ANAEROBIC DIGESTION OPTIMIZATION FOR

ENHANCED RENEWABLE BIOMETHANE

PRODUCTION

By

TED ROSS STOVER

Bachelor of Science in Zoology Oklahoma State University Stillwater, Oklahoma 2008

Master of Science in Environmental Engineering Oklahoma State University Stillwater, OK 2009

> Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 2011

ANAEROBIC DIGESTION OPTIMIZATION FOR

ENHANCED RENEWABLE BIOMETHANE

PRODUCTION

Dissertation Approved:

Dr. Enos L. Stover

Dissertation Adviser

Dr. William F. McTernan

Dr. Gregory G. Wilber

Dr. Dee Ann Sanders

Dr. Douglas Hamilton

Outside Committee Member

Dr. Mark E. Payton

Dean of the Graduate College

ACKNOWLEDGMENTS

I would like to sincerely thank my father, Dr. Enos L. Stover, for serving as my thesis advisor and providing direct oversight throughout the course of this research study. I would also like to thank Dr. Stover for giving me motivation to pursue higher education at Oklahoma State University and providing learning experiences and opportunities that most aspiring engineers will never have the chance to encounter.

I would like to thank Dr. William F. McTernan for serving as my committee chairman, and Dr. Dee Ann Sanders and Dr. Gregory G. Wilber for serving as committee members. All three instructors have provided great insight and a fun and memorable learning experience at Oklahoma State University that I will remember for the rest of my life. I would also like to thank Dr. Douglas Hamilton for his willingness to serve as a committee member.

Special thanks to my wife, Abby, for her understanding and support through the extensive timeframe of this project, and for encouraging me to succeed in everything I do.

iv

TABLE OF CONTENTS

Chapter	Page
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	5
Current State	5
Background	6
Anaerobic Digestion Process	8
Advantage of Anaerobic Digestion	12
Previous Studies	
III. METHODOLOGY	18
Feedstocks	18
Digester Operations	21
Biogas Monitoring	
Analytical Testing	27
Kinetics Development	
AMPTS Kinetics Evaluation	
IV. RESULTS	35
Substrate Characterization	35
Bench-Scale Digester Studies	37
Digester Characterization	
Digester Substrate Kinetics	
Digester Biogas Production	54
Digester Biogas Kinetics	59
Digester Methane Kinetics	
AMPTS Studies	
AMPTS Substrate Characterization	67
AMPTS Digester Substrate Kinetics	71
AMPTS Digester Biogas Kinetics	
AMPTS Digester Methane Kinetics	
Bench-Scale Digester Kinetics vs. AMPTS Digester Kinetics	82
Substrate Kinetics Comparison	82
Biogas Kinetics Comparison	
Methane Kinetics Comparison	

Chapter	Page
V. DISCUSSION	94
VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	.100
REFERENCES	.105
APPENDIX A Bench-Scale Digester Photographs	.110
APPENDIX B AMPTS Digester Photographs	.115
APPENDIX C Phase I Raw Data	.118
APPENDIX D Phase II Raw Data	.134
APPENDIX E Phase III Raw Data	.142
APPENDIX F Phase IV Raw Data	.149
APPENDIX G AMPTS Study Raw Data	.164

LIST OF TABLES

Table	Page
Table 1 Analytical Testing Program	20
Table 2 Research Study – Daily Duties	24
Table 3 Analytical Test Parameters and Methods	
Table 4 Individual Feedstock Characterization	
Table 5 Average Influent Feed Characterization Data	
Table 6 Average Anaerobic Digester Characterization, Phase I	
Table 7 Average Anaerobic Digester Characterization, Phase II	40
Table 8 Average Anaerobic Digester Characterization, Phase III	41
Table 9 Average Anaerobic Digester Characterization, Phase IV	42
Table 10 Average Digester 5 Effluent Characterization	44
Table 11 Average Biogas Characterization Data, Phase I	55

Τ	a	bl	le

Page

Fable 12 Average Biogas Characterization Data, Phase II
Fable 13 Average Biogas Characterization Data, Phase III
Fable 14 Average Biogas Characterization Data, Phase IV
Fable 15 Average Biogas and Methane Production Rates61
Fable 16 Bench-Scale Digester Biokinetic Constants
Fable 17 AMPTS Influent Feed Characterization Data70
Fable 18 AMPTS Seed Sludge Characterization Data72
Fable 19 AMPTS Digester Data
Fable 20 AMPTS Digester Effluent Data
Fable 21 AMPTS Digester Biogas Data
Fable 22 AMPTS Digester Biokinetic Constants
Cable 23 Comparison of Biokinetic Constants

LIST OF FIGURES

Figure	Page
Figure 1 Basic Diagram of Anaerobic Digestion Processes	11
Figure 2 Phase I Effluent Soluble COD Trend Plot	46
Figure 3 Phase II Effluent Soluble COD Trend Plot	47
Figure 4 Phase III Effluent Soluble COD Trend Plot	48
Figure 5 Phase IV Effluent Soluble COD Trend Plot	49
Figure 6 Substrate Utilization as a Function of Mass Specific Substrate Loading Rate In Terms of COD	
Figure 7 Graphical Determination of U_{max} and K_B in Terms of COD	53
Figure 8 Biogas Production Composition as a Function of Mass Specific Substrate Loading Rate in Terms of COD	60
Figure 9 Specific Biogas Production Rate as a Function of Mass Specific Substrate Loading Rate in Terms of COD (Digester 1-4)	63
Figure 10 Graphical Determination of G _{max} and G _B in Terms of COD (Digester 1-4)	64

Figure

Figure 11 Specific Methane Production Rate as a Function of Mass Specific Substrate Loading Rate in Terms of COD (Digester 1-4)
Figure 12 Graphical Determination of M _{max} and M _B in Terms of COD (Digester 1-4)68
Figure 13 Specific Substrate Utilization Rate as a Function of Mass Specific Substrate Loading Rate in Terms of COD (AMPTS)75
Figure 14 Graphical Determination of U _{max} and K _B in Terms of COD (AMPTS)76
Figure 15 Specific Biogas Production Rate as a Function of Mass Specific Substrate Loading Rate in Terms of COD (AMPTS)79
Figure 16 Graphical Determination of G _{max} and G _B in Terms of COD (AMPTS)80
Figure 17 Biogas Production Composition as a Function of Mass Specific Substrate Loading Rate in Terms of COD (AMPTS)
Figure 18 Specific Methane Production Rate as a Function of Mass Specific Substrate Loading Rate in Terms of COD (AMPTS)
Figure 19 Graphical Determination of M _{max} and M _B in Terms of COD (AMPTS)84
Figure 20 U vs. F/M Comparison Plot of Bench-Scale Digester and AMPTS Digester U Values with Respect to F/M
Figure 21 G vs. F/M Comparison Plot of Bench-Scale Digester and AMPTS Digester G Values with Respect to F/M
Figure 22 M vs. F/M Comparison Plot of Bench-Scale Digester and AMPTS Digester M Values with Respect to F/M

CHAPTER I

INTRODUCTION

With petroleum-based fuel prices at all-time record highs and growing public interest in environmentally conscious products, alternative fuel sources are receiving more attention than ever. Universities, private and public corporations, and government agencies are spending millions of dollars each year to further research towards production of effective and feasible alternative fuels that are renewable, clean burning, and more economical to produce compared to the long-established fossil fuels. One alternative fuel that has been received with great success in Europe and Asia, and is showing increased interest in the United States, is biomethane (biogas). Biogas has been evaluated as one of the most energy-efficient and environmentally beneficial technologies for bioenergy production (Fehrenbach *et al.*, 2008)

Biogas is a biologically-produced, renewable fuel that can be used for any combustion process that utilizes methane as a fuel source, such as heat, transportation, electricity, and combined heat and power (CHP) generation. Biogas can also be scrubbed and upgraded to meet pipeline gas quality standards for transmission. Biogas is comprised of methane, carbon dioxide, hydrogen sulfide and other trace gases, and is generated by biological anaerobic digestion of organic compounds and materials, such as agricultural wastes, including animal and crop wastes, food wastes, energy crops, industrial wastes, and municipal wastes.

With the success of biogas as a fuel source in Europe and Asia, and the prospective future of biogas as a fuel source in the United States, research studies were performed to evaluate anaerobic digester operations from an alternative fuels production standpoint.

The scope of this research study was to operate suspended growth, continuous stirred tank reactor (CSTR) anaerobic digesters at the bench-scale level to evaluate improved operation techniques/methods and develop biokinetic relationships. Multiple digester reactors were operated simultaneously for approximately fourteen months to obtain data that were used to develop improved operational processes and biokinetic relationships, along with evaluation of treatment performance under various operating conditions.

The ultimate goal of this study was to develop biokinetic constants and a database of anaerobic digester operating parameters using manual operating techniques at the benchscale level that could be applied for automation of full-scale biogas/bioenergy production facilities for the purpose of enhanced biogas production. The purpose of automating fullscale biogas/bioenergy production facilities is to improve digester operations and enhance biogas production by producing the maximum specific biogas/methane production rate possible from a given anaerobic digester reactor volume while maintaining stabile digester operating conditions.

Considering technology currently available for on-line monitoring and process control of biogas production facilities and waste treatment facilities, facilities could ultimately implement automated monitoring of key analytical parameters and biokinetic constants along with a means for adjusting selected variables through the use of programmable logic controllers (PLCs) to optimize for biogas production and treatment performance while maintaining adequate pH and alkalinity requirements.

Feedstocks used for this research project consisted of combined agricultural waste feedstocks, such as laying hen litter, swine manure, corn husklage, thin stillage from fuel alcohol production, and sweet corn silage juice. Feedstocks were chosen based on availability and reasonable trucking distance within a specific region of the United States based on the concept of regional waste biogas production facilities. Individual feedstocks were characterized for chemical oxygen demand (COD), nutrient value, and pH and alkalinity. Individual feedstocks were blended together to provide a co-digestion process based on individual feedstock characterization to control COD to nutrient ratios, pH and alkalinity demands in the digesters, manage ammonia inhibition/toxicity, and provide macronutrients (nitrogen and phosphorus) and micronutrients without requiring additional nutrient supplementation. Trace elements like iron, nickel, cobalt, selenium, molybdenum, and tungsten are important for the growth rate of microorganisms and often must be added for biogas production if single feedstocks such as energy crops are used (Abdoun and Weiland, 2009; Jarvis et al., 1997). Feedstocks were provided by outside suppliers and shipped to laboratory facilities in Stillwater, Oklahoma, and stored at 4°C in a walk-in refrigerator prior to use.

Multiple bench-scale anaerobic digesters were operated in a semi-continuous fed, CSTR mode. Feed was pumped into the digesters via peristaltic pumps controlled by electronic timers. Once daily, digester lids were removed to allow for wasting of digester contents to maintain digester operating volumes. All digesters were operated under mesophilic conditions. Digesters were operated in a temperature controlled room and air temperature was maintained between 33°C to 36°C throughout the course of the research study period. Digesters were operated in a once-through CSTR mode similar to full-scale operations at conventional anaerobic digestion facilities. However; one digester was operated in a biomass recycle CSTR mode to evaluate the impacts of sludge recycle on treatment performance and biogas quality and quantity. To accomplish biomass recycle, digester contents were removed once daily to maintain a standard digester operating volume. The digester contents removed from the biomass recycle digester were placed into a laboratory centrifuge. After centrifugation, the centrate was wasted and sampled as effluent, while the concentrated biomass was returned to the digester. Excess centrate remaining after effluent sampling was discarded. The biomass recycle digester was operated under the same maintenance and sampling programs as the other digesters. All digesters were routinely sampled for key analytical parameters and monitored for biogas production quantity and quality.

Biokinetic relationships were developed from data obtained during the course of the research study for specific biogas production rate, specific methane production rate, and specific substrate utilization rate, or substrate removal, in terms of COD. Biokinetic constants were developed according to the Stover-Kincannon Model (Stover & Kincannon, 1982, 1983, and 1984).

CHAPTER II

REVIEW OF LITERATURE

CURRENT STATE

Many European and Asian countries have already turned to biogas as a major fuel source for electricity production, transportation fuel, and heating fuel. Biogas currently accounts for 2/3 of the renewable energy in Europe and is typically produced from agricultural wastes, including animal and crop wastes, energy crops, industrial wastes, and municipal wastes (European Biomass Association, 2009). Germany has become the world's largest biogas producing country with approximately 4,000 on-farm biogas production plants in operation at the end of 2008 (Fachverband Biogas, 2009) The most common digester reactor configuration is the vertical CSTR which is applied in nearly 90% of the modern biogas production facilities in Germany (Gemmeke *et al.*, 2009). An estimated six to eight million family-sized, low-technology digesters are used in the Far East (China and India) to provide biogas for cooking and lighting. Over 1,000 high-rate anaerobic digesters are operated world-wide to treat organic polluted industrial waste streams

including beverage, food, meat, pulp and paper, and milk processors (IEA Bioenergy, 1999).

BACKGROUND

Biogas is a biological product that occurs as a result of anaerobic digestion of organic compounds and materials, both in soluble waste constituents, or in particulate suspended solid matter that serves as a food or fuel source for anaerobic microorganisms. The three main components of biogas are methane, carbon dioxide, and hydrogen sulfide. The fractional composition of biogas, as well as methane yield, varies based on waste source quality, sulfur content, type of digestion system used, and hydraulic retention time (HRT) (Braun 2007).

Methane is a colorless, odorless, combustible gas and the principal component of natural gas and biogas. Methane typically comprises 65 to 85 percent of biogas, depending on waste source quality. Methane production can be estimated based on substrate removal efficiency in terms of COD. For each gram of COD removed/converted under anaerobic conditions, 0.35 liters of methane is produced at standard conditions (0°C and 1 atm) (Metcalf and Eddy, Inc., 2003). Methane from biogas can be used as a fuel source for a variety of operations, such as heat fuel, engine fuel for transportation, engine fuel for electricity generation, and engine fuel for CHP, which is the process of electricity generation and waste heat recovery. Biogas is usually used to fuel reciprocal engine CHP processes where electricity generating efficiencies can reach up to 43%. An alternative to reciprocal engine CHP processes is the microgas turbine. Microgas turbines result in lower electricity generation efficiencies between 25%-31%, but provide long

maintenance intervals. The big advantage of microgas turbines compared to reciprocal engines is the high exhaust temperatures of 270 °C or higher which provides excellent heat for steam production (Schmid *et al.*, 2005). Biogas can also be merged with natural gas in pipelines, but must be conditioned prior to injection. To be used for fuel purposes, biogas must first be cleaned and separated as many gas utility providers require 98% methane content and a minimum heating value of 990 British thermal units per standard cubic foot (Burns & McDonnell, 2010). Waste heat produced by combustion of biogas can also be collected and used to return heat to maintain digester temperature, or supply heat for water or air heating demands.

Combustion of methane results in reduced emissions when compared to fossil fuels. Concentrations of greenhouse gases in the atmosphere are rising rapidly as a result of fossil fuel carbon dioxide emissions. In order to minimize global climate impacts as a result of greenhouse gas emissions, a report by the Intergovernmental Panel on Climate Change (IPCC) indicated that greenhouse gas emissions must be reduced to less than half of the global emissions from the year 1990 (2000). Combustion of methane, compared to oil and coal, resulted in greatly reduced carbon dioxide, nitrogen oxide, sulfur dioxide, particulate, and mercury emissions as demonstrated in a recent study performed by the United States Environmental Protection Agency (NaturalGas.org, 2010).

Carbon dioxide is a colorless, odorless gas which typically comprises 10 to 35 percent of biogas composition. Carbon dioxide removal is not required for combustion of biogas. However; if the biogas produced is to be blended in with natural gas pipelines or used for transportation fuel, carbon dioxide must be removed since it dilutes the energy content of

the biogas, but is considered to have no significant environmental impact (IEA Bioenergy, 1999).

Hydrogen sulfide is an odorous and toxic gas produced during decomposition of sulfurcontaining residues by sulfate-reducing bacteria that compete with methanogenic bacteria for substrate. The lethal concentration for 50% (LC₅₀) of humans for 5 minutes of exposure is 800 ppm hydrogen sulfide (Speece, 2008). The characteristic rotten egg odor of hydrogen sulfide is a nuisance, but hydrogen sulfide can also be of major concern for plant operations due to its corrosive nature. Hydrogen sulfide has been found to be corrosive to cast iron, steel, ferric stainless steel, 300 series stainless steels, copper nickel alloys, high nickel molybdenum alloys, copper, copper-based alloys (brass and some bronzes), Monel metal, and silver (Speece, 2008). For this reason, hydrogen sulfide can have detrimental effects on reactor/digester surfaces, piping, and electrical components. Several methods for hydrogen sulfide removal exist. The most common commercially practiced methods are air/oxygen dosing to biogas, iron chloride dosing to the digester contents, iron sponges, iron oxide pellets, activated carbon, water scrubbing, sodium hydroxide scrubbing, biological removal on a filter bed, and air stripping and recovery (IEA Bioenergy, 1999).

Anaerobic Digestion Process

Anaerobic digestion consists of three major processes: hydrolysis, fermentation, and methanogenesis. First, solid particulate matter must be hydrolyzed to soluble compounds, such as carbohydrates, proteins, and lipids that can be transported across the microorganism cell wall before it can be used as a food or fuel source. The hydrolysis

process can be assisted using mechanical methods, such as grinders/choppers to decrease particle sizes, to reduce the time required to achieve biochemical hydrolyzation. To increase the degradation rate of substrates, pretreatment processes using mechanical, thermal, chemical, or enzymatic processes can be applied (Müller *et al.*, 2003). Mshandete *et al.* noted that the degradation process is faster with decreasing particle size, but does not necessarily result in improved methane yield (2006). However; it should be noted that depending on waste characteristics, not all digestion processes will require the hydrolysis step. The second major process in anaerobic digestion is the fermentation process. The fermentation process is facilitated by facultative and obligate anaerobes and is also referred to as acetogenesis (Speece, 2008). During the fermentation process, complex soluble compounds are further broken down into simple compounds such as acetate, hydrogen, carbon dioxide, and occasionally propionate, and butyrate. In low pH conditions, acetate is found in the acidic form (CH₃COOH). At higher pHs, acetate exists in the acetate salt forms of sodium acetate (NaCH₃COO), potassium acetate (KCH₃COO) and calcium acetate (CaCH₃COO) (Stover, 1998). Although acetate is usually present in higher concentrations than other volatile fatty acids (VFAs), propionate and butyrate were found to cause more inhibition to methanogens (Wang et al., 1999; Mösche and Jördening, 1999). The inhibition was found to be a result of the undissociated forms, resulting in increased VFA inhibition in low pH systems. Studies performed by Cohen indicate that propionic acid is predominant during unstable digester conditions, is difficult to degrade, is not a known methanogenic substrate, and must first pass through acetogenesis before being converted to methane (1983). By-products from the fermentation process are the precursors for the final process of methane production,

methanogenesis. In this process, the fermentation by-products are converted to biogas by select bacterial genres known as methanogens. The methanogens can be divided into two groups, one group known as aceticlastic methanogens, which physically split acetate into methane and carbon dioxide, and the other group known as hydrogen-utilizing methanogens, which use hydrogen as an electron donor and carbon dioxide as the electron acceptor to form methane (Metcalf and Eddy, Inc., 2003). A diagram of the basic anaerobic processes previously described can be viewed in Figure 1.

When acetic acid is converted to methane and carbon dioxide, the carbon dioxide reacts to produce both methane and carbonic acid. The carbonic acid represents the majority of the acidity produced by anaerobic treatment. The major requirement for alkalinity in anaerobic systems is neutralization of high carbonic acid which results from the high partial pressure of carbon dioxide in the system. The alkalinity requirement for VFA neutralization is small compared to that for carbonic acid. If acetate is present as sodium and potassium acetate salts, sodium and potassium acetate get converted to methane, sodium bicarbonate, and potassium bicarbonate. No carbon dioxide is produced in this process (Stover, 1998). Sodium and potassium bicarbonate are referred to as generated alkalinity. Calcium acetate gets converted to methane, carbon dioxide, and calcium carbonate. The carbon dioxide produced prevents an excessive increase in system alkalinity and pH. Methanogenesis is typically considered to be the rate limiting step in anaerobic treatment with upset conditions usually accompanied by an increase in VFAs and a decrease in process efficiency (Stover, 2009). McCarty stated that methane fermentation of fatty acids is the ultimate step that determines the maximum loading rate in treatment of readily degradable organic materials and that failure of methane-formers

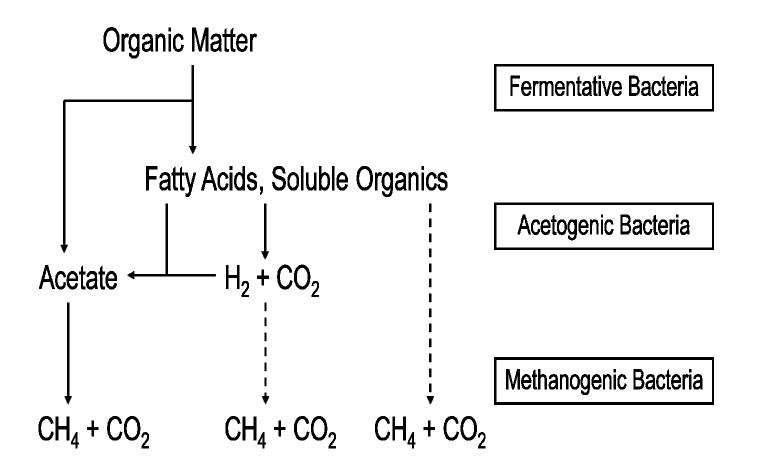


Figure 1. Basic Diagram of Anaerobic Digestion Processes

to utilize the volatile acids at approximately the same rate as they are produced can result in a build-up in volatile acids and a drop in pH (1966). However; the rate-limiting step can vary based on organic loading rate and substrate characteristics. Studies performed using high-solids swine waste concluded that hydrolysis was the rate limiting step at high organic loading rates, while acetogenesis was the rate-limiting step at lower organic loading rates (Barber, 1987). Studies using municipal wastewater and refuse sludges determined hydrolysis to be the rate-limiting step due to slow degradation of lipids (O'Rourke, 1968). Temperature impact studies have determined that temperature affects the rate of conversion of acetate to methane. Studies by Stover *et al.* and Speece have both shown methanogenesis rates to be dependent on temperature (1994 and 1970, respectively). As temperature decreases, methanogenesis rates decrease and cause methanogenesis to become the rate-limiting step.

Advantages of Anaerobic Digestion

Anaerobic digestion provides several advantages over conventional activated sludge treatment processes when treating high-strength wastes, such as agricultural wastes. Anaerobic digestion processes typically require no nutrient addition, have lower alkalinity demands when compared to aerobic treatment processes, and can produce a high quality effluent that can be recycled back for reuse, used for irrigation purposes, or discharged (Stover *et al.*, 1984). Anaerobic processes also have lower sludge yields; typically 6 to 8 times less sludge is produced for anaerobic processes compared to aerobic processes, which requires less cost expenditures for sludge handling operations (Metcalf and Eddy. Inc., 2003). Anaerobic digesters can also handle higher organic loading rates

in the range of 3.2 to 32 kg $COD/m^3/day$ compared to aerobic processes which may be limited to 0.5 to 3.2 kg $COD/m^3/day$ (Speece, 1996).

Healthy anaerobic digestate can be a quality fertilizer source. Anaerobic treatment minimizes the survival of pathogens which is important for using digested residue as fertilizer (Weiland, 2010). The anaerobic digestion process is capable of inactivation of weed seeds, bacteria, viruses, fungi, and parasites (Sahlström, 2003; Strauch and Philipp, 2000).

Another economical benefit to anaerobic digestion can be the possible occurrence of ammonium magnesium phosphate (struvite) precipitation. Struvite is a high-quality, high-value fertilizer that can be harvested from anaerobic processes and sold to offset operating costs. Struvite can form in anaerobic systems when the waste streams contain high concentrations of orthophosphates, ammonia and magnesium (Loewethal *et al*, 1994). It has been observed that reducing the partial pressure of carbon dioxide triggers struvite precipitation (Speece, 2008). Although struvite formation can serve as a financial return for plant operations through fertilizer sales, it is often considered a nuisance by operating staff. The precipitant typically forms in pipe elbows and pump inlets, or on surfaces close to inlets and outlets of secondary clarifiers following CSTR reactors (Speece, 2008).

PREVIOUS STUDIES

Studies were performed by Takamura to evaluate the performance of anaerobic CSTR and packed bed reactors using centrifuged thin stillage from fuel alcohol production as substrate from a waste treatment standpoint (1983). Takamura observed better substrate removal efficiency and stability at lower substrate loading rates using packed bed reactors operated at HRTs below 15 days. However; he found that the CSTR systems were capable of handling higher loading rates with hydraulic retention times of 20 days or longer. Takamura also monitored methane production for both systems and found that both systems produced nearly identical volumes of methane per mass of substrate fed.

Research studies performed by Dutt expanded on Takamura's work by evaluating higher substrate loading rates on anaerobic packed bed reactors and conventional and modified CSTRs (1985). Dutt's studies demonstrated pH and alkalinity problems as a result of high loading rates and low HRTs of 6 days, requiring calcium carbonate addition to supplement alkalinity and maintain pH levels.

Pilot-scale treatability studies were performed by Lanting and Gross by feeding thin stillage from fuel alcohol production to an Upflow Anaerobic Sludge Blanket (UASB) digester at HRTs of 10 hours (1985). The system managed to achieve COD removal efficiencies of 76%. Nitrogen and phosphorus addition were required along with caustic addition to maintain proper pH levels.

Extensive bench-scale studies were performed by Stover *et al.* using thin stillage from fuel alcohol production to evaluate anaerobic suspended growth and anaerobic fixed-film reactors to evaluate the effects of substrate loading rates on substrate removal kinetics (1983, 1984). Substrate removal kinetic constants were shown to be a function of mass substrate loading rates. These studies showed that pH and alkalinity requirements decreased significantly with increasing solids retention time (SRT) and substrate strength. It was also observed that substrate removal efficiencies remained between 98% - 99%

with SRTs of 10 days or greater. Below the limiting SRT of 4 days, VFA accumulation resulted in significantly decreased treatment performance, with negligible treatment performance observed at SRTs of 2 days.

Waste sludge from the Stover *et al.* studies was used to perform batch anaerobic studies to directly compare continuous feed systems with batch feed systems (1983, 1984). Fair comparison of the two systems was prevented due to high substrate loading in the batch feed systems causing VFA accumulation and methanogen inhibition/toxicity not experienced in the continuous fed systems. When substrate loading rates were lowered for batch feed systems to minimize VFA issues, the batch feed system kinetics approached those determined during the continuous feed studies.

Suspended growth studies were performed by Ganapathi to investigate the treatability of thin stillage from fuel alcohol production from a waste treatment standpoint (1984). Ganapathi operated both aerobic and anaerobic treatability studies and concluded that thin stillage from fuel alcohol production was susceptible to anaerobic digestion treatment processes with COD removal efficiencies of 98% or greater at organic loading rates up to three times higher than that of the aerobic systems. Ganapathi operated anaerobic systems at several different flow rates and influent substrate concentrations and determined that specific substrate utilization rate was a function of specific substrate loading rate according to the Stover-Kincannon Model. Ganapathi also stated that extreme caution should be used when incorporating anaerobic batch treatment kinetics into those of continuous systems as batch system kinetics appear different from the continuous feed kinetics due to build up of VFAs above certain specific substrate loading rates, resulting in methanogen inhibition/toxicity.

Fixed-film up-flow anaerobic digestion studies were performed for a period of two years using thin stillage from fuel alcohol production from a waste treatment standpoint (González, 1987). González developed biokinetic constants relative to fixed-film systems for the purpose of reliable full-scale fixed-film anaerobic system design and operation. Biokinetic constants were developed for specific substrate utilization rate, specific biogas production rate, and specific methane production rate as a function of mass specific substrate loading rate according to the Stover-Kincannon Model. González experienced decreasing substrate removal efficiencies, decreasing biogas methane content, and increasing biogas carbon dioxide content as specific substrate loading rates increased above determined optimum loading rates. González also attributed this decrease in digester performance to VFA accumulation, resulting in methanogen inhibition/toxicity. González concluded that development of biokinetic constants for specific substrate utilization rate, specific biogas production rate, and specific methane production rate allowed for prediction of digester operations and the ability to maintain stable digester operating conditions with varying substrate COD concentrations.

Hansen *et al.* performed anaerobic studies to evaluate ammonia inhibition using batch feed and CSTR experiments (1998). Swine manure was used as the sole substrate for CSTR experiments while batch feed studies used various blend ratios of swine and cattle manure. CSTR experiments were performed at mesophilic and thermophilic conditions while batch studies were only performed at thermophilic conditions. Hansen *et al.* observed stable CSTR digester operations with ammonia concentrations as high as 6,000 mg/L for both mesophilic and thermophilic conditions. Batch feed studies exhibited toxicity at free ammonia concentrations of 1,100 mg/L and higher with digester pHs of

8.0. Batch feed digesters exhibited toxicity through reduced biogas production with reduced methane yield. These batch feed studies demonstrated the ability of methanogens to tolerate free ammonia concentrations 7-10 times higher than that reported earlier by Braun *et al.* and De Baere *et al.* and even higher than the 700 mg/L threshold reported by Angelidaki and Ahring (1981, 1984, and 1993, respectively). A study performed by Kroiss found process inhibition by undissociated ammonia at concentrations of 80 mg/L and higher (1985).

Studies by Angelidaki *et al.* and Dornack demonstrated increased ammonia toxicity with increased temperature (2003 and 2009, respectively). Nielsen and Angelidaki performed studies to evaluate strategies for digester recovery following ammonia inhibition (2008). Nielsen and Angelidaki found that the most stable digester recovery process was accomplished by diluting digester biomass with recycled digester effluent.

CHAPTER III

METHODOLOGY

Anaerobic digestion research optimization studies were initially performed using five bench-scale, semi-continuous flow, anaerobic digester CSTRs with liquid volumes of 12.0 liters and headspace volumes of 1.25 liters. An additional single reactor was later operated at a liquid volume of 11.0 liters and headspace volume of 2.25 liters due to increased feed rate (decreased hydraulic retention time) and digester reactor size limitations. The anaerobic digesters were operated at various HRTs and loading rates over the course of approximately fourteen months. The purpose of this study was to perform research simulation treatment studies for evaluations of operations and performance capabilities of full-scale bio-energy anaerobic digesters for enhanced and optimized biogas (methane) production.

FEEDSTOCKS

Feedstocks used for the anaerobic digestion research studies consisted of laying hen litter, swine manure, corn husklage, thin stillage from fuel alcohol production, and sweet corn silage juice. Feedstocks were chosen for this study based on availability within a specific region of the United States based on the concept of regional waste biogas production facilities. The feedstocks were evaluated for regional availability and reasonable trucking distance to centrally located biogas production facilities. Feedstocks were provided by outside suppliers and delivered to the laboratory facilities located in Stillwater, Oklahoma. All feedstocks were stored at 4°C prior to use. Feedstocks were blended together based on individual feedstock characterization data. Individual feedstocks were characterized for pH, total COD (tCOD), soluble COD (sCOD), total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), total Kjeldahl nitrogen (TKN), ammonia-nitrogen (NH₃-N), total phosphorus (T-P), and orthophosphate (PO₄-P) as viewed in Table 1. Individual feedstocks were blended together based on individual characteristics to manage desired COD to nutrient ratios, pH and alkalinity demands in the digesters, manage ammonia inhibition/toxicity, and provide macronutrients (nitrogen and phosphorus) and micronutrients without requiring additional nutrient supplementation.

Feed blends consisted of 0.2 grams sweet corn silage juice, 1.0 gram husklage, 11.4 grams hen litter, 38 mL swine manure, and 942 mL thin stillage. All masses and volumes of individual feedstocks listed were per liter of feed. Feed blends were typically made in 15 to 18 liter batches. All feed blends were stored at 4°C prior to use. Swine manure was screened using a screen with 1 millimeter pore sizes. Hen litter was weighed in 110 gram batches or less. The hen litter was then placed in a beaker and diluted with de-ionized water to a final volume of 1 liter. This mixture was then placed in a household kitchenstyle blender to break up the large chunks. The mixture was then poured into an Imhoff cone and allowed to settle for a minimum of 20 minutes. The supernatant layer and litter

Individual	Digester	Digester	
Feedstocks	Feed	Contents	Effluent
		Х	
Х	Х	Х	Х
Х	Х	Х	
Х	Х	Х	Х
Х	Х	Х	Х
Х	Х	Х	Х
Х	Х	Х	Х
Х	Х	Х	Х
Х	Х	Х	Х
Х	Х	Х	Х
Х	Х	Х	Х
Х	Х	Х	Х
		Х	
		Х	
		Х	
		Х	
	KXXXXXXXXXXXXXXXXXXXXXXXX	FeedstocksFeedXX	$\begin{tabular}{c c c c c c } \hline Feedstocks & Feed & Contents \\ \hline X & X & X & X \\ \hline X & X$

TABLE 1 Analytical Testing Program

solids were collected and placed into the feed blend, while the grit that collected in the bottom portion of the Imhoff cone was discarded. Grit was discarded as most of the grit material was considered non-biodegradable and would settle and collect in the bottom of the digester reactors and build up reducing, effective digester working volumes. Feed blends were prepared according to the previous volumes and masses throughout the course of the entire study. Feed blend preparation routines were consistent throughout the course of the study. Digester influent feed blends were characterized for pH, COD, solids, nitrogen, and phosphorus content as viewed in Table 1.

DIGESTER OPERATIONS

The anaerobic digesters were initially seeded with anaerobic sludge collected from the Oklahoma State University Swine Production Facility anaerobic digester, as well as anaerobic granular sludge from an industrial wastewater treatment plant located in Oklahoma. Digester mixing was accomplished via magnetic stir bar and variable speed magnetic mixer. Additional mixing was provided through biogas production due to methane insolubility and the mixing action provided as biogas rises to the liquid surface.

The initial seed and start-up of the digesters was followed by an acclimation/stabilization period to ensure proper sludge acclimation to the feed blend. The initial acclimation/stabilization period was performed by manually introducing small amounts of feed to the digesters and gradually increasing feed volume with time. Acclimation period feed rates started at approximately 50 mL of feed per day and gradually increased until the first desired HRT operating condition was achieved. Feed rate increase intervals were determined by monitoring pH, volatile fatty acids (VFAs), partial alkalinity (P-Alk),

total alkalinity (T-Alk), and COD. Upon reaching the desired HRT operating condition, digesters were allowed a stabilization period of typically 2-4 weeks for pH, VFA, P-Alk, T-Alk, and COD stabilization. Stabilization periods were followed by 2-4 week detailed data collection periods. During stabilization periods, samples for digester content and digester effluent characterization, as seen in Table 1, were typically collected three times per week. During data collection periods, samples for digester content and digester effluent characterization, as seen in Table 1, were typically collected daily. Digesters were allowed a stabilization period following each increase in feed loading rate.

Daily digester feed volumes were contained in beakers and pumped into the digester reactors via peristaltic pumps. Feeds were replenished daily. The flow rates of the feed pumps were controlled with variable speed pump controllers that were operated via electronic timer, feeding approximately one minute out of every 4 hours for 24 hours per day operation. Each feed beaker was mixed via magnetic stir bar and variable speed magnetic mixer. The digesters were sealed with gas-tight lids with two bulkhead fittings that provided outside connections. These two fittings provided feed line access and biogas collection line access. The feed lines were connected to the peristaltic pumps and transferred feed to one of the bulkhead fittings in each digester, which had tubes connected on the inside of the reactors, so that feed was introduced three-quarters of the way to the bottom of each reactor. The biogas collection fittings were maintained in the head space of each digester. Effluent was removed once daily to maintain digester operating volumes.

Daily digester maintenance consisted of scraping digester walls daily to remove sludge

buildup and checking all fittings and lines for plugging and leaks. Feed pumps, pump tubing, and all magnetic mixers were checked daily for proper operation, and pump tubing was replaced as needed. Table 2 outlines these and other daily maintenance duties performed throughout the course of the study.

All digesters were operated in a once-through, semi-continuous fed, CSTR mode except for one digester. The once-through digesters operated in a CSTR mode were numbered Digesters 1-4. One digester, numbered Digester 5, was operated in a biomass recycle CSTR mode to evaluate the impacts of sludge recycle on treatment performance and biogas quality and quantity. To accomplish biomass recycle, digester contents were removed once daily to maintain a standard digester operating volume. The digester contents removed from Digester 5 were placed into a Fisher Scientific Marathon 3200 centrifuge and centrifuged for 15 minutes at 4,000 rpm. After centrifugation, the centrate was wasted and sampled as effluent, while the concentrated biomass was returned to the digester. Remaining centrate after effluent sampling was discarded. Digester 5 was operated under the same maintenance and sampling programs as the other digesters. However; due to decreased HRT, increased feed loading rate, and digester size limitations, it was required to reduce the liquid operating volume of Digester 5 to 11.0 liters to maintain adequate headspace for biogas collection and analysis. Digester contents were monitored daily for pH, temperature, VFA, P-Alk, and T-Alk. Digester contents and treated effluent were routinely characterized for pH, tCOD, sCOD, TS, VS, TSS, VSS, TKN, NH₃-N, T-P, and PO₄-P throughout the course of the research optimization studies as viewed in Table 1. Digester reactors were operated in a vented,

TABLE 2 Research Study – Daily Duties (System Maintenance)

Morning	Afternoon
• Reactor Maintenance (Scrape and clean reactors, brush outlets)	 Check Mechanical Mixers (Mixing)
Check Mechanical Mixers (Mixing)	• Check Feed Pumps, Tubing, Etc. (Insure working properly)
• Check Feed Pumps, Tubing, Etc. (Insure working properly)	
• Measure Influent Flow Rate	
• Measure pH, VFA, T-Alk, P-Alk	
Measure Temperature	
Add Feed	
• Collect Samples (See Table 1)	
• Waste Mixed Liquor (Use for lab sample) (Measure volume)	

temperature controlled room. Air temperature in the room was maintained at 33°C to 36°C throughout the course of the research study period to maintain digester reactor temperatures, instead of using heated water baths. Bench-scale digester photographs can be viewed in Appendix A.

BIOGAS MONITORING

Digester biogas production rates were initially monitored using a gas collection chamber consisting of an inverted one-liter graduated cylinder with the open end of the cylinder submerged in a water bath. The upper portion of the cylinder was supported with a ring stand. A gas line connected to the gas collection bulkhead fitting on the digester lid transferred biogas to the inverted cylinder where the biogas produced was collected. Water was drawn up into the cylinder under vacuum. Biogas production then forced the water out of the cylinder and was monitored with time to determine biogas production rates. An Automatic Methane Potential Test System (AMPTS) unit from Bioprocess Control AB of Sweden (BioProcess Control) was obtained towards the end of the study and later used to measure biogas production rates from the digesters by plumbing biogas produced in the digesters directly to the gas cell plate of the AMPTS unit. The AMPTS unit consists of a cell plate which is submerged in a water bath. The cell plate contains 15 individual gas collection cells. Each cell is individually calibrated by Bioprocess Control to one-hundredth of a milliliter of gas volume. The cell has a pivot at one end and a magnetic tip at the other which closes a circuit. The water bath ensures the biogas produced is trapped in the cell. When the cell is filled with biogas produced from the digester, the cell lifts, breaking or opening the circuit on the cell plate and the biogas is vented to the atmosphere. The cell plate is connected to a laptop computer with

application-specific software developed by Bioprocess Control. The computer software counts the number of circuit breaks and produces an average gas production rate as well as a total accumulated gas production volume.

The AMPTS unit can measure biogas production rate in terms of biogas or in terms of methane. To measure gas production rate in terms of biogas, biogas produced in the digester is plumbed directly to the gas cell plate. To measure gas production rate in terms of methane, biogas produced in the digester is first passed through a small biogas scrubbing bottle containing a 3.0 molar sodium hydroxide solution and Alizarin Yellow R color indicator to indicate when the solution is spent. When biogas is passed through the scrubber bottle, carbon dioxide and hydrogen sulfide are scrubbed or removed from the biogas, filling the gas cell with methane instead of biogas. The biogas scrubbing feature of the AMPTS unit was not used with the bench-scale digesters due to the large volume of biogas produced by the bench-scale digesters and the limited scrubbing capacity of the scrubber bottles due to small volumes of scrubbing solution.

Biogas quality was monitored by plumbing biogas produced in the digesters to a gas collection chamber previously mentioned. A sample line was also placed into the inverted cylinder so the biogas could be sampled for carbon dioxide and hydrogen sulfide. Sampling and analysis for carbon dioxide was performed using a Bacharach Fyrite[®] Classic Gas Analyzer model no. 10-5032 capable of measuring gas carbon dioxide concentrations from 0% to 60%. Sampling and analysis for hydrogen sulfide was performed using a Sensidyne AP-20S Gas Detection Pump and hydrogen sulfide detection tubes. Hydrogen sulfide detection tubes used during the course of the study were capable of measuring 25 ppm to 12,500 ppm H₂S. Biogas collection lines were

switched daily between the AMPTS unit and the gas collection chamber towards the end of the bench-scale digester portion of the study during detailed data collection periods to obtain both biogas production rate and biogas quality data.

ANALYTICAL TESTING

Analytical testing was performed using a combination of methods from Standard Methods for the Examination of Water & Wastewater 21st Edition (Standard Methods), as well as several spectrophotometric methods from Hach Company, Inc (Hach). However; VFA, P-Alk, and T-Alk data was generated using the titration method developed by Ripley *et al.* (1986) with contributions from Jenkins *et al.* (1983). The titration method developed by Ripley *et al.* involves titration to two pH end points using sulfuric acid. The first titration end point occurs at pH 5.75 which correlates to the P-Alk parameter which corresponds roughly to the bicarbonate alkalinity as determined by Jenkins *et al.* (1983). The second titration end point occurs at pH 4.3 which correlates to the T-Alk parameter. The difference in titrant volume between the two end points correlates to the VFA parameter or intermediate alkalinity as referred to by Ripley *et al.* (1986) which approximates the volatile acid alkalinity. The following equations are used to calculate the three previously mentioned parameters:

$$P - Alk = \frac{T_1 * N * 50,000}{S}$$

$$T - Alk = \frac{T_2 * N * 50,000}{S}$$

$$VFA = \frac{(T_2 - T_1) * N * 50,000}{S}$$

Where:

 $P-Alk = partial alkalinity, mg/L as CaCO_3$

T-Alk = total alkalinity, mg/L as CaCO₃

VFA = volatile acids, mg/L as CH_3COOH

 T_1 = volume of titrant used to reach pH 5.75 end point, mL

 T_2 = volume of titrant used to reach pH 4.3 end point, mL

N = normality of acid used

S = sample volume used, mL

Digester pH testing and all sample pH testing were performed using an Oakton pHTestr 10 meter. The pH meter was calibrated once per week using a three-point calibration with pH buffer solution standards of pH 4.0, 7.0, and 10.0. Digester ORP testing was performed using an Oakton ORPTestr 20 meter. The ORP meter was calibrated before use with an ORP standard solution of +200 mv. All COD, TKN, NH3-N, T-P, and PO4-P analytical testing was performed using a Hach DR2800 spectrophotometer and Hach spectrophotometric methods. All TS, VS, TSS, and VSS analytical testing was performed according to methods described in Standard Methods. All analytical tests performed and the detailed test method numbers can be viewed in Table 3.

KINETICS DEVELOPMENT

Data obtained from the digester reactor portion of the study was used to develop kinetics

TABLE 3Analytical Test Parameters and Methods

Parameter	Method
рН	Electrode Method
Oxidation Reduction Potential	Electrode Method
Volatile Fatty Acids (VFA)	Titration Method
Partial Alkalinity (P-Alk)	Titration Method
Total Alkalinity (T-Alk)	Titration Method
Total Chemical Oxygen Demand (tCOD)	Hach Method 8000
Soluble Chemical Oxygen Demand (sCOD)	Hach Method 8000
Total Solids (TS)	Standard Method 2540 B
Volatile Solids (VS)	Standard Method 2540 E
Total Suspended Solids (TSS)	Standard Method 2540 D
Volatile Suspended Solids (VSS)	Standard Method 2540 E
Total Kjeldahl Nitrogen (TKN)	Hach Method Simplified TKN
Ammonia-Nitrogen (NH ₃ -N)	Hach Method 10205
Total Phosphorus (T-P)	Hach Method 10210
Ortho Phosphorus (PO ₄ -P)	Hach Method 10209

relationships using the Stover-Kincannon Model (Stover & Kincannon, 1982, 1983, and 1984). Data obtained from digester reactors was used to develop a mass balance of substrate into and out of the digesters as follows:

mass of substrate into the reactor = mass of substrate out of the reactor + mass of substrate consumed biologically

Since CSTR suspended growth systems were modeled with the research performed, the resultant mass balance equation follows:

$$FS_i = FS_e + \left(\frac{dS}{dt}\right)_G V$$

Where:

$$\begin{split} F&= flow rate, L/day \\ S_{i} &= influent substrate concentration, mg/L \\ S_{e} &= effluent substrate concentration, mg/L \\ V &= reactor volume, L \\ (dS/dt)_{G} &= ((dS/dt)/X) = specific substrate utilization rate, g COD Removed/day/ g VSS \end{split}$$

The specific substrate utilization rate from the previous equation is mathematically described as a function of the substrate loading rate or food-to-microorganism (F/M) ratio based on monomolecular kinetics as follows:

$$\left(\frac{dS}{dt}\right)_{G} = U = \frac{U_{max}\left(X * \frac{FS_{i}}{XV}\right)}{(K_{B} + \frac{FS_{i}}{VX})}$$

Where:

 $FS_i/XV = F/M =$ food-to-microorganism ratio, g/g day

- X = reactor mixed liquor volatile suspended solids, mg/L
- U = specific substrate utilization rate, g COD Removed/day/g VSS
- U_{max} = maximum specific substrate utilization rate, g COD Removed/day/g VSS
- K_B = proportionality constant or specific substrate loading rate where the rate of substrate utilization is one-half the maximum rate, g COD Applied/day/g VSS

The biokinetic constants U_{max} and K_B were determined from the data obtained during the research portion of this study. The specific substrate utilization rate was plotted as a function of the F/M ratio in terms of COD. The reciprocal of U was plotted as a function of the reciprocal of the F/M ratio to achieve a linear monomolecular kinetic relationship. In linearized form, U_{max} is the reciprocal of the y-axis intercept, and the slope of the line is equal to K_B/U_{max} .

