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CHAPTER 1

Introduction

1.1 Processing of Ceramics

1.1.1 Powder Sintering

To this day, traditional, powder–processing based methods continue to be the most

common ways for preparing ceramic materials. The several steps typically involved

in conventional powder processing route are outlined in figure 1.1 [1]. These steps

include powder preparation, powder processing, powder consolidation, and sintering.

The first step in conventional powder processing of ceramics is the preparation

of the basic feed-stock powders. While chemical processing procedures are most

common and well established for oxide materials, most non-oxide materials are made

by carbothermal reduction. For example, the formation of silicon carbide (SiC),

by the Acheson process, is achieved by mixing and reacting a mixture of silicon

dioxide (SiO2) and carbon (C), along with a small amount of sawdust and common

salt, at temperatures up to 2700 ◦C at atmospheric pressure. In this context, liquid

chemical approaches are being explored so as to have a better control over the particle

sizes [2]. Other approaches of powder preparation involve sol-gel techniques, especially

for preparing oxides [3, 4] and vapor phase processing for producing powders and

whiskers [5, 6].

Powder processing is an important second step in fabricating ceramics by powder–

processing routes. This typically involves the adjustment of particle size, mixing of

ceramic constituents, and improving handleability. It is desired to have relatively fine
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Figure 1.1: Steps typically involved in making ceramics using conventional powder

processing route. [1].

particle sizes to achieve good sinterablility and at the same time form agglomerates

that will improve integrity for handling and forming [1].

Once the constituent powders have been prepared and processed, the next step is

to consolidate these powders into a shaped ‘green’ body. For powder consolidation

the commonly used techniques are tape casting, slip casting, pressure casting, and

isostatic pressing. Tape casting is typically used for making thin components such

as substrates and capacitors used for electronic ceramic applications. Isostatic press-

ing is more common for smaller to intermediate part sizes and less complex shapes.

Compression and injection molding can also be used for powder consolidation. In

this method, a mixture of a polymer carrier and the ceramic powder of interest is

forced into a mold cavity. The use of substantial amount of polymer is required to

achieve the plasticity desired from the mixture and this limits the ceramic green den-

sity. Furthermore, severe defects in the parts could result from inhomogenous mixing

of the polymer–ceramic powder slurry. The ‘green body’ thus formed at the end of

the powder consolidation phase is often machined to obtain greater intricacy of shape

and to get more accurate dimensioning.
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The final processing step involves organic burnout, firing, and sintering of the con-

solidated green body to form the final, fully dense ceramic. Burnout of organic con-

stituents is preferably achieved by thermal processes, also termed as binder burnout.

A homogenous burnout is desirable to avoid distortion and cracking. Finally, dur-

ing firing and sintering of the ceramics, the powders are caused to coalesce into a

near-theoretically dense body due to surface tension forces. This requires heating the

compacts to very high temperatures, as much as two-third of the absolute melting

temperature, as in the case of solid-state sintering.

Sintering is the final step and and plays a central role in determining the final mi-

crostructure and dimensional tolerance of the ceramic component. Challenges toward

achieving good sintering involve the ability to accommodate for the shrinkage during

densification. Failure to shrink uniformly could result in cracking in parts. In general,

oxide ceramics sinter more readily as compared to nonoxide ceramics. Therefore, in

the latter case, sintering aids are commonly used to enhance solid-state sintering and

also retard grain growth. In fact, commonly used ceramics such and silicon carbide

(SiC) and silicon nitride (Si3N4) cannot be sintered without additives. Use of sinter-

ing aids such as C, B, Y2O3, Al2O3 and MgO, which help in achieving higher densities

is quite common in fabrication of ceramics through powder processing routes.

The type and amount of sintering aids used have a strong influence on the final

material properties. These sintering aids are necessary to reduce surface tension,

required for achieving near-theoretical densities and for limiting grain growth. On

the other hand, these additives often segregate at grain boundaries in the form of a

‘glassy’ layer. The presence of this amorphous layer can severely impair mechanical

properties, especially at high temperatures. Minimizing the addition of sintering aids

can then lead to significant improvement in properties such as high-temperature creep

resistance. Nonetheless, the fabrication of materials without sintering aids, such as

stoichiometric, ultra-high purity SiC, is extremely challenging with traditional powder
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processing techniques. Finally, it should be noted that despite of their well-known

importance and widespread use, the identification of sintering aids has been mostly

empirical, and often accidental.

The use of high pressure and/or high temperature processing is a basic requirement

for traditional powder–based fabrication of ceramic components. These processing

conditions not only increase the energetic requirements but also places limits on the

types of materials that can be produced. For example, SiC fibers degrade at temper-

atures above 1200 ◦C [7]. Therefore, the fabrication of SiC-fiber–reinforced ceramic

matrix composites is extremely difficult using conventional power-based processing.

1.1.2 Reaction Processing

Reaction processing is an important alternative to sintering and is widely used to

make silicon carbide [8]. This method involves a liquid-solid reaction process for

the synthesis of the ceramic compound, and offers the capability to fabricate refrac-

tory ceramics at lower cost compared to conventional sintering. There are different

methods that can be categorized as reaction processing based on the intrinsic rate of

reaction, as illustrated in figure 1.2 [9].

Figure 1.2: Different methods categorized as reaction processing along with their

relative rate of reaction. [9].

The control of the reaction rate is a key issue in reaction processing. While

chemical vapor infiltration (CVI) is at the slow end of the spectrum with typical

processing rate of several hundred hours, self-propagating high temperature synthesis

4



(SHS) reactions are the fastest but place limitations on size and complexity. The

methods that are in the intermediate range offer fast yet controllable reaction forming.

In reaction bonded processing of silicon carbide, a ‘green body’ preform of silicon

carbide and carbon is infiltrated with molten silicon at temperatures of about 1450 ◦–

1650 ◦C. The result is a reaction bonded SiC (RBSC) mainly consisting of SiC with

5–15 % vol. residual Si. Reaction process of SiC is a low cost technique and produces

minimal shrinkage during the infiltration process. Therefore this technique allows for

near net shape manufacturing of intricate components, and also allows the fabrication

of very large parts that are ∼1 m in dimension. This method, first developed in 1960

by Popper [10], is being widely used today for commercial fabrication of ceramics.

Engineers at General Electric Company [11,12] used this method to fabricate SiC fiber

composites with a silicon matrix by reacting molten Si with a carbon fiber preform.

In addition, this process has also been extended to other ceramics, and particularly

to ceramic composites such as Si3N4– SiC composites and B4C–SiC–Si–C composites.

Reaction bonded SiC finds extensive use in general high-temperature and creep

applications, wear resistant parts, ceramic armor, and components required to with-

stand thermal shock. However, the presence of residual, free silicon limits the maxi-

mum use temperature to below 1400 ◦C. Furthermore, this free silicon can also limit

the corrosion and oxidation resistance as compared to stoichiometric silicon carbide.

1.1.3 Non-powder–based Processing

In the last two decades, there has been considerable research interest in the develop-

ment of alternative, powder-free, chemical methods for the preparation of ceramics.

Non-powder based ceramic processing and coating methods that have been developed

include melt casting, chemical vapor deposition, sol–gel processing, and polymer py-

rolysis [13]. The development of these ceramic fabrication techniques has been driven

by several factors such as homogenous dispersion of phases, denser ceramics, incor-
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poration of fillers such as fibers and whiskers, etc.

For melt casting, arc melting using graphite electrodes is often employed and parts

are usually cast in graphite molds. Melt casting generally yields much larger grains

and more porosity as compared to sintering. Further, grain sizes are nonuniform

during different cooling rates on surface and interiors.

Chemical vapor deposition (CVD) involves the deposition of a solid material on to

an activated or heated surface by reaction with a gaseous phase. Besides being used

for making ceramic coatings, CVD can also be used to produce ceramic powders and

free standing parts [14]. Usually, inorganic precursors in form of halides and metal

carbonyls are used as a source of vapor [15–17]. Advantages of the CVD technique

include lower costs, good densification, and the fabrication of ceramics without addi-

tives [1]. Control over the processing temperature is critical for CVD as this regulates

the process thermodynamics and kinetics [18]. Challenges in CVD include gas phase

nucleation and homogenous reaction occurring due to supersaturation of the reactive

species in the gaseous phase. Also control of microstructure and residual stresses

is a matter of concern in the CVD process. The resulting microstructure can have

substantial grain sizes; large grains result in weaker mechanical properties.

A variant of CVD is the chemical vapor infiltration (CVI) process. In CVI, inor-

ganic vapors are used to infiltrate porous structures or preforms where they deposit,

react, and form part of the composite. It is a very effective technique for forming

composites such as fiber reinforced ceramics and other unique structures that are

difficult or impossible to fabricate by using CVD alone. Chemical vapor infiltration

is widely used for fabrication of silicon carbide matrix composites reinforced by con-

tinuous silicon carbide fibers. However, the CVI processing is usually very slow due

to low diffusion rates.

Sol–gel processing involves precipitation of ceramic particles from aqueous me-

dia. The precursors are in form of inorganic salts or metal alkoxide solutions that
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are processed to form hydrous metal oxides or hydroxides. The sol-gel method is

generally confined to hydrolysable metal-ion species that produce aqueous sols, such

as SiO2, Al2O3, ZrO2, TiO2, CeO2, etc [19]. Advantages of the sol-gel technique are

lowering sintering temperature, lower energy cost and higher purity of resulting ma-

terial. Although more commonly used for making ceramic coatings, this technique

can produce bulk pieces of limited sizes [20, 21]. This technique can also be adapted

to produce ceramic composites by dispersion of powders, fibers or whiskers as rein-

forcement phase into sols [22, 23]. However, control over porosity and low densities

are the major challenges for the sol-gel technique.

1.1.4 Polymers Derived Ceramics

Another non–powder based method of preparing ceramics, and which is potentially

promising, is pyrolysis based processing of polymer–derived ceramics. This method

is considerably simple and involves condensation of organometallic compounds into

inorgranic materials by proper thermal treatment under controlled atmosphere.

Polymer precursors (also known as preceramic polymers) are organo–element poly-

mers that undergo a polymer–to–ceramic conversion when heated at temperatures

above 800 ◦C. They generally contain silicon, and in some cases boron, and are typ-

ically used to obtain non–oxide ceramics such as SiC, SiNC, Si3N4, and BN [24].

Preceramic polymers can be envisioned as long chain molecules with the chain com-

posed of main–group inorganic elements and with organic branches. Upon heating to

a sufficient temperature, the organic branches are shed, leaving behind an amorphous

network of inorganic elements which crystallizes on further heating [25]. A typical

flow diagram of the overall process of formation of polymer–derived ceramics is shown

in figure 1.3 [26].

Fabrication of ceramics by pyrolysis of preceramic polymers has several clear ad-

vantages. Preceramic polymers can be processed and shaped using conventional poly-
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Figure 1.3: Schematic representation of molecular and microstructural transitions

during ceramic manufacturing from preceramic polymers. [26].

mer forming techniques such as polymer infiltration and pyrolysis (PIP), injection

molding, coating from solvent, extrusion, or resin transfer molding (RTM) [27]. This

allows for fabrication of highly three–dimensional covalent refractory components

(fibers, films, membranes, foams monolithic bodies, ceramic matrix composites) that

are difficult to fabricate via the traditional powder–processing route [28], and also

allows for the incorporation of reinforcements. Fabrication by pyrolysis also provides

the ease of processibility familiar to polymer and sol–gel science and relatively low

processing temperatures (<1200 ◦C) [29–31]. Lowered processing temperatures re-

duce the incidence of fiber damage in reinforced ceramic matrix composites, and as

a result the pyrolysis route has been touted as being suitable for fabrication of con-

tinuous fiber–reinforced ceramic composites (CFCCs) [32]. In this manner polymer

precursor processing can offer several of the advantages for carbide- or nitride-based

ceramics that are found for oxide-based ceramics fabricated using sol-gel processing.

Typically, the ceramic yield is much higher in polymer derived processing as com-

pared to other non-powder chemical routes. In some cases, ceramic yield as high as

85% has been reported [33]. Nonetheless, the main challenge of polymer precursor

based methods is the increase in density observed upon conversion from the polymer
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(mass density of ∼1 g/cc) to ceramic (mass density of ∼3 g/cc). This results in

volumetric shrinkage, which coupled with <100 % ceramic yield, leads to the forma-

tion of porosity in the form of open pores and cracks. Accordingly, several polymer

infiltration and pyrolysis (PIP) cycles are required to densify the ceramic component.

