
MODELING CHAOTIC SYSTEMS

By

Khaled Marzoug Al-Mughadhawi

Bachelor of Science in Electrical Engineering
King Fahad University of Petroleum and Minerals

Dhahran, Saudi Arabia
1989

Master of Science in Electrical Engineering
Southern Methodist University

Dallas, Texas
1999

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
In Electrical Engineering

July, 2005

ii

COPYRIGHT

By

Khaled Marzoug Al-Mughadhawi

July, 2005

iii

MODELING CHAOTIC SYSTEMS

Thesis Approved:

Dr. Martin T. Hagan
Thesis Adviser

Dr. Gary E. Young

Dr. Rao. K. Yarlagadda

Dr. Carl D. Latino

Dr. A. Gordon Emslie
Dean of the Graduate College

iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank Allah (the God) for helping me and making

it possible for me to reach this point of knowledge. Peace and blessing of Allah are on his

messenger Muhammad, his last prophet and the seal of all messengers.

My thanks extend to my parents: Marzoug, and Mohelah for their support, patience,

and extreme love. My father grew up as an orphan in a small town known as Abar Ali (south

of Madina, Saudi Arabia). When I was born, in 1966, he had to stop his education in the

Madina teaching institute. He did that in order to support his new born child. He use to say

to me “Khaled, I want you to compensate my loss of education by bringing me the highest

degree in your major”. “I hope I did that Dad.”

I would like to thank my advisor Dr. Martin Hagan for his support, patience, and

help. He use to arrange weakly seminars for me, often lasting for three hours. He listened

very carefully to my presentations and corrected me, suggesting new ways to solve the re-

search problems. My thanks extend to all his graduate students who attended these semi-

nars. I would like also to thank Dr. Yong Hu, and Dr. Tagi Menhaj for their valuable

suggestions and comments. My thanks extend also to the dissertation committee members

for their comments and suggestions.

v

Three professors in the Mathematics department gave me a much needed help and

support. Dr. Saleh Mehdi gave me three lectures in differential geometry which helped me

in understanding the embedding theorem. He and I corresponded often regarding the math-

ematical challenges I faced. Dr. Roger Zierau was very helpful to me. We spent long hours

for many weeks discussing the linear Oseledec theorem. His support was very valuable to

me. Dr. Leticia Barchini’s suggestions and comments made the proof of the theorem pos-

sible as well.

My friends in the Islamic society of Stillwater made the difficult task of this degree

much easier by their friendly relationship with me. I ask Allah to help them and make their

future project of building a new mosque a success. My friends in the Saudi house showed

me the true meaning of brotherhood. Our weakly meeting proved to be very important in

bring us home far away from home.

I would like also to thank my wife Nawal for her extreme support and patience with

me and our five kids. Without her help, my goal could have been much more difficult to

accomplish. My kids Abdu-Rahman, Maha, Ahmad, Roba, and Arwa gave me the social

stability which was also necessary to achieve this task. My good neighbor Sonya Brewster

helped to proofread many chapters of my dissertation.

Finally I would like to thank the Saudi government for their help and financial sup-

port of my research.

vi

TABLE OF CONTENTS

Chapter Page

1. OBJECTIVE AND CONTRIBUTIONS ..1

1.1 Introduction .. 1
1.2 Objective... 1
1.3 Contributions .. 1
1.4 Literature review .. 2
1.5 Remaining chapters summary .. 5

2. INTRODUCTION TO CHAOTIC SYSTEMS ..6

2.1 History of dynamical systems .. 6
2.2 Dynamical definitions .. 7

2.2.1 Dynamical System ..7
2.2.2 Equilibrium point ..8
2.2.3 Orbit of a dynamical system ...8
2.2.4 Attractor ..8

2.3 Characteristics of Chaotic Systems .. 8
2.3.1 Sensitivity of chaotic systems to initial conditions ..8
2.3.2 Chaotic signals look random but they are deterministic9
2.3.3 Chaotic systems have attractors with fractal dimension11

2.3.3.1 The box-counting dimension: ...12
2.4 Examples of Chaotic systems... 14

2.4.1 Weather system ...14
2.4.2 Biological models ...14
2.4.3 Laser signals ...15
2.4.4 Chaotic circuits ...15
2.4.5 Discrete chaotic systems: ..15

2.5 Chapter Summary... 15

vii

3. INTRODUCTION TO DYNAMICAL MODELING ..17

3.1 Introduction .. 17
3.2 Modeling... 17
3.3 Applications of modeling ... 18

3.3.1 Detection of chaos ..18
3.3.2 Prediction ..18
3.3.3 Diagnosis ..19

3.4 Definitions .. 19
3.4.1 Injection (1-to-1) function ..19

3.4.1.1 Example: An injection ..19
3.4.1.2 Example: A function that is not injection ...20

3.4.2 Immersion function..21
3.4.2.1 Example: An immersion ...21
3.4.2.2 Example: A function that is not immersion ..21

3.4.3 Embedding function ..22
3.4.3.1 Example: An embedding ..22
3.4.3.2 Example: A non-embedding ...23

3.5 Modeling by Embedding .. 23
3.5.1 The delay-coordinate map ..23
3.5.2 Example: The delay-coordinate map ..24
3.5.3 Example: Sufficient but not necessary condition for embedding25

3.6 Chapter summary.. 26

4. INTRODUCTION TO THE MINIMUM EMBEDDING DIMENSION ESTIMATION
28

4.1 Introduction .. 28
4.2 Modeling chaotic systems .. 28
4.3 Estimating the minimum embedding dimension.. 30

4.3.1 The geometric technique ...30
4.3.1.1 The change of neighbors with dimension method (CND)31
4.3.1.2 The change of distance with dimension (CDD) method31
4.3.1.3 The change of distance with time method (CDT)32

4.3.2 The predictive technique: ...34
4.4 Dynamic equivalence: .. 36
4.5 Chapter summary: .. 37

5. EXAMPLES OF THE MINIMUM EMBEDDING DIMENSION ESTIMATION38

5.1 Introduction .. 38
5.2 The geometric technique .. 38

5.2.1 Using the change of neighbors with dimension method (CND)39
5.2.2 Using the change of distance with dimension method (CDD)43

viii

5.2.3 Using the change of distance with time method (CDT)47
5.3 The Predictive technique .. 51
5.4 Chapter summary.. 52

6. ADVANCED ALGORITHMS FOR ESTIMATING THE MINIMUM EMBEDDING
DIMENSION...53

6.1 Introduction .. 53
6.2 The delay-time (T).. 55
6.3 Two algorithms that use the local neighbor search .. 57

6.3.1 The Algorithm ..57

6.3.1.1 Example: Neighbor indices ...58
6.3.1.2 The vector-coordinates projection method ...59
6.3.1.3 Example: Vector-coordinates projection ..59

6.3.2 The Algorithm ..61

6.3.2.1 The PCA projection method ...62
6.4 Limitations of the and the Algorithms ... 66

6.5 Three new algorithms that use the global neighbor search method 68
6.5.1 The first new algorithm: The CND ...68
6.5.2 The second new algorithm: The ...71

6.5.3 The third new algorithm: The ...74

6.6 The fourth new algorithm: The Predictive ... 77
6.7 Chapter summary.. 80

7. MINIMUM EMBEDDING DIMENSION RESULTS...81

7.1 Introduction: ... 81
7.2 Testing systems .. 82

7.2.1 Noise free chaotic systems ..82
7.2.2 Practical systems ...86

7.3 Estimating for the noise free chaotic systems .. 87

7.3.1 Using the algorithm ..87

7.3.2 Using the algorithm ..88

7.3.3 Using the CND algorithm ...89
7.3.4 Using the algorithm ..90

7.3.5 Using the algorithm ..91

7.3.6 Using the predictive algorithm ...92
7.4 Estimating for the noisy systems .. 94

7.4.1 Estimating for the noisy chaotic circuit (cc) ...94

CDDL

CDTL

CDDL CDTL

CDDG

CDTG

dL

CDDL

CDTL

CDDG

CDTG

dL

dL

ix

7.4.1.1 Using the algorithm ..94

7.4.1.2 Using the algorithm. ..95

7.4.1.3 Using the CND algorithm ...96
7.4.1.4 Using the algorithm ..96

7.4.1.5 Using the algorithm ..97

7.4.1.6 Using the predictive algorithm ...98
7.4.2 Estimating for the Santa Fe data sets ..99

7.4.2.1 Using the algorithm ..99

7.4.2.2 Using the algorithm ...100

7.4.2.3 Using the CND algorithm ...101
7.4.2.4 Using the algorithm ..102

7.4.2.5 Using the algorithm ..103

7.4.2.6 Using the predictive algorithm ...104
7.5 Testing the algorithms with random signals... 105
7.6 Tables and discussions ... 107

7.6.1 Tables ..107
7.6.2 Discussion of the Results ..108

7.6.2.1 The effect of the original dimension of the system108
7.6.2.2 Local versus global neighbor search methods108
7.6.2.3 Estimation time ...109
7.6.2.4 Sensitivity to the threshold value ..109
7.6.2.5 Noise detection ...110
7.6.2.6 Dependence of the algorithms on the number of data points110

7.6.3 General conclusions ..110
7.7 Chapter Summary... 110

8. THEORY OF LYAPUNOV EXPONENTS...112

8.1 Introduction .. 112
8.2 Sensitivity of some linear systems to initial conditions 113
8.3 Lyapunov Exponent (LE) of a first order chaotic system 115
8.4 Lyapunov exponents for a multidimensional system ... 117
8.5 Invariant sets in modeling by embedding... 119
8.6 LEs from the Jacobian matrix... 120

8.6.1 Oseledec theorem ..121
8.7 Linear Algebra definitions.. 122

8.7.1 Definition: Inner product ..122
8.7.2 Definition: Vector Norm ...122
8.7.3 Definition: Matrix Norm ...123

8.7.3.1 Some important properties of the matrix norm123
8.7.3.2 Lemma: Norm of a diagonal matrix ...124

CDDL

CDTL

CDDG

CDTG

dL

CDDL

CDTL

CDDG

CDTG

x

8.7.4 Singular value decomposition ...125
8.7.4.1 Important SVD properties ...125

8.7.5 Definition: Diagonalizable matrix ..125
8.8 Multilinear algebra definitions ... 126

8.8.1 Vector exterior products ...126
8.8.2 Linear operator exterior power ...127

8.8.2.1 Definition: Adjoint of a linear operator ..128
8.8.2.2 Lemma: Adjoint of the wedge ..128
8.8.2.3 Linear operator properties ...129

8.8.2.4 Lemma: Eigen values of ...130
8.9 The linear Oseledec matrix... 131

8.9.1 Theorem: Eigen values of a linear Oseledec matrix131
8.9.2 For a symmetric matrix ...133
8.9.3 For a general matrix ..134

8.9.3.1 Lemma: Eigen values of from singular values of 134

8.9.3.2 Proposition: Limit of the root of 135

8.10 Chapter summary.. 141

9. ESTIMATING THE SET OF LYAPUNOV EXPONENTS......................................142

9.1 Introduction .. 142
9.2 Estimating the LEs from Jacobian matrices ... 143

9.2.1 Estimating the LE by the QR decomposition ...143
9.2.1.1 Example: Estimating LEs of the Henon map ..145

9.2.2 Spurious exponents ...146
9.3 Estimating the LEs by the Geometric algorithms... 147

9.3.1 Eckmann algorithm ...147
9.3.2 Linear Oseledec algorithm ..149

9.4 Estimating the LEs by the predictive algorithm... 150
9.5 Pseudo codes of the LEs estimation algorithms ... 154

9.5.1 Pseudo code of the Eckmann algorithm ...155
9.5.2 Pseudo code of the linear Oseledec algorithm ..157
9.5.3 Pseudo code of the predictive algorithm ..158

9.6 Results of estimating the LEs by using the three algorithms 159
9.6.1 Discussion of the results ...160

9.7 Chapter summary.. 161

10. SUMMARY, CONCLUSIONS, AND FUTURE RECOMMENDATIONS...........162

10.1 Summary... 162
10.2 Conclusions .. 164
10.3 Future recommendations .. 165

L
*
L()

^q

Ok A()k

k
th σd A()k()

xi

LIST OF TABLES

Table Page

5.1 The CND method (1/3) ...42

5.2 The CND method (2/3) ...42

5.3 The CND method (3/3) ...43

5.4 The CDD method tables for d = 1 ...45

5.5 The CDD method tables for d = 2 ...46

5.6 The CDD method tables for d = 3 ...47

5.7 The CDT method for d = 1 ..49

5.8 The CDT method for d = 2 ..50

5.9 The CDT method for d = 3 ..50

5.10 The neural network SSE as a function of d ..52

7.1 Tabulation of the estimated for all the testing systems shown in Sections 7.3

through 7.5. The wrong estimates are circled. The abbreviation cc: chaotic circuit,

and N. Able: not able ..107

7.2 Six algorithms estimation time (in seconds) for of data set A of the Santa Fe com-

petition, it shows the is the fastest and the predictive is the slowest.107

8.1 Estimating for115

9.1 LEs estimation results using the three algorithms. The numbers inside the curly pa-

renthesis are the estimated LEs and the number in bottom is the Lyapunov dimension

(). ..160

dL

dL

CDDG

c()log f x k()() 3 4⁄() 1 1 2x k()––()=

dLyp

xii

LIST OF FIGURES

Figure Page

2.1 Sensitivity of the chaotic tent map to initial conditions.. 9
2.2 The 60 Hz periodic wave and its frequency response... 10
2.3 The random signal and its frequency response ... 10
2.4 The chaotic signal and its frequency response.. 11
2.5 The chaotic attractor of the Henon map.. 12
2.6 The slope of the line is the box-counting dimension of the Henon map attractor. . 14

3.1 a) The attractor C in , b) the set of measurements, c) The reconstructed attractor
by the delay-coordinate map... 25

3.2 The circle in and its reconstruction in . .. 26
4.1 Projection artifacts .. 30
4.2 The CDD method.. 32
4.3 The projection of a 3-D curve (solid line) into 2-D curve (dotted line) 33
4.4 The CDT method: a) Distances between false neighbors increase with time, b) The

intersection in the middle of the curve is a projection artifact................................ 33
4.5 The function approximation in the predictive technique.................................... 36

4.6 A neural network model with a TDL used to approximate the function , D is a one
step delay-time.. 36

5.1 The nonlinear network used to estimate of the Henon map.............................. 52

5.2 Log-Plot of the SSE versus d for the Henon map... 52
6.1 The Lorenz model average mutual information ... 57
6.2 Pseudocode of the algorithm .. 61

6.3 Pseudocode of the algorithm... 65

6.4 Pseudocode of the CND algorithm ... 70
6.5 Pseudocode of the algorithm.. 73

6.6 Pseudocode of the algorithm .. 76

6.7 Pseudocode of the predictive algorithm.. 79
7.1 Lorenz chaotic attractor .. 83
7.2 The chaotic circuit diagram .. 83
7.3 The chaotic circuit response ... 84
7.4 The Rossler model attractor .. 85
7.5 The estimated for the six noise free systems using the algorithm. The ver-

tical axis is the percentage of the FNNs found from each dimension and the horizon-

ℜ3

S
1 ℜ3 ℜ2

µ
µ

dL

CDDL

CDTL

CDDG

CDTG

dL CDDL

xiii

tal axis is the dimension d, a) for the Lorenz model, , b) for the chaotic

circuit, , c) for the Rossler model, , d) for MG of dimension 4,

, e) for MG of dimension 7, , f) for MG of dimension 13, ..

88
7.6 The estimated for the six noise free systems using the algorithm. The ver-

tical axis is the percentage of the FNNs and the horizontal axis is the dimension d, a)
for Lorenz model, , b) for chaotic circuit, , c) for Rossler model,

, d) for MG of dimension 4, , e) for MG of dimension 7, , f)

for MG of dimension 13, ... 89

7.7 Estimating for the noise free systems using our first algorithm (CND). The vertical

axis is the estimated and the horizontal axis is the number of neighbors used (w).

a) for Lorenz model, , b) for the chaotic circuit, , c) for Rossler mod-

el, , d) for MG of dimension 4, , e) for MG of dimension 7, ,

f) for MG of dimension 13, this algorithm does not give a stable answer.............. 90
7.8 Estimating for the noise free systems using our second algorithm (). The

vertical axis is the percentage of the FNNs found and the horizontal axis is the di-
mension d. a) for Lorenz model, , b) for the chaotic circuit, , c) for

Rossler model, , d) for MG of dimension 4, , e) for MG of dimension

7, , f) for MG of dimension 13, ... 91

7.9 Estimating for the noise free systems using our third algorithm (). The ver-

tical axis is the percentage of FNNs and the horizontal axis is the dimension d. a) for
Lorenz model, , b) for the chaotic circuit, , c) for Rossler model,

, d) for MG of dimension 4, , e) for MG of dimension 7, , f)

for MG of dimension 13, 92

7.10 The predictive algorithm results for the noise free systems, the vertical axis is the SSE
of the prediction errors and the horizontal axis is the dimension d, a) for Lorenz mod-
el, , b) for the chaotic circuit, , c) for Rossler model, , d) for

MG of dimension 4, , e) for MG of dimension 7, , f) for MG of di-

mension 13, ... 93

dL 3=

dL 3= dL 2=

dL 4= dL 4= dL 4=

dL CDTL

dL 2= dL 3=

dL 2= dL 3= dL 3=

dL 4=

dL

dL

dL 3= dL 3=

dL 3= dL 4= dL 5=

dL CDDG

dL 3= dL 3=

dL 3= dL 4=

dL 4= dL 4=

dL CDTG

dL 3= dL 3=

dL 3= dL 4= dL 7=

dL 7=

dL 3= dL 3= dL 3=

dL 4= dL 7=

dL 13=

xiv

7.11 Estimating for the noisy cc. using Abarbanel et al first algorithm (). a) at

200 dB, , b) at 100 dB, , c) at 50 dB, , d) at 20 dB, the algo-

rithm assumes the signal is noise.. 95
7.12 Estimating for the noisy cc. using algorithm. a) at 200 dB, , b) 100

dB, , c) at 50 dB, and d) at 20 dB the algorithm assumes the signal is noise .

95
7.13 Estimating for the noisy cc. using our first algorithm (the CND), a) at 200 dB,

, b) at 100 dB, , c) at 50 dB, , d) at 20 dB, 96

7.14 Estimating for the noisy cc. using our second algorithm (). It shows

 for SNR=200, 100, 50, and 20 dB .. 97

7.15 Estimated for the noisy cc. using the algorithm. For SNR=200, 100, and

50, . At SNR=20db, not stable... 98

7.16 Estimating using our fourth algorithm (Predictive), for 200, 100, and 50

dB, at 20 dB it assumes a random signal .. 98
7.17 Using the algorithm, a) for A data set, , b) for , , c) for ,

 .. 99

7.18 Using algorithm, a) for data set A, , b) for , , c) for ,

. .. 100

7.19 Using the CND algorithm, a) for data set A, , b) for , , c) for ,

the result is not stable.. 101
7.20 Using algorithm, a) for data set A, , b) for , , c) for ,

 .. 102

7.21 Using algorithm, a) for data set A, , b) for , , c) for ,

... 103

7.22 Using the predictive algorithm, a) for data set A, , b) for , , c) for

, ... 104

7.23 Testing Abarbanel et al two algorithms with a random signal, a) the algorithm

fails to recognize the random signal, b) the algorithm succeeded in recogniz-

ing the random signal.. 105

dL CDDL

dL 3= dL 3= dL 5>

dL CDTL dL 2=

dL 2=

dL

dL 3= dL 3= dL 3= dL 4=

dL CDDG

dL 3=

dL CDTG

dL 3=

dL dL 3=

CDDL dL 4= B1 dL 4= D1

dL 6=

CDTL dL 3= B1 dL 6= D1

dL 10=

dL 3= B1 dL 5= D1

CDDG dL 3= B1 dL 5= D1

dL 11=

CDTG dL 3= B1 dL 5= D1

dL 6=

dL 3= B1 dL 4=

D1 dL 10=

CDDL

CDTL

xv

7.24 Testing our four algorithms for estimating the dimension of the random signal, a) the
CND algorithm recognizes the signal is random by not changing the estimated as

w increases, b) for the algorithm, it did not recognize the random signal, c)

for the algorithm, it was able to recognize the random signal, the same for the

predictive algorithm in d). .. 106
8.1 Linear systems can be sensitive to initial conditions .. 113
8.2 Vectors a and b exterior product () ... 126
9.1 The feed forward network used to estimate the LEs... 152
9.2 The Eckmann algorithm Pseudo code .. 156
9.3 The linear Oseledec algorithm pseudo code ... 157
9.4 The predictive algorithm pseudo code.. 158

dL

CDDG

CDTG

a^b

xvi

NOMENCLATURE

Basic Concepts

Scalars: small italic letters...a, b,

Vectors: small bold non-italic letters, or under-bar symbol a, b,

Matrices: capital Bold non-italic letters ... A, B, C

Language

Vector means a column of numbers.

Vector element

Small italic with an index

Matrix elements

An element of matrix A: small italic showing the row then the col-

umn of the matrix:

, or

The column vector of a matrix I

The row vector of a matrix I

φ

φ

a i() or ai

a i j,(), aij A i j,()

k
th

ik

k
th

i
k

xvii

Norm

Covariance matrix

C

Eigen value and eigen vector

 and (or bold small non-italic letter)

Set

Empty set

Subset of

A, B, C

Dimension

Space dimension is superscript

Box counting dimension

Theoretical minimum embedding dimension

Actual minimum embedding dimension

Side length of a d-cube (box-counting dimension)

a

λ η

∅

ℜn

ℜd

dc

dE

dL

σ

xviii

Interval in (box-counting dimension)

N

Number of d-cubes needed to cover a set (box-counting dimen-

sion)

Lyapunov dimension (Chapter 8)

The number of Lyapunov exponents such that

Power

For a vector

For a matrix

Dynamics

State vector in the original space

Equilibrium point

ℜ1

σ

cσ
d

dLyp

λj

j 1 2 … kL, , ,=
∑ 0>

kL

x()k

A()k

x n()

x*

xix

The map for the state update in the original space

Scalar Measurements

Measurement function

Delay-time

T

Delay-coordinate map (for embedding)

Delay-vector in the reconstructed attractor in

The map for the state update in the reconstructed space

Map for the output update in the reconstructed space

The sampled measurement (predictive algorithm)

, Equation (6.16)

The sampled measurement with zero mean

x k 1+() f x k()()=

y m()

y m() h x m()()=

yd m() Fd h x n(),()=

ℜd

yd m() y m() y m T–() … y m d 1–()T–()
t

=

yd m 1+() φ yd m()()=

y m 1+() µ yd m()()=

ys m() y 1 m 1–()T+()=

s m() ys m() 1
L
--- ys k()

k 1=

L

∑–=

xx

The delay-vector created from

Vectors distances matrix in the d-dimensional space

, see section 5.2.1 on page 39

Number of neighbors in used to search for the nearest neigh-

bor of (for the CND method)

w

Indices matrix of the w-nearest neighbors in the d-dimensional space

Nearest neighbor distances vector in d-dimensional space

Nearest neighbor distances in d-dimensional space with distances

computed in (d + 1)-dimensional space

Number of neighbors of

Basis matrix for the PCA projection method

; are the eigen vectors of the cova-

riance matrix C

s m()

yd
s

m() s m() s m 1–() … s m d– 1+()
t

=

Qd

ℜd 1+

yd m()

Id

rd

ed 1+

yd m()

Nb

Bd η
1
η

2
… η

d
= η

i

xxi

The neighbors of the delay-vector in

: when the delay-coordinate projection method is used.

Its element is

: when the PCA projection method is used. It element

is (see page 62)

Index of the neighbor of

Average vector in the space

, the CDT pseudocode

Average mutual information between two measurements

I

Threshold for significant FNN change (for the CND method)

Threshold of distance increase (for the CDD method)

Attractor mean value (for the CDT method)

A fraction of attractor mean (for the CDT method)

Nb yd m() ℜd

Yd
Nb

yd m()

Yd
Nb p,

yd
p

m()

k
th yd m()

id
k

m()

ℜ
dE

ydE
m()

α

ρ

β

ζ

xxii

Time step for the CDT method

Distance between the nearest neighbors after time steps (CDT)

Threshold for significant change in prediction error (Predictive tech-

nique)

Signal variance

Noise variance

Jacobian matrix at

 or J

Sampling time

Delay time in Mackey-Glass equation (Chapter 7)

Lyapunov Exponent (global)

Finite time Lyapunov Exponent (local)

∆

∆

σ∆

γ

σs()2

σn()2

yd m()

Jyd m()

τs

tf

λ

λt

xxiii

Infinitesimal distance

Infinitesimal perturbation from to

Abbreviations

FNN: False Nearest Neighbor

CND: Change of Neighbor with Dimension

CDD: Change of Distance with Dimension

CDT: Change of Distance with Time

PCA: Principal Component Analysis

SNR: Signal to Noise Ratio

ECG: Electrocardiogram

TDL: Tapped Delay Line

SSE: Sum Squared Errors

LE: Lyapunov Exponent

SVD: Singular Value Decomposition

Linear Algebra

Singular value of a matrix

 or

Multiplications of the n Jacobian matrices

ε

x t() xε t()

δ t() xε t() x t()–=

σi σi A()

Jy
n Jy n 1–()Jy n 2–()…Jy 0()=

xxiv

Perturbation vector from time m to time n

Matrix of the perturbation vectors from

Diagonal matrix

D

Diagonal matrix with elements magnitude of x

;

Linear Oseledec matrix

General Oseledec matrix

Multilinear Algebra

Vector exterior product

The -exterior power of a linear operator L

Adjoint of a linear operator L

Matrix representation of the wedge of the linear operator L ()

δ m() x n() x m()–=

Nb yd m()

Em

Da x Da∈

Ok

Λx

ei^ej

q
th

L
^q

L
*

L
^q

Bq

1

CHAPTER 1

OBJECTIVE AND CONTRIBUTIONS

1.1 Introduction

In this chapter, we will show the objective of this research and give a brief list of

our contributions. In Section 1.4, we give a literature review of some important publica-

tions in chaotic modeling. A summary of the remaining chapters is given in Section 1.5.

1.2 Objective

The objective of this research is to model chaotic systems. We will build a chaotic

model from a set of scalar measurements taken from the system. Evolution of the states in

the model follows the evolution of the hidden states in the original system. To build a cha-

otic model, we start by estimating the model order. The next step is to estimate the set of

Lyapunov exponents (the model parameters) that characterize the chaotic system. A good

chaotic model depends on both the accuracy of the estimated model order and the estimate

of Lyapunov exponent values.

1.3 Contributions

Our contributions are:

(1) Four new algorithms for estimating the model order.

a) The Change of Neighbors with Dimension (CND).

2

b) The Change of Distance with Dimension using the Global neighbor

search ().

 c) The Change of Distance with Time using the Global neighbor search

().

 d) The predictive.

(2) The proof of a new theorem that relates the poles of a linear system to the set of

Lyapunov exponents.

(3) Implementation of the new theorem result to estimate the set of Lyapunov ex-

ponents for chaotic systems.

(4) Development of an existing algorithm which uses a neural network to estimate

the set of Lyapunov exponents.

In total, we implemented four algorithms to estimate the model order and two algo-

rithms to estimate the set of Lyapunov exponents for a chaotic system. The six algorithms

were tested on different chaotic systems. The testing examples include noise free and noisy

signals. In addition, the testing systems have different dimensions.

1.4 Literature review

There are two primary areas of research in modeling chaotic systems. These areas,

which will be discussed briefly, are: estimating the model order and estimating the set of

Lyapunov exponents. In this section, we list some key references in these areas. We begin

by listing literature dealing with estimating the model order. After that we list the literature

that describes estimating the set of Lyapunov exponents.

CDDG

CDTG

3

We begin by reviewing publications that discuss estimating the model order. We

found many papers by Abarbanel and his colleagues that talk about different methods for

estimating the model order. Kennel, Brown, and Abarbanel [KBA92] introduced estimat-

ing the model order by the method of False Nearest Neighbors (FNNs). This method is a

geometric one. It depends on measuring the distance between neighbors as the model order

increases. The distance between false neighbors increases more than the distance between

true neighbors as the model order increases. In 1993, Abarbanel and Kennel [AbKe93] de-

veloped the method of FNNs further and introduced a new method that uses time as well as

distance to check for the existence of FNNs. In this proposal, we will present new algo-

rithms that improve on the results of Abarbanel’s algorithms. In 1997, Cao [Cao97] sug-

gested a new method for estimating the model order. His method is a geometric method and

it is closely related to Abarbanel method [KBA92]. Instead of using a threshold value to

determine false neighbors, he suggested the use of the mean of distance change as the mod-

el order increases. Abarbanel [Aba98] used a geometric method with a predictor to estimate

the model order. Since the points inside the attractor have an evolution rule, their neighbor-

ing points will evolve according to a certain rule as well. To determine the model order, he

used a predictor to estimate the evolution rule. When the model order is not large enough,

prediction errors will increase. As the model order increases, the prediction errors drop. At

certain point, further increase of the model order does not improve the prediction errors. At

this point, the model order is found. In 2002, Kennel and Abarbanel [KeAb02] used the

method of FNNs with a global neighbor search method. The projection method used in this

paper is the delay-coordinate method. (Our second algorithm () used the method of CDDG

4

FNNs, with a global neighbor search, but the used the Principal Component Anal-

ysis projection method.)

Now we review some papers that talk about estimating the set of Lyapunov expo-

nents for a chaotic model. The most important paper in this field is the one by Oseledec

[Ose68]. He proved that the set of Lyapunov exponents can be estimated from the product

of an infinite number of Jacobian matrices along the attractor of the system. (In this pro-

posal, we will present a new theorem that provides insight into the Oseledec theorem by

relating Lyapunov exponents to the poles of a linear system.) In 1985, Eckmann and Ruelle

[EcRu85] and Sano and Sawada [SnSd85] applied the Oseledec theorem to measurements

taken from a chaotic system. Both papers use orthogonalization methods to overcome the

numerical problem of multiplying a large number of matrices. Parlitz [Par92] introduced

the identification of spurious Lyapunov exponents. He did that by reestimating the set of

Lyapunov exponents from measurements backward in time. By doing that, he found that

true exponents change their signs, while spurious ones change their values as well as signs.

Darbyshire and Broomhead [DaBr96] estimated the set of Lyapunov exponents by the

methods of least squares and total least squares. Their method uses the pseudo-inverse to

estimate the Jacobian matrices. After that, they applied the orthogonalization method pro-

posed by Eckmann. Djamai and Coirault [DjCo02] introduced the use of neural networks

to estimate the set of Jacobian matrices. After estimating the Jacobian matrices, they used

the same method proposed by Eckmann to reorthogonalize the product of these matrices.

CDDG

5

1.5 Remaining chapters summary

In Chapter 2, we will present an introduction to chaotic dynamical systems. In

Chapter 3, we introduce modeling chaotic systems and discuss modeling by embedding.

Examples are given to illustrate the idea of embedding functions.

In Chapter 4, we will present an introduction to four methods used to find the min-

imum dimension (model order) required for embedding. In Chapter 5, we implement the

methods found in Chapter 4 to find the minimum embedding dimension of the Henon map.

Six algorithms based on the four previous methods are presented in Chapter 6. (Four of the

six algorithms represent our original work.) Full details of the algorithms are given, and

more practical issues are discussed in Chapter 6. The results of implementing the six algo-

rithms on nine chaotic systems are found in Chapter 7. The minimum embedding dimen-

sions of the nine systems are listed in this chapter, and a comparison is made among the six

algorithms.

In Chapter 8, we will explore the theory of Lyapunov exponents (LEs) and prove a

new theorem that relates the poles of a linear system to the set of LEs. In Chapter 9, we will

discuss the estimation of the LE values and apply the result of the new theorem to estimate

the LEs. In this chapter, we will also improve an existing algorithm that uses a neural net-

work to estimate the LEs. We tested the two algorithms by estimating the LEs of different

chaotic systems. We also compare the two algorithms to an existing algorithm using the test

systems.

In Chapter 10, we will give a conclusion of the dissertation and give some recom-

mendations on possible future research.

6

CHAPTER 2

INTRODUCTION TO CHAOTIC SYSTEMS

2.1 History of dynamical systems

Isaac Newton (1642-1727) introduced the idea of modeling the motion of objects

by equations. Position, velocity, and acceleration were the fundamental parameters of his

equations. From position, velocity, and acceleration, he could describe the state of a mov-

ing object at any given time. Later scientists modelled dynamical systems by using a set of

differential equations. The solution of these equations describes the state of the system at

any given time.

If the solution of the set of differential equations remains in a bounded region, the

sequence of states reduces to either i) a steady state, generally because of loss of energy by

friction, or ii) a periodic or quasi periodic motion. An example of case (ii) is the motion of

the moon around the earth and the motion of the earth around the sun. Case (i) and case (ii)

remained the only two known bounded solutions until the use of modern computers made

possible the numerical solution of sets of differential equations.

In 1963 Edward Lorenz published a paper entitled “Deterministic non Periodic

Flow” [Lo63]. He discovered a new bounded attractor that is not periodic but was filling a

region in space. This was the first time the world knew about the third possible bounded

attractor: iii) the chaotic attractor. The new solution (chaotic) is not simply periodic nor

7

quasi periodic with a large number of periods. Chaotic motion is possible with simple one

dimensional systems. Although chaotic motion can be produced from simple systems, it is

very complicated and becomes unpredictable after a short time. This happens because of

the sensitivity of chaotic systems to changes in the initial conditions [ASY96].

In the next section, we define some terms related to dynamical systems. Three char-

acteristics of chaotic systems are presented in Section 2.3. In Section 2.4, we present some

examples of chaotic systems. Finally, Section 2.5 provides a summary of the chapter.

2.2 Dynamical definitions

In the previous section, we gave a brief history of dynamical systems. In this sec-

tion, we define some important dynamical terms that will be used in the remaining chapters.

We start by defining the dynamical system.

2.2.1 Dynamical System

The dynamical system is a system that consists of a sequence of states which are

governed by a certain rule that determines the next state given the previous one. A dynam-

ical system in can be described by either d first order ordinary differential equations

(flow) or d difference equations (map). In the first case, the time is a continuous variable;

, and the system is called a continuous dynamical system:

. (2.1)

In the second case, the time is a discrete variable; , and the system is called a discrete

dynamical system:

. (2.2)

ℜd

t ℜ1∈

d x t()()
dt

------------------ f x t()()=

n ℵ∈

x n 1+() f x n()()=

8

2.2.2 Equilibrium point

A point in the state space is said to be an equilibrium point of a contin-

uous dynamical system where . The equilibrium point of a discrete dy-

namical system, on the other hand, happens when .

2.2.3 Orbit of a dynamical system

The sequence of points or that results from the solution of the set of

equations representing the system is called the orbit (trajectory) of the dynamical system.

The point or is called the initial condition of the system.

2.2.4 Attractor

The attractor of a dynamical system is set containing the limits of all orbits that start

sufficiently close to it.

2.3 Characteristics of Chaotic Systems

In this section, we explore three characteristics of chaotic systems. These character-

istics will help us to understand how to model these systems.

2.3.1 Sensitivity of chaotic systems to initial conditions

Chaotic systems are known for their sensitivity to initial conditions. To illustrate

this idea, let’s look into the tent map, which is a first order chaotic system:

. (2.3)

Figure 2.1 shows two curves (solid, and dotted with ‘x’) representing the responses of the

system when two sightly different initial conditions are used. The solid curve was produced

from the initial condition and the dotted curve with ‘x’ was produced from

x t() x*
=

dx t()
dt

x t() x*=

0=

f x*() x*
=

x t() x n()

x0 x 0()

x n 1+() f x n()() 3 4⁄() 1 1 2x n()––()= =

x1 0() 0.23=

9

. The dotted curve in the bottom of the figure is the difference between the

two responses. We can see that the difference starts to grow after approximately 15 itera-

tions. Notice that the responses of the system due to different initial conditions remain with-

in a bounded region.

Figure 2.1 Sensitivity of the chaotic tent map to initial conditions.

