objective function, if constraint were to be
relaxed by one unit
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function would improve by (89.74) $/h. A comparison of these multipliers shows that

the increase in transmission capacity is worth more than increasing the generator’s

maximum capacity and its ramp up capacity by the same amount. Likewise, increas-

ing the generator’s ramp up capacity is worth more that increasing its maximum

generation capacity.

4.2.3 Post-contingency state with line 1-5 out

After losing transmission line connecting bus-1 and bus-5, we are left with only one

transmission line, connected with generator-1, which is line 1-2 as shown in Figure 4.4.

The emergency limit of line 1-2 is 155 MW. So generator-1 is ramped up to 155 MW.

Generator-1 can be ramped up to 196.44 MW and has maximum capacity limit of

250 MW. Therefore, generator-1 is neither hit by ramp up limit nor hit by maximum

capacity limit. Pre-contingency load was 261.44 MW. Generator-2 is ramped down

from 115 MW to 106.44 MW. Neither generator-1 nor generator-2 is hit by any

binding constraint. Therefore, the marginal costs of these generators are equal to

their respective bus prices.
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m∼

1

CG1 = 0.00082P 2
G1 + 11PG1

45 ≤ PG1 ≤ 250MW

|∆PG1| ≤ 50MW

m∼

2

CG1 = 0.00776P 2
G2 + 12PG2

15 ≤ PG2 ≤ 150MW

|∆PG2| ≤ 35MW

?
BL2 = −0.2147P 2

L2 + 21.43PL2

CI2 = 100PL2

m

3

?

Synchronous
Condenser

BL3 = −0.0531P 2
L3 + 23.00PL3

CI3 = 100PL3

4

?
BL4 = −0.0531P 2

L4 + 22.48PL4

CI4 = 100PL4

5

- BL5 = −0.0930P 2
L5 + 22.11PL5

CI5 = 100PL5

P12max = 120(155)MW

(π12 = 0.01)

P23max = 75(95)MW

(π23 = 0.01)

P24max = 75(95)MW (π24 = 0.01)

P34max = 75(95)MW (π34 = 0.01)

P15max = 90(110)MW (π15 = 0.01)

P25max = 75(95)MW (π25 = 0.01)
P45max = 75(95)MW

(π45 = 0.01)

Figure 4.1: Characteristics of 5-bus system.
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Total cost = -1577.07 $/hr

Total power generation = 261.44 MW/hr

Total load consumption = 261.44 MW/hr

m∼

1

θ1 = 0◦

PG1 = 146.44 MW

MCG1 = 11.240 $/MWh

λ1 = 11.240 $/MWh

m∼

2

θ2 = −3.196◦

PG2 = 115.0 MW

MCG2 = 12.178 $/MWh

λ2 = 11.240 $/MWh

?
PL2 = 21.308 MW

MBL2 = 12.281 $/MWh

m

3

θ3 = −12.086◦

λ3 = 11.240$/MWh

?

Synch.
Cond.

PL3 = 95 MW

MBL3 = 12.911$/MWh

4

θ4 = −9.735◦

λ4 = 11.240 $/MWh
?PL4 = 91.809 MW

MBL4 = 12.730 $/MWh

5

- θ5 = −8.295◦

λ5 = 11.240 $/MWh

PL5 = 53.32 MW

MBL5 = 12.191 $/MWh

P12 = 85.12 MW

P15 = 61.31 MW

P23 = 74.20 MW

P24 = 58.38 MW

P25 = 46.23 MW

P43 = 20.79 MW

P54 = 54.21 MW

Figure 4.2: Solution for pre-contingency state (“DC” case)
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Total cost = -1396.40 $/hr

Total power generation = 260.00 MW/hr

Total load consumption = 260.00 MW/hr

m∼

1

θ1 = 0◦

PG1 = 110.00 MW

MCG1 = 11.18 $/MWh

λ1 = 11.18 $/MWh

m∼

2

θ2 = −12.426◦

PG2 = 150.00 MW

MCG2 = 12.233 $/MWh

λ2 = 112.405 $/MWh

?
PL2 = 21.016 MW

MBL2 = 12.406 $/MWh

m

3

θ3 = −20.310◦

λ3 = 112.405$/MWh

?

Synch.
Cond.

PL3 = 95.00 MW

MBL3 = 12.911$/MWh

4

θ4 = −17.00◦

λ4 = 112.405 $/MWh
?PL4 = 91.809 MW

MBL4 = 12.732 $/MWh

5

- θ5 = −14.882◦

λ5 = 112.405 $/MWh

PL5 = 52.175 MW

MBL5 = 12.405 $/MWh

P15 = 110.00 MW

P23 = 65.79 MW

P24 = 40.91 MW

P25 = 22.20 MW

P43 = 29.19 MW

P54 = 80.09 MW

Figure 4.3: Solution for post-contingency state with line 1-2 gone
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Total cost = -1584.98 $/hr

Total power generation = 261.44 MW/hr

Total load consumption = 261.44 MW/hr

m∼

1

θ1 = 0◦

PG1 = 155.00 MW

MCG1 = 11.25 $/MWh

λ1 = 11.25 $/MWh

m∼

2

θ2 = −5.819◦

PG2 = 106.44 MW

MCG2 = 12.165 $/MWh

λ2 = 12.165 $/MWh

?
PL2 = 21.308 MW

MBL2 = 12.28 $/MWh

m

3

θ3 = −15.948◦

λ3 = 12.165$/MWh

?

Synch.
Cond.

PL3 = 95.00 MW

MBL3 = 12.911$/MWh

4

θ4 = −14.765◦

λ4 = 12.165 $/MWh
?PL4 = 91.809 MW

MBL4 = 12.730 $/MWh

5

- θ5 = −14.171◦

λ5 = 112.165 $/MWh

PL5 = 53.326 MW

MBL5 = 12.191 $/MWh

P12 = 155.00MW

P23 = 84.53 MW

P24 = 79.88 MW

P25 = 75.71 MW

P43 = 10.46 MW

P54 = 22.38 MW

Figure 4.4: Solution for post-contingency state with line 1-5 gone
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Total cost = -1582.51 $/hr

Total power generation = 261.44 MW/hr

Total load consumption = 261.44 MW/hr

l∼

1

θ1 = 0◦

PG1 = 152.31 MW

MCG1 = 11.25 $/MWh

λ1 = 11.25 $/MWh

l∼

2

θ2 = −2.79◦

PG2 = 109.12 MW

MCG2 = 12.169 $/MWh

λ2 = 12.169 $/MWh

?
PL2 = 21.30 MW

MBL2 = 12.28 $/MWh

l

3

θ3 = −23.811◦

λ3 = 37.23 $/MWh

?

Synch.

Cond.

PL3 = 95.00 MW

MBL3 = 12.911$/MWh

4

θ4 = −13.073◦

λ4 = 19.211 $/MWh

?PL4 = 91.809 MW

MBL4 = 12.730 $/MWh

5

- θ5 = −10.55◦

λ5 = 7.936 $/MWh

PL5 = 53.326 MW

MBL5 = 12.191 $/MWh

P12 = 74.33 MW

P15 = 77.97 MW

P24 = 91.80 MW

P25 = 70.34 MW

P43 = 95.00 MW

P54 = 95.00 MW

Figure 4.5: Solution for post-contingency state with line 2-3 gone

4.2.4 Post-contingency state with line 2-3 out

Figure 4.5 shows the optimal solution when transmission line 2-3 is lost. As a result

of this contingency two transmission lines, 4-3 and 5-4 hit the maximum capacity

limit. We do not have to interrupt any load in this case.
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Total cost = -1559.10 $/hr

Total power generation = 261.44 MW/hr

Total load consumption = 261.44 MW/hr

l∼

1

θ1 = 0◦

PG1 = 127.88 MW

MCG1 = 11.21 $/MWh

λ1 = 11.21 $/MWh

l∼

2

θ2 = −1.995◦

PG2 = 133.56 MW

MCG2 = 12.207 $/MWh

λ2 = 12.207 $/MWh

?
PL2 = 21.30 MW

MBL2 = 12.28 $/MWh

l

3

θ3 = −12.995◦

λ3 = 20.380$/MWh

?

Synch.

Cond.

PL3 = 95.00 MW

MBL3 = 12.911$/MWh

4

θ4 = −12.634◦

λ4 = 28.09 $/MWh

?PL4 = 91.809 MW

MBL4 = 12.730 $/MWh

5

- θ5 = −10.11◦

λ5 = 7.614 $/MWh

PL5 = 53.326 MW

MBL5 = 12.191 $/MWh

P12 = 53.13 MW

P15 = 74.74 MW

P23 = 91.80 MW

P25 = 73.58 MW

P43 = 3.19 MW

P54 = 95.00 MW

Figure 4.6: Solution for post-contingency state with line 2-4 gone

4.2.5 Post-contingency state with line 2-4 out

Figure 4.6 shows the optimal solution when transmission line 2-4 is lost. As a result

of this contingency, transmission line 5-4 hits the maximum capacity limit. No load

interruption occurs as a result of this contingency.
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Total cost = -1607.96 $/hr

Total power generation = 261.44 MW/hr

Total load consumption = 261.44 MW/hr

l∼

1

θ1 = 0◦

PG1 = 181.44 MW

MCG1 = 11.29 $/MWh

λ1 = 11.29 $/MWh

l∼

2

θ2 = −3.685◦

PG2 = 80.00 MW

MCG2 = 12.124 $/MWh

λ2 = 11.298 $/MWh

?
PL2 = 21.30 MW

MBL2 = 12.28 $/MWh

l

3

θ3 = −13.52◦

λ3 = 11.29$/MWh

?

