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CHAPTER 1

OBJECTIVE AND CONTRIBUTIONS

1.1 Introduction

In this chapter, we will show the objective of this research and give abrief list of
our contributions. In Section 1.4, we give aliterature review of some important publica-

tionsin chaotic modeling. A summary of the remaining chaptersis given in Section 1.5.

1.2 Objective

The objective of thisresearch isto model chaotic systems. We will build achaotic
model from a set of scalar measurements taken from the system. Evolution of the statesin
the model follows the evolution of the hidden statesin the original system. To build acha-
otic model, we start by estimating the model order. The next step is to estimate the set of
Lyapunov exponents (the model parameters) that characterize the chaotic system. A good
chaotic model depends on both the accuracy of the estimated model order and the estimate

of Lyapunov exponent values.

1.3 Contributions

Our contributions are:
(1) Four new algorithms for estimating the model order.

a) The Change of Neighbors with Dimension (CND).



b) The Change of Distance with Dimension using the Global neighbor
search (CDDg).

¢) The Change of Distance with Time using the Global neighbor search
(CDTg).

d) The predictive.
(2) The proof of anew theorem that relates the poles of alinear system to the set of
Lyapunov exponents.
(3) Implementation of the new theorem result to estimate the set of Lyapunov ex-
ponents for chaotic systems.
(4) Development of an existing algorithm which uses a neural network to estimate
the set of Lyapunov exponents.
In total, we implemented four algorithmsto estimate the model order and two algo-
rithms to estimate the set of Lyapunov exponents for a chaotic system. The six algorithms
weretested on different chaotic systems. The testing exampl esinclude noise free and noisy

signals. In addition, the testing systems have different dimensions.

14 Literaturereview

There are two primary areas of research in modeling chaotic systems. These areas,
which will be discussed briefly, are: estimating the model order and estimating the set of
Lyapunov exponents. In this section, we list some key references in these areas. We begin
by listing literature dealing with estimating the model order. After that welist theliterature

that describes estimating the set of Lyapunov exponents.



We begin by reviewing publications that discuss estimating the model order. We
found many papers by Abarbanel and his colleagues that talk about different methods for
estimating the model order. Kennel, Brown, and Abarbanel [KBA92] introduced estimat-
ing the model order by the method of False Nearest Neighbors (FNNs). Thismethod is a
geometric one. It depends on measuring the distance between neighbors asthe model order
increases. The distance between fal se neighbors increases more than the distance between
true neighbors as the model order increases. In 1993, Abarbanel and Kennel [AbKe93] de-
veloped the method of FNNsfurther and introduced a new method that usestime aswell as
distance to check for the existence of FNNSs. In this proposal, we will present new algo-
rithms that improve on the results of Abarbanel’s algorithms. In 1997, Cao [Ca097] sug-
gested anew method for estimating the model order. His method isageometric method and
itisclosely related to Abarbanel method [KBA92]. Instead of using a threshold value to
determine fal se neighbors, he suggested the use of the mean of distance change as the mod-
€l order increases. Abarbanel [ Aba98] used ageometric method with apredictor to estimate
the model order. Since the pointsinside the attractor have an evolution rule, their neighbor-
ing pointswill evolve according to a certain rule aswell. To determine the model order, he
used a predictor to estimate the evolution rule. When the model order is not large enough,
prediction errorswill increase. Asthe model order increases, the prediction errorsdrop. At
certain point, further increase of the model order does not improve the prediction errors. At
this point, the model order isfound. In 2002, Kennel and Abarbanel [KeAb02] used the
method of FNNswith aglobal neighbor search method. The projection method used in this

paper is the delay-coordinate method. (Our second algorithm (CDD ;) used the method of



FNNs, with a global neighbor search, but the CDD 5 used the Principal Component Anal-
ysis projection method.)

Now we review some papers that talk about estimating the set of Lyapunov expo-
nents for a chaotic model. The most important paper in thisfield is the one by Oseledec
[Ose68]. He proved that the set of Lyapunov exponents can be estimated from the product
of an infinite number of Jacobian matrices along the attractor of the system. (In this pro-
posal, we will present a new theorem that provides insight into the Oseledec theorem by
relating Lyapunov exponentsto the polesof alinear system.) In 1985, Eckmann and Ruelle
[EcRuU85] and Sano and Sawada [ SnSd85] applied the Oseledec theorem to measurements
taken from a chaotic system. Both papers use orthogonalization methods to overcome the
numerical problem of multiplying alarge number of matrices. Parlitz [Par92] introduced
the identification of spurious Lyapunov exponents. He did that by reestimating the set of
Lyapunov exponents from measurements backward in time. By doing that, he found that
true exponents change their signs, while spurious ones changetheir valuesaswell assigns.
Darbyshire and Broomhead [DaBro6] estimated the set of Lyapunov exponents by the
methods of least squares and total least squares. Their method uses the pseudo-inverse to
estimate the Jacobian matrices. After that, they applied the orthogonalization method pro-
posed by Eckmann. Djamai and Coirault [DjCo02] introduced the use of neural networks
to estimate the set of Jacobian matrices. After estimating the Jacobian matrices, they used

the same method proposed by Eckmann to reorthogonalize the product of these matrices.



1.5 Remaining chapterssummary

In Chapter 2, we will present an introduction to chaotic dynamical systems. In
Chapter 3, we introduce modeling chaotic systems and discuss modeling by embedding.
Examples are given toillustrate the idea of embedding functions.

In Chapter 4, we will present an introduction to four methods used to find the min-
imum dimension (model order) required for embedding. In Chapter 5, we implement the
methods found in Chapter 4 to find the minimum embedding dimension of the Henon map.
Six algorithms based on the four previous methods are presented in Chapter 6. (Four of the
six algorithms represent our original work.) Full details of the algorithms are given, and
more practical issues are discussed in Chapter 6. The results of implementing the six algo-
rithms on nine chaotic systems are found in Chapter 7. The minimum embedding dimen-
sions of the nine systems are listed in this chapter, and acomparison is made among the six
algorithms.

In Chapter 8, we will explore the theory of Lyapunov exponents (LES) and prove a
new theorem that relatesthe poles of alinear system to the set of LES. In Chapter 9, wewill
discussthe estimation of the LE values and apply the result of the new theorem to estimate
the LEs. In this chapter, we will also improve an existing algorithm that uses a neural net-
work to estimate the LESs. We tested the two algorithms by estimating the LEs of different
chaotic systems. We al so compare the two algorithmsto an existing algorithm using the test
systems.

In Chapter 10, we will give a conclusion of the dissertation and give some recom-

mendations on possible future research.



CHAPTER 2

INTRODUCTION TO CHAOTIC SYSTEMS

2.1 History of dynamical systems

|saac Newton (1642-1727) introduced the idea of modeling the motion of objects
by equations. Position, velocity, and acceleration were the fundamental parameters of his
equations. From position, velocity, and acceleration, he could describe the state of a mov-
ing object at any given time. Later scientists modelled dynamical systems by using a set of
differential equations. The solution of these equations describes the state of the system at
any given time.

If the solution of the set of differential equations remainsin a bounded region, the
sequence of states reducesto either i) a steady state, generally because of loss of energy by
friction, or ii) aperiodic or quasi periodic motion. An example of case (ii) isthe motion of
the moon around the earth and the motion of the earth around the sun. Case (i) and case (ii)
remained the only two known bounded solutions until the use of modern computers made
possible the numerical solution of sets of differential equations.

In 1963 Edward Lorenz published a paper entitled “ Deterministic non Periodic
Flow” [L063]. He discovered a new bounded attractor that is not periodic but wasfilling a
region in space. Thiswas the first time the world knew about the third possible bounded

attractor: iii) the chaotic attractor. The new solution (chaotic) is not smply periodic nor



guas periodic with alarge number of periods. Chaotic motion is possible with smple one
dimensional systems. Although chaotic motion can be produced from simple systems, it is
very complicated and becomes unpredictable after a short time. This happens because of
the sensitivity of chaotic systemsto changesin theinitial conditions [ASY 96].

In the next section, we define some termsrelated to dynamical systems. Three char-
acteristics of chaotic systems are presented in Section 2.3. In Section 2.4, we present some

examples of chaotic systems. Finally, Section 2.5 provides a summary of the chapter.

2.2 Dynamical definitions

In the previous section, we gave a brief history of dynamical systems. In this sec-
tion, we define someimportant dynamical termsthat will be used in the remaining chapters.

We dtart by defining the dynamical system.

2.2.1 Dynamical System

The dynamical system is a system that consists of a sequence of states which are
governed by acertain rule that determines the next state given the previous one. A dynam-
ical systemin %Y can be described by either d first order ordinary differential equations
(flow) or d difference equations (map). In thefirst case, the time is a continuous variable;

te R , and the system is called a continuous dynamical system:

diﬁm = f(x(1)). 2.1)

Inthe second case, thetimeisadiscretevariable; n e X , and the systemiscalled adiscrete
dynamical system:

x(n+1) = f(x(n)). (2.2



2.2.2 Equilibrium point

A point x(t) = X inthe state space is said to be an equilibrium point of a contin-
uous dynamical system where dﬂdtD o = 0. The equilibrium point of a discrete dy-
namical system, on the other hand, happe;lswhen f(x*) =X .
2.2.3 Orbit of a dynamical system

The sequence of points x(t) or x(n) that results from the solution of the set of

equations representing the system is called the orbit (trajectory) of the dynamical system.

The point x, or x(0) iscalled theinitial condition of the system.

2.2.4 Attractor
Theattractor of adynamical system isset containing thelimitsof all orbitsthat start

sufficiently closetoit.

2.3 Characteristics of Chaotic Systems

In this section, we explore three characteristics of chaotic systems. These character-

istics will help us to understand how to model these systems.

2.3.1 Senditivity of chaotic systemsto initial conditions
Chaotic systems are known for their sensitivity to initial conditions. To illustrate
thisidea, let’slook into the tent map, which is afirst order chaotic system:
x(n+1) = f(x(n)) = (3/4)(1—|1-2x(n)]). (2.3)
Figure 2.1 shows two curves (solid, and dotted with *x’) representing the responses of the
system whentwo sightly different initial conditionsare used. The solid curve was produced

from theinitia condition x;(0) = 0.23 and the dotted curve with ‘x’ was produced from



X,(0) = 0.2301. Thedotted curveinthe bottom of the figureisthe difference between the
two responses. We can see that the difference starts to grow after approximately 15 itera-
tions. Noticethat the responses of the system dueto different initial conditionsremain with-

in a bounded region.

The chaotic response of the tent map f(x(n))=x(n+1)=3/4(1-|1-2x(n)|)
T T T T T T

T
— x,(0)=023

X %,(0) =0.2301
growth of the error

0.8

-0.2

-0.4
0

Figure 2.1 Sensitivity of the chaotic tent map to initial conditions.

2.3.2 Chaotic signalslook random but they are deterministic

Before the discovery of chaotic systems, scientists thought of chaos as arandom
signal (noise). Toillustrate thisidea, let’ slook into the frequency responses (Fourier spec-
trums[KaSc00]) of aperiodic signal and arandom signal, and then compare them to acha-
otic signal. The left hand side of Figure 2.2 shows a 60 Hz periodic sinusoidal wave. The
plot on the right hand side isits frequency response. Aswe can see, it has only one compo-

nent at 60 Hz.



The periodic sinusoidal wave of period 60 Hz Frequency content of the wave
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Figure 2.2 The 60 Hz periodic wave and its frequency response

If welook into the frequency response of arandom signal, shown in the right hand side of

Figure 2.3, we can see that it has a component at every frequency from 0 through 120 Hz.

The random signal (noise) Frequency content of the signal
T T T T T T T T T

0 200 400 600 800 1000 0 20 40 60 80 100 120
Time frequency (Hz)

Figure 2.3 The random signal and its frequency response

We will now compare the frequency responses of the two signals above to the frequency
response of achaotic signal. The left hand side of Figure 2.4 shows the time domain plot
of achaotic signal (x component of the Lorenz model). Itsfrequency responseisshown on
the right hand side of the same figure. We can see that the chaotic signal has a component

at every frequency from O through 120 Hz, which is similar to the random signal.
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The chaotic Lorenz signal Frequency content of y
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Figure 2.4 The chaotic signal and its frequency response

Although the frequency response of the chaotic system looks random, we know that this
system is deterministic. Thisistrue since it is produced from a known set of differential

eguations.

2.3.3 Chaotic systems have attractorswith fractal dimension

To see that chaotic attractors have fractal dimensions, let’s look into the Henon
map:
X (n+1) = 1- a(xl(n))2 +X,(N), (2.4)
X,(n+1) = bxy(n), (2.5

wherea = 1.4, b = 0.3,andtheinitial conditionsare x,(0) = x,(0) = 0.5 [Hen76].In
Figure 2.5, we can see that the attractor of the Henon map isnot asimple line of dimension
1, nor itisaclosed curve. It isaso not a plane of dimension 2. It isan object that fillsa

region in the plane.
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The chaotic attractor of the Henon map
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Figure 2.5 The chaotic attractor of the Henon map.

Asamatter of fact, itsdimension is not an integer, but rather is fractal. The dimension of
the attractor of the Henon map can be found by the box-counting dimension.

2.3.3.1 The box-counting dimension:

We can find the dimension of aninterval N = [0, 1], in 921, by dividing it into

subintervals N; of length ¢ = 0.1 such that N;AN;j, 1 = @ ,wherej e X.Thenthe
minimum number of N; subintervals needed to cover Nis cgl = 10, which can be written

ascg = (1/0)1. Notice that the exponent in the expression is 1, which is aso the dimen-

sion of N. For the case of aunit squarein R°, S = {H € ERZIOSXS 1,0<y< 1},we
Yy

can find the dimension of Sby dividing it into small squares § of sidelength ¢ = 0.1

(called o -squares), such that §N§,;=9. Then the minimum number of S squares

needed to cover Sis c(S, = 100, which can be written as c(S, = (1/0)°. Notice that the ex-

ponent in the expression is 2 which isaso the dimension of S The method used to find the

12



dimension of the setsin the previous two examplesis called the box-counting dimension.

It is used to find the dimension of more complicated setsin S , like fractal sets. The box-

counting dimension is denoted by d. which is the exponent in the relation:

d~(1/6)" as6 -0, (2.6)

where cg is the number of o d-cubes needed to cover the set in %, Taki ng the limit of
the log of Equation (2.6) as 6 — 0, we have
d

Inc
d. = lim I
c—oln(l/0)

2.7)

To evaluate the box-counting dimension (d,. ) in Equation (2.7), we draw alog-log plot of
cg versus 1/6 as 6 — 0. Thevalue of d isthe slope of the resulting curve.

Now we can apply the box-counting dimension to the attractor of the Henon map.
We start by choosing the side length of the ¢ -squaresto be somevalue 6 < 1. Then we
count the minimum number of squares needed to cover the set of pointsin the attractor
(whichresultsfromiterating equations (2.4) and (2.5) 10° ti mes). Next we decrease ¢, and
count the minimum number needed to cover the attractor for the new o . Figure 2.6 shows

the number of ¢ -squares (cg) versus o, for o = {0.1, 0.05, 0.01, 0.004, 0.002, 0.001} .

13



The box dimension of the Henon attractor
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Figure 2.6 The slope of the line is the box-counting dimension of the
Henon map attractor.

The resulting box-counting dimension of the Henon map was found to be d, = 1.189,
whichisafractal. After presenting three characteristics of the chaotic systems, in the next

section we list some examples of chaotic systems.

2.4 Examples of Chaotic systems

2.4.1 Weather system
We said in Section 2.1 that E. Lorenz was the first scientist to quantify chaos. He
modelled the heat convection phenomenain fluids by using a set of three differential equa-

tions. His model represents earth’ s atmosphere. He used it to forecast weather.

2.4.2 Biological models

Many biological activities exhibit chaotic behaviors. One exampleis the Epileptic
seizure. Epilepsy causes patients suffering from this disease to experience bouts of uncon-
sciousness. Epileptic seizures result from an abnormal neuronal discharge from the central
nervous system [Zyl01]. Another example of chaotic systemsisthe red blood cell produc-

tion. Mackey and Glass [MG77] modelled red blood cell production and found that it ex-

14



hibits chaotic behavior at some parameter values of the model, aswill be shown in Chapter
7. A third example of chaotic systemsisthe Electrocardiogram (ECG). In 1983, Glasset al
[GGS83] experimented on the spontaneous beating of cells from embryonic chick hearts.
They found that when these cellswere stimulated by external periodic pulses, they showed

chaotic motion (see also [M0092]).

2.4.3 Laser signals
M easurements taken from alaser output can be represented by a chaotic model. In

Chapter 7, wewill give more detail regarding the modeling of two data sets of laser outputs.

2.4.4 Chaotic circuits
Chaos can be observed in electrical circuitsaswell. An example of thisisthe RLC

circuit designed by Rulkov et al [RVRDV92].

2.4.5 Discrete chaotic systems:
In the previous section, we have shown two discrete chaotic systems: the tent and
the Henon maps. Discrete chaotic systems are mainly used for analysis. In Chapter 7, we

will show more discrete chaotic systems used to analyze chaos of different dimensions.

2.5 Chapter Summary

In this chapter, we presented a historical background for dynamical systems. We
defined some dynamical termsthat will be used in subsequent chapters. Three characteris-
tics of chaotic systems were illustrated with examples. We a so explored afew examples

of dynamical systems that show chaotic behaviors. In the next chapter, we will define dy-
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namical modeling, and show how to implement modeling of chaotic systems by using mea-

surements taken from these systems.
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CHAPTER 3

INTRODUCTION TO DYNAMICAL MODELING

3.1 Introduction

In Chapter 2, we introduced dynamical chaotic systems. We have seen three char-
acteristics of chaotic systems aswell. We mentioned that these characteristicswill help us
to understand modeling of chaotic systems. In this chapter, we explore the modeling pro-
cess. We also show some of its applicationsin real life. A theoretical background of the
method used for modeling chaotic systemsisillustrated with examples.

In the next section, we present a brief introduction to modeling chaotic systems.
Some applications of the modeling process are presented in Section 3.3. We do modeling
by atechnique called embedding. Some mathematical background on embedding is con-
tained in Section 3.4. The use of the delay-coordinate map for modeling isillustrated in

Section 3.5 with two examples.

3.2 Modeling

We said in Chapter 2 that dynamical systems can be represented as a set of differ-
ential equations (for a continuous system), or a set of difference equations (for adiscrete
system). We also said that these equations determine the evolution of states, which con-
verges to an attractor of the system. Knowing the evolution of the states isimportant for

understanding the behavior of the system at afuture time. Unfortunately these equations,
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in most cases, are not known. All we can see from a chaotic system (like those listed in
Chapter 2) isaset of scalar measurements. M odeling chaotic systems entail s describing the
hidden states of the system from these measurements only. From the set of measurements,
the modeling process builds a new set of states, which are in some sense equivalent to the
origina hidden states. In Chapter 8, we will give more detail regarding the meaning of

equivalent chaotic systems.

3.3 Applications of modeling

3.3.1 Detection of chaos

In Section 2.3.2, we stated that, before the quantification of chaos, scientists
thought of chaos as arandom signal (noise). Given a set of scalar measurements, the mod-
eling process enabl es usto distingui sh between chaotic systems (deterministic) and random
signals (noise). Not only that, but modeling can also extract the hidden deterministic part
from anoisy signal. Thisapplication of the modeling processisimportant because, in most

cases, the set of measurements is contaminated with noise from different sources.

3.3.2 Prediction

The ability to predict the future has fascinated scientists for along time. Modeling
chaotic systems enables usto predict the hidden future states of the system. It does so using
only the set of measurements. However, as we have said in Section 2.3.1, chaotic systems
have sensitive dependence on theinitial conditions. This problem limits the ability of cha-
otic modeling to make long term predictions of future states. In Chapter 8, we will give

more detall.
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3.3.3 Diagnosis

Abarbanel [Aba98] conducted an experiment on the ECG of subjects undergoing a
stress test for a specific pathology. He found that in the extreme pathology of ventricular
fibrillation, characteristics of the model are different from those of a healthy person. This
means the modeling process can be used to diagnose life threatening diseases (for more ex-
amples, see [Hol86 Chapters 9 and 11]).

In the next two sections, we present some mathematical definitions, then we present

the embedding method which is used to build models of chaotic systems.

3.4 Definitions

Before we present the embedding method, let’ s give amathematical background of
embedding functions. We begin by defining an injection function and an immersion func-

tion, then we define the embedding function.

3.4.1 Injection (1-to-1) function
Let M and N be two sets, afunction g: M — N isan injection (1-to-1) if
1 2 1 2
g(x) =g(x") =>x" = x7, (3.1)

where xl, x> e M. To understand the injection function, consider the next example.

3.4.1.1 Example: Aninjection

Let the function g: %% R be
t t
900 = 3,00 6,0] = |x, (%) 32

where X = |:X1 Xz} e R2. By applying the condition for an injection, we have
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o =90 = [ 2o = [2 o2
g =9 TOIXL (X)) | T X (X5) |
From the first element of the vectors on the right hand side we have
1_ .2
Xy = X1
while from the second element of the vectors we have

1.3 _ 23 1_ .2
(X3) =(X5) = X5 =X5.

(3.3)

(3.4)

(3.5)

In conclusion, we can seethat xt = X , S0 thefunction g isaninjection. Onthe other hand,

let’s ook at an example of afunction which is not an injection.

3.4.1.2 Example: A function that is not injection

Let the function g: %% R be

t
9x) = |:X1 (Xz)z} '
To test the condition for injection, we have
oY = gix®) = |2 12 2 [ 2 22

9 9 X; (%) X7 (X5) |
From the first element of the vectors on the right hand side we have
From the second element of the vectors we have

1 2

1.2 22 _
(X5) =(X5) =Xy =%£X,.

Which means that x* does not have to equal x2, so the function g is not an injection.
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3.4.2 Immersion function

Let M and N be two sets, afunction g: M — N isan immersion if its Jacobian ma-
trix isan injection (full rank) [Nak90 p.149].

3.4.2.1 Example: Animmersion

Let the function g: R% = R be
t t
900 = 3,00 6,00 = |x 069%+x] (3.10)

where x € %2, The Jacobian matrix of gis

1 0
)= [ : ] | a1
030) 1|, _

The determinant of J is 3(x2)2 + 10, therefore J isfull rank. Hence, the function g isan

immersion.

3.4.2.2 Example: A function that is not immersion

Let the function g: R% = R be
t
g(x) = |:Xl (x2)33| , (3.12)

where x € %2, The Jacobian matrix of gis

J = [1 0 2] : (3.13)
0 3(x5) X = %,
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Thedeterminant of J is 3(x2)2 , which zerofor x, = 0. ThereforeJ isnot full rank. Hence

gisnot animmersion. Now that we have defined theinjection and theimmersion functions,

we will define the embedding function.

3.4.3 Embedding function
Let M and N be two sets, afunction g: M — N isan embedding if itisan injection

and an immersion [Nak90].

3.4.3.1 Example: An embedding

t
Let’slook at the function g in Example 3.4.2.1 (g(x) = |:X1 (x2)3+x; ). In that

example, we have seen that g isan immersion. To prove that it is an embedding, we need

to show that it isalso an injection. To do this, we start by assuming that

1, 2. t 3 t
g(x”) = g(x") = [Xi (x%)3+x§ = [Xi (x§)3+X§ _ (3.14)
If welook at the first element of the vectors on the right hand side of Equation (3.14), we
can see that xi = xi . While the second elements give
(xé)3 + x% = (xg)3 + xg. (3.15)

By rearranging the above equation, we have

13 1,23 2
(X5) +X—(X5) =X, = 0. (3.16)
Which can be written as
1 .2 1.2 2.2 12 _
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By looking at the second parenthesis of the left hand side of Equation (3.17), we can see

that it can be simplified as follows

2 2
(x% + %x@ + g(xg) +1#0 VX. (3.18)

So the only solution of Equation (3.17) is x% = xg. Asaresult, we see that

x* = x*. Which meansthefunction gisaninjection. Sincegisaninjection and animmer-

sion (Example 3.4.2.1), we see that g is an embedding.

3.4.3.2 Example: A non-embedding

t
From Example 3.4.1.1, we have seen that g(x) = [Xl (xz)ﬂ isaninjection. But

from Example 3.4.2.2, we have seen that thisfunction is not an immersion. So the function
g isnot an embedding.

Notice that the main feature of the embedding isthat it isan injection, and itslin-
earization (Jacobian matrix) at every point along the attractor isalso an injection. After pre-
senting the embedding, let’s see now how we can use it for modeling. Aswe said above,
we have only a set of scalar measurements from the system we want to model. To build a

model for the system, we will use the delay-coordinate map, which is explained below.

3.5 Modeling by Embedding

3.5.1 The delay-coor dinate map
Let the state of the original system that we want to model be x € SRk, and let the

measurements taken from this system be governed by the map h: R R* such that

y(n) = h(x(n)). (3.19)
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The delay-coordinate map F ;: R R [SY C91] isrepresented by

Ya(n) = Fa(h.x(m) = [y(n) y(n-T) ... y(n—(d—l)T)]t, (3.20)

where T e R isthe delay-time, and y4(n) € R? isthe del ay-vector. The attractor built

from the delay-vectorsis called the reconstructed attractor.

According to the embedding theorem by Sauer at al [SY C91], thefunction F 4 isan

embedding if d=>2d. + 1, where d. isthe box-counting dimension (see Section 2.3.3.1)

of the attractor of the original system. Wewill call the minimum dimension d that satisfies

the embedding condition, the theoretical minimum embedding dimension: dg . The embed-

ding map guarantees that evolution of the statesin the original unknown attractor is equiv-
alent to the evolution of the delay-vectors in the reconstructed attractor (Chapter 8). In the

next two examples, we illustrate the modeling process by using the del ay-coordinate map.

3.5.2 Example: The delay-coor dinate map

Lettheset C = {ye ERSIyl = cost, y, = sin2t, y; = sintcos2t, te 921} repre-
sent an attractor in R°. Further, let the measurement function h: %% - %! , for the purpose
of explanation, bey = h(x) = x; + X, + X3, where x e R The delay-coordinate map
operating on C will be: y4(n) = F4(h, x(n)) = [y(n) y(n—1) y(n_z)]t (T = 1).The

original attractor Cisshownin Figure 3.1a, the measurement function hisshown in Figure

3.1b, and the reconstructed attractor using F5 is shown in Figure 3.1c.
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x(n)

c) =T )

Figure 3.1 a) Theattractor Cin *R3, b) the set of measurements, ¢) The
reconstructed attractor by the delay-coordinate map.

Aswe can see, thisisacurve of dimension 1 in athree dimensional space. According to

the embedding condition; dg = 2x1+ 1 = 3. Which isthe same as the dimension of the
space required to see the curve C without ambiguity.
3.5.3 Example: Sufficient but not necessary condition for embedding

Letthecircle; s = {ye 9(3|y1 = cost,y, = sint,y; =05, te ERl} represent an
attractor in %°. By using the delay-coordinate map, we can reconstruct St in®°. Theat-

tractor S isshown in Fi gure 3.2 asasolid curve. The reconstructed attractor using the de-
lay-coordinate map (F ) isshown in the same figure as adashed curve, the delay-time (T)

isl.
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Embedding of a circle by delay-coordinate map

Original curve
— — Reconstructed curve

05 Sl

Figure 3.2 Thecircle st in %% and its reconstruction in %?.

In Figure 3.2, we can see that S' isacurve of dimension 1ina3D space. Notice
that we needed a 2D space to reconstruct this curve. This meansthe dimension required for
embedding is 2 rather than 3, as suggested by the embedding condition(d = 2<dg = 3).
In conclusion, we can see that the embedding condition gives a sufficient but not a neces-
sary condition for embedding. In other words, it is possible that we can embed an attractor
inaspace of dimension lessthan d . In the next chapter, the delay-coordinate map will be
used to model chaotic systems. We will also present four methods used to find the actual,

rather than the theoretical, minimum dimension required for embedding. The choice of T

(the second parameter in the delay-coordinate map), will be shown in Chapter 6.

3.6 Chapter summary

In this chapter, we presented an introduction to modeling chaotic systems. Some ap-
plications of modeling chaotic systems were given, mathematical definitions of the embed-

ding functions were illustrated with examples, and we showed two examples of modeling
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using the embedding method. We found that the embedding condition isasufficient but not
necessary condition. In the next chapter, we show different methods used to find the mini-

mum dimension required for embedding.
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CHAPTER 4
INTRODUCTION TO THE MINIMUM EMBEDDING DIMENSION ESTIMA-

TION

4.1 Introduction

In Chapter 3, we talked about modeling by the embedding method. Modeling is
done from a time series of measurements taken from the system. We said that two param-
eters have to be found in order to model the system by embedding. Those parameters are
the dimension of the delay-vector (d) and the delay-time (T). They will be used to build the
delay-vectors.

In this chapter we introduce four methods for estimating the value of d. Three of
these methods are geometric and one method is predictive. This chapter will provide only
asimple overview of the methods. Chapters 5 and 6 will provide more detail. In the next
section, we present modeling of chaotic systems by using the delay-vectors. In Section 4.3,
weintroduce two different approaches for estimating d: geometric and predictive. Then, in
Section 4.4, we introduce equivalent chaotic systems. A chapter summary isgivenin

Section 4.5. In Chapter 6, we will discuss the selection of the delay-time T.