The specific biogas production rate is mathematically described as a function of the mass substrate loading rate as follows:

$$G = \frac{G_{max}\left(X * \frac{FS_i}{XV}\right)}{(G_B + \frac{FS_i}{VX})}$$

Where:

- G = specific methane production rate, L/day/L Reactor Volume
- G_{max} = maximum specific methane production rate, L/day/L Reactor Volume
- G_B = proportionality constant or specific substrate loading rate where the rate of biogas production is one-half the maximum rate, g COD Applied/day/g VSS

The biokinetic constants G_{max} and G_B were determined from the data obtained during the research portion of this study. The specific biogas production rate was plotted as a function of the F/M ratio in terms of COD. The reciprocal of G was plotted as a function of the reciprocal of the F/M ratio to achieve a linear monomolecular kinetic relationship. In linearized form, G_{max} is the reciprocal of the y-axis intercept, and the slope of the line is equal to G_B/G_{max} .

The specific methane production rate is mathematically described as a function of the mass substrate loading rate as follows:

$$M = \frac{M_{max} \left(X * \frac{FS_i}{XV} \right)}{\left(M_B + \frac{FS_i}{VX} \right)}$$

Where:

M = specific methane production rate, L/day/L Reactor Volume

 M_{max} = maximum specific methane production rate, L/day/L Reactor Volume

 M_B = proportionality constant or specific substrate loading rate where the rate of methane production is one-half the maximum rate, g COD Applied/day/g VSS

The biokinetic constants M_{max} and M_B were determined from the data obtained during the research portion of this study. The specific methane production rate was plotted as a function of the F/M ratio in terms of COD. The reciprocal of M was plotted as a function of the reciprocal of the F/M ratio to achieve a linear monomolecular kinetic relationship. In linearized form, M_{max} is the reciprocal of the y-axis intercept, and the slope of the line is equal to M_B/M_{max} .

AMPTS KINETICS EVALUATION

AMPTS studies were also conducted for development of biokinetic constants by performing batch feed studies using small reactors. The purpose of the AMPTS kinetics studies was to evaluate the potential for developing a quick and simple method/procedure to determine kinetic relationships for full-scale applications without the long-term benchscale operations. Since substantial data were obtained during the course of the benchscale digester portion of the research, kinetics data obtained during the AMPTS studies could be directly compared and contrasted with the kinetics data developed from the digester reactors. For the AMPTS portion of the study, small 500 mL digesters were set up in a batch reactor mode at multiple food-to-microorganism (F/M) ratios. Digesters were set up with 300 mLs of seed sludge and various feed volumes. Seed sludge used for the AMPTS kinetics relationship studies was supplied from an operating digester from the previously mentioned bench-scale digester studies. Digesters were set up in duplicates with one set of digesters providing unscrubbed biogas to the AMPTS cell plate and another set of digesters providing scrubbed biogas (methane) to the AMPTS cell plate. A control digester was operated for each study. The control digester received no feed addition. Air temperature in the room was maintained at 34°C through the course of the study period and used to provide and maintain digester reactor temperature instead of using water baths. Seed sludge was characterized for tCOD, sCOD, TSS, VSS, TKN, NH₃-N, T-P, and PO₄-P before initiating the studies. Study completion was determined by calculating a theoretical maximum gas production based on COD loading. Once the digester(s) with the lowest COD load (lowest F/M ratio) approached the theoretical maximum gas production volume and gas production rate substantially decreased, the

33

study period was determined to be complete and all digesters were immediately sampled and analyzed for sCOD, TSS, VSS, VFA, P-Alk, and T-Alk. AMPTS digester photographs can be viewed in Appendix B.

CHAPTER IV

RESULTS

Anaerobic digestion research optimization studies were performed using five benchscale, semi-continuous flow, anaerobic digester CSTRs. The anaerobic digesters were operated at various HRTs, SRTs, F/M ratios, and loading rates over the course of approximately fourteen months to obtain data necessary to determine biokinetic constants for specific substrate utilization rate, specific biogas production rate, and specific methane production rate in terms of specific substrate loading rate. Biokinetic constants were developed according to the Stover-Kincannon Model (Stover & Kincannon, 1982, 1983, 1984).

SUBSTRATE CHARACTERIZATION

Individual feedstocks were characterized for pH, TS, VS, TSS, VSS, tCOD, sCOD, NH₃-N, T-P, and PO₄-P. Results for individual feedstock characterization can be viewed in Table 4. Individual feedstocks were blended together to provide a co-digestion process based on individual feedstock characterization to control COD to nutrient ratios, pH and alkalinity demands in the digesters, manage ammonia inhibition/toxicity, and provide

Sample	pН	TS	VS	TSS	VSS	tCOD	sCOD	NH ₃ -N	T-P	PO ₄ -P
Description	(s.u.)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Hen Litter		75.95	46.97							
Swine Manure	8.2	2.71	1.68	10,800	8,200	35,200	13,700	27,900	395	17
Husklage		91.19	87.56							
Silage Juice	4.0	7.49	7.11	32,200	31,600	133,400	91,400	67	385	367
Thin Stillage #1	4.6	5.59	4.91	27,600	26,600	93,600	59,300	89	1,090	422
Thin Stillage #2	4.2	6.69	6.01	25,800	25,600	118,300	57,450	46	1,170	575
Thin Stillage #3	4.2	6.22	5.48	28,600	28,400	118,400	63,400	22	1,315	600
Thin Stillage #4	4.5	6.11	5.34	28,000	28,000	120,200	59,300	20	1,325	570
Thin Stillage #5	4.5	5.37	4.56	20,900	20,500	104,500	61,600	14	1,375	525
Thin Stillage #6	4.4	5.06	4.26	17,400	17,300	104,000	65,000	24	1,365	570
Thin Stillage #7	3.4	6.24	5.62	30,800	30,550	117,300	61,750	15	1,165	730
Thin Stillage #8	3.8	6.08	5.33	26,000	25,600	115,200	55,700	35	1,135	688

TABLE 4Individual Feedstock Characterization

macronutrients and micronutrients without requiring additional nutrient supplementation. Influent feed blends consisted of 0.2 grams sweet corn silage juice, 1.0 gram husklage, 11.4 grams hen litter, 38 mL swine manure, and 942 mL thin stillage from fuel alcohol production. All masses and volumes of individual feedstocks listed were per liter of feed. Influent feed batches were characterized for pH, tCOD, sCOD, TS, VS, TSS, VSS, TKN, NH₃-N, T-P, and PO4-P. The research project was broken down into four data collection phases for ease of data analysis and interpretation. Phase I occurred from November 14, 2009 to January 29, 2010. Phase II occurred from February 28, 2010 to April 16, 2010. Phase III occurred from April 22, 2010 to June 16, 2010. Phase IV occurred from June 17, 2010 to December 10, 2010. Average influent feed characteristics for each phase can be viewed in Table 5.

BENCH-SCALE DIGESTER STUDIES

Digester Characterization

Digester contents were routinely monitored for pH, temperature, tCOD, sCOD, TS, VS, TSS, VSS, TKN, NH₃-N, T-P, PO₄-P, VFA, P-Alk, and T-Alk throughout the course of the research optimization studies. Average digester feed conditions, digester content characterization, and COD utilization/removal data can be viewed in Tables 6 through 9 for Phase I, Phase II, Phase III, and Phase IV data collection periods, respectively. Since Digesters 1-4 were operated in a once-through CSTR mode, the effluent pH, tCOD, sCOD, TS, VS, TSS, VSS, TKN, NH₃-N, T-P, PO₄-P, VFA, P-Alk, and T-Alk concentrations determined from the digester contents are equivalent to the digester effluent concentrations. However; Digester 5 was operated in a biomass recycle CSTR

	Study Phase Period				
Parameter	Phase I (11/14/09 – 01/29/10)	Phase II (02/28/10 – 04/16/10)	Phase III (04/22/10 – 06/16/10)	Phase IV (06/17/10 - 12/10/10)	
oH (s.u.)	5.2	5.5	4.6	4.3	
tCOD (mg/L)	104,590	108,709	102,830	96,386	
sCOD (mg/L)	55,808	57,138	59,694	48,520	
TS (%)	6.12	5.94	4.64	4.26	
VS (%)	5.41	5.07	3.76	3.43	
TSS (mg/L)	28,039	26,109	20,804	21,113	
VSS (mg/L)	27,639	25,247	20,354	20,801	
TKN (mg/L)	1,600	1,888	1,418	1,616	
NH ₃ -N (mg/L)	209	196	230	229	
T-P (mg/L)	1,291	1,367	1,314	1,441	
PO_4 -P (mg/L)	509	576	625	721	

TABLE 5Average Influent Feed Characterization Data

	Once-Through Digester #				
Parameter	1	2	3	4	
Feed (L/day)	0.405	0.365	0.346	0.373	
COD Fed (g/day)	42.542	44.383	35.941	38.835	
F/M (g COD/day/g VSS)	0.223	0.240	0.180	0.181	
U (g COD R/day/g VSS)	0.218	0.236	0.177	0.177	
COD Removed (%)*	97.6	97.7	97.8	97.6	
HRT (days)	28.9	27.4	35.0	34.0	
SRT (days)	28.9	27.4	35.0	34.0	
pH (s.u.)	7.2	7.3	7.2	7.2	
Temperature (°C)	35.5	35.3	34.9	35.4	
tCOD (mg/L)	28,222	24,710	28,748	29.874	
sCOD (mg/L)	3,037	2,633	2,882	3,112	
TS (%)	2.68	2.51	2.64	2.76	
VS (%)	1.89	1.77	1.91	1.98	
TSS (mg/L)	20,083	18,265	19,817	17,170	
VSS (mg/L)	17,091	15,767	17,135	18,246	
TKN (mg/L)	1,845	1,963	2,064	2,183	
NH ₃ -N (mg/L)	868	868	845	807	
T-P (mg/L)	674	506	643	742	
PO ₄ -P (mg/L)	187	185	178	186	
VFA (mg/L)	1,565	1,514	1,409	1,472	
P-Alk (mg/L)	5,622	5,536	5,624	5,570	
T-Alk (mg/L)	6,231	6,019	6,134	6,214	
VFA/P-Alk	0.279	0.270	0.251	0.265	

TABLE 6	
Average Anaerobic Digester Characterization	
Phase I (November 14, 2009 - January 29, 2010)	

	Once	-Through Dig	ester #
Parameter	1	2	3
Feed (L/day)	0.356	0.364	0.342
COD Fed (g/day)	39.838	40.663	36.720
F/M (g COD/day/g VSS)	0.276	0.288	0.249
U (g COD R/day/g VSS)	0.264	0.275	0.238
COD Removed (%)*	95.6	95.2	95.7
HRT (days)	32.2	31.3	30.2
SRT (days)	32.2	31.3	30.2
pH (s.u.)	7.5	7.5	7.6
Temperature (°C)	35.2	35.2	34.9
COD (mg/L)	23,972	23,151	26,186
sCOD (mg/L)	5,972	5,636	5,630
ΓS (%)	2.56	2.45	2.60
VS (%)	1.5	1.43	1.58
ΓSS (mg/L)	16,834	15,982	17,703
VSS (mg/L)	12,247	11,745	13,350
ΓKN (mg/L)	2,820	2,719	3,440
NH ₃ -N (mg/L)	1,462	1,367	1,462
Γ-P (mg/L)	858	705	860
PO_4 - $P(mg/L)$	291	281	297
VFA (mg/L)	1,688	1,517	1,770
P-Alk (mg/L)	7,217	6,659	7,173
Γ-Alk (mg/L)	8,883	8,176	8,944
VFA/P-Alk	0.236	0.230	0.248

TABLE 7Average Anaerobic Digester CharacterizationPhase II (February 28, 2010 - March 26,2010)

Parameter	Once-Through Digester #1	Biomass Recycle Digester #5
Feed (L/day)	0.514	0.586
COD Fed (g/day)	25.889	60.287
F/M (g COD/day/g VSS)	0.446	0.298
U (g COD R/day/g VSS)	0.428	0.297
COD Removed (%)*	95.9	99.7
HRT (days)	23.3	21.4
SRT (days)	23.3	239
pH (s.u.)	7.4	7.4
Temperature (°C)	35.5	34.7
tCOD (mg/L)	20,616	32,344
sCOD (mg/L)	4,484	5,317
TS (%)	2.53	3.49
VS (%)	1.29	2.04
TSS (mg/L)	15,770	25,233
VSS (mg/L)	10,621	17,255
TKN (mg/L)	1,795	3,988
NH_3-N (mg/L)	863	1,025
T-P (mg/L)	688	1,411
PO ₄ -P (mg/L)	371	382
VFA (mg/L)	1,311	1,227
P-Alk (mg/L)	5,230	5,296
T-Alk (mg/L)	6,558	6,539
VFA/P-Alk	0.251	0.235

TABLE 8Average Anaerobic Digester CharacterizationPhase III (April 22, 2010 - June 16, 2010)

Parameter	Once-Through Digester #1	Biomass Recycle Digester #5
Feed (L/day)	0.660	1.032
COD Fed (g/day)	63.722	98.907
F/M (g COD/day/g VSS)	0.620	0.307
U (g COD R/day/g VSS)	0.592	0.306
COD Removed (%)*	95.7	99.8
HRT (days)	19.6	12.6
SRT (days)	19.6	124
pH (s.u.)	7.2	7.2
Temperature (°C)	35.9	35.2
tCOD (mg/L)	20,910	47,363
sCOD (mg/L)	5,199	4,333
TS (%)	2.19	4.89
VS (%)	1.16	2.97
TSS (mg/L)	12,716	41,624
VSS (mg/L)	9,074	27,533
TKN (mg/L)	1,979	5,367
NH ₃ -N (mg/L)	578	668
T-P (mg/L)	949	2,546
PO ₄ -P (mg/L)	396	394
VFA (mg/L)	1,565	1,057
P-Alk (mg/L)	4,133	4,188
T-Alk (mg/L)	5,659	5,246
VFA/P-Alk	0.410	0.259

TABLE 9Average Anaerobic Digester CharacterizationPhase IV (June 17, 2010 - December 10, 2010)

mode. To accomplish biomass recycle, digester contents were removed from Digester 5 and placed into a Fisher Scientific Marathon 3200 centrifuge and centrifuged for 15 minutes at 4,000 rpm. After centrifugation, the centrate was wasted and sampled as effluent, while the concentrated biomass was returned to the digester. Digester 5 effluent was characterized for sCOD, TS, VS, TSS, and VSS. Digester 5 average effluent characterization data for Phase III and Phase IV data can be viewed in Table 10.

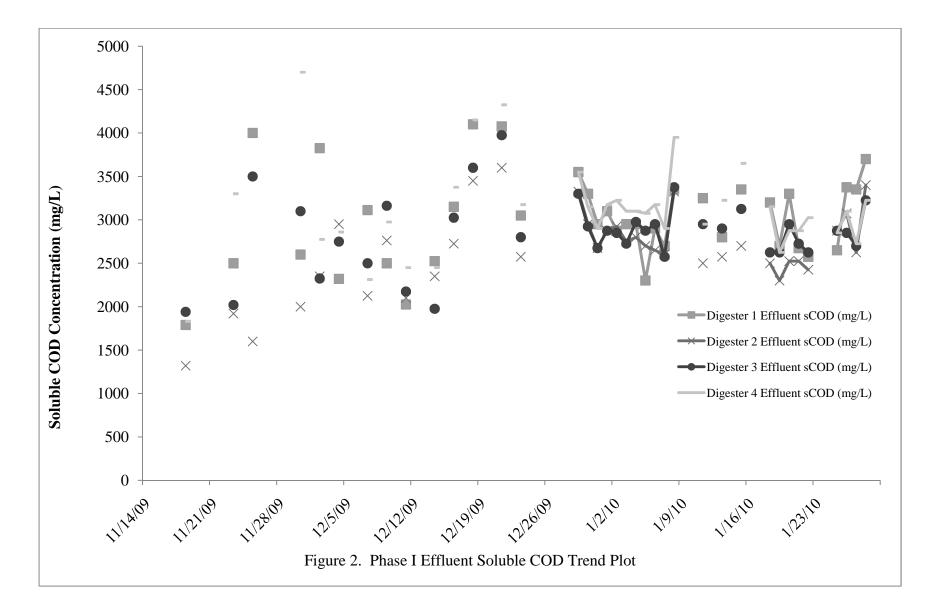
Digester reactors were operated in a vented, temperature controlled room. Air temperature in the room was maintained at 33°C to 36°C throughout the course of the research study period to maintain digester reactor temperatures, instead of using heated water baths.

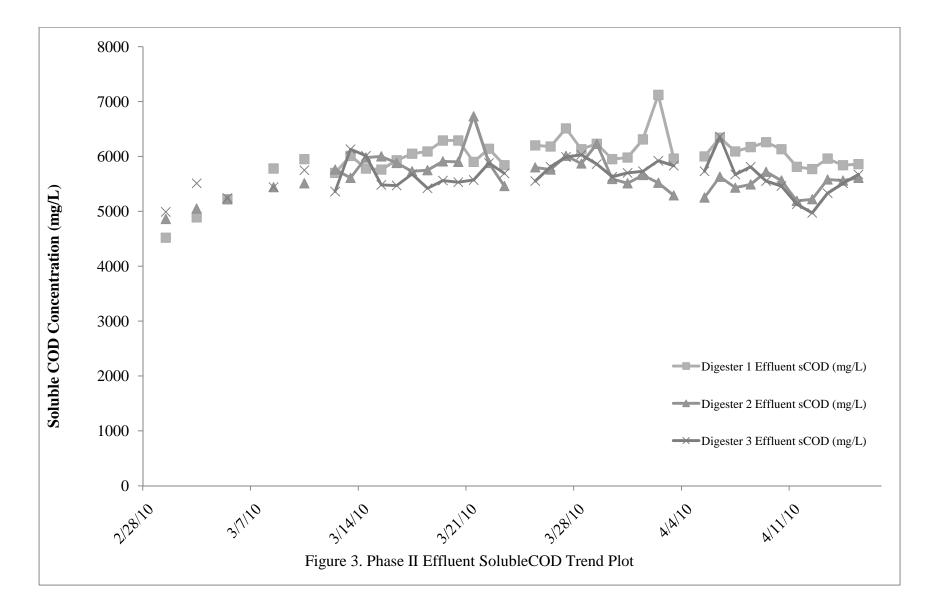
Individual feedstocks were blended together to provide a co-digestion process based on individual feedstock characterization to control COD to nutrient ratios, manage ammonia inhibition/toxicity, and provide macronutrients and micronutrients without requiring additional nutrient supplementation. Nutrient concentrations were monitored throughout the course of the study to ensure that the digesters did not operate under nutrient deficient conditions. As seen in Tables 6 through 9, NH₃-N concentrations averaged between 578 mg/L and 1,462 mg/L for the once-through CSTR digesters and between 668 mg/L and 1,025 for the biomass recycle CSTR digester. PO₄-P concentrations averaged between 178 mg/L and 396 mg/L for the once-through CSTR digesters and between 382 mg/L and 394 for the biomass recycle CSTR digester. Adequate NH₃-N and PO₄-P concentrations were maintained at all times throughout the course of this research project and no manual nutrient additions were performed at any time. Micronutrient analyses were performed on digester effluents to confirm adequate micronutrients were available from the

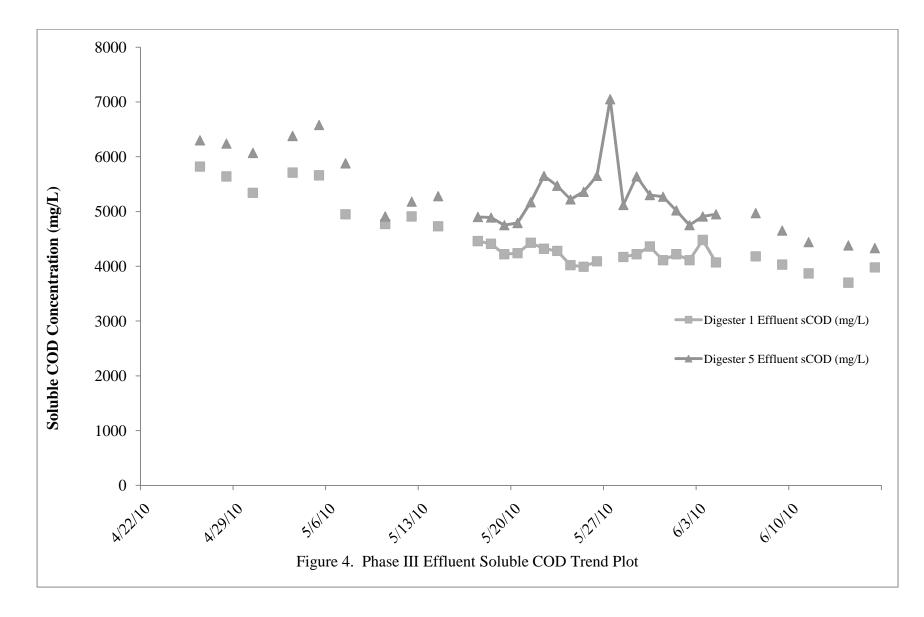
43

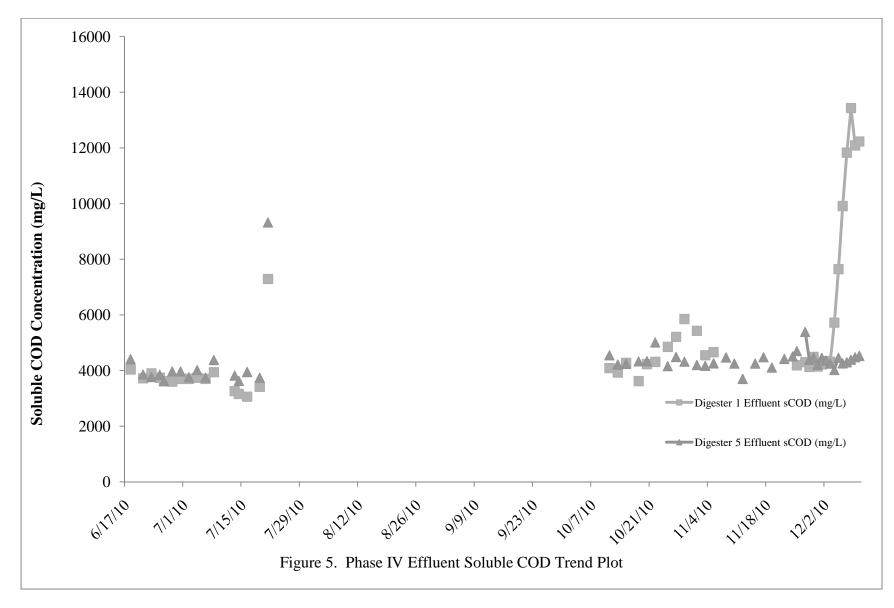
	Phase III	Phase IV
	(04/22/10 -	(06/17/10 -
Parameter	6/16/2010)	12/10/10)
COD (mg/L)	5,317	4,333
rs (%)	1.17	0.95
⁷ S(%)	0.23	0.18
SS (mg/L)	441	472
SS (mg/L)	326	373

TABLE 10Average Digester 5 Effluent Characterization


co-substrate feed mixture.


VFA to P-Alk ratios (VFA/P-Alk) are an important operational parameter for anaerobic digesters in relation to pH buffering capacity. It can be observed in Tables 6 through 9 that the average VFA/P-Alk ratios ranged from 0.230 to 0.410 throughout the course of the study. As long as the VFA/P-Alk ratio remains below 0.5, anaerobic digestion systems should be able to tolerate moderate variations in VFA concentrations, with little fluctuation in pH, while a rise above 0.5 is an indication of possible concern with a lack of pH buffering capacity. If the VFA/P-Alk ratio increases above 0.8, the system is likely to experience a severe drop in pH from small changes in VFA concentrations (González, 1987). It should be noted that digester pHs were maintained between 7.2 and 7.6 throughout the course of this research project and that no manual pH adjustments were performed at any time.


Tables 6 through 9 also present the average U values in terms of g COD Removed/day/g VSS in the digester, and percent COD removal. Percent COD removal was calculated on a mass basis of grams per day using the following equation:


% COD Removal =
$$\frac{(Influent \ tCOD \ \left(\frac{g}{day}\right) - Effluent \ sCOD \ \left(\frac{g}{day}\right)) * 100}{Influent \ tCOD \ \left(\frac{g}{day}\right)}$$

The once-through CSTR digesters attained high COD removal efficiencies throughout the course of this research study with average COD removal efficiencies between 95.2% and 97.8%. The biomass recycle digester attained excellent COD removal efficiencies between 99.7% and 99.8%. Effluent soluble COD trend plots for Phase I, Phase II, Phase III, and Phase IV can be viewed in Figures 2 through 5, respectively. Data points

connected by lines as observed in Figures 2 through 5 indicate data collection periods used for determining digester kinetics. Data points not connected by lines in Figures 1 through 4 indicate acclimation/stabilization data points that were not used for determining digester kinetics. Phase I, Phase II, Phase III, and Phase IV raw data obtained during the bench-scale digester study period can be viewed in Appendix C, D, E, and F, respectively.

Digester Substrate Kinetics

Digester substrate kinetics were developed in terms of COD according to the Stover-Kincannon Model (Stover & Kincannon, 1982, 1983, an 1984). Data obtained from digester reactors was used to develop a mass balance of substrate into and out of the digesters as follows:

mass of substrate into the reactor = mass of substrate out of the reactor + mass of substrate consumed biologically

Since CSTR suspended growth systems were modeled with the research performed, the resultant mass balance equation follows:

$$FS_i = FS_e + \left(\frac{dS}{dt}\right)_G V$$

Where:

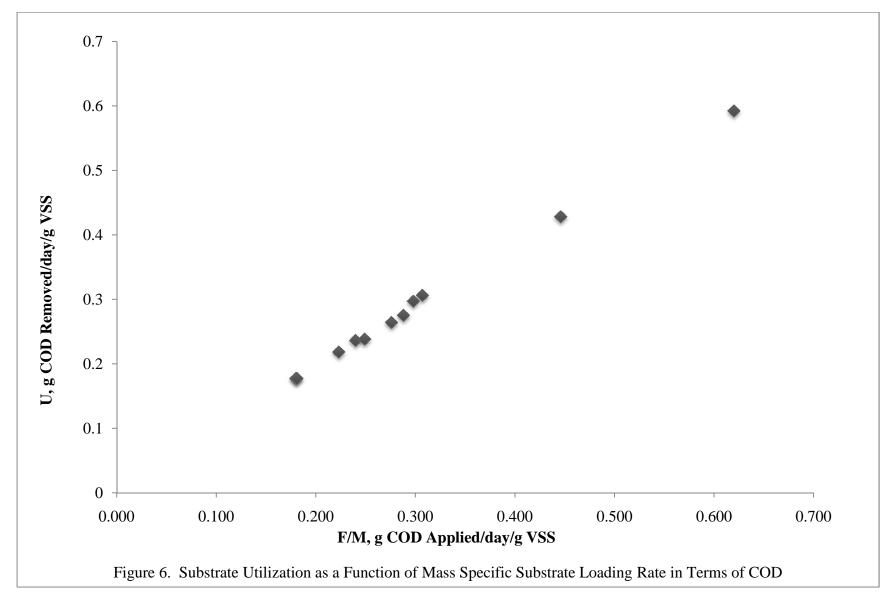
F= flow rate, L/day

 S_i = influent substrate concentration, mg/L

 S_e = effluent substrate concentration, mg/L

V = reactor volume, L

$$(dS/dt)_{G} = ((dS/dt)/X) =$$
 specific substrate utilization rate, g COD Removed/day/
g VSS


The specific substrate utilization rate from the previous equation is mathematically described as a function of the specific substrate loading rate or food-to-microorganism (F/M) ratio based on monomolecular kinetics as follows:

$$\left(\frac{dS}{dt}\right)_{G} = U = \frac{U_{max}\left(X * \frac{FS_{i}}{XV}\right)}{\left(K_{B} + \frac{FS_{i}}{VX}\right)}$$

Where:

- $FS_i/XV = F/M =$ food-to-microorganism ratio (specific substrate loading rate), g COD Applied/day/g VSS
- X = reactor mixed liquor volatile suspended solids, mg/L
- U = specific substrate utilization rate, g COD Removed/day/g VSS
- U_{max} = maximum specific substrate utilization rate, g COD Removed/day/g VSS
- K_B = proportionality constant or specific substrate loading rate where the rate of substrate utilization is one-half the maximum rate, g COD Applied/day/g VSS

The biokinetic constants U_{max} and K_B were determined from the data obtained during the research portion of this study. The average U values from each data collection phase were plotted as a function of the average F/M ratios in terms of COD as seen in Figure 6. The reciprocals of the average U values from each data collection phase were plotted as a function of the reciprocals of the average F/M ratios to achieve a linear monomolecular kinetic relationship as seen in Figure 7. In linearized form, U_{max} is the reciprocal of the y-axis intercept, and the slope of the line is equal to K_B/U_{max} . U_{max} is determined from

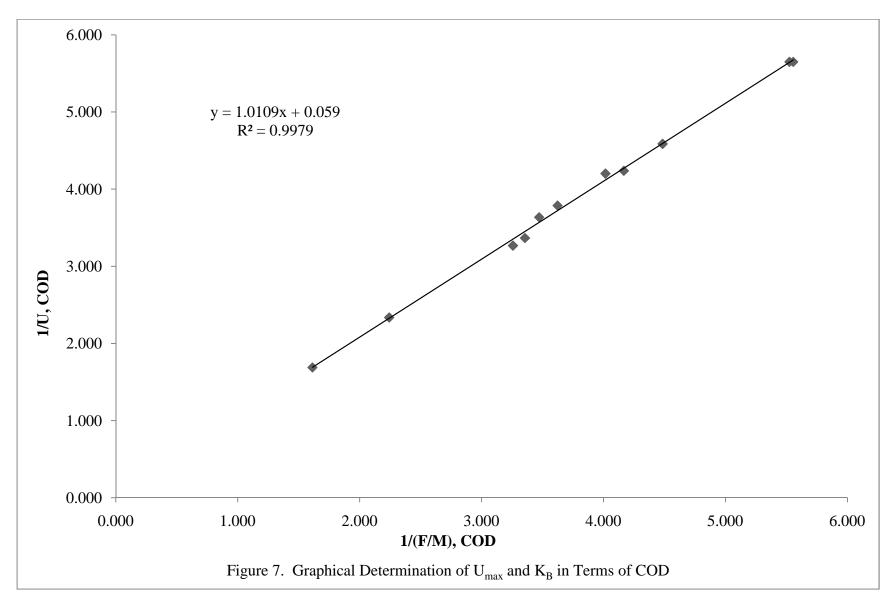


Figure 7 to be 16.95 g COD Removed/day/g VSS with a K_B value of 17.13 g COD Applied/day/g VSS.

Digester Biogas Production

Digester biogas production rates were initially monitored using a gas collection chamber consisting of an inverted one-liter graduated cylinder with the open end of the cylinder submerged in a water bath. Water was drawn up into the cylinder under vacuum. Biogas production then forced the water out of the cylinder and was monitored with time to determine biogas production rates. The AMPTS unit from Bioprocess Control was obtained towards the end of the bench-scale digester portion of the study and later used to measure biogas production rate. Biogas collection lines were switched daily between the AMPTS unit and the gas collection chamber to obtain both biogas production rate and biogas quality data. Biogas quality was monitored by plumbing biogas from the digesters to the gas collection chamber. A sample line was placed into the inverted cylinder so the biogas could be sampled for carbon dioxide and hydrogen sulfide. Sampling and analysis for carbon dioxide were performed using a Bacharach Fyrite[®] Classic Gas Analyzer model no. 10-5032 capable of measuring gas carbon dioxide concentrations from 0% to 60%. Sampling and analysis for hydrogen sulfide were performed using a Sensidyne AP-20S Gas Detection Pump and hydrogen sulfide detection tubes. Hydrogen sulfide detection tubes used during the course of the study were capable of measuring 25 ppm to 12,500 ppm H_2S . Biogas collection lines were switched daily between the AMPTS unit and the gas collection chamber during detailed data collection periods to obtain both biogas production rate and biogas quality data. Average biogas characterization data for each digester during each data collection phase can be viewed in Tables 11 through 14.

54

	Once-Through Digester #				
Parameter	1	2	3	4	
Feed (L/day)	0.405	0.365	0.346	0.373	
COD Fed (g/day)	42.542	44.383	35.941	38.835	
F/M (g COD/day/g VSS)	0.223	0.240	0.180	0.181	
U (g COD R/day/g VSS)	0.218	0.236	0.177	0.177	
COD Removed (%)*	97.6	97.7	97.8	97.6	
HRT (days)	28.9	27.4	35.0	34.0	
SRT (days)	28.9	27.4	35.0	34.0	
Biogas (L/day)	18.700	24.667	17.800	17.125	
Biogas (L/day/L)**	1.558	2.056	1.483	1.427	
Biogas (L/day/g COD R)*	0.347	0.453	0.448	0.403	
Methane (L/day)	12.348	17.064	11.748	11.292	
Methane (L/day/L)**	1.029	1.422	0.979	0.941	
Methane (L/day/g COD R)*	0.229	0.311	0.295	0.266	
Biogas CO2 (%)	33.3	33.7	33.6	33.9	
Biogas H2S (ppm)	1,390	1,588	1,440	1,333	

TABLE 11Average Biogas Characterization DataPhase I (November 14, 2009 - January 29, 2010)

* Based on influent mass tCOD minus effluent mass sCOD

** Biogas produced per liter of reactor volume

	Once-Through Digester #				
Parameter	1	2	3		
Feed (L/day)	0.356	0.364	0.342		
COD Fed (g/day)	39.838	40.663	36.720		
F/M (g COD/day/g VSS)	0.276	0.288	0.249		
U (g COD R/day/g VSS)	0.264	0.275	0.238		
COD Removed (%)*	95.6	95.2	95.7		
HRT (days)	32.2	31.3	30.2		
SRT (days)	32.2	31.3	30.2		
Biogas (L/day)	17.152	18.442	14.558		
Biogas (L/day/L)**	1.429	1.537	1.213		
Biogas (L/day/g COD R)*	0.429	0.466	0.371		
Methane (L/day)	12.144	12.948	9.972		
Methane (L/day/L)**	1.012	1.079	0.831		
Methane (L/day/g COD R)*	0.305	0.332	0.257		
Biogas CO2 (%)	29.2	29.5	31.2		
Biogas H2S (ppm)	1,769	1,638	1,579		

TABLE 12Average Biogas Characterization DataPhase II (February 28, 2010 - March 26,2010)

* Based on influent mass tCOD minus effluent mass sCOD

** Biogas produced per liter of reactor volume

	Dige	ster #
Parameter	1	5
Feed (L/day)	0.514	0.586
COD Fed (g/day)	25.889	60.287
F/M (g COD/day/g VSS)	0.446	0.298
U (g COD R/day/g VSS)	0.428	0.297
COD Removed (%)*	95.9	99.7
HRT (days)	23.3	21.4
SRT (days)	23.3	239.1
Biogas (L/day)	25.560	28.479
Biogas (L/day/L)**	2.130	2.373
Biogas (L/day/g COD R)*	0.422	0.457
Methane (L/day)	15.744	17.532
Methane (L/day/L)**	1.312	1.461
Methane (L/day/g COD R)*	0.262	0.285
Biogas CO2 (%)	33.6	34.0
Biogas H2S (ppm)	2,000	2,000

TABLE 13Average Biogas Characterization DataPhase III (April 22, 2010 - June 16, 2010)

* Based on influent mass tCOD minus effluent mass sCOD

** Biogas produced per liter of reactor volume

	Digester #	
Parameter	1	5
Food (I /dev)	0.660	1.032
Feed (L/day) COD Fed (g/day)	63.722	98.907
F/M (g COD/day/g VSS)	0.620	0.307
U (g COD R/day/g VSS)	0.592	0.306
COD Removed (%)*	95.7	99.8
HRT (days)	19.6	12.6
SRT (days)	19.6	124.1
Biogas (L/day)	18.658	38.279
Biogas (L/day/L)	1.555	3.274
Biogas (L/day/g COD R)*	0.310	0.384
Methane (L/day)	12.024	23.309
Methane (L/day/L)	1.002	2.119
Methane $(L/day/g \text{ COD } R)^*$	0.160	0.252
Biogas CO2 (%)	31.2	33.7
Biogas H2S (ppm)	2,850	2,028

TABLE 14Average Biogas Characterization DataPhase IV (June 17, 2010 - December 10, 2010)

* Based on influent mass tCOD minus effluent mass sCOD

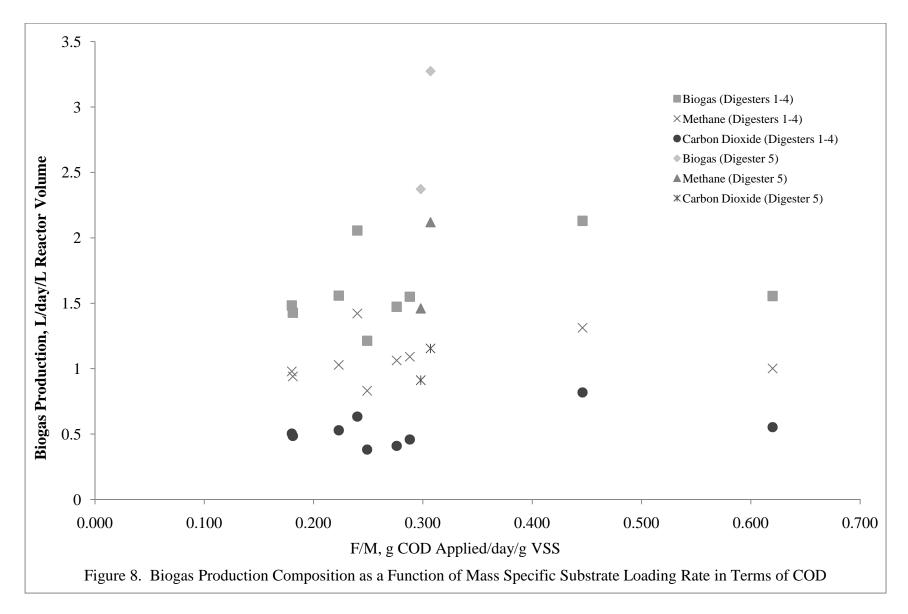
**Biogas produced per liter of reactor volume

A biogas trend plot of average biogas composition as a function of F/M based on average biogas composition values and F/M ratios for all digesters for the entire course of the research study can be viewed in Figure 8. As viewed in Figure 8, at an F/M ratios greater than 0.460 g COD Applied/g VSS and higher, biogas production and biogas quality decreases, most likely as a result of VFA accumulation resulting in methanogen inhibition/toxicity.

Digester Biogas Kinetics

The specific biogas production rate is mathematically described as a function of the mass specific substrate loading rate as follows:

$$G = \frac{G_{max}\left(X * \frac{FS_i}{XV}\right)}{(G_B + \frac{FS_i}{VX})}$$


Where:

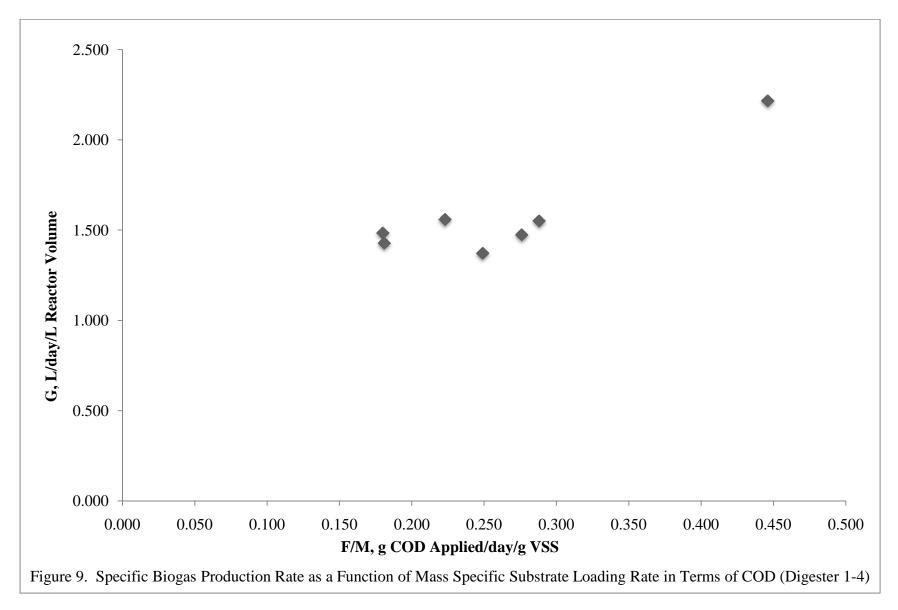
G = specific methane production rate, L/day/L Reactor Volume

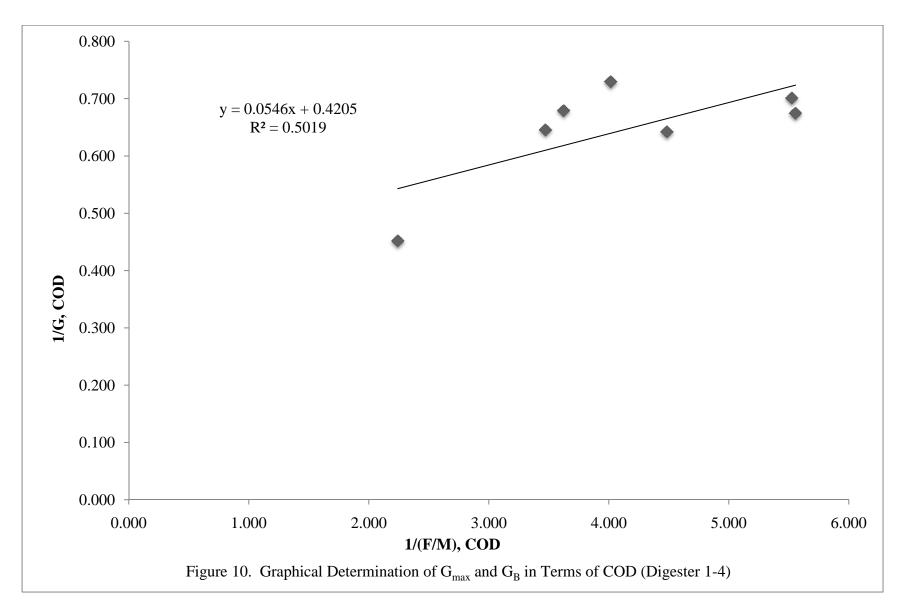
 G_{max} = maximum specific methane production rate, L/day/L Reactor Volume

 G_B = proportionality constant or specific substrate loading where the rate of biogas production is one-half the maximum rate, g COD Applied/day/g VSS

The biokinetic constants G_{max} and G_B were determined from the data obtained during the bench-scale digester portion of this study. A comparison of average F/M ratios and average G values for each data collection phase can be viewed in Table 15. However, it should be noted that the Phase I, Digester 2 G value was not used to determine biogas kinetics due to limited data as a result of gas leaks during the Phase I data collection period. The Phase IV, Digester 1 G value was not used to determine biogas kinetics due

Phase I (November 14, 2009 - January 29, 2010)				
	F/M	G	М	
	(g COD/	(L Biogas/	(L Methane/	
Digester	day/g VSS)	Day/L)	Day/L)	
1	0.223	1.558	1.029	
2	0.240	2.056	1.422	
3	0.180	1.483	0.979	
4	0.181	1.427	0.941	
	Phase II (February 28,	2010 - March 26, 201	10)	
	F/M	G	М	
	(g COD/	(L Biogas/	(L Methane/	
Digester	day/g VSS)	Day/L)	Day/L)	
1	0.074	1 472	1.0.64	
1	0.276	1.473	1.064	
2	0.288	1.550	1.091	
3	0.249	1.371	0.940	
	Phase III (April 22, 2	2010 - June 16, 2010)		
	F/M	G	М	
	(g COD/	(L Biogas/	(L Methane/	
Digester	day/g VSS)	Day/L)	Day/L)	
1	0.446	2.215	1.392	
5	0.298	2.373	1.461	
			•	
	Phase IV (June 16, 2010			
	F/M	G	M	
	(g COD/	(L Biogas/	(L Methane/	
Digester	day/g VSS)	Day/L)	Day/L)	
1	0.620	1.555	1.002	
5	0.307	3.274	2.119	

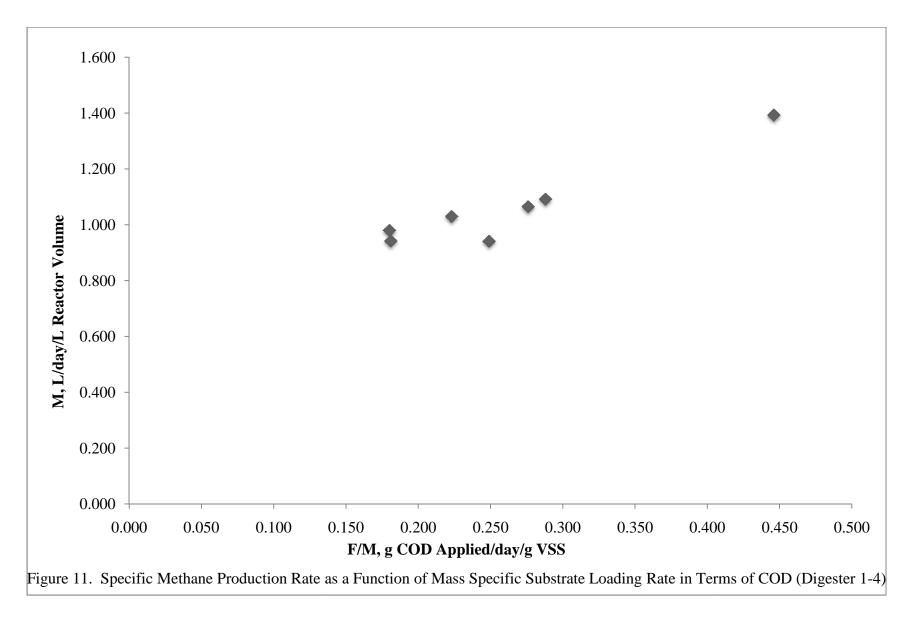

TABLE 15 Average Biogas and Methane Production Rates


to reduced average biogas production compared to the lower F/M ratios as seen in Table 15. This decreased biogas production rate most likely indicates VFA inhibition/toxicity, resulting in decreased COD utilization/removal and poor biogas production. Biomass recycle G values were not used to determine biogas kinetics due to significantly higher biogas production rates as a result of increased COD volumetric and mass loading rates. Biomass recycle digester biogas kinetics would be different than the once-through digester biogas kinetics and would have to be developed as a separate set of kinetic relationships. Biomass recycle digesters can be substrate loaded at higher volumetric substrate loading rates $(kg/day/m^3)$ than once-through systems. The average G values from the once-through digesters for each data collection phase were plotted as a function of the average F/M ratios in terms of COD as seen in Figure 9. The reciprocals of the average G values from each data collection phase were plotted as a function of the reciprocals of the average F/M ratios to achieve a linear monomolecular kinetic relationship as seen in Figure 10. In linearized form, G_{max} is the reciprocal of the y-axis intercept, and the slope of the line is equal to G_B/G_{max}. G_{max} is determined from Figure 10 to be 2.38 L Biogas/day/L Reactor Volume with a G_B value of 0.13 g COD Applied/day/g VSS.