1.2 Silicon Carbide

The focus of this investigation is on silicon carbide (SiC) for application in nuclear re-

actor based advanced energy systems. This is one the most commonly used ceramics

owing to its excellent properties such as high strength, modulus, and creep resis-

tance [34], and retention of properties at high temperatures. Silicon carbide resists

oxidation upto a high temperature of about 1600 ◦C has a very high disassociation

temperature of 2830 ◦C [35]. Silicon carbide also exhibits a very high hardness of

32 GPa [36]. It has excellent thermal conductivity, 31 W/m ◦C, and a very low co-

efficient of thermal expansion, 4.7 × 10−6/ ◦C at 1200 ◦C [36]. These properties are

summarized for sintered alpha-SiC by Munro [36].

Silicon carbide’s superior characteristics as a structural material from the view-

point of its thermal shock resistance, chemical stability, and low radioactivation have

attracted attention to its potential use in advanced energy systems [37–39]. In a

study of the effect of cyclic thermal shock on candidate nuclear matrix materials,

Lee et al. [39] observed no change in the hardness and even an increased fracture

toughness for SiC as compared to the other ceramics that were considered. SiC has

also attracted a lot of attention for applications in joining of ceramic parts for both

nuclear and non-nuclear applications [38,40]. Joining of parts using polymer pyrolysis

derived SiC was found to provide considerable strength in SiC composites [40].

High temperature and irradiation effects on swelling and mechanical properties of

silicon carbide have been evaluated by several researchers [38, 41, 42]. In general it

has been found that the best performance is for silicon carbide that is of high-purity,
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stoichiometric composition, and has a crystalline microstructure [37, 41–46]. For ex-

ample, Hinoki et al. [37] observed excellent high temperature irradiation resistance

for high purity SiC/SiC composites. These properties make SiC a promising candi-

date for use in nuclear applications in structural parts as well as an inert matrix for

ceramic based fuel elements.

For the successful application of silicon carbide based materials to nuclear ap-

plications, the fabrication process needs to satisfy several requirements. Firstly, the

fabrication process must allow control over microstructure and material purity to en-

sure mechanical performance under high temperature and irradiation environments.

Secondly, the processing technique should allow for facile incorporation of reinforce-

ments and net shape manufacturing. Finally, a non-powder based method would be

preferable for handling of highly pyrophoric/radiotoxic materials that could be used

for nuclear applications [47]. The polymer infiltration and pyrolysis route to precur-

sor derived ceramics satisfies these and has added advantages of low temperature and

pressure-less processing.

1.3 Nanocrystalline Ceramics

Polymer pyrolysis based processing allows for a greater control over the reaction kinet-

ics and microstructure evolution that can be tailored to yield a amorphous/nanocrystalline

ceramic material [48–50]. Such nano-crystalline ceramics are the focus of intense re-

search as they have the potential for unique properties such as “super hardness” and

significantly high toughness [51–54].

Nanocrystalline SiC has being pursued for its mechanical properties, and also for

its superior electrical and optical properties [55]. Vassen et al. [56] reported hardness

of up to 27 GPa for bulk–sintered SiC materials with grain sizes as small as 70

nm. Tymiak et al. [57] have reported hardness value of about 37 GPa with grain

sizes around 20 nm, for SiC films deposited by hypersonic plasma particle deposition.
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Recently, Liao et al. [54] have reported hardness as high as 50 GPa for nanocrystalline

SiC films with grain sizes of 10–20 nm, deposited by thermal plasma CVD.

The superior properties of nanocrystalline ceramics are governed primarily by

the crystal structure [52, 54, 58]. There have been attempts to simulate the atomic

structure and understand the materials properties of PDCs at fundamental level by

modeling and computational studies [59–62], but these studies have not addressed

the unique properties that are sometimes observed in these materials. Besides the

effect of grain size, other factors, such as the presence of hydrogen as in the case of

SiC, can also contribute to the hardness [60]. Currently, the effect of grain size on

the mechanical properties of nanocrystalline ceramics is not as well characterized or

understood as that for metals.

Considerable work, experimental as well as computational, has been done to char-

acterize hardness in nanocrystalline metals. It was first observed by Hall [63] and

Petch [64] that the crystal size in metals had a direct effect on their mechanical prop-

erties. Around the year 1951–53, Hall and Petch, while working at the Cavendish

Laboratory in Cambridge, United Kingdom, independently came up with the same

empirical relationship describing the effect of grain size on the yield strength of met-

als. This relationship is given by equation 1.1 [63, 64] and is famously known as the

“Hall–Petch equation”.

σy = σ0 +
K√
d

(1.1)

where, σy is the yield stress, d is the mean grain size, and K and σ0 are constants; σ0

being the starting stress for dislocation movement.

The increase in yield strength with decreasing grain size, as predicted by equa-

tion 1.1, is attributed to the presence of grain boundaries, which act as barriers to

the motion of dislocations. The smaller the grain size, the greater the pile-up of

dislocations at grain boundaries, and thus greater the barrier to deformation. In this

manner, decreased grain size leads to an increase in the yield strength or the hardness.
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Hall’s and Petch’s observations and the Hall–Petch equation have been experimen-

tally corroborated several times over [65]. However, when the grain sizes decreases

below a certain value, the strength and hardness start to degrease. This phenomenon

is termed as the ‘reverse’ Hall–Petch effect and the first experimental evidence of this

was observed by Chokshi et al. [66] for copper and palladium nanocrystals. Later

this phenomena was subjected to several computational [67,68] as well as experimen-

tal [69–72] investigations.

Mechanisms proposed for the reverse Hall–Petch effect include increased porosity,

suppression of dislocation pile–up, dislocation motion through multiple grains and

sliding in grain boundaries [73]. It is now speculated that there exists a characteristic

grain size, where a crossover occurs from Hall–Petch to reverse Hall–Petch as the

grain size becomes smaller and smaller [74].

In contrast to metals, a fundamental mechanistic understanding of hardness in

nano-crystalline ceramics is lacking. Veprek et al. [75] attempted to explain supe-

rior properties of nanocrystalline ceramics based on conventional fracture mechanics.

They ascribe the extremely high values of fracture toughness observed to a low con-

centration of flaws. Liao et al. [54] experimentally investigated hardness, crystal size,

and crystallinity as a function of the substrate temperature for nanocrystalline β–SiC

films deposited by thermal plasma chemical vapor decomposition, and observed in-

crease in all three, with increase in the substrate temperature. Recently, Szlufarska et

al. [51] studied atomistic processes occurring during nanoindentation of amorphous

silicon carbide (a–SiC) by molecular dynamic simulations and found onset of plastic-

ity at different indentation depths. They observed that load drops occurred during

the simulated indentation of a–SiC, similar to the case of single crystal SiC. Accord-

ing to the authors, their observations point towards a crossover from inter-granular

continuous deformation to intra-granular discrete deformation which is governed by

indentation depth.
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Since polymer-derived ceramics allow for the fabrication of microstructures with

significant control over the grain size, they offer an ideal system for understanding the

effect of crystallinity on the yield strength and other mechanical properties. There

have been recent efforts to characterize the overall structure of polymer–derved ce-

ramics by means of molecular dynamic simulations [59, 61, 76–78]. Kroll [59] studied

the structure, energy and bulk modulus of amorphous silicon nitride and its ternary

derivatives using molecular dynamic (MD) simulations and found that hydrogen plays

a vital role in the kinetic and thermodynamic stability of these materials. Modulus

was found to scale with the density. Atomic models by Amkreutz et al. [61] predict

phase separation to occur between amorphous phases of SiC, Si3N4 and carbon which

is also observed experimentally. These MD simulations focus mainly on understand-

ing the structure of polymer derived ceramics at the atomic scale and investigate the

mechanical properties as influenced by atomistic phenomena. These models do not

consider mesoscale phenomena that seem to govern the bulk mechanical properties

that can, and are being, experimentally investigated.

1.4 Objective of this Investigation

The focus of this work is to characterize and understand the processing–structure–

property relationships of polymer precursor derived silicon carbide. This particular

investigation is part of an ongoing study to develop precursor derived SiC for appli-

cation in advanced energy systems such as nuclear reactors.

Ceramics derived from preceramic polymers are a fast growing class of advanced

materials due to the various advantages they offer, such as low processing temper-

atures, near net shape fabrication, and high ceramic yield. Owing to this, they are

being researched for varied applications from disc brakes to nuclear reactor fuels. Fur-

thermore, nanocrystalline ceramics can be prepared from polymer precursor routes

with relative ease. Nanocrystalline ceramics are touted to be the key to new super
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hard and ultra stiff materials. Since the microstructure is one of the more impor-

tant factors governing the properties, appropriate tailoring can lead to significant

improvement in various properties. Significant work has focused on the improved

properties of nanocrystalline metals; however, in the realm of ceramics, most of the

existing research has looked only at ceramics formed by conventional sintering tech-

niques or, among new techniques, by chemical vapor deposition. Thus there is a need

to characterize the nanocrystalline ceramics derived from polymer precursors.

Of the several non-oxide ceramics, those based on SiC, Si3N4 or general Si/C/N

systems are of particular interest since their exceptional structural stability at very

high temperatures, and low density, makes them ideal materials for application in

adverse environments. Pioneering work in the development of polymer precursor for

Si/C/N materials was done by Verbeek [79, 80] and Yajima et al. [81]. Out of the

aforementioned ceramics, SiC is of particular interest because it has proven to be

a promising candidate for use in nuclear applications owing to its low radioactiva-

tion [37,82].

Various polycarbosilanes are available for use as precursors to prepare silicon car-

bide. This research has focussed on one such precursor, allylhydridopolycarbosilane

(AHPCS), due to its purity, commercial availability, and the ability to yield near-

stoichiometric silicon carbide. There is very limited data in literature on mechanical

characterization of nanocrystalline SiC derived from AHPCS, especially as a function

of the microstructure. Therefore, this study focusses on three aspects. First, sili-

con carbide processing is conducted under controlled conditions by the pyrolysis of

AHPCS under an inert atmosphere and at ambient pressure. The processing itself is

characterized in detail by tracking the chemical changes, phase transformations, and

microstructural changes that are occurring as a function of the pyrolysis conditions.

Subsequently, the mechanical property characterization of AHPCS–derived SiC, in

terms of hardness and modulus, is carried out using instrumented nanoindentation, to
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access the local properties and establish the processing–property–structure relation-

ships. The results of mechanical testing are understood in terms of the microstructure

(characterized using X-ray diffraction and transmission electron microscopy), for ma-

terials processed under different conditions. Finally, the results are analyzed using

simple computational models to understand the role of grain size and crystal volume

fraction on the mechanical properties.
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CHAPTER 2

Background and Literature Survey

2.1 Processing of preceramic polymer

The processing of polymer–derived ceramics begins with the preparation of suitable

monomers, consequently, a lot of research has focused on development of these. Over

the past few decades, a variety of preceramic organosilicon polymers have been de-

veloped as precursors to ceramics with a wide range of compositions in the Si–B–

C–N–O system, and in addition also yield metallic constituents, such as Ti, Al and

Zr [27,83,84]. Considerable research has focused especially on preparation of precur-

sors to SiC, Si3N4, and Si/C/N–based materials, since their exceptional structural

stability at very high temperatures makes them ideal thermomechanical materials.

Pioneering work in the development of polymer precursor for Si/C/N materials was

done by Verbeek [79,80] and Yajima et al. [81]. The latter also intensively investigated

the modern utilization of preceramic polymers to yield mainly SiC; his approach to

synthesis of SiC materials by thermolysis of polycarbosilane is commonly known as

‘The Yajima Process’.

Yajima et al.’s work stirred up the interest in synthesis of polycarbosilanes and

since then a number of different ways to prepare polycarbosilanes have been de-

vised [85–87]. Birot et al. [88] have provided an excellent and comprehensive account

of polycarbosilanes, polysilazanes and polycarbosilazanes as precursors to SiC, Si3N4

and Si/C/N materials. Figure 2.1 shows examples of the polymers that have been syn-

thesized for the preparation of silicon carbide and silicon nitride–based ceramics [89].

By far, the most common approaches for synthesizing SiC by polymer precursor route
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Figure 2.1: Examples of the polymers as precursors to Si-C-N based ceramics [89].

are through polysilanes, polycarbosilanes and polysilazanes, which are basically poly-

meric organosilanes with Si, Si–C and Si–C–N polymer backbones, respectively.

