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CHAPTER 1

OBJECTIVE AND CONTRIBUTIONS

1.1 Introduction

In this chapter, we will show the objective of this research and give a brief list of 

our contributions. In Section 1.4, we give a literature review of some important publica-

tions in chaotic modeling. A summary of the remaining chapters is given in Section 1.5.

1.2 Objective

The objective of this research is to model chaotic systems. We will build a chaotic 

model from a set of scalar measurements taken from the system. Evolution of the states in 

the model follows the evolution of the hidden states in the original system. To build a cha-

otic model, we start by estimating the model order. The next step is to estimate the set of 

Lyapunov exponents (the model parameters) that characterize the chaotic system. A good 

chaotic model depends on both the accuracy of the estimated model order and the estimate 

of Lyapunov exponent values.

1.3 Contributions

Our contributions are:

(1) Four new algorithms for estimating the model order.

a) The Change of Neighbors with Dimension (CND).
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b) The Change of Distance with Dimension using the Global neighbor 

search ( ).

 c) The Change of Distance with Time using the Global neighbor search 

( ).

 d) The predictive.

(2) The proof of a new theorem that relates the poles of a linear system to the set of 

Lyapunov exponents.

(3) Implementation of the new theorem result to estimate the set of Lyapunov ex-

ponents for chaotic systems.

(4) Development of an existing algorithm which uses a neural network to estimate 

the set of Lyapunov exponents.

In total, we implemented four algorithms to estimate the model order and two algo-

rithms to estimate the set of Lyapunov exponents for a chaotic system. The six algorithms 

were tested on different chaotic systems. The testing examples include noise free and noisy 

signals. In addition, the testing systems have different dimensions.

1.4 Literature review

There are two primary areas of research in modeling chaotic systems. These areas, 

which will be discussed briefly, are: estimating the model order and estimating the set of 

Lyapunov exponents. In this section, we list some key references in these areas. We begin 

by listing literature dealing with estimating the model order. After that we list the literature 

that describes estimating the set of Lyapunov exponents.

CDDG

CDTG
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We begin by reviewing publications that discuss estimating the model order. We 

found many papers by Abarbanel and his colleagues that talk about different methods for 

estimating the model order. Kennel, Brown, and Abarbanel [KBA92] introduced estimat-

ing the model order by the method of False Nearest Neighbors (FNNs). This method is a 

geometric one. It depends on measuring the distance between neighbors as the model order 

increases. The distance between false neighbors increases more than the distance between 

true neighbors as the model order increases. In 1993, Abarbanel and Kennel [AbKe93] de-

veloped the method of FNNs further and introduced a new method that uses time as well as 

distance to check for the existence of FNNs. In this proposal, we will present new algo-

rithms that improve on the results of Abarbanel’s algorithms. In 1997, Cao [Cao97] sug-

gested a new method for estimating the model order. His method is a geometric method and 

it is closely related to Abarbanel method [KBA92]. Instead of using a threshold value to 

determine false neighbors, he suggested the use of the mean of distance change as the mod-

el order increases. Abarbanel [Aba98] used a geometric method with a predictor to estimate 

the model order. Since the points inside the attractor have an evolution rule, their neighbor-

ing points will evolve according to a certain rule as well. To determine the model order, he 

used a predictor to estimate the evolution rule. When the model order is not large enough, 

prediction errors will increase. As the model order increases, the prediction errors drop. At 

certain point, further increase of the model order does not improve the prediction errors. At 

this point, the model order is found. In 2002, Kennel and Abarbanel [KeAb02] used the 

method of FNNs with a global neighbor search method. The projection method used in this 

paper is the delay-coordinate method. (Our second algorithm ( ) used the method of CDDG
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FNNs, with a global neighbor search, but the  used the Principal Component Anal-

ysis projection method.)

Now we review some papers that talk about estimating the set of Lyapunov expo-

nents for a chaotic model. The most important paper in this field is the one by Oseledec 

[Ose68]. He proved that the set of Lyapunov exponents can be estimated from the product 

of an infinite number of Jacobian matrices along the attractor of the system. (In this pro-

posal, we will present a new theorem that provides insight into the Oseledec theorem by 

relating Lyapunov exponents to the poles of a linear system.) In 1985, Eckmann and Ruelle 

[EcRu85] and Sano and Sawada [SnSd85] applied the Oseledec theorem to measurements 

taken from a chaotic system. Both papers use orthogonalization methods to overcome the 

numerical problem of multiplying a large number of matrices. Parlitz [Par92] introduced 

the identification of spurious Lyapunov exponents. He did that by reestimating the set of 

Lyapunov exponents from measurements backward in time. By doing that, he found that 

true exponents change their signs, while spurious ones change their values as well as signs. 

Darbyshire and Broomhead [DaBr96] estimated the set of Lyapunov exponents by the 

methods of least squares and total least squares. Their method uses the pseudo-inverse to 

estimate the Jacobian matrices. After that, they applied the orthogonalization method pro-

posed by Eckmann. Djamai and Coirault [DjCo02] introduced the use of neural networks 

to estimate the set of Jacobian matrices. After estimating the Jacobian matrices, they used 

the same method proposed by Eckmann to reorthogonalize the product of these matrices.

CDDG
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1.5 Remaining chapters summary

In Chapter 2, we will present an introduction to chaotic dynamical systems. In 

Chapter 3, we introduce modeling chaotic systems and discuss modeling by embedding. 

Examples are given to illustrate the idea of embedding functions.

In Chapter 4, we will present an introduction to four methods used to find the min-

imum dimension (model order) required for embedding. In Chapter 5, we implement the 

methods found in Chapter 4 to find the minimum embedding dimension of the Henon map. 

Six algorithms based on the four previous methods are presented in Chapter 6. (Four of the 

six algorithms represent our original work.) Full details of the algorithms are given, and 

more practical issues are discussed in Chapter 6. The results of implementing the six algo-

rithms on nine chaotic systems are found in Chapter 7. The minimum embedding dimen-

sions of the nine systems are listed in this chapter, and a comparison is made among the six 

algorithms.

In Chapter 8, we will explore the theory of Lyapunov exponents (LEs) and prove a 

new theorem that relates the poles of a linear system to the set of LEs. In Chapter 9, we will 

discuss the estimation of the LE values and apply the result of the new theorem to estimate 

the LEs. In this chapter, we will also improve an existing algorithm that uses a neural net-

work to estimate the LEs. We tested the two algorithms by estimating the LEs of different 

chaotic systems. We also compare the two algorithms to an existing algorithm using the test 

systems.

In Chapter 10, we will give a conclusion of the dissertation and give some recom-

mendations on possible future research.
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CHAPTER 2

INTRODUCTION TO CHAOTIC SYSTEMS

2.1 History of dynamical systems

Isaac Newton (1642-1727) introduced the idea of modeling the motion of objects 

by equations. Position, velocity, and acceleration were the fundamental parameters of his 

equations. From position, velocity, and acceleration, he could describe the state of a mov-

ing object at any given time. Later scientists modelled dynamical systems by using a set of 

differential equations. The solution of these equations describes the state of the system at 

any given time.

If the solution of the set of differential equations remains in a bounded region, the 

sequence of states reduces to either i) a steady state, generally because of loss of energy by 

friction, or ii) a periodic or quasi periodic motion. An example of case (ii) is the motion of 

the moon around the earth and the motion of the earth around the sun. Case (i) and case (ii) 

remained the only two known bounded solutions until the use of modern computers made 

possible the numerical solution of sets of differential equations.

In 1963 Edward Lorenz published a paper entitled “Deterministic non Periodic 

Flow” [Lo63]. He discovered a new bounded attractor that is not periodic but was filling a 

region in space. This was the first time the world knew about the third possible bounded 

attractor: iii) the chaotic attractor. The new solution (chaotic) is not simply periodic nor 
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quasi periodic with a large number of periods. Chaotic motion is possible with simple one 

dimensional systems. Although chaotic motion can be produced from simple systems, it is 

very complicated and becomes unpredictable after a short time. This happens because of 

the sensitivity of chaotic systems to changes in the initial conditions [ASY96].

In the next section, we define some terms related to dynamical systems. Three char-

acteristics of chaotic systems are presented in Section 2.3. In Section 2.4, we present some 

examples of chaotic systems. Finally, Section 2.5 provides a summary of the chapter.

2.2 Dynamical definitions

In the previous section, we gave a brief history of dynamical systems. In this sec-

tion, we define some important dynamical terms that will be used in the remaining chapters. 

We start by defining the dynamical system.

2.2.1 Dynamical System

The dynamical system is a system that consists of a sequence of states which are 

governed by a certain rule that determines the next state given the previous one. A dynam-

ical system in  can be described by either d first order ordinary differential equations 

(flow) or d difference equations (map). In the first case, the time is a continuous variable; 

, and the system is called a continuous dynamical system:

. (2.1)

In the second case, the time is a discrete variable; , and the system is called a discrete 

dynamical system:

. (2.2)

ℜd

t ℜ1∈

d x t( )( )
dt

------------------ f x t( )( )=

n ℵ∈

x n 1+( ) f x n( )( )=
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2.2.2 Equilibrium point

A point  in the state space is said to be an equilibrium point of a contin-

uous dynamical system where . The equilibrium point of a discrete dy-

namical system, on the other hand, happens when .

2.2.3 Orbit of a dynamical system

The sequence of points  or  that results from the solution of the set of 

equations representing the system is called the orbit (trajectory) of the dynamical system. 

The point  or  is called the initial condition of the system.

2.2.4 Attractor

The attractor of a dynamical system is set containing the limits of all orbits that start 

sufficiently close to it.

2.3 Characteristics of Chaotic Systems

In this section, we explore three characteristics of chaotic systems. These character-

istics will help us to understand how to model these systems.

2.3.1 Sensitivity of chaotic systems to initial conditions

Chaotic systems are known for their sensitivity to initial conditions. To illustrate 

this idea, let’s look into the tent map, which is a first order chaotic system:

. (2.3)

Figure 2.1 shows two curves (solid, and dotted with ‘x’) representing the responses of the 

system when two sightly different initial conditions are used. The solid curve was produced 

from the initial condition  and the dotted curve with ‘x’ was produced from 

x t( ) x*
=

dx t( )
dt

-------------
x t( ) x*=

0=

f x*( ) x*
=

x t( ) x n( )

x0 x 0( )

x n 1+( ) f x n( )( ) 3 4⁄( ) 1 1 2x n( )––( )= =

x1 0( ) 0.23=
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. The dotted curve in the bottom of the figure is the difference between the 

two responses. We can see that the difference starts to grow after approximately 15 itera-

tions. Notice that the responses of the system due to different initial conditions remain with-

in a bounded region.

Figure 2.1  Sensitivity of the chaotic tent map to initial conditions.

2.3.2 Chaotic signals look random but they are deterministic

Before the discovery of chaotic systems, scientists thought of chaos as a random 

signal (noise). To illustrate this idea, let’s look into the frequency responses (Fourier spec-

trums [KaSc00]) of a periodic signal and a random signal, and then compare them to a cha-

otic signal. The left hand side of Figure 2.2 shows a 60 Hz periodic sinusoidal wave. The 

plot on the right hand side is its frequency response. As we can see, it has only one compo-

nent at 60 Hz.

x2 0( ) 0.2301=

0 5 10 15 20 25 30 35 40 45
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
The chaotic response of the tent map f(x(n))=x(n+1)=3/4(1−|1−2x(n)|)

time n

f
x

1
(0) = 0.23

x
2
(0) = 0.2301

growth of the error



10

Figure 2.2  The 60 Hz periodic wave and its frequency response

If we look into the frequency response of a random signal, shown in the right hand side of 

Figure 2.3, we can see that it has a component at every frequency from 0 through 120 Hz.

Figure 2.3  The random signal and its frequency response

We will now compare the frequency responses of the two signals above to the frequency 

response of a chaotic signal. The left hand side of Figure 2.4 shows the time domain plot 

of a chaotic signal (x component of the Lorenz model). Its frequency response is shown on 

the right hand side of the same figure. We can see that the chaotic signal has a component 

at every frequency from 0 through 120 Hz, which is similar to the random signal.
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Figure 2.4  The chaotic signal and its frequency response

Although the frequency response of the chaotic system looks random, we know that this 

system is deterministic. This is true since it is produced from a known set of differential 

equations.

2.3.3 Chaotic systems have attractors with fractal dimension

To see that chaotic attractors have fractal dimensions, let’s look into the Henon 

map:

, (2.4)

, (2.5)

where , , and the initial conditions are  [Hen76]. In 

Figure 2.5, we can see that the attractor of the Henon map is not a simple line of dimension 

1, nor it is a closed curve. It is also not a plane of dimension 2. It is an object that fills a 

region in the plane.
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Figure 2.5  The chaotic attractor of the Henon map.

As a matter of fact, its dimension is not an integer, but rather is fractal. The dimension of 

the attractor of the Henon map can be found by the box-counting dimension.

2.3.3.1  The box-counting dimension:

We can find the dimension of an interval , in , by dividing it into 

subintervals  of length  such that , where . Then the 

minimum number of  subintervals needed to cover N is , which can be written 

as . Notice that the exponent in the expression is 1, which is also the dimen-

sion of N. For the case of a unit square in , , we 

can find the dimension of S by dividing it into small squares  of side length  

(called -squares), such that . Then the minimum number of  squares 

needed to cover S is , which can be written as . Notice that the ex-

ponent in the expression is 2 which is also the dimension of S. The method used to find the 
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dimension of the sets in the previous two examples is called the box-counting dimension. 

It is used to find the dimension of more complicated sets in , like fractal sets. The box-

counting dimension is denoted by  which is the exponent in the relation:

 as , (2.6)

where  is the number of  d-cubes needed to cover the set in . Taking the limit of 

the log of Equation (2.6) as , we have

. (2.7)

To evaluate the box-counting dimension ( ) in Equation (2.7), we draw a log-log plot of 

 versus  as . The value of  is the slope of the resulting curve.

Now we can apply the box-counting dimension to the attractor of the Henon map. 

We start by choosing the side length of the -squares to be some value . Then we 

count the minimum number of squares needed to cover the set of points in the attractor 

(which results from iterating equations (2.4) and (2.5)  times). Next we decrease , and 

count the minimum number needed to cover the attractor for the new . Figure 2.6 shows 

the number of -squares ( ) versus , for .

ℜd

dc

cσ
d

1 σ⁄( )
dc≈ σ 0→

cσ
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dc
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Figure 2.6  The slope of the line is the box-counting dimension of the 
Henon map attractor.

The resulting box-counting dimension of the Henon map was found to be , 

which is a fractal. After presenting three characteristics of the chaotic systems, in the next 

section we list some examples of chaotic systems.

2.4 Examples of Chaotic systems

2.4.1 Weather system

We said in Section 2.1 that E. Lorenz was the first scientist to quantify chaos. He 

modelled the heat convection phenomena in fluids by using a set of three differential equa-

tions. His model represents earth’s atmosphere. He used it to forecast weather.

2.4.2 Biological models

Many biological activities exhibit chaotic behaviors. One example is the Epileptic 

seizure. Epilepsy causes patients suffering from this disease to experience bouts of uncon-

sciousness. Epileptic seizures result from an abnormal neuronal discharge from the central 

nervous system [Zyl01]. Another example of chaotic systems is the red blood cell produc-

tion. Mackey and Glass [MG77] modelled red blood cell production and found that it ex-
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hibits chaotic behavior at some parameter values of the model, as will be shown in Chapter 

7. A third example of chaotic systems is the Electrocardiogram (ECG). In 1983, Glass et al 

[GGS83] experimented on the spontaneous beating of cells from embryonic chick hearts. 

They found that when these cells were stimulated by external periodic pulses, they showed 

chaotic motion (see also [Moo92]). 

2.4.3 Laser signals

Measurements taken from a laser output can be represented by a chaotic model. In 

Chapter 7, we will give more detail regarding the modeling of two data sets of laser outputs.

2.4.4 Chaotic circuits

Chaos can be observed in electrical circuits as well. An example of this is the RLC 

circuit designed by Rulkov et al [RVRDV92].

2.4.5 Discrete chaotic systems:

In the previous section, we have shown two discrete chaotic systems: the tent and 

the Henon maps. Discrete chaotic systems are mainly used for analysis. In Chapter 7, we 

will show more discrete chaotic systems used to analyze chaos of different dimensions.

2.5 Chapter Summary

In this chapter, we presented a historical background for dynamical systems. We 

defined some dynamical terms that will be used in subsequent chapters. Three characteris-

tics of chaotic systems were illustrated with examples. We also explored a few examples 

of dynamical systems that show chaotic behaviors. In the next chapter, we will define dy-
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namical modeling, and show how to implement modeling of chaotic systems by using mea-

surements taken from these systems.
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CHAPTER 3

INTRODUCTION TO DYNAMICAL MODELING

3.1 Introduction

In Chapter 2, we introduced dynamical chaotic systems. We have seen three char-

acteristics of chaotic systems as well. We mentioned that these characteristics will help us 

to understand modeling of chaotic systems. In this chapter, we explore the modeling pro-

cess. We also show some of its applications in real life. A theoretical background of the 

method used for modeling chaotic systems is illustrated with examples.

In the next section, we present a brief introduction to modeling chaotic systems. 

Some applications of the modeling process are presented in Section 3.3. We do modeling 

by a technique called embedding. Some mathematical background on embedding is con-

tained in Section 3.4. The use of the delay-coordinate map for modeling is illustrated in 

Section 3.5 with two examples.

3.2 Modeling

We said in Chapter 2 that dynamical systems can be represented as a set of differ-

ential equations (for a continuous system), or a set of difference equations (for a discrete 

system). We also said that these equations determine the evolution of states, which con-

verges to an attractor of the system. Knowing the evolution of the states is important for 

understanding the behavior of the system at a future time. Unfortunately these equations, 
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in most cases, are not known. All we can see from a chaotic system (like those listed in 

Chapter 2) is a set of scalar measurements. Modeling chaotic systems entails describing the 

hidden states of the system from these measurements only. From the set of measurements, 

the modeling process builds a new set of states, which are in some sense equivalent to the 

original hidden states. In Chapter 8, we will give more detail regarding the meaning of 

equivalent chaotic systems.

3.3 Applications of modeling

3.3.1 Detection of chaos

In Section 2.3.2, we stated that, before the quantification of chaos, scientists 

thought of chaos as a random signal (noise). Given a set of scalar measurements, the mod-

eling process enables us to distinguish between chaotic systems (deterministic) and random 

signals (noise). Not only that, but modeling can also extract the hidden deterministic part 

from a noisy signal. This application of the modeling process is important because, in most 

cases, the set of measurements is contaminated with noise from different sources.

3.3.2 Prediction

The ability to predict the future has fascinated scientists for a long time. Modeling 

chaotic systems enables us to predict the hidden future states of the system. It does so using 

only the set of measurements. However, as we have said in Section 2.3.1, chaotic systems 

have sensitive dependence on the initial conditions. This problem limits the ability of cha-

otic modeling to make long term predictions of future states. In Chapter 8, we will give 

more detail.



19

3.3.3 Diagnosis

Abarbanel [Aba98] conducted an experiment on the ECG of subjects undergoing a 

stress test for a specific pathology. He found that in the extreme pathology of ventricular 

fibrillation, characteristics of the model are different from those of a healthy person. This 

means the modeling process can be used to diagnose life threatening diseases (for more ex-

amples, see [Hol86 Chapters 9 and 11]).

In the next two sections, we present some mathematical definitions, then we present 

the embedding method which is used to build models of chaotic systems.

3.4 Definitions

Before we present the embedding method, let’s give a mathematical background of 

embedding functions. We begin by defining an injection function and an immersion func-

tion, then we define the embedding function.

3.4.1 Injection (1-to-1) function

Let M and N be two sets, a function  is an injection (1-to-1) if

, (3.1)

where . To understand the injection function, consider the next example.

3.4.1.1  Example: An injection

Let the function  be

, (3.2)

where . By applying the condition for an injection, we have

g: M N→

g x1( ) g x2( )= x1⇒ x2
=

x1 x2, M∈

g: ℜ2 ℜ2→

g x( ) g1 x( ) g2 x( )
t

x1 x2( )3
t

= =

x x1 x2
ℜ2∈=
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. (3.3)

From the first element of the vectors on the right hand side we have

, (3.4)

while from the second element of the vectors we have

. (3.5)

In conclusion, we can see that , so the function g is an injection. On the other hand, 

let’s look at an example of a function which is not an injection.

3.4.1.2  Example: A function that is not injection

Let the function  be

. (3.6)

To test the condition for injection, we have

. (3.7)

From the first element of the vectors on the right hand side we have

. (3.8)

From the second element of the vectors we have

. (3.9)

Which means that  does not have to equal , so the function g is not an injection.

g x1( ) g x2( ) x1
1

x2
1( )

3
t

x1
2

x2
2( )

3
t

= = =

x1
1

x1
2

=

x2
1( )

3
x2

2( )
3

= x2
1

x2
2

=⇒

x1 x2
=

g: ℜ2 ℜ2→

g x( ) x1 x2( )2
t

=

g x1( ) g x2( ) x1
1

x2
1( )

2
t

x1
2

x2
2( )

2
t

= = =

x1
1

x1
2

=

x2
1( )

2
x2

2( )
2

= x2
1

x± 2
2

=⇒

x1 x2
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3.4.2 Immersion function

Let M and N be two sets, a function  is an immersion if its Jacobian ma-

trix is an injection (full rank) [Nak90 p.149].

3.4.2.1  Example: An immersion

Let the function  be

, (3.10)

where . The Jacobian matrix of g is

. (3.11)

The determinant of J is , therefore J is full rank. Hence, the function g is an 

immersion.

3.4.2.2  Example: A function that is not immersion

Let the function  be

, (3.12)

where . The Jacobian matrix of g is

. (3.13)

g: M N→

g: ℜ2 ℜ2→

g x( ) g1 x( ) g2 x( )
t

x1 x2( )3 x2+
t

= =

x ℜ2∈

J
1 0

0 3 x2( )2 1+
x x0=

=

3 x2( )2 1+ 0≠

g: ℜ2 ℜ2→

g x( ) x1 x2( )3
t

=

x ℜ2∈

J
1 0

0 3 x2( )2
x x0=

=
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The determinant of J is , which zero for . Therefore J is not full rank. Hence 

g is not an immersion. Now that we have defined the injection and the immersion functions, 

we will define the embedding function.

3.4.3 Embedding function

Let M and N be two sets, a function  is an embedding if it is an injection 

and an immersion [Nak90].

3.4.3.1  Example: An embedding

Let’s look at the function g in Example 3.4.2.1 ( ). In that 

example, we have seen that g is an immersion. To prove that it is an embedding, we need 

to show that it is also an injection. To do this, we start by assuming that

. (3.14)

If we look at the first element of the vectors on the right hand side of Equation (3.14), we 

can see that . While the second elements give

. (3.15)

By rearranging the above equation, we have

. (3.16)

Which can be written as

. (3.17)

3 x2( )2 x2 0=

g: M N→

g x( ) x1 x2( )3 x2+
t

=

g x1( ) g x2( ) x1
1

x2
1( )

3
x2

1
+

t

x1
2

x2
2( )

3
x2

2
+

t
= = =

x1
1

x1
2

=

x2
1( )

3
x2

1
+ x2

2( )
3

x2
2

+=

x2
1( )

3
x2

1
x2

2( )
3

– x2
2

–+ 0=

x2
1

x2
2

–( ) x2
1( )

2
x2

2( )
2

x2
1
x2

2
1+ + +( ) 0=
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By looking at the second parenthesis of the left hand side of Equation (3.17), we can see 

that it can be simplified as follows

. (3.18)

So the only solution of Equation (3.17) is . As a result, we see that 

. Which means the function g is an injection. Since g is an injection and an immer-

sion (Example 3.4.2.1), we see that g is an embedding.

3.4.3.2  Example: A non-embedding

From Example 3.4.1.1, we have seen that  is an injection. But 

from Example 3.4.2.2, we have seen that this function is not an immersion. So the function 

g is not an embedding.

Notice that the main feature of the embedding is that it is an injection, and its lin-

earization (Jacobian matrix) at every point along the attractor is also an injection. After pre-

senting the embedding, let’s see now how we can use it for modeling. As we said above, 

we have only a set of scalar measurements from the system we want to model. To build a 

model for the system, we will use the delay-coordinate map, which is explained below.

3.5 Modeling by Embedding

3.5.1 The delay-coordinate map

Let the state of the original system that we want to model be , and let the 

measurements taken from this system be governed by the map  such that

. (3.19)

x2
1 1

2
---x2

2
+⎝ ⎠

⎛ ⎞ 2 3
4
--- x2

2( )
2

1 0 x∀≠+ +

x2
1

x2
2

=

x1 x2
=

g x( ) x1 x2( )3
t

=

x ℜk∈

h: ℜk ℜ1→

y n( ) h x n( )( )=
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The delay-coordinate map  [SYC91] is represented by

, (3.20)

where  is the delay-time, and  is the delay-vector. The attractor built 

from the delay-vectors is called the reconstructed attractor.

According to the embedding theorem by Sauer at al [SYC91], the function  is an 

embedding if , where  is the box-counting dimension (see Section 2.3.3.1) 

of the attractor of the original system. We will call the minimum dimension d that satisfies 

the embedding condition, the theoretical minimum embedding dimension: . The embed-

ding map guarantees that evolution of the states in the original unknown attractor is equiv-

alent to the evolution of the delay-vectors in the reconstructed attractor (Chapter 8). In the 

next two examples, we illustrate the modeling process by using the delay-coordinate map.

3.5.2 Example: The delay-coordinate map

Let the set  repre-

sent an attractor in . Further, let the measurement function , for the purpose 

of explanation, be , where . The delay-coordinate map 

operating on C will be:  ( ). The 

original attractor C is shown in Figure 3.1a, the measurement function h is shown in Figure 

3.1b, and the reconstructed attractor using  is shown in Figure 3.1c.