4.2 M odeling chaotic systems

The state evolution of a chaotic system in the space R* can be written in the form

of the difference equation:
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x(m) = f(x(m-=1)), (4.0
where x(m) e E)tk isthe state of the system, thetimeindex m = 1,2, ..., N, and Nisthe
total number of points. Inthe steady state condition, the evolution of the state x(m) follows
an attractor with afractal dimension d, (chaotic attractor). Practically, the state x(m) and
the function f of the system areinvisible to us, and all we can seeisaset of scalar measure-
ments y(m) . We can writethese measurementsas y(m) = h(x(m)) (see Equations(3.19).
To model a chaotic system, we need to build a system model which uses the delay-vector

yg(m) = [y(m) y(m=T) ... y(m—(d—l)T)]t- (4.2)
The attractor of the y(m) system should be equivalent to the original attractor, and the
state evolution from y(m) — y4(m+ 1) should follow that of the original attractor from
x(m) — x(m+ 1) [Hak98]. (A more careful definition of equivalenceis containedin
Chapter 8.) The key ideaisto find d and T such that the two systems are equivalent. The
embedding theorem guarantees this equivalence if d > 2d; + 1. But in practice, we do not
generaly know the value of d_, so d hasto be estimated. The projection from the original
state x to the delay-vector y/, is called the delay-coordinate map. As we said in the previ-
ous chapter, the embedding theorem gives a sufficient, but not a necessary, condition for
embedding. In other words, it could be possible to find an embedding map at d < 2d,.. Our
goal isto estimate the minimum embedding dimension. We will label thisdimension d, .
In the next section, we will talk about estimating d, by using two techniques: ageometric
and a predictive technique. In Chapter 6, we will discuss the delay-time T to complete the

modeling process.
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4.3 Estimating the minimum embedding dimension

4.3.1 The geometric technique
To understand the geometric technique, let the circle in Figure 4.1 represent an at-

tractor of adynamical systemin EKZ, and the line below it represent its projection into Rt

projecti on¢

acb

Figure 4.1 Projection artifacts

From the above figure, we can see that the points on the horizontal line (a, b, and c) do not
occur in the same sequence as those on the circle (a’, b’, and c¢”). That happened because
the circle was projected into a space with insufficient dimension. That caused the distances
between pointsto shrink, and the original order of pointsto change. We call this effect the
projection artifact. We can see from this example that, if the dimension of the space istoo
small to represent the attractor of the system, the projection of the attractor to this space will
have artifacts. Therefore, we need to increase the dimension of the space in order to get rid
of these artifacts.

One technique of estimating the minimum embedding dimension d, isthe geomet-
ric technique. To estimate d; by using the geometric technique, we start fromd = 1 and
find for every point y(m) its nearest neighbor. This neighbor has to be tested to seeiif it
isatrue neighbor or if it became aneighbor because of some projection artifacts. After that,
d isincreased and the previous steps are repeated. The value of d where all the neighbors

are true neighbors, is the minimum embedding dimension d, . Under the geometric tech-
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nique, three methods can be used to detect the existence of projection artifacts. These meth-
ods are 1) the Change of Neighbors with Dimension method, or CND, 2) the Change of
Distance with Dimension method, or CDD, and 3) the Change of Distance with Time meth-
od, or CDT.

4.3.1.1 The change of neighbors with dimension method (CND)

One can perform avisual test using Figure 4.1 to determine that the horizontal line
does not have enough dimension to represent the structure of the circle, and that we need
to have atwo dimensional space (meaning that d, = 2). However, we need to automate
this test using an algorithm. To estimate d, using the first geometric method, the change
of neighbors with dimension method (CND), the algorithm starts from the scalar measure-
ments a, b, and ¢, and computes the distances between point a and the other two points. It
will find that the nearest neighbor to a is ¢, while on the circle, the nearest neighbor to a’
is b’”. The algorithm concludes that the neighbors have changed, and that the points a and
¢ became neighbors because of the projection artifact and not because they are true neigh-
bors. That means the 1-D space is not large enough to represent the structure of the circle
since it has this projection artifact. By repeating the above steps on the 2-D space, the al-
gorithm would find that there are no projection artifacts |eft on the attractor in this space
and concludesthat d;, = 2.

4.3.1.2 The change of distance with dimension (CDD) method

The second geometric method that can be used to estimate d, isthe change of dis-
tance with dimension method (CDD). The CDD method is similar to the CND method ex-
cept that it detects the existence of projection artifacts by comparing the distances between

neighbors rather than comparing the neighbors themselves. To understand this method, let
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the curvein Figure 4.2 represent an attractor of adynamical systemin R2 , and the line be-

low it represent its projection into Rt

a ‘ projection

aﬂb c %
Vi

Figure 4.2 The CDD method

Wecanseethepointsa', b', and ¢’ onthecurvein R? andtheir projection into the
horizontal line a, b, and c respectively. Asin the CND method, we want an algorithm to
find that the 1-D spaceis not large enough to represent the structure of the curve. From the
horizontal line, the algorithm can find that b is the nearest neighbor of a and the distance
between themin %" is vy.In %%, along the curve, the distance between a’ and b’ is V.
The algorithm can now compare the two distancesto find that v, « v, , therefore, b became
aneighbor of a because of the projection artifact and not because they are true neighbors.
As aresult, the agorithm will find that the 1-D space is not large enough to represent the
structure of the curve since it has this projection artifact. By repeating the above steps on
the 2-D space, the algorithm would find that there are no projection artifacts left on the at-
tractor in this space and concludes that d, = 2.

4.3.1.3 The change of distance with time method (CDT)

Thethird geometric method used to estimate d, isthe change of distance with time
method (CDT). This method is different from the previoustwo in that it triesto detect the

existence of projection artifacts by moving neighbors forward in time and checking to see
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if they will remain neighbors. To understand this method, let the non-intersecting solid
curvein %° shown in Figure 4.3 represent an attractor of a dynamical system, and let the

dotted curve with the “+” sign represent its projection into the X-Y plane (ER2 space).

2-D projection of a curve in *3

Figure 4.3 The projection of a3-D curve (solid line) into 2-D curve (dot-
ted line)

T b
()
%2 - X f
a) b)

Figure 4.4 The CDT method: a) Distances between false neighbors in-
crease with time, b) The intersection in the middle of the curveisa pro-
jection artifact

The projection of the systems' s attractor shown in Figure 4.3 isredrawn in Figure
4.4for further discussion. Noticethat the middle of the curvein Figure4.4a hasaprojection
artifact, which can be found by looking into Figure 4.4b. If we start from point a, we can’t
tell whether the next correct point intimeisb or c. In other words, the curve intersection

makes it impossible to determine the correct sequence of points.
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By using the CDT method, we want an algorithm to be able to find that the 2-D
space is not large enough to represent the structure of the system’ s attractor (whichisin
R3: d_ = 3). Thiscan be done by detecting the projection artifact in the middle of the
curve. To do that, the algorithm should start by cal culating the distance between point a and
the other pointson the curve. It will find that cis closest to a; | et the distance between them
be v, . Next it should move forward in time to find that a movesto b, and ¢ movestod. It
should then compute the distance between b and d; let the distance be v,, . Now it can com-
pares the two distances and find that v, « v, , which means that a and ¢ are neighbors be-
cause of some projection artifacts and not because they are true neighbors. (See Figure
4.4a) Hence the algorithm concludes that the 2-D spaceis not large enough to represent the
structure of the system’ s attractor since the curve has this projection artifact. By repeating
thisfor the 3-D space, the algorithm would find no projection artifacts left on the curvein

this space and would concludethat d, = 3.

4.3.2 The predictive technique:

Now that we have talked about the three geometric methods, we will discuss the
predictive technique. The predictive technique is also used to estimate the minimum em-
bedding dimension d, such that the system of ydL(m) (using delay embedding) is equiva-
lent to the system of x(m) (original system). For simplicity, wewill set T = 1 inthe
delay-vector y4(m) (see Equations (4.2)). By using the delay-coordinate map; F 4, we can
write y4(m) = Fy(x(m)) (see Equations (3.20)). From the embedding definition (see
Section 3.4.3), we know that if the map F isan embedding, then it isan injection. Hence,
the inverse map Fd_l:EKd S R€ exists:

x(m) = Fy (yg(m)). (4.3)



We can substitute Equations (4.1) for the measurement function h at Equations (3.19)
(y(m) = h(x(m)))towritehasy(m) = h(f(x(m-1))).If welet thecompositefunction
hof = q,wecanwrite
y(m) = q(x(m-1)). (4.4)
By substituting Equations (4.3) for Equations (4.4), we can write
y(m) = d(Fy (Yg(m=1))). (45)
Now, if we let the composite function q o Fd_1 = U, wecanwrite

t

ym = nygm-1) = 1 [ym-1) ym-2) ... ym-a ) (4.6)
We conclude from Equations (4.6) that if the delay-vector at time m— 1 isknown to us, we
can predict the current measurement y(m) by approximating the unknown function . The
predictive technique depends on the idea that when the system of y(m) is equivalent to
the system of x(m), we can usethe delay-vector y (m—1) to predict the current measure-
ment y(m) . To be able to do that, we need to approximate the unknown function p such
that,
y(m) = p(yg(m-1)). (4.7)
To approximate u we will use a neural network with a Tapped Delay Line (TDL)
connected to itsinput. The TDL is used to produce the delay-vector y,(m—1) from the
current measurement y(m), asseenin Figure 4.6. Each tap of the TDL isadelayed version
of y(m) and the total number of tapsis d. The network istrained to predict y(m) when it
is presented with d previous measurements of y(m) (coordinates of y,(m—1)). There-
sulting prediction error is recorded as afunction of d. Asthe predictor order d increases,

the prediction error will decrease. However, after a certain point, further increase of d re-

sultsin only avery small decrease in the error. The minimum dimension where the error
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does not improve any further isthe minimum embedding dimension d, . At this point, the
approximation of p isaccurate and the systemsof y,(m) and x(m) are equivalent to each
other. Figures4.5 and 4.6 show the block diagram of the function p approximation and the

neural network model used to create the approximation.

L Yg(m—-1) y(m)
—» TDL w(.) 1+
e(m)
4 _ (prediction error)
> () ——
7 y(m)

Figure 4.5 The function p approximation in the predictive technique

y(m) ——
‘l yg(m=1)

@ Neura
lﬂD] y(m-1) Network y(m)
| y(m=2) Model >
i) u(.)
y(m—d)

Figure 4.6 A neura network model withaTDL used to approximate the
function u, D isaone step delay-time

4.4 Dynamic equivalence

The goal of modeling by embedding isto find a chaotic model that is equivalent to
the original unknown system. (The notion of equivalent chaotic systemswill be covered in
detail in later chapters.) To understand this idea, we know that in the original system the
hidden state evolution is governed by the map f

x(m+1) = f(x(m)), (4.8)
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(seeEquations(4.1)), whileall we can seefrom the original system isaset of measurements
which are governed by the map h:
y(m) = h(x(m)), (4.9)
(see Equations (3.19)).
On the other hand, the states in the reconstructed space are the delay-vectors y ,(m) (see
Equations (4.2)), while the output update in this space is governed by the map . :
y(m) = u(yg(m-1)), (4.10)
(see Equations (4.6)). So the delay-vector can be written as
Ya(M = [1(ygm=-1)) y(m—-1) ... y(m—(d- 1))}t , (4.12)
(T = 1). If thereconstructed model given by Equations (4.10) and (4.11) is equivaent to
the original model given by Equations (4.8) and (4.9), we can use the evolution of y,(m)
in place of the evolution of x(m) to gain an understanding of the system characteristics. In
other words, if the two systems are equivalent, we will be ableto use y ,(m) to estimatethe
original system dimension and parameters. In the coming chapters, we will find the delay-

vector dimension d and the delay-time T which guarantee this dynamic equivalence.

4.5 Chapter summary

In this chapter, we provided an introduction to modeling chaotic systems. Weintro-
duced two techniques (geometric and predictive) that can be used to estimate the minimum
embedding dimension that is required for chaotic systems modeling. We also gave a brief
introduction to equivalent chaotic systems. In Chapter 5, we will see the application of both
techniques to the chaotic Henon map. In Chapter 6, we will provide complete and detailed
algorithmsfor estimating d. Wewill also discuss practical considerationsfor implementing

the agorithms, including the choice of the delay-time (T).
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CHAPTER 5

Examples of the minimum embedding dimension estimation

5.1 Introduction

In Chapter 3, we introduced modeling of chaotic systems. We used delay-vectors
created from measurements to model these systems. We also introduced four methods to
estimate the minimum embedding dimension: three geometric methods one predictive
method. In this chapter, we will use the four methods to estimate the minimum embedding
dimension of the Henon map.

The Henon map is a chaotic system created from a set of two difference equations

(see Section 2.3.3). By using the embedding method (see Section 3.5), the theoretical min-

imum embedding dimensionisdg = [2d,| = [2x1.1897] = 3. But we suspect that the

actual minimum embedding dimensionis d; = 2 since the system’s dynamics are gener-
ated from a set of two difference equations. In Sections 5.2 and 5.3, we show the estimated
minimum embedding dimension of the Henon map by using the geometric and the predic-

tive techniques, respectively. In Section 5.4, we provide a chapter summary.

5.2 The geometric technique

To show how we can estimate d, by using the geometric technique, we take 15

points from the X, -coordinate of the Henon map to represent the measurements from this
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system. That means the measurements y(m) = x,(m) wherem = 1,2, ..., 15. Inthe
next step, we use y(m) to construct yq(m) = [y(m) y(m—1) ... y(m—(d— 1))]t which
isthe delay-vector (where T = 1).

We said in Chapter 4 that the idea of estimating d; by using the geometric tech-
nique depends on detecting the existence of the projection artifacts on the system'’s attrac-
tor. We can do that by using any of the three methods that we mentioned before: the CND,
the CDD, or the CDT method. We need first to compute the distance between the reference
vector; y4(m) and every other vector in the space %Y. The nearest nei ghbor of y (m) is

the vector with the shortest distance.

5.2.1 Using the change of neighborswith dimension method (CND)

Before we get into the details of the CND method, we need to introduce some no-
tation. First, the nearest neighbor of y(m) will be denoted ?é(m) .The k™ nearest nei gh-
bor of y,(m) will be denoted ?E(m) . (Thismeansthere are k — 1 vectorsthat are closer

to y4(m).) We will indicate the time index of the k" nearest nei ghbor as

ikm) = index[ 5 a(m)]. (5.1)
For example, if the nearest neighbor of y4(5) is ’;75(5) = y4(9), then the nearest neigh-
bor index is i3(5) = index[/y\3(5)] = index[y4(9)] = 9.
Toestimate d, by using the CND method, we need to check if the nearest neighbor
of y4(m) will remain aneighbor asthe dimension d growsto d + 1. In other words, we
need to check if the nearest neighbor of y,(m) will appear asthefirst, second, ..., or wih

neighbor of y, 1(m). To do that, we need to build the matrix Q4 which has the elements

dg(is ) = [yq() —yq()| wherei,j = 1,2,...,Mandi=j.Ifi = j,welabel qy(i,]) as
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not a number (NaN) since we are not interested in the distance between a vector and itself.

Weneed alsoto find the vector iﬁ whose m" element ié(m) isthetimeindex of the nearest

neighbor of y,(m) . Further, we need to compute the 1™ through the W ne ghborsof each

Y4+ 1(m) and savetheir indicesinthe m™ row of the matrix | 4+ Inotherwords, Qg, iz

and | 4 are defined as follows:

(gL 1) qy(L2) ... qq(1L,M)]

Qq = 09(2 1) q4(2,2) ... q4(2, M) '
_qd(M, 1) g4(M, 2) ... g4(M, M)_
ONaN gD =Y e [Ya(D) =Yg
Qq = IYa(2) =yq(D)| NaN e [Ya(2) = yg(M)
[YaM) =yg(D] [Ya(M) =yg(2)] ...  NaN
] _. ~k ]
Ig(1) index[ y d(1)]
. —~k
ik = 42| = |index('y a(2)] wherek = 1,2, ..., w,
.k | —~k
1aM)] |index('y d(M) |
i5(1) i1 ... iY@
.1 .2 W
and |, = [I 2 i(ﬂ - |d(.2) ig(2) ... |d(.2) _
iG(M) 15(M) .. ig(M)]

(5.2)

(5.3)

(5.4)

(5.5)

Each row of the matrix | 4 will belabeled by iy = [ié(m) iﬁ(m) i‘év(m)} . S0, the ma-
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trix 14 canbewrittenas: 14 = | 'd].

In Tables5.1a and 5.1c and Tables 5.2a and 5.2c, wecan see Q4 listedford = 1
through 4. In Tables 5.1d, 5.2b and 5.2d, we can see |, through |, showing the indices of
thethree neighbors(w = 3) of each y, ;(m) . Tables5.3a, 5.3b, and 5.3c summarizethe
neighborstimeindicesfound for d = 1 through 4. For example, in Table 5.3a we can see
that the nearest neighbor of y, (1) isy,(8) anditfailsto appear asthefirst, second, or third
neighbor of y,(1), sowelabel y,;(8) asaFNN. On the other hand, we can see that the
nearest neighbor of y,(8) isy,(9) and whenthedimensionincreasesto 2, it appearsasthe
second neighbor of y,(8), so welabel y;(9) asatrue neighbor. As aconclusion, we can
seein Table 5.3d that the total number of FNNsdropsfrom2atd = 1toOatd = 2 and
remainsOat d = 3. That means the minimum embedding dimensionisd, = 2, where
there are no projection artifacts left on the attractor of the system.

Notice that in this method we could have chosen w = 1, so that only the nearest
neighbor is considered. We have found through experimentation that using w greater than
1 provides a more robust algorithm. Thisisa new result. In Chapter 6, we will provide

more detail on the practical implementation aspects of the various algorithms.
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[

@ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1] NaN 0.65 1.2015] 0.1561 | 0.313 | 0.6479 | 1.2886 | 0.0262 | 0.0508 | 0.3597 0.4 0.7439 | 1.6362 0.9341 0.1046 8
2| o065 NaN 1.8515] 0.4939 | 0.963 | 0.0021 | 1.9386 | 0.6762 ] 0.7008 | 0.2903 1.05 0.0939 | 2.2862 1.5841 0.7546 6
3 1.2015 | 1.8515 NaN 1.3576 | 0.8885| 1.8494 | 0.0871 | 1.1753 | 1.1507 | 1.5612 | 0.8015 | 1.9454 | 0.4347 0.2674 1.0969 7
4] 0.1561 | 0.4939 | 1.3576 NaN 0.4691 | 0.4918 | 1.4446 | 0.1823 | 0.2069 | 0.2036 | 0.556 | 0.5878 | 1.7922 1.0901 0.2607 1
5| 0313 0.963 | 0.8885 | 0.4691 NaN 0.9609 | 0.9755 | 0.2868 | 0.2622 | 0.6727 | 0.0869 | 1.0569 | 1.3231 0.621 0.2084 11
6] 0.6479 | 0.0021 | 1.8494 | 0.4918 | 0.9609 NaN 1.9364 | 0.6741] 0.6987 | 0.2882 | 1.0478 | 0.096 2.284 1.5819 0.7525 2
7| 1.2886 | 1.9386 | 0.0871 | 1.4446 | 0.9755 | 1.9364 NaN 1.2624 | 1.2377 | 1.6483 | 0.8886 | 2.0325 | 0.3476 0.3545 1.1839 3
8| 0.0262 ] 0.6762 | 1.1753 | 0.1823 | 0.2868 | 0.6741 | 1.2624 NaN 0.0246 | 0.3859 | 0.3737 | 0.7701 1.61 0.9078 0.0784 9
9] 0.0508 | 0.7008 | 1.1507 | 0.2069 | 0.2622 | 0.6987 | 1.2377 | 0.0246 NaN 0.4105 | 0.3491 | 0.7947 | 1.5853 0.8832 0.0538 8
lO 0.3597 | 0.2903 | 1.5612 | 0.2036 | 0.6727 | 0.2882 | 1.6483 | 0.3859 | 0.4105 NaN 0.7596 | 0.3842 | 1.9959 1.2937 0.4643 4
11 0.4 1.05 0.8015] 0.556 | 0.0869 | 1.0478 | 0.8886 | 0.3737 | 0.3491 | 0.7596 NaN 1.1438 | 1.2362 0.5341 0.2953 5
12| 0.7439 | 0.0939 | 1.9454 | 0.5878 | 1.0569 | 0.096 | 2.0325 | 0.7701 | 0.7947 | 0.3842 | 1.1438 NaN 2.3801 1.6779 0.8485 2
13 1.6362 | 2.2862 | 0.4347 | 1.7922 | 1.3231 | 2.284 | 0.3476 1.61 1.5853 | 1.9959 | 1.2362 | 2.3801 NaN 0.7021 1.5316 7
14| 0.9341 | 1.5841| 0.2674| 1.0901 | 0.621 | 1.5819 | 0.3545 | 0.9078 | 0.8832 | 1.2937 | 0.5341 | 1.6779 | 0.7021 NaN 0.8294 3
15| 0.1046 | 0.7546 | 1.0969 | 0.2607 | 0.2084 | 0.7525 | 1.1839 | 0.0784 | 0.0538 | 0.4643 | 0.2953 | 0.8485 | 1.5316 0.8294 NaN 9
a) b)
Q@ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Iy
1] NaN 1.9623 | 1.2991 | 0.9756 | 0.313 2.044 | 1.4552 | 0.7013 | 0.2947 | 1.1099 | 0.4108 | 2.4041 | 2.2773 1.2008 9 5 11
2| 1.9623 NaN 2.2959 | 1.0165 | 2.0851 | 0.0871 | 2.267 | 1.3346 ] 1.7113 | 0.8525 | 2.2106 | 0.4447 | 2.3018 1.9268 6 12 10
3| 1.2901 | 2.2959 NaN 1.4363 | 1.0155 | 2.3467 | 0.202 | 1.1934 | 1.1685 | 1.6572 | 0.994 | 2.6451 | 1.1736 0.3735 7 14 11
4] 0.9756 | 1.0165 | 1.4363 NaN 1.0693 | 1.0925 | 1.4728 | 0.3193 ] 0.7038 | 0.2214 | 1.1942 | 1.4478 | 1.8968 1.1099 10 8 9
5| 0.313 | 2.0851 | 1.0155 | 1.0693 NaN 2.1617 | 1.1858 | 0.7553 | 0.3896 | 1.2452 | 0.1295 | 2.5167 | 2.0623 0.9757 11 1 9
6| 2.044 | 0.0871| 2.3467 | 1.0925 | 2.1617 NaN 2.3116 | 1.4094 | 1.7902 | 0.9342 | 2.2867 | 0.3606 | 2.3114 1.9759 2 12 10
7| 14552 | 2.267 0.202 | 1.4728 | 1.1858 | 2.3116 NaN 1.2626 | 1.2965 | 1.6901 | 1.1759 | 2.5928 | 0.9721 0.3631 3 14 13
8| 0.7013 | 1.3346 | 1.1934 | 0.3193 | 0.7553 | 1.4094 | 1.2626 NaN 0.4113 | 0.5204 | 0.8782 | 1.7625 | 1.8363 0.9094 4 9 10
9 0.2947 | 1.7113 | 1.1685 | 0.7038 | 0.3896 | 1.7902 | 1.2965 | 0.4113 NaN 0.8635 | 0.5191 | 2.1483 | 2.0462 0.9978 1 5 8
10| 1.1099 | 0.8525 | 1.6572 | 0.2214 | 1.2452 | 0.9342 | 1.6901 | 0.5204 | 0.8635 NaN 1.3731 | 1.2945 | 2.0661 1.327 4 8 2
11| 0.4108 | 2.2106 | 0.994 | 1.1942 | 0.1295 | 2.2867 | 1.1759 | 0.8782 | 0.5191 | 1.3731 NaN 2.6407 | 2.0842 1.0026 5 1 9
12 2.4041 | 0.4447 | 2.6451 | 1.4478 | 2.5167 | 0.3606 | 2.5928 | 1.7625 | 2.1483 | 1.2945 | 2.6407 NaN 2.4815 2.2718 6 2 10
13| 2.2773 | 2.3018 | 1.1736 | 1.8968 | 2.0623 | 2.3114 | 0.9721 | 1.8363 | 2.0462 | 2.0661 | 2.0842 | 2.4815 NaN 1.0867 7 14 3
14| 1.2008 | 1.9268 | 0.3735 | 1.1099 | 0.9757 | 1.9759 | 0.3631 | 0.9094 | 0.9978 | 1.327 | 1.0026 | 2.2718 | 1.0867 NaN b) 7 3 8 d)
Table 5.1 The CND method (1/3)
Q 1 2 3 4 5 6 7 8 9 10 11 12 13 Iy
1 NaN 2.3861 | 1.5738 | 2.0909 | 0.3249 | 2.3578 | 1.8552 | 1.7115| 0.854 | 2.2397 | 0.5981 | 2.419 | 2.5277 5 11
2| 2.3861 NaN 2.3433 | 1.1293 | 2.5366 | 0.202 | 2.2764 | 1.3501 | 1.7993 | 1.0355] 2.8459 | 1.1773 | 2.3165 6 10 4
3| 15738 | 2.3433 NaN 1.7281) 1.4082 | 2.3642| 0.331 | 1.3699 | 1.1718 ] 1.9656 | 1.6549 | 2.717 | 1.1919 7 13
4| 2.0009 | 1.1293 | 1.7281 NaN 2.212 | 1.2837 | 1.6302 | 0.4301 | 1.2623 | 0.2413 | 2.5774 | 2.1445 ] 2.0406 10 8 2
5] 0.3249 | 2.5366 | 1.4082| 2.212 NaN 25033 | 1.7141| 1.8131 ] 0.9703 | 2.3836 | 0.3709 | 2.5416 | 2.378 1 11 9
6 2.3578 | 0.202 | 2.3642 | 1.2837 | 2.5033 NaN 2.3117 | 1.4613 | 1.8288 ) 1.2107 | 2.7966 | 0.9768 | 2.3127 2 12 10
7 1.8552 | 2.2764 | 0.331 | 1.6302 | 1.7141] 2.3117 NaN 1.3277 ] 1.3427 | 1.8676 | 1.9738 | 2.7391 ]| 0.9736 3 13 8
8 1.7115] 1.3501 | 1.3699 | 0.4301 | 1.8131 | 1.4613 ] 1.3277 NaN 0.8638 | 0.6468 | 2.1805| 2.1863 | 1.8941 4 10 9
9 0.854 | 1.7993 | 1.1718 | 1.2623 ] 0.9703 | 1.8288 | 1.3427 | 0.8638 NaN 1.4332 | 1.3408 | 2.2137 | 2.0674 1 8 5
10| 2.2397 | 1.0355 | 1.9656 | 0.2413 | 2.3836 | 1.2107 | 1.8676 | 0.6468 | 1.4332 NaN 2.7477 ] 2.1193 | 2.2335 4 8 2
11| o0.5981 | 2.8459 | 1.6549 | 2.5774 | 0.3709 | 2.7966 | 1.9738 | 2.1805 | 1.3408 | 2.7477 NaN 2.7324 ] 2.5864 5 1 9
12| 2.419 | 1.1773| 2.717 | 2.1445| 25416 | 0.9768 | 2.7301 | 2.1863 | 2.2137 | 2.1193 | 2.7324 NaN 2.6164 6 2 10
13| 2.5277 | 2.3165 | 1.1919 | 2.0406 | 2.378 | 2.3127 | 0.9736 | 1.8941 ] 2.0674 | 2.2335| 2.5864 | 2.6164 NaN 7 3 8
a) b
Q4 1 2 3 4 5 6 7 8 9 10 11 12 I 4
1| NaN 2.4318 | 1.6489 | 2.5414 ] 0.3725| 2.3668 | 1.8663 | 1.7995 | 1.0368 | 2.8685 | 1.2434 | 2.433 5 9 11
2| 2.4318 NaN 2.5327 | 1.4923 | 2.5528 | 0.331 | 2.3738 | 1.3529 | 2.0868 | 1.6802 | 2.9129 | 1.1956 6 12 8
3] 1.6489 | 2.5327 NaN 2.5954 | 1.5612 | 2.4653 ] 0.4389 | 1.7247 | 1.1757 | 3.0134 | 2.2894 | 2.8193 7 9 5
4] 25414 | 1.4923 | 2.5954 NaN 2.5469 | 1.7832 | 2.3182 ] 0.9872 | 2.3925| 0.4232 | 2.6017 | 2.4496 10 8 2
5] 0.3725 | 2.5528 | 1.5612 | 2.5469 NaN 2.5035| 1.757 | 1.8512) 1.2387 | 2.8763 | 0.9807 | 2.5428 1 11 9
6] 2.3668 | 0.331 | 2.4653 | 1.7832 | 2.5035 NaN 2.3479 | 1.5024 | 1.9941 ) 1.9947 | 2.9327 | 0.9783 2 12 8
7| 1.8663 | 2.3738 | 0.4389 | 2.3182| 1.757 | 2.3479 NaN 1.5296 | 1.3966 | 2.7334 2.36 2.7782 3 9 8
8] 1.7995 | 1.3529 | 1.7247 | 0.9872 | 1.8512 | 1.5024 | 1.5296 NaN 1.4334 ] 1.3952 | 2.245 | 2.2062 4 2 10
9] 1.0368 | 2.0868 | 1.1757 | 2.3925 | 1.2387 | 1.9941 | 1.3966 | 1.4334 NaN 2.7782 | 2.1478 | 2.3707 1 3 5
10| 2.8685 | 1.6802 | 3.0134 | 0.4232 | 2.8763 | 1.9947 | 2.7334 | 1.3952 | 2.7782 NaN 2.836 | 2.6148 4 8 2
11] 1.2434 ] 2.9129 | 2.2894 | 2.6017 | 0.9807 | 2.9327 2.36 2.245 | 2.1478 | 2.836 NaN 2.8555 5 1 9
12| 2.433 | 1.1956 | 2.8193 ] 2.4496 | 2.5428 | 0.9783 | 2.7782 | 2.2062 | 2.3707 | 2.6148 | 2.8555 NaN c ) 6 2 8 d )

Table 5.2 The CND method (2/3)
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d d d d | FNN

time 1 2 time 2 3 time 3 1] 2

1 8 9 5 11 |FNN ] 9 5 11 |(9) 1 s | (s) o |11 2] 0

2 6 [(e)] 12 ] 10 2 6 [(e)] 0] 4 2 6 | (e) | 12]s 3] o

3 7 (7 14 | 1 3 7 (o] o 13 3 7 | C2) 9 | 5 d)

4 1 10 8 9 |FNN| 4 10 JCio | 8 2 4 10 | (10) 8 | 2

5 u |G| 1 9 5 11 1 (i | o 5 IO ENE

6 2 (2] 12 ] 10 6 2 (2] 12 | 10 6 2 | (2) [ 12 ] s

7 3 ()| 14 ] 13 7 3 J(3) ] 13 3 7 3 | (3) 9 | 8

8 9 4 | Co)] 10 3 4 ()] 10 9 3 4 | 2 | 10

9 8 1 5 |(s) 9 1 (D] s 5 9 1 | CD 3 | 5

10 4 JCa) ] s 2 10 4 JCa) | s 2 10 4 | Ca) s | 2

11 s ()| 1 9 11 s ()| 1 9 11 s | (5) 1 |9

12 2 6 |(2)] 10 12 s ()| 2 10 12 s | (6) 2 | 8

1B 7 (D] 1] 3 1] 7 ()] 3 8 13| 7

1| 3 7 [(a)] s 1| 7

15 9 a) b) c)

Table 5.3 The CND method (3/3)

5.2.2 Using the change of distance with dimension method (CDD)

Aswe said in Chapter 4, the CDD method can also be used to estimate d, . This
method depends on the idea that false nearest neighbor distances increase significantly as
the dimension of the space increases.