2.3.2 Chaotic signals look random but they are deterministic

Before the discovery of chaotic systems, scientists thought of chaos as a random

signal (noise). To illustrate this idea, let’s look into the frequency responses (Fourier spec-

trums [KaSc00]) of a periodic signal and a random signal, and then compare them to a cha-

otic signal. The left hand side of Figure 2.2 shows a 60 Hz periodic sinusoidal wave. The

plot on the right hand side is its frequency response. As we can see, it has only one compo-

nent at 60 Hz.

x2 0() 0.2301=

0 5 10 15 20 25 30 35 40 45
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
The chaotic response of the tent map f(x(n))=x(n+1)=3/4(1−|1−2x(n)|)

time n

f
x

1
(0) = 0.23

x
2
(0) = 0.2301

growth of the error

10

Figure 2.2 The 60 Hz periodic wave and its frequency response

If we look into the frequency response of a random signal, shown in the right hand side of

Figure 2.3, we can see that it has a component at every frequency from 0 through 120 Hz.

Figure 2.3 The random signal and its frequency response

We will now compare the frequency responses of the two signals above to the frequency

response of a chaotic signal. The left hand side of Figure 2.4 shows the time domain plot

of a chaotic signal (x component of the Lorenz model). Its frequency response is shown on

the right hand side of the same figure. We can see that the chaotic signal has a component

at every frequency from 0 through 120 Hz, which is similar to the random signal.

0 0.005 0.01 0.015

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

The periodic sinusoidal wave of period 60 Hz

Time (sec)
20 40 60 80 100

0

50

100

150
Frequency content of the wave

frequency (Hz)

0 200 400 600 800 1000
−5

−4

−3

−2

−1

0

1

2

3

4

5
The random signal (noise)

Time
0 20 40 60 80 100 120

10
−2

10
−1

10
0

10
1

Frequency content of the signal

frequency (Hz)

11

Figure 2.4 The chaotic signal and its frequency response

Although the frequency response of the chaotic system looks random, we know that this

system is deterministic. This is true since it is produced from a known set of differential

equations.

2.3.3 Chaotic systems have attractors with fractal dimension

To see that chaotic attractors have fractal dimensions, let’s look into the Henon

map:

, (2.4)

, (2.5)

where , , and the initial conditions are [Hen76]. In

Figure 2.5, we can see that the attractor of the Henon map is not a simple line of dimension

1, nor it is a closed curve. It is also not a plane of dimension 2. It is an object that fills a

region in the plane.

0 5 10 15 20
−30

−20

−10

0

10

20

30
The chaotic Lorenz signal

Time (sec)
0 20 40 60 80 100 120

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Frequency content of y

frequency (Hz)

x1 n 1+() 1 a x1 n()()2– x2 n()+=

x2 n 1+() bx1 n()=

a 1.4= b 0.3= x1 0() x2 0() 0.5= =

12

Figure 2.5 The chaotic attractor of the Henon map.

As a matter of fact, its dimension is not an integer, but rather is fractal. The dimension of

the attractor of the Henon map can be found by the box-counting dimension.

2.3.3.1 The box-counting dimension:

We can find the dimension of an interval , in , by dividing it into

subintervals of length such that , where . Then the

minimum number of subintervals needed to cover N is , which can be written

as . Notice that the exponent in the expression is 1, which is also the dimen-

sion of N. For the case of a unit square in , , we

can find the dimension of S by dividing it into small squares of side length

(called -squares), such that . Then the minimum number of squares

needed to cover S is , which can be written as . Notice that the ex-

ponent in the expression is 2 which is also the dimension of S. The method used to find the

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−1.5

−1

−0.5

0

0.5

1

1.5
The chaotic attractor of the Henon map

x
1

x 2

N 0 1,[]= ℜ1

Nj σ 0.1= Nj Nj 1+∩ ∅= j ℵ∈

Nj cσ
N

10=

cσ
N

1 σ⁄()1=

ℜ2
S x

y
ℜ2

0 x 1≤≤ 0 y 1≤≤,∈
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Sj σ 0.1=

σ Sj Sj 1+∩ ∅= Sj

cσ
S

100= cσ
S

1 σ⁄()2=

13

dimension of the sets in the previous two examples is called the box-counting dimension.

It is used to find the dimension of more complicated sets in , like fractal sets. The box-

counting dimension is denoted by which is the exponent in the relation:

 as , (2.6)

where is the number of d-cubes needed to cover the set in . Taking the limit of

the log of Equation (2.6) as , we have

. (2.7)

To evaluate the box-counting dimension () in Equation (2.7), we draw a log-log plot of

 versus as . The value of is the slope of the resulting curve.

Now we can apply the box-counting dimension to the attractor of the Henon map.

We start by choosing the side length of the -squares to be some value . Then we

count the minimum number of squares needed to cover the set of points in the attractor

(which results from iterating equations (2.4) and (2.5) times). Next we decrease , and

count the minimum number needed to cover the attractor for the new . Figure 2.6 shows

the number of -squares () versus , for .

ℜd

dc

cσ
d

1 σ⁄()
dc≈ σ 0→

cσ
d σ ℜd

σ 0→

dc
cσ

d
ln

1 σ⁄()ln

σ 0→
lim=

dc

cσ
d

1 σ⁄ σ 0→ dc

σ σ 1<

10
5 σ

σ

σ cσ
d σ σ 0.1 0.05 0.01 0.004 0.002 0.001, , , , ,{ }=

14

Figure 2.6 The slope of the line is the box-counting dimension of the
Henon map attractor.

The resulting box-counting dimension of the Henon map was found to be ,

which is a fractal. After presenting three characteristics of the chaotic systems, in the next

section we list some examples of chaotic systems.

2.4 Examples of Chaotic systems

2.4.1 Weather system

We said in Section 2.1 that E. Lorenz was the first scientist to quantify chaos. He

modelled the heat convection phenomena in fluids by using a set of three differential equa-

tions. His model represents earth’s atmosphere. He used it to forecast weather.

2.4.2 Biological models

Many biological activities exhibit chaotic behaviors. One example is the Epileptic

seizure. Epilepsy causes patients suffering from this disease to experience bouts of uncon-

sciousness. Epileptic seizures result from an abnormal neuronal discharge from the central

nervous system [Zyl01]. Another example of chaotic systems is the red blood cell produc-

tion. Mackey and Glass [MG77] modelled red blood cell production and found that it ex-

3 4 5 6 7 8 9 10
7

8

9

10

11

12

13

14

15

16

17
The box dimension of the Henon attractor

ε = 0.1, 0.05, 0.01, 0.004, 0.002, 0.001σ

dc 1.189≈

15

hibits chaotic behavior at some parameter values of the model, as will be shown in Chapter

7. A third example of chaotic systems is the Electrocardiogram (ECG). In 1983, Glass et al

[GGS83] experimented on the spontaneous beating of cells from embryonic chick hearts.

They found that when these cells were stimulated by external periodic pulses, they showed

chaotic motion (see also [Moo92]).

2.4.3 Laser signals

Measurements taken from a laser output can be represented by a chaotic model. In

Chapter 7, we will give more detail regarding the modeling of two data sets of laser outputs.

2.4.4 Chaotic circuits

Chaos can be observed in electrical circuits as well. An example of this is the RLC

circuit designed by Rulkov et al [RVRDV92].

2.4.5 Discrete chaotic systems:

In the previous section, we have shown two discrete chaotic systems: the tent and

the Henon maps. Discrete chaotic systems are mainly used for analysis. In Chapter 7, we

will show more discrete chaotic systems used to analyze chaos of different dimensions.

2.5 Chapter Summary

In this chapter, we presented a historical background for dynamical systems. We

defined some dynamical terms that will be used in subsequent chapters. Three characteris-

tics of chaotic systems were illustrated with examples. We also explored a few examples

of dynamical systems that show chaotic behaviors. In the next chapter, we will define dy-

16

namical modeling, and show how to implement modeling of chaotic systems by using mea-

surements taken from these systems.

17

CHAPTER 3

INTRODUCTION TO DYNAMICAL MODELING

3.1 Introduction

In Chapter 2, we introduced dynamical chaotic systems. We have seen three char-

acteristics of chaotic systems as well. We mentioned that these characteristics will help us

to understand modeling of chaotic systems. In this chapter, we explore the modeling pro-

cess. We also show some of its applications in real life. A theoretical background of the

method used for modeling chaotic systems is illustrated with examples.

In the next section, we present a brief introduction to modeling chaotic systems.

Some applications of the modeling process are presented in Section 3.3. We do modeling

by a technique called embedding. Some mathematical background on embedding is con-

tained in Section 3.4. The use of the delay-coordinate map for modeling is illustrated in

Section 3.5 with two examples.

3.2 Modeling

We said in Chapter 2 that dynamical systems can be represented as a set of differ-

ential equations (for a continuous system), or a set of difference equations (for a discrete

system). We also said that these equations determine the evolution of states, which con-

verges to an attractor of the system. Knowing the evolution of the states is important for

understanding the behavior of the system at a future time. Unfortunately these equations,

18

in most cases, are not known. All we can see from a chaotic system (like those listed in

Chapter 2) is a set of scalar measurements. Modeling chaotic systems entails describing the

hidden states of the system from these measurements only. From the set of measurements,

the modeling process builds a new set of states, which are in some sense equivalent to the

original hidden states. In Chapter 8, we will give more detail regarding the meaning of

equivalent chaotic systems.

3.3 Applications of modeling

3.3.1 Detection of chaos

In Section 2.3.2, we stated that, before the quantification of chaos, scientists

thought of chaos as a random signal (noise). Given a set of scalar measurements, the mod-

eling process enables us to distinguish between chaotic systems (deterministic) and random

signals (noise). Not only that, but modeling can also extract the hidden deterministic part

from a noisy signal. This application of the modeling process is important because, in most

cases, the set of measurements is contaminated with noise from different sources.

3.3.2 Prediction

The ability to predict the future has fascinated scientists for a long time. Modeling

chaotic systems enables us to predict the hidden future states of the system. It does so using

only the set of measurements. However, as we have said in Section 2.3.1, chaotic systems

have sensitive dependence on the initial conditions. This problem limits the ability of cha-

otic modeling to make long term predictions of future states. In Chapter 8, we will give

more detail.

19

3.3.3 Diagnosis

Abarbanel [Aba98] conducted an experiment on the ECG of subjects undergoing a

stress test for a specific pathology. He found that in the extreme pathology of ventricular

fibrillation, characteristics of the model are different from those of a healthy person. This

means the modeling process can be used to diagnose life threatening diseases (for more ex-

amples, see [Hol86 Chapters 9 and 11]).

In the next two sections, we present some mathematical definitions, then we present

the embedding method which is used to build models of chaotic systems.

3.4 Definitions

Before we present the embedding method, let’s give a mathematical background of

embedding functions. We begin by defining an injection function and an immersion func-

tion, then we define the embedding function.

3.4.1 Injection (1-to-1) function

Let M and N be two sets, a function is an injection (1-to-1) if

, (3.1)

where . To understand the injection function, consider the next example.

3.4.1.1 Example: An injection

Let the function be

, (3.2)

where . By applying the condition for an injection, we have

g: M N→

g x1() g x2()= x1⇒ x2
=

x1 x2, M∈

g: ℜ2 ℜ2→

g x() g1 x() g2 x()
t

x1 x2()3
t

= =

x x1 x2
ℜ2∈=

20

. (3.3)

From the first element of the vectors on the right hand side we have

, (3.4)

while from the second element of the vectors we have

. (3.5)

In conclusion, we can see that , so the function g is an injection. On the other hand,

let’s look at an example of a function which is not an injection.

3.4.1.2 Example: A function that is not injection

Let the function be

. (3.6)

To test the condition for injection, we have

. (3.7)

From the first element of the vectors on the right hand side we have

. (3.8)

From the second element of the vectors we have

. (3.9)

Which means that does not have to equal , so the function g is not an injection.

g x1() g x2() x1
1

x2
1()

3
t

x1
2

x2
2()

3
t

= = =

x1
1

x1
2

=

x2
1()

3
x2

2()
3

= x2
1

x2
2

=⇒

x1 x2
=

g: ℜ2 ℜ2→

g x() x1 x2()2
t

=

g x1() g x2() x1
1

x2
1()

2
t

x1
2

x2
2()

2
t

= = =

x1
1

x1
2

=

x2
1()

2
x2

2()
2

= x2
1

x± 2
2

=⇒

x1 x2

21

3.4.2 Immersion function

Let M and N be two sets, a function is an immersion if its Jacobian ma-

trix is an injection (full rank) [Nak90 p.149].

3.4.2.1 Example: An immersion

Let the function be

, (3.10)

where . The Jacobian matrix of g is

. (3.11)

The determinant of J is , therefore J is full rank. Hence, the function g is an

immersion.

3.4.2.2 Example: A function that is not immersion

Let the function be

, (3.12)

where . The Jacobian matrix of g is

. (3.13)

g: M N→

g: ℜ2 ℜ2→

g x() g1 x() g2 x()
t

x1 x2()3 x2+
t

= =

x ℜ2∈

J
1 0

0 3 x2()2 1+
x x0=

=

3 x2()2 1+ 0≠

g: ℜ2 ℜ2→

g x() x1 x2()3
t

=

x ℜ2∈

J
1 0

0 3 x2()2
x x0=

=

22

The determinant of J is , which zero for . Therefore J is not full rank. Hence

g is not an immersion. Now that we have defined the injection and the immersion functions,

we will define the embedding function.

3.4.3 Embedding function

Let M and N be two sets, a function is an embedding if it is an injection

and an immersion [Nak90].

3.4.3.1 Example: An embedding

Let’s look at the function g in Example 3.4.2.1 (). In that

example, we have seen that g is an immersion. To prove that it is an embedding, we need

to show that it is also an injection. To do this, we start by assuming that

. (3.14)

If we look at the first element of the vectors on the right hand side of Equation (3.14), we

can see that . While the second elements give

. (3.15)

By rearranging the above equation, we have

. (3.16)

Which can be written as

. (3.17)

3 x2()2 x2 0=

g: M N→

g x() x1 x2()3 x2+
t

=

g x1() g x2() x1
1

x2
1()

3
x2

1
+

t

x1
2

x2
2()

3
x2

2
+

t
= = =

x1
1

x1
2

=

x2
1()

3
x2

1
+ x2

2()
3

x2
2

+=

x2
1()

3
x2

1
x2

2()
3

– x2
2

–+ 0=

x2
1

x2
2

–() x2
1()

2
x2

2()
2

x2
1
x2

2
1+ + +() 0=

23

By looking at the second parenthesis of the left hand side of Equation (3.17), we can see

that it can be simplified as follows

. (3.18)

So the only solution of Equation (3.17) is . As a result, we see that

. Which means the function g is an injection. Since g is an injection and an immer-

sion (Example 3.4.2.1), we see that g is an embedding.

3.4.3.2 Example: A non-embedding

From Example 3.4.1.1, we have seen that is an injection. But

from Example 3.4.2.2, we have seen that this function is not an immersion. So the function

g is not an embedding.

Notice that the main feature of the embedding is that it is an injection, and its lin-

earization (Jacobian matrix) at every point along the attractor is also an injection. After pre-

senting the embedding, let’s see now how we can use it for modeling. As we said above,

we have only a set of scalar measurements from the system we want to model. To build a

model for the system, we will use the delay-coordinate map, which is explained below.

3.5 Modeling by Embedding

3.5.1 The delay-coordinate map

Let the state of the original system that we want to model be , and let the

measurements taken from this system be governed by the map such that

. (3.19)

x2
1 1

2
---x2

2
+⎝ ⎠

⎛ ⎞ 2 3
4
--- x2

2()
2

1 0 x∀≠+ +

x2
1

x2
2

=

x1 x2
=

g x() x1 x2()3
t

=

x ℜk∈

h: ℜk ℜ1→

y n() h x n()()=

24

The delay-coordinate map [SYC91] is represented by

, (3.20)

where is the delay-time, and is the delay-vector. The attractor built

from the delay-vectors is called the reconstructed attractor.

According to the embedding theorem by Sauer at al [SYC91], the function is an

embedding if , where is the box-counting dimension (see Section 2.3.3.1)

of the attractor of the original system. We will call the minimum dimension d that satisfies

the embedding condition, the theoretical minimum embedding dimension: . The embed-

ding map guarantees that evolution of the states in the original unknown attractor is equiv-

alent to the evolution of the delay-vectors in the reconstructed attractor (Chapter 8). In the

next two examples, we illustrate the modeling process by using the delay-coordinate map.

3.5.2 Example: The delay-coordinate map

Let the set repre-

sent an attractor in . Further, let the measurement function , for the purpose

of explanation, be , where . The delay-coordinate map

operating on C will be: (). The

original attractor C is shown in Figure 3.1a, the measurement function h is shown in Figure

3.1b, and the reconstructed attractor using is shown in Figure 3.1c.

Fd: ℜk ℜd→

yd n() Fd h x n(),() y n() y n T–() … y n d 1–()T–()
t

= =

T ℵ∈ yd n() ℜd∈

Fd

d 2dc 1+≥ dc

dE

C y ℜ3
y1∈ tcos y2, 2t y3 t 2tcossin t ℜ1∈,=,sin= ={ }=

ℜ3
h:ℜ3 ℜ1→

y h x() x1 x2 x3+ += = x ℜ3∈

y3 n() F3 h x n(),() y n() y n 1–() y n 2–()
t= = T 1=

F3

25

Figure 3.1 a) The attractor C in , b) the set of measurements, c) The
reconstructed attractor by the delay-coordinate map.

As we can see, this is a curve of dimension 1 in a three dimensional space. According to

the embedding condition; . Which is the same as the dimension of the

space required to see the curve C without ambiguity.

3.5.3 Example: Sufficient but not necessary condition for embedding

Let the circle; represent an

attractor in . By using the delay-coordinate map, we can reconstruct in . The at-

tractor is shown in Figure 3.2 as a solid curve. The reconstructed attractor using the de-

lay-coordinate map () is shown in the same figure as a dashed curve, the delay-time (T)

is 1.

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

−2

−1

0

1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

The image of the function F
d
 Operating on the Curve C in ℜ3

0 2 4 6 8 10 12 14 16
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
The set of observations from the function h:R3 → R1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

X

The original attractor of the 1−D set C in ℜ3

Y

Z

h x()

a) b)

c)

F3

x n()

y3 n()

x2

x1

x3

y n()
y n 1–()

y n 2–()

ℜ3

dE 2x1 1+ 3= =

S
1 y ℜ3

y1∈ tcos y2, t y3,sin= = 0.5 t ℜ1∈,={ }=

ℜ3
S

1 ℜ3

S
1

F3

26

Figure 3.2 The circle in and its reconstruction in .

In Figure 3.2, we can see that is a curve of dimension 1 in a 3D space. Notice

that we needed a 2D space to reconstruct this curve. This means the dimension required for

embedding is 2 rather than 3, as suggested by the embedding condition ().

In conclusion, we can see that the embedding condition gives a sufficient but not a neces-

sary condition for embedding. In other words, it is possible that we can embed an attractor

in a space of dimension less than . In the next chapter, the delay-coordinate map will be

used to model chaotic systems. We will also present four methods used to find the actual,

rather than the theoretical, minimum dimension required for embedding. The choice of T

(the second parameter in the delay-coordinate map), will be shown in Chapter 6.

3.6 Chapter summary

In this chapter, we presented an introduction to modeling chaotic systems. Some ap-

plications of modeling chaotic systems were given, mathematical definitions of the embed-

ding functions were illustrated with examples, and we showed two examples of modeling

−1 −0.5 0 0.5 1−1

0

1
−0.5

0

0.5

1
Embedding of a circle by delay−coordinate map

Original curve
Reconstructed curve

S
1

S
1 ℜ3 ℜ2

S
1

d 2 dE< 3= =

dE

27

using the embedding method. We found that the embedding condition is a sufficient but not

necessary condition. In the next chapter, we show different methods used to find the mini-

mum dimension required for embedding.

28

CHAPTER 4

INTRODUCTION TO THE MINIMUM EMBEDDING DIMENSION ESTIMA-

TION

4.1 Introduction

In Chapter 3, we talked about modeling by the embedding method. Modeling is

done from a time series of measurements taken from the system. We said that two param-

eters have to be found in order to model the system by embedding. Those parameters are

the dimension of the delay-vector (d) and the delay-time (T). They will be used to build the

delay-vectors.

In this chapter we introduce four methods for estimating the value of d. Three of

these methods are geometric and one method is predictive. This chapter will provide only

a simple overview of the methods. Chapters 5 and 6 will provide more detail. In the next

section, we present modeling of chaotic systems by using the delay-vectors. In Section 4.3,

we introduce two different approaches for estimating d: geometric and predictive. Then, in

Section 4.4, we introduce equivalent chaotic systems. A chapter summary is given in

Section 4.5. In Chapter 6, we will discuss the selection of the delay-time T.

4.2 Modeling chaotic systems

The state evolution of a chaotic system in the space can be written in the form

of the difference equation:

ℜk

29

, (4.1)

where is the state of the system, the time index , and N is the

total number of points. In the steady state condition, the evolution of the state follows

an attractor with a fractal dimension (chaotic attractor). Practically, the state and

the function f of the system are invisible to us, and all we can see is a set of scalar measure-

ments . We can write these measurements as (see Equations (3.19).

To model a chaotic system, we need to build a system model which uses the delay-vector

. (4.2)

The attractor of the system should be equivalent to the original attractor, and the

state evolution from should follow that of the original attractor from

 [Hak98]. (A more careful definition of equivalence is contained in

Chapter 8.) The key idea is to find d and T such that the two systems are equivalent. The

embedding theorem guarantees this equivalence if . But in practice, we do not

generally know the value of , so d has to be estimated. The projection from the original

state to the delay-vector is called the delay-coordinate map. As we said in the previ-

ous chapter, the embedding theorem gives a sufficient, but not a necessary, condition for

embedding. In other words, it could be possible to find an embedding map at . Our

goal is to estimate the minimum embedding dimension. We will label this dimension .

In the next section, we will talk about estimating by using two techniques: a geometric

and a predictive technique. In Chapter 6, we will discuss the delay-time T to complete the

modeling process.

x m() f x m 1–()()=

x m() ℜk∈ m 1 2 … N, , ,=

x m()

dc x m()

y m() y m() h x m()()=

yd m() y m() y m T–() … y m d 1–()T–()
t=

yd m()

yd m() yd m 1+()→

x m() x m 1+()→

d 2dc 1+≥

dc

x yd

d 2dc≤

dL

dL

30

4.3 Estimating the minimum embedding dimension

4.3.1 The geometric technique

To understand the geometric technique, let the circle in Figure 4.1 represent an at-

tractor of a dynamical system in , and the line below it represent its projection into .

Figure 4.1 Projection artifacts

From the above figure, we can see that the points on the horizontal line (a, b, and c) do not

occur in the same sequence as those on the circle (). That happened because

the circle was projected into a space with insufficient dimension. That caused the distances

between points to shrink, and the original order of points to change. We call this effect the

projection artifact. We can see from this example that, if the dimension of the space is too

small to represent the attractor of the system, the projection of the attractor to this space will

have artifacts. Therefore, we need to increase the dimension of the space in order to get rid

of these artifacts.

One technique of estimating the minimum embedding dimension is the geomet-

ric technique. To estimate by using the geometric technique, we start from and

find for every point its nearest neighbor. This neighbor has to be tested to see if it

is a true neighbor or if it became a neighbor because of some projection artifacts. After that,

d is increased and the previous steps are repeated. The value of d where all the neighbors

are true neighbors, is the minimum embedding dimension . Under the geometric tech-

ℜ2 ℜ1

a′
b′

c′

a bc

projection

a′ b′ and c′, ,

dL

dL d 1=

yd m()

dL

31

nique, three methods can be used to detect the existence of projection artifacts. These meth-

ods are 1) the Change of Neighbors with Dimension method, or CND, 2) the Change of

Distance with Dimension method, or CDD, and 3) the Change of Distance with Time meth-

od, or CDT.

4.3.1.1 The change of neighbors with dimension method (CND)

One can perform a visual test using Figure 4.1 to determine that the horizontal line

does not have enough dimension to represent the structure of the circle, and that we need

to have a two dimensional space (meaning that). However, we need to automate

this test using an algorithm. To estimate using the first geometric method, the change

of neighbors with dimension method (CND), the algorithm starts from the scalar measure-

ments a, b, and c, and computes the distances between point a and the other two points. It

will find that the nearest neighbor to a is c, while on the circle, the nearest neighbor to

is . The algorithm concludes that the neighbors have changed, and that the points a and

c became neighbors because of the projection artifact and not because they are true neigh-

bors. That means the 1-D space is not large enough to represent the structure of the circle

since it has this projection artifact. By repeating the above steps on the 2-D space, the al-

gorithm would find that there are no projection artifacts left on the attractor in this space

and concludes that .

4.3.1.2 The change of distance with dimension (CDD) method

The second geometric method that can be used to estimate is the change of dis-

tance with dimension method (CDD). The CDD method is similar to the CND method ex-

cept that it detects the existence of projection artifacts by comparing the distances between

neighbors rather than comparing the neighbors themselves. To understand this method, let

dL 2=

dL

a′

b′

dL 2=

dL

32

the curve in Figure 4.2 represent an attractor of a dynamical system in , and the line be-

low it represent its projection into .

Figure 4.2 The CDD method

We can see the points , , and on the curve in and their projection into the

horizontal line a, b, and c respectively. As in the CND method, we want an algorithm to

find that the 1-D space is not large enough to represent the structure of the curve. From the

horizontal line, the algorithm can find that b is the nearest neighbor of a and the distance

between them in is . In , along the curve, the distance between and is .

The algorithm can now compare the two distances to find that , therefore, b became

a neighbor of a because of the projection artifact and not because they are true neighbors.

As a result, the algorithm will find that the 1-D space is not large enough to represent the

structure of the curve since it has this projection artifact. By repeating the above steps on

the 2-D space, the algorithm would find that there are no projection artifacts left on the at-

tractor in this space and concludes that .

4.3.1.3 The change of distance with time method (CDT)

The third geometric method used to estimate is the change of distance with time

method (CDT). This method is different from the previous two in that it tries to detect the

existence of projection artifacts by moving neighbors forward in time and checking to see

ℜ2

ℜ1

a'

b′

c′

a b c

ℜ2

ℜ1

projection

v1

v2

a' b' c' ℜ2

ℜ1
v1 ℜ2 a′ b′ v2

v1 v2«

dL 2=

dL

33

if they will remain neighbors. To understand this method, let the non-intersecting solid

curve in shown in Figure 4.3 represent an attractor of a dynamical system, and let the

dotted curve with the “+” sign represent its projection into the X-Y plane (space).

Figure 4.3 The projection of a 3-D curve (solid line) into 2-D curve (dot-
ted line)

Figure 4.4 The CDT method: a) Distances between false neighbors in-
crease with time, b) The intersection in the middle of the curve is a pro-

jection artifact

The projection of the systems’s attractor shown in Figure 4.3 is redrawn in Figure

4.4 for further discussion. Notice that the middle of the curve in Figure 4.4a has a projection

artifact, which can be found by looking into Figure 4.4b. If we start from point a, we can’t

tell whether the next correct point in time is b or c. In other words, the curve intersection

makes it impossible to determine the correct sequence of points.

ℜ3

ℜ2

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

X

2−D projection of a curve in ℜ3

Y

Z

c

a

bd

v1

v2

ℜ2

f

a

b

f
b)a)

34

By using the CDT method, we want an algorithm to be able to find that the 2-D

space is not large enough to represent the structure of the system’s attractor (which is in

:). This can be done by detecting the projection artifact in the middle of the

curve. To do that, the algorithm should start by calculating the distance between point a and

the other points on the curve. It will find that c is closest to a; let the distance between them

be . Next it should move forward in time to find that a moves to b, and c moves to d. It

should then compute the distance between b and d; let the distance be . Now it can com-

pares the two distances and find that , which means that a and c are neighbors be-

cause of some projection artifacts and not because they are true neighbors. (See Figure

4.4a) Hence the algorithm concludes that the 2-D space is not large enough to represent the

structure of the system’s attractor since the curve has this projection artifact. By repeating

this for the 3-D space, the algorithm would find no projection artifacts left on the curve in

this space and would conclude that .

4.3.2 The predictive technique:

Now that we have talked about the three geometric methods, we will discuss the

predictive technique. The predictive technique is also used to estimate the minimum em-

bedding dimension such that the system of (using delay embedding) is equiva-

lent to the system of (original system). For simplicity, we will set in the

delay-vector (see Equations (4.2)). By using the delay-coordinate map; , we can

write (see Equations (3.20)). From the embedding definition (see

Section 3.4.3), we know that if the map is an embedding, then it is an injection. Hence,

the inverse map exists:

. (4.3)

ℜ3
dL 3=

v1

v2

v1 v2«

dL 3=

dL ydL
m()

x m() T 1=

yd m() Fd

yd m() Fd x m()()=

Fd

Fd
1–
:ℜd ℜk→

x m() Fd
1– yd m()()=

35

We can substitute Equations (4.1) for the measurement function h at Equations (3.19)

() to write h as . If we let the composite function

, we can write

. (4.4)

By substituting Equations (4.3) for Equations (4.4), we can write

. (4.5)

Now, if we let the composite function , we can write

. (4.6)

We conclude from Equations (4.6) that if the delay-vector at time is known to us, we

can predict the current measurement by approximating the unknown function . The

predictive technique depends on the idea that when the system of is equivalent to

the system of , we can use the delay-vector to predict the current measure-

ment . To be able to do that, we need to approximate the unknown function such

that,

. (4.7)

To approximate we will use a neural network with a Tapped Delay Line (TDL)

connected to its input. The TDL is used to produce the delay-vector from the

current measurement , as seen in Figure 4.6. Each tap of the TDL is a delayed version

of and the total number of taps is d. The network is trained to predict when it

is presented with d previous measurements of (coordinates of). The re-

sulting prediction error is recorded as a function of d. As the predictor order d increases,

the prediction error will decrease. However, after a certain point, further increase of d re-

sults in only a very small decrease in the error. The minimum dimension where the error

y m() h x m()()= y m() h f x m 1–()()()=

h o f q=

y m() q x m 1–()()=

y m() q Fd
1– yd m 1–()()()=

q o Fd
1– µ=

y m() µ yd m 1–()() µ y m 1–() y m 2–() … y m d–()
t

⎝ ⎠
⎛ ⎞= =

m 1–

y m() µ

yd m()

x m() yd m 1–()

y m() µ

ŷ m() µ̂ yd m 1–()()=

µ

yd m 1–()

y m()

y m() y m()

y m() yd m 1–()

36

does not improve any further is the minimum embedding dimension . At this point, the

approximation of is accurate and the systems of and are equivalent to each

other. Figures 4.5 and 4.6 show the block diagram of the function approximation and the

neural network model used to create the approximation.

Figure 4.5 The function approximation in the predictive technique

Figure 4.6 A neural network model with a TDL used to approximate the
function , D is a one step delay-time

4.4 Dynamic equivalence

The goal of modeling by embedding is to find a chaotic model that is equivalent to

the original unknown system. (The notion of equivalent chaotic systems will be covered in

detail in later chapters.) To understand this idea, we know that in the original system the

hidden state evolution is governed by the map f

, (4.8)

dL

µ yd m() x m()

µ

+

y m()

ŷ m()

-

+

µ̂ .()

e m()
(prediction error)

µ .()TDL
yd m 1–()

µ

D

y m()

ŷ m()y m 1–()

y m 2–()

y m d–()

D

D

Neural
Network
Model

µ̂ .()

yd m 1–()

µ

x m 1+() f x m()()=

37

(see Equations (4.1)), while all we can see from the original system is a set of measurements

which are governed by the map h:

, (4.9)

(see Equations (3.19)).

On the other hand, the states in the reconstructed space are the delay-vectors (see

Equations (4.2)), while the output update in this space is governed by the map :

, (4.10)

(see Equations (4.6)). So the delay-vector can be written as

, (4.11)

(). If the reconstructed model given by Equations (4.10) and (4.11) is equivalent to

the original model given by Equations (4.8) and (4.9), we can use the evolution of

in place of the evolution of to gain an understanding of the system characteristics. In

other words, if the two systems are equivalent, we will be able to use to estimate the

original system dimension and parameters. In the coming chapters, we will find the delay-

vector dimension d and the delay-time T which guarantee this dynamic equivalence.

4.5 Chapter summary

In this chapter, we provided an introduction to modeling chaotic systems. We intro-

duced two techniques (geometric and predictive) that can be used to estimate the minimum

embedding dimension that is required for chaotic systems modeling. We also gave a brief

introduction to equivalent chaotic systems. In Chapter 5, we will see the application of both

techniques to the chaotic Henon map. In Chapter 6, we will provide complete and detailed

algorithms for estimating d. We will also discuss practical considerations for implementing

the algorithms, including the choice of the delay-time (T).

y m() h x m()()=

yd m()

µ

y m() µ yd m 1–()()=

yd m() µ yd m 1–()() y m 1–() … y m d 1–()–()
t

=

T 1=

yd m()

x m()

yd m()

38

CHAPTER 5

Examples of the minimum embedding dimension estimation

5.1 Introduction

In Chapter 3, we introduced modeling of chaotic systems. We used delay-vectors

created from measurements to model these systems. We also introduced four methods to

estimate the minimum embedding dimension: three geometric methods one predictive

method. In this chapter, we will use the four methods to estimate the minimum embedding

dimension of the Henon map.

The Henon map is a chaotic system created from a set of two difference equations

(see Section 2.3.3). By using the embedding method (see Section 3.5), the theoretical min-

imum embedding dimension is . But we suspect that the

actual minimum embedding dimension is since the system’s dynamics are gener-

ated from a set of two difference equations. In Sections 5.2 and 5.3, we show the estimated

minimum embedding dimension of the Henon map by using the geometric and the predic-

tive techniques, respectively. In Section 5.4, we provide a chapter summary.

5.2 The geometric technique

To show how we can estimate by using the geometric technique, we take 15

points from the -coordinate of the Henon map to represent the measurements from this

dE 2dc 2x1.189 3= = =

dL 2=

dL

X1

39

system. That means the measurements where . In the

next step, we use to construct which

is the delay-vector (where).

We said in Chapter 4 that the idea of estimating by using the geometric tech-

nique depends on detecting the existence of the projection artifacts on the system’s attrac-

tor. We can do that by using any of the three methods that we mentioned before: the CND,

the CDD, or the CDT method. We need first to compute the distance between the reference

vector; and every other vector in the space . The nearest neighbor of is

the vector with the shortest distance.

5.2.1 Using the change of neighbors with dimension method (CND)

Before we get into the details of the CND method, we need to introduce some no-

tation. First, the nearest neighbor of will be denoted . The nearest neigh-

bor of will be denoted . (This means there are vectors that are closer

to .) We will indicate the time index of the nearest neighbor as

. (5.1)

For example, if the nearest neighbor of is , then the nearest neigh-

bor index is .

To estimate by using the CND method, we need to check if the nearest neighbor

of will remain a neighbor as the dimension d grows to . In other words, we

need to check if the nearest neighbor of will appear as the first, second, , or

neighbor of . To do that, we need to build the matrix which has the elements

 where and . If , we label as

y m() x1 m()= m 1 2 … 15, , ,=

y m() yd m() y m() y m 1–() … y m d 1–()–()
t

=

T 1=

dL

yd m() ℜd yd m()

yd m() y d
1

m()
)

k
th

yd m() y d
k

m()

)

k 1–

yd m() k
th

id
k

m() index y d
k

m()[]=

)

yd 5() y d
1

5() yd 9()=

)

id
1

5() index y d
1

5()[] index yd 9()[] 9= = =

)

dL

yd m() d 1+

yd m() … w
th

yd 1+ m() Qd

qd i j,() yd i() yd j()–= i j, 1 2 … M, , ,= i j≠ i j= qd i j,()

40

not a number (NaN) since we are not interested in the distance between a vector and itself.