Fd: ℜk ℜd→

yd n( ) Fd h x n( ),( ) y n( ) y n T–( ) … y n d 1–( )T–( )
t

= =

T ℵ∈ yd n( ) ℜd∈

Fd

d 2dc 1+≥ dc

dE

C y ℜ3
y1∈ tcos y2, 2t y3 t 2tcossin  t ℜ1∈,=,sin= ={ }=

ℜ3
h:ℜ3 ℜ1→

y h x( ) x1 x2 x3+ += = x ℜ3∈

y3 n( ) F3 h x n( ),( ) y n( ) y n 1–( ) y n 2–( )
t= = T 1=

F3
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Figure 3.1  a) The attractor C in , b) the set of measurements, c) The 
reconstructed attractor by the delay-coordinate map.

As we can see, this is a curve of dimension 1 in a three dimensional space. According to 

the embedding condition; . Which is the same as the dimension of the 

space required to see the curve C without ambiguity.

3.5.3 Example: Sufficient but not necessary condition for embedding

Let the circle;  represent an 

attractor in . By using the delay-coordinate map, we can reconstruct  in . The at-

tractor  is shown in Figure 3.2 as a solid curve. The reconstructed attractor using the de-

lay-coordinate map ( ) is shown in the same figure as a dashed curve, the delay-time (T) 

is 1.
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Figure 3.2  The circle  in  and its reconstruction in .

In Figure 3.2, we can see that  is a curve of dimension 1 in a 3D space. Notice 

that we needed a 2D space to reconstruct this curve. This means the dimension required for 

embedding is 2 rather than 3, as suggested by the embedding condition ( ). 

In conclusion, we can see that the embedding condition gives a sufficient but not a neces-

sary condition for embedding. In other words, it is possible that we can embed an attractor 

in a space of dimension less than . In the next chapter, the delay-coordinate map will be 

used to model chaotic systems. We will also present four methods used to find the actual, 

rather than the theoretical, minimum dimension required for embedding. The choice of T 

(the second parameter in the delay-coordinate map), will be shown in Chapter 6.

3.6 Chapter summary

In this chapter, we presented an introduction to modeling chaotic systems. Some ap-

plications of modeling chaotic systems were given, mathematical definitions of the embed-

ding functions were illustrated with examples, and we showed two examples of modeling 
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using the embedding method. We found that the embedding condition is a sufficient but not 

necessary condition. In the next chapter, we show different methods used to find the mini-

mum dimension required for embedding.
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CHAPTER 4

INTRODUCTION TO THE MINIMUM EMBEDDING DIMENSION ESTIMA-

TION

4.1 Introduction

In Chapter 3, we talked about modeling by the embedding method. Modeling is 

done from a time series of measurements taken from the system. We said that two param-

eters have to be found in order to model the system by embedding. Those parameters are 

the dimension of the delay-vector (d) and the delay-time (T). They will be used to build the 

delay-vectors.

In this chapter we introduce four methods for estimating the value of d. Three of 

these methods are geometric and one method is predictive. This chapter will provide only 

a simple overview of the methods. Chapters 5 and 6 will provide more detail. In the next 

section, we present modeling of chaotic systems by using the delay-vectors. In Section 4.3, 

we introduce two different approaches for estimating d: geometric and predictive. Then, in 

Section 4.4, we introduce equivalent chaotic systems. A chapter summary is given in 

Section 4.5. In Chapter 6, we will discuss the selection of the delay-time T.

4.2 Modeling chaotic systems

The state evolution of a chaotic system in the space  can be written in the form 

of the difference equation:

ℜk
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, (4.1)

where  is the state of the system, the time index , and N is the 

total number of points. In the steady state condition, the evolution of the state  follows 

an attractor with a fractal dimension  (chaotic attractor). Practically, the state  and 

the function f of the system are invisible to us, and all we can see is a set of scalar measure-

ments . We can write these measurements as  (see Equations (3.19).

To model a chaotic system, we need to build a system model which uses the delay-vector

. (4.2)

The attractor of the  system should be equivalent to the original attractor, and the 

state evolution from  should follow that of the original attractor from 

 [Hak98]. (A more careful definition of equivalence is contained in 

Chapter 8.) The key idea is to find d and T such that the two systems are equivalent. The 

embedding theorem guarantees this equivalence if . But in practice, we do not 

generally know the value of , so d has to be estimated. The projection from the original 

state  to the delay-vector  is called the delay-coordinate map. As we said in the previ-

ous chapter, the embedding theorem gives a sufficient, but not a necessary, condition for 

embedding. In other words, it could be possible to find an embedding map at . Our 

goal is to estimate the minimum embedding dimension. We will label this dimension . 

In the next section, we will talk about estimating  by using two techniques: a geometric 

and a predictive technique. In Chapter 6, we will discuss the delay-time T to complete the 

modeling process.

x m( ) f x m 1–( )( )=

x m( ) ℜk∈ m 1 2 … N, , ,=

x m( )

dc x m( )

y m( ) y m( ) h x m( )( )=

yd m( ) y m( ) y m T–( ) … y m d 1–( )T–( )
t=

yd m( )

yd m( ) yd m 1+( )→

x m( ) x m 1+( )→

d 2dc 1+≥

dc

x yd

d 2dc≤

dL

dL
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4.3 Estimating the minimum embedding dimension

4.3.1 The geometric technique

To understand the geometric technique, let the circle in Figure 4.1 represent an at-

tractor of a dynamical system in , and the line below it represent its projection into .

Figure 4.1  Projection artifacts

From the above figure, we can see that the points on the horizontal line (a, b, and c) do not 

occur in the same sequence as those on the circle ( ). That happened because 

the circle was projected into a space with insufficient dimension. That caused the distances 

between points to shrink, and the original order of points to change. We call this effect the 

projection artifact. We can see from this example that, if the dimension of the space is too 

small to represent the attractor of the system, the projection of the attractor to this space will 

have artifacts. Therefore, we need to increase the dimension of the space in order to get rid 

of these artifacts.

One technique of estimating the minimum embedding dimension  is the geomet-

ric technique. To estimate  by using the geometric technique, we start from  and 

find for every point  its nearest neighbor. This neighbor has to be tested to see if it 

is a true neighbor or if it became a neighbor because of some projection artifacts. After that, 

d is increased and the previous steps are repeated. The value of d where all the neighbors 

are true neighbors, is the minimum embedding dimension . Under the geometric tech-

ℜ2 ℜ1

a′
b′

c′

a bc

projection

a′ b′ and c′, ,

dL

dL d 1=

yd m( )

dL
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nique, three methods can be used to detect the existence of projection artifacts. These meth-

ods are 1) the Change of Neighbors with Dimension method, or CND, 2) the Change of 

Distance with Dimension method, or CDD, and 3) the Change of Distance with Time meth-

od, or CDT.

4.3.1.1  The change of neighbors with dimension method (CND)

One can perform a visual test using Figure 4.1 to determine that the horizontal line 

does not have enough dimension to represent the structure of the circle, and that we need 

to have a two dimensional space (meaning that ). However, we need to automate 

this test using an algorithm. To estimate  using the first geometric method, the change 

of neighbors with dimension method (CND), the algorithm starts from the scalar measure-

ments a, b, and c, and computes the distances between point a and the other two points. It 

will find that the nearest neighbor to a is c, while on the circle, the nearest neighbor to  

is . The algorithm concludes that the neighbors have changed, and that the points a and 

c became neighbors because of the projection artifact and not because they are true neigh-

bors. That means the 1-D space is not large enough to represent the structure of the circle 

since it has this projection artifact. By repeating the above steps on the 2-D space, the al-

gorithm would find that there are no projection artifacts left on the attractor in this space 

and concludes that .

4.3.1.2  The change of distance with dimension (CDD) method

The second geometric method that can be used to estimate  is the change of dis-

tance with dimension method (CDD). The CDD method is similar to the CND method ex-

cept that it detects the existence of projection artifacts by comparing the distances between 

neighbors rather than comparing the neighbors themselves. To understand this method, let 

dL 2=

dL

a′

b′

dL 2=

dL
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the curve in Figure 4.2 represent an attractor of a dynamical system in , and the line be-

low it represent its projection into .

Figure 4.2  The CDD method

We can see the points , , and  on the curve in  and their projection into the 

horizontal line a, b, and c respectively. As in the CND method, we want an algorithm to 

find that the 1-D space is not large enough to represent the structure of the curve. From the 

horizontal line, the algorithm can find that b is the nearest neighbor of a and the distance 

between them in  is . In , along the curve, the distance between  and  is . 

The algorithm can now compare the two distances to find that , therefore, b became 

a neighbor of a because of the projection artifact and not because they are true neighbors. 

As a result, the algorithm will find that the 1-D space is not large enough to represent the 

structure of the curve since it has this projection artifact. By repeating the above steps on 

the 2-D space, the algorithm would find that there are no projection artifacts left on the at-

tractor in this space and concludes that .

4.3.1.3  The change of distance with time method (CDT)

The third geometric method used to estimate  is the change of distance with time 

method (CDT). This method is different from the previous two in that it tries to detect the 

existence of projection artifacts by moving neighbors forward in time and checking to see 

ℜ2
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b′

c′

a b c

ℜ2

ℜ1

projection

v1

v2

a' b' c' ℜ2

ℜ1
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v1 v2«
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if they will remain neighbors. To understand this method, let the non-intersecting solid 

curve in  shown in Figure 4.3 represent an attractor of a dynamical system, and let the 

dotted curve with the “+” sign represent its projection into the X-Y plane (  space).

Figure 4.3  The projection of a 3-D curve (solid line) into 2-D curve (dot-
ted line)

Figure 4.4  The CDT method: a) Distances between false neighbors in-
crease with time, b) The intersection in the middle of the curve is a pro-

jection artifact

The projection of the systems’s attractor shown in Figure 4.3 is redrawn in Figure 

4.4 for further discussion. Notice that the middle of the curve in Figure 4.4a has a projection 

artifact, which can be found by looking into Figure 4.4b. If we start from point a, we can’t 

tell whether the next correct point in time is b or c. In other words, the curve intersection 

makes it impossible to determine the correct sequence of points.
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By using the CDT method, we want an algorithm to be able to find that the 2-D 

space is not large enough to represent the structure of the system’s attractor (which is in 

: ). This can be done by detecting the projection artifact in the middle of the 

curve. To do that, the algorithm should start by calculating the distance between point a and 

the other points on the curve. It will find that c is closest to a; let the distance between them 

be . Next it should move forward in time to find that a moves to b, and c moves to d. It 

should then compute the distance between b and d; let the distance be . Now it can com-

pares the two distances and find that , which means that a and c are neighbors be-

cause of some projection artifacts and not because they are true neighbors. (See Figure 

4.4a) Hence the algorithm concludes that the 2-D space is not large enough to represent the 

structure of the system’s attractor since the curve has this projection artifact. By repeating 

this for the 3-D space, the algorithm would find no projection artifacts left on the curve in 

this space and would conclude that .

4.3.2 The predictive technique:

Now that we have talked about the three geometric methods, we will discuss the 

predictive technique. The predictive technique is also used to estimate the minimum em-

bedding dimension  such that the system of  (using delay embedding) is equiva-

lent to the system of  (original system). For simplicity, we will set  in the 

delay-vector  (see Equations (4.2)). By using the delay-coordinate map; , we can 

write  (see Equations (3.20)). From the embedding definition (see 

Section 3.4.3), we know that if the map  is an embedding, then it is an injection. Hence, 

the inverse map  exists:

. (4.3)

ℜ3
dL 3=

v1

v2

v1 v2«

dL 3=

dL ydL
m( )

x m( ) T 1=

yd m( ) Fd

yd m( ) Fd x m( )( )=

Fd

Fd
1–
:ℜd ℜk→

x m( ) Fd
1– yd m( )( )=
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We can substitute Equations (4.1) for the measurement function h at Equations (3.19) 

( ) to write h as . If we let the composite function 

, we can write

. (4.4)

By substituting Equations (4.3) for Equations (4.4), we can write

. (4.5)

Now, if we let the composite function , we can write

. (4.6)

We conclude from Equations (4.6) that if the delay-vector at time  is known to us, we 

can predict the current measurement  by approximating the unknown function . The 

predictive technique depends on the idea that when the system of  is equivalent to 

the system of , we can use the delay-vector  to predict the current measure-

ment . To be able to do that, we need to approximate the unknown function  such 

that,

. (4.7)

To approximate  we will use a neural network with a Tapped Delay Line (TDL) 

connected to its input. The TDL is used to produce the delay-vector  from the 

current measurement , as seen in Figure 4.6. Each tap of the TDL is a delayed version 

of  and the total number of taps is d. The network is trained to predict  when it 

is presented with d previous measurements of  (coordinates of ). The re-

sulting prediction error is recorded as a function of d. As the predictor order d increases, 

the prediction error will decrease. However, after a certain point, further increase of d re-

sults in only a very small decrease in the error. The minimum dimension where the error 
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⎝ ⎠
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does not improve any further is the minimum embedding dimension . At this point, the 

approximation of  is accurate and the systems of  and  are equivalent to each 

other. Figures 4.5 and 4.6 show the block diagram of the function  approximation and the 

neural network model used to create the approximation.

Figure 4.5  The function  approximation in the predictive technique

 

Figure 4.6  A neural network model with a TDL used to approximate the 
function , D is a one step delay-time

4.4 Dynamic equivalence

The goal of modeling by embedding is to find a chaotic model that is equivalent to 

the original unknown system. (The notion of equivalent chaotic systems will be covered in 

detail in later chapters.) To understand this idea, we know that in the original system the 

hidden state evolution is governed by the map f

, (4.8)
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(see Equations (4.1)), while all we can see from the original system is a set of measurements 

which are governed by the map h:

, (4.9)

(see Equations (3.19)).

On the other hand, the states in the reconstructed space are the delay-vectors  (see 

Equations (4.2)), while the output update in this space is governed by the map : 

, (4.10)

(see Equations (4.6)). So the delay-vector can be written as

, (4.11)

( ). If the reconstructed model given by Equations (4.10) and (4.11) is equivalent to 

the original model given by Equations (4.8) and (4.9), we can use the evolution of  

in place of the evolution of  to gain an understanding of the system characteristics. In 

other words, if the two systems are equivalent, we will be able to use  to estimate the 

original system dimension and parameters. In the coming chapters, we will find the delay-

vector dimension d and the delay-time T which guarantee this dynamic equivalence.

4.5 Chapter summary

In this chapter, we provided an introduction to modeling chaotic systems. We intro-

duced two techniques (geometric and predictive) that can be used to estimate the minimum 

embedding dimension that is required for chaotic systems modeling. We also gave a brief 

introduction to equivalent chaotic systems. In Chapter 5, we will see the application of both 

techniques to the chaotic Henon map. In Chapter 6, we will provide complete and detailed 

algorithms for estimating d. We will also discuss practical considerations for implementing 

the algorithms, including the choice of the delay-time (T).

y m( ) h x m( )( )=
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CHAPTER 5

Examples of the minimum embedding dimension estimation

5.1 Introduction

In Chapter 3, we introduced modeling of chaotic systems. We used delay-vectors 

created from measurements to model these systems. We also introduced four methods to 

estimate the minimum embedding dimension: three geometric methods one predictive 

method. In this chapter, we will use the four methods to estimate the minimum embedding 

dimension of the Henon map.

The Henon map is a chaotic system created from a set of two difference equations 

(see Section 2.3.3). By using the embedding method (see Section 3.5), the theoretical min-

imum embedding dimension is . But we suspect that the 

actual minimum embedding dimension is  since the system’s dynamics are gener-

ated from a set of two difference equations. In Sections 5.2 and 5.3, we show the estimated 

minimum embedding dimension of the Henon map by using the geometric and the predic-

tive techniques, respectively. In Section 5.4, we provide a chapter summary.

5.2 The geometric technique

To show how we can estimate  by using the geometric technique, we take 15 

points from the -coordinate of the Henon map to represent the measurements from this 

dE 2dc 2x1.189 3= = =

dL 2=

dL

X1
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system. That means the measurements  where . In the 

next step, we use  to construct  which 

is the delay-vector (where ).

We said in Chapter 4 that the idea of estimating  by using the geometric tech-

nique depends on detecting the existence of the projection artifacts on the system’s attrac-

tor. We can do that by using any of the three methods that we mentioned before: the CND, 

the CDD, or the CDT method. We need first to compute the distance between the reference 

vector;  and every other vector in the space . The nearest neighbor of  is 

the vector with the shortest distance.

5.2.1 Using the change of neighbors with dimension method (CND)

Before we get into the details of the CND method, we need to introduce some no-

tation. First, the nearest neighbor of  will be denoted . The  nearest neigh-

bor of  will be denoted . (This means there are  vectors that are closer 

to .) We will indicate the time index of the  nearest neighbor as

. (5.1)

For example, if the nearest neighbor of  is , then the nearest neigh-

bor index is .

To estimate  by using the CND method, we need to check if the nearest neighbor 

of  will remain a neighbor as the dimension d grows to . In other words, we 

need to check if the nearest neighbor of  will appear as the first, second, , or  

neighbor of . To do that, we need to build the matrix  which has the elements 

 where  and . If , we label  as 

y m( ) x1 m( )= m 1 2 … 15, , ,=
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not a number (NaN) since we are not interested in the distance between a vector and itself. 

We need also to find the vector  whose  element  is the time index of the nearest 

neighbor of . Further, we need to compute the  through the  neighbors of each 

 and save their indices in the  row of the matrix . In other words, ,  

and  are defined as follows:

, (5.2)

, (5.3)

 where , (5.4)

and . (5.5)

Each row of the matrix  will be labeled by . So, the ma-
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trix  can be written as: .

In Tables 5.1a and 5.1c and Tables 5.2a and 5.2c, we can see  listed for  

through 4. In Tables 5.1d, 5.2b and 5.2d, we can see  through  showing the indices of 

the three neighbors ( ) of each . Tables 5.3a, 5.3b, and 5.3c summarize the 

neighbors time indices found for  through 4. For example, in Table 5.3a we can see 

that the nearest neighbor of  is  and it fails to appear as the first, second, or third 

neighbor of , so we label  as a FNN. On the other hand, we can see that the 

nearest neighbor of  is  and when the dimension increases to 2, it appears as the 

second neighbor of , so we label  as a true neighbor. As a conclusion, we can 

see in Table 5.3d that the total number of FNNs drops from 2 at  to 0 at  and 

remains 0 at . That means the minimum embedding dimension is , where 

there are no projection artifacts left on the attractor of the system.

Notice that in this method we could have chosen , so that only the nearest 

neighbor is considered. We have found through experimentation that using w greater than 

1 provides a more robust algorithm. This is a new result. In Chapter 6, we will provide 

more detail on the practical implementation aspects of the various algorithms.
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Table 5.1  The CND method (1/3)

Table 5.2  The CND method (2/3)

Q1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 NaN 0.65 1.2015 0.1561 0.313 0.6479 1.2886 0.0262 0.0508 0.3597 0.4 0.7439 1.6362 0.9341 0.1046 8

2 0.65 NaN 1.8515 0.4939 0.963 0.0021 1.9386 0.6762 0.7008 0.2903 1.05 0.0939 2.2862 1.5841 0.7546 6

3 1.2015 1.8515 NaN 1.3576 0.8885 1.8494 0.0871 1.1753 1.1507 1.5612 0.8015 1.9454 0.4347 0.2674 1.0969 7

4 0.1561 0.4939 1.3576 NaN 0.4691 0.4918 1.4446 0.1823 0.2069 0.2036 0.556 0.5878 1.7922 1.0901 0.2607 1

5 0.313 0.963 0.8885 0.4691 NaN 0.9609 0.9755 0.2868 0.2622 0.6727 0.0869 1.0569 1.3231 0.621 0.2084 11

6 0.6479 0.0021 1.8494 0.4918 0.9609 NaN 1.9364 0.6741 0.6987 0.2882 1.0478 0.096 2.284 1.5819 0.7525 2

7 1.2886 1.9386 0.0871 1.4446 0.9755 1.9364 NaN 1.2624 1.2377 1.6483 0.8886 2.0325 0.3476 0.3545 1.1839 3

8 0.0262 0.6762 1.1753 0.1823 0.2868 0.6741 1.2624 NaN 0.0246 0.3859 0.3737 0.7701 1.61 0.9078 0.0784 9

9 0.0508 0.7008 1.1507 0.2069 0.2622 0.6987 1.2377 0.0246 NaN 0.4105 0.3491 0.7947 1.5853 0.8832 0.0538 8

10 0.3597 0.2903 1.5612 0.2036 0.6727 0.2882 1.6483 0.3859 0.4105 NaN 0.7596 0.3842 1.9959 1.2937 0.4643 4

11 0.4 1.05 0.8015 0.556 0.0869 1.0478 0.8886 0.3737 0.3491 0.7596 NaN 1.1438 1.2362 0.5341 0.2953 5

12 0.7439 0.0939 1.9454 0.5878 1.0569 0.096 2.0325 0.7701 0.7947 0.3842 1.1438 NaN 2.3801 1.6779 0.8485 2

13 1.6362 2.2862 0.4347 1.7922 1.3231 2.284 0.3476 1.61 1.5853 1.9959 1.2362 2.3801 NaN 0.7021 1.5316 7

14 0.9341 1.5841 0.2674 1.0901 0.621 1.5819 0.3545 0.9078 0.8832 1.2937 0.5341 1.6779 0.7021 NaN 0.8294 3

15 0.1046 0.7546 1.0969 0.2607 0.2084 0.7525 1.1839 0.0784 0.0538 0.4643 0.2953 0.8485 1.5316 0.8294 NaN 9

a) b)

Q2 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 NaN 1.9623 1.2991 0.9756 0.313 2.044 1.4552 0.7013 0.2947 1.1099 0.4108 2.4041 2.2773 1.2008 9 5 11

2 1.9623 NaN 2.2959 1.0165 2.0851 0.0871 2.267 1.3346 1.7113 0.8525 2.2106 0.4447 2.3018 1.9268 6 12 10

3 1.2991 2.2959 NaN 1.4363 1.0155 2.3467 0.202 1.1934 1.1685 1.6572 0.994 2.6451 1.1736 0.3735 7 14 11

4 0.9756 1.0165 1.4363 NaN 1.0693 1.0925 1.4728 0.3193 0.7038 0.2214 1.1942 1.4478 1.8968 1.1099 10 8 9

5 0.313 2.0851 1.0155 1.0693 NaN 2.1617 1.1858 0.7553 0.3896 1.2452 0.1295 2.5167 2.0623 0.9757 11 1 9

6 2.044 0.0871 2.3467 1.0925 2.1617 NaN 2.3116 1.4094 1.7902 0.9342 2.2867 0.3606 2.3114 1.9759 2 12 10

7 1.4552 2.267 0.202 1.4728 1.1858 2.3116 NaN 1.2626 1.2965 1.6901 1.1759 2.5928 0.9721 0.3631 3 14 13

8 0.7013 1.3346 1.1934 0.3193 0.7553 1.4094 1.2626 NaN 0.4113 0.5204 0.8782 1.7625 1.8363 0.9094 4 9 10

9 0.2947 1.7113 1.1685 0.7038 0.3896 1.7902 1.2965 0.4113 NaN 0.8635 0.5191 2.1483 2.0462 0.9978 1 5 8

10 1.1099 0.8525 1.6572 0.2214 1.2452 0.9342 1.6901 0.5204 0.8635 NaN 1.3731 1.2945 2.0661 1.327 4 8 2

11 0.4108 2.2106 0.994 1.1942 0.1295 2.2867 1.1759 0.8782 0.5191 1.3731 NaN 2.6407 2.0842 1.0026 5 1 9

12 2.4041 0.4447 2.6451 1.4478 2.5167 0.3606 2.5928 1.7625 2.1483 1.2945 2.6407 NaN 2.4815 2.2718 6 2 10

13 2.2773 2.3018 1.1736 1.8968 2.0623 2.3114 0.9721 1.8363 2.0462 2.0661 2.0842 2.4815 NaN 1.0867 7 14 3

14 1.2008 1.9268 0.3735 1.1099 0.9757 1.9759 0.3631 0.9094 0.9978 1.327 1.0026 2.2718 1.0867 NaN 7 3 8

c) d)

i1
1

I2

a ) b )

c ) d )

Q3 1 2 3 4 5 6 7 8 9 10 11 12 13
1 NaN 2.3861 1.5738 2.0909 0.3249 2.3578 1.8552 1.7115 0.854 2.2397 0.5981 2.419 2.5277 5 11 9

2 2.3861 NaN 2.3433 1.1293 2.5366 0.202 2.2764 1.3501 1.7993 1.0355 2.8459 1.1773 2.3165 6 10 4

3 1.5738 2.3433 NaN 1.7281 1.4082 2.3642 0.331 1.3699 1.1718 1.9656 1.6549 2.717 1.1919 7 9 13

4 2.0909 1.1293 1.7281 NaN 2.212 1.2837 1.6302 0.4301 1.2623 0.2413 2.5774 2.1445 2.0406 10 8 2

5 0.3249 2.5366 1.4082 2.212 NaN 2.5033 1.7141 1.8131 0.9703 2.3836 0.3709 2.5416 2.378 1 11 9

6 2.3578 0.202 2.3642 1.2837 2.5033 NaN 2.3117 1.4613 1.8288 1.2107 2.7966 0.9768 2.3127 2 12 10

7 1.8552 2.2764 0.331 1.6302 1.7141 2.3117 NaN 1.3277 1.3427 1.8676 1.9738 2.7391 0.9736 3 13 8

8 1.7115 1.3501 1.3699 0.4301 1.8131 1.4613 1.3277 NaN 0.8638 0.6468 2.1805 2.1863 1.8941 4 10 9

9 0.854 1.7993 1.1718 1.2623 0.9703 1.8288 1.3427 0.8638 NaN 1.4332 1.3408 2.2137 2.0674 1 8 5

10 2.2397 1.0355 1.9656 0.2413 2.3836 1.2107 1.8676 0.6468 1.4332 NaN 2.7477 2.1193 2.2335 4 8 2

11 0.5981 2.8459 1.6549 2.5774 0.3709 2.7966 1.9738 2.1805 1.3408 2.7477 NaN 2.7324 2.5864 5 1 9

12 2.419 1.1773 2.717 2.1445 2.5416 0.9768 2.7391 2.1863 2.2137 2.1193 2.7324 NaN 2.6164 6 2 10

13 2.5277 2.3165 1.1919 2.0406 2.378 2.3127 0.9736 1.8941 2.0674 2.2335 2.5864 2.6164 NaN 7 3 8

a) b)
Q4 1 2 3 4 5 6 7 8 9 10 11 12

1 NaN 2.4318 1.6489 2.5414 0.3725 2.3668 1.8663 1.7995 1.0368 2.8685 1.2434 2.433 5 9 11

2 2.4318 NaN 2.5327 1.4923 2.5528 0.331 2.3738 1.3529 2.0868 1.6802 2.9129 1.1956 6 12 8

3 1.6489 2.5327 NaN 2.5954 1.5612 2.4653 0.4389 1.7247 1.1757 3.0134 2.2894 2.8193 7 9 5

4 2.5414 1.4923 2.5954 NaN 2.5469 1.7832 2.3182 0.9872 2.3925 0.4232 2.6017 2.4496 10 8 2

5 0.3725 2.5528 1.5612 2.5469 NaN 2.5035 1.757 1.8512 1.2387 2.8763 0.9807 2.5428 1 11 9

6 2.3668 0.331 2.4653 1.7832 2.5035 NaN 2.3479 1.5024 1.9941 1.9947 2.9327 0.9783 2 12 8

7 1.8663 2.3738 0.4389 2.3182 1.757 2.3479 NaN 1.5296 1.3966 2.7334 2.36 2.7782 3 9 8

8 1.7995 1.3529 1.7247 0.9872 1.8512 1.5024 1.5296 NaN 1.4334 1.3952 2.245 2.2062 4 2 10

9 1.0368 2.0868 1.1757 2.3925 1.2387 1.9941 1.3966 1.4334 NaN 2.7782 2.1478 2.3707 1 3 5

10 2.8685 1.6802 3.0134 0.4232 2.8763 1.9947 2.7334 1.3952 2.7782 NaN 2.836 2.6148 4 8 2

11 1.2434 2.9129 2.2894 2.6017 0.9807 2.9327 2.36 2.245 2.1478 2.836 NaN 2.8555 5 1 9

12 2.433 1.1956 2.8193 2.4496 2.5428 0.9783 2.7782 2.2062 2.3707 2.6148 2.8555 NaN 6 2 8

c) d)

I3

I4
a )

c ) d )

b )
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Table 5.3  The CND method (3/3)

5.2.2 Using the change of distance with dimension method (CDD)

As we said in Chapter 4, the CDD method can also be used to estimate . This 

method depends on the idea that false nearest neighbor distances increase significantly as 

the dimension of the space increases.