Digester Methane Kinetics

The specific methane production rate is mathematically described as a function of the specific mass substrate loading rate as follows:

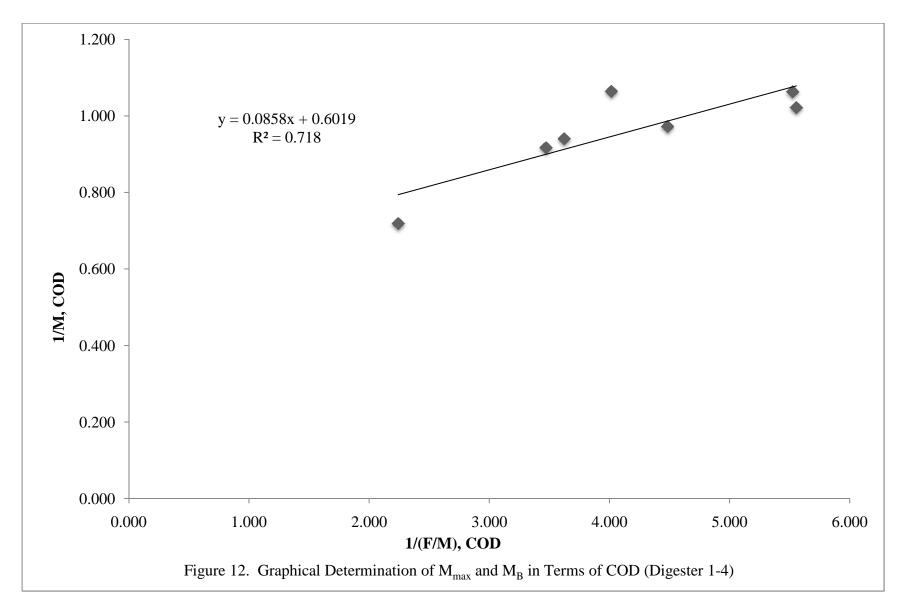
$$M = \frac{M_{max} \left(X * \frac{FS_i}{XV} \right)}{\left(M_B + \frac{FS_i}{VX} \right)}$$



Where:

- M = specific methane production rate, L/day/L Reactor Volume
- M_{max} = maximum specific methane production rate, L/day/L Reactor Volume
- M_B = proportionality constant or specific substrate loading rate where the rate of methane production is one-half the maximum rate, g COD Applied/day/g VSS

The biokinetic constants M_{max} and M_B were determined from the data obtained during the bench-scale digester portion of this study. A comparison of average F/M ratios and M values for each data collection phase can be viewed in Table 15. However, it should be noted that the Phase I, Digester 2 M value was not used to determine methane kinetics due to limited data as a result of gas leaks during the Phase I data collection period. The Phase IV, Digester 1 M value was not used to determine methane kinetics due to reduced average methane production compared to the lower F/M ratios as seen in Table 15. This decreased methane production rate most likely indicates VFA accumulation and inhibition/toxicity to the methanogens, resulting in decreased COD utilization/removal and poor methane production. Biomass recycle M values were not used to determine methane kinetics due to significantly higher methane production as a result of increased COD volumetric and mass loading rates. Biomass recycle digester methane kinetics would be different than the once-through digester methane kinetics and would have to be developed as a separate set of kinetic relationships. Biomass recycle digesters can be substrate loaded at higher volumetric substrate loading rates (kg/day/m³) than oncethrough systems. The average M values from the once-through digesters for each data collection phase were plotted as a function of the average F/M ratios in terms of COD as seen in Figure 11. The reciprocals of the average M values were plotted as a function of



the reciprocals of the average F/M ratios to achieve a linear monomolecular kinetic relationship as seen in Figure 12. In linearized form, M_{max} is the reciprocal of the y-axis intercept, and the slope of the line is equal to M_B/M_{max} . M_{max} is determined from Figure 12 to be 1.66 L Methane/day/L Reactor Volume with an M_B value of 0.14 g COD Applied/day/g VSS. A summary table of the digester substrate, biogas, and methane biokinetic constants can be viewed in Table 16.

AMPTS STUDIES

AMPTS Substrate Characterization

AMPTS studies were also conducted for evaluation of potential development of biokinetic constants by performing batch feed studies using small reactors. The purpose of the AMPTS kinetics studies was to evaluate the potential for developing a quick and simple method/procedure to determine biokinetic relationships for full-scale applications without performing the long-term bench-scale operations. Since substantial data was obtained during the course of the bench-sale digester reactor portion of the research, kinetics data obtained during the AMPTS studies could be directly compared and contrasted with the kinetics data developed from the digester reactors. AMPTS studies were performed using a feed blend identical to that used during the bench-scale digester portion of the study. Influent feed was characterized for tCOD and sCOD. Influent feed characteristics can be viewed in Table 17. Seed sludge used for the AMPTS kinetics relationship studies was supplied from an operating digester from the previously mentioned digester studies. Seed sludge was characterized for tCOD, sCOD, TSS, VSS, TKN, NH₃-N, T-P, and PO₄-P.

Value
16.95
17.13
2.38
0.13
1.66
0.14

TABLE 16 Bench-Scale Digester Biokinetic Constants

Parameter	Influent Feed	
tCOD (mg/L)	103,150	
sCOD (mg/L)	56,450	

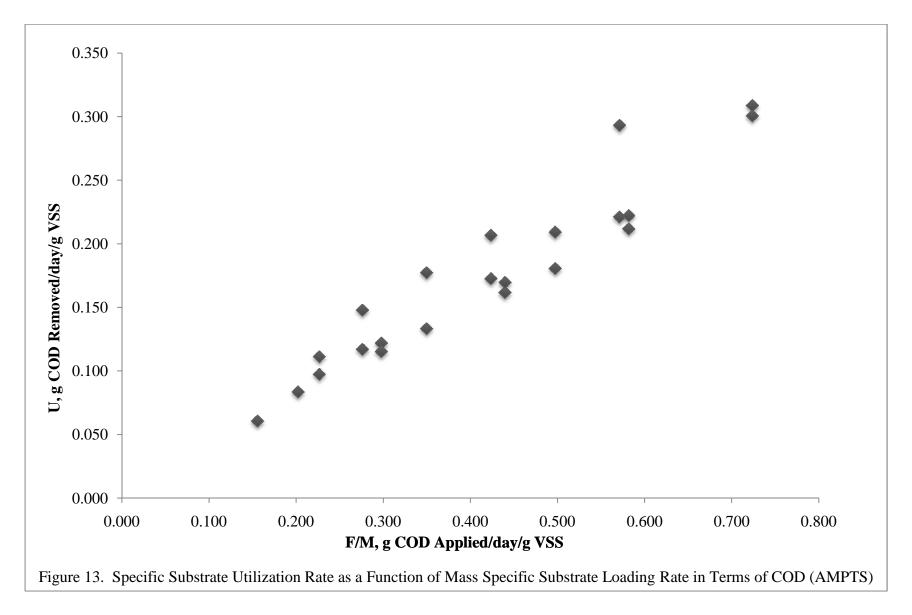
TABLE 17AMPTS Influent Feed Characterization Data

Seed sludge characterization data can be viewed in Table 18. For the AMPTS portion of the study, small 500 mL digesters were set up in a batch reactor mode at multiple food-to-microorganism (F/M) ratios. Digesters were set up with 300 mLs of seed sludge and various feed volumes. Air temperature in the room was maintained at 33°C to 36°C throughout the course of the study period to maintain digester reactor temperatures, instead of using heated water baths. Once the digester(s) with the lowest COD load (lowest F/M ratio) approached the theoretical maximum gas production volume and the gas production rate substantially decreased, the study period was determined to be complete and all digesters were immediately sampled and analyzed for sCOD, TSS, VSS, VFA, P-Alk, and T-Alk. AMPTS digester effluent data can be viewed in Table 19. It should be noted that Table 19 includes two columns containing F/M ratios. One F/M column is labeled Initial F/M column and represents the initial F/M ratio in terms of g COD/g VSS at the onset of the study. The other F/M column represents F/M ratio in terms of g COD/day/g VSS with respect to the HRT of the study period.

AMPTS Digester Substrate Kinetics

Table 20 presents the U values in terms of g COD Removed/day/g VSS in each digester, and percent COD removal for each digester. Biokinetic constants U_{max} and K_B were determined from the data obtained during the AMPTS research portion of this study. The specific substrate utilization rate was plotted as a function of the F/M ratio in terms of COD as seen in Figure 13. The reciprocal of U was plotted as a function of the reciprocal of the F/M ratio to achieve a linear monomolecular kinetic relationship as seen in Figure 14. In linearized form, U_{max} is the reciprocal of the y-axis intercept, and the slope of the

	Seed
Parameter	Sludge
tCOD	40,150
sCOD	11,310
TSS	32,800
VSS	19,900
TKN	6,550
NH ₃ -N	1,790
T-P	4,160
PO ₄ -P	740


TABLE 18AMPTS Seed Sludge Characterization Data

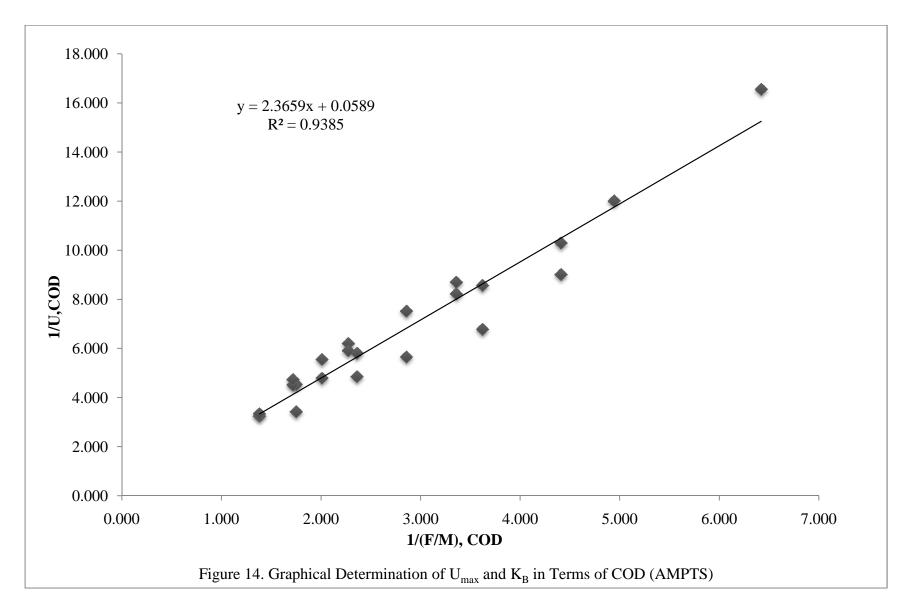
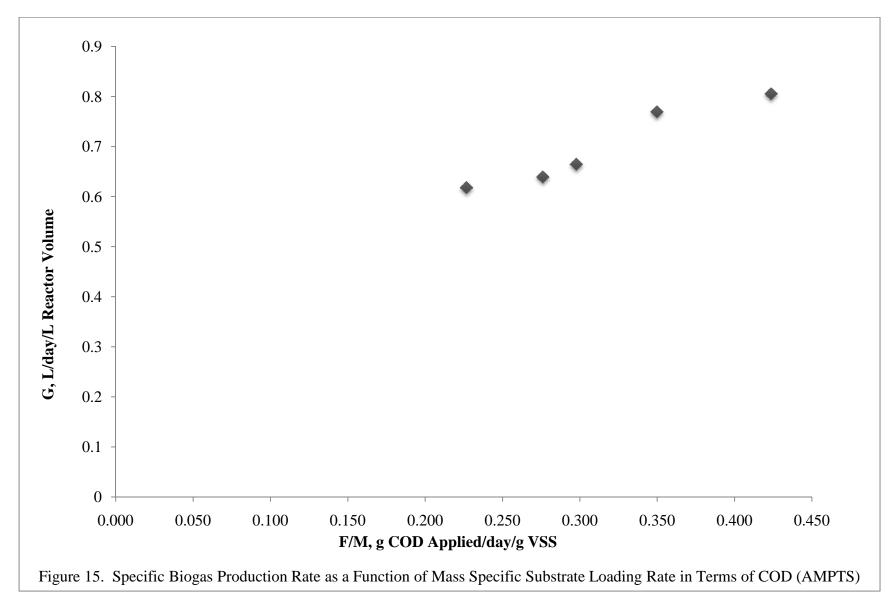

					MPTS 1	Digester	Data					
		tCOD	Initial F/M	F/M								
	Feed	Fed	(g COD/	(g COD/	HRT	SRT	sCOD	TSS	VSS	VFA	P-Alk	VFA/
Digester	(L)	(g)	g VSS)	g VSS)	(days)	(days)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	P-Alk
1	0.000	0.000	0.568	0.202	2.81	2.81	6,650	29,600	19,700	3,900	10,450	0.373
2	0.000	0.000	0.568	0.156	3.65	3.65	6,920	28,900	19,400	3,400	8,800	0.386
3	0.012	1.238	0.776	0.276	2.81	2.81	8,560	26,000	18,200	3,700	8,625	0.429
4	0.012	1.238	0.776	0.276	2.81	2.81	6,900	26,000	18,600	3,875	8,900	0.435
5	0.015	1.547	0.828	0.227	3.65	3.65	8,960	25,900	18,400	3,875	7,200	0.538
6	0.015	1.547	0.828	0.227	3.65	3.65	8,000	27,100	19,000	3,325	7,275	0.457
7	0.024	2.476	0.983	0.350	2.81	2.81	11,220	25,000	17,800	4,325	7,150	0.605
8	0.024	2.476	0.983	0.350	2.81	2.81	8,940	24,300	18,000	4,175	7,100	0.588
9	0.030	3.095	1.087	0.298	3.65	3.65	11,620	25,700	18,100	4,750	5,925	0.802
10	0.030	3.095	1.087	0.298	3.65	3.65	12,060	26,900	18,800	5,175	5,775	0.896
11	0.036	3.713	1.190	0.424	2.81	2.81	12,540	23,800	17,000	5,625	5,900	0.953
12	0.036	3.713	1.190	0.424	2.81	2.81	10,840	23,300	17,200	4,975	5,425	0.917
13	0.048	4.951	1.398	0.497	2.81	2.81	15,280	24,000	17,700	5,750	5,075	1.133
14	0.048	4.951	1.398	0.497	2.81	2.81	13,900	25,100	18,200	6,600	5,250	1.257
15	0.060	6.189	1.605	0.571	2.81	2.81	16,320	24,000	17,600	6,675	4,475	1.492
16	0.060	6.189	1.605	0.571	2.81	2.81	12,960	25,000	19,100	6,025	4,425	1.362
17	0.060	6.189	1.605	0.440	3.65	3.65	16,840	27,100	18,900	7,000	4,075	1.718
18	0.060	6.189	1.605	0.440	3.65	3.65	16,360	25,400	17,900	7,125	4,125	1.727
19	0.090	9.284	2.123	0.582	3.65	3.65	20,100	23,800	17,900	6,475	3,175	2.039
20	0.090	9.284	2.123	0.582	3.65	3.65	20,680	23,400	17,400	6,525	2,950	2.212
21	0.120	12.378	2.642	0.724	3.65	3.65	21,540	26,800	19,300	7,400	2,625	2.819
22	0.120	12.378	2.642	0.724	3.65	3.65	21,960	24,800	18,300	7,025	2,000	3.513

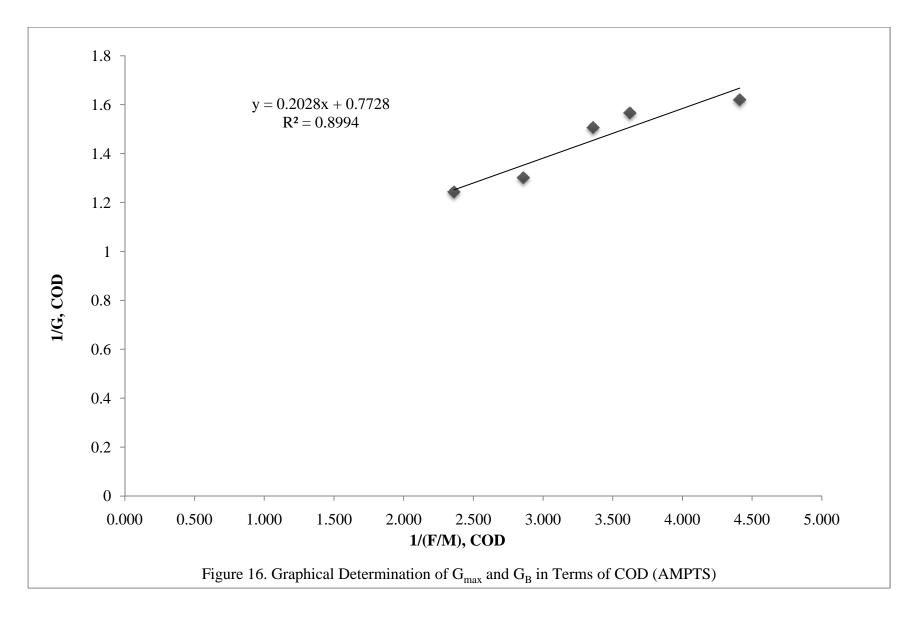
TABLE 19 MPTS Digester Date

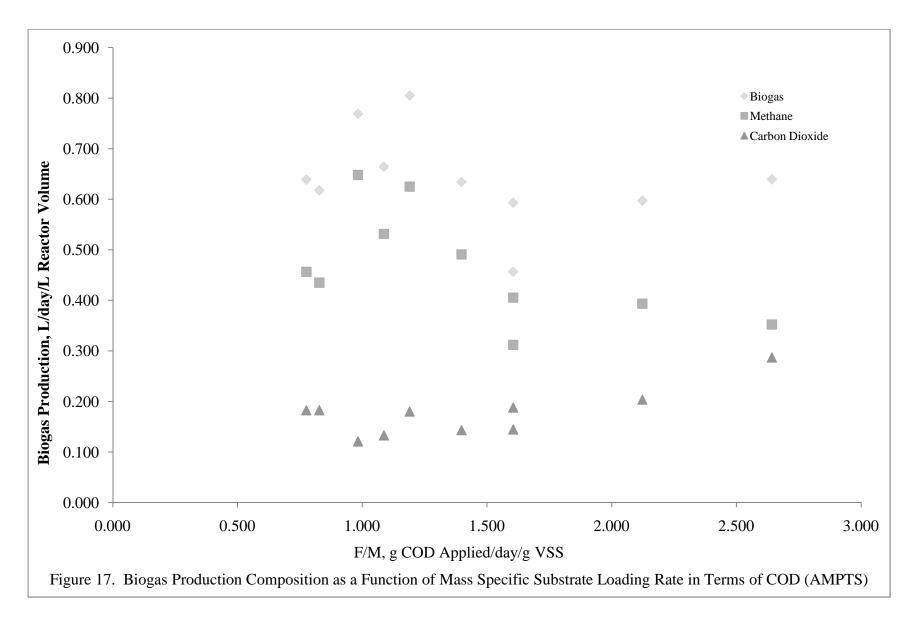
			AMPTS	Digester Ef	fluent Data			
		tCOD	Initial F/M	F/M	U	COD		
	Feed	Fed	(g COD/	(g COD/	(g COD/	Removed	HRT	SRT
Digester	(L)	(g)	g VSS)	g VSS)	day/g VSS)	(%)	(days)	(days)
1	0.000	0.000	0.568	0.202	0.083	41.2	2.81	2.81
2	0.000	0.000	0.568	0.156	0.060	38.8	3.65	3.65
3	0.012	1.238	0.776	0.276	0.117	42.3	2.81	2.81
4	0.012	1.238	0.776	0.276	0.148	53.5	2.81	2.81
5	0.015	1.547	0.828	0.227	0.097	42.9	3.65	3.65
6	0.015	1.547	0.828	0.227	0.111	49.0	3.65	3.65
7	0.024	2.476	0.983	0.350	0.133	38.1	2.81	2.81
8	0.024	2.476	0.983	0.350	0.177	50.6	2.81	2.81
9	0.030	3.095	1.087	0.298	0.122	40.9	3.65	3.65
10	0.030	3.095	1.087	0.298	0.115	38.7	3.65	3.65
11	0.036	3.713	1.190	0.424	0.172	40.7	2.81	2.81
12	0.036	3.713	1.190	0.424	0.206	48.7	2.81	2.81
13	0.048	4.951	1.398	0.497	0.180	36.3	2.81	2.81
14	0.048	4.951	1.398	0.497	0.209	42.0	2.81	2.81
15	0.060	6.189	1.605	0.571	0.221	38.7	2.81	2.81
16	0.060	6.189	1.605	0.571	0.293	51.3	2.81	2.81
17	0.060	6.189	1.605	0.440	0.162	36.7	3.65	3.65
18	0.060	6.189	1.605	0.440	0.169	38.5	3.65	3.65
19	0.090	9.284	2.123	0.582	0.222	38.2	3.65	3.65
20	0.090	9.284	2.123	0.582	0.212	36.4	3.65	3.65
21	0.120	12.378	2.642	0.724	0.309	42.6	3.65	3.65
22	0.120	12.378	2.642	0.724	0.300	41.5	3.65	3.65

TABLE 20

line is equal to K_B/U_{max} . U_{max} was determined from Figure 14 to be 16.98 g COD Removed/day/g VSS with a K_B value of 40.168 g COD Applied/day/g VSS.

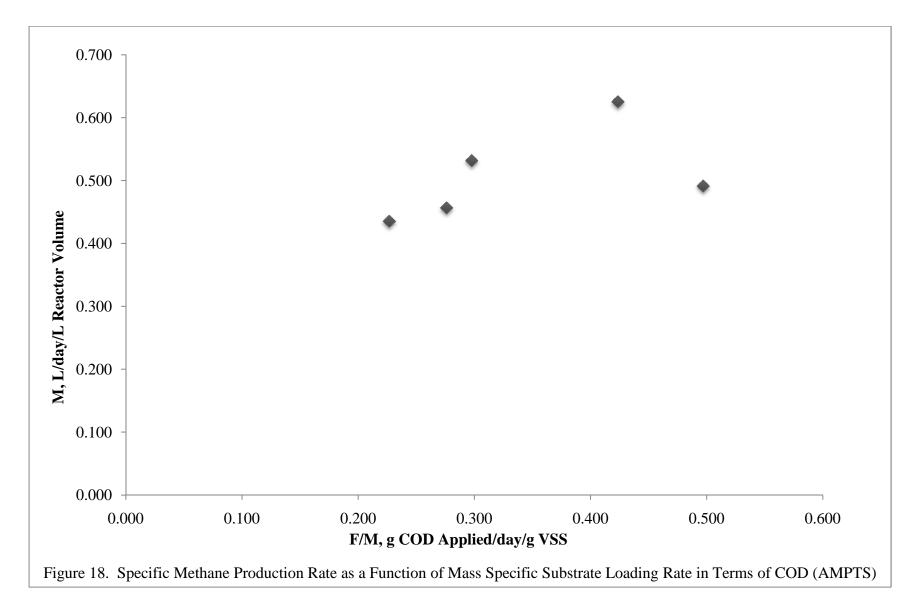

AMPTS Digester Biogas Kinetics

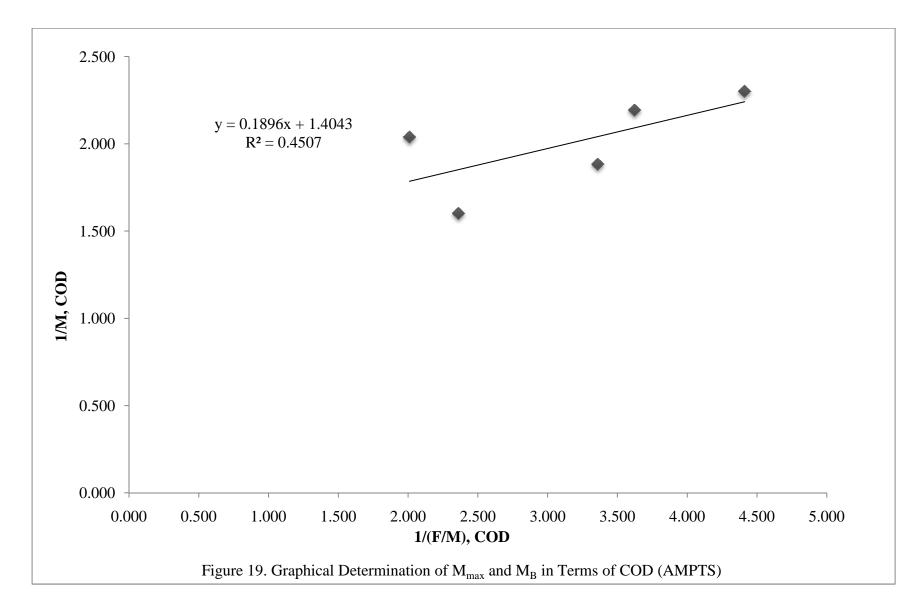

Digesters were set up in duplicates with one set of digesters providing unscrubbed biogas to the AMPTS cell plate and another set of digesters providing scrubbed biogas (methane) to the AMPTS cell plate.


Biokinetic constants G_{max} and G_{B} were determined from the data obtained during the AMPTS research portion of this study. AMPTS digester biogas production rates can be viewed in Table 21. The specific biogas production rates were plotted as a function of the F/M ratio in terms of COD as seen in Figure 15. The reciprocal of G was plotted as a function of the reciprocal of the F/M ratio to achieve a linear monomolecular kinetic relationship as seen in Figure 16. In linearized form, G_{max} is the reciprocal of the y-axis intercept, and the slope of the line is equal to GB/Gmax. Gmax was determined from Figure 16 to be 1.29 L Biogas/day/L Reactor Volume with a G_B value of 0.262 g COD Applied/day/g VSS. Specific biogas production rates for the initial F/M ratios of 1.398 g COD Applied/g VSS and higher F/M ratios were not included in Figure 15 and 16 for biogas kinetics determination due to decreasing biogas production rates most likely resulting from VFA inhibition/toxicity. A biogas trend plot of average biogas composition as a function of initial F/M based on average biogas composition values and F/M ratios for the AMPTS digesters can be viewed in Figure 17. As viewed in Figure 17 at the initial F/M ratio of 1.398 g COD Applied/g VSS and higher, biogas production rate and biogas quality decreases most likely as a result of VFA inhibition/toxicity.

			AMPTS I	Digester Bi	ogas Dat	a		
		tCOD	Initial F/M	F/M				
	Feed	Fed	(g COD/	(g COD/	HRT	SRT	G	Μ
Digester	(L)	(g)	g VSS)	g VSS)	(days)	(days)	(L/day/L)	(L/day/L)
1	0.000	0.000	0.568	0.202	2.81	2.81	0.261	
2	0.000	0.000	0.568	0.156	3.65	3.65	0.292	
3	0.012	1.238	0.776	0.276	2.81	2.81	0.639	
4	0.012	1.238	0.776	0.276	2.81	2.81		0.456
5	0.015	1.547	0.828	0.227	3.65	3.65	0.618	
6	0.015	1.547	0.828	0.227	3.65	3.65		0.435
7	0.024	2.476	0.983	0.350	2.81	2.81	0.769	
8	0.024	2.476	0.983	0.350	2.81	2.81		0.648
9	0.030	3.095	1.087	0.298	3.65	3.65	0.664	
10	0.030	3.095	1.087	0.298	3.65	3.65		0.531
11	0.036	3.713	1.190	0.424	2.81	2.81	0.805	
12	0.036	3.713	1.190	0.424	2.81	2.81		0.625
13	0.048	4.951	1.398	0.497	2.81	2.81	0.634	
14	0.048	4.951	1.398	0.497	2.81	2.81		0.491
15	0.060	6.189	1.605	0.571	2.81	2.81	0.593	
16	0.060	6.189	1.605	0.571	2.81	2.81		0.405
17	0.060	6.189	1.605	0.440	3.65	3.65	0.457	
18	0.060	6.189	1.605	0.440	3.65	3.65		0.312
19	0.090	9.284	2.123	0.582	3.65	3.65	0.597	
20	0.090	9.284	2.123	0.582	3.65	3.65		0.393
21	0.120	12.378	2.642	0.724	3.65	3.65	0.639	
22	0.120	12.378	2.642	0.724	3.65	3.65		0.352

TABLE 21 MPTS Digestor Bioges D


AMPTS Digester Methane Kinetics


Biokinetic constants M_{max} and M_B were determined from the data obtained during the AMPTS research portion of this study. AMPTS digester methane production rates can be viewed in Table 21. The specific methane production rates were plotted as a function of the F/M ratio in terms of COD as seen in Figure 18. The reciprocal of M was plotted as a function of the reciprocal of the F/M ratio to achieve a linear monomolecular kinetic relationship as seen in Figure 19. In linearized form, M_{max} is the reciprocal of the y-axis intercept, and the slope of the line is equal to M_B/M_{max} . M_{max} was determined from Figure 19 to be 0.71 L Methane/day/L Reactor Volume with a M_B value of 0.135 g COD Applied/day/g VSS. Specific methane production rates for the initial F/M ratios of 1.398 g COD Applied/g VSS and higher F/M ratios were not included in Figure 18 and 19 for methane kinetics determination due to decreasing methane production rates most likely resulting from VFA inhibition/toxicity. A summary table of the AMPTS digester substrate, biogas, and methane biokinetic constants can be viewed in Table 22. As viewed in Figure 17 at the initial F/M ratio of 1.398 g COD Applied/g VSS and higher, methane production rate decreases most likely as a result of VFA inhibition/toxicity.

BENCH-SCALE DIGESTER KINETICS VS. AMPTS DIGESTER KINETICS

Substrate Kinetics Comparison

Since substantial data was obtained during the course of the digester reactor portion of the research, kinetics data obtained during the AMPTS studies could be directly compared and contrasted with the kinetics data developed from the bench-scale digesters.

Value	
16.98	
40.17	
1.29	
0.26	
0.71	
0.14	
	16.98 40.17 1.29 0.26 0.71

TABLE 22 AMPTS Digester Biokinetic Constants

Bench-scale digesters were operated in a semi-continuous fed, CSTR mode, while AMPTS digesters were operated in a batch mode. Both studies were performed using the same feed blend throughout the course of the studies. The AMPTS digesters were seeded with sludge from one of the operating bench-scale digesters. Both studies were performed using vented, temperature controlled rooms with air temperatures maintained between 33°C to 36°C throughout the course of the studies to maintain digester operating temperatures. Biokinetic constants were developed for both studies based on mass specific substrate loading rate according to the Stover-Kincannon Model (Stover & Kincannon, 1982, Stover & Kincannon, 1983, and Stover & Kincannon, 1984). A summary table comparing the biokinetic constants developed from data obtained from the bench-scale digester studies and from the AMPTS digester studies can be viewed in Table 23.

The biokinetic constants U_{max} and K_B obtained from the bench-scale digester studies and the AMPTS studies were used to calculate U values as a function of F/M using the following equation:

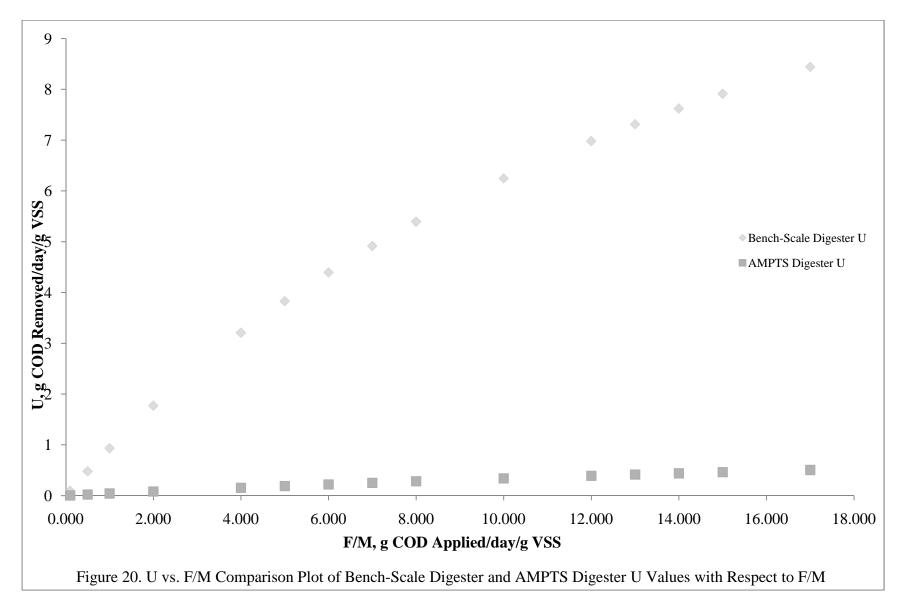
$$U = \frac{U_{max}(X)\left(\frac{F}{M}\right)}{K_B + \left(\frac{F}{M}\right)}$$

Where:

X = reactor VSS, g/L

An X value of 10 g/L (10,000 mg/L) was chosen based on average once-through digester VSS concentrations throughout the course of the bench-scale digester studies. A series of F/M ratios were chosen to calculate U value data points to produce U vs. F/M curves

Parameter	Bench-Scale Digester Constants	AMPTS Digester Constants
J _{max} (g COD R/day/g VSS)	16.95	16.98
K _B (g COD/day/g VSS)	17.13	40.17
G _{max} (L/day/L Reactor Volume)	2.28	1.29
G _B (g COD/day/g VSS)	0.11	0.26
M _{max} (L/day/L Reactor Volume)	1.55	0.71
M _B (g COD/day/g VSS)	0.11	0.14


TABLE 23Comparison of Biokinetic Constants

based on the biokinetic constants U_{max} and K_B obtained from both the bench-scale digester studies and the AMPTS studies. The generated curves from both digester studies were plotted together for direct comparison and can be viewed in Figure 20. As seen in Figure 20, the calculated U values plotted according to the bench-scale digester U_{max} and K_B values follow an initial rapid increase and then start to level off as the calculated U values approach U_{max} according to monomolecular kinetics. However; the calculated U values plotted according to the AMPTS digester U_{max} and K_B values produced a significantly different U response curve with much lower specific substrate utilization rates for the same specific substrate loading rates as the bench-scale digesters; as a result of the high determined K_B value. The significantly higher K_B value determined from the AMPTS studies is a direct result of the high initial F/M ratio VFA inhibition/toxicity impacts, as a result of the batch operating mode of the AMPTS digesters compared to the semi-continuous feed mode of the bench-scale digesters. The high initial F/M ratios in the AMPTS digesters resulted in VFA inhibition/toxicity and poor treatment performance in terms of COD removal compared to the bench-scale digesters that did not experience VFA inhibition/toxicity.

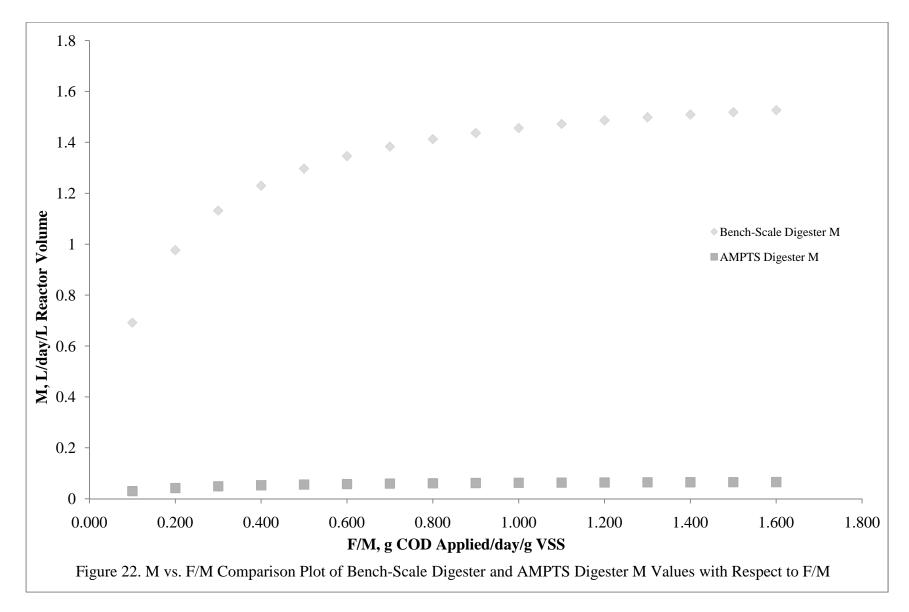
Biogas Kinetics Comparison

The biokinetic constants G_{max} and G_B obtained from the bench-scale digester studies and the AMPTS studies were used to calculate G values as a function of F/M using the following equation:


$$G = \frac{G_{max}(X)\left(\frac{F}{M}\right)}{G_B + \left(\frac{F}{M}\right)}$$

An X value of 10 g/L (10,000 mg/L) was chosen based on average once-through digester VSS concentrations throughout the course of the bench-scale digester studies. A series of F/M ratios were chosen to calculate G value data points to produce G vs. F/M curves based on the biokinetic constants G_{max} and G_B obtained from both the bench-scale digester studies and the AMPTS studies. The generated curves from both digester studies were plotted together for direct comparison and can be viewed in Figure 21. As seen in Figure 21, the plotted G values calculated according to the bench-scale digester G_{max} and G_B values follow an initial rapid increase and then start to level off as the calculated G values approach G_{max} according to monomolecular kinetics. However, the calculated G values plotted according to the AMPTS digester G_{max} and G_B values produced a significantly different G response curve with much lower specific biogas production rates for the same specific substrate loading rates as the bench-scale digesters; as a result of the high determined G_B value. The significantly higher G_B value determined from the AMPTS studies is a direct result of the high initial F/M ratio VFA inhibition/toxicity impacts as a result of the batch operating mode of the AMPTS digesters compared to the semi-continuous feed mode of the bench-scale digesters. The high initial F/M ratios in the AMPTS digesters resulted in VFA inhibition/toxicity and poor biogas production performance compared to the bench-scale digesters that did not experience VFA inhibition/toxicity.

Methane Kinetics Comparison


The biokinetic constants M_{max} and M_B obtained from the bench-scale digester studies and the AMPTS studies were used to calculate M values as a function of F/M using the

following equation:

$$M = \frac{M_{max}(X)\left(\frac{F}{M}\right)}{M_B + \left(\frac{F}{M}\right)}$$

An X value of 10 g/L (10,000 mg/L) was chosen based on average once-through digester VSS concentrations throughout the course of the bench-scale digester studies. A series of F/M ratios were chosen to calculate M value data points to produce M vs. F/M curves based on the biokinetic constants M_{max} and M_B obtained from both the bench-scale digester studies and the AMPTS studies. The generated curves from both digester studies were plotted together for direct comparison and can be viewed in Figure 22. As seen in Figure 22, the calculated M values plotted according to the bench-scale digester M_{max} and M_B values follow an initial rapid increase and then start to level off as the calculated M values approach M_{max} according to monomolecular kinetics. However; the plotted M values calculated according to the AMPTS digester M_{max} and M_B values produced a significantly different M response curve with much lower specific methane production rates for the same specific substrate loading rates as the bench-scale digesters; as a result of the high determined M_B value. The significantly higher M_B value determined from the AMPTS studies is a direct result of the high initial F/M ratio inhibition/toxicity impacts as a result of the batch operating mode of the AMPTS digesters compared to the semicontinuous feed mode of the bench-scale digesters. The high initial F/M ratios in the AMPTS digesters most likely resulted in VFA inhibition/toxicity and poor methane production performance compared to the bench-scale digesters which did not experience VFA inhibition/toxicity. AMPTS study raw data can be viewed in Appendix G

CHAPTER V

DISCUSSION

The scope of this research project was to operate suspended growth, CSTR anaerobic digesters at the bench-scale level to evaluate improved operation techniques/methods and develop biokinetic relationships. Multiple digester reactors were operated simultaneously for approximately fourteen months to obtain data that were used to develop improved operational processes and biokinetic relationships, along with evaluation of treatment performance under various operating conditions. Biokinetic relationships were developed for specific substrate utilization rate, specific biogas production rate, and specific methane production rate in terms of specific substrate loading rates.

The goal for developing improved operational processes and biokinetic relationships at the bench-scale level is to apply the improved techniques and relationships to full-scale biogas/bioenergy production facilities for improved digester operations and enhanced biogas production by producing the maximum specific biogas/methane production rate possible from a given anaerobic digester reactor volume.

Considering technology currently available, the purpose of this research project is to use

the biokinetic constants developed from the bench-scale digesters to develop a PLC algorithm to automate digester operations with input of key analytical parameters to control injection of substrate, and on-line monitoring of key digester operating parameters to optimize digester operating conditions and provide enhanced biogas production with improved methane content while maintaining good digester health, (pH, alkalinity, and nutrient requirements).

When performing anaerobic digestion processes from a waste treatment standpoint, waste treatment plants have little to no control over substrate selection and are forced to accept and treat whatever waste flows and loads are provided. As a result, flow and loading conditions often vary due to changing waste stream characteristics, resulting in unstable digester operation. Unstable operating conditions often result in digester unpredictability, poor substrate removal, poor biogas production, poor biogas quality, and even digester failure. An example of digester failure can be observed in the AMPTS studies previously mentioned where high initial F/M ratios (high COD loading conditions) in several of the digesters resulted in VFA accumulation and inhibition/toxicity to the methanogens, resulting in poor COD removal, poor biogas production, and poor biogas quality. Substrate overdosing as a result of insufficient substrate monitoring and digester monitoring is a common reason for digester failure. Low feed rates are also of concern and do not provide maximum biogas production per reactor volume available (this is of particular concern relative to biogas/bioenergy applications). It is important to select high-strength (high COD) waste sources to avoid limiting substrate injection as a result of low HRT to avoid digester solids dilution and allow proper time for methanogen growth.

When performing anaerobic digestion processes from an alternative fuels/energy production standpoint, it is important to select a quality substrate(s) that is readily available and amenable to anaerobic digestion processes. It may also be important to have a variety of quality substrates to choose from due to possible seasonal variation and availability. Substrates must be routinely monitored and characterized for COD and nutrient value. The PLC algorithm must be able to adjust at least a selected one of the rate of the various feedstocks based on substrate COD and nutrient data input obtained through analytical laboratory testing to optimize the digester reactor for biogas production, treatment performance, and pH and alkalinity control. The purpose for input of substrate COD data into the PLC is to adjust flow rates according to substrate COD concentrations to maintain stable substrate mass loading rates (F/M ratios) in the digester reactor to minimize specific substrate loading rate peaks and valleys associated with unstable operating conditions and lack of full use of anaerobic reactor volume biogas production capabilities.

On-line digester monitoring for key parameters is a critical part of the full-scale digester optimization process. Key on-line monitoring parameters include digester pH, temperature, biogas flow rate, biogas methane, carbon dioxide, and hydrogen sulfide content. Important digester parameters to monitor through laboratory analytical practices include VFAs, alkalinity, COD (same as effluent COD for once-through systems), TS, VS, TSS, VSS, NH₃-N, and PO₄-P. The PLC algorithm needs to be able to read and interpret the key digester parameters for both on-line monitoring and analytical data entry and adjust specific substrate loading rates accordingly. For example, decreasing pH and alkalinity and increasing VFAs and effluent CODs with decreasing biogas production

rate and methane content would be cause for concern and reason to reduce substrate loading to the digester. With an automated PLC system with specific parameter setpoints, an upset condition with one or a combination of the key parameters would automatically reduce substrate loading rates, allow for digester recovery, and significantly reduce the risk of digester failure. On the other hand, inadequate use of anaerobic digester volume could also be determined and the specific substrate loading rate increased for increased biogas production.

By determining biokinetic constants for the substrates, a PLC algorithm can be created to monitor the critical on-line monitoring parameters previously mentioned and receive data input from laboratory analytical testing for full-scale digester operations. The biokinetic constants, when combined with proper on-line monitoring and laboratory analytical testing, can be used to predict and maximize treatment performance and ultimately enhance biogas production with the highest methane content possible.

The biokinetic constants developed during the course of this research project do not necessarily apply to different substrates. The biokinetic constants will be substrate specific, and the biokinetic constants will have to be determined for each application. Different substrates may require different operating techniques/methodologies. All digesters operated during the course of this study were operated under mesophilic conditions. However; the key operating parameters for consistent anaerobic digester operation and optimization remain the same for thermophilic operating conditions as well.