Perhaps the first attempt at synthesizing of polymeric silicon molecules was

exhibited by Kipping [90] in, as early as, the year 1924. He successfully syn-

thesized polydiorganylsilane, which had a polymeric backbone comprised entirely

of silicon atoms. Later in 1949, Burkhard [91] synthesized poly(dimethylsilane),

the first alkyl–substituted polysilane. Some examples of polymers, other than

polycarbosilane, demonstrated as precursors to SiC, are poly(methylsilane) [92],

polymetalloxoorganosiloxanes [93], poly(silaethylene) [87], polysilastyrene [94], and

poly(cyclomethylsilazane) [95].

2.2 Allylhydridopolycarbosilane (AHPCS), as a precursor for SiC

The high temperature ceramic of particular interest to this study is silicon carbide.

And, of the several available SiC polymer precursors, allylhydridopolycarbosilane

(AHPCS) is the polymer of our choice for the current study. It is an ultra high purity

precursor that yields a near stoichiometric ratio on complete pyrolysis [96]. Its high
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Figure 2.2: Diagrammatic representation of AHPCS structure [103].

ceramic yield, relatively low shrinkage, and ability to be handled and processed in

ambient conditions have attracted wide attention, especially as precursor to SiC fibers

and more recently as a matrix material [97–100].

Whitmarsh et al. [86, 101] first reported the synthesis of allylhydridopolycar-

bosilane (AHPCS) by Grignard coupling of (chloromethyl)trichlorosilane, followed

by reduction with lithium aluminum hydride. AHPCS has a nominal structure of

[Si(CH2CH=CH2)2CH2]0.1[SiH2CH2]0.9 [86, 100–102], diagrammatically described as

show in figure 2.2 [103]. Thus it has a Si:C ratio that is close to 1:1 and yields a near

stoichiometric SiC upon pyrolysis. AHPCS is commercially available through Starfire

Systems Co. (Malta, New York, USA) and is being widely researched as a binder

for ceramic powders and matrix source for polymer–derived ceramic matrix compos-

ites [96, 97, 99]. It has also been used to produce SiC coatings and join monolithic

and composite ceramic parts [40, 104]. Furthermore, Solomon et al. [105] have used

AHPCS in developing a light water reactor (LWR) fuel by impregnation of uranium

oxide matrix with AHPCS as a SiC precursor. Previously, Singh and coworkers have

researched ceramic foams based on AHPCS–derived SiC and hollow alumino–silicate
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spheres [106], and currently are pursuing AHPCS–derived SiC as a potential matrix

material for the fabrication of ceramic composite fuels for gas cooled fast reactors

(GCFR) [107] .

2.2.1 Mechanical properties of AHPCS derived SiC

It is evident that AHPCS is gaining great interest for potential use in wide ranging,

technologically advanced, and, in some instances, critical applications. However, not

much mechanical-property data is available for AHPCS-derived SiC. Ceramics derived

from preceramic polymers are often prone to develop cracks and porosity, especially

at higher processing temperatures, due to volume shrinkage and evolution of hydro-

gen gas during pyrolysis [40, 97, 100, 104]. Such inherent porosity influences the bulk

properties of these composites and the measurement of “true” or mesoscale properties

becomes difficult by bulk measurement techniques. Since AHPCS is largely used as

a source of SiC matrix in SiC/SiC composites, its fracture toughness is particularly

important. Fracture toughness of the matrix would have a significant effect on the

fracture toughness of the overall composite since the cracks could initiate and propa-

gate in the ceramic matrix which will inherently contain pores. Another property of

great interest when it comes to AHPCS-derived SiC is the hardness. For applications

such as ceramic brakes, the hardness would determine the wear rate.

There are very limited measurements of mechanical properties of SiC derived

from any polymer precursor, perhaps partly due to the difficulty in fabricating mono-

lithic specimens. Bulk characterization of AHPCS–derived SiC sample, prepared by

PIP process, has reported by Mores et al. [100]. The materials were characterized

in terms of density (by immersion method), fracture toughness (by bulk V–notched

beam method) and hardness (by bulk Vickers indentation test). The highest values

for fracture toughness and hardness were found to be about 167 MPa.m1/2 and 13

GPa, respectively. Porosity was found to adversely affect the properties. Thus, there
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arises the need to characterize the properties of these materials in the monolithic

domain. In this context, nanoindentation, which is widely used to characterize the

mechanical properties at the nano–scale [108], is particularly helpful in determining

the true or mesoscale properties of ceramics that have inherent micropores. In a

recent study, Liao et al. [54] successfully used nanoindentation to determine hard-

ness of superhard SiC films deposited by thermal plasma chemical vapor deposition.

They found that a higher hydrogen flow rate during the deposition process resulted

in greater crystallinity, bigger crystals sizes (27 nm) and lower hardness (30 GPa).

Conversely, at lower hydrogen flow rates, the crystalline fractions and grain sizes were

smaller and the hardness was higher. With an average grain size of 10–20 nm and

crystalline fractions of 80-85% they got film hardness of up to 50 GPa.

Processing parameters such as temperature and time have a direct bearing on the

microstructure of ceramic formed. For example, silicon carbide formed from polymer

precursor generally exhibits an amorphous structure at 1000 ◦C and is crystalline

beyond 1600 ◦C. The mechanical properties can be expected to vary greatly between

these processing temperatures. Hence, information on how the mechanical properties

change with processing parameters will be of great value, and aid not only in design

of parts using these ceramics but also in optimization of processing parameters and

constituents (in composites) to fabricate materials with desired mechanical properties.

2.2.2 Microstructure Characterization of AHPCS–derived SiC

Material microstructure largely governs the final properties of ceramics, and hence

microstructure characterization, as well as the study of nucleation and crystalliza-

tion, are vital for understanding structure–property relationships. While very limited

literature, if any, exists on microstructural characterization of AHPCS–derived SiC

there is some data on Si–C systems derived from other chemical methods. Mitchell

et al. [50] examined the nucleation and crystallization process in Si–C and Si–N–C
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systems produced by the pyrolysis of granulated polymethylsilane and found that

processing temperature and time both influence the crystal size. Nanocrystalline

β–SiC derived from chlorine containing polysilanes/polycarbosilane prepared from

poly(chloromethylsilane–co–styrene) was characterized by DTA, TGA, XRD, TEM,

mass spectroscopy and infrared spectroscopy, by Mitchell et al. [50]. Grain sizes were

calculated to be 5–20 nm. Nechanicky et al. [109] reported TGA, FTIR, TEM and

XRD studies on alpha–SiC/beta–SiC particulate reinforced composites prepared by

PIP using a hyper–branched polymethylsilane (mPMS). Kerdiles et al. [110] used

FTIR and HREM to study nano–crystalline SiC thin films grown by reactive mag-

netron co–sputtering of SiC and C targets. Zhang et al. [111] characterized crystal

structure of nanocrystalline SiC by TEM, and Raman Spectroscopy in SiC thin films

deposited by a plasma–enhanced CVD process. Ying et al. [112] used XRD, TEM

and SAED to study the microstructure of nanocrystalline SiC prepared by reacting

magnesium silicide (Mg2Si) and carbon tetra fluoride (CCl4) in an autoclave and

reported crystal sizes of 30–80 nm.

Work of characterizing the crystal structure of AHPCS derived SiC and probing

its structure–property relations as a function of processing parameters is required as

it will help in fundamental understanding of these materials, and is necessary for the

use of AHPCS derived SiC as an effective matrix material or for joining applications.

2.2.3 Structure–Property relationships for AHPCS derived SiC

Currently AHPCS is preferred more as a matrix source for SiC-fiber/SiC-matix or

particulate-SiC composites than as a source of monolithic unreinforced SiC compo-

nents. Perhaps this is the reason why reports of property-structure characterization

are limited to AHPCS derived composites. While characterizing C/SiC composites

fabricated by infiltrating a woven carbon fiber fabric with a slurry of SiC powder and

AHPCS, Berbon et al. [97] found improved thermal conductivity and diffusivity with
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crystallization in the polymer derived phase. Dong et al. [98] studied microstructural

evolution and mechanical performance of SiC/SiC composites fabricated by poly-

mer infiltration process (PIP). They used AHPCS derived SiC as a matrix along

with uncoated and carbon coated Tyranno SA fibers and pyrolysis was performed

using microwave radiations. Mechanical strength results showed improved flexural

strength, with a strong dependence on the quality of matrix–fiber interface. Zheng et

al. [104] examined the thermal decomposition behavior of AHPCS (Nippon Carbon

Co, Tokyo, Japan) while developing a method of joining SiC ceramics in green state

without applied pressure. Using XRD, they observed the formation of amorphous SiC

(a–SiC) at about 850 ◦C, which completely crystallized at 1600 ◦C. A mixture of SiC

particles and AHPCS, used as a joining paste was found to produce good crack–free

joints. Kotani et al. [113] studied the effect of filler dispersion on the mechanical

properties of unidirectional composites with SiC fibers and SiC matrix prepared us-

ing PIP technique. The polymer precursors they investigated included polyvinylsilane

(PVS) and polycarbosilane (PCS). In another study involving AHPCS, Lewinsohn et

al. [40] found that, when using AHPCS derived SiC in joining SiC composites, higher

processing temperatures increased the strength of joints, possibly due to extensive

crystallization. But there is still a need to realize the processing–microstructure–

property–application relationships for this organic polycarbosilane which will aid in

the characterization of composites derived from AHPCS.
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CHAPTER 3

Experimental Procedure

The preceramic polymer precursor chosen for this study is allylhydridopolycarbosilane

(AHPCS). Selection of this particular preceramic polymer is favored due to the fact

that it is an ultra high purity precursor, yields a near stoichiometric Si:C ratio on

complete pyrolysis, has a high ceramic yield, exhibits relatively low shrinkage, and

is widely used as precursor to SiC fibers. The polymer, designated as SMP–10, is

acquired from Starfire Systems (Malta, New York, USA). At room temperature, it

is in the form of a clear, amber-colored, viscous liquid and has properties as listed

in table 3.1. The polymer was stored under 0 ◦C at all times and handled at room

temperature. All processing during pyrolysis was done under an inert atmosphere, as

specified.

According to Starfire Systems product data sheet on SMP-10, the polymer un-

dergoes a low temperature curing to form a green body between 180 and 400 ◦C and

forms a fully ceramic amorphous SiC between 850 to 1200 ◦C with 80-82% ceramic

yield.

3.1 Material Fabrication

3.1.1 Preliminary Experiments and Setup

One of the main advantages of precursor polymer route to ceramics is the ease of

fabrication. Preparing SiC from AHPCS simply requires heating the polymer to tem-

perature of above 900 ◦C in a oxygen free atmosphere. When the precursor is heated

from room temperature, cross–linking starts at about 100 ◦C and a cured green body
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Property SMP–10 (AHPCS)

Density 0.998

Appearance Clear, Amber liquid

Viscosity 45 to 120 cps at 25 ◦C

Solubility Hexanes, Toulene, Insoluble in water

Flash Point 89 ◦C (192 ◦F)

Moisture Absorbtion < 0.1% in 24 hrs at room temperature

Nominal Cure Temperature 250 to 400 ◦F

Surface Tension 30 dynes/sq.cm

Table 3.1: Properties of STARFIRE SMP–10 as obtained from Starfire Systems Co.,

Malta, New York, USA .

is formed. To track the polymer–to–ceramic conversion as a function of temperature,

carefully weighed quantities of liquid AHPCS were heated, under argon atmosphere,

from room temperature up to 300 ◦, 500 ◦, 700 ◦, and 900 ◦C, respectively. Samples

were held at final temperatures for 30 min to ensure thermal equilibrium. Figure 3.1

shows the setup of the box furnace, fitted with a retort and modified for inert gas

pyrolysis up to 900 ◦C. Pyrolysis beyond 900 ◦C was performed in a specially modi-

fied high temperature furnace (Model no. F46248, Barnstead International, Dubuque,

Iowa, USA). During the initial stages of heating, cross–linking in the polymer is ac-

companied by loss of volatile components in the precursor which were observed to

form yellowish–white deposits on the inner walls of the furnace up to about 700 ◦C.

Hence, the heating was controlled at the slow rate of 5 ◦C/min, for samples heated

up to 700 ◦C, to ensure minimal loss of polymer due to volatilization prior to cross–

linking. There is no fear of losing the volatile components beyond this temperature

and hence higher heating rates can be safely employed beyond 700 ◦C. Small quan-

tities of amorphous SiC derived from AHPCS pyrolyzed at 900 ◦C were loaded in
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Figure 3.1: Setup used for inert gas pyrolysis up to 900 ◦C

alumina crucibles and heated to different temperatures of 1150 ◦, 1400 ◦ and 1650 ◦C

starting from room temperature at 5 ◦C/min and held at final temperature for 30

min, in the high temperature oven under a constant flow of argon.