Synch.

Cond.

PL3 = 95.00 MW

MBL3 = 12.911$/MWh

4

θ4 = −12.061◦

λ4 = 11.29 $/MWh

?PL4 = 91.809 MW

MBL4 = 12.730 $/MWh

5

- θ5 = −11.266◦

λ5 = 11.29 $/MWh

PL5 = 53.326 MW

MBL5 = 12.191 $/MWh

P12 = 98.169 MW

P15 = 83.26 MW

P23 = 82.08 MW

P24 = 74.78 MW

P43 = 12.91 MW

P54 = 29.94 MW

Figure 4.7: Solution for post-contingency state with line 2-5 gone
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4.2.6 Post-contingency state with line 2-5 out

Figure 4.7 shows the optimal solution when transmission line 2-5, which is directly

connected to generator-2, is lost. Generator-2 is ramped down and generator-1 is

ramped up. Since ramp down limit of generator-2 hit, its marginal cost is different

from the bus price at bus-2. The difference is the Lagrange multiplier.

In this case the power generated by generator-2 is 80 MW. We also noticed that

when line 1-2 is lost, we had to ramp up generator-2 to 150 MW. This means that the

1-2 line outage contingency drives the post-contingency PG2 to its maximum, which

in turn drives the pre-contingency PG2 to 115 MW via the ramp up constraint. At

the same time, the 2-5 line loss case has PG2 pulled up to 80 MW by the ramp down

constraint. These two contingencies influence P 0
G2 in opposite directions, with the

influence of the 1-2 line outage being dominant.
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Total cost = -1607.96 $/hr

Total power generation = 261.44 MW/hr

Total load consumption = 261.44 MW/hr

l∼

1

θ1 = 0◦

PG1 = 181.44 MW

MCG1 = 11.29 $/MWh

λ1 = 11.29 $/MWh

l∼

2

θ2 = −4.46◦

PG2 = 80.00 MW

MCG2 = 12.124 $/MWh

λ2 = 11.298 $/MWh

?
PL2 = 21.30 MW

MBL2 = 12.28 $/MWh

l

3

θ3 = −15.84◦

λ3 = 29.719$/MWh

?

Synch.

Cond.

PL3 = 95.00 MW

MBL3 = 12.911$/MWh

4

θ4 = −9.663◦

λ4 = 11.298 $/MWh

?PL4 = 91.809 MW

MBL4 = 12.730 $/MWh

5

- θ5 = −8.458◦

λ5 = 11.298 $/MWh

PL5 = 53.326MW

MBL5 = 12.191 $/MWh

P12 = 118.92 MW

P15 = 62.51 MW

P23 = 95.00 MW

P24 = 46.41 MW

P25 = 36.20 MW

P54 = 45.39 MW

Figure 4.8: Solution for post-contingency state with line 3-4 gone

4.2.7 Post-contingency state with line 3-4 out

After losing transmission line 3-4, the only line supplying power to the load at bus-3

is the line 2-3, which has a maximum capacity of 95 MW. To transmit 95 MW of

power through the line 2-3, generator-2 is ramped down and generator-1 is ramped

up. The maximum load that can be served at this bus is 95 MW. To avoid the high

cost of interruption, the base case load at bus is also set to 95 MW, which then forces

all contingencies to have PL3 = 95 MW, through the coupling constraint P 3
Li ≤ P 0

Li.
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Total cost = -1607.96 $/hr

Total power generation = 261.44 MW/hr

Total load consumption = 261.44 MW/hr

l∼

1

θ1 = 0◦

PG1 = 181.44 MW

MCG1 = 11.29 $/MWh

λ1 = 11.29 $/MWh

l∼

2

θ2 = −5.128◦

PG2 = 80.00 MW

MCG2 = 12.124 $/MWh

λ2 = 11.298 $/MWh

?
PL2 = 21.30 MW

MBL2 = 12.28 $/MWh

l

3

θ3 = −16.128◦

λ3 = 22.56$/MWh

?

Synch.

Cond.

PL3 = 95.00 MW

MBL3 = 12.911$/MWh

4

θ4 = −15.76◦

λ4 = 33.18 $/MWh

?PL4 = 91.809 MW

MBL4 = 12.730 $/MWh

5

- θ5 = −6.065◦

λ5 = 11.298 $/MWh

PL5 = 53.326 MW

MBL5 = 12.191 $/MWh

P12 = 136.61 MW

P15 = 44.83 MW

P23 = 91.80 MW

P24 = 95.00 MW

P25 = 8.49 MW

P43 = 3.19 MW

Figure 4.9: Solution for post-contingency state with line 4-5 gone

4.2.8 Post-contingency state with line 4-5 out

Figure 4.9 shows that the transmission line 2-4 is fully loaded as a result of this

contingency.
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4.3 Description of the results of AC ESCOPF for 5-bus system

The AC ESCOPF model formulated in Chapter 3 was tested on a 5-bus power system.

The reactive power is not ignored as was done in the “DC” case. The real and reactive

power capacity limits are shown in Table 4.3. In the “AC” case, the power flow

equations are nonlinear. Voltage limits are also incorporated. Line resistances are

not ignored, therefore, we have real power losses in the transmission lines. The flow

from bus i to bus j is different from the flow from bus j to bus i because of the line

charging susceptance of the transmission lines.

PGimin PGimax QGimin QGimax ∆+
maxPGi ∆−

maxPGi

Gen 1 45 MW 250 MW -100 MVar 150 MVar 50 MW 50 MW
Gen 2 15 MW 150 MW -40 MVar 50 MVar 35 MW 35 MW

SynCon 3 0 MW 0 MW -40 MVar 40 MVar 0 MW 0 MW

Table 4.3: Characteristics of generators in 5-bus system at pre-contingency state.
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4.3.1 Optimized pre-contingency state and post-contingency states

Figure 4.10 shows the solution, for the normal operation, for the IEEE 5 bus system

using decoupled ESCOPF method. This case was solved using the “AC” approxima-

tion. Figure 4.11 — Figure 4.17 show the post-contingency solutions.

The results of the AC ESCOPF and DC ESCOPF are slightly different. For

example in the case of contingency-1, the solution of DC ESCOPF interrupts some of

the loads, but the solution of AC ESCOPF does not interrupt any load. This happens

because the load consumption in the AC case is less, compared to that in the DC

case, because of the inclusion of the real power losses.

In the DC case, when the transmission line 1-2 is lost, both local and coupling

constraints are binding on bus 2 real generation, whereas only the coupling constraint

is binding in the AC ESCOPF solution (although PG2 is very close to its local limit).

In DC analysis there are no voltage constraints. In AC analysis we find at least

one binding voltage constraint in each contingency, preventing system voltages from

becoming unreasonably high as is typical in ACOPF.
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Total cost = -1466.9 $/hr

Total power generation = 259.8 MW/hr

Total load consumption = 251.0 MW/hr

m∼

1

θ1 = 0◦

PG1 = 151.72 MW

MCG1 = 11.249 $/MWh

λ1 = 11.249 $/MWh

QG1 = −15.238MVar

V1 = 1.080 pu

m∼

2

θ2 = −2.827◦

PG2 = 108.124 MW

MCG2 = 12.168 $/MWh

λ2 = 11.589 $/MWh

QG2 = 35.825MVar

V2 = 1.074 pu
?

PL2 = 21.565 MW

MBL2 = 12.170 $/MWh

m

3

θ3 = −10.058◦

PG3 = 0 MW

MCG3 = 0$/MWh

λ3 = 12.434$/MWh

QG3 = 31.683MVar

V3 = 1.043 pu

?

Synch.
Cond.

PL3 = 88.84 MW

MBL3 = 13.564$/MWh

4

θ4 = −7.886◦

λ4 = 12.231 $/MWh

V4 = 1.034 pu?
PL4 = 90.11 MW

MBL4 = 12.91 $/MWh

5

- θ5 = −6.694◦

λ5 = 12.065 $/MWh

V5 = 1.041 pu

PL5 = 50.561 MW

MBL5 = 12.706 $/MWh

I12 = 0.864 pu

I21 = 0.852 pu

I51 = 0.567 pu

I15 = 0.563 pu

I23 = 0.673 pu

I32 = 0.672 pu

I24 = 0.543 pu

I42 = 0.547 pu

I25 = 0.429 pu

I52 = 0.433 pu

I43 = 0.230 pu

I34 = 0.209 pu

I54 = 0.510 pu

I45 = 0.509 pu

Figure 4.10: Solution for pre-contingency state (“AC” case)
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Total cost = -1409.58 $/hr

Total power generation = 261.9 MW/hr

Total load consumption = 251.0 MW/hr

m∼

1

θ1 = 0◦

PG1 = 118.798 MW

MCG1 = 11.195 $/MWh

λ1 = 11.195 $/MWh

QG1 = 0.634MVar

V1 = 1.080 pu

m∼

2

θ2 = −12.306◦

PG2 = 143.124 MW

MCG2 = 12.222 $/MWh

λ2 = 67.409 $/MWh

QG2 = 34.413MVar

V2 = 1.080 pu
?

PL2 = 21.565 MW

MBL2 = 12.170 $/MWh

m

3

θ3 = −18.522◦

PG3 = 0 MW

MCG3 = 0$/MWh

λ3 = 71.774$/MWh

QG3 = 33.991MVar

V3 = 1.049 pu

?

Synch.
Cond.