Biomass recycle was proven during the course of this research project to be an excellent option for increased biogas production and enhanced COD removal. Biomass recycle for full-scale applications can be accomplished by a solids/liquid separation device, such as a centrifuge, dissolved air or gas flotation system (Stover, 1987), gravity belt thickener, ultrafilter membranes, etc. The effluent produced after the solids/liquid separation process is of high quality for recycle or reuse such as direct irrigation, and the majority of the separated solids/biomass are recycled back to the digester reactor to increase and maintain high biomass inventory. The biomass solids returned to the digester reactor provide significant advantages for operations compared to the currently used oncethrough operating systems. Biomass recycle provides biomass management and control and allows increased substrate loading while maintaining low, stable operating F/M ratios with decreased inhibition as a result of increased biomass inventory. Biomass recycle provides process stability and performance enhancement with nutrient and alkalinity recycle for enhanced pH control, and enhanced and optimized biomethane production by enhanced COD removal. A portion of the biomass solids can also be wasted from an operating system as concentrated solids with high fertilizer nutrient value.

The data obtained during this research project has proven through proper laboratory analytical testing and monitoring of key digester operating parameters that this approach to digester optimization can be applied to full-scale anaerobic digestion processes for the purpose of enhanced biogas production with maximum possible methane content. This research project has also proven through proper laboratory analytical testing and monitoring of key digester operating parameters that it is possible to push digester operating conditions towards the maximum specific methane production rate per unit of

digester reactor volume while maintaining operational stability and reliability. Operating anaerobic digestion systems for the primary purpose of biogas/bioenergy production, rather than for waste treatment, will place greater emphasis on obtaining the maximum specific biogas/methane production rate possible from a given anaerobic digester reactor volume.

CHAPTER VI

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The scope of this research project was to operate suspended growth, CSTR anaerobic digesters at the bench-scale level to evaluate improved operation techniques/methods and develop biokinetic relationships. Multiple digester reactors were operated simultaneously for approximately fourteen months to obtain data that was used to develop improved operational processes and biokinetic relationships, along with evaluation of treatment performance under various operating conditions. Biokinetic relationships were developed for specific substrate utilization rate, specific biogas production rate, and specific methane production rate in terms of specific substrate loading rates.

The ultimate goal of this study was to develop biokinetic constants and a database of anaerobic digester operating parameters using manual operating techniques at the benchscale level that could be applied for automation of full-scale biogas/bioenergy production facilities for the purpose of enhanced biogas production. The purpose of automating fullscale biogas/bioenergy production facilities is to improve digester operations and enhance biogas production by producing the maximum specific biogas/methane production rate possible from a given anaerobic digester reactor volume while maintaining stabile digester operating conditions.

Considering technology currently available, the purpose of this research project is to use the biokinetic constants developed from the bench-scale digesters to develop a PLC algorithm to automate digester operations with input of key analytical parameters to control injection of substrate, and on-line monitoring of key digester operating parameters to optimize digester operating conditions and provide enhanced biogas production with improved methane content while maintaining good digester health, (pH, alkalinity, and nutrient requirements).

The following conclusions can be drawn from this research study:

1. Individual feedstocks chosen for this study when combined to form a co-digestion substrate proved to be highly biodegradable and can be successfully converted to biogas with consistent average methane content between 65% - 70% using anaerobic digestion processes.

2. Substrate utilization kinetics were found to be predictable as a function of mass specific substrate loading rates. Substrate utilization can be accurately predicted using the Stover-Kincannon Model.

3. Specific biogas and methane production rates were found to be predictable as a function of mass specific substrate loading rates. Specific biogas and methane production rates can be described by monomolecular kinetics, the same as specific substrate utilization rates. Biokinetic constants were developed to be used in full-scale anaerobic digester operations to predict specific substrate utilization, specific biogas

production, and specific methane production rates at various specific substrate loading rates.

4. Substrates must be routinely monitored and characterized for COD and nutrient value. Full-scale anaerobic digestion plants, for the purpose of alternative fuel/energy production, should have the ability to adjust at least a selected one of the rate of the various feedstocks based on substrate COD and nutrient data input obtained through analytical laboratory testing to optimize the digester reactor(s) for biogas production, substrate removal, and pH and alkalinity control. Influent flow rates should be adjusted according to substrate COD concentrations to maintain stable substrate mass loading rates (F/M ratios) in the digester reactor to minimize specific substrate loading rate peaks and valleys associated with unstable operating conditions and lack of full use of anaerobic reactor volume for biogas production capabilities.

5. The biokinetic constants, when combined with proper on-line monitoring and laboratory analytical testing, can be used to predict and maximize treatment performance and ultimately enhance biogas production with the highest methane content possible while maintaining operational stability and reliability.

6. Improper monitoring and correlation of substrate loading and key digester operating parameters can lead to unstable operating conditions with digester unpredictability, poor substrate utilization rates, poor biogas production, poor biogas quality, and even digester failure.

7. Substrate overdosing as a result of insufficient substrate monitoring and digester monitoring is a common reason for digester failure. Low feed rates are also of concern

and do not provide maximum biogas production per reactor volume available. It is important to select high-strength (high COD) waste sources to avoid limiting substrate injection as a result of low HRT to avoid digester solids dilution and allow proper time for methanogen growth.

8. Operating anaerobic digestion systems for the primary purpose of biogas/bioenergy production, rather than for waste treatment, places greater emphasis on obtaining the maximum specific biogas/methane production rate possible from a given anaerobic digester reactor volume.

9. Biomass recycle is an excellent option for increased biogas production and enhanced COD utilization. Biomass recycle provides biomass management and control and allows increased digester substrate loading rates while maintaining low, stable operating F/M ratios with decreased inhibition as a result of increased biomass inventory. Biomass recycle provides process stability and enhanced performance with nutrient and alkalinity recycle for enhanced pH control, and enhanced and optimized biomethane production by enhanced COD utilization.

10. AMPTS studies show potential for developing a quick and simple method/procedure to determine biokinetic relationships for full-scale applications without performing the long-term bench-scale operations. However; biokinetic constants developed using the AMPTS studies were different than those determined form the bench-scale digesters. AMPTS study biokinetic constants differed due to batch feeding compared to semicontinuous feeding, resulting in initial high F/M ratios in the digesters causing VFA

accumulation and methanogen inhibition/toxicity resulting in poor substrate removal, poor biogas production, and poor biogas quality.

From the research study conclusions presented, it is recommended to pursue the following:

1. Develop PLC algorithms for full-scale anaerobic digestion alternative fuels/energy production plants using the co-digestion process of combined feedstocks and/or individual feedstocks according to the key laboratory analytical testing parameters and key on-line digester monitoring parameters previously mentioned in correlation with the biokinetic constants developed to maximize biogas and methane production rates based on substrate loading rates.

2. Develop laboratory analytical testing and on-line digester monitoring programs for key operating parameters for full-scale anaerobic digestion biogas/bioenergy production plants. Important digester parameters to monitor through laboratory analytical practices include VFAs, alkalinity, COD, TS, VS, TSS, VSS, NH₃-N, and PO₄-P. Key on-line monitoring parameters include digester pH, temperature, biogas flow rate, biogas methane, carbon dioxide, and hydrogen sulfide content. Key digester parameters for both on-line monitoring and analytical data entry should be used to adjust specific substrate loading rates accordingly.

3. Continue investigation in AMPTS study methodologies to overcome the problems associated with batch feeding and initial high F/M ratios that result in VFA accumulation and methanogen inhibition/toxicity ultimately resulting in poor substrate removal, poor biogas production, and poor biogas quality.

REFERENCES

- Abdoun, E. and Weiland, P. "Optimization of Monofermentation From Renewable Raw Materials by the Addition of Trace Elements." <u>Bornimer Agrartechnische</u> <u>Berichte</u> (Bornimer Agricultural Technical Reports) 68 (2009): 69-78
- Angelidaki, I. and Ahring, B.K. "Thermophilic Anaerobic Digestion of Livestock Waste: Effect of Ammonia." <u>Applied Microbiology and Biotechnology</u> 38 (1993): 560-564
- Angelidaki, I., Ellegaard, L., and Ahring, B.K. "Application of the Anaerobic Digestion Process." <u>Advances in Biochemical Engineering/Biotechnology</u>. 82 (2003): 2-33.
- Barber, J. "A Comprehensive Evaluation of the Design and Operation of Anaerobic Filters." Diss. Oklahoma State University 1987.
- Braun, R. "Anaerobic Digestion: A Multi-Faceted Process for Energy, Environmental Management and Rural Development." Ranalli, P., ed. <u>Improvement of Crop</u> <u>Plants for Industrial End Uses</u>. Springer (2007): 335-416
- Braun, R., Huber P., and Meyrath, J. "Ammonia Toxicity in Liquid Piggery Manure Digestion." <u>Biotechnology Letters</u> 3 (1981): 159-164
- Burns & McDonnell. <u>Biogas to Pipeline-Quality Gas Using Pressure-Swing Adsorption.</u> 2010.<u>http://www.burnsmcd.com/portal/page/portal/Internet/Content_Admin/Complete%20Issues%20Link%20Repository/TB2010v2.pdf</u> 28 Nov. 2010.
- Cohen, A. "Two-Phase Digestion of Liquid and Solid Wastes." <u>Third International</u> <u>Symposium on Anaerobic Digestion</u>, Boston, Massachusetts, 14-19 August 1983.
- De Baere, L.A., Devocht, M. and van Assche, P. "Influence of High NaCl and NH₄Cl Salt Levels on Methanogenic Associations." <u>Water Research</u> 18 (1984): 543-548.
- Dornack, C. "Stickstoff in Biogasanlagen." (Nitrogen in Biogas Plants). VDI—Ber 2057 (2009): 155-171.
- Dutt, A. "Anaerobic Treatment of a Sorghum-Based Alcohol Production Wastewater." Diss. University of Texas at Austin 1985.

- European Biomass Association. "A Biogas Road Map for Europe." Oct 2009. <u>http://www.aebiom.org/IMG/pdf/Brochure_BiogasRoadmap_WEB.pdf</u>. 30 Oct. 2010.
- Fachverband Biogas. "Biogas Dezentral Erzeugen, Regional Profitieren, International Gewinnen." (Biogas Distributed Generation, Regional Benefit, International Profits.) <u>Jahrestagung des Fachverbandes Biogas</u>. Hannover, Germany. 2009.
- Fehrenbach, H. *et al.* "Kriteerien Einer Nachhaltigen Bioenergienutzung im Globalen Maßstab." (Criteria for Sustainable Bioenergy Use in the Global Scale). <u>UBA-</u> <u>Forschungsbericht</u>. 206 (2008): 41-112.
- Ganapathi, G. "A Comprehensive Treatability Study on Alcohol Stillage Using Aerobic and Anaerobic Suspended Growth Systems." Diss. Oklahoma State University, 1984.
- Gemmeke, B., Rieger, C., and Weiland, P. "Biogas-Messprogramm II." (Biogas Measurement Program). <u>61 Biogasanlagen im Vergleich</u>. FNR, Gülzow, Germany. 2009.
- González, R. "Kinetic Studies and Performance Evaluation of an Anaerobic Fixed-Film Reactor Treating Fuel Alcohol Wastewater." Diss. Oklahoma State University, 1987.
- Hansen, K.H., Angelidaki, I., and Ahring, B.K. "Anaerobic Digestion of Swine Manure: Inhibition by Ammonia." <u>Water Research</u> 32 (1998): 5-12
- IEA Bioenergy. "Task 24: Energy from biological conversion of organic waste." 1999 http://www.iea-biogas.net/Dokumente/Biogas%20upgrading.pdf 28 Nov. 2010.
- IPCC. "IPCC Special Report Emissions Scenarios." <u>Intergovernmental Panel on Climate</u> <u>Change</u>. 2000
- Jarvis, A., Nordberg, A., Jarlsvik, T., Mathisen, B., and Svensson, B.H. "Improvement of a Grass-Clover Silage-Fed Biogas Process by the Addition of Cobalt." <u>Biomass &</u> <u>Bioenergy</u>. 12 (1997): 453-460.
- Jenkins, S.R., Morgan, J.M., and Sawyer, C.L. "Measuring Anaerobic Sludge Digestion and Growth by a Simple Alkalimetric Titration." <u>Water Pollution Control</u> <u>Federation</u> 55 (1983): 448-453.
- Lanting, J. and Gross, R.L. "Anaerobic Pretreatment of Corn Ethanol Production Wastewaters." <u>40th Annual Purdue Industrial Waste Conference</u> 14-16 May 1985.

- Loewenthal, R.E., Kornmüller, U.R.C., and van Heerden, E.P. "Modeling Struvite Precipitation in Anaerobic Treatment Systems." <u>Water Science and Technology</u>. 30 (1994): 107-116
- McCarty, P.L. "Kinetics of Waste Assimilation in Anaerobic Treatment." <u>Developments</u> <u>in Industrial Microbiology</u>, Washington, D.C. 144 (1966)
- Metcalf and Eddy, Inc. <u>Wastewater Engineering Treatment and Reuse</u>. Boston: McGraw Hill, 2003.
- Mösche, M., and Jördening, H.J. "Comparison of Different Models of Substrate and Product Inhibition in Anaerobic Digestion." <u>Water Research</u>. 33 (1999): 2545-2554.
- Mshandete, A., Bjornsson, L., Kivaisi, A.K., Rubindamayugi, M.S.T., and Matthiasson, B. "Effect of Particle Size on Biogas Yield From Sisal Fibre Waste." <u>Renewable</u> <u>Energy</u>. 31 (2006): 2385-2392.
- Müller, J. *et al.* "Thermische, Chemische, und Biochemische Desintegratiosverfahren." (Thermal, Chemical, and Biochemical Disintegration Process). <u>Korrespondenz</u> <u>Abwasser</u>. 50 (2003): 796-804
- NaturalGas.org. <u>Natural Gas and the Environment.</u> 2010. <u>http://www.naturalgas.org/environment/naturalgas.asp#emission</u>. 28 Nov. 2010.
- Nielsen, H.B., and Angelidaki, I. "Strategies for Optimizing Recovery of the Biogas Process Following Ammonia Inhibition." <u>Bioresource Technology</u>. 99 (2008): 7995-8001.
- O'Rourke, J.T. "Kinetics of Anaerobic Treatment at Reduced Temperature." Diss. Stanford University 1968.
- Ripley, L.E., Boyle, W.C., and Converse, J.C. "Improved Alkalimetric Monitoring for Anaerobic Digestion of High-Strength Wastes." <u>Water Pollution Control</u> Federation 58 (1986): 406-411.
- Sahlström, L. "A Review of Survival of Pathogenic Bacteria in Organic Waste Used in Biogas Plants." <u>Bioresource Technology</u>. 87 (2003): 161-166.
- Schmid, J., Krautkremer, B., and Müller, J. "Biogas Powered Microgas-Turbine." <u>Expo</u> <u>World Conference on Wind Energy, Renewable Energy and Fuel Cells</u>. Hamamatsu, Japan. 7-10 June 2005.
- Speece, R.E. and Kem, J. "The Effects of Short-Term Temperature Variations on Methane Production." <u>Water Pollution Control Federation</u> 42 (1970): 1990-1997

- Speece, R.E., <u>Anaerobic Biotechonology for Industrial Wastewaters.</u> Nashville: Archae Press, 1996.
- Speece, R.E., <u>Anaerobic Biotechnology and Odor/Corrosion Control for Municipalities</u> <u>and Industries</u>. Nashville: Archae Press, 2008.
- Stover, E.L. "Impacts of Dissolved Oxygen on Anaerobic Recycle Sludge Viability During Sludge Thickening." <u>Industrial Wastes Symposia</u>, 60th <u>Annual Water</u> <u>Pollution Control Federation Conference</u>. Philadelphia, Pennsylvania. October 1987.
- Stover, E.L. "Anaerobic Treatment: Troubleshooting." <u>WEFTEC®98 Workshop:</u> <u>Industrial Waste Treatment Operations.</u> 4 October 1998.
- Stover, E.L. Lecture. Oklahoma State University, Stillwater. 13 April 2009.
- Stover, E.L., Brooks, S., and Munirathinam, K. "Control of Biogas H₂S Concentrations During Anaerobic Treatment." <u>AIChE Symposium Series No. 300</u>. 90 1994
- Stover, E.L. and Kincannon, D.F. "<u>Rotating Biological Contactor Scale-Up and Design.</u>" <u>First International Conference on Fixed-Film Biological Processes</u>, Kings Island, Ohio. 20-23 April 1982.
- Stover, E.L. and Kincannon, D.F. "Design Methodology for Fixed-Film Reactors RBC's and Biological Towers." <u>Civil Engineering for Practicing and Design</u> <u>Engineers</u> 2 (1983): 107-124.
- Stover, E.L. and Kincannon, D.F. "Biological Treatability Data Analysis of Industrial Wastewaters." <u>39th Annual Purdue Industrial Waste Conference</u>, West Lafayette, Indiana. 8-10 May 1984.
- Stover, E.L., Ganapathi, G., and González, R., "Anaerobic Treatment of Fuel Alcohol Wastewater by Suspended Growth Activated Sludge." <u>38th Annual Purdue</u> <u>Industrial Waste Conference</u>, West Lafayette, Indiana. 10-12 May 1983.
- Stover, E.L., Ganapathi, G., and González, R., "Use of Methane Gas from Anaerobic Treatment of Stillage for Fuel Alcohol Production." <u>39th Annual Purdue Industrial</u> <u>Waste Conference</u>, West Lafayette, Indiana. 8-10 May 1984.
- Stover, E.L., González, R., and Ganapathi, G. "Anaerobic Fixed-Film Biological Treatment Kinetics of Fuel Alcohol Production Wastewaters." <u>Second</u> <u>International Conference on Fixed-Film Biological Processes</u>, Arlington, Virginia. July 1984.

- Strauch, D., and Philipp, W. "Hygieneaspekte der Biologischen Abfallbehandlung und-Verwertung." (Hygiene Aspects of Biological Waste Treatment and Recycling).
 Bidlingnaier, W. ed. <u>Biologische Abfallbehandlung</u>. Eugen Ulmer. (2000): 155-208
- Takamura, E.S. "Anaerobic Treatment of Wastewaters Generated During Grain Fermentation." Diss. University of Texas at Austin, 1983.
- Wang, Q.H., Kuninobu, M., Ogawa, H., and Kato, Y. "Degradation of Volatile Fatty Acids in Highly Efficient Anaerobic Digestion." <u>Biomass & Bioenergy</u>. 16 (1999): 407-416.
- Weiland, P. "Biogas Production: Current State and Perspectives." <u>Applied Microbiology</u> <u>and Biotechnology</u>. 85 (2010): 849-860.

APPENDIX A

Bench-Scale Digester Photographs

APPPENDIX B

AMPTS Digester Photographs

APPENDIX C

Phase I Raw Data

Sample	pН	TS	VS	TSS	VSS	tCOD	sCOD	NH ₃ -N	T-P	PO ₄ -P
Description	(s.u.)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Hen Litter		75.95	46.97							
Swine Manure	8.2	2.71	1.68	10,800	8,200	35,200	13,700	27,900	395	17
Husklage		91.19	87.56							
Silage Juice	4.0	7.49	7.11	32,200	31,600	133,400	91,400	67	385	367
Thin Stillage #1	4.6	5.59	4.91	27,600	26,600	93,600	59,300	89	1,090	422
Thin Stillage #2	4.2	6.69	6.01	25,800	25,600	118,300	57,450	46	1,170	575
Thin Stillage #3	4.2	6.22	5.48	28,600	28,400	118,400	63,400	22	1,315	600
Thin Stillage #4	4.5	6.11	5.34	28,000	28,000	120,200	59,300	20	1,325	570
Thin Stillage #5	4.5	5.37	4.56	20,900	20,500	104,500	61,600	14	1,375	525
Thin Stillage #6	4.4	5.06	4.26	17,400	17,300	104,000	65,000	24	1,365	570
Thin Stillage #7	3.4	6.24	5.62	30,800	30,550	117,300	61,750	15	1,165	730
Thin Stillage #8	3.8	6.08	5.33	26,000	25,600	115,200	55,700	35	1,135	688

Phase 1-4 Individual Feedstock Characterization

					Influent Fe	eed Char	acteriza	tion					
				Nov	ember 14,	2009 - J	anuary 2	29, 2010					
	Feed	Feed	pН	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO ₄ -P
Date	Description	Number	(s.u.)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
12/11/09	Blend #1	Feed #1	5.0	107,100	50,100	7.74	7.01	27,000	26,000	1,670	185	1,058	545
12/12/09	Blend #1	Feed #1	5.0	107,100	50,100	7.74	7.01	27,000	26,000	1,670	185	1,058	545
12/13/09	Blend #1	Feed #1	5.0	107,100	50,100	7.74	7.01	27,000	26,000	1,670	185	1,058	545
12/14/09	Blend #1	Feed #1	5.0	107,100	50,100	7.74	7.01	27,000	26,000	1,670	185	1,058	545
12/15/09	Blend #1	Feed #1	5.0	107,100	50,100	7.74	7.01	27,000	26,000	1,670	185	1,058	545
12/16/09	Blend #1	Feed #1	5.0	107,100	50,100	7.74	7.01	27,000	26,000	1,670	185	1,058	545
12/17/09	Blend #1	Feed #1	5.0	107,100	50,100	7.74	7.01	27,000	26,000	1,670	185	1,058	545
12/18/09	Blend #1	Feed #1	5.0	107,100	50,100	7.74	7.01	27,000	26,000	1,670	185	1,058	545
12/19/09	Blend #1	Feed #1	5.0	107,100	50,100	7.74	7.01	27,000	26,000	1,670	185	1,058	545
12/20/09	Blend #1	Feed #1	5.0	107,100	50,100	7.74	7.01	27,000	26,000	1,670	185	1,058	545
12/21/09	Blend #1	Feed #2	5.5	117,200	60,150	5.77	5.01	25,400	25,000	1,550	222	1,208	427
12/22/09	Blend #1	Feed #2	5.5	117,200	60,150	5.77	5.01	25,400	25,000	1,550	222	1,208	427
12/23/09	Blend #1	Feed #2	5.5	117,200	60,150	5.77	5.01	25,400	25,000	1,550	222	1,208	427
12/24/09	Blend #1	Feed #2	5.5	117,200	60,150	5.77	5.01	25,400	25,000	1,550	222	1,208	427
12/25/09	Blend #1	Feed #2	5.5	117,200	60,150	5.77	5.01	25,400	25,000	1,550	222	1,208	427
12/26/09	Blend #1	Feed #2	5.5	117,200	60,150	5.77	5.01	25,400	25,000	1,550	222	1,208	427
12/27/09	Blend #1	Feed #2	5.5	117,200	60,150	5.77	5.01	25,400	25,000	1,550	222	1,208	427
12/28/09	Blend #1	Feed #3	5.5	107,900	56,100	5.70	4.94	28,600	28,600	1,690	208	1,380	447
12/29/09	Blend #1	Feed #3	5.5	107,900	56,100	5.70	4.94	28,600	28,600	1,690	208	1,380	447
12/30/09	Blend #1	Feed #3	5.5	107,900	56,100	5.70	4.94	28,600	28,600	1,690	208	1,380	447
12/31/09	Blend #1	Feed #3	5.5	107,900	56,100	5.70	4.94	28,600	28,600	1,690	208	1,380	447
1/1/10	Blend #1	Feed #3	5.5	107,900	56,100	5.70	4.94	28,600	28,600	1,690	208	1,380	447
1/2/10	Blend #1	Feed #3	5.5	107,900	56,100	5.70	4.94	28,600	28,600	1,690	208	1,380	447
1/3/10	Blend #1	Feed #3	5.5	107,900	56,100	5.70	4.94	28,600	28,600	1,690	208	1,380	447
1/4/10	Blend #1	Feed #3	5.5	107,900	56,100	5.70	4.94	28,600	28,600	1,690	208	1,380	447
1/5/10	Blend #1	Feed #4	5.3	111,400	57,550	5.60	4.86	27,400	27,200	1,210	269	1,160	465
1/6/10	Blend #1	Feed #4	5.3	111,400	57,550	5.60	4.86	27,400	27,200	1,210	269	1,160	465
1/7/10	Blend #1	Feed #4	5.3	111,400	57,550	5.60	4.86	27,400	27,200	1,210	269	1,160	465

Phase I

				Noven	nber 14, 2	009 - Ja	anuary	29, 2010					
	Feed	Feed	pН	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO ₄ -P
Date	Description	Number	(s.u.)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
1/8/10	Blend #1	Feed #4	5.3	111,400	57,550	5.60	4.86	27,400	27,200	1,210	269	1,160	465
1/9/10	Blend #1	Feed #4	5.3	111,400	57,550	5.60	4.86	27,400	27,200	1,210	269	1,160	465
1/10/10	Blend #1	Feed #5	4.8	109,200	56,400	6.34	5.69	26,400	25,800	1,350	197	1,255	560
1/11/10	Blend #1	Feed #5	4.8	109,200	56,400	6.34	5.69	26,400	25,800	1,350	197	1,255	560
1/12/10	Blend #1	Feed #5	4.8	109,200	56,400	6.34	5.69	26,400	25,800	1,350	197	1,255	560
1/13/10	Blend #1	Feed #5	4.8	109,200	56,400	6.34	5.69	26,400	25,800	1,350	197	1,255	560
1/14/10	Blend #1	Feed #5	4.8	109,200	56,400	6.34	5.69	26,400	25,800	1,350	197	1,255	560
1/15/10	Blend #1	Feed #5	4.8	109,200	56,400	6.34	5.69	26,400	25,800	1,350	197	1,255	560
1/16/10	Blend #1	Feed #5	4.8	109,200	56,400	6.34	5.69	26,400	25,800	1,350	197	1,255	560
1/17/10	Blend #1	Feed #5	4.8	109,200	56,400	6.34	5.69	26,400	25,800	1,350	197	1,255	560
1/18/10	Blend #1	Feed #5	4.8	109,200	56,400	6.34	5.69	26,400	25,800	1,350	197	1,255	560
1/19/10	Blend #1	Feed #5	4.8	109,200	56,400	6.34	5.69	26,400	25,800	1,350	197	1,255	560
1/20/10	Blend #1	Feed #5	4.8	109,200	56,400	6.34	5.69	26,400	25,800	1,350	197	1,255	560
1/21/10	Blend #1	Feed #6	5.2	91,100	53,650	6.51	5.78	30,200	29,600	2,110	210	1,345	555
1/22/10	Blend #1	Feed #6	5.2	91,100	53,650	6.51	5.78	30,200	29,600	2,110	210	1,345	555
1/23/10	Blend #1	Feed #6	5.2	91,100	53,650	6.51	5.78	30,200	29,600	2,110	210	1,345	555
1/24/10	Blend #1	Feed #6	5.2	91,100	53,650	6.51	5.78	30,200	29,600	2,110	210	1,345	555
1/25/10	Blend #1	Feed #6	5.2	91,100	53,650	6.51	5.78	30,200	29,600	2,110	210	1,345	555
1/26/10	Blend #1	Feed #6	5.2	91,100	53,650	6.51	5.78	30,200	29,600	2,110	210	1,345	555
1/27/10	Blend #1	Feed #6	5.2	91,100	53,650	6.51	5.78	30,200	29,600	2,110	210	1,345	555
1/28/10	Blend #1	Feed #6	5.2	91,100	53,650	6.51	5.78	30,200	29,600	2,110	210	1,345	555
Average			5.2	106,971	55,269	6.39	5.67	27,461	26,947	1,609	209	1,233	509
Minimum			4.8	91,100	50,100	5.60	4.86	25,400	25,000	1,210	185	1,058	427
Maximum			5.5	117,200	60,150	7.74	7.01	30,200	29,600	2,110	269	1,380	560

Phase I

										U	perations I									
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	9 - January NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
11/14/09	. /		<i>1/_</i>			. /	~ /													/
11/15/09																				
11/16/09	7.1		0.100																	
11/17/09	7.1	34.0	0.100																	
11/18/09	7.1				1,790			21,000	19,800		501		69							
11/19/09	7.1																			
11/20/09	7.0																			
11/21/09	7.1																			
11/22/09	7.2	38.5												455	2,495	2,950				
11/23/09	7.2	38.0	0.100		2,500			32,200	29,800		372		72	370	2,650	3,020	0.250			
11/24/09	7.3	37.0	0.200											650	2,613	3,263	0.080			
11/25/09	7.1	36.0	0.200		4,000	4.10		34,000	31,400		413		39	413	2,725	3,138	0.130			
11/26/09	7.2		0.220																	
11/27/09	7.2	36.0	0.200																	
11/28/09	7.2	36.5	0.200											400	3,375	3,775	0.080			
11/29/09	7.2		0.200																	
11/30/09	7.2	36.5	0.300		2,600	3.87		35,800	32,800		474		60	463	3,913	4,375	0.130			
12/1/09	7.2	36.5	0.300											413	3,950	4,363	0.080			
12/2/09	7.2	36.5	0.300		3,825	3.50		31,000	27,600		753		89	588	4,250	4,838	0.100			
12/3/09	7.2	36.5	0.300											640	3,960	4,600	0.050			
12/4/09	7.3	36.5	0.350		2,320	3.48		29,800	26,600		630		80	560	4,300	4,860	0.070			
12/5/09	7.3	37.0	0.300																	
12/6/09	7.3	37.0	0.300											800	4,180	4,980	0.050			
12/7/09	7.3	36.5	0.100		3,113	3.30		34,600	30,800		731		121	960	4,000	4,960	0.050			
12/8/09	7.2	36.0	0.300											840	4,560	5,400	0.050			
12/9/09	7.2	36.0	0.300		2,500	3.16	2.54	25,600	23,400		700		154	800	4,740	5,540	0.020			
12/10/09	7.2	36.5	0.300											680	4,940	5,620	0.050			
12/11/09	7.2	36.5		21,800	2,025	3.38	2.73	26,600	23,000		723		107	980	4,600	5,580	0.050			
12/12/09	7.2	36.0	0.300											1,275	4,425	5,700	0.080			
12/13/09	7.3	36.0	0.350											1,000	4,975	5,975	0.080			
12/14/09	7.2	36.0	0.400	29,700	2,525	2.77	2.16	27,000	23,200		725		162	963	5,238	6,200	0.100			
12/15/09	7.2	35.0	0.400											1,113	5,113	6,225	0.080			
12/16/09	7.2	35.0	0.350	45,900	3,150	2.92	2.24	25,400	21,800		653		158	1,175	5,238	6,413	0.100			
12/17/09	7.2	35.5	0.375											1,075	5,375	6,540	0.080			
12/18/09	7.2	35.5	0.410	39,800	4,100	3.01	2.32	25,800	22,800		828	440	173	1,163	5,325	6,488	0.130			
12/19/09	7.2	35.5	0.475											1,138	5,575	6,713	0.080			
12/20/09	7.2	35.5	0.400											1,175	5,575	6,750	0.080			

Phase I

										Phase l	[
									Digester 1	1 Operation	s Data (Cor	nt.)								
									November	14, 2009 - J	anuary 29, 2	2010								
		т	F 1		COD	ΤC	MO	TOO	VCC	TIZNI	NILIO NI	тр	DO 4 D		D 411	TT A 11	XX 7 (D'	Biogas	Biogas
Data	pH	Temp.	Feed	tCOD	sCOD	TS	VS	TSS (mg/L)	VSS (mg/L)	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	CO2	H2S
Date 12/21/09	(s.u.) 7.2	(oC) 35.0	(L/day) 0.400	(mg/L) 23,300	(mg/L) 4,075	(%) 2.95	(%) 2.23	24,400	(ing/L) 19,800	(mg/L)	(mg/L) 643	(mg/L)	(mg/L) 157	(mg/L) 1,213	(mg/L) 5,525	(mg/L) 6,738	(L/day) 0.100	(L/day)	(%)	(ppm)
12/21/09	7.2	35.0 35.5	0.400	25,500	4,075	2.95	2.23	24,400	19,800		045		137	1,213	5,525 5,588	6,888	0.100			
12/22/09	7.2	35.5 36.0	0.430	31,700	3,050	2.84	2.14	24,200	21,200		783	625	200	1,300	5,388 5,425	6,638	0.080			
12/23/09	7.2	35.5	0.423	51,700	3,050	2.04	2.14	24,200	21,200		785	025	200	1,213	5,423	6,825	0.480			
12/24/09	1.2	55.5	0.430											1,515	5,515	0,823	0.525			
12/25/09			0.323														0.323			
12/20/09			0.450														0.450			
12/28/09	7.3	35.0	0.375											1,150	5,813	6,963	0.373			
12/28/09	7.2	35.5	0.400	35,800	3,550	2.74	2.07	23,600	20,600	1,905	753	565	212	1,130	5,350	6,575	0.430	26.4		
12/29/09	7.2	35.0	0.430	31,100	3,300	2.74	2.07	23,600	20,000	1,905	878	505 640	212	1,223	5,550 5,650	6,800	0.360	20.4	32.0%	1,200
12/30/09	7.2	35.5	0.500	31,700	2,950	2.80	2.00	22,000	19,000		943	480	200	1,130	5,088	6,563	0.380		34.0%	1,600
1/1/10	7.2	35.0	0.500	31,700	2,950 3,100	2.72	2.02	21,400	19,000	1,368	945 905	435	202	1,475	5,088	0,505	0.300		34.0%	1,000
1/2/10	7.2	33.0 34.5	0.500	31,500	2,875	2.72	1.97	20,400	19,000	1,508	905 915	475	208	1,362	5,388	6,750	0.380		36.0%	1,400
1/2/10	7.2	34.5	0.500	28,400	2,875	2.78	1.97	20,400 19,400	17,800	1,080	915 960	675	208	1,302	5,388 5,463	6,700	0.360	18.7	34.0%	1,400
1/3/10	7.2	34.5 34.5	0.500	28,400 21,900	2,950	2.65	1.90	20,000	17,800	2,120	900 930	450	208	1,237	5,463 5,463	6,700 6,875	0.380	10.7	34.0%	1,200
1/4/10	7.2	35.0	0.500	31,100	2,302	2.59	1.97	20,000	17,800	2,120 1,910	930 918	430 565	200 204	1,412	5,038	6,200	0.380	18.7	34.0%	1,200
1/6/10	7.2	35.0	0.300	30,800	2,302	2.59	1.90	20,000	17,000	1,910	918 990	505 575	204 218	1,102	5,900	0,200 7,100	0.380	10.7	32.0%	
1/0/10	7.2	35.0	0.130	27,600	2,900	2.55	1.85	20,000 19,400	16,800	1,000	990 968	630	218	1,200	5,900	6,938	0.130		32.0% 24.0%	
1/8/10	7.2	33.0 34.0	0.100	32,300	3,350	2.66	1.98	20,400	17,200	1,940	908 943	535	232	1,213	5,725	6,938 6,975	0.130		24.0%	
1/9/10	7.2	34.5	0.350	32,300	5,550	2.00	1.96	20,400	17,200	1,940	943	555	214	1,500	5,538	7,075	0.280			
1/10/10	7.2	34.5	0.050											1,337	5,500	6,963	0.180			
1/10/10	7.2	35.0	0.500	43,300	3,250	2.67	1.90	20,000	16,600		1,000	595	232	1,403	4,988	6,725	0.080			
1/12/10	7.2	35.0	0.500	45,500	3,230	2.07	1.90	20,000	10,000		1,000	595	232	1,757	4,900	0,725	0.580			
1/12/10	7.2	35.0	0.500	26,500	2,800	2.62	1.85	20,000	17,000		970	835	230	1,562	5,413	6,975	0.280			
1/13/10	7.2	34.0	0.400	20,500	2,000	2.02	1.05	20,000	17,000		510	055	250	1,502	5,415	0,775	0.200		36.0%	1,300
1/15/10	7.2	35.0	0.500	26,200	3,350	2.43	1.71	16,500	14,500		995	553	252	1,550	5,213	6,763	0.200		30.070	1,500
1/16/10	7.4	34.0	0.300	20,200	5,550	2.45	1./1	10,500	14,500		//5	555	232	1,550	5,215	0,705	0.350			
1/17/10	7.3	34.0	0.450														0.500			
1/18/10	7.4	33.5	0.350	25,800	3,200	2.87	1.93	22,600	18,600	2,380	1,010	685	232	1,725	5,363	7,088	0.330			
1/19/10	7.3	35.5	0.500	23,100	2,700	3.00	2.02	21,800	17,200	2,500	1,010	935	248	2,050	5,838	7,888	0.330			
1/20/10	7.3	34.0	0.500	28,200	3,300	2.87	1.96	19,600	16,200		1,010	1,423	256	1,900	5,788	7,688	0.380			
1/21/10	7.4	35.5	0.500	25,800	2,675	2.74	1.86	19,200	16,200		1,088	775	248	1,900	5,838	7,675	0.330		32.0%	1,000
1/22/10	7.4	35.5	0.400	23,000	2,575	2.74	1.79	20,200	16,000		1,000	1.060	240 240	1,775	5,725	7,500	0.430		34.0%	800
1/22/10	7.4	35.5	0.100	23,000	2,515	2.70	1.77	20,200	10,000		1,023	1,000	240	1,775	5,125	7,500	0.050		54.070	500
1/24/10	7.4	35.5	0.200														0.050			
1/25/10	7.4	35.5	0.200	21,500	2,650	2.51	1.65	18,800	15,200		1,230	493	250	1,375	6,763	8,138	0.175			
1/26/10	7.5	34.5	0.500	24,000	3,375	2.31	1.67	17,000	15,000	1,688	1,235	735	252	2,037	6,138	8,138 8,175	0.130		36.0%	1,800
1/27/10	7.4	35.0	0.500	20,600	3,350	2.71	1.77	19,400	15,000	1,000	1,235	550	252	2,037	6,063	8,200	0.380		36.0%	1,700
1/27/10	7.7	55.0	0.500	20,000	5,550	2./1	1.//	19,400	15,000		1,240	550	250	2,137	0,005	0,200	0.500		50.070	1,700

										Phase I										
								Γ	Digester 1 (Operations	Data (cont.))								
								No	vember 14	, 2009 - Jar	nuary 29, 20	10								
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
1/28/10	7.4	35.5	0.500	27,600	3,700	2.60	1.75	17,200	14,400	1,870	1,240	850	256	1,950	6,213	8,163	0.380			
1/29/10	7.4	35.0	0.500											1,712	6,188	7,900	0.380			
Average	7.2	35.5	0.357	29,010	3,011	2.88	2.00	23,224	20,192	1,845	868	663	187	1,192	5,038	6,231	0.236	21.27	33.3%	1,390
Minimum	7.0	33.5	0.050	20,600	1,790	2.42	1.65	16,500	14,400	1,368	372	435	39	370	2,495	2,950	0.020	18.70	24.0%	800
Maximum	7.5	38.5	0.525	45,900	4,100	4.10	2.73	35,800	32,800	2,380	1,240	1,423	256	2,137	6,763	8,200	0.580	26.40	36.0%	1,900

Phase I
Digester 2 Operations Data
November 14, 2009 - January 29, 2010

	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Bioga H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
11/14/09																				
11/15/09																				
11/16/09	7.1		0.100																	
11/17/09	7.0	34.0	0.100																	
11/18/09	7.1				1,320			9,600	8,800		472		69							
11/19/09	7.1																			
11/20/09	7.1																			
11/21/09	7.1																			
11/22/09	7.2	38.5												235	2,645	2,880				
11/23/09	7.3	38.5	0.100		1,920			20,800	19,200		288		56	475	2,450	2,925	0.250			
11/24/09	7.3	37.5	0.200											500	2,513	3,013	0.080			
11/25/09	7.2	36.0	0.200		1,600	3.6		28,000	25,800		331		35	475	2,613	3,088	0.130			
11/26/09	7.2		0.220																	
11/27/09	7.2	36.0	0.200																	
11/28/09	7.2	36.5	0.200											400	3,400	3,800	0.080			
11/29/09	7.2		0.200																	
11/30/09	7.2	36.5	0.300		2,000	3.3		31,200	28,200				51	463	3,625	4,088	0.130			
12/1/09	7.2	36.5	0.300											413	3,950	4,363	0.080			
12/2/09	7.2	36.5	0.300		2,350	3.3		30,800	27,200		480		63	600	4,175	4,775	0.100			
12/3/09	7.2	36.0	0.300											740	3,760	4,500	0.050			
12/4/09	7.3	36.5	0.350		2,950	3.5		28,400	25,600		583			680	4,320	5,000	0.070			
12/5/09	7.3	36.5	0.300		<i>.</i>										,	·				
12/6/09	7.3	36.5	0.300											820	4,100	4,920	0.050			
12/7/09	7.3	36.5	0.100		2,125	3.3		28,600	26,200		601		106	1,020	4,220	5,240	0.070			
12/8/09	7.2	36.5	0.300		<i>.</i>				<i>.</i>					780	4,720	5,500	0.050			
12/9/09	7.2	36.5	0.300		2,763	3.3	2.6	28,800	25,800		798		147	900	4,620	5,520	0.070			
12/10/09	7.2	36.5	0.300		,			- ,	- ,					780	4,860	5,640	0.050			
12/11/09	7.2	36.5		25,400	2,100	3.2	2.6	25,800	22,800		705		125	1,060	4,520	5,580	0.050			
12/12/09	7.2	35.5	0.300	- ,	,		-	- ,000	,					1,262	4,250	5,512	0.080			
12/13/09	7.3	35.5	0.350											1,025	4,838	5,863	0.080			
12/14/09	7.2	35.5	0.400	27,400	2,350	2.7	2.1	23,800	20,800		658		125	975	5,025	6,000	0.100			
12/15/09	7.2	35.0	0.400	<i></i> ,	2,000			20,000	20,000		000			1,113	5,050	6,163	0.080			
12/16/09	7.2	35.0	0.350	35,900	2,725	2.9	2.2	26,600	22,800		595		157	1,038	5,300	6,338	0.100			
12/17/09	7.2	35.0	0.375	55,700	2,723	2.7	2.2	20,000	22,000		575		107	900	5,350	6,250	0.080			
12/18/09	7.2	35.0	0.410	28,200	3,450	3.0	2.3	24,600	21,200		665	290	168	1,213	5,138	6,350	0.130			
12/19/09	7.2	35.0	0.475	20,200	5,450	5.0	2.5	27,000	21,200		005	270	100	1,063	5,475	6,538	0.080			
12/20/09	7.2	35.0	0.400											1,063	5,475	6,538 6,538	0.280			

Phase I

Digester 2 Operations Data (Cont.) November 14, 2009 - January 29, 2010

	pH	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)								
12/22/09	7.2	35.0	0.450											1,150	5,538	6,625	0.330			
12/23/09	7.2	35.5	0.425	25,900	2,575	2.7	2.1	22,400	20,000		768	490	196	1,050	5,013	6,063	0.480			
12/24/09	7.2	35.0	0.450											1,213	5,400	6,613	0.430			
12/25/09			0.525														0.525			
12/26/09			0.450														0.450			
12/27/09			0.375														0.375			
12/28/09	7.3	34.5	0.400											1,100	5,563	6,663	0.480			
12/29/09	7.3	35.0	0.450	28,900	3,325	2.5	1.8	19,400	18,000	2,060	788	400	206	1,263	5,213	6,475	0.330			
12/30/09	7.3	35.0	0.500	26,000	2,950	2.4	1.8	18,200	17,000		905	460	202	1,213	5,525	6,738	0.360		34.0%	2,400
12/31/09	7.3	35.0	0.500	24,400	2,675	2.2	1.6	17,200	15,400		938	340	186	1,275	5,200	6,475	0.360		36.0%	2,100
1/1/10	7.3	34.5	0.500	23,200	2,875	2.4	1.7	18,200	16,200	1,925	888	430	210				0.300		34.0%	2,000
1/2/10	7.3	34.0	0.500	16,200	2,925	2.1	1.5	14,400	13,000	2,525	958	355	194	1,250	5,400	6,650	0.380		36.0%	1,600
1/3/10	7.3	34.0	0.500	24,200	2,750	2.0	1.5	14,000	12,000	2,040	965	470	210	942	5,283	6,225	0.360		34.0%	
1/4/10	7.3	34.5	0.500	23,300	2,800	2.4	1.8	16,000	14,200	1,790	993	385	206	1,113	5,125	6,238	0.380		34.0%	1,400
1/5/10	7.2	34.5	0.500	25,200	2,700	2.4	1.8	18,600	16,000	1,910	965	585	162	1,312	5,363	6,675	0.380		36.0%	
1/6/10	7.3	34.0	0.450	27,200	2,650	2.6	1.9	18,400	16,200	1,680	940	445	210	1,000	5,300	6,300	0.380		32.0%	
1/7/10	7.3	34.0	0.350	25,000	2,600	2.5	1.8	18,200	15,400		960	475	234	1,050	5,638	6,688	0.130		32.0%	
1/8/10	7.2	33.5	0.500	25,600	3,325	2.5	1.8	19,200	16,600	2,500	980	444	208	1,250	5,275	6,525	0.530	25.0		
1/9/10	7.3	33.5	0.500											1,288	5,200	6,488	0.280	26.7		
1/10/10	7.3	34.0	0.400											1,213	5,300	6,513	0.380			
1/11/10	7.3	34.0	0.250	39,700	2,500	2.5	1.8	19,200	16,800		978	430	220	1,388	5,175	6,563	0.130			
1/12/10	7.2	34.5	0.550														0.430			
1/13/10	7.2	34.0	0.350	24,500	2,575	2.6	1.8	18,750	16,250		1,038	745	238	1,413	5,350	6,763	0.230			
1/14/10	7.2	35.0	0.100																	
1/15/10	7.2	35.0	0.500	23,800	2,700	2.6	1.9	17,750	16,000		1,033	425	236	1,475	5,388	6,863	0.380	22.3		
1/16/10	7.5	35.0	0.400														0.300			
1/17/10	7.4	34.5	0.500														0.500			
1/18/10	7.4	34.5	0.500	22,400	2,500	2.9	2.0	21,400	17,600	2,280	1,023	423	236	1,375	5,338	6,713	0.380			
1/19/10	7.3	35.0	0.500	21,600	2,300	2.9	2.0	22,200	18,400		1,013	630	248	1,475	5,688	7,163	0.430			
1/20/10	7.4	35.0	0.500	19,900	2,525	2.8	1.9	19,800	17,200		1,060	413	260	1,250	5,800	7,050	0.380			
1/21/10	7.4	35.0	0.500	15,900	2,525	2.7	1.9	18,800	15,800		1,100	710	254	1,475	5,525	7,000	0.430		34.0%	1,100
1/22/10	7.4	35.0	0.350	23,300	2,425	2.6	1.8	18,600	15,600		1,120	823	250	1,338	5,675	7,013	0.380		34.0%	1,000
1/23/10	7.4	35.5	0.250	- , •	, -			- ,	- ,		, -			y'	- ,	.,'	0.050			,
1/24/10	7.4	35.5	0.500														0.400			
1/25/10	7.4	35.0	0.500	21,600	2,875	2.6	1.7	18,800	15,000		1,175	408	250	1,400	6,488	7,888	0.430			
1/26/10	7.5	34.5	0.050	17,700	3,075	2.6	1.7	19,800	16,200	1,132	1,230	643	256	6,163	6,163	7,638	0.130		28.0%	1,100
1/27/10	7.5	35.0	0.100	17,500	2,625	2.5	1.6	16,800	13,600	-,	1,310	653	260	1,500	6,250	7,750	0.130			-,