Since moving to Oklahoma State University in July 2006, a new setup consisting

of argon purged tube furnace was configured as shown in figure 3.2. At the inlet,

ultra high purity argon gas is passed through a combination of moisture and oxygen

traps to ensure zero-oxidation due to impurities that may be present in the tanked

gas. Also, steel tubing is used at the inlet to avoid contamination by air diffusion into

the tubes. After initial runs of the tube furnace with the polymer precursor yielding

slightly oxidized silicon carbide, traps were set up for purifying the argon gas fed to

the tube furnace. The traps used were a high capacity gas purification system (Agilent

Technologies) that consisted of three cartridges: one cartridge removing moisture and

organics, second cartridge removing oxygen and third indicator cartridge to warn of

system saturation; and an indicating moisture removal trap. The setup of these traps

is shown in figure 3.3.
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Figure 3.2: New tube furnace setup used for inert gas pyrolysis up to 1650 ◦C

Figure 3.3: Setup of traps to purify argon fed to the tube furnace. These include: a

cartridge removing moisture and organics, a cartridge removing oxygen and a third

indicator cartridge to warn of system saturation. Finally there is an indicating mois-

ture removal trap.
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3.1.2 Effect of Processing Parameters

To study the effect of processing parameters on the structure of SiC formed and

its mechanical properties, SiC samples were made by pyrolysis of precursor, starting

with the liquid form, heated to 900 ◦, 1150 ◦, 1400 ◦, and 1650 ◦C in a single runs at

4 ◦C/min. To study the effect of holding the material at the final temperature for

different durations, the aforementioned materials being processed were held at the

final temperatures (i.e. 900 ◦, 1150 ◦, 1400 ◦, and 1650 ◦C) for time durations of 2

minutes, 60 minutes, and 4 hours in different experiments. The resulting material

was in the form of chunks of SiC. Samples for nanoindentation were prepared by

embedding part of the chunk in epoxy, which was then polished. Samples for x-ray

diffraction and TEM were prepared by crushing part of the chunk; by hand using

mortar and pestle for XRD, and using a ball-mill for TEM.

3.1.3 Fabrication for Bulk Testing

Other than mesoscale characterization using nanoindentation, bulk characterization

was done using ring-on-ring (ROR) biaxial flexure test. Due to the severe shrinkage

in the precursor during transition from polymer liquid to ceramic SiC, fabricating

a bulk sample purely of SiC derived from AHPCS is a tricky and lengthy process.

The use of reinforcing agents in the form of SiC powders, fibers or whiskers, which is

common in the use of AHPCS, greatly helps since it substitutes a considerable volume

of the composites with these fillers that do not change in volume significantly. Thus

the shrinkage occurs only in the matrix phase which is formed by pyrolysis of the

precursor. Since the aim of this investigation is to characterize the SiC derived from

AHPCS alone, use of reinforcing agents such as SiC fibers or whiskers was avoided.

However, a similar fabrication approach of polymer infiltration and pyrolysis (PIP)

used for fabrication polymer derived ceramic composites was adopted.

First, SiC powder was prepared by pyrolysis of AHPCS to 900 ◦, 1150 ◦, 1400 ◦, and
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1650 ◦C in a single runs at 4 ◦C/min. The samples were held at the final temperature

for 60 minutes to ensure thermal equilibrium. The resulting material acquired the

shape of the crucible and contained large voids generated by the release of hydrogen

gas. These were crushed into powder using a planetary ball mill (PM-100, Retsch

GmbH, Haan, Germany) in a tungsten carbide bowl (WC) with 10 mm WC balls for

12 min at 300 rpm. These powders in turn form the reinforcing fillers in the next step

of fabricating composites using PIP process. Thus by using SiC powder derived from

AHPCS, we could make bulk samples made of SiC purely derived from AHPCS alone.

The powders obtained from the initial pyrolysis of the precursor were then mixed with

a small amounts of polymer precursor (3% by weight of the milled powder). These

mixtures were compacted into short cylinders, 25.4× 15 mm, using a simple steel ram-

cylinder setup. Thin discs cut from a graphite sheet (Grafoil) were used at the bottom

and top of material being compressed. This prevented the material being compressed

from sticking to the mold or the ram. Hand compaction with a load of ∼445 N (∼100

lb) was sufficient to form plugs that could be easily handled. The resulting compacts

were then heated to the final temperature (900 ◦, 1150 ◦, 1400 ◦, or 1650 ◦C). The

resulting samples had a good dispersion of SiC particles in a-SiC matrix. However,

pores were present at this stage resulting from the release of hydrogen during the

polymer pyrolysis. To minimize the pores and increase the material density, the

samples were subjected to multiple polymer infiltration cycles. Figure 3.4 shows the

schematics of the complete PIP processing used in the current study. The infiltration

of the cylindrical plugs was carried out under vacuum, with repeated 1 hour cycles for

4 hours with intermediate 1 min purges. After the 3rd infiltration and pyrolysis cycle,

the cylindrical specimens were cut to obtain discs of 1 mm thickness using a precision

sectioning saw (Isomet 1000, Buehler, Lake Bluff, Illinois, USA). Further infiltration

and pyrolysis, in the aforementioned way, was carried out on the discs up to a total

of 8 cycles. Work by Ozcivici et al. [106] with polymer derived ceramic composites

28



using this polymer system has showed that 8 infiltration cycles are sufficient to obtain

the maximum achievable density. These discs were tested for biaxial flexure modulus

and strength using ring-on-ring test.

3.2 Physical Characterization

To determine the mass loss during polymer-to-ceramic conversion as a function of

temperature, samples prepared, as described earlier by heating polymer precursor

to temperature of 300 ◦, 500 ◦, 700 ◦, 900 ◦, 1150 ◦, 1400 ◦, and 1650 ◦C, were carefully

weighed before and after pyrolysis. All weights were measured using a high-resolution

analytical balance (Model BP-301S, Sartorius, Edgewood, NY). Bulk density and

porosity of the ceramic composite discs fabricated by PIP process using AHPCS-

derived SiC powder and AHPCS-SiC matrix were determined using the buoyancy

method [114] using a density determination kit in conjunction with the high-resolution

analytical balance. First the specimen was dried in a drying oven at 120 ◦C until it

reached a constant mass and then cooled to room temperate in a desiccator. The

dry mass of the sample, m1, was recorded. The sample was then evacuated and

saturated (under vacuum) using ultra high purity distilled water until the open pores

were filled with the saturation liquid. A four-hour evacuation cycle was employed with

intermittent purges at every thirty minutes to release trapped air. The apparent mass

of the saturated sample, m2, was then determined using the density determination

kit. The temperature of the saturation liquid was also recorded to correct for the

variation of the density of water, as a function of temperature. Finally, the mass of

the saturated sample was determined by weighing in air, m3. Before weighing any

liquid that remained on the surface of the sample was removed with a damp sponge

and the operation was performed quickly, to avoid loss of mass due to evaporation.The

density of the saturation liquid (water), ρfl was taken from a given table of density
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Figure 3.4: Schematic of PIP process for fabrication of bulk samples for bulk charac-

terization
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values at defined temperatures, and the bulk density, ρb, was determined by,

ρb =
m1

m3 −m2

× ρfl (3.1)

where, m1 is the dry mass of the sample, m2 is the mass of the saturated sample in

water, m3 is the mass of the saturated sample in air and ρfl is density of the medium

used (water) at the measuring temperature. The open porosity, πa, in vol. % was

calculated as,

πa =
m3 −m1

m3 −m2

× 100 (3.2)

Density measurements were also performed on finely crushed powders of SiC de-

rived from AHPCS heated to 300 ◦, 500 ◦, 700 ◦, 900 ◦, 1150 ◦, 1400 ◦, and 1650 ◦ using

helium pycnometry (Ultrapycnometer 1000, Quantachrome, Boynton Beach, FL).

Powders were dried for 23 h at 60 ◦C in a drying oven prior to these measurements.

This method yields mesoscale density of inherently porous materials, which cannot

be accessed by bulk density measurements.

Fourier transform infrared spectroscopy (FTIR) analysis performed on polymer

precursor material heated from room temperature to final temperatures of 300 ◦, 500 ◦,

700 ◦, 900 ◦, 1150 ◦, 1400 ◦, and 1650 ◦ using a Nicolet Model Magna 760 FTIR spec-

trometer with ZnSe ATR crystal with 4cm−1 resolution and average over 256 scans.

The crushed powders were used as-is and analyzed in a microscope using reflectance

mode. These measurements were performed with the help of Environmental Nan-

otechnology Research Group directed by Dr. Gary P. Halada in the department of

Materials Science and Engineering at Stony Brook University.

Simultaneous differential thermal analysis (DTA) and thermogravimetric analysis

(TGA) was performed to study the conversion of amorphous SiC to nanocrystalline

SiC. A small amount of SiC derived from polymer precursor pyrolyzed at 900 ◦C

was heated to 1300 ◦C at a rate of 5 ◦C/min under nitrogen atmosphere (STA 449

C Jupiter, NETZSCH, Selb/Bavaria, Germany). These measurements were done at
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the Center for Thermal Spray Research, in the department of Materials Science and

Engineering at Stony Brook University, NY, directed by Dr. Sanjay Sampath.

X–ray diffraction studies were also performed on SiC powders pyrolyzed at 900 ◦,

1150 ◦, 1400 ◦, and 1650 ◦C. Powder samples were prepared by wet milling in a plan-

etary ball mill (PM–100, Retsch GmbH, Haan, Germany) for 4h in ethanol and then

mounted on glass slide. Powder diffraction patterns were collected using Scintag

PAD–X automated diffractometer with a CuKα radiation (λ = 0.1540 nm) using a

scanning rate of 0.5 ◦ per min and operating at 45 kV and 25 mA.

To characterize the microstructure of SiC formed at different processing temper-

atures, transmission electron microscopy (TEM) was performed on powders crushed

using a ball-mill as described before. TEM studies were performed using a JEOL

JEM-2100 Scanning Transmission Electron Microscope System equipped with an

EDAX Genesis 2000 EDS system. TEM studies were performed with the help of

Dr. Susheng Tan at the Oklahoma State University Microscopy Laboratory.

3.3 Mechanical Characterization

Chunks of SiC material from the pyrolysis products, at different processing tempera-

ture and different hold times, were mounted in epoxy (Epoxicure, Buehler, Lake Bluff,

Illinois, USA) and polished to a mirror finish using Ecomet 3 polisher (Buehler, USA).

Samples were then indented using a sharp Berkovich diamond indenter (NanoIndenter

XP, MTS, Oak Ridge, TN) to a peak load of 10, 25, 50 and 100 mN for each mate-

rial. A total of 10 indentations were performed for every sample. Nanoindentation

was performed in the Polymer Mechanics Lab, which is directed by Dr. Hongbing

Lu, in the Mechanical and Aerospace Engineering department at Oklahoma State

University.

Bulk mechanical characterization was done using ring-on-ring (RoR) biaxial tests.

The RoR is an axisymmetric test, where the disc is supported by a ring and loaded
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from the opposite side by another smaller concentric ring, as shown in Fig. 3.5. The

concentric rings were made up of stainless steel and had bullnose edges with a radius

of 0.3125 mm towards the loading side. This configuration led to a support ring of

φ19.05 mm and the loading ring as φ6.35 mm. The specimens were loaded in the

Figure 3.5: Schematic of fixture for testing biaxial flexure properties using RoR.

RoR fixture using a standard mechanical testing frame. In the area underneath the

smaller ring there exists an equibiaxial tensile stress state where the initialization of

fracture is expected. The flexure strength can then be determined from the peak load

at failure Eqn. 3.3 as [115],

σRoR =
3P

2πt2

[
(1− ν)(a2 − r2)

2R2
+ (1 + ν) ln

a

r

]
(3.3)

where ν is the Poisson ratio of the specimen and assumed to be 0.20 for SiC, a is the

radius of the support ring, r is the radius of the load ring, and R and t are the radius

and thickness of the disc specimen, respectively.