We need also to find the vector whose element is the time index of the nearest

neighbor of . Further, we need to compute the through the neighbors of each

 and save their indices in the row of the matrix . In other words, ,

and are defined as follows:

, (5.2)

, (5.3)

 where , (5.4)

and . (5.5)

Each row of the matrix will be labeled by . So, the ma-

id
1

m
th

id
1

m()

yd m() 1
st

w
th

yd 1+ m() m
th Id 1+ Qd id

k

Id

Qd

qd 1 1,() qd 1 2,() … qd 1 M,()

qd 2 1,() qd 2 2,() … qd 2 M,()

:

qd M 1,() qd M 2,() … qd M M,()

=

Qd

NaN yd 1() yd 2()– … yd 1() yd M()–

yd 2() yd 1()– NaN … yd 2() yd M()–

: :

yd M() yd 1()– yd M() yd 2()– … NaN

=

id
k

id
k

1()

id
k

2()

:

id
k

M()

index y d
k

1()[]

index y d
k

2()[]
:

index y d
k

M()[]

= =

)
)

)

k 1 2 … w, , ,=

Id id
1 id

2 … id
w

id
1

1() id
2

1() … id
w

1()

id
1

2() id
2

2() … id
w

2()

: :

id
1

M() id
2

M() … id
w

M()

= =

Id i
m

d id
1

m() id
2

m() … id
w

m()=

41

trix can be written as: .

In Tables 5.1a and 5.1c and Tables 5.2a and 5.2c, we can see listed for

through 4. In Tables 5.1d, 5.2b and 5.2d, we can see through showing the indices of

the three neighbors () of each . Tables 5.3a, 5.3b, and 5.3c summarize the

neighbors time indices found for through 4. For example, in Table 5.3a we can see

that the nearest neighbor of is and it fails to appear as the first, second, or third

neighbor of , so we label as a FNN. On the other hand, we can see that the

nearest neighbor of is and when the dimension increases to 2, it appears as the

second neighbor of , so we label as a true neighbor. As a conclusion, we can

see in Table 5.3d that the total number of FNNs drops from 2 at to 0 at and

remains 0 at . That means the minimum embedding dimension is , where

there are no projection artifacts left on the attractor of the system.

Notice that in this method we could have chosen , so that only the nearest

neighbor is considered. We have found through experimentation that using w greater than

1 provides a more robust algorithm. This is a new result. In Chapter 6, we will provide

more detail on the practical implementation aspects of the various algorithms.

Id Id

i
1

d

i
2

d

:

iM
d

=

Qd d 1=

I2 I4

w 3= yd 1+ m()

d 1=

y1 1() y1 8()

y2 1() y1 8()

y1 8() y1 9()

y2 8() y1 9()

d 1= d 2=

d 3= dL 2=

w 1=

42

Table 5.1 The CND method (1/3)

Table 5.2 The CND method (2/3)

Q1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 NaN 0.65 1.2015 0.1561 0.313 0.6479 1.2886 0.0262 0.0508 0.3597 0.4 0.7439 1.6362 0.9341 0.1046 8

2 0.65 NaN 1.8515 0.4939 0.963 0.0021 1.9386 0.6762 0.7008 0.2903 1.05 0.0939 2.2862 1.5841 0.7546 6

3 1.2015 1.8515 NaN 1.3576 0.8885 1.8494 0.0871 1.1753 1.1507 1.5612 0.8015 1.9454 0.4347 0.2674 1.0969 7

4 0.1561 0.4939 1.3576 NaN 0.4691 0.4918 1.4446 0.1823 0.2069 0.2036 0.556 0.5878 1.7922 1.0901 0.2607 1

5 0.313 0.963 0.8885 0.4691 NaN 0.9609 0.9755 0.2868 0.2622 0.6727 0.0869 1.0569 1.3231 0.621 0.2084 11

6 0.6479 0.0021 1.8494 0.4918 0.9609 NaN 1.9364 0.6741 0.6987 0.2882 1.0478 0.096 2.284 1.5819 0.7525 2

7 1.2886 1.9386 0.0871 1.4446 0.9755 1.9364 NaN 1.2624 1.2377 1.6483 0.8886 2.0325 0.3476 0.3545 1.1839 3

8 0.0262 0.6762 1.1753 0.1823 0.2868 0.6741 1.2624 NaN 0.0246 0.3859 0.3737 0.7701 1.61 0.9078 0.0784 9

9 0.0508 0.7008 1.1507 0.2069 0.2622 0.6987 1.2377 0.0246 NaN 0.4105 0.3491 0.7947 1.5853 0.8832 0.0538 8

10 0.3597 0.2903 1.5612 0.2036 0.6727 0.2882 1.6483 0.3859 0.4105 NaN 0.7596 0.3842 1.9959 1.2937 0.4643 4

11 0.4 1.05 0.8015 0.556 0.0869 1.0478 0.8886 0.3737 0.3491 0.7596 NaN 1.1438 1.2362 0.5341 0.2953 5

12 0.7439 0.0939 1.9454 0.5878 1.0569 0.096 2.0325 0.7701 0.7947 0.3842 1.1438 NaN 2.3801 1.6779 0.8485 2

13 1.6362 2.2862 0.4347 1.7922 1.3231 2.284 0.3476 1.61 1.5853 1.9959 1.2362 2.3801 NaN 0.7021 1.5316 7

14 0.9341 1.5841 0.2674 1.0901 0.621 1.5819 0.3545 0.9078 0.8832 1.2937 0.5341 1.6779 0.7021 NaN 0.8294 3

15 0.1046 0.7546 1.0969 0.2607 0.2084 0.7525 1.1839 0.0784 0.0538 0.4643 0.2953 0.8485 1.5316 0.8294 NaN 9

a) b)

Q2 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 NaN 1.9623 1.2991 0.9756 0.313 2.044 1.4552 0.7013 0.2947 1.1099 0.4108 2.4041 2.2773 1.2008 9 5 11

2 1.9623 NaN 2.2959 1.0165 2.0851 0.0871 2.267 1.3346 1.7113 0.8525 2.2106 0.4447 2.3018 1.9268 6 12 10

3 1.2991 2.2959 NaN 1.4363 1.0155 2.3467 0.202 1.1934 1.1685 1.6572 0.994 2.6451 1.1736 0.3735 7 14 11

4 0.9756 1.0165 1.4363 NaN 1.0693 1.0925 1.4728 0.3193 0.7038 0.2214 1.1942 1.4478 1.8968 1.1099 10 8 9

5 0.313 2.0851 1.0155 1.0693 NaN 2.1617 1.1858 0.7553 0.3896 1.2452 0.1295 2.5167 2.0623 0.9757 11 1 9

6 2.044 0.0871 2.3467 1.0925 2.1617 NaN 2.3116 1.4094 1.7902 0.9342 2.2867 0.3606 2.3114 1.9759 2 12 10

7 1.4552 2.267 0.202 1.4728 1.1858 2.3116 NaN 1.2626 1.2965 1.6901 1.1759 2.5928 0.9721 0.3631 3 14 13

8 0.7013 1.3346 1.1934 0.3193 0.7553 1.4094 1.2626 NaN 0.4113 0.5204 0.8782 1.7625 1.8363 0.9094 4 9 10

9 0.2947 1.7113 1.1685 0.7038 0.3896 1.7902 1.2965 0.4113 NaN 0.8635 0.5191 2.1483 2.0462 0.9978 1 5 8

10 1.1099 0.8525 1.6572 0.2214 1.2452 0.9342 1.6901 0.5204 0.8635 NaN 1.3731 1.2945 2.0661 1.327 4 8 2

11 0.4108 2.2106 0.994 1.1942 0.1295 2.2867 1.1759 0.8782 0.5191 1.3731 NaN 2.6407 2.0842 1.0026 5 1 9

12 2.4041 0.4447 2.6451 1.4478 2.5167 0.3606 2.5928 1.7625 2.1483 1.2945 2.6407 NaN 2.4815 2.2718 6 2 10

13 2.2773 2.3018 1.1736 1.8968 2.0623 2.3114 0.9721 1.8363 2.0462 2.0661 2.0842 2.4815 NaN 1.0867 7 14 3

14 1.2008 1.9268 0.3735 1.1099 0.9757 1.9759 0.3631 0.9094 0.9978 1.327 1.0026 2.2718 1.0867 NaN 7 3 8

c) d)

i1
1

I2

a) b)

c) d)

Q3 1 2 3 4 5 6 7 8 9 10 11 12 13
1 NaN 2.3861 1.5738 2.0909 0.3249 2.3578 1.8552 1.7115 0.854 2.2397 0.5981 2.419 2.5277 5 11 9

2 2.3861 NaN 2.3433 1.1293 2.5366 0.202 2.2764 1.3501 1.7993 1.0355 2.8459 1.1773 2.3165 6 10 4

3 1.5738 2.3433 NaN 1.7281 1.4082 2.3642 0.331 1.3699 1.1718 1.9656 1.6549 2.717 1.1919 7 9 13

4 2.0909 1.1293 1.7281 NaN 2.212 1.2837 1.6302 0.4301 1.2623 0.2413 2.5774 2.1445 2.0406 10 8 2

5 0.3249 2.5366 1.4082 2.212 NaN 2.5033 1.7141 1.8131 0.9703 2.3836 0.3709 2.5416 2.378 1 11 9

6 2.3578 0.202 2.3642 1.2837 2.5033 NaN 2.3117 1.4613 1.8288 1.2107 2.7966 0.9768 2.3127 2 12 10

7 1.8552 2.2764 0.331 1.6302 1.7141 2.3117 NaN 1.3277 1.3427 1.8676 1.9738 2.7391 0.9736 3 13 8

8 1.7115 1.3501 1.3699 0.4301 1.8131 1.4613 1.3277 NaN 0.8638 0.6468 2.1805 2.1863 1.8941 4 10 9

9 0.854 1.7993 1.1718 1.2623 0.9703 1.8288 1.3427 0.8638 NaN 1.4332 1.3408 2.2137 2.0674 1 8 5

10 2.2397 1.0355 1.9656 0.2413 2.3836 1.2107 1.8676 0.6468 1.4332 NaN 2.7477 2.1193 2.2335 4 8 2

11 0.5981 2.8459 1.6549 2.5774 0.3709 2.7966 1.9738 2.1805 1.3408 2.7477 NaN 2.7324 2.5864 5 1 9

12 2.419 1.1773 2.717 2.1445 2.5416 0.9768 2.7391 2.1863 2.2137 2.1193 2.7324 NaN 2.6164 6 2 10

13 2.5277 2.3165 1.1919 2.0406 2.378 2.3127 0.9736 1.8941 2.0674 2.2335 2.5864 2.6164 NaN 7 3 8

a) b)
Q4 1 2 3 4 5 6 7 8 9 10 11 12

1 NaN 2.4318 1.6489 2.5414 0.3725 2.3668 1.8663 1.7995 1.0368 2.8685 1.2434 2.433 5 9 11

2 2.4318 NaN 2.5327 1.4923 2.5528 0.331 2.3738 1.3529 2.0868 1.6802 2.9129 1.1956 6 12 8

3 1.6489 2.5327 NaN 2.5954 1.5612 2.4653 0.4389 1.7247 1.1757 3.0134 2.2894 2.8193 7 9 5

4 2.5414 1.4923 2.5954 NaN 2.5469 1.7832 2.3182 0.9872 2.3925 0.4232 2.6017 2.4496 10 8 2

5 0.3725 2.5528 1.5612 2.5469 NaN 2.5035 1.757 1.8512 1.2387 2.8763 0.9807 2.5428 1 11 9

6 2.3668 0.331 2.4653 1.7832 2.5035 NaN 2.3479 1.5024 1.9941 1.9947 2.9327 0.9783 2 12 8

7 1.8663 2.3738 0.4389 2.3182 1.757 2.3479 NaN 1.5296 1.3966 2.7334 2.36 2.7782 3 9 8

8 1.7995 1.3529 1.7247 0.9872 1.8512 1.5024 1.5296 NaN 1.4334 1.3952 2.245 2.2062 4 2 10

9 1.0368 2.0868 1.1757 2.3925 1.2387 1.9941 1.3966 1.4334 NaN 2.7782 2.1478 2.3707 1 3 5

10 2.8685 1.6802 3.0134 0.4232 2.8763 1.9947 2.7334 1.3952 2.7782 NaN 2.836 2.6148 4 8 2

11 1.2434 2.9129 2.2894 2.6017 0.9807 2.9327 2.36 2.245 2.1478 2.836 NaN 2.8555 5 1 9

12 2.433 1.1956 2.8193 2.4496 2.5428 0.9783 2.7782 2.2062 2.3707 2.6148 2.8555 NaN 6 2 8

c) d)

I3

I4
a)

c) d)

b)

43

Table 5.3 The CND method (3/3)

5.2.2 Using the change of distance with dimension method (CDD)

As we said in Chapter 4, the CDD method can also be used to estimate . This

method depends on the idea that false nearest neighbor distances increase significantly as

the dimension of the space increases.

To estimate of the Henon map using the CDD method, we need to compute the

matrix and find the vector as in the CND method. In addition, we need to find the

vector whose element is the distance between and its nearest neighbor

: . We also need to find out how much

the distances to the nearest neighbors grow as the dimension increases. For these new dis-

tances we define the vector whose elements represent the distance between

 and . (Notice that is not the same as . It is

 with one component added.)

For example, when in Table 5.4a, the nearest neighbor of is

and the distance between them is . At in Table 5.4d, the distance be-

tween and is . If is a true nearest neighbor of

, will be close to . To apply this idea, we need to see how

d d d d FNN
time 1 2 time 2 3 time 3 4 1 2

1 8 9 5 11 FNN 1 9 5 11 9 1 5 5 9 11 2 0
2 6 6 12 10 2 6 6 10 4 2 6 6 12 8 3 0
3 7 7 14 11 3 7 7 9 13 3 7 7 9 5 d)
4 1 10 8 9 FNN 4 10 10 8 2 4 10 10 8 2

5 11 11 1 9 5 11 1 11 9 5 1 1 11 9

6 2 2 12 10 6 2 2 12 10 6 2 2 12 8

7 3 3 14 13 7 3 3 13 8 7 3 3 9 8

8 9 4 9 10 8 4 4 10 9 8 4 4 2 10

9 8 1 5 8 9 1 1 8 5 9 1 1 3 5

10 4 4 8 2 10 4 4 8 2 10 4 4 8 2

11 5 5 1 9 11 5 5 1 9 11 5 5 1 9

12 2 6 2 10 12 6 6 2 10 12 6 6 2 8

13 7 7 14 3 13 7 7 3 8 13 7

14 3 7 3 8 14 7 c)
15 9 a) b)a) c)b)

d)

dL

dL

Qd id
1

rd rd m() yd m()

y d
1

m() yd id
1

m()()=

)

rd m() yd m() y d
1

m()–=

)

ed 1+ ed 1+ m()

yd 1+ m() yd 1+ id
1

m()() yd 1+ id
1

m()() y d 1+
1

m()

)

y d
1

m()

)

d 1= y1 1() y1 8()

r1 1() 0.026= d 2=

y2 1() y2 8() e2 1() 0.701= yd id
1

m()()

yd m() yd 1+ id
1

m()() yd 1+ m()

44

much the distance between the nearest neighbors grows as d increases to . We can do

that by forming the vector which has the elements

. (5.6)

If where is some predefined threshold, we label the nearest neighbor of

 as a false nearest neighbor (FNN). For instance, let . We can see from our

example that as seen at the second column of Table 5.4g. Since

, we label as a FNN. The results in Tables 5.4g, 5.5g, and 5.6g show

 for through 3. In Table 5.6h, we summarize the results of the previous tables. In

it, we can see that at , the number of FNNs is 5, while at , the number of FNNs

drops to 0 and remains 0 at . Therefore, the minimum embedding dimension is

.

d 1+

cd

cd m()
ed 1+ m() rd m()–

rd m()
--=

cd m() ρ> ρ

yd m() ρ 10=

c1 1() 25.9731=

c1 1() ρ> 10= y1 8()

cd d 1=

d 1= d 2=

d 3=

dL 2=

45

Table 5.4 The CDD method tables for d = 1

Q1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 i1 r1

1 NaN 0.650 1.202 0.156 0.313 0.648 1.289 0.026 0.051 0.360 0.400 0.744 1.636 0.934 0.105 8 0.026

2 0.650 NaN 1.852 0.494 0.963 0.002 1.939 0.676 0.701 0.290 1.050 0.094 2.286 1.584 0.755 6 0.002

3 1.202 1.852 NaN 1.358 0.889 1.849 0.087 1.175 1.151 1.561 0.802 1.945 0.435 0.267 1.097 7 0.087

4 0.156 0.494 1.358 NaN 0.469 0.492 1.445 0.182 0.207 0.204 0.556 0.588 1.792 1.090 0.261 1 0.156

5 0.313 0.963 0.889 0.469 NaN 0.961 0.976 0.287 0.262 0.673 0.087 1.057 1.323 0.621 0.208 11 0.087

6 0.648 0.002 1.849 0.492 0.961 NaN 1.936 0.674 0.699 0.288 1.048 0.096 2.284 1.582 0.753 2 0.002

7 1.289 1.939 0.087 1.445 0.976 1.936 NaN 1.262 1.238 1.648 0.889 2.033 0.348 0.355 1.184 3 0.087

8 0.026 0.676 1.175 0.182 0.287 0.674 1.262 NaN 0.025 0.386 0.374 0.770 1.610 0.908 0.078 9 0.025

9 0.051 0.701 1.151 0.207 0.262 0.699 1.238 0.025 NaN 0.411 0.349 0.795 1.585 0.883 0.054 8 0.025

10 0.360 0.290 1.561 0.204 0.673 0.288 1.648 0.386 0.411 NaN 0.760 0.384 1.996 1.294 0.464 4 0.204

11 0.400 1.050 0.802 0.556 0.087 1.048 0.889 0.374 0.349 0.760 NaN 1.144 1.236 0.534 0.295 5 0.087

12 0.744 0.094 1.945 0.588 1.057 0.096 2.033 0.770 0.795 0.384 1.144 NaN 2.380 1.678 0.849 2 0.094

13 1.636 2.286 0.435 1.792 1.323 2.284 0.348 1.610 1.585 1.996 1.236 2.380 NaN 0.702 1.532 7 0.348

14 0.934 1.584 0.267 1.090 0.621 1.582 0.355 0.908 0.883 1.294 0.534 1.678 0.702 NaN 0.829 3 0.267

15 0.105 0.755 1.097 0.261 0.208 0.753 1.184 0.078 0.054 0.464 0.295 0.849 1.532 0.829 NaN 9 0.054

a) b) c)

Q2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i1 e2

1 NaN 1.962 1.299 0.976 0.313 2.044 1.455 0.701 0.295 1.110 0.411 2.404 2.277 1.201 8 0.701

2 1.962 NaN 2.296 1.017 2.085 0.087 2.267 1.335 1.711 0.853 2.211 0.445 2.302 1.927 6 0.087

3 1.299 2.296 NaN 1.436 1.016 2.347 0.202 1.193 1.169 1.657 0.994 2.645 1.174 0.374 7 0.202

4 0.976 1.017 1.436 NaN 1.069 1.093 1.473 0.319 0.704 0.221 1.194 1.448 1.897 1.110 1 0.976

5 0.313 2.085 1.016 1.069 NaN 2.162 1.186 0.755 0.390 1.245 0.130 2.517 2.062 0.976 11 0.130

6 2.044 0.087 2.347 1.093 2.162 NaN 2.312 1.409 1.790 0.934 2.287 0.361 2.311 1.976 2 0.087

7 1.455 2.267 0.202 1.473 1.186 2.312 NaN 1.263 1.297 1.690 1.176 2.593 0.972 0.363 3 0.202

8 0.701 1.335 1.193 0.319 0.755 1.409 1.263 NaN 0.411 0.520 0.878 1.763 1.836 0.909 9 0.411

9 0.295 1.711 1.169 0.704 0.390 1.790 1.297 0.411 NaN 0.864 0.519 2.148 2.046 0.998 8 0.411

10 1.110 0.853 1.657 0.221 1.245 0.934 1.690 0.520 0.864 NaN 1.373 1.295 2.066 1.327 4 0.221

11 0.411 2.211 0.994 1.194 0.130 2.287 1.176 0.878 0.519 1.373 NaN 2.641 2.084 1.003 5 0.130

12 2.404 0.445 2.645 1.448 2.517 0.361 2.593 1.763 2.148 1.295 2.641 NaN 2.482 2.272 2 0.445

13 2.277 2.302 1.174 1.897 2.062 2.311 0.972 1.836 2.046 2.066 2.084 2.482 NaN 1.087 7 0.972

14 1.201 1.927 0.374 1.110 0.976 1.976 0.363 0.909 0.998 1.327 1.003 2.272 1.087 NaN 3 0.374

d) e) f)

Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14

r1 0.026 0.002 0.087 0.156 0.087 0.002 0.087 0.025 0.025 0.204 0.087 0.094 0.348 0.267

e2 0.701 0.087 0.202 0.976 0.130 0.087 0.202 0.411 0.411 0.221 0.130 0.445 0.972 0.374

c1 25.9731 42.55 1.32184 5.25385 0.48851 42.55 1.32184 15.452 15.452 0.08529 0.48851 3.73085 1.79339 0.39888

FNN FNN FNN FNN FNN

g)

i1
1

e2

r1

i1
1

a)

d)

c)b)

e) f)

g)

46

Table 5.5 The CDD method tables for d = 2

Q2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i2 r2

1 NaN 1.962 1.299 0.976 0.313 2.044 1.455 0.701 0.295 1.110 0.411 2.404 2.277 1.201 9 0.295

2 1.962 NaN 2.296 1.017 2.085 0.087 2.267 1.335 1.711 0.853 2.211 0.445 2.302 1.927 6 0.087

3 1.299 2.296 NaN 1.436 1.016 2.347 0.202 1.193 1.169 1.657 0.994 2.645 1.174 0.374 7 0.202

4 0.976 1.017 1.436 NaN 1.069 1.093 1.473 0.319 0.704 0.221 1.194 1.448 1.897 1.110 10 0.221

5 0.313 2.085 1.016 1.069 NaN 2.162 1.186 0.755 0.390 1.245 0.130 2.517 2.062 0.976 11 0.13

6 2.044 0.087 2.347 1.093 2.162 NaN 2.312 1.409 1.790 0.934 2.287 0.361 2.311 1.976 2 0.087

7 1.455 2.267 0.202 1.473 1.186 2.312 NaN 1.263 1.297 1.690 1.176 2.593 0.972 0.363 3 0.202

8 0.701 1.335 1.193 0.319 0.755 1.409 1.263 NaN 0.411 0.520 0.878 1.763 1.836 0.909 4 0.319

9 0.295 1.711 1.169 0.704 0.390 1.790 1.297 0.411 NaN 0.864 0.519 2.148 2.046 0.998 1 0.295

10 1.110 0.853 1.657 0.221 1.245 0.934 1.690 0.520 0.864 NaN 1.373 1.295 2.066 1.327 4 0.221

11 0.411 2.211 0.994 1.194 0.130 2.287 1.176 0.878 0.519 1.373 NaN 2.641 2.084 1.003 5 0.13

12 2.404 0.445 2.645 1.448 2.517 0.361 2.593 1.763 2.148 1.295 2.641 NaN 2.482 2.272 6 0.361

13 2.277 2.302 1.174 1.897 2.062 2.311 0.972 1.836 2.046 2.066 2.084 2.482 NaN 1.087 7 0.972

14 1.201 1.927 0.374 1.110 0.976 1.976 0.363 0.909 0.998 1.327 1.003 2.272 1.087 NaN 7 0.363

a) b) c)

Q3 1 2 3 4 5 6 7 8 9 10 11 12 13 i2 e3

1 NaN 2.3861 1.5738 2.0909 0.3249 2.3578 1.8552 1.7115 0.854 2.2397 0.5981 2.419 2.5277 9 0.854

2 2.3861 NaN 2.3433 1.1293 2.5366 0.202 2.2764 1.3501 1.7993 1.0355 2.8459 1.1773 2.3165 6 0.202

3 1.5738 2.3433 NaN 1.7281 1.4082 2.3642 0.331 1.3699 1.1718 1.9656 1.6549 2.717 1.1919 7 0.331

4 2.0909 1.1293 1.7281 NaN 2.212 1.2837 1.6302 0.4301 1.2623 0.2413 2.5774 2.1445 2.0406 10 0.241

5 0.3249 2.5366 1.4082 2.212 NaN 2.5033 1.7141 1.8131 0.9703 2.3836 0.3709 2.5416 2.378 11 0.371

6 2.3578 0.202 2.3642 1.2837 2.5033 NaN 2.3117 1.4613 1.8288 1.2107 2.7966 0.9768 2.3127 2 0.202

7 1.8552 2.2764 0.331 1.6302 1.7141 2.3117 NaN 1.3277 1.3427 1.8676 1.9738 2.7391 0.9736 3 0.331

8 1.7115 1.3501 1.3699 0.4301 1.8131 1.4613 1.3277 NaN 0.8638 0.6468 2.1805 2.1863 1.8941 4 0.43

9 0.854 1.7993 1.1718 1.2623 0.9703 1.8288 1.3427 0.8638 NaN 1.4332 1.3408 2.2137 2.0674 1 0.854

10 2.2397 1.0355 1.9656 0.2413 2.3836 1.2107 1.8676 0.6468 1.4332 NaN 2.7477 2.1193 2.2335 4 0.241

11 0.5981 2.8459 1.6549 2.5774 0.3709 2.7966 1.9738 2.1805 1.3408 2.7477 NaN 2.7324 2.5864 5 0.371

12 2.419 1.1773 2.717 2.1445 2.5416 0.9768 2.7391 2.1863 2.2137 2.1193 2.7324 NaN 2.6164 6 0.977

13 2.5277 2.3165 1.1919 2.0406 2.378 2.3127 0.9736 1.8941 2.0674 2.2335 2.5864 2.6164 NaN 7 0.974

d) e) f)

Time

1 2 3 4 5 6 7 8 9 10 11 12 13

r2 0.295 0.087 0.202 0.221 0.13 0.087 0.202 0.319 0.295 0.221 0.13 0.361 0.972

e3 0.854 0.202 0.331 0.2413 0.3709 0.202 0.331 0.4301 0.854 0.2413 0.3709 0.9768 0.9736

c2 1.89492 1.32184 0.63861 0.09186 1.85308 1.32184 0.63861 0.34828 1.89492 0.09186 1.85308 1.70582 0.00165

g)

i2
1

e3
i2
1

r2

a) c)b)

d) f)e)

g)

47

Table 5.6 The CDD method tables for d = 3

5.2.3 Using the change of distance with time method (CDT)

As we said in Chapter 4, the CDT method can also be used to estimate . This

method depends on the idea that false nearest neighbor distances grow significantly as time

increases. As in the previous methods, we begin by computing the nearest neighbors for

. Then we track how the distance between the original nearest neighbors increases

with time. This method can be applied by computing the distance in dimension , rather

than in dimension . This has the advantage that the measured distance won’t be affected

by projection artifacts.

Next, we need to have a method for determining whether or not the distances be-

tween two vectors can be considered large. For our purpose, we will use the average vector

Q3 1 2 3 4 5 6 7 8 9 10 11 12 13 i3 r3

1 NaN 2.3861 1.5738 2.0909 0.3249 2.3578 1.8552 1.7115 0.854 2.2397 0.5981 2.419 2.5277 5 0.325

2 2.3861 NaN 2.3433 1.1293 2.5366 0.202 2.2764 1.3501 1.7993 1.0355 2.8459 1.1773 2.3165 6 0.202

3 1.5738 2.3433 NaN 1.7281 1.4082 2.3642 0.331 1.3699 1.1718 1.9656 1.6549 2.717 1.1919 7 0.331

4 2.0909 1.1293 1.7281 NaN 2.212 1.2837 1.6302 0.4301 1.2623 0.2413 2.5774 2.1445 2.0406 10 0.241

5 0.3249 2.5366 1.4082 2.212 NaN 2.5033 1.7141 1.8131 0.9703 2.3836 0.3709 2.5416 2.378 1 0.325

6 2.3578 0.202 2.3642 1.2837 2.5033 NaN 2.3117 1.4613 1.8288 1.2107 2.7966 0.9768 2.3127 2 0.202

7 1.8552 2.2764 0.331 1.6302 1.7141 2.3117 NaN 1.3277 1.3427 1.8676 1.9738 2.7391 0.9736 3 0.331

8 1.7115 1.3501 1.3699 0.4301 1.8131 1.4613 1.3277 NaN 0.8638 0.6468 2.1805 2.1863 1.8941 4 0.43

9 0.854 1.7993 1.1718 1.2623 0.9703 1.8288 1.3427 0.8638 NaN 1.4332 1.3408 2.2137 2.0674 1 0.854

10 2.2397 1.0355 1.9656 0.2413 2.3836 1.2107 1.8676 0.6468 1.4332 NaN 2.7477 2.1193 2.2335 4 0.241

11 0.5981 2.8459 1.6549 2.5774 0.3709 2.7966 1.9738 2.1805 1.3408 2.7477 NaN 2.7324 2.5864 5 0.371

12 2.419 1.1773 2.717 2.1445 2.5416 0.9768 2.7391 2.1863 2.2137 2.1193 2.7324 NaN 2.6164 6 0.977

13 2.5277 2.3165 1.1919 2.0406 2.378 2.3127 0.9736 1.8941 2.0674 2.2335 2.5864 2.6164 NaN 7 0.97

a) b) c)

Q4 1 2 3 4 5 6 7 8 9 10 11 12 i3 e4

1 NaN 2.4318 1.6489 2.5414 0.3725 2.3668 1.8663 1.7995 1.0368 2.8685 1.2434 2.433 5 0.3725

2 2.4318 NaN 2.5327 1.4923 2.5528 0.331 2.3738 1.3529 2.0868 1.6802 2.9129 1.1956 6 0.331

3 1.6489 2.5327 NaN 2.5954 1.5612 2.4653 0.4389 1.7247 1.1757 3.0134 2.2894 2.8193 7 0.4389

4 2.5414 1.4923 2.5954 NaN 2.5469 1.7832 2.3182 0.9872 2.3925 0.4232 2.6017 2.4496 10 0.4232

5 0.3725 2.5528 1.5612 2.5469 NaN 2.5035 1.757 1.8512 1.2387 2.8763 0.9807 2.5428 1 0.3725

6 2.3668 0.331 2.4653 1.7832 2.5035 NaN 2.3479 1.5024 1.9941 1.9947 2.9327 0.9783 2 0.331

7 1.8663 2.3738 0.4389 2.3182 1.757 2.3479 NaN 1.5296 1.3966 2.7334 2.36 2.7782 3 0.4389

8 1.7995 1.3529 1.7247 0.9872 1.8512 1.5024 1.5296 NaN 1.4334 1.3952 2.245 2.2062 4 0.9872

9 1.0368 2.0868 1.1757 2.3925 1.2387 1.9941 1.3966 1.4334 NaN 2.7782 2.1478 2.3707 1 1.0368

10 2.8685 1.6802 3.0134 0.4232 2.8763 1.9947 2.7334 1.3952 2.7782 NaN 2.836 2.6148 4 0.4232

11 1.2434 2.9129 2.2894 2.6017 0.9807 2.9327 2.36 2.245 2.1478 2.836 NaN 2.8555 5 0.9807

12 2.433 1.1956 2.8193 2.4496 2.5428 0.9783 2.7782 2.2062 2.3707 2.6148 2.8555 NaN 6 0.9783

d) e) f)

Time d FNN
1 2 3 4 5 6 7 8 9 10 11 12 1 5

r3 0.3249 0.202 0.331 0.2413 0.3249 0.202 0.331 0.4301 0.854 0.2413 0.3709 0.9768 2 0
e4 0.3725 0.331 0.4389 0.4232 0.3725 0.331 0.4389 0.9872 1.0368 0.4232 0.9807 0.9783 3 0

c2 0.14651 0.63861 0.32598 0.75383 0.14651 0.63861 0.32598 1.29528 0.21405 0.75383 1.64411 0.00154 h)
g)

i3
1 e4

r3i3
1

a) b) c)

d) e) f)

g) h)

dL

d 1=

dE

d

48

length as a bench mark. If the distance between two vectors is larger than the average vector

length, we will consider the distance to be large. The average vector length is defined as

. (5.7)

If we let be the nearest neighbor of , we can check if is a FNN

by measuring the distance between and as time increases (). For ex-

ample, we can see from the row of Table 5.7a that the nearest neighbor of is

. If we look at Table 5.7b, we can see that the distance between and is

 (see the circled value). But, after one time step ahead,

we can see that the distance between and is which is

greater than as indicated by the arrow. We conclude that is a FNN since

the distance between and has grown more than as time increases. A second

example of the FNNs can be seen from the first row of Table 5.7a. We can see that the near-

est neighbor of is , while in Table 5.7b, the distance between and

is that means is a FNN. On the other hand, the nearest neighbor of

is , as seen in the second row of the last column in Table 5.7a, while if we look at

Table 5.7b, we can see that the distance between and is . If we move

one step ahead, we can see that the distance between and is which is

still less than . A conclusion that can be reached is that is a true nearest neighbor

of . Notice here that we choose one as the number of forward time steps that is used

to check for FNN.

Table 5.9b summarizes the number of FNNs found for through 3. It shows

that at , the number of FNNs found is 4, while at , the number of FNNs is 0

β 1
M
----- yd k()

k 1=

M

∑=

yd n() yd m() yd n()

y3 m() y3 n() dE 3=

8
th

y1 8()

y1 9() y3 8() y3 9()

q3 8 9,() 0.8638 β< 1.3404= =

y3 9() y3 10() q3 9 10,() 1.4332=

β 1.3404= y1 9()

y3 8() y3 9() β

y1 1() y1 8() y3 1() y3 8()

1.7115 β> y1 8() y1 2()

y1 6()

y3 2() y3 6() 0.202 β<

y3 3() y3 7() 0.331

β y1 6()

y1 2()

d 1=

d 1= d 2=

49

and remains 0 at . That means the minimum embedding dimension is . Fi-

nally, notice that the nearest neighbor of shown in the last row of the Tables 5.7b,

5.8b, and 5.9a are labeled as not decidable (nd). The reason for this is that at the first in-

stance of time, the distance between the two vectors is less than , but we do not have

enough data to check if the distance between the two vectors after one time step ahead is

greater than . So, we have to discard this neighbor from the count of the FNNs and label

it as not decidable (nd).