										Phase	εI									
									e	1	ons Data (Co	<i>'</i>								
									November	: 14, 2009 -	January 29,	2010								
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
1/28/10	7.4	35.5	0.500	23,300	3,400	2.5	1.7	16,400	14,200	1,752	1,290	540	256	1,925	6,200	8,125	0.180			
1/29/10	7.4	35.0	0.500											1,662	6,038	7,700	0.380	22.2		
Average	7.3	35.3	0.364	24,400	2,606	2.7	1.9	20,819	18,251	1,963	874	496	185	1,158	4,941	6,011	0.252	24.05	33.7%	1,588
Minimum	7.0	33.5	0.050	15,900	1,320	2.0	1.5	9,600	8,800	1,132	288	290	35	235	2,450	2,880	0.050	22.20	28.0%	1,000
Maximum	7.5	38.5	0.550	39,700	3,450	3.6	2.6	31,200	28,200	2,525	1,310	823	260	6,163	6,488	8,125	0.530	26.70	36.0%	2,400

											perations D 9 - January									
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
11/14/09																				
11/15/09																				
11/16/09	7.1		0.100																	
11/17/09	7.0	33.0	0.100																	
11/18/09	7.1				1,940			21,200	20,000		480		71							
11/19/09	7.0																			
11/20/09	7.1																			
11/21/09	7.0																			
11/22/09	7.1	37.5												615	2,295	2,910				
11/23/09	7.2	38.0	0.100		2,020			30,600	28,400		245		68	590	2,365	2,955	0.250			
11/24/09	7.2	37.0	0.200											700	2,388	3,088	0.080			
11/25/09	7.1	36.0	0.200		3,500	3.8		35,400	32,600		368		35	463	2,675	3,138	0.130			
11/26/09	7.2		0.220																	
11/27/09	7.2	35.0	0.200																	
11/28/09	7.2	35.0	0.200											400	3,313	3,713	0.080			
11/29/09	7.2		0.200																	
11/30/09	7.2	36.0	0.300		3,100	3.5		31,600	29,000		356		49	450	3,725	4,175	0.130			
12/1/09	7.2	35.5	0.300											463	3,763	4,225	0.080			
12/2/09	7.2	34.0	0.300		2,325	3.4		32,800	29,600		488		64	600	3,463	4,963	0.100			
12/3/09	7.2	36.0	0.300											720	3,840	4,560	0.050			
12/4/09	7.3	36.0	0.350		2,750	3.5		31,600	28,400		685		88	580	4,360	4,940	0.070			
12/5/09	7.3	35.5	0.300																	
12/6/09	7.3	35.5	0.300											840	4,220	5,060	0.050			
12/7/09	7.3	35.5	0.100		2,500	3.5		31,000	28,400		566		97	960	4,160	5,120	0.070			
12/8/09	7.2	35.0	0.300											840	4,660	5,500	0.050			
12/9/09	7.2	35.0	0.300		3,163	3.3	2.6	29,000	26,000		730		155	820	4,700	5,520	0.070			
12/10/09	7.2	35.0	0.300											780	5,120	5,900	0.050			
12/11/09	7.2	35.0		30,000	2,175	3.4	2.7	27,400	23,800		783		108	700	5,140	5,840	0.050			
12/12/09	7.2	35.0	0.350											1,275	4,288	5,563	0.080			
12/13/09	7.3	35.0	0.250											1,000	4,963	5,963	0.080			
12/14/09	7.2	35.0	0.400	43,500	1,975	2.9	2.3	26,400	23,000		708		137	975	5,100	6,075	0.100			
12/15/09	7.2	34.5	0.400											1,013	5,125	6,138	0.080			
12/16/09	7.2	34.5	0.375	44,900	3,025	3.0	2.3	25,800	22,200		523		155	1,000	5,163	6,163	0.100			
12/17/09	7.2	34.5	0.375											1,013	5,175	6,188	0.080			
12/18/09	7.2	35.0	0.410	31,800	3,600	3.0	2.3	27,200	23,800		778	470	164	1,200	5,150	6,350	0.130			
12/19/09	7.2	35.0	0.350					-	·					1,150	5,413	6,563	0.080			
12/20/09	7.2	35.0	0.400											1,100	5,600	6,700	0.080			

Phase I

									U	ter 3 Oper	a se I ations Data)9 - January	` '								
		T	End	+COD	sCOD	TC	VC	TOO	VCC	TUN	NILI2 NI	T-P	PO4-P		D All-	T A 11-	W	D:	Biogas	Biogas
Date	рН (s.u.)	Temp. (oC)	Feed (L/day)	tCOD (mg/L)	(mg/L)	TS (%)	VS (%)	TSS (mg/L)	VSS (mg/L)	TKN (mg/L)	NH3-N (mg/L)	I-P (mg/L)	PO4-P (mg/L)	VFA (mg/L)	P-Alk (mg/L)	T-Alk (mg/L)	Waste (L/day)	Biogas (L/day)	CO2 (%)	H2S (ppm)
12/21/09	7.2	34.5	0.400	36800	3975	2.9	2.2	24,800	21,200	(IIIg/L)	665	(IIIg/L)	150	1,175	5,325	6,500	0.100	(L/uay)	(70)	(ppiii)
12/22/09	7.2	35.0	0.400	50000	5715	2.)	2.2	24,000	21,200		005		150	1,175	5,325	6,588	0.130			
12/22/09	7.2	35.0	0.230	32,000	2,800	2.7	2.1	23,200	20,800		738	545	192	1,430	5,150	6,238	0.130			
12/24/09	7.2	35.0	0.420	52,000	2,000	2.1	2.1	23,200	20,000		750	545	172	1,163	5,288	6,450	0.330			
12/25/09	7.2	55.0	0.500											1,105	5,200	0,150	0.500			
12/26/09			0.450														0.450			
12/27/09			0.375														0.375			
12/28/09	7.3	34.0	0.400											1,163	5,550	6,713	0.480			
12/29/09	7.3	35.0	0.400	35,500	3,300	2.6	2.0	20,400	18,600	2,200	720	570	196	1,275	5,050	6,325	0.230			
12/30/09	7.2	34.5	0.400	34,000	2,925	2.7	2.0	20,800	18,400	·	898	560	194	1,375	5,363	6,738	0.280		34.0%	2,200
12/31/09	7.3	34.5	0.400	28,700	2,675	2.6	1.9	19,800	18,000		920	440	180	1,137	5,113	6,250	0.330		36.0%	1,800
1/1/10	7.3	34.0	0.400	28,400	2,875	2.6	2.0	20,000	18,400	1,940	870	400	196				0.250		34.0%	2,000
1/2/10	7.3	34.0	0.400	28,300	2,850	2.6	1.9	20,200	17,800	2,750	953	435	202	1,275	5,125	6,400	0.330		34.0%	1,800
1/3/10	7.3	34.0	0.400	28,400	2,725	2.6	1.9	18,800	16,800	2,060	973	610	188	1,088	5,275	6,363	0.330		34.0%	
1/4/10	7.3	34.0	0.400	29,000	2,975	2.5	1.9	18,800	16,600	1,902	988	615	192	1,237	5,438	6,675	0.330		32.0%	1,200
1/5/10	7.3	34.0	0.400	28,100	2,875	2.5	1.9	19,200	16,400	1,876	948	630	190	1,262	5,213	6,475	0.330		34.0%	
1/6/10	7.3	34.0	0.400	33,100	2,950	2.5	1.9	18,600	16,800	1,772	923	630	204	1,175	5,325	6,500	0.330		34.0%	
1/7/10	7.3	34.0	0.100	27,700	2,575	2.5	1.9	19,400	16,600		943	540	220	1,012	5,238	6,250	0.130		26.0%	
1/8/10	7.2	34.0	0.400	29,900	3,375	2.5	1.9	18,800	17,000	2,320	975	745	202	1,400	5,325	6,725	0.130	24.9		
1/9/10	7.3	34.0	0.150											1,500	5,550	7,050	0.130			
1/10/10	7.3	34.0	0.150											1,412	5,363	6,775	0.080			
1/11/10	7.4	34.5	0.200	44,400	2,950	2.5	1.8	19,800	16,600		1,020	725	220	1,450	5,475	6,925	0.130			
1/12/10	7.2	34.0	0.350											913	6,838	7,750	0.380			
1/13/10	7.2	34.5	0.350	26,600	2,900	2.5	1.8	19,250	16,000		1,015	490	222	1,537	5,363	6,900	0.230			
1/14/10	7.2	34.5	0.350														0.150		36.0%	1,100
1/15/10	7.2	35.0	0.400	28,700	3,125	2.5	1.9	18,750	16,500		1,028	463	244	1,238	5,575	6,813	0.330			
1/16/10	7.4	34.5	0.350														0.250			
1/17/10	7.4	35.0	0.350														0.450			
1/18/10	7.4	34.5	0.100	17,700	2,625	2.7	1.9	21,200	18,000	2,460	1,065	658	240	1,438	6,000	7,438	0.130			
1/19/10	7.3	35.0	0.350	25,800	2,625	2.9	2.1	21,200	18,200		1,033	823	234	1,638	6,150	7,788	0.130			
1/20/10	7.4	35.0	0.400	27,300	2,950	2.8	1.9	20,600	17,800		1,040	1,050	254	1,425	6,450	7,875	0.330			
1/21/10	7.4	35.0	0.400	26,800	2,725	2.8	2.0	20,200	17,000		1,115	670	246	1,638	5,725	7,363	0.280		34.0%	1,000
1/22/10	7.4	34.5	0.075	28,800	2,625	2.8	2.0	21,000	17,200		1,080	980	246	1,600	5,713	7,313	0.130		26.0%	600
1/23/10	7.3	35.0	0.450																	
1/24/10	7.3	35.0	0.400																	
1/25/10	7.3	34.5	0.450	25,900	2,875	2.7	1.9	20,200	16,400		945	498	254	1,788	5,775	7,563	0.380			
1/26/10	7.4	34.5	0.450	25,400	2,850	2.8	1.9	19,800	17,000	1,762	1,135	478	252	1,662	5,813	7,475	0.330		34.0%	1,400
1/27/10	7.4	34.5	0.450	24,900	2,700	2.7	1.9	19,800	15,800		1,175	853	252	1,775	6,138	7,913	0.330		34.0%	1,300

										Ph	nase I									
									Diges	ster 3 Oper	ations Data	(Cont.)								
									Novem	ber 14, 200)9 - Januar	y 29, 2010								
	pH	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
1/28/10	7.3	35.0	0.450	27,800	3,225	2.8	1.9	19,200	16,200	1,660	1,385	918	222	1,975	6,200	8,175	0.380	17.8		
1/29/10	7.3	34.5	0.450											1,825	6,088	7,913	0.380			
Average	7.2	34.9	0.325	30,352	2,841	2.8	2.0	23,076	20,305	2,064	845	632	178	1,131	4,987	6,134	0.207	21.4	33.0%	1,440
Minimum	7.0	33.0	0.075	17,700	1,940	2.5	1.8	18,600	15,800	1,660	245	400	35	400	2,295	2,910	0.050	17.8	26.0%	600
Maximum	7.4	38.0	0.500	44,900	3,975	3.8	2.7	35,400	32,600	2,750	1,385	1,050	254	1,975	6,838	8,175	0.500	24.9	36.0%	2,200

Phase I
Digester 4 Operations Data
November 14, 2009 - January 29, 2010

	pH	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)							
11/14/09																				
11/15/09																				
11/16/09	7.1		0.100																	
11/17/09	7.0	35.0	0.100																	
11/18/09	7.0				1,830			15,200	14,800		428		64							
11/19/09	7.0																			
11/20/09	7.1																			
11/21/09	7.0																			
11/22/09	7.1	39.5												625	2,610	3,235				
11/23/09	7.1	40.0	0.100		3,300			14,600	14,000		328		83	530	2,670	3,200	0.250			
11/24/09	7.2	39.0	0.200											538	2,813	3,350	0.080			
11/25/09	7.1	36.0	0.200		8,100	4.1		39,800	35,800		525		46	475	2,950	3,425	0.130			
11/26/09	7.2		0.220																	
11/27/09	7.2	36.0	0.200																	
11/28/09	7.2	36.5	0.200											550	3,625	4,175	0.080			
11/29/09	7.2		0.200																	
11/30/09	7.2	36.0	0.300		4,700	3.8		39,000	35,600		515		78	650	3,938	4,588	0.130			
12/1/09	7.2	35.5	0.300											600	4,188	4,788	0.080			
12/2/09	7.2	36.0	0.300		2,775	3.5		30,200	26,400		585		70	513	4,338	4,850	0.100			
12/3/09	7.2	36.0	0.300											800	3,860	4,660	0.050			
12/4/09	7.3	36.0	0.350		2,860	3.4		31,200	28,400		723			540	4,520	5,060	0.070			
12/5/09	7.3	36.0	0.300																	
12/6/09	7.3	36.0	0.300											600	3,980	4,580	0.050			
12/7/09	7.3	36.0	0.100		2,313	3.4		30,000	27,600		574		108	980	4,100	5,080	0.070			
12/8/09	7.2	36.0	0.300		,			,	.,					820	4,600	5,420	0.050			
12/9/09	7.2	35.5	0.300		2,975	3.3	2.7	28,600	25,600		848		159	960	4,540	5,500	0.700			
12/10/09	7.2	35.0	0.300		_,				,0					680	4,900	5,850	0.050			
12/11/09	7.2	35.5	0.000	54,400	2,450	3.4	2.7	27,200	23,600		608		120	600	5,240	5,840	0.050			
12/11/09	7.2	35.5	0.350	2 ., 100	_,100	2.1	,	27,200	_2,000		000		120	1,162	4,488	5,650	0.080			
12/12/09	7.3	35.5	0.250											975	4,975	5,950	0.080			
12/13/09	7.2	35.5	0.400	39,600	2,450	2.9	2.3	26,200	22,800		803		163	1,038	5,025	6,063	0.000			
12/14/09	7.2	35.0	0.400	57,000	2,450	2.)	2.3	20,200	22,000		005		105	1,058	5,025	6,063	0.080			
12/15/09	7.2	35.0	0.400	45,300	3,375	3.5	2.3	25,600	21,800		590		159	1,003	5,200	6,238	0.080			
12/16/09	7.2	35.0 35.0	0.375	45,500	5,575	5.5	2.3	25,000	21,000		390		139	1,058	5,200 5,275	6,325	0.100			

									Digester 4	Phase I	s Data (Cont)								
								Ν	e	1	anuary 29, 20	, ,								
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
12/18/09	7.2	35.5	0.410	33,000	4,150	3.1	2.4	26,400	23,600		723	655	169	1,075	5,400	6,475	0.130			
12/19/09	7.2	35.0	0.350											1,038	5,613	6,650	0.080			
12/20/09	7.2	35.0	0.400											988	5,913	6,900	0.080			
12/21/09	7.2	35.0	0.400	39,000	4,325	2.9	2.2	25,200	21,400		625		159	1,075	5,538	6,613	0.100			
12/22/09	7.2	35.0	0.250											1,125	5,900	7,025	0.280			
12/23/09	7.2	35.5	0.425	36,000	3,175	2.9	2.2	23,600	20,600		638	685	196	1,250	5,663	6,913	0.380			
12/24/09	7.2	35.0	0.450											1,150	5,638	6,788	0.430			
12/25/09			0.500														0.500			
12/26/09			0.450														0.450			
12/27/09			0.375														0.375			
12/28/09	7.2	34.5	0.400											1,138	5,925	7,063	0.480			
12/29/09	7.2	35.0	0.400	37,000	3,550	2.7	2.1	21,800	20,800	2,460	708	575	208	1,250	5,100	6,350	0.280			
12/30/09	7.3	35.0	0.400	28,000	3,150	2.7	2.1	22,800	20,800		860	610	210	1,275	5,225	6,500	0.330	16.6	34.0%	2,200
12/31/09	7.3	35.0	0.400	31,800	2,900	2.7	2.0	21,200	19,800		885	445	200	1,350	5,288	6,638	0.330		36.0%	1,800
1/1/10	7.2	34.5	0.400	33,400	3,175	2.7	2.1	21,600	19,600	2,525	845	465	142				0.250		34.0%	1,800
1/2/10	7.3	34.5	0.400	34,900	3,225	2.6	2.0	21,000	18,600	1,865	878	615	206	1,087	5,213	6,300	0.330		34.0%	1,400
1/3/10	7.3	34.5	0.400	27,600	3,100	2.7	2.0	20,600	18,400	2,220	908	625	204	1,012	5,313	6,325	0.330	17.3	32.0%	
1/4/10	7.3	34.5	0.400	33,200	3,100	2.6	1.9	20,400	18,200	1,902	940	645	200	1,138	5,375	6,513	0.330	17.3	34.0%	
1/5/10	7.2	34.5	0.400	21,600	3,075	2.6	1.9	20,000	17,600	2,220	908	670	198	1,162	5,063	6,225	0.330		28.0%	
1/6/10	7.2	34.5	0.400	35,200	3,175	2.6	1.9	19,800	17,600	1,832	915	640	210	1,287	5,288	6,575	0.330	17.3	36.0%	
1/7/10	7.2	34.5	0.300	28,400	2,900	2.7	2.0	21,000	18,400		908	570	238	1,213	5,475	6,688	0.130		34.0%	
1/8/10	7.2	34.0	0.400	33,700	3,950	2.7	2.0	21,000	17,800	2,260	903	790	208	1,400	5,325	6,725	0.430			
1/9/10	7.3	34.5	0.400											1,225	5,000	6,225	0.230			
1/10/10	7.3	34.5	0.350											1,500	5,388	6,888	0.280			
1/11/10	7.3	35.0	0.350	54,000	2,950	2.7	1.9	20,400	17,800		933	620	232	1,563	5,250	6,813	0.330			
1/12/10	7.2	34.5	0.350											825	7,100	7,925	0.280			
1/13/10	7.2	34.5	0.400	30,300	3,225	2.6	1.9	20,000	17,250		870	745	234	1,488	5,275	6,763	0.280			
1/14/10	7.2	35.0	0.400														0.150		36.0%	900
1/15/10	7.2	35.5	0.200	27,200	3,650	2.8	2.0	20,500	18,000		930	605	240	1,487	5,688	7,175	0.230			
1/16/10	7.4	35.0	0.300														0.200			
1/17/10	7.3	35.0	0.350														0.450			
1/18/10	7.3	35.0	0.400	28,900	3,150	3.1	2.0	22,800	18,400	2,680	948	655	234	1,713	5,875	7,588	0.230			
1/19/10	7.3	35.5	0.400	27,400	2,625	3.0	2.1	23,000	18,400		940	1,038	242	1,838	6,075	7,913	0.330			
1/20/10	7.4	35.5	0.150	26,500	2,875	2.9	2.0	20,600	17,200		985	895	248	1,588	6,125	7,713	0.130			
1/21/10	7.4	35.5	0.350	23,900	2,875	2.9	2.0	20,400	17,400		1,000	1,040	252	1,938	5,775	7,713	0.180		32.0%	700
1/22/10	7.3	35.5	0.450	27,800	3,025	3.0	2.0	23,200	18,200		980	1,350	232	1,875	6,025	7,900	0.330		34.0%	1,000
1/23/10	7.3	35.5	0.300														0.150			
1/24/10	7.3	35.5	0.300														0.300			
1/25/10	7.3	35.0	0.450	17,200	2,850	2.6	1.9	20,600	16,800		1,040	545	252	1,825	5,925	7,750	0.380			

										Phase I	í									
									Digester 4	Operation	is Data (Con	ıt.)								
								N	ovember 1	4, 2009 - J	lanuary 29, 2	2010								
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
1/26/10	7.4	35.0	0.450	27,600	3,100	2.9	2.0	22,200	18,000	2,320	1,005	1,148	242	1,950	5,663	7,613	0.330		34.0%	1,100
1/27/10	7.3	35.5	0.450	26,400	2,725	2.9	2.0	21,400	17,000		1,050	933	254	1,938	5,750	7,688	0.330		36.0%	1,100
1/28/10	7.3	35.5	0.450	25,100	3,225	2.9	1.9	20,600	17,600	1,726	1,020	850	242	1,875	5,675	7,550	0.380			
1/29/10	7.3	35.0	0.500											1,925	5,713	7,638	0.380			
Average	7.2	35.4	0.337	32,221	3,253	3.0	2.1	23,505	20,585	2,183	807	737	186	1,149	5,061	6,214	0.235	17.13	33.9%	1,333
Minimum	7.0	34.0	0.100	17,200	1,830	2.6	1.9	14,600	14,000	1,726	328	445	46	475	2,610	3,200	0.050	16.60	28.0%	700
Maximum	7.4	40.0	0.500	54,400	8,100	4.1	2.7	39,800	35,800	2,680	1,050	1,350	254	1,950	7,100	7,925	0.700	17.30	36.0%	2,200

APPENDIX D

Phase II Raw Data

Phase II	
Influent Feed Characterization	
February 28, 2010 - April 16, 2010	

	Feed	Feed	pН	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO_4
Date	Description	Number	(s.u.)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/
2/28/10	Blend #1	Feed #8	5.5	119,700	55,900	6.23	5.40	31,000	30,400	2,280	193	1,270	58
3/1/10	Blend #1	Feed #8	5.5	119,700	55,900	6.23	5.40	31,000	30,400	2,280	193	1,270	58
3/2/10	Blend #1	Feed #8	5.5	119,700	55,900	6.23	5.40	31,000	30,400	2,280	193	1,270	58
3/3/10	Blend #1	Feed #8	5.5	119,700	55,900	6.23	5.40	31,000	30,400	2,280	193	1,270	58
3/4/10	Blend #1	Feed #8	5.5	119,700	55,900	6.23	5.40	31,000	30,400	2,280	193	1,270	58
3/5/10	Blend #1	Feed #8	5.5	119,700	55,900	6.23	5.40	31,000	30,400	2,280	193	1,270	58
3/6/10	Blend #1	Feed #8	5.5	119,700	55,900	6.23	5.40	31,000	30,400	2,280	193	1,270	58
3/7/10	Blend #1	Feed #8	5.5	119,700	55,900	6.23	5.40	31,000	30,400	2,280	193	1,270	58
3/8/10	Blend #1	Feed #8	5.5	119,700	55,900	6.23	5.40	31,000	30,400	2,280	193	1,270	58
3/9/10	Blend #1	Feed #8	5.5	119,700	55,900	6.23	5.40	31,000	30,400	2,280	193	1,270	58
3/10/10	Blend #1	Feed #8	5.5	119,700	55,900	6.23	5.40	31,000	30,400	2,280	193	1,270	58
3/11/10	Blend #1	Feed #8	5.5	119,700	55,900	6.23	5.40	31,000	30,400	2,280	193	1,270	58
3/12/10	Blend #1	Feed #8	5.5	119,700	55,900	6.23	5.40	31,000	30,400	2,280	193	1,270	58
3/13/10	Blend #1	Feed #8	5.5	119,700	55,900	6.23	5.40	31,000	30,400	2,280	193	1,270	58
3/14/10	Blend #1	Feed #8	5.5	119,700	55,900	6.23	5.40	31,000	30,400	2,280	193	1,270	58
3/15/10	Blend #1	Feed #9	5.6	110,300	52,800	6.50	5.67	28,800	27,700	2,360	202	1,600	57
3/16/10	Blend #1	Feed #9	5.6	110,300	52,800	6.50	5.67	28,800	27,700	2,360	202	1,600	57
3/17/10	Blend #1	Feed #9	5.6	110,300	52,800	6.50	5.67	28,800	27,700	2,360	202	1,600	57
3/18/10	Blend #1	Feed #9	5.6	110,300	52,800	6.50	5.67	28,800	27,700	2,360	202	1,600	57
3/19/10	Blend #1	Feed #9	5.6	110,300	52,800	6.50	5.67	28,800	27,700	2,360	202	1,600	57
3/20/10	Blend #1	Feed #9	5.6	110,300	52,800	6.50	5.67	28,800	27,700	2,360	202	1,600	57
3/21/10	Blend #1	Feed #9	5.6	110,300	52,800	6.50	5.67	28,800	27,700	2,360	202	1,600	57
3/22/10	Blend #1	Feed #9	5.6	110,300	52,800	6.50	5.67	28,800	27,700	2,360	202	1,600	57
3/23/10				- ,	- ,			- ,	.,	,		,	
3/24/10													
3/25/10													
3/26/10	Blend #1	Feed #10	5.5	100,400	58,200	5.29	4.41	22,400	21,600	1,390	200	1,335	57
3/27/10	Blend #1	Feed #10	5.5	100,400	58,200	5.29	4.41	22,400	21,600	1,390	200	1,335	57
3/28/10	Blend #1	Feed #10	5.5	100,400	58,200	5.29	4.41	22,400	21,600	1,390	200	1,335	57
3/29/10	Blend #1	Feed #10	5.5	100,400	58,200	5.29	4.41	22,400	21,600	1,390	200	1,335	57
3/30/10	Blend #1	Feed #10	5.5	100,400	58,200	5.29	4.41	22,400	21,600	1,390	200	1,335	57
3/31/10	Blend #1	Feed #11	4.7	96,100	56,200	5.60	4.67	21,300	20,300	1,532	252	1,355	52
4/1/10	Blend #1	Feed #11	4.7	96,100	56,200	5.60	4.67	21,300	20,300	1,532	252	1,355	52
4/2/10	Blend #1	Feed #11	4.7	96,100	56,200	5.60	4.67	21,300	20,300	1,532	252	1,355	52
4/3/10	Blend #1	Feed #11	4.7	96,100	56,200	5.60	4.67	21,300	20,300	1,532	252	1,355	52
4/4/10	Blend #1	Feed #11	4.7	96,100	56,200	5.60	4.67	21,300	20,300	1,532	252	1,355	52
4/5/10	Blend #1	Feed #11	4.7	96,100 96,100	56,200	5.60	4.67	21,300	20,300	1,532	252	1,355	52
4/6/10	Blend #1	Feed #11	4.7	96,100	56,200	5.60	4.67	21,300	20,300	1,532	252	1,355	52
4/7/10	Blend #1	Feed #11	4.7	96,100 96,100	56,200	5.60	4.67	21,300	20,300	1,532	252	1,355	52
4/8/10	Blend #1	Feed #12	5.5	104,800	63,300	5.63	4.72	21,900	20,900	1,408	232	1,350	55
4/9/10	Blend #1	Feed #12	5.5	104,800	63,300	5.63	4.72	21,900	20,900	1,408	231	1,350	55
4/10/10	Blend #1	Feed #12	5.5	104,800	63,300	5.63	4.72	21,900	20,900	1,408	231	1,350	55
4/11/10	Blend #1	Feed #12	5.5	104,800	63,300	5.63	4.72	21,900	20,900	1,408	231	1,350	55
4/12/10	Blend #1	Feed #12	5.5	104,800	63,300	5.63	4.72	21,900	20,900	1,408	231	1,350	55
4/13/10	Blend #1	Feed #12	5.5	104,800	63,300	5.63	4.72	21,900	20,900	1,408	231	1,350	55
4/13/10	Blend #1	Feed #12	5.5	104,800	63,300	5.63	4.72	21,900	20,900	1,408	231	1,350	55
4/14/10	Blend #1	Feed #12	5.5	104,800	63,300	5.63	4.72	21,900 21,900	20,900 20,900	1,408	231	1,350	55
4/15/10	Blend #1	Feed #12 Feed #12	5.5 5.5	104,800	63,300 63,300	5.63	4.72	21,900 21,900	20,900	1,408 1,408	231	1,350	55
ч/ 10/ 10		1000 #12	5.5	104,000	05,500	5.05	7.12	21,700	20,700	1,400	231	1,550	55
Average			5.5	115,763	54,963	6	5	29,908	29,133	2,270	196	1,383	57
Minimum			5.5	100,400	52,800	5	4	22,400	21,600	1,390	193	1,270	57
Maximum			5.6	119,700	58,200	7	6	31,000	30,400	2,360	202	1,600	58

									Fe	Digester	Phase II 1 Operations 2010 - April									
	-11	T	End	tCOD	sCOD	TC	VC	TOO	VCC	TUN	NH2 N	тр	DO4 D		D A 11-	T A 11-	Weste	D:	Biogas	Biogas
Date	рН (s.u.)	Temp. (oC)	Feed (L/day)	(mg/L)	sCOD (mg/L)	TS (%)	VS (%)	TSS (mg/L)	VSS (mg/L)	TKN (mg/L)	NH3-N (mg/L)	T-P (mg/L)	PO4-P (mg/L)	VFA (mg/L)	P-Alk (mg/L)	T-Alk (mg/L)	Waste (L/dav)	Biogas (L/dav)	CO2 (%)	H2S (ppm)
2/28/10	7.6	(00)	0.250	(IIIg/L)	(IIIg/L)	(70)	(70)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	1.788	6,825	8.613	0.080	(L/day)	(70)	(ppin)
3/1/10	7.5	35.0	0.250	30,500	4,520	2.40	1.52	16,000	12,800		1,340	1,058	282	1,887	6,663	8,550	0.080			
3/2/10	7.3	35.0	0.350	,	.,			,	,		-,	-,		2,150	6,200	8,350	0.080			
3/3/10	7.6	35.0	0.350	25,200	4,890	2.48	1.54	16,200	12,000		1,480	660	278	1,862	7,013	8,875	0.080			
3/4/10	7.7	35.0	0.250	-,	,			-,	,		,			1,888	6,825	8,713	0.080			
3/5/10	7.6	35.5	0.300	24,800	5,220	2.54	1.58	15,800	12,000		1,420	798	250	1,775	7,163	8,938	0.130			
3/6/10	7.5		0.400											1,962	7,088	9,050	0.080			
3/7/10	7.7		0.200											1,638	7,650	9,288	0.080			
3/8/10	7.6	35.5	0.400	23,700	5,780	2.59	1.57	18,200	13,500		1,550	1,223	300	1,750	7,375	9,125	0.130			
3/9/10	7.4	35.5	0.300											1,938	7,225	9,163	0.080			
3/10/10	7.6	35.5	0.400	24,700	5,950	2.57	1.58	17,500	13,400		1,225	920	298	1,800	7,425	9,225	0.380			
3/11/10	7.5	35.0	0.400											1,775	7,350	9,125	0.330			1,400
3/12/10	7.4	35.0	0.400	25,150	5,700	2.56	1.57	17,300	12,900		1,520	913	302	1,787	7,138	8,925	0.130		36.0%	2,000
3/13/10	7.6	35.0	0.400	23,750	6,010	2.57	1.55	16,200	12,300		1,305	995	296	1,713	7,325	9,038	0.430	16.2	36.0%	2,000
3/14/10	7.6	35.0	0.400	26,550	5,780	2.59	1.57	15,600	12,300		1,315	755	298	1,612	7,238	8,850	0.430	29.5	30.0%	1,800
3/15/10	7.5	35.0	0.400	24,350	5,760	2.59	1.57	17,000	12,600		1,490	883	294	1,775	7,488	8,263	0.330	18.6		
3/16/10	7.5	34.5	0.400	26,700	5,930	2.53	1.55	16,300	11,500		1,435	820	266	1,675	7,175	8,850	0.280	16.8	28.0%	1,300
3/17/10	7.4	35.0	0.400	25,400	6,050	2.48	1.46	16,800	12,200	2,800	1,585	1,163	290	1,838	7,150	8,988	0.380	20.4	28.0%	
3/18/10	7.3	35.0	0.400	25,100	6,090	2.69	1.61	19,200	13,900		1,015	778	284	1,837	7,288	9,125	0.330	15.4	28.0%	1,000
3/19/10	7.5	35.0	0.300	25,100	6,290	2.54	1.50	17,800	12,400	3,280	1,600	925	222	2,037	6,863	8,900	0.130		30.0%	1,100
3/20/10	7.4	35.0	0.400	24,750	6,290	2.60	1.54	17,500	12,400		1,645	1,078	296	2,313	7,025	9,338	0.430	17.4	30.0%	1,000
3/21/10	7.4	34.5	0.400	25,050	5,900	2.56	1.49	18,400	13,700		1,600	975	296	1,875	7,344	9,219	0.380	16.9	28.0%	800
3/22/10	7.3	35.0	0.400	24,350	6,140	2.61	1.54	18,300	13,400		1,570	735	306	1,907	7,156	9,063	0.380	18.6		
3/23/10	7.4	35.5		23,900	5,840	2.72	1.60	16,500	11,900		1,655	940	258	2,094	7,250	9,344	0.130			
3/24/10	7.6		0.100																	
3/25/10	7.6		0.100	25,250	6,200	2.67	1.55	17,400	12,400		1,650	840	228							
3/26/10	7.5	35.5	0.200	23,600	6,180	2.66	1.58	19,200	13,500	2,525	1,570	788	303	1,875	7,781	9,656	0.230		30.0%	
3/27/10	7.4	35.5	0.400	23,750	6,510	2.65	1.55	17,900	12,200		1,640	905	302	1,750	7,469	9,219	0.330	16.7		
3/28/10	7.4	35.0	0.400	23,750	6,130	2.54	1.45	17,400	12,400		1,585	728	260	1,718	7,344	9,062	0.280	13.3		
3/29/10	7.2	35.5	0.400	24,200	6,230	2.59	1.51	17,500	12,400		1,555	818	294	2,000	7,219	9,219	0.330	21.1	28.0%	2,000
3/30/10	7.5	35.5	0.400	24,550	5,950	2.63	1.53	18,000	13,000		1,535	1,003	304	1,750	7,469	9,219	0.230	18.5	30.0%	2,000
3/31/10	7.5	35.5	0.400	22,850	5,980	2.53	1.45	17,400	12,500		1,550	735	294	1,594	7,250	8,844	0.280	17.5	28.0%	2,000
4/1/10	7.5	35.5	0.400	24,000	6,310	2.63	1.53	17,400	12,900		1,545	845	290	1,813	6,656	8,469	0.330	16.0	30.0%	2,000
4/2/10	7.4	35.5	0.400	22,400	7,120	2.67	1.51	17,600	12,200	2,675	1,515	845	304	1,750	7,188	8,938	0.330	18.6	28.0%	2,000
4/3/10	7.6	35.5	0.200	22,550	5,960	2.31	1.37	13,500	11,300		1,515	698	298	1,407	7,406	8,813	0.280		26.0%	1,600
4/4/10	7.5	35.5	0.400											1,719	7,250	8,969	0.280	19.6		
4/5/10	7.5	35.0	0.400	22,800	6,000	2.63	1.44	16,800	11,900		1,520	688	274	1,906	7,219	9,125	0.130	10.5	30.0%	2,000
4/6/10	7.4	35.5	0.400	23,450	6,340	2.64	1.53	17,200	12,300		1,460	1,043	302	1,719	6,875	8,594	0.330	16.3	30.0%	2,000
4/7/10	7.4	35.5	0.400	21,750	6,090	2.50	1.41	15,900	11,700		1,430	838	312	1,625	6,594	8,219	0.330	16.0	30.0%	2,000

										Phase II										
								D	igester 1 O	perations l	Data (Cont	.)								
								F	ebruary 28,	2010 - Ap	,	0								
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3- N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
4/8/10	7.4	35.0	0.400	23,350	6,170	2.61	1.49	17,000	12,000		1,425	668	270	1,906	6,688	8,594	0.330	16.6	30.0%	2,000
4/9/10	7.6	35.5	0.400	22,600	6,260	2.61	1.48	16,500	11,100		1,235	1,180	318	1,000	7,438	8,438	0.330	17.6	28.0%	2,000
4/10/10	7.8	35.5	0.400	22,150	6,130	2.58	1.43	16,800	11,800		1,370	713	334	1,000	7,563	8,563	0.330	15.1	25.0%	2,000
4/11/10	8.0	35.5	0.400	22,150	5,810	2.26	1.28	12,900	10,700		1,400	635	342	1,094	7,969	9,063	0.330	16.2	28.0%	2,000
4/12/10	8.0	35.0	0.400	21,300	5,770	2.66	1.46	17,100	11,700		1,370	753	314	938	7,406	8,344	0.330	15.3	28.0%	2,000
4/13/10	7.9	35.5	0.400	22,100	5,960	2.48	1.36	15,400	10,800		1,315	720	344	1,156	7,688	8,844	0.330	14.0	30.0%	2,000
4/14/10	7.7	35.5	0.400	21,750	5,840	2.33	1.29	14,700	10,800		1,310	660	329	1,219	7,594	8,813	0.230	16.2	28.0%	2,000
4/15/10	7.7	35.5	0.400	21,600	5,860	2.51	1.41	15,500	10,600		1,315	888	217	1,156	6,969	8,125	0.230	16.3	28.0%	2,000
4/16/10	8.0	35.5	0.400											875	7,688	8,563	0.330	16.2		
Average	7.5	35.2	0.356	23,972	5,972	2.56	1.50	16,834	12,247	2,820	1,462	858	291	1,688	7,217	8,883	0.257	17.15	29.2%	1,769
Minimum	7.2	34.5	0.100	21,300	4,520	2.26	1.28	12,900	10,600	2,525	1,015	635	217	875	6,200	8,125	0.080	10.50	25.0%	800
Maximum	8.0	35.5	0.400	30,500	7,120	2.72	1.61	19,200	13,900	3,280	1,655	1,223	344	2,313	7,969	9,656	0.430	29.50	36.0%	2,000

										Digester 2 C	a se II Dperations Dat 10 - April 16,									
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/dav)	(%)	(ppm)
2/28/10	7.6	(00)	0.300	(111g/ 12)	(111g/12)	(/0)	(/0)	(111g/12)	(ing/L)	(iiig/L)	(1115/12)	(111g/ L)	(IIIg/ E)	1.838	6.625	8.463	0.080	(L/duy)	(70)	(ppiii)
3/1/10	7.5	35.0	0.200	28,200	4,860	2.32	1.52	14,800	12,000		1,390	593	288	1,725	6,575	8,300	0.080			
3/2/10	7.3	35.0	0.350	- ,	,			,	,		,			2,100	6,200	8,300	0.080			
3/3/10	7.6	35.0	0.350	24,950	5,050	2.43	1.52	15,600	11,600		1,470	448	286	1,625	6,925	8,550	0.130			
3/4/10	7.6	34.5	0.300											1,775	6,775	8,550	0.080			
3/5/10	7.6	35.5	0.300	24,200	5,220	2.53	1.57	16,000	12,200		1,405	603	296	1,487	6,638	8,125	0.130			
3/6/10	7.6		0.400											1,650	7,050	8,700	0.080			
3/7/10	7.5		0.400											1,513	7,100	8,613	0.080			
3/8/10	7.5	35.5	0.400	24,300	5,440	2.59	1.56	17,700	13,600		1,445	1,153	302	1,450	6,825	8,275	0.130			
3/9/10	7.3	35.5	0.300											1,600	6,838	8,438	0.080			
3/10/10	7.6	35.5	0.400	24,000	5,510	2.57	1.58	17,200	13,300		1,305	908	288	1,375	6,975	8,350	0.330			
3/11/10	7.5	35.0	0.400											1,600	6,950	8,550	0.330		32.0%	2,000
3/12/10	7.3	35.0	0.400	24,750	5,760	2.64	1.62	17,500	12,900		1,415	1,033	322	1,625	7,025	8,650	0.330	18.6	26.0%	1,800
3/13/10	7.6	35.0	0.400	24,300	5,610	2.61	1.53	16,900	12,900		1,270	673	242	1,575	7,113	8,688	0.230	13.8	34.0%	2,000
3/14/10	7.6	35.0	0.400	25,100	5,980	2.70	1.64	18,100	13,100		1,305	545	298	1,562	7,113	8,675	0.380	27.8	32.0%	2,000
3/15/10	7.5	35.5	0.400	24,650	6,000	2.55	1.54	16,700	12,000		1,440	553	298	1,550	7,063	8,613	0.380	21.5	28.0%	1,500
3/16/10	7.5	35.0	0.400	24,250	5,880	2.40	1.48	15,700	12,300		1,385	668	256	1,500	6,875	8,375	0.330	20.5	26.0%	1,000
3/17/10	7.3	35.0	0.400	24,200	5,730	2.41	1.42	16,000	12,200	2,480	1,470	540	282	1,512	6,738	8,250	0.580	20.4	28.0%	1,000
3/18/10	7.3	35.0	0.400	24,650	5,750	2.61	1.58	18,200	13,300		1,485	570	240	1,588	6,725	8,313	0.580	17.7	28.0%	700
3/19/10	7.5	35.0	0.200	22,850	5,910	2.46	1.45	16,500	11,800	3,320	1,410	570	204	1,900	6,525	8,425	0.130		30.0%	700
3/20/10	7.4	35.0	0.400	23,800	5,900	2.50	1.48	16,600	11,800		1,515	1,008	282	1,850	6,513	8,363	0.480	17.7	28.0%	300
3/21/10	7.3	34.5	0.400	25,150	6,730	2.57	1.53	17,600	12,800		1,485	940	286	1,594	6,594	8,188	0.480	18.4	28.0%	200
3/22/10	7.3	35.0	0.300	25,100	5,880	2.49	1.48	16,000	11,900		1,485	708	290	1,500	6,781	8,281	0.380	15.9	30.0%	800
3/23/10	7.4	35.0		23,350	5,460	2.47	1.45	16,700	12,200		1,490	773	182	1,844	6,500	8,344	0.130		26.0%	
3/24/10	7.6		0.100										• • •							
3/25/10	7.5		0.100	21,900	5,800	2.44	1.42	16,500	11,700		1,520	935	248			0.501	0.000		20.004	-
3/26/10	7.4	35.5	0.200	22,150	5,760	2.56	1.51	17,200	12,500	2,550	1,490	893	272	1,750	6,781	8,531	0.330	17.5	30.0%	700
3/27/10	7.4	35.5	0.500	23,000	6,010	2.44	1.45	17,000	12,000		1,510	568	278	1,531	6,469	8,000	0.430	17.5	28.0%	1,700
3/28/10	7.3	35.0	0.400	23,300	5,870	2.39	1.39	15,900	11,700		1,450	600	272	1,719	6,406	8,125	0.430	17.3	30.0%	2,000
3/29/10	7.2	35.0	0.400	22,400	6,230	2.37	1.37	15,100	11,300		1,460	673	284	1,688	6,000	7,688	0.430	19.1	30.0%	2,000
3/30/10	7.4	35.5	0.400	23,100	5,590	2.43	1.39	15,700	11,900		1,340	550	280	1,469	6,594	8,063	0.430	18.4	34.0%	2,000
3/31/10	7.4	35.5	0.400	22,000	5,510	2.33	1.32	15,300	11,100		1,365	615	284	1,531	6,063	7,594	0.430	18.9	30.0%	2,000
4/1/10	7.4 7.4	35.5 35.5	0.400	23,400	5,660 5,520	2.32 2.36	1.35	14,900 15,600	11,000	2.525	1,325	605 623	280 274	1,375	5,656	7,031	0.430 0.430	19.0 17.3	30.0%	2,000
4/2/10 4/3/10	7.4 7.5	35.5 35.5	$0.400 \\ 0.400$	21,850 21,650	5,520 5,290	2.36	1.35 1.15	15,600 12,100	11,100 10,700	2,323	1,185 1,305	623 550	274 278	1,688 1,344	6,156 6,156	7,844 7,500	0.430	17.5	28.0% 30.0%	2,000 2,000
4/3/10 4/4/10	7.5 7.4	35.5 35.5	0.400	21,030	5,290	2.01	1.13	12,100	10,700		1,505	550	210	1,344	6,136 5,938	7,800	0.430	18.0	30.0%	2,000
4/4/10 4/5/10	7.4 7.4	35.5 35.5	0.400	22,050	5.250	2.43	1.27	14,700	10,800		1,315	905	272	1,875	5,938 6,406	7,813 8,063	0.280	20.3	30.0%	2,000
4/5/10	7.4	35.5 35.5	0.400	22,030	5,230 5,630	2.43	1.27	14,700	11,200		1,515	903 595	272	1,637	6,400 6,031	8,063 7,563	0.380	20.3 18.0	30.0% 30.0%	2,000
4/0/10	7.4	35.5	0.400	22,030	5,030 5,430	2.43	1.34	16,000	11,200		1,115	553	200 330	1,532	6,250	7,303	0.330	17.8	30.0%	2,000
	1.5	55.5	0.400	25,500	5,450	2.37	1.51	10,000	11,100		1,525	555	550	1,331	0,230	7,701	0.550	17.0	50.070	2,000