The RoR configuration is preferred over the other equibiaxial tests since it subjects

a greater portion of the specimen to an equibiaxial stress state and distributes the

applied contact load over a larger area. This lessens the applied stress concentration

at the contact locations between the fixture and specimen and lowers the likelihood

of fixture-induced specimen failure (invalid test data).
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CHAPTER 4

Results and Discussion

4.1 Polymer–to–Ceramic Conversion

Fourier transform infrared spectroscopy (FTIR) analysis performed on polymer pre-

cursor material heated from room temperature to final temperatures of 300 ◦, 500 ◦,

700 ◦, 900 ◦, and 1150 ◦C, respectively, greatly aided the study of polymer to ceramic

conversion. Figure 4.1 shows IR spectra obtained for products at different tempera-

tures; data is offset to aid comparison. Peaks attributed to C–H (stretching), Si–H

(stretching) and Si–C (rocking) bonds were clearly observed in the ranges of 2800–

3000 cm−1, 2000–2140 cm−1, and 870–1070 cm−1 [96, 116, 117], respectively. It can

be seen that the relative intensity of all the peaks initially increases with increasing

temperature, which is a result of the increase in crosslink density as the polymer

cures to form a network structure. A gradual shift in the Si–H peak towards lower

wave numbers, with increasing temperatures, suggests conversion of silicon–hydrogen

bonding from Si–H3 to Si–H2 to Si–H, as hydrogen is expelled from the system. The

broad peak attributed to several C–H bonds reduces, and eventually disappears, along

with the Si–H peak at 1150 ◦C as hydrogen is completely removed. Small peaks re-

sulting from the presence of mono–substituted alkenes in the polymer appear around

900 cm−1(d) at 300 ◦ and 500 ◦C and soon disappear at higher temperatures. Peaks

attributed to CH3 (bending) (a and b) and SiCH2Si bonding (c) are also identified

in the IR spectra. A small amount of hydrogen appears to be present in the system

even at 900 ◦C, whereas at 1150 ◦C the presence of only an SiC peak shows compete

conversion of polymer into SiC.
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Figure 4.1: IR Spectra for AHPCS heated to 300 ◦C (i), 500 ◦C (ii), 700 ◦C (iii), 900 ◦C

(iv) and 1150 ◦C (v).

Figure 4.2 shows the ceramic yield obtained as a function of decomposition temper-

ature. The loss in weight is attributed to the loss of low–molecular weight oligomers

and hydrogen gas [96]. It should be noted that in our case, volatilization driven mass

loss was not limited even with very slow heating rates. Marginal loss in mass was

observed beyond 700 ◦C and about 72–74% ceramic yield in the form of amorphous

SiC was obtained in the range 900 ◦–1650 ◦C. In a separate study [118] on reaction

kinetics during the pyrolysis of AHPCS, the polymer pyrolysis was characterized as a

three–step process consisting of volatilization, cross–linking and crystallization; and

activation energies for the volatilization and cross–linking were determined as 83.1

kJ/mol and 149.7 kJ/mol, respectively, using the mass loss data discussed above.

Conversion of the polymer precursor into ceramic material was also tracked in

terms of density (shown in fig. 4.2 along with sample mass variation) of pyrolysis

products at different stages of heating. Density measurements were performed using
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Figure 4.2: Mass loss and density variation as a function of temperature for AHPCS

pyrolyzed to different temperatures.

helium pycnometry on finely crushed powders, dried for 2–3 h at 60 ◦C in a drying

oven. This method yields true density of inherently porous materials, which cannot

be accessed by bulk density measurements. Starting with a liquid AHPCS having a

density of 0.997 g/cc (as mentioned by Starfire Systems Inc., USA), a dry and partially

crosslinked solid with a density about 1.07 g/cc is obtained at 300 ◦C. Further heating

results in more crosslinking accompanied by the loss of low molecular weight oligomers

and release of hydrogen gas. As the processing temperatures increase further, density

is observed to rise steadily until it reaches values that are close to the theoretical

density for SiC at 1150 ◦C. It is worthwhile to note that SiC obtained at 900 ◦C

exhibited a density of only 2.67 g/cc (as compared to 3.2 g/cc expected for sintered

SiC), which could be due the presence of residual hydrogen as was observed during

FTIR analysis.
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Figure 4.3: DTA and TG curves for AHPCS heated to 1300 ◦C at a rate of 5 ◦C/min.

4.2 Amorphous to Amorphous/Nano–crystalline Conversion

Evidence of crystallization in our SiC samples derived from AHPCS was first seen in

differential thermal analysis (DTA) experiments. Figure 4.3 shows the DTA and TG

curves obtained. A distinct peak is seen in the DTA curve around 1100 ◦C which is

attributed to the initiation of crystallization in the material. The occurrence of this

peak coincides with the change in slope in the TG curve. Further evidence of on–set

of crystallization at this temperature was seen in the X–ray diffraction (XRD) and

electron diffraction patterns obtained for the pyrolyzed products.

Figure 4.4 shows the XRD patterns obtained for various samples; data is offset to

aid comparison. Amorphous SiC that was formed at 900 ◦C shows a greatly diffused

peak whereas the peak intensity increases as the processing temperatures increase.

Gradual growth of SiC peaks at 2θ values of 35.7 ◦, 60.2 ◦ and 72.0 ◦ suggests increasing

ordering as nano–crystalline domains form and grow in amorphous SiC. It is noted

that small peaks for residual tungsten carbide (WC), from the grinding media, are

seen in the patterns. Also, even though a peak for WC lies very close to the SiC peak

at 35.7 ◦, the prominent peaks at this 2θ are attributed to SiC since the WC peak
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Figure 4.4: Powder diffraction patterns of SiC derived from AHPCS heated to 900 ◦,

1150 ◦, 1400 ◦ and 1650 ◦C.

at 35.6 ◦ and 48.3 ◦ are expected to be of same intensity according to JCPDS (ICCD

29–1131). An estimate of the crystallite size was obtained from peak broadening

using the Debye–Scherrer equation [119]. Peak broadening, in terms of full width at

half–maximum (FHWM), was determined by fitting the obtained pattern using the

XFIT program, which uses the pseudo Voigt (PV) and split Pearson (PVII) functions

along with a fundamental parameters (FP) convolution approach [120]. Instrument

broadening, determined by using NIST–traceable line–width standard LaB6 sample

(SRM 696), was accounted for, while determining the crystallite sizes at different

temperatures. The crystallite sizes were found to be about 3.65 nm, 5.02 nm, and

11.03 nm at 1150 ◦, 1400 ◦, and 1650 ◦C, respectively. Samples sent to a commercial

laboratory (XRD.US) for determination of crystal sizes gave similar results of 3.83 nm,

6.50 nm and 11.07 nm for SiC fabricated at 1150 ◦, 1400 ◦, and 1650 ◦, respectively.

Figure 4.5 shows the powder diffraction plots obtained from XRD.US. The sharp

peaks near 2 theta values of 28 ◦, 47 ◦, and 56 ◦ are from pure Si powder that was
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Figure 4.5: Powder diffraction patterns of SiC derived from AHPCS heated to 900 ◦,

1150 ◦, 1400 ◦ and 1650 ◦C, from a professional laboratory (XRD.US).

added to the SiC sample powders. Similar observations, for this material system,

have been reported in literature [97].

Further evidence of the presence of amorphous SiC at 900 ◦C and its polycrys-

talline nature at higher temperature was seen from transmission electron microscopy.

Figures 4.6–4.9 shows TEM micrographs obtained for SiC processed at 900 ◦, 1150 ◦,

1400 ◦, and 1650 ◦C, and held at the final temperature for 4h. While at 900 ◦C, SiC

is mostly seen in amorphous form, small domains of ordered regions are seen at some

places. This is due to the long hold duration at this temperature. A lot of small

crytalline regions are seen in SiC processed to 1150 ◦C. Similar, but larger domains

are seen at 1400 ◦C. These domains appear to be surrounded by an amorphous phase

as the one seen at 900 ◦C. The TEM micrograph for 1650 ◦C processing clearly shows

large domains of well ordered material. All these domains are showing nanocrystalline

SiC. A rough estimate of the size from TEM micrographs supports the crystal sizes

determined by powder diffraction.
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Figure 4.6: TEM micrographs for SiC derived from AHPCS heated to 900 ◦C and

hold duration of 4h. While the microstructure is mostly amorphous, some areas of

crystalline regions are seen.
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Figure 4.7: TEM micrographs for SiC derived from AHPCS heated to 1150 ◦C and

hold duration of 4h. Large number of crystalline area with average size of 2-3 nm can

be seen.
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Figure 4.8: TEM micrographs for SiC derived from AHPCS heated to 1400 ◦C and

hold duration of 4h. Crystalline regions of average size of 5-6 nm are seen.
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Figure 4.9: TEM micrographs for SiC derived from AHPCS heated to 1650 ◦C and

hold duration of 4h. Large and distinct crystalline regions of 10–15 nm are seen.
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Figure 4.10: SAED patterns for SiC derived from AHPCS heated to (a) 900 ◦C, (b)

1150 ◦C, (c) 1400 ◦C and (d) 1650 ◦C.

Further, selected area electron diffraction (SAED) patterns were obtained during

transmission electron microscopy (TEM) studies on these SiC samples and are shown

in figure 4.10. As seen in the figure, greatly diffused concentric rings for SiC processed

at 900 ◦C (a) suggests a largely amorphous structure. These rings are seen to gradually

become distinct and sharp for SiC processed at higher temperatures (b–d), which is

suggestive of growing crystallite size. SAED patterns obtained for SiC processed

at 1650 ◦C (d) shows tiny bright specks intermittently along the rings. These are

typically observed for nano–sized polycrystalline materials [121].
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4.3 Mechanical Property Characterization

Mechanical properties of SiC derived from AHPCS pyrolyzed to 900 ◦, 1150 ◦, 1400 ◦,

and 1650 ◦C and held at the final temperature of 2 min, 60 min, and 4h were charac-

terized in terms of hardness and elastic modulus using instrumented nanoindentation.

Nanoindentation was performed using a Berkovich tip using various peak loads of 10,

25, 50, 75, and 100 mN. Indentations with multiple loads was performed to deter-

mine the loads required to obtain sufficient displacements, so as to obtain reliable

results. Very low indentation loads would result in insufficient displacements that are

influenced by surface effects and indenter tip radius, which would lead to inconsistent

results. At the same time, very high loads would lead to large depths and results

could be affected by porosity or substrate effects. Figure 4.11 show the values of

hardness obtained for SiC processed at 900 ◦C along with the error bars showing the

standard variation. Large variation in data was observed at the low load of 10mN.

At 25mN, data was consistent over multiple tests and a good nanoindentation depth

of 250–300 nm was observed. Hence indentation data being discussed further is from

experiments performed with peak indentation load of 25 mN.

Figures 4.12 and 4.13 show load-displacement plots typically obtained for these

materials. A quick comparison of those obtained for materials processed at different

temperatures with the same hold time of 1h (fig 4.12) suggests that the SiC obtained

at 900 ◦C is the most compliant amongst all, showing the highest deformation, and the

materials processed to higher temperatures are less compliant. It is interesting to note

that the depth of indentation does not decrease directly with increasing processing

temperature. Material processed at 1150 ◦C typically shows the lowest indentation

depth followed by material processed at 1400 ◦C and then that processed at 1650 ◦C.

This suggest that during the processing of SiC, the materials undergoes change in

mechanical properties, becoming harder at 1150 ◦C and then softening when processed

beyond this temperature. Similarly, a comparison of load-displacement plots for SiC
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Figure 4.11: Modulus obtained with different indentation loads for SiC processed to

900 ◦C. Large error bar shows that lower load of 10 mN gave inconsistent results due

to surface effects and low indentation depth.

processed to the same final temperature (1150 ◦C) and different hold times, as shown

in fig 4.13, suggest a softer SiC when processed for 2 min hold time becoming hard

when processed to 1h hold time and then softening again when processed further

to 4h hold time. These trends differ greatly for different combinations of processing

temperatures and hold times and can be better tracked in terms of the modulus and

hardness.

Figures 4.15 and 4.14 show the hardness and modulus as a function of processing

temperature. Error bars show standard deviation. Nominal values of hardness and

modulus were obtained for SiC that was pyrolyzed at 900 ◦C with a hold time of 1h

and 4h. For the 25 mN peak load, these values were about 160 GPa for modulus and

about 23 GPa for hardness, which are typical for a–SiC. Material processed at 900 ◦C

with a hold time of 4h showed higher values of about 197 GPa for modulus and about

25 GPa for hardness. There is considerable variation seen in hardness and modulus

as a function of temperature and these variations are also dependent on the hold time
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Figure 4.12: Load displacement plots obtained during indentation of SiC processed

at different temperatures and for a hold time of 1h. Peak indentation load of 25 mN.