PL3 = 88.84 MW

MBL3 = 13.564$/MWh

4

θ4 = −15.405◦

λ4 = 69.877 $/MWh

V4 = 1.037 pu?
PL4 = 90.11 MW

MBL4 = 12.91 $/MWh

5

- θ5 = −13.516◦

λ5 = 68.471 $/MWh

V5 = 1.042 pu

PL5 = 50.561 MW

MBL5 = 12.706 $/MWh

I51 = 1.095 pu

I15 = 1.100 pu

I23 = 0.585 pu

I32 = 0.587 pu

I24 = 0.377 pu

I42 = 0.390 pu

I25 = 0.228 pu

I52 = 0.252 pu

I43 = 0.325 pu

I34 = 0.305 pu

I54 = 0.784 pu

I45 = 0.782 pu

Figure 4.11: Solution for post-contingency state with line 1-2 gone
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Total cost = -1414.22 $/hr

Total power generation = 265.2 MW/hr

Total load consumption = 251.0 MW/hr

m∼

1

θ1 = 0◦

PG1 = 166.65 MW

MCG1 = 11.273 $/MWh

λ1 = 11.273 $/MWh

QG1 = −15.772MVar

V1 = 1.080 pu

m∼

2

θ2 = −5.059◦

PG2 = 98.635 MW

MCG2 = 12.168 $/MWh

λ2 = 12.153 $/MWh

QG2 = 49.99MVar

V2 = 1.061 pu
?

PL2 = 21.565 MW

MBL2 = 12.170 $/MWh

m

3

θ3 = −13.693◦

PG3 = 0 MW

MCG3 = 0$/MWh

λ3 = 13.255$/MWh

QG3 = 39.99MVar

V3 = 1.029 pu

?

Synch.
Cond.

PL3 = 88.84 MW

MBL3 = 13.564$/MWh

4

θ4 = −12.278◦

λ4 = 13.238 $/MWh

V4 = 1.006 pu?
PL4 = 90.11 MW

MBL4 = 12.91 $/MWh

5

- θ5 = −11.723◦

λ5 = 13.17 $/MWh

V5 = 1.007 pu

PL5 = 50.561 MW

MBL5 = 12.706 $/MWh

I12 = 1.550 pu

I21 = 1.543 pu

I23 = 0.788 pu

I32 = 0.787 pu

I24 = 0.759 pu

I42 = 0.762 pu

I25 = 0.718 pu

I52 = 0.722 pu

I43 = 0.202 pu

I34 = 0.170 pu

I54 = 0.223 pu

I45 = 0.220 pu

Figure 4.12: Solution for post-contingency state with line 1-5 gone
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Total cost = -1351.83 $/hr

Total power generation = 269.91 MW/hr

Total load consumption = 251.08 MW/hr

m∼

1

θ1 = 0◦

PG1 = 159.77 MW

MCG1 = 11.262 $/MWh

λ1 = 11.262 $/MWh

QG1 = −5.313MVar

V1 = 1.080 pu

m∼

2

θ2 = −2.519◦

PG2 = 110.134 MW

MCG2 = 12.171 $/MWh

λ2 = 12.171 $/MWh

QG2 = 50.00MVar

V2 = 1.075 pu
?

PL2 = 21.565 MW

MBL2 = 12.170 $/MWh

m

3

θ3 = −20.85◦

PG3 = 0 MW

MCG3 = 0$/MWh

λ3 = 63.733$/MWh

QG3 = 39.999MVar

V3 = 0.969 pu

?

Synch.
Cond.

PL3 = 88.84 MW

MBL3 = 13.564$/MWh

4

θ4 = −10.925◦

λ4 = 15.599 $/MWh

V4 = 1.004 pu?
PL4 = 90.11 MW

MBL4 = 12.91 $/MWh

5

- θ5 = −8.717◦

λ5 = 14.407 $/MWh

V5 = 1.018 pu

PL5 = 50.561 MW

MBL5 = 12.706 $/MWh

I12 = 0.770 pu

I21 = 0.758 pu

I51 = 0.746 pu

I15 = 0.739 pu

I24 = 0.901 pu

I42 = 0.906 pu

I25 = 0.688 pu

I52 = 0.694 pu

I43 = 0.950 pu

I34 = 0.944 pu

I54 = 0.937 pu

I45 = 0.938 pu

Figure 4.13: Solution for post-contingency state with line 2-3 gone
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Total cost = -1457.85 $/hr

Total power generation = 263.32 MW/hr

Total load consumption = 251.08 MW/hr

m∼

1

θ1 = 0◦

PG1 = 190.196 MW

MCG1 = 11.312 $/MWh

λ1 = 11.312 $/MWh

QG1 = −12.343MVar

V1 = 1.080 pu

m∼

2

θ2 = −3.354◦

PG2 = 73.124 MW

MCG2 = 12.113 $/MWh

λ2 = 11.724 $/MWh

QG2 = 42.84MVar

V2 = 1.074 pu
?

PL2 = 21.565 MW

MBL2 = 12.170 $/MWh

m

3

θ3 = −12.321◦

PG3 = 0 MW

MCG3 = 0$/MWh

λ3 = 12.745$/MWh

QG3 = 39.972MVar

V3 = 1.037 pu

?

Synch.
Cond.

PL3 = 88.84 MW

MBL3 = 13.564$/MWh

4

θ4 = −11.370◦

λ4 = 12.763 $/MWh

V4 = 1.009 pu?
PL4 = 90.11 MW

MBL4 = 12.91 $/MWh

5

- θ5 = −9.172◦

λ5 = 12.453 $/MWh

V5 = 1.022 pu

PL5 = 50.561 MW

MBL5 = 12.706 $/MWh

I12 = 1.022 pu

I21 = 1.010 pu

I51 = 0.775 pu

I15 = 0.770 pu

I23 = 0.8297 pu

I32 = 0.8291 pu

I25 = 0.644 pu

I52 = 0.649 pu

I43 = 0.195 pu

I34 = 0.160 pu

I54 = 0.925 pu

I45 = 0.925 pu

Figure 4.14: Solution for post-contingency state with line 2-4 gone
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Total cost = -1469.79 $/hr

Total power generation = 262.2 MW/hr

Total load consumption = 251.0 MW/hr

m∼

1

θ1 = 0◦

PG1 = 189.14 MW

MCG1 = 11.310 $/MWh

λ1 = 11.310 $/MWh

QG1 = −9.11MVar

V1 = 1.080 pu

m∼

2

θ2 = −3.297◦

PG2 = 73.124 MW

MCG2 = 12.113 $/MWh

λ2 = 11.718 $/MWh

QG2 = 37.12MVar

V2 = 1.073 pu
?

PL2 = 21.565 MW

MBL2 = 12.170 $/MWh

m

3

θ3 = −11.472◦

PG3 = 0 MW

MCG3 = 0$/MWh

λ3 = 12.650$/MWh

QG3 = 38.04MVar

V3 = 1.040 pu

?

Synch.
Cond.

PL3 = 88.84 MW

MBL3 = 13.564$/MWh

4

θ4 = −9.888◦

λ4 = 12.552 $/MWh

V4 = 1.019 pu?
PL4 = 90.11 MW

MBL4 = 12.91 $/MWh

5

- θ5 = −9.183◦

λ5 = 12.434 $/MWh

V5 = 1.020 pu

PL5 = 50.561 MW

MBL5 = 12.706 $/MWh

I12 = 1.006 pu

I21 = 0.995 pu

I51 = 0.777 pu

I15 = 0.772 pu

I23 = 0.756 pu

I32 = 0.755 pu

I24 = 0.706 pu

I42 = 0.710 pu

I43 = 0.207 pu

I34 = 0.177 pu

I54 = 0.287 pu

I45 = 0.284 pu

Figure 4.15: Solution for post-contingency state with line 2-5 gone
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Total cost = -1480.95 $/hr

Total power generation = 261.2 MW/hr

Total load consumption = 251.0 MW/hr

m∼

1

θ1 = 0◦

PG1 = 188.15 MW

MCG1 = 11.309 $/MWh

λ1 = 11.309 $/MWh

QG1 = −13.368MVar

V1 = 1.080 pu

m∼

2

θ2 = −3.881◦

PG2 = 73.124 MW

MCG2 = 12.113 $/MWh

λ2 = 11.785 $/MWh

QG2 = 45.377MVar

V2 = 1.070 pu
?

PL2 = 21.565 MW

MBL2 = 12.170 $/MWh

m

3

θ3 = −13.309◦

PG3 = 0 MW

MCG3 = 0$/MWh

λ3 = 12.752$/MWh

QG3 = 30.415MVar

V3 = 1.043 pu

?

Synch.
Cond.

PL3 = 88.84 MW

MBL3 = 13.564$/MWh

4

θ4 = −7.780◦

λ4 = 12.34 $/MWh

V4 = 1.025 pu?
PL4 = 90.11 MW

MBL4 = 12.91 $/MWh

5

- θ5 = −6.807◦

λ5 = 12.182 $/MWh

V5 = 1.034 pu

PL5 = 50.561 MW

MBL5 = 12.706 $/MWh

I12 = 1.185 pu

I21 = 1.175 pu

I51 = 0.584 pu

I15 = 0.578 pu

I23 = 0.863 pu

I32 = 0.859 pu

I24 = 0.447 pu

I42 = 0.456 pu

I25 = 0.348 pu

I52 = 0.357 pu

I54 = 0.439 pu

I45 = 0.441 pu

Figure 4.16: Solution for post-contingency state with line 3-4 gone

93



Total cost = -1448.34 $/hr

Total power generation = 264.1 MW/hr

Total load consumption = 251.0 MW/hr

m∼

1

θ1 = 0◦

PG1 = 191.03 MW

MCG1 = 11.313 $/MWh

λ1 = 11.313 $/MWh

QG1 = −7.26MVar

V1 = 1.080 pu

m∼

2

θ2 = −4.403◦

PG2 = 73.124 MW

MCG2 = 12.113 $/MWh

λ2 = 11.876 $/MWh

QG2 = 35.432MVar

V2 = 1.06 pu
?