										Phase										
									U	2 Operatio	`	,								
									February	28, 2010 -	1 /	2010								
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3- N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
4/8/10	7.3	35.0	0.400	22,600	5,490	2.44	1.39	15,700	11,200		1,310	593	288	1,875	5,938	7,813	0.330	17.5	30.0%	2,000
4/9/10	7.5	35.5	0.400	22,200	5,720	2.34	1.32	15,900	11,100		1,145	748	286	1,031	6,625	7,656	0.330	18.8	30.0%	2,000
4/10/10	7.8	35.5	0.400	21,050	5,560	2.40	1.30	15,300	11,200		1,290	493	306	812	7,063	7,875	0.230	17.7	32.0%	2,000
4/11/10	7.9	35.5	0.400	20,250	5,190	2.51	1.35	16,300	11,100			543	292	938	6,906	7,844	0.330	16.1	28.0%	2,000
4/12/10	7.9	35.5	0.400	20,900	5,220	2.30	1.28	14,300	10,600		1,215	1,198	318	938	6,906	7,844	0.330	18.3	32.0%	2,000
4/13/10	7.8	35.0	0.400	20,750	5,580	2.45	1.33	15,800	10,800		1,240	545	319	1,187	7,344	8,531	0.330	17.5	30.0%	2,000
4/14/10	7.6	35.5	0.400	20,850	5,560	2.26	1.28	13,600	10,300		1,225	630	312	937	7,219	8,156	0.130	17.3	28.0%	2,000
4/15/10	7.7	35.5	0.400	21,200	5,610	2.48	1.38	14,500	10,000		1,265	1,090	307	1,125	7,063	8,188	0.230	17.0	28.0%	2,000
4/16/10	7.9	35.5	0.400											906	7,313	8,219	0.280	19.6		
Average	7.5	35.2	0.364	23,151	5,636	2.45	1.43	15,982	11,745	2,719	1,367	705	281	1,517	6,659	8,176	0.297	18.44	29.5%	1,638
Minimum	7.2	34.5	0.100	20,250	4,860	2.01	1.15	12,100	10,000	2,480	1,115	448	182	812	5,656	7,031	0.080	13.80	26.0%	200
Maximum	7.9	35.5	0.500	28,200	6,730	2.70	1.64	18,200	13,600	3,320	1,520	1,198	330	2,100	7,344	8,700	0.580	27.80	34.0%	2,000

Date	pH (s.u.)	Temp. (oC)	Feed (L/day)	tCOD (mg/L)	sCOD (mg/L)	TS (%)	VS (%)	TSS (mg/L)					PO4-P (mg/L)	VFA (mg/L)	P-Alk (mg/L)	T-Alk (mg/L)	Waste (L/day)	Biogas (L/day)	Biogas CO2 (%)	Biogas H2S (ppm)
2/28/10	7.7		0.200			. /						/		1,950	7,113	9,063	0.080		. /	
3/1/10	7.6	35.0	0.200	25,800	4,990	2.36	1.50	15,400	12,600		1,490	830	288	1,975	7,050	9,025	0.080			
3/2/10	7.6	35.0	0.100											1,925	7,313	9,238	0.080			
3/3/10	7.9	35.0	0.200	25,850	5,510	2.43	1.50	15,600	11,800		1,640	770	290	1,875	7,350	9,225	0.130			
3/4/10	7.8	35.0	0.200											2,100	6,713	8,813	0.080			
3/5/10	7.9	35.5	0.100	25,950	5,240	2.44	1.50	16,200	12,400		1,520	633	252	1,862	7,188	9,050	0.130			
3/6/10	8.0		0.200											1,900	7,113	9,013	0.080			
3/7/10	7.9		0.200											2,200	6,888	9,088	0.080			
3/8/10	7.6	35.5	0.400	27,550	5,440	2.63	1.68	18,800	14,200		1,495	745	294	2,013	7,000	9,013	0.130			
3/9/10	7.5	36.0	0.200		- , -			- ,	,		,			2,050	6,650	8,700	0.080			
3/10/10	7.7	35.5	0.300	26,450	5,750	2.61	1.68	18,300	14,300		1,400	870	270	2,063	7,150	9,213	0.080			
3/11/10	7.5	35.5	0.400	,	-,				,		-,			2,412	6,788	9,200	0.080		32.0%	2,000
3/12/10	7.5	35.0	0.200	25,650	5,360	2.26	1.67	18,400	13,700		1,415	1,165	344	1,825	7,413	9,238	0.130	10.0	36.0%	1,600
3/13/10	7.6	35.0	0.400	29,150	6,130	2.66	1.68	18,200	14,100		1,250	715	302	2,050	7,225	9,275	0.280	17.6	32.0%	1,200
3/14/10	7.6	35.0	0.400	30,050	6,010	2.65	1.69	18,300	14,200		1,400	755	258	1,912	7,013	8,925	0.330	22.3	32.0%	1,700
3/15/10	7.5	35.0	0.400	28,250	5,480	2.68	1.67	20,300	15,700		1,385	603	294	1,775	7,500	9,275	0.330	22.5	26.0%	1,200
3/16/10	7.5	34.5	0.400	29,800	5,470	2.68	1.71	18,400	14,400		1,440	668	304	1,837	7,038	8,875	0.330	16.6	34.0%	1,400
3/17/10	7.4	34.5	0.400	28,850	5,680	2.46	1.58	16,400	14,200	3,300	1,525	955	266	1,663	7,030	8,838	0.380	15.0	28.0%	1,400
3/18/10	7.3	34.5	0.400	28,150	5,420	2.40	1.65	18,000	15,000	5,500	1,445	755	288	1,737	7,363	9,100	0.330	18.7	30.0%	600
3/19/10	7.4	35.0	0.400	27,900	5,560	2.75	1.72	19,500	14,300	3,860	1,445	965	288	2,125	7,125	9,250	0.380	11.5	32.0%	400
3/20/10	7.4	35.5	0.400	28,000	5,530	2.85	1.72	20,100	14,900	5,000	1,540	968	290	2,123	6,900	9,000	0.330	10.0	30.0%	200
3/20/10	7.4	33.5 34.5	0.400	28,000	5,530 5,570	2.85	1.75	20,100	14,900		1,700	1,113	290 284	1,969	7,031	9,000	0.330	9.1	28.0%	200
3/22/10	7.3	34.3 35.0	0.400	28,330 28,900	5,880	2.80	1.71	20,300 19,900	15,300		1,540	920	284 316	1,969	7,031	9,000 9,375	0.330	9.1 15.4	28.0%	
3/22/10	7.3	33.0 34.5	0.400	28,900 30,250	5,880 5,690	2.77	1.71	19,900	13,400		1,555	1,113	188	2,000	7,400	9,375 9,156	0.330	15.4		
3/23/10	7.4	54.5	0.100	30,230	5,090	2.15	1.75	18,000	14,500		1,505	1,115	100	2,000	7,150	9,150	0.150			
3/24/10	7.5		0.100	27.000	5,550	2.76	1.69	19,700	14,700		1,590	1.175	250							
3/25/10	7.5	35.0	0.100	27,000	5,350 5,810	2.70	1.09	19,700	14,700	3,400	1,590	1,175	230 306	1,906	7,438	9,344	0.230		32.0%	2,000
3/20/10	7.5	35.5	0.200	27,000	5,810	2.80	1.74	19,000	14,000	3,400	1,535	885	300 304	2,062	7,438	9,344 9,250	0.230	11.6	32.0% 28.0%	1,200
3/28/10	7.3 7.4	35.5 35.0	0.300	20,700 29,450	,	2.71		19,200			· · · ·	853	304 304	,	7,188		0.330		28.0% 32.0%	
	7.4	35.0 35.0	0.430	,	6,030	2.00	1.66	17,600	13,700		1,525	833 798		1,937	,	9,031	0.330	11.7		2,000
3/29/10				26,250	5,860		1.63	· ·	13,700		1,535		306	1,932	7,188	9,125		15.0	32.0%	2,000
3/30/10	7.4	35.0	0.400	27,200	5,630	2.60	1.55	18,600	13,900		1,505	865	304	1,907	7,281	9,188	0.330	15.9	34.0%	2,000
3/31/10	7.4	35.0	0.400	26,000	5,700	2.62	1.61	17,600	13,400		1,500	703	302	1,750	7,000	8,750	0.380	14.1	32.0%	2,000
4/1/10	7.5	35.0	0.300	26,600	5,730	2.72	1.64	17,900	13,300	0.000	1,490	1,025	304	1,844	6,750	8,594	0.330	14.7	30.0%	2,000
4/2/10	7.4	35.0	0.400	25,800	5,920	2.64	1.56	18,400	13,400	3,200	1,495	915	302	1,657	7,031	8,688	0.330	14.1	30.0%	2,000
4/3/10	7.5	35.0	0.450	24,100	5,830	2.31	1.35	14,700	12,500		1,440	563	304	1,438	7,375	8,813	0.330	14.3	30.0%	2,000
4/4/10	7.5	35.0	0.200											1,688	7,531	9,219	0.330			
4/5/10	7.5	35.0	0.400	24,050	5,730	2.69	1.52	17,100	12,300		1,365	1,033	238	1,937	7,094	9,031	0.380	20.2	30.0%	2,000
4/6/10	7.4	35.5	0.400	23,850	6,360	2.67	1.52	17,700	12,500		1,435	1,095	378	1,625	7,188	8,813	0.380	12.8	30.0%	2,000
4/7/10	7.4	35.5	0.400	24,050	5,670	2.60	1.46	18,000	12,600		1,455	833	340	1,625	6,906	8,531	0.380	18.3	34.0%	2,000

										Phase	II									
									Digester	3 Operatio	ons Data (Co	ont.)								
									February	28, 2010 -	- April 16, 2	010								
	pH	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
4/8/10	7.4	35.0	0.400	24,500	5,810	2.63	1.51	17,300	12,100		1,340	783	338	1,782	6,406	8,188	0.330	18.4	34.0%	1,200
4/9/10	7.5	34.5	0.400	24,100	5,550	2.57	1.47	17,100	12,300		1,375	1,010	334	1,156	7,469	8,625	0.330	15.0	32.0%	1,400
4/10/10	7.8	35.5	0.400	23,000	5,460	2.67	1.50	17,800	12,400		1,335	838	312	906	7,750	8,656	0.330	15.3	32.0%	1,900
4/11/10	7.9	35.5	0.400	23,450	5,130	2.75	1.55	18,600	12,700		1,360	728	324	1,000	7,563	8,563	0.330	12.4	32.0%	2,000
4/12/10	7.9	34.0	0.400	22,250	4,970	2.48	1.39	16,700	12,300			885	336	1,156	7,438	8,594	0.330	10.3	32.0%	1,000
4/13/10	7.8	33.5	0.400	21,250	5,330	2.13	1.19	12,200	9,500		1,280	658	348	1,063	7,031	8,094	0.330	11.3		
4/14/10	7.6	33.0	0.400	20,800	5,510	2.14	1.21	12,600	9,500		1,300	695	279	1,250	7,531	8,781	0.330	11.8	30.0%	1,200
4/15/10	7.6	33.5	0.400	22,550	5,670	2.51	1.37	15,400	10,700		1,360	763	251	1,563	7,281	8,844	0.330	17.1	30.0%	2,000
4/16/10	8.0	35.5	0.400											969	7,781	8,750	0.330	16.7		
Average	7.6	34.9	0.332	26,186	5,630	2.60	1.58	17,703	13,350	3,440	1,462	860	297	1,770	7,173	8,944	0.263	14.6	31.2%	1,579
Minimum	7.2	33.0	0.100	20,800	4,970	2.13	1.19	12,200	9,500	3,200	1,250	563	188	906	6,406	8,094	0.080	9.1	26.0%	200
Maximum	8.0	36.0	0.500	30,250	6,360	2.85	1.75	20,500	15,700	3,860	1,700	1,175	378	2,412	7,781	9,375	0.380	22.3	36.0%	2,000

APPENDIX E

Phase III Raw Data

Phase IV
Influent Feed Characterization
April 22, 2010 – June 16, 2010

				Apri	1 22, 2010 -	- June 10	5, 2010						
	Feed	Feed	pН	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO ₄ -
Date	Description	Number	(s.u.)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/
4/22/10	Blend #1	Feed #12	5.5	104,800	63,300	5.63	4.72	21,900	20,900	1,408	231	1,350	554
4/23/10	Blend #1	Feed #12	5.5	104,800	63,300	5.63	4.72	21,900	20,900	1,408	231	1,350	554
4/24/10	Blend #1	Feed #12	5.5	104,800	63,300	5.63	4.72	21,900	20,900	1,408	231	1,350	554
4/25/10	Blend #1	Feed #12	5.5	104,800	63,300	5.63	4.72	21,900	20,900	1,408	231	1,350	554
4/26/10	Blend #1	Feed #13	4.6	102,600	58,600	4.54	3.65	19,300	18,900	1,416	251	1,330	628
4/27/10	Blend #1	Feed #13	4.6	102,600	58,600	4.54	3.65	19,300	18,900	1,416	251	1,330	628
4/28/10	Blend #1	Feed #13	4.6	102,600	58,600	4.54	3.65	19,300	18,900	1,416	251	1,330	628
4/29/10	Blend #1	Feed #13	4.6	102,600	58,600	4.54	3.65	19,300	18,900	1,416	251	1,330	628
4/30/10	Blend #1	Feed #13	4.6	102,600	58,600	4.54	3.65	19,300	18,900	1,416	251	1,330	62
5/1/10	Blend #1	Feed #13	4.6	102,600	58,600	4.54	3.65	19,300	18,900	1,416	251	1,330	628
5/2/10	Blend #1	Feed #13	4.6	102,600	58,600	4.54	3.65	19,300	18,900	1,416	251	1,330	628
5/3/10	Blend #1	Feed #13	4.6	102,600	58,600	4.54	3.65	19,300	18,900	1,416	251	1,330	628
5/4/10	Blend #1	Feed #13	4.6	102,600	58,600 58,600	4.54	3.65	19,300	18,900	1,410	251	1,330	628
5/5/10	Blend #1	Feed #13	4.6	102,600	58,600 58,600	4.54	3.65	19,300	18,900	1,416	251	1,330	628
5/6/10	Blend #1	Feed #13	4.6	102,600	58,600	4.54	3.65	19,300	18,900	1,416	251	1,330	628
5/7/10	Blend #1	Feed #13	4.6	102,600	58,600	4.54	3.65	19,300	18,900	1,416	251	1,330	62
5/8/10	Blend #1	Feed #14	4.9	100,300	57,150	4.60	3.72	21,600	21,200	1,408	233	1,305	61:
5/9/10	Blend #1	Feed #14	4.9	100,300	57,150	4.60	3.72	21,600	21,200	1,408	233	1,305	61
5/10/10	Blend #1	Feed #14	4.9	100,300	57,150	4.60	3.72	21,600	21,200	1,408	233	1,305	61
5/11/10	Blend #1	Feed #14	4.9	100,300	57,150	4.60	3.72	21,600	21,200	1,408	233	1,305	61
5/12/10	Blend #1	Feed #14	4.9	100,300	57,150	4.60	3.72	21,600	21,200	1,408	233	1,305	61
5/13/10	Blend #1	Feed #14	4.9	100,300	57,150	4.60	3.72	21,600	21,200	1,408	233	1,305	61
5/14/10	Blend #1	Feed #14	4.9	100,300	57,150	4.60	3.72	21,600	21,200	1,408	233	1,305	61
5/15/10	Blend #1	Feed #14	4.9	100,300	57,150	4.60	3.72	21,600	21,200	1,408	233	1,305	61
5/16/10	Blend #1	Feed #14	4.9	100,300	57,150	4.60	3.72	21,600	21,200	1,408	233	1,305	61
5/17/10	Blend #1	Feed #14	4.9	100,300	57,150	4.60	3.72	21,600	21,200	1,408	233	1,305	61
5/18/10	Blend #1	Feed #14	4.9	100,300	57,150	4.60	3.72	21,600	21,200	1,408	233	1,305	61
5/19/10	Blend #1	Feed #14	4.9	100,300	57,150	4.60	3.72	21,600	21,200	1,408	233	1,305	61
5/20/10	Blend #1	Feed #14	4.9	100,300	57,150	4.60	3.72	21,600	21,200	1,408	233	1,305	61
5/21/10	Blend #1	Feed #14	4.9	100,300	57,150	4.60	3.72	21,600	21,200	1,408	233	1,305	61
5/22/10	Blend #1	Feed #15	4.2	105,400	58,100	4.38	3.52	18,900	18,600	1,402	209	1,335	61
5/23/10	Blend #1	Feed #15	4.2	105,400	58,100	4.38	3.52	18,900	18,600	1,402	209	1,335	61
5/24/10	Blend #1	Feed #15	4.2	105,400	58,100	4.38	3.52	18,900	18,600	1,402	209	1,335	61
5/25/10	Blend #1	Feed #15	4.2	105,400	58,100	4.38	3.52	18,900	18,600	1,402	209	1,335	61
5/26/10	Blend #1	Feed #15	4.2	105,400	58,100	4.38	3.52	18,900	18,600	1,402	209	1,335	61
5/27/10	Blend #1	Feed #15	4.2	105,400	58,100	4.38	3.52	18,900	18,600	1,402	209	1,335	61
5/28/10	Blend #1	Feed #15	4.2	105,400	58,100	4.38	3.52	18,900	18,600	1,402	209	1,335	61
5/29/10	Blend #1	Feed #15	4.2	105,400	58,100	4.38	3.52	18,900	18,600	1,402	209	1,335	61
	Blend #1								18,600		209		61
5/30/10		Feed #15	4.2	105,400	58,100	4.38	3.52	18,900		1,402		1,335	
5/31/10	Blend #1	Feed #15	4.2	105,400	58,100	4.38	3.52	18,900	18,600	1,402	209	1,335	61
6/1/10	Blend #1	Feed #15	4.2	105,400	58,100	4.38	3.52	18,900	18,600	1,402	209	1,335	61
6/2/10	Blend #1	Feed #16	4.2	105,300	61,500	4.77	3.91	22,400	21,700	1,432	214	1,310	60
6/3/10	Blend #1	Feed #16	4.2	105,300	61,500	4.77	3.91	22,400	21,700	1,432	214	1,310	60
6/4/10	Blend #1	Feed #16	4.2	105,300	61,500	4.77	3.91	22,400	21,700	1,432	214	1,310	60
6/5/10	Blend #1	Feed #16	4.2	105,300	61,500	4.77	3.91	22,400	21,700	1,432	214	1,310	60
6/6/10	Blend #1	Feed #16	4.2	105,300	61,500	4.77	3.91	22,400	21,700	1,432	214	1,310	60
6/7/10	Blend #1	Feed #16	4.2	105,300	61,500	4.77	3.91	22,400	21,700	1,432	214	1,310	60
6/8/10	Blend #1	Feed #16	4.2	105,300	61,500	4.77	3.91	22,400	21,700	1,432	214	1,310	60
6/9/10	Blend #1	Feed #16	4.2	105,300	61,500	4.77	3.91	22,400	21,700	1,432	214	1,310	60
6/10/10	Blend #1	Feed #16	4.2	105,300	61,500	4.77	3.91	22,400	21,700	1,432	214	1,310	60
6/11/10	Blend #1	Feed #16	4.2	105,300	61,500	4.77	3.91	22,400	21,700	1,432	214	1,310	60
6/12/10	Blend #1	Feed #17	4.3	98,300	66,450	4.51	3.62	22,300	22,200	1,470	250	1,230	77
6/13/10	Blend #1	Feed #17	4.3	98,300	66,450	4.51	3.62	22,300	22,200	1,470	250	1,230	77
				·		-	3.62						

Phase III Influent Feed Characterization (Cont.) April 22, 2010 – June 16, 2010

				7.1011	122,2010	June 1	0, 2010						
	Feed	Feed	pН	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO ₄ -F
Date	Description	Number	(s.u.)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L
6/15/10	Blend #1	Feed #17	4.3	98,300	66,450	4.51	3.62	22,300	22,200	1,470	250	1,230	770
6/16/10	Blend #1	Feed #17	4.3	98,300	66,450	4.51	3.62	22,300	22,200	1,470	250	1,230	770
Average			4.6	102,830	59,694	4.64	3.76	20,804	20,354	1,418	230	1,314	625
Minimum			4.2	98,300	57,150	4.38	3.52	18,900	18,600	1,402	209	1,230	554
Maximum			5.5	105,400	66,450	5.63	4.72	22,400	22,200	1,470	251	1,350	770

										Phase 1										
									U		ations Data	0								
									April 2	22, 2010 - J	une 16, 201	0							Biogas	Biogas
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	CO2	H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
4/22/10	7.6	35.5	0.400											1,031	6,719	7,750	0.330			
4/23/10	7.6		0.400																	
4/24/10	7.9	35.5	0.400											906	6,938	7,844	0.480			
4/25/10	7.9	35.5	0.400																	
4/26/10	7.3	35.5	0.400	22,050	5,820	2.28	1.20	13,800	10,400		1,150	693	362	1,594	6,875	8,469	0.730			
4/27/10	7.1	35.5	0.400											2,438	5,656	8,094	0.280			
4/28/10	7.3	35.0	0.400	21,550	5,640	2.40	1.29	12,000	10,200		1,135	703	368	1,781	6,313	8,094	0.280			
4/29/10	7.3	35.5	0.400											1,781	6,156	7,938	0.280			
4/30/10	7.4	35.5	0.000	19,850	5,340	2.54	1.26	16,800	10,500		1,135	680	366	1,750	6,594	8,344	0.130			
5/1/10	7.3	35.5	0.400											1,562	5,594	7,156	0.080			
5/2/10	7.3	35.5	0.400											1,562	5,438	7,000	0.230			
5/3/10	7.3	35.5	0.400	22,450	5,710	2.53	1.29	15,800	10,900		1,110	658	363	1,687	5,813	7,500	0.380			
5/4/10	7.3	35.5	0.400											1,500	6,000	7,500	0.430			
5/5/10	7.3	35.5	0.430	21,600	5,660	2.60	1.36	17,300	11,700		1,030	718	368	1,594	5,844	7,438	0.380			
5/6/10	7.3	35.5	0.450											1,406	5,875	7,281	0.380			
5/7/10	7.4	35.5	0.100	20,250	4,950	2.60	1.34	17,200	11,100		1,075	765	349	1,563	6,313	7,875	0.130			
5/8/10	7.1	35.5	0.500	-,	<i>y</i>			.,	,		,			2,375	5,469	7,844	0.180			
5/9/10			0.500											,	-,	.,-				
5/10/10	7.0	35.5	0.500	20,300	4,770	2.29	1.21	12,800	10,300		955	595	339	1,907	4,906	6,813	0.630			
5/11/10	7.4	35.5	0.500	,	.,			,	,					968	5,563	6,531	0.380			
5/12/10	7.5	35.5	0.500	21,150	4,910	2.88	1.45	18,300	11,600		970	760	357	1.594	5,500	7,094	0.780			
5/13/10	7.5	35.5	0.550		.,,			,	,		,			1,125	5,469	6,594	0.480			
5/14/10	7.4	35.5	0.600	22,450	4,730	2.86	1.42	18,000	11,300		975	638	354	1,688	5,531	7,219	0.480			
5/15/10	7.5	35.5	0.600	22,100	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.00		10,000	11,000		210	000		1,062	5,438	6,500	0.480			
5/16/10	7.5	35.5	0.600											1,094	5,531	6,625	0.480			
5/17/10	7.5	35.5	0.600	22,500	4,460	2.80	1.50	19,500	12,500		870	650	359	1,219	5,625	6,844	0.480		34.0%	2,000
5/18/10	7.4	35.5	0.600	22,300	4,410	2.57	1.43	16,300	11,700		860	628		1,21)	5,023	6,313	0.530	24.8	32.0%	2,000
5/19/10	7.3	35.5	0.600	21,700	4,220	2.78	1.39	19,200	12,500	3,100	845	708	357	1,750	4,781	6,531	0.580	26.5	34.0%	2,000
5/20/10	7.5	36.0	0.600	22,850	4,240	2.76	1.64	16,500	11,500	2,100	865	768	201	1,218	5,313	6,531	0.430	23.1	34.0%	2,000
5/21/10	7.4	35.5	0.600	23,050	4,430	2.78	1.44	18,500	11,800		840	720	364	1,500	5,063	6,563	0.555	20.1	34.0%	2,000
5/22/10	7.5	35.5	0.600	23,600	4,320	2.78	1.31	14,600	10,300		795	670	204	1,125	5,005	6,250	0.530	22.0	34.0%	2,000
5/22/10	7.5	35.5	0.600	21,000	4,320	2.44	1.31	14,000	10,300		795	598	362	1,125	5,031	6,250	0.530	22.0	34.0%	2,000
5/24/10	7.4	35.5	0.600	20,950	4,230	2.70	1.33	16,600	11,000		800	570	502	1,219	4,969	6,031	0.530	19.5	32.0%	2,000
5/25/10	7.4 7.4	35.5	0.600	20,930	4,020 3,990	2.38	1.20	18,700	12,000		780	680	366	1,002	4,909 5,031	6,125	0.530	20.7	32.0% 34.0%	2,000
5/26/10	7.4 7.4	35.5	0.600	21,100	3,990 4,090	2.79	1.42	15,300	12,000		780	000	500	1,094	4,938	6,123 5,969	0.580	20.7 25.9	34.0% 34.0%	2,000
5/26/10	7.4 7.3	35.5 35.5	0.600	21,730	4,090	2.50	1.27	15,300	10,900	3,975	795 710	735	366	1,031	4,938 4,781	5,969 5,875	0.530	25.9 25.9	34.0% 34.0%	2,000
5/27/10	7.3 7.4	35.5 35.5	0.600	22,850	4,170	2.72	1.33	17,000	11,800	3,913	800	155	200	1,094	4,781	5,875 6,094	0.430	23.9 22.9	34.0%	2,000
5/28/10 5/29/10		35.5 35.5		· ·		2.71		,	· ·		800 800	693	379	1,063	,	,	0.480			
	7.5		0.600	20,650	4,220		1.20	16,400	10,800		600	093	5/9	,	4,875	6,125		23.6		
5/30/10	7.4	35.5	0.600	21,450	4,360	2.61	1.29	15,500	9,800					1,313	4,906	6,219	0.530	29.7		

										Phase II	I									
									Digest	ter 1 Operat	ions Data									
									April 22	2, 2010 - Ju	ne 16, 2010									
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
5/31/10	7.4	35.5	0.600	18,350	4,110	2.49	1.23	14,900	9,800	(ilig/L)	800	665	386	1,188	4,906	6,094	0.480	29.2	(70)	<u>(ppiii)</u>
6/1/10	7.4	35.5	0.600	18,350	4,110	2.49	1.23	14,900	9,800 10,100		800	005	560	1,133	4,900	5,750	0.430	29.2		
6/2/10	7.4	35.5	0.600	18,750	4,220	2.45	1.23	14,000	8,900		785	718	379	1,125	4,688	5,750 5,750	0.030	28.4 29.4		
6/3/10	7.4	35.5	0.600	18,500	4,110	2.32	1.17	13,200	8,900 9,400		785	/10	319	1,002	4,688	5,781	0.430	29.4		
6/4/10	7.4	35.5	0.600	18,050	4,070	2.46	1.10	15,200	10,000		705	705	392	906	4,500	5,406	0.530	27.5		
6/5/10	7.4	35.5	0.600	10,150	4,070	2.40	1.24	15,000	10,000		705	705	572	1,156	4,688	5,844	0.580			
6/6/10	7.4	35.5	0.600											1,150	4,625	5,875	0.580			
6/7/10	7.4	35.5	0.600	18,850	4,180	2.25	1.16	14,500	9,300		745	750	389	1,230	4,625	5,844	0.530			
6/8/10	7.4	35.5	0.650	10,050	4,100	2.25	1.10	14,500),500		745	750	507	1,063	4,625	5,688	0.580			
6/9/10	7.4 7.4	36.0	0.650	18,650	4,030	2.26	1.13	13,300	9,100		715	715	387	1,003	4,563	5,656	0.580			
6/10/10	7.4	35.5	0.650	10,050	4,050	2.20	1.15	15,500	9,100		/15	/15	507	1,025	4,469	5,594	0.630			
6/11/10	7.3	35.5	0.625	18,700	3,870	2.22	1.12	12,600	9,100		740	635	399	1,094	4,406	5,500	0.580			
6/12/10	7.4	36.0	0.660	10,700	5,070	2.22	1.12	12,000	9,100		740	055	577	1,024	4,375	5,500	0.630			
6/13/10	7.4 7.4	36.0	0.400											969	4,344	5,313	0.430			
6/14/10	7.5	36.0	0.100	16,950	3,700	2.39	1.16	14,200	9,100		725	760	402	938	4,750	5,688	0.130			
6/15/10	7.5	35.5	0.300	10,950	5,700	2.37	1.10	14,200	9,100		125	/00	402	844	4,656	5,500	0.180			
6/16/10	7.3	35.5	0.700	18,350	3,980	2.19	1.11	12,000	9,300		665	575	383	1,313	4,250	5,563	0.680			
0/10/10	7.5	55.5	0.700	10,550	5,700	2.17	1.11	12,000	2,500		005	515	505	1,515	4,250	5,505	0.000			
Average	7.4	35.5	0.510	20,616	4,484	2.53	1.29	15,770	10,621	3,538	863	688	371	1,316	5,242	6,558	0.462	25.18	33.6%	2,000
Minimum	7.0	35.0	0.000	16,950	3,700	2.18	1.11	12,000	8,900	3,100	665	575	339	844	4,250	5,313	0.080	19.50	32.0%	2,000
Maximum	7.9	36.0	0.700	23,050	5,820	2.88	1.64	19,500	12,500	3,975	1,150	768	402	2,438	6,938	8,469	0.780	29.70	34.0%	2,000
					, -						,			,	,	,				

									D:	Phase I										
									Ų	1	ations Data une 16, 201									
									April 2	.2, 2010 - J	une 10, 20	10							Biogas	Biogas
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	CO2	H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
4/22/10	7.9	33.5	0.400											718	7,063	7,781				
4/23/10	7.5		0.400																	
4/24/10	7.9	33.5	0.400											1,281	7,375	8,656				
4/25/10	7.9	35.5	0.400																	
4/26/10	7.3	35.0	0.400	24,450	6,300	2.67	1.50	18,500	12,700		1,305	920	357	2,063	5,094	7,156	0.050			
4/27/10	7.1	35.0	0.400											1,625	5,438	7,063				
4/28/10	7.3	35.5	0.500	27,050	6,240	3.06	1.66	22,300	14,500		1,195	1,185	355	1,375	5,594	7,063	0.050			
4/29/10	7.3	35.5	0.500											1,531	5,625	7,156				
4/30/10	7.4	35.5	0.500	27,050	6,070	3.03	1.60	22,500	15,000		1,240	1,450	359	1,219	5,875	7,094	0.050			
5/1/10	7.4	35.5	0.500											1,344	6,531	7,875				
5/2/10	7.3	35.5	0.500											1,218	5,813	7,031				
5/3/10	7.3	35.5	0.500	31,200	6,380	3.07	1.85	21,600	16,200		1,180	1,220	349	1,625	5,406	7,031	0.040			
5/4/10	7.3	35.5	0.520											1,344	5,844	7,188				
5/5/10	7.3	35.5	0.530	31,050	6,580	3.28	1.90	24,500	16,800		1,170	1,040	367	1,344	5,375	6,719	0.050			
5/6/10	7.3	35.5	0.530											1,281	5,813	7,094				
5/7/10	7.2	34.5	0.600	28,400	5,880	3.11	1.77	21,800	15,300		1,115	1,245	357	1,500	5,594	7,094	0.050			
5/8/10	7.2	34.5	0.600											1,250	5,406	6,656				
5/9/10			0.600																	
5/10/10	7.1	34.5	0.600	29,900	4,910	3.61	2.10	26,600	17,800		1,055	1,250	315	1,687	4,938	6,625	0.040			
5/11/10	7.4	35.0	0.400											593	6,188	6,781				
5/12/10	7.5	34.5	0.400	29,550	5,180	2.96	1.75	19,200	14,800		1,000	1,090	359	1,188	5,500	6,688	0.040			
5/13/10	7.4	35.0	0.500											938	5,781	6,719				
5/14/10	7.4	35.0	0.600	31,500	5,280	3.53	2.01	23,900	15,800		1,030	1,185	364	1,000	5,438	6,438	0.040			
5/15/10	7.5	34.0	0.600											1,000	5,375	6,375				
5/16/10	7.5	34.0	0.600											1,219	5,469	6,688				
5/17/10	7.5	33.5	0.600	32,150	4,900	3.67	2.14	26,500	18,100		970	1,520	378	1,125	5,250	6,375	0.050		34.0%	2,000
5/18/10	7.4	34.5	0.600	30,500	4,890	3.46	2.08	24,700	17,000		990	1,360		1,375	5,063	6,438	0.050	26.8	34.0%	2,000
5/19/10	7.3	35.0	0.600	31,300	4,750	3.18	1.95	22,700	16,900	4,225	1,020	1,300	376	1,375	4,844	6,219	0.050	28.0	36.0%	2,000
5/20/10	7.5	34.5	0.600	31,350	4,790	3.46	1.89	24,200	17,200		1,025	1,480		1,188	5,375	6,563	0.050	21.2	34.0%	2,000
5/21/10	7.5	34.5	0.600	31,900	5,170	3.28	2.01	22,300	15,900		1,050	1,340	385	1,188	5,406	6,594	0.050	25.0	34.0%	2,000
5/22/10	7.5	34.5	0.600	33,000	5,650	3.19	1.89	22,000	15,300		1,060	1,305		1,156	5,438	6,594	0.050	22.4	34.0%	2,000
5/23/10	7.4	34.0	0.600	35,300	5,470	3.56	2.10	26,000	17,700		1,065	1,540	386	1,406	4,844	6,250	0.050	27.3	34.0%	2,000
5/24/10	7.5	34.0	0.600	32,750	5,220	3.60	2.06	27,800	18,400		1,060			1,281	5,219	6,500	0.050	21.0	32.0%	2,000
5/25/10	7.5	34.0	0.600	32,750	5,360	3.62	2.13	26,000	17,700		1,040	1,190	394	1,187	5,438	6,625	0.050	25.0	34.0%	2,000
5/26/10	7.5	34.5	0.600	35,250	5,650	3.72	2.23	26,100	17,700		1,055	,		1,219	5,344	6,563	0.050	28.4	34.0%	2,000
5/27/10	7.4	34.5	0.600	36,450	7,050	3.32	2.01	23,800	17,300	3,750	1,035	1,535	396	1,375	5,031	6,406	0.050	26.9	34.0%	2,000
5/28/10	7.5	34.5	0.600	33,200	5,120	3.33	1.96	24,500	17,200	- ,	,	,		1,031	5,344	6,375	0.050	28.2		y
5/29/10	7.5	34.0	0.600	33,550	5,640	3.07	1.89	22,300	1,700		960	1,535	410	1,063	5,281	6,344	0.050	31.7		
5/30/10	7.4	34.5	0.600	35,750	5,300	3.53	2.16	24,600	16,900			-,		1,250	5,094	6,344	0.050	29.4		
5,55,10		0 1.0	0.000	22,750	2,200	2.25	2.10	,000	10,700					1,200	2,071	5,511	0.000	-/		

									Dige	Phase ster 5 Oper	III ations Data									
									April 2	2, 2010 - J	une 16, 20	0								
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
5/31/10	7.5	34.5	0.600	29,250	5,270	3.36	1.93	24,900	16,600		945	1,425	407	1,093	5,063	6,156	0.050	29.8		
6/1/10	7.5	34.5	0.600	32,250	5,020	3.52	2.10	24,600	1,700					1,188	5,000	6,188	0.050	28.9		
6/2/10	7.4	34.5	0.600	31,800	4,750	3.44	2.05	21,800	15,300		945	1,745	401	1,093	5,063	6,156	0.050	32.8		
6/3/10	7.4	34.5	0.600	36,150	4,910	3.81	2.23	28,200	18,500					1,156	5,063	6,219	0.050	30.5		
6/4/10	7.5	34.5	0.600	33,600	4,950	3.66	2.20	27,300	19,100		925	1,775	414	1,000	5,125	6,125	0.050			
6/5/10	7.5	35.0	0.600											1,125	5,031	6,156				
6/6/10	7.4	35.0	0.620											1,094	4,500	5,594				
6/7/10	7.4	34.5	0.630	37,850	4,970	4.39	2.48	34,400	21,300		910	2,215	403	1,344	4,719	6,063	0.050			
6/8/10	7.4	34.0	0.700											1,125	4,969	6,094				
6/9/10	7.4	34.5	0.700	34,350	4,650	3.78	2.23	27,000	18,100		860	1,540	409	1,156	4,594	5,750	0.050			
6/10/10	7.4	34.5	0.700											1,219	4,781	6,000				
6/11/10	7.4	34.5	0.730	35,650	4,440	4.25	2.47	33,400	21,300		900	1,610	417	1,188	4,750	5,938	0.050			
6/12/10	7.5	35.0	0.740											1,031	4,844	5,875				
6/13/10	7.3	35.0	0.800											1,125	4,813	5,938				
6/14/10	7.4	35.0	0.800	35,700	4,380	4.54	2.62	35,700	22,300		820	1,955	404	1,188	4,531	5,719	0.050			
6/15/10	7.4	34.5	0.800											1,281	4,438	5,719				
6/16/10	7.4	35.0	0.800	35,400	4,330	4.06	2.38	31,000	20,700		805	1,130	400	1,125	4,594	5,719	0.050			
Average	7.4	34.7	0.580	32,344	5,317	3.49	2.04	25,233	16,327	3,988	1,025	1,411	382	1,228	5,309	6,539	0.049	27.25	34.0%	2,000
Minimum	7.1	33.5	0.400	24,450	4,330	2.67	1.50	18,500	1,700	3,750	805	920	315	593	4,438	5,594	0.040	21.00	32.0%	2,000
Maximum	7.9	35.5	0.800	37,850	7,050	4.54	2.62	35,700	22,300	4,225	1,305	2,215	417	2,063	7,375	8,656	0.050	32.80	36.0%	2,000

APPENDIX F

Phase IV Raw Data

Phase IV
Influent Feed Characterization
June 17, 2010 - December 10, 2010

				Jun	e 17, 2010 -	- Decemb	er 10, 2010						
	Feed	Feed	pН	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO ₄ -P
Date	Description	Number	(s.u.)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
6/17/	10 Blend #1	Feed #17	4.3	98,300	66,450	4.51	3.62	22,300	22,200	1,470	250	1,230	770
6/18/	10 Blend #1	Feed #17	4.3	98,300	66,450	4.51	3.62	22,300	22,200	1,470	250	1,230	770
6/19/	10 Blend #1	Feed #17	4.3	98,300	66,450	4.51	3.62	22,300	22,200	1,470	250	1,230	770
6/20/		Feed #17	4.3	98,300	66,450	4.51	3.62	22,300	22,200	1,470	250	1,230	770
6/21/	10 Blend #1	Feed #17	4.3	98,300	66,450	4.51	3.62	22,300	22,200	1,470	250	1,230	770
6/22/	10 Blend #1	Feed #18	4.2	98,400	56,450	4.12	3.22	20,400	20,100	1,360	207	1,290	650
6/23/	10 Blend #1	Feed #18	4.2	98,400	56,450	4.12	3.22	20,400	20,100	1,360	207	1,290	650
6/24/	10 Blend #1	Feed #18	4.2	98,400	56,450	4.12	3.22	20,400	20,100	1,360	207	1,290	650
6/25/		Feed #18	4.2	98,400	56,450	4.12	3.22	20,400	20,100	1,360	207	1,290	650
6/26/		Feed #18	4.2	98,400	56,450	4.12	3.22	20,400	20,100	1,360	207	1,290	650
6/27/		Feed #18	4.2	98,400	56,450	4.12	3.22	20,400	20,100	1,360	207	1,290	650
6/28/		Feed #18	4.2	98,400	56,450	4.12	3.22	20,400	20,100	1,360	207	1,290	650
6/29/		Feed #18	4.2	98,400	56,450	4.12	3.22	20,400	20,100	1,360	207	1,290	650
6/30/		Feed #19	4.2	101,100	59,350	4.12	3.22	19,800	19,200	1,770	204	1,380	650
7/1/1		Feed #19	4.2	101,100	59,350	4.12	3.22	19,800	19,200	1,770	204	1,380	650
7/2/1		Feed #19	4.2	101,100	59,350	4.12	3.22	19,800	19,200	1,770	204	1,380	650
7/3/1		Feed #19	4.2	101,100	59,350	4.12	3.22	19,800	19,200	1,770	204	1,380	650
7/4/1		Feed #19	4.2	101,100	59,350	4.12	3.22	19,800	19,200	1,770	204	1,380	650
7/5/1		Feed #19	4.2	101,100	59,350	4.12	3.22	19,800	19,200	1,770	204	1,380	650
7/6/1		Feed #19	4.2	101,100	59,350	4.12	3.22	19,800	19,200	1,770	204	1,380	650
7/7/1		Feed #19	4.2	101,100	59,350	4.12	3.22	19,800	19,200	1,770	204	1,380	650
7/8/1		Feed #19	4.2	101,100	59,350	4.12	3.22	19,800	19,200	1,770	204	1,380	650
7/9/1		Feed #19	4.2	101,100	59,350	4.12	3.22	19,800	19,200	1,770	204	1,380	650
7/10/		Feed #19	4.2	101,100	59,350	4.12	3.22	19,800	19,200	1,770	204	1,380	650
7/11/		Feed #19	4.2	101,100	59,350	4.12	3.22	19,800	19,200	1,770	204	1,380	650
7/12/		Feed #20	4.2	98,600	44,350	4.24	3.37	23,000	22,700	1,410	193	1,700	733
7/13/		Feed #20	4.2	98,600	44,350	4.24	3.37	23,000	22,700	1,410	193	1,700	733
7/14/		Feed #20	4.2	98,600	44,350	4.24	3.37	23,000	22,700	1,410	193	1,700	733
7/15/		Feed #20	4.2	98,600	44,350	4.24	3.37	23,000	22,700	1,410	193	1,700	733
7/16/ 7/17/		Feed #20 Feed #20	4.2	98,600 98,600	44,350 44,350	4.24	3.37 3.37	23,000	22,700 22,700	1,410	193 193	1,700 1,700	733 733
7/18/		Feed #20 Feed #20	4.2 4.2	98,600 98,600	44,350 44,350	4.24 4.24	3.37	23,000 23,000	22,700	1,410 1,410	193	1,700	733
7/18/		Feed #20 Feed #20	4.2	98,600 98,600	44,350 44,350	4.24	3.37	23,000 23,000	22,700	1,410 1,410	193	1,700	733
7/19/		Feed #20 Feed #20	4.2	98,600 98,600	44,350 44,350	4.24	3.37	23,000 23,000	22,700	1,410	193	1,700	733
7/20/		Feed #20	4.2	98,600 98,600	44,350	4.24	3.37	23,000	22,700	1,410	193	1,700	733
7/22/		Feed #20	4.2	98,600 98,600	44,350	4.24	3.37	23,000	22,700	1,410	193	1,700	733
7/23/		Feed #20	4.2	98,600	44,350	4.24	3.37	23,000	22,700	1,410	193	1,700	733
7/24/		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,410	215	1,465	723
7/25/		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
7/26/		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
7/27/		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
7/28/		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
7/29/		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
7/30/		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
7/31/		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
8/1/1		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
8/2/1		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
8/3/1		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
8/4/1		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
8/5/1		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
8/6/1		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
8/7/1		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
8/8/1		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
8/9/1		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
8/10/		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
8/11/		Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
					4 5	-							

Phase IV Influent Feed Characterization (Cont.) June 17, 2010 - December 10, 2010