Figure 4.13: Load displacement plots obtained during indentation of SiC processed

at 1150 ◦C and for different hold times. Peak indentation load of 25 mN.
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at final temperatures. Figure 4.15 shows three curves for three different trends seen

in the hardness values, as a function of processing temperature, for materials held

for three different time durations at the final temperature. Materials held for 2 min

and 1 h hold durations show a similar trend of an initial increase in the hardness

values for materials processed at 1150 ◦C and then a drop in hardness progressively

as material was processed to higher temperatures of 1400 ◦C and 1650 ◦C. Whereas

materials held for 4h shows a progressive decrease in hardness with increasing pro-

cessing temperatures. It is also interesting to note that the hardness values are very

close for materials held for 2 min and 1 h hold durations at the lowest and highest

processing temperatures being considered, i.e. at 900 ◦C and 1650 ◦C. The highest

values for hardness of around 30 GPa were seen for the material processed at 1150 ◦C

for a hold time of 1 h. This is about 52% higher than the lowest value, which is seen

for material processed at 1650 ◦C and a hold time of 4 h. Similarly, figure 4.14 shows

three curves for three different trends seen in the modulus values, as a function of

processing temperature, for materials held for three different time durations at the

final temperature. While values for modulus were very close for material processed

for 2 min and 1h hold durations at temperatures of 900 ◦C and 1650 ◦C, the values

peaked at 1150 ◦C for 1h hold samples and at 1400 ◦C for those held for 2 min. In

both these cases, higher modulus values were seen at intermediate processing tem-

peratures of 1150 ◦C and 1450 ◦C as compared to 900 ◦C and 1650 ◦C. Samples held

for 4h at the final temperature show lowest values of about 197 GPa, which increases

with processing temperature to about 205 GPa at 1650 ◦C. Just like in the case of

hardness, highest values of modulus were observed for materials processed at 1150 ◦C

for a hold time of 1 h. Highest modulus values were about 218 GPa, which is 37%

higher than the lowest value which is seen for material processed with 2 min hold

time at 900 ◦C.

Figures 4.16 and 4.17 show the hardness and modulus as a function of the hold
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Figure 4.14: Hardness determined by nanoindentation for SiC derived from AHPCS

heated to 900 ◦, 1150 ◦, 1400 ◦, and 1650 ◦C, as a function of processing temperature.
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Figure 4.15: Modulus determined by nanoindentation for SiC derived from AHPCS

heated to 900 ◦, 1150 ◦, 1400 ◦, and 1650 ◦C, as a function of processing temperature.
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Figure 4.16: Hardness determined by nanoindentation for SiC derived from AHPCS

heated to 900 ◦, 1150 ◦, 1400 ◦, and 1650 ◦C, as a function of hold duration at final

temperature.

durations at final temperature for SiC processed to different temperatures. In general,

for both hardness and modulus, progressive increase is seen for SiC processed to final

temperature of 900 ◦C as the hold time at 900 ◦C is increased. On the other hand, SiC

processed to 1650 ◦C shows continuous drop in hardness as the hold time is increased

from 2 min to 4h. The values of modulus do not change significantly as a function

of hold time for SiC processed to 1650 ◦C. For both, hardness and modulus, material

processed to intermediate temperatures of 1150 ◦C and 1400 ◦C shows slightly higher

values for hold time of 1h as compared to other hold times.

These results, in conjunction with the microstructural information at different

temperatures, make for interesting observations. Amorphous SiC is formed at 900 ◦C
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Figure 4.17: Hardness determined by nanoindentation for SiC derived from AHPCS

heated to 900 ◦, 1150 ◦, 1400 ◦, and 1650 ◦C, as a function of hold duration at final

temperature.
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No. Material Biaxial Strength (MPa) Pyrolysis Temp. ( ◦C)

1 SiC-900 In progress 900

2 SiC-1150 79.58 ± 8.11 1150

3 SiC-1400 85.26 ± 5.28 1400

4 SiC-1650 Oxidized 1650

Table 4.1: Biaxial strength of the SiC–SiC composites fabricated by using PIP route

and tested using RoR biaxial flexure test

with 2 min hold time and increasing the hold time further densifies the material

resulting in improvements in its mechanical properties. With a hold time of 4h, the

microstructure remains mostly amorphous at 900 ◦C, but there are some crystalline

regions formed which explain the small increase in mechanical properties observed for

SiC processed at 900 ◦C for 4h. Nanocrystalline SiC with average crystal size of about

3 nm is formed at 1150 ◦C and this greatly influences its mechanical properties. SiC

formed at higher processing temperatures of 1400 ◦C and 1650 ◦C had larger grain sizes

but lower mechanical properties. This could be due to the classical Hall-Petch effect

which ascribes increasing mechanical properties for smaller grains sizes to dislocation

pile-up on grain boundaries. Varying the hold duration at final temperature has a

limited effect on the mechanical properties. While hardness and modulus increases for

amorphous SiC processed to 900 ◦C with increasing hold duration, for SiC processed

to higher temperatures, these properties generally increased only marginally for 1h

hold and generally decreased for 4h hold durations. Thus, there appears to be an

optimum processing temperature (possibly about 1150 ◦C) that results in just the

right grain size to achieve higher mechanical properties. Similarly, an optimum hold

time of 1h results in better properties as compared to 2 min and 4h hold durations.

Unfortunately crystal size data could not be produced as a function of hold times

for different final temperatures due to limited access to XRD facilities. Also, degree
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of crystallinity measurements are desirable and would be invaluable in gaining fur-

ther insight into the variation of microstructure and its influence on the mechanical

properties. However, analysis of the powder diffraction data to determine degree of

crystallinity for these sample would require detailed Rietveld analysis and was not

undertaken in this study. Bulk properties in terms of biaxial strength was performed

using RoR as described before. Table 4.1 lists the biaxial flexure strength obtained

for the bulk samples composed purely of SiC derived from AHPCS and fabricated

using the PIP process.
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CHAPTER 5

Finite Element Modeling

5.1 Introduction

The goal of this investigation is to develop a better understanding of the process-

ing – microstructure – property relationships for AHPCS-derived SiC. In order to

optimize the overall mechanical properties of composite materials fabricated using

AHPCS-derived SiC, it is necessary to systematically examine the influence of mate-

rial morphology and constituent properties. As the mechanical properties of a mate-

rial are governed by its microstructure, this implies one needs to be able to model the

microstructure and deformation mechanisms that govern the resulting properties.

According to Meyers et al. [122], classical analytical solution methods are inad-

equate to obtain closed form solutions for polycrystalline materials and this neces-

sitates the use of numerical modelling. They provide a comprehensive account of

numerical models in literature targeted towards studying polycrystalline materials.

Finite element methods (FEM) and molecular dynamics (MD) are the two numerical

methods that are most commonly used to model polycrystalline and nanocrystalline

materials. Further, irrespective of the method, most work in literature at this scale

has focused on nanocrystalline metals, particularly Ni and Cu, and work on modeling

of nanocrystalline ceramics has been extremely limited.

Using FEM, Fu et al. [123] studied the phenomena of grain boundary strength-

ening in polycrystalline materials, by idealizing the material as a two-dimensional

composite of grain and grain boundaries. Material systems they studied included

nanocrystalline iron and copper. They modeled the grain interiors using crystal plas-

55



ticity and grain boundary region using isotropic plasticity in an attempt to cap-

ture the increase in strength with decreasing grain size, which has been established

experimentally. While working on FEM modeling of nanocrystalline Ni, Anand et

al. [124] coupled a crystal-plasticity model for grain interiors with a elastic – plastic

grain–boundary interface model. They introduced cohesive elements along the grain

boundaries to model grain–boundary slip which account for reversible elastic, as well

as irreversible inelastic sliding–separation deformations. According to them, a com-

petition between grain-boundary deformation and grain interior deformation governs

the observed macroscopic mechanical response in nanocrystalline materials.

Finite Element Modeling (FEM) has been well established in simulation of struc-

tural behaviors of composites owing to its capability to deal with multiple material

constituents and flexibility of variation in materials properties parameters and mor-

phology. However, FEM method is continuum based and has no intrinsic length

scale associated. At the nanocrystalline level, the validation of a continuum model

is a primary issue due to the associated length scales. The dimensions of grains in

nanocrystalline materials are so small that classical continuum based theories may

not be applicable. Length scale effects must be introduced through material models

in the finite element calculation. Molecular dynamics is better equipped to handle

such small length scales since it directly models the atoms and thus incorporates the

atomic length scales of the crystal directly into the computation. While phenom-

ena such as grain slipping can be easily handled by MD, development of specialized

models is required to include these effects in finite element models. For phenomena

that exist only at the length scales being investigated, obtaining the material con-

stants and verifying the accuracy of the model independently from the systems being

investigated is a major challenge [122].

As compared to FEM, more work has been done in modeling of nanocrystalline

materials using MD simulations because of the advantages mentioned above. Exten-
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sive MD modeling of nanocrystalline metals has been done by Van Swygenhoven and

coworkers [125–128]. They have studied the role of grain-boundary structure using

models of polycrystalline nickel and copper with average grain sizes between 5–12

nm. For a uniaxial state of stress they found that there was no damage accumulation

during deformation and there was a change in the deformation mechanism which was

governed by the grain size. While all deformations were accommodated in the grain

boundaries and grain boundary sliding at smallest grain sizes (∼3 nm), a combination

of sliding and intra-grain dislocation activity was observed for large grain sizes (10–12

nm).

While most of the simulations of nanocrystalline materials involve uniaxial de-

formations, other dynamic phenomena have been studied as well. While studying

nanoindentation, modeled by defining a moving repulsive potential on gold, Swygen-

hoven et al. [129] found that, for an indenter smaller than the grain, dislocation

absorption and emission took place at the grain boundaries. In their study, the MD

model contained 15 grains with a mean diameter of 12 nm and was indented with

a spherical indenter with a radius of 40 Å. Molecular dynamic simulations has thus

helped understand the deformation processes at the length scales of the nanocrys-

talline grain size. A summary of the general things learnt from MD simulations is

presented in Derlet et al. [128].

However MD modeling has several limitations, as pointed out by Meyer et al. [122],

associated with time scales, length scales, and computational costs. Molecular dy-

namics calculations occur at extremely high strain rates that cannot be reproduced

experimentally. The length scales of MD models has a direct bearing on the compu-

tational cost and this has limited the sample size to a great extent. As a result of

this, direct comparisons to results of macroscopic experiments are not possible.

Other than FEM and MD models, there have been efforts to describe deformations

in nanocrystalline materials using simple mixture based models. Kim et al. [130] mod-
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eled the plastic deformation of nanocrystalline materials with a constitutive equation

based on the evolution of the dislocation density. In their model, the mechanical

properties of the crystalline phase were modeled using unified viscoplastic constitu-

tive relations and the deformation mechanism for the grain-boundary phase modeled

as a diffusional flow of matter through the grain boundary. They analyzed the over-

all plastic deformation of the composites as function of grain size by using a simple

rule of mixtures approach. According to the authors, their model is able to interpret

the breakdown of the Hall–Petch relation with decreasing grain size and the rate

dependence of the deformation behavior. In another mixture based model, Zhou et

al. [131] investigated the effect of grain size and porosity on the elastic modulus and

strength of porous and multi-phase nanocrystalline ceramics. The authors developed

a mixtures-based model to describe the mechanical behavior of constituent phases

and further applied Budiansky’s self-consistent method [132] to determine the effec-

tive mechanical properties of the composites. However, their model does not look at

the deformation mechanisms governing the mechanical properties at small scales and

hence the model fails to show any decrease in mechanical properties as a function of

grain size that would occur due to grain-boundary activity.

A method that couples atomistic MD approach and continuum approach is the

quasicontinuum method (QC) developed by Tadmor et al. [133–136]. In this method,

MD approach is applied to the areas where critical phenomena occur while the sur-

rounding areas are modeled using FEM. This approach has been successfully applied

to look at problems such as interactions of cracks with grain boundaries [135] and

dislocation generation at grain boundaries [137].

Another numerical modeling approach which has great potential and gaining at-

tention for modeling deformation in nanocrystalline materials is the generalized in-

terpolation material point method (GIMP) [138–140]. GIMP is an improvement over

the material point method (MPM), overcoming its limitations with handling large
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scale deformations. Further, GIMP can deal with the multi-scale modeling approach

and has the potential to bridge the gap between the atomic level modeling methods

(MD) and continuum based methods (FEM). Moreover, there have been successful

efforts to couple MD with MPM [139,141,142].