PL2 = 21.565MW

MBL2 = 12.170 $/MWh

m

3

θ3 = −13.878◦

PG3 = 0 MW

MCG3 = 0$/MWh

λ3 = 13.021$/MWh

QG3 = 39.976MVar

V3 = 1.024 pu

?

Synch.
Cond.

PL3 = 88.84 MW

MBL3 = 13.564$/MWh

4

θ4 = −13.181◦

λ4 = 13.123 $/MWh

V4 = 0.997 pu?
PL4 = 90.11 MW

MBL4 = 12.91 $/MWh

5

- θ5 = −4.893◦

λ5 = 11.799 $/MWh

V5 = 1.05 pu

PL5 = 50.561 MW

MBL5 = 12.706 $/MWh

I12 = 1.357 pu

I21 = 1.353 pu

I51 = 0.418 pu

I15 = 0.414 pu

I23 = 0.863 pu

I32 = 0.862 pu

I24 = 0.911 pu

I42 = 0.913 pu

I25 = 0.067 pu

I52 = 0.857 pu

I43 = 0.178 pu

I34 = 0.143 pu

Figure 4.17: Solution for post-contingency state with line 4-5 gone
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The security-constrained optimal power with post-contingency rescheduling mini-

mizes the base-case operating cost, while providing the security but it ignores the

actual cost of a contingency as a function of the pre-contingency operating state.

There is no upper limit on the cost of surviving the contingency. The expected se-

curity cost optimal power flow (ESCOPF) replaces the hard constraints with cost

functions, therefore, it is more economical way of securely operating the power sys-

tem. ESCOPF problem size is very large because the loadflow equations and operat-

ing limit constraints for each post-contingency state are combined into one problem.

Therefore, a decomposed solution method was needed so that the computational time

could be reduced.

The objective of this dissertation is to develop and implement a decoupled solution

method by which the ESCOPF problem can be decomposed and distributed to a

set of processors which can run together to solve the problem in parallel fashion.

Decoupled formulation/solution takes advantage of the nearly decoupled relationship

between the pre-contingency and post-contingency variables. MatlabMPI has been

used for the parallel implementation of the decoupled ESCOPF on a Beowulf cluster.

Steps leading to the successful implementation of the decoupled solution method for

ESCOPF have been discussed.

While parallelization can significantly reduce computation time, it adds overhead

due to communication among processors in the cluster. Therefore, for very small

problems parallel solution using a cluster is not very efficient. For larger problems
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which are more computationally intensive, the communication overhead is small com-

pared to the compute time, so the time required for parallel solution is far less than

the time to solve by using the integrated ESCOPF method. Significant speed im-

provements promise the ability to compute results in a reasonable amount of time

which would otherwise take far too long to be seriously considered.

In PDIP method, how close we should go to the central path (to minimize the

number of iterations without sacrificing convergence) has yet to be fully explored.

How should the barrier parameter ν be decreased to zero? Should the scaling factor ρ

be kept constant or should it be adjusted depending upon the progress we make

while solving the problem? If ρ should be adjusted dynamically, then how? These

factors may help us obtain good convergence properties and speed-up the computation

process for ESCOPF.

Future studies should focus on the implementation of the decoupled ESCOPF for

combined natural gas & electric networks. Initial phase of combining the gas and

electric networks has already been completed by our research group at OSU.
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[38] M. Argáez, R. Tapia, and L. Velázquez, “Numerical comparisons of path-

following strategies for a primal-dual interior-point method for nonlinear pro-

gramming,” J. Optim. Theory Appl., vol. 114, pp. 255–272, 2002.

[39] A. Forsgren, P. Gill, and M. Wright, “Interior methods for nonlinear optimiza-

tion,” SIAM Review, vol. 44, no. 4, pp. 525–597, 2002.

[40] H. G. W. Burchard, “Primal-dual interior point methods and nonlinear approxi-

mation.” Oklahoma State University. Presented at the Ninth International Con-

ference on Approximation Theory, Vanderbilt University, Nashville, TN, January

1998.

[41] E. Andersen, C. Roos, T. Terlaky, T. Trafalis, and J. Warners, “The use of

low-rank updates in interior-point methods.” Technical memo from Delft Uni-

versity of Technolgy, dowloaded from internet on February 27, 2004 (original

date 1995?).

[42] W. G. on a Common Format for the Exchange of Solved Load Flow Data, “Com-

mon data format for the exchange of solved load flow data,” IEEE Transactions

on Power Apparatus and Systems, vol. PAS-92, Issue 6, pp. 1916–1925, Novem-

ber/December 1973.

101



APPENDIX A

DESCRIPTION OF DATA FILE FORMATS

A.1 Common data format file

The IEEE common data format file [42] has *.cdf extension. It contains data about

the power system transmission lines and buses. In data file, lines are grouped into

section with section headers. Each line in the data file has 128 characters. Data items

are stored in specific columns. Following is the description of IEEE *.cdf file.

• Title Data:

Columns 2-9 Date, in format DD/MM/YY with leading zeros
11-30 Originator’s name
32-37 MVA base
39-42 Year
44 Season (S - Summer, W - Winter)
46-73 Case identification
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• Bus Data:

Columns 1-4 Bus number
7-17 Bus name
25-26 Type:

0=Unregulated (load, PQ)
1=Hold MVAR generation within voltage limits (PQ)
2=Hold voltage within VAR limits (PV)
3=Hold voltage and angle (Swing)

28-33 Bus voltage (loadflow result)
34-40 Bus angle (loadflow result)
41-49 Load MW (loadflow result)
50-59 Load MVAR (loadflow result)
60-67 Generation MW (loadflow result)
68-75 Generation MVAR (loadflow result)
91-98 Maximum voltage: for only bus type 0
99-106 Minimum voltage: for only bus type 0
107-114 Shunt conductance G (per unit)
115-122 Shunt susceptance B (per unit)

• Line Data:

Columns 1-4 From bus
6-9 To bus
19 Line type:

1=Fixed voltage ratio and/or fixed phase shifter
2=Fixed phase angle and variable voltage ratio with

voltage control
3=Fixed phase angle and variable voltage ratio with

MVAR control
4=Fixed voltage ratio and variable phase shifter with

MW control
20-29 Branch resistance R, per unit
30-40 Branch reactance X, per unit
41-49 Line charging B, per unit
57-61 Maximum line flow (MVA): for emergency state
63-67 Maximum line flow (MVA): for normal operating state
77-82 Transformer tap ratio
84-90 Phase angle
91-97 Minimum limit of variable tap ratio or phase shifter angle
98-104 Maximum limit of variable tap ratio or phase shifter angle
134-139 Probability of line outage in percent (added for ESCOPF)
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A.2 Generator Data format file

The generator data file has a *.gdf extension. It was created to provide generator cost

curve data, generator operating voltage and power output operating limits. Following

is the description of *.gdf file.

Columns 1-5 Generator bus number
7-15 Generator name
17-23 Maximum real power generation
25-29 Minimum real power generation
31-38 Maximum reactive power generation
40-45 Minimum reactive power generation
40-45 Minimum reactive power generation
47 Adjustable real power generation:

0=real power generation is not adjustable
1=real power generation is adjustable

49 Adjustable reactive power generation:
0=reactive power generation is not adjustable
1=reactive power generation is adjustable

51 Availability:
0=the generator is not available
1=the generator is available

53-75 Generator cost function: αGi + βGiPGi + γGiP
2
Gi

53-59 Generator αGi cost curve coefficient
61-66 Generator βGi cost curve coefficient
68-75 Generator γGi cost curve coefficient
77-81 Maximum voltage magnitude at generator bus
83-87 Minimum voltage magnitude at generator bus
89-93 Maximum MW upward ramping
95-99 Minimum MW downward ramping
101-106 Maximum MVar upward ramping
108-113 Minimum MVar downward ramping
115-120 Generator βR ramping cost curve coefficient
122-129 Generator γR ramping cost curve coefficient
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A.3 Load Data format file

The generator data file has a *.ldf extension. It was created to provide consumer ben-

efit curve data, interruption cost coefficients, and load power factor data. Following

is the description of *.ldf file.