To estimate d; of the Henon map using the CDD method, we need to compute the
matrix Q4 and find the vector ié asin the CND method. In addition, we need to find the
vector r 4 whose element r 4(m) isthe distance between y (m) and its nearest neighbor
/y\é(m) = yd(ié(m)): rq(m) = Hyd(m) —/y\é(m)H . We also need to find out how much
the distances to the nearest neighbors grow as the dimension increases. For these new dis-
tanceswe definethe vector e, , ; whoseelements ey, (M) represent the distance between
Yg+1(m) andyy, 1(ié(m)) .(Noticethat y , 1(ié(m)) isnot the same as ?3+ 1(m).ltis
?é(m) with one component added.)

For example, when d = 1 in Table 5.4a, the nearest neighbor of y,(1) isy,(8)
and the distance betweenthemisr, (1) = 0.026. Atd = 2 inTable 5.4d, the distance be-
tween y,(1) and y,(8) ise,(1) = 0.701. If yd(ié(m)) isatrue nearest neighbor of

yq(my, yd+1(ié(m)) will becloseto y,, 1(m). To apply thisidea, we need to see how
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much the distance between the nearest neighbors grows asd increasesto d + 1. We can do

that by forming the vector ¢, which has the elements

€q 4 1(M) —ry(m)
rq(m

Cyq(m) = (5.6)

If c4(m) >p where p issome predefined threshold, we label the nearest neighbor of
yq(m) asafalse nearest neighbor (FNN). For instance, let p = 10. We can see from our
examplethat c,(1) = 25.9731 as seen at the second column of Table 5.49. Since
c;(1)>p = 10,welabel y;(8) asaFNN. Theresultsin Tables5.4g, 5.59, and 5.69 show
cy ford = 1 through 3. In Table 5.6h, we summarize the results of the previoustables. In

it, wecanseethatat d = 1,thenumber of FNNsis5, whileat d = 2, thenumber of FNNs
dropsto O andremainsO at d = 3. Therefore, the minimum embedding dimensionis

dL = 2-



.1
Q 1 2 3 4 5 6 7 8 9 100 11 12 13 14 15 I M1
1| Nan 0.650 | 1.202 | 0.156 | 0.313 | 0.648 | 1.289 | 0.026 | 0.051 | 0.360 | 0.400 | 0.744 | 1.636 | 0.934 | 0.105 8 0.026
2| o650 NaN 1.852 | 0494 | 0.963 | 0.002 | 1.939 | 0.676 | 0.701 | 0.290 | 1.050 | 0.094 | 2.286 | 1.584 | 0.755 6 0.002
3| 1202 | 1852 NaN 1.358 | 0.889 | 1.849 | 0.087 | 1.175 | 1.151 | 1.561 | 0.802 | 1.945 | 0435 | 0.267 | 1.097 7 0.087
4| 0156 | 0494 | 1.358 NaN 0.469 | 0.492 | 1.445 | 0.182 | 0.207 | 0.204 | 0.556 | 0.588 | 1.792 | 1.090 | 0.261 1 0.156
5| 0313 | 0963 | 0.889 | 0.469 NaN 0.961 | 0976 | 0.287 | 0.262 | 0.673 | 0.087 | 1.057 | 1.323 | 0.621 | 0.208 11 0.087
6| 0.648 | 0.002 | 1.849 | 0492 | 0.961 NaN 1.936 | 0.674 | 0.699 | 0.288 | 1.048 | 0.096 | 2.284 | 1.582 | 0.753 2 0.002
7| 1289 | 1.939 | 0.087 | 1445 | 0.976 | 1.936 NaN 1262 | 1.238 | 1.648 | 0.889 | 2.033 | 0.348 | 0.355 | 1.184 3 0.087
8| 0026 | 0676 | 1.175 | 0182 | 0.287 | 0674 | 1.262 NaN 0.025 | 0386 | 0.374 | 0.770 | 1.610 | 0.908 | 0.078 9 0.025
9| 0051 | 0701 | 1151 | 0207 | 0262 | 0.699 | 1.238 | 0.025 NaN 0411 | 0349 | 0.795 | 1585 | 0.883 | 0.054 8 0.025
10| 0360 | 0290 | 1.561 | 0.204 | 0673 | 0.288 | 1.648 | 0386 | 0.411 NaN 0.760 | 0.384 | 1.996 | 1.294 | 0.464 4 0.204
11] 0400 | 1.050 | 0.802 | 0556 | 0.087 | 1.048 | 0889 | 0374 | 0349 | 0.760 NaN 1.144 | 1.236 | 0.534 | 0.295 5 0.087
12| 0744 | 0.094 | 1.945 | 0588 | 1.057 | 0.096 | 2033 | 0770 | 0795 | 0.384 | 1.144 NaN 2.380 | 1.678 | 0.849 2 0.094
13| 1636 | 2286 | 0435 | 1.792 | 1.323 | 2.284 | 0348 | 1610 | 1585 | 1.996 | 1.236 | 2.380 NaN 0.702 | 1532 7 0.348
14| 0934 | 1584 | 0.267 | 1.000 | 0621 | 1.582 | 0355 | 0.908 | 0.883 | 1.294 | 0.534 | 1.678 | 0.702 NaN 0.829 3 0.267
15| 0.105 | 0755 | 1.097 | 0.261 | 0.208 | 0.753 | 1.184 | 0.078 | 0.054 | 0.464 | 0.295 | 0.849 | 1.532 | 0.829 NaN 9 0.054
a) D) C)
.1
Q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 I €
1| Nan 1.299 | 0.976 | 0313 | 2.044 | 1.455 @7@ 0.295 | 1110 | 0.411 | 2.404 | 2.277 | 1.201 8 E
2| 1962 2.296 | 1.017 | 2.085 @087 2267 | 1335 | 1.711 | 0.853 | 2.211 | 0.445 | 2.302 | 1.927 6 m
3| 1299 NaN 1.436 | 1.016 | 2.347 @202 1193 | 1.169 | 1.657 | 0.994 | 2645 | 1174 | 0.374 7 %
4 @ 1.436 NaN 1.069 | 1.093 | 1473 | 0319 | 0.704 | 0.221 | 1.194 | 1448 | 1.897 | 1.110 1 m
5] 0313 1.016 | 1.069 NaN 2.162 | 1186 | 0.755 | 0.390 | 1.245 @ 2517 | 2.062 | 0.976 11 M
6| 2044 2.347 | 1.093 | 2.162 NaN 2312 | 1409 | 1.790 | 0.934 | 2.287 | 0.361 | 2.311 | 1.976 2 M
7| 1455 62@ 1473 | 1186 | 2.312 NaN 1263 | 1.297 | 1690 | 1176 | 2593 | 0.972 | 0.363 3 &
8| o701 1.193 | 0319 | 0.755 | 1.409 | 1.263 NaN Qﬂ;) 0520 | 0.878 | 1.763 | 1.836 | 0.909 9 %
9| o0.295 1.169 | 0.704 | 0.390 | 1.790 | 1.297 @ NaN 0.864 | 0519 | 2.148 | 2.046 | 0.998 8 0411
10| 1110 1.657 @ 1245 | 0.934 | 1.690 | 0.520 | 0.864 NaN 1.373 | 1.295 | 2.066 | 1.327 4 m
11| o411 0.994 | 1.194 @1@ 2287 | 1176 | 0.878 | 0519 | 1.373 NaN 2.641 | 2.084 | 1.003 5 E
12| 2404 2.645 | 1448 | 2517 | 0.361 | 2593 | 1763 | 2.148 | 1.295 | 2.641 NaN 2482 | 2.272 2 %
13| 2277 1.174 | 1.897 | 2.062 | 2.311 @9@ 1.836 | 2.046 | 2.066 | 2.084 | 2.482 NaN 1.087 7 %
14| 1201 @3@ 1.110 | 0976 | 1.976 | 0.363 | 0.909 | 0.998 | 1.327 | 1.003 | 2.272 | 1.087 NaN 3 ﬁ
d) e) )
Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14
r, | 0026 | 0002 | 0.087 | 0.156 | 0.087 | 0.002 | 0.087 | 0.025 | 0.025 | 0.204 | 0.087 | 0.094 | 0.348 | 0.267
e, | 0701 | 0.087 | 0.202 | 0.976 | 0.130 | 0.087 | 0.202 | 0.411 | 0411 | 0.221 | 0.130 | 0445 | 0972 | 0.374
C; | 25.9731| 42.55 | 1.32184| 5.25385] 0.48851| 42.55 | 1.32184] 15.452 | 15.452 | 0.08529| 0.48851| 3.73085| 1.79339] 0.39888
FNN FNN FNN FNN FNN g )

Table 5.4 The CDD method tablesfor d =1
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Q 1 2 3 4 5 6 7 8 9 100 11 12 13 14 Iy
1| Nan | 1962 | 1299 | 0976 | 0313 | 2.044 | 1455 | 0701 | 0.295 | 1.110 | 0411 | 2.404 | 2277 | 1201 9
2| 1962 | NaN | 2296 | 1.017 | 2.085 | 0087 | 2267 | 1.335 | 1.711 | 0853 | 2211 | 0.445 | 2302 | 1927 6
3| 1299 | 2296 [ Nan | 1.436 | 1016 | 2.347 | 0202 | 1193 | 1.160 [ 1.657 | 0994 | 2645 | 1.174 | 0.374 7
4] 0976 | 1.017 | 1436 | NaN | 1069 | 1.093 | 1.473 | 0319 | 0.704 [ 0221 | 1194 | 1448 | 1897 | 1.110 10
5[ 0313 | 2.085 | 1.016 | 1.069 [ Nan | 2162 | 1186 | 0.755 | 0.390 | 1.245 | 0.130 | 2517 | 2.062 | 0976 11
6| 2044 | 0087 | 2347 | 1003 | 2162 | NaN | 2312 | 1409 | 1.790 | 0934 | 2287 | 0.361 | 2311 | 1976 2
7| 1455 | 2.267 | 0202 | 1473 | 1186 | 2312 | NaN | 1.263 | 1.297 | 1.600 | 1.176 | 2.593 | 0.972 | 0.363 3
8| o701 | 1.335 [ 1193 | 0319 | 0.755 | 1.409 | 1.263 | NaN | 0411 [ 0520 | 0.878 | 1.763 | 1.836 | 0.909 4
9| 0205 | 1.711 [ 1160 | 0704 | 0390 | 1.790 | 1.297 | 0411 | Nan [ 0.864 | 0519 | 2148 | 2.046 | 0.998 1
10| 1110 | 0853 | 1.657 | 0221 | 1.245 | 0934 | 1.690 | 0520 | 0.864 | NaN | 1373 | 1205 | 2.066 | 1.327 4
11] o411 | 2211 | 0994 | 1194 | 0130 | 2.287 | 1176 | 0.878 | 0.519 | 1.373 | NaN | 2641 | 2.084 | 1.003 5
12| 2404 | 0445 | 2645 | 1448 | 2517 | 0.361 | 2503 | 1.763 | 2.148 | 1295 | 2641 | Nan | 2482 | 2272 6
13| 2277 | 2302 | 1174 | 1897 | 2062 | 2.311 | 0972 | 1836 | 2.046 | 2.066 | 2.084 | 2482 | Nan | 1.087 7
14] 1201 | 1927 | 0374 | 1110 | 0976 | 1.976 | 0363 | 0.909 | 0.998 | 1.327 | 1.003 | 2272 | 1.087 | NaN 7
a) b)
.1
Qs 1 2 3 4 5 6 7 8 9 100 11 12 13 I2 €5
1| Nan | 2.3861 | 1.5738 | 2.0909 | 0.3249 18552 | 1.7115 | (0.854)| 2.2307 | 05081 | 2.419 | 25077 9 E
2| 23861| NaN | 2.3433] 1.1293 | 25366 22764 | 1.3501 | 1.7993 | 1.0355 | 2.8450 | 1.1773| 2.3165 6 [ 0.202
3| 15738 | 23433 Nan | 1.7281 ] 1.4082 (0331)] 1.3699 | 1.1718 | 1.9656 | 1.6549 [ 2717 | 11019 7  0.331
4] 2.0909 | 11293 | 1.7281| NaN | 2212 16302 | 0.4301 | 1.2623 | @ 2413)| 25774 | 21445 2.0006 10 [ 0.241
5[ 03249 2.5366 | 1.4082| 2212 | NaN 17141 | 1.8131 | 0.9703 | 2.3836 | ©3709)| 25416| 2378 11 | 0.371
6| 23578 | (0.202)] 2.3642 | 1.2837] 2.5033 23117 ] 14613 | 1.8288 | 1.2107 | 2.7966 | 0.9768 | 2.3127 2 [ 0.202
7| 18552 22764 | (0331)] 16302 17141 NaN | 1.3277 ] 1.3427 | 1.8676 | 1.9738 | 2.7391| 0.9736 3  0.331
8| 17115 | 1.3501 | 1.3699 | ©4301) 18131 1.3277] Nan | 0.8638 | 0.6468 | 2.1805 | 2.1863 | 1.8941 4 | 043 |
9| (0854)] 1.7993| 1.1718] 1.2623| 0.9703 13427 ] 08638 | NaN | 1.4332| 1.3408 | 22137 2.0674 1 | 0.854]
10 2.2397 | 1.0355 | 1.9656 | ©.2413)| 23836 18676 | 0.6468 | 1.4332| NaN | 27477 | 2.1193| 2.2335 4 [ 0.241
11| 05981 | 2.8459 | 1.6549 | 25774 | @3709) 27066 | 1.9738] 2.1805 | 1.3408 | 27477 | nan | 27304 25864 5 | 0.371
12| 2419 | 11773 | 2.717 | 2.1445 | 25416 | Q.o76®)| 2.7391 | 2.1863 | 2.2137 | 2.1193| 27324 | Nan | 2.6164 6 | 0.977]
13| 25277 | 2.3165 | 1.1919 | 2.0406 | 2.378 | 2.3127 |0.9736)] 1.8941 | 2.0674 | 2.2335 | 2.5864 | 26164 | NaN 7 | 0.974]
d) e) f)
Time
1 2 3 4 5 6 7 8 9 10 11 12 13
r, | 0295 | 0087 | 0202 | 0221 | 013 | 0087 | 0.202 | 0.319 | 0295 | 0221 | 013 [ 0361 | 0972
e; | 0854 | 0202 | 0331 | 02413 | 0.3709| 0202 | 0.331 | 0.4301 | 0.854 | 0.2413 | 0.3709 [ 0.9768 | 0.9736
C, |1.89492| 1.32184] 0.63861| 0.09186| 1.85308| 1.32184| 0.63861 0.34828| 1.89492| 0.09186| 1.85308| 1.70582| 0.00165 9

Table 5.5 The CDD method tablesfor d = 2
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Qs 1 2 3 4 5 6 7 8 9 10 11 12 13 |é r3
1] Nan | 2.3861 | 1.5738 | 2.0009 | 0.3249 | 2.3578 | 1.8552 | 1.7115 | 0.854 | 2.2397 | 0.5981 | 2.419 | 2.5277 5 0.325
2| 2.3861| NanN | 23433 | 1.1203 | 2.5366 | 0.202 | 2.2764 | 1.3501 | 1.7993 | 1.0355 | 2.8459 | 1.1773 | 2.3165 6 0.202
3| 15738 2.3433| NaN | 1.7281 | 1.4082 | 2.3642 | 0.331 | 1.3699 | 1.1718 | 1.9656 | 1.6549 | 2.717 | 1.1919 7 0.331
4] 2.0009 | 1.1293 | 1.7281 | NaN | 2212 | 1.2837 | 1.6302 | 0.4301 | 1.2623 | 0.2413 | 2.5774 | 2.1445 | 2.0406 10 0.241
5| 0.3249 | 25366 | 1.4082 | 2.212 | NaN | 2.5033 | 1.7141 | 1.8131 | 0.9703 | 2.3836 | 0.3709 | 2.5416 | 2.378 1 0.325
6| 2.3578 | 0.202 | 2.3642 | 1.2837 | 2.5033 | NaN | 2.3117 | 1.4613 | 1.8288 | 1.2107 | 2.7966 | 0.9768 | 2.3127 2 0.202
7| 18552 | 22764 | 0.331 | 1.6302 | 1.7141 ] 2.3117 | NaN | 1.3277 | 1.3427 | 1.8676 | 1.9738 | 2.7391 | 0.9736 3 0.331
8| 1.7115] 1.3501 | 1.3699 | 0.4301 | 1.8131 | 1.4613 | 1.3277 | NaN | 0.8638 | 0.6468 | 2.1805 | 2.1863 | 1.8941 4 0.43
9| o0.854 | 1.7993 | 1.1718 | 1.2623 | 0.9703 | 1.8288 | 1.3427 | 0.8638 | NaN | 1.4332 | 1.3408 | 2.2137 | 2.0674 1 0.854
10| 2.2397 | 1.0355 | 1.9656 | 0.2413 | 2.3836 | 1.2107 | 1.8676 | 0.6468 | 1.4332 | NaN | 2.7477 | 2.1193 | 2.2335 4 0.241
11| 0.5981 | 2.8459 | 1.6549 | 2.5774 | 0.3709 | 2.7966 | 1.9738 | 2.1805 | 1.3408 | 2.7477 | NaN | 2.7324 | 2.5864 5 0.371
12| 2.419 | 1.1773| 2.717 | 2.1445 | 2.5416 | 0.9768 | 2.7391 | 2.1863 | 2.2137 | 2.1193 | 2.7324 | NaN | 2.6164 6 0.977
13| 2.5277 | 2.3165 | 1.1919 | 2.0406 | 2.378 | 2.3127 | 0.9736 | 1.8941 | 2.0674 | 2.2335 | 2.5864 | 2.6164 | NaN 7  0.97 |

a) b) c
.1

Qq4 1 2 3 4 5 6 7 8 9 10 11 12 |3 e4
1| NaN | 2.4318 | 1.6489 | 2.5414 @372@ 2.3668 | 1.8663 | 1.7995 | 1.0368 | 2.8685 | 1.2434 | 2.433 5 0.3725
2| 2.4318| Nan | 2.5327 | 1.4923 | 2.5528 Q)iaj) 2.3738 | 1.3529 | 2.0868 | 1.6802 | 2.9129 | 1.1956 6 0.331
3| 1.6489 | 2.5327 | NaN | 2.5954 | 1.5612 | 2.4653 (wﬁs} 1.7247 | 1.1757 | 3.0134 | 2.2894 | 2.8193 7 0.4389
4] 25414 | 1.4923 | 2.5054 | NaN | 2.5469 | 1.7832 | 2.3182 | 0.9872 | 2.3925 (@) 2.6017 | 2.4496 10 0.4232
5@ 2.5528 | 1.5612 | 2.5469 | NaN | 2.5035 | 1.757 | 1.8512 | 1.2387 | 2.8763 | 0.9807 | 2.5428 1 0.3725
6| 2.3668 @3}) 2.4653 ] 1.7832 | 25035 | NaN | 2.3479 | 15024 | 1.9941 | 19947 | 2.9327 | 0.9783 2 0.331
7| 1.8663 | 2.3738 Qy_sgs) 2.3182 | 1.757 | 2.3479 | NaN | 1.5296 | 1.3966 | 2.7334 [ 2.36 | 2.7782 3 0.4389
8| 1.7995 | 1.3529 | 1.7247 (ansxj) 1.8512 | 1.5024 | 1.5296 | NaN | 1.4334 | 1.3952 | 2.245 | 2.2062 4 0.9872
9[\1.0368 | 2.0868 | 1.1757 | 2.3925 | 1.2387 | 1.9941 | 1.3966 | 1.4334 | NaN | 2.7782 | 2.1478 | 2.3707 1 1.0368
10| 2.8685 | 1.6802 | 3.0134 (&12,3) 2.8763 | 1.9947 | 2.7334 | 1.3952 | 2.7782 | NaN | 2.836 | 2.6148 4 0.4232
11| 1.2434 | 2.9129 | 2.2894 | 2.6017 Qg_Bﬁ 29327 | 236 | 2245 | 2.1478| 2.836 | NaN | 2.8555 5 0.9807
12| 2.433 | 1.1956 | 2.8193 | 2.4496 | 2.5428 @,978@ 2.7782 | 2.2062 | 2.3707 | 2.6148 | 2.8555 | NaN 6 0.9783

d) e) f)
Time d FNN
1 2 3 4 5 6 7 8 9 10 11 12 1 5

r; | 0.3249| 0.202 | 0.331 | 0.2413 | 0.3249 | 0.202 | 0.331 | 0.4301 [ 0.854 | 0.2413 | 0.3709 | 0.9768 2 0
e, | 0.3725| 0.331 | 0.4389 | 0.4232 | 0.3725] 0.331 | 0.4389 | 0.9872 | 1.0368 | 0.4232 | 0.9807 | 0.9783 3 0
C, | 0.14651] 0.63861 0.32598| 0.75383] 0.14651| 0.63861| 0.32598| 1.29528 0.21405] 0.75383] 1.64411 0.00154 g) h)

Table 5.6 The CDD method tablesfor d = 3

5.2.3 Using the change of distance with time method (CDT)

Aswe said in Chapter 4, the CDT method can also be used to estimate d, . This
method depends on the idea that fal se nearest neighbor distances grow significantly astime
increases. Asin the previous methods, we begin by computing the nearest neighbors for
d = 1. Then wetrack how the distance between the original nearest neighbors increases
with time. This method can be applied by computing the distance in dimension d, rather
thanin dimension d. This has the advantage that the measured distance won'’t be affected
by projection artifacts.

Next, we need to have a method for determining whether or not the distances be-

tween two vectors can be considered large. For our purpose, we will use the average vector

a7



length asabench mark. If the distance between two vectorsislarger than the average vector
length, we will consider the distance to be large. The average vector length is defined as

M

B = gl,.' > ya] - (5.7)

k=1

If welet y,(n) bethe nearest neighbor of y,(m), we can check if y,(n) isaFNN
by measuring the distance between y,(m) and y5(n) astimeincreases (dg = 3). For ex-
ample, we can see from the 8" row of Table 5.7a that the nearest nei ghbor of y,(8) is
y1(9) . If welook at Table 5.7b, we can see that the distance between y;(8) and y5(9) is
05(8,9) = 0.8638< P = 1.3404 (seethecircled value). But, after one time step ahead,
we can see that the distance between y,(9) and y5(10) is g5(9, 10) = 1.4332 whichis
greater than B = 1.3404 asindicated by the arrow. We concludethat y, (9) isaFNN since
the distance between y;(8) and y5(9) hasgrownmorethan B astimeincreases. A second
example of the FNNs can be seen from thefirst row of Table5.7a. We can see that the near-
est neighbor of y,; (1) isy,(8),whilein Table5.7b, the distance between y;(1) and y5(8)
is1.7115 > 3 that means y,(8) isaFNN. Ontheother hand, the nearest neighbor of y, (2)
is y,(6), as seen in the second row of the last column in Table 5.7a, while if we look at
Table5.7b, we can seethat the distance between y;(2) and y4(6) is0.202 < 3. If wemove
one step ahead, we can see that the distance between y4(3) and y4(7) is 0.331 whichis
still lessthan 3. A conclusion that can be reached isthat y,(6) isatrue nearest neighbor
of y,(2) . Notice here that we choose one as the number of forward time stepsthat is used
to check for FNN.

Table 5.9b summarizes the number of FNNsfound for d = 1 through 3. It shows

that at d = 1, the number of FNNsfound is4, whileat d = 2, the number of FNNsisO
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andremainsOat d = 3. That means the minimum embedding dimensionisd, = 2. Fi-
nally, notice that the nearest neighbor of y,(13) shown in the last row of the Tables 5.7b,
5.8b, and 5.9a are labeled as not decidable (nd). The reason for thisisthat at thefirst in-
stance of time, the distance between the two vectorsislessthan 3, but we do not have
enough data to check if the distance between the two vectors after one time step ahead is
greater than 3. So, we have to discard this neighbor from the count of the FNNs and label

it as not decidable (nd).

The threshold is S =1.3404 1
I
Q: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1f Nan 065 | 1.2015 | 01561 | 0.313 | 0.6479 | 1.2886 | 0.0262 | 0.0508 | 0.3597 | 0.4 | 0.7439 | 1.6362 | 09341 | 0.1046 8
2| oes NaN | 1.8515 | 04930 | 0963 | 0.0021 | 1.9386 | 06762 | 07008 | 0.2903 | 1.05 | 00930 | 22862 | 1.5841 | 0.7546 6
3] 1.2015 | 1.8515 | Nan | 1.3576 | 0.8885 | 1.8494 | 0.0871 | 1.1753 | 1.1507 | 15612 | 0.8015 | 1.9454 | 04347 | 0.2674 | 1.0969 7
4] 0561 | 04930 | 13576 | NaN_| 04691 | 0.4918 | 1.4446 | 0.1823 | 0.2069 | 0.2036 | 0.556 | 05878 | 17922 | 1.0001 | 0.2607 1
5| 0313 | 0963 | 0.8885 | 04691 | Nan | 0.9609 | 0.9755 | 0.868 | 0.2622 | 0.6727 | 0.0869 | 1.0569 | 13231 | 0621 | 02084 | 11
6| 06479 | 0.0021 | 1.8494 | 0.4918 | 09609 | NaN | 1.9364 | 06741 | 06987 | 0.2882 | 1.0478 | 0.096 | 2.284 | 1.5819 | 0.7525 2
7| 12886 | 19386 | 0.0871 | 1.4446 | 09755 | 1.9364 | NaN | 12624 | 12377 | 1.6483 | 0.8886 | 2.0325 | 0.3476 | 0.3545 | 11839 3
8| 0.0262 | 06762 | 11753 | 0.1823 | 0.2868 | 0.6741 | 1.2624 | NaN | 0.0246 | 03859 | 03737 | 07701 | 1.61 | 0.9078 | 0.0784 9
9] 0.0508 | 0.7008 | 1.1507 | 0.2069 | 0.2622 | 0.6987 | 1.2377 | 0.0246 | NaN | 0.4105 | 0.3401 | 07947 | 15853 | 0.8832 | 0.0538 8
10| 0.3597 | 0.2003 | 1.5612 | 0.2036 | 0.6727 | 0.2882 | 1.6483 | 0.3859 | 04105 | NaN | 0.7506 | 0.3842 | 19950 | 1.2037 | 04643 | 4
11| o4 105 | 08015 | 0556 | 0.0869 | 1.0478 | 0.8886 | 0.3737 | 0.3491 | 0.7596 | Nan | 1.1438 | 1.2362 | 05341 | 0.2953 5
12| 0.7439 | 0.0039 | 1.9454 | 0.5878 | 1.0569 | 0.096 | 2.0325 | 0.7701 | 07947 | 0.3842 | 1.1438 | nNan | 23801 | 16779 | o0.8485 2
13| 1.6362 | 2.2862 | 04347 | 1.7922 | 1.3231 | 2284 | 03476 | 161 | 15853 | 1.9950 | 1.2362 | 2.3801 | Nan | 07021 | 15316 7
14] 09341 | 15841 | 0.2674 | 1.0901 | 0621 | 15819 | 0.3545 | 0.9078 | 08832 | 1.2037 | 0.5341 | 16779 | 07021 | NaN 08294 | 3
15| 0.1046 | 0.7546 | 1.0969 | 0.2607 | 0.2084 | 0.7525 | 1.1839 | 0.0784 | 0.0538 | 0.4643 | 0.2953 | 0.8485 | 15316 | 0.8294 NaN 9
a)
I
Qs 1 2 3 4 5 6 7 8 9 10 11 12 13
1] NaN | 2.3861] 1.5738 | 2.0909 | 0.3249 | 2.3578 | 1.8552 1.7113 0.854 | 2.2397 ]| 0.5981 | 2.419 | 2.5277 8 FNN
2| 2.3861 NaN 2.3433 | 1.1293 | 2.5366 QZOZ 2.2764 | 1.3501 ['1.7993 | 1.0355 | 2.8459 | 1.1773 | 2.3165 6
3| 1.5738 | 2.3433 NaN 1.7281 | 1.4082 | 2.3642 [\.0.33. 1.3699 | 1.1718 | 1.9656 | 1.6549 | 2.717 | 1.1919 7
4 (LOQO 1.1293 | 1.7281 NaN 2.212 | 1.2837 | 1.6302 | 0.4301 | 1.2623 | 0.2413 | 2.5774 | 2.1445 | 2.0406 1 FNN
5] 0.3249 | 2.5366 | 1.4082 | 2.212 NaN 2.5033 | 1.7141 | 1.8131 | 0.9703 | 2.3836 @37@ 2.5416 | 2.378 11
6] 2.3578 @.202 2.3642 | 1.2837 | 2.5033 NaN 2.3117 | 1.4613 | 1.8288 | 1.2107 | 2.7966 [70.9768 | 2.3127 2
7] 1.8552 | 2.2764 KN.0.33 1.6302 | 1.7141 ] 2.3117 NaN 1.3277 | 1.3427 | 1.8676 | 1.9738 | 2.7391 | 0.9736 3
8| 1.7115] 1.3501 | 1.3699 | 0.4301 | 1.8131 | 1.4613 | 1.3277 NaN 0.863E 0.6468 | 2.1805 | 2.1863 | 1.8941 9 FNN
9| 0.854 | 1.7993 | 1.1718 ] 1.2623 | 0.9703 | 1.8288 | 1.3427 0.86@ NaN 1.4332 | 1.3408 | 2.2137 | 2.0674 8 FNN
10| 2.2397 | 1.0355 ] 1.9656 @ 2.3836 | 1.2107 | 1.8676 | 0.6468 | 1.4332 NaN 2.7477 | 2.1193 | 2.2335 4
11] 0.5981 | 2.8459 | 1.6549 | 2.5774 ‘637@ 2.7966 | 1.9738 | 2.1805 | 1.3408 | 2.7477 NaN 2.7324 | 2.5864 5
12| 2.419 Q1773 2.717 | 2.1445] 2.5416 7°0.9768 | 2.7391 | 2.1863 | 2.2137 | 2.1193 | 2.7324 NaN 2.6164 2
13| 2.5277 | 2.3165] 1.1919 | 2.0406 | 2.378 | 2.3127 @.973@ 1.8941 | 2.0674 | 2.2335 | 2.5864 | 2.6164 NaN 7 nd
b
At d =1, the number of FNN = 4 ) nd: not decidable