However, in the current work, effort is directed towards modeling the polycrys-

talline material using the simplest approach. Finite element modeling was adopted

simply due to the ease of use, relatively short learning curve, and availability of

user-friendly commercial code such as ABAQUS.

5.2 Procedure

A two dimensional diagram consisting of randomly distributed crystals was created

using a centroidal voronoi tessellation (also called called Dirichlet or Thiessen tessel-

lation). Voronoi tessellation divides a given space into a set of disjoint and convex

voronoi polytopes. Given a number of seed points, N , to divide a space Rd into N

voronoi polytopes, N nuclei points are randomly generated in the space and the set of

points closer to a nucleus P , than the neighbouring nuclei, is assigned to the nucleus

P . The points that are equidistant from a pair of seeds lie on the boundary between

two adjacent polygons and those equidistant from three points form the vertex of

three adjacent polygons. This is typically achieved by introducing planar cell walls as

perpendicular bisectors of line connecting neighboring points (seeds). The resulting

polygons form a contiguous, space-exhaustive tessellation that is unique for any given

distribution of points [143]. A centroidal Voronoi tessellation (CVT) is a Voronoi tes-

sellation of a given set such that the associated generating points are centroids of

the corresponding Voronoi regions. Voronoi tessellation has been extensively used

in materials science for modeling microstructure of randomly distributed grains in

polycrystalline materials [123,124,144–146].

From a material science perspective, the Voronoi tesselation can be interpreted
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in terms of a simple homogenous crystal growth process with the following assump-

tions [143,147]

1. All nuclei appear simultaneously.

2. All nuclei remain fixed in location throughout the growth process.

3. All nuclei are weighted equally.

4. For each nucleus growth occurs at the same rate in all directions.

5. The linear growth rate is the same for each cell associated with a nucleus.

6. Growth ceases for each cell whenever and wherever it comes into contact with

a neighboring cell.

A large number of codes, using different algorithms, to generate Voronoi diagrams

are freely available. We have used a code for Matlab written by Dr. John Burkardt

at the Florida State University [148, 149] that allows for interactive control over the

refinement of a Voronoi diagram. The code uses the function voronoi(x,y) available

in Matlab which plots the bounded cells of the Voronoi diagram for the points x,y.

The relevant code is listed in Appendix A. The output of this code consist of two sets

of X, Y coordinates, each for the starting and ending vertices of lines which for the

edges of grains and also a set of vertices for the seeding points. The output format

looks like the following,

vx =

x1,1 x1,2 x1,3 x1,4 x1,5 ...

x2,1 x2,2 x2,3 x2,4 x2,5 ...

vy =

y1,1 y1,2 y1,3 y1,4 y1,5 ...

y2,1 y2,2 y2,3 y2,4 y2,5 ...
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x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

where the the first row in vx and vy are the X,Y coordinates of the staring point

of the lines and the second rows in each vx and vy are the X,Y coordinates of the

end points of the lines, which form the edges of the Voronoi polygons. The list of

coordinates at the end are those for the seeding points generated randomly.

Since the output is a set of lines in no particular order, the next step was to

determine the lines that belong to particular individual grains. To do this a program

was written in C making use of the fact that all points inside the Voronoi polygons are

closer to its seeding point than any other neighboring seeding points. The flow chart

for this program in figure 5.1. The source code is listed in Appendix B. The output

of is a sets of coordinates for lines corresponding for grain edges grouped together for

individual grains.

To incorporate a grain boundary phase around each grain, a small isotropic in-

plane compression is applied to each Voronoi grain. When grains are compressed

in this fashion, an inter-granular space is created which form the grain boundary

phase. For this purpose another code was written in C. The compression is achieved

by drawing a vector from each coordinate on the edges of the grain to the centroid

and translating the points on the edges towards the centroids by a certain translation

factor, r. Area fraction occupied by grains and grain boundary is calculated. The

value of r can be set to obtain a desired grain-grain boundary area fraction. Since the

model is two dimensional, this area fraction covered by grains becomes the volume

fraction of crystalline material in the polycrystalline model. This approach has been
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Figure 5.1: Flowchart of code that groups edges forming individual grains when given

a Voronoi diagram with edges in no particular order. Code listed in Appendix B.
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used by Zhang et al. [146] to create grain boundary phase in finite element modeling

of polycrystalline silicon carbide.

The flow chart of the program written for compressing the grains and the output

of the program is shown in figure 5.2. As an output, this code gives the coordinates

that are the points on the edges of the compressed grains grouped together for each

grain, with the grains themselves not arranged in any particular order. This became

the input for the next step of drawing these grains for finite element modeling. The

code for compressing grains and calculating the crystalline fraction is included in

Appendix C.

Finite element modeling was done using ABAQUS Standard using two different

approaches. To save time and labor, scripts were written in PYTHON for automat-

ing the tasks such drawing grains, assigning material properties, etc. In the first

approach, each grain and grain boundary surrounding to that grain were formed as

individual parts. In this way, for a 25 grain model, the number of parts were 50 (25

grains and 25 grain boundaries), the number of parts for a 100 grain model were 200,

and so on. Once all the grains were drawn as individual parts, they were assembled

into a single assembly. Following this, the edges of each grain were tied to the corre-

sponding grain boundary edges and the edges of adjacent grain boundaries were tied

to each other. Figure 5.3 shows a typical grain and grain boundary modeled as dif-

ferent parts before assembly. All the grains and grain boundaries were then assigned

corresponding properties as described later. A sample PYTHON code that generates

a 25 grain model by sketching 25 grains and 25 grain boundaries, assembles them

into one assembly, and assigns material properties to all grains and grain boundaries

is provided in Appendix D. This approach of forming each grain and grain boundary

became very laborious for larger number of grains particularly because of the process

of tying each as mentioned before. Hence, this approach was quickly discarded in

favor of the following alternative approach.
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Figure 5.2: Flowchart of code that applies an isotropic compression to Voronoi grains

to create an inter-granular region and calculates the area fraction occupied by the

grains. Code listed in Appendix C.
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Figure 5.3: Typical grain and grain boundary modeled as different parts.

In the second approach, a single part was formed by drawing grains onto a unit

square using the coordinates, obtained after compression of Voronoi grains, as the

input vertices for the grain edges. After all the grains were drawn, the section was

partitioned using the edges formed by grains. This resulted in a two dimensional

model, as shown in figure 5.4, containing grains as obtained from compression of

Voronoi polytopes embedded in a unit square domain. The area between the grains

forms a continuous two dimensional network of inter-granular region which is assigned

the properties of grain boundary phase. The dimension of the square domain was

assumed to be 100 × 100 nm, unless otherwise noted.

Unlike in the earlier approach, tying of edges between grains and grain boundaries

is not required in this route and hence saves considerably time and labor; hence this

approach was adopted for all further models.
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Figure 5.4: A typical two dimensional model generated by drawing and sectioning

Voronoi grains on a unit square.

5.3 Polycrystalline Models

The polycrystalline model can be considered to be a composite with purely crystalline

grains surrounded by a purely amorphous grain boundary matrix. For all the models

described here, the grain and grain boundary material are considered purely elastic

with elastic modulus for grains assumed to be equal to that of pure crystalline β–SiC

(262 GPa) [150] and that for the grain boundary phase assumed to be equal to that of

amorphous SiC (159 GPa) [151]. The assumption of purely elastic property for grain

and grain boundary is a simplified approximation and is justified in this case by the

purpose of these model, which is to simply determine the effective elastic modulus of

the composite polycrystalline materials.

The approach described in the earlier section allows for control over three variables

in the models: the number of grains, the average size of grains and the volume fraction

occupied by grains. For a given unit square model, there is a degree of freedom of two
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No. of grains Avg. grain size Crystalline vol (%)

100 5.04 nm 20

100 7.13 nm 40

100 8.74 nm 60

100 10.09 nm 80

100 11.28 nm 100

Table 5.1: Approximate average grain sizes obtained for 100 grain models with given

crystalline vol. fraction.

in these variables; any two of these variables could be changed while the third was

determined. Using the procedure described in the earlier section, three different sets

of models with different morphologies were studied. In the first set, four 100-grain

models were generated by varying the volume fraction occupied by the crystalline

phase from 80% to 20%. The grain sizes were determined approximately by assuming

the grains to be circular in shape and are listed in Table 5.1. The model generated

by using Voronoi grains without any compression gives a 100% crystalline model as

shown in figure 5.5. The models resulting after compression varied in both volume

fraction as well as the grain size. Figure 5.6 shows the models generated for different

volume fractions containing 100 grains each.

To determine the effect of changing volume fraction of crystalline phase on the

effective elastic modulus, a set of models was created with an average grain size of

10 nm in all models and the crystalline volume fraction was varied from 20% to 80%.

The number of grains required to achieve this varied, and are listed in table 5.2; the

models are shown in figure 5.7.

In the third set, the attempt was to examine if the model could capture the effect

of varying the average grain size alone on the effective modulus, a set of models was

created with 80% crystalline volume fraction in each. The number of grains required
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Figure 5.5: A 100 grain model with 100% crystalline volume fraction.

No. of grains Avg. grain size Crystalline vol (%)

100 10.09 nm 80

75 10.09 nm 60

50 10.09 nm 40

25 10.09 nm 20

Table 5.2: Number of grains required to achieve models containing grains averaging

10 nm in size, occupying different volume fractions.
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Figure 5.6: 100 grain models with different crystalline volume fractions: (a) 80%, (b)

60%, (c) 40% and (d) 20%. The resulting grain sizes are listed in table 5.1
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Figure 5.7: Models with different crystalline volume fractions and average grain size

of 10 nm in all models; (a) 80%, (b) 60%, (c) 40% and (d) 20%.
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No. of grains Avg. grain size Crystalline vol (%)

100 5 nm 80

25 10 nm 80

10 15 nm 80

Table 5.3: Number of grains required to achieve 80% crystalline volume fraction with

predetermined grain sizes.

to achieve this varied, and are listed in table 5.3. Figure 5.8 show the models. In

this case, the global size of the square domain was used at 50 nm × 50 nm so as to

achieve the required grain sizes of 5, 10, and 15 nm. These grain sizes were chosen

based on earlier experimental results.

The global mesh size for all models was set to 0.01. This mesh size optimizes

accuracy and computational cost and was selected after a comparison of modulus

values obtained using different mesh sizes. As seen in figure 5.9, reducing the mesh

size did not significantly change the modulus values obtained. Figure 5.10 shows a

typical model after meshing. Primarily, ABAQUS linear, quadrilateral, plain stress,

continuum elements with reduced integration (CPS4R) were used, along with 3-node,

linear, plane stress triangular continuum elements (CPS3), wherever required. The

total number elements varied between 11500 and 11800.

Since the experimental data in this work was generated by nano-indentation, the

boundary conditions and loading conditions were set to simulate loading under an

indenter. Although ideally, a three-dimensional model is required to accurately de-

termine the complex stress state under the indenter, a greatly simplified approach of

uniform compression on the top surface of the model is used in this work. Motion

of a corner node on the bottom edge was constrained in both X and Y directions

(U1=U2=0) and all nodes on bottom edge were constrained in Y direction (U2=0).

A uniform strain of 0.05 in the negative Y direction was applied to all nodes on the
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Figure 5.8: Models with same crystalline volume fraction of 80% and different grain

sizes; (a) 5 nm, (b) 10 nm, (c) 15 nm. Note that, in this particular case the unit

square represent 50 nm x 50 nm.
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Figure 5.9: Elastic modulus determined with different mesh sizes.

Figure 5.10: A typical polycrystalline model after meshing. Primarily, continuum

elements with reduced integration (CPS4R) were used, along with 3-node, linear,

plane stress triangular continuum elements (CPS3), wherever required.
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top surface (U2=-0.05). Stress-strain curves were plotted using the reaction forces,

resulting from the given strain, summed over all the nodes on the top surface. The

elastic modulus was determined from the slope of these stress-strains plots.