Table 5.7 The CDT method for d = 1

d 3= dL 2=

yd 13()

β

β

The threshold is

Q1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 NaN 0.65 1.2015 0.1561 0.313 0.6479 1.2886 0.0262 0.0508 0.3597 0.4 0.7439 1.6362 0.9341 0.1046 8

2 0.65 NaN 1.8515 0.4939 0.963 0.0021 1.9386 0.6762 0.7008 0.2903 1.05 0.0939 2.2862 1.5841 0.7546 6

3 1.2015 1.8515 NaN 1.3576 0.8885 1.8494 0.0871 1.1753 1.1507 1.5612 0.8015 1.9454 0.4347 0.2674 1.0969 7

4 0.1561 0.4939 1.3576 NaN 0.4691 0.4918 1.4446 0.1823 0.2069 0.2036 0.556 0.5878 1.7922 1.0901 0.2607 1

5 0.313 0.963 0.8885 0.4691 NaN 0.9609 0.9755 0.2868 0.2622 0.6727 0.0869 1.0569 1.3231 0.621 0.2084 11

6 0.6479 0.0021 1.8494 0.4918 0.9609 NaN 1.9364 0.6741 0.6987 0.2882 1.0478 0.096 2.284 1.5819 0.7525 2

7 1.2886 1.9386 0.0871 1.4446 0.9755 1.9364 NaN 1.2624 1.2377 1.6483 0.8886 2.0325 0.3476 0.3545 1.1839 3

8 0.0262 0.6762 1.1753 0.1823 0.2868 0.6741 1.2624 NaN 0.0246 0.3859 0.3737 0.7701 1.61 0.9078 0.0784 9

9 0.0508 0.7008 1.1507 0.2069 0.2622 0.6987 1.2377 0.0246 NaN 0.4105 0.3491 0.7947 1.5853 0.8832 0.0538 8

10 0.3597 0.2903 1.5612 0.2036 0.6727 0.2882 1.6483 0.3859 0.4105 NaN 0.7596 0.3842 1.9959 1.2937 0.4643 4

11 0.4 1.05 0.8015 0.556 0.0869 1.0478 0.8886 0.3737 0.3491 0.7596 NaN 1.1438 1.2362 0.5341 0.2953 5

12 0.7439 0.0939 1.9454 0.5878 1.0569 0.096 2.0325 0.7701 0.7947 0.3842 1.1438 NaN 2.3801 1.6779 0.8485 2

13 1.6362 2.2862 0.4347 1.7922 1.3231 2.284 0.3476 1.61 1.5853 1.9959 1.2362 2.3801 NaN 0.7021 1.5316 7

14 0.9341 1.5841 0.2674 1.0901 0.621 1.5819 0.3545 0.9078 0.8832 1.2937 0.5341 1.6779 0.7021 NaN 0.8294 3

15 0.1046 0.7546 1.0969 0.2607 0.2084 0.7525 1.1839 0.0784 0.0538 0.4643 0.2953 0.8485 1.5316 0.8294 NaN 9

a)

Q3 1 2 3 4 5 6 7 8 9 10 11 12 13

1 NaN 2.3861 1.5738 2.0909 0.3249 2.3578 1.8552 1.7115 0.854 2.2397 0.5981 2.419 2.5277 8 FNN

2 2.3861 NaN 2.3433 1.1293 2.5366 0.202 2.2764 1.3501 1.7993 1.0355 2.8459 1.1773 2.3165 6

3 1.5738 2.3433 NaN 1.7281 1.4082 2.3642 0.331 1.3699 1.1718 1.9656 1.6549 2.717 1.1919 7

4 2.0909 1.1293 1.7281 NaN 2.212 1.2837 1.6302 0.4301 1.2623 0.2413 2.5774 2.1445 2.0406 1 FNN

5 0.3249 2.5366 1.4082 2.212 NaN 2.5033 1.7141 1.8131 0.9703 2.3836 0.3709 2.5416 2.378 11

6 2.3578 0.202 2.3642 1.2837 2.5033 NaN 2.3117 1.4613 1.8288 1.2107 2.7966 0.9768 2.3127 2

7 1.8552 2.2764 0.331 1.6302 1.7141 2.3117 NaN 1.3277 1.3427 1.8676 1.9738 2.7391 0.9736 3

8 1.7115 1.3501 1.3699 0.4301 1.8131 1.4613 1.3277 NaN 0.8638 0.6468 2.1805 2.1863 1.8941 9 FNN

9 0.854 1.7993 1.1718 1.2623 0.9703 1.8288 1.3427 0.8638 NaN 1.4332 1.3408 2.2137 2.0674 8 FNN

10 2.2397 1.0355 1.9656 0.2413 2.3836 1.2107 1.8676 0.6468 1.4332 NaN 2.7477 2.1193 2.2335 4

11 0.5981 2.8459 1.6549 2.5774 0.3709 2.7966 1.9738 2.1805 1.3408 2.7477 NaN 2.7324 2.5864 5

12 2.419 1.1773 2.717 2.1445 2.5416 0.9768 2.7391 2.1863 2.2137 2.1193 2.7324 NaN 2.6164 2

13 2.5277 2.3165 1.1919 2.0406 2.378 2.3127 0.9736 1.8941 2.0674 2.2335 2.5864 2.6164 NaN 7 nd

b)

At d =1, the number of FNN = 4 nd: not decidable

3404.1=β

i1
1

i1
1

a)

b)

50

Table 5.8 The CDT method for d = 2

Table 5.9 The CDT method for d = 3

The circled distances in the above tables are the distances between the reference

points and their nearest neighbors at the first instance of time in . The arrows represent

the direction where the reference points and their nearest neighbors move after one time

step.

Q2 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 NaN 1.9623 1.2991 0.9756 0.313 2.044 1.4552 0.7013 0.2947 1.1099 0.4108 2.4041 2.2773 1.2008 9

2 1.9623 NaN 2.2959 1.0165 2.0851 0.0871 2.267 1.3346 1.7113 0.8525 2.2106 0.4447 2.3018 1.9268 6

3 1.2991 2.2959 NaN 1.4363 1.0155 2.3467 0.202 1.1934 1.1685 1.6572 0.994 2.6451 1.1736 0.3735 7

4 0.9756 1.0165 1.4363 NaN 1.0693 1.0925 1.4728 0.3193 0.7038 0.2214 1.1942 1.4478 1.8968 1.1099 10

5 0.313 2.0851 1.0155 1.0693 NaN 2.1617 1.1858 0.7553 0.3896 1.2452 0.1295 2.5167 2.0623 0.9757 11

6 2.044 0.0871 2.3467 1.0925 2.1617 NaN 2.3116 1.4094 1.7902 0.9342 2.2867 0.3606 2.3114 1.9759 2

7 1.4552 2.267 0.202 1.4728 1.1858 2.3116 NaN 1.2626 1.2965 1.6901 1.1759 2.5928 0.9721 0.3631 3

8 0.7013 1.3346 1.1934 0.3193 0.7553 1.4094 1.2626 NaN 0.4113 0.5204 0.8782 1.7625 1.8363 0.9094 4

9 0.2947 1.7113 1.1685 0.7038 0.3896 1.7902 1.2965 0.4113 NaN 0.8635 0.5191 2.1483 2.0462 0.9978 1

10 1.1099 0.8525 1.6572 0.2214 1.2452 0.9342 1.6901 0.5204 0.8635 NaN 1.3731 1.2945 2.0661 1.327 4

11 0.4108 2.2106 0.994 1.1942 0.1295 2.2867 1.1759 0.8782 0.5191 1.3731 NaN 2.6407 2.0842 1.0026 5

12 2.4041 0.4447 2.6451 1.4478 2.5167 0.3606 2.5928 1.7625 2.1483 1.2945 2.6407 NaN 2.4815 2.2718 6

13 2.2773 2.3018 1.1736 1.8968 2.0623 2.3114 0.9721 1.8363 2.0462 2.0661 2.0842 2.4815 NaN 1.0867 7

14 1.2008 1.9268 0.3735 1.1099 0.9757 1.9759 0.3631 0.9094 0.9978 1.327 1.0026 2.2718 1.0867 NaN 7

a)

Q3 1 2 3 4 5 6 7 8 9 10 11 12 13

1 NaN 2.3861 1.5738 2.0909 0.3249 2.3578 1.8552 1.7115 0.854 2.2397 0.5981 2.419 2.5277 9

2 2.3861 NaN 2.3433 1.1293 2.5366 0.202 2.2764 1.3501 1.7993 1.0355 2.8459 1.1773 2.3165 6

3 1.5738 2.3433 NaN 1.7281 1.4082 2.3642 0.331 1.3699 1.1718 1.9656 1.6549 2.717 1.1919 7

4 2.0909 1.1293 1.7281 NaN 2.212 1.2837 1.6302 0.4301 1.2623 0.2413 2.5774 2.1445 2.0406 10

5 0.3249 2.5366 1.4082 2.212 NaN 2.5033 1.7141 1.8131 0.9703 2.3836 0.3709 2.5416 2.378 11

6 2.3578 0.202 2.3642 1.2837 2.5033 NaN 2.3117 1.4613 1.8288 1.2107 2.7966 0.9768 2.3127 2

7 1.8552 2.2764 0.331 1.6302 1.7141 2.3117 NaN 1.3277 1.3427 1.8676 1.9738 2.7391 0.9736 3

8 1.7115 1.3501 1.3699 0.4301 1.8131 1.4613 1.3277 NaN 0.8638 0.6468 2.1805 2.1863 1.8941 4

9 0.854 1.7993 1.1718 1.2623 0.9703 1.8288 1.3427 0.8638 NaN 1.4332 1.3408 2.2137 2.0674 1

10 2.2397 1.0355 1.9656 0.2413 2.3836 1.2107 1.8676 0.6468 1.4332 NaN 2.7477 2.1193 2.2335 4

11 0.5981 2.8459 1.6549 2.5774 0.3709 2.7966 1.9738 2.1805 1.3408 2.7477 NaN 2.7324 2.5864 5

12 2.419 1.1773 2.717 2.1445 2.5416 0.9768 2.7391 2.1863 2.2137 2.1193 2.7324 NaN 2.6164 6

13 2.5277 2.3165 1.1919 2.0406 2.378 2.3127 0.9736 1.8941 2.0674 2.2335 2.5864 2.6164 NaN 7 nd

b)

At d =2, the number of FNN is 0

i2
1

i2
1

a)

b)

Q3 1 2 3 4 5 6 7 8 9 10 11 12 13

1 NaN 2.3861 1.5738 2.0909 0.3249 2.3578 1.8552 1.7115 0.854 2.2397 0.5981 2.419 2.5277 5

2 2.3861 NaN 2.3433 1.1293 2.5366 0.202 2.2764 1.3501 1.7993 1.0355 2.8459 1.1773 2.3165 6

3 1.5738 2.3433 NaN 1.7281 1.4082 2.3642 0.331 1.3699 1.1718 1.9656 1.6549 2.717 1.1919 7

4 2.0909 1.1293 1.7281 NaN 2.212 1.2837 1.6302 0.4301 1.2623 0.2413 2.5774 2.1445 2.0406 10

5 0.3249 2.5366 1.4082 2.212 NaN 2.5033 1.7141 1.8131 0.9703 2.3836 0.3709 2.5416 2.378 1

6 2.3578 0.202 2.3642 1.2837 2.5033 NaN 2.3117 1.4613 1.8288 1.2107 2.7966 0.9768 2.3127 2

7 1.8552 2.2764 0.331 1.6302 1.7141 2.3117 NaN 1.3277 1.3427 1.8676 1.9738 2.7391 0.9736 3

8 1.7115 1.3501 1.3699 0.4301 1.8131 1.4613 1.3277 NaN 0.8638 0.6468 2.1805 2.1863 1.8941 4

9 0.854 1.7993 1.1718 1.2623 0.9703 1.8288 1.3427 0.8638 NaN 1.4332 1.3408 2.2137 2.0674 1

10 2.2397 1.0355 1.9656 0.2413 2.3836 1.2107 1.8676 0.6468 1.4332 NaN 2.7477 2.1193 2.2335 4

11 0.5981 2.8459 1.6549 2.5774 0.3709 2.7966 1.9738 2.1805 1.3408 2.7477 NaN 2.7324 2.5864 5

12 2.419 1.1773 2.717 2.1445 2.5416 0.9768 2.7391 2.1863 2.2137 2.1193 2.7324 NaN 2.6164 6

13 2.5277 2.3165 1.1919 2.0406 2.378 2.3127 0.9736 1.8941 2.0674 2.2335 2.5864 2.6164 NaN 7 nd
a)

At d =3, the number of FNNs is 0 also.
d FNNs
1 4
2 0
3 0 b)

i3
1

a)

b)

ℜ3

51

5.3 The Predictive technique

Now that we have discussed the three geometric methods (CND, CDD, and CDT),

we will now talk about the predictive technique. We said in Chapter 4 that the predictive

technique can also be used to estimate by approximating the function in Equation

(4.6). We also said that we will approximate by using a neural network. Since chaotic

systems are nonlinear, we need to use a nonlinear network to make the approximation.

To estimate of the Henon map by using the predictive technique, we will use a

nonlinear neural network which consists of two layers. The first layer has 2 neurons with

sigmoid transfer functions and a Tapped Delay Line (TDL) connected to it. The second lay-

er has one neuron with a linear transfer function. The TDL is fed with the measurements

 to produce the delay-vectors . The network structure is shown in Figure

5.1. While the number of taps in the TDL (d) is changed from 1 to 2 to 3, the network is

trained to predict the current measurement . After the end of the training process, the

sum of the squares of the prediction errors (SSE) is recorded as a function of d. We applied

this technique to 100 points from the -coordinate of the Henon map. As we can see from

Table 5.10, the SSE changes significantly as d increases from 1 to 2 and remains almost the

same at . We conclude that the network has accurately approximated and that

. The log-plot of the SSE versus d is shown in Figure 5.2.

dL µ

µ

dL

y m() yd m 1–()

y m()

X1

d 3= µ

dL 2=

52

Figure 5.1 The nonlinear network used to estimate of the Henon map

Table 5.10 The neural network SSE as a function of d

Figure 5.2 Log-Plot of the SSE versus d for the Henon map.

5.4 Chapter summary

In this chapter, we demonstrated the estimation of the minimum embedding dimen-

sion of the Henon map by using the geometric and the predictive techniques. The purpose

of this chapter was to provide some insight into the operation of the algorithms. In the next

chapter, we will present the complete algorithms in full detail and discuss practical issues

in using the algorithms on more complex systems than the Henon map.

dx1

1

1x1

y m()

n1
m() a1

m()

1 b1

2x1

2xd

b
2

LW
2 1,

n
2

m()
TDL

 tansig

purelin

IW
1 1,

1x2

a
2

m()

dL

d SSE(d)
1 4.0321
2 4.7117x10-7

3 4.0824x10-7

1 2 3
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

S
S

E
 o

f t
he

 p
re

di
ct

io
n

er
ro

r

53

CHAPTER 6

 ADVANCED ALGORITHMS FOR ESTIMATING THE MINIMUM EMBED-

DING DIMENSION

6.1 Introduction

In Chapter 3, we explained that two parameters are needed in order to apply the em-

bedding theorem to model a chaotic system. These two parameters are the dimension (d) of

the delay-vector () and the delay-time (T) between the delay-vector coordinates. We pre-

sented in Chapter 4 three geometric methods (CND, CDD, and CDT) and one predictive

method through which we estimate the minimum dimension () required to embed the

system’s attractor. More details were given in Chapter 5 regarding the application of the

four methods to estimate of the Henon map. The purpose of this chapter is to give full

detail of six algorithms which use the four methods mentioned above to estimate . We

will also show a method used to find the delay-time T. Before that, we first give a summary

of the four methods.

The CND, CDD, and the CDT geometric methods depend on the idea that if the di-

mension of the space is not large enough to represent the attractor of the system, projection

artifacts will appear in the projected attractor. These artifacts cause points on the attractor

to be falsely projected close to each other and produce False Nearest Neighbors (FNN) (see

Section 4.3 for more detail). The dimension can be estimated as the minimum dimen-

yd

dL

dL

dL

dL

54

sion where the percentage of the FNNs does not change significantly with further increase

in dimension.

The CND method detects the existence of FNNs by checking to see if the nearest

neighbors in the space of dimension d remain neighbors in dimension . On the other

hand, the CDD method detects the existence of FNNs by checking to see if the distance be-

tween the nearest neighbors in dimension d will increase significantly as the dimension in-

creases to . For the case of the CDT method, detection of the existence of FNNs is

done by checking to see if the distance between the nearest neighbors in dimension d will

change significantly as time increases.

On the other hand, in the predictive method, the estimation of is done by approx-

imating the function that operates on the reconstructed attractor. is approx-

imated by using a neural network with a Tapped Delay Line (TDL) connected to its input.

As the number of taps in the TDL (d) increases, the prediction error decreases. At one point,

further increase of d does not improve the prediction error. At this point, is found.

In the remaining parts of this chapter, we present in Section 6.2 a method used to

find the delay-time T. In Section 6.3, we present two different algorithms based on the CDD

and the CDT methods which were proposed by Abarbanel et al to estimated . In

Section 6.4, we discuss some limitations of the previous two algorithms and suggest four

new algorithms to overcome these limitations. In Section 6.5, we present three of the four

algorithms, which are based on the geometric technique. The fourth algorithm, which is

based on the predictive techniques, is presented in Section 6.6. At the end, Section 6.7 con-

cludes with a chapter summary.

d 1+

d 1+

dL

µ: ℜd ℜ1→ µ

dL

dL

55

6.2 The delay-time (T)

We explained in Section 4.2 that we wanted to find the values of the parameters d

and T such that the system we developed by using the delay-vectors (see Equation

(6.4)) is equivalent to the original unknown system of (see Equation (4.1)). In Chap-

ters 4 and 5, we discussed the estimation of the minimum embedding dimension of .

In this section, we will discuss the delay-time T. T represents the time difference between

the consecutive coordinates of . If the value of T is too small, the different coordi-

nates of will be highly correlated with each other. As a consequence, no new infor-

mation is given to the equivalent system by the addition of new coordinates to . An

example of this case is measuring the room temperature every . The resulting consec-

utive measurements will be almost the same. However, if the value of T is too large, the

different coordinates of will be independent of each other and may look random. As

a result, we will not be able to capture changes in the dynamics of the system.

One way to find a suitable T is by using the average mutual information [FS86,

Fra89]. If A and B are two sets of measurements with elements and respectively, the

mutual information between and is the amount learned by the measurement about

the measurement which is

, (6.1)

where and are the individual probabilities of the measurements and

respectively, while is the joint probability. The average mutual information be-

tween the sets of measurements A and B is:

yd m()

x m()

yd m()

yd m()

yd m()

yd m()

1ms

yd m()

ai bj

ai bj ai

bj

log2

PAB ai bj,()
PA ai()PB bj()
---------------------------------⎝ ⎠
⎛ ⎞

PA ai() PB bj() ai bj

PAB ai bj,()

56

. (6.2)

Here represents the measurement and represents the delayed version of

which is . The individual probabilities can be replaced by the histograms of

and . The joint probability, on the other hand, can be replaced by the histogram of

the vector . So, the average mutual information between and

 is the amount learned by the measurement about the measurement

 which is

. (6.3)

By evaluating this equation at , we choose the delay-time to be

the location of the first minimum of , where is the maximum value of T. As an

example, Figure 6.1 shows the average mutual information I versus T for the Lorenz model

using 100,000 points from its X-coordinate (see Section 7.2.1). The value of T is changed

from 1 through 50. The first minimum is found at for this system. So, we set the

delay-time for the Lorenz model to be 10 [Aba95].

IAB PAB aj bk,()log2

PAB aj bk,()
PA aj()PB bk()
---------------------------------⎝ ⎠
⎛ ⎞

j k,
∑=

ai y m() bj y m()

y m T–() y m()

y m T–()

y m() y m T–()
t

y m()

y m T–() y m()

y m T–()

I T() P x m() y m T–()
t

⎝ ⎠
⎛ ⎞ log2

P y m() y m T–()
t

⎝ ⎠
⎛ ⎞

P y m()()P y m T–()()

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

m
∑=

T 1 2 … Tmax, , ,=

I T() Tmax

T 10=

57

Figure 6.1 The Lorenz model average mutual information

In the next section, we present full detail of two algorithms proposed by Abarbanel

et al in 1992 and 1993 to estimate which are based on the CDD and the CDT methods.

After that, we present in Section 6.4 a discussion regarding some limitations of the previous

two algorithms and suggest some approaches to overcome these limitations.

6.3 Two algorithms that use the local neighbor search

Abarbanel et al [KBA92, AbKe93] proposed two algorithms based on the CDD and

the CDT geometric methods to estimate of a chaotic system. In the next section, we

present the first algorithm which is based on the CDD method while in Section 6.3.2 we

present the second algorithm which is based on the CDT method.

6.3.1 The Algorithm

Abarbanel et al [KBA92, AbKe93] proposed an algorithm based on the CDD geo-

metric method to estimate of a chaotic system. In a typical experiment, all we can see

is a set of scalar measurements , where . The algorithm starts

by computing the theoretical minimum embedding dimension which is

0 5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

6

7

8

9

T

I(
T

)

The average mutual information of the Lorenz model

dL

dL

CDDL

dL

y m() m 1 2 … N, , ,= CDDL

dE dE 2dc 1+=

58

where is the box-counting dimension of the original system. Notice that if is not

known, the algorithm can start with an arbitrary large value for . The delay-vectors

 are constructed from as follows:

, (6.4)

where T is the delay-time, and . In the space , the

distance between and every other point in this space is computed. From the

 computed distances, the neighbors with the shortest distances to are cho-

sen. The value of is chosen to be between 10 and 100. The nearest neighbors of

 are saved in the matrix as follows

, (6.5)

where is the index of the neighbor of and . The

indices of these neighbors are saved as a function of m as follows

, (6.6)

where is a row vector (see Section 5.2.1). The next example illustrates this idea.

6.3.1.1 Example: Neighbor indices

Let the reference time be , , and the space dimension be ,

then, if the 3 nearest neighbors of are , then

.

The next step for the algorithm is to project the point and the matrix

 into the space to produce the point and the matrix respectively where

dc dc

dE

ydE
m() y m()

ydE
m() y m() y m T–() … y m dE 1–()T–()

t
=

m 1 2 … M, , ,= M N dE 1–()T–= ℜ
dE

ydE
m() ℜ

dE∈

M 1– Nb ydE
m()

Nb Nb

ydE
m() YdE

Nb m()

YdE

Nb m() ydE
idE

1
m()() ydE

idE

2
m()() … ydE

idE

Nb m()()=

idE

k
m() k

th ydE
m() k 1 2 … Nb, , ,= Nb

i
m

dE idE

1
m() idE

2
m() … idE

Nb m()=

im
dE

m 2= Nb 3= dE 5=

ydE
m() Y5

3
y5 63() y5 105() y5 10()=

i
m

dE
i

2
5 i5

1
2() i5

2
2() i5

3
2() 63 105 10= = =

CDDL ydE
m()

YdE

Nb ℜd yd m() Yd
Nb

59

. The projection from the space into the space is done by the

vector-coordinates projection method which is explained next.

6.3.1.2 The vector-coordinates projection method

The delay-vector can be project-

ed into the space by choosing the first d coordinates of where . That

means .

The algorithm projects the point and the matrix into to find the

point and the matrix respectively. The matrix contains the neighbors

of :

. (6.7)

Notice that the indices of the neighbors in are found in the space . This

gives a drawback to algorithms that use the local neighbor search method, as will be ex-

plained in Section 6.4. After finding the neighbors of (columns of the matrix

), the algorithm computes the distance between and its neigh-

bors. The computed distances are saved in the vector

. (6.8)

The nearest neighbor of is the point with the smallest distance. The algorithm saves

the minimum distance from in . The index of the nearest neighbor is labeled

by n, as illustrated in the next example.

6.3.1.3 Example: Vector-coordinates projection

From Example 6.3.1.1, the distances between and its 3 neighbors are

. Assuming that

d 1 2 … dE 1–, , ,= ℜ
dE ℜd

ydE
m() y m() y m T–() … y m dE 1–()– T()

t
=

ℜd ydE
m() d dE≤

yd m() y m() y m T–() … y m d 1–()– T()
t

=

ydE
m() YdE

Nb ℜd

yd m() Yd
Nb Yd

Nb Nb

yd m()

Yd
Nb m() yd idE

1
m()() yd idE

2
m()() … yd idE

Nb m()()=

idE

k
m() Nb ℜd ℜ

dE

Nb yd m()

Yd
Nb m() CDDL yd m() Nb

Nb

qd m() yd m() yd idE

1
m()()– yd m() yd idE

2
m()()– … yd m() yd idE

Nb m()()–=

yd m()

qd m() rd m()

y5 2()

q5 2() y5 2() y5 63()– y5 2() y5 105()– y5 2() y5 10()–=

60

, the minimum distance is , which has the

value . So the nearest neighbor of is the point with the index . That

means the nearest neighbor of is .

It is noteworthy that the search for the nearest neighbor of is done locally

among the neighbors only, and this is how the algorithm got its name ; the CDD

method with a local neighbor search. After finding n, which is the index of the nearest

neighbor of , the algorithm runs a test to find if is a false nearest neigh-

bor (FNN) of , the reference point. To do that, the algorithm projects both points

 and into the space by the vector-coordinates projection method. If

these two neighbors are true neighbors, their distance will not change significantly as the

dimension of the space increases to . The distance between and

is labeled by . Now, if is a FNN of , the

ratio

, (6.9)

where the threshold is . The above steps are repeated for all time points and the

percentage of FNNs is recorded as a function of d. As d increases, the percentage of FNNs

decreases. At one point, further increase of d does not change the percentage of FNNs. The

 algorithm repeats all the above steps for different sizes of neighborhood (). The

minimum embedding dimension is the dimension where the percentage of FNNs is in-

dependent of both the change in and in the increase of d. Figures 6.2 shows a

pseudocode that summarizes the algorithm. In Chapter 7, we apply the al-

gorithm to different examples of chaotic systems and show the estimated resulting from

the algorithm.

q5 2() 1.2 0.9 3.7= r5 2() min q5 2()()=

0.9 y5 2() n 105=

y5 2() y5 105()

yd m()

Nb CDDL

yd m() CDDL yd n()

yd m()

yd m() yd n() ℜd 1+

d 1+ yd 1+ m() yd 1+ n()

ed 1+ m() yd 1+ m() yd 1+ n()–= yd n() yd m()

ed 1+ m() rd m()–

rd m()
-- ρ>

1 ρ 10< <

CDDL Nb

dL

Nb

CDDL CDDL

dL

61

Figure 6.2 Pseudocode of the algorithm

6.3.2 The Algorithm

After presenting the first algorithm that uses the local neighbor search (),

now we present the second algorithm that also uses the local neighbor search which is the

. Abarbanel et al [AbKe93] proposed an algorithm based on the CDT geometric

method to estimate of a chaotic system. As in the algorithm, the algo-

rithm builds the delay-vectors from the measurements as shown in Equation

{The algorithm
•Choose a value for the threshold
•Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2
•Compute the theoretical minimum embedding dimension . If is not known choose an arbi-
trary large number for
•Initialize the vector of dimension

•Create the delay-vectors , where

•Compute the distance between and every other point in and save them in the vector .

•Set (the neighborhood size)

•Find the shortest distances in and save their indices in where

•Save the neighbors of in the matrix

•for (Vector dimension)

•for (Index)

(Project the vectors in into by the vector-coordinates method, see Section 6.3.1.2.)

•Project and into to find and respectively

•Compute the distances between and the columns of and save them in

•Find the minimum distance in and save it as

•Set the index of the point with the minimum distance in as n, see Example 6.3.1.3

•Project and into to find and respectively

•Compute .

•If

end if
end m

end d }

CDDL
1 ρ 10< <

dE 2dc 1+= dc
dE

kfnn dE 1 x 1–

ydE
m() y m() y m T–() … y m dE 1–()T–()

t
= m 1 2 … M, , ,=

ydE
m() ℜ

dE qdE
m()

10 Nb 100≤≤

Nb qdE
m() idE

k
m() k 1 2 … Nb, , ,=

Nb ydE
m() YdE

Nb m() ydE
idE

1
m()() ydE

idE

2
m()() … ydE

idE

Nb m()⎝ ⎠
⎛ ⎞=

d 1 2 … dE 1–, , ,=

m 1 2 … M, , ,=

ℜ
dE ℜd

ydE
m() YdE

Nb m() ℜd yd m() Yd
Nb m()

yd m() Yd
Nb m() qd

qd rd

qd

ydE
m() ydE

n() ℜd 1+ yd 1+ m() yd 1+ n()

ed 1+ yd 1+ m() yd 1+ n()–=

ed 1+ rd–() rd⁄ ρ>

kfnn d() kfnn d() 1+=

CDDL

CDTL

CDDL

CDTL

dL CDDL CDTL

ydE
m() y m()

62

(6.4). Then the computes the neighbors of , where . The

algorithm now saves the computed neighbors of in the matrix . It also

saves the indices of these neighbors as where . In the next step, the

algorithm projects the reference point and the matrix into to find

 and respectively where . The projection method used by

the algorithm is different from that used by the algorithm. The uses

the Principal Components Analysis (PCA) projection method while the uses the

vector-coordinates projection method. The PCA projection method is explained below.

6.3.2.1 The PCA projection method

The PCA projection method starts by computing the covariance matrix at time m

using the reference point and its neighbors as follows:

. (6.10)

The next step in the PCA projection method is to compute the eigen values ()

and the eigen vectors () of the matrix . The eigen values are ar-

ranged such that . The corresponding eigen vectors are used to build the

basis matrix . The projection from into is done by choos-

ing the first d columns of the matrix where . The projection is found by the

equation . (The superscript p in is used to emphasize

that the projection method from into is the PCA.)

After projecting the points from into , the distances between and its

 neighbors (columns of the matrix) are computed and saved in the vector

 as shown in Equation (6.8). It has been noted that the search for the nearest neighbor

CDTL Nb ydE
m() 10 Nb 100≤≤

Nb ydE
m() YdE

Nb m()

idE

k
m() k 1 2 … Nb, , ,=

ydE
m() YdE

Nb m() ℜd

yd m() Yd
Nb m() d 1 2 … dE, , ,=

CDTL CDDL CDTL

CDDL

ydE
m() Nb

C m() 1
Nb
------ ydE

idE

k
m()() ydE

m()–[] ydE
idE

k
m()() ydE

m()–[]
t

k 1=

Nb

∑=

λ1 λ2 … λdE
, , ,

η
1
η

2
… η

dE
, , , C m() dE

λ1 λ2 … λdE
≥ ≥ ≥

BdE
η

1
η

2
… η

dE
= ℜ

dE ℜd

BdE
d dE≤

yd
p

m() η
1
η

2
… η

d

t
ydE

m()= yd
p

ℜ
dE ℜd

ℜ
dE ℜd yd

p
m()

Nb Yd
Nb p,

m()

qd m()

63

of is done locally among the neighbors only, and this is how the algorithm got

its name , the CDT method with a local neighbor search. The index of the nearest

neighbor of is labeled by n. After identifying the two neighbors in , the

algorithm runs a test to see whether these two neighbors are FNNs or not. In any chaotic

system, distances between points change exponentially fast (as explained in detail in Chap-

ter 8). However if two points are FNNs, the distance between them would increase faster

than if they were true neighbors (see Section 4.3.1.3). The algorithm takes advan-

tage of the increase in distances to check the existence of FNNs. The algorithm labels

 (the nearest neighbor of) as a FNN if the distance between

 and in reaches a predefined threshold before a fixed number of time

steps. The threshold used by this algorithm is a fraction of the attractor mean. The attractor

mean is

. (6.11)

The threshold used by the algorithm is where . The algorithm

computes the distance between and as time increases up to

a maximum of T time-steps, (T is the delay-time where the first minimum of the average

mutual information occurs, see Section 6.2). If the distance reaches the threshold before

T time-steps, it labels as a FNN.

 These steps are repeated for all data points and the percentage of the FNNs is re-

corded as a function of d. As d increases, the percentage of the FNNs decreases. At one

point, further increase of d does not reduce the percentage of the FNNs. The above steps

are repeated for different value of , where . The minimum embedding di-

yd
p

m() Nb

CDTL

yd
p

m() ℜd
CDTL

CDTL

yd
p

n() yd
p

id
1

m()()= yd
p

m()

ydE
n() ydE

m() ℜ
dE

β 1
M
----- ydE

k() ydE
–

k 1=

M

∑=

CDTL ζβ 0 ζ 1< < CDTL

ydE
m() ydE

n() ydE
id
1

m()()=

ζβ

yd
p

id
1

m()()

Nb 10 Nb 100≤≤

64

mension of the system is found from the dimension where the percentage of the FNNs

becomes independent of both the increase of d and . In Chapter 7, we demonstrate the

 algorithm on different examples of chaotic systems.

In Figure 6.3, we show the pseudocode that summarizes the algorithm. It

shows that the algorithm uses a while loop to check for the FNNs. The first parameter of

the loop is which is the number of time steps used to check the existence of FNNs. The

second parameter is which is the distance between the two neighbors after time steps

ahead. If the end of the data set was reached with , and the error criteria ()

was not satisfied, we can not have any conclusion about being either a FNN of

 or not. So, we have to discard it from our consideration. That means, we don’t have

enough data to check this nearest neighbor. For instance, let the index of the nearest neigh-

bor be , the reference index be , the total number of points be , and

the delay-time be . If reached the end of the data set while the distance between

the two points is still less than the predefined threshold, , then

. We don’t know if is a FNN of or not, since in the next

time step (if we imagine that we can reach it) , the point will be a FNN of

 if the distance . On the other hand, will be a true nearest neighbor

of if .

dL

Nb

CDTL

CDTL

∆

σ∆ ∆

∆ T< σ∆ ζβ≥

yd
p

n()

yd
p

m()

n 10= m 5= M 50=

T 41= ∆

∆ 50 max 10 5,()– 40= =

∆ 40 T< 41= = ydE
10() ydE

5()

∆ 41= ydE
10()

ydE
5() σ∆ ζβ≥ ydE

10()

ydE
5() σ∆ ζβ<

65

Figure 6.3 Pseudocode of the algorithm

After presenting the and algorithms for estimating the minimum em-

bedding dimension of a chaotic system, we discuss in the next section some limitations of

these two algorithms and suggest different approaches to overcome their limitations.

{The algorithm

•Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2
•Compute . If is not known choose an arbitrary large number for
•Initialize the vector of dimension to hold the count of FNN
•Create the delay-vectors , where

•Compute the distance between and every other point in and save them in the vector .

•Set (the neighborhood size)
•Find the shortest distances in and save the vectors indices as where

•Save the neighbors of in the matrix

•Choose the ratio

•Compute (average vector in the space)

•Compute (is the threshold for false neighbors, : mean distance

from the origin.)

•for (Vector dimension)
•for (index)

•Compute the covariance matrix

•Compute eigen values and the eigen vectors of C.

•Arrange the eigen values such that

•From the corresponding eigen vectors, build the basis matrix

• and ; p for a vector found by the PCA

•Compute the distance between and the columns of and save their distances in .

•Find the minimum value of and label the index of the vector that produced it by n.

•Set , (: distance, : time step.)

•while .

•
•

end while

(If the end of the data set was reached without a conclusion, discard .)

•if

•Label as Not decidable

•elseif

•
 end if

end m

end d}

CDTL

dE 2dc 1+= dc dE
pK dE x 1

ydE
m() y m() y m T–() … y m dE 1–()T–()

t
= m 1 2 … M, , ,=

ydE
m() ℜ

dE qdE
m()

10 Nb 100≤≤
Nb qdE

m() idE

k
m() k 1 2 … Nb, , ,=

Nb ydE
m() YdE

Nb m() ydE
idE

1
m()() ydE

idE

2
m()() … ydE

idE

Nb m()⎝ ⎠
⎛ ⎞=

0 ζ 1< <

ydE

1
M
----- ydE

k()
k 1 2 … M, , ,=

∑= ℜ
dE

β 1
M
----- ydE

k() ydE
–

k 1 2 … M, , ,=
∑= ζβ ydE

d 1 2 … dE, , ,=

m 1 2 … M, , ,=

C 1
Nb
------ ydE

m() ydE
idE

k
m()()–[] ydE

m() ydE
idE

k
m()()–[]

t

k 1 2 … Nb, , ,=
∑=

λi η
i

λ1 λ2 … λdE
≥≥≥

Bd η
1
η

2
… η

d
=

yd
p

m() Bd
t
 ydE

m()= Yd
Nb p,

m() Bd
t
 YdE

Nb m()=

yd
p

m() Yd
Nb p,

qd

qd

σ∆ 0= ∆ 1= σ∆ ∆
σ∆ ζβ<() AND ∆ M m– ax m n,()≤() AND ∆ T≤()

σ∆ ydE
m ∆+() ydE

n ∆+()–=

∆ ∆ 1+=

yd n()
∆ M m– ax m n,()() AND ∆ T<() AND σ∆ ζβ<()=

yd
p

n()
∆ T≤() AND σ∆ ζβ≥()

pK d() pK d() 1+=

CDTL

CDDL CDTL

66

6.4 Limitations of the and the Algorithms

In Section 6.3, we found that both the and the algorithms use the lo-

cal neighbor search method to find the nearest neighbor of the reference point. That means

the search for the nearest neighbor of is done locally within the neighbors only,

rather than within the whole data set. The local neighbor search was used to reduce the com-

putational cost. However, in practice, it was observed that algorithms that use the local

neighbor search often do not estimate the correct minimum embedding dimensions for

systems with dimensions larger than three. In addition, poor estimates of could occur

even for systems with dimension three as in the case of the Lorenz model using the

(see Table 7.1 in the next chapter). The and algorithms can also produce

poor estimates of for noisy signals (see Table 7.1).