Table5.7 The CDT method ford =1
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.1
Q, 1 2 3 4 5 6 7 8 9 10 11 12 13 14 2
1f NaN | 1.9623 | 1.2991 | 0.9756 | 0.313 | 2.044 | 1.4552 ] 0.7013 | 0.2947 | 1.1099 | 0.4108 | 2.4041 | 2.2773 | 1.2008 9
2 1.9623 | NaN | 2.2959 | 1.0165 | 2.0851 | 0.0871 | 2.267 | 1.3346 | 1.7113 | 0.8525 | 2.2106 | 0.4447 | 2.3018 | 1.9268 6
3] 1.2991 | 2.2959 | NaN | 1.4363 | 1.0155 | 2.3467 | 0.202 | 1.1934 | 1.1685 | 1.6572 | 0.994 | 2.6451 | 1.1736 | 0.3735 7
4] 0.9756 | 1.0165 | 1.4363 | NaN | 1.0693 | 1.0925 | 1.4728 | 0.3193 | 0.7038 | 0.2214 | 1.1942 | 1.4478 | 1.8968 | 1.1099 10
5{ 0.313 | 2.0851 | 1.0155 | 1.0693 | NaN | 2.1617 | 1.1858 | 0.7553 | 0.3896 | 1.2452 | 0.1295 | 2.5167 | 2.0623 | 0.9757 11
6| 2.044 | 0.0871 | 2.3467 | 1.0925 | 2.1617 | NaN | 2.3116 | 1.4094 | 1.7902 | 0.9342 | 2.2867 | 0.3606 | 2.3114 | 1.9759 2
7| 1.4552 | 2.267 | 0.202 | 1.4728 | 1.1858 | 2.3116 | NaN | 1.2626 | 1.2965 | 1.6901 | 1.1759 | 2.5928 | 0.9721 | 0.3631 3
8] 0.7013 | 1.3346 | 1.1934 | 0.3193 | 0.7553 | 1.4094 | 1.2626 | NaN [ 0.4113 | 0.5204 | 0.8782 | 1.7625 | 1.8363 | 0.9094 4
9] 0.2947 | 1.7113 | 1.1685 | 0.7038 | 0.3896 | 1.7902 | 1.2965 | 0.4113 [ NaN | 0.8635 | 0.5191 | 2.1483 | 2.0462 | 0.9978 1
10{ 1.1099 | 0.8525 | 1.6572 | 0.2214 | 1.2452 | 0.9342 | 1.6901 | 0.5204 | 0.8635 | NaN | 1.3731 | 1.2945 | 2.0661 [ 1.327 4
11 0.4108 | 2.2106 | 0.994 | 1.1942 | 0.1295 | 2.2867 | 1.1759 | 0.8782 | 0.5191 | 1.3731 | NaN | 2.6407 | 2.0842 | 1.0026 5
12| 2.4041 | 0.4447 | 2.6451 | 1.4478 | 2.5167 | 0.3606 | 2.5928 | 1.7625 | 2.1483 | 1.2945 | 2.6407 | NaN | 2.4815 | 2.2718 6
13| 2.2773 | 2.3018 | 1.1736 | 1.8968 | 2.0623 | 2.3114 | 0.9721 | 1.8363 | 2.0462 | 2.0661 | 2.0842 | 2.4815| NaN | 1.0867 7
14| 1.2008 | 1.9268 | 0.3735 | 1.1099 | 0.9757 | 1.9759 | 0.3631 | 0.9094 | 0.9978 | 1.327 | 1.0026 | 2.2718 | 1.0867 | NaN 7
a) 1
I2
Qs 1 2 3 4 5 6 7 8 9 10 11 12 13
1] NaN_ [ 2.3861 ] 1.5738 ] 2.0009 | 0.3249 | 2.3578 [ 1.8552 [ 1.7115 K 0.854)] 2.2397 ] 0.5981 | 2.419 [ 2.5277
2] 2.3861| Nan | 2.3433 | 1.1293 | 25366 [C0.202 ] 2.2764 | 1.3501 | 1.7993 T*1.0355 | 2.8459 | 1.1773 | 2.3165
3] 1.5738 | 2.3433 | NaN | 1.7281 | 1.4082 | 2.3642 [0.331 J 1.3699 | 1.1718 | 1.9656 | 1.6549 | 2.717 | 1.1919 7
4] 2.0009 | 11293 [ 1.7281 | NaN | 2.212 | 1.2837 | 1.6302 [(0.4301 | 1.2623 [0.2413)] 2.5774 | 2.1445] 2.0406 | 10
5 0.3249 | 2.5366 | 1.4082 | 2.212 | NaN | 2.5033 | 1.7141 | 1.8131 | 0.9703 | 2.3836 N0.37094 2.5416 | 2.378 11
6| 2.3578 @.202){3642 1.2837 | 25033 | NaN | 2.3117 | 1.4613 | 1.8288 | 1.2107 | 2.7966 | 0.9768 | 2.3127 2
7| 1.8552 | 2.2764 [C0.331 ] 1.6302 | 1.7141 | 2.3117 | NaN | 1.3277 | 1.3427 | 1.8676 | 1.9738 | 2.7391 | 0.9736 3
8| 1.7115 | 1.3501 | 1.3699 R0.4301) 1.8131 | 1.4613 | 1.3277 | NaN [ 0.8638 | 0.6468 | 2.1805 | 2.1863 | 1.8941 4
9|C0.854) 1.7993 | 1.1718 | 1.2623 [N0.9703 | 1.8288 | 1.3427 | 0.8638 | NaN | 1.4332 | 1.3408 | 2.2137 | 2.0674 1
10[ 22397 T1.0355 | 1.9656 K0.2413) 2.3836 | 1.2107 | 1.8676 [ 0.6468 [ 1.4332] NaN [ 2.7477] 21193 [ 2.2335 4
11 0.5981 | 2.8459 | 1.6549 | 2.5774 K0.3709) 2.7966 | 1.9738 | 2.1805 | 1.3408 | 2.7477 | NaN | 2.7324 | 2.5864 5
12| 2419 [ 11773 | 2.717 | 2.1445 | 2.5416 [R0.9768)| 2.7391 | 2.1863 | 2.2137 | 2.1103 | 2.7324 | NaN | 2.6164 6
13[ 25277 [ 2.3165 | 1.1919 | 2.0406 [ 2.378 | 2.3127 K0.9736) 1.8941 | 2.0674 | 2.2335 | 2.5864 [ 2.6164 ] Nan 7__|nd
b
Atd =2, the number of FNN is 0 )
Table 5.8 The CDT method for d = 2
.1
Qs 1 2 3 4 5 6 7 8 9 10 11 12 13 I3
1] Nan_ ] 2.3861 [ 1.5738 | 2.0009 [0.3249) 2.3578 | 1.8552 | 1.7115| 0.854 | 22397 | 0.5981 | 2.419 | 2.5277 5
2| 23861 | NaN | 2.3433 | 1.1293 | 2.5366 R.0.202Q] 2.2764 | 1.3501 | 1.7993 | 1.0355 | 2.8459 | 1.1773 ] 2.3165 6
3[ 15738 | 2.3433 | NaN [ 1.7281] 1.4082] 2.3642 € 0.331 ] 1.3699 | 1.1718 | 1.9656 | 1.6549] 2.727 [ 1.1919 7
4] 2.0909 | 1.1293 | 1.7281 | NaN | 2.212 | 1.2837 | 1.6302 [*0.4301 | 1.2623 K. 2.5774 | 2.1445 | 2.0406 | 10
5003249, 2.5366 | 1.4082 | 2.212 | NaN | 2.5033 | 1.7141 | 1.8131 | 0.9703 | 2.3836 [10.3709 | 2.5416 | 2.378 1
6| 2.3578 £0.202 ) 2.3642 | 1.2837 | 2.5033 | NaN | 2.3117 | 1.4613 | 1.8288 | 1.2107 | 2.7966 | 0.9768 | 2.3127 2
7] 1.8552 | 2.2764 £0.331)] 1.6302 | 1.7141 | 2.3117 | NaN | 1.3277 | 1.3427 | 1.8676 | 1.9738 | 2.7391 | 0.9736 3
8| 1.7115 | 1.3501 | 1.3699 K0.4301) 1.8131 | 1.4613 | 1.3277 | NaN [ 0.8638 | 0.6468 | 2.1805 | 2.1863 | 1.8941 4
9Co.854 1 1.7993 | 1.1718 | 1.2623 [M0.9703 | 1.8288 | 1.3427 [ 0.8638 | Nan | 1.4332 | 1.3408 | 2.2137 | 2.0674 1
10[ 2.2397 [*1.0355 | 1.9656 K0.2413)] 2.3836 | 1.2107 | 1.8676 [ 0.6468 [ 1.4332] NaN [ 2.7477] 2.1193 [ 2.2335 4
11 0.5981 | 2.8459 | 1.6549 | 2.5774 K0.3709) 2.7966 | 1.9738 | 2.1805 | 1.3408 | 2.7477 | NaN | 2.7324 | 2.5864 5
12| 2419 [ 11773 2727 | 2.1445 | 2.5416 Ro.9768)| 2.7391 [ 2.1863 | 2.2137 | 2.1103 [ 2.7324 | Nan_| 2.6164 6
13| 2.5277 | 2.3165 | 1.1919 | 2.0406 | 2.378 | 2.3127 0.973@ 1.8941 | 2.0674 | 2.2335 | 2.5864 | 2.6164 | NaN 7 __|nd
a)
Atd =3, the number of FNNs is 0 also.
d FNNs
1 4
2 0
3 0 | h)

Table5.9 The CDT method for d =3
The circled distances in the above tables are the distances between the reference

points and their nearest neighbors at the first instance of timein %R*. Thearrows represent

the direction where the reference points and their nearest neighbors move after one time

step.
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5.3 The Predictive technique

Now that we have discussed the three geometric methods (CND, CDD, and CDT),
we will now talk about the predictive technique. We said in Chapter 4 that the predictive
technique can also be used to estimate d; by approximating the function . in Equation
(4.6). We also said that we will approximate p by using a neural network. Since chaotic
systems are nonlinear, we need to use a nonlinear network to make the approximation.

To estimate d; of the Henon map by using the predictive technique, we will usea
nonlinear neural network which consists of two layers. The first layer has 2 neurons with
sigmoid transfer functionsand a Tapped Delay Line (TDL) connected to it. The second lay-
er has one neuron with alinear transfer function. The TDL is fed with the measurements
y(m) to produce the delay-vectors y (m—1) . The network structure is shown in Figure
5.1. While the number of tapsin the TDL (d) is changed from 1 to 2 to 3, the network is
trained to predict the current measurement y(m) . After the end of the training process, the
sum of the squares of the prediction errors (SSE) isrecorded asafunction of d. We applied
thistechniqueto 100 pointsfrom the X, -coordinate of the Henon map. Aswe can seefrom
Table5.10, the SSE changes significantly asd increasesfrom 1 to 2 and remains almost the
sameat d = 3. We conclude that the network has accurately approximated p and that

d, = 2. Thelog-plot of the SSE versusd is shown in Figure 5.2.
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Figure5.1 The nonlinear network used to estimate d; of the Henon map
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Table 5.10 The neural network SSE as a function of d

SSE of the prediction error

Figure 5.2 Log-Plot of the SSE versus d for the Henon map.

5.4 Chapter summary

In this chapter, we demonstrated the estimation of the minimum embedding dimen-
sion of the Henon map by using the geometric and the predictive techniques. The purpose
of this chapter wasto provide some insight into the operation of the algorithms. In the next
chapter, we will present the complete algorithmsin full detail and discuss practical issues

in using the algorithms on more complex systems than the Henon map.
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CHAPTER 6
ADVANCED ALGORITHMSFOR ESTIMATING THE MINIMUM EMBED-

DING DIMENSION

6.1 Introduction

In Chapter 3, we explained that two parameters are needed in order to apply the em-
bedding theorem to model a chaotic system. These two parameters are the dimension (d) of
the delay-vector (y ) and the delay-time (T) between the delay-vector coordinates. We pre-
sented in Chapter 4 three geometric methods (CND, CDD, and CDT) and one predictive
method through which we estimate the minimum dimension (d, ) required to embed the
system’ s attractor. More details were given in Chapter 5 regarding the application of the
four methods to estimate d; of the Henon map. The purpose of this chapter isto give full
detail of six algorithms which use the four methods mentioned above to estimate d, . We
will also show amethod used to find the delay-time T. Before that, wefirst give asummary
of the four methods.

The CND, CDD, and the CDT geometric methods depend on theideathat if the di-
mension of the spaceis not large enough to represent the attractor of the system, projection
artifacts will appear in the projected attractor. These artifacts cause points on the attractor
to befalsely projected close to each other and produce False Nearest Neighbors (FNN) (see

Section 4.3 for more detail). The dimension d; can be estimated as the minimum dimen-

53



sion where the percentage of the FNNs does not change significantly with further increase
in dimension.

The CND method detects the existence of FNNs by checking to see if the nearest
neighborsin the space of dimension d remain neighborsin dimension d + 1. On the other
hand, the CDD method detects the existence of FNNs by checking to seeif the distance be-
tween the nearest neighborsin dimension d will increase significantly as the dimension in-
creasesto d + 1. For the case of the CDT method, detection of the existence of FNNsis
done by checking to seeif the distance between the nearest neighbors in dimension d will
change significantly as time increases.

Onthe other hand, in the predictive method, the estimation of d, isdone by approx-
imating the function p.: R? 5 R that operates on the reconstructed attractor. u isapprox-
imated by using aneural network with a Tapped Delay Line (TDL) connected to its inpuit.
Asthe number of tapsinthe TDL (d) increases, the prediction error decreases. At one point,
further increase of d does not improve the prediction error. At this point, d, isfound.

In the remaining parts of this chapter, we present in Section 6.2 a method used to
findthedelay-timeT. In Section 6.3, we present two different algorithms based on the CDD
and the CDT methods which were proposed by Abarbanel et al to estimated d, . In
Section 6.4, we discuss some limitations of the previous two agorithms and suggest four
new algorithms to overcome these limitations. In Section 6.5, we present three of the four
algorithms, which are based on the geometric technique. The fourth algorithm, which is
based on the predictive techniques, is presented in Section 6.6. At the end, Section 6.7 con-

cludes with a chapter summary.



6.2 The delay-time (T)

We explained in Section 4.2 that we wanted to find the values of the parametersd
and T such that the system we developed by using the delay-vectors y 4(m) (see Equation
(6.4)) isequivalent to the original unknown system of x(m) (see Equation (4.1)). In Chap-
ters4 and 5, we discussed the estimation of the minimum embedding dimension of y,(m).
In this section, we will discuss the delay-time T. T represents the time difference between
the consecutive coordinates of y,(m) . If the value of T istoo small, the different coordi-
nates of y,(m) will be highly correlated with each other. As a consequence, no new infor-
mation is given to the equivalent system by the addition of new coordinatesto y,(m). An
example of this case is measuring the room temperature every 1ms. The resulting consec-
utive measurements will be almost the same. However, if the value of T istoo large, the
different coordinates of y,(m) will beindependent of each other and may look random. As
aresult, we will not be able to capture changes in the dynamics of the system.

Oneway to find asuitable T is by using the average mutual information [FS86,
Fra89]. If A and B are two sets of measurements with elements a; and bj respectively, the
mutual information between a; and b; isthe amount learned by the measurement &; about

the measurement bj whichis

| Z(M) ' (6.1)

Pa(a))Pg(b;
where P,(a;) and PB(bj) aretheindividual probabilities of the measurements a; and bj
respectively, while Pg(a;, bj) isthejoint probability. The average mutual information be-

tween the sets of measurements Aand Bis:
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— PAB(a'a bk)
lag = %PAB(aj, bk)|092(m) . (6.2
J

Here a; represents the measurement y(m) and bj represents the delayed version of y(m)

whichisy(m—T). Theindividual probabilities can be replaced by the histograms of y(m)

and y(m—T) . Thejoint probability, on the other hand, can be replaced by the histogram of
the vector [y(m) y(m—T)] . S0, the average mutual information between y(m) and

y(m-—T) isthe amount learned by the measurement y(m) about the measurement

y(m-=T) whichis

o [P(yom yem-1))
1 = 7 fxm) ym—)) 109 o5 piym = | ©3

By evaluating thisequationat T = 1, 2, ..., T, We choose the delay-time to be
the location of the first minimum of 1(T), where T, isthe maximum value of T. Asan
example, Figure 6.1 showsthe average mutual information | versus T for the Lorenz model
using 100,000 points from its X-coordinate (see Section 7.2.1). The value of T is changed
from 1 through 50. The first minimumisfound a T = 10 for this system. So, we set the

delay-time for the Lorenz model to be 10 [Aba95].
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The average mutual information of the Lorenz model
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Figure 6.1 The Lorenz model average mutual information

In the next section, we present full detail of two algorithms proposed by Abarbanel
et al in 1992 and 1993 to estimate d, which are based on the CDD and the CDT methods.
After that, we present in Section 6.4 adiscussion regarding some limitations of the previous

two algorithms and suggest some approaches to overcome these limitations.

6.3 Two algorithmsthat use thelocal neighbor search

Abarbanel et al [KBA92, AbK e93] proposed two algorithms based on the CDD and
the CDT geometric methods to estimate d, of a chaotic system. In the next section, we
present the first algorithm which is based on the CDD method while in Section 6.3.2 we

present the second algorithm which is based on the CDT method.

6.3.1 The CDD, Algorithm

Abarbanel et al [KBA92, AbKe93] proposed an algorithm based on the CDD geo-
metric method to estimate d; of a chaotic system. In atypical experiment, all we can see
isaset of scalar measurements y(m) ,wherem = 1, 2, ..., N. The CDD,_ algorithm starts

by computing the theoretical minimum embedding dimension d: whichisdgz = 2d,+1
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where d, is the box-counting dimension of the original system. Notice that if d. isnot
known, the algorithm can start with an arbitrary large value for dg. The delay-vectors

ydE(m) are constructed from y(m) asfollows:

Yg (M) = |:y(m) y(m=T) ... y(m—(dE—l)T):|t, (6.4)

whereTisthedelay-time,m = 1,2, ..., MaxdM = N—-(dz-1)T. Inthespacei]idE,the
distance between Yo (M) € EKdE and every other point in this space is computed. From the
M — 1 computed distances, the N,, neighborswith the shortest distancesto Yo (M) are cho-
sen. Thevalue of N, is chosen to be between 10 and 100. The N, nearest neighbors of

ydE(m) are saved in the matrix Y’;:(m) asfollows

No oy = . . N
Yo (M) = [ydEoﬁE(m)) Yo, (ig (M) ... ydE(udg(m»] (6.5)
where iEE(m) is the index of the K™ neighbor of yy (m) andk = 1,2, ..., Ny. The N,
indices of these neighbors are saved as a function of m as follows
Mg = it m) i2 iNe (6.6)
de |dE(m) |dE(m) |dE(m) ’

where " de isarow vector (see Section 5.2.1). The next example illustrates this idea.

6.3.1.1 Example: Neighbor indices

Let thereferencetimebem = 2, N, = 3, and the space dimensionbe d. = 5,
then, if the 3 nearest neighbors of y, (m) are Yg = [y5(63) ys(105) ye( 10)] , then
m. 2
g = ig = [ié(z) i2(2) ig@)} = [63 105 10] -
Thenext step for the CDD | algorithm isto project the point Y (M) and the matrix

YSIE" into the space % to produce the point y(m) and the matrix YE‘ ® respectively where
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d =12 ..., dz—1.Theprojection from the space EKdE into the space %? isdone by the
vector-coordinates projection method which is explained next.

6.3.1.2 The vector-coordinates projection method

t .
Thedelay-vector y, (m) = [y( m) y(m-T) ... y(m—(dg— 1)T)} can be project-
ed into the space R by choosing the first d coordinates of Yo (M) where d< dg. That
t
means yy(m) = [y(m) y(m—=T) ... y(m—(d—l)T)] :
The algorithm projects the point Y (M) and the matrix Yz: into R° to find the

. N . N . :
point y,(m) and the matrix de respectively. The matrix de contains the N, neighbors

of yy(my:

N, — . . -Np
Yo (m) = [yd(négm)) Yalig (M) .. yd(I(TE(m»] (6.7)

Noticethat theindices iEE(m) of the N, neighborsin %¢ arefoundinthe space R%. This
gives adrawback to algorithms that use the local neighbor search method, as will be ex-
plained in Section 6.4. After finding the N, neighbors of y(m) (columns of the matrix
YE‘ °(m)), the CDD, agorithm computes the distance between y,(m) and its N, neigh-

bors. The N,, computed distances are saved in the vector

Qg(m) = [Hyd<m>—yd<iéE<m>>H Iya(m —ygiZ )] .. Hyd(m)-ydaﬁg(m)ﬂ - (68)

The nearest neighbor of y(m) isthe point with the smallest distance. The algorithm saves
the minimum distance from ¢4(m) in ry(m). Theindex of the nearest neighbor is labeled
by n, asillustrated in the next example.

6.3.1.3 Example: Vector-coordinates projection

From Example 6.3.1.1, the distances between y;(2) and its 3 neighbors are

A5(2) = [|y5(2)-y5(63)] |¥5(2) ~¥5(105)| ys(2) ~y5(10)]] - Assuming that
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d5(2) = [1.2 0.9 3.7], the minimum distanceis r5(2) = min(qs(2)), which hasthe
value 0.9. So the nearest neighbor of y;(2) isthe point with theindex n = 105. That
means the nearest neighbor of y;(2) isy;(105).

It is noteworthy that the search for the nearest neighbor of y,(m) isdone locally
among the N, neighborsonly, and thisis how the algorithm got itsname CDD ; the CDD
method with alocal neighbor search. After finding n, which is the index of the nearest
neighbor of y,(m), the CDD, algorithmrunsatesttofindif y,(n) isafalsenearest neigh-
bor (FNN) of y,(m), the reference point. To do that, the algorithm projects both points
yq(m) and y4(n) into the space R+t by the vector-coordinates projection method. If
these two neighbors are true neighbors, their distance will not change significantly as the
dimension of the space increasesto d + 1. The distance between y,, 1(m) and y, 1(N)
islabeled by ey, 1(M) = [yq. 1(M) =Yg 1(N)]| - Now, if yy(n) isaFNN of yy(m), the

ratio
g+ 1(M) —r4(M)
rq(m)
where thethresholdis 1 < p < 10. The above steps are repeated for all time points and the

(6.9)

percentage of FNNsisrecorded as afunction of d. Asd increases, the percentage of FNNs
decreases. At one point, further increase of d does not change the percentage of FNNs. The
CDD, algorithm repeats all the above steps for different sizes of neighborhood (N,,). The
minimum embedding dimension d, isthe dimension where the percentage of FNNsisin-
dependent of both the change in N,, and in the increase of d. Figures 6.2 shows a
pseudocode that summarizes the CDD, agorithm. In Chapter 7, we apply the CDD, a-
gorithm to different examples of chaotic systemsand show the estimated d, resulting from

the algorithm.
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{ The CDD, agorithm

*Choose a value for the threshold 1< p < 10

*Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2
*Compute the theoretical minimum embedding dimension dg = 2d,+ 1. If d. isnot known choose an arbi-
trary large number for d

e[ nitialize the vector k;,,, of dimension dc-1x1

*Create the delay-vectors yy (m) = [y(m) y(m=T) ... y(m—(dE—l)T)T,where m=12..,M

»Compute the distance between Y (M) and every other point in ERdE and save them in the vector Qg (M) .

*Set 10< N, <100 (the neighborhood size)

eFind the N, shortest distancesin dg, (M) and save their indicesin izE(m) wherek = 1,2, ..., N,

. . . N
Save the N, neighbors of Yg (M) in the matrix Yd:(m) = {yds(icliE(m)) ydE(iiE(m)) ydE(i::(m)ﬂ
for d = 1,2,...,d-—1 (Vector dimension)
ofor m= 1,2, ...,M (Index)
(Project the vectorsin ERdE into R° by the vector-coordinates method, see Section 6.3.1.2.)

*Project y, (m) and Yzl:(m) into %¢ to find yq(m) and Yzlb(m) respectively

*Compute the distances between y,(m) and the columns of Yzlb(m) and savethemin qy
*Find the minimum distancein q4 and saveitasr,

+Set the index of the point with the minimum distance in g4 as n, see Example 6.3.1.3

*Project Ya (M) and Y (M) into %%*? to find Yq+2(m) and yy, ,(n) respectively

«Compute ey, 1 = [[Yg+1(M =Yg 1(M) -
If (eg 1Ty /rg>p
kfnn(d) = kfnn(d)+l
end if
end m
endd}

Figure 6.2 Pseudocode of the CDD, algorithm

6.3.2 The CDT Algorithm

After presenting the first algorithm that uses the local neighbor search (CDD, ),
now we present the second algorithm that also uses the local neighbor search which isthe
CDT, . Abarbanel et al [AbKe93] proposed an algorithm based on the CDT geometric
method to estimate d, of achaotic system. Asinthe CDD, algorithm, the CDT algo-

rithm buildsthe delay-vectors ydE(m) from the measurements y(m) as shown in Equation
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(6.4). Thenthe CDT computesthe N, neighbors of Yo (M), where 10 < N, < 100. The
agorithm now saves the N, computed neighbors of ydE(m) in the matrix Ygl;(m) .taso
savestheindices of theseneighborsasiEE(m) wherek = 1,2, ..., N,. Inthenext step, the
algorithm projects the reference point Ya (M) and the matrix Ygz(m) into ¢ to find
yq(m) and Yg °(m) respectively whered = 1,2, ..., d. The projection method used by
the CDT, algorithmisdifferent from that used by the CDD, algorithm. The CDT, uses
the Principal Components Analysis (PCA) projection method whilethe CDD, usesthe
vector-coordinates projection method. The PCA projection method is explained below.

6.3.2.1 The PCA projection method

The PCA projection method starts by computing the covariance matrix at timem
using the reference point Ya (M) and its N,, neighbors asfollows:

Ny,

c(m) = Nibz [y (i (M) =y (ML (ik (M) —yg (M)] . (6.10)
k=1

Thenext stepinthe PCA projection method isto computethe eigenvalues (A4, Ao, ..., kdE)
and the eigen vectors (N, M, ..., ndE) of the matrix C(m). The d. eigen values are ar-
rangedsuchthat A, > A, > ... 2 kdE . The corresponding eigen vectors are used to build the
basis matrix By, = [Hl n, .. ndJ . The projection from ERdE into R isdone by choos-
ing the first d columns of the matrix BdE where d < d.. The projection is found by the
equation yg(m) = {nl n, ... thydE(m) . (The superscript pin yg is used to emphasize
that the projection method from E)idE into %% isthe PCA.)

After projecting the pointsfrom EKdE into R° , the distances between yg(m) andits
N, neighbors (columns of the matrix YE‘ > p( m) ) are computed and saved in the vector

g4(m) asshownin Equation (6.8). It has been noted that the search for the nearest neighbor
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of yg(m) is done locally among the N, neighbors only, and thisis how the algorithm got
itsname CDT |, the CDT method with alocal neighbor search. The index of the nearest
neighbor of yg(m) is labeled by n. After identifying the two neighborsin R¢ , the CDT
algorithm runs a test to see whether these two neighbors are FNNs or not. In any chaotic
system, distances between points change exponentially fast (as explained in detail in Chap-
ter 8). However if two points are FNNs, the distance between them would increase faster
than if they were true neighbors (see Section 4.3.1.3). The CDT, algorithm takes advan-
tage of the increase in distances to check the existence of FNNs. The algorithm labels
yg(n) = yg(ié(m)) (the nearest neighbor of yg(m)) asaFNN if the distance between
Ya (M) and Ya (M) in ERdE reaches a predefined threshold before a fixed number of time
steps. The threshold used by this algorithm is afraction of the attractor mean. The attractor
mean is

M

B = Kl/]z [Va, (k) = Ve
k=1

_ (6.11)

The threshold used by the CDT, agorithmis { where 0<{ < 1. The CDT agorithm
computes the distance between ydE(m) and ydE(n) = ydE(ié(m)) astimeincreases up to
amaximum of T time-steps, (T is the delay-time where the first minimum of the average
mutual information occurs, see Section 6.2). If the distancereachesthethreshold {3 before
T time-steps, it l1abels yg(ié(m)) asaFNN.

These steps are repeated for all data points and the percentage of the FNNsisre-
corded as afunction of d. Asd increases, the percentage of the FNNs decreases. At one
point, further increase of d does not reduce the percentage of the FNNs. The above steps

arerepeated for different value of Ny, where 10 < Ny, < 100 . The minimum embedding di-
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mension d, of the system isfound from the dimension where the percentage of the FNNs
becomes independent of both the increase of d and N,,. In Chapter 7, we demonstrate the
CDT, algorithm on different examples of chaotic systems.

In Figure 6.3, we show the pseudocode that summarizes the CDT, algorithm. It
shows that the algorithm uses awhile loop to check for the FNNs. The first parameter of
theloop is A which isthe number of time steps used to check the existence of FNNs. The
second parameter is 6, whichisthe distance between thetwo neighbors after A time steps
ahead. If the end of the data set was reached with A < T, and the error criteria (o, = {3)
was not satisfied, we can not have any conclusion about yg(n) being either a FNN of
yg(m) or not. So, we haveto discard it from our consideration. That means, we don’t have
enough data to check this nearest neighbor. For instance, let the index of the nearest neigh-
borben = 10, thereferenceindex be m = 5, thetotal number of pointsbe M = 50, and
thedelay-timebe T = 41.If A reached the end of the data set while the distance between
thetwo pointsisstill lessthan the predefined threshold, A = 50 — max(10, 5) = 40, then
A = 40<T = 41.Wedon't know if ydE(lo) isaFNN of ydE(S) or not, since in the next
time step (if weimaginethat wecanreachit) A = 41, the point Y. (10) will beaFNN of

ydE(5) if the distance 6, > {3 . On the other hand, ydE(lo) will be atrue nearest neighbor

of yq (5) if 6, <CP.