				Ju	ne 17, 2010) - Decem	ber 10, 201	10					
	Feed	Feed	pН	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO ₄ -P
Date	Description	Number	(s.u.)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
8/12/10	Blend #1	Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
8/13/10	Blend #1	Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
8/14/10	Blend #1	Feed #21	4.3	97,100	50,150	4.42	3.54	22,900	22,200	1,650	215	1,465	723
8/15/10	Blend #1												
8/16/10	Blend #1												
8/17/10	Blend #1												
8/18/10	Blend #1												
8/19/10	Blend #1												
8/20/10	Blend #1	Feed #22	4.2	114,500	48,250	5.49	4.78	28,300	27,900	1,430	184	1,375	700
8/21/10	Blend #1	Feed #22	4.2	114,500	48,250	5.49	4.78	28,300	27,900	1,430	184	1,375	700
8/22/10	Blend #1	Feed #22	4.2	114,500	48,250	5.49	4.78	28,300	27,900	1,430	184	1,375	700
8/23/10	Blend #1	Feed #22	4.2	114,500	48,250	5.49	4.78	28,300	27,900	1,430	184	1,375	700
8/24/10	Blend #1	Feed #22	4.2	114,500	48,250	5.49	4.78	28,300	27,900	1,430	184	1,375	700
8/25/10	Blend #1	Feed #22	4.2	114,500	48,250	5.49	4.78	28,300	27,900	1,430	184	1,375	700
8/26/10	Blend #1	Feed #22	4.2	114,500	48,250	5.49	4.78	28,300	27,900	1,430	184	1,375	700
8/27/10	Blend #1	Feed #22	4.2	114,500	48,250	5.49	4.78	28,300	27,900	1,430	184	1,375	700
8/28/10	Blend #1	Feed #22	4.2	114,500	48,250	5.49	4.78	28,300	27,900	1,430	184	1,375	700
8/29/10	Blend #1	Feed #22	4.2	114,500	48,250	5.49	4.78	28,300	27,900	1,430	184	1,375	700
8/30/10	Blend #1	Feed #22	4.2	114,500	48,250	5.49	4.78	28,300	27,900	1,430	184	1,375	700
8/31/10	Blend #1	Feed #22	4.2	114,500	48,250	5.49	4.78	28,300	27,900	1,430	184	1,375	700
9/1/10	Blend #1												
9/2/10	Blend #1												
9/3/10	Blend #1												
9/4/10	Blend #1												
9/5/10	Blend #1												
9/6/10	Blend #1												
9/7/10	Blend #1												
9/8/10	Blend #1	Feed #23	4.4	93,100	48,850	4.51	3.72	22,300	21,800	1,620	225	1,395	773
9/9/10	Blend #1	Feed #23	4.4	93,100	48,850	4.51	3.72	22,300	21,800	1,620	225	1,395	773
9/10/10	Blend #1	Feed #23	4.4	93,100	48,850	4.51	3.72	22,300	21,800	1,620	225	1,395	773
9/11/10	Blend #1	Feed #23	4.4	93,100	48,850	4.51	3.72	22,300	21,800	1,620	225	1,395	773
9/12/10	Blend #1	Feed #23	4.4	93,100	48,850	4.51	3.72	22,300	21,800	1,620	225	1,395	773
9/13/10	Blend #1	Feed #23	4.4	93,100	48,850	4.51	3.72	22,300	21,800	1,620	225	1,395	773
9/14/10	Blend #1	Feed #23	4.4	93,100	48,850	4.51	3.72	22,300	21,800	1,620	225	1,395	773
9/15/10	Blend #1	Feed #23	4.4	93,100	48,850	4.51	3.72	22,300	21,800	1,620	225	1,395	773
9/16/10	Blend #1	Feed #23	4.4	93,100	48,850	4.51	3.72	22,300	21,800	1,620	225	1,395	773
9/17/10	Blend #1	Feed #23	4.4	93,100	48,850	4.51	3.72	22,300	21,800	1,620	225	1,395	773
9/18/10	Blend #1	Feed #23	4.4	93,100 93,100	48,850	4.51	3.72	22,300	21,800	1,620	225	1,395	773
9/19/10	Blend #1	Feed #23	4.4	93,100	48,850	4.51	3.72	22,300	21,800	1,620	225	1,395	773
9/20/10	Blend #1	Feed #23	4.4	93,100	48,850	4.51	3.72	22,300	21,800	1,620	225	1,395	773
9/21/10	Blend #1	Feed #24	4.4	94,800	46,550	4.39	3.59	21,800	21,400	1,700	249	1,415	733
9/22/10	Blend #1	Feed #24	4.4	94,800 94,800	46,550	4.39	3.59	21,800	21,400	1,700	249	1,415	733
9/22/10	Blend #1	Feed #24	4.4	94,800 94,800	46,550	4.39	3.59	21,800	21,400	1,700	249	1,415	733
9/24/10	Blend #1	Feed #24	4.4	94,800 94,800	46,550	4.39	3.59	21,800	21,400	1,700	249	1,415	733
9/24/10 9/25/10	Blend #1	Feed #24	4.4	94,800 94,800	46,550	4.39	3.59	21,800	21,400 21,400	1,700	249	1,415	733
9/25/10 9/26/10	Blend #1 Blend #1	Feed #24	4.4	94,800 94,800	46,550	4.39	3.59	21,800	21,400 21,400	1,700	249	1,415	733
9/20/10 9/27/10													
	Blend #1 Blend #1	Feed #24	4.4	94,800 04,800	46,550	4.39	3.59	21,800	21,400	1,700	249 249	1,415	733
9/28/10 0/20/10	Blend #1 Blend #1	Feed #24	4.4	94,800 04,800	46,550	4.39	3.59	21,800	21,400	1,700	249 240	1,415	733
9/29/10	Blend #1	Feed #24	4.4	94,800	46,550	4.39	3.59	21,800	21,400	1,700	249	1,415	733
9/30/10	Blend #1	Feed #24	4.4	94,800	46,550	4.39	3.59	21,800	21,400	1,700	249 240	1,415	733
10/1/10	Blend #1	Feed #24	4.4	94,800	46,550	4.39	3.59	21,800	21,400	1,700	249	1,415	733
10/2/10	Blend #1	Feed #24	4.4	94,800	46,550	4.39	3.59	21,800	21,400	1,700	249	1,415	733
10/3/10	Blend #1	Feed #24	4.4	94,800	46,550	4.39	3.59	21,800	21,400	1,700	249	1,415	733
10/1/20	Blend #1	Feed #25	4.3	86,400	46,600	3.92	3.13	15,900	15,900	1,650	230	1,335	743
10/4/10				0.4.100	1 4	0.00	a · -	4	4	4		1 6 5 -	
10/4/10 10/5/10 10/6/10	Blend #1 Blend #1	Feed #25 Feed #25	4.3 4.3	86,400 86,400	46,600 46,600	3.92 3.92	3.13 3.13	15,900 15,900	15,900 15,900	1,650 1,650	230 230	1,335 1,335	743 743

Phase IV
Influent Feed Characterization(Cont.)
June 17, 2010 December 10, 2010

				Jui	ne 17, 2010) - Decei	mber 10	, 2010					
	Feed	Feed	pН	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO ₄ -F
Date	Description	Number	(s.u.)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L
10/7/10	Blend #1	Feed #25	4.3	86,400	46,600	3.92	3.13	15,900	15,900	1,650	230	1,335	743
10/8/10	Blend #1	Feed #25	4.3	86,400	46,600	3.92	3.13	15,900	15,900	1,650	230	1,335	743
10/9/10	Blend #1	Feed #25	4.3	86,400	46,600	3.92	3.13	15,900	15,900	1,650	230	1,335	743
10/10/10	Blend #1	Feed #25	4.3	86,400	46,600	3.92	3.13	15,900	15,900	1,650	230	1,335	743
10/11/10	Blend #1	Feed #25	4.3	86,400	46,600	3.92	3.13	15,900	15,900	1,650	230	1,335	743
10/12/10	Blend #1	Feed #25	4.3	86,400	46,600	3.92	3.13	15,900	15,900	1,650	230	1,335	743
10/13/10	Blend #1	Feed #25	4.3	86,400	46,600	3.92	3.13	15,900	15,900	1,650	230	1,335	743
10/14/10	Blend #1	Feed #25	4.3	86,400	46,600	3.92	3.13	15,900	15,900	1,650	230	1,335	743
10/15/10	Blend #1	Feed #25	4.3	86,400	46,600	3.92	3.13	15,900	15,900	1,650	230	1,335	743
10/16/10	Blend #1	Feed #25	4.3	86,400	46,600	3.92	3.13	15,900	15,900	1,650	230	1,335	743
10/17/10	Blend #1	Feed #25	4.3	86,400	46,600	3.92	3.13	15,900	15,900	1,650	230	1,335	743
10/18/10	Blend #1	Feed #26	4.4	105,400	44,850	3.92	3.12	19,900	19,400	1,680	258	1,405	753
10/19/10	Blend #1	Feed #26	4.4	105,400	44,850	3.92	3.12	19,900	19,400	1,680	258	1,405	753
10/20/10	Blend #1	Feed #26	4.4	105,400	44,850	3.92	3.12	19,900	19,400	1,680	258	1,405	753
10/21/10	Blend #1	Feed #26	4.4	105,400	44,850	3.92	3.12	19,900	19,400	1,680	258	1,405	753
10/22/10	Blend #1	Feed #26	4.4	105,400	44,850	3.92	3.12	19,900	19,400	1,680	258	1,405	753
10/23/10	Blend #1	Feed #26	4.4	105,400	44,850	3.92	3.12	19,900	19,400	1,680	258	1,405	753
10/24/10	Blend #1	Feed #26	4.4	105,400	44,850	3.92	3.12	19,900	19,400	1,680	258	1,405	753
10/25/10	Blend #1	Feed #27	4.4	93,500	45,550	3.93	3.14	20,200	20,200	1,620	248	1,415	743
10/26/10	Blend #1	Feed #27	4.4	93,500	45,550	3.93	3.14	20,200	20,200	1,620	248	1,415	743
10/27/10	Blend #1	Feed #27	4.4	93,500	45,550	3.93	3.14	20,200	20,200	1,620	248	1,415	743
10/28/10	Blend #1	Feed #27	4.4	93,500	45,550	3.93	3.14	20,200	20,200	1,620	248	1,415	743
10/29/10	Blend #1	Feed #27	4.4	93,500	45,550	3.93	3.14	20,200	20,200	1,620	248	1,415	743
10/30/10	Blend #1	Feed #27	4.4	93,500	45,550	3.93	3.14	20,200	20,200	1,620	248	1,415	743
10/31/10	Blend #1	Feed #27	4.4	93,500	45,550	3.93	3.14	20,200	20,200	1,620	248	1,415	743
11/1/10	Blend #1	Feed #27	4.4	93,500	45,550	3.93	3.14	20,200	20,200	1,620	248	1,415	743
11/2/10	Blend #1	Feed #27	4.4	93,500	45,550	3.93	3.14	20,200	20,200	1,620	248	1,415	743
11/3/10	Blend #1	Feed #27	4.4	93,500	45,550	3.93	3.14	20,200	20,200	1,620	248	1,415	743
11/4/10	Blend #1	Feed #27	4.4	93,500	45,550	3.93	3.14	20,200	20,200	1,620	248	1,415	743
11/5/10	Blend #1	Feed #28	4.5	88,700	42,450	3.74	2.95	18,500	18,500	1,630	241	1,460	675
11/6/10	Blend #1	Feed #28	4.5	88,700	42,450	3.74	2.95	18,500	18,500	1,630	241	1,460	675
11/7/10	Blend #1	Feed #28	4.5	88,700	42,450	3.74	2.95	18,500	18,500	1,630	241	1,460	675
11/8/10	Blend #1	Feed #28	4.5	88,700	42,450	3.74	2.95	18,500	18,500	1,630	241	1,460	675
11/9/10	Blend #1	Feed #28	4.5	88,700	42,450	3.74	2.95	18,500	18,500	1,630	241	1,460	675
11/10/10	Blend #1	Feed #28	4.5	88,700	42,450	3.74	2.95	18,500	18,500	1,630	241	1,460	675
11/11/10	Blend #1	Feed #28	4.5	88,700	42,450	3.74	2.95	18,500	18,500	1,630	241	1,460	675
11/12/10	Blend #1	Feed #28	4.5	88,700	42,450	3.74	2.95	18,500	18,500	1,630	241	1,460	675
11/13/10	Blend #1	Feed #28	4.5	88,700	42,450	3.74	2.95	18,500	18,500	1,630	241	1,460	675
11/14/10	Blend #1	Feed #28	4.5	88,700	42,450	3.74	2.95	18,500	18,500	1,630	241	1,460	675
11/15/10	Blend #1	Feed #29	4.5	90,900	45,050	3.78	2.96	18,100	18,000	1,710	267	1,520	750
11/16/10	Blend #1	Feed #29	4.5	90,900	45,050	3.78	2.96	18,100	18,000	1,710	267	1,520	750
11/17/10	Blend #1	Feed #29	4.5	90,900	45,050	3.78	2.96	18,100	18,000	1,710	267	1,520	750
11/18/10	Blend #1	Feed #29	4.5	90,900	45,050	3.78	2.96	18,100	18,000	1,710	267	1,520	750
11/19/10	Blend #1	Feed #29	4.5	90,900	45,050	3.78	2.96	18,100	18,000	1,710	267	1,520	750
11/20/10	Blend #1	Feed #29	4.5	90,900	45,050	3.78	2.96	18,100	18,000	1,710	267	1,520	750
11/21/10	Blend #1	Feed #29	4.5	90,900	45,050	3.78	2.96	18,100	18,000	1,710	267	1,520	750
11/22/10	Blend #1	Feed #29	4.5	90,900	45,050	3.78	2.96	18,100	18,000	1,710	267	1,520	750
11/23/10	Blend #1	Feed #29	4.5	90,900	45,050	3.78	2.96	18,100	18,000	1,710	267	1,520	750
11/24/10	Blend #1	Feed #30	4.5	89,100	41,350	3.76	2.86	18,800	18,800	1,710	253	1,530	753
11/25/10	Blend #1	Feed #30	4.5	89,100	41,350	3.76	2.86	18,800	18,800	1,710	253	1,530	753
11/26/10	Blend #1	Feed #30	4.5	89,100	41,350	3.76	2.86	18,800	18,800	1,710	253	1,530	753
11/27/10	Blend #1	Feed #30	4.5	89,100	41,350	3.76	2.86	18,800	18,800	1,710	253	1,530	753
11/28/10	Blend #1	Feed #30	4.5	89,100	41,350	3.76	2.86	18,800	18,800	1,710	253	1,530	753
11/29/10	Blend #1	Feed #30	4.5	89,100	41,350	3.76	2.86	18,800	18,800	1,710	253	1,530	753
11/30/10	Blend #1	Feed #30	4.5	89,100	41,350	3.76	2.86	18,800	18,800	1,710	253	1,530	753
					·					· · ·		2 · · · ·	

Phase IV Influent Feed Characterization (Cont.) June 17, 2010 - December 10, 2010

	Feed	Feed	pН	tCOD	sCOD	TS	VS	TSS (mg/L	VSS	TKN	NH3-N	T-P	PO ₄ -P
Date	Description	Number	(s.u.)	(mg/L)	(mg/L)	(%)	(%))	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
12/2/10	Blend #1	Feed #30	4.5	89,100	41,350	3.76	2.86	18,800	18,800	1,710	253	1,530	753
12/3/10	Blend #1	Feed #30	4.5	89,100	41,350	3.76	2.86	18,800	18,800	1,710	253	1,530	753
12/4/10	Blend #1	Feed #30	4.5	89,100	41,350	3.76	2.86	18,800	18,800	1,710	253	1,530	753
12/5/10	Blend #1	Feed #30	4.5	89,100	41,350	3.76	2.86	18,800	18,800	1,710	253	1,530	753
12/6/10	Blend #1	Feed #31	4.4	105,100	52,300	5.13	4.30	24,200	23,900	1,740	290	1,670	605
12/7/10	Blend #1	Feed #31	4.4	105,100	52,300	5.13	4.30	24,200	23,900	1,740	290	1,670	605
12/8/10	Blend #1	Feed #31	4.4	105,100	52,300	5.13	4.30	24,200	23,900	1,740	290	1,670	605
12/9/10	Blend #1	Feed #31	4.4	105,100	52,300	5.13	4.30	24,200	23,900	1,740	290	1,670	605
12/10/10	Blend #1	Feed #31	4.4	105,100	52,300	5.13	4.30	24,200	23,900	1,740	290	1,670	605
Average			4.3	96,386	48,520	4.26	3.43	21,113	20,801	1,616	229	1,441	721
Minimum			4.2	86,400	41,350	3.74	2.86	15,900	15,900	1,360	184	1,230	605
Maximum			4.5	114,500	66,450	5.49	4.78	28,300	27,900	1,770	290	1,700	773

										Digester 1	hase IV Operations I - December 1									
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
6/17/10	7.4	36.0	0.200	(1116/12)	(111g/ L)	(70)	(70)	(111g/12)	(ing/L)	(ing/L)	(119/12)	(111g/ 12)	(111g/12)	1,063	4,625	5,688	0.280	(L/duj)	(/0)	<u>(ppiii)</u>
6/18/10	7.3	36.0	0.700	18,250	4,040	2.16	1.12	10,800	9,000		675	725	393	1,437	4,219	5,656	0.630			
6/19/10	7.2	36.0	0.700		.,				,,					1,218	4,188	5,406	0.680			
6/20/10	7.1	36.5	0.800											1,313	4,000	5,313	0.780			
6/21/10	7.3	37.0	0.750	17,350	3,720	2.40	1.23	14,700	9,900		565	678	382	1,094	4,156	5,250	0.680			
6/22/10	7.3	36.5	0.320	·	<i>.</i>			<i>.</i>	,					1,000	4,313	5,313	0.330			
6/23/10	7.3	36.5	0.200	18,250	3,900	2.08	1.01	11,900	9,000		590	608	382	1,032	4,281	5,313	0.180			
6/24/10	7.3	37.0	0.750											1,219	4,125	5,344	0.580			
6/25/10	7.3	37.0	0.700	20,100	3,740	2.23	1.11	12,600	9,200		548	590	382	1,125	3,969	5,094	0.580			
6/26/10	7.3	37.0	0.750	17,750	3,620	2.12	1.11	11,400	8,600		520	610	382	1,187	4,188	5,375	0.630			
6/27/10	7.3	37.5	0.700											1,031	4,094	5,125	0.680			
6/28/10	7.4	37.0	0.600	19,050	3,600	2.12	1.12	11,700	8,800		505	615	388	1,188	4,406	5,594	0.630			
6/29/10	7.3	36.5	0.600											1,188	4,281	5,469	0.280			
6/30/10	7.3	36.5	0.750	19,800	3,700	1.98	1.01	9,900	8,400		500	595	378	1,313	4,563	5,875	0.680			
7/1/10	7.4	36.5	0.750											1,250	4,094	5,344	0.430			
7/2/10	7.3	36.0	0.700	18,900	3,700	2.33	1.20	13,300	9,300		495	520	388	1,094	4,344	5,438	0.630			
7/3/10	7.3	36.0	0.700											1,031	4,531	5,563	0.580			
7/4/10	7.4	36.0	0.700	18,800	3,740	2.33	1.20	13,700	9,600		498	733	400	1,000	4,375	5,375	0.580			
7/5/10	7.4	36.0	0.700											1,094	4,344	5,438	0.580			
7/6/10	7.4	36.0	0.700	18,050	3,700	2.27	1.15	12,300	9,100		458	710	366	938	4,375	5,313	0.530			
7/7/10	7.4	35.5	0.700											1,094	4,344	5,438	0.580			
7/8/10	7.4	35.5	0.700	18,500	3,940	2.31	1.08	12,900	9,000		455	635	368	1,125	4,281	5,406	0.430			
7/9/10	7.3	35.5	0.700											1,125	4,313	5,438	0.580			
7/10/10	7.3	36.0	0.700											1,156	4,250	5,406	0.580			
7/11/10	7.4	36.0	0.700											1,156	3,938	5,094	0.530			
7/12/10	7.1	36.0	0.700											1,469	3,594	5,063	0.580			
7/13/10	7.1	36.5	0.700	14,250	3,260			9,200	7,100		227		193	1,125	3,781	4,906	0.680			
7/14/10	7.1	36.5	0.700	21,150	3,160			12,800	9,000		213		182	1,406	3,813	5,219	0.580			
7/15/10	7.1	36.5	0.700											1,500	3,719	5,219	0.580			
7/16/10	7.1	36.5	0.700	18,750	3,060			12,200	8,200		185		202	1,406	4,063	5,469	0.680			
7/17/10	7.1	36.5	0.700											1,343	3,938	5,281	0.580			
7/18/10	7.0	36.5	0.700											1,375	3,969	5,344	0.580			
7/19/10	7.1	37.0	0.700	20,100	3,415			11,400	7,900		203		140	1,375	3,813	5,188	0.680			
7/20/10	7.2	36.5	0.700											1,062	3,844	4,906	0.580			
7/21/10	7.2	37.0	0.700	18,900	7,290			11,100	7,400		241		232	1,375	4,000	5,375	0.680			
7/22/10	7.0	37.0	0.700											1,406	3,969	5,375	0.580			
7/23/10	7.2	37.0	0.700											1,000	3,938	4,938	0.680			
7/24/10	7.1	37.0	0.700											1,094	3,375	4,469	0.580			
7/25/10	7.2	37.0	0.400											1,032	4,156	5,188	0.330			

										igester 1 Oj	Phase IV perations Da									
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
7/26/10	7.3	36.5	0.100											906	3,813	4,719	0.080			
7/27/10	7.2	36.5	0.300											937	3,938	4,875	0.230			
7/28/10	7.2	36.5	0.600											1,312	3,719	5,031	0.580	31.2	34.0%	2,000
7/29/10	7.1	37.0	0.700											1,437	3,594	5,031	0.580	32.2	34.0%	2,000
7/30/10	7.2	37.0	0.700											1,313	4,000	5,313	0.730	32.1	34.0%	2,000
7/31/10	7.3	37.5	0.700											1,125	4,031	5,156	0.530		32.0%	2,000
8/1/10	7.2	38.0	0.600											1,125	4,344	5,469	0.630	16.1		
8/2/10	7.2	38.0	0.700											1,125	4,406	5,531	0.530	19.4		
8/3/10	7.2	38.0	0.700											1,000	4,250	5,250	0.630			
8/4/10	7.2	38.0	0.700											937	4,344	5,281	0.580	13.1		
8/5/10	7.2	37.5	0.700											1,000	4,281	5,281	0.530	19.8		
8/6/10	7.2	37.0	0.750											1,156	4,250	5,406	0.630	17.7		
8/7/10	7.2	37.0	0.750											1,094	4,219	5,313	0.630	22.0		
8/8/10	7.3	37.0	0.700											1,000	3,844	4,844	0.580	26.1		
8/9/10	7.2	37.5	0.700											1,219	3,906	5,125	0.680	27.7		
8/10/10	7.1	37.0	0.700											1,313	3,781	5,094	0.580	20.4		
8/11/10	7.1	37.0	0.700											1,188	3,781	4,969	0.680		34.0%	6,000
8/12/10	7.1	37.5	0.700											1,156	3,500	4,656	0.730	36.1	34.0%	5,000
8/13/10	7.1	37.5	0.700											1,187	3,594	4,781	0.580	33.4		
8/14/10																				
8/15/10																				
8/16/10																				
8/17/10																				
8/18/10																				
8/19/10																				
8/20/10	7.1	36.5												1,094	4,156	5,250	0.080			
8/21/10	7.0	37.0	0.700											1,000	4,281	5,281	0.580			
8/22/10	7.1	36.5	0.600											1,282	4,156	5,438	0.580			
8/23/10	7.2	36.5	0.450											1,000	3,906	4,906	0.530			
8/24/10	7.1	37.0	0.550											1,125	4,156	5,281	0.580			
8/25/10	7.1	36.0	0.700											1,094	3,625	4,719	0.580			
8/26/10	7.1	35.0	0.700											1,563	3,500	5,063	0.730			
8/27/10	7.0	34.5	0.700											1,875	3,063	4,938	0.530			
8/28/10	6.9	35.0	0.700											2,219	2,969	5,188	0.580			
8/29/10	6.9	35.0	0.700											2,156	2,844	5,000	0.630			
8/30/10	7.0	36.0	0.700											2,344	2,844	5,188	0.580			
8/31/10																				
9/1/10																				
9/2/10																				

WA10 WA10 W410 W410 W510 W610 W710 1.031 4.313 5.344 0.080 W810 7.2 35.0 1.031 4.313 5.344 0.080 W810 7.2 35.5 0.400 1.062 4.563 5.625 0.430 W110 7.2 35.5 0.500 1.344 4.625 5.969 0.480 W110 7.2 35.0 0.500 1.344 4.625 5.969 0.480 W1210 7.2 35.0 0.600 1.344 4.000 5.344 0.380 W1210 7.2 35.5 0.600 1.281 4.219 5.500 0.530 V1310 7.1 35.5 0.600 1.514 4.219 5.504 0.580 V1410 7.2 35.5 0.600 1.514 4.219 5.504 0.580 V1210 7.2 35.5 0.700 1.514 4.290										Di		erations Da	ta (Cont.)								
pH Imps Imps Imps Viso V										Jur	ne 17, 2010	- December	10, 2010								
NA10 NA10 V400 NA10 V500 NA10 V500 NA10 V710 S.50 0.400 V710 1.2 35.0 0.400 V710 2.2 35.0 0.400 1.022 V710 7.2 35.0 0.400 1.02 V710 7.2 35.0 0.500 1.344 4.025 5.060 V110 7.2 35.0 0.500 1.344 4.030 5.344 0.380 V1210 7.2 35.0 0.600 1.281 4.219 5.500 0.591 V1410 7.2 35.0 0.600 1.344 4.200 5.64 0.591 V1410 7.2 35.0 0.600 1.344 4.205 5.94 0.580 V1410 7.2 35.0 0.700 1.281 4.219 5.00 0.591 V1410 7.2 35.5 0.700 1.312 3.999 5.313		pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas		
NAUDVAUD<	Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
Note in the set of the set	9/3/10																				
NAME NAME <th< td=""><td>9/4/10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	9/4/10																				
V710V710V72S0S0U.400S.41U.313S.34U.810V.341U.341S.344U.813V.341U.341S.344U.813V.341U.341S.344U.813V.341U.341S.344U.813V.341U.813V.331U.813V.331U.813V.331U.813V.331U.813V.331U.813V.331U.813V.331U.813U.813U.813<	9/5/10																				
NR107.28.5 </td <td>9/6/10</td> <td></td>	9/6/10																				
N9107285.00.4001.0624.5315.6230.5400.480N10107235.50.5001.3140.4635.7190.5800.480N12107235.00.501.4064.3145.7190.580-N12107235.00.5001.4064.3005.7190.580-N14107235.00.6001.4144.0005.5000.501-N15107135.50.6001.6144.0005.5000.501-N15107235.50.5001.5114.5100.580N17107235.50.5001.5114.5310.530N17107235.50.5001.5114.5436.30N17107235.50.5001.5114.5436.30N17107235.50.5001.3144.2055.4180.630-N17107235.50.5001.3144.2055.4180.630-N17107335.50.5001.3144.0055.4180.630-N17107235.50.5001.3144.0055.4180.630-N17107335.50.5001.3144.0055.4180.630-N17107335.50.5001.3144.0055.4180.630-N1710	9/7/10																				
NUM107.235.50.5000.4301.3125.9690.480V11107.235.00.5001.3124.3135.7190.580V13107.235.00.5001.3444.005.3440.380V13107.235.50.5001.3444.205.440.380V14107.235.50.5001.3444.205.540.50V15107.135.50.5001.3144.2195.540.580V17107.235.50.5001.3144.2195.480.580V17107.235.50.7001.3144.2195.480.580V17107.235.50.7001.3124.035.3180.630V17107.235.50.7001.3123.9695.3180.630V17107.235.50.7500.7501.3123.9695.3180.630V17107.235.50.7500.7501.3123.9695.3180.630V17107.235.50.7500.7501.3124.9455.4660.630V17107.235.50.7500.7501.3124.9455.4660.630V17107.235.50.7500.7501.3124.9455.4660.630V17107.235.50.7500.7501.3124.9455.4660.630V17107.235.50.7500.7501	9/8/10	7.2	35.0												1,031	4,313	5,344	0.080			
N11/07.28.5.80.630	9/9/10	7.2	35.0	0.400											1,062	4,563	5,625	0.430			
NU2107.235.00.500.505.7190.571V13107.235.00.6001.3444.0005.7140.380V15107.135.50.6001.5814.2195.000.531V15107.135.50.500.5011.5814.2195.7500.581V17107.235.50.7001.5314.2195.7500.581V17107.235.50.7001.2503.5400.600V21107.235.50.7001.3143.9695.2180.700V21107.235.50.7500.5011.3143.9695.2810.700V21107.235.50.7500.5011.3143.9695.3130.680V21107.235.50.7500.5011.3143.9695.4600.080V21107.235.50.7500.5011.3143.9695.4600.801V21107.235.50.7500.7510.7510.6310.750V21107.435.00.7501.3143.4695.4060.801V21107.135.50.7500.7510.7510.7510.751V21107.435.50.7500.7510.7510.7510.751V21107.435.50.7500.7510.7510.7510.751V21107.435.50.7500.7510.7510.7510.751 <td>9/10/10</td> <td>7.2</td> <td>35.5</td> <td>0.500</td> <td></td> <td>1,344</td> <td>4,625</td> <td>5,969</td> <td>0.480</td> <td></td> <td></td> <td></td>	9/10/10	7.2	35.5	0.500											1,344	4,625	5,969	0.480			
N13107.235.00.6001,3444,0005,3440.380V1A107.235.50.6001,2814,2195,5000.551V16107.235.50.6001,3444,2005,5840.570V16107.235.50.5001,3444,2005,5940.580V17107.235.50.7001,3114,2195,7000.580V19107.335.50.7001,3123,9695,3130.680V19107.235.50.7001,3143,9695,3130.680V19107.235.50.7001,3143,9695,3130.680V21107.235.50.7001,3143,9695,4890.801V21107.235.50.7001,3143,9695,4800.680V21107.235.50.7001,3144,0445,750.630V22107.235.50.7001,3144,0445,750.630V22107.235.50.7001,3144,0445,750.630V22107.235.50.7001,3144,0445,750.630V22107.235.50.7001,3144,0465,6490,404V22107.435.00.7500.7500.7500.750V22107.435.50.7500.7500.7500.750V22107.435.50.8000.8	9/11/10	7.2	35.5	0.650											1,312	4,344	5,656	0.580			
NH/107.23.5.0.6001.2814.2195.000.530V15/107.13.5.0.6501.5344.2055.5400.554V17/107.23.5.0.5001.3444.2055.5400.580V17/107.23.5.0.7001.2303.42195.7500.580V17/107.23.5.0.7001.2303.9695.2100.680V17/107.23.5.0.7001.3123.9695.2810.780V20/107.23.5.0.7500.7801.3443.9695.310.680V20/107.23.5.0.7500.7501.3144.0495.3750.630V20/107.23.5.0.7500.7501.3144.0445.3750.630V20/107.23.5.0.7500.7501.3144.0455.4690.630V20/107.23.5.0.7500.7501.3144.0455.4690.830V20/107.13.5.0.7500.7501.3144.0455.4690.830V20/107.13.5.0.7500.7501.3144.0455.310.849V20/107.13.5.0.7500.7501.3144.665.4690.830V20/107.13.5.0.7500.7501.8143.4665.4690.830V20/107.13.5.0.7500.7501.8143.4665.4690.830 <td>9/12/10</td> <td>7.2</td> <td>35.0</td> <td>0.550</td> <td></td> <td>1,406</td> <td>4,313</td> <td>5,719</td> <td>0.580</td> <td></td> <td></td> <td></td>	9/12/10	7.2	35.0	0.550											1,406	4,313	5,719	0.580			
N/N107.18.5.50.6806.5640.5590.5011/1017.23.5.50.6501.5314.2195.7600.5301/1017.23.5.50.7001.5314.2195.7500.6801/1017.23.5.50.7001.3123.9695.2190.6801/1017.23.5.50.7500.5310.7810.7811/21107.23.5.50.7501.3123.9695.3130.6801/21107.23.5.50.7500.7810.7810.7811/21107.23.5.50.7500.7810.6810.6801/21107.23.5.50.7500.7500.6300.6811/21107.23.5.50.7500.7500.6300.6811/21107.23.5.50.7500.7500.6300.6801/21107.23.5.50.7500.7500.6301/21107.23.5.50.7500.7500.6301/21107.23.5.50.7500.7500.6301/21107.23.5.50.7500.7500.6301/21107.23.5.50.7500.7500.7501/21107.23.5.50.7500.7500.7501/21107.23.5.50.7500.7500.7501/21107.13.5.00.7500.7500.7501/21107.13.5.00.7500.7500.750 <td>9/13/10</td> <td>7.2</td> <td>35.0</td> <td>0.600</td> <td></td> <td>1,344</td> <td>4,000</td> <td>5,344</td> <td>0.380</td> <td></td> <td></td> <td></td>	9/13/10	7.2	35.0	0.600											1,344	4,000	5,344	0.380			
N16107.235.50.6501,3444,2505,5940,580V17107.235.50.7001,314,2195,7500.580V19107.335.50.7001,3154,0205,4380.630V20107.235.50.7500.5801,3123,9695,2130.780V20107.235.50.7500.5801,3123,9695,3130.680V22107.335.50.7500.5801,2123,6905,4690.800V22107.235.50.7500.5801,2184,0445,750.630V22107.235.50.7500.5001,2184,0445,750.630V22107.235.50.7500.5001,2184,0445,0250.680V22107.235.50.7500.5001,2184,0445,0250.630V22107.235.50.7500.7500.6801,2184,0465,0250.680V22107.135.50.7500.7500.3011,2124,0445,0250.680V22107.235.50.7500.7500.7500.7300.7300.730V22107.135.50.7500.7500.7300.7300.730V22107.235.50.8001,3134,5045,3150.680V22107.135.50.7500.7500.7300.730 <td>9/14/10</td> <td>7.2</td> <td>35.5</td> <td>0.600</td> <td></td> <td>1,281</td> <td>4,219</td> <td>5,500</td> <td>0.530</td> <td></td> <td></td> <td></td>	9/14/10	7.2	35.5	0.600											1,281	4,219	5,500	0.530			
N17107.235.00.7001,5314.2195,7500.580V18107.235.50.7001,2503,9695,2190.680V20107.235.50.7501,3123,9695,3180.630V20107.235.50.7501,3143,9695,3130.680V20107.235.50.7500.500.800.80V20107.235.50.7500.500.80V20107.235.50.7500.600.80V20107.235.50.7500.600.80V20107.235.50.7500.600.60V20107.235.50.7500.600.60V20107.235.50.7500.600.60V20107.135.00.7500.600.60V20107.135.00.7500.7500.60V20107.135.50.7500.7500.60V20107.135.50.7500.7500.60V20107.135.50.7500.7500.60V20107.135.50.7500.7500.60V20107.135.50.7500.7500.750V20107.135.50.7500.7500.750V20107.135.50.7500.7500.750V20107.135.50.8000.600.80V20107.235.5 <td< td=""><td>9/15/10</td><td>7.1</td><td>35.5</td><td>0.650</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1,656</td><td>4,000</td><td>5,656</td><td>0.550</td><td></td><td></td><td></td></td<>	9/15/10	7.1	35.5	0.650											1,656	4,000	5,656	0.550			
N1810 7.2 35.5 0.700 1,250 3,969 5,219 0.680 V1910 7.2 35.5 0.700 1,375 4,063 5,438 0.630 V2110 7.2 35.5 0.750 1,314 3,969 5,211 0.680 V2110 7.2 35.5 0.750 1,314 3,969 5,313 0.680 V2210 7.2 35.5 0.750 1,314 4,094 5,325 0.630 V2210 7.2 35.5 0.750 1,311 4,044 5,625 0.680 V2210 7.2 35.5 0.750 1,312 4,094 5,315 0.630 V2210 7.2 35.5 0.750 1,312 4,094 5,469 0,50 V2210 7.1 35.0 0.750 1,312 4,094 5,479 0.830 V2210 7.1 35.5 0.750 1,312 4,064 5,70 0.830 V2210 7.1 35.5 0.750 1,635 0,449 5,31 0,580	9/16/10	7.2	35.5	0.650											1,344	4,250	5,594	0.580			
N19107.335.50.7001,3754,0635,4380.630V20107.235.50.7501,3143,9695,2110.780V21107.235.50.7501,3443,9695,4130.680V22107.335.50.7501,2814,0945,3750.630V23107.235.50.7501,2814,0945,6250.680V23107.235.50.7501,2814,0945,6260.680V23107.235.50.7501,3124,0945,6460.680V23107.235.50.7500.7501,3124,0945,6460.680V23107.135.00.7500.7501,3124,0945,8130.580V23107.135.50.7500.7500.7500.7500.750V23107.135.50.7500.7500.7500.750V23107.135.50.7500.7500.7500.750V23107.135.50.7500.7500.7500.750V23107.135.50.7500.7500.7500.750V23107.135.50.7500.7500.7500.750V23107.135.50.7500.7500.7500.750V23107.135.50.7500.7500.7500.750V23107.135.50.8001.6353.6605.750 <td< td=""><td>9/17/10</td><td>7.2</td><td>35.0</td><td>0.700</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1,531</td><td>4,219</td><td>5,750</td><td>0.580</td><td></td><td></td><td></td></td<>	9/17/10	7.2	35.0	0.700											1,531	4,219	5,750	0.580			
N19107.335.50.7001,3754,0635,4380.630V20107.235.50.7501,3143,9695,2110.780V21107.235.50.7501,3443,9695,4130.680V22107.335.50.7501,2814,0945,3750.630V23107.235.50.7501,2814,0945,6250.680V23107.235.50.7501,2814,0945,6260.680V23107.235.50.7501,3124,0945,6460.680V23107.235.50.7500.7501,3124,0945,6460.680V23107.135.00.7500.7501,3124,0945,8130.580V23107.135.50.7500.7500.7500.7500.750V23107.135.50.7500.7500.7500.750V23107.135.50.7500.7500.7500.750V23107.135.50.7500.7500.7500.750V23107.135.50.7500.7500.7500.750V23107.135.50.7500.7500.7500.750V23107.135.50.7500.7500.7500.750V23107.135.50.7500.7500.7500.750V23107.135.50.8001.6353.6605.750 <td< td=""><td>9/18/10</td><td></td><td>35.5</td><td>0.700</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1,250</td><td>3,969</td><td>5,219</td><td>0.680</td><td></td><td></td><td></td></td<>	9/18/10		35.5	0.700											1,250	3,969	5,219	0.680			
N20107.235.50.7501,3123,9695,2810.780V21107.235.50.7501,3443,9695,3130.680V23107.235.50.7501,2814.0445,6750.630V24107.235.50.7501,2814.0445,6250.680V24107.235.50.7501,3124.0445,6250.680V24107.235.00.7501,3124.0445,6250.680V24107.235.00.7501,3124.0445,6460.680V24107.135.50.7500.7501,3124.0495,8130.580V27107.135.50.7500.7501,3124.0495,8130.580V27107.135.50.7500.7502,2813,4695,7500.780V28107.135.50.7500.7500.7802,2813,4695,7500.780V29107.135.50.7500.7500.7602,2813,4695,7500.780V29107.135.50.7500.7500.7602,2813,4695,7500.780V29107.135.50.7500.7500.7602,2813,4695,7500.780V29107.135.50.8001,8134,6636,0440.7802,4V29107.235.50.8001,8134,5636,044 <td< td=""><td>9/19/10</td><td></td><td>35.5</td><td>0.700</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4,063</td><td>5,438</td><td>0.630</td><td></td><td></td><td></td></td<>	9/19/10		35.5	0.700												4,063	5,438	0.630			
N21107.235.50.7501,3443,9695,3130.680V22107.335.50.1009694,5005,4690.080V23107.235.50.7501,2814,0445,6250.680V22107.235.50.7501,2814,1255,4060.680V22107.235.50.7501,3124,0445,4050.680V22107.135.50.7501,3124,0445,4060.680V22107.135.50.7500.7501,2184,1255,4060.680V22107.135.50.7500.7500.7500.7301,2183,4695,7500.730V22107.135.50.7500.7500.7301,2183,4695,7500.730V22107.135.50.7500.7500.7301,2183,4695,7500.730V22107.135.50.500.501,2183,4695,5310.680V22107.135.50.500.7500.7301,2183,4695,7500.730V22107.135.50.500.500.6801,5134,5636,9400.80V22107.235.50.8001,8134,5006,3130,3041,511V22107.235.50.8001,5114,5636,0940,8032,44V22107.235.50.8001,513<	9/20/10		35.5	0.750													5,281	0.780			
N22107.335.50.1009694,5005,4690.080V23107.235.50.7501,2814,0945,3750.630V24107.235.50.7501,3114,0945,6250.680V25107.235.50.7501,3124,0445,4660.680V26107.135.00.7501,5003,9695,4690.830V27107.135.50.7500.7500.7500.730V28107.135.50.7500.7500.7300.730V29107.135.50.7500.7500.730V20107.135.50.7500.7500.730V20107.135.50.7500.7500.730V20107.135.50.7500.7300.680V20107.135.50.8001,8154,6936,944V20107.235.50.8001,8154,5330.680V20107.235.50.8001,8154,5336,0940.680V20107.235.50.8001,8134,5636,0940.730V20107.235.50.8001,8134,5636,0940.730V20107.235.50.8001,8134,5636,0940.730V20107.235.50.8001,8134,5636,0940.730V20107.235.50.8001,8134,563 <td>9/21/10</td> <td>7.2</td> <td>35.5</td> <td>0.750</td> <td></td> <td>1,344</td> <td>3,969</td> <td>5,313</td> <td>0.680</td> <td></td> <td></td> <td></td>	9/21/10	7.2	35.5	0.750											1,344	3,969	5,313	0.680			
N23/107.23.5.50.7501.2814.0945.3750.630V24/107.23.5.50.7501.5114.0945.6250.680V25/107.23.5.00.7501.2814.1255.4060.630V27/107.13.5.00.7501.3124.0945.4760.680V27/107.13.5.00.7501.5013.9695.4690.830V28/107.13.5.50.7502.2193.5945.8130.580V29/107.13.5.50.7500.7302.2813.4695.7500.730V29/107.13.5.50.7500.7302.813.6565.5310.680V29/107.13.5.50.8001.8753.6565.310.680V29/107.23.5.50.8001.8134.5036.0940.830V29/107.23.5.50.8001.8134.5036.0940.80V29/107.23.5.50.8001.5114.5636.0940.730V29/107.23.5.50.8001.5114.5636.0940.730V29/107.23.5.50.8001.5114.5636.0940.830V29/107.23.5.50.8001.5114.5636.0940.830V29/107.23.5.50.8001.514.5636.0940.730V29/107.43.5.50.8001.6884.0666.9	9/22/10		35.5														5,469	0.080			
7.2 35.5 0.750 1,531 4,094 5,625 0.680 7/25/10 7.2 35.5 0.700 1,281 4,125 5,406 0.630 7/26/10 7.2 35.0 0.750 1,312 4,094 5,406 0.680 7/27/10 7.1 35.5 0.750 1,500 3,969 5,469 0.830 7/28/10 7.1 35.5 0.750 0.750 2,219 3,544 5,813 0.580 7/29/10 7.1 35.5 0.750 0.750 0.750 0.750 7/20/10 7.1 35.5 0.750 0.750 0.750 0.750 7/20/10 7.1 35.5 0.750 0.750 0.750 0.750 7/20/10 7.1 35.5 0.750 0.750 0.750 0.750 7/21/10 7.1 35.5 0.750 0.750 0.750 0.750 7/21/10 7.1 35.5 0.800 1,631 4,663 6,094 0.680 7/21/10 7.2 3.55 0.800	9/23/10														1,281						
7.2 35.5 0.700 1.281 4.125 5.406 0.630 72610 7.2 35.0 0.750 1.312 4.094 5.406 0.680 72710 7.1 35.5 0.750 1.500 3.969 5.469 0.830 72810 7.1 35.5 0.750 2.219 3.940 5.813 0.580 $729/10$ 7.1 35.5 0.750 0.730 2.281 3.469 5.750 0.730 7.1 35.5 0.750 0.730 2.281 3.469 5.750 0.730 7.01 35.5 0.750 0.750 0.730 0.80 0.680 0.680 0.680 $700/10$ 7.2 35.5 0.800 1.531 4.563 6.094 0.680 $100/10$ 7.2 35.5 0.800 1.531 4.563 6.094 0.830 2.44 $100/10$ 7.2 35.5 0.800 1.631 4.563 6.094 0.330 <	9/24/10																				
7.2 35.0 0.750 $1,312$ $4,094$ $5,406$ 0.680 72710 7.1 35.0 0.750 $1,500$ $3,969$ $5,469$ 0.830 $728/10$ 7.1 35.5 0.750 $2,219$ $3,594$ $5,813$ 0.580 $729/10$ 7.1 35.5 0.750 $1,625$ $3,469$ $5,034$ 0.580 $729/10$ 7.1 35.5 0.750 0.750 0.730 0.730 710 35.5 0.750 0.750 0.750 0.730 0.750 $720/10$ 7.1 35.5 0.750 0.750 0.750 0.730 0.750 $720/10$ 7.2 35.5 0.800 1.625 3.469 5.931 0.680 $100/10$ 7.2 35.5 0.800 1.531 4.563 6.094 0.680 $100/10$ 7.2 35.5 0.800 1.531 4.563 6.094 0.730 $100/10$ 7.2 35.5 0.800 <td>9/25/10</td> <td></td>	9/25/10																				
7.1 $3.5.0$ 0.750 $1,500$ $3,969$ $5,469$ 0.830 $728/10$ 7.1 35.5 0.750 $2,219$ $3,594$ $5,813$ 0.580 $729/10$ 7.1 35.5 0.750 $1,625$ $3,469$ $5,750$ 0.730 $700/10$ 7.1 35.5 0.750 0.730 $2,281$ $3,469$ $5,750$ 0.680 $100/10$ 7.1 35.5 0.750 0.800 $1,875$ $3,656$ $5,311$ 0.680 $100/10$ 7.2 35.5 0.800 $1,815$ $4,563$ 6.944 0.680 $100/10$ 7.2 35.5 0.800 $1,511$ $4,563$ 6.944 0.730 $100/10$ 7.2 35.5 0.800 $1,511$ $4,563$ 6.944 0.730 $100/10$ 7.2 35.5 0.800 $1,513$ $4,563$ 6.944 0.730 $100/10$ 7.2 35.5 0.800 $1,584$ $4,406$ 6.944 0.730	9/26/10																				
7.1 35.5 0.750 $2,219$ $3,594$ $5,813$ 0.580 $729/10$ 7.1 35.5 0.750 $1,625$ $3,469$ $5,094$ 0.580 $730/10$ 7.1 35.5 0.750 0.730 $2,281$ $3,469$ $5,750$ 0.730 $101/10$ 7.1 35.5 0.800 $1,875$ $3,656$ $5,31$ 0.680 $102/10$ 7.2 35.5 0.800 $1,875$ $3,656$ $5,51$ 0.680 $103/10$ 7.2 35.5 0.800 $1,813$ $4,563$ $6,094$ 0.680 $105/10$ 7.2 35.5 0.800 $1,813$ $4,563$ $6,094$ 0.730 $100/10$ 7.2 35.5 0.800 $1,531$ $4,563$ $6,094$ 0.730 $100/10$ 7.2 35.5 0.800 $1,531$ $4,563$ $6,094$ 0.730 $100/10$ 7.2 35.5 0.800 $1,531$ $4,563$ $6,094$ 0.730 $100/10$ 7.2 35.5 0.800 $1,531$ $4,563$ $6,094$ 0.730 $100/10$ 7.2 35.5 0.800 $1,531$ $4,563$ $6,094$ 0.830 25.4 $100/10$ 7.1 35.5 0.800 $1,531$ $4,606$ $6,344$ 0.705 27.6 $100/10$ 7.1 35.5 0.800 0.800 $5,633$ 0.780 0.780 $100/10$ 7.1 35.5 0.800 0.800 $5,63$ 0.780 <tr< td=""><td>9/27/10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	9/27/10																				
0/29/107.1 35.5 0.750 0.580 $0/30/10$ 7.1 35.5 0.750 0.730 $0/1/10$ 7.1 35.5 0.750 0.730 $10/1/10$ 7.1 35.5 0.750 0.680 $10/2/10$ 7.2 35.5 0.800 $1,875$ $3,656$ $5,531$ 0.680 $10/2/10$ 7.2 35.5 0.800 $1,531$ $4,563$ $6,094$ 0.680 $10/2/10$ 7.2 35.5 0.800 $1,531$ $4,563$ $6,094$ 0.680 $10/2/10$ 7.2 35.5 0.800 $1,531$ $4,563$ $6,094$ 0.680 $10/2/10$ 7.2 35.5 0.800 $1,531$ $4,563$ $6,094$ 0.830 25.4 $10/2/10$ 7.2 35.5 0.800 $1,688$ $4,406$ $6,094$ 0.830 25.4 $10/2/10$ 7.2 35.5 0.800 $1,533$ $4,406$ $6,344$ 0.705 27.6 $10/2/10$ 7.1 35.5 0.800 $1,563$ $4,000$ $5,563$ 0.780 $10/2/10$ 7.1 35.5 0.800 $1,563$ $4,000$ $5,563$ 0.780 $10/2/10$ 7.2 35.5 0.800 0.800 25.4 0.650	9/28/10																				
0/30/107.1 35.5 0.750 0.730 $10/10$ 7.1 35.5 0.750 $1,969$ $3,469$ $5,375$ 0.680 $10/2/10$ 7.2 35.5 0.800 $1,875$ $3,656$ $5,511$ 0.680 $10/3/10$ 7.2 35.5 0.800 $1,531$ $4,563$ $6,094$ 0.680 $10/4/10$ 7.3 35.5 0.800 $1,511$ $4,563$ $6,094$ 0.680 $10/5/10$ 7.2 35.5 0.800 $1,511$ $4,563$ $6,094$ 0.730 $10/6/10$ 7.2 35.5 0.800 $1,688$ $4,406$ $6,094$ 0.830 25.4 $10/7/10$ 7.2 35.5 0.800 $1,688$ $4,406$ $6,344$ 0.705 27.6 $10/9/10$ 7.1 35.5 0.800 $1,531$ $4,600$ $5,531$ 0.780 $10/10$ 7.2 35.5 0.800 $1,531$ $4,000$ $5,531$ 0.780 $10/10$ 7.2 35.5 0.800 $1,531$ $4,000$ $5,531$ 0.780																					
101/10 7.1 35.5 0.750 0.680 102/10 7.2 35.5 0.800 1,875 3,656 5,531 0.680 103/10 7.2 35.5 0.800 1,531 4,563 6,094 0.680 103/10 7.2 35.5 0.800 1,531 4,563 6,094 0.680 103/10 7.2 35.5 0.800 1,531 4,563 6,094 0.680 103/10 7.2 35.5 0.800 1,531 4,563 6,094 0.730 100/10 7.2 35.5 0.800 1,688 4,406 6,094 0.830 25.4 100/10 7.2 35.5 0.800 1,938 4,406 6,344 0.705 27.6 100/10 7.1 35.5 0.800 1,563 4,000 5,563 0.780 100/10 7.2 35.5 0.800 1,563 0.400 5,563 0.780 100/10 7.1 35.5 0.800 1,563 0.400 5,563 0.780 100	9/30/10																				
10/2/107.235.50.8001,8753,6565,5310.68010/3/107.235.50.8001,5314,5636,0940.68010/4/107.335.50.8001,8134,5006,3130.73010/5/107.235.50.8001,5314,5636,0940.83025.410/6/107.235.50.8001,9384,4066,3440.70527.610/6/107.135.50.8001,5314,5630.78025.410/9/107.135.50.8001,5634,0005,5630.78010/10/107.235.50.8001,5634,0005,5630.78010/10/107.235.50.8001,5634,0005,5630.780																					
10/3/10 7.2 35.5 0.800 10/4/10 7.3 35.5 0.800 1,531 4,563 6,094 0.680 10/5/10 7.2 35.5 0.800 1,813 4,500 6,313 0.730 10/6/10 7.2 35.5 0.800 1,688 4,406 6,094 0.830 25.4 10/7/10 7.2 35.5 0.800 1,938 4,406 6,344 0.705 27.6 10/8/10 7.1 35.5 0.800 1,563 4,000 5,563 0.780 10/9/10 7.1 35.5 0.800 1,563 4,000 5,563 0.780 10/10/10 7.2 35.5 0.800 1,563 4,000 5,563 0.780																					
10/4/107.335.50.8001,5314,5636,0940.68010/5/107.235.50.8001,8134,5006,3130.73010/6/107.235.50.8001,5314,5636,0940.83025.410/7/107.235.50.8001,9384,4066,3440.70527.610/9/107.135.50.8001,5634,0005,5630.7800.73010/10/107.235.50.8000.8000.6500.780	10/3/10														1,070	2,020	0,001	0.000			
10/5/107.235.50.8001,8134,5006,3130.73010/6/107.235.50.8001,5314,5636,0940.73010/7/107.235.50.8001,6884,4066,0940.83025.410/8/107.135.50.8001,9384,4066,3440.70527.610/9/107.135.50.8001,5634,0005,5630.7800.650															1.531	4.563	6.094	0.680			
10/6/107.235.50.8001,5314,5636,0940.73010/7/107.235.50.8001,6884,4066,0940.83025.410/8/107.135.50.8001,9384,4066,3440.70527.610/9/107.135.50.8001,5634,0005,5630.78010/10/107.235.50.8000.6500.650																					
10/7/107.235.50.8001,6884,4066,0940.83025.410/8/107.135.50.8001,9384,4066,3440.70527.610/9/107.135.50.8001,5634,0005,5630.78010/10/107.235.50.8000.6500.650																					
10/8/10 7.1 35.5 0.800 1,938 4,406 6,344 0.705 27.6 10/9/10 7.1 35.5 0.800 1,563 4,000 5,563 0.780 10/10/10 7.2 35.5 0.800 0.650 0.650																			25.4		
10/9/10 7.1 35.5 0.800 1,563 4,000 5,563 0.780 10/10/10 7.2 35.5 0.800 0.650																					
0/10/10 7.2 35.5 0.800 0.650																			27.0		
															1,505	4,000	5,505				
WI1/10 7.2 55.5 0.000 25,700 7,070 2.57 1.52 15,000 10,200 025 425 425 1,574 4,217 5,015 0.705					23 000	4 000	2 34	1 32	13 800	10.200		625		423	1 50/	4 210	5 813				
	10/11/10	1.4	55.5	0.000	25,900	4,090	2.34	1.32	15,000	10,200		023		423	1,394	4,217	5,015	0.705			