Limiting the search for the nearest neighbor of the reference point to

be within the projected neighbors, that were originally found in , does not always

find the actual nearest neighbor of . This happens because the projected neigh-

bors could actually be scattered in the attractor in the space and not close to .

When the dimension of the original system is small (3 or less), this problem may not be

significant. However, as the dimension of the system increases, the effect will become pro-

nounced. To improve the search for the nearest neighbor, we can find the nearest neighbor

of within the whole attractor in the space , then test this neighbor in the space

 to see if it is a FNN.

Further, when noise exists in the signal, the reconstructed attractor is blurred.

Hence, the computed neighbors of may not actually be its closest neighbors.

CDDL CDTL

CDDL CDTL

yd m() Nb

dL

dL

CDTL

CDDL CDTL

dL

 yd m() ℜd∈

Nb ℜ
dE

 yd m() Nb

ℜd yd m()

 yd m() ℜd

ℜd 1+

Nb ydE
m()

67

When these neighbors are projected into , they may look random in this space. As

a result, the attractor information is lost, and the correct value of can’t be found.

Another observation that can be obtained from the and algorithms is

that they use two different projection methods: the vector-coordinate method and the PCA

method, respectively. The PCA projection method has the advantage that the search for the

nearest neighbor is done along the major variations of the signal. However, the vector-co-

ordinate projection method is less expensive in term of its computational cost.

The above observations suggest that we should search for the nearest neighbor of

the reference point among the whole data set rather than among the projected neighbors

only. We call the search method that uses the whole data set the global neighbor search

method. Practically, it was observed that when the global neighbor search method was

used, the estimate of for a chaotic system with dimension greater than three is improved,

as we will show in Chapter 7. In addition, the global neighbor search method was found to

be more robust to noise than the local neighbor search method. (The local neighbor search

method was mainly used to reduce the computational cost. Recently, a fast neighbor search

algorithm has been introduced that provides significant reduction in computations

[MPL00].)

In the next two sections, we present four new algorithms. In Section 6.5, we present

the first three algorithms which apply the global neighbor search method to the CND, CDD,

and CDT geometric methods. In Section 6.6, we present the fourth algorithm, which uses

the predictive technique. The and algorithms are variations of algorithms

presented by Abarbanel et al. These algorithms use global neighbor search, rather than a

Nb ℜd

dL

CDDL CDTL

Nb

dL

CDDG CDTG

68

local neighbor search. The CND and the predictive algorithms were completely developed

as part of this research.

6.5 Three new algorithms that use the global neighbor search method

6.5.1 The first new algorithm: The CND

In Section 4.3.1.1, we presented the CND geometric method which is used to esti-

mate of a chaotic system. We also presented the application of the CND method to es-

timate of the Henon map in Section 5.2.1. In this section, we present the first new

algorithm which applies the global neighbor search to the CND method. As in the previous

two algorithms, the CND algorithm computes the dimension and constructs the delay-

vectors as explained in Section 6.3.1. The matrix that contains all the points in

the space is constructed from the delay-vectors:

. (6.12)

The points in the space (columns of) have to be projected into the space by

the vector-coordinates projection method where . (The use of the PCA

projection method does not change the results significantly in this algorithm.) In the space

, the CND algorithm needs to find which is the nearest neighbor of the reference

point . To do that, it computes the distances between and every other point

in the space and labels the index of the point with the shortest distance to by n.

In the next step, the algorithm checks to see if is a FNN of by increasing the

dimension of the space to using the same projection method mentioned above. In the

space , the CND algorithm computes the first w neighbors of . (This is a

new geometric algorithms. Abarbanel used only the nearest neighbor.) It saves their w in-

dL

dL

dE

ydE
m() YdE

M

ℜ
dE

YdE

M
ydE

1() ydE
2() … ydE

M()=

ℜ
dE YdE

M ℜd

d 1 2 … dE 1–, , ,=

ℜd yd n()

yd m() yd m()

ℜd yd m()

yd n() yd m()

d 1+

ℜd 1+ yd 1+ m()

69

dices as . If is a true neighbor of , it should remain close as the dimen-

sion increases to . The CND algorithm now checks to see if n appears as an element

of the vector . In other words, it checks to see if appears as one of the w

neighbors of . If n does not appear as an element of , the algorithm labels

 as a FNN of . These steps are repeated until the last point of the data set, and

the percentage of the FNNs is recorded as a function of d. As d increases, the percentage of

the FNNs decreases. At one point, further increase of d does not change the percentage of

the FNNs significantly.

To estimate , the algorithm checks to see if the change in the percentage of the

FNNs is less than some predefined threshold () for five consecutive dimensions. That

means if

, (6.13)

for five consecutive dimensions, then it sets , where is the number of

FNN found at dimension d. That means, the change of the percentage of the FNNs is insig-

nificant. The threshold value is chosen to be . If the signal is noise free, we set

, while if the signal is noisy, we increase up to 3. This is since the existence of

noise affects the percentage of FNNs, which causes the plot of FNNs with respect to d to

be uneven. The above steps are repeated for different values of w and the estimated is

plotted as a function of w. At one point, further increase of w does not change the estimated

. This is where the algorithm finds . The pseudocode shown in the next figure sum-

marizes the CND algorithm. In Chapter 7, we apply the CND algorithm to different exam-

i
m

d 1+ yd n() yd m()

d 1+

im
d 1+ yd 1+ n()

yd 1+ m() i
m

d 1+

yd n() yd m()

dL

α

FNNd 1+ FNNd–

M
-- α 100⋅<

dL d 5–= FNNd

0 α 3< <

α 0= α

dL

dL dL

70

ples of chaotic systems and show the estimated resulting from the algorithm.

Figure 6.4 Pseudocode of the CND algorithm

dL

{The CND algorithm
•Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2
•Compute . If is not known choose an arbitrary large number for
•Set , and the threshold and initialize w to 1

•Initialize a vector of dimension and a vector of dimension

•Create the delay-vectors , where

•Create the matrix

•while (search window size)

•for

•Project into to find (use the vector coordinates projection method)

•Project into to find (use the vector coordinates projection method)

•for
•Compute the distances between and the columns of and save them in .
•Find the point that produced the minimum value in and label its index by n.

•Compute the distances between and the columns of and save the distances

in .

•Find the minimum values of and label their indices by .

(Compare n to the elements of)

•if
 (if n is not an element of , label as a FNN)

 end if
end m

 (look for a flat region in the curve of the percentage of FNNs with respect to d)
•if AND (for 5 consecrative times)

•
•Break the d loop

end if
end d
•
• (increase the search window size)

end w}

dE 2dc 1+= dc dE
wmax 0 α 3< <

kfnn dE 1 x 1– dw wmaxx1

ydE
m() y m() y m T–() … y m dE 1–()T–()

t
= m 1 2 … M, , ,=

YdE

M
ydE

1() ydE
2() … ydE

M()=

w wmax≤

d 1 2 … dE 1–, , ,=

YdE

M ℜd
Yd

M

YdE

M ℜd 1+ Yd 1+
M

m 1 2 … M, , ,=
yd m() Yd

M qd
qd

yd 1+ m() Yd 1+
M

qd 1+

1
st

2
nd … and w

th, , , qd 1+ i
m

d 1+

im
d 1+

n i
m

d 1+∉
kfnn d() kfnn d() 1+= i

m
d 1+ yd n()

d 5> kfnn d 2–() kfnn d 1–()– Mx100 α<⁄
dL d 5–=

dw w() dL=
w w 1+=

71

6.5.2 The second new algorithm: The

In Section 4.3.1.2, we presented the geometric method which is used to esti-

mate of a chaotic system. We also presented the application of the method to es-

timate of the Henon map in Section 5.2.2. In Section 6.3.1, we presented an algorithm

based on the CDD method with a local neighbor search (). Some limitations of the

 algorithm were presented in the beginning of this section. To improve the perfor-

mance of the algorithm, we present the new algorithm: the that can over-

come the limitations of the .

The applies the global neighbor search to the CDD geometric method. As

in the previous algorithms, the algorithm computes the theoretical minimum em-

bedding dimension and constructs the delay-vectors , as described in

Section 6.3.1. In addition, the matrix has to be built as shown in Equation (6.12). The

algorithm projects the matrix into the space by the PCA projection method where

 (see Section 6.3.2.1 for more detail about the PCA projection meth-

od). In the space , the algorithm computes the distance between the reference

point and every other point in the space . (Notice that the algorithm com-

putes the neighbors of in the space then searches among the projected

neighbors only for the nearest neighbor of .) The computed distances are saved in

the vector . The algorithm now finds the minimum distance in and saves it

as . It also labels the index of the point that produced the minimum distance as n.

After identifying the nearest neighbor in the space , the algorithm

now needs to check if this neighbor is a FNN. To do that, it increases the dimension of the

CDDG

CDD

dL CDD

dL

CDDL

CDDL

CDDL CDDG

CDDL

CDDG

CDDG

dE ydE
m()

YdE

M

YdE

M ℜd

d 1 2 … dE 1–, , ,=

ℜd
CDDG

yd
p

m() ℜd
CDDL

Nb yd m() ℜ
dE Nb

yd m()

qd m() qd m()

rd m()

yd
p

n() yd
p

id
1

m()()= ℜd

72

space to by the same projection method mentioned above. In the space , the

distance between and is computed and saved as

. As the dimension of the space increases, the distance between FNNs will in-

crease as well. To apply this idea, the algorithm labels as a FNN if

, (6.14)

where the threshold is . As the dimension of the space (d) increases, the percent-

age of the FNNs decreases. At one point, further increase of d does not improve the per-

centage of the FNNs significantly. The minimum dimension where this happens is the

estimated of the system. In Chapter 7, we apply the algorithm to different ex-

amples of chaotic systems and show the estimated resulting from the algorithm. Figure

6.5 shows the pseudocode that summarizes the algorithm.

d 1+ ℜd 1+

yd 1+
p

m() yd 1+
p

n() yd 1+
p

id
1

m()()=

ed 1+ m()

CDDG yd
p

n()

ed 1+ m() rd m()–

rd m()
-- ρ>

1 ρ 10< <

dL CDDG

dL

CDDG

73

Figure 6.5 Pseudocode of the algorithm

{The algorithm pseudocode
•Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2
•Compute . If is not known, choose an arbitrary large number for
•Set the threshold

•Initialize the vector of dimension

•Create the delay-vectors , where

•Create the matrix

•Compute (average vector in the space)

•Compute the covariance matrix

•Compute the eigen values and eigen vectors of C, where

•Arrange the eigen values such that

•Build the basis matrix from the corresponding eigen vectors:

•for (space dimension)

(Project the vectors in into)

• , the superscript p indicates that the projection is done by the PCA

(Project the vectors in into)

•

•for (Index)

•Compute the distance between and the columns of and save the distances as

•Find the minimum of and save it as

•Label the index of the point with the minimum distance by n

•Compute (from the columns of the matrix)

•If

• ; increase the count of the FNN
•end if

end m
end d
}

CDDG

dE 2dc 1+= dc dE
1 ρ 10< <

kfnn dE 1 x 1–

ydE
m() y m() y m T–() … y m dE 1–()T–()

t
= m 1 2 … M, , ,=

YdE

M
ydE

1() ydE
2() … ydE

M()=

ydE

1
M
----- ydE

k()
k 1=

M

∑= ℜ
dE

C 1
M
----- ydE

k() ydE
–[] ydE

k() ydE
–[]

t

k 1=

M

∑=

λi η
i

i 1 2 … dE, , ,=

λ1 λ2 … λdE
≥≥≥

BdE
η

1
η

2
… η

dE
=

d 1 2 … dE 1–, , ,=

ℜ
dE ℜd

Yd
M p, η

1
η

2
… η

d

t
YdE

M
=

ℜ
dE ℜd 1+

Yd 1+
M p, η

1
η

2
… η

d 1+

t
YdE

M
=

m 1 2 … M, , ,=

yd
p

m() Yd
M p, qd

qd rd

ed 1+ yd 1+
p

m() yd 1+
p

n()–= Yd 1+
M p,

ed 1+ m() rd m()–() rd m()⁄ ρ>

kfnn d() kfnn d() 1+=

CDDG

74

6.5.3 The third new algorithm: The

In Section 4.3.1.3, we presented the CDT geometric method which is used to esti-

mate the minimum embedding dimension of a chaotic system. We also presented the

application of the CDT method to estimate of the Henon map in Section 5.2.3. In

Section 6.3.2, we showed the algorithm which is based on the CDT method with a

local neighbor search. Some limitations of the algorithm were presented in the be-

ginning of this section. To improve the performance of the algorithm, we present a

new algorithm known as the . This algorithm applies the global neighbor search to

the CDT method

As in the previous algorithms, the starts by computing the theoretical mini-

mum embedding dimension as described in Section 6.3.1. After that, the delay-vectors

 have to be constructed according to Equation (6.4). Using these vectors, the matrix

 is built according to Equation (6.12). The algorithm now projects the matrix into

 to find where . The projection is done by using the PCA projec-

tion method. In the space , the algorithm searches for which is the

nearest neighbor of the reference point . The search for the nearest neighbor of

 is done globally (among the points).

In the next step, the algorithm runs a test to find if is a FNN of . To do

that, it increases the time of both points (and) and measures the distance be-

tween them. The test of the distance increase in the algorithm is done in the space

 rather than in (as in the algorithm). The search for the FNNs in has the

advantage that if the two neighbors came from an attractor intersection (FNN), the distance

between them as time increases will increase faster than if they were true neighbors. To ap-

CDTG

dL

dL

CDTL

CDTL

CDTL

CDTG

CDTG

dE

ydE
m()

YdE

M YdE

M

ℜd Yd
M p,

d 1 2 … dE, , ,=

ℜd yd
p

n() yd
p

id
1

m()()=

yd
p

m()

yd
p

m() M 1–

yd
p

n() yd
p

m()

yd
p

m() yd
p

n()

CDTG

ℜd ℜ
dE CDTL ℜd

75

ply this idea, the distance between the two neighbors and is mea-

sured according to the equation:

, (6.15)

where is the time step. If reaches some predefined threshold before few steps

ahead, the algorithm labels as a FNN.

The threshold used by the algorithm is a fraction of the attractor mean (), as

shown in Equation (6.11). For the number of time steps, the algorithm uses the delay-time

T as a measure of how fast the neighboring points diverge from each other. This test is re-

peated until the last data point, and then the percentage of the FNNs is recorded as a func-

tion of d. As d increases, the percentage of the FNNs will decrease. At one point, further

increase of d does not change the percentage of the FNNs significantly. At this time, the

minimum embedding dimension has been determined. In Chapter 7, we apply the

 algorithm to different examples of chaotic systems and show the estimated re-

sulting from the algorithm. The pseudocode in Figure 6.6 summarizes the algo-

rithm.

yd
p

m ∆+() yd
p

n ∆+()

σ∆ m() yd
p

m ∆+() yd
p

n ∆+()–=

∆ σ∆ m()

CDTG yd
p

n()

ζβ

dL

CDTG dL

CDTG

76

Figure 6.6 Pseudocode of the algorithm

We have presented three new geometric algorithm. In the next section, we present

a fourth algorithm, which is a predictive algorithm.

{The algorithm

•Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2

•Compute . If is not known choose an arbitrary large number for

•Initialize the vector of dimension to hold the count of FNN

•Create the delay-vectors , where

•Create the matrix

•Choose the ratio

•Compute (average vector in the space)

•Compute (is the threshold for false neighbors, : mean distance

from the origin.)

•Compute the covariance matrix

•Compute the eigen values and eigen vectors of C, where

•Arrange the eigen values such that

•Build the basis matrix from the corresponding eigen vectors:

•for (Space dimension)

•(Project into)

• with elements

•for (Time index)

•Compute the distance between and the columns of and save these distances in .

•Find the minimum distance in and label the index of the vector that produced it by n.

•Initialize , (: distance, : time step.)
•while .

•
•

end while
(If the end of the data set was reached without a conclusion, discard .)
•if

•Label as Not decidable
•else if

• , increase the count of the FNNs
 end if
end m

end d
}

CDTG

dE 2dc 1+= dc dE

pK dE x 1

ydE
m() y m() y m T–() … y m dE 1–()T–()

t
= m 1 2 … M, , ,=

YdE

M
ydE

1() ydE
2() … ydE

M()=

0 ζ 1< <

ydE

1
M
----- ydE

k()
k 1=

M

∑= ℜ
dE

β 1
M
----- ydE

k() ydE
–

k 1 2 … M, , ,=
∑= ζβ ydE

C 1
M
----- ydE

k() ydE
–[] ydE

k() ydE
–[]

t

k 1=

M

∑=

λi η
i

i 1 2 … dE, , ,=

λ1 λ2 … λdE
≥≥≥

BdE
η

1
η

2
… η

dE
=

d 1 2 … dE, , ,=

YdE

M ℜd

Yd
M p, η

1
η

2
… η

d

t
YdE

M
= yd

p
m()

m 1 2 … M, , ,=

yd
p

m() Yd
M p, qd

qd

σ∆ 0= ∆ 1= σ∆ ∆
σ∆ ζβ<() AND ∆ M m– ax m n,()≤() AND ∆ T≤()
σ∆ yd

p
m ∆+() yd

p
n ∆+()–=

∆ ∆ 1+=

yd
p

n()
∆ M m– ax m n,()() AND ∆ T<() AND σ∆ ζβ<()=

yd
p

n()
∆ T≤() AND σ∆ ζβ≥()

pK d() pK d() 1+=

CDTG

77

6.6 The fourth new algorithm: The Predictive

In Section 4.3.2, we presented the predictive method for estimating of a chaotic

system. We also presented the application of the predictive method to estimate of the

Henon map in Section 5.3. In this section, we present a new algorithm based on this tech-

nique to estimate .

 In a typical experiment, all we can observe is a set of scalar measurements

taken from the system. These measurements are produced from a map where

 is the space of the original unknown attractor of the system. The evolution of the orig-

inal states inside the attractor can be written as (see Equation (4.1)).

Using the delay-coordinate map, the original system dynamics can be reconstructed in a

space of dimension d. The states in this space are the delay-vectors as shown

in Equation (6.4). If the reconstructed system is equivalent to the original one, the function

 can be used to recreate the scalar measurements (see Equation (4.6)).

The predictive algorithm approximates by using a multilayer neural network with a

Tapped Delay Line (TDL) connected to its input.

The main problem that may appear when using a multilayer network to approximate

 is that the error surface at the output of the network could be complicated [Hag95]. That

means there could be more than one minimum and the network may converge to a local,

rather than a global minimum. To insure that the network has converged to the optimal so-

lution (global minimum), the algorithm repeats the training process a few times and then

chooses the minimum Sum Squared prediction Error (SSE) from the different trials. The

algorithm starts by sampling at an interval T as follows:

, (6.16)

dL

dL

dL

y m()

h: ℜk ℜ1→

ℜk

x m 1+() f x m()()=

yd m() ℜd∈

µ: ℜd ℜ1→ y m()

µ

µ

y m()

ys m() y 1 m 1–()T+()=

78

where and . For the case that the measurements are tak-

en from a difference equation (like the Henon map), T is set to 1. The mean of has to

be deducted from the measurements to insure that the signal is a zero mean. After that, the

algorithm creates

. (6.17)

The delay-vectors at the input of the network are

. (6.18)

The network takes as an input to predict the current measurement where

d is the number of taps in the TDL. As d increases, the prediction error between the output

of the network and decreases. At one point, further increase of d does not im-

prove the prediction error significantly. At this point, the two systems are equivalent to each

other and the number of taps in the TDL equals of the system.

To estimate , the predictive algorithm checks to see if the change in the percent-

age of the change in the SSE at dimension d () is less than some predefined threshold

 for five consecutive dimensions. That means, if

, (6.19)

for five consecutive dimensions, then it sets . The threshold is . The

pseudocode shown in Figure 6.7 summarizes the predictive algorithm.

 In Chapter 7, we apply the predictive algorithm to different examples of chaotic

systems and show the estimated resulting from the algorithm.

m 1 2 … L, , ,= L N 1–
T

------------- 1+=

y m()

s m() ys m() 1
L
--- ys k()

k 1=

L

∑–=

yd m()

yd
s

m() s m() s m 1–() … s m d– 1+()
t

=

yd
s

m 1–() s m()

ŝ m() s m()

dL

dL

SSEd

γ()

SSEd 1+ SSEd–

SSEd
--- γ 100⋅<

dL d 5–= 0 γ 3< <

dL

79

Figure 6.7 Pseudocode of the predictive algorithm

{The predictive algorithm
•Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2

•Compute . If is not known choose an arbitrary large number for

•Choose (the maximum number of iterations, usually 5)
•Choose the threshold
•Initialize the matrix of dimension (to hold the SSE of the prediction errors)
•Sample :

• (deduct the mean of the signal, to insure the signal is a zero mean)

•for (Iterations)
•for (number of taps)

•Input =
•Target =
•Create a nonlinear multilayer neural network with 5 neurons in the hidden layer and 1 neuron in
the output layer
•Train the neural network to predict the Target when it is presented with the Input over all given
points. When the training stops, record the prediction errors and compute their Sum of
Squares (SSE) and save them as a function of d:

end d
end i
•for

•
•end d
(is the minimum dimension where does not change significantly with further increase in d)

•for j=1,2,..., d

•if (for five consecutive times)

•
end if

•end j
 plot versus d
}

dE 2dc 1+= dc dE

imax
0 γ 3< <

Psse imaxx dE
y m() ys m() y 1 m 1–()T+()=

s m() ys m() 1
L
--- ys k()

k 1=

L

∑–=

i 1 2 … imax, , ,=
d 1 2 … ,dE, ,=

s m 1–() s m 2–() … s m d–()
s m()

e m()

psse i d,() e k()2

k 1=

L d–

∑=

d 1 2 … dE, , ,=
msse d() min psse d()()=

dL msse

msse d 1+() msse d()–

msse d()
--- γ 100⋅<

dL d 5–=

msse

80

6.7 Chapter summary

In this chapter, we presented two algorithms by Abarbanel, which are based on the

CDD and the CDT geometric methods to estimate the minimum embedding dimension of

a chaotic system. We discussed some limitations of these two algorithms and suggested

new approaches to overcome them. We used the global neighbor search rather than the lo-

cal neighbor search method to compute the nearest neighbor of the reference point. Four

new algorithms were presented that can overcome the limitations of the local neighbor

search algorithms. The four algorithms are based on the three geometric methods CND,

CDD, CDT, and the predictive technique. Full details for each algorithm were given and

the pseudocode that summarizes each algorithm was provided. Besides giving full detail of

the six algorithms that are used to estimate the minimum embedding dimension, we showed

a method to find the delay-time that is used to build the delay-vectors. In the next chapter,

we apply the six algorithms to different examples of chaotic systems and compare the re-

sults.

81

CHAPTER 7

MINIMUM EMBEDDING DIMENSION RESULTS

7.1 Introduction:

In Chapter 6, we presented six different algorithms showing two algorithms by

Abarbanel and four new algorithms. Those algorithms are used to estimate the minimum

embedding dimension of chaotic systems. In this chapter, we will apply the six algorithms

to nine different chaotic systems. These systems are different from each other and cover

artificial, industrial, and biological systems. Further, we will test the ability of the different

algorithms to distinguish between chaotic signals and signals generated from a random

source (noise). Chaotic systems are deterministic. They exist in different dimensions based

on the dynamics that generate them. Beside being different in dimension, chaotic systems

can be different with respect to noise content in the measurements taken from them.

In the next section, we will give a brief introduction to the different systems that will

be used to test the algorithms. In Section 7.3 we will investigate the results of estimating

 for six noise free systems while in Section 7.4 we will estimate for a noisy chaotic

circuit and for three practical systems from the Santa Fe competition. In Section 7.5 we will

investigate the ability of the algorithms to distinguish between chaotic signals and random

ones. Tabulations of the results and a comparison between them will be presented in

Section 7.6. And finally we will present the chapter summary in Section 7.7.

dL dL

82

7.2 Testing systems

We have shown in Chapter 5 the estimation of for a chaotic Henon map by ap-

plying the geometric and the predictive techniques. In this chapter, we will use more com-

plicated systems for further investigation of the performance of the six algorithms

mentioned in Chapter 6. We will divide the testing systems into two categories: 1) noise

free systems, 2) noise contaminated systems. In the next two subsections, we will shed

some light on nine systems belonging to these categories.

7.2.1 Noise free chaotic systems

1) Lorenz model: In 1963, Ed. Lorenz [Lo63] was the first scientist to discover cha-

os when he was modeling the fluid convection phenomena. His model is a small represen-

tation of the earth’s atmosphere. It can be written as a set of three differential equations:

(7.1)

(7.2)

(7.3)

where , , and . The system’s equations were solved numerically us-

ing the fourth order Runge-Kutta algorithm with a fixed step size of 0.01 sec. The next fig-

ure shows a 3-D plot of the Lorenz attractor.

dL

x· s y x–()=

y· xz– rx y–+=

z· xy bz–=

s 16= b 4= r 40=

83

Figure 7.1 Lorenz chaotic attractor

2) The second system that we used to test the algorithms is the chaotic circuit. Chaos

can exist in electrical circuits as well, as found by N. F. Rulkov et al [RVRDV92]. The cir-

cuit diagram is shown below.

Figure 7.2 The chaotic circuit diagram

The circuit response can be written as a set of three differential equations:

(7.4)

(7.5)

(7.6)

where x and z are the voltages across the two capacitors and respectively. is the

−30 −20 −10 0 10 20 30 −50

0

50

0

10

20

30

40

50

60

70

80

Y

X

The chaotic Lornz attractor

Z

x

z

y

Lr1

r2

γ3 gc x()()

c1c2 j t()

x t()z t()

x· y=

y· x– γ1y– z+=

z· γ2 γ3gc x t()() z–() γ4y–=

c1 c2 γ3

84

gain of the nonlinear amplifier. where is the current flowing

through the inductor L. , , and , ,

, , , and . The non-

linear amplifier function is

. (7.7)

The circuit response is chaotic at as shown in the 3-D plot below.

Figure 7.3 The chaotic circuit response

3) The third system that we will use to test the six algorithms is the Rossler model.

In 1976, O. E. Rossler [Ros76] proposed an artificial chaotic system consisting of three dif-

ferential equations:

(7.8)

(7.9)

y t() j t() L c1⁄= j t()

γ2

Lc1

r1c2
-------------= γ1 r2 c1 L⁄= γ4 c1 c2⁄= r1 3.98 kΩ=

r2 361 Ω= c1 260 nF= c2 170.8 nF= L 152.6 mH= γ3 24.24=

gc x()

0.528 if x 1.2–≤

x 1 x
2

–() if 1.2– x< 1.2≤
0.528– if x 1.2>⎩

⎪
⎨
⎪
⎧

=

γ3 22.5>

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2−5

0

5
−4

−3

−2

−1

0

1

2

3

4 The chaotic circuit response

x
y

z

x· y– z–=

y· x ay+=

85

(7.10)

where , and . The set of the three differential equations were solved nu-

merically using the fourth order Runge-Kutta algorithm at a fixed step size of 0.01 sec. The

3-D plot below shows the Rossler attractor.

Figure 7.4 The Rossler model attractor

4) All the previous systems are three dimensional systems. To test the algorithms

with higher dimensional systems, we will use Mackey-Glass (MG) chaotic system. The

MG system is represented by the following differential equation

, (7.11)

where is a delay-time [MG77]. Equation (7.11) is used to model blood production.

represents the concentration of the blood at time t (when the blood is produced) and

 is the concentration of the blood when the request for more blood is made. For pa-

tients with Leukemia, the delay-time could be large which causes the concentration of

z· a z x c–()+=

a 0.2= c 5.7=

−10
−5

0
5

10
15

−15

−10

−5

0

5

10
0

5

10

15

20

25

x

Rossler Attracotr

y

z

x· t()
0.2x t tf–()

1 x t tf–()10+
-------------------------------- 0.1x t()–=

tf x t()

x t tf–()

tf

86

the blood to oscillate. When is excessively large (), the concentration of the

blood becomes chaotic (see also [Far81]).

Equation (7.11) can be approximated by the following difference equation:

(7.12)

(see [KaSc00]). Equation (7.12) can be used to produce chaotic systems of dimension

. We fixed to be 23 and tested the algorithms with three examples from the MG

approximation of dimensions 4, 7, and 13. Up do this point, we have discussed six noise

free systems. In the next subsection, we will discuss three practical systems that will also

be used to test the six algorithms.

7.2.2 Practical systems

1) We will begin with the chaotic data set A from the Santa Fe competition data sets

[WeGe95]. This sequence represents a special challenge since it is short (1000 points). Be-

side being short it is also contaminated with noise (the Signal to Noise Ratio (SNR) is up

to 70 dB). It was measured from a laser machine and its attractor is a Lorenz like attractor

[HAW89].

2) The second practical system is the data set from the same competition. The

first column of this set was collected from an Electrocardiogram (ECG) signal. According

to a group of researchers, an ECG signal can be modeled by a low dimensional chaotic sys-

tem. This set is contaminated with noise and it is also non-stationary (caused by patient mo-

tions).

3) The third practical system is the data set from the same competition. This set

is large (points), it has 9 degrees of freedom [WeGe95], and has a small non-station-

tf tf 16.8>

x n 1+() 1
2m btf+
-------------------- 2m btf–()x n() a+ tf

x n m–()
1 x n m–()10

+
----------------------------------- x n m– 1+()

1 x n m– 1+()10
+

--+⎝ ⎠
⎛ ⎞

⎝ ⎠
⎛ ⎞=

m 1+ tf

B1

D1

10
5

87

arity. It will be used to test the ability of the algorithms to estimate using measurements

taken from a high dimensional chaotic system.

7.3 Estimating for the noise free chaotic systems

In the next two subsections, we will present the results found from Abarbanel’s two

algorithms: the and on the six noise free systems (Section 7.2.1). At the end

of the two subsections, we will present the results found from our four algorithms (,

, , and the predictive) for the same six systems. Notice that in this section we

will present the plots with a brief analysis of the results. In Section 7.6, we will tabulate all

the results from the different algorithms and discuss them.

7.3.1 Using the algorithm

We will begin by showing the results found by Abarbanel’s first algorithm: the

 (see Section 6.3.1). The plots in Figure 7.5 show the estimated for the six noise

free systems using this algorithm. The four curves in each graph are found by changing the

number of neighbors (= 20, 50, 70, and 100). We can see from the figure that for sys-

tems with dimensions greater than 4, the estimation of the minimum embedding dimen-

sions are poor. The plots also show that the estimated for the case of the Rossler

model is poor as well. It estimated where the correct dimension is 3.

dL

dL

CDDL CDTL

CND

CDDG CDTG

CDDL

CDDL dL

Nb

dL() dL

dL 2=

88

Figure 7.5 The estimated for the six noise free systems using the algorithm. The vertical
axis is the percentage of the FNNs found from each dimension and the horizontal axis is the dimension

d, a) for the Lorenz model, , b) for the chaotic circuit, , c) for the Rossler model,
, d) for MG of dimension 4, , e) for MG of dimension 7, , f) for MG of dimen-

sion 13,

7.3.2 Using the algorithm

The estimated using the algorithm for the six noise free systems is shown

in Figure 7.6. By comparing the results found from these plots with those of the al-

gorithm, we can see that the did not improve the estimation of for the six noise

free systems.

1 2 3 4 5
0

10

20

30

40

50

60

70

Estimating d
L
 of the Lorenz model using Abarbanel et al first approach (CDD)

dimension d

%
 F

N
N

Nb=20
Nb=50
Nb=70
Nb=100

1 2 3 4 5
0

10

20

30

40

50

60

70

Estimating d
L
 of the chaotic circuit using Abarbanel et al first approach (CDD)

dimension d

%
 F

N
N

Nb=20
Nb=50
Nb=70
Nb=100

1 2 3 4 5
0

5

10

15

20

25

30

35

40

Estimating d
L
 of the Rossler model using Abarbanel et al first approach (CDD)

dimension d

%
 F

N
N

Nb=20
Nb=50
Nb=70
Nb=100

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

Estimating d
L
 of the MG of dimension 4 model using Abarbanel et al first approach (CDD)

dimension d

%
 F

N
N

Nb=20
Nb=50
Nb=70
Nb=100

a) b)

d)c)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Estimating d
L
 of the MG of dimension 7 model using Abarbanel et al first approach (CDD)

dimension d

%
 F

N
N

Nb=20
Nb=50
Nb=70
Nb=100

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

Estimating d
L
 of the MG of dimension 13 model using Abarbanel et al first approach (CDD)

dimension d

%
 F

N
N

Nb=20
Nb=50
Nb=70
Nb=100

f)e)

dL CDDL

dL 3= dL 3=
dL 2= dL 4= dL 4=

dL 4=

CDTL

dL CDTL

CDDL

CDTL dL

89

Figure 7.6 The estimated for the six noise free systems using the algorithm. The vertical
axis is the percentage of the FNNs and the horizontal axis is the dimension d, a) for Lorenz model,

, b) for chaotic circuit, , c) for Rossler model, , d) for MG of dimension 4,
, e) for MG of dimension 7, , f) for MG of dimension 13,

After presenting the results found from the and the algorithms, we

present next the results found from our four algorithms: the CND, the , the ,

and the predictive.

7.3.3 Using the CND algorithm

The plots in Figure 7.7 show the results of the estimated for the six noise free

systems using our first algorithm (CND) (see Section 6.5.1). As we can see from the figure,

1 2 3 4 5 6
0

10

20

30

40

50

60

d
L
 estimation for the Lorenz model using the CDT with Abrbanel et al 2nd approach

dimension d

%
 p

K
(d

)

Nb=20
Nb=50
Nb=70
Nb=100

1 2 3 4 5 6
0

2

4

6

8

10

12

d
L
 estimation for the chaotic circuit using Abrbanel et al 2nd approach

dimension d

%
 p

K

Nb=20
Nb=50
Nb=70
Nb=100

1 2 3 4 5 6
0

5

10

15

20

25

30

35

d
L
 estimation for the Rossler model using Abarbanel et al 2nd approach

dimension d

%
 p

K

Nb=20
Nb=50
Nb=70
Nb=100

1 2 3 4 5 6 7 8
0

5

10

15

20

25

d
L
 estimation for MG of dimension 4 using Abarbanel et al 2nd approach

dimension {it\d}_L

%
 p

K
(d

)

Nb=20
Nb=50
Nb=70
Nb=100

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

30

35

d
L
 estimation for MG of dimension 7 using Abarbanel et al 2nd approach

dimension {it\d}_L

%
 p

K
(d

)

Nb=20
Nb=50
Nb=70
Nb=100

2 4 6 8 10 12 14 16
0

5

10

15

20

25

d
L
 estimation for MG of dimension 13 using Abarbanel et al 2nd approach

dimension {it\d}_L

%
 p

K
(d

)

Nb=20
Nb=50
Nb=70
Nb=100

a) b)

d)

f)

c)

e)

dL CDTL

dL 2= dL 3= dL 2=
dL 3= dL 3= dL 4=

CDDL CDTL

CDDG CDTG

dL

90

the CND algorithm gave good estimates of for the systems of dimensions up to 4. On

the other hand, it gave poor estimates of for the systems of dimensions 7 and 13.

Figure 7.7 Estimating for the noise free systems using our first algorithm (CND). The vertical axis
is the estimated and the horizontal axis is the number of neighbors used (w). a) for Lorenz model,

, b) for the chaotic circuit, , c) for Rossler model, , d) for MG of dimension 4,
, e) for MG of dimension 7, , f) for MG of dimension 13, this algorithm does not give

a stable answer

7.3.4 Using the algorithm

The plots in Figure 7.7 show the results of the estimated for the six noise free

systems using our second algorithm () (see Section 6.5.2). By comparing the esti-

dL

dL

5 10 15 20 25 30 35 40
3

4

6

8

10

12

14

Estimated d
L
 for the chaotic circuit using our 1st approach: the CND

d

w

5 10 15 20 25 30 35 40
3

4

5

6

7

8

9

10

11

12

Estimated d
L
 for Rossler model using our 1st approach: the CND

d

w
5 10 15 20 25 30 35 40

4

5

6

7

8

9

10

11

12

13

14

15

Estimated d
L
 for MG of dimension 4 using our 1st approach: the CND

d

w

5 10 15 20 25 30 35 40
4

5

6

7

8

9

10

11

12

13

14

15

Estimated d
L
 for MG of dimension 7 using our 1st approach: the CND

d

w
5 10 15 20 25 30 35 40

10

11

12

13

14

15

16

17

18

Estimated d
L
 for MG of dimension 13 using our 1st approach: the CND

d

w

b)

d)c)

e) f)

4 5 10 15 20 25 30 35 40
3

4

5

6

7

d
L
 estimation for the Lorenz model using our 1st approach: CND

d

w a)

dL
dL

dL 3= dL 3= dL 3=
dL 4= dL 5=

CDDG

dL

CDDG

91

mated from the plots in the figure, we can see that the algorithm gave similar

results to those of the CND algorithm.