To estimate  of the Henon map using the CDD method, we need to compute the 

matrix  and find the vector  as in the CND method. In addition, we need to find the 

vector  whose element  is the distance between  and its nearest neighbor 

: . We also need to find out how much 

the distances to the nearest neighbors grow as the dimension increases. For these new dis-

tances we define the vector  whose elements  represent the distance between 

 and . (Notice that  is not the same as . It is 

 with one component added.)

For example, when  in Table 5.4a, the nearest neighbor of  is  

and the distance between them is . At  in Table 5.4d, the distance be-

tween  and  is . If  is a true nearest neighbor of 

,  will be close to . To apply this idea, we need to see how 

d d d d FNN
time 1 2 time 2 3 time 3 4 1 2

1 8 9 5 11 FNN 1 9 5 11 9 1 5 5 9 11 2 0
2 6 6 12 10 2 6 6 10 4 2 6 6 12 8 3 0
3 7 7 14 11 3 7 7 9 13 3 7 7 9 5 d)
4 1 10 8 9 FNN 4 10 10 8 2 4 10 10 8 2

5 11 11 1 9 5 11 1 11 9 5 1 1 11 9

6 2 2 12 10 6 2 2 12 10 6 2 2 12 8

7 3 3 14 13 7 3 3 13 8 7 3 3 9 8

8 9 4 9 10 8 4 4 10 9 8 4 4 2 10

9 8 1 5 8 9 1 1 8 5 9 1 1 3 5

10 4 4 8 2 10 4 4 8 2 10 4 4 8 2

11 5 5 1 9 11 5 5 1 9 11 5 5 1 9

12 2 6 2 10 12 6 6 2 10 12 6 6 2 8

13 7 7 14 3 13 7 7 3 8 13 7

14 3 7 3 8 14 7 c)
15 9 a) b)a ) c )b )

d )

dL

dL

Qd id
1

rd rd m( ) yd m( )

y d
1

m( ) yd id
1

m( )( )=

)

rd m( ) yd m( ) y d
1

m( )–=

)

ed 1+ ed 1+ m( )

yd 1+ m( ) yd 1+ id
1

m( )( ) yd 1+ id
1

m( )( ) y d 1+
1

m( )

)

y d
1

m( )

)

d 1= y1 1( ) y1 8( )

r1 1( ) 0.026= d 2=

y2 1( ) y2 8( ) e2 1( ) 0.701= yd id
1

m( )( )

yd m( ) yd 1+ id
1

m( )( ) yd 1+ m( )



44

much the distance between the nearest neighbors grows as d increases to . We can do 

that by forming the vector  which has the elements

. (5.6)

If  where  is some predefined threshold, we label the nearest neighbor of 

 as a false nearest neighbor (FNN). For instance, let . We can see from our 

example that  as seen at the second column of Table 5.4g. Since 

, we label  as a FNN. The results in Tables 5.4g, 5.5g, and 5.6g show 

 for  through 3. In Table 5.6h, we summarize the results of the previous tables. In 

it, we can see that at , the number of FNNs is 5, while at , the number of FNNs 

drops to 0 and remains 0 at . Therefore, the minimum embedding dimension is 

.

d 1+

cd

cd m( )
ed 1+ m( ) rd m( )–

rd m( )
------------------------------------------=

cd m( ) ρ> ρ

yd m( ) ρ 10=
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Table 5.4 The CDD method tables for d = 1

Q1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 i1 r1

1 NaN 0.650 1.202 0.156 0.313 0.648 1.289 0.026 0.051 0.360 0.400 0.744 1.636 0.934 0.105 8 0.026

2 0.650 NaN 1.852 0.494 0.963 0.002 1.939 0.676 0.701 0.290 1.050 0.094 2.286 1.584 0.755 6 0.002

3 1.202 1.852 NaN 1.358 0.889 1.849 0.087 1.175 1.151 1.561 0.802 1.945 0.435 0.267 1.097 7 0.087

4 0.156 0.494 1.358 NaN 0.469 0.492 1.445 0.182 0.207 0.204 0.556 0.588 1.792 1.090 0.261 1 0.156

5 0.313 0.963 0.889 0.469 NaN 0.961 0.976 0.287 0.262 0.673 0.087 1.057 1.323 0.621 0.208 11 0.087

6 0.648 0.002 1.849 0.492 0.961 NaN 1.936 0.674 0.699 0.288 1.048 0.096 2.284 1.582 0.753 2 0.002

7 1.289 1.939 0.087 1.445 0.976 1.936 NaN 1.262 1.238 1.648 0.889 2.033 0.348 0.355 1.184 3 0.087

8 0.026 0.676 1.175 0.182 0.287 0.674 1.262 NaN 0.025 0.386 0.374 0.770 1.610 0.908 0.078 9 0.025

9 0.051 0.701 1.151 0.207 0.262 0.699 1.238 0.025 NaN 0.411 0.349 0.795 1.585 0.883 0.054 8 0.025

10 0.360 0.290 1.561 0.204 0.673 0.288 1.648 0.386 0.411 NaN 0.760 0.384 1.996 1.294 0.464 4 0.204

11 0.400 1.050 0.802 0.556 0.087 1.048 0.889 0.374 0.349 0.760 NaN 1.144 1.236 0.534 0.295 5 0.087

12 0.744 0.094 1.945 0.588 1.057 0.096 2.033 0.770 0.795 0.384 1.144 NaN 2.380 1.678 0.849 2 0.094

13 1.636 2.286 0.435 1.792 1.323 2.284 0.348 1.610 1.585 1.996 1.236 2.380 NaN 0.702 1.532 7 0.348

14 0.934 1.584 0.267 1.090 0.621 1.582 0.355 0.908 0.883 1.294 0.534 1.678 0.702 NaN 0.829 3 0.267

15 0.105 0.755 1.097 0.261 0.208 0.753 1.184 0.078 0.054 0.464 0.295 0.849 1.532 0.829 NaN 9 0.054

a) b) c)

Q2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i1 e2

1 NaN 1.962 1.299 0.976 0.313 2.044 1.455 0.701 0.295 1.110 0.411 2.404 2.277 1.201 8 0.701

2 1.962 NaN 2.296 1.017 2.085 0.087 2.267 1.335 1.711 0.853 2.211 0.445 2.302 1.927 6 0.087

3 1.299 2.296 NaN 1.436 1.016 2.347 0.202 1.193 1.169 1.657 0.994 2.645 1.174 0.374 7 0.202

4 0.976 1.017 1.436 NaN 1.069 1.093 1.473 0.319 0.704 0.221 1.194 1.448 1.897 1.110 1 0.976

5 0.313 2.085 1.016 1.069 NaN 2.162 1.186 0.755 0.390 1.245 0.130 2.517 2.062 0.976 11 0.130

6 2.044 0.087 2.347 1.093 2.162 NaN 2.312 1.409 1.790 0.934 2.287 0.361 2.311 1.976 2 0.087

7 1.455 2.267 0.202 1.473 1.186 2.312 NaN 1.263 1.297 1.690 1.176 2.593 0.972 0.363 3 0.202

8 0.701 1.335 1.193 0.319 0.755 1.409 1.263 NaN 0.411 0.520 0.878 1.763 1.836 0.909 9 0.411

9 0.295 1.711 1.169 0.704 0.390 1.790 1.297 0.411 NaN 0.864 0.519 2.148 2.046 0.998 8 0.411

10 1.110 0.853 1.657 0.221 1.245 0.934 1.690 0.520 0.864 NaN 1.373 1.295 2.066 1.327 4 0.221

11 0.411 2.211 0.994 1.194 0.130 2.287 1.176 0.878 0.519 1.373 NaN 2.641 2.084 1.003 5 0.130

12 2.404 0.445 2.645 1.448 2.517 0.361 2.593 1.763 2.148 1.295 2.641 NaN 2.482 2.272 2 0.445

13 2.277 2.302 1.174 1.897 2.062 2.311 0.972 1.836 2.046 2.066 2.084 2.482 NaN 1.087 7 0.972

14 1.201 1.927 0.374 1.110 0.976 1.976 0.363 0.909 0.998 1.327 1.003 2.272 1.087 NaN 3 0.374

d) e) f)

Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14

r1 0.026 0.002 0.087 0.156 0.087 0.002 0.087 0.025 0.025 0.204 0.087 0.094 0.348 0.267

e2 0.701 0.087 0.202 0.976 0.130 0.087 0.202 0.411 0.411 0.221 0.130 0.445 0.972 0.374

c1 25.9731 42.55 1.32184 5.25385 0.48851 42.55 1.32184 15.452 15.452 0.08529 0.48851 3.73085 1.79339 0.39888

FNN FNN FNN FNN FNN

g)

i1
1

e2

r1

i1
1

a )

d )

c )b )

e ) f )

g )
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Table 5.5 The CDD method tables for d = 2

Q2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i2 r2

1 NaN 1.962 1.299 0.976 0.313 2.044 1.455 0.701 0.295 1.110 0.411 2.404 2.277 1.201 9 0.295

2 1.962 NaN 2.296 1.017 2.085 0.087 2.267 1.335 1.711 0.853 2.211 0.445 2.302 1.927 6 0.087

3 1.299 2.296 NaN 1.436 1.016 2.347 0.202 1.193 1.169 1.657 0.994 2.645 1.174 0.374 7 0.202

4 0.976 1.017 1.436 NaN 1.069 1.093 1.473 0.319 0.704 0.221 1.194 1.448 1.897 1.110 10 0.221

5 0.313 2.085 1.016 1.069 NaN 2.162 1.186 0.755 0.390 1.245 0.130 2.517 2.062 0.976 11 0.13

6 2.044 0.087 2.347 1.093 2.162 NaN 2.312 1.409 1.790 0.934 2.287 0.361 2.311 1.976 2 0.087

7 1.455 2.267 0.202 1.473 1.186 2.312 NaN 1.263 1.297 1.690 1.176 2.593 0.972 0.363 3 0.202

8 0.701 1.335 1.193 0.319 0.755 1.409 1.263 NaN 0.411 0.520 0.878 1.763 1.836 0.909 4 0.319

9 0.295 1.711 1.169 0.704 0.390 1.790 1.297 0.411 NaN 0.864 0.519 2.148 2.046 0.998 1 0.295

10 1.110 0.853 1.657 0.221 1.245 0.934 1.690 0.520 0.864 NaN 1.373 1.295 2.066 1.327 4 0.221

11 0.411 2.211 0.994 1.194 0.130 2.287 1.176 0.878 0.519 1.373 NaN 2.641 2.084 1.003 5 0.13

12 2.404 0.445 2.645 1.448 2.517 0.361 2.593 1.763 2.148 1.295 2.641 NaN 2.482 2.272 6 0.361

13 2.277 2.302 1.174 1.897 2.062 2.311 0.972 1.836 2.046 2.066 2.084 2.482 NaN 1.087 7 0.972

14 1.201 1.927 0.374 1.110 0.976 1.976 0.363 0.909 0.998 1.327 1.003 2.272 1.087 NaN 7 0.363

a) b) c)

Q3 1 2 3 4 5 6 7 8 9 10 11 12 13 i2 e3

1 NaN 2.3861 1.5738 2.0909 0.3249 2.3578 1.8552 1.7115 0.854 2.2397 0.5981 2.419 2.5277 9 0.854

2 2.3861 NaN 2.3433 1.1293 2.5366 0.202 2.2764 1.3501 1.7993 1.0355 2.8459 1.1773 2.3165 6 0.202

3 1.5738 2.3433 NaN 1.7281 1.4082 2.3642 0.331 1.3699 1.1718 1.9656 1.6549 2.717 1.1919 7 0.331

4 2.0909 1.1293 1.7281 NaN 2.212 1.2837 1.6302 0.4301 1.2623 0.2413 2.5774 2.1445 2.0406 10 0.241

5 0.3249 2.5366 1.4082 2.212 NaN 2.5033 1.7141 1.8131 0.9703 2.3836 0.3709 2.5416 2.378 11 0.371

6 2.3578 0.202 2.3642 1.2837 2.5033 NaN 2.3117 1.4613 1.8288 1.2107 2.7966 0.9768 2.3127 2 0.202

7 1.8552 2.2764 0.331 1.6302 1.7141 2.3117 NaN 1.3277 1.3427 1.8676 1.9738 2.7391 0.9736 3 0.331

8 1.7115 1.3501 1.3699 0.4301 1.8131 1.4613 1.3277 NaN 0.8638 0.6468 2.1805 2.1863 1.8941 4 0.43

9 0.854 1.7993 1.1718 1.2623 0.9703 1.8288 1.3427 0.8638 NaN 1.4332 1.3408 2.2137 2.0674 1 0.854

10 2.2397 1.0355 1.9656 0.2413 2.3836 1.2107 1.8676 0.6468 1.4332 NaN 2.7477 2.1193 2.2335 4 0.241

11 0.5981 2.8459 1.6549 2.5774 0.3709 2.7966 1.9738 2.1805 1.3408 2.7477 NaN 2.7324 2.5864 5 0.371

12 2.419 1.1773 2.717 2.1445 2.5416 0.9768 2.7391 2.1863 2.2137 2.1193 2.7324 NaN 2.6164 6 0.977

13 2.5277 2.3165 1.1919 2.0406 2.378 2.3127 0.9736 1.8941 2.0674 2.2335 2.5864 2.6164 NaN 7 0.974

d) e) f)

Time

1 2 3 4 5 6 7 8 9 10 11 12 13

r2 0.295 0.087 0.202 0.221 0.13 0.087 0.202 0.319 0.295 0.221 0.13 0.361 0.972

e3 0.854 0.202 0.331 0.2413 0.3709 0.202 0.331 0.4301 0.854 0.2413 0.3709 0.9768 0.9736

c2 1.89492 1.32184 0.63861 0.09186 1.85308 1.32184 0.63861 0.34828 1.89492 0.09186 1.85308 1.70582 0.00165

g)

i2
1

e3
i2
1

r2

a ) c )b )

d ) f )e )

g )
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Table 5.6 The CDD method tables for d = 3

5.2.3 Using the change of distance with time method (CDT)

As we said in Chapter 4, the CDT method can also be used to estimate . This 

method depends on the idea that false nearest neighbor distances grow significantly as time 

increases. As in the previous methods, we begin by computing the nearest neighbors for 

. Then we track how the distance between the original nearest neighbors increases 

with time. This method can be applied by computing the distance in dimension , rather 

than in dimension . This has the advantage that the measured distance won’t be affected 

by projection artifacts.

Next, we need to have a method for determining whether or not the distances be-

tween two vectors can be considered large. For our purpose, we will use the average vector 

Q3 1 2 3 4 5 6 7 8 9 10 11 12 13 i3 r3

1 NaN 2.3861 1.5738 2.0909 0.3249 2.3578 1.8552 1.7115 0.854 2.2397 0.5981 2.419 2.5277 5 0.325

2 2.3861 NaN 2.3433 1.1293 2.5366 0.202 2.2764 1.3501 1.7993 1.0355 2.8459 1.1773 2.3165 6 0.202

3 1.5738 2.3433 NaN 1.7281 1.4082 2.3642 0.331 1.3699 1.1718 1.9656 1.6549 2.717 1.1919 7 0.331

4 2.0909 1.1293 1.7281 NaN 2.212 1.2837 1.6302 0.4301 1.2623 0.2413 2.5774 2.1445 2.0406 10 0.241

5 0.3249 2.5366 1.4082 2.212 NaN 2.5033 1.7141 1.8131 0.9703 2.3836 0.3709 2.5416 2.378 1 0.325

6 2.3578 0.202 2.3642 1.2837 2.5033 NaN 2.3117 1.4613 1.8288 1.2107 2.7966 0.9768 2.3127 2 0.202

7 1.8552 2.2764 0.331 1.6302 1.7141 2.3117 NaN 1.3277 1.3427 1.8676 1.9738 2.7391 0.9736 3 0.331

8 1.7115 1.3501 1.3699 0.4301 1.8131 1.4613 1.3277 NaN 0.8638 0.6468 2.1805 2.1863 1.8941 4 0.43

9 0.854 1.7993 1.1718 1.2623 0.9703 1.8288 1.3427 0.8638 NaN 1.4332 1.3408 2.2137 2.0674 1 0.854

10 2.2397 1.0355 1.9656 0.2413 2.3836 1.2107 1.8676 0.6468 1.4332 NaN 2.7477 2.1193 2.2335 4 0.241

11 0.5981 2.8459 1.6549 2.5774 0.3709 2.7966 1.9738 2.1805 1.3408 2.7477 NaN 2.7324 2.5864 5 0.371

12 2.419 1.1773 2.717 2.1445 2.5416 0.9768 2.7391 2.1863 2.2137 2.1193 2.7324 NaN 2.6164 6 0.977

13 2.5277 2.3165 1.1919 2.0406 2.378 2.3127 0.9736 1.8941 2.0674 2.2335 2.5864 2.6164 NaN 7 0.97

a) b) c)

Q4 1 2 3 4 5 6 7 8 9 10 11 12 i3 e4

1 NaN 2.4318 1.6489 2.5414 0.3725 2.3668 1.8663 1.7995 1.0368 2.8685 1.2434 2.433 5 0.3725

2 2.4318 NaN 2.5327 1.4923 2.5528 0.331 2.3738 1.3529 2.0868 1.6802 2.9129 1.1956 6 0.331

3 1.6489 2.5327 NaN 2.5954 1.5612 2.4653 0.4389 1.7247 1.1757 3.0134 2.2894 2.8193 7 0.4389

4 2.5414 1.4923 2.5954 NaN 2.5469 1.7832 2.3182 0.9872 2.3925 0.4232 2.6017 2.4496 10 0.4232

5 0.3725 2.5528 1.5612 2.5469 NaN 2.5035 1.757 1.8512 1.2387 2.8763 0.9807 2.5428 1 0.3725

6 2.3668 0.331 2.4653 1.7832 2.5035 NaN 2.3479 1.5024 1.9941 1.9947 2.9327 0.9783 2 0.331

7 1.8663 2.3738 0.4389 2.3182 1.757 2.3479 NaN 1.5296 1.3966 2.7334 2.36 2.7782 3 0.4389

8 1.7995 1.3529 1.7247 0.9872 1.8512 1.5024 1.5296 NaN 1.4334 1.3952 2.245 2.2062 4 0.9872

9 1.0368 2.0868 1.1757 2.3925 1.2387 1.9941 1.3966 1.4334 NaN 2.7782 2.1478 2.3707 1 1.0368

10 2.8685 1.6802 3.0134 0.4232 2.8763 1.9947 2.7334 1.3952 2.7782 NaN 2.836 2.6148 4 0.4232

11 1.2434 2.9129 2.2894 2.6017 0.9807 2.9327 2.36 2.245 2.1478 2.836 NaN 2.8555 5 0.9807

12 2.433 1.1956 2.8193 2.4496 2.5428 0.9783 2.7782 2.2062 2.3707 2.6148 2.8555 NaN 6 0.9783

d) e) f)

Time d FNN
1 2 3 4 5 6 7 8 9 10 11 12 1 5

r3 0.3249 0.202 0.331 0.2413 0.3249 0.202 0.331 0.4301 0.854 0.2413 0.3709 0.9768 2 0
e4 0.3725 0.331 0.4389 0.4232 0.3725 0.331 0.4389 0.9872 1.0368 0.4232 0.9807 0.9783 3 0

c2 0.14651 0.63861 0.32598 0.75383 0.14651 0.63861 0.32598 1.29528 0.21405 0.75383 1.64411 0.00154 h)
g)

i3
1 e4

r3i3
1

a ) b ) c )

d ) e ) f )

g ) h )

dL

d 1=

dE

d



48

length as a bench mark. If the distance between two vectors is larger than the average vector 

length, we will consider the distance to be large. The average vector length is defined as

. (5.7)

If we let  be the nearest neighbor of , we can check if  is a FNN 

by measuring the distance between  and  as time increases ( ). For ex-

ample, we can see from the  row of Table 5.7a that the nearest neighbor of  is 

. If we look at Table 5.7b, we can see that the distance between  and  is 

 (see the circled value). But, after one time step ahead, 

we can see that the distance between  and  is  which is 

greater than  as indicated by the arrow. We conclude that  is a FNN since 

the distance between  and  has grown more than  as time increases. A second 

example of the FNNs can be seen from the first row of Table 5.7a. We can see that the near-

est neighbor of  is , while in Table 5.7b, the distance between  and  

is  that means  is a FNN. On the other hand, the nearest neighbor of  

is , as seen in the second row of the last column in Table 5.7a, while if we look at 

Table 5.7b, we can see that the distance between  and  is . If we move 

one step ahead, we can see that the distance between  and  is  which is 

still less than . A conclusion that can be reached is that  is a true nearest neighbor 

of . Notice here that we choose one as the number of forward time steps that is used 

to check for FNN.

Table 5.9b summarizes the number of FNNs found for  through 3. It shows 

that at , the number of FNNs found is 4, while at , the number of FNNs is 0 

β 1
M
----- yd k( )

k 1=

M

∑=

yd n( ) yd m( ) yd n( )

y3 m( ) y3 n( ) dE 3=

8
th

y1 8( )

y1 9( ) y3 8( ) y3 9( )

q3 8 9,( ) 0.8638 β< 1.3404= =

y3 9( ) y3 10( ) q3 9 10,( ) 1.4332=

β 1.3404= y1 9( )

y3 8( ) y3 9( ) β

y1 1( ) y1 8( ) y3 1( ) y3 8( )

1.7115 β> y1 8( ) y1 2( )

y1 6( )

y3 2( ) y3 6( ) 0.202 β<

y3 3( ) y3 7( ) 0.331

β y1 6( )

y1 2( )

d 1=

d 1= d 2=
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and remains 0 at . That means the minimum embedding dimension is . Fi-

nally, notice that the nearest neighbor of  shown in the last row of the Tables 5.7b, 

5.8b, and 5.9a are labeled as not decidable (nd). The reason for this is that at the first in-

stance of time, the distance between the two vectors is less than , but we do not have 

enough data to check if the distance between the two vectors after one time step ahead is 

greater than . So, we have to discard this neighbor from the count of the FNNs and label 

it as not decidable (nd).