Columns 1-5 Load bus number
7-13 Load bus name
15-18 Load type:

1=residential
2=industrial
3=commercial

20-25 Maximum MW load
27-32 Minimum MW load
34-40 Maximum MVar load
42-48 Minimum MVar load
50 Interruptible load:

0=not interruptible
1=interruptable

52-59 Maximum MW interruptible
61-87 Consumer benefit function: αLi + βLiPLi + γLiP

2
Li

61-68 Consumer benefit curve coefficient αLi

70-77 Consumer benefit curve coefficient βLi

79-87 Consumer benefit curve coefficient γLi

89-96 Interruption cost curve αIi

98-104 Interruption cost curve βIi

106-113 Interruption cost curve γIi

115-120 Load power factor
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A.4 Bus and transmission line data

for IEEE 5-bus case
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A.5 Generator and Load data

for IEEE 5-bus case
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A.6 Bus and transmission line data

for IEEE 14-bus case
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A.7 Generator and Load data

for IEEE 14-bus case
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A.8 Bus data for IEEE 30-bus case
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A.9 Transmission line data for IEEE 30-bus case
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A.10 Generator and Load data

for IEEE 30-bus case
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APPENDIX B

MATLAB RESULTS

B.1 MATLAB RESULTS FOR 5 BUS DC ESCOPF

NORMAL STATE (Pre-contingency state)

___________________________________________________________________________________

Power Power Generator Consumer

Angle Generated Consumed Lambda Marg. Cost Marg. Benefit

(Deg) (MW) (MW) $/MWh $/MWh $/MWh

-----------------------------------------------------------------------------------

Bus(1) 0.000 146.442 0.000 11.240 11.240 0.000

Bus(2) -3.196 115.000 21.308 11.240 12.178 12.281

Bus(3) -12.086 0.000 95.000 11.240 0.000 12.911

Bus(4) -9.735 0.000 91.809 11.240 0.000 12.730

Bus(5) -8.295 0.000 53.326 11.240 0.000 12.191

-----------------------------------------------------------------------------------

Following are the power flows on transmission lines:

Line1--2: 85.1276 MW

Line1--5: 61.3149 MW

Line2--3: 74.2001 MW

Line2--4: 58.3895 MW

Line2--5: 46.2303 MW

Line4--3: 20.7999 MW

Line5--4: 54.2191 MW

-----------------------------------------------------------------------------------

Total Power Generation = 261.4425 MW/hour

Total Load Consumption = 261.4425 MW/hour

Total Loss = 0 MW/hour

Total Cost = -1577.07 $/hour

-----------------------------------------------------------------------------------

Following are the coupling constraints, at a particular bus, affecting the normal

state in post-contingency states:

At bus (2), Load Interruption limit in postcontingency state-2. (mu=100.1153)

At bus (2), Load Interruption limit in postcontingency state-3. (mu=100.1111)

At bus (2), Load Interruption limit in postcontingency state-4. (mu=100.0732)

At bus (2), Load Interruption limit in postcontingency state-5. (mu=100.9829)

At bus (2), Load Interruption limit in postcontingency state-6. (mu=100.9829)

At bus (2), Load Interruption limit in postcontingency state-7. (mu=100.9829)

At bus (2), Generator ramp up limit in postcontingency state-1. (mu=89.7430)

At bus (2), Generator ramp down limit in postcontingency state-5. (mu=0.8266)

At bus (2), Generator ramp down limit in postcontingency state-6. (mu=0.8266)

At bus (2), Generator ramp down limit in postcontingency state-7. (mu=0.8266)

At bus (3), Load Interruption limit in postcontingency state-1. (mu=0.5056)

At bus (3), Load Interruption limit in postcontingency state-2. (mu=100.7458)

At bus (3), Load Interruption limit in postcontingency state-3. (mu=75.6752)

At bus (3), Load Interruption limit in postcontingency state-4. (mu=92.5310)

At bus (3), Load Interruption limit in postcontingency state-5. (mu=101.6134)

At bus (3), Load Interruption limit in postcontingency state-6. (mu=83.1924)

At bus (3), Load Interruption limit in postcontingency state-7. (mu=90.3490)

At bus (4), Load Interruption limit in postcontingency state-1. (mu=0.3245)

At bus (4), Load Interruption limit in postcontingency state-2. (mu=100.5647)

At bus (4), Load Interruption limit in postcontingency state-3. (mu=93.5188)

At bus (4), Load Interruption limit in postcontingency state-4. (mu=84.6398)

At bus (4), Load Interruption limit in postcontingency state-5. (mu=101.4323)

At bus (4), Load Interruption limit in postcontingency state-6. (mu=101.4323)

113



At bus (4), Load Interruption limit in postcontingency state-7. (mu=79.5412)

At bus (5), Load Interruption limit in postcontingency state-2. (mu=100.0261)

At bus (5), Load Interruption limit in postcontingency state-3. (mu=104.2557)

At bus (5), Load Interruption limit in postcontingency state-4. (mu=104.5769)

At bus (5), Load Interruption limit in postcontingency state-5. (mu=100.8938)

At bus (5), Load Interruption limit in postcontingency state-6. (mu=100.8938)

At bus (5), Load Interruption limit in postcontingency state-7. (mu=100.8938)

===================================================================================

CONTINGENCY NO:1 Fault on Transmission line connecting Bus(1) & Bus(2)

___________________________________________________________________________________

Power Power Generator Consumer

Angle Generated Consumed Lambda Marg. Cost Marg. Benefit

(Deg) (MW) (MW) $/MWh $/MWh $/MWh

-----------------------------------------------------------------------------------

Bus(1) 0.000 110.000 0.000 11.180 11.180 0.000

Bus(2) -12.426 150.000 21.016 112.405 12.233 12.406

Bus(3) -20.310 0.000 95.000 112.405 0.000 12.911

Bus(4) -17.009 0.000 91.809 112.405 0.000 12.730

Bus(5) -14.882 0.000 52.175 112.405 0.000 12.405

-----------------------------------------------------------------------------------

Following are the power flows on transmission lines:

Line1--5: 110.0000 MW (Power flow was hit by binding Constraint with mu =101.2250)

Line2--3: 65.7975 MW

Line2--4: 40.9197 MW

Line2--5: 22.2664 MW

Line4--3: 29.2024 MW

Line5--4: 80.0914 MW

-----------------------------------------------------------------------------------

Total Power Generation = 260.0000 MW/hour

Total Load Consumption = 260.0000 MW/hour

Total Loss = 0 MW/hour

Total Cost = -1396.40 $/hour

-----------------------------------------------------------------------------------

ALL BINDING CONSTRATINS:

Line capacity limit was hit with mu:101.2250

Generator Pmax limit was hit at bus(2) with mu: 10.4296

Generator ramp up limit (coupling constraint) was hit at bus(2) with mu: 89.7430

Load interruption limit (coupling constraint) was hit at bus(3) with mu: 0.5056

Load interruption limit (coupling constraint) was hit at bus(4) with mu: 0.3245

___________________________________________________________________________________

===================================================================================

CONTINGENCY NO:2 Fault on Transmission line connecting Bus(1) & Bus(5)

___________________________________________________________________________________

Power Power Generator Consumer

Angle Generated Consumed Lambda Marg. Cost Marg. Benefit

(Deg) (MW) (MW) $/MWh $/MWh $/MWh

-----------------------------------------------------------------------------------

Bus(1) 0.000 155.000 0.000 11.254 11.254 0.000

Bus(2) -5.819 106.443 21.308 12.165 12.165 12.281

Bus(3) -15.948 0.000 95.000 12.165 0.000 12.911

Bus(4) -14.765 0.000 91.809 12.165 0.000 12.730

Bus(5) -14.171 0.000 53.326 12.165 0.000 12.191

-----------------------------------------------------------------------------------

Following are the power flows on transmission lines:

Line1--2: 155.0000 MW (Power flow was hit by binding Constraint with mu = 0.9110)

Line2--3: 84.5379 MW

Line2--4: 79.8831 MW

Line2--5: 75.7138 MW

Line4--3: 10.4621 MW

Line5--4: 22.3877 MW

-----------------------------------------------------------------------------------

Total Power Generation = 261.4425 MW/hour

Total Load Consumption = 261.4425 MW/hour

Total Loss = 0 MW/hour

Total Cost = -1584.98 $/hour

-----------------------------------------------------------------------------------

ALL BINDING CONSTRATINS:

Line capacity limit was hit with mu: 0.9110
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Load interruption limit (coupling constraint) was hit at bus(2) with mu:100.1153

Load interruption limit (coupling constraint) was hit at bus(3) with mu:100.7458

Load interruption limit (coupling constraint) was hit at bus(4) with mu:100.5647

Load interruption limit (coupling constraint) was hit at bus(5) with mu:100.0261

___________________________________________________________________________________

===================================================================================

CONTINGENCY NO:3 Fault on Transmission line connecting Bus(2) & Bus(3)

___________________________________________________________________________________

Power Power Generator Consumer

Angle Generated Consumed Lambda Marg. Cost Marg. Benefit

(Deg) (MW) (MW) $/MWh $/MWh $/MWh

-----------------------------------------------------------------------------------

Bus(1) 0.000 152.319 0.000 11.250 11.250 0.000

Bus(2) -2.791 109.123 21.308 12.169 12.169 12.281

Bus(3) -23.811 0.000 95.000 37.236 0.000 12.911

Bus(4) -13.073 0.000 91.809 19.211 0.000 12.730

Bus(5) -10.550 0.000 53.326 7.936 0.000 12.191

-----------------------------------------------------------------------------------

Following are the power flows on transmission lines:

Line1--2: 74.3370 MW

Line1--5: 77.9823 MW

Line2--4: 91.8087 MW

Line2--5: 70.3438 MW

Line4--3: 95.0000 MW (Power flow was hit by binding Constraint with mu = 18.0246)

Line5--4: 95.0000 MW (Power flow was hit by binding Constraint with mu = 12.9449)

-----------------------------------------------------------------------------------

Total Power Generation = 261.4425 MW/hour

Total Load Consumption = 261.4425 MW/hour

Total Loss = 0 MW/hour

Total Cost = -1582.53 $/hour

-----------------------------------------------------------------------------------

ALL BINDING CONSTRATINS:

Line capacity limit was hit with mu: 18.0246

Line capacity limit was hit with mu: 12.9449

Load interruption limit (coupling constraint) was hit at bus(2) with mu:100.1111

Load interruption limit (coupling constraint) was hit at bus(3) with mu: 75.6752

Load interruption limit (coupling constraint) was hit at bus(4) with mu: 93.5188

Load interruption limit (coupling constraint) was hit at bus(5) with mu:104.2557

___________________________________________________________________________________

===================================================================================

CONTINGENCY NO:4 Fault on Transmission line connecting Bus(2) & Bus(4)