Figure 7.8 Estimating for the noise free systems using our second algorithm (). The vertical
axis is the percentage of the FNNs found and the horizontal axis is the dimension d. a) for Lorenz mod-
el, , b) for the chaotic circuit, , c) for Rossler model, , d) for MG of dimension

4, , e) for MG of dimension 7, , f) for MG of dimension 13,

7.3.5 Using the algorithm

By comparing our third algorithm () (see Section 6.5.3) with the CND and

, we can see from Figure 7.9 that the algorithm has improved the estimation

of for the system of dimension 7.

dL CDDG

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

Estimated d
L
 for the Lorenz model using the CDD method with the global neighbor search

dimension d

%
 F

N
N

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

Estimated d
L
 for the chaotic circuit using the CDD method with the global neighbor search

dimension d

%
 F

N
N

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

Estimated d
L
 for Rossler model using the CDD method with the global neighbor search

dimension d

%
 F

N
N

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

Estimated d
L
 for MG of dimension 4 using the CDD method with the global neighbor search

dimension d

%
 F

N
N

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

Estimated d
L
 for MG of dimension 7 using the CDD method with the global neighbor search

dimension d

%
 F

N
N

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

Estimated d
L
 for MG of dimension 13 using the CDD method with the global neighbor search

dimension d

%
 F

N
N

a)

c)

e)

b)

d)

f)

dL CDDG

dL 3= dL 3= dL 3=
dL 4= dL 4= dL 4=

CDTG

CDTG

CDDG CDTG

dL

92

Figure 7.9 Estimating for the noise free systems using our third algorithm (). The vertical
axis is the percentage of FNNs and the horizontal axis is the dimension d. a) for Lorenz model,

, b) for the chaotic circuit, , c) for Rossler model, , d) for MG of dimension 4,
, e) for MG of dimension 7, , f) for MG of dimension 13, .

7.3.6 Using the predictive algorithm

For our fourth algorithm (the predictive), the estimated is found where the SSE

of the prediction error is not changing significantly. The plots in Figure 7.10 summarize the

estimation of for the six noise free systems.

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

40

45

The estimated d
L
 for the Lorenz model using the CDT

G
 with the global neighbors search

dimension d

%
 p

K
(d

)

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

The estimated d
L
 for the chaotic circuit using the CDT

G
 with the global neighbors search

dimension d

%
 p

K
1 2 3 4 5 6 7 8

10

20

30

40

50

60

70

80

90

The estimated d
L
 for Rossler model using the CDT

G
 with the global neighbors search

dimension d

%
 p

K

1 2 3 4 5 6 7

10

20

30

40

50

60

70

80

The estimated d
L
 for MG of dimension 4 using the CDT

G
 with the global neighbors search

dimension d

%
 p

K

1 2 3 4 5 6 7 8 9 10

10
0

10
1

The estimated d
L
 for MG of dimension 7 using the CDT

G
 with the global neighbors search

dimension d

%
 p

K

2 4 6 8 10 12 14

10
−1

10
0

10
1

The estimated d
L
 for MG of dimension 13 using the CDT

G
 with the global neighbors search

dimension d

%
 p

K

a) b)

d)

f)e)

c)

dL CDTG

dL 3= dL 3= dL 3=
dL 4= dL 7= dL 7=

dL

dL

93

Figure 7.10 The predictive algorithm results for the noise free systems, the vertical axis is the SSE of
the prediction errors and the horizontal axis is the dimension d, a) for Lorenz model, , b) for
the chaotic circuit, , c) for Rossler model, , d) for MG of dimension 4, , e) for

MG of dimension 7, , f) for MG of dimension 13, .

As we can see from Figure 7.10 above, the SSEs (of the prediction errors) of the

neural network used to estimate have dropped significantly when the dimension (d) has

reached the minimum embedding dimension of the signal. Then it did not improve signif-

icantly after that. As a result, the predictive algorithm gave good estimates of for all the

six noise free systems.

In the next section, we will apply the same algorithms to estimate for the noisy

systems.

1 2 3 4 5 6 7 8

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Estimating d
L
 for the chaotic circuit using the Predictive technique

S
S

E

d

1 2 3 4 5 6 7 8
10

−3

10
−2

10
−1

10
0

10
1

Estimating d
L
 for the MG23 of dimension 4 using the Predictive technique

S
S

E

d
1 2 3 4 5 6 7 8

10
−1

10
0

10
1

Estimating d
L
 for the Rossler model using the Predictive technique

S
S

E

d

1 2 3 4 5 6 7 8 9 10 11 12

10
−3

10
−2

10
−1

10
0

10
1

Estimating d
L
 for the MG23 of dimension 7 using the Predictive technique

S
S

E

d
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Estimating d
L
 for the MG23 of dimension 13 using the Predictive technique

S
S

E

d

b)

c) d)

f)e)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

10
−1

10
0

10
1

Estimating d
L
 for the Lorenz model using the Predictive technique

S
S

E

d a)

dL 3=
dL 3= dL 3= dL 4=

dL 7= dL 13=

dL

dL

dL

94

7.4 Estimating for the noisy systems

In the previous section, we have investigated the estimation of for six different

noise free systems using the six algorithms. In this section, we will test the same algorithms

to estimate for three practical systems that we introduced in Section 7.2.2. But before

we do that, let us investigate the estimation of for a noisy chaotic circuit. After that, we

will show the results of estimating for the three practical systems.

7.4.1 Estimating for the noisy chaotic circuit (cc)

We will use 5000 points from the X-coordinate of the chaotic circuit (cc) (after dis-

carding the transients) to represent the measurements from this system. We will also add

different levels of noise to these measurements. The signal to noise ratio (SNR) in decibels

(dB) is defined as:

, (7.13)

where is the variance of the signal and is the variance of the noise. We will

use the following SNR values: 200, 100, 50, and 20 dB for our purpose.

7.4.1.1 Using the algorithm

The resulting plots when using the algorithm are shown in Figure 7.11. As

we can see from the figure, the algorithm was able to give the correct estimate of

 for the cases where the SNR are 200, and 100 dB. On the other hand, it was not able to

estimate the correct for the cases where the SNR are 50, and 20 dB.

dL

dL

dL

dL

dL

dL

SNR 10
σs()2

σn()2
-------------log=

σs()2 σn()2

CDDL

CDDL

CDDL

dL

dL

95

Figure 7.11 Estimating for the noisy cc using Abarbanel et al first algorithm (). a) at 200
dB, , b) at 100 dB, , c) at 50 dB, , d) at 20 dB, the algorithm assumes the signal

is noise

7.4.1.2 Using the algorithm.

The resulting plots when using the algorithm to estimate for the noisy

circuit are shown in Figure 7.12. We can see from the figure that the was susceptible

to noise. It fails to find the correct minimum embedding dimension for any of the four cas-

es.

Figure 7.12 Estimating for the noisy cc using algorithm. a) at 200 dB, , b) 100 dB,
, c) at 50 dB, and d) at 20 dB the algorithm assumes the signal is noise

1 2 3 4 5
0

10

20

30

40

50

60

70
SNR = 200 dB

d

%
 F

N
N

1 2 3 4 5
0

10

20

30

40

50

60

70
SNR = 100 dB

d

%
 F

N
N

1 2 3 4 5
0

20

40

60

80

100
SNR = 50 dB

d

%
 F

N
N

1 2 3 4 5

50

60

70

80

90

SNR = 20 dB

d

%
 F

N
N

a) b)

d)c)

dL CDDL
dL 3= dL 3= dL 5>

CDTL

CDTL dL

CDTL

1 2 3 4 5 6
0

5

10

15

20

25

30
SNR = 200 dB

d

%
 p

K

1 2 3 4 5 6
0

1

2

3

4
SNR = 100 dB

d

%
 p

K

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
SNR = 50 dB

d

%
 p

K

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
SNR = 20 dB

d

%
 p

K

a) b)

d)c)

dL CDTL dL 2=
dL 2=

96

7.4.1.3 Using the CND algorithm

The resulting plots when using our first algorithm (the CND) are shown in Figure

7.13. We can see from the figure that the CND algorithm gave the correct for the cases

where the SNR are 200, 100, and 50 db. It gave a wrong estimate; when the SNR

20 dB.

Figure 7.13 Estimating for the noisy cc using our first algorithm (the CND), a) at 200 dB, ,
b) at 100 dB, , c) at 50 dB, , d) at 20 dB,

7.4.1.4 Using the algorithm

The resulting plots when using our second algorithm () to estimate for

the noisy cc are shown in Figure 7.14. We can see that this algorithm gave good estimates

of for the four cases of noisy cc.

dL

dL 4=

5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

The estimating of d
L
 for the noisy chaotic circuit using the CND method

d L

w

200 dB
100 dB
50 dB
20 dB

dL dL 3=
dL 3= dL 3= dL 4=

CDDG

CDDG dL

dL

97

Figure 7.14 Estimating for the noisy cc using our second algorithm (). It shows for
SNR=200, 100, 50, and 20 dB

7.4.1.5 Using the algorithm

The resulting plots of estimating for the noisy cc when using our third algorithm

() are shown in Figure 7.15. As seen from the figure, this algorithm gave good esti-

mates of for the cases where the SNR are 200, 100, and 50 dB. For the case where the

SNR is 20 dB, it gave a wrong estimate of , as seen from the right bottom curve. Notice

here that the semilog plot (at the 20 dB case) can’t show the percentage of FNNs when it

equals zero (at).

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10
SNR = 200 dB

d

%
 F

N
N

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10
SNR = 100 dB

d

%
 F

N
N

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10
SNR = 50 dB

d

%
 F

N
N

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10
SNR = 20 dB

d

%
 F

N
N

dL CDDG dL 3=

CDTG

dL

CDTG

dL

dL

d 3=

98

Figure 7.15 Estimated for the noisy cc using the algorithm. For SNR=200, 100, and 50,
. At SNR=20db, not stable

7.4.1.6 Using the predictive algorithm

The resulting plots when using the predictive algorithm are shown in Figure 7.16.

From the figure, we can see that this algorithm gave good estimates of for the cases

where the SNR are 200, 100, and 50 dB. It fails when the SNR is 20 dB.

Figure 7.16 Estimating using our fourth algorithm (Predictive), for 200, 100, and 50 dB,
at 20 dB it assumes a random signal

1 2 3 4 5 6 7
10

−2

10
−1

10
0

10
1

10
2

SNR = 200 dB

d

%
 p

K

1 2 3 4 5 6 7
10

−2

10
−1

10
0

10
1

10
2

SNR = 100 dB

d

%
 p

K

1 2 3 4 5 6 7
10

−2

10
−1

10
0

10
1

10
2

SNR = 50 dB

d

%
 p

K

1 2 3 4 5 6 7
10

−2

10
−1

10
0

10
1

10
2

SNR = 20 dB

d

%
 p

K

dL CDTG
dL 3=

dL

1 2 3 4 5 6 7 8
10

−4

10
−2

10
0

SNR = 200 dB

d

S
S

E

1 2 3 4 5 6 7 8
10

−4

10
−2

10
0

SNR = 100 dB

d

S
S

E

1 2 3 4 5 6 7 8
10

−4

10
−2

10
0

SNR = 50 dB

d

S
S

E

1 2 3 4 5 6 7 8
10

−4

10
−2

10
0

10
2

SNR = 20 dB

d

S
S

E

dL dL 3=

99

7.4.2 Estimating for the Santa Fe data sets

7.4.2.1 Using the algorithm

The plots in Figure 7.17 show the estimated for the data sets A, , and us-

ing the algorithm. We can see from the figure that this algorithm failed to find the

correct for the cases of the A and data sets. For the data set it gave .

Figure 7.17 Using the algorithm, a) for data set A, , b) for , , c) for ,

dL

CDDL

dL B1 D1

CDDL

dL D1 B1 dL 4=

2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

d
L
 estimation for B

1
 Santa Fe data set using Abrbanel 1st approach: CDD

dimension d

%
 F

N
N

Nb=20
Nb=50
Nb=70
Nb=100

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

Lorenz model d
L
 dimenion estimation using the CDD with the 1st projection method

dimension d
L

%
 F

N
N

Nb=20
Nb=50
Nb=70
Nb=100

2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

d
L
 estimation for D

1
 Santa Fe data set using Abrbanel 1st approach: CDD

dimension d

%
 F

N
N

Nb=20
Nb=50
Nb=70
Nb=100

a)

b)

c)

CDDL dL 4= B1 dL 4= D1
dL 6=

100

7.4.2.2 Using the algorithm

The plots in Figure 7.18 show the estimated for A, , and Santa Fe data

sets using the algorithm. We can see from the figure that this algorithm gave good

estimate of for A data set. It gave for data set and failed to find a reason-

able estimate of for data set.

Figure 7.18 Using the algorithm, a) for data set A, , b) for , , c) for ,
.

CDTL

dL B1 D1

CDTL

dL dL 10= D1

dL B1

1 2 3 4 5 6 7 8
20

30

40

50

60

70

80

Estimatin of d
L
 for A Santa Fe data set using Abarbanel 2nd approach

dimension d

%
 p

K
(d

)

Nb=20
Nb=50
Nb=70
Nb=100

1 2 3 4 5 6 7 8 9 10 11 12
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Estimatin of d
L
 for B

1
 Santa Fe data set using Abarbanel 2nd approach

dimension d

%
 p

K
(d

)

Nb=20
Nb=50
Nb=70
Nb=100

2 4 6 8 10 12 14
50

55

60

65

70

75

80

85

90

Estimatin of d
L
 for D

1
 Santa Fe data set using Abarbanel 2nd approach

dimension d

%
 p

K
(d

)

Nb=20
Nb=50
Nb=70
Nb=100

a)

b)

c)

CDTL dL 3= B1 dL 6= D1
dL 10=

101

7.4.2.3 Using the CND algorithm

The plots in Figure 7.19 show the estimated for A, , and Santa Fe data

sets using our first algorithm (the CND). We can see that this algorithm gave a good esti-

mate of for data set A. It gave for data set , while it failed to find a good

estimate of for the data set .

Figure 7.19 Using the algorithm, a) for data set A, , b) for , , c) for , the
result is not stable

dL B1 D1

dL dL 5= B1

dL D1

5 10 15 20 25 30 35 40 45 50
3

4

5

6

7

8

Estimated d
L
 for A data set using the CND method

d L

w

5 10 15 20 25 30 35 40
5

6

7

Estimated d
L
 for B

1
 data set using the CND method

d L

w

5 10 15 20 25 30 35 40
7

8

9

10

11

12

13

14

15

Estimated d
L
 for D

1
 data set using the CND method

d L

w

a)

b)

c)

CND dL 3= B1 dL 5= D1

102

7.4.2.4 Using the algorithm

The plots in Figure 7.20 show the estimated for A, , and Santa Fe data

sets using the algorithm. As seen from the figure, this algorithm gave a good esti-

mate of for the A data set. It gave for the data set. It gave for the

 data set, which is higher than the actual value ().

Figure 7.20 Using the algorithm, a) for data set A, , b) for , , c) for ,

CDDG

dL B1 D1

CDDG

dL dL 5= B1 dL 11=

D1 dL 9=

2 4 6 8 10 12

10

20

30

40

50

60

70

80

90

Estimated d
L
 for the D

1
 data set using the CDD method with the global neighbor search

dimension d

%
 F

N
N

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

Estimated d
L
 for the B

1
 data set using the CDD method with the global neighbor search

dimension d

%
 F

N
N

1 2 3 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

Estimated d
L
 for the A data set using the CDD method with the global neighbor search

dimension d

%
 F

N
N

a)

b)

c)

CDDG dL 3= B1 dL 5= D1
dL 11=

103

7.4.2.5 Using the algorithm

The plots in Figure 7.21 show the estimated for A, , and Santa Fe data

sets using the algorithm. Figures 7.21a and 7.21b show that the estimated for

the A data set is 3, and for data set . This algorithm gave a bad estimate of

for the data set ().

Figure 7.21 Using the algorithm, a) for data set A, , b) for , , c) for ,

CDTG

dL B1 D1

CDTG dL

B1 dL 5= dL

D1 dL 6=

1 2 3 4 5 6 7
50

55

60

65

70

75

80

85

90

Estimated d
L
 for the A data set using the CDT

G
 method with the global neighbor search

dimension d

%
 p

K

a)

1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Estimated d
L
 for the B

1
 data set using the CDT

G
 method with the global neighbor search

dimension d

%
 p

K

b)

2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

18

20

22

Estimatin of d
L
 for D

1
 Santa−Fe data set using the CDT

G
 method

dimension d

%
 p

K
(d

)

c)

CDTG dL 3= B1 dL 5= D1
dL 6=

104

7.4.2.6 Using the predictive algorithm

The plots in Figure 7.22 show the estimated for A, , and Santa Fe data

sets using the predictive algorithm. As seen from the figure, this algorithm gave a good es-

timate of for the A data set. It estimated for the data set, and for

the data set.

Figure 7.22 Using the predictive algorithm, a) for data set A, , b) for , , c) for ,

dL B1 D1

dL dL 4= B1 dL 10=

D1

1 2 3 4 5 6 7 8
33.5

34

34.5

35

35.5

36

36.5

37

37.5

Estimating d
L
 for Santa Fe data set B

1

S
S

E

d

2 4 6 8 10 12 14

15

20

25

30

35

40

S
S

E

d

Estimating d
L
 for D

1
 data set of the Santa Fe compatition using the predictive method

b)

c)

1 2 3 4 5 6 7 8

5

10

15

20

25

30

Estimating d
L
 for A data set of Santa Fe competition using the Predictive technique

S
S

E

d
a)

dL 3= B1 dL 4= D1
dL 10=

105

Up to this point, we have shown the results of the estimated for the noise free

and the practical systems using all the six algorithms. In the next section, we will test the

ability of these algorithms to distinguish between signals generated from a chaotic system

(deterministic), and signals generated from a random process (noise).

7.5 Testing the algorithms with random signals

We generated 3000 points from a normally distributed random process with zero

mean and unit variance. We will test the ability of each algorithm to recognize that the or-

igin of the signal is a random process rather than a deterministic source. According to Abar-

banel et al [AbKe93] the embedding dimension will approach for random signals.

Figure 7.23 shows the results found from Abarbanel et al two algorithms. We can

see that the first algorithm () did not recognize that the signal is a random one. It

gave 11 as the minimum embedding dimension of the signal. Their second algorithm

() gave as the minimum embedding dimension for the signal, which is what we

expect from a random signal.

Figure 7.23 Testing Abarbanel et al two algorithms with a random signal, a) the algorithm fails
to recognize the random signal, b) the algorithm succeeded in recognizing the random signal

Figure 7.24 shows the plots resulting from testing our four algorithms: the CND, ,

dL

∞

CDDL

CDTL ∞

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

Estimating d
L
 for a random signal using the CDD with the global neighbor search

dimension d

%
 F

N
N

1 2 3 4 5 6
99

99.2

99.4

99.6

99.8

100

100.2

100.4

100.6

100.8

101

Estimating d
L
 for a random signal using Abarbanel et al 2nd approach (CDT)

dimension d

%
 p

K
(d

)

Nb=20
Nb=50
Nb=70
Nb=100

a) b)

CDDL
CDTL

CDDG

106

, and the predictive to recognize the random signal. As we can see from the plots,

the CND, , and the predictive algorithm were able to recognize the random signal.

They estimated . On the other hand, the algorithm fails to recognize the

random signal, it estimated .

Figure 7.24 Testing our four algorithms for estimating the dimension of the random signal, a) the
CND algorithm recognizes the signal is random by not changing the estimated as w increases, b)
for the algorithm, it did not recognize the random signal, c) for the algorithm, it was

able to recognize the random signal, the same for the predictive algorithm in d).

CDTG

CDTG

dL ∞= CDDG

dL 11=

1 2 3 4 5 6 7 8 9
90

95

100

105

110

115

120

Testing the CDT
G

 algorithm to recognize random signals

dimension d

%
 p

K
(d

)

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

Estimating d
L
 for a random signal using the CDD with the global neighbor search

dimension d

%
 F

N
N

5 10 15 20 25 30 35 40
14

14.2

14.4

14.6

14.8

15

15.2

15.4

15.6

15.8

16

Estimating d
L
 for the randomm signal using CND

d

w

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Estimating d
L
 for the random signal using the Predictive technique

S
S

E

d

a) b)

d)c)

dL
CDDG CDTG

107

7.6 Tables and discussions

In the previous three sections we showed the resulting plots for the estimated for

the nine systems using the six algorithms. In this section, we will summarize these results,

then discuss them.

7.6.1 Tables

In Table 7.1, we summarize the results found from the previous section. More dis-

cussions of these results will be presented later. (Wrong estimates are circled.)

Table 7.1 Tabulation of the estimated for all the testing systems
shown in Sections 7.3 through 7.5. The wrong estimates are circled. The

abbreviation cc: chaotic circuit, and N. Able: not able

Next we measured the time (in seconds) required by each algorithm to estimate

for data set A. Table 7.2 shows the time for each algorithm.

Table 7.2 Six algorithms estimation time (in seconds) for of data set
A of the Santa Fe competition, it shows the is the fastest and the

predictive is the slowest.

dL

Abarbanel et al Our Algorithms
Algorithms

Systems Original dimension CDDL CDTL CND CDDG CDTG Predictive

Lorenz 3 3 2 3 3 3 3
Chaotic circuit 3 3 3 3 3 3 3
Rossler 3 2 2 3 3 3 3
MG of dim 4 4 4 3 4 4 4 4
MG of dim 7 7 4 3 5 4 7 7
MG of dim 13 13 4 4 N. able 4 7 13
cc with 200 dB 3 3 2 3 3 3 3
cc with 100 dB 3 3 2 3 3 3 3
cc with 50 dB 3 5 noise 3 3 3 3
cc with 20 dB 3 noise noise 4 3 N. Able noise
Santa Fe A 3 4 3 3 3 3 3
Santa Fe B 1 4 4 6 5 5 5 4
Santa Fe D 1 9 6 10 N. able 11 6 10

Noise recognition N. Able Able Able N. Able Able Able

dL

dL

Abarbanel et al Our algorithms
Two algorithms

CDDL CDTL CND CDDG CDTG Predictive
2.26 11.0 12.7 0.24 0.85 140

dL
CDDG

108

We can see from the table above that the algorithm required the minimum time;

0.24 sec. While the predictive algorithm required the maximum time; 140 sec.

7.6.2 Discussion of the Results

Next we will discuss how the following factors affect the results: 1) the original di-

mension of the system, 2) the use of the local versus the global neighbor search method, 3)

the estimation time, 4) sensitivity of each algorithm to the threshold value, 5) the ability of

each algorithm to recognize random signals, and 6) dependence of the algorithms on the

number of points needed to estimate . At the end of this section we will make general

conclusions about the best way to estimate .

7.6.2.1 The effect of the original dimension of the system

From the results shown in Table 7.1, we can generally see that when the dimension

of the original system is greater than four, the geometric algorithms (, , CND,

) give incorrect estimates of . On the other hand, the predictive algo-

rithm gives the correct estimates as seen in the last column of the table. For the case of the

data set the dimension is 9 (see [WeGe95 page 6]). We can see that the best estimate

provided by our algorithms for this system is 10.

7.6.2.2 Local versus global neighbor search methods

To reduce the computational cost in the local neighbors search algorithms (

and), the search for the nearest neighbor (in) is done among the neighbors

rather than the whole data set. On the other hand, the search for the neighbors for each

point in is done by using the specialized neighbors search algorithm mentioned in

Chapter 6. The algorithm gave incorrect estimates of for the noisy chaotic circuit

CDDG

dL

dL

CDDL CDTL

CDDG and CDTG, dL

D1

CDDL

CDTL ℜd
Nb

Nb

ℜ
dE

CDTL dL

109

(cc) as seen in the middle row of the table. While the gave incorrect estimates of

for 50 and 20 dB cases.

On the other hand, the algorithms , , and are global neighbor

search algorithms. That means the nearest neighbor is computed among the whole data set.

To reduce the computational cost, we only use the specialized neighbor search algorithm

mentioned in Chapter 6. The performance of these algorithms has improved significantly

for the noisy chaotic circuit (cc), as seen from the table. Further, we can see that the CND

and the predictive algorithms were not able to give the correct estimate of when the

.

7.6.2.3 Estimation time

Table 7.2 shows the time required to estimate for the A data set using the six al-

gorithms. The sequence of algorithms arranged in a descending order of speed is as follows:

, then the predictive algorithm.

7.6.2.4 Sensitivity to the threshold value

We found that our algorithms were not sensitive to the threshold value used in the

estimation process. In the CND algorithm, we used a threshold value between 0 and 3. For

the algorithm, we used a threshold value between 0.1 and 0.5. For the case of the

 algorithm, the threshold used was between 2 and 10. Choosing the value of the

threshold depends on the amount of noise contained in the signal.

CDDL dL

CND CDDG CDTG

dL

SNR 20 dB=

dL

CDDG CDTG CDDL CDTL CND, , , ,

CDDG

CDTG

110

7.6.2.5 Noise detection

From the last row of in Table 7.1, we can see that the and the algo-

rithms were not able to distinguish random signals from chaotic ones. Both algorithms gave

11 as the minimum embedding dimension, which is not correct since the signal is not de-

terministic.

7.6.2.6 Dependence of the algorithms on the number of data points

From the results found in Table 7.1, we conclude that the algorithms are not sensi-

tive to the number of points needed to give the correct estimate of . For the predictive

technique, it is important to insure that the number of points is greater than the number of

parameters used in the neural network to prevent over fitting [Hag95].

7.6.3 General conclusions

From what we have seen above, we conclude the following: 1) The predictive algo-

rithm gives the best results as along as the SNR is not too low. However, this algorithm has

its own drawback. Its computational time is much larger than those of the geometric algo-

rithms. 2) Using the global neighbor search reduces the computational time and improves

the estimation. 3) To give confidence to the estimation process, one can run more than one

algorithm and compare their results. We suggest the use of the predictive and the

algorithms to do the estimation.

7.7 Chapter Summary

We have seen in this chapter the results of the estimated minimum embedding di-

mension for many chaotic dynamical systems using the different algorithms that we pre-

sented in Chapter 6. We also gave full discussion of the results that we found and drew

CDDL CDDG

dL

CDDG

111

conclusions on the best way to estimate the minimum embedding dimension of chaotic sys-

tems. In the Chapter 8, we will talk about the theory of Lyapunov exponents of chaotic sys-

tems.

112

CHAPTER 8

THEORY OF LYAPUNOV EXPONENTS

8.1 Introduction

In Chapter 1, we said that the objective of this research is to model chaotic systems.

We also said that in addition to estimating the model order (the minimum embedding di-

mension), we need to estimate the model parameters (the set of Lyapunov exponents).

In Chapters 3 through 7, we discussed estimating . In Chapter 2, we found that one of

the main characteristics of chaotic systems is their sensitivity to initial conditions. This sen-

sitivity is quantified by the value of the Lyapunov exponents of the chaotic system, as will

be seen later. In this chapter, we will explore the theory of Lyapunov exponents and use it

to define equivalent chaotic systems. We will also prove a new theorem that relates the

poles of a linear system to the set of Lyapunov exponents (LEs).

In the next section, we discuss the sensitivity of some linear systems to initial con-

ditions. In Section 8.3, we explore the theory of first order chaotic systems. The set of LEs

for a multidimensional chaotic system is shown in Section 8.4. Two sets of invariants that

determine equivalent chaotic systems are discussed in Section 8.5. LEs can be approximat-

ed by Jacobian matrices as shown in Section 8.6. Some linear algebra definitions and the-

orems are presented in Section 8.7. Some definitions and theorems from multilinear

algebra are presented in Section 8.8. Using these concepts from linear and multilinear al-

dL

dL

113

gebra, a new theorem that relates the poles of a linear system to the set of LEs is proven in

Section 8.9. Finally in Section 8.10 we present the chapter summary.

8.2 Sensitivity of some linear systems to initial conditions

We have seen in Section 2.3.1 that one of the characteristics of chaotic systems is

their sensitivity to initial conditions. But it is important to notice that not every sensitivity

to initial conditions originates from a chaotic behavior. As an example, we can see in Figure

8.1 the response of the linear system:

, (8.1)

for two different initial conditions and where . As we can

see from the figure, the difference between the two responses (dotted curve) grows expo-

nentially as time increases, but the system responses (solid and dashed curves) are not cha-

otic.

Figure 8.1 Linear systems can be sensitive to initial conditions

x k 1+() f x k()() cx k()= =

x1 0() 0.5= x2 0() 0.55= c 1>

0 5 10 15 20 25 30
0

10

20

30

40

50

60
Sensitivity of a linear sysem to initial conditions

Time k

f(
x)

x
1
(0) = 0.5

x
2
(0) = 0.55

Error growth

114

The solution of Equation (8.1) is

. (8.2)

Perturbing the initial condition by produces that is

. (8.3)

We label the initial perturbation from to by

. (8.4)

After k iterations, the system’s response for the new initial condition is ,

and the perturbation grows to

. (8.5)

From the above equation, we can see that

. (8.6)

This ratio measures how fast the perturbation grows with time.

Using Equation (8.6), we will investigate the perturbation growth rate for the cha-

otic system of the tent map: , see Equation

(2.3). We begin by choosing three different initial conditions and

four different initial perturbations . Next we iterate the map and

record the number of iterations required for the evolved perturbations to exceed some pre-

defined threshold. Using the resulting perturbation and the number of iterations found

(k), we can compute the mean of the logarithm of the perturbation growth rate in Equation

(8.6):

x k() c
k
x 0()=

x 0() ε xε 0()

xε 0() x 0() ε+=

x 0() xε 0()

δ 0() xε 0() x 0()– ε= =

xε k() c
k
xε 0()=

δ k() xε k() x k()– c
kε= =

δ k()
δ 0()
----------- c

kε
ε

------- c
k

= =

x k 1+() f x k()() 3 4⁄ 1 1 2x k()––()= =

0.202 0.347, 0.869,{ }

10
3–

 10
4–

 10
5–

 10
6–, , ,{ }

δ k()

115

. (8.7)

(The log in Equation (8.7) is the natural log.) Table 8.1 shows the results found from the

different initial conditions and initial perturbations when the threshold used is

0.001 [PJS92 page 709].

Table 8.1 Estimating for .

From the above table, we can see that has the same value regardless of

changes in the initial condition or the initial perturbation. This result quantifies the

Lyapunov exponent (LE) which is defined below.

8.3 Lyapunov Exponent (LE) of a first order chaotic system

Using the chain rule, we can write the ratio in Equation (8.6) as follows:

. (8.8)

Substituting this equation for Equation (8.7) produces:

. (8.9)

Notice that we can use the function f to write Equation (8.5) as

c()log
1
k
--- δ k()

δ 0()
-----------log=

x 0() δ 0()

x (0) δ(0) k δ(k) log(c)

0.202 0.001 1 0.0015 0.40547
0.202 0.0001 6 0.0011391 0.40547
0.202 1.00E-05 12 0.0012975 0.40547
0.202 1.00E-06 18 -0.0014779 0.40547
0.347 0.001 1 0.0015 0.40547
0.347 0.0001 6 0.0011391 0.40547
0.347 1.00E-05 12 0.0012975 0.40547
0.347 1.00E-06 18 -0.0014779 0.40547
0.869 0.001 1 -0.0015 0.40547
0.869 0.0001 6 -0.0011391 0.40547
0.869 1.00E-05 12 0.0012975 0.40547
0.869 1.00E-06 18 0.0014779 0.40547

c()log f x k()() 3 4⁄() 1 1 2x k()––()=

c()log

δ k()
δ 0()
----------- δ k()

δ k 1–()
------------------- δ k 1–()

δ k 2–()
------------------- … δ 1()

δ 0()
----------- c

k
= =

c()log
1
k
--- δ i()

δ i 1–()
------------------log

i 1=

k

∑=

116

 , (8.10)

which is

. (8.11)

Now we can write the ratio in Equation (8.9) as

. (8.12)

By taking the limit as of Equation (8.12), we can write

, (8.13)

where . Using Equation (8.13), the right hand side of Equation (8.9) can be writ-

ten as follows (in the limit as the perturbation goes to zero)

. (8.14)

The LE for a first order chaotic system is denoted by and defined to be the limit

as of Equation (8.14):

. (8.15)

The LE quantifies the mean growth of infinitesimally small errors in the initial condition of

a chaotic system. By applying Equation (8.15) to the tent map in Equation (2.3), we can

compute its LE:

δ k() f xε k 1–()() f x k 1–()()–=

δ k() f x k 1–() δ k 1–()+() f x k 1–()()–=

δ k()
δ k 1–()
------------------- f x k 1–() δ k 1–()+() f x k 1–()()–

δ k 1–()
---=

δ 0→

f x k 1–() δ k 1–()+() f x k 1–()()–
δ k 1–()

δ 0→
lim f· x k 1–()()=

f·
df x()

dx
------------=

1
k
--- δ i()

δ i 1–()

δ 0→
limlog

i 1=

k

∑
1
k
--- f· x i 1–()()log

i 1=

k

∑=

λ

k ∞→

λ 1
k
--- f· x i 1–()()log

i 1=

k

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

k ∞→
lim c()log= =

117

, (8.16)

which is

, (8.17)

or

, (8.18)

which is the same value that was found experimentally.

What we have seen in this section is that the LE of a first order system is a measure

of the local mean growth rate of infinitesimally small errors. A chaotic system will be lo-

cally unstable, although globally bounded. Therefore, we expect the LE to be positive. A

negative LE would indicate local stability, and therefore the system would not exhibit cha-

otic behavior.

Notice also that for a first order linear system, as in Equation (8.1), the LE is the log

of the system pole. Later in this chapter, we will introduce a new theorem that demonstrates

the relationship between the LEs and the poles of a multidimensional linear system.

8.4 Lyapunov exponents for a multidimensional system

In the previous section, we defined the LE for a first order system. In this section,

we define the LEs for a multidimensional system. A multidimensional system in has d

LEs that characterize it. They can have positive, negative, or zero values. At least one of

λ 1
k
--- d

dx
------ 3 4⁄() 1 1 2x i()––()log

i 1=

k

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

k ∞→
lim=

λ 1
k
--- 2 3 4⁄() sign 1 2x i()–()()log

i 1=

k

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

k ∞→
lim=

λ 1
k
--- 3 2⁄()log

i 1=

k

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

k ∞→
lim 0.40547= =

ℜd

118

these exponents has to be positive for an attractor to be chaotic [Aba95]. The set of d LEs

is sometimes called the spectrum of LEs.

The state evolution of a chaotic system in is governed by the map f

(, see Equation (2.2)). Let an infinitesimal perturbation from the initial

state to be

, (8.19)

where the distance , which is infinitesimal. After k time steps,

evolves to , and evolves to . The new perturbation vector is

. (8.20)

The finite time LE (sometimes called the local LE) is defined as

. (8.21)

The LE (sometimes called the global LE) is defined as

. (8.22)

There are d LEs depending on the orientation of the initial perturbation vector (see

[EcRu85] page 630).

As we have seen above, to find the LEs for a multidimensional system, we need to

find the evolution of an initial perturbation vector . From this evolution, the ratio be-

tween the evolved vector and the initial one is used to find the LEs. More details will be

given later of methods used to evaluate the LEs.