Table 5.7 The CDT method for d = 1

d 3= dL 2=

yd 13( )

β

β

The threshold is 

Q1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 NaN 0.65 1.2015 0.1561 0.313 0.6479 1.2886 0.0262 0.0508 0.3597 0.4 0.7439 1.6362 0.9341 0.1046 8

2 0.65 NaN 1.8515 0.4939 0.963 0.0021 1.9386 0.6762 0.7008 0.2903 1.05 0.0939 2.2862 1.5841 0.7546 6

3 1.2015 1.8515 NaN 1.3576 0.8885 1.8494 0.0871 1.1753 1.1507 1.5612 0.8015 1.9454 0.4347 0.2674 1.0969 7

4 0.1561 0.4939 1.3576 NaN 0.4691 0.4918 1.4446 0.1823 0.2069 0.2036 0.556 0.5878 1.7922 1.0901 0.2607 1

5 0.313 0.963 0.8885 0.4691 NaN 0.9609 0.9755 0.2868 0.2622 0.6727 0.0869 1.0569 1.3231 0.621 0.2084 11

6 0.6479 0.0021 1.8494 0.4918 0.9609 NaN 1.9364 0.6741 0.6987 0.2882 1.0478 0.096 2.284 1.5819 0.7525 2

7 1.2886 1.9386 0.0871 1.4446 0.9755 1.9364 NaN 1.2624 1.2377 1.6483 0.8886 2.0325 0.3476 0.3545 1.1839 3

8 0.0262 0.6762 1.1753 0.1823 0.2868 0.6741 1.2624 NaN 0.0246 0.3859 0.3737 0.7701 1.61 0.9078 0.0784 9

9 0.0508 0.7008 1.1507 0.2069 0.2622 0.6987 1.2377 0.0246 NaN 0.4105 0.3491 0.7947 1.5853 0.8832 0.0538 8

10 0.3597 0.2903 1.5612 0.2036 0.6727 0.2882 1.6483 0.3859 0.4105 NaN 0.7596 0.3842 1.9959 1.2937 0.4643 4

11 0.4 1.05 0.8015 0.556 0.0869 1.0478 0.8886 0.3737 0.3491 0.7596 NaN 1.1438 1.2362 0.5341 0.2953 5

12 0.7439 0.0939 1.9454 0.5878 1.0569 0.096 2.0325 0.7701 0.7947 0.3842 1.1438 NaN 2.3801 1.6779 0.8485 2

13 1.6362 2.2862 0.4347 1.7922 1.3231 2.284 0.3476 1.61 1.5853 1.9959 1.2362 2.3801 NaN 0.7021 1.5316 7

14 0.9341 1.5841 0.2674 1.0901 0.621 1.5819 0.3545 0.9078 0.8832 1.2937 0.5341 1.6779 0.7021 NaN 0.8294 3

15 0.1046 0.7546 1.0969 0.2607 0.2084 0.7525 1.1839 0.0784 0.0538 0.4643 0.2953 0.8485 1.5316 0.8294 NaN 9

a)

Q3 1 2 3 4 5 6 7 8 9 10 11 12 13

1 NaN 2.3861 1.5738 2.0909 0.3249 2.3578 1.8552 1.7115 0.854 2.2397 0.5981 2.419 2.5277 8 FNN

2 2.3861 NaN 2.3433 1.1293 2.5366 0.202 2.2764 1.3501 1.7993 1.0355 2.8459 1.1773 2.3165 6

3 1.5738 2.3433 NaN 1.7281 1.4082 2.3642 0.331 1.3699 1.1718 1.9656 1.6549 2.717 1.1919 7

4 2.0909 1.1293 1.7281 NaN 2.212 1.2837 1.6302 0.4301 1.2623 0.2413 2.5774 2.1445 2.0406 1 FNN

5 0.3249 2.5366 1.4082 2.212 NaN 2.5033 1.7141 1.8131 0.9703 2.3836 0.3709 2.5416 2.378 11

6 2.3578 0.202 2.3642 1.2837 2.5033 NaN 2.3117 1.4613 1.8288 1.2107 2.7966 0.9768 2.3127 2

7 1.8552 2.2764 0.331 1.6302 1.7141 2.3117 NaN 1.3277 1.3427 1.8676 1.9738 2.7391 0.9736 3

8 1.7115 1.3501 1.3699 0.4301 1.8131 1.4613 1.3277 NaN 0.8638 0.6468 2.1805 2.1863 1.8941 9 FNN

9 0.854 1.7993 1.1718 1.2623 0.9703 1.8288 1.3427 0.8638 NaN 1.4332 1.3408 2.2137 2.0674 8 FNN

10 2.2397 1.0355 1.9656 0.2413 2.3836 1.2107 1.8676 0.6468 1.4332 NaN 2.7477 2.1193 2.2335 4

11 0.5981 2.8459 1.6549 2.5774 0.3709 2.7966 1.9738 2.1805 1.3408 2.7477 NaN 2.7324 2.5864 5

12 2.419 1.1773 2.717 2.1445 2.5416 0.9768 2.7391 2.1863 2.2137 2.1193 2.7324 NaN 2.6164 2

13 2.5277 2.3165 1.1919 2.0406 2.378 2.3127 0.9736 1.8941 2.0674 2.2335 2.5864 2.6164 NaN 7 nd

b)

At d  =1, the number of FNN = 4 nd: not decidable

3404.1=β

i1
1

i1
1

a )

b )
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Table 5.8 The CDT method for d = 2

Table 5.9 The CDT method for d = 3

The circled distances in the above tables are the distances between the reference 

points and their nearest neighbors at the first instance of time in . The arrows represent 

the direction where the reference points and their nearest neighbors move after one time 

step.

Q2 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 NaN 1.9623 1.2991 0.9756 0.313 2.044 1.4552 0.7013 0.2947 1.1099 0.4108 2.4041 2.2773 1.2008 9

2 1.9623 NaN 2.2959 1.0165 2.0851 0.0871 2.267 1.3346 1.7113 0.8525 2.2106 0.4447 2.3018 1.9268 6

3 1.2991 2.2959 NaN 1.4363 1.0155 2.3467 0.202 1.1934 1.1685 1.6572 0.994 2.6451 1.1736 0.3735 7

4 0.9756 1.0165 1.4363 NaN 1.0693 1.0925 1.4728 0.3193 0.7038 0.2214 1.1942 1.4478 1.8968 1.1099 10

5 0.313 2.0851 1.0155 1.0693 NaN 2.1617 1.1858 0.7553 0.3896 1.2452 0.1295 2.5167 2.0623 0.9757 11

6 2.044 0.0871 2.3467 1.0925 2.1617 NaN 2.3116 1.4094 1.7902 0.9342 2.2867 0.3606 2.3114 1.9759 2

7 1.4552 2.267 0.202 1.4728 1.1858 2.3116 NaN 1.2626 1.2965 1.6901 1.1759 2.5928 0.9721 0.3631 3

8 0.7013 1.3346 1.1934 0.3193 0.7553 1.4094 1.2626 NaN 0.4113 0.5204 0.8782 1.7625 1.8363 0.9094 4

9 0.2947 1.7113 1.1685 0.7038 0.3896 1.7902 1.2965 0.4113 NaN 0.8635 0.5191 2.1483 2.0462 0.9978 1

10 1.1099 0.8525 1.6572 0.2214 1.2452 0.9342 1.6901 0.5204 0.8635 NaN 1.3731 1.2945 2.0661 1.327 4

11 0.4108 2.2106 0.994 1.1942 0.1295 2.2867 1.1759 0.8782 0.5191 1.3731 NaN 2.6407 2.0842 1.0026 5

12 2.4041 0.4447 2.6451 1.4478 2.5167 0.3606 2.5928 1.7625 2.1483 1.2945 2.6407 NaN 2.4815 2.2718 6

13 2.2773 2.3018 1.1736 1.8968 2.0623 2.3114 0.9721 1.8363 2.0462 2.0661 2.0842 2.4815 NaN 1.0867 7

14 1.2008 1.9268 0.3735 1.1099 0.9757 1.9759 0.3631 0.9094 0.9978 1.327 1.0026 2.2718 1.0867 NaN 7

a)

Q3 1 2 3 4 5 6 7 8 9 10 11 12 13

1 NaN 2.3861 1.5738 2.0909 0.3249 2.3578 1.8552 1.7115 0.854 2.2397 0.5981 2.419 2.5277 9

2 2.3861 NaN 2.3433 1.1293 2.5366 0.202 2.2764 1.3501 1.7993 1.0355 2.8459 1.1773 2.3165 6

3 1.5738 2.3433 NaN 1.7281 1.4082 2.3642 0.331 1.3699 1.1718 1.9656 1.6549 2.717 1.1919 7

4 2.0909 1.1293 1.7281 NaN 2.212 1.2837 1.6302 0.4301 1.2623 0.2413 2.5774 2.1445 2.0406 10

5 0.3249 2.5366 1.4082 2.212 NaN 2.5033 1.7141 1.8131 0.9703 2.3836 0.3709 2.5416 2.378 11

6 2.3578 0.202 2.3642 1.2837 2.5033 NaN 2.3117 1.4613 1.8288 1.2107 2.7966 0.9768 2.3127 2

7 1.8552 2.2764 0.331 1.6302 1.7141 2.3117 NaN 1.3277 1.3427 1.8676 1.9738 2.7391 0.9736 3

8 1.7115 1.3501 1.3699 0.4301 1.8131 1.4613 1.3277 NaN 0.8638 0.6468 2.1805 2.1863 1.8941 4

9 0.854 1.7993 1.1718 1.2623 0.9703 1.8288 1.3427 0.8638 NaN 1.4332 1.3408 2.2137 2.0674 1

10 2.2397 1.0355 1.9656 0.2413 2.3836 1.2107 1.8676 0.6468 1.4332 NaN 2.7477 2.1193 2.2335 4

11 0.5981 2.8459 1.6549 2.5774 0.3709 2.7966 1.9738 2.1805 1.3408 2.7477 NaN 2.7324 2.5864 5

12 2.419 1.1773 2.717 2.1445 2.5416 0.9768 2.7391 2.1863 2.2137 2.1193 2.7324 NaN 2.6164 6

13 2.5277 2.3165 1.1919 2.0406 2.378 2.3127 0.9736 1.8941 2.0674 2.2335 2.5864 2.6164 NaN 7 nd

b)

At d  =2, the number of FNN is 0

i2
1

i2
1

a )

b )

Q3 1 2 3 4 5 6 7 8 9 10 11 12 13

1 NaN 2.3861 1.5738 2.0909 0.3249 2.3578 1.8552 1.7115 0.854 2.2397 0.5981 2.419 2.5277 5

2 2.3861 NaN 2.3433 1.1293 2.5366 0.202 2.2764 1.3501 1.7993 1.0355 2.8459 1.1773 2.3165 6

3 1.5738 2.3433 NaN 1.7281 1.4082 2.3642 0.331 1.3699 1.1718 1.9656 1.6549 2.717 1.1919 7

4 2.0909 1.1293 1.7281 NaN 2.212 1.2837 1.6302 0.4301 1.2623 0.2413 2.5774 2.1445 2.0406 10

5 0.3249 2.5366 1.4082 2.212 NaN 2.5033 1.7141 1.8131 0.9703 2.3836 0.3709 2.5416 2.378 1

6 2.3578 0.202 2.3642 1.2837 2.5033 NaN 2.3117 1.4613 1.8288 1.2107 2.7966 0.9768 2.3127 2

7 1.8552 2.2764 0.331 1.6302 1.7141 2.3117 NaN 1.3277 1.3427 1.8676 1.9738 2.7391 0.9736 3

8 1.7115 1.3501 1.3699 0.4301 1.8131 1.4613 1.3277 NaN 0.8638 0.6468 2.1805 2.1863 1.8941 4

9 0.854 1.7993 1.1718 1.2623 0.9703 1.8288 1.3427 0.8638 NaN 1.4332 1.3408 2.2137 2.0674 1

10 2.2397 1.0355 1.9656 0.2413 2.3836 1.2107 1.8676 0.6468 1.4332 NaN 2.7477 2.1193 2.2335 4

11 0.5981 2.8459 1.6549 2.5774 0.3709 2.7966 1.9738 2.1805 1.3408 2.7477 NaN 2.7324 2.5864 5

12 2.419 1.1773 2.717 2.1445 2.5416 0.9768 2.7391 2.1863 2.2137 2.1193 2.7324 NaN 2.6164 6

13 2.5277 2.3165 1.1919 2.0406 2.378 2.3127 0.9736 1.8941 2.0674 2.2335 2.5864 2.6164 NaN 7 nd
a)

At d  =3, the number of FNNs is 0 also.
d FNNs
1 4
2 0
3 0 b)

i3
1

a )

b )

ℜ3
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5.3 The Predictive technique

Now that we have discussed the three geometric methods (CND, CDD, and CDT), 

we will now talk about the predictive technique. We said in Chapter 4 that the predictive 

technique can also be used to estimate  by approximating the function  in Equation 

(4.6). We also said that we will approximate  by using a neural network. Since chaotic 

systems are nonlinear, we need to use a nonlinear network to make the approximation.

To estimate  of the Henon map by using the predictive technique, we will use a 

nonlinear neural network which consists of two layers. The first layer has 2 neurons with 

sigmoid transfer functions and a Tapped Delay Line (TDL) connected to it. The second lay-

er has one neuron with a linear transfer function. The TDL is fed with the measurements 

 to produce the delay-vectors . The network structure is shown in Figure 

5.1. While the number of taps in the TDL (d) is changed from 1 to 2 to 3, the network is 

trained to predict the current measurement . After the end of the training process, the 

sum of the squares of the prediction errors (SSE) is recorded as a function of d. We applied 

this technique to 100 points from the -coordinate of the Henon map. As we can see from 

Table 5.10, the SSE changes significantly as d increases from 1 to 2 and remains almost the 

same at . We conclude that the network has accurately approximated  and that 

. The log-plot of the SSE versus d is shown in Figure 5.2.

dL µ

µ

dL

y m( ) yd m 1–( )

y m( )

X1

d 3= µ

dL 2=
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Figure 5.1  The nonlinear network used to estimate  of the Henon map

Table 5.10 The neural network SSE as a function of d

Figure 5.2  Log-Plot of the SSE versus d for the Henon map.

5.4 Chapter summary

In this chapter, we demonstrated the estimation of the minimum embedding dimen-

sion of the Henon map by using the geometric and the predictive techniques. The purpose 

of this chapter was to provide some insight into the operation of the algorithms. In the next 

chapter, we will present the complete algorithms in full detail and discuss practical issues 

in using the algorithms on more complex systems than the Henon map.
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CHAPTER 6

 ADVANCED ALGORITHMS FOR ESTIMATING THE MINIMUM EMBED-

DING DIMENSION

6.1 Introduction

In Chapter 3, we explained that two parameters are needed in order to apply the em-

bedding theorem to model a chaotic system. These two parameters are the dimension (d) of 

the delay-vector ( ) and the delay-time (T) between the delay-vector coordinates. We pre-

sented in Chapter 4 three geometric methods (CND, CDD, and CDT) and one predictive 

method through which we estimate the minimum dimension ( ) required to embed the 

system’s attractor. More details were given in Chapter 5 regarding the application of the 

four methods to estimate  of the Henon map. The purpose of this chapter is to give full 

detail of six algorithms which use the four methods mentioned above to estimate . We 

will also show a method used to find the delay-time T. Before that, we first give a summary 

of the four methods.

The CND, CDD, and the CDT geometric methods depend on the idea that if the di-

mension of the space is not large enough to represent the attractor of the system, projection 

artifacts will appear in the projected attractor. These artifacts cause points on the attractor 

to be falsely projected close to each other and produce False Nearest Neighbors (FNN) (see 

Section 4.3 for more detail). The dimension  can be estimated as the minimum dimen-

yd

dL

dL

dL

dL
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sion where the percentage of the FNNs does not change significantly with further increase 

in dimension.

The CND method detects the existence of FNNs by checking to see if the nearest 

neighbors in the space of dimension d remain neighbors in dimension . On the other 

hand, the CDD method detects the existence of FNNs by checking to see if the distance be-

tween the nearest neighbors in dimension d will increase significantly as the dimension in-

creases to . For the case of the CDT method, detection of the existence of FNNs is 

done by checking to see if the distance between the nearest neighbors in dimension d will 

change significantly as time increases.

On the other hand, in the predictive method, the estimation of  is done by approx-

imating the function  that operates on the reconstructed attractor.  is approx-

imated by using a neural network with a Tapped Delay Line (TDL) connected to its input. 

As the number of taps in the TDL (d) increases, the prediction error decreases. At one point, 

further increase of d does not improve the prediction error. At this point,  is found.

In the remaining parts of this chapter, we present in Section 6.2 a method used to 

find the delay-time T. In Section 6.3, we present two different algorithms based on the CDD 

and the CDT methods which were proposed by Abarbanel et al to estimated . In 

Section 6.4, we discuss some limitations of the previous two algorithms and suggest four 

new algorithms to overcome these limitations. In Section 6.5, we present three of the four 

algorithms, which are based on the geometric technique. The fourth algorithm, which is 

based on the predictive techniques, is presented in Section 6.6. At the end, Section 6.7 con-

cludes with a chapter summary.

d 1+

d 1+

dL

µ: ℜd ℜ1→ µ

dL

dL
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6.2 The delay-time (T)

We explained in Section 4.2 that we wanted to find the values of the parameters d 

and T such that the system we developed by using the delay-vectors  (see Equation 

(6.4)) is equivalent to the original unknown system of  (see Equation (4.1)). In Chap-

ters 4 and 5, we discussed the estimation of the minimum embedding dimension of . 

In this section, we will discuss the delay-time T. T represents the time difference between 

the consecutive coordinates of . If the value of T is too small, the different coordi-

nates of  will be highly correlated with each other. As a consequence, no new infor-

mation is given to the equivalent system by the addition of new coordinates to . An 

example of this case is measuring the room temperature every . The resulting consec-

utive measurements will be almost the same. However, if the value of T is too large, the 

different coordinates of  will be independent of each other and may look random. As 

a result, we will not be able to capture changes in the dynamics of the system.

One way to find a suitable T is by using the average mutual information [FS86, 

Fra89]. If A and B are two sets of measurements with elements  and  respectively, the 

mutual information between  and  is the amount learned by the measurement  about 

the measurement  which is

, (6.1)

where  and  are the individual probabilities of the measurements  and  

respectively, while  is the joint probability. The average mutual information be-

tween the sets of measurements A and B is:
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. (6.2)

Here  represents the measurement  and  represents the delayed version of  

which is . The individual probabilities can be replaced by the histograms of  

and . The joint probability, on the other hand, can be replaced by the histogram of 

the vector . So, the average mutual information between  and 

 is the amount learned by the measurement  about the measurement 

 which is

. (6.3)

By evaluating this equation at , we choose the delay-time to be 

the location of the first minimum of , where  is the maximum value of T. As an 

example, Figure 6.1 shows the average mutual information I versus T for the Lorenz model 

using 100,000 points from its X-coordinate (see Section 7.2.1). The value of T is changed 

from 1 through 50. The first minimum is found at  for this system. So, we set the 

delay-time for the Lorenz model to be 10 [Aba95].
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Figure 6.1  The Lorenz model average mutual information

In the next section, we present full detail of two algorithms proposed by Abarbanel 

et al in 1992 and 1993 to estimate  which are based on the CDD and the CDT methods. 

After that, we present in Section 6.4 a discussion regarding some limitations of the previous 

two algorithms and suggest some approaches to overcome these limitations.

6.3 Two algorithms that use the local neighbor search

Abarbanel et al [KBA92, AbKe93] proposed two algorithms based on the CDD and 

the CDT geometric methods to estimate  of a chaotic system. In the next section, we 

present the first algorithm which is based on the CDD method while in Section 6.3.2 we 

present the second algorithm which is based on the CDT method.

6.3.1 The  Algorithm

Abarbanel et al [KBA92, AbKe93] proposed an algorithm based on the CDD geo-

metric method to estimate  of a chaotic system. In a typical experiment, all we can see 

is a set of scalar measurements , where . The  algorithm starts 

by computing the theoretical minimum embedding dimension  which is  
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where  is the box-counting dimension of the original system. Notice that if  is not 

known, the algorithm can start with an arbitrary large value for . The delay-vectors 

 are constructed from  as follows:

, (6.4)

where T is the delay-time,  and . In the space , the 

distance between  and every other point in this space is computed. From the 

 computed distances, the  neighbors with the shortest distances to  are cho-

sen. The value of  is chosen to be between 10 and 100. The  nearest neighbors of 

 are saved in the matrix  as follows

, (6.5)

where  is the index of the  neighbor of  and . The  

indices of these neighbors are saved as a function of m as follows

, (6.6)

where  is a row vector (see Section 5.2.1). The next example illustrates this idea.

6.3.1.1  Example: Neighbor indices

Let the reference time be , , and the space dimension be , 

then, if the 3 nearest neighbors of  are , then 

.

The next step for the  algorithm is to project the point  and the matrix 

 into the space  to produce the point  and the matrix  respectively where 
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. The projection from the space  into the space  is done by the 

vector-coordinates projection method which is explained next.

6.3.1.2  The vector-coordinates projection method

The delay-vector  can be project-

ed into the space  by choosing the first d coordinates of  where . That 

means .

The algorithm projects the point  and the matrix  into  to find the 

point  and the matrix  respectively. The matrix  contains the  neighbors 

of :

. (6.7)

Notice that the indices  of the  neighbors in  are found in the space . This 

gives a drawback to algorithms that use the local neighbor search method, as will be ex-

plained in Section 6.4. After finding the  neighbors of  (columns of the matrix 

), the  algorithm computes the distance between  and its  neigh-

bors. The  computed distances are saved in the vector

. (6.8)

The nearest neighbor of  is the point with the smallest distance. The algorithm saves 

the minimum distance from  in . The index of the nearest neighbor is labeled 

by n, as illustrated in the next example.

6.3.1.3  Example: Vector-coordinates projection

From Example 6.3.1.1, the distances between  and its 3 neighbors are 

. Assuming that 
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, the minimum distance is , which has the 

value . So the nearest neighbor of  is the point with the index . That 

means the nearest neighbor of  is .

It is noteworthy that the search for the nearest neighbor of  is done locally 

among the  neighbors only, and this is how the algorithm got its name ; the CDD 

method with a local neighbor search. After finding n, which is the index of the nearest 

neighbor of , the  algorithm runs a test to find if  is a false nearest neigh-

bor (FNN) of , the reference point. To do that, the algorithm projects both points 

 and  into the space  by the vector-coordinates projection method. If 

these two neighbors are true neighbors, their distance will not change significantly as the 

dimension of the space increases to . The distance between  and  

is labeled by . Now, if  is a FNN of , the 

ratio

, (6.9)

where the threshold is . The above steps are repeated for all time points and the 

percentage of FNNs is recorded as a function of d. As d increases, the percentage of FNNs 

decreases. At one point, further increase of d does not change the percentage of FNNs. The 

 algorithm repeats all the above steps for different sizes of neighborhood ( ). The 

minimum embedding dimension  is the dimension where the percentage of FNNs is in-

dependent of both the change in  and in the increase of d. Figures 6.2 shows a 

pseudocode that summarizes the  algorithm. In Chapter 7, we apply the  al-

gorithm to different examples of chaotic systems and show the estimated  resulting from 

the algorithm.
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Figure 6.2  Pseudocode of the  algorithm

6.3.2 The  Algorithm

After presenting the first algorithm that uses the local neighbor search ( ), 

now we present the second algorithm that also uses the local neighbor search which is the 

. Abarbanel et al [AbKe93] proposed an algorithm based on the CDT geometric 

method to estimate  of a chaotic system. As in the  algorithm, the  algo-

rithm builds the delay-vectors  from the measurements  as shown in Equation 

{The  algorithm
•Choose a value for the threshold  
•Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2
•Compute the theoretical minimum embedding dimension . If  is not known choose an arbi-
trary large number for 
•Initialize the vector  of dimension 

•Create the delay-vectors , where 

•Compute the distance between  and every other point in  and save them in the vector .

•Set  (the neighborhood size)

•Find the  shortest distances in  and save their indices in  where 

•Save the  neighbors of  in the matrix 

•for  (Vector dimension)

•for  (Index)

(Project the vectors in  into  by the vector-coordinates method, see Section 6.3.1.2.)

•Project  and  into  to find  and  respectively

•Compute the distances between  and the columns of  and save them in 

•Find the minimum distance in  and save it as 

•Set the index of the point with the minimum distance in  as n, see Example 6.3.1.3

•Project  and  into  to find  and  respectively

•Compute .

•If 

end if
end m

end d }
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(6.4). Then the  computes the  neighbors of , where . The 

algorithm now saves the  computed neighbors of  in the matrix . It also 

saves the indices of these neighbors as  where . In the next step, the 

algorithm projects the reference point  and the matrix  into  to find 

 and  respectively where . The projection method used by 

the  algorithm is different from that used by the  algorithm. The  uses 

the Principal Components Analysis (PCA) projection method while the  uses the 

vector-coordinates projection method. The PCA projection method is explained below.

6.3.2.1  The PCA projection method

The PCA projection method starts by computing the covariance matrix at time m 

using the reference point  and its  neighbors as follows:

. (6.10)

The next step in the PCA projection method is to compute the eigen values ( ) 

and the eigen vectors ( ) of the matrix . The  eigen values are ar-

ranged such that . The corresponding eigen vectors are used to build the 

basis matrix . The projection from  into  is done by choos-

ing the first d columns of the matrix  where . The projection is found by the 

equation . (The superscript p in  is used to emphasize 

that the projection method from  into  is the PCA.)

After projecting the points from  into , the distances between  and its 

 neighbors (columns of the matrix ) are computed and saved in the vector 

 as shown in Equation (6.8). It has been noted that the search for the nearest neighbor 
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of  is done locally among the  neighbors only, and this is how the algorithm got 

its name , the CDT method with a local neighbor search. The index of the nearest 

neighbor of  is labeled by n. After identifying the two neighbors in , the  

algorithm runs a test to see whether these two neighbors are FNNs or not. In any chaotic 

system, distances between points change exponentially fast (as explained in detail in Chap-

ter 8). However if two points are FNNs, the distance between them would increase faster 

than if they were true neighbors (see Section 4.3.1.3). The  algorithm takes advan-

tage of the increase in distances to check the existence of FNNs. The algorithm labels 

 (the nearest neighbor of ) as a FNN if the distance between 

 and  in  reaches a predefined threshold before a fixed number of time 

steps. The threshold used by this algorithm is a fraction of the attractor mean. The attractor 

mean is

. (6.11)

The threshold used by the  algorithm is  where . The  algorithm 

computes the distance between  and  as time increases up to 

a maximum of T time-steps, (T is the delay-time where the first minimum of the average 

mutual information occurs, see Section 6.2). If the distance reaches the threshold  before 

T time-steps, it labels  as a FNN.

 These steps are repeated for all data points and the percentage of the FNNs is re-

corded as a function of d. As d increases, the percentage of the FNNs decreases. At one 

point, further increase of d does not reduce the percentage of the FNNs. The above steps 

are repeated for different value of , where . The minimum embedding di-
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mension  of the system is found from the dimension where the percentage of the FNNs 

becomes independent of both the increase of d and . In Chapter 7, we demonstrate the 

 algorithm on different examples of chaotic systems.