The CDT, agorithm
{ L ag

*Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2
*Compute dg = 2d,+1. If d; isnot known choose an arbitrary large number for dg

*Initialize the vector p, of dimension dg x 1 to hold the count of FNN

*Create the delay-vectors y, (m) = [y(m) y(m-T) ... y(m—(dE—l)T)} ,wherem=1,2,..,M
«Compute the distance between Ya (M) and every other point in S)tdE and save them in the vector Qg (M) -

*Set 10 < N, < 100 (the ne|ghborhood size)
*Find the N,, shortest distancesin g4 (m) and save the vectorsindicesas i |d (m) wherek = 1,2, ..., N,

*Save the N, neighbors of y (m) in the matrix YdE(m) =y (5 m) yg (2. (M) ... vy (idb(m)):|
*Choosetheratio 0<{ <1

Compute yy_ = % > g (k) (average vector in the space ERdE)
] K=12..M i
“Compute p = == %" , [ya.| : mean distance
. k=12..M
from the origin.)

ofor d = 1,2, ..., dz (Vector dimension)
ofor m=1,2,...,M (index)
1

*Compute the covariance matrix C = N Z [ydE(m)—ydE(izE(m))][ydE(m)—ydE(iEE(m))]t

«Compute eigen values A; and the eigen vectdrs d’qN"of C.
*Arrange the eigen values such that &, >3, > ... 2 Ay_
*From the correspondl ng e|gen Vectors, bwldthe baS|s matrix By = [n My M d}
-yd(m) = Bd Ya (M) and Yd (m) = Bd Yd °(m) ; p for avector found by the PCA
*Compute the dlstance between y5(m) and the columns of Y'; P and save their distancesin aq-
*Find the minimum value of q, and label the index of the vector that produced it by n.
*Set 6, = 0, A = 1 (o, distance, A: time step.)
swhile (5, < {B) AND (A <M-max(m, n)) AND (A<T).
s = [V M+ 8)=yg (1 + )

*A=A+1
end while
(If the end of the data set was reached without a conclusion, discard y4(n) .)
sif A= (M—max(m, n)) AND (A< T) AND (o,<CB)

sLabel yh(n) as Not decidable
selseif (A<T) AND (o, >(B)

*py(d) = py(d) +1
end if

end m
end d}

Figure 6.3 Pseudocode of the CDT, algorithm

After presenting the CDD, and CDT/ algorithmsfor estimating the minimum em-
bedding dimension of a chaotic system, we discuss in the next section some limitations of

these two algorithms and suggest different approaches to overcome their limitations.
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6.4 Limitations of the CDD, and the CDT Algorithms

In Section 6.3, we found that both the CDD, and the CDT, algorithms use the lo-
cal neighbor search method to find the nearest neighbor of the reference point. That means
the search for the nearest neighbor of y(m) isdonelocally withinthe N, neighborsonly,
rather than within the whole data set. Thelocal neighbor search was used to reduce the com-
putational cost. However, in practice, it was observed that algorithms that use the local
neighbor search often do not estimate the correct minimum embedding dimensions d; for
systems with dimensions larger than three. In addition, poor estimates of d, could occur
even for systemswith dimension three asin the case of the Lorenz model using the CDT
(see Table 7.1 in the next chapter). The CDD, and CDT, algorithms can also produce
poor estimates of d, for noisy signals (see Table 7.1).

Limiting the search for the nearest neighbor of the reference point y,(m) e % to
be within the Ny, projected neighbors, that were originally found in EKdE, does not always
find the actual nearest neighbor of y4(m). This happens because the N, projected neigh-
bors could actually be scattered in the attractor in the space % and not close to Yg(m).
When the dimension of the original system issmall (3 or less), this problem may not be
significant. However, asthe dimension of the system increases, the effect will become pro-
nounced. To improve the search for the nearest neighbor, we can find the nearest neighbor
of y4(m) within the whole attractor in the space R , then test this neighbor in the space
R4 to seeif itisaFNN.

Further, when noise exists in the signal, the reconstructed attractor is blurred.

Hence, the N,, computed neighbors of Yg (M) may not actually be its closest neighbors.
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When these N, neighbors are projected into EKd, they may look random in this space. As
aresult, the attractor information is lost, and the correct value of d, can’'t be found.

Another observation that can be obtained from the CDD, and CDT, agorithmsis
that they use two different projection methods: the vector-coordinate method and the PCA
method, respectively. The PCA projection method has the advantage that the search for the
nearest neighbor is done along the major variations of the signal. However, the vector-co-
ordinate projection method is less expensive in term of its computational cost.

The above observations suggest that we should search for the nearest neighbor of
the reference point among the whol e data set rather than among the N,, projected neighbors
only. We call the search method that uses the whole data set the global neighbor search
method. Practically, it was observed that when the global neighbor search method was
used, theestimate of d; for achaotic system with dimension greater than threeisimproved,
aswewill show in Chapter 7. In addition, the global neighbor search method was found to
be more robust to noise than the local neighbor search method. (The local neighbor search
method was mainly used to reduce the computational cost. Recently, afast neighbor search
algorithm has been introduced that provides significant reduction in computations
[MPLOQ].)

In the next two sections, we present four new algorithms. In Section 6.5, we present
thefirst three algorithmswhich apply the global neighbor search method to the CND, CDD,
and CDT geometric methods. In Section 6.6, we present the fourth algorithm, which uses
the predictive technique. The CDD and CDT  agorithms are variations of algorithms

presented by Abarbanel et al. These algorithms use global neighbor search, rather than a
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local neighbor search. The CND and the predictive algorithms were completely developed

as part of thisresearch.

6.5 Three new algorithmsthat use the global neighbor search method

6.5.1 Thefirst new algorithm: The CND

In Section 4.3.1.1, we presented the CND geometric method which is used to esti-
mate d, of achaotic system. We also presented the application of the CND method to es-
timate d; of the Henon map in Section 5.2.1. In this section, we present the first new
algorithm which appliesthe global neighbor search to the CND method. Asin the previous
two algorithms, the CND algorithm computes the dimension d and constructs the delay-
vectorsyy (m) as explained in Section 6.3.1. The matrix YSAE that containsall the pointsin
the space EKdE is constructed from the delay-vectors:

Ya = Yo (D) va (@ - yg(M)]. (6.12)

The points in the space ERdE (columns of Y(';/'E ) have to be projected into the space R¢ by
the vector-coordinates projection methodwhered = 1, 2, ..., d — 1. (Theuseof the PCA
proj ection method does not change the results significantly in this algorithm.) In the space
R¢ , the CND algorithm needsto find y4(n) whichisthe nearest neighbor of the reference
point y4(m) . To do that, it computes the distances between y (m) and every other point
in the space % and labels theindex of the point with the shortest distanceto y,(m) by n.
In the next step, the algorithm checksto seeif y (n) isaFNN of y,(m) by increasing the
dimension of the spaceto d + 1 using the same projection method mentioned above. Inthe
Space R+l , the CND algorithm computes the first w neighbors of y,, ;(m). (Thisisa

new geometric algorithms. Abarbanel used only the nearest neighbor.) It savestheir win-
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dicesas iy, ;. If y4(n) isatrueneighbor of y4(m), it should remain close as the dimen-
sionincreasesto d + 1. The CND agorithm now checksto see if n appears as an element
of the vector "4, ; . In other words, it checksto seeif y,, ;(n) appears as one of thew
neighbors of y,, 1(m). If n does not appear as an element of rniOI + 1 the algorithm labels
y4(n) asaFNN of y,(m). These steps are repeated until the last point of the data set, and
the percentage of the FNNsisrecorded asafunction of d. Asd increases, the percentage of
the FNNs decreases. At one point, further increase of d does not change the percentage of
the FNNs significantly.

To estimate d, , the algorithm checks to see if the change in the percentage of the
FNNs s less than some predefined threshold (o) for five consecutive dimensions. That
means if

[FNNg , ; — FNN|
M

<o - 100, (6.13)

for five consecutive dimensions, then it sets d, = d—5, where FNN; isthe number of
FNN found at dimension d. That means, the change of the percentage of the FNNsisinsig-
nificant. The threshold value is chosen to be 0 < o < 3. If the signal is noise free, we set

o = 0, whileif thesignal isnoisy, weincrease o. up to 3. Thisis since the existence of
noise affects the percentage of FNNs, which causes the plot of FNNs with respect to d to

be uneven. The above steps are repeated for different values of w and the estimated d, is

plotted asafunction of w. At one point, further increase of w does not change the estimated

d, . Thisiswhere the algorithm finds d, . The pseudocode shown in the next figure sum-

marizes the CND algorithm. In Chapter 7, we apply the CND algorithm to different exam-
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ples of chaotic systems and show the estimated d, resulting from the algorithm.

{ The CND agorithm

*Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2
*Compute dg = 2d,+1. If d; isnot known choose an arbitrary large number for dg

°Set w and the threshold 0 < < 3 and initializewto 1

max !

elnitialize avector kg, of dimension d.—1x 1 and avector d,, of dimension w,,, x1

~Create the delay-vectors y, (m) = |:y(m) y(m=T) ... y(m_(dE_l)T)T,where m=12_.,M

*Create the matrix Y?,"E = [ydE(l) Yg.(2) - ydE(M)J

swhile w<w, .. (search window size)

sford=1,2,...,dg—1
*Project Y'(\,"E into %¢ to find Y'(\,’I (use the vector coordinates projection method)

*Project Y'(\,"E into %%** to find Yg"Jr 1 (usethe vector coordinates projection method)

form=122 ..M
*Compute the distances between y (m) and the columns of YdM and savethemin qy.
*Find the point that produced the minimum valuein g4 and label itsindex by n.
*Compute the distances between y, ;(m) and the columns of YQ’L , and save the distances
iNogy.-
«Find the 1%, 2" ... and w'™ minimum values of 0q4, and label their indicesby ™, ; .
(Compare n to the elements of i, ;)
sif ne iy,
Kenn(d) = Keon(d) + 1 (if nisnot an element of ™y, , , label y,(n) asaFNN)
end if
endm
(look for aflat region in the curve of the percentage of FNNs with respect to d)
*if d>5 AND |k, (d—2) =K, (d—1)]/Mx100 < o (for 5 consecrative times)
ed, = d-5
*Break the d loop
end if
endd
ed, (W) = d_
ew = w+ 1 (increase the search window size)
end w}

Figure 6.4 Pseudocode of the CND algorithm
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6.5.2 The second new algorithm: The CDD

In Section 4.3.1.2, we presented the CDD geometric method which is used to esti-
mate d, of achaotic system. We also presented the application of the CDD method to es-
timate d, of the Henon map in Section 5.2.2. In Section 6.3.1, we presented an algorithm
based on the CDD method with alocal neighbor search (CDD, ). Some limitations of the
CDD, algorithm were presented in the beginning of this section. To improve the perfor-
mance of the CDD, algorithm, we present the new algorithm: the CDD that can over-
come the limitations of the CDD, .

The CDD applies the global neighbor search to the CDD geometric method. As
in the previous algorithms, the CDD 5 algorithm computes the theoretical minimum em-
bedding dimension d: and constructs the delay-vectors ydE( m) , as described in
Section 6.3.1. In addition, the matrix YSAE hasto be built as shown in Equation (6.12). The
algorithm projects the matrix YSAE into the space R by the PCA projection method where
d=12..,d-—1 (seeSection 6.3.2.1 for more detail about the PCA projection meth-
od). In the space R , the CDD algorithm computes the distance between the reference
point yg(m) and every other point in the space R (Noticethat the CDD, algorithm com-
putesthe N, neighborsof y,(m) inthe space ERdE then searches among the N, projected
neighbors only for the nearest neighbor of y,(m).) The computed distances are saved in
the vector g4(m) . The algorithm now finds the minimum distance in ¢4(m) and saves it
asry(m). It also labels the index of the point that produced the minimum distance as n.
After identifying the nearest neighbor y3(n) = yR(i5(m)) in the space %%, the algorithm

now needsto check if thisneighbor isa FNN. To do that, it increases the dimension of the
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spaceto d + 1 by the same projection method mentioned above. In the space R 1, the
distance between y7, ;(m) and &, (n) = yB, L(i5(m)) is computed and saved as
€4+ 1(M) . Asthe dimension of the space increases, the distance between FNNswill in-

crease aswell. To apply thisidea, the CDD algorithm labels yg(n) asaFNN if

€44 1(M) —r4(m)
rq(m)

>p, (6.14)

wherethethresholdis 1 < p < 10. Asthe dimension of the space (d) increases, the percent-
age of the FNNs decreases. At one point, further increase of d does not improve the per-

centage of the FNNs significantly. The minimum dimension where this happensis the

estimated d, of the system. In Chapter 7, we apply the CDD algorithm to different ex-
amples of chaotic systems and show the estimated d, resulting from the algorithm. Figure

6.5 shows the pseudocode that summarizes the CDD algorithm.
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{ The CDD algorithm pseudocode

*Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2
*Compute dg = 2d,+ 1. If d_ isnot known, choose an arbitrary large number for dg

*Set the threshold 1< p <10

eInitialize the vector k;,,, of dimension dz—-1x1

t
*Create the delay-vectors y, (m) = [y(m) y(m-T) ... y(m—(dE—l)T)} ,wherem=1,2,..,M

*Create the matrix Y?,"E = [ydE(l) Yq.(2) - ydE(M)J

M
*Compute )_/dE = % z Y. (K) (average vector in the space EKdE)

k=1
M

. . 1 - -t
*Compute the covariance matrix C = i Z [ydE(k)—YdE][YdE(k)—YdE]

k=1
~Compute the eigen values A; and eigen vectorsn, of C, wherei = 1,2, ..., dg

eArrange the eigen valuessuch that A, >4, > ... 2 Ay

*Build the basis matrix from the corresponding eigen vectors: By, = [nl n, ... nd}
- - —YE
ofor d = 1,2,...,dz—1 (space dimension)
(Project the vectorsin %% into 2%

.YdM’ P = [131 N, . UJYdME , the superscript p indicates that the projection is done by the PCA
(Project the vectorsin % into %%+ 1)

-Yzﬁ;pl = [131 n, ... gd+JthﬂE
ofor m=1,2,...,M (Index)
«Compute the distance between y5(m) and the columns of Y} P and save the distances as g,
*Find the minimum of q4 and saveitasry
eLabel the index of the point with the minimum distance by n
«Compute ey, 1 = |y5. 1(m -y, ;(m| (from the columns of the matrix Y4.?)
*If (&g 1(M) =r4(M))/T4(m)>p
*Kinn(d) = kipp(d) + 1 increase the count of the FNN
eend if

endm
end d

}

Figure 6.5 Pseudocode of the CDD agorithm
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6.5.3 Thethird new algorithm: The CDT 4

In Section 4.3.1.3, we presented the CDT geometric method which is used to esti-
mate the minimum embedding dimension d, of a chaotic system. We also presented the
application of the CDT method to estimate d; of the Henon map in Section 5.2.3. In
Section 6.3.2, we showed the CDT, algorithm which is based on the CDT method with a
local neighbor search. Some limitations of the CDT, algorithm were presented in the be-
ginning of this section. To improve the performance of the CDT, algorithm, we present a
new algorithm known asthe CDT 5. This algorithm applies the global neighbor search to
the CDT method

Asin the previous algorithms, the CDT  starts by computing the theoretical mini-
mum embedding dimension d asdescribed in Section 6.3.1. After that, the delay-vectors
ydE( m) haveto be constructed according to Equation (6.4). Using these vectors, the matrix
Y(';/'E is built according to Equation (6.12). The algorithm now projects the matrix Y(';/'E into
% tofind Yg/" Pwhered = 1,2, ..., dg . The projection is done by using the PCA projec-
tion method. In the space ¢, the algorithm searchesfor y§(n) = yi(i5(m)) whichisthe
nearest neighbor of the reference point yg( m) . The search for the nearest neighbor of
yg(m) isdone globally (among the M —1 points).

Inthe next step, the algorithm runs atest tofind if y§(n) isaFNN of y§(m). Todo
that, it increases the time of both points (yg(m) and yg(n)) and measures the distance be-
tween them. The test of the distance increase in the CDT ; algorithm is done in the space
R rather thanin E)idE (asinthe CDT | agorithm). Thesearchfor the FNNsin R? hasthe
advantagethat if the two neighbors came from an attractor intersection (FNN), the distance

between them astime increases will increase faster than if they were true neighbors. To ap-
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ply thisidea, the distance between the two neighbors yg(m +A) and yg(n +A) ismea

sured according to the equation:
oa(m) = [yhm+a)—yhn+a)|, (6.15)

where A isthetime step. If 6,(m) reaches some predefined threshold before few steps

ahead, the CDT ;, agorithm labels y5(n) asaFNN.

The threshold used by the algorithm is a fraction of the attractor mean ({), as
shown in Equation (6.11). For the number of time steps, the algorithm uses the delay-time
T as ameasure of how fast the neighboring points diverge from each other. Thistest isre-
peated until the last data point, and then the percentage of the FNNsis recorded as afunc-
tion of d. Asd increases, the percentage of the FNNs will decrease. At one point, further
increase of d does not change the percentage of the FNNs significantly. At thistime, the
minimum embedding dimension d, has been determined. In Chapter 7, we apply the
CDT algorithm to different examples of chaotic systems and show the estimated d, re-
sulting from the algorithm. The pseudocode in Figure 6.6 summarizesthe CDT  algo-

rithm.
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{The CDT agorithm
«Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2
*Compute dz = 2d,+ 1. If d; isnot known choose an arbitrary large number for dg
eInitialize the vector p,, of dimension dg x 1 to hold the count of FNN
«Create the delay-vectors yq (m) = [y(m) ym=T) ... y(m—(dE—l)T)]t ,wWherem=1,2,...M
*Create the matrix Yg"E = [ydE(l) Yg.(D) - ydE(M)}
*Choosetheratio 0<{<1
M

*Compute )_/dE = % Z Y (K) (average vector in the space ERdE)

k=1

«Compute B = K%I- D HydE(k)—)_/dEH (¢B isthe threshold for false neighbors, [y, | : mean distance
k=12 ..M
from the origin.)
M
«Compute the covariance matrix C = Kl/l' > [ydE(k)—)_/dE][ydE(k)—)_/dE]t

*Compute the eigen values A, and eigenkv:etlztors n of C,wherei = 1,2,...,dg
*Arrange the eigen values such that 1, 22,2 ... 2 Ay
*Build the basis matrix from the corresponding eigen vectors: By = [131 n, .. ndJ
ofor d = 1,2, ..., dg (Space dimension)

*(Project YQ"E into S)td)

M, tm .
RV AL [131 n, ... QJ Yg. with elements y§(m)

ofor m= 1,2 ...,M (Timeindex)
«Compute the distance between y5(m) and the columnsof Y}y"P and save these distancesin q,.
*Find the minimum distancein q4 and label the index of the vector that produced it by n.
eInitialize 6, = 0, A = 1 (o, : distance, A : time step.)
swhile (6, < {B) AND (A< M-max(m,n)) AND (A<T).
*6, = [ym+a)-yin+a)
*A=A+1
end while
(If the end of the data set was reached without a conclusion, discard yg(n) )
*if A= (M—max(m, n)) AND (A<T) AND (o, < {B)
«Label yfi(n) asNot decidable
eelseif (A<T) AND (6, >(p)
*p(d) = pk(d) +1, increase the count of the FNNs
end if
endm
end d

Figure 6.6 Pseudocode of the CDT agorithm
We have presented three new geometric algorithm. In the next section, we present

afourth algorithm, which is a predictive agorithm.
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6.6 Thefourth new algorithm: The Predictive

In Section 4.3.2, we presented the predictive method for estimating d, of achaotic
system. We also presented the application of the predictive method to estimate d, of the
Henon map in Section 5.3. In this section, we present a new algorithm based on this tech-
niqueto estimate d, .

In atypical experiment, al we can observe is a set of scalar measurements y(m)
taken from the system. These measurements are produced from amap h: R R* where
R* isthe space of the original unknown attractor of the system. The evolution of the orig-
inal statesinside the attractor can bewritten as x(m+ 1) = f(x(m)) (see Equation (4.1)).
Using the delay-coordinate map, the original system dynamics can be reconstructed in a
space of dimension d. The statesin this space are the delay-vectors y (m) € R asshown
in Equation (6.4). If the reconstructed system is equivalent to the original one, the function
W R? s R can be used to recreate the scalar measurements y(m) (see Equation (4.6)).
The predictive algorithm approximates i by using a multilayer neural network with a
Tapped Delay Line (TDL) connected to itsinput.

The main problem that may appear when using amultilayer network to approximate
u isthat the error surface at the output of the network could be complicated [Hag95]. That
means there could be more than one minimum and the network may converge to alocal,
rather than a global minimum. To insure that the network has converged to the optimal so-
[ution (global minimum), the algorithm repeats the training process a few times and then
chooses the minimum Sum Squared prediction Error (SSE) from the different trials. The

algorithm starts by sampling y(m) at aninterval T asfollows:

Ys(m) = y(1+(m-1)T), (6.16)
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wheeem = 1,2, ..., LandL = {N'I_'lJ + 1. For the case that the measurements are tak-
en from adifference equation (like the Henon map), T isset to 1. The mean of y(m) hasto
be deducted from the measurementsto insure that the signal is a zero mean. After that, the
algorithm creates

L

Sm) = yy(m) =% 3" yi(K). (6.17)
k=1

The delay-vectors y,(m) at the input of the network are

ya(m) = [s(m) s(m-1) ... s(m—d+1)]t- (6.18)
The network takes yZ( m-—1) asaninput to predict the current measurement s(m) where
d isthe number of tapsinthe TDL. Asd increases, the prediction error between the output
of the network s(m) and s(m) decreases. At one point, further increase of d does not im-
provethe prediction error significantly. At thispoint, the two systemsare equivalent to each
other and the number of tapsin the TDL equals d, of the system.
To estimate d, , the predictive algorithm checksto seeiif the change in the percent-
age of the change in the SSE at dimension d (SSE,) is |ess than some predefined threshold
(7y) for five consecutive dimensions. That means, if

[SSEq4. 1 —SSE
SSE,

<vy- 100, (6.19)

for five consecutive dimensions, thenit setsd;, = d—5. Thethresholdis0<y<3. The

pseudocode shown in Figure 6.7 summarizes the predictive algorithm.
In Chapter 7, we apply the predictive a gorithm to different examples of chaotic

systems and show the estimated d, resulting from the algorithm.
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{ The predictive algorithm
*Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2

*Compute dg = 2d,+1. If d; isnot known choose an arbitrary large number for dg

*Choose i,,,, (the maximum number of iterations, usually 5)
*Choose the threshold 0<y< 3
el nitialize the matrix P, of dimension i ,.x dg (to hold the SSE of the prediction errors)
*Sample y(m) : y(m) = y(1+(m-1)T)
L
eS(m) = y(m) —% Z yo(k) (deduct the mean of the signal, to insure the signal is a zero mean)
k=1
ofori = 1,2, ..., i, (Iterations)
ofor d = 1,2, ... ,dg (number of taps)
*Input = [s(m-1) s(m-2) ... s(m—d)
eTarget = s(m)
*Create a nonlinear multilayer neural network with 5 neuronsin the hidden layer and 1 neuron in
the output layer
*Train the neural network to predict the Target when it is presented with the Input over all given
points. When the training stops, record the prediction errors e(m) and compute their Sum of
Squares (SSE) and save them as a function of d:
L—d
Psseli- ) = 3 e(k)?
k=1
endd
end i
ofor d =1,2,...,d
*Mse(d) = MiN(Pgge(d))
eend d
(d, isthe minimum dimension where m_,, does not change significantly with further increasein d)

ofor j=1,2,..., d
oif ‘msse(d + 1)_msse(d)‘
msse(d)
«d =d-5
end if
eend |
plot mg, versusd

}

<vy-100 (for five consecutive times)

Figure 6.7 Pseudocode of the predictive algorithm
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6.7 Chapter summary

In this chapter, we presented two algorithms by Abarbanel, which are based on the
CDD and the CDT geometric methods to estimate the minimum embedding dimension of
a chaotic system. We discussed some limitations of these two algorithms and suggested
new approaches to overcome them. We used the global neighbor search rather than the |o-
cal neighbor search method to compute the nearest neighbor of the reference point. Four
new algorithms were presented that can overcome the limitations of the local neighbor
search algorithms. The four algorithms are based on the three geometric methods CND,
CDD, CDT, and the predictive technique. Full details for each algorithm were given and
the pseudocode that summarizes each algorithm was provided. Besides giving full detail of
the six algorithmsthat are used to estimate the minimum embedding dimension, we showed
amethod to find the delay-time that is used to build the delay-vectors. In the next chapter,
we apply the six algorithms to different examples of chaotic systems and compare the re-

sults.
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CHAPTER 7

MINIMUM EMBEDDING DIMENSION RESULTS

7.1 Introduction:

In Chapter 6, we presented six different algorithms showing two agorithms by
Abarbanel and four new algorithms. Those algorithms are used to estimate the minimum
embedding dimension of chaotic systems. In this chapter, we will apply the six algorithms
to nine different chaotic systems. These systems are different from each other and cover
artificial, industrial, and biological systems. Further, we will test the ability of the different
algorithms to distinguish between chaotic signals and signals generated from a random
source (noise). Chaotic systems are deterministic. They exist in different dimensions based
on the dynamics that generate them. Beside being different in dimension, chaotic systems
can be different with respect to noise content in the measurements taken from them.

Inthe next section, wewill giveabrief introduction to the different systemsthat will
be used to test the agorithms. In Section 7.3 we will investigate the results of estimating
d, for six noise free systemswhile in Section 7.4 we will estimate d, for anoisy chaotic
circuit and for three practical systemsfrom the SantaFe competition. In Section 7.5 we will
investigate the ability of the algorithms to distinguish between chaotic signals and random
ones. Tabulations of the results and a comparison between them will be presented in

Section 7.6. And finally we will present the chapter summary in Section 7.7.
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7.2 Testing systems

We have shown in Chapter 5 the estimation of d, for a chaotic Henon map by ap-
plying the geometric and the predictive techniques. In this chapter, we will use more com-
plicated systems for further investigation of the performance of the six algorithms
mentioned in Chapter 6. We will divide the testing systems into two categories. 1) noise
free systems, 2) noise contaminated systems. In the next two subsections, we will shed

some light on nine systems belonging to these categories.

7.2.1 Noise free chaotic systems
1) Lorenz model: In 1963, Ed. Lorenz [L063] wasthe first scientist to discover cha-
os when he was modeling the fluid convection phenomena. His model is a small represen-

tation of the earth’s atmosphere. It can be written as a set of three differential equations:

X = s(y—X) (7.1)
Yy = —XZ+rxX—y (7.2)
z=xy—bz (7.3)

wheres = 16, b = 4,and r = 40. The system’ s equations were solved numerically us-
ing the fourth order Runge-Kutta algorithm with afixed step size of 0.01 sec. The next fig-

ure shows a 3-D plot of the Lorenz attractor.
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The chaotic Lornz attractor
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Figure 7.1 Lorenz chaotic attractor

2) The second system that we used to test the algorithmsisthe chaotic circuit. Chaos
canexistin electrical circuitsaswell, asfound by N. F. Rulkov et al [RVRDV92]. The cir-

cuit diagram is shown below.

¥3(9¢(X))

<

Figure 7.2 The chaotic circuit diagram

The circuit response can be written as a set of three differential equations:

X=y (7.4)
Yy = —X—y,y+z (7.5)
2 = Yp(v39:(X(1) —2) =14y (7.6)

where x and z are the voltages across the two capacitors ¢; and c, respectively. v, isthe
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gain of the nonlinear amplifier. y(t) = j(t),/L/c,; wherej(t) isthe current flowing

/Lc
through the inductor L. v, = TE—l Y, = I,,/¢/L,andy, = ¢c;/cy, 1 = 3.98 kQ,
192

r, =361Q,c; = 260 nF,c, = 170.8 nF, L = 152.6 mH and y; = 24.24.Thenon-

linear amplifier function is

0.528 if x<-1.2

9c(X) = Ix(1=x%) if —1.2<x<1.2- (7.7)
0528 if x>12

The circuit responseis chaotic at y; > 22.5 as shown in the 3-D plot below.

Figure 7.3 The chaotic circuit response

3) The third system that we will useto test the six algorithmsisthe Rossler model.
In 1976, O. E. Rossler [Ros76] proposed an artificial chaotic system consisting of three dif-
ferential equations:

X=-y-z (7.8)

<
1
x
+
<

(7.9)



Z=a+2z(Xx-c) (7.10)
wherea = 0.2,and ¢ = 5.7. The set of the three differential equations were solved nu-

merically using the fourth order Runge-Kuttaalgorithm at afixed step size of 0.01 sec. The

3-D plot below shows the Rossler attractor.

Rossler Attracotr

Figure 7.4 The Rossler model attractor

4) All the previous systems are three dimensional systems. To test the algorithms
with higher dimensional systems, we will use Mackey-Glass (MG) chaotic system. The

MG system is represented by the following differential equation

0.2x(t —t;)

X(t) = 1+X(t—tf)10

—0.1x(t), (7.11)

where t; isadelay-time [MG77]. Equation (7.11) is used to mode! blood production. x(t)
represents the concentration of the blood at timet (when the blood is produced) and

X(t—t;) isthe concentration of the blood when the request for more blood is made. For pa-

tients with Leukemia, the delay-time t; could be large which causes the concentration of

85



the blood to oscillate. When t; is excessively large (t; > 16.8), the concentration of the

blood becomes chaotic (see also [Far81]).