___________________________________________________________________________________

Power Power Generator Consumer

Angle Generated Consumed Lambda Marg. Cost Marg. Benefit

(Deg) (MW) (MW) $/MWh $/MWh $/MWh

-----------------------------------------------------------------------------------

Bus(1) 0.000 127.881 0.000 11.210 11.210 0.000

Bus(2) -1.995 133.561 21.308 12.207 12.207 12.281

Bus(3) -12.995 0.000 95.000 20.380 0.000 12.911

Bus(4) -12.634 0.000 91.809 28.090 0.000 12.730

Bus(5) -10.112 0.000 53.326 7.614 0.000 12.191

-----------------------------------------------------------------------------------

Following are the power flows on transmission lines:

Line1--2: 53.1389 MW

Line1--5: 74.7424 MW

Line2--3: 91.8087 MW

Line2--5: 73.5837 MW

Line4--3: 3.1913 MW

Line5--4: 95.0000 MW (Power flow was hit by binding Constraint with mu = 22.2867)

-----------------------------------------------------------------------------------

Total Power Generation = 261.4425 MW/hour

Total Load Consumption = 261.4425 MW/hour

Total Loss = 0 MW/hour

Total Cost = -1559.10 $/hour

-----------------------------------------------------------------------------------

ALL BINDING CONSTRATINS:

Line capacity limit was hit with mu: 22.2867

Load interruption limit (coupling constraint) was hit at bus(2) with mu:100.0732
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Load interruption limit (coupling constraint) was hit at bus(3) with mu: 92.5310

Load interruption limit (coupling constraint) was hit at bus(4) with mu: 84.6398

Load interruption limit (coupling constraint) was hit at bus(5) with mu:104.5769

___________________________________________________________________________________

===================================================================================

CONTINGENCY NO:5 Fault on Transmission line connecting Bus(2) & Bus(5)

___________________________________________________________________________________

Power Power Generator Consumer

Angle Generated Consumed Lambda Marg. Cost Marg. Benefit

(Deg) (MW) (MW) $/MWh $/MWh $/MWh

-----------------------------------------------------------------------------------

Bus(1) 0.000 181.442 0.000 11.298 11.298 0.000

Bus(2) -3.685 80.000 21.308 11.298 12.124 12.281

Bus(3) -13.521 0.000 95.000 11.298 0.000 12.911

Bus(4) -12.061 0.000 91.809 11.298 0.000 12.730

Bus(5) -11.266 0.000 53.326 11.298 0.000 12.191

-----------------------------------------------------------------------------------

Following are the power flows on transmission lines:

Line1--2: 98.1735 MW

Line1--5: 83.2689 MW

Line2--3: 82.0843 MW

Line2--4: 74.7817 MW

Line4--3: 12.9157 MW

Line5--4: 29.9428 MW

-----------------------------------------------------------------------------------

Total Power Generation = 261.4425 MW/hour

Total Load Consumption = 261.4425 MW/hour

Total Loss = 0 MW/hour

Total Cost = -1607.96 $/hour

Generator ramp down limit (coupling constraint) was hit at bus(2) with mu: 0.8266

Load interruption limit (coupling constraint) was hit at bus(2) with mu:100.9829

Load interruption limit (coupling constraint) was hit at bus(3) with mu:101.6134

Load interruption limit (coupling constraint) was hit at bus(4) with mu:101.4323

Load interruption limit (coupling constraint) was hit at bus(5) with mu:100.8938

___________________________________________________________________________________

===================================================================================

CONTINGENCY NO:6 Fault on Transmission line connecting Bus(3) & Bus(4)

___________________________________________________________________________________

Power Power Generator Consumer

Angle Generated Consumed Lambda Marg. Cost Marg. Benefit

(Deg) (MW) (MW) $/MWh $/MWh $/MWh

-----------------------------------------------------------------------------------

Bus(1) 0.000 181.442 0.000 11.298 11.298 0.000

Bus(2) -4.464 80.000 21.308 11.298 12.124 12.281

Bus(3) -15.847 0.000 95.000 29.719 0.000 12.911

Bus(4) -9.663 0.000 91.809 11.298 0.000 12.730

Bus(5) -8.458 0.000 53.326 11.298 0.000 12.191

-----------------------------------------------------------------------------------

Following are the power flows on transmission lines:

Line1--2: 118.9269 MW

Line1--5: 62.5156 MW

Line2--3: 95.0000 MW (Power flow was hit by binding Constraint with mu = 18.4211)

Line2--4: 46.4181 MW

Line2--5: 36.2012 MW

Line5--4: 45.3906 MW

-----------------------------------------------------------------------------------

Total Power Generation = 261.4425 MW/hour

Total Load Consumption = 261.4425 MW/hour

Total Loss = 0 MW/hour

Total Cost = -1607.96 $/hour

-----------------------------------------------------------------------------------

ALL BINDING CONSTRATINS:

Line capacity limit was hit with mu: 18.4211

Generator ramp down limit (coupling constraint) was hit at bus(2) with mu: 0.8266

Load interruption limit (coupling constraint) was hit at bus(2) with mu:100.9829

Load interruption limit (coupling constraint) was hit at bus(3) with mu: 83.1924

Load interruption limit (coupling constraint) was hit at bus(4) with mu:101.4323

Load interruption limit (coupling constraint) was hit at bus(5) with mu:100.8938
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___________________________________________________________________________________

===================================================================================

CONTINGENCY NO:7 Fault on Transmission line connecting Bus(4) & Bus(5)

___________________________________________________________________________________

Power Power Generator Consumer

Angle Generated Consumed Lambda Marg. Cost Marg. Benefit

(Deg) (MW) (MW) $/MWh $/MWh $/MWh

-----------------------------------------------------------------------------------

Bus(1) 0.000 181.442 0.000 11.298 11.298 0.000

Bus(2) -5.128 80.000 21.308 11.298 12.124 12.281

Bus(3) -16.129 0.000 95.000 22.562 0.000 12.911

Bus(4) -15.768 0.000 91.809 33.189 0.000 12.730

Bus(5) -6.065 0.000 53.326 11.298 0.000 12.191

-----------------------------------------------------------------------------------

Following are the power flows on transmission lines:

Line1--2: 136.6111 MW

Line1--5: 44.8313 MW

Line2--3: 91.8087 MW

Line2--4: 95.0000 MW (Power flow was hit by binding Constraint with mu = 32.4202)

Line2--5: 8.4948 MW

Line4--3: 3.1913 MW

-----------------------------------------------------------------------------------

Total Power Generation = 261.4425 MW/hour

Total Load Consumption = 261.4425 MW/hour

Total Loss = 0 MW/hour

Total Cost = -1607.96 $/hour

-----------------------------------------------------------------------------------

ALL BINDING CONSTRATINS:

Line capacity limit was hit with mu: 32.4202

Generator ramp down limit (coupling constraint) was hit at bus(2) with mu: 0.8266

Load interruption limit (coupling constraint) was hit at bus(2) with mu:100.9829

Load interruption limit (coupling constraint) was hit at bus(3) with mu: 90.3490

Load interruption limit (coupling constraint) was hit at bus(4) with mu: 79.5412

Load interruption limit (coupling constraint) was hit at bus(5) with mu:100.8938

___________________________________________________________________________________

B.2 MATLAB RESULTS FOR 5 BUS AC ESCOPF

NORMAL STATE (Pre-contingency state)

___________________________________________________________________________________

Power Power Power Generator Consumer

Voltage Angle Generated Generated Consumed Lambda Mrg.Cost Mrg.Benefit

(p.u.) (Deg) (MW) (MVar) (MW) ($/MWh) ($/MWh) ($/MWh)

-----------------------------------------------------------------------------------

Bus(1) 1.080 0.000 151.722 -15.239 0.000 11.249 11.249 0.000

Bus(2) 1.074 -2.827 108.124 35.826 21.565 11.589 12.168 12.170

Bus(3) 1.043 -10.058 0.000 31.683 88.849 12.434 0.000 13.564

Bus(4) 1.034 -7.886 0.000 0.000 90.111 12.231 0.000 12.910

Bus(5) 1.041 -6.694 0.000 0.000 50.561 12.065 0.000 12.706

-----------------------------------------------------------------------------------

Following are the current flows on transmission lines:

Line1--2: 0.8640 pu

Line1--5: 0.5634 pu

Line2--3: 0.6730 pu

Line2--4: 0.5439 pu

Line2--5: 0.4291 pu

Line3--4: 0.2099 pu

Line4--5: 0.5099 pu

Line2--1: 0.8520 pu

Line5--1: 0.5670 pu

Line3--2: 0.6729 pu

Line4--2: 0.5475 pu

Line5--2: 0.4336 pu

Line4--3: 0.2301 pu

Line5--4: 0.5101 pu
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-----------------------------------------------------------------------------------

Total Power Generation = 259.8467 MW/hour

Total Load Consumption = 251.0867 MW/hour

Total Loss = 9 MW/hour

Total Cost = -1466.94 $/hour

-----------------------------------------------------------------------------------

ALL BINDING CONSTRATINS:

Maximum Voltage limit was hit at bus(1) with mu: 1.9069

Following are the coupling constraints, at a particular bus, affecting the normal

state in post-contingency states:

At bus (2), Load Interruption limit in postcontingency state-1. (mu=44.7607)

At bus (2), Load Interruption limit in postcontingency state-2. (mu=100.0014)

At bus (2), Load Interruption limit in postcontingency state-3. (mu=99.6177)

At bus (2), Load Interruption limit in postcontingency state-4. (mu=100.4458)

At bus (2), Load Interruption limit in postcontingency state-5. (mu=100.4522)

At bus (2), Load Interruption limit in postcontingency state-6. (mu=100.3856)