In Figure 6.3, we show the pseudocode that summarizes the  algorithm. It 

shows that the algorithm uses a while loop to check for the FNNs. The first parameter of 

the loop is  which is the number of time steps used to check the existence of FNNs. The 

second parameter is  which is the distance between the two neighbors after  time steps 

ahead. If the end of the data set was reached with , and the error criteria ( ) 

was not satisfied, we can not have any conclusion about  being either a FNN of 

 or not. So, we have to discard it from our consideration. That means, we don’t have 

enough data to check this nearest neighbor. For instance, let the index of the nearest neigh-

bor be , the reference index be , the total number of points be , and 

the delay-time be . If  reached the end of the data set while the distance between 

the two points is still less than the predefined threshold, , then 

. We don’t know if  is a FNN of  or not, since in the next 

time step (if we imagine that we can reach it) , the point  will be a FNN of 

 if the distance . On the other hand,  will be a true nearest neighbor 

of  if .
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Figure 6.3  Pseudocode of the  algorithm

After presenting the  and  algorithms for estimating the minimum em-

bedding dimension of a chaotic system, we discuss in the next section some limitations of 

these two algorithms and suggest different approaches to overcome their limitations.

{The  algorithm

•Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2
•Compute . If  is not known choose an arbitrary large number for 
•Initialize the vector  of dimension  to hold the count of FNN
•Create the delay-vectors , where 

•Compute the distance between  and every other point in  and save them in the vector .

•Set  (the neighborhood size)
•Find the  shortest distances in  and save the vectors indices as  where 

•Save the neighbors of  in the matrix 

•Choose the ratio 

•Compute  (average vector in the space )

•Compute  (  is the threshold for false neighbors, : mean distance 

from the origin.)

•for  (Vector dimension)
•for  (index)

•Compute the covariance matrix 

•Compute eigen values  and the eigen vectors  of C.

•Arrange the eigen values such that 

•From the corresponding eigen vectors, build the basis matrix 

•  and ; p for a vector found by the PCA

•Compute the distance between  and the columns of  and save their distances in .

•Find the minimum value of  and label the index of the vector that produced it by n.

•Set ,  ( : distance, : time step.)

•while .

•
•

end while

(If the end of the data set was reached without a conclusion, discard .)

•if 

•Label  as Not decidable

•elseif 

•
        end if

end m

end d}
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6.4 Limitations of the  and the  Algorithms

In Section 6.3, we found that both the  and the  algorithms use the lo-

cal neighbor search method to find the nearest neighbor of the reference point. That means 

the search for the nearest neighbor of  is done locally within the  neighbors only, 

rather than within the whole data set. The local neighbor search was used to reduce the com-

putational cost. However, in practice, it was observed that algorithms that use the local 

neighbor search often do not estimate the correct minimum embedding dimensions  for 

systems with dimensions larger than three. In addition, poor estimates of  could occur 

even for systems with dimension three as in the case of the Lorenz model using the  

(see Table 7.1 in the next chapter). The  and  algorithms can also produce 

poor estimates of  for noisy signals (see Table 7.1).

Limiting the search for the nearest neighbor of the reference point  to 

be within the  projected neighbors, that were originally found in , does not always 

find the actual nearest neighbor of . This happens because the  projected neigh-

bors could actually be scattered in the attractor in the space  and not close to . 

When the dimension of the original system is small (3 or less), this problem may not be 

significant. However, as the dimension of the system increases, the effect will become pro-

nounced. To improve the search for the nearest neighbor, we can find the nearest neighbor 

of  within the whole attractor in the space , then test this neighbor in the space 

 to see if it is a FNN.

Further, when noise exists in the signal, the reconstructed attractor is blurred. 

Hence, the  computed neighbors of  may not actually be its closest neighbors. 

CDDL CDTL

CDDL CDTL

yd m( ) Nb

dL

dL

CDTL

CDDL CDTL

dL

 yd m( ) ℜd∈

Nb ℜ
dE

 yd m( ) Nb

ℜd  yd m( )

 yd m( ) ℜd

ℜd 1+

Nb ydE
m( )



67

When these  neighbors are projected into , they may look random in this space. As 

a result, the attractor information is lost, and the correct value of  can’t be found.

Another observation that can be obtained from the  and  algorithms is 

that they use two different projection methods: the vector-coordinate method and the PCA 

method, respectively. The PCA projection method has the advantage that the search for the 

nearest neighbor is done along the major variations of the signal. However, the vector-co-

ordinate projection method is less expensive in term of its computational cost.

The above observations suggest that we should search for the nearest neighbor of 

the reference point among the whole data set rather than among the  projected neighbors 

only. We call the search method that uses the whole data set the global neighbor search 

method. Practically, it was observed that when the global neighbor search method was 

used, the estimate of  for a chaotic system with dimension greater than three is improved, 

as we will show in Chapter 7. In addition, the global neighbor search method was found to 

be more robust to noise than the local neighbor search method. (The local neighbor search 

method was mainly used to reduce the computational cost. Recently, a fast neighbor search 

algorithm has been introduced that provides significant reduction in computations 

[MPL00].)

In the next two sections, we present four new algorithms. In Section 6.5, we present 

the first three algorithms which apply the global neighbor search method to the CND, CDD, 

and CDT geometric methods. In Section 6.6, we present the fourth algorithm, which uses 

the predictive technique. The  and  algorithms are variations of algorithms 

presented by Abarbanel et al. These algorithms use global neighbor search, rather than a 

Nb ℜd

dL
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dL
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local neighbor search. The CND and the predictive algorithms were completely developed 

as part of this research.

6.5 Three new algorithms that use the global neighbor search method

6.5.1 The first new algorithm: The CND

In Section 4.3.1.1, we presented the CND geometric method which is used to esti-

mate  of a chaotic system. We also presented the application of the CND method to es-

timate  of the Henon map in Section 5.2.1. In this section, we present the first new 

algorithm which applies the global neighbor search to the CND method. As in the previous 

two algorithms, the CND algorithm computes the dimension  and constructs the delay-

vectors  as explained in Section 6.3.1. The matrix  that contains all the points in 

the space  is constructed from the delay-vectors:

. (6.12)

The points in the space  (columns of ) have to be projected into the space  by 

the vector-coordinates projection method where . (The use of the PCA 

projection method does not change the results significantly in this algorithm.) In the space 

, the CND algorithm needs to find  which is the nearest neighbor of the reference 

point . To do that, it computes the distances between  and every other point 

in the space  and labels the index of the point with the shortest distance to  by n. 

In the next step, the algorithm checks to see if  is a FNN of  by increasing the 

dimension of the space to  using the same projection method mentioned above. In the 

space , the CND algorithm computes the first w neighbors of . (This is a 

new geometric algorithms. Abarbanel used only the nearest neighbor.) It saves their w in-
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dices as . If  is a true neighbor of , it should remain close as the dimen-

sion increases to . The CND algorithm now checks to see if n appears as an element 

of the vector . In other words, it checks to see if  appears as one of the w 

neighbors of . If n does not appear as an element of , the algorithm labels 

 as a FNN of . These steps are repeated until the last point of the data set, and 

the percentage of the FNNs is recorded as a function of d. As d increases, the percentage of 

the FNNs decreases. At one point, further increase of d does not change the percentage of 

the FNNs significantly.

To estimate , the algorithm checks to see if the change in the percentage of the 

FNNs is less than some predefined threshold ( ) for five consecutive dimensions. That 

means if

, (6.13)

for five consecutive dimensions, then it sets , where  is the number of 

FNN found at dimension d. That means, the change of the percentage of the FNNs is insig-

nificant. The threshold value is chosen to be . If the signal is noise free, we set 

, while if the signal is noisy, we increase  up to 3. This is since the existence of 

noise affects the percentage of FNNs, which causes the plot of FNNs with respect to d to 

be uneven. The above steps are repeated for different values of w and the estimated  is 

plotted as a function of w. At one point, further increase of w does not change the estimated 

. This is where the algorithm finds . The pseudocode shown in the next figure sum-

marizes the CND algorithm. In Chapter 7, we apply the CND algorithm to different exam-
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ples of chaotic systems and show the estimated  resulting from the algorithm.

Figure 6.4  Pseudocode of the CND algorithm

dL

{The CND algorithm
•Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2
•Compute . If  is not known choose an arbitrary large number for 
•Set , and the threshold  and initialize w to 1

•Initialize a vector  of dimension  and a vector  of dimension 

•Create the delay-vectors , where 

•Create the matrix 

•while  (search window size)

•for 

•Project  into  to find  (use the vector coordinates projection method)

•Project  into  to find  (use the vector coordinates projection method)

•for 
•Compute the distances between  and the columns of  and save them in .
•Find the point that produced the minimum value in  and label its index by n.

•Compute the distances between  and the columns of  and save the distances 

in .

•Find the  minimum values of  and label their indices by .

(Compare n to the elements of )

•if 
                (if n is not an element of , label  as a FNN)

         end if
end m

       (look for a flat region in the curve of the percentage of FNNs with respect to d)
•if  AND  (for 5 consecrative times)

•
•Break the d loop

end if
end d
•
•  (increase the search window size)

end w}
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6.5.2 The second new algorithm: The 

In Section 4.3.1.2, we presented the  geometric method which is used to esti-

mate  of a chaotic system. We also presented the application of the  method to es-

timate  of the Henon map in Section 5.2.2. In Section 6.3.1, we presented an algorithm 

based on the CDD method with a local neighbor search ( ). Some limitations of the 

 algorithm were presented in the beginning of this section. To improve the perfor-

mance of the  algorithm, we present the new algorithm: the  that can over-

come the limitations of the .

The  applies the global neighbor search to the CDD geometric method. As 

in the previous algorithms, the  algorithm computes the theoretical minimum em-

bedding dimension  and constructs the delay-vectors , as described in 

Section 6.3.1. In addition, the matrix  has to be built as shown in Equation (6.12). The 

algorithm projects the matrix  into the space  by the PCA projection method where 

 (see Section 6.3.2.1 for more detail about the PCA projection meth-

od). In the space , the  algorithm computes the distance between the reference 

point  and every other point in the space . (Notice that the  algorithm com-

putes the  neighbors of  in the space  then searches among the  projected 

neighbors only for the nearest neighbor of .) The computed distances are saved in 

the vector . The algorithm now finds the minimum distance in  and saves it 

as . It also labels the index of the point that produced the minimum distance as n. 

After identifying the nearest neighbor  in the space , the algorithm 

now needs to check if this neighbor is a FNN. To do that, it increases the dimension of the 
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space to  by the same projection method mentioned above. In the space , the 

distance between  and  is computed and saved as 

. As the dimension of the space increases, the distance between FNNs will in-

crease as well. To apply this idea, the  algorithm labels  as a FNN if

, (6.14)

where the threshold is . As the dimension of the space (d) increases, the percent-

age of the FNNs decreases. At one point, further increase of d does not improve the per-

centage of the FNNs significantly. The minimum dimension where this happens is the 

estimated  of the system. In Chapter 7, we apply the  algorithm to different ex-

amples of chaotic systems and show the estimated  resulting from the algorithm. Figure 

6.5 shows the pseudocode that summarizes the  algorithm.
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Figure 6.5  Pseudocode of the  algorithm

{The  algorithm pseudocode
•Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2
•Compute . If  is not known, choose an arbitrary large number for 
•Set the threshold 

•Initialize the vector  of dimension 

•Create the delay-vectors , where 

•Create the matrix 

•Compute  (average vector in the space )

•Compute the covariance matrix 

•Compute the eigen values  and eigen vectors  of C, where 

•Arrange the eigen values such that 

•Build the basis matrix from the corresponding eigen vectors: 

•for  (space dimension)

(Project the vectors in  into ) 

• , the superscript p indicates that the projection is done by the PCA

(Project the vectors in  into )

•

•for  (Index)

•Compute the distance between  and the columns of  and save the distances as 

•Find the minimum of  and save it as 

•Label the index of the point with the minimum distance by n

•Compute  (from the columns of the matrix )

•If 

• ; increase the count of the FNN
•end if

end m
end d
}
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6.5.3 The third new algorithm: The 

In Section 4.3.1.3, we presented the CDT geometric method which is used to esti-

mate the minimum embedding dimension  of a chaotic system. We also presented the 

application of the CDT method to estimate  of the Henon map in Section 5.2.3. In 

Section 6.3.2, we showed the  algorithm which is based on the CDT method with a 

local neighbor search. Some limitations of the  algorithm were presented in the be-

ginning of this section. To improve the performance of the  algorithm, we present a 

new algorithm known as the . This algorithm applies the global neighbor search to 

the CDT method

As in the previous algorithms, the  starts by computing the theoretical mini-

mum embedding dimension  as described in Section 6.3.1. After that, the delay-vectors 

 have to be constructed according to Equation (6.4). Using these vectors, the matrix 

 is built according to Equation (6.12). The algorithm now projects the matrix  into 

 to find  where . The projection is done by using the PCA projec-

tion method. In the space , the algorithm searches for  which is the 

nearest neighbor of the reference point . The search for the nearest neighbor of 

 is done globally (among the  points).

In the next step, the algorithm runs a test to find if  is a FNN of . To do 

that, it increases the time of both points (  and ) and measures the distance be-

tween them. The test of the distance increase in the  algorithm is done in the space 

 rather than in  (as in the  algorithm). The search for the FNNs in  has the 

advantage that if the two neighbors came from an attractor intersection (FNN), the distance 

between them as time increases will increase faster than if they were true neighbors. To ap-
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ply this idea, the distance between the two neighbors  and  is mea-

sured according to the equation:

, (6.15)

where  is the time step. If  reaches some predefined threshold before few steps 

ahead, the  algorithm labels  as a FNN.

The threshold used by the algorithm is a fraction of the attractor mean ( ), as 

shown in Equation (6.11). For the number of time steps, the algorithm uses the delay-time 

T as a measure of how fast the neighboring points diverge from each other. This test is re-

peated until the last data point, and then the percentage of the FNNs is recorded as a func-

tion of d. As d increases, the percentage of the FNNs will decrease. At one point, further 

increase of d does not change the percentage of the FNNs significantly. At this time, the 

minimum embedding dimension  has been determined. In Chapter 7, we apply the 

 algorithm to different examples of chaotic systems and show the estimated  re-

sulting from the algorithm. The pseudocode in Figure 6.6 summarizes the  algo-

rithm.
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Figure 6.6  Pseudocode of the  algorithm

We have presented three new geometric algorithm. In the next section, we present 

a fourth algorithm, which is a predictive algorithm.

{The  algorithm

•Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2

•Compute . If  is not known choose an arbitrary large number for 

•Initialize the vector  of dimension  to hold the count of FNN

•Create the delay-vectors , where 

•Create the matrix 

•Choose the ratio 

•Compute  (average vector in the space )

•Compute  (  is the threshold for false neighbors, : mean distance 

from the origin.)

•Compute the covariance matrix 

•Compute the eigen values  and eigen vectors  of C, where 

•Arrange the eigen values such that 

•Build the basis matrix from the corresponding eigen vectors: 

•for  (Space dimension)

•(Project  into )

•  with elements 

•for  (Time index)

•Compute the distance between  and the columns of  and save these distances in .

•Find the minimum distance in  and label the index of the vector that produced it by n.

•Initialize ,  ( : distance, : time step.)
•while .

•
•

end while
(If the end of the data set was reached without a conclusion, discard .)
•if 

•Label  as Not decidable
•else if 

• , increase the count of the FNNs
        end if
end m

end d
}
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6.6 The fourth new algorithm: The Predictive

In Section 4.3.2, we presented the predictive method for estimating  of a chaotic 

system. We also presented the application of the predictive method to estimate  of the 

Henon map in Section 5.3. In this section, we present a new algorithm based on this tech-

nique to estimate .

 In a typical experiment, all we can observe is a set of scalar measurements  

taken from the system. These measurements are produced from a map  where 

 is the space of the original unknown attractor of the system. The evolution of the orig-

inal states inside the attractor can be written as  (see Equation (4.1)). 

Using the delay-coordinate map, the original system dynamics can be reconstructed in a 

space of dimension d. The states in this space are the delay-vectors  as shown 

in Equation (6.4). If the reconstructed system is equivalent to the original one, the function 

 can be used to recreate the scalar measurements  (see Equation (4.6)). 

The predictive algorithm approximates  by using a multilayer neural network with a 

Tapped Delay Line (TDL) connected to its input.

The main problem that may appear when using a multilayer network to approximate 

 is that the error surface at the output of the network could be complicated [Hag95]. That 

means there could be more than one minimum and the network may converge to a local, 

rather than a global minimum. To insure that the network has converged to the optimal so-

lution (global minimum), the algorithm repeats the training process a few times and then 

chooses the minimum Sum Squared prediction Error (SSE) from the different trials. The 

algorithm starts by sampling  at an interval T as follows:

, (6.16)

dL

dL

dL

y m( )

h: ℜk ℜ1→
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x m 1+( ) f x m( )( )=
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where  and . For the case that the measurements are tak-

en from a difference equation (like the Henon map), T is set to 1. The mean of  has to 

be deducted from the measurements to insure that the signal is a zero mean. After that, the 

algorithm creates

. (6.17)

The delay-vectors  at the input of the network are

. (6.18)

The network takes  as an input to predict the current measurement  where 

d is the number of taps in the TDL. As d increases, the prediction error between the output 

of the network  and  decreases. At one point, further increase of d does not im-

prove the prediction error significantly. At this point, the two systems are equivalent to each 

other and the number of taps in the TDL equals  of the system.

To estimate , the predictive algorithm checks to see if the change in the percent-

age of the change in the SSE at dimension d ( ) is less than some predefined threshold 

 for five consecutive dimensions. That means, if

, (6.19)

for five consecutive dimensions, then it sets . The threshold is . The 

pseudocode shown in Figure 6.7 summarizes the predictive algorithm.

 In Chapter 7, we apply the predictive algorithm to different examples of chaotic 

systems and show the estimated  resulting from the algorithm.
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Figure 6.7  Pseudocode of the predictive algorithm

{The predictive algorithm
•Compute the delay-time T from the first minimum of the average mutual information, see Section 6.2

•Compute . If  is not known choose an arbitrary large number for 

•Choose  (the maximum number of iterations, usually 5)
•Choose the threshold 
•Initialize the matrix  of dimension  (to hold the SSE of the prediction errors)
•Sample : 

•  (deduct the mean of the signal, to insure the signal is a zero mean)

•for  (Iterations)
•for  (number of taps)

•Input = 
•Target = 
•Create a nonlinear multilayer neural network with 5 neurons in the hidden layer and 1 neuron in 
the output layer
•Train the neural network to predict the Target when it is presented with the Input over all given 
points. When the training stops, record the prediction errors  and compute their Sum of
Squares (SSE) and save them as a function of d:

end d
end i
•for 

•
•end d
(  is the minimum dimension where  does not change significantly with further increase in d)

•for j=1,2,..., d

•if  (for five consecutive times)

•
end if

•end j
 plot  versus d
}
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6.7 Chapter summary

In this chapter, we presented two algorithms by Abarbanel, which are based on the 

CDD and the CDT geometric methods to estimate the minimum embedding dimension of 

a chaotic system. We discussed some limitations of these two algorithms and suggested 

new approaches to overcome them. We used the global neighbor search rather than the lo-

cal neighbor search method to compute the nearest neighbor of the reference point. Four 

new algorithms were presented that can overcome the limitations of the local neighbor 

search algorithms. The four algorithms are based on the three geometric methods CND, 

CDD, CDT, and the predictive technique. Full details for each algorithm were given and 

the pseudocode that summarizes each algorithm was provided. Besides giving full detail of 

the six algorithms that are used to estimate the minimum embedding dimension, we showed 

a method to find the delay-time that is used to build the delay-vectors. In the next chapter, 

we apply the six algorithms to different examples of chaotic systems and compare the re-

sults.
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CHAPTER 7

MINIMUM EMBEDDING DIMENSION RESULTS

7.1 Introduction:

In Chapter 6, we presented six different algorithms showing two algorithms by 

Abarbanel and four new algorithms. Those algorithms are used to estimate the minimum 

embedding dimension of chaotic systems. In this chapter, we will apply the six algorithms 

to nine different chaotic systems. These systems are different from each other and cover 

artificial, industrial, and biological systems. Further, we will test the ability of the different 

algorithms to distinguish between chaotic signals and signals generated from a random 

source (noise). Chaotic systems are deterministic. They exist in different dimensions based 

on the dynamics that generate them. Beside being different in dimension, chaotic systems 

can be different with respect to noise content in the measurements taken from them.

In the next section, we will give a brief introduction to the different systems that will 

be used to test the algorithms. In Section 7.3 we will investigate the results of estimating 

 for six noise free systems while in Section 7.4 we will estimate  for a noisy chaotic 

circuit and for three practical systems from the Santa Fe competition. In Section 7.5 we will 

investigate the ability of the algorithms to distinguish between chaotic signals and random 

ones. Tabulations of the results and a comparison between them will be presented in 

Section 7.6. And finally we will present the chapter summary in Section 7.7.

dL dL
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7.2 Testing systems

We have shown in Chapter 5 the estimation of  for a chaotic Henon map by ap-

plying the geometric and the predictive techniques. In this chapter, we will use more com-

plicated systems for further investigation of the performance of the six algorithms 

mentioned in Chapter 6. We will divide the testing systems into two categories: 1) noise 

free systems, 2) noise contaminated systems. In the next two subsections, we will shed 

some light on nine systems belonging to these categories.

7.2.1 Noise free chaotic systems

1) Lorenz model: In 1963, Ed. Lorenz [Lo63] was the first scientist to discover cha-

os when he was modeling the fluid convection phenomena. His model is a small represen-

tation of the earth’s atmosphere. It can be written as a set of three differential equations:

(7.1)

(7.2)

(7.3)

where , , and . The system’s equations were solved numerically us-

ing the fourth order Runge-Kutta algorithm with a fixed step size of 0.01 sec. The next fig-

ure shows a 3-D plot of the Lorenz attractor.

dL

x· s y x–( )=

y· xz– rx y–+=

z· xy bz–=

s 16= b 4= r 40=
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Figure 7.1  Lorenz chaotic attractor

2) The second system that we used to test the algorithms is the chaotic circuit. Chaos 

can exist in electrical circuits as well, as found by N. F. Rulkov et al [RVRDV92]. The cir-

cuit diagram is shown below.

Figure 7.2  The chaotic circuit diagram

The circuit response can be written as a set of three differential equations:

(7.4)

(7.5)

(7.6)

where x and z are the voltages across the two capacitors  and  respectively.  is the 
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gain of the nonlinear amplifier.  where  is the current flowing 

through the inductor L. , , and , , 

, , ,  and . The non-

linear amplifier function is

. (7.7)

The circuit response is chaotic at  as shown in the 3-D plot below.

Figure 7.3  The chaotic circuit response

3) The third system that we will use to test the six algorithms is the Rossler model. 

In 1976, O. E. Rossler [Ros76] proposed an artificial chaotic system consisting of three dif-

ferential equations:

(7.8)

(7.9)
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(7.10)

where , and . The set of the three differential equations were solved nu-

merically using the fourth order Runge-Kutta algorithm at a fixed step size of 0.01 sec. The 

3-D plot below shows the Rossler attractor.

Figure 7.4  The Rossler model attractor

4) All the previous systems are three dimensional systems. To test the algorithms 

with higher dimensional systems, we will use Mackey-Glass (MG) chaotic system. The 

MG system is represented by the following differential equation

, (7.11)

where  is a delay-time [MG77]. Equation (7.11) is used to model blood production.  

represents the concentration of the blood at time t (when the blood is produced) and 

 is the concentration of the blood when the request for more blood is made. For pa-

tients with Leukemia, the delay-time  could be large which causes the concentration of 
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the blood to oscillate. When  is excessively large ( ), the concentration of the 

blood becomes chaotic (see also [Far81]).

Equation (7.11) can be approximated by the following difference equation:

(7.12)

(see [KaSc00]). Equation (7.12) can be used to produce chaotic systems of dimension 

. We fixed  to be 23 and tested the algorithms with three examples from the MG 

approximation of dimensions 4, 7, and 13. Up do this point, we have discussed six noise 

free systems. In the next subsection, we will discuss three practical systems that will also 

be used to test the six algorithms.

7.2.2 Practical systems

1) We will begin with the chaotic data set A from the Santa Fe competition data sets 

[WeGe95]. This sequence represents a special challenge since it is short (1000 points). Be-

side being short it is also contaminated with noise (the Signal to Noise Ratio (SNR) is up 

to 70 dB). It was measured from a laser machine and its attractor is a Lorenz like attractor 

[HAW89].

2) The second practical system is the  data set from the same competition. The 

first column of this set was collected from an Electrocardiogram (ECG) signal. According 

to a group of researchers, an ECG signal can be modeled by a low dimensional chaotic sys-

tem. This set is contaminated with noise and it is also non-stationary (caused by patient mo-

tions).

3) The third practical system is the  data set from the same competition. This set 

is large (  points), it has 9 degrees of freedom [WeGe95], and has a small non-station-
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arity. It will be used to test the ability of the algorithms to estimate  using measurements 

taken from a high dimensional chaotic system.

7.3 Estimating  for the noise free chaotic systems

In the next two subsections, we will present the results found from Abarbanel’s two 

algorithms: the  and  on the six noise free systems (Section 7.2.1). At the end 

of the two subsections, we will present the results found from our four algorithms ( , 

, , and the predictive) for the same six systems. Notice that in this section we 

will present the plots with a brief analysis of the results. In Section 7.6, we will tabulate all 

the results from the different algorithms and discuss them.

7.3.1 Using the  algorithm

We will begin by showing the results found by Abarbanel’s first algorithm: the 

 (see Section 6.3.1). The plots in Figure 7.5 show the estimated  for the six noise 

free systems using this algorithm. The four curves in each graph are found by changing the 

number of neighbors (  = 20, 50, 70, and 100). We can see from the figure that for sys-

tems with dimensions greater than 4, the estimation of the minimum embedding dimen-

sions  are poor. The plots also show that the estimated  for the case of the Rossler 

model is poor as well. It estimated  where the correct dimension is 3.

dL

dL

CDDL CDTL

CND

CDDG CDTG

CDDL
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Nb

dL( ) dL

dL 2=
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Figure 7.5  The estimated  for the six noise free systems using the  algorithm. The vertical 
axis is the percentage of the FNNs found from each dimension and the horizontal axis is the dimension 

d, a) for the Lorenz model, , b) for the chaotic circuit, , c) for the Rossler model, 
, d) for MG of dimension 4, , e) for MG of dimension 7, , f) for MG of dimen-

sion 13, 

7.3.2 Using the  algorithm

The estimated  using the  algorithm for the six noise free systems is shown 

in Figure 7.6. By comparing the results found from these plots with those of the  al-

gorithm, we can see that the  did not improve the estimation of  for the six noise 

free systems.
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Figure 7.6  The estimated  for the six noise free systems using the  algorithm. The vertical 
axis is the percentage of the FNNs and the horizontal axis is the dimension d, a) for Lorenz model, 

, b) for chaotic circuit, , c) for Rossler model, , d) for MG of dimension 4, 
, e) for MG of dimension 7, , f) for MG of dimension 13, 

After presenting the results found from the  and the  algorithms, we 

present next the results found from our four algorithms: the CND, the , the , 

and the predictive.