ℜd

x k 1+() f x k()()=

x 0() xε 0()

δ 0() xε 0() x 0()–=

xε 0() x 0()– ε= x 0()

x k() xε 0() xε k()

δ k() xε k() x k()–=

λk x 0() δ 0() k,,() 1
k

δ k()
δ 0()

---------------log=

λ x 0() δ 0(),() λk x 0() δ 0() k,,()
k ∞→
lim=

δ 0()

δ 0()

119

8.5 Invariant sets in modeling by embedding

From the set of Lyapunov exponents, Kaplan and Yorke [KaYo79] conjectured that

the Lyapunov dimension can be computed, which is

, (8.23)

where is chosen such that . The importance of the Lyapunov dimen-

sion comes from the fact that its value is closely related to the box-counting dimension of

the original system (see also [Aba95])

. (8.24)

The Lyapunov exponents and the Lyapunov dimension are the same in both the

original system and its chaotic model obtained through delay embedding. This is an impor-

tant result. It means that although the attractor of the delay embedding model may not look

the same as the attractor of the original system, they share the same global properties. This

means that the two systems are equivalent in the sense of these global properties. The other

important aspect is that can be found easily if one can accurately estimate the set of

LEs.

dLyp kL

λj

j 1 2 … kL, , ,=
∑

λkL 1+
-------------------------------+=

kL
λj

j 1 2 … kL, , ,=
∑ 0>

dLyp dc≈

dLyp

120

8.6 LEs from the Jacobian matrix

As we said in the beginning of this chapter, LEs characterize chaotic systems. To

compute the set of LEs of the system, we can use Equation (8.22). That means we need to

follow the evolution of the initial perturbation vector with time. The perturbed vector

 is mapped by f according to Equation (2.2):

. (8.25)

Which can be written as

. (8.26)

Notice that does not necessarily equal since f is not linear. The map

 can be approximated around by using the Taylor series expansion as fol-

lows:

. (8.27)

By using Equations (8.26) and (8.27), we can write

, (8.28)

or

. (8.29)

We denote the Jacobian matrix in Equation (8.29) by whose elements are

, (8.30)

δ 0()

xε k()

xε k 1+() f xε k()()=

x k 1+() δ k 1+()+ f x k() δ k()+() f xε k()()= =

δ k 1+() f δ k()()

f xε k()() x k()

f x k() δ k()+() f x k()() f∂
x∂

x x k()=

x x k()–()+≈

x k 1+() δ k 1+()+ x k 1+() f∂
x∂

x x k()=

δ k()+≈

δ k 1+() f∂
x∂

x x k()=

δ k()≈

Jx k()

Jx k()() u v,()
fu∂
xv∂

x x k()=

=

121

where . Now we can write Equation (8.29) as

, (8.31)

which can be written as

. (8.32)

In general, we can write the evolution of an initial perturbation after k time steps as:

. (8.33)

For simplicity of notation, let represent the multiplication of the k Jacobian matrices:

. (8.34)

Now we can write the evolution of an initial perturbation vector as

. (8.35)

The LEs of the system are

, (8.36)

there are d LEs of the system depending on the orientation of the perturbation (see

[EcRu85] page 630).

8.6.1 Oseledec theorem

In 1968, Oseledec, V. [Ose68] proved that the limit in Equation (8.37) below exists

and that it is independent of the initial condition,

. (8.37)

Further and most important, he proved that the logarithm of the eigen values of the matrix

 equal the LEs of the system (see also [EcRu85]).

u v, 1 2 … d, , ,=

δ k 1+() Jx k()δ k()≈

δ k 1+() Jx k()Jx k 1–()δ k 1–()≈

δ 0()

δ k() Jx k 1–()Jx k 2–()…Jx 0()δ 0()≈

Jx
k

Jx
k Jx k 1–()Jx k 2–()…Jx 0()=

δ k() Jx
kδ 0()≈

λ 1
k

k ∞→
lim δ k()log 1

k

k ∞→
lim Jx

kδ 0()log= =

δ 0()

Λx Jx
k()TJx

k()
k ∞→
lim

1 2k()⁄
=

Λx

122

In the next two sections, we define some terms from linear and multilinear algebra.

These definitions will be used in Section 8.9 to prove a new theorem that relates the poles

of a linear system to the LEs, as computed from the eigen values of the Oseledec matrix

. This theorem will provide insights into the meaning of the LEs and will suggest new

algorithms for estimating the LEs.

8.7 Linear Algebra definitions

8.7.1 Definition: Inner product

A scalar function which operates on two vectors and denoted by

is defined as an inner product if it satisfies the next three conditions:

. (8.38)

. (8.39)

. (8.40)

The inner product is evaluated as follows

, (8.41)

(see [Hag95]).

8.7.2 Definition: Vector Norm

Given a vector , a real valued function is a vector norm if it

satisfies the next three conditions:

(8.42)

Λx

x y, ℜd∈ ,()

x y,() y x,()=

x ay1 by2+,() a x y1,() b x y2,()+=

x x,() 0≥

x y,() xTy=

x ℜd∈ g:ℜd ℜ1→

g x() 0 where g x()≥ 0 iff x 0= =

123

 where (8.43)

 where . (8.44)

The vector norm is denoted by . One choice of the norm is the 2-norm:

. (8.45)

After defining the vector norm, we will use it next to define the matrix norm.

8.7.3 Definition: Matrix Norm

Given a real matrix A, a real valued function is a matrix norm

if it satisfies the next three conditions:

(8.46)

 where (8.47)

 where . (8.48)

As with the vector norm, the matrix norm is denoted by . One choice of the matrix norm

can be defined by using the vector norm as follows:

. (8.49)

(Notice that we may use T as a super script to mean real matrix transpose. If the matrix is

complex, T means the complex conjugate.)

8.7.3.1 Some important properties of the matrix norm

Two important properties of the matrix norm which are used in the coming sections

are:

g αx() α g x()= α ℜ1∈

g x1 x2
+() g x1() g x2()+≤ x1 x2, ℜd∈

x x1
2

x2
2 … xd

2
+ + +()

1 2⁄
xTx()

1 2⁄
= =

dxd g:ℜdxd ℜ1→

g A() 0 where g A()≥ 0 iff A 0= =

g αA() α g A()= α ℜ1∈

g A1 A2
+() g A1() g A2()+≤ A1 A2

 are dxd matrices,

A max

x =1

Ax=

124

 where . (8.50)

 where . (8.51)

These properties can be found, for example, from [GoVa96].

8.7.3.2 Lemma: Norm of a diagonal matrix

For a diagonal matrix with elements where ,

. (8.52)

proof

By using the definition of the matrix norm in Equation (8.49), we can write

, (8.53)

where such that the 1 appears in the row, and .

This means Equation (8.53) can be written as follows:

. (8.54)

Now let’s assume that is a unit vector that satisfies the norm condition:

. (8.55)

Since is a diagonal matrix, we can write the square of the norm in Equation (8.55) as

follows:

. (8.56)

Notice that has the following upper bound:

. (8.57)

Ax A x≤ x ℜd∈

A1A2 A1 A2≤ A1 A2
 are dxd matrices,

Dd λi λd λd 1– … λ1≥≥≥

Dd λd=

Dd
2 Ddei

2≥ λi
2

=

ei 0 … 1 … 0
T

= i
th

i 1 2 … d, , ,=

Dd
2 λd

2≥

x'

Dd Ddx'=

Dd

Dd
2 λd

2
x'1

2 λd 1–
2

x'2
2 … λ1

2
x'd

2
+ + +=

Dd
2

Dd
2 λd

2
x'1

2
x'2

2 … x'd
2

+ + +()≤ λd
2

=

125

By combining Equations (8.57) and (8.54), we can see that

. (8.58)

8.7.4 Singular value decomposition

For each matrix , there exist orthogonal matrices such that

, (8.59)

where S is a diagonal matrix with elements , which are the singular

values of A (see [GoVa96 page 70]).

8.7.4.1 Important SVD properties

Two important properties can be found from the SVD of a matrix. The first one is

that the norm of the matrix is equal to the largest singular value of the matrix:

. (8.60)

The second property is that the singular value of the matrix A is equal to the square root

of the eigen value of the matrix :

, (8.61)

where (see [TrBa97 page 34]).

8.7.5 Definition: Diagonalizable matrix

A matrix A is said to be diagonalizable if there exists an invertible matrix such

that ; a diagonal matrix.

Dd λd=

dxd A Q, V

QTAV S=

σd σd 1– … σ1≥ ≥ ≥

A σd=

i
th

i
th ATA

σi A() λi ATA()()
1 2⁄

=

i 1 2 … d, , ,=

W

W() 1– AW D=

126

8.8 Multilinear algebra definitions

8.8.1 Vector exterior products

Let be the basis set of a vector space V. The exterior product of

two vectors and is denoted by (wedge). It has the following properties:

(8.62)

. (8.63)

This relation can be extended linearly. So if and , then

. (8.64)

Geometrically, we know that a vector a in the space represents a specific direction in

this space. The magnitude of the vector represents its length. The exterior product of two

vectors a and b represents the oriented plane segment of the parallelogram with sides a and

b. Its magnitude represents the area of the resulting parallelogram. The same is true for

higher order products. The next figure shows two vector exterior products. For more details

see [Bay96].

Figure 8.2 Vectors a and b exterior product ()

v1 v2 … vd, , ,{ }

vi vj vi^vj vi vj

vi^vj 0 if i j= =

vi^vj vj^vi– if i j≠=

a a1v1 a2v2+= b b1v1 b2v2+=

a^b a1v1 a2v2+()^ b1v1 b2v2+() a1b2 a2b1–()v1^v2= =

ℜ2

a

b

a^b

127

8.8.2 Linear operator exterior power

Let V be a vector space of dimension d with the basis set . Define

 to be the vector space of dimension with the basis set

. (8.65)

By generalizing the above definition, we can see that is a vector space of dimension

 where . The basis set for is

. (8.66)

Let the linear operator L be a map from V to itself. We define the linear operator L exterior

power, , such that

, (8.67)

where .

Let’s equip the space V with an inner product (see Section 8.7.1), and let

. From this inner product of V, we can define the inner product of as the

bilinear extension of

. (8.68)

(It can be shown that this is a valid inner product.)

v1 v2 … vd, , ,{ }

V
^2 d

2⎝ ⎠
⎛ ⎞

vi^vj 1 i j d≤<≤{ }

V
^q

d
q⎝ ⎠
⎛ ⎞ 0 q d≤ ≤ V

^q

vi1
^vi2

…^viq
1 i1 i2 … iq d≤< < <≤{ }

L
^q

L
^q x1^x2^…^xq() Lx1^Lx2^…^Lxq=

x1^x2^…^xq V
^q∈

vi wi, V∈ V
^q

v1 v2 … vq∧ ∧ ∧ w1 w2 … wq∧ ∧ ∧,() det

v1
T

v2
T

:

vq
T

w1 w2 … wq

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

128

8.8.2.1 Definition: Adjoint of a linear operator

Given a linear operator , define its adjoint to be the linear operator

 which is determined by

, (8.69)

where (see [Arn98] page 118 and the references therein).

8.8.2.2 Lemma: Adjoint of the wedge

If is the adjoint of L,

. (8.70)

Proof

By applying the adjoint condition to , we have

(8.71)

Also

(8.72)

We conclude from Equations (8.71) and (8.72) that

 (8.73)

for all . As a result, we can see that

L:V V→

L
*
:V V→

Lv w,() v L
*w,()=

v w, V∈

L
*

L
*()

^q
L

^q()
*

=

L
^q

L
^q v1 v2 … vq∧ ∧ ∧() w1 w2 … wq∧ ∧ ∧,() =

v1 v2 … vq∧ ∧ ∧ L
^q()

*
w1 w2 … wq∧ ∧ ∧(),()

L
^q v1 v2 … vq∧ ∧ ∧() w1 w2 … wq∧ ∧ ∧,() =

Lv1 Lv2 … Lvq∧ ∧ ∧ w1, w2 … wq∧ ∧ ∧() =

v1 v2 … vq∧ ∧ ∧ L
*w1 L

*w2 … L
*wq∧ ∧ ∧,() =

v1 v2 … vq∧ ∧ ∧ L
*()

^q
w1 w2 … wq∧ ∧ ∧(),()

v1 v2 … vq∧ ∧ ∧ L
^q()

*
w1 w2 … wq∧ ∧ ∧(),() =

v1 v2 … vq∧ ∧ ∧ L
*()

^q
w1 w2 … wq∧ ∧ ∧(),()

vi wj, V∈

129

. (8.74)

8.8.2.3 Linear operator properties

We list next some properties of linear operators. For reference to the proof of these

properties see [Arn98] page 118 and the references therein.

(1) If A is a matrix representation for L with respect to some basis set,

. (8.75)

(2) If A is a matrix representation for with respect to some basis set, and B is a

matrix representation for with respect to the same basis set,

AB is a matrix representation for . (8.76)

(3) If A is a matrix representation for L with respect to an orthonormal basis,

 is a matrix representation for . (8.77)

(4) From (2) and (3), we can see that

 is a matrix representation for . (8.78)

(5) If and are linear operators,

. (8.79)

(6) If A is a matrix representation for L with respect to an orthonormal basis, and its

eigen values are , then the eigen values of are

. (8.80)

L
*()

^q
L

^q()
*

=

λ A() λ L()=

L1

L2

L1L2

AT
L

*

ATA L
*
L

L1 L2

L1L2()^q
L1

^q
L2

^q
=

λi A() L
^q

λ L
^q() λi1

A()λi2
A()…λiq

A() 1 i1 i2 … iq d≤< < <≤{ }=

130

8.8.2.4 Lemma: Eigen values of

If A is a matrix representation for L with respect to an orthonormal basis, the set of

eigen values of is

. (8.81)

Proof

Since is a matrix representation for ,

. (8.82)

But we know from Equation (8.61) that

. (8.83)

So from Equation (8.80), we have

. (8.84)

After defining the matrix norm and the linear operator exterior power, we will use

them to prove a new theorem for computing the limit as of the eigen values of the

linear Oseledec matrix: .

L
*
L()

^q

L
*
L()

^q

λ L
*
L()

^q
() σi1

A()σi2
A()…σiq

A()()2 1 i1 i2 … iq d≤< < <≤
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

ATA L
*
L

λ ATA() λ L
*
L()=

σ A()()2 λ ATA()=

λ L
*
L()

^q
() σi1

A()σi2
A()…σiq

A()()2 1 i1 i2 … iq d≤< < <≤
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

k ∞→

AT()
k

A()k()
1 2k()⁄

131

8.9 The linear Oseledec matrix

Consider again the Oseledec matrix defined in Equation (8.37). Oseledec

[Ose68] proved that this limit exists and that the LEs of the system are equal to the loga-

rithms of the eigen values of this Oseledec matrix. In order to gain insight into the meaning

of the LEs, let’s consider a linear system. The linear counter part to Equation (2.2) (or

Equation (8.25)) is

. (8.85)

For this system, the Jacobian matrix, (defined in Equation (8.30)) becomes

. (8.86)

We then find that the product of the k Jacobian matrices in Equation (8.34) becomes

. (8.87)

The Oseledec matrix of Equation (8.37) can then be written as

. (8.88)

We know that the eigen values of the matrix A are the poles of a linear system. Our next

step is to find the relationship between the eigen values of and the eigen values of A.

8.9.1 Theorem: Eigen values of a linear Oseledec matrix

Let a matrix be diagonalizable and full rank with eigen values ,

where . The limit as of the eigen value of the matrix

(8.89)

converges to .

Λx

x k 1+() f x k()() Ax= =

Jx k() A=

Jx
k AA…A A()k= =

Λx Jx
k()

T
Jx

k()
1 2k()⁄

k ∞→
lim AT()

k
A()k()

1 2k()⁄

k ∞→
lim= =

Λx

A:ℜd ℜd→ λi A()

i 1 2 … d, , ,= k ∞→ i
th

Ok AT()
k

A()k()
1 2k()⁄

=

λi A()

132

Proof

Before we prove the theorem, we summarize the proof in the following steps:

(1) For a general matrix (not necessarily symmetric), prove that the limit of the

root of the largest singular value of converges to the magnitude of the larg-

est eigen value of A. This is done by first finding upper and lower bounds on the

norm of . Next, we prove that the limits of the root of the two bounds are

equal (this part is proven in Proposition 8.9.3.2).

(2) Divide the limit of the root of the norm of by that of .

Apply the result found in (1) to this ratio to find the limit of the root of the

 singular value of . (is the composition of k linear operators L.)

(3) Repeat step (2), but take the ratios of the eigen values instead of the singular val-

ues. This step finds the magnitude of the eigen value of A.

(4) Equate the two quantities found in (2) and (3) to find that the limit of the root

of the singular value of converges to the magnitude of the eigen

value of A.

(5) Singular values of are the eigen values of (Lemma 8.9.3.1). Taking

the limit of the root of both values complete the proof of the theorem.

k
th

A()k

A()k k
th

k
th

L
*k

L
k()

^q 1+
L

*k
L

k()
^q

k
th

d q–()th A()k L
k

d q–()th

k
th

i
th A()k i

th

A()k Ok()2k

k
th

133

8.9.2 For a symmetric matrix

We will begin by proving the result for a symmetric matrix. We know from linear

algebra that if A is symmetric,

, (8.90)

and its eigen vectors are orthonormal. So we can write

, (8.91)

where W is an orthonormal matrix whose columns are the eigen vectors of A, and D is a

diagonal matrix containing the eigen values of A. Now we can write A as

. (8.92)

We can write the matrix in Equation (8.89) as

, (8.93)

which is

. (8.94)

Since ; which is the identity matrix, Equation (8.94) can be simplified to

, (8.95)

where is a diagonal matrix with elements . Eigen values of the matrices in Equa-

tion (8.95) are

. (8.96)

Because is diagonal,

AT A=

AW WD=

A WDWT
=

Ok()2k

Ok()2k AT()
k

A()k=

Ok()2k WDTW
T
WDTW

T
…WDTW

T
WDWT…WDWT

=

WTW I=

Ok()2k W Da()2kWT
=

Da λi A()

λi Ok()2k() λi Da()2k()=

Da

134

, (8.97)

where .

8.9.3 For a general matrix

Now that we have proven the theorem for a symmetric matrix, next we prove it for

the general case (where A is not necessarily symmetric). In this part of the proof, it will be

convenient to define eigen values of the matrix using singular values of the matrix

, as shown below.

8.9.3.1 Lemma: Eigen values of are equal to the singular values of

Given the matrix , which is defined as shown in Equation (8.89), its eigen values

are equal to the root of the singular values of :

, (8.98)

where .

proof

Taking the power of both sides of Equation (8.89) gives

. (8.99)

From Equation (8.61), we have

. (8.100)

But we can see from Equation (8.99) that

. (8.101)

λi Ok() λi Da() λi A()= =

i 1 2 … d, , ,=

Ok

A()k

Ok A()k

Ok

k
th A()k

λi Ok() σi A()k()()
1 k⁄

=

i 1 2 … d, , ,=

2k()th

Ok()2k AT()
k

A()k=

σi A()k() λi AT()
k

A()k()()
1 2⁄

=

λi Ok()2k() λi AT()
k

A()k=

135

From Equations (8.100) and (8.101), we have

. (8.102)

Taking the root of both sides of Equation (8.102) gives

. (8.103)

As a result from this lemma, we can see that in order to find , we can use

.

8.9.3.2 Proposition: Limit of the root of

Let a real matrix A be diagonalizable, and let its largest eigen value be ,

and its largest singular value be , then

. (8.104)

Proof

From Equation (8.60), we can see that the norm of the matrix is equal to the largest

singular value of the matrix:

. (8.105)

By using the definition of the matrix norm in Equation (8.49), we can write

, (8.106)

where x is a unit vector in . If we let

, (8.107)

λi Ok()2k() σi A()k()()
2

=

2k()th

λi Ok() σi A()k()()
1 k⁄

=

λi Ok()

σi A()k()()
1 k⁄

k
th σd A()k()

dxd λd A()

σd A()

σd A()k()()
1 k⁄

k ∞→
lim λd A()=

A()k σd A()k()=

A()k A()kx≥

ℜd

x ud=

136

where is a unit eigen vector of A corresponding to the largest eigen value, we can write

(using Equation (8.43))

. (8.108)

After finding the lower bound for , the next step is to find an upper bound

for it. Since we assumed the matrix A is diagonalizable, we can write it as follows:

, (8.109)

where D is a diagonal matrix with elements , the columns of W are the eigen vectors

of A, and . Since ; which is the identity matrix, the matrix

 can be written as follows

. (8.110)

By applying the norm property in Equation (8.51) to Equation (8.110), we have:

. (8.111)

To find the upper bound of , we can use the norm property in Equation

(8.52) to find the norm of the diagonal matrix :

. (8.112)

Now we can write the upper bound of in Equation (8.111) as follows

. (8.113)

By combining the lower and upper bounds of , we can see that

ud

A()k σd A()k() λd A() k≥=

σd A()k()

A WD W() 1–
=

λi A()

i 1 2 … d, , ,= W() 1– W I=

A()k

A()k WD W() 1– WD W() 1– …WD W() 1– W D()k W() 1–
= =

σd A()k() A()k= W D()k W() 1–≤

σd A()k()

D()k

D()k λd A() k
=

σd A()k()

σd A()k() λd A() k W W() 1–≤

σd A()k()

137

. (8.114)

The root of Equation (8.114) is:

. (8.115)

Notice that for any scalar ,

. (8.116)

Therefore,

. (8.117)

Now we can see that by the limit as , the upper and lower bounds for

become equal. Taking the limit as of Equation (8.115) and using Equation (8.60)

gives

. (8.118)

Recall that we are trying to prove that the eigen values of are equal to the mag-

nitude of the eigen values of A. So far, we have shown that the largest eigen value of

(which is the same as) is equal to the magnitude of the largest eigen value

of A. The next step is to show that the remaining eigen values are also equal. Let A be a

matrix representation for L with respect to an orthonormal basis. By using the linear oper-

ator property in Equation (8.76), we can see that is a matrix representation for the

composition of the k operators: , which is denoted by :

λd A() k σd A()k() λd A() k W W() 1–()≤ ≤

k
th

λd A() σd A()k()()≤
1 k⁄

λd A() W W() 1–()
1 k⁄

≤

x 0>

x()1 k⁄

k ∞→
lim 1=

W W() 1–()
1 k⁄

k ∞→
lim 1=

k ∞→ σd A()k()()
1 k⁄

k ∞→

A()k
1 k⁄

k ∞→
lim σd A()k()()

1 k⁄

k ∞→
lim λd A()= =

Ok

Ok

σd A()k()()
1 k⁄

A()k

LL…L L
k

138

. (8.119)

Similarly, we denote the composition of the k adjoints of L by

. (8.120)

The next step in the proof of the theorem is to apply Equation (8.118) to the exterior

power of the linear operator , which is , in place of . Assume now that there

exists a matrix representation for the linear operator with respect to an orthonormal

basis. We know from Equation (8.76) that

 is a matrix representation for . (8.121)

We also know from Equations (8.79), (8.119), and (8.121) that

. (8.122)

From Equation (8.60), we know that the norm of the matrix is equal to its largest singular

value:

. (8.123)

We also know from Equations (8.61) and (8.78) that

. (8.124)

By using Equation (8.79), we can write Equation (8.124) as follows

. (8.125)

Notice that the norm of a linear operator is defined in the same way as the norm of a matrix

(see [Kre98] page 33). So from Equations (8.123) and (8.125), we have

L
k

LL…L k times–()=

L
*k

L
*
L

*…L
*
 k times–()=

L
k

L
k()

^q
A()k

Bq L
^q

Bq()k L
^q

L
^q…L

^q
 k times–()

L
k()

^q
LL…L()^q

L
^q

L
^q…L

^q
= =

Bq()k σmax Bq()k()=

σi Bq()k() λi Bq
T()

k
Bq()k()()

1 2⁄
λi L

*k()
^q

L
k()

^q
()()

1 2⁄
= =

σi Bq()k() λi L
*k

L
k()

^q
()()

1 2⁄
=

139

. (8.126)

From Equation (8.81), we have

. (8.127)

Applying Equation (8.127) to gives

. (8.128)

This means that by using Equations (8.126) and (8.128) we can write

 . (8.129)

(Notice that since A is full rank, non of its singular values or eigen values is equal to zero.)

Equation (8.129) can be simplified to

 . (8.130)

If we apply Equation (8.118) to , we have

. (8.131)

According to Equation (8.75),

. (8.132)

From Equation (8.80), the largest eigen value of is

. (8.133)

From the left hand side of Equation (8.126), we have

Bq()k L
k()

^q
λmax L

*k
L

k()
^q

()()
1 2⁄

= =

λmax L
*
L()

^q
() σd A()σd 1– A()…σd q– 1+ A()()2=

L
k

λmax L
*k

L
k()

^q
() σd A()k()σd 1– A()k()…σd q– 1+ A()k()()

2
=

L
k()

^ q 1+()

L
k()

^q

σd A()k()σd 1– A()k()…σd q– 1+ A()k()σd q– A()k()

σd A()k()σd 1– A()k()…σd q– 1+ A()k()
---=

L
k()

^ q 1+()

L
k()

^q
------------------------------ σd q– A()k()=

Bq()k

Bq()k
1 k⁄

k ∞→
lim σmax Bq()k()()

1 k⁄

k ∞→
lim λmax Bq()= =

λi Bq() λi L
^q()=

L
^q

λmax L
^q() λd A()λd 1– A()…λd q– 1+ A()=

140

. (8.134)

Now we can use Equations (8.131) and (8.134) to write

. (8.135)

From Equations (8.132) and (8.135), we have

. (8.136)

Applying Equation (8.133) to Equation (8.136) gives

. (8.137)

Next we need to find the limit of the root of the ratio and

by using Equation (8.137):

. (8.138)

Which can be simplified to

. (8.139)

Combining Equation (8.139) with the limit of the root of Equation (8.130) gives

. (8.140)

By repeating Equation (8.140) for , we have

, (8.141)

Bq()k L
k()

^q
=

Bq()k
1 k⁄

k ∞→
lim L

k()
^q 1 k⁄

k ∞→
lim λmax Bq()= =

L
k()

^q 1 k⁄

k ∞→
lim λmax Bq() λmax L

^q()= =

L
k()

^q 1 k⁄

k ∞→
lim λd A()λd 1– A()…λd q– 1+ A()=

k
th

L
k()

^ q 1+()
L

k()
^q

L
k()

^ q 1+()

L
k()

^q

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1 k⁄

k ∞→
lim

λd A()λd 1– A()…λd q– 1+ A()λd q– A()
λd A()λd 1– A()…λd q– 1+ A()

---=

L
k()

^ q 1+()

L
k()

^q

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1 k⁄

k ∞→
lim λd q– A()=

k
th

σd q– A()k()()
1 k⁄

k ∞→
lim λd q– A()=

q 0 1 … d 1–, , ,=

σi A()k()()
1 k⁄

k ∞→
lim λi A()=

141

where . Applying Equation (8.141) to the result of Lemma 8.9.3.1 gives

. (8.142)

Later we will show the result of applying this theorem to estimate the set of LEs for

a chaotic system.

8.10 Chapter summary

In this chapter, we introduced the theory of Lyapunov exponents for a first order

chaotic system and a multidimensional chaotic system. We also presented the notion of in-

variant sets that make two chaotic systems equivalent. A new theorem that relates the poles

of a linear system to the set of Lyapunov exponents was also proven here. In the next chap-

ter, we will show methods to estimate the set of Lyapunov exponents for a chaotic system.

i 1 2 … d, , ,=

λi Ok()
k ∞→
lim σi A()k()()

1 k⁄

k ∞→
lim λi A()= =

142

CHAPTER 9

ESTIMATION OF LYAPUNOV EXPONENTS

9.1 Introduction

In Chapters 5 through 7, we discussed estimating the minimum embedding dimen-

sion () of a chaotic system. We said that represents the model order. To complete the

modeling process, we need also to estimate the set of LEs of the system. In Chapter 8,

we gave the theoretical background of the LEs and proved a new theorem (linear Oseledec

theorem) that relates the LEs to the poles of a linear system. The purpose of this chapter is

to discuss different algorithms for estimating the LEs. We will also test these algorithms on

different chaotic systems.

In Section 9.2, we will talk about the QR decomposition of a matrix. We will also

talk about spurious exponents in this section. In Section 9.3, we will explore two geometric

algorithms for estimating the LEs. The first algorithm is the Eckmann algorithm. The sec-

ond algorithm is a new procedure based on the linear Oseledec theorem. We will also dis-

cuss a third algorithm in Section 9.4. This is a predictive algorithm that is an improvement

of an existing algorithm which uses a neural network to estimate the LEs. Pseudo code that

summarizes the three algorithms is shown in Section 9.5. The results of applying the three

algorithms to estimate the LEs of six different chaotic systems are tabulated, and the overall

results are discussed in Section 9.6. Finally, we present the chapter summary in Section 9.7.

dL dL

dL

143

9.2 Estimating the LEs from Jacobian matrices

In Section 8.6, we showed that the set of LEs can be computed from the product of

Jacobian matrices along the attractor of the system. We said that in order for a system to be

chaotic, at least one of its LEs has to be positive. As the number of Jacobian matrices in-

creases, there are inaccuracies that develop as a result of the matrix multiplications. In other

words, as the number of multiplied matrices increases, eigen values corresponding to the

positive LEs will increase exponentially fast. On the other hand, eigen values correspond-

ing to the negative LEs will decrease exponentially fast. This leads to an over flow in eigen

value computations.

In the next two sections, we will present different algorithms for estimating the LEs

without directly performing Jacobian matrix multiplications. A standard method that helps

in avoiding the direct multiplication of the Jacobian matrices is the QR decomposition,

which is explained below.

9.2.1 Estimating LE by QR decomposition

To estimate the set of LEs for a system of dimension d, we need first to compute the

M Jacobian matrices (defined in Equation (8.30)) of the map , where

. For the case that f is not known, the Jacobian matrices need to be es-

timated. Estimation of the Jacobian matrices will be covered in detail later in Sections 9.3

and 9.4.

To estimate the d LEs of the system, we start at time by computing the QR

decomposition [EcRu85] of to produce

, (9.1)

Jx m() f: ℜd ℜd→

m 0 1 … M 1–, , ,=

m 0=

Jx 0()

Q1R1 Jx 0()=

144

where is an orthonormal matrix, and is an upper right triangular matrix with diag-

onal elements that are equal to the eigenvalues of . In the next step, we need to repeat

the above process on the product (for time):

. (9.2)

In general, for time , we need to compute the QR decomposition of the prod-

uct :

. (9.3)

Notice that by multiplying both sides of Equation (9.1) by , we have

. (9.4)

Substituting from Equation (9.2), into Equation (9.4) gives

. (9.5)

Now we can see that after m time steps:

. (9.6)

From Equations (8.34) and (9.6), we can write the product of the m Jacobian matrices as:

. (9.7)

Notice that from Equations (8.36) and (9.7), the LEs of the system can be written as

. (9.8)

It was proven (see [EcRu85] page 651 and the reference therein) that the d LEs can be found

from the equation

Q1 R1

Jx 0()

Jx 1()Q1 m 1=

Q2R2 Jx 1()Q1=

m 1–

Jx m 1–()Qm 1–

QmRm Jx m 1–()Qm 1–=

Jx 1()

Jx 1()Q1R1 Jx 1()Jx 0()=

Jx 1()Q1

Q2R2R1 Jx 1()Jx 0()=

QmRmRm 1– …R1 Jx m 1–()Jx m 2–()…Jx 0()=

QmRmRm 1– …R1 Jx
m

=

λ 1
m

m ∞→
lim QmRmRm 1– …R1δ 0()log=

145

, (9.9)

where is the diagonal element of the matrix , and . In the next

subsection, we show an example of estimating the LEs for a multidimensional chaotic sys-

tem with a known Jacobian matrix.

9.2.1.1 Example: Estimating LEs of the Henon map

As we have mentioned before, the Henon map is a second order chaotic system (see

Equations (2.4) and (2.5)). The Jacobian matrix of the Henon map at is

, (9.10)

where . To find the two LEs of the Henon map, we start at time by

evaluating the Jacobian matrix at which gives

. (9.11)

Using Equation (9.1), we can find the QR decomposition of the matrix as follows

. (9.12)

By repeating the above process until the last data point, we can find the two LEs of the

Henon map from the equation:

. (9.13)

λi
1
m
---- Rk()ii()log

k 1=

m

∑m ∞→
lim=

Rk()ii i
th Rk i 1 2 … d, , ,=

x m()

Jx m()
2.8x1– 1

0.3 0 x x m()=

=

x x1 x2

t
= m 0=

x 0() 0.5 0.5[]t=

Jx 0()
2.8x0.5– 1

0.3 0

1.4– 1

0.3 0
= =

Jx 0()

Q1R1
0.98– 0.21

0.21 0.98

1.43 0.98–

0 0.21

1.4– 1

0.3 0
Jx 0()= = =

λi
1
M
----- Rk()ii()log

k 1=

M

∑=

146

The estimated LEs of the Henon map when using 10,000 points are and

.

Unfortunately, the Jacobian matrix of the system is generally not known to us, and

all we see is a set of scalar measurements taken from the system. In the next two sec-

tions, we present three algorithms for estimating the Jacobian matrices of a chaotic system

using . Two of these algorithms are geometric and one is predictive. The estimated

Jacobian matrices are then used to estimate the set of LEs for the system. Before we show

the three algorithms, let’s introduce the concept of spurious exponent.

9.2.2 Spurious exponent

We said before in Chapter 3 that by using the embedding theorem, a system whose

attractor is in can be embedded into a space of dimension where is the

box-counting dimension of the attractor (see Section 2.3.3.1). We also presented different

algorithms used to estimate the minimum embedding dimension (), where an em-

bedding map can be found. But if the embedding was into a space of dimension d which is

greater than , there will be spurious exponents [EkRu85, DaBr96]. These expo-

nents are fake, meaning that they were not generated from the dynamics of the system. In

other words, they represent numerical artifacts resulting from the lack of knowledge of the

exact dimension of the system. This reveals the importance of using a good estimate of

before estimating the LEs of the system. In Chapter 6, we presented four new algorithms

that can give a good estimate of . In the next two sections, we present three different al-

gorithms used to estimate the LEs for a chaotic system.

λ2 0.4161=

λ1 1.6201–=

y m()

y m()

ℜk
dE 2dc 1+≥ dc

dL dE≤

dL d dL–

dL

dL

147

9.3 Estimating LEs by Geometric algorithms

In 1985, Sano and Sawada [SnSd85] and Eckmann and Ruelle [EcRu85] introduced

similar algorithms to estimate the LEs of a chaotic system. They do so by using scalar mea-

surements taken from the system. Both algorithms are geometric and use similar orthogo-

nalization techniques to estimate the LEs. In this chapter, we show the Eckmann algorithm

as an example. We begin by presenting the Eckmann algorithm, then we present a new al-

gorithm that applies the result of the linear Oseledec theorem.

9.3.1 Eckmann’s algorithm

Let be a delay-vector in the reconstructed space created from the mea-

surements (see Equation (3.20)). We denote the neighbors of by

and its time indices by where (see Section 6.2.1). Further, let the

perturbation vector from into its neighbor be

, (9.14)

where represents the perturbation vector in the direction of the neighbor of

. After n iterations, , and . The new

perturbation vector is .

If we assume that the distance between the reference vector and its neighbors at

time m is small enough, we can approximate the evolution of the perturbation vectors from

yd m() ℜd∈

y m() Nb yd m() yd

k
m()

)

id
k

m() k 1 2 … Nb, , ,=

yd m() k
th

δk
m() yd m() yd

k
m()– yd m() yd id

k
m()()–= =

)

δk
m() k

th

yd m() yd m() yd m n+()→ yd id
k

m()() yd id
k

m() n+()→

δk
m n+() yd m n+() yd id

k
m() n+()–=

Nb

148

 to by a linear map. That means, we can write the evolution of the pertur-

bation vector after n time steps as

, (9.15)

where .