Equation (7.11) can be approximated by the following difference equation:

X(n—m) + X(n—m+1)
1+x(n=m® 1+x(n—m+1)

((Zm —bt)x(n) + atf( 10)) (7.12)

x(n+1) = 2m+ bt;

(see [KaSc00Q]). Equation (7.12) can be used to produce chaotic systems of dimension

m+ 1. Wefixed t; to be 23 and tested the algorithms with three examples from the MG

approximation of dimensions 4, 7, and 13. Up do this point, we have discussed six noise
free systems. In the next subsection, we will discuss three practical systems that will also

be used to test the six algorithms.

7.2.2 Practical systems

1) Wewill begin with the chaotic data set A from the Santa Fe competition data sets
[WeGe95]. This sequence represents a special challenge sinceiit is short (1000 points). Be-
side being short it is aso contaminated with noise (the Signal to Noise Ratio (SNR) isup
to 70 dB). It was measured from alaser machine and its attractor is a Lorenz like attractor
[HAWS9].

2) The second practical system isthe B, data set from the same competition. The
first column of this set was collected from an Electrocardiogram (ECG) signal. According
to agroup of researchers, an ECG signal can be modeled by alow dimensional chaotic sys-
tem. This set is contaminated with noise and it isalso non-stationary (caused by patient mo-
tions).

3) Thethird practical systemisthe D, dataset from the same competition. This set

islarge (105 points), it has 9 degrees of freedom [WeGe95], and has a small non-station-
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arity. It will be used to test the ability of the algorithmsto estimate d, using measurements

taken from a high dimensiona chaotic system.

7.3 Estimating d, for the noise free chaotic systems

In the next two subsections, we will present the results found from Abarbanel’ stwo
agorithms: the CDD, and CDT, onthesix noisefree systems (Section 7.2.1). At theend
of the two subsections, we will present the results found from our four algorithms (CND ,
CDDg, CDT g, and the predictive) for the same six systems. Notice that in this section we
will present the plotswith abrief analysis of the results. In Section 7.6, we will tabulate all

the results from the different algorithms and discuss them.

7.3.1Using the CDD, algorithm

We will begin by showing the results found by Abarbanel’ sfirst algorithm: the
CDD, (see Section 6.3.1). Theplotsin Figure 7.5 show the estimated d, for the six noise
free systemsusing thisalgorithm. The four curvesin each graph are found by changing the
number of neighbors (N,, = 20, 50, 70, and 100). We can see from the figure that for sys-
tems with dimensions greater than 4, the estimation of the minimum embedding dimen-
sions (d, ) are poor. The plots also show that the estimated d, for the case of the Rossler

model is poor aswell. It estimated d, = 2 where the correct dimension is 3.
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Estimating d_ of the Lorenz model using Abarbanel et a irst approach (CDD) Estimating d_of the chaolic circuit using Abarbanel et al first approach (COD)
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Estimating d of the Rossler model using Abarbanel et a first approach (CDD) Estimating d of the MG of dimension 4 model using Abarbanel et al first approach (CDD)
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Estimating d_ of the MG of dimension 7 model using Abarbanel et al first approach (CDD) Estimating d_of the MG of dimension 13 model using Abarbanel et al first approach (CDD)
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Figure 7.5 The estimated d, for the six noise free systems using the CDD, agorithm. The vertical
axisisthe percentage of the FNNsfound from each dimension and the horizontal axisisthe dimension
d, a) for the Lorenz model, d, = 3, b) for the chaotic circuit, d, = 3, c) for the Rossler model,
d, = 2,d)for MG of dimension 4, d, = 4, €) for MG of dimension 7, d, = 4, f) for MG of dimen-
sion13,d =4

7.3.2Using the CDT, algorithm

Theestimated d, usingthe CDT, agorithmfor the six noisefree systemsisshown
in Figure 7.6. By comparing the results found from these plots with those of the CDD, al-
gorithm, we can see that the CDT,  did not improve the estimation of d, for the six noise

free systems.
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\g the CDTT with Abrbanel et al 2™ approach

d, estimation for the Lorenz model usin

d, estimation for MG of dimension 13 using Abarbanel et al 2™ a
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Figure 7.6 Theestimated d, for the six noise free systems using the CDT, algorithm. The vertical
axisisthe percentage of the FNNs and the horizontal axisisthe dimension d, a) for Lorenz model,
d, = 2, b) for chaotic circuit, d, = 3, c) for Rossler model, d, = 2, d) for MG of dimension 4,
d, = 3,€) for MGof dimenson 7, d,_ = 3, f) for MG of dimension 13, d, = 4

After presenting the results found from the CDD, and the CDT, agorithms, we
present next the results found from our four algorithms: the CND, the CDD, the CDT 5,

and the predictive.

7.3.3 Using the CND algorithm
The plotsin Figure 7.7 show the results of the estimated d, for the six noise free

systemsusing our first algorithm (CND) (see Section 6.5.1). Aswe can seefrom thefigure,
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the CND algorithm gave good estimates of d, for the systems of dimensions up to 4. On

the other hand, it gave poor estimates of d, for the systems of dimensions 7 and 13.

4, estimationfor the Lorenz model using our 1 approach: CND Etimata 4 ot chaotic st sing oue 19 agpronch: the
1
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Figure 7.7 Estimating d, for the noisefree systemsusing our first algorithm (CND). The vertical axis

isthe estimated d, and the horizontal axisis the number of neighbors used (w). a) for Lorenz model,

d, = 3, b) for the chaotic circuit, d, = 3, c) for Rossler model, d, = 3, d) for MG of dimension 4,

d, = 4,¢)for MG of dimension7, d, = 5, f) for MG of dimension 13, this algorithm does not give
a stable answer

7.3.4 Using the CDD algorithm

The plotsin Figure 7.7 show the results of the estimated d, for the six noise free

systems using our second algorithm (CDD ;) (see Section 6.5.2). By comparing the esti-
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mated d, from the plotsin the figure, we can see that the CDD 5 algorithm gave similar

results to those of the CND algorithm.

Estimated d, for the Lorenz model using the CDD method with the global neighbor search Estimated d for the chaotic circuit using the CDD method with the global neighbor search
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Figure 7.8 Estimating d, for the noisefree systemsusing our second algorithm (CDD, ). The vertical

axisisthe percentage of the FNNsfound and the horizontal axisisthe dimension d. a) for Lorenz mod-

el, d_ = 3, b) for the chaotic circuit, d, = 3, c) for Rossler model, d, = 3, d) for MG of dimension
4,d, = 4,¢e)for MG of dimension7, d, = 4, f) for MG of dimension 13, d, = 4

7.3.5 Using the CDT  algorithm
By comparing our third algorithm (CDT ) (see Section 6.5.3) with the CND and
CDD, we can seefrom Figure 7.9 that the CDT 5 algorithm hasimproved the estimation

of d, for the system of dimension 7.
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The estimated d_ for the Lorenz model using the CDT,, with the global neighbors search “The estimated d, for the chaoic circuit using the CDT, with the global neighbors search
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Figure 7.9 Estimating d, for the noise free systems using our third algorithm (CDT ). The vertical
axisisthe percentage of FNNs and the horizontal axisisthe dimension d. a) for Lorenz model,
d, = 3, b) for the chaotic circuit, d, = 3, c) for Rossler model, d, = 3, d) for MG of dimension 4,
d, = 4,€) for MG of dimension7, d, = 7, f) for MG of dimension 13, d, = 7.

7.3.6 Using the predictive algorithm
For our fourth algorithm (the predictive), the estimated d, isfound where the SSE
of the prediction error isnot changing significantly. The plotsin Figure 7.10 summarize the

estimation of d, for the six noise free systems.
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Estimating d for the Lorenz model using the Predictive technique. Estimating d_for the chatic circuit using the Predictive technique
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Figure 7.10 The predictive algorithm results for the noise free systems, the vertical axisisthe SSE of

the prediction errors and the horizontal axisisthe dimension d, &) for Lorenz model, d, = 3, b) for

the chaotic circuit, d, = 3, ¢) for Rossler model, d, = 3, d) for MG of dimension 4, d, = 4, €) for
MG of dimension 7, d, = 7, f) for MG of dimension 13, d, = 13.

Aswe can see from Figure 7.10 above, the SSEs (of the prediction errors) of the
neural network used to estimate d, have dropped significantly when the dimension (d) has
reached the minimum embedding dimension of the signal. Then it did not improve signif-
icantly after that. Asaresult, the predictive algorithm gave good estimatesof d, for all the
Six noise free systems.

In the next section, we will apply the same algorithmsto estimate d; for the noisy

systems.
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7.4 Estimating d, for the noisy systems

In the previous section, we have investigated the estimation of d, for six different
noise free systemsusing the six algorithms. In this section, we will test the same algorithms
to estimate d, for three practical systems that we introduced in Section 7.2.2. But before
wedo that, let usinvestigate the estimation of d; for anoisy chaotic circuit. After that, we

will show the results of estimating d, for the three practical systems.

7.4.1 Estimating d; for the noisy chaotic circuit (cc)

We will use 5000 points from the X-coordinate of the chaotic circuit (cc) (after dis-
carding the transients) to represent the measurements from this system. We will also add
different levels of noise to these measurements. The signal to noiseratio (SNR) in decibels
(dB) is defined as:

2
(05)

SNR = 10 Iog—z, (7.13)

(on)
where(css)2 Is the variance of the signal and (cn)2 isthe variance of the noise. We will

use the following SNR values: 200, 100, 50, and 20 dB for our purpose.

7.4.1.1 Using the CDD, algorithm

The resulting plots when using the CDD,  algorithm are shown in Figure 7.11. As
we can see from the figure, the CDD,  algorithm was able to give the correct estimate of
d, for the cases where the SNR are 200, and 100 dB. On the other hand, it was not able to

estimate the correct d, for the cases where the SNR are 50, and 20 dB.
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Figure7.11 Estimating d, for the noisy cc using Abarbanel et al first algorithm (CDD, ). &) at 200
dB,d, =3,b)at100dB, d, = 3,c)a50dB, d, >5, d) at 20 dB, the algorithm assumes the signal
isnoise

7.4.1.2 Using the CDT, algorithm.

Theresulting plots when using the CDT  algorithm to estimate d, for the noisy

circuitareshowninFigure 7.12. We can see from thefigure that the CDT, was susceptible

to noise. It failsto find the correct minimum embedding dimension for any of the four cas-

€s.
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Figure 7.12 Estimating d, for the noisy ccusing CDT, agorithm. a) at 200dB, d, = 2, b) 100 dB,
d, = 2,c)at50dB, and d) at 20 dB the algorithm assumes the signal is noise
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7.4.1.3 Using the CND algorithm

The resulting plots when using our first algorithm (the CND) are shown in Figure
7.13. We can see from the figure that the CND algorithm gave the correct d; for the cases

where the SNR are 200, 100, and 50 db. It gave awrong estimate; d;, = 4 when the SNR
20 dB.

The estimating of dL for the noisy chaotic circuit using the CND method
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Figure 7.13 Estimating d, for the noisy cc using our first algorithm (the CND), a) at 200dB, d, = 3,
b) at 100dB, d, = 3,c)a50dB, d, = 3,d)a20dB, d, = 4

7.4.1.4 Using the CDD, algorithm

The resulting plots when using our second algorithm (CDDg; ) to estimate d, for

the noisy cc are shown in Figure 7.14. We can see that this algorithm gave good estimates

of d, for the four cases of noisy cc.
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Figure7.14 Estimating d, for the noisy cc using our second algorithm (CDDg). It shows d, = 3 for
SNR=200, 100, 50, and 20 dB

7.4.1.5 Using the CDT_algorithm

Theresulting plots of estimating d, for the noisy cc when using our third algorithm
(CDTg) areshownin Figure 7.15. As seen from the figure, this algorithm gave good esti-
mates of d; for the cases where the SNR are 200, 100, and 50 dB. For the case where the
SNRis20dB, it gave awrong estimate of d, , as seen from theright bottom curve. Notice
here that the semilog plot (at the 20 dB case) can’t show the percentage of FNNs when it

equalszero (at d = 3).
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Figure 7.15 Estimated d, for the noisy cc using the CDT agorithm. For SNR=200, 100, and 50,
d. = 3. At SNR=20db, not stable

7.4.1.6 _Using the predictive algorithm

The resulting plots when using the predictive algorithm are shown in Figure 7.16.
From the figure, we can see that this algorithm gave good estimates of d, for the cases

where the SNR are 200, 100, and 50 dB. It fails when the SNR is 20 dB.
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Figure 7.16 Estimating d, using our fourth algorithm (Predictive), d, = 3 for 200, 100, and 50 dB,
at 20 dB it assumes arandom signal
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7.4.2 Estimating d, for the Santa Fe data sets

7.4.2.1 Using the CDD, algorithm

Theplotsin Figure 7.17 show the estimated d, for thedatasetsA, B, , and D; us-
ing the CDD, algorithm. We can see from the figure that this algorithm failed to find the

correct d; for the cases of the Aand D, datasets. For the B, datasetitgaved, = 4.

Lorenz model d_dimenion estimation using the CDD with the 1 projection method

T T T T

80, & Nb=20
—&- Nb=50
— Nb=70
-6~ Nb=100

% FNN

a)

d, estimation for B, Santa Fe data set using Abrbanel 1% approach: CDD

% FNN

amenson b)

—— Nb=70
-6 Nb=100

% FNN

dimension d C)

Figure 7.17 Using the CDD, agorithm, a) for dataset A, d, = 4,b) for B;, d, = 4, c) for D,
d =6
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7.4.2.2 Using the CDT, algorithm

The plotsin Figure 7.18 show the estimated d, for A, B;, and D, SantaFe data
setsusing the CDT,  algorithm. We can see from the figure that this algorithm gave good
estimate of d; for Adataset. It gave d, = 10 for D, dataset and failed to find a reason-

able estimate of d, for B; data set.

Estimatin of d, for A Santa Fe data set using Abarbanel 2" approach
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Figure 7.18 Using the CDT, agorithm, a) for dataset A, d, = 3, b) for B;, d, = 6, c) for D,
d_=10.
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7.4.2.3 Using the CND algorithm

The plotsin Figure 7.19 show the estimated d, for A, B;, and D, Santa Fe data
sets using our first algorithm (the CND). We can see that this algorithm gave a good esti-
mate of d; for dataset A. Itgave d, = 5 for dataset B, , whileit failed to find a good

estimate of d, for thedataset D, .

Estimated d for A data set using the CND method

a)

b)

® c)

Figure 7.19 Using the CND algorithm, &) for dataset A, d, = 3, b) for B;, d, = 5, ¢) for D, the
result is not stable
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7.4.2.4 Using the CDD, algorithm

The plotsin Figure 7.20 show the estimated d, for A, B;, and D, SantaFe data
sets using the CDD 5 algorithm. As seen from the figure, this algorithm gave a good esti-
mateof d, fortheAdataset. Itgaved, = 5 forthe B, dataset. Itgaved, = 11 for the

D, dataset, which is higher than the actual value (d, = 9).

Estimated d, for the A data set using the CDD method with the global neighbor search

% FNN

12 3 4 6 8 10 12 14

dimension d a)

Estimated d, for the B, data set using the CDD method with the global neighbor search

% FNN
3

& 5
dimension d b)

Estimated d for the D, data set using the CDD method with the global neighbor search

% FNN

Figure 7.20 Using the CDD algorithm, &) for dataset A, d, = 3, b) for B, d, = 5, c) for D,
d =11
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7.4.2.5 Using the CDT_algorithm

The plotsin Figure 7.21 show the estimated d, for A, B;, and D, SantaFe data
setsusing the CDT 5 algorithm. Figures 7.21a and 7.21b show that the estimated d, for
the Adatasetis 3, and for B; dataset d, = 5. Thisalgorithm gave abad estimate of d,

for the D, dataset (d, = 6).

Estimated d for the A data set using the CDT, method with the global neighbor search
T T

1 2 3 4 5 o a )

Estimated d for the B, data set using the CDT_ method with the global neighbor search

% by
°

dimension d b)

Estimatin of d, for D, Santa-Fe data set using the CDT,, method

% p,(d)

amersona c)

Figure 7.21 Using the CDT algorithm, a) for dataset A, d, = 3, b) for B, d, = 5,c) for D,
d =6
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7.4.2.6 Using the predictive algorithm

The plotsin Figure 7.22 show the estimated d, for A, B;, and D, Santa Fe data
sets using the predictive algorithm. As seen from the figure, this algorithm gave agood es-
timate of d; for the A data set. It estimated d, = 4 for the B, dataset, and d, = 10 for

the D, data set.

Figure 7.22 Using the predictive algorithm, a) for dataset A, d, = 3, b) for B, d, = 4,¢)for D,
d_= 10
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Up to this point, we have shown the results of the estimated d, for the noise free
and the practical systems using all the six algorithms. In the next section, we will test the
ability of these algorithms to distinguish between signals generated from a chaotic system

(deterministic), and signals generated from a random process (noise).

7.5 Testing the algorithms with random signals

We generated 3000 points from a normally distributed random process with zero
mean and unit variance. We will test the ability of each algorithm to recognize that the or-
igin of thesignal isarandom process rather than adeterministic source. According to Abar-
banel et al [AbKe93] the embedding dimension will approach - for random signals.

Figure 7.23 shows the results found from Abarbanel et al two algorithms. We can
see that the first algorithm (CDD, ) did not recognize that the signal is arandom one. It
gave 11 as the minimum embedding dimension of the signal. Their second algorithm
(CDT, ) gave « as the minimum embedding dimension for the signal, which is what we

expect from arandom signal.

timating d, for a random signal using the CDD with the global neighbor search Estimating d, for a random signal using Abarbanel et al 2" approach (CDT)

1006

1002

%p(d)

L L L L L L L
2 4 6 8 10 12 14 1 2 3 4 5 6

dimension d a) dimension d b)

Figure7.23 Testing Abarbane! et al two algorithmswith arandom signal, &) the CDD, algorithm fails
to recognize the random signal, b) the CDT, algorithm succeeded in recognizing the random signél

Figure 7.24 shows the plots resulting from testing our four algorithms: the CND, CDD;,
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CDT, and the predictive to recognize the random signal. As we can see from the plots,
the CND, CDT ;, and the predictive algorithm were able to recognize the random signal .
They estimated d; = <. On the other hand, the CDD algorithm fails to recognize the

random signal, it estimated d, = 11.

Estimating d, for the randomm signal using CND Estimating d, for a random signal using the CDD with the global neighbor search
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Testing the CDTg algorithm to recognize random signals Estimating d, for the random signal using the Predictive technique
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Figure 7.24 Testing our four algorithms for estimating the dimension of the random signal, a) the
CND algorithm recognizes the signal is random by not changing the estimated d, asw increases, b)
for the CDD algorithm, it did not recognize the random signal, c) for the CDT algorithm, it was

able to recognize the random signal, the same for the predictive algorithm in d).
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7.6 Tables and discussions

Inthe previous three sections we showed theresulting plotsfor theestimated d, for

the nine systems using the six algorithms. In this section, we will summarize these results,

then discuss them.

7.6.1 Tables

In Table 7.1, we summarize the results found from the previous section. More dis-

cussions of these results will be presented later. (Wrong estimates are circled.)

Abarbanel et a/ Our Algorithms

Algorithms
Systems Original dimension| CDD. CDT, CND CDDg CDTgs | Predictive
Lorenz 3 3 2 D 3 3 3 3
Chauotic circuit 3 3 3 3 3 3 3
Rossler 3 C 2 o] 2 > 3 3 3 3
MG of dim 4 4 4 [ 3D 4 4 4 4
MG of dim 7 7 C_ 4 D[ 3 D[C 5 D>[C 4 > 7 7
MG of dim 13 13 C 4 O[C 4 D>[WNav|[C 4 DIC 7 D 13
cc with 200 dB 3 3 2 D 3 3 3 3
cc with 100 dB 3 3 2D 3 3 3 3
cc with 50 dB 3 C 5 > |[noised 3 3 3 3
cc with 20 dB 3 Cnoise) [Cnoised [ 4 > 3 CN. Abl® | noised
Santa Fe A 3 [ 3 3 3 3 3
Santa Fe B, 4 4 (_GD ( 5) Q 5) QS) 4
Santa Fe D, 5 C 6 >[I0 SN [C 1] 6 S[Ci0>
Noise recognition CN. Abl® | Able Able |CN. Abl®© |  Able Able

Table 7.1 Tabulation of the estimated d, for &l the testing systems
shown in Sections 7.3 through 7.5. The wrong estimates are circled. The
abbreviation cc: chaotic circuit, and N. Able: not able

Next we measured the time (in seconds) required by each algorithm to estimate d,

for data set A. Table 7.2 shows the time for each agorithm.

Abarbanel et al
Two algorithms

Our algorithms

CDD,

CDT,

CND

CDDg

CDTg

Predictive

2.26

11.0

12.7

0.24

0.85

140

Table 7.2 Six agorithms estimation time (in seconds) for d, of data set
A of the Santa Fe competition, it showsthe CDD isthe fastest and the
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We can see from the table above that the CDD 5 algorithm required the minimum time;

0.24 sec. While the predictive algorithm required the maximum time; 140 sec.

7.6.2 Discussion of the Results

Next we will discuss how the following factors affect the results: 1) the original di-
mension of the system, 2) the use of the local versusthe global neighbor search method, 3)
the estimation time, 4) sensitivity of each algorithm to the threshold value, 5) the ability of
each algorithm to recognize random signals, and 6) dependence of the algorithms on the
number of points needed to estimate d, . At the end of this section we will make general
conclusions about the best way to estimate d, .

7.6.2.1 The effect of the origina dimension of the system

From the results shown in Table 7.1, we can generally see that when the dimension
of theoriginal systemisgreater than four, the geometric algorithms (CDD, , CDT, , CND,
CDDg, and CDT ) giveincorrect estimates of d, . On the other hand, the predictive algo-
rithm gives the correct estimates as seen in the last column of the table. For the case of the
dataset D, thedimensionis 9 (see [WeGe95 page 6]). We can see that the best estimate
provided by our algorithms for this systemis 10.

7.6.2.2 Loca versus global neighbor search methods

To reduce the computational cost in thelocal neighbors search algorithms (CDD,
and CDT | ), the search for the nearest neighbor (in EKd) is done among the N, neighbors
rather than the whole data set. On the other hand, the search for the N, neighbors for each
point in ERdE Is done by using the specialized neighbors search algorithm mentioned in

Chapter 6. The CDT, algorithm gaveincorrect estimatesof d, for thenoisy chaotic circuit
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(cc) asseeninthemiddierow of thetable. Whilethe CDD, gaveincorrect estimates of d;
for 50 and 20 dB cases.

On the other hand, the algorithms CND, CDD;, and CDT  are global neighbor
search algorithms. That meansthe nearest neighbor is computed among the whol e data set.
To reduce the computational cost, we only use the specialized neighbor search algorithm
mentioned in Chapter 6. The performance of these algorithms has improved significantly
for the noisy chaotic circuit (cc), as seen from the table. Further, we can see that the CND
and the predictive algorithms were not able to give the correct estimate of d, when the
SNR = 20dB.

7.6.2.3 Estimation time

Table 7.2 showsthe time required to estimate d; for the A data set using the six al-
gorithms. The sequence of algorithmsarranged in adescending order of speedisasfollows:
CDDg, CDTg, CDD, CDT,, CND, then the predictive algorithm.

7.6.2.4 Sendtivity to the threshold value

We found that our algorithms were not sensitive to the threshold value used in the
estimation process. In the CND algorithm, we used a threshold value between 0 and 3. For
the CDD algorithm, we used a threshold value between 0.1 and 0.5. For the case of the
CDT agorithm, the threshold used was between 2 and 10. Choosing the value of the

threshold depends on the amount of noise contained in the signal.
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7.6.2.5 Noise detection

From the last row of in Table 7.1, we can see that the CDD, and the CDD ago-
rithmswere not abl e to distinguish random signalsfrom chaotic ones. Both algorithms gave
11 as the minimum embedding dimension, which is not correct since the signal is not de-
terministic.

7.6.2.6 Dependence of the agorithms on the number of data points

From the results found in Table 7.1, we conclude that the algorithms are not sensi-

tive to the number of points needed to give the correct estimate of d, . For the predictive

technique, it isimportant to insure that the number of pointsis greater than the number of

parameters used in the neural network to prevent over fitting [Hag95].

7.6.3 General conclusions

From what we have seen above, we conclude the following: 1) The predictive algo-
rithm givesthe best results as along asthe SNR is not too low. However, thisa gorithm has
its own drawback. Its computational time is much larger than those of the geometric algo-
rithms. 2) Using the global neighbor search reduces the computational time and improves
the estimation. 3) To give confidence to the estimation process, one can run more than one
algorithm and compare their results. We suggest the use of the predictive and the CDD 5

algorithms to do the estimation.

7.7 Chapter Summary

We have seen in this chapter the results of the estimated minimum embedding di-
mension for many chaotic dynamical systems using the different algorithms that we pre-

sented in Chapter 6. We also gave full discussion of the results that we found and drew
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conclusions on the best way to estimate the minimum embedding dimension of chaotic sys-
tems. In the Chapter 8, we will talk about the theory of Lyapunov exponents of chaotic sys-

tems.
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CHAPTER 8

THEORY OF LYAPUNOV EXPONENTS

8.1 Introduction

In Chapter 1, we said that the objective of thisresearch isto model chaotic systems.

We also said that in addition to estimating the model order (the minimum embedding di-

mension d, ), we need to estimate the model parameters (the set of Lyapunov exponents).

In Chapters 3 through 7, we discussed estimating d, . In Chapter 2, we found that one of

the main characteristics of chaotic systemsistheir sensitivity toinitial conditions. Thissen-
sitivity isquantified by the value of the Lyapunov exponents of the chaotic system, aswill
be seen later. In this chapter, we will explore the theory of Lyapunov exponents and use it
to define equivalent chaotic systems. We will aso prove a new theorem that relates the
poles of alinear system to the set of Lyapunov exponents (LES).

In the next section, we discuss the sensitivity of some linear systemsto initial con-
ditions. In Section 8.3, we explore the theory of first order chaotic systems. The set of LEs
for amultidimensional chaotic system is shown in Section 8.4. Two sets of invariants that
determine equivalent chaotic systems are discussed in Section 8.5. L Es can be approximat-
ed by Jacobian matrices as shown in Section 8.6. Some linear algebra definitions and the-
orems are presented in Section 8.7. Some definitions and theorems from multilinear

algebra are presented in Section 8.8. Using these concepts from linear and multilinear al-
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gebra, anew theorem that relates the poles of alinear system to the set of LEsisprovenin

Section 8.9. Finally in Section 8.10 we present the chapter summary.

8.2 Sensitivity of somelinear systemsto initial conditions

We have seen in Section 2.3.1 that one of the characteristics of chaotic systemsis
their sengitivity to initial conditions. But it isimportant to notice that not every sensitivity
toinitial conditionsoriginatesfrom achaotic behavior. Asan example, wecan seein Figure
8.1 the response of the linear system:

x(k+1) = f(x(k)) = cx(k), (8.1
for twodifferentinitial conditions x;(0) = 0.5 and x,(0) = 0.55 where c> 1. Aswecan

see from the figure, the difference between the two responses (dotted curve) grows expo-
nentially astime increases, but the system responses (solid and dashed curves) are not cha-

otic.

Sensitivity of a linear sysem to initial conditions
60 T T

50~

a0

20

10

Figure 8.1 Linear systems can be sensitiveto initial conditions
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The solution of Equation (8.1) is
x(k) = cx(0). (8.2)
Perturbing the initial condition x(0) by € produces x.(0) that is
X.(0) = x(0) +e¢. (8.3)
We label theinitial perturbation from x(0) to x.(0) by

8(0) = x,(0)—x(0) = e. (8.4)

After kiterations, the system’ s response for the new initial conditionis x,(k) = ckxs(O) :
and the perturbation growsto

8(k) = x,(k)—x(k) = ce. (8.5)
From the above equation, we can see that

k

5(K)| = =c. (8.6)

k
Ce
8(0) €

This ratio measures how fast the perturbation grows with time.

Using Equation (8.6), we will investigate the perturbation growth rate for the cha-
otic system of the tent map: x(k+ 1) = f(x(k)) = 3/4(1-|1-2x(k)|), see Equation
(2.3). We begin by choosing three different initial conditions {0.202, 0.347,0.869} and

_4, 10_5, 10_6} . Next we iterate the map and

four different initial perturbations { 10, 10
record the number of iterations required for the evolved perturbations to exceed some pre-
defined threshold. Using the resulting perturbation & (k) and the number of iterationsfound

(K), we can compute the mean of the logarithm of the perturbation growth rate in Equation

(8.6):
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log(c) = %Ioglgi(%% : (8.7)

(Thelog in Equation (8.7) isthe natural log.) Table 8.1 shows the results found from the

different initial conditions x(0) and initial perturbations 6(0) when the threshold used is

0.001 [PIS92 page 709].
x(0) 5(0) k d(k) log( c)
0.202 0.001 1 0.0015 0.40547
0.202 0.0001 6 0.0011391 | 0.40547
0.202 1.00E-05 12 0.0012975| 0.40547
0.202 1.00E-06 18 -0.0014779| 0.40547
0.347 0.001 1 0.0015 0.40547
0.347 0.0001 6 0.0011391 | 0.40547

0.347 1.00E-05 12 0.0012975 | 0.40547
0.347 1.00E-06 18 -0.0014779] 0.40547
0.869 0.001 1 -0.0015 0.40547
0.869 0.0001 6 -0.0011391| 0.40547
0.869 1.00E-05 12 0.0012975 | 0.40547
0.869 1.00E-06 18 0.0014779 | 0.40547

Table 8.1 Estimating log(c) for f(x(k)) = (3/4)(1—]1-2x(K)|).

From the above table, we can see that log(c) has the same value regardless of
changesin theinitial condition or the initia perturbation. This result quantifies the

Lyapunov exponent (LE) which is defined below.