7.3.3 Using the CND algorithm

The plots in Figure 7.7 show the results of the estimated  for the six noise free 

systems using our first algorithm (CND) (see Section 6.5.1). As we can see from the figure, 
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the CND algorithm gave good estimates of  for the systems of dimensions up to 4. On 

the other hand, it gave poor estimates of  for the systems of dimensions 7 and 13.

Figure 7.7  Estimating  for the noise free systems using our first algorithm (CND). The vertical axis 
is the estimated  and the horizontal axis is the number of neighbors used (w). a) for Lorenz model, 

, b) for the chaotic circuit, , c) for Rossler model, , d) for MG of dimension 4, 
, e) for MG of dimension 7, , f) for MG of dimension 13, this algorithm does not give 

a stable answer

7.3.4 Using the  algorithm

The plots in Figure 7.7 show the results of the estimated  for the six noise free 

systems using our second algorithm ( ) (see Section 6.5.2). By comparing the esti-
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mated  from the plots in the figure, we can see that the  algorithm gave similar 

results to those of the CND algorithm.

Figure 7.8  Estimating  for the noise free systems using our second algorithm ( ). The vertical 
axis is the percentage of the FNNs found and the horizontal axis is the dimension d. a) for Lorenz mod-
el, , b) for the chaotic circuit, , c) for Rossler model, , d) for MG of dimension 

4, , e) for MG of dimension 7, , f) for MG of dimension 13, 

7.3.5 Using the  algorithm

By comparing our third algorithm ( ) (see Section 6.5.3) with the CND and 

, we can see from Figure 7.9 that the  algorithm has improved the estimation 

of  for the system of dimension 7.
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Figure 7.9  Estimating  for the noise free systems using our third algorithm ( ). The vertical 
axis is the percentage of FNNs and the horizontal axis is the dimension d. a) for Lorenz model, 

, b) for the chaotic circuit, , c) for Rossler model, , d) for MG of dimension 4, 
, e) for MG of dimension 7, , f) for MG of dimension 13, .

7.3.6 Using the predictive algorithm

For our fourth algorithm (the predictive), the estimated  is found where the SSE 

of the prediction error is not changing significantly. The plots in Figure 7.10 summarize the 

estimation of  for the six noise free systems.
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Figure 7.10  The predictive algorithm results for the noise free systems, the vertical axis is the SSE of 
the prediction errors and the horizontal axis is the dimension d, a) for Lorenz model, , b) for 
the chaotic circuit, , c) for Rossler model, , d) for MG of dimension 4, , e) for 

MG of dimension 7, , f) for MG of dimension 13, .

As we can see from Figure 7.10 above, the SSEs (of the prediction errors) of the 

neural network used to estimate  have dropped significantly when the dimension (d) has 

reached the minimum embedding dimension of the signal. Then it did not improve signif-

icantly after that. As a result, the predictive algorithm gave good estimates of  for all the 

six noise free systems.

In the next section, we will apply the same algorithms to estimate  for the noisy 

systems.
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7.4 Estimating  for the noisy systems

In the previous section, we have investigated the estimation of  for six different 

noise free systems using the six algorithms. In this section, we will test the same algorithms 

to estimate  for three practical systems that we introduced in Section 7.2.2. But before 

we do that, let us investigate the estimation of  for a noisy chaotic circuit. After that, we 

will show the results of estimating  for the three practical systems.

7.4.1 Estimating  for the noisy chaotic circuit (cc)

We will use 5000 points from the X-coordinate of the chaotic circuit (cc) (after dis-

carding the transients) to represent the measurements from this system. We will also add 

different levels of noise to these measurements. The signal to noise ratio (SNR) in decibels 

(dB) is defined as:

, (7.13)

where  is the variance of the signal and  is the variance of the noise. We will 

use the following SNR values: 200, 100, 50, and 20 dB for our purpose.

7.4.1.1  Using the  algorithm

The resulting plots when using the  algorithm are shown in Figure 7.11. As 

we can see from the figure, the  algorithm was able to give the correct estimate of 

 for the cases where the SNR are 200, and 100 dB. On the other hand, it was not able to 

estimate the correct  for the cases where the SNR are 50, and 20 dB.
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Figure 7.11  Estimating  for the noisy cc using Abarbanel et al first algorithm ( ). a) at 200 
dB, , b) at 100 dB, , c) at 50 dB, , d) at 20 dB, the algorithm assumes the signal 

is noise

7.4.1.2  Using the  algorithm.

The resulting plots when using the  algorithm to estimate  for the noisy 

circuit are shown in Figure 7.12. We can see from the figure that the  was susceptible 

to noise. It fails to find the correct minimum embedding dimension for any of the four cas-

es.

Figure 7.12  Estimating  for the noisy cc using  algorithm. a) at 200 dB, , b) 100 dB, 
, c) at 50 dB, and d) at 20 dB the algorithm assumes the signal is noise
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7.4.1.3  Using the CND algorithm

The resulting plots when using our first algorithm (the CND) are shown in Figure 

7.13. We can see from the figure that the CND algorithm gave the correct  for the cases 

where the SNR are 200, 100, and 50 db. It gave a wrong estimate;  when the SNR 

20 dB.

Figure 7.13  Estimating  for the noisy cc using our first algorithm (the CND), a) at 200 dB, , 
b) at 100 dB, , c) at 50 dB, , d) at 20 dB, 

7.4.1.4  Using the  algorithm

The resulting plots when using our second algorithm ( ) to estimate  for 

the noisy cc are shown in Figure 7.14. We can see that this algorithm gave good estimates 

of  for the four cases of noisy cc.
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Figure 7.14  Estimating  for the noisy cc using our second algorithm ( ). It shows  for 
SNR=200, 100, 50, and 20 dB

7.4.1.5  Using the  algorithm

The resulting plots of estimating  for the noisy cc when using our third algorithm 

( ) are shown in Figure 7.15. As seen from the figure, this algorithm gave good esti-

mates of  for the cases where the SNR are 200, 100, and 50 dB. For the case where the 

SNR is 20 dB, it gave a wrong estimate of , as seen from the right bottom curve. Notice 

here that the semilog plot (at the 20 dB case) can’t show the percentage of FNNs when it 

equals zero (at ).
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Figure 7.15  Estimated  for the noisy cc using the  algorithm. For SNR=200, 100, and 50, 
. At SNR=20db, not stable 

7.4.1.6  Using the predictive algorithm

The resulting plots when using the predictive algorithm are shown in Figure 7.16. 

From the figure, we can see that this algorithm gave good estimates of  for the cases 

where the SNR are 200, 100, and 50 dB. It fails when the SNR is 20 dB.

Figure 7.16  Estimating  using our fourth algorithm (Predictive),  for 200, 100, and 50 dB, 
at 20 dB it assumes a random signal
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7.4.2 Estimating  for the Santa Fe data sets

7.4.2.1  Using the  algorithm

The plots in Figure 7.17 show the estimated  for the data sets A, , and  us-

ing the  algorithm. We can see from the figure that this algorithm failed to find the 

correct  for the cases of the A and  data sets. For the  data set it gave .

Figure 7.17  Using the  algorithm, a) for data set A, , b) for , , c) for , 
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7.4.2.2  Using the  algorithm

The plots in Figure 7.18 show the estimated  for A, , and  Santa Fe data 

sets using the  algorithm. We can see from the figure that this algorithm gave good 

estimate of  for A data set. It gave  for  data set and failed to find a reason-

able estimate of  for  data set.

Figure 7.18  Using the  algorithm, a) for data set A, , b) for , , c) for , 
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7.4.2.3  Using the CND algorithm

The plots in Figure 7.19 show the estimated  for A, , and  Santa Fe data 

sets using our first algorithm (the CND). We can see that this algorithm gave a good esti-

mate of  for data set A. It gave  for data set , while it failed to find a good 

estimate of  for the data set .

Figure 7.19  Using the  algorithm, a) for data set A, , b) for , , c) for , the 
result is not stable
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7.4.2.4  Using the  algorithm

The plots in Figure 7.20 show the estimated  for A, , and  Santa Fe data 

sets using the  algorithm. As seen from the figure, this algorithm gave a good esti-

mate of  for the A data set. It gave  for the  data set. It gave  for the 

 data set, which is higher than the actual value ( ).

Figure 7.20  Using the  algorithm, a) for data set A, , b) for , , c) for , 
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7.4.2.5  Using the  algorithm

The plots in Figure 7.21 show the estimated  for A, , and  Santa Fe data 

sets using the  algorithm. Figures 7.21a and 7.21b show that the estimated  for 

the A data set is 3, and for  data set . This algorithm gave a bad estimate of  

for the  data set ( ).

Figure 7.21  Using the  algorithm, a) for data set A, , b) for , , c) for , 
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7.4.2.6  Using the predictive algorithm

The plots in Figure 7.22 show the estimated  for A, , and  Santa Fe data 

sets using the predictive algorithm. As seen from the figure, this algorithm gave a good es-

timate of  for the A data set. It estimated  for the  data set, and  for 

the  data set.

Figure 7.22  Using the predictive algorithm, a) for data set A, , b) for , , c) for , 
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Up to this point, we have shown the results of the estimated  for the noise free 

and the practical systems using all the six algorithms. In the next section, we will test the 

ability of these algorithms to distinguish between signals generated from a chaotic system 

(deterministic), and signals generated from a random process (noise).

7.5 Testing the algorithms with random signals

We generated 3000 points from a normally distributed random process with zero 

mean and unit variance. We will test the ability of each algorithm to recognize that the or-

igin of the signal is a random process rather than a deterministic source. According to Abar-

banel et al [AbKe93] the embedding dimension will approach  for random signals.

Figure 7.23 shows the results found from Abarbanel et al two algorithms. We can 

see that the first algorithm ( ) did not recognize that the signal is a random one. It 

gave 11 as the minimum embedding dimension of the signal. Their second algorithm 

( ) gave  as the minimum embedding dimension for the signal, which is what we 

expect from a random signal.

Figure 7.23  Testing Abarbanel et al two algorithms with a random signal, a) the  algorithm fails 
to recognize the random signal, b) the  algorithm succeeded in recognizing the random signal
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, and the predictive to recognize the random signal. As we can see from the plots, 

the CND, , and the predictive algorithm were able to recognize the random signal. 

They estimated . On the other hand, the  algorithm fails to recognize the 

random signal, it estimated .

Figure 7.24  Testing our four algorithms for estimating the dimension of the random signal, a) the 
CND algorithm recognizes the signal is random by not changing the estimated  as w increases, b) 
for the  algorithm, it did not recognize the random signal, c) for the  algorithm, it was 

able to recognize the random signal, the same for the predictive algorithm in d).
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7.6 Tables and discussions

In the previous three sections we showed the resulting plots for the estimated  for 

the nine systems using the six algorithms. In this section, we will summarize these results, 

then discuss them.

7.6.1 Tables

In Table 7.1, we summarize the results found from the previous section. More dis-

cussions of these results will be presented later. (Wrong estimates are circled.)

Table 7.1 Tabulation of the estimated  for all the testing systems 
shown in Sections 7.3 through 7.5. The wrong estimates are circled. The 

abbreviation cc: chaotic circuit, and N. Able: not able

Next we measured the time (in seconds) required by each algorithm to estimate  

for data set A. Table 7.2 shows the time for each algorithm.

Table 7.2 Six algorithms estimation time (in seconds) for  of data set 
A of the Santa Fe competition, it shows the  is the fastest and the 

predictive is the slowest.

dL

Abarbanel et al Our Algorithms
Algorithms

Systems Original dimension CDDL CDTL CND CDDG CDTG Predictive

Lorenz 3 3 2 3 3 3 3
Chaotic circuit 3 3 3 3 3 3 3
Rossler 3 2 2 3 3 3 3
MG of dim 4 4 4 3 4 4 4 4
MG of dim 7 7 4 3 5 4 7 7
MG of dim 13 13 4 4 N. able 4 7 13
cc with 200 dB 3 3 2 3 3 3 3
cc with 100 dB 3 3 2 3 3 3 3
cc with 50 dB 3 5 noise 3 3 3 3
cc with 20 dB 3 noise noise 4 3 N. Able noise
Santa Fe A 3 4 3 3 3 3 3
Santa Fe B 1 4 4 6 5 5 5 4
Santa Fe D 1 9 6 10 N. able 11 6 10

Noise recognition N. Able Able Able N. Able Able Able

dL

dL

Abarbanel et al Our algorithms
Two algorithms

CDDL CDTL CND CDDG CDTG Predictive
2.26 11.0 12.7 0.24 0.85 140

dL
CDDG



108

We can see from the table above that the  algorithm required the minimum time; 

0.24 sec. While the predictive algorithm required the maximum time; 140 sec.

7.6.2 Discussion of the Results

Next we will discuss how the following factors affect the results: 1) the original di-

mension of the system, 2) the use of the local versus the global neighbor search method, 3) 

the estimation time, 4) sensitivity of each algorithm to the threshold value, 5) the ability of 

each algorithm to recognize random signals, and 6) dependence of the algorithms on the 

number of points needed to estimate . At the end of this section we will make general 

conclusions about the best way to estimate .

7.6.2.1  The effect of the original dimension of the system

From the results shown in Table 7.1, we can generally see that when the dimension 

of the original system is greater than four, the geometric algorithms ( , , CND, 

) give incorrect estimates of . On the other hand, the predictive algo-

rithm gives the correct estimates as seen in the last column of the table. For the case of the 

data set  the dimension is 9 (see [WeGe95 page 6]). We can see that the best estimate 

provided by our algorithms for this system is 10.

7.6.2.2  Local versus global neighbor search methods

To reduce the computational cost in the local neighbors search algorithms (  

and ), the search for the nearest neighbor (in ) is done among the  neighbors 

rather than the whole data set. On the other hand, the search for the  neighbors for each 

point in  is done by using the specialized neighbors search algorithm mentioned in 

Chapter 6. The  algorithm gave incorrect estimates of  for the noisy chaotic circuit 

CDDG

dL

dL

CDDL CDTL

CDDG and CDTG, dL

D1

CDDL

CDTL ℜd
Nb

Nb

ℜ
dE

CDTL dL
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(cc) as seen in the middle row of the table. While the  gave incorrect estimates of  

for 50 and 20 dB cases.

On the other hand, the algorithms , , and  are global neighbor 

search algorithms. That means the nearest neighbor is computed among the whole data set. 

To reduce the computational cost, we only use the specialized neighbor search algorithm 

mentioned in Chapter 6. The performance of these algorithms has improved significantly 

for the noisy chaotic circuit (cc), as seen from the table. Further, we can see that the CND 

and the predictive algorithms were not able to give the correct estimate of  when the 

.

7.6.2.3  Estimation time

Table 7.2 shows the time required to estimate  for the A data set using the six al-

gorithms. The sequence of algorithms arranged in a descending order of speed is as follows: 

, then the predictive algorithm.

7.6.2.4  Sensitivity to the threshold value

We found that our algorithms were not sensitive to the threshold value used in the 

estimation process. In the CND algorithm, we used a threshold value between 0 and 3. For 

the  algorithm, we used a threshold value between 0.1 and 0.5. For the case of the 

 algorithm, the threshold used was between 2 and 10. Choosing the value of the 

threshold depends on the amount of noise contained in the signal.

CDDL dL

CND CDDG CDTG

dL

SNR 20 dB=

dL

CDDG CDTG CDDL CDTL CND, , , ,

CDDG

CDTG
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7.6.2.5  Noise detection

From the last row of in Table 7.1, we can see that the  and the  algo-

rithms were not able to distinguish random signals from chaotic ones. Both algorithms gave 

11 as the minimum embedding dimension, which is not correct since the signal is not de-

terministic.

7.6.2.6  Dependence of the algorithms on the number of data points

From the results found in Table 7.1, we conclude that the algorithms are not sensi-

tive to the number of points needed to give the correct estimate of . For the predictive 

technique, it is important to insure that the number of points is greater than the number of 

parameters used in the neural network to prevent over fitting [Hag95].

7.6.3 General conclusions

From what we have seen above, we conclude the following: 1) The predictive algo-

rithm gives the best results as along as the SNR is not too low. However, this algorithm has 

its own drawback. Its computational time is much larger than those of the geometric algo-

rithms. 2) Using the global neighbor search reduces the computational time and improves 

the estimation. 3) To give confidence to the estimation process, one can run more than one 

algorithm and compare their results. We suggest the use of the predictive and the  

algorithms to do the estimation.

7.7 Chapter Summary

We have seen in this chapter the results of the estimated minimum embedding di-

mension for many chaotic dynamical systems using the different algorithms that we pre-

sented in Chapter 6. We also gave full discussion of the results that we found and drew 

CDDL CDDG

dL

CDDG
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conclusions on the best way to estimate the minimum embedding dimension of chaotic sys-

tems. In the Chapter 8, we will talk about the theory of Lyapunov exponents of chaotic sys-

tems.
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CHAPTER 8

THEORY OF LYAPUNOV EXPONENTS

8.1 Introduction

In Chapter 1, we said that the objective of this research is to model chaotic systems. 

We also said that in addition to estimating the model order (the minimum embedding di-

mension ), we need to estimate the model parameters (the set of Lyapunov exponents). 

In Chapters 3 through 7, we discussed estimating . In Chapter 2, we found that one of 

the main characteristics of chaotic systems is their sensitivity to initial conditions. This sen-

sitivity is quantified by the value of the Lyapunov exponents of the chaotic system, as will 

be seen later. In this chapter, we will explore the theory of Lyapunov exponents and use it 

to define equivalent chaotic systems. We will also prove a new theorem that relates the 

poles of a linear system to the set of Lyapunov exponents (LEs).

In the next section, we discuss the sensitivity of some linear systems to initial con-

ditions. In Section 8.3, we explore the theory of first order chaotic systems. The set of LEs 

for a multidimensional chaotic system is shown in Section 8.4. Two sets of invariants that 

determine equivalent chaotic systems are discussed in Section 8.5. LEs can be approximat-

ed by Jacobian matrices as shown in Section 8.6. Some linear algebra definitions and the-

orems are presented in Section 8.7. Some definitions and theorems from multilinear 

algebra are presented in Section 8.8. Using these concepts from linear and multilinear al-

dL

dL
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gebra, a new theorem that relates the poles of a linear system to the set of LEs is proven in 

Section 8.9. Finally in Section 8.10 we present the chapter summary.

8.2 Sensitivity of some linear systems to initial conditions

We have seen in Section 2.3.1 that one of the characteristics of chaotic systems is 

their sensitivity to initial conditions. But it is important to notice that not every sensitivity 

to initial conditions originates from a chaotic behavior. As an example, we can see in Figure 

8.1 the response of the linear system:

, (8.1)

for two different initial conditions  and  where . As we can 

see from the figure, the difference between the two responses (dotted curve) grows expo-

nentially as time increases, but the system responses (solid and dashed curves) are not cha-

otic.

Figure 8.1  Linear systems can be sensitive to initial conditions
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The solution of Equation (8.1) is

. (8.2)

Perturbing the initial condition  by  produces  that is

. (8.3)

We label the initial perturbation from  to  by

. (8.4)

After k iterations, the system’s response for the new initial condition is , 

and the perturbation grows to

. (8.5)

From the above equation, we can see that

. (8.6)

This ratio measures how fast the perturbation grows with time.

Using Equation (8.6), we will investigate the perturbation growth rate for the cha-

otic system of the tent map: , see Equation 

(2.3). We begin by choosing three different initial conditions  and 

four different initial perturbations . Next we iterate the map and 

record the number of iterations required for the evolved perturbations to exceed some pre-

defined threshold. Using the resulting perturbation  and the number of iterations found 

(k), we can compute the mean of the logarithm of the perturbation growth rate in Equation 

(8.6):

x k( ) c
k
x 0( )=

x 0( ) ε xε 0( )

xε 0( ) x 0( ) ε+=

x 0( ) xε 0( )

δ 0( ) xε 0( ) x 0( )– ε= =

xε k( ) c
k
xε 0( )=

δ k( ) xε k( ) x k( )– c
kε= =

δ k( )
δ 0( )
----------- c

kε
ε

------- c
k

= =

x k 1+( ) f x k( )( ) 3 4⁄ 1 1 2x k( )––( )= =

0.202  0.347, 0.869,{ }

10
3–

 10
4–

 10
5–

 10
6–, , ,{ }

δ k( )
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. (8.7)

(The log in Equation (8.7) is the natural log.) Table 8.1 shows the results found from the 

different initial conditions  and initial perturbations  when the threshold used is 

0.001 [PJS92 page 709].

Table 8.1 Estimating  for .

From the above table, we can see that  has the same value regardless of 

changes in the initial condition or the initial perturbation. This result quantifies the 

Lyapunov exponent (LE) which is defined below.

8.3 Lyapunov Exponent (LE) of a first order chaotic system

Using the chain rule, we can write the ratio in Equation (8.6) as follows:

. (8.8)

Substituting this equation for Equation (8.7) produces:

. (8.9)

Notice that we can use the function f to write Equation (8.5) as

c( )log
1
k
--- δ k( )

δ 0( )
-----------log=

x 0( ) δ 0( )

x (0) δ(0) k δ(k ) log( c )

0.202 0.001 1 0.0015 0.40547
0.202 0.0001 6 0.0011391 0.40547
0.202 1.00E-05 12 0.0012975 0.40547
0.202 1.00E-06 18 -0.0014779 0.40547
0.347 0.001 1 0.0015 0.40547
0.347 0.0001 6 0.0011391 0.40547
0.347 1.00E-05 12 0.0012975 0.40547
0.347 1.00E-06 18 -0.0014779 0.40547
0.869 0.001 1 -0.0015 0.40547
0.869 0.0001 6 -0.0011391 0.40547
0.869 1.00E-05 12 0.0012975 0.40547
0.869 1.00E-06 18 0.0014779 0.40547

c( )log f x k( )( ) 3 4⁄( ) 1 1 2x k( )––( )=

c( )log

δ k( )
δ 0( )
----------- δ k( )

δ k 1–( )
------------------- δ k 1–( )

δ k 2–( )
------------------- … δ 1( )

δ 0( )
----------- c

k
= =

c( )log
1
k
--- δ i( )

δ i 1–( )
------------------log

i 1=

k

∑=
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 , (8.10)

which is

. (8.11)

Now we can write the ratio in Equation (8.9) as

. (8.12)

By taking the limit as  of Equation (8.12), we can write

, (8.13)

where . Using Equation (8.13), the right hand side of Equation (8.9) can be writ-

ten as follows (in the limit as the perturbation goes to zero)

. (8.14)

The LE for a first order chaotic system is denoted by  and defined to be the limit 

as  of Equation (8.14):

. (8.15)

The LE quantifies the mean growth of infinitesimally small errors in the initial condition of 

a chaotic system. By applying Equation (8.15) to the tent map in Equation (2.3), we can 

compute its LE:

δ k( ) f xε k 1–( )( ) f x k 1–( )( )–=

δ k( ) f x k 1–( ) δ k 1–( )+( ) f x k 1–( )( )–=

δ k( )
δ k 1–( )
------------------- f x k 1–( ) δ k 1–( )+( ) f x k 1–( )( )–

δ k 1–( )
-------------------------------------------------------------------------------------=

δ 0→

f x k 1–( ) δ k 1–( )+( ) f x k 1–( )( )–
δ k 1–( )

-------------------------------------------------------------------------------------
δ 0→
lim f· x k 1–( )( )=

f·
df x( )

dx
------------=

1
k
--- δ i( )

δ i 1–( )
------------------

δ 0→
limlog

i 1=

k

∑
1
k
--- f· x i 1–( )( )log

i 1=

k

∑=

λ

k ∞→

λ 1
k
--- f· x i 1–( )( )log

i 1=

k

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

k ∞→
lim c( )log= =



117

, (8.16)

which is

, (8.17)

or

, (8.18)

which is the same value that was found experimentally.

What we have seen in this section is that the LE of a first order system is a measure 

of the local mean growth rate of infinitesimally small errors. A chaotic system will be lo-

cally unstable, although globally bounded. Therefore, we expect the LE to be positive. A 

negative LE would indicate local stability, and therefore the system would not exhibit cha-

otic behavior.

Notice also that for a first order linear system, as in Equation (8.1), the LE is the log 

of the system pole. Later in this chapter, we will introduce a new theorem that demonstrates 

the relationship between the LEs and the poles of a multidimensional linear system.

8.4 Lyapunov exponents for a multidimensional system

In the previous section, we defined the LE for a first order system. In this section, 

we define the LEs for a multidimensional system. A multidimensional system in  has d 

LEs that characterize it. They can have positive, negative, or zero values. At least one of 

λ 1
k
--- d

dx
------ 3 4⁄( ) 1 1 2x i( )––( )log

i 1=

k

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

k ∞→
lim=

λ 1
k
--- 2 3 4⁄( ) sign 1 2x i( )–( )( )log

i 1=

k

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

k ∞→
lim=

λ 1
k
--- 3 2⁄( )log

i 1=

k

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

k ∞→
lim 0.40547= =

ℜd
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these exponents has to be positive for an attractor to be chaotic [Aba95]. The set of d LEs 

is sometimes called the spectrum of LEs.

The state evolution of a chaotic system in  is governed by the map f 

( , see Equation (2.2)). Let an infinitesimal perturbation from the initial 

state  to  be

, (8.19)

where the distance , which is infinitesimal. After k time steps,  

evolves to , and  evolves to . The new perturbation vector is

. (8.20)

The finite time LE (sometimes called the local LE) is defined as

. (8.21)

The LE (sometimes called the global LE) is defined as

. (8.22)

There are d LEs depending on the orientation of the initial perturbation vector  (see 

[EcRu85] page 630).