At bus (2), Load Interruption limit in postcontingency state-7. (mu=100.2946)

At bus (2), Generator ramp up limit in postcontingency state-1. (mu=55.1872)

At bus (2), Generator ramp down limit in postcontingency state-4. (mu=0.3892)

At bus (2), Generator ramp down limit in postcontingency state-5. (mu=0.3956)

At bus (2), Generator ramp down limit in postcontingency state-6. (mu=0.3290)

At bus (2), Generator ramp down limit in postcontingency state-7. (mu=0.2381)

At bus (3), Load Interruption limit in postcontingency state-1. (mu=41.7895)

At bus (3), Load Interruption limit in postcontingency state-2. (mu=100.2950)

At bus (3), Load Interruption limit in postcontingency state-3. (mu=49.6985)

At bus (3), Load Interruption limit in postcontingency state-4. (mu=100.8149)

At bus (3), Load Interruption limit in postcontingency state-5. (mu=100.9141)

At bus (3), Load Interruption limit in postcontingency state-6. (mu=100.8128)

At bus (3), Load Interruption limit in postcontingency state-7. (mu=100.5388)

At bus (4), Load Interruption limit in postcontingency state-1. (mu=42.8069)

At bus (4), Load Interruption limit in postcontingency state-2. (mu=99.6147)

At bus (4), Load Interruption limit in postcontingency state-3. (mu=96.1872)

At bus (4), Load Interruption limit in postcontingency state-4. (mu=100.0949)

At bus (4), Load Interruption limit in postcontingency state-5. (mu=100.3161)

At bus (4), Load Interruption limit in postcontingency state-6. (mu=100.5351)

At bus (4), Load Interruption limit in postcontingency state-7. (mu=99.7386)

At bus (5), Load Interruption limit in postcontingency state-1. (mu=43.9830)

At bus (5), Load Interruption limit in postcontingency state-2. (mu=99.4767)

At bus (5), Load Interruption limit in postcontingency state-3. (mu=97.4233)

At bus (5), Load Interruption limit in postcontingency state-4. (mu=100.2045)

At bus (5), Load Interruption limit in postcontingency state-5. (mu=100.2264)

At bus (5), Load Interruption limit in postcontingency state-6. (mu=100.4928)

At bus (5), Load Interruption limit in postcontingency state-7. (mu=100.9564)

===================================================================================

CONTINGENCY NO:1 Fault on Transmission line connecting Bus(1) & Bus(2)

___________________________________________________________________________________

Power Power Power Generator Consumer

Voltage Angle Generated Generated Consumed Lambda Mrg.Cost Mrg.Benefit

(p.u.) (Deg) (MW) (MVar) (MW) ($/MWh) ($/MWh) ($/MWh)

-----------------------------------------------------------------------------------

Bus(1) 1.080 0.000 118.798 0.633 0.000 11.195 11.195 0.000

Bus(2) 1.080 -12.306 143.124 34.412 21.565 67.409 12.222 12.170

Bus(3) 1.049 -18.522 0.000 33.992 88.849 71.775 0.000 13.564

Bus(4) 1.037 -15.405 0.000 0.000 90.111 69.878 0.000 12.910

Bus(5) 1.042 -13.516 0.000 0.000 50.561 68.472 0.000 12.706

-----------------------------------------------------------------------------------

Following are the current flows on transmission lines:

Line1--5: 1.1000 pu (Current flow was hit by binding constraint with mu = 24.1422)

Line2--3: 0.5858 pu

Line2--4: 0.3779 pu

Line2--5: 0.2283 pu

Line3--4: 0.3054 pu

Line4--5: 0.7820 pu

Line5--1: 1.0955 pu

Line3--2: 0.5872 pu

Line4--2: 0.3904 pu

Line5--2: 0.2521 pu

Line4--3: 0.3250 pu

Line5--4: 0.7843 pu
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-----------------------------------------------------------------------------------

Total Power Generation = 261.9226 MW/hour

Total Load Consumption = 251.0867 MW/hour

Total Loss = 11 MW/hour

Total Cost = -1409.59 $/hour

-----------------------------------------------------------------------------------

ALL BINDING CONSTRATINS:

Maximum Voltage limit was hit at bus(1) with mu: 66.4149

Maximum Voltage limit was hit at bus(2) with mu: 2.5397

Maximum Current flow limit was hit with mu: 24.1422

Generator ramp up limit (coupling constraint) was hit at bus(2) with mu: 55.1872

Following constraints prevent loads in post-contingency constraint to

exceed loads in normal state.

Load interruption limit (coupling constraint) was hit at bus(2) with mu: 44.7607

Load interruption limit (coupling constraint) was hit at bus(3) with mu: 41.7895

Load interruption limit (coupling constraint) was hit at bus(4) with mu: 42.8069

Load interruption limit (coupling constraint) was hit at bus(5) with mu: 43.9830

___________________________________________________________________________________

CONTINGENCY NO:2 Fault on Transmission line connecting Bus(1) & Bus(5)

___________________________________________________________________________________

Power Power Power Generator Consumer

Voltage Angle Generated Generated Consumed Lambda Mrg.Cost Mrg.Benefit

(p.u.) (Deg) (MW) (MVar) (MW) ($/MWh) ($/MWh) ($/MWh)

-----------------------------------------------------------------------------------

Bus(1) 1.080 0.000 166.654 -15.789 0.000 11.273 11.273 0.000

Bus(2) 1.061 -5.059 98.633 50.000 21.565 12.153 12.153 12.170

Bus(3) 1.029 -13.693 0.000 40.000 88.849 13.255 0.000 13.564

Bus(4) 1.006 -12.278 0.000 0.000 90.111 13.237 0.000 12.910

Bus(5) 1.007 -11.723 0.000 0.000 50.561 13.170 0.000 12.706

-----------------------------------------------------------------------------------

Following are the current flows on transmission lines:

Line1--2: 1.5500 pu (Current flow was hit by binding constraint with mu = 0.0561)

Line2--3: 0.7885 pu

Line2--4: 0.7592 pu

Line2--5: 0.7182 pu

Line3--4: 0.1708 pu

Line4--5: 0.2207 pu

Line2--1: 1.5432 pu

Line3--2: 0.7870 pu

Line4--2: 0.7625 pu

Line5--2: 0.7220 pu

Line4--3: 0.2025 pu

Line5--4: 0.2232 pu

-----------------------------------------------------------------------------------

Total Power Generation = 265.2866 MW/hour

Total Load Consumption = 251.0867 MW/hour

Total Loss = 14 MW/hour

Total Cost = -1414.22 $/hour

-----------------------------------------------------------------------------------

ALL BINDING CONSTRATINS:

Maximum Voltage limit was hit at bus(1) with mu: 3.9033

Maximum Current flow limit was hit with mu: 0.0561

Generator Qmax limit was hit at bus(2) with mu: 0.0765

Generator Qmax limit was hit at bus(3) with mu: 0.0701

Following constraints prevent loads in post-contingency constraint to

exceed loads in normal state.

Load interruption limit (coupling constraint) was hit at bus(2) with mu:100.0014

Load interruption limit (coupling constraint) was hit at bus(3) with mu:100.2950

Load interruption limit (coupling constraint) was hit at bus(4) with mu: 99.6147

Load interruption limit (coupling constraint) was hit at bus(5) with mu: 99.4767

___________________________________________________________________________________

CONTINGENCY NO:3 Fault on Transmission line connecting Bus(2) & Bus(3)

___________________________________________________________________________________

Power Power Power Generator Consumer

Voltage Angle Generated Generated Consumed Lambda Mrg.Cost Mrg.Benefit

(p.u.) (Deg) (MW) (MVar) (MW) ($/MWh) ($/MWh) ($/MWh)

-----------------------------------------------------------------------------------

Bus(1) 1.080 0.000 159.779 -5.314 0.000 11.262 11.262 0.000

Bus(2) 1.075 -2.519 110.132 50.000 21.565 12.171 12.171 12.170
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Bus(3) 0.969 -20.850 0.000 40.000 88.849 63.735 0.000 13.564

Bus(4) 1.004 -10.926 0.000 0.000 90.111 15.599 0.000 12.910

Bus(5) 1.018 -8.717 0.000 0.000 50.561 14.407 0.000 12.706

-----------------------------------------------------------------------------------

Following are the current flows on transmission lines:

Line1--2: 0.7708 pu

Line1--5: 0.7399 pu

Line2--4: 0.9017 pu

Line2--5: 0.6888 pu

Line3--4: 0.9442 pu

Line4--5: 0.9381 pu

Line2--1: 0.7586 pu

Line5--1: 0.7467 pu

Line4--2: 0.9063 pu

Line5--2: 0.6942 pu

Line4--3: 0.9500 pu (Current flow was hit by binding constraint with mu = 21.1979)

Line5--4: 0.9376 pu

-----------------------------------------------------------------------------------

Total Power Generation = 269.9110 MW/hour

Total Load Consumption = 251.0867 MW/hour

Total Loss = 19 MW/hour

Total Cost = -1351.83 $/hour

-----------------------------------------------------------------------------------

ALL BINDING CONSTRATINS:

Maximum Voltage limit was hit at bus(1) with mu: 56.5190

Maximum Current flow limit was hit with mu: 21.1979

Generator Qmax limit was hit at bus(2) with mu: 1.8781

Generator Qmax limit was hit at bus(3) with mu: 0.6458

Following constraints prevent loads in post-contingency constraint to

exceed loads in normal state.