8.3 Lyapunov Exponent (LE) of afirst order chaotic system

Using the chain rule, we can write the ratio in Equation (8.6) as follows:

5(0) d(k—-1)[[do(k—2)|] 18(0)

Substituting this equation for Equation (8.7) produces.
k
-1 S(i
log(c) = " |og‘4_L , (8.9)
i=1

0(i-1)

Notice that we can use the function f to write Equation (8.5) as
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8(k) = f(x (k—1)—f(x(k—1)), (8.10)
whichis
S(k) = f(x(k=1) + 8(k—1)) —f(x(k—=1)). (8.11)
Now we can write the ratio in Equation (8.9) as

o(k) _ fxtk=1) + O(k=1)) —f(x(tk=1))

Sk-1) S(k-1) (812)
By taking the limit as 8 — O of Equation (8.12), we can write
jim fO(k=1) +8(k—1)) ~f(x(K=1)) _ ¢yk_1y), (8.13)

§-0 o(k—-1)
wheref = %}? . Using Equation (8.13), the right hand side of Equation (8.9) can be writ-

ten asfollows (in the limit as the perturbation goes to zero)

k k
1 8G) |1 o
>3 'Og’e!'inoa%i—l) £ 3 loglfex(i - 1)]. (8.14)
i=1 i=1

The LE for afirst order chaotic system is denoted by A and defined to be the limit

as k — « of Equation (8.14):

k
A = lim (lz |og|f'(x(i—1))|] = log(c). (8.15)
k

—> oo
i=1

The LE quantifiesthe mean growth of infinitesimally small errorsin theinitial condition of
a chaotic system. By applying Equation (8.15) to the tent map in Equation (2.3), we can

compute its LE:
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A= lim [— z Iog’ (3/4)(1—|1—2x(i)|)’} : (8.16)
k— o
i=1
whichis
k
A= I|m [— Z log(2(3/4)|sign(1— 2x(|))|)] , (8.17)
i=1
or
k
A= I|m {— Z Iog(3/2)] = 040547, (8.18)
i=1

which is the same value that was found experimentally.

What we have seen in this section isthat the LE of afirst order system isameasure
of the local mean growth rate of infinitesimally small errors. A chaotic system will be lo-
cally unstable, although globally bounded. Therefore, we expect the LE to be positive. A
negative LE would indicate local stability, and therefore the system would not exhibit cha-
otic behavior.

Notice also that for afirst order linear system, asin Equation (8.1), the LE isthelog
of the system pole. Later in thischapter, wewill introduce anew theorem that demonstrates

the relationship between the LEs and the poles of a multidimensional linear system.

8.4 Lyapunov exponentsfor a multidimensional system

In the previous section, we defined the LE for afirst order system. In this section,

we definethe LEs for amultidimensional system. A multidimensional systemin % hasd

LEsthat characterize it. They can have positive, negative, or zero values. At least one of
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these exponents has to be positive for an attractor to be chaotic [Aba95]. The set of d LES

is sometimes called the spectrum of LEs.
The state evolution of a chaotic system in * is governed by the map f

(x(k+ 1) = f(x(k)),seeEquation (2.2)). Let aninfinitesimal perturbation from theinitial
state x(0) to x.(0) be

8(0) = x.(0)—x(0), (8.19)
where the distance |x.(0) —x(0)| = €, whichisinfinitesmal. After k time steps, x(0)
evolvesto x(k), and x.(0) evolvesto x.(k). The new perturbation vector is

3(K) = X (k) —x(k). (8.20)
The finite time LE (sometimes called the local LE) is defined as

A (x(0 ,90(0), k) = —Iog—”‘ : 8.21

The LE (sometimes called the global LE) isdefined as

A(x(0). 8(0)) = | i_r)nmkk(x(O), 5(0), k). (8.22)

There are d L Es depending on the orientation of the initia perturbation vector 5(0) (see

[ECRuU85] page 630).

Aswe have seen above, to find the LEs for amultidimensional system, we need to

find the evolution of an initial perturbation vector 5(0) . From this evolution, the ratio be-

tween the evolved vector and the initial one is used to find the LEs. More details will be

given later of methods used to evaluate the LEs.
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8.5 Invariant setsin modeling by embedding

From the set of Lyapunov exponents, Kaplan and Y orke[KaY 079] conjectured that
the Lyapunov dimension can be computed, which is
DI

i=12 ...,k

dyp =k + : (8.23)

P\'kl_"' 1|

where k_ ischosensuchthat > Aj>0. Theimportance of the Lyapunov dimen-
=12 ..,k

sion comes from the fact that its value is closely related to the box-counting dimension of
the original system (see also [Aba95])
dyyp=d;. (8.24)
The Lyapunov exponents and the Lyapunov dimension are the same in both the
original system and its chaotic model obtained through delay embedding. Thisisan impor-
tant result. It meansthat although the attractor of the delay embedding model may not 1ook

the same as the attractor of the original system, they share the same global properties. This

meansthat the two systems are equivalent in the sense of these global properties. The other

important aspect is that dLyp can be found easily if one can accurately estimate the set of

LEs.
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8.6 LEsfrom the Jacobian matrix

Aswe said in the beginning of this chapter, LES characterize chaotic systems. To

compute the set of LES of the system, we can use Equation (8.22). That means we need to

follow the evolution of theinitial perturbation vector 6(0) withtime. The perturbed vector
X (K) is mapped by f according to Equation (2.2):

X (K+1) = f(X.(K)). (8.25)
Which can be written as

X(k+1)+06(k+1) = f(x(k)+06(k)) = f(x.(K)). (8.26)
Notice that 8(k + 1) does not necessarily equal f(3(k)) sincef isnot linear. The map

f(x.(Kk)) can be approximated around x(k) by using the Taylor series expansion asfol-

lows:
f(x(k)+§(k))zf(x(k))+a_)f( ) (k)(x—x(k)). (8.27)
By using Equations (8.26) and (8.27), we can write
X(K+1) +5(k+ 1)~ x(k+ 1)+8_)f( ) (k)E_S(k), (8.28)
or
S(k+1)=~9f 3(K). (8.29)
X1x = x(k)

We denote the Jacobian matrix in Equation (8.29) by J, , whose elements are

_of
(JX(k))(u,v) - a_u

1\

, (8.30)
X = X(k)
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whereu,v = 1, 2, ..., d. Now we can write Equation (8.29) as
S(k+1)=J,8(K), (8.31)
which can be written as
d(k+1)=JyIxk-19(k—1). (8.32)
In general, we can write the evolution of an initial perturbation 8(0) after k time steps as:

8(K) = Iy em 1y dxk—2)--Ix(0)3(0) - (8.33)

For smplicity of notation, let J)'E represent the multiplication of the k Jacobian matrices:

k
\]x = \]x(k_l)\]X(k_z).JX(o). (8.34)

Now we can write the evolution of aninitial perturbation vector as
3(k) ~ J58(0). (8.35)

The LEs of the system are
— im 1 — i 1 k
A= klinmng”E—S(k)” = klinwklog”JXE_S(O)”, (8.36)

there are d LEs of the system depending on the orientation of the perturbation 8(0) (see

[ECRu85] page 630).

8.6.1 Oseledec theorem
In 1968, Oseledec, V. [0se68] proved that the limit in Equation (8.37) below exists
and that it isindependent of the initial condition,
A= i_r)nw((Jt)TJt)l/(ZK) . (8.37)

Further and most important, he proved that the logarithm of the eigen values of the matrix

A, equal the LEs of the system (see also [EcRu85]).
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In the next two sections, we define some terms from linear and multilinear algebra.
These definitions will be used in Section 8.9 to prove a new theorem that relates the poles

of alinear system to the LEs, as computed from the eigen values of the Oseledec matrix

A, . Thistheorem will provide insights into the meaning of the LEs and will suggest new

algorithms for estimating the LEs.

8.7 Linear Algebra definitions

8.7.1 Definition: Inner product

A scalar function which operates on two vectors X, y € % and denoted by (, )

isdefined as an inner product if it satisfies the next three conditions:

(X, ¥) = (¥, X). (8.38)
(x, ay, +by,) = a(x,y,) +b(x,y,). (8.39)
(x,x)20. (8.40)

The inner product is evaluated as follows
T
(Xy) =xy, (8.41)
(see[Hag93]).
8.7.2 Definition: Vector Norm

Given avector X € ERd, areal valued function g:EKd s %' isavector normif it
satisfies the next three conditions:

gx)=20 whereg(x) = 0iffx =0 (8.42)

122



g(ax) = |og(x) where o € *x! (8.43)

g(x1 + x2) < g(xl) + g(xz) where xl, x2e R, (8.44)
The vector norm isdenoted by | || . One choice of the norm is the 2-norm:
2 2 2.1/2 1/2
Il = (x5 ol + o # xS = x0 7 (8.45)

After defining the vector norm, we will use it next to define the matrix norm.

8.7.3 Definition: Matrix Norm

dxd

Given areal dxd matrix A, areal valued function g: R — %' isamatrix norm

if it satisfies the next three conditions;

g(A)>0 whereg(A) = 0iffA =0 (8.46)
g(aA) = |og(A) where o e *®! (8.47)
g(A1 + A2) < g(Al) + g(Az) where Al, A? are dxd matrices. (8.48)

Aswith the vector norm, thematrix normisdenoted by || | . One choice of the matrix norm

can be defined by using the vector norm as follows:

Al = max [AX]. (8.49)
Ix||=1

(Notice that we may use T as a super script to mean real matrix transpose. If the matrix is
complex, T means the complex conjugate.)

8.7.3.1 Some important properties of the matrix norm

Two important properties of the matrix norm which are used in the coming sections

are:
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IAX] < |AlIx] where x e %, (8.50)

||A1A2|| < ||Al|| ||A2|| where Al, A? are dxd matrices. (8.51)
These properties can be found, for example, from [GoVa96].

8.7.3.2 Lemma: Norm of adiagonal matrix

For adiagonal matrix Dy with elements A; where |Ay| > [Agq_4| > ... 2|Ay],
[Dd| = [Ad- (8:52)

proof

By using the definition of the matrix norm in Equation (8.49), we can write
[Dd” = [Dae” = 1", (8:53)
wheree = [0 .. 1 ... o]T such that the 1 appearsinthe i row, andi = 1,2, ..., d.
This means Equation (8.53) can be written as follows:
ID4|*= Aq* (8.54)
Now let’s assume that x' isaunit vector that satisfies the norm condition:
[Ddl = [Bax]- (8.55)
Since D isadiagonal matrix, we can write the square of the norm in Equation (8.55) as

follows:
1Dl = [l el + g al o+ oo+ Rl gl (8.56)
Notice that ||DO|||2 has the following upper bound:

2 2.0..12 L2 L2 2
IDd|” < Ag](Xq) "+ X "+ o+ XD = Ay (857)
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By combining Equations (8.57) and (8.54), we can see that

Dol = [Ad- (8.58)

8.7.4 Singular value decomposition

For each dxd matrix A , there exist orthogona matrices Q, V such that
Q'AV =S, (8.59)
where Sis adiagonal matrix with elements 64> 06,4_4, = ... 264, which arethe singular

values of A (see [GoVa96 page 70]).

8.7.4.1 Important SVD properties

Two important properties can be found from the SVD of amatrix. The first oneis

that the norm of the matrix is equal to the largest singular value of the matrix:
IA] = . (8.60)
The second property isthat the i Mg ngular value of the matrix A isequal to the square root

of the i'™" eigen value of the matrix ATA:

si(A) = (LATANYZ, (8.61)

wherei = 1,2, ...,d (see[TrBa97 page 34]).

8.7.5 Definition: Diagonalizable matrix

A matrix A issaid to be diagonalizable if there exists an invertible matrix W such

that (W)_lAW = D; adiagonal matrix.
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8.8 Multilinear algebra definitions

8.8.1 Vector exterior products

Let {vq,V,, ..., V4} bethebass set of avector space V. The exterior product of
two vectors v; and Vi is denoted by VitV (v; wedge Vi ). It has the following properties:
vitvy = 0ifi =] (8.62)

VitV = vt ifi#]. (8.63)

Thisrelation can be extended linearly. Soif a = a;v; +a,v, and b = b;v, + b,v,, then
arb = (a;vq +ayv,)N(byvy + byv,) = (b, —a,by vy, (8.64)

Geometrically, we know that a vector a in the space R? represents a specific direction in
this space. The magnitude of the vector represents its length. The exterior product of two
vectorsa and b representsthe oriented plane segment of the parallelogram with sidesa and
b. Its magnitude represents the area of the resulting parallelogram. The same istrue for
higher order products. The next figure showstwo vector exterior products. For more details

see [Bay96].

L

Figure 8.2 Vectorsa and b exterior product (a”b)
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8.8.2 Linear operator exterior power

Let V be avector space of dimension d with the basis set {v,, v, ..., v4} . Define

V"2 to be the vector space of dimension @) with the basis set

{vi"vj|lsi<j£d}. (8.65)

By generalizing the above definition, we can see that V"9 isavector space of dimension
(g) where 0< q<d. The basis set for V' % is
Vi, M |1y <ip <. <ig=d}. (8.66)

Let thelinear operator L beamap fromV to itself. We define the linear operator L exterior

power, L , such that

LAq(xl"xz"..."xq) = LxMLxp™ . ALX g, (8.67)

N
Ay N A a
where x;"X,"..."X € V 7.

Let’s equip the space V with an inner product (see Section 8.7.1), and let
Vv;, W; € V. From thisinner product of V, we can define the inner product of V"9 asthe

bilinear extension of

(VIAVoA o AV Wy AW, A L AW,) = det] |V2 [Wl W, ... W(ﬂ . (8.68)

(It can be shown that thisis avalid inner product.)
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8.8.2.1 Definition: Adjoint of alinear operator

Given alinear operator L:V — V, defineits adjoint to be the linear operator

L":V — V which is determined by

(Lv,w) = (v,L'w),
where v, w € V (see[Arn98] page 118 and the references therein).

8.8.2.2 Lemma: Adjoint of the wedge

If L isthe adjoint of L,

Proof
By applying the adjoint condition to L™ , we have
(LAq(Vl/\VZ/\ /\Vq), Wi AW, AL /\Wq) =
(VIAVoA L AV (LAq) (W AW, AL /\Wq))
Also

N

(L q(vl/\vzx\.../\Vq),Wl/\Wz/\.../\Wq) =
(Lvl/\LVZ/\.../\LVq,Wl/\WZ/\.../\Wq) =
(Vl/\vz/\.../\vq,LW1/\LW2/\.../\LWq) =

AN

* "q
(Vl/\vz/\.../\vq,(L) (Wl/\WZ/\.../\Wq))

We conclude from Equations (8.71) and (8.72) that

(VIAVyA L. AV (L q) (Wi AW, A L. /\Wq))
N

* 7q
(V1/\V2/\.../\Vq,(L) (Wl/\Wz/\.../\Wq))

forall v;, w; e V. Asaresult, we can see that
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Wyt =1y (8.74)

8.8.2.3 Linear operator properties

We list next some properties of linear operators. For reference to the proof of these
properties see [Arn98] page 118 and the references therein.

(1) If Aisamatrix representation for L with respect to some basis set,
A(A) = A(L). (8.75)
(2) If Alisamatrix representation for L, with respect to some basis set, and B isa

matrix representation for L, with respect to the same basis set,

AB isamatrix representation for L,L,. (8.76)

(3) If A isamatrix representation for L with respect to an orthonormal basis,

AT isamatrix representation for L. (8.77)

(4) From (2) and (3), we can see that

ATA isamatrix representation for L'L. (8.78)

(5) If L, and L, arelinear operators,

(LLy)™ = L1950, (8.79)
(6) If A isamatrix representation for L with respect to an orthonormal basis, and its

eigen values are A;(A) , then the eigen val ues of L™ are

ALY = (M, (A). G (A) |1y <ip<...<ig<d}. (8.80)
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8824 Lemma: Eigenvaluesof (L'L) -

If A isamatrix representation for L with respect to an orthonormal basis, the set of

eigen values of (L*L)AOI is
AM(LL) Y = {(cil(A)ciz(A)...qu(A))z 1<iy<iy<... <iqsd}. (8.81)

Proof
Since ATA isamatrix representation for L*L,

AMATA) = AL'L). (8.82)
But we know from Equation (8.61) that
(6(A))? = MATA). (8.83)

So from Equation (8.80), we have
ALY = {(Gil(A)GiZ(A)...qu(A))Z 1<iy<iy<... <iqsd}. (8.84)

After defining the matrix norm and the linear operator exterior power, we will use
them to prove a new theorem for computing the limit as k — -~ of the eigen values of the

k 1/(2k
linear Osdledec matrix: (AN (A%~ 2.
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8.9 Thelinear Oseledec matrix

Consider again the Oseledec matrix A, defined in Equation (8.37). Oseledec

[Ose68] proved that thislimit exists and that the LES of the system are equal to the loga-
rithms of the eigen values of this Oseledec matrix. In order to gain insight into the meaning
of the LEs, let’s consider alinear system. The linear counter part to Equation (2.2) (or
Equation (8.25)) is
x(k+1) = f(x(k)) = AX. (8.85)
For this system, the Jacobian matrix, (defined in Equation (8.30)) becomes
e = A (8.86)

We then find that the product of the k Jacobian matrices in Equation (8.34) becomes
k k
J, = AALLA = (A). (8.87)

The Oseledec matrix of Equation (8.37) can then be written as
, k. T .k 172k , Tk Kk 1/(2k)
A, = lim ((3) Iy = lim ((A") (A)) . (8.88)
K— oo K — oo
We know that the eigen values of the matrix A are the poles of alinear system. Our next

step isto find the relationship between the eigen values of A, and the eigen values of A.

8.9.1 Theorem: Eigen values of a linear Oseledec matrix

Let amatrix A:R% — R be diagonalizable and full rank with eigenvalues A;(A),

wherei = 1,2, ...,d. Thelimitas k — « of theith eigen value of the matrix
kK 1/(2k
O, = (A1) (A" (8.89)

convergesto |A;(A)|.
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Proof

Before we prove the theorem, we summarize the proof in the following steps:

(1) For agenera matrix (not necessarily symmetric), prove that the limit of the K"

)

©)

(4)

©)

root of the largest singular value of (A )k converges to the magnitude of the larg-

est eigen value of A. Thisisdone by first finding upper and lower bounds on the

norm of (A)k . Next, we prove that the limits of the k™ root of the two bounds are

egual (this part is proven in Proposition 8.9.3.2).
Divide the limit of the k" root of the norm of (LWLK)Aq i by that of (LWLK)Aq .
Apply the result found in (1) to thisratio to find the limit of the k™ root of the

(d- q)th singular value of (A)k. (Lk is the composition of k linear operatorsL.)

Repeat step (2), but take the ratios of the eigen values instead of the singular val-
ues. This step finds the magnitude of the (d — q)th eigen value of A.
Equate the two quantities found in (2) and (3) to find that the limit of the k" root

of thei s ngular value of (A )k converges to the magnitude of the it eigen

value of A.

Singular values of (A)k are the eigen values of (Ok)2k (Lemma8.9.3.1). Taking

the limit of the k"' root of both values complete the proof of the theorem.
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8.9.2 For a symmetric matrix
We will begin by proving the result for a symmetric matrix. We know from linear

algebrathat if A issymmetric,

A = A, (8.90)
and its eigen vectors are orthonormal. So we can write
AW = WD, (8.91)
where W is an orthonormal matrix whose columns are the eigen vectorsof A, and D isa

diagonal matrix containing the eigen values of A. Now we can write A as

A = WDW . (8.92)

We can write the matrix (Ok)2k in Equation (8.89) as
(00 = (AD (A, (8.99)
whichis
(0p* = wp'w'wp'w'...wp"w 'wow"...wbow". (8.94)
SinceW'W = | ; which is the identity matrix, Equation (8.94) can be smplified to
(0% = W(D)*WT, (8.95)
where D, isadiagonal matrix with elements |A;(A)| . Eigen valuesof the matricesin Equar
tion (8.95) are
2((00%) = L(DY). (8.96)

Because D, isdiagonal,
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(0 = M(Dy) = [M(A)], (8.97)

wherei = 1,2, ...,d.

8.9.3 For a general matrix
Now that we have proven the theorem for a symmetric matrix, next we proveit for

the general case (where A isnot necessarily symmetric). In this part of the proof, it will be
convenient to define eigen values of the matrix O, using singular values of the matrix

(A)k, as shown below.

8.9.3.1 Lemma: Eigen values of O, are equal to the singular values of (A

Giventhematrix O, , whichisdefined asshownin Equation (8.89), itseigen values
are equal to the k™ root of the s ngular values of (A)k:

(0 = (5, ((A)Y, (8.98)

wherei = 1,2, ...,d.

proof

Taking the (2k)th power of both sides of Equation (8.89) gives

0% = AH A (8.99)
From Equation (8.61), we have
1/2
6i((A)) = (AN (AN, (8.100)
But we can see from Equation (8.99) that

M (007 = xi(AT)k(A)". (8.101)
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From Equations (8.100) and (8.101), we have
M0 = (oA, (8.102)
Taking the (2k)th root of both sides of Equation (8.102) gives
(O = (oA, (8.103)
As aresult from thislemma, we can see that in order to find A,(O, ), we can use
(oA ".

8.9.3.2 Proposition: Limit of the k™ root of o,4((A))

Letareal dxd matrix A bediagonalizable, and letitslargest eigenvaluebe L 4(A),

and its largest singular value be 6 4(A) , then
. 1/k
lim (o4((A))) " = [A4(A)]. (8.104)

Proof
From Equation (8.60), we can see that the norm of the matrix is equal to the largest

singular value of the matrix:
Ayl = ‘
(A)1 = o4((A)). (8.105)
By using the definition of the matrix norm in Equation (8.49), we can write
K k
||(A) | > ||(A) X, (8.106)

where x isaunit vector in ERd. If welet

X = Ug, (8.107)
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where uy isaunit eigen vector of A corresponding to the largest eigen value, we can write

(using Equation (8.43))
[ = ogem) = pgea). (8.108)

After finding the lower bound for csd((A)k) , the next step isto find an upper bound

for it. Since we assumed the matrix A is diagonalizable, we can write it as follows:

A = WD(W) ™, (8.109)

where D isadiagona matrix with elements A,(A) , the columns of W are the eigen vectors

of A,andi = 1,2, ...,d. Since (W)_lW = | ; which isthe identity matrix, the matrix
(A)k can be written as follows

A = woow)'wow)y ™. wow) ™t = wd)kw)™. (8.110)

By applying the norm property in Equation (8.51) to Equation (8.110), we have:
oA =l <mil o) jowy ™. (8.111)
To find the upper bound of cd((A)k) , We can use the norm property in Equation
(8.52) to find the norm of the diagonal matrix (D)k:
[ = pqa-. (8.112)
Now we can write the upper bound of cd((A)k) in Equation (8.111) asfollows
S((A)) < g IWI W)Y . (8.113)

By combining the lower and upper bounds of cd((A)k) , We can see that
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(A < og((A)) < g AWl low) ™). (8.114)
The kK™ root of Equation (8.114) is:

Ra(A)] < (0 (AN < g awilowy ™)™ (8.115)

Notice that for any scalar x>0,

lim 0% = 1. (8.116)
K — oo
Therefore,
. _ 1/k
lim awilowy™h™ = 1. (8.117)

Now we can seethat by thelimit as k — «, the upper and lower boundsfor (cd((A)k))l/

become equal. Taking the limit as k — - of Equation (8.115) and using Equation (8.60)
gives

. Kkl|1/k . k. 17k

lim () = 1im (o4(A) ™ = py(A)]. (8.118)
k—)oo k—)oo
Recall that we are trying to prove that the eigen values of O, are equal to the mag-

nitude of the eigen values of A. So far, we have shown that the largest eigen value of O,

(which isthe same as (od((A)k))l/k) isegual to the magnitude of the largest eigen value

of A. The next step is to show that the remaining eigen values are also equal. Let A bea

matrix representation for L with respect to an orthonormal basis. By using the linear oper-
ator property in Equation (8.76), we can see that (A)k isamatrix representation for the

composition of the k operators. LL...L, which isdenoted by Lk
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L= LL..L (k—times). (8.119)
Similarly, we denote the composition of the k adjoints of L by
L= L (k—times). (8.120)

The next step in the proof of the theorem isto apply Equation (8.118) to the exterior
power of the linear operator Lk, whichis (Lk)Aq, in place of (A)k. Assume now that there

existsamatrix representation B q for thelinear operator L™ with respect to an orthonormal
basis. We know from Equation (8.76) that
(Bq)k isamatrix representation for Lt L (k—times). (8.121)
We also know from Equations (8.79), (8.119), and (8.121) that
9 = (L) = e (8.122)
From Equation (8.60), we know that the norm of the matrix is equal to its largest singular
value:
[By)!| = omax((Bg'- (8.123)
We also know from Equations (8.61) and (8.78) that
6,((By) = (BN BN~ = (™ ™)™, (8.124)
By using Equation (8.79), we can write Equation (8.124) as follows
6/((B") = (L™ LY, (8.125)
Notice that the norm of alinear operator is defined in the same way asthe norm of amatrix

(see [Kre98] page 33). So from Equations (8.123) and (8.125), we have
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[ = 1™ = e 7 (8.126)

From Equation (8.81), we have
* ’\q
Amax((L'L) ) = (Gg(A)Gy_1(A)...Gq_q. 1(A)°. (8.127)
Applying Equation (8.127) to L gives

A (LKLY = (Gd((A)k)Gd_l((A)k)...cd_q+1((A)k))2. (8.128)

This means that by using Equations (8.126) and (8.128) we can write

[ ] 0a((A)909_1 (A0 g 1(A) )0y g(A))

- (8.129)
oLy G4((A))0g_1((A))...04_qs 1(A))

(Noticethat since A isfull rank, non of itssingular values or eigen valuesis equal to zero.)
Equation (8.129) can be simplified to

” LK Mg+ 1)”

k
S Gu_g((A)). (8.130)

If we apply Equation (8.118) to (Bq)k , we have

. Kl 1/k
im |8
k— o

. k
= k'inm(gmax((Bq)k))l/ = [hmax(Bg) (8.131)
According to Equation (8.75),
Ai(Bg) = ALY, (8.132)

From Equation (8.80), the largest eigen value of L™ s

Amax(L D) = Ag(A)Ag_1(A).. hg_qs 1(A). (8.133)

From the left hand side of Equation (8.126), we have
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K k,"d
Iy = ok (8.134)
Now we can use Equations (8.131) and (8.134) to write
. K|[1/k . k,"a
tim Je " = tim Jy™ 7 = eyl (8.135)
From Equations (8.132) and (8.135), we have
, k,"a A
klinm”(L ) = P (Bo)| = [rman(L ) (8.136)
Applying Equation (8.133) to Equation (8.136) gives
. k.,
k|;mw!!(L ) = (A g1 (A)Ag_qaa(A)]. (8.137)
" ana ™
Next we need tofind thelimit of the k" root of theratio (L) and ||(L")
by using Equation (8.137):
||ng)A(q+l)|| Y (A (A). A A, (A
|Im( J = d( ) d—l( ) d—q+l( ) d—q( ) (8138)
kel Lk ha(A)hg_1(A) . Ag_qr1(A)
Which can be simplified to
|| ’\(q+1)|| 1/k
lim ( j |xd_q(A)| : (8.139)
k— oo

Combining Equation (8.139) with the limit of the k" root of Equation (8.130) gives
. k. .17k
lim (o4_q((A))) = |kd_q(A)|. (8.140)
k— oo
By repeating Equation (8.140) forq = 0,1, ...,d—1, we have

kli_)mm(ci((A)k))l/k = [M(A)), (8.141)
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wherei = 1,2, ...,d. Applying Equation (8.141) to the result of Lemma8.9.3.1 gives
. . 1/k
lim 2,(0) = lim (5;(A)) " = (A (8.142)
k—)oo k—)oo

Later wewill show theresult of applying thistheorem to estimate the set of LESfor

achaotic system.

8.10 Chapter summary

In this chapter, we introduced the theory of Lyapunov exponents for afirst order
chaotic system and a multidimensional chaotic system. We also presented the notion of in-
variant setsthat make two chaotic systems equivalent. A new theorem that relatesthe poles
of alinear system to the set of Lyapunov exponentswas also proven here. In the next chap-

ter, we will show methods to estimate the set of Lyapunov exponents for a chaotic system.
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CHAPTER9

ESTIMATION OF LYAPUNOV EXPONENTS

9.1 Introduction

In Chapters 5 through 7, we discussed estimating the minimum embedding dimen-

sion (d, ) of achaotic system. Wesaid that d, representsthe model order. To completethe

modeling process, we need also to estimate the set of d, LEs of the system. In Chapter 8,

we gave the theoretical background of the LEs and proved a new theorem (linear Oseledec
theorem) that relates the LEs to the poles of alinear system. The purpose of this chapter is
to discussdifferent algorithmsfor estimating the LEs. Wewill aso test these algorithmson
different chaotic systems.

In Section 9.2, we will talk about the QR decomposition of a matrix. We will also
talk about spurious exponentsin this section. In Section 9.3, we will explore two geometric
algorithms for estimating the LEs. The first algorithm is the Eckmann algorithm. The sec-
ond algorithm is a new procedure based on the linear Oseledec theorem. We will also dis-
cussathird algorithm in Section 9.4. Thisisa predictive algorithm that is an improvement
of an existing algorithm which uses aneural network to estimate the L Es. Pseudo code that
summarizes the three algorithms is shown in Section 9.5. The results of applying the three
algorithmsto estimate the LEs of six different chaotic systemsaretabul ated, and the overall

resultsare discussed in Section 9.6. Finally, we present the chapter summary in Section 9.7.
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9.2 Estimating the L Es from Jacobian matrices

In Section 8.6, we showed that the set of LEs can be computed from the product of
Jacobian matrices along the attractor of the system. We said that in order for asystemto be
chaotic, at least one of its LES has to be positive. As the number of Jacobian matricesin-
creases, there areinaccuraciesthat develop asaresult of the matrix multiplications. In other
words, as the number of multiplied matrices increases, eigen values corresponding to the
positive LEs will increase exponentially fast. On the other hand, eigen values correspond-
ing to the negative LEswill decrease exponentially fast. Thisleadsto an over flow in eigen
value computations.

In the next two sections, we will present different algorithmsfor estimating the LES
without directly performing Jacobian matrix multiplications. A standard method that helps
in avoiding the direct multiplication of the Jacobian matrices is the QR decomposition,

which is explained below.