As we have seen above, to find the LEs for a multidimensional system, we need to 

find the evolution of an initial perturbation vector . From this evolution, the ratio be-

tween the evolved vector and the initial one is used to find the LEs. More details will be 

given later of methods used to evaluate the LEs.

ℜd

x k 1+( ) f x k( )( )=

x 0( ) xε 0( )

δ 0( ) xε 0( ) x 0( )–=

xε 0( ) x 0( )– ε= x 0( )

x k( ) xε 0( ) xε k( )

δ k( ) xε k( ) x k( )–=

λk x 0( ) δ 0( ) k,,( ) 1
k
---

δ k( )
δ 0( )

---------------log=

λ x 0( ) δ 0( ),( ) λk x 0( ) δ 0( ) k,,( )
k ∞→
lim=

δ 0( )

δ 0( )
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8.5 Invariant sets in modeling by embedding

From the set of Lyapunov exponents, Kaplan and Yorke [KaYo79] conjectured that 

the Lyapunov dimension can be computed, which is

, (8.23)

where  is chosen such that . The importance of the Lyapunov dimen-

sion comes from the fact that its value is closely related to the box-counting dimension of 

the original system (see also [Aba95])

. (8.24)

The Lyapunov exponents and the Lyapunov dimension are the same in both the 

original system and its chaotic model obtained through delay embedding. This is an impor-

tant result. It means that although the attractor of the delay embedding model may not look 

the same as the attractor of the original system, they share the same global properties. This 

means that the two systems are equivalent in the sense of these global properties. The other 

important aspect is that  can be found easily if one can accurately estimate the set of 

LEs.

dLyp kL

λj

j 1 2 … kL, , ,=
∑

λkL 1+
-------------------------------+=

kL
λj

j 1 2 … kL, , ,=
∑ 0>

dLyp dc≈

dLyp
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8.6 LEs from the Jacobian matrix

As we said in the beginning of this chapter, LEs characterize chaotic systems. To 

compute the set of LEs of the system, we can use Equation (8.22). That means we need to 

follow the evolution of the initial perturbation vector  with time. The perturbed vector 

 is mapped by f according to Equation (2.2):

. (8.25)

Which can be written as

. (8.26)

Notice that  does not necessarily equal  since f is not linear. The map 

 can be approximated around  by using the Taylor series expansion as fol-

lows:

. (8.27)

By using Equations (8.26) and (8.27), we can write

, (8.28)

or

. (8.29)

We denote the Jacobian matrix in Equation (8.29) by  whose elements are

, (8.30)

δ 0( )

xε k( )

xε k 1+( ) f xε k( )( )=

x k 1+( ) δ k 1+( )+ f x k( ) δ k( )+( ) f xε k( )( )= =

δ k 1+( ) f δ k( )( )

f xε k( )( ) x k( )

f x k( ) δ k( )+( ) f x k( )( ) f∂
x∂

-----
x x k( )=

x x k( )–( )+≈

x k 1+( ) δ k 1+( )+ x k 1+( ) f∂
x∂

-----
x x k( )=

δ k( )+≈

δ k 1+( ) f∂
x∂

-----
x x k( )=

δ k( )≈

Jx k( )

Jx k( )( ) u v,( )
fu∂
xv∂

-------
x x k( )=

=
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where . Now we can write Equation (8.29) as

, (8.31)

which can be written as

. (8.32)

In general, we can write the evolution of an initial perturbation  after k time steps as:

. (8.33)

For simplicity of notation, let  represent the multiplication of the k Jacobian matrices:

. (8.34)

Now we can write the evolution of an initial perturbation vector as

. (8.35)

The LEs of the system are

, (8.36)

there are d LEs of the system depending on the orientation of the perturbation  (see 

[EcRu85] page 630).

8.6.1 Oseledec theorem

In 1968, Oseledec, V. [Ose68] proved that the limit in Equation (8.37) below exists 

and that it is independent of the initial condition,

. (8.37)

Further and most important, he proved that the logarithm of the eigen values of the matrix 

 equal the LEs of the system (see also [EcRu85]).

u v, 1 2 … d, , ,=

δ k 1+( ) Jx k( )δ k( )≈

δ k 1+( ) Jx k( )Jx k 1–( )δ k 1–( )≈
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δ k( ) Jx k 1–( )Jx k 2–( )…Jx 0( )δ 0( )≈

Jx
k
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kδ 0( )≈

λ 1
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kδ 0( )log= =
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k ∞→
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In the next two sections, we define some terms from linear and multilinear algebra. 

These definitions will be used in Section 8.9 to prove a new theorem that relates the poles 

of a linear system to the LEs, as computed from the eigen values of the Oseledec matrix 

. This theorem will provide insights into the meaning of the LEs and will suggest new 

algorithms for estimating the LEs.

8.7 Linear Algebra definitions

8.7.1 Definition: Inner product

A scalar function which operates on two vectors  and denoted by  

is defined as an inner product if it satisfies the next three conditions:

. (8.38)

. (8.39)

. (8.40)

The inner product is evaluated as follows

, (8.41)

(see [Hag95]).

8.7.2 Definition: Vector Norm

Given a vector , a real valued function  is a vector norm if it 

satisfies the next three conditions:

(8.42)

Λx

x y, ℜd∈ ,( )

x y,( ) y x,( )=

x ay1 by2+,( ) a x y1,( ) b x y2,( )+=

x x,( ) 0≥

x y,( ) xTy=

x ℜd∈ g:ℜd ℜ1→

g x( ) 0      where g x( )≥ 0 iff x 0= =
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 where (8.43)

 where . (8.44)

The vector norm is denoted by . One choice of the norm is the 2-norm:

. (8.45)

After defining the vector norm, we will use it next to define the matrix norm.

8.7.3 Definition: Matrix Norm

Given a real  matrix A, a real valued function  is a matrix norm 

if it satisfies the next three conditions:

(8.46)

 where (8.47)

 where . (8.48)

As with the vector norm, the matrix norm is denoted by . One choice of the matrix norm 

can be defined by using the vector norm as follows:

. (8.49)

(Notice that we may use T as a super script to mean real matrix transpose. If the matrix is 

complex, T means the complex conjugate.)

8.7.3.1  Some important properties of the matrix norm

Two important properties of the matrix norm which are used in the coming sections 

are:

g αx( ) α g x( )= α ℜ1∈

g x1 x2
+( ) g x1( ) g x2( )+≤ x1 x2, ℜd∈

x x1
2

x2
2 … xd

2
+ + +( )

1 2⁄
xTx( )

1 2⁄
= =

dxd g:ℜdxd ℜ1→

g A( ) 0      where g A( )≥ 0 iff A 0= =

g αA( ) α g A( )= α ℜ1∈

g A1 A2
+( ) g A1( ) g A2( )+≤ A1 A2

 are dxd matrices,

A max

x =1

Ax=
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 where . (8.50)

 where . (8.51)

These properties can be found, for example, from [GoVa96].

8.7.3.2  Lemma: Norm of a diagonal matrix

For a diagonal matrix  with elements  where ,

. (8.52)

proof

By using the definition of the matrix norm in Equation (8.49), we can write

, (8.53)

where  such that the 1 appears in the  row, and . 

This means Equation (8.53) can be written as follows:

. (8.54)

Now let’s assume that  is a unit vector that satisfies the norm condition:

. (8.55)

Since  is a diagonal matrix, we can write the square of the norm in Equation (8.55) as 

follows:

. (8.56)

Notice that  has the following upper bound:

. (8.57)

Ax A x≤ x ℜd∈

A1A2 A1 A2≤ A1 A2
 are dxd matrices,
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By combining Equations (8.57) and (8.54), we can see that

. (8.58)

8.7.4 Singular value decomposition

For each  matrix , there exist orthogonal matrices  such that

, (8.59)

where S is a diagonal matrix with elements , which are the singular 

values of A (see [GoVa96 page 70]).

8.7.4.1  Important SVD properties

Two important properties can be found from the SVD of a matrix. The first one is 

that the norm of the matrix is equal to the largest singular value of the matrix:

. (8.60)

The second property is that the  singular value of the matrix A is equal to the square root 

of the  eigen value of the matrix :

, (8.61)

where  (see [TrBa97 page 34]).

8.7.5 Definition: Diagonalizable matrix

A matrix A is said to be diagonalizable if there exists an invertible matrix  such 

that ; a diagonal matrix.

Dd λd=

dxd A Q, V

QTAV S=

σd σd 1– … σ1≥ ≥ ≥

A σd=

i
th

i
th ATA

σi A( ) λi ATA( )( )
1 2⁄

=

i 1 2 … d, , ,=

W

W( ) 1– AW D=
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8.8 Multilinear algebra definitions

8.8.1 Vector exterior products

Let  be the basis set of a vector space V. The exterior product of 

two vectors  and  is denoted by  (  wedge ). It has the following properties:

(8.62)

. (8.63)

This relation can be extended linearly. So if  and , then

. (8.64)

Geometrically, we know that a vector a in the space  represents a specific direction in 

this space. The magnitude of the vector represents its length. The exterior product of two 

vectors a and b represents the oriented plane segment of the parallelogram with sides a and 

b. Its magnitude represents the area of the resulting parallelogram. The same is true for 

higher order products. The next figure shows two vector exterior products. For more details 

see [Bay96].

Figure 8.2  Vectors a and b exterior product ( )

v1 v2 … vd, , ,{ }

vi vj vi^vj vi vj

vi^vj 0 if i j= =

vi^vj vj^vi–  if i j≠=

a a1v1 a2v2+= b b1v1 b2v2+=

a^b a1v1 a2v2+( )^ b1v1 b2v2+( ) a1b2 a2b1–( )v1^v2= =

ℜ2

a

b
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8.8.2 Linear operator exterior power

Let V be a vector space of dimension d with the basis set . Define 

 to be the vector space of dimension with the basis set

. (8.65)

By generalizing the above definition, we can see that  is a vector space of dimension 

 where . The basis set for  is

. (8.66)

Let the linear operator L be a map from V to itself. We define the linear operator L exterior 

power, , such that

, (8.67)

where .

Let’s equip the space V with an inner product (see Section 8.7.1), and let 

. From this inner product of V, we can define the inner product of  as the 

bilinear extension of

. (8.68)

(It can be shown that this is a valid inner product.)
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8.8.2.1  Definition: Adjoint of a linear operator

Given a linear operator , define its adjoint to be the linear operator 

 which is determined by

, (8.69)

where  (see [Arn98] page 118 and the references therein).

8.8.2.2  Lemma: Adjoint of the wedge

If  is the adjoint of L,

. (8.70)

Proof

By applying the adjoint condition to , we have

(8.71)

Also

(8.72)

We conclude from Equations (8.71) and (8.72) that

 (8.73)

for all . As a result, we can see that

L:V V→

L
*
:V V→

Lv w,( ) v L
*w,( )=

v w, V∈

L
*

L
*( )

^q
L

^q( )
*

=

L
^q

L
^q v1 v2 … vq∧ ∧ ∧( ) w1 w2 … wq∧ ∧ ∧,( ) =

v1 v2 … vq∧ ∧ ∧ L
^q( )

*
w1 w2 … wq∧ ∧ ∧( ),( )

L
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*w1 L
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^q
w1 w2 … wq∧ ∧ ∧( ),( )

v1 v2 … vq∧ ∧ ∧ L
^q( )

*
w1 w2 … wq∧ ∧ ∧( ),( ) =

v1 v2 … vq∧ ∧ ∧ L
*( )

^q
w1 w2 … wq∧ ∧ ∧( ),( )

vi wj, V∈



129

. (8.74)

8.8.2.3  Linear operator properties

We list next some properties of linear operators. For reference to the proof of these 

properties see [Arn98] page 118 and the references therein.

(1)  If A is a matrix representation for L with respect to some basis set,

. (8.75)

(2)  If A is a matrix representation for  with respect to some basis set, and B is a 

matrix representation for  with respect to the same basis set,

AB is a matrix representation for . (8.76)

(3)  If A is a matrix representation for L with respect to an orthonormal basis,

 is a matrix representation for . (8.77)

(4)  From (2) and (3), we can see that

 is a matrix representation for . (8.78)

(5)  If  and  are linear operators,

. (8.79)

(6)  If A is a matrix representation for L with respect to an orthonormal basis, and its 

eigen values are , then the eigen values of  are

. (8.80)

L
*( )

^q
L

^q( )
*

=

λ A( ) λ L( )=

L1

L2

L1L2

AT
L

*

ATA L
*
L

L1 L2

L1L2( )^q
L1

^q
L2

^q
=

λi A( ) L
^q

λ L
^q( ) λi1

A( )λi2
A( )…λiq

A( ) 1 i1 i2 … iq d≤< < <≤{ }=
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8.8.2.4  Lemma: Eigen values of 

If A is a matrix representation for L with respect to an orthonormal basis, the set of 

eigen values of  is

. (8.81)

Proof

Since  is a matrix representation for ,

. (8.82)

But we know from Equation (8.61) that

. (8.83)

So from Equation (8.80), we have

. (8.84)

After defining the matrix norm and the linear operator exterior power, we will use 

them to prove a new theorem for computing the limit as  of the eigen values of the 

linear Oseledec matrix: .

L
*
L( )

^q

L
*
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^q

λ L
*
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^q
( ) σi1

A( )σi2
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⎨ ⎬
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ATA L
*
L
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*
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σ A( )( )2 λ ATA( )=

λ L
*
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^q
( ) σi1

A( )σi2
A( )…σiq
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⎨ ⎬
⎧ ⎫

=

k ∞→

AT( )
k

A( )k( )
1 2k( )⁄
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8.9 The linear Oseledec matrix

Consider again the Oseledec matrix  defined in Equation (8.37). Oseledec 

[Ose68] proved that this limit exists and that the LEs of the system are equal to the loga-

rithms of the eigen values of this Oseledec matrix. In order to gain insight into the meaning 

of the LEs, let’s consider a linear system. The linear counter part to Equation (2.2) (or 

Equation (8.25)) is

. (8.85)

For this system, the Jacobian matrix, (defined in Equation (8.30)) becomes

. (8.86)

We then find that the product of the k Jacobian matrices in Equation (8.34) becomes

. (8.87)

The Oseledec matrix of Equation (8.37) can then be written as

. (8.88)

We know that the eigen values of the matrix A are the poles of a linear system. Our next 

step is to find the relationship between the eigen values of  and the eigen values of A.

8.9.1 Theorem: Eigen values of a linear Oseledec matrix

Let a matrix  be diagonalizable and full rank with eigen values , 

where . The limit as  of the  eigen value of the matrix

(8.89)

converges to .

Λx

x k 1+( ) f x k( )( ) Ax= =

Jx k( ) A=

Jx
k AA…A A( )k= =

Λx Jx
k( )

T
Jx

k( )
1 2k( )⁄

k ∞→
lim AT( )

k
A( )k( )

1 2k( )⁄

k ∞→
lim= =

Λx

A:ℜd ℜd→ λi A( )

i 1 2 … d, , ,= k ∞→ i
th

Ok AT( )
k

A( )k( )
1 2k( )⁄

=

λi A( )
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Proof

Before we prove the theorem, we summarize the proof in the following steps:

(1)  For a general matrix (not necessarily symmetric), prove that the limit of the  

root of the largest singular value of  converges to the magnitude of the larg-

est eigen value of A. This is done by first finding upper and lower bounds on the 

norm of . Next, we prove that the limits of the  root of the two bounds are 

equal (this part is proven in Proposition 8.9.3.2).

(2)  Divide the limit of the  root of the norm of  by that of . 

Apply the result found in (1) to this ratio to find the limit of the  root of the 

 singular value of . (  is the composition of k linear operators L.)

(3)  Repeat step (2), but take the ratios of the eigen values instead of the singular val-

ues. This step finds the magnitude of the  eigen value of A.

(4)  Equate the two quantities found in (2) and (3) to find that the limit of the  root 

of the  singular value of  converges to the magnitude of the  eigen 

value of A.

(5)  Singular values of  are the eigen values of  (Lemma 8.9.3.1). Taking 

the limit of the  root of both values complete the proof of the theorem.

k
th

A( )k

A( )k k
th

k
th

L
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L
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^q 1+
L

*k
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k( )
^q

k
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d q–( )th A( )k L
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d q–( )th

k
th

i
th A( )k i

th

A( )k Ok( )2k
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8.9.2 For a symmetric matrix

We will begin by proving the result for a symmetric matrix. We know from linear 

algebra that if A is symmetric,

, (8.90)

and its eigen vectors are orthonormal. So we can write

, (8.91)

where W is an orthonormal matrix whose columns are the eigen vectors of A, and D is a 

diagonal matrix containing the eigen values of A. Now we can write A as

. (8.92)

We can write the matrix  in Equation (8.89) as

, (8.93)

which is

. (8.94)

Since ; which is the identity matrix, Equation (8.94) can be simplified to

, (8.95)

where  is a diagonal matrix with elements . Eigen values of the matrices in Equa-

tion (8.95) are

. (8.96)

Because  is diagonal,

AT A=

AW WD=

A WDWT
=

Ok( )2k

Ok( )2k AT( )
k

A( )k=

Ok( )2k WDTW
T
WDTW

T
…WDTW

T
WDWT…WDWT

=

WTW I=

Ok( )2k W Da( )2kWT
=

Da λi A( )

λi Ok( )2k( ) λi Da( )2k( )=

Da
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, (8.97)

where .

8.9.3 For a general matrix

Now that we have proven the theorem for a symmetric matrix, next we prove it for 

the general case (where A is not necessarily symmetric). In this part of the proof, it will be 

convenient to define eigen values of the matrix  using singular values of the matrix 

, as shown below.

8.9.3.1  Lemma: Eigen values of  are equal to the singular values of 

Given the matrix , which is defined as shown in Equation (8.89), its eigen values 

are equal to the  root of the singular values of :

, (8.98)

where .

proof

Taking the  power of both sides of Equation (8.89) gives

. (8.99)

From Equation (8.61), we have

. (8.100)

But we can see from Equation (8.99) that

. (8.101)

λi Ok( ) λi Da( ) λi A( )= =

i 1 2 … d, , ,=

Ok

A( )k

Ok A( )k

Ok

k
th A( )k

λi Ok( ) σi A( )k( )( )
1 k⁄

=

i 1 2 … d, , ,=

2k( )th

Ok( )2k AT( )
k

A( )k=

σi A( )k( ) λi AT( )
k

A( )k( )( )
1 2⁄

=

λi Ok( )2k( ) λi AT( )
k

A( )k=



135

From Equations (8.100) and (8.101), we have

. (8.102)

Taking the  root of both sides of Equation (8.102) gives

. (8.103)

As a result from this lemma, we can see that in order to find , we can use 

.

8.9.3.2  Proposition: Limit of the  root of  

Let a real  matrix A be diagonalizable, and let its largest eigen value be , 

and its largest singular value be , then

. (8.104)

Proof

From Equation (8.60), we can see that the norm of the matrix is equal to the largest 

singular value of the matrix:

. (8.105)

By using the definition of the matrix norm in Equation (8.49), we can write

, (8.106)

where x is a unit vector in . If we let

, (8.107)

λi Ok( )2k( ) σi A( )k( )( )
2

=

2k( )th

λi Ok( ) σi A( )k( )( )
1 k⁄

=

λi Ok( )
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1 k⁄

k
th σd A( )k( )

dxd λd A( )

σd A( )

σd A( )k( )( )
1 k⁄

k ∞→
lim λd A( )=

A( )k σd A( )k( )=

A( )k A( )kx≥

ℜd

x ud=
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where  is a unit eigen vector of A corresponding to the largest eigen value, we can write 

(using Equation (8.43))

. (8.108)

After finding the lower bound for , the next step is to find an upper bound 

for it. Since we assumed the matrix A is diagonalizable, we can write it as follows:

, (8.109)

where D is a diagonal matrix with elements , the columns of W are the eigen vectors 

of A, and . Since ; which is the identity matrix, the matrix 

 can be written as follows

. (8.110)

By applying the norm property in Equation (8.51) to Equation (8.110), we have:

. (8.111)

To find the upper bound of , we can use the norm property in Equation 

(8.52) to find the norm of the diagonal matrix :

. (8.112)

Now we can write the upper bound of  in Equation (8.111) as follows

. (8.113)

By combining the lower and upper bounds of , we can see that

ud

A( )k σd A( )k( ) λd A( ) k≥=

σd A( )k( )

A WD W( ) 1–
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λi A( )
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= =
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. (8.114)

The  root of Equation (8.114) is:

. (8.115)

Notice that for any scalar ,

. (8.116)

Therefore,

. (8.117)

Now we can see that by the limit as , the upper and lower bounds for  

become equal. Taking the limit as  of Equation (8.115) and using Equation (8.60) 

gives

. (8.118)

Recall that we are trying to prove that the eigen values of  are equal to the mag-

nitude of the eigen values of A. So far, we have shown that the largest eigen value of  

(which is the same as ) is equal to the magnitude of the largest eigen value 

of A. The next step is to show that the remaining eigen values are also equal. Let A be a 

matrix representation for L with respect to an orthonormal basis. By using the linear oper-

ator property in Equation (8.76), we can see that  is a matrix representation for the 

composition of the k operators: , which is denoted by :
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λd A( ) σd A( )k( )( )≤
1 k⁄

λd A( ) W W( ) 1–( )
1 k⁄

≤

x 0>

x( )1 k⁄

k ∞→
lim 1=

W W( ) 1–( )
1 k⁄

k ∞→
lim 1=

k ∞→ σd A( )k( )( )
1 k⁄

k ∞→

A( )k
1 k⁄

k ∞→
lim σd A( )k( )( )

1 k⁄

k ∞→
lim λd A( )= =

Ok

Ok

σd A( )k( )( )
1 k⁄
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. (8.119)

Similarly, we denote the composition of the k adjoints of L by

. (8.120)

The next step in the proof of the theorem is to apply Equation (8.118) to the exterior 

power of the linear operator , which is , in place of . Assume now that there 

exists a matrix representation  for the linear operator  with respect to an orthonormal 

basis. We know from Equation (8.76) that

 is a matrix representation for . (8.121)

We also know from Equations (8.79), (8.119), and (8.121) that

. (8.122)

From Equation (8.60), we know that the norm of the matrix is equal to its largest singular 

value:

. (8.123)

We also know from Equations (8.61) and (8.78) that

. (8.124)

By using Equation (8.79), we can write Equation (8.124) as follows

. (8.125)

Notice that the norm of a linear operator is defined in the same way as the norm of a matrix 

(see [Kre98] page 33). So from Equations (8.123) and (8.125), we have
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. (8.126)

From Equation (8.81), we have

. (8.127)

Applying Equation (8.127) to  gives

. (8.128)

This means that by using Equations (8.126) and (8.128) we can write

 . (8.129)

(Notice that since A is full rank, non of its singular values or eigen values is equal to zero.) 

Equation (8.129) can be simplified to

 . (8.130)

If we apply Equation (8.118) to , we have

. (8.131)

According to Equation (8.75),

. (8.132)

From Equation (8.80), the largest eigen value of  is

. (8.133)

From the left hand side of Equation (8.126), we have
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. (8.134)

Now we can use Equations (8.131) and (8.134) to write

. (8.135)

From Equations (8.132) and (8.135), we have

. (8.136)

Applying Equation (8.133) to Equation (8.136) gives

. (8.137)

Next we need to find the limit of the  root of the ratio  and  

by using Equation (8.137):

. (8.138)

Which can be simplified to

. (8.139)

Combining Equation (8.139) with the limit of the  root of Equation (8.130) gives

. (8.140)

By repeating Equation (8.140) for , we have

, (8.141)
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where . Applying Equation (8.141) to the result of Lemma 8.9.3.1 gives

. (8.142)

Later we will show the result of applying this theorem to estimate the set of LEs for 

a chaotic system.

8.10 Chapter summary

In this chapter, we introduced the theory of Lyapunov exponents for a first order 

chaotic system and a multidimensional chaotic system. We also presented the notion of in-

variant sets that make two chaotic systems equivalent. A new theorem that relates the poles 

of a linear system to the set of Lyapunov exponents was also proven here. In the next chap-

ter, we will show methods to estimate the set of Lyapunov exponents for a chaotic system.

i 1 2 … d, , ,=

λi Ok( )
k ∞→
lim σi A( )k( )( )

1 k⁄
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lim λi A( )= =
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CHAPTER 9

ESTIMATION OF LYAPUNOV EXPONENTS

9.1 Introduction

In Chapters 5 through 7, we discussed estimating the minimum embedding dimen-

sion ( ) of a chaotic system. We said that  represents the model order. To complete the 

modeling process, we need also to estimate the set of  LEs of the system. In Chapter 8, 

we gave the theoretical background of the LEs and proved a new theorem (linear Oseledec 

theorem) that relates the LEs to the poles of a linear system. The purpose of this chapter is 

to discuss different algorithms for estimating the LEs. We will also test these algorithms on 

different chaotic systems.

In Section 9.2, we will talk about the QR decomposition of a matrix. We will also 

talk about spurious exponents in this section. In Section 9.3, we will explore two geometric 

algorithms for estimating the LEs. The first algorithm is the Eckmann algorithm. The sec-

ond algorithm is a new procedure based on the linear Oseledec theorem. We will also dis-

cuss a third algorithm in Section 9.4. This is a predictive algorithm that is an improvement 

of an existing algorithm which uses a neural network to estimate the LEs. Pseudo code that 

summarizes the three algorithms is shown in Section 9.5. The results of applying the three 

algorithms to estimate the LEs of six different chaotic systems are tabulated, and the overall 

results are discussed in Section 9.6. Finally, we present the chapter summary in Section 9.7.

dL dL

dL
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9.2 Estimating the LEs from Jacobian matrices

In Section 8.6, we showed that the set of LEs can be computed from the product of 

Jacobian matrices along the attractor of the system. We said that in order for a system to be 

chaotic, at least one of its LEs has to be positive. As the number of Jacobian matrices in-

creases, there are inaccuracies that develop as a result of the matrix multiplications. In other 

words, as the number of multiplied matrices increases, eigen values corresponding to the 

positive LEs will increase exponentially fast. On the other hand, eigen values correspond-

ing to the negative LEs will decrease exponentially fast. This leads to an over flow in eigen 

value computations.