Load interruption limit (coupling constraint) was hit at bus(2) with mu: 99.6177

Load interruption limit (coupling constraint) was hit at bus(3) with mu: 49.6985

Load interruption limit (coupling constraint) was hit at bus(4) with mu: 96.1872

Load interruption limit (coupling constraint) was hit at bus(5) with mu: 97.4233

___________________________________________________________________________________

CONTINGENCY NO:4 Fault on Transmission line connecting Bus(2) & Bus(4)

___________________________________________________________________________________

Power Power Power Generator Consumer

Voltage Angle Generated Generated Consumed Lambda Mrg.Cost Mrg.Benefit

(p.u.) (Deg) (MW) (MVar) (MW) ($/MWh) ($/MWh) ($/MWh)

-----------------------------------------------------------------------------------

Bus(1) 1.080 0.000 190.197 -12.382 0.000 11.312 11.312 0.000

Bus(2) 1.074 -3.354 73.124 42.858 21.565 11.724 12.113 12.170

Bus(3) 1.037 -12.321 0.000 40.000 88.849 12.745 0.000 13.564

Bus(4) 1.009 -11.370 0.000 0.000 90.111 12.762 0.000 12.910

Bus(5) 1.022 -9.172 0.000 0.000 50.561 12.452 0.000 12.706

-----------------------------------------------------------------------------------

Following are the current flows on transmission lines:

Line1--2: 1.0228 pu

Line1--5: 0.7706 pu

Line2--3: 0.8297 pu

Line2--5: 0.6444 pu

Line3--4: 0.1601 pu

Line4--5: 0.9250 pu

Line2--1: 1.0103 pu

Line5--1: 0.7756 pu

Line3--2: 0.8291 pu

Line5--2: 0.6494 pu

Line4--3: 0.1950 pu

Line5--4: 0.9250 pu

-----------------------------------------------------------------------------------

Total Power Generation = 263.3217 MW/hour

Total Load Consumption = 251.0867 MW/hour

Total Loss = 12 MW/hour

Total Cost = -1457.85 $/hour

-----------------------------------------------------------------------------------

ALL BINDING CONSTRATINS:

Maximum Voltage limit was hit at bus(1) with mu: 3.0142
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Generator Qmax limit was hit at bus(3) with mu: 0.0218

Generator ramp down limit (coupling constraint) was hit at bus(2) with mu: 0.3892

Following constraints prevent loads in post-contingency constraint to

exceed loads in normal state.

Load interruption limit (coupling constraint) was hit at bus(2) with mu:100.4458

Load interruption limit (coupling constraint) was hit at bus(3) with mu:100.8149

Load interruption limit (coupling constraint) was hit at bus(4) with mu:100.0949

Load interruption limit (coupling constraint) was hit at bus(5) with mu:100.2045

___________________________________________________________________________________

CONTINGENCY NO:5 Fault on Transmission line connecting Bus(2) & Bus(5)

___________________________________________________________________________________

Power Power Power Generator Consumer

Voltage Angle Generated Generated Consumed Lambda Mrg.Cost Mrg.Benefit

(p.u.) (Deg) (MW) (MVar) (MW) ($/MWh) ($/MWh) ($/MWh)

-----------------------------------------------------------------------------------

Bus(1) 1.080 0.000 189.142 -9.151 0.000 11.310 11.310 0.000

Bus(2) 1.073 -3.298 73.124 37.113 21.565 11.718 12.113 12.170

Bus(3) 1.040 -11.472 0.000 38.088 88.849 12.650 0.000 13.564

Bus(4) 1.019 -9.888 0.000 0.000 90.111 12.552 0.000 12.910

Bus(5) 1.021 -9.183 0.000 0.000 50.561 12.434 0.000 12.706

-----------------------------------------------------------------------------------

Following are the current flows on transmission lines:

Line1--2: 1.0069 pu

Line1--5: 0.7726 pu

Line2--3: 0.7564 pu

Line2--4: 0.7062 pu

Line3--4: 0.1774 pu

Line4--5: 0.2849 pu

Line2--1: 0.9957 pu

Line5--1: 0.7779 pu

Line3--2: 0.7555 pu

Line4--2: 0.7101 pu

Line4--3: 0.2076 pu

Line5--4: 0.2874 pu

-----------------------------------------------------------------------------------

Total Power Generation = 262.2660 MW/hour

Total Load Consumption = 251.0867 MW/hour

Total Loss = 11 MW/hour

Total Cost = -1469.79 $/hour

-----------------------------------------------------------------------------------

ALL BINDING CONSTRATINS:

Maximum Voltage limit was hit at bus(1) with mu: 2.7109

Generator ramp down limit (coupling constraint) was hit at bus(2) with mu: 0.3956

Following constraints prevent loads in post-contingency constraint to

exceed loads in normal state.

Load interruption limit (coupling constraint) was hit at bus(2) with mu:100.4522

Load interruption limit (coupling constraint) was hit at bus(3) with mu:100.9141

Load interruption limit (coupling constraint) was hit at bus(4) with mu:100.3161

Load interruption limit (coupling constraint) was hit at bus(5) with mu:100.2264

___________________________________________________________________________________

CONTINGENCY NO:6 Fault on Transmission line connecting Bus(3) & Bus(4)

___________________________________________________________________________________

Power Power Power Generator Consumer

Voltage Angle Generated Generated Consumed Lambda Mrg.Cost Mrg.Benefit

(p.u.) (Deg) (MW) (MVar) (MW) ($/MWh) ($/MWh) ($/MWh)

-----------------------------------------------------------------------------------

Bus(1) 1.080 0.000 188.155 -13.421 0.000 11.309 11.309 0.000

Bus(2) 1.070 -3.881 73.124 45.435 21.565 11.784 12.113 12.170

Bus(3) 1.043 -13.308 0.000 30.409 88.849 12.751 0.000 13.564

Bus(4) 1.025 -7.780 0.000 0.000 90.111 12.340 0.000 12.910

Bus(5) 1.034 -6.807 0.000 0.000 50.561 12.182 0.000 12.706

-----------------------------------------------------------------------------------

Following are the current flows on transmission lines:

Line1--2: 1.1851 pu

Line1--5: 0.5784 pu

Line2--3: 0.8635 pu

Line2--4: 0.4473 pu

Line2--5: 0.3481 pu
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Line4--5: 0.4411 pu

Line2--1: 1.1750 pu

Line5--1: 0.5844 pu

Line3--2: 0.8598 pu

Line4--2: 0.4565 pu

Line5--2: 0.3577 pu

Line5--4: 0.4392 pu

-----------------------------------------------------------------------------------

Total Power Generation = 261.2795 MW/hour

Total Load Consumption = 251.0867 MW/hour

Total Loss = 10 MW/hour

Total Cost = -1480.95 $/hour

-----------------------------------------------------------------------------------

ALL BINDING CONSTRATINS:

Maximum Voltage limit was hit at bus(1) with mu: 2.4115

Generator ramp down limit (coupling constraint) was hit at bus(2) with mu: 0.3290

Following constraints prevent loads in post-contingency constraint to

exceed loads in normal state.

Load interruption limit (coupling constraint) was hit at bus(2) with mu:100.3856

Load interruption limit (coupling constraint) was hit at bus(3) with mu:100.8128

Load interruption limit (coupling constraint) was hit at bus(4) with mu:100.5351

Load interruption limit (coupling constraint) was hit at bus(5) with mu:100.4928

___________________________________________________________________________________

CONTINGENCY NO:7 Fault on Transmission line connecting Bus(4) & Bus(5)

___________________________________________________________________________________

Power Power Power Generator Consumer

Voltage Angle Generated Generated Consumed Lambda Mrg.Cost Mrg.Benefit

(p.u.) (Deg) (MW) (MVar) (MW) ($/MWh) ($/MWh) ($/MWh)

-----------------------------------------------------------------------------------

Bus(1) 1.080 0.000 191.038 -6.826 0.000 11.313 11.313 0.000

Bus(2) 1.060 -4.399 73.124 34.970 21.565 11.875 12.113 12.170

Bus(3) 1.024 -13.876 0.000 40.000 88.849 13.020 0.000 13.564

Bus(4) 0.997 -13.178 0.000 0.000 90.111 13.123 0.000 12.910

Bus(5) 1.050 -4.891 0.000 0.000 50.561 11.797 0.000 12.706

-----------------------------------------------------------------------------------

Following are the current flows on transmission lines:

Line1--2: 1.3579 pu

Line1--5: 0.4146 pu

Line2--3: 0.8637 pu

Line2--4: 0.9111 pu

Line2--5: 0.0678 pu

Line3--4: 0.1433 pu

Line2--1: 1.3533 pu

Line5--1: 0.4188 pu

Line3--2: 0.8626 pu

Line4--2: 0.9136 pu

Line5--2: 0.0857 pu

Line4--3: 0.1782 pu

-----------------------------------------------------------------------------------

Total Power Generation = 264.1625 MW/hour

Total Load Consumption = 251.0867 MW/hour

Total Loss = 13 MW/hour

Total Cost = -1448.34 $/hour

-----------------------------------------------------------------------------------

ALL BINDING CONSTRATINS:

Maximum Voltage limit was hit at bus(5) with mu: 3.1169

Generator Qmax limit was hit at bus(3) with mu: 0.0260

Generator ramp down limit (coupling constraint) was hit at bus(2) with mu: 0.2381

Following constraints prevent loads in post-contingency constraint to

exceed loads in normal state.

Load interruption limit (coupling constraint) was hit at bus(2) with mu:100.2946

Load interruption limit (coupling constraint) was hit at bus(3) with mu:100.5388

Load interruption limit (coupling constraint) was hit at bus(4) with mu: 99.7386

Load interruption limit (coupling constraint) was hit at bus(5) with mu:100.9564

___________________________________________________________________________________
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