Phase IV

									U	ester 1 Op	hase IV erations Dat - December	. ,								
																			Biogas	Biogas
D.	pH	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	CO2	H2S
Date	(s.u.)	(oC)	(L/day) 0.800	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
10/12/10 10/13/10	7.1 7.1	35.5 35.5	0.800	21,900	3,930	2.23	1.26	13,600	9,700		640	1,725	438	1,657 1,375	4,281 3,844	5,938 5,219	0.880 0.605			
10/13/10	7.1	35.5 35.5	0.800	21,900	5,950	2.23	1.20	15,000	9,700		040	1,723	438	1,573	5,844 4,156	5,219 5,719	0.803			
10/14/10	7.2	35.5 35.5	0.800	21,850	4,280	2.28	1.27	16,500	11,200		463		468	1,365	4,130	5,719	0.830			
10/15/10	7.1	35.5	0.800	21,650	4,200	2.20	1.27	10,500	11,200		403		408	1,409	4,230 4,281	5,938	0.703			
10/17/10	7.1	35.5 35.5	0.800											1,037	4,201	3,938	0.830			
10/18/10	7.1	35.5	0.800	20,600	3,620	2.23	1.24	14,800	10,100		445		447	1,469	4,406	5,875	0.700			
10/19/10	7.1	35.5	0.800	20,000	3,020	2.23	1.24	14,000	10,100		445		447	1,409	4,400	6,125	0.703			
10/19/10	7.1	35.5	0.800	22,450	4,230	2.41	1.31	15,200	10,200		605	1,620	442	1,593	4,188	5,656	0.730			
10/21/10	7.1	35.5	0.800	22,430	4,230	2.41	1.51	13,200	10,200		005	1,020	442	1,595	4,003	5,531	0.703			
10/21/10	7.2	35.5 35.5	0.800	19,500	4,310	1.79	0.95	10,000	7,800		605		423	1,331	4,000	5,331 5,344	0.780			
10/22/10	7.1	35.5	0.800	19,500	4,310	1.79	0.95	10,000	7,800		005		425	1,281	4,003 3,719	5,544 5,156	0.703			
10/23/10	7.1	35.5	0.800											1,437	3,719	5,150	0.880			
10/24/10	7.1	35.5	0.800	20,850	4,850	1.88	1.05	10,900	8,400		620	1,580	424	1,625	3,906	5,531	0.755			
10/25/10	7.1	35.0	0.800	20,850	4,650	1.00	1.05	10,900	8,400		020	1,580	424	2,063	3,900 3,781	5,844	0.733			
10/27/10	7.1	35.5	0.800	22,250	5,210	1.84	1.00	9,900	7,900		700		381	2,003	3,625	5,688	0.780			
10/28/10	7.1	35.5	0.800	22,230	5,210	1.04	1.00	9,900	7,900		700		301	2,003	3,023 3,594	5,088 5,594	0.003			
10/28/10	7.1	35.5	0.800	20,750	5,850	1.88	0.99	9,900	7,900		635		396	3,812	3,594	5,394 7,375	0.780			
10/29/10	7.3	36.0	0.800	20,750	5,850	1.00	0.99	9,900	7,900		035		390	1,813	4,031	7,373 5,844	0.705			
10/31/10	7.1	35.5	0.800											6,063	4,031	10,938	0.730			
10/31/10	7.3	35.5	0.800	17,700	5,430	1.71	0.84	8,600	7,100		755		407	1,625	4,875	5,906	0.205			
11/2/10	7.4	35.5		17,700	5,450	1./1	0.84	8,000	7,100		155		407	1,025	4,231	5,688	0.205			
11/2/10	7.4	35.5	0.600	20,300	4,550	1.99	1.03	12,500	8,900		825	1,200	431	1,230	4,438	6,063	0.205			
11/4/10	7.2	35.0	0.600	20,300	4,550	1.99	1.05	12,500	8,900		625	1,200	451	2,000	4,023	6,531	0.205			
11/5/10	7.2	35.0	0.600	21,750	4,660	2.25	1.17	15,300	10,100		705		403	1,875	4,563	6,438	0.605			
11/6/10	7.2	35.0	0.600	21,750	4,000	2.23	1.17	15,500	10,100		705		405	1,875	4,531	6,281	0.580			
11/0/10	7.2	35.5	0.600											1,750	4,551	0,201	0.580			
11/8/10	7.2	35.5	0.600											1,625	4,688	6,313	0.605			
11/9/10	7.1	35.5	0.700											1,687	4,688	6,375	0.630			
11/10/10	7.2	36.0	0.700											1,687	4,688	6,375	0.430			
11/11/10	7.2	35.5	0.300											1,037	4,594	6,031	0.380			
11/12/10	7.2	35.5	0.450											1,531	4,750	6,281	0.330			
11/12/10	1.2	55.5	0.450											1,551	4,750	0,201	0.550			
11/13/10	7.2	35.5	0.400														0.350			
11/14/10	7.2	35.5	0.400											1,375	4,563	5,938	0.330			
11/15/10	7.2	35.0	0.400											1,373	4,503	5,938 5,938	0.280			
11/17/10	7.2	35.0	0.400											1,625	4,813	6,438	0.330			
11/18/10	7.2	35.0	0.400											1,656	4,813	6,531	0.330			
11/19/10	7.2	35.0	0.400											1,050	4,875	6,813	0.230			
11/17/10	1.2	55.0	0.400											1,707	-,07	0,015	0.200			

										Pł	nase IV									
									Dige	ester 1 Ope	rations Data	(Cont.)								
									June	17, 2010 -	December	10, 2010								
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
11/20/10	7.2	35.5	0.400											1,531	4,688	6,219	0.330			
11/21/10	7.2	35.5	0.400											1,594	4,781	6,375	0.280		34.0%	
11/22/10	7.3	36.0	0.400											1,406	5,094	3,500	0.330		28.0%	
11/23/10	7.3	35.5	0.400											1,344	5,094	6,438	0.230	13.7	28.0%	
11/24/10	7.3	35.5	0.400											1,532	5,156	6,688	0.280		18.0%	
11/25/10	7.3	35.5	0.400	19,600	4,190	2.12	1.06	11,400	8,400					1,125	5,219	6,344	0.405			
11/26/10																				
11/27/10	7.2	35.0	0.400	19,900	4,300	2.15	1.13	13,500	9,600		785		470	1,312	5,063	6,375	0.380	9.6		
11/28/10	7.2	35.0	0.400	18,200	4,130	2.24	1.17	13,200	8,800					1,531	5,313	6,844	0.305	5.0	24.0%	
11/29/10	7.2	35.5	0.400	17,400	4,490	2.05	1.04	13,700	8,900	2,725	790	1,555	510	1,438	5,031	6,469	0.205	12.0	22.0%	
11/30/10	7.3	35.0	0.400	17,500	4,140	2.06	1.04	12,600	8,700					1,187	5,313	6,500	0.355	9.6	24.0%	
12/1/10	7.3	35.0	0.400	17,500	4,220	2.12	1.06	12,900	8,300		805		492	1,187	5,313	6,500	0.305	11.5	26.0%	
12/2/10	7.4	35.0	0.400	18,350	4,340	2.11	1.11	12,200	8,400					1,125	5,000	3,125	0.355	12.1		
12/3/10	7.4	35.0	0.400	18,400	4,320	2.11	1.11	12,600	8,600					1,250	5,156	6,406	0.205			
12/4/10	7.1	35.0	1.150	22,750	5,720	2.40	1.34	14,800	10,400		935		480	3,063	4,656	7,719	1.105	13.3	40.0%	
12/5/10	6.9	35.0	1.150	25,000	7,640	2.56	1.40	16,100	10,200					4,375	3,469	7,844	1.005	13.6		
12/6/10	6.8	35.0	1.150	30,100	9,910	2.39	1.37	14,700	10,400	2,525	825	1,440	532	4,531	2,500	7,031	0.955	10.7	42.0%	
12/7/10	6.6	35.0	1.150	30,900	11,830	2.37	1.41	13,700	10,800					4,312	1,938	6,250	1.055	8.1	40.0%	3,000
12/8/10	6.6	35.5	1.150	34,400	13,430	2.49	1.48	14,700	10,500		760		596	5,438	1,875	7,313	0.855		42.0%	3,000
12/9/10	7.0	35.0		29,950	12,090	2.57	1.43	16,500	10,600					4,656	3,000	7,656	0.205		30.0%	2,000
12/10/10	7.0	35.0		27,450	12,230	2.15	1.26	11,300	8,600		845		524	3,563	2,625	6,188	0.205		24.0%	1,500
Average	7.2	35.9	0.660	20,910	5,199	2.19	1.16	12,716	9,074	2,625	578	949	396	1,565	4,133	5,659	0.562	19.24	31.2%	2,850
Minimum	6.6	34.5	0.100	14,250	3,060	1.71	0.84	8,600	7,100	2,525	185	520	140	906	1,875	3,125	0.080	5.00	18.0%	1,500
Maximum	7.4	38.0	1.150	34,400	13,430	2.57	1.48	16,500	11,200	2,725	935	1,725	596	6,063	5,313	10,938	1.105	36.10	42.0%	6,000

										igester 5 O	se IV perations Da becember 10									
	ъЦ	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	рН (s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	v 3 (%)	(mg/L)	v 33 (mg/L)	(mg/L)	(mg/L)	(mg/L)	PO4-P (mg/L)	vfA (mg/L)	P-Alk (mg/L)	(mg/L)	(L/day)	(L/day)	(%)	п25 (ppm)
6/17/10	7.4	35.0	0.900	(111g/ L)	(IIIg/L)	(/0)	(70)	(IIIg/L)	(IIIg/L)	(115/12)	(111g/12)	(112/12)	(IIIg/L)	1,156	4,625	5,781	(L/ddy)	(L/ddy)	(70)	(ppm)
6/18/10	7.4	35.5	0.500	36,550	4,410	4.55	2.62	34,900	22,300		835	1,525	390	1,062	4,563	5,625	0.050			
6/19/10	7.4	36.0	1.000	,	.,			,	,			-,		1,063	4,500	5,563				
6/20/10	7.3	35.0	1.100											969	4,844	5,813				
6/21/10	7.5	35.5	0.700	34,800	3,860	4.33	2.37	32,300	19,700		735	1,925	385	938	4,656	5,594	0.050			
6/22/10	7.4	35.5	0.800	- ,	- ,			- ,				y		844	4,656	5,500				
6/23/10	7.3	36.0	0.900	37,350	3,770	3.86	2.29	31,200	20,500		640	1,870	376	938	4,406	5,344	0.050			
6/24/10	7.3	34.5	1.000	,	- ,			- ,				,		1,000	4,219	5,219				
6/25/10	7.4	36.0	1.000	38,200	3,850	4.11	2.45	31,600	20,600		652	1,810	372	937	4,313	5,250	0.050			
6/26/10	7.4	36.0	1.000	35,750	3,620	3.86	2.24	29,900	20,100		568	1,360	360	813	4,375	5,188	0.050			
6/27/10	7.3	35.5	1.000	,				<i>.</i>				,		875	4,344	5,219				
6/28/10	7.4	36.0	0.800	39,200	3,970	4.33	2.54	33,400	22,000		593	2,235	382	781	4,594	5,375	0.050			
6/29/10	7.3	35.0	0.800											813	4,250	5,063				
6/30/10	7.4	35.5	1.000	40,150	3,970	4.32	2.57	34,400	22,700		648	2,065	370	688	4,281	4,969	0.050			
7/1/10	7.4	35.5	1.000											625	4,625	5,250				
7/2/10	7.4	35.5	1.100	42,400	3,760	4.94	2.84	39,800	24,700		680	1,545	384	688	4,406	5,094	0.100			
7/3/10	7.4	34.0	1.000											781	4,375	5,156				
7/4/10	7.4	34.0	1.000	45,500	4,020	5.50	3.11	46,400	27,300		668	1,785	376	844	4,344	5,188	0.050			
7/5/10	7.4	34.5	1.000											688	4,469	5,156				
7/6/10	7.4	34.5	1.000	45,850	3,750	5.22	2.96	42,600	26,000		640	2,350	358	688	4,469	5,156	0.050			
7/7/10	7.4	34.5	1.000											750	4,500	5,250				
7/8/10	7.4	35.5	1.000	44,600	4,380	4.80	2.84	39,200	25,500		635	2,200	380	688	4,563	5,250	0.050			
7/9/10	7.4	34.0	1.000											938	4,344	5,281				
7/10/10	7.4	34.0	1.000											1,031	4,031	5,063				
7/11/10	7.4	34.5	1.000											1,093	4,063	5,156				
7/12/10	7.2	35.5	1.000											1,375	4,125	5,500	0.100			
7/13/10	7.2	36.5	1.000	47,000	3,820			39,300	24,800		320		187	1,094	4,125	5,219	0.100			
7/14/10	7.2	37.0	1.000	51,000	3,630			38,600	23,200		249		154	1,219	4,219	5,438	0.100			
7/15/10	7.1	35.0	1.000											1,469	3,906	5,375				
7/16/10	7.0	34.5	1.000	46,800	3,950			44,100	24,800		249		170	1,657	3,406	5,063	0.100			
7/17/10	7.0	34.5	1.000											1,750	3,250	5,000				
7/18/10	7.0	35.5	1.000											1,531	3,594	5,125				
7/19/10	7.1	36.0	1.000	44,850	3,745			32,300	20,500		267		182	1,375	3,688	5,063	0.100			
7/20/10	7.2	36.0	1.000											1,250	4,063	5,313				
7/21/10	7.2	36.0	1.000	43,300	9,320			34,000	20,100		333		113	1,687	3,219	4,906	0.100			
7/22/10	7.0	35.0	1.000											1,688	3,250	4,938				
7/23/10	7.0	35.0	1.000											1,594	2,875	4,469	0.100			
7/24/10	7.1	34.5	1.000											1,563	3,125	4,688				
7/25/10	7.3	37.0	0.100											843	4,313	5,156				

									e	ester 5 Oper	ase IV rations Data December 10	· ,								
		T	E1	+COD	-COD	TS	VC	TCC	VCC	TUN	NH2 N	тр	PO4-P	VEA	D A 11-	T A 11-	W74-	D:	Biogas	Biogas
Date	pH (s.u.)	Temp. (oC)	Feed (L/day)	tCOD (mg/L)	sCOD (mg/L)	(%)	VS (%)	TSS (mg/L)	VSS (mg/L)	TKN (mg/L)	NH3-N (mg/L)	T-P (mg/L)	PO4-P (mg/L)	VFA (mg/L)	P-Alk (mg/L)	T-Alk (mg/L)	Waste (L/day)	Biogas (L/day)	CO2 (%)	H2S (ppm)
7/26/10	7.4	36.5	0.200	(IIIg/L)	(IIIg/L)	(70)	(70)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(IIIg/L) 844	4,250	5,094	0.100	(L/day)	(70)	(ppiii)
7/27/10	7.4	36.5	0.300											875	4,625	5,500	0.100			
7/28/10	7.2	36.0	1.000											1,562	3,313	4,875	0.100	46.6	38.0%	2,000
7/29/10	7.1	37.0	1.000											1,093	3,688	4,781		41.2	36.0%	2,000
7/30/10	7.1	37.0	1.000											1,250	3,719	4,969		45.8	36.0%	2,000
7/31/10	7.3	37.0	1.000											1,125	3,969	5,094		47.1	34.0%	2,000
8/1/10	7.2	37.5	1.000											1,344	4,250	5,594				
8/2/10	7.2	37.0	1.200											1,250	3,906	5,156		45.7		
8/3/10	7.2	37.5	1.300											1,219	4,031	5,250		39.3		
8/4/10	7.3	37.5	1.200											938	4,250	5,188		48.9		
8/5/10	7.2	37.0	1.200											1,000	4,313	5,313		48.4		
8/6/10	7.2	37.0	1.100											844	4,375	5,219		43.2		
8/7/10	7.2	37.5	1.200											1,031	4,094	5,215		36.8		
8/8/10	7.3	37.0	1.000											969	4,406	5,375		31.8		
8/9/10	7.3	37.5	1.000											875	3,969	4,844	0.100	43.2		
8/10/10	7.2	37.0	1.000											937	3,813	4,750		40.6		
8/11/10	7.2	37.5	1.000											844	3,531	4,375	0.100		32.0%	6,000
8/12/10	7.2	37.5	1.000											938	3,750	4,688		46.6	36.0%	7,500
8/13/10	7.2	38.0	1.000											812	3,219	4,031		46.3		
8/14/10																				
8/15/10																				
8/16/10																				
8/17/10																				
8/18/10 8/19/10																				
8/19/10 8/20/10	7.1	35.5												2,812	5,969	8,781				
8/20/10	7.0	35.5 36.0	1.000											1,312	3,969 3,969	5,281				
8/22/10	7.0	36.0	0.900											1,312	3,563	4,906				
8/23/10	7.2	36.0	0.600											1,250	3,719	4,969				
8/24/10	7.2	36.5	0.700											1,000	3,750	4,750				
8/25/10	7.2	35.5	1.000											1,156	3,719	4,875				
8/26/10	7.1	34.5	1.000											1,375	3,563	4,938				
8/27/10	7.1	34.0	1.000											1,375	3,344	4,719				
8/28/10	7.1	34.0	1.000											1,282	3,156	4,438				
8/29/10	7.1	35.0	1.000											1,281	3,375	4,656				
8/30/10	7.1	35.5	1.000											1,156	3,688	4,844				
8/31/10																				
9/1/10																				
9/2/10																				

									Digest	er 5 Operat	e I v ions Data (C	ont.)								
									June 1	7, 2010 - De	cember 10,	2010							D:	
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
9/3/10																				
9/4/10																				
9/5/10																				
9/6/10																				
9/7/10																				
9/8/10	7.3	34.0												1,000	5,219	6,219				
9/9/10	7.2	34.0	0.700											1,156	4,750	5,906				
9/10/10	7.2	34.0	0.800											1,282	4,656	5,938				
9/11/10	7.2	34.5	0.900											1,625	4,406	6,031				
9/12/10	7.3	34.5	0.850											1,250	4,844	6,094				
9/13/10	7.2	34.0	0.850											1,093	4,438	5,531				
9/14/10	7.2	34.0	0.850											1,281	4,188	5,469				
9/15/10	7.1	34.0	0.900											1,406	3,875	5,281				
9/16/10	7.2	34.5	0.900											1,281	4,031	5,313				
9/17/10	7.2	34.0	1.000											1,438	4,125	5,563				
9/18/10	7.3	34.0	1.000											1,281	4,094	5,375				
9/19/10	7.3	33.5	1.000											1,219	3,969	5,188				
9/20/10	7.3	34.5	1.100											1,156	4,563	5,719				
9/21/10	7.3	35.0	1.100											843	4,438	5,281				
9/22/10	7.3	34.5	1.100											813	4,531	5,344				
9/23/10	7.3	34.5	1.100											875	4,781	5,656				
9/24/10	7.3	34.5	1.100											937	4,563	5,500				
9/25/10	7.3	34.5	1.150											813	4,656	5,469				
9/26/10	7.3	34.5	1.200											843	4,688	5,531				
9/27/10	7.2	34.5	1.200											875	4,469	5,344				
9/28/10	7.2	34.5	1.200											1,031	4,188	5,219				
9/29/10	7.2	34.5	1.200											1,000	4,313	5,313				
9/30/10	7.2	34.5	1.200											1,031	4,250	5,281				
10/1/10	7.2	34.5	1.200											969	4,375	5,344				
10/2/10	7.2	34.5	1.200											969	4,250	5,219				
10/3/10	7.2	34.5	1.200																	
10/4/10	7.2	34.5	1.200											625	4,438	5,063				
10/5/10	7.2	35.0	1.200											1,093	4,438	5,531				
10/6/10	7.2	35.0	1.200											1,000	4,594	5,594	0.125			
10/7/10	7.2	35.0	1.200											938	4,375	5,313				
10/8/10	7.2	35.0	1.200											1,157	4,281	5,438	0.125			
10/9/10	7.2	35.0	1.200											1,062	4,063	5,125				
10/10/10	7.2	35.0	1.200																	
10/11/10	7.2	35.0	1.200	47,400	4,550	5.07	3.04	41,100	26,300		735		389	875	4,219	5,094	0.125			

Phase IV	
gester 5 Operations Data (Co	nt
17 0010 D 1 10 0	0

									e	1	e IV ions Data (C ecember 10 ,	,								
	ъЦ	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	pH (s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	v 3 (%)	(mg/L)	v 55 (mg/L)	(mg/L)	(mg/L)	(mg/L)	r04-P (mg/L)	vfA (mg/L)	P-Alk (mg/L)	(mg/L)	(L/day)	(L/day)	(%)	п25 (ppm)
10/12/10	7.2	35.0	1.200	(IIIg/L)	(IIIg/L)	(70)	(70)	(IIIg/L)	(IIIg/L)	(iiig/L)	(IIIg/L)	(IIIg/L)	(iiig/L)	875	4,188	5,063	(L/day)	(L/uay)	(70)	(ppiii)
10/12/10	7.2	35.0	1.200	46,850	4,220	4.89	2.95	39,100	25,900	3,804	705	2,810	413	875	4,188	5,063	0.125			
10/14/10	7.2	35.0	1.200	40,050	4,220	4.09	2.75	59,100	25,700	5,004	105	2,010	415	875	4,156	5,005	0.125			
10/15/10	7.2	35.0	1.200	45,450	4,240	4.95	3.01	42,800	28,500		575		456	906	4,125	5,031	0.125			
10/16/10	7.1	35.0	1.200	45,450	4,240	4.95	5.01	42,000	20,500		515		450	938	4,000	4,938	0.125			
10/17/10	7.2	35.0	1.200											750	4,000	4,950				
10/18/10	7.2	35.0	1.200	48,250	4,330	4.99	3.04	47,900	31,700		565		447	906	4,219	5,125	0.125			
10/19/10	7.2	35.0	1.200	40,230	4,550	4.77	5.04	47,900	51,700		505		/	1,000	4,281	5,281	0.125			
10/20/10	7.2	35.0	1.200	49,950	4,340	5.24	3.16	48,900	31,700	4,640	725	2,810	412	907	4,156	5,063	0.125			
10/21/10	7.2	35.0	1.200	49,950	4,540	5.24	5.10	40,900	51,700	4,040	125	2,810	412	907 906	4,130	5,005	0.125			
10/22/10	7.2	34.5	1.200	57.350	5,010	5.31	3.17	46,600	30,800		720		404	1,343	3,563	4,906	0.125			
10/22/10	7.2	34.5	1.100	57,550	5,010	5.51	5.17	40,000	30,800		720		404	1,219	3,875	4,900 5,094	0.125			
10/23/10	7.1	35.0	1.100											1,219	5,675	5,094				
10/24/10	7.2	35.0	1.100	54,350	4,160	5.62	3.32	55,500	35,800	6,000	715	5,200	418	875	4,250	5,125	0.125			
10/25/10	7.2	33.0 34.5	1.100	54,550	4,100	5.02	3.32	55,500	33,800	0,000	/15	5,200	410	1,219	4,230	5,250	0.125			
10/20/10	7.1	34.5 34.5	1.100	51,850	4,490	5.36	3.18	49,500	31,900		705		394	1,219	3,625	3,230 4,969	0.125			
10/27/10	7.2	34.5 34.5	1.100	51,650	4,490	5.50	5.16	49,500	31,900		705		394	1,344	3,023 3,594	4,909	0.125			
10/28/10	7.2	34.5		51,600	4,320	5 61	2 17	50,800	21 200		680		383	<i>,</i>			0.125			
10/29/10	7.2	33.5	1.100	51,000	4,520	5.61	3.17	30,800	31,300		080		303	1,125	4,188	5,313	0.125			
	7.2		1.100											1 2 4 2	2 0 1 2	5,156				
10/31/10 11/1/10	7.2	33.5	1.100	52,100	4 200	5.28	3.01	50.900	31,400		780		380	1,343 875	3,813	,	0.125			
11/1/10	7.3	33.5		52,100	4,200	3.28	5.01	50,800	51,400		/80		380	688	4,688	5,563	0.125			
11/2/10	7.3	33.5 35.0	0.900	49,950	4 170	4.92	2.95	46,600	21 200	5,360	910	3,320	407	813	4,250 4,906	4,938 5,719	0.125			
	7.3			49,930	4,170	4.92	2.95	40,000	31,300	3,300	910	5,520	407		<i>,</i>	,	0.125			
11/4/10		36.0	1.000	40.000	1 2 (0	5.24	2.00	55 100	24.000		800		200	938	4,656	5,594	0.125			
11/5/10	7.2	34.0	1.000	49,900	4,260	5.24	2.99	55,100	34,900		800		390	1,032 937	4,531	5,563	0.125			
11/6/10	7.3	35.5	1.000											937	4,719	5,656				
11/7/10	7.3	35.5	1.000	57 450	4 470	5.26	2.21	10 700	22 (00		705		200	027	4.012	5 750	0.105			
11/8/10	7.3	36.0	1.000	57,450	4,470	5.36	3.31	49,700	33,600		795		388	937	4,813	5,750	0.125			
11/9/10	7.2	36.0	1.100	40.050	4 250	4.01	2.07	16 200	21 200	E 220	705	2 0 40	400	781	4,531	5,313	0.105			
11/10/10	7.2	36.0	1.100	48,050	4,250	4.81	2.97	46,200	31,300	5,320	795	3,040	400	875	4,656	5,531	0.125			
11/11/10	7.2	35.5	1.100	17 (00	2 700	4 7 1	2.02	20.200	26,600		000		710	1,062	4,438	5,500	0.125			
11/12/10	7.2	36.0	1.100	47,600	3,700	4.71	2.93	38,200	26,600		880		710	938	4,656	5,594	0.125			
11/13/10	7.0	25.5	1 100																	
11/14/10	7.3	35.5	1.100	70 (0)	1.0.50			17 100	22 100	6.0.10	0.50	0.4.60					0.105			
11/15/10	7.3	35.0		52,600	4,250	5.41	3.38	47,100	32,400	6,040	860	3,460	730	844	4,500	5,344	0.125			
11/16/10	7.3	36.0	1.100	10									10-	1,063	4,531	5,594				
11/17/10	7.2	36.0	1.100	48,700	4,480	5.05	3.12	43,000	29,000		720		403	1,000	4,281	5,281	0.125			
11/18/10	7.2	36.0	1.100											938	4,500	5,438				
11/19/10	7.1	35.0	1.100	46,950	4,110	5.13	3.15	43,300	28,700		730		410	1,032	4,406	5,438	0.125			

										Pha	ise IV									
									Dige	ster 5 Opera	ations Data (Cont.)								
									June	17, 2010 - E	December 10	, 2010								
	pН	Temp.	Feed	tCOD	sCOD	TS	VS	TSS	VSS	TKN	NH3-N	T-P	PO4-P	VFA	P-Alk	T-Alk	Waste	Biogas	Biogas CO2	Biogas H2S
Date	(s.u.)	(oC)	(L/day)	(mg/L)	(mg/L)	(%)	(%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(L/day)	(L/day)	(%)	(ppm)
11/20/10	7.0	34.5	1.100											1,375	3,906	5,281				
11/21/10	7.1	35.0	1.100											969	4,344	5,313			32.0%	
11/22/10	7.2	34.5	1.100	46,450	4,420	4.85	2.95	42,000	28,000	6,240	710	3,400	413	1,063	4,156	5,219	0.125		32.0%	
11/23/10	7.2	34.5	1.100											1,375	3,750	5,125		35.7	32.0%	500
11/24/10	7.2	35.5	1.100	49,700	4,510	5.03	2.99	44,300	29,900		715		421	875	4,469	5,344	0.125		32.0%	1,000
11/25/10 11/26/10	7.2	34.5	1.100	48,150	4,700	5.14	3.06	42,400	28,100					969	4,250	5,219	0.125	37.7 27.2	32.0%	1,000
11/27/10	7.2	34.0	1.100	50,000	5,390	5.28	3.20	47,400	30,800		670		413	1,156	3,563	4,719	0.125	27.2		
11/28/10	7.1	34.0	1.100	49,700	4,390	5.39	3.27	46,500	30,400					1,125	3,938	5,063	0.125		34.0%	1,250
11/29/10	7.1	34.0	1.100	48,650	4,470	5.07	3.09	42,700	28,300	5,625	725	3,120	468	1,469	3,531	5,000	0.125		32.0%	1,200
11/30/10	7.3	34.5	1.100	50,350	4,210	4.72	3.04	40,000	28,500					719	4,406	5,125	0.125	16.3	34.0%	1,200
12/1/10	7.3	35.0	1.100	47,050	4,460	4.77	3.06	42,100	29,700		735		484	750	4,531	5,281	0.125	22.6	34.0%	1,200
12/2/10	7.3	34.5	1.100	49,700	4,360	4.84	3.03	42,100	28,800					813	4,500	5,313	0.125	29.2		
12/3/10	7.2	35.0	1.100	48,650	4,250	5.07	3.13	42,900	29,200		745		460	750	4,250	5,000	0.125	20.0	32.0%	1,300
12/4/10	7.3	35.5	1.100	46,100	4,020	4.53	3.06	38,100	28,900					782	4,281	5,063	0.125	33.6	32.0%	1,000
12/5/10	7.2	35.0	1.100	48,750	4,460	4.66	3.08	40,400	29,200					656	3,750	4,406	0.125			
12/6/10	7.2	35.0	1.100	52,400	4,260	4.79	3.07	39,000	27,700	5,275	680	3,090	434	750	4,000	4,750	0.125	30.7	32.0%	1,500
12/7/10	7.1	35.0	1.100	50,350	4,300	4.59	3.09	36,200	27,000					906	4,125	5,031	0.125		36.0%	1,800
12/8/10	7.3	35.0	1.100	51,400	4,390	4.29	2.97	36,300	28,100		770		446	687	4,063	4,750	0.125	19.3	34.0%	2,000
12/9/10	7.3	35.0	1.100	49,500	4,480	4.70	3.05	39,600	27,500					812	4,594	5,406	0.125	26.6	34.0%	2,000
12/10/10	7.3	35.0	1.100	48,950	4,530	4.36	3.00	34,600	26,200		850		524	1,000	4,656	5,656	0.125		36.0%	2,100
Average	7.2	35.2	1.032	47,363	4,333	4.89	2.97	41,624	27,533	5,367	668	2,546	394	1,057	4,188	5,246	0.107	36.21	33.7%	2,028
Minimum	7.0	33.5	0.100	34,800	3,620	3.86	2.24	29,900	19,700	3,804	249	1,360	113	625	2,875	4,031	0.050	16.30	32.0%	500
Maximum	7.5	38.0	1.300	57,450	9,320	5.62	3.38	55,500	35,800	6,240	910	5,200	730	2,812	5,969	8,781	0.125	48.90	38.0%	7,500

APPENDIX G

AMPTS Study Raw Data

Influent Characterization Data											
	Sludge	Feed	tCOD	tCOD	sCOD	sCOD					
	(L)	(L)	(mg/L)	(g)	(mg/L)	(g)					
Digester	(1)		(1115) 2)	(8)	(1116/22)	(8)					
Digester											
1	0.300	0.000	0	0.000	0	0.000					
2	0.300	0.000	0	0.000	0	0.000					
3	0.300	0.012	103,150	1.238	56,450	0.677					
4	0.300	0.012	103,150	1.238	56,450	0.677					
5	0.300	0.015	103,150	1.547	56,450	0.847					
6	0.300	0.015	103,150	1.547	56,450	0.847					
7	0.300	0.024	103,150	2.476	56,450	1.355					
8	0.300	0.024	103,150	2.476	56,450	1.355					
9	0.300	0.030	103,150	3.095	56,450	1.694					
10	0.300	0.030	103,150	3.095	56,450	1.694					
11	0.300	0.036	103,150	3.713	56,450	2.032					
12	0.300	0.036	103,150	3.713	56,450	2.032					
13	0.300	0.048	103,150	4.951	56,450	2.710					
14	0.300	0.048	103,150	4.951	56,450	2.710					
15	0.300	0.060	103,150	6.189	56,450	3.387					
16	0.300	0.060	103,150	6.189	56,450	3.387					
17	0.300	0.060	103,150	6.189	56,450	3.387					
18	0.300	0.060	103,150	6.189	56,450	3.387					
19	0.300	0.090	103,150	9.284	56,450	5.081					
20	0.300	0.090	103,150	9.284	56,450	5.081					
21	0.300	0.120	103,150	12.378	56,450	6.774					
22	0.300	0.120	103,150	12.378	56,450	6.774					
Average	0.300	0.045	93,773	4.642	51,318	2.540					
Minimum	0.300	0.012	103,150	1.238	56,450	0.000					
Maximum	0.300	0.120	103,150	12.378	56,450	6.774					

AMPTS Study Data

							AMP	TS Study	Data							
							Seed Sluc	lge Chara	cteristics							
	tCOD	tCOD	sCOD	sCOD	TSS	TSS	VSS	VSS	TKN	TKN	NH ₃ -N	NH ₃ -N	T-P	T-P	PO ₄ -P	PO ₄ -P
	(mg/L)	(g)	(mg/L)	(g)	(mg/L)	(g)	(mg/L)	(g)	(mg/L)	(g)	(mg/L)	(g)	(mg/L)	(g)	(mg/L)	(g)
Digester																
1	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
2	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
3	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
4	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
5	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
6	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
7	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
8	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
9	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
10	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
11	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
12	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
13	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
14	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
15	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
16	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
17	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
18	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
19	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
20	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
21	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
22	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
Average	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
Minimum	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222
Maximum	40,150	12.045	11,310	3.393	32,800	9.840	19,900	5.970	6,550	1.965	1,790	0.537	4,160	1.248	740	0.222

Biogas Data Biogas Methane Biogas Methane VA P-Alk VA/P-Alk													
	Biogas	Methane	Biogas	Methane	VA	P-Alk	VA/P-Alk						
	(L)	(L)	(L/g COD R)	(L/g COD R)	(mg/L)	(mg/L)							
Digester													
1	0.220		0.157		3,900	10,450	0.373						
2	0.320		0.243		3,400	8,800	0.386						
3	0.560		0.286		3,700	8,625	0.429						
4		0.400		0.161	3,875	8,900	0.435						
5	0.710		0.335		3,875	7,200	0.538						
6		0.500		0.207	3,325	7,275	0.457						
7	0.700		0.313		4,325	7,150	0.605						
8		0.590		0.199	4,175	7,100	0.588						
9	0.800		0.302		4,750	5,925	0.802						
10		0.640		0.255	5,175	5,775	0.896						
11	0.760		0.263		5,625	5,900	0.953						
12		0.590		0.170	4,975	5,425	0.917						
13	0.620		0.205		5,750	5,075	1.133						
14		0.480		0.137	6,600	5,250	1.257						
15	0.600		0.162		6,675	4,475	1.492						
16		0.410		0.083	6,025	4,425	1.362						
17	0.600		0.170		7,000	4,075	1.718						
18		0.410		0.111	7,125	4,125	1.727						
19	0.850		0.176		6,475	3,175	2.039						
20		0.560		0.121	6,525	2,950	2.212						
21	0.980		0.146		7,400	2,625	2.819						
22		0.540		0.082	7,025	2,000	3.513						
Average	0.643	0.512	0.230	0.153	5,350	5,759	1.211						
Minimum	0.220	0.400	0.146	0.082	3,325	2,000	0.373						
Maximum	0.980	0.640	0.335	0.255	7,400	10,450	3.513						

AMPTS Study Data

	E	ffluent Cha	racterization	n Data		
	sCOD	sCOD	TSS	TSS	VSS	VSS
	(mg/L)	(g)	(mg/L)	(g)	(mg/L)	(g)
Digester						
1	6,650	1.995	29,600	8.880	19,700	5.910
2	6,920	2.076	28,900	8.670	19,400	5.820
3	8,560	2.671	26,000	8.112	18,200	5.678
4	6,900	2.153	26,000	8.112	18,600	5.803
5	8,960	2.822	25,900	8.159	18,400	5.796
6	8,000	2.520	27,100	8.537	19,000	5.985
7	11,220	3.635	25,000	8.100	17,800	5.767
8	8,940	2.897	24,300	7.873	18,000	5.832
9	11,620	3.835	25,700	8.481	18,100	5.973
10	12,060	3.980	26,900	8.877	18,800	6.204
11	12,540	4.213	23,800	7.997	17,000	5.712
12	10,840	3.642	23,300	7.829	17,200	5.779
13	15,280	5.317	24,000	8.352	17,700	6.160
14	13,900	4.837	25,100	8.735	18,200	6.334
15	16,320	5.875	24,000	8.640	17,600	6.336
16	12,960	4.666	25,000	9.000	19,100	6.876
17	16,840	6.062	27,100	9.756	18,900	6.804
18	16,360	5.890	25,400	9.144	17,900	6.444
19	20,100	7.839	23,800	9.282	17,900	6.981
20	20,680	8.065	23,400	9.126	17,400	6.786
21	21,540	9.047	26,800	11.256	19,300	8.106
22	21,960	9.223	24,800	10.416	18,300	7.686
Average	13,143	4.694	25,541	8.788	18,295	6.308
Minimum	6,650	1.995	23,300	7.829	17,000	5.678
Maximum	21,960	9.223	29,600	11.256	19,700	8.106

AMPTS Study Data

VITA

Ted Ross Stover

Candidate for the Degree of

Doctor of Philosophy

Thesis: ANAEROBIC DIGESTION OPTIMIZATION FOR ENHANCED RENEWABLE BIOMETHANE PRODUCTION

Major Field: Civil Engineering

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Civil Engineering at Oklahoma State University, Stillwater, Oklahoma in July, 2011.

Completed the requirements for the Master of Science in Environmental Engineering at Oklahoma State University, Stillwater, Oklahoma in 2009.

Completed the requirements for the Bachelor of Science in Zoology at Oklahoma State University, Stillwater, Oklahoma in 2008.

Experience:

Treatability and Process Development Manager, THE STOVER GROUP Stillwater, Oklahoma, 2008-present

Project Scientist, THE STOVER GROUP Stillwater, Oklahoma, 2004-2008

Laboratory Technician, THE STOVER GROUP Stillwater, Oklahoma, 2000-2004

Professional Memberships:

American Academy of Environmental Engineers, AAEE

Honorary Societies:

Chi Epsilon Magna Cum Laude National Scholars Honor Society Golden Key International Honour Society Name: Ted Ross Stover

Date of Degree: July, 2011

Institution: Oklahoma State University

Location: Stillwater, Oklahoma

Title of Study: ANAEROBIC DIGESTION OPTIMIZATION FOR ENHANCED RENEWABLE BIOMETHANE PRODUCTION

Pages in Study: 168 Candidate for the Degree of Doctor of Philosophy

Major Field: Civil Engineering

- Scope and Method of Study: The scope of this research project was to operate suspended growth, continuous stirred tank reactor (CSTR) anaerobic digesters at the benchscale level to evaluate improved operation techniques/methods and develop biokinetic relationships. Multiple digester reactors were operated simultaneously for approximately fourteen months to obtain data that was used to develop improved operational processes and biokinetic relationships, along with evaluation of treatment performance under various operating conditions. The goal for developing improved operational processes and biokinetic relationships at the bench-scale level, is to apply the improved techniques and relationships to full-scale biogas/bioenergy production facilities for improved digester operations and enhanced biogas production by producing the maximum specific biogas/methane production rate possible from a given anaerobic digester reactor volume.
- Findings and Conclusions: Individual feedstocks chosen for this study when combined to form a co-digestion substrate proved to be highly biodegradable and can be successfully converted to biogas with consistent average methane content between 65% - 70% using anaerobic digestion processes. Specific substrate utilization rate, specific biogas production rate, and specific methane production rate act as a function of mass specific substrate loading rate. Substrate selection, substrate monitoring, and digester monitoring for key analytical testing and online monitoring parameters are critical for maintaining anaerobic digester health, stability, and reliability. Minimizing substrate loading rate peaks and valleys is critical to stable digester operations and maximizing biogas production per unit of reactor volume. Biomass recycle is an excellent option for increased substrate utilization and enhanced biogas production. Operating anaerobic digestion systems for the primary purpose of biogas/bioenergy production, rather than for waste treatment, places greater emphasis on obtaining the maximum specific biogas/methane production rate possible from a given anaerobic digester reactor volume.