In the next two sections, we will present different algorithms for estimating the LEs 

without directly performing Jacobian matrix multiplications. A standard method that helps 

in avoiding the direct multiplication of the Jacobian matrices is the QR decomposition, 

which is explained below.

9.2.1 Estimating LE by QR decomposition

To estimate the set of LEs for a system of dimension d, we need first to compute the 

M Jacobian matrices  (defined in Equation (8.30)) of the map , where 

. For the case that f is not known, the Jacobian matrices need to be es-

timated. Estimation of the Jacobian matrices will be covered in detail later in Sections 9.3 

and 9.4.

To estimate the d LEs of the system, we start at time  by computing the QR 

decomposition [EcRu85] of  to produce

, (9.1)

Jx m( ) f: ℜd ℜd→

m 0 1 … M 1–, , ,=

m 0=

Jx 0( )

Q1R1 Jx 0( )=
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where  is an orthonormal matrix, and  is an upper right triangular matrix with diag-

onal elements that are equal to the eigenvalues of . In the next step, we need to repeat 

the above process on the product  (for time ):

. (9.2)

In general, for time , we need to compute the QR decomposition of the prod-

uct :

. (9.3)

Notice that by multiplying both sides of Equation (9.1) by , we have

. (9.4)

Substituting  from Equation (9.2), into Equation (9.4) gives

. (9.5)

Now we can see that after m time steps:

. (9.6)

From Equations (8.34) and (9.6), we can write the product of the m Jacobian matrices as:

. (9.7)

Notice that from Equations (8.36) and (9.7), the LEs of the system can be written as

. (9.8)

It was proven (see [EcRu85] page 651 and the reference therein) that the d LEs can be found 

from the equation
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, (9.9)

where  is the  diagonal element of the matrix , and . In the next 

subsection, we show an example of estimating the LEs for a multidimensional chaotic sys-

tem with a known Jacobian matrix.

9.2.1.1  Example: Estimating LEs of the Henon map

As we have mentioned before, the Henon map is a second order chaotic system (see 

Equations (2.4) and (2.5)). The Jacobian matrix of the Henon map at  is

, (9.10)

where . To find the two LEs of the Henon map, we start at time  by 

evaluating the Jacobian matrix at  which gives

. (9.11)

Using Equation (9.1), we can find the QR decomposition of the matrix  as follows

. (9.12)

By repeating the above process until the last data point, we can find the two LEs of the 

Henon map from the equation:

. (9.13)
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The estimated LEs of the Henon map when using 10,000 points are  and 

.

Unfortunately, the Jacobian matrix of the system is generally not known to us, and 

all we see is a set of scalar measurements  taken from the system. In the next two sec-

tions, we present three algorithms for estimating the Jacobian matrices of a chaotic system 

using . Two of these algorithms are geometric and one is predictive. The estimated 

Jacobian matrices are then used to estimate the set of LEs for the system. Before we show 

the three algorithms, let’s introduce the concept of spurious exponent.

9.2.2 Spurious exponent

We said before in Chapter 3 that by using the embedding theorem, a system whose 

attractor is in  can be embedded into a space of dimension  where  is the 

box-counting dimension of the attractor (see Section 2.3.3.1). We also presented different 

algorithms used to estimate the minimum embedding dimension ( ), where an em-

bedding map can be found. But if the embedding was into a space of dimension d which is 

greater than , there will be  spurious exponents [EkRu85, DaBr96]. These expo-

nents are fake, meaning that they were not generated from the dynamics of the system. In 

other words, they represent numerical artifacts resulting from the lack of knowledge of the 

exact dimension of the system. This reveals the importance of using a good estimate of  

before estimating the LEs of the system. In Chapter 6, we presented four new algorithms 

that can give a good estimate of . In the next two sections, we present three different al-

gorithms used to estimate the LEs for a chaotic system.

λ2 0.4161=

λ1 1.6201–=

y m( )

y m( )

ℜk
dE 2dc 1+≥ dc

dL dE≤

dL d dL–

dL

dL
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9.3 Estimating LEs by Geometric algorithms

In 1985, Sano and Sawada [SnSd85] and Eckmann and Ruelle [EcRu85] introduced 

similar algorithms to estimate the LEs of a chaotic system. They do so by using scalar mea-

surements taken from the system. Both algorithms are geometric and use similar orthogo-

nalization techniques to estimate the LEs. In this chapter, we show the Eckmann algorithm 

as an example. We begin by presenting the Eckmann algorithm, then we present a new al-

gorithm that applies the result of the linear Oseledec theorem.

9.3.1 Eckmann’s algorithm

Let  be a delay-vector in the reconstructed space created from the mea-

surements  (see Equation (3.20)). We denote the  neighbors of  by  

and its time indices by  where  (see Section 6.2.1). Further, let the 

perturbation vector from  into its  neighbor be

, (9.14)

where  represents the perturbation vector in the direction of the  neighbor of 

. After n iterations, , and . The new 

perturbation vector is .

If we assume that the distance between the reference vector and its  neighbors at 

time m is small enough, we can approximate the evolution of the perturbation vectors from 
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 to  by a linear map. That means, we can write the evolution of the pertur-

bation vector  after n time steps as

, (9.15)

where .

In the next step, the Eckmann algorithm estimates the matrix  by the least 

squares method. It does so by solving the following equation:

, (9.16)

where . It estimates the Jacobian at each of the follow-

ing time steps , where . Next the Eckmann algorithm ap-

plies the QR decomposition to the resulting Jacobian matrices, as described in 

Section 9.2.1. After the QR decomposition is performed, the resulting R matrices can be 

used to compute the LEs by using Equation (9.9).

Actually, Equation (9.9) has to be modified slightly to provide the LEs in continu-

ous time (see [EKRC86]). We need to divide it by the time interval which is , where  

is the sampling interval for the original sequence, and n is the number at time steps forward 

that is used in the Jacobian calculation (see Equation (9.15)). The resulting equation for es-

timating the LEs is

. (9.17)
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The Eckmann algorithm does not show how to find the dimension of the system d. 

It assumes that d is known before estimating the LEs of the system. As we said in 

Section 9.2.2, if d is greater than the minimum embedding dimension of the system ( ), 

there will be  spurious exponents among the estimated LEs. Eckmann’s algorithm 

can be improved by starting to estimate  of the system before estimating the LEs. In 

Chapter 6, we presented four new algorithms that can estimate . In Section 9.5.1, we will 

show the pseudo code of the Eckmann algorithm, while in Section 9.6, we will present the 

results of estimating the LEs by applying this algorithm on different chaotic systems.

After presenting the Eckmann algorithm for estimating the set of LEs, we present 

the second geometric algorithm, which applies the result of the linear Oseledec theorem to 

estimate the set of LEs.

9.3.2 Linear Oseledec algorithm

We proved in Section 8.9.1 a new theorem (the linear Oseledec theorem) that re-

lates the LEs to the poles of a linear system. We have shown that the LEs are the magnitude 

of these poles. Now we present a new algorithm that applies the result of the linear Osele-

dec theorem to estimate the set of LEs for a chaotic system.

This algorithm is called the linear Oseledec algorithm. It is a geometric algorithm 

that is similar to Eckmann’s algorithm. To estimate the LEs of the system, it starts by esti-

mating the Jacobian matrices in the same way as in the Eckmann algorithm. Then it as-

sumes that for a fixed number of time steps (n), the eigen values of the Jacobian matrices 

are the same. Next the algorithm records the logarithm of the magnitude of the eigen values 

of the Jacobian matrix at the end of these steps (local LEs). By repeating this for the whole 

dL

d dL–

dL

dL
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data set, the algorithm computes the LEs of the system by averaging the local LEs resulting 

from the previous computations. In other words, the linear Oseledec algorithm estimates 

the Jacobian matrices  (see Equation (9.16)). Then it computes the local LEs 

from the magnitude of the sorted eigen values of :

. (9.18)

By repeating this until the last data point, the algorithm computes the LEs as follows:

. (9.19)

In Section 9.5.2, we will present a pseudo code that summarizes the linear Oseledec algo-

rithm. While in Section 9.6 we will show the result of applying this algorithm on six differ-

ent chaotic systems.

After presenting the two geometric algorithm for estimating the set of LEs of a cha-

otic system, we present a predictive algorithm.

9.4 Estimating LEs by the predictive algorithm

Instead of using the least squares method to approximate the Jacobian matrices 

(which are then used to estimate the LEs), as in the geometric algorithms, the predictive 

algorithm approximates the map  in the reconstructed space (see Equation 

(4.6)). Then it uses the approximated map  to approximate the Jacobian matrices. These 

matrices are subsequently used to estimate the LEs of the system. The idea behind the pre-

dictive algorithm comes from the fact that if the embedded system of the delay-vectors 
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 is equivalent to the original hidden system, we can use  to estimate the LEs 

of the system (see also Section 4.4).

State evolution in the reconstructed space can be written as

, (9.20)

where . The Jacobian matrix of the map  can be computed from Equation 

(9.20) as follows:

, (9.21)

where  is the kth element of . Recall from Equations (4.10) and (4.11) that the 

state evolution in the reconstructed space can be written as

. (9.22)

By comparing Equation (9.22) with Equation (9.20), we can see that

. (9.23)

We can now compute the Jacobian for Equation (9.21) as

, (9.24)
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where

. (9.25)

By using a neural network, we can approximate the function  (as shown in 

Section 4.3.2). Figure 9.1 shows a neural network model used for approximating . The 

network has a  structure. That means the network takes a d-dimensional delay-

vector as an input,  neurons in the hidden layer, and one neuron in the output layer. The 

network takes d previous measurements (delay-vector ) to approximate the next 

measurement in time . The hidden layer transfer functions are hyperbolic tangent 

sigmoid (tansig) and the output layer transfer functions are linear (purelin).

Figure 9.1  The feed forward network used to approximate 

Assuming that the network has accurately approximated , we can use its parame-

ters to approximate the coefficients . From Equation (9.25), we can replace the map  

by its approximation (neural network model) to approximate :

. (9.26)

From the neural network model, we can see that the approximated output is
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, (9.27)

where . Notice that we can write Equation (9.27) as follows

. (9.28)

Taking the derivative of  with respect to  produces the coefficients:

. (9.29)

Equation (9.29) can be written as

, (9.30)

or

, (9.31)

where  which is the kth column of the weights matrix . No-

tice that the multiplication  is point wise. Since we used the tansig transfer func-

tion in the hidden layer, Equation (9.31) can be written as

, (9.32)

see [Hag95].

After approximating the coefficients , we can use them to approximate the Jaco-

bian matrix  in Equation (9.24). Next the predictive algorithm applies the QR decom-

position on the approximated Jacobian matrices to estimate the set of LEs (see 

Section 9.2.1).
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To apply the predictive algorithm for estimating the LEs, it starts by sampling the 

measurements  at an interval T (see Section 6.2) to produce  (see Equation 

(6.16)). Next the predictive algorithm creates the new delay-vector  (see Equation 

(6.18)). The mean  has to be deducted from it to insure that the input to the network 

is a zero mean. This step creates the signal  (see Equation (6.17)).The network is pre-

sented with d previous values of  and trained to predict the next value in time.

The original predictive algorithm was introduced by L. Djamai and P. Coirault 

[DjCo02]. We improved their algorithm in four ways: i) we used the delay-vectors  

instead of the original states of the system, ii) we estimated the minimum embedding di-

mension  of the delay-vector by using our algorithms that we presented in Chapter 6, iii) 

we repeat the training process a few times then choose the network with the minimum SSE, 

and iv) we simplified the Jacobian matrix approximation into the form shown in Equation 

(9.24). The third Improvement is required to insure that the network has converged to the 

global, rather that the local minima.

In Section 9.5.3, we will present a pseudo code that summarizes the predictive al-

gorithm. The results of applying the predictive algorithm on six different chaotic systems 

will be presented in Section 9.6.

9.5 Pseudo codes of the LE estimation algorithms

In Section 9.3, we presented two geometric algorithms used for estimating the set 

of LEs. In Section 9.4, we presented the predictive algorithm for the same purpose. In this 

section, we show three pseudo codes that summarize these algorithms.

y m( ) ys m( )

yd
s

m( )

ys m( )

s m( )

s m( )

yd m( )

dL
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9.5.1 Pseudo code of the Eckmann algorithm

To improve the Eckmann algorithm (see Section 9.3.1) for noisy signals, we can 

use the method suggested by Zeng et al [ZxEyPi91]. In this paper, the authors use a shell 

around the reference point (rather than a sphere as suggested by Eckmann). The shell has a 

minimum and a maximum radius. This method reduces the effect of noise by eliminating 

neighbors that are very close to the reference point from the Jacobian computations. These 

neighbors could actually be noise signals. If the signal is noise free, the minimum radius 

can be set to zero, which is similar to Eckmann’s original algorithm. Figure 9.2 below 

shows a pseudo code that summarizes the Eckmann algorithm.
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Figure 9.2  Pseudo code for the Eckmann algorithm

{Pseudo code of the Eckmann algorithm
•Choose n (forward steps)
•Choose  and  (minimum and maximum neighbor distances)

•Estimate  (use the algorithms presented in Chapter 6)

•Choose  (number of neighbors of the reference point)

•Compute T (see Section 6.2)
•Initialize Q and R to be  identity matrices

•Create the delay vectors , 

•For m=0:step n: M
•Compute the distances between  and the other points.
•Save the  neighbors of  with distances between  and  in the matrix

.

•Compute the perturbation matrix:

.

(Propagate  and  n time steps ahead and compute the new perturbation matrix 
)

•The kth element of  is , where 
•Use  and  to estimate the Jacobian matrix:

•Normalize and reorthogonalize  by the QR decomposition

•Multiply the triangular matrices:

•end m
(The estimated LEs are the mean of the logarithm of the magnitude of the diagonal elements of R)

• , where , and 
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9.5.2 Pseudo code of the linear Oseledec algorithm

The linear Oseledec algorithm (see Section 9.3.2) is similar to the Eckmann algo-

rithm, but here we do not multiply matrices. To compute the LEs using the linear Oseledec 

algorithm, we compute the local LEs first. The next step is to estimate the LEs of the system 

by averaging these local exponents. Figure 9.3 shows the linear Oseledec algorithm pseudo 

code.

Figure 9.3  Pseudo code for the linear Oseledec algorithm

{Pseudo code of the linear Oseledec algorithm
•Choose n (forward steps)
•Choose  and  (minimum and maximum neighbor distances)

•Estimate  (use the algorithms presented in Chapter 6)

•Choose  (number of neighbors of the reference point)
•Compute T (see Section 6.2)

•Create the delay vectors , 

•For m=0: step n: M-1
•Compute the distances between  and the other points.
•Save the  neighbors of  with distances between  and  in the matrix

.

•Compute the perturbation matrix:

.

(Propagate  and  n time steps ahead and compute the new perturbation matrix 
)

•The kth element of  is , where 
•Use  and  to estimate the Jacobian matrix:

(Compute the local LEs)

•

•end m

(The estimated LEs are the average of 

• , where , and 
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9.5.3 Pseudo code of the predictive algorithm

Now that we have shown the pseudo codes of the two geometric algorithms, we 

present the pseudo code of the predictive algorithm (see Section 9.4). Figure 9.4 shows a 

pseudo code that summarizes the predictive algorithm.

Figure 9.4  The predictive algorithm pseudo code

{Pseudo code of the predictive algorithm
•Estimate  (use the algorithms presented in Chapter 6)

•Choose  (number of hidden layer neurons)

•Compute T (see Section 6.2)
•Create  sample the measurements. Then compute it’s mean 

•Create  to insure a zero mean input

•Set  (maximum number of trials to train the network) 

•Initialize Q and R to be  identity matrices

•For Iteration = 1: 

•Initialize the network parameters: Net

•Train the network with the input  to predict the output . Do that 

until the network reaches its minimum SSE
(Record the minimum SSE as a function of Iteration number and save the resulting network parame-
ters)
•
•Network (Iteration) = Net

•end Iteration
(Find the index of the minimum SSE)
•
(Choose the network parameters of the index “ “)

•NetOpt = Network( )

•Read the network NetOpt parameters W2, W1, and b1

•For m= 1: U, 

•For k = 1:dL

• , fill up the Jacobian matrix  elements as 
shown in Equation (9.24)

•end k
(Perform the QR decomposition)
•
(Multiply the triangular matrices)
•

•end m
(The estimated LEs are the mean of the logarithm of R
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9.6 Results of estimating the LEs by using the three algorithms

In the previous three sections, we presented three algorithms for estimating the set 

of LEs for a chaotic system. These algorithms use a set of scalar measurements taken from 

the system do the estimation. Two of these algorithms are geometric and one is predictive. 

We also showed pseudo codes that summarize these algorithms.

In this section, we list the results of the estimated LEs found by applying these al-

gorithms on six different chaotic systems (see Section 7.2). The first column of Table 9.1 

shows six different chaotic systems that we used to test the three algorithms: the Eckmann, 

the predictive, and the linear Oseledec (the last three columns). The first column also shows 

the sampling time  of the measurements  and the computed delay-time T. The first 

row of each cell in the second through the fifth columns of the table shows the LE values, 

while the second row shows the Lyapunov dimension (see Equation (8.23)). For example, 

we can see that the estimated LEs for the Lorenz model by using the Eckmann algorithm 

(in second row, third column of the table) are 1.31, -0.03, and -7.8, while the computed 

Lyapunov dimension is 2.16. The Jacobian matrices of the first three systems are known, 

while the Jacobian matrices of the next three systems are not known. The set of LEs for the 

first three systems were computed from the Jacobian matrices by using the Wolf el al algo-

rithm [WSSV85]. These values are shown in the first three cell in the second column of the 

table.

τs y m( )
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Table 9.1 LEs estimation results using the three algorithms. The numbers 
inside the curly parenthesis are the estimated LEs and the number in the 

bottom of the cell is the Lyapunov dimension ( ).

9.6.1 Discussion of the results

From Table 9.1, we can see that the Eckmann algorithm gave good estimates of the 

LEs for the chaotic circuit and the Santa Fe data sets. The estimate of the smallest LEs for 

the Rossler model was not perfect. For the predictive algorithm, we can see that it gave 

good estimates of the LEs for the Lorenz model, the Rossler model, the chaotic circuit, and 

the A Santa Fe data set, while it fails to find good estimates of the LEs for the  and  

Santa Fe data sets. Notice also that the predictive algorithm estimates of the LEs for the 

Lorenz model were better than those found by the Eckmann algorithm. On the other hand, 

we can see that the linear Oseledec algorithm gave good estimates of the LEs for the 

Rossler model, the chaotic circuit, the  and  Santa Fe data sets, while it gave a poor 

estimate of the largest LE of the Lorenz model.

In general, we can see that the Eckmann algorithm usually gives good estimates of 

the LEs. While the predictive algorithm gave good estimates of the LEs for signals with 

high SNR. The linear Oseledec algorithms on the other hand, gave good estimates in four 

Chaotic system Original LEs Eckmann alg. Predictive alg. Linear Oseledec alg.
and Lyapunov dimension

Lorenz model {1.34,0.00,-22.29} {1.31,-0.03,-7.8} {1.33,-0.15,-19.27} {4.38,-0.17,-14.02}
Sampling time = 0.01

Delay-Time T  = 8, d L = 3 2.06 2.16 2.06 2.3
Chaotic circuit {0.35, -0.01, -1.09} {0.36, -0.05, -1.03} 0.4, -0.00, -1.1 {0.36, 0.33, -1.39}

Sampling time = 0.1
Delay-Time T  = 8, d L = 3 2.3 2.3 2.37 2.5

Rossler model {0.07, 0.02, -5.4} {0.09, -0.00, -1.12} {0.07, 0.00, -5.99} {0.07, 0.71, -1.37}
Sampling time = 0.12

Delay-Time T  = 5, d L = 3 2.01 2.08 2.01 2.57
Santa Fe comp. data set A {0.93, -0.21, -9.66} {0.66, -0.31, -19.3} {1.12, -0.01, -5.2}

Sampling time = 0.1 Not known
Delay-Time T  = 2, d L = 3 2.07 2.01 2.21

Santa Fe comp. data set B 1 {0.56, -0.07,-0.56, -1.1 } {-0.55, -1.3, -1.8, -2.4} {0.56, 0.16, -0.43, -1.47}
Sampling time = 0.08 Not known

Delay-Time T  = 6, d L = 4 2.9 0 3.19

Santa Fe comp. data set D1
{1.33, 0.6, 0.13, -0.27, -0.64, -

0.94 , -1.4 , -2.3 , -4.9}
{0.48, -0.18, -0.6, -1.04,  -1.2, -

1.66, -2.0, -2.78, -5.0}
{2.27, 1.26, 0.37, -0.07, -
0.55, -1.0, -1.6, -2.8, -6.4}

Sampling time = 0.05 Not known
Delay-Time T  = 3, d L = 9 6.14 2.48 7.23

dLyp

B1 D1

B1 D1
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cases. This algorithm might be improved if one uses a better estimator than least squares. 

Finally, by running more than one algorithm to estimate the LEs, one can have confidence 

in the estimate values if the results are in agreement with each other.

9.7 Chapter summary

In this chapter, we have explored the estimation of LEs (model parameters) by using 

three different algorithms. Full details of the algorithms were presented, and pseudo codes 

that summarize these algorithms were illustrated. The three algorithms were tested by using 

six different chaotic systems. A table summarizing the results was presented and conclu-

sions were derived from it. In the next (final) chapter of the dissertation, we will give a sum-

mary of the previous chapters, draw final conclusions on modeling chaotic systems, and 

discuss future recommendations.



162

CHAPTER 10

SUMMARY, CONCLUSIONS, AND FUTURE RECOMMENDATIONS

10.1 Summary

In this dissertation, we have explored modeling of chaotic systems. The modeling 

process uses measurements taken from a chaotic system to find its model order and model 

parameters. The model order is the minimum embedding dimension of the system ( ), 

while the model parameters are its Lyapunov exponents (LEs).

In Chapters 3 through 7, we discussed estimating . We gave full details of four 

new algorithms used to estimate the value of . Implementation of the algorithms on nine 

chaotic systems was also discussed. Among the four algorithms, three are geometric algo-

rithms: the CND, the , and the . They estimate  by detecting the existence 

of FNNs. The CND algorithm detects the existence of FNNs by checking to see if the near-

est neighbors in the space of dimension d remain neighbors in dimension . On the oth-

er hand, the  algorithm detects the existence of FNNs by checking to see if the 

distance between the nearest neighbors in dimension d will increase significantly as the di-

mension increases to . Finally, the  algorithm detects the existence of FNNs by 

checking to see if the distance between the nearest neighbors in dimension d will change 

significantly as time increases. The three geometric algorithms use a global neighbor search 

dL

dL

dL

CDDG CDTG dL

d 1+

CDDG

d 1+ CDTG
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method to search for the nearest neighbors. In the fourth algorithm (the predictive), the es-

timation of  is done by approximating the function  which operates on the 

reconstructed attractor.  is approximated by using a neural network with a Tapped Delay 

Line connected to its input. As the number of taps in the TDL (d) increases, the prediction 

error decreases. At one point, further increase of d does not improve the prediction error. 

At this point,  is found.

 We have demonstrated estimating  by applying the four algorithms on different 

chaotic systems. The results derived from these algorithm gave confidence in the estimated 

. Conclusions reached from the estimation results are summarized in the next section.

In Chapter 8, we presented some theoretical background on Lyapunov Exponents. 

We also proved a new theorem that relates the LEs to the poles of a linear system. Estimat-

ing the LEs of a chaotic system was explored in Chapter 9. We presented three different 

algorithms used to estimate the LEs (two of these algorithms are new). The three algorithms 

approximate the Jacobian matrices of the chaotic model. These matrices are subsequently 

used to estimate the LEs. The first algorithm is the Eckmann algorithm. This algorithm is 

a standard algorithm for estimating the LEs. It uses the least squares method to approximate 

the Jacobian matrices. These matrices are then used to estimate the LEs. The second algo-

rithm which is also used for estimating the LEs is the linear Oseledec algorithm. This algo-

rithm approximates the Jacobian matrices by using the least squares method. Then it applies 

the results of the linear Oseledec theorem to the approximated Jacobian matrices to esti-

mate the LEs. The third algorithm is the predictive algorithm. This algorithm uses a feed 

forward neural network to approximate the Jacobian matrices.

dL µ: ℜd ℜ1→

µ

dL

dL

dL
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The three algorithm used for estimating the LEs were tested on six chaotic systems, 

and conclusions were derived from the results. These conclusions are summarized in the 

next section. In total, we introduced four new algorithms to estimate , and two new al-

gorithms to estimate the LEs. These algorithms were tested on different chaotic systems. 

These systems are different in dimension and noise content.

10.2 Conclusions

We list below the main conclusions found from this research. We begin with conclusions 

related to the algorithms for estimating the model order.

1)   The predictive algorithm gave the best estimate of  as long as the SNR is not 

too low.

2)   The global neighbor search algorithms introduced in this research gave a better 

estimate of  than the local neighbor search algorithms.

3)   The use of more than one algorithm to estimate  increases our confidence in the 

estimated value.

Now we summarize the main conclusions related to the algorithms used to estimate the 

LEs.

1)   The Eckmann algorithm usually provides good estimates of the LEs.

2)   The predictive algorithm gives good estimates of the LEs for signals with high 

SNR.

3)   The linear Oseledec algorithm gives good estimates of the LEs in some cases.

4)   The best approach to estimating the LEs is to use several algorithms and check for 

consistency in the results.

dL

dL

dL

dL
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10.3 Future recommendations

For further improvement of the results of this research, we recommend the following:

1)   Research on filtering out the noise before applying the modeling algorithms to the 

signals. The problem that may arise is that the filter may smear out the attractor 

and cause some dynamical features to be lost. Work needs to be done to determine 

the optimal filter.

2)   Find a better estimator of the Jacobian matrix than least squares. By doing this, 

both the Eckmann algorithm and the linear Oseledec algorithm may give a more 

accurate results.

3)   Experiment with different types of neural networks to improve the predictive 

algorithm for estimating the model order and for estimating the LEs. An example 

of one possible network is the radial basis network.
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