In the next step, the Eckmann algorithm estimates the matrix by the least

squares method. It does so by solving the following equation:

, (9.16)

where . It estimates the Jacobian at each of the follow-

ing time steps , where . Next the Eckmann algorithm ap-

plies the QR decomposition to the resulting Jacobian matrices, as described in

Section 9.2.1. After the QR decomposition is performed, the resulting R matrices can be

used to compute the LEs by using Equation (9.9).

Actually, Equation (9.9) has to be modified slightly to provide the LEs in continu-

ous time (see [EKRC86]). We need to divide it by the time interval which is , where

is the sampling interval for the original sequence, and n is the number at time steps forward

that is used in the Jacobian calculation (see Equation (9.15)). The resulting equation for es-

timating the LEs is

. (9.17)

δk
m() δk

m n+()

δk
m()

δk
m n+() Jyd m n+()

n δk
m()=

Jyd m n+()
n Jyd m n 1–+()Jyd m n 2–+()…Jyd m()=

Jyd m n+()
n

Jyd m n+()
n()

t
EmEm

t()
1–
EmEm n+

t≈

Em δ1
m() δ2

m() … δ
Nb m()=

m 0 n 2n … U, ,, ,= U M
n
-----=

nτs τs

λi
1

nτsU
------------ Rk()ii()log

k 1=

U

∑=

149

The Eckmann algorithm does not show how to find the dimension of the system d.

It assumes that d is known before estimating the LEs of the system. As we said in

Section 9.2.2, if d is greater than the minimum embedding dimension of the system (),

there will be spurious exponents among the estimated LEs. Eckmann’s algorithm

can be improved by starting to estimate of the system before estimating the LEs. In

Chapter 6, we presented four new algorithms that can estimate . In Section 9.5.1, we will

show the pseudo code of the Eckmann algorithm, while in Section 9.6, we will present the

results of estimating the LEs by applying this algorithm on different chaotic systems.

After presenting the Eckmann algorithm for estimating the set of LEs, we present

the second geometric algorithm, which applies the result of the linear Oseledec theorem to

estimate the set of LEs.

9.3.2 Linear Oseledec algorithm

We proved in Section 8.9.1 a new theorem (the linear Oseledec theorem) that re-

lates the LEs to the poles of a linear system. We have shown that the LEs are the magnitude

of these poles. Now we present a new algorithm that applies the result of the linear Osele-

dec theorem to estimate the set of LEs for a chaotic system.

This algorithm is called the linear Oseledec algorithm. It is a geometric algorithm

that is similar to Eckmann’s algorithm. To estimate the LEs of the system, it starts by esti-

mating the Jacobian matrices in the same way as in the Eckmann algorithm. Then it as-

sumes that for a fixed number of time steps (n), the eigen values of the Jacobian matrices

are the same. Next the algorithm records the logarithm of the magnitude of the eigen values

of the Jacobian matrix at the end of these steps (local LEs). By repeating this for the whole

dL

d dL–

dL

dL

150

data set, the algorithm computes the LEs of the system by averaging the local LEs resulting

from the previous computations. In other words, the linear Oseledec algorithm estimates

the Jacobian matrices (see Equation (9.16)). Then it computes the local LEs

from the magnitude of the sorted eigen values of :

. (9.18)

By repeating this until the last data point, the algorithm computes the LEs as follows:

. (9.19)

In Section 9.5.2, we will present a pseudo code that summarizes the linear Oseledec algo-

rithm. While in Section 9.6 we will show the result of applying this algorithm on six differ-

ent chaotic systems.

After presenting the two geometric algorithm for estimating the set of LEs of a cha-

otic system, we present a predictive algorithm.

9.4 Estimating LEs by the predictive algorithm

Instead of using the least squares method to approximate the Jacobian matrices

(which are then used to estimate the LEs), as in the geometric algorithms, the predictive

algorithm approximates the map in the reconstructed space (see Equation

(4.6)). Then it uses the approximated map to approximate the Jacobian matrices. These

matrices are subsequently used to estimate the LEs of the system. The idea behind the pre-

dictive algorithm comes from the fact that if the embedded system of the delay-vectors

JydL
m n+()

n

JydL
m n+()

n

λi
m λi JydL

m n+()
n

⎝ ⎠
⎛ ⎞=

λi
1

nτsU
------------ λi

l

l 1=

U

∑=

µ: ℜd ℜ1→

µ

151

 is equivalent to the original hidden system, we can use to estimate the LEs

of the system (see also Section 4.4).

State evolution in the reconstructed space can be written as

, (9.20)

where . The Jacobian matrix of the map can be computed from Equation

(9.20) as follows:

, (9.21)

where is the kth element of . Recall from Equations (4.10) and (4.11) that the

state evolution in the reconstructed space can be written as

. (9.22)

By comparing Equation (9.22) with Equation (9.20), we can see that

. (9.23)

We can now compute the Jacobian for Equation (9.21) as

, (9.24)

yd m() yd m()

yd m 1+() φ yd m()()=

yd m() ℜd∈ φ

Jyd m()()
i k,()

φi yd m()()∂
yk m()∂

---------------------------=

yk m() yd m()

yd m 1+()

µ yd m()()

y m()
:

y m d– 2+()

=

φ yd m()()

µ yd m()()

y m()
:

y m d– 2+()

=

Jyd m()

a1 a2 … ad 1– ad

1 0 0 … 0

0 1 0 … 0

: : : : :

0 0 0 1 0

=

152

where

. (9.25)

By using a neural network, we can approximate the function (as shown in

Section 4.3.2). Figure 9.1 shows a neural network model used for approximating . The

network has a structure. That means the network takes a d-dimensional delay-

vector as an input, neurons in the hidden layer, and one neuron in the output layer. The

network takes d previous measurements (delay-vector) to approximate the next

measurement in time . The hidden layer transfer functions are hyperbolic tangent

sigmoid (tansig) and the output layer transfer functions are linear (purelin).

Figure 9.1 The feed forward network used to approximate

Assuming that the network has accurately approximated , we can use its parame-

ters to approximate the coefficients . From Equation (9.25), we can replace the map

by its approximation (neural network model) to approximate :

. (9.26)

From the neural network model, we can see that the approximated output is

ai
y m 1+()∂

yi m()∂

µ yd m()()∂
yi m()∂

--------------------------= =

µ

µ

d nh– 1–

nh

yd m()

y m 1+()

dx1

1

n1
m() a1

m()

1 b1
b

2

w2

n
2

m() a
2

m()

tansig

purelin

W1

1 x nh

1 x 1

nh x d

nh x 1

yd m()

µ

µ

ai µ

âi

âi
ŷ m 1+()∂

yi m()∂
------------------------=

153

, (9.27)

where . Notice that we can write Equation (9.27) as follows

. (9.28)

Taking the derivative of with respect to produces the coefficients:

. (9.29)

Equation (9.29) can be written as

, (9.30)

or

, (9.31)

where which is the kth column of the weights matrix . No-

tice that the multiplication is point wise. Since we used the tansig transfer func-

tion in the hidden layer, Equation (9.31) can be written as

, (9.32)

see [Hag95].

After approximating the coefficients , we can use them to approximate the Jaco-

bian matrix in Equation (9.24). Next the predictive algorithm applies the QR decom-

position on the approximated Jacobian matrices to estimate the set of LEs (see

Section 9.2.1).

ŷ m 1+() b
2 w2a1

m()+=

w2
w1

2
w2

2
wnh

2=

ŷ m 1+() b
2 w2f1 W1yd m() b1

+()+=

ŷ m 1+() yi m()

âi
∂

yi m()∂
---------------- b

2 w2f1 W1yd m() b1
+()+()=

âi w2 ∂
yi m()∂

----------------f1 W1yd m() b1
+()=

âi w2 wk
1 f·

1
W1yd m() b1

+()⋅()=

wk
1

w1 k,
1

w2 k,
1

wnh k,
1

t
= W1

wk
1 f·

1
()⋅

âi w2 wk
1 1 f1 n1()()

2
–()⋅()=

ai

Jyd m()

154

To apply the predictive algorithm for estimating the LEs, it starts by sampling the

measurements at an interval T (see Section 6.2) to produce (see Equation

(6.16)). Next the predictive algorithm creates the new delay-vector (see Equation

(6.18)). The mean has to be deducted from it to insure that the input to the network

is a zero mean. This step creates the signal (see Equation (6.17)).The network is pre-

sented with d previous values of and trained to predict the next value in time.

The original predictive algorithm was introduced by L. Djamai and P. Coirault

[DjCo02]. We improved their algorithm in four ways: i) we used the delay-vectors

instead of the original states of the system, ii) we estimated the minimum embedding di-

mension of the delay-vector by using our algorithms that we presented in Chapter 6, iii)

we repeat the training process a few times then choose the network with the minimum SSE,

and iv) we simplified the Jacobian matrix approximation into the form shown in Equation

(9.24). The third Improvement is required to insure that the network has converged to the

global, rather that the local minima.

In Section 9.5.3, we will present a pseudo code that summarizes the predictive al-

gorithm. The results of applying the predictive algorithm on six different chaotic systems

will be presented in Section 9.6.

9.5 Pseudo codes of the LE estimation algorithms

In Section 9.3, we presented two geometric algorithms used for estimating the set

of LEs. In Section 9.4, we presented the predictive algorithm for the same purpose. In this

section, we show three pseudo codes that summarize these algorithms.

y m() ys m()

yd
s

m()

ys m()

s m()

s m()

yd m()

dL

155

9.5.1 Pseudo code of the Eckmann algorithm

To improve the Eckmann algorithm (see Section 9.3.1) for noisy signals, we can

use the method suggested by Zeng et al [ZxEyPi91]. In this paper, the authors use a shell

around the reference point (rather than a sphere as suggested by Eckmann). The shell has a

minimum and a maximum radius. This method reduces the effect of noise by eliminating

neighbors that are very close to the reference point from the Jacobian computations. These

neighbors could actually be noise signals. If the signal is noise free, the minimum radius

can be set to zero, which is similar to Eckmann’s original algorithm. Figure 9.2 below

shows a pseudo code that summarizes the Eckmann algorithm.

156

Figure 9.2 Pseudo code for the Eckmann algorithm

{Pseudo code of the Eckmann algorithm
•Choose n (forward steps)
•Choose and (minimum and maximum neighbor distances)

•Estimate (use the algorithms presented in Chapter 6)

•Choose (number of neighbors of the reference point)

•Compute T (see Section 6.2)
•Initialize Q and R to be identity matrices

•Create the delay vectors ,

•For m=0:step n: M
•Compute the distances between and the other points.
•Save the neighbors of with distances between and in the matrix

.

•Compute the perturbation matrix:

.

(Propagate and n time steps ahead and compute the new perturbation matrix
)

•The kth element of is , where
•Use and to estimate the Jacobian matrix:

•Normalize and reorthogonalize by the QR decomposition

•Multiply the triangular matrices:

•end m
(The estimated LEs are the mean of the logarithm of the magnitude of the diagonal elements of R)

• , where , and

}

rmin rmax

dL

Nb

dL x dL

ydL
m() y m() y m T–() … y m dL 1–()T–()

t
= m 0 1 … M 1–, , ,=

ydL
m()

Nb ydL
m() rmin rmax

YdL
m() ydL

idL

1
m()() ydL

idL

2
m()() … ydL

idL

Nb m()⎝ ⎠
⎛ ⎞=

Em ydL
m() y–

dL
idL

1
m()() ydL

m() y–
dL

idL

2
m()() … ydL

m() y–
dL

idL

Nb m()⎝ ⎠
⎛ ⎞=

ydL
m() ydL

idL

k
m()()

Em n+

Em n+ Em n+()
k

ydL
m n+() y–

dL
idL

k
m() n+()= k 1 2 … Nb, , ,=

Em Em n+

JydL
m n+()

n

⎝ ⎠
⎛ ⎞ t

EmEm
t()

1–
EmEm n+

t
=

JydL
m n+()

n

QRm JydL
m n+()

n Q=

R RmR=

λi
1

nτsU
------------ Ri i()log= i 1 2 … dL, , ,= U M

n
-----=

157

9.5.2 Pseudo code of the linear Oseledec algorithm

The linear Oseledec algorithm (see Section 9.3.2) is similar to the Eckmann algo-

rithm, but here we do not multiply matrices. To compute the LEs using the linear Oseledec

algorithm, we compute the local LEs first. The next step is to estimate the LEs of the system

by averaging these local exponents. Figure 9.3 shows the linear Oseledec algorithm pseudo

code.

Figure 9.3 Pseudo code for the linear Oseledec algorithm

{Pseudo code of the linear Oseledec algorithm
•Choose n (forward steps)
•Choose and (minimum and maximum neighbor distances)

•Estimate (use the algorithms presented in Chapter 6)

•Choose (number of neighbors of the reference point)
•Compute T (see Section 6.2)

•Create the delay vectors ,

•For m=0: step n: M-1
•Compute the distances between and the other points.
•Save the neighbors of with distances between and in the matrix

.

•Compute the perturbation matrix:

.

(Propagate and n time steps ahead and compute the new perturbation matrix
)

•The kth element of is , where
•Use and to estimate the Jacobian matrix:

(Compute the local LEs)

•

•end m

(The estimated LEs are the average of

• , where , and

}

rmin rmax

dL

Nb

ydL
m() y m() y m T–() … y m dL 1–()T–()

t
= m 0 1 … M 1–, , ,=

ydL
m()

Nb ydL
m() rmin rmax

YdL
m() ydL

idL

1
m()() ydL

idL

2
m()() … ydL

idL

Nb m()⎝ ⎠
⎛ ⎞=

Em ydL
m() y–

dL
idL

1
m()() ydL

m() y–
dL

idL

2
m()() … ydL

m() y–
dL

idL

Nb m()⎝ ⎠
⎛ ⎞=

ydL
m() ydL

idL

k
m()()

Em n+

Em n+ Em n+()
k

ydL
m n+() y–

dL
idL

k
m() n+()= k 1 2 … Nb, , ,=

Em Em n+

JydL
m n+()

n

⎝ ⎠
⎛ ⎞ t

EmEm
t()

1–
EmEm n+

t
=

λi
m λi JydL

m n+()
n

⎝ ⎠
⎛ ⎞log=

λi
m

λi
1

nτsU
------------- λi

l

l 0=

U 1–

∑= i 1 2 … dL, , ,= U M
n
-----=

158

9.5.3 Pseudo code of the predictive algorithm

Now that we have shown the pseudo codes of the two geometric algorithms, we

present the pseudo code of the predictive algorithm (see Section 9.4). Figure 9.4 shows a

pseudo code that summarizes the predictive algorithm.

Figure 9.4 The predictive algorithm pseudo code

{Pseudo code of the predictive algorithm
•Estimate (use the algorithms presented in Chapter 6)

•Choose (number of hidden layer neurons)

•Compute T (see Section 6.2)
•Create sample the measurements. Then compute it’s mean

•Create to insure a zero mean input

•Set (maximum number of trials to train the network)

•Initialize Q and R to be identity matrices

•For Iteration = 1:

•Initialize the network parameters: Net

•Train the network with the input to predict the output . Do that

until the network reaches its minimum SSE
(Record the minimum SSE as a function of Iteration number and save the resulting network parame-
ters)
•
•Network (Iteration) = Net

•end Iteration
(Find the index of the minimum SSE)
•
(Choose the network parameters of the index “ “)

•NetOpt = Network()

•Read the network NetOpt parameters W2, W1, and b1

•For m= 1: U,

•For k = 1:dL

• , fill up the Jacobian matrix elements as
shown in Equation (9.24)

•end k
(Perform the QR decomposition)
•
(Multiply the triangular matrices)
•

•end m
(The estimated LEs are the mean of the logarithm of R

• , }

dL

nh

ys m() y 1 m 1–()T+()= ys

s m() ys m() ys–=

Itrmax

dL x dL

Itrmax

s m 1–() s m 2–() … s m dL–() s m()

SE(Iteration) SSE=

Ind Index(minimum SE())=

Ind

Ind

U M
T
-----=

a k() w2 wk
1 1 Tansig W1

s m() b1
+()()

2
–()⋅()= JydL

m()

QRm JydL
m()Q=

R RmR=

λi
1

TτsU
------------- Ri i()log= i 1 2 … dL, , ,=

159

9.6 Results of estimating the LEs by using the three algorithms

In the previous three sections, we presented three algorithms for estimating the set

of LEs for a chaotic system. These algorithms use a set of scalar measurements taken from

the system do the estimation. Two of these algorithms are geometric and one is predictive.

We also showed pseudo codes that summarize these algorithms.

In this section, we list the results of the estimated LEs found by applying these al-

gorithms on six different chaotic systems (see Section 7.2). The first column of Table 9.1

shows six different chaotic systems that we used to test the three algorithms: the Eckmann,

the predictive, and the linear Oseledec (the last three columns). The first column also shows

the sampling time of the measurements and the computed delay-time T. The first

row of each cell in the second through the fifth columns of the table shows the LE values,

while the second row shows the Lyapunov dimension (see Equation (8.23)). For example,

we can see that the estimated LEs for the Lorenz model by using the Eckmann algorithm

(in second row, third column of the table) are 1.31, -0.03, and -7.8, while the computed

Lyapunov dimension is 2.16. The Jacobian matrices of the first three systems are known,

while the Jacobian matrices of the next three systems are not known. The set of LEs for the

first three systems were computed from the Jacobian matrices by using the Wolf el al algo-

rithm [WSSV85]. These values are shown in the first three cell in the second column of the

table.

τs y m()

160

Table 9.1 LEs estimation results using the three algorithms. The numbers
inside the curly parenthesis are the estimated LEs and the number in the

bottom of the cell is the Lyapunov dimension ().

9.6.1 Discussion of the results

From Table 9.1, we can see that the Eckmann algorithm gave good estimates of the

LEs for the chaotic circuit and the Santa Fe data sets. The estimate of the smallest LEs for

the Rossler model was not perfect. For the predictive algorithm, we can see that it gave

good estimates of the LEs for the Lorenz model, the Rossler model, the chaotic circuit, and

the A Santa Fe data set, while it fails to find good estimates of the LEs for the and

Santa Fe data sets. Notice also that the predictive algorithm estimates of the LEs for the

Lorenz model were better than those found by the Eckmann algorithm. On the other hand,

we can see that the linear Oseledec algorithm gave good estimates of the LEs for the

Rossler model, the chaotic circuit, the and Santa Fe data sets, while it gave a poor

estimate of the largest LE of the Lorenz model.

In general, we can see that the Eckmann algorithm usually gives good estimates of

the LEs. While the predictive algorithm gave good estimates of the LEs for signals with

high SNR. The linear Oseledec algorithms on the other hand, gave good estimates in four

Chaotic system Original LEs Eckmann alg. Predictive alg. Linear Oseledec alg.
and Lyapunov dimension

Lorenz model {1.34,0.00,-22.29} {1.31,-0.03,-7.8} {1.33,-0.15,-19.27} {4.38,-0.17,-14.02}
Sampling time = 0.01

Delay-Time T = 8, d L = 3 2.06 2.16 2.06 2.3
Chaotic circuit {0.35, -0.01, -1.09} {0.36, -0.05, -1.03} 0.4, -0.00, -1.1 {0.36, 0.33, -1.39}

Sampling time = 0.1
Delay-Time T = 8, d L = 3 2.3 2.3 2.37 2.5

Rossler model {0.07, 0.02, -5.4} {0.09, -0.00, -1.12} {0.07, 0.00, -5.99} {0.07, 0.71, -1.37}
Sampling time = 0.12

Delay-Time T = 5, d L = 3 2.01 2.08 2.01 2.57
Santa Fe comp. data set A {0.93, -0.21, -9.66} {0.66, -0.31, -19.3} {1.12, -0.01, -5.2}

Sampling time = 0.1 Not known
Delay-Time T = 2, d L = 3 2.07 2.01 2.21

Santa Fe comp. data set B 1 {0.56, -0.07,-0.56, -1.1 } {-0.55, -1.3, -1.8, -2.4} {0.56, 0.16, -0.43, -1.47}
Sampling time = 0.08 Not known

Delay-Time T = 6, d L = 4 2.9 0 3.19

Santa Fe comp. data set D1
{1.33, 0.6, 0.13, -0.27, -0.64, -

0.94 , -1.4 , -2.3 , -4.9}
{0.48, -0.18, -0.6, -1.04, -1.2, -

1.66, -2.0, -2.78, -5.0}
{2.27, 1.26, 0.37, -0.07, -
0.55, -1.0, -1.6, -2.8, -6.4}

Sampling time = 0.05 Not known
Delay-Time T = 3, d L = 9 6.14 2.48 7.23

dLyp

B1 D1

B1 D1

161

cases. This algorithm might be improved if one uses a better estimator than least squares.

Finally, by running more than one algorithm to estimate the LEs, one can have confidence

in the estimate values if the results are in agreement with each other.

9.7 Chapter summary

In this chapter, we have explored the estimation of LEs (model parameters) by using

three different algorithms. Full details of the algorithms were presented, and pseudo codes

that summarize these algorithms were illustrated. The three algorithms were tested by using

six different chaotic systems. A table summarizing the results was presented and conclu-

sions were derived from it. In the next (final) chapter of the dissertation, we will give a sum-

mary of the previous chapters, draw final conclusions on modeling chaotic systems, and

discuss future recommendations.

162

CHAPTER 10

SUMMARY, CONCLUSIONS, AND FUTURE RECOMMENDATIONS

10.1 Summary

In this dissertation, we have explored modeling of chaotic systems. The modeling

process uses measurements taken from a chaotic system to find its model order and model

parameters. The model order is the minimum embedding dimension of the system (),

while the model parameters are its Lyapunov exponents (LEs).

In Chapters 3 through 7, we discussed estimating . We gave full details of four

new algorithms used to estimate the value of . Implementation of the algorithms on nine

chaotic systems was also discussed. Among the four algorithms, three are geometric algo-

rithms: the CND, the , and the . They estimate by detecting the existence

of FNNs. The CND algorithm detects the existence of FNNs by checking to see if the near-

est neighbors in the space of dimension d remain neighbors in dimension . On the oth-

er hand, the algorithm detects the existence of FNNs by checking to see if the

distance between the nearest neighbors in dimension d will increase significantly as the di-

mension increases to . Finally, the algorithm detects the existence of FNNs by

checking to see if the distance between the nearest neighbors in dimension d will change

significantly as time increases. The three geometric algorithms use a global neighbor search

dL

dL

dL

CDDG CDTG dL

d 1+

CDDG

d 1+ CDTG

163

method to search for the nearest neighbors. In the fourth algorithm (the predictive), the es-

timation of is done by approximating the function which operates on the

reconstructed attractor. is approximated by using a neural network with a Tapped Delay

Line connected to its input. As the number of taps in the TDL (d) increases, the prediction

error decreases. At one point, further increase of d does not improve the prediction error.

At this point, is found.

 We have demonstrated estimating by applying the four algorithms on different

chaotic systems. The results derived from these algorithm gave confidence in the estimated

. Conclusions reached from the estimation results are summarized in the next section.

In Chapter 8, we presented some theoretical background on Lyapunov Exponents.

We also proved a new theorem that relates the LEs to the poles of a linear system. Estimat-

ing the LEs of a chaotic system was explored in Chapter 9. We presented three different

algorithms used to estimate the LEs (two of these algorithms are new). The three algorithms

approximate the Jacobian matrices of the chaotic model. These matrices are subsequently

used to estimate the LEs. The first algorithm is the Eckmann algorithm. This algorithm is

a standard algorithm for estimating the LEs. It uses the least squares method to approximate

the Jacobian matrices. These matrices are then used to estimate the LEs. The second algo-

rithm which is also used for estimating the LEs is the linear Oseledec algorithm. This algo-

rithm approximates the Jacobian matrices by using the least squares method. Then it applies

the results of the linear Oseledec theorem to the approximated Jacobian matrices to esti-

mate the LEs. The third algorithm is the predictive algorithm. This algorithm uses a feed

forward neural network to approximate the Jacobian matrices.

dL µ: ℜd ℜ1→

µ

dL

dL

dL

164

The three algorithm used for estimating the LEs were tested on six chaotic systems,

and conclusions were derived from the results. These conclusions are summarized in the

next section. In total, we introduced four new algorithms to estimate , and two new al-

gorithms to estimate the LEs. These algorithms were tested on different chaotic systems.

These systems are different in dimension and noise content.

10.2 Conclusions

We list below the main conclusions found from this research. We begin with conclusions

related to the algorithms for estimating the model order.

1) The predictive algorithm gave the best estimate of as long as the SNR is not

too low.

2) The global neighbor search algorithms introduced in this research gave a better

estimate of than the local neighbor search algorithms.

3) The use of more than one algorithm to estimate increases our confidence in the

estimated value.

Now we summarize the main conclusions related to the algorithms used to estimate the

LEs.

1) The Eckmann algorithm usually provides good estimates of the LEs.

2) The predictive algorithm gives good estimates of the LEs for signals with high

SNR.

3) The linear Oseledec algorithm gives good estimates of the LEs in some cases.

4) The best approach to estimating the LEs is to use several algorithms and check for

consistency in the results.

dL

dL

dL

dL

165

10.3 Future recommendations

For further improvement of the results of this research, we recommend the following:

1) Research on filtering out the noise before applying the modeling algorithms to the

signals. The problem that may arise is that the filter may smear out the attractor

and cause some dynamical features to be lost. Work needs to be done to determine

the optimal filter.

2) Find a better estimator of the Jacobian matrix than least squares. By doing this,

both the Eckmann algorithm and the linear Oseledec algorithm may give a more

accurate results.

3) Experiment with different types of neural networks to improve the predictive

algorithm for estimating the model order and for estimating the LEs. An example

of one possible network is the radial basis network.

166

REFERENCES

[Aba98] H. Abarbanel, “Obtaining Order in a World of Chaos,” IEEE Signal Pro-
cessing Magazine, pp. 49-65, 1998.

[AbKe93] H. Abarbanel and M. Kennel, “Local False Nearest Neighbors and Dynam-
ical Dimensions from Observed Chaotic Data,” Physical Review E, Vol. 47,
pp. 3057-3068, 1993.

[Arn98] L. Arnold, Random Dynamical Systems, Princeton University Press, 1998

[ASY96] K. Alligood, T. Sauer and J. Yorke, Chaos an Introduction to Dynamical
Systems, Springer, 1996.

[Bay96] W. Baylis, Clifford (Geometric) Algebra, Birkhauser, 1996.

[Cao97] L. Cao, “Practical Method for Determining the Minimum Embedding Di-
mension of a Scalar Time Series,” Physica D, 110 pp. 43-50, 1997.

[DaBr96] A. Darbyshire and D. Broomhead, “Robust Estimation of Tangent Maps and
Liapunov Spectra,” Physica D, pp. 287-305, 1996.

[Dav99] B. Davis, Exploring Chaos, Perseus Books, 1999.

[DjCo02] L. Djamai and P. Coirault, “Estimation of Lyapunov Exponents by Using
the Perceptron,” Proceedings of the American Control conference Anchor-
age, Ak. May 8-10, pp.5150-5155, 2002.

[EcRu85] J. Eckmann and D. Ruelle, “Ergodic Theory of Chaos and Strange Attrac-
tors,” Review of Modern Physics, Vol.57, No. 3, Part 1, pp. 617-656, 1985.

[EKRC86] J. Eckmann, O. Kamphorst, D. Ruelle, and S. Ciliberto,” Liapunov expo-
nents from time serires,” Physical Review A, Vol 34, Num 6, pp.4971-4979,
1986.

[Far81] J. Farmer, “Chaotic Attractors of Infinite Dimensional systems,” Physica
4D, pp. 366-393, 1981.

[Fra89] A. Fraser, Information Theory and Strange Attractors, Ph.D. thesis, Univer-
sity of Texas at Austin, May 1989.

[FS86] A. Fraser and H. Swinney, “Independent Coordinates for Strange Attractors
from Mutual Information,” Physical Review A, Vol. 33 pp. 1134-1140,
1986.

[GGS83] L. Glass, X. Guevan and A. Shrier, “Bifurcation and Chaos in Periodically
Stimulated Cardiac Oscillator,” Physica 7D, pp. 89-101, 1983.

167

[GoVa96] G. Golub and C. Van Loan, Matrix Computations, The Johns Hopkins Uni-
versity Press, 3rd Ed. 1996.

[GPL90] K. Geist, U. Parlitz and W. Lauterborn, “Comparison of Different Methods
for Computing Lyapunov Exponents,” Progress of theoretical physics Vol.
83, No. 5, pp. 875-893, 1990.

[Hag95] M. Hagan, H. Demuth and M. Beale, Neural Network Design, PWS, 1995.

[Hak98] S. Haykin, “Making Sense of a Complex World,” IEEE signal Processing
Magazine, pp.66-81, 1998.

[HAW89] N. Hubner, N. Abraham C. and Weiss, “Dimension and Entropies of Cha-
otic Intensity Pulsations in a Single-Mode Far-Infrared Laser,” Phys-
ical Review A, Vol. 40, No. 11, pp. 6354-6365, 1989.

[Hen76] M. Henon, “A Two Dimensional Mapping with a Strange Attractor,”
Comm. Math. Phy., Vol. 50, pp. 69-77, 1976.

[Hol86] A. Holden, Chaos, Princeton University Press, 1986.

[KaSc00] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, Cambridge,
2000.

[KaYo79] J. Kaplan and J. Yorke, “Chaotic Behavior in Multidimensional Difference
Equations,” In H.-O. Peigen and H.-O. Walter, editors, functional Di eren-
tial Equations and Approximation of fixed Points, pp. 204-227, Springer,
Berlin, 1979.

[KBA92] M. Kennel, R. Brown and H. Abarbanel, “Determining Embedding Dimen-
sion for Phase Space Reconstruction Using a Geometric Construction,”
Physical Review A, pp. 3403-3411, 1992.

[Kre98] R. Kress, Numerical Analysis, Graduate text in mathematics, Springer,
1998.

[Lo63] E. Lorenz, “Deterministic Non-periodic Flow,” Journal of Atmospheric Sci-
ence, Vol. 20, pp. 130-141, 1963.

[MG77] M. Mackey and L. Glass, “Oscillation and Chaos in Physiological Control
Systems,” Science, Vol. 197, p. 287, 1977.

[Moo92] F. Moon, Chaotic and Fractal Dynamics, Wiley Interscience, 1992.

[MPL00] C. Merkwirth, U. Parlitz and W. Lauterborn, “Fast Nearest-Neighbor
Searching for Nonlinear Signal processing,” Physical Review E, Vol. 62,
Num. 2, pp. 2089-2097, 2000.

[Nak90] M. Nakahara, Geometry, Topology and Physics, IOP, 1990.

[Ose68] V. Oseledec, “A Multiplicative Ergodic Theorem. Ljapunov Characteristic
Numbers for Dynamical Systems,” Trans. Moscow Math Society, Vol. 19,
pp. 197-231, 1968.

[OSY94] E. Ott, T. Sauer and J. Yorke, Coping with Chaos, Wiley Interscience, 1994.

NH3

168

[Par92] U. Parlitz, “Identification of True and Spurious Lyapunov Exponents from
Time Series,” Intern. Jour. of chaos and Bifur., Vol. 2, No1, pp. 155-165,
1992.

[PJS92] H. Peitgen, H. Jurgens and D. Saupe, Chaos and Fractals New Frontier of
Science, Springer, 1992.

[Ros76] O. Rossler, “An Equation for Continuous Chaos,” Physical Letters A, Vol.
57, p. 397, 1976.

[RVRDV92] V. Rulkov, R. Volkovskii, A. Rodriguez-Lozano, E. DelRio and M. Ve-
larde, “Mutual synchronization of Chaotic Self-Oscillators with Dissipative
Coupling,” International Journal of Bifurcation and Chaos, pp. 669-676,
1992.

[SnSd85] M. Sano and Y. Sawada, “Measurements of the Lyapunov Spectrum from a
Chaotic Time Series,” Physical Review Letters, Vol. 55, No. 10, pp. 1082-
1085, 1985.

[SYC91] T. Sauer, J. Yorke and M. Casdagli, “Embedology,” Journal of Statistical
Physics, Vol. 65, pp. 579-616, 1991.

[Tem88] D. Temam, Infinite Dimensional Dynamical Systems in Mechanics and
Physics, Springer-Verlag, Berlin Heidelberg New York, 1988.

[TrBa97] L. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM, 1997.

[WeGe95] A. Weigend and N. Gershenfeld, Time Series Prediction, Addison Wesley,
1995.

[WSSV85] A. Wolf, J. Swift, H. Swinney, and J. Vastano, “Determining Lyapunov Ex-
ponents from a Time Series,” Physica 16D, pp. 285-317, 1985.

[ZxEyPi91] X. Zeng, R. Eykholt, and R. Pielke, “Estimating the Lyapunov-Exponents
Spectrum from Short Time series of Low Precision,” Physical Review Let-
ters, Vol. 66, No. 25, pp. 3229-3232, 1991.

[Zyl01] J. Zyl, modeling Chaotic Systems with Neural Networks: Application to
Seismic Event Predicting in Gold Mines, Ms. Thesis, University of Stellen-
bosch, 2001.

VITA

Khaled Marzoug Al-Mughadhawi

Candidate for the Degree of

Doctor of Philosophy

Thesis: MODELING CHAOTIC SYSTEMS

Major Field: Electrical and Computer Engineering

Biographical:

Personal Data: Born in Madina, Saudi Arabia, on October 16, 1966, the son of Mar-
zoug Saleh Al-Mughadhawi, and Mohelah Sa’ad Al-Mozaini.

Education: Graduated from Taybah high school, Madina 1982; received Bachelor
of Science degree in Electrical Engineering from King Fahad University of
Petroleum and Minerals, Dhahran, Saudi Arabia in 1989; received Master
of Science degree in Electrical Engineering from Southern Methodist Uni-
versity, Dallas, Texas in 1999. Completed the requirements for the Doctor
of Philosophy degree in Electrical Engineering at Oklahoma State Univer-
sity in July 2005.

Experience: Employed by Ministry of health in Saudi Arabia as a maintenance en-
gineer 1989. Tough in the technical high school in Madina, Saudi Arabia,
for the General Organization of Technical Education and Vocational Train-
ing since 1992.

ADVISER’S APPROVAL: Martin T. Hagan

Name: Khaled M. Al-Mughadhawi, Date of Degree: July, 2005

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: MODELING CHAOTIC SYSTEMS

Pages in Study: 168 Candidate for the Degree of Doctor of Philosophy

Major Field: Electrical and Computer Engineering

Scope and Method of Study: The purpose of this research is to model chaotic systems. From
a set of scalar measurements taken from a chaotic system, we want to describe the
hidden states of the system. The modeling process has two parts: determining the
model order, and determining the model parameters. The major characteristic of
chaotic systems is their sensitivity to changes in initial conditions. This character-
istic limits the ability to make a long term prediction in these systems. To be able to
make an accurate model, we need to accurately estimates of the model parameters,
which requires an accurate estimate of the model order.

Findings and Conclusions: In this research we found four new algorithms to estimate the
model order. These algorithms were tested on different chaotic systems. Three of
these algorithms are geometric and one is predictive. We checked on the ability of
these algorithms to make accurate estimates of the model order. We also proved a
new theorem that relates the Lyapunov exponents (model parameters) to the linear
system poles. We introduced a new algorithm that implement the result of this the-
orem to estimate the model parameters of a chaotic model. Beside this algorithm,
we improved an existing algorithm that uses a neural network to estimate the model
parameters. Both algorithms were tested on different chaotic systems. Our finding
with respect to the algorithms used to estimate the model order can be summarized
in the following: i) the predictive algorithm gave the best estimate of model order
as long as the signal to noise ratio is not too low, ii) the global neighbor search al-
gorithms proposed in this research gave better estimate of model order than the lo-
cal neighbor search algorithms, iii) the use of more than one algorithm to estimate
model order increases our confidence in the estimated value. With respect to the al-
gorithms used to estimate the model parameters, the main conclusions are: i) the
predictive algorithm gives good estimate of the model parameters for signals with
high signal to noise ratio, ii) the algorithm that implement the new theorem result
gives good estimate of the model parameters in some cases, and iii) when using
more than one algorithm to estimate the model parameters, one can have confidence
in the estimate values if they are in agreement with each other.