9.2.1 Estimating L E by QR decomposition

To estimate the set of LEsfor asystem of dimension d, we need first to compute the

M Jacobian matrices J, , (defined in Equation (8.30)) of themap f: R? 5 R , Where

x(m
m=0,1, ..., M=1. For the caserthat f is not known, the Jacobian matrices need to be es-

timated. Estimation of the Jacobian matrices will be covered in detail later in Sections 9.3

and 9.4.
To estimate the d LEs of the system, we start at time m = 0 by computing the QR

decomposition [ECRu85] of Jy(o) 10 produce

Q1R1 = Jy0) (9.1

143



where Q, isan orthonormal matrix, and R, isan upper right triangular matrix with diag-
onal elementsthat are equal to the eigenvalues of Iy - IN the next step, we need to repeat
the above process on the product Jy1)Q1 (fortimem = 1):
Q.R, = J,(1)Q;. (9.2)
In general, for time m— 1, we need to compute the QR decomposition of the prod-
uct ‘Jx(m—l)Qm—l:
QmRm = Ixm-1)Q%m-1- (9.3
Notice that by multiplying both sides of Equation (9.1) by Iy, we have
Jx(l)QlR1 = JyyIx0) - (9.4
Substituting Jx1)Q1 from Equation (9.2), into Equation (9.4) gives
Q,R,R; = Jy1yJx(0) - (9.9)
Now we can see that after mtime steps:
QnRmRm_1---Ry = Jxm-1)Ixm=-2)---Ix(0) - (9.6)
From Equations (8.34) and (9.6), we can write the product of the m Jacobian matrices as:
QrRRy_1---Ry = I3 (9.7)
Notice that from Equations (8.36) and (9.7), the LEs of the system can be written as

A= lim r%]log||QmRmRm_1...R1§(O)||. 9.9)

m— oo
It was proven (see[ ECRu85] page 651 and the reference therein) that the d L Es can befound

from the equation
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m

. 1
A, = lim m z log((Ry);;) » (9.9

m— oo
k=1

Where(Rk)ii istheith diagonal element of thematrix Ry, andi = 1,2, ..., d. Inthenext

subsection, we show an example of estimating the LEs for amultidimensional chaotic sys-
tem with a known Jacobian matrix.

9.2.1.1 Example: Estimating LEs of the Henon map

Aswe have mentioned before, the Henon map isa second order chaotic system (see

Equations (2.4) and (2.5)). The Jacobian matrix of the Henon map at x(m) is

™ 03 0

: (9.10)

X = X(m)

where x = |:X1 xz}t. To find the two LEs of the Henon map, we start at time m = 0 by

evaluating the Jacobian matrix at x(0) = [0.5 0.5]t which gives

5= |-28x051] _ [-141] (0.11)
x(©) 03 0 03 0

Using Equation (9.1), we can find the QR decomposition of the matrix Jx0) asfollows

0.21 098|| 0 0.21 030
By repeating the above process until the last data point, we can find the two LES of the
Henon map from the equation:

M

A = %z log((Ry);))- (9.13)
k=1
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The estimated L Es of the Henon map when using 10,000 pointsare A, = 0.4161 and

A, = —1.6201.

Unfortunately, the Jacobian matrix of the system is generally not known to us, and
all we seeisaset of scalar measurements y(m) taken from the system. In the next two sec-
tions, we present three algorithms for estimating the Jacobian matrices of a chaotic system
using y(m) . Two of these algorithms are geometric and one is predictive. The estimated

Jacobian matrices are then used to estimate the set of LEs for the system. Before we show

the three algorithms, let’ s introduce the concept of spurious exponent.

9.2.2 Spurious exponent
We said beforein Chapter 3 that by using the embedding theorem, a system whose
attractor isin R* can be embedded into aspaceof dimension dz > 2d. + 1 where d. isthe

box-counting dimension of the attractor (see Section 2.3.3.1). We aso presented different

algorithms used to estimate the minimum embedding dimension (d, < dg), where an em-

bedding map can be found. But if the embedding was into a space of dimension d whichis

greater than d, , there will be d —d; spurious exponents [EKRu85, DaBr96]. These expo-

nents are fake, meaning that they were not generated from the dynamics of the system. In

other words, they represent numerical artifacts resulting from the lack of knowledge of the

exact dimension of the system. Thisrevealsthe importance of using agood estimate of d;

before estimating the LES of the system. In Chapter 6, we presented four new algorithms

that can give agood estimate of d, . In the next two sections, we present three different al-

gorithms used to estimate the LEs for a chaotic system.
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9.3 Estimating L Esby Geometric algorithms

In 1985, Sano and Sawada[ SnSd85] and Eckmann and Ruelle[ ECRu85] introduced
similar algorithmsto estimate the L Es of a chaotic system. They do so by using scalar mea-
surements taken from the system. Both algorithms are geometric and use similar orthogo-
nalization techniquesto estimate the L Es. In this chapter, we show the Eckmann algorithm
as an example. We begin by presenting the Eckmann algorithm, then we present a new al-

gorithm that applies the result of the linear Oseledec theorem.

9.3.1 Eckmann’salgorithm

Letyqy(m) e % beade ay-vector in the reconstructed space created from the mea-

surements y(m) (see Equation (3.20)). We denote the N, neighborsof y,(m) by ﬁk(m)
and itstime indices by iz(m) wherek = 1,2, ..., N, (see Section 6.2.1). Further, let the
perturbation vector from y,(m) into its K" nei ghbor be

8m) = yg(m) =3 (M) = yg(m) —yg(ihm), (9.14)
where E_Sk(m) represents the perturbation vector in the direction of the K" neighbor of
yq(m) . After niterations, y4(m) — y4(m+n),and yd(i:;(m)) - yd(i'é(m) +n). Thenew

perturbation vector is §k(m+ n) = y4q(m+n) —yd(ig(m) +n).
If we assume that the distance between the reference vector and its Ny, neighbors at

time missmall enough, we can approximate the evolution of the perturbation vectorsfrom
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§k(m) to E_Sk(m +n) by alinear map. That means, we can write the evolution of the pertur-
bation vector é_Sk(m) after ntime steps as

" &my, (9.15)

k
§ (m+n) = ‘]yd(m+n)_

n _
Yg(m+n)

J J

where J yam+ n-1dyym+n-2)--Jy,m-

n

In the next step, the Eckmann algorithm estimates the matrix Jy . ,) by theleast
sguares method. It does so by solving the following equation:
n t t -1 t
Jy,m+n) = (EnEm) EnEmin, (9.16)

where E, = [E_Sl(m) §2(m) §Nb(m)} . It estimates the Jacobian at each of the follow-

ingtimestepsm = 0, n, 2n, ..., U, where U = {MJ Next the Eckmann algorithm ap-

n
plies the QR decomposition to the resulting Jacobian matrices, as described in

Section 9.2.1. After the QR decomposition is performed, the resulting R matrices can be
used to compute the LEs by using Equation (9.9).

Actualy, Equation (9.9) has to be modified dightly to provide the LESin continu-

oustime (see [EKRCB86]). We need to divideit by thetimeinterval whichis nt , where 7

isthe sampling interval for the original sequence, and nisthe number at time stepsforward
that is used in the Jacobian calculation (see Equation (9.15)). The resulting equation for es-
timating the LEsis
u
1

A = - z log((Ry);;) - (9.17)

k=1
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The Eckmann algorithm does not show how to find the dimension of the system d.

It assumes that d is known before estimating the LEs of the system. Aswe said in

Section 9.2.2, if d is greater than the minimum embedding dimension of the system (d, ),
there will be d —d; spurious exponents among the estimated L Es. Eckmann’s algorithm
can be improved by starting to estimate d, of the system before estimating the LEs. In

Chapter 6, we presented four new algorithmsthat can estimate d, . In Section 9.5.1, wewill

show the pseudo code of the Eckmann algorithm, whilein Section 9.6, we will present the

results of estimating the LEs by applying this algorithm on different chaotic systems.
After presenting the Eckmann algorithm for estimating the set of LES, we present

the second geometric algorithm, which applies the result of the linear Osel edec theorem to

estimate the set of LEs.

9.3.2 Linear Oseledec algorithm

We proved in Section 8.9.1 a new theorem (the linear Oseledec theorem) that re-
latesthe LEsto the poles of alinear system. We have shown that the L Es are the magnitude
of these poles. Now we present a new agorithm that applies the result of the linear Osele-
dec theorem to estimate the set of LEs for a chaotic system.

Thisalgorithm is called the linear Oseledec algorithm. It is a geometric algorithm
that issimilar to Eckmann’s algorithm. To estimate the LEs of the system, it starts by esti-
mating the Jacobian matrices in the same way as in the Eckmann algorithm. Then it as-
sumes that for afixed number of time steps (n), the eigen values of the Jacobian matrices
arethe same. Next the algorithm records the logarithm of the magnitude of the eigen values

of the Jacobian matrix at the end of these steps (local LES). By repeating thisfor the whole
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data set, the algorithm computesthe L Es of the system by averaging the local L Esresulting

from the previous computations. In other words, the linear Osel edec algorithm estimates

the Jacobian matrices J;d (m+ny (see Equation (9.16)). Then it computes the local LEs
L

n

from the magnitude of the sorted eigen values of JydL(m )

_ (9.18)

= (35 imen)

By repeating this until the last data point, the algorithm computes the LEs as follows:

(9.19)

In Section 9.5.2, we will present a pseudo code that summarizes the linear Oseledec algo-
rithm. Whilein Section 9.6 we will show the result of applying thisalgorithm on six differ-
ent chaotic systems.

After presenting the two geometric algorithm for estimating the set of LEs of acha-

otic system, we present a predictive agorithm.

9.4 Estimating L Esby the predictive algorithm

Instead of using the least squares method to approximate the Jacobian matrices
(which are then used to estimate the LES), asin the geometric algorithms, the predictive
algorithm approximates the map u.: % 5 %" in the reconstructed space (see Equation

(4.6)). Then it uses the approximated map p to approximate the Jacobian matrices. These
matrices are subsequently used to estimate the LEs of the system. The idea behind the pre-

dictive algorithm comes from the fact that if the embedded system of the delay-vectors
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y4(m) isequivalent to the original hidden system, we can use y4(m) to estimate the LEs

of the system (see also Section 4.4).

State evolution in the reconstructed space can be written as

Ya(m+1) = d(ygq(m)), (9.20)

where y (m) € %Y. The Jacobian matrix of the map ¢ can be computed from Equation
(9.20) asfollows:

_ 99i(yg(m)
Oy, mio = “aym) (9.21)

where y,(m) isthe k" element of y4(m) . Recall from Equations (4.10) and (4.11) that the
state evolution in the reconstructed space can be written as
n(yq(m))
ygm+1) = | Y(m (9.22)
y(m—d+2)
By comparing Equation (9.22) with Equation (9.20), we can see that
H(yq(m))
Oyg(m) = | V(M . (9:23)
y(m—d+ 2)

We can now compute the Jacobian for Equation (9.21) as
a, a, ... ay_q ay
100 .. O
Jyqam =010 .. o] (9.24)

000 1 O

151



where

0 = OY(M*1) _ I (Yq4(m))
! ady;(m) ay;(m) -

(9.25)

By using a neural network, we can approximate the function p (as shownin
Section 4.3.2). Figure 9.1 shows a neural network model used for approximating . The

network hasa d —ny, — 1 structure. That means the network takes a d-dimensional delay-
vector asan input, n,, neuronsin the hidden layer, and one neuron in the output layer. The
network takes d previous measurements (delay-vector y4(m) ) to approximate the next

measurement intime y(m+ 1) . The hidden layer transfer functions are hyperbolic tangent

sigmoid (tansig) and the output layer transfer functions are linear (purelin).

dx1

nV\; d\ nl(m) al(m) nz(m) az(m)
| e
(M) 1] bl / tansig L );nM purelin

n,x1 1x1

:
i\

Figure 9.1 The feed forward network used to approximate p

Assuming that the network has accurately approximated ., we can use its parame-

ters to approximate the coefficients a; . From Equation (9.25), we can replace the map

by its approximation (neural network model) to approximate a; :

- dy(m+1) 5
a; dy.(m) (9.26)

From the neural network model, we can see that the approximated output is
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y(m+1) = b*+w’a’(m), (9.27)

where w” = [Wi Wg Wﬂ . Notice that we can write Equation (9.27) as follows
h

y(m+1) = b”+w’ i (Wly,(m) +b"). (9.28)
Taking the derivative of y(m+ 1) with respect to y;(m) produces the coefficients:

~ _ 0 2 2:1,.,,1 1
a = 8—yi(m)(b +W T (Wyy(m)+b7)). (9.29)

Equation (9.29) can be written as

- 2 .0 1,1 1
i = Wi T (Whyg(m) +b7), 9.30
or
- 2, 1 ;1.1 1
g = W (wy - f (Wiyy(m)+b™), (9.31)
t
where w;, = [Wikwik Wﬁh,k} which isthe ki column of the weights matrix W . No-

tice that the multiplication wﬁ : f'l( ) ispoint wise. Since we used the tansig transfer func-
tion in the hidden layer, Equation (9.31) can be written as
&, = w'wy - (1-(f' (")), (9.32)
see [Hag95].
After approximating the coefficients a; , we can use them to approximate the Jaco-
bian matrix Jyd(m) in Equation (9.24). Next the predictive algorithm applies the QR decom-

position on the approximated Jacobian matrices to estimate the set of LES (see

Section 9.2.1).
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To apply the predictive algorithm for estimating the LEs, it starts by sampling the

measurements y(m) at an interval T (see Section 6.2) to produce y,(m) (see Equation

(6.16)). Next the predictive algorithm creates the new delay-vector yZ( m) (see Equation
(6.18)). The mean y(m) has to be deducted from it to insure that the input to the network

isazero mean. This step createsthe signal s(m) (see Equation (6.17)).The network is pre-
sented with d previous values of s(m) and trained to predict the next valuein time.
The original predictive algorithm was introduced by L. Djamai and P. Coirault

[DjCo02]. We improved their algorithm in four ways: i) we used the delay-vectors y 4(m)

instead of the original states of the system, ii) we estimated the minimum embedding di-

mension d, of the delay-vector by using our algorithmsthat we presented in Chapter 6, iii)

we repeat the training process afew times then choose the network with the minimum SSE,
and iv) we ssmplified the Jacobian matrix approximation into the form shown in Equation
(9.24). The third Improvement is required to insure that the network has converged to the
global, rather that the local minima.

In Section 9.5.3, we will present a pseudo code that summarizes the predictive al-
gorithm. The results of applying the predictive algorithm on six different chaotic systems

will be presented in Section 9.6.

9.5 Pseudo codes of the L E estimation algorithms

In Section 9.3, we presented two geometric algorithms used for estimating the set
of LEs. In Section 9.4, we presented the predictive algorithm for the same purpose. In this

section, we show three pseudo codes that summarize these algorithms.
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9.5.1 Pseudo code of the Eckmann algorithm

To improve the Eckmann algorithm (see Section 9.3.1) for noisy signals, we can
use the method suggested by Zeng et al [ZxEyPi91]. In this paper, the authors use a shell
around the reference point (rather than a sphere as suggested by Eckmann). The shell hasa
minimum and a maximum radius. This method reduces the effect of noise by eliminating
neighborsthat are very close to the reference point from the Jacobian computations. These
neighbors could actually be noise signals. If the signal is noise free, the minimum radius
can be set to zero, which is similar to Eckmann’s original algorithm. Figure 9.2 below

shows a pseudo code that summarizes the Eckmann algorithm.

155



{ Pseudo code of the Eckmann algorithm
*Choose n (forward steps)

*Choose r;, and r . (minimum and maximum neighbor distances)
*Estimate d, (use the algorithms presented in Chapter 6)
*Choose N, (number of neighbors of the reference point)

*Compute T (see Section 6.2)
sInitialize Q and R to be d, x d| identity matrices
*Create the delay vectors y, (m) = [y(m) y(m-=T) ... y(m—(dL—l)T)T. m=01..,M-1

*For m=0:stepn: M
«Compute the distances between Y (M) and the other points.
*Save the N, neighbors of y4 (m) with distances between r;, and r,,,, in the matrix

Yo (M) = { Yo, (16, (M) g (5 (M) .. yg (ig"(m) }

*Compute the perturbation matrix:

Em = {ydL(m—ydL(iéL(m)) Yo (M) =Y (ig (M) .. ydL(m>—ydL(i§f(m>)}-

(Propagate Y (M) and ydL(i'ch(m)) n time steps ahead and compute the new perturbation matrix

Erm+n)
“The K" element of E ., IS (Eqyy o)y = Yo (M+N) =y, (i (M) +n), where k = 1,2, ..., N,
*Use E, and E, , ,, to estimate the Jacobian matrix: )

n t t 1 t
‘]ydL(m+n) _(EmEm) EmEm+n

n

*Normalize and reorthogonalize Jy, (m+n) by the QR decomposition
L
QR = %}, 0
*Multiply the triangular matrices:
R = R,R
send m
(The estimated LEs are the mean of the logarithm of the magnitude of the diagonal elements of R)
. = —-l—— . i = = M
M = g09(R) where = 1.2 ....d, and U hJ

}

Figure 9.2 Pseudo code for the Eckmann algorithm
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9.5.2 Pseudo code of the linear Oseledec algorithm

The linear Oseledec algorithm (see Section 9.3.2) is similar to the Eckmann algo-
rithm, but here we do not multiply matrices. To compute the LES using the linear Oseledec
algorithm, we computethelocal LEsfirst. The next step isto estimate the LES of the system
by averaging theselocal exponents. Figure 9.3 showsthe linear Oseledec algorithm pseudo

code.

{Pseudo code of the linear Oseledec algorithm
*Choose n (forward steps)

*Choose r i, and r ., (minimum and maximum neighbor distances)

Estimate d, (use the algorithms presented in Chapter 6)

*Choose N,, (number of neighbors of the reference point)

*Compute T (see Section 6.2)

*Create the delay vectors yy (m) = [y(m) y(m-T) ... y(m—(d,_- 1)T)}t ,m=01..,M-1

eFor m=0: step n: M-1
«Compute the distances between Y (M) and the other points.
*Savethe N, neighbors of y4 (m) with distances between Fmin @0d 1o inthe matrix

Yo (M) = { Yo, (15, (M) Y4 (05, () .. yg (igP(m) }

«Compute the perturbation matrix:

Er = {ydL(m)—ydL(iéL(m» Y (M) -y, (ig () .. ydL(m>—ydL(i§f(m))]

(Propagate Y (M) and ydL(i'ch(m)) n time steps ahead and compute the new perturbation matrix

Em+n)
+«The k™ element of Em,rn.is(Eern)k Yg (M+n)— ydL(|d (my+n),wherek = 1,2,...,N,
*Use E, and E, ., to estimate the Jacobian matrix:

n
(JydL(m+n)) EED T EEL L,

(Compute the local LES)

M3y <m+n>)
eend m

(The estimated L Es are the average of A"
u-1

. =M
xi_muzx ,Wherei = 1,2,. dL,andU-LHJ

k = log

=0

}

Figure 9.3 Pseudo code for the linear Oseledec algorithm
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9.5.3 Pseudo code of the predictive algorithm
Now that we have shown the pseudo codes of the two geometric algorithms, we
present the pseudo code of the predictive algorithm (see Section 9.4). Figure 9.4 shows a

pseudo code that summarizes the predictive algorithm.

{Pseudo code of the predictive algorithm
Estimate d, (use the algorithms presented in Chapter 6)

*Choose n;, (number of hidden layer neurons)

«Compute T (see Section 6.2)
«Create y,(m) = y(1+(m-1)T) sample the measurements. Then compute it's mean y,

«Create s(m) = y(m) —Y, toinsure azero mean input
et Itr
eInitialize Q and R to be d, x d, identity matrices

max (Maximum number of trials to train the network)

For Iteration = 1: Itr
eInitialize the network parameters: Net

«Train the network with the input [s(m ~1) s(m=2) ... s(m— dLﬂ to predict the output s(m) . Do that

until the network reaches its minimum SSE
(Record the minimum SSE as a function of Iteration number and save the resulting network parame-
ters)
* SE(Iteration) = SSE
*Network (Iteration) = Net
eend Iteration
(Find the index of the minimum SSE)
eInd = Index(minimum(SE))
(Choose the network parameters of theindex “ Ind*)
*Netop: = Network(Ind )
*Read the network ety parameters W2, WY, and b!
sForm=1: U, U = LMJ
T

*For k=1:d,
ea(k) = wi(w, - (1—(Tansig(W's(m) + b1y, fill up the Jacobian matrix J, , elementsas
shown in Equation (9.24) -

eend k

(Perform the QR decomposition)

.QRm = JYdL(m)Q

(Multiply the triangular matrices)

*R = R R

eend m

(The estimated L Es are the mean of the logarithm of R
1 .

A = 'ITSUIOQ(R“)' i=12..d}

Figure 9.4 The predictive algorithm pseudo code
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9.6 Results of estimating the L Es by using the three algorithms

In the previous three sections, we presented three algorithms for estimating the set
of LEsfor achaotic system. These algorithms use a set of scalar measurements taken from
the system do the estimation. Two of these algorithms are geometric and oneis predictive.
We also showed pseudo codes that summarize these algorithms.

In this section, we list the results of the estimated L Es found by applying these al-
gorithms on six different chaotic systems (see Section 7.2). Thefirst column of Table 9.1
shows six different chaotic systemsthat we used to test the three algorithms: the Eckmann,

the predictive, and thelinear Oseledec (the last three columns). Thefirst column also shows

the sampling time 7 of the measurements y(m) and the computed delay-time T. The first

row of each cell in the second through the fifth columns of the table shows the LE values,
while the second row shows the Lyapunov dimension (see Equation (8.23)). For example,
we can see that the estimated L Es for the Lorenz model by using the Eckmann algorithm
(in second row, third column of the table) are 1.31, -0.03, and -7.8, while the computed
Lyapunov dimension is 2.16. The Jacobian matrices of the first three systems are known,
while the Jacobian matrices of the next three systems are not known. The set of LEsfor the
first three systems were computed from the Jacobian matrices by using the Wolf el al algo-
rithm [WSSV 85]. These values are shown in the first three cell in the second column of the

table.
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Chaotic system Original LEs Eckmann alg. Predictive alg. Linear Oseledec alg.
and Lyapunov dimension
Lorenz model {1.34,0.00,-22.29} {1.31,-0.03,-7.8} {1.33,-0.15,-19.27} {4.38,-0.17,-14.02}
Sampling time = 0.01
Delay-Time T =8,d =3 2.06 2.16 2.06 2.3
Chaotic circuit {0.35, -0.01, -1.09} {0.36, -0.05, -1.03} 0.4,-0.00, -1.1 {0.36, 0.33, -1.39}
Sampling time = 0.1
Delay-Time T =8,d, =3 2.3 2.3 2.37 2.5
Rossler model {0.07, 0.02, -5.4} {0.09, -0.00, -1.12} {0.07, 0.00, -5.99} {0.07, 0.71, -1.37}
Sampling time = 0.12
Delay-Time T =5,d, =3 2.01 2.08 2.01 2.57
Santa Fe comp. data set A {0.93, -0.21, -9.66} {0.66, -0.31, -19.3} {1.12,-0.01, -5.2}
Sampling time = 0.1 Not known
Delay-Time T =2,d, =3 2.07 2.01 2.21
Santa Fe comp. data set B ; {0.56, -0.07,-0.56, -1.1} {-0.55, -1.3,-1.8, -2.4} {0.56, 0.16, -0.43, -1.47}
Sampling time = 0.08 Not known
Delay-Time T =6,d, =4 2.9 0 3.19
Santa Fe comp. data set D {1.33, 0.6, 0.13, -0.27, -0.64, -|{0.48, -0.18, -0.6, -1.04, -1.2, {2.27,1.26, 0.37, -0.07, -
0.94,-1.4,-2.3,-4.9} 1.66, -2.0, -2.78, -5.0} 0.55, -1.0, -1.6, -2.8, -6.4}
Sampling time = 0.05 Not known
Delay-Time T =3,d, =9 6.14 2.48 7.23

Table 9.1 LEsestimation resultsusing the three algorithms. The numbers
inside the curly parenthesis are the estimated L Es and the number in the
bottom of the cell is the Lyapunov dimension (d, ).

9.6.1 Discussion of theresults

From Table 9.1, we can see that the Eckmann agorithm gave good estimates of the
LEsfor the chaotic circuit and the Santa Fe data sets. The estimate of the smallest LEs for
the Rossler model was not perfect. For the predictive algorithm, we can see that it gave

good estimates of the LEsfor the Lorenz model, the Rossler model, the chaotic circuit, and
the A Santa Fe data set, while it fails to find good estimates of the LEsfor the B; and D,
Santa Fe data sets. Notice also that the predictive algorithm estimates of the LEs for the
Lorenz model were better than those found by the Eckmann agorithm. On the other hand,
we can see that the linear Oseledec algorithm gave good estimates of the LEs for the
Rossler model, the chaotic circuit, the B; and D, Santa Fe data sets, while it gave a poor
estimate of the largest LE of the Lorenz model.

In general, we can see that the Eckmann algorithm usually gives good estimates of

the LEs. While the predictive algorithm gave good estimates of the LEs for signals with

high SNR. The linear Oseledec algorithms on the other hand, gave good estimates in four
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cases. This agorithm might be improved if one uses a better estimator than least squares.
Finally, by running more than one algorithm to estimate the L Es, one can have confidence

in the estimate values if the results are in agreement with each other.

9.7 Chapter summary

Inthischapter, we have expl ored the estimation of L Es(model parameters) by using
three different algorithms. Full details of the algorithms were presented, and pseudo codes
that summarizetheseagorithmswereillustrated. Thethree algorithmsweretested by using
six different chaotic systems. A table summarizing the results was presented and conclu-
sionswerederived fromit. Inthe next (final) chapter of the dissertation, wewill giveasum-
mary of the previous chapters, draw final conclusions on modeling chaotic systems, and

discuss future recommendations.
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CHAPTER 10

SUMMARY, CONCLUSIONS, AND FUTURE RECOMMENDATIONS

10.1 Summary

In this dissertation, we have explored modeling of chaotic systems. The modeling

process uses measurements taken from a chaotic system to find its model order and model

parameters. The model order is the minimum embedding dimension of the system (d, ),
while the model parameters are its Lyapunov exponents (LES).

In Chapters 3 through 7, we discussed estimating d, . We gave full details of four
new algorithms used to estimate the value of d, . Implementation of the algorithms on nine
chaotic systems was also discussed. Among the four algorithms, three are geometric algo-
rithms: the CND, the CDD;, and the CDT . They estimate d, by detecting the existence
of FNNs. The CND algorithm detects the existence of FNNs by checking to seeif the near-
est neighborsin the space of dimension d remain neighborsin dimension d + 1. Onthe oth-
er hand, the CDD algorithm detects the existence of FNNs by checking to seeif the
distance between the nearest neighborsin dimension d will increase significantly asthe di-
mensionincreasesto d + 1. Finally, the CDT 5 algorithm detectsthe existence of FNNs by

checking to seeif the distance between the nearest neighbors in dimension d will change

significantly astimeincreases. Thethree geometric algorithmsuse aglobal neighbor search
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method to search for the nearest neighbors. In the fourth algorithm (the predictive), the es-
timation of d, isdone by approximating the function p.: R 5 %" which operates on the

reconstructed attractor. u isapproximated by using aneural network with a Tapped Delay
Line connected to itsinput. Asthe number of tapsinthe TDL (d) increases, the prediction
error decreases. At one point, further increase of d does not improve the prediction error.

At thispoint, d, isfound.

We have demonstrated estimating d; by applying the four algorithms on different

chaotic systems. The results derived from these algorithm gave confidence in the estimated

d, . Conclusions reached from the estimation results are summarized in the next section.

In Chapter 8, we presented some theoretical background on Lyapunov Exponents.

We also proved anew theorem that relates the LEs to the poles of alinear system. Estimat-
ing the LEs of a chaotic system was explored in Chapter 9. We presented three different

algorithms used to estimate the L Es (two of these algorithmsare new). Thethree algorithms
approximate the Jacobian matrices of the chaotic model. These matrices are subsequently
used to estimate the LEs. The first algorithm is the Eckmann algorithm. Thisagorithmis
astandard algorithmfor estimating the LEs. It usestheleast squares method to approximate
the Jacobian matrices. These matrices are then used to estimate the LEs. The second algo-
rithm which isaso used for estimating the LEsisthe linear Oseledec agorithm. This algo-
rithm approximates the Jacobian matrices by using theleast squares method. Thenit applies
the results of the linear Oseledec theorem to the approximated Jacobian matrices to esti-

mate the LEs. The third algorithm is the predictive algorithm. This algorithm uses afeed

forward neural network to approximate the Jacobian matrices.
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Thethree algorithm used for estimating the LEs were tested on six chaotic systems,

and conclusions were derived from the results. These conclusions are summarized in the
next section. In total, we introduced four new algorithms to estimate d, , and two new al-

gorithms to estimate the LEs. These algorithms were tested on different chaotic systems.

These systems are different in dimension and noise content.

10.2 Conclusions

We list below the main conclusions found from this research. We begin with conclusions

related to the algorithms for estimating the model order.
1) The predictive algorithm gave the best estimate of d; aslong asthe SNRis not

too low.
2) The global neighbor search algorithms introduced in this research gave a better

estimate of d, than the local neighbor search algorithms.

3) Theuse of morethan one algorithm to estimate d, increases our confidencein the

estimated value.
Now we summarize the main conclusions related to the algorithms used to estimate the
LEs.
1) The Eckmann algorithm usually provides good estimates of the LEs.
2) The predictive algorithm gives good estimates of the LEs for signals with high
SNR.
3) Thelinear Oseledec algorithm gives good estimates of the LEsin some cases.
4) The best approach to estimating the LEsisto use several algorithms and check for

consistency in the results.
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10.3 Future recommendations

For further improvement of the results of this research, we recommend the following:

1) Research on filtering out the noise before applying the modeling algorithms to the

2)

3)

signals. The problem that may arise is that the filter may smear out the attractor
and cause some dynamical featuresto be lost. Work needs to be done to determine
the optimal filter.

Find a better estimator of the Jacobian matrix than least squares. By doing this,
both the Eckmann algorithm and the linear Oseledec algorithm may give amore
accurate results.

Experiment with different types of neural networks to improve the predictive
algorithm for estimating the model order and for estimating the LEs. An example

of one possible network is the radial basis network.
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