5.4 Results

Multiple models were generated starting with the Voronoi polycrystals and varying

the number of grains, grain sizes and the crystalline volume fraction. These models

were elastic–elastic with grain and grain boundaries treated as purely elastic. Elas-

tic modulus of amorphous SiC, determined from experiments, was prescribed to the

intergranular regions, while the elastic modulus of β–SiC was prescribed to all the

grains. The first set of models contained 100-grains in each case with volume fractions

of the crystalline phase between 80–20%. The deformed models after applying a uni-

form strain (of -0.05) on the top surface are shown in figure 5.11 (a–d). The effective

elastic modulus determined from these models is plotted as a function of crystalline

volume fraction in figure 5.12. It is important to note that, the modulus here is not

simply a function of the crystalline volume fraction but also depends on the grain

sizes. Hence, the variation in the grain size for these models, as noted in the earlier

section is also show in the gure 5.12. A comparison of the deformed models shows

that the higher stresses were generated in the model with higher crystalline volume

fraction as compared to those with higher amorphous fractions. This is expected

since higher volume fraction of amorphous phase, which has a lower elastic modulus,

makes the models more compliant. For the same reason, as seen in figure 5.12, the

stresses within the grain were higher compared to those in the intergranular regions.

The second set of deformed models with average grain size of 10 nm in each and

crystalline fraction of 20, 40, 60, and 80% is shown in figure 5.13. These models were

intended to capture the influence of crystalline volume fraction on the effective elastic

modulus, independent of the grain sizes. Figure 5.14 show the effective elastic mod-
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Figure 5.11: Deformed models with 100 grains and varying crystal size and crystalline

volume fractions; (a) 80%, (b) 60%, (c) 40% and (d) 20%. The grain sizes are listed

in table 5.1
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Figure 5.12: Elastic modulus determined for the 100 grain models varying crystal size

and crystalline volume fractions, as a function of the crystalline volume fraction.

ulus obtained from these models as a function of crystalline volume fraction. Unlike

in the earlier case, here the elastic modulus is truly a function of crystalline volume

fraction alone since the grain size in all models was the same. The polycrystalline

material can also be considered as a composite with the amorphous region analogous

to the matrix and grains being the reinforcing media. In the light of this, a simple

estimate of variation of modulus can be determined using rule of mixtures. These

estimates typically mark the upper and lower bound for the modulus. The modulus

determined by rule-of-mixtures (ROF) and inverse-rule-of-mixtures (IROF) are also

shown in Figure 5.14. The effective modulus estimated from the simple FEM models

developed here lie within these bounds. Thus these models can capture the effective

elastic modulus of a polycrystalline material purely as a function of crystalline volume

fraction.

The third set of models was aimed at investigating the effect of grain size alone

on the effective modulus of the polycrystalline composite. The deformed models with
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Figure 5.13: Deformed models with grain size of 10 nm in all cases and with different

crystalline volume fractions; (a) 80%, (b) 60%, (c) 40% and (d) 20%.
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Figure 5.14: Elastic modulus determined for the models with 10 nm, as a function of

the crystalline volume fraction.

80% crystalline volume fraction in each and containing grains of average sizes of 5,

10, and 15 nm is shown in figure 5.15. The global size of the square was set to 50 nm

× 50 nm in order to achieve 5 nm grains with 100 grains. Table 5.4 lists the effective

modulus obtained from these models as a function of grain size.

From the values listed in table 5.4 it is clear that such a simple finite element

models fails to capture any effect of grain size on the mechanical properties. Sev-

eral phenomena such as grain strengthening at smaller grain sizes due to dislocation

movement and pile-up, intragranular plasticity, grain boundary slipping, etc need to

be accounted for in order to capture any effect of grain size on the mechanical prop-

erties. Nevertheless, the simple FEM model developed here provides a frame work

and the requisite first step towards such a model.
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Figure 5.15: Deformed Models, with 80% crystalline volume fractions in each case,

and average grain size varying from 5 nm to 15 nm.
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No. of grains Avg. grain size Crystalline vol (%) E (GPa)

100 5 nm 80 235.17

25 10 nm 80 234.91

10 15 nm 80 235.83

Table 5.4: Elastic modulus obtained for models with the same crystalline volume

fraction of 80% and having different grain sizes.
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CHAPTER 6

Conclusions and Future Work

Based on the work reported in this investigation, the following conclusions are drawn:

1. The use of high pressure and/or high temperature processing is a basic require-

ment for traditional powder-based fabrication of ceramic components. These

processing conditions not only increase the energetic requirements but also place

limits on the types of materials that can be produced. Despite several different

techniques developed to produce ceramics, the search for a technique that of-

fers a combination of advantages such as low temperature processing, low costs,

ability to fabricate complex shapes, high density yields, and microstructure

control, still continues. Polymer derived ceramics are an attractive alternative

because of pressure-less and lower temperature processing and near-net shape

fabrication. Control over the microstructure of SiC formed by pyrolysis of pre-

ceramic polymer precursor is relatively easy and is presented by fabrication of

amorphous and nanocrystalline SiC.

2. The chemical and structural changes during the pyrolysis of allylhydridopolycar-

bosilane were studied by tracking mass loss, density changes, chemical bonding,

and evolution of microstructure up to 1650 ◦C. A hydrogen-free ceramic yield

of 72–74% was obtained in the range 900 ◦–650 ◦C using very slow heating rate

of 4 ◦C/min. IR spectroscopy observations revealed presence of hydrogen in SiC

pyrolyzed at 900 ◦C. They also provided insight into the decomposition of poly-

mer precursor by dissociation of Si–H and C–H bonds along with the evolution

of a Si–C network.
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3. The onset of crystallization was seen to occur close to 1100 ◦C leading to the

formation of amorphous/nanocrystalline SiC. Crystallite size, as estimated from

powder diffraction patterns, was found to be in tens of nanometers at 1650 ◦C.

Clear evidence of nanocrystalline SiC formed with different crystal sizes at differ-

ent processing temperatures was seen through transmission electron microscopy

along with a study of selected area electron diffraction.

4. Nanocrystalline SiC, like other nanocrystalline ceramics, is expected to have

superior properties. Significant improvement in mechanical properties were seen

after the onset of crystallization in SiC. Mechanical properties of amorphous and

amorphous/nano-crystalline SiC derived from AHPCS, pyrolyzed to different

temperatures and different hold times at final temperature, were characterized

in terms of elastic modulus and hardness by instrumented nanoindentation. The

mechanical properties were influenced by both processing temperature and hold

durations. The highest values for hardness, of around 30 GPa, were seen for

the material processed at 1150 ◦C for a hold time of 1 h. These were about 52%

higher than the lowest value, which was seen for materials processed at 1650 ◦C

with a hold time of 4 h. Similarly highest modulus values, observed for the same

samples, were about 218 GPa, which were 37% higher than the lowest value

which were seen for materials processed with 2 min hold time at 900 ◦C. Thus,

an optimum processing temperature of 1150 ◦C and hold duration of 1 hour

gave the best values for hardness and modulus. Thus, there is some measure

of understanding into the processing–property relationship gained from these

observations. However, information on crystal size and degree of crystallinity

for SiC processed to different temperatures and hold times is desirable, but

could not be acquired during this study. Such information would give further

insight into the processing–structure–property relationship.
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5. Development of a simple elastic–elastic finite element model was undertaken.

Polycrystalline SiC was modeled, using Voronoi tessellation, as a composite

with randomly distributed, purely crystalline SiC grains in an amorphous SiC

matrix. Both the intra-granular and inter-granular regions were modeled as

purely elastic. This is an approximation made to derive the purely elastic re-

sponse of the polycrystalline model. Models were created with different number

of grains (10–100), varying grain sizes (5 nm–15 nm) and different crystalline

volume fractions (80–20%). Elastic modulus determined from the model scaled

with the crystalline volume fraction, whereas the models failed to capture any

influence of the grain size on the modulus.

While a good deal of insight was gained into the polymer–ceramic conversion of

AHPCS and further evolution of amorphous and nanocrystalline SiC, there are some

aspects of these phenomena that are worth probing further. Studying these pro-

cesses from the kinetics approach could lead to further understanding of processing–

structure relationships and could help in designing a process that could lead to further

improved mechanical properties. Study of the kinetics of polymer–ceramic conver-

sion could help gain a better control over the rate of nucleation and grain growth,

which could in turn help in fabrication of functionally graded and tailored nanocom-

posites. There is much room for further investigation into the processing–structure

relationship through experimentation. Rietveld analysis of powder diffraction data

can provide an in-depth characterization of the crystal structure of SiC formed by

the pyrolysis of preceramic polymer. Information on degree of crystallinity and

crystal size as a function of processing parameters would also help characterize the

processing–structure relationships. In terms of modeling, a model that could capture

the mesoscale phenomena such as grain boundary sliding and intergranular plasticity

would greatly help in understanding the properties of nanocrystalline ceramics such

as n–SiC. Using the simple elastic–elastic polycrystalline model developed in this
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work, further effort can be directed towards incorporating more complex constitutive

relations, that could lead to better approximation of the properties. In the light of

this, another approach that has potential is the material point method. Using the

MPM method, phenomena at the scale which is of the order of the grain size can be

studied, which would bridge the gap of current level of understanding that has been

gained at the atomistic level, by MD studies, and at the continuum level, by finite

element method studies.

84



BIBLIOGRAPHY

[1] Rice, R., 1990. “Ceramic Processing - An Overview”. AICHE Journal, 36(4),

pp. 481–510.

[2] Matijevic, E., 1986. “Monodispersed Colloids - Art and Science”. Langmuir,

2(1), pp. 12–20.

[3] Ring, T., 1988. “Continuous Production of Narrow Size Distribution Sol-gel

Ceramic Powders”. Abstracts of Papers of the American Chemical Society,

195, pp. 27.

[4] Okamura, H., and Bowen, H., 1986. “Preparation of Alkoxides for the Synthesis

of Ceramics”. Ceramics International, 12(3), pp. 161–171.

[5] Kaito, C., Fujita, K., and Shiojiri, M., 1976. “Growth of CDS Smole Particles

Prepared by Evaporation in Inert-gases”. Journal of Applied Physics, 47(12),

pp. 5161–5166.

[6] , 1984. Some Common Aspects of the Formation of Nonoxide Powders by the

Vapor Reaction Method., Vol. 17, Plenum Press, New York, NY, USA.

[7] Clark, T. J., Arons, R. M., Stamatoff, J. B., and Rabe, J., 1985. “Thermal

degradation of Nicalon SiC fibers”. Ceramic Engineering and Science Proceed-

ings, 6, pp. 576–588.

[8] Washburn, M., and Coblenz, W., 1988. “Reaction-formed Ceramics”. American

Ceramic Society Bulletin, 67(2), pp. 356.

85



[9] Chiang, Y., Messner, R., Terwilliger, C., and Behrendt, D., 1991. “Reaction-

formed Silicon Carbide”. Materials Science and Engineering A - Structural

Materials - Properties, Microstructure and Processing, 144, pp. 63–74.

[10] Popper, P., 1960. “The preparation of dense self-bonded silicon carbide”. Special

Ceramics, p. 209.

[11] Hillig, W. B., Mehan, R. L., Morelock, C. R., DeCarlo, V. J., and Laskow,

W., 1975. “Silicon/Silicon Carbide Composites.”. American Ceramic Society

Bulletin, 54(12), pp. 1054–1056.

[12] Mehan, R. L., 1978. “Effect of SiC Content and Orienctation on Properties of

Si/SiC Ceramic Composite.”. Journal of Materials Science, 13(2), pp. 358–366.

[13] Binner, J. G. P., ed., 1990. Advanced Ceramic Processing and Technology,

Vol. 1. Noyes Publications, Park Ridge, New Jersey, USA.

[14] S, Goela, J., and L., Taylor, R., 1988. “Monolithic material fabrication by

chemical vapour deposition”. Journal of Materials Science, 23(12), pp. 4331 –

4339.

[15] Funk, R., Schachner, H., Triquet, C., Kornmann, M., and Lux, B., 1976. “Coat-

ing of Cemented Carbide Cutting Tools with Alumina by Chemical Vapor De-

position”. Journal of the Electrochemical Society, 123(2), pp. 285–289.

[16] Lindstrom, J., and Johannesson, R., 1976. “Nucleation of Al-20-3 Layers on

Cemented Carbide Tools”. Journal of the Electrochemical Society, 123(4),

pp. 555–559.

[17] Katto, H., and Koga, Y., 1971. “Preparation and Properties of Aluminum Oxide

Films Obtained by Glow Discharge Technique”. Journal of the Electrochemical

Society, 118(10), pp. 1619–&.

86



[18] Pierson, H. O., 1999. Handbook of Chemical Vapor Deposition (CVD): Princi-

ples, Technology and Applications. Noyes Publications.

[19] Yang, Q., 1999. “Composite Sol-Gel Ceramics”. PhD thesis, The University of

British Columbia, Canada.

[20] F, Becher, P., H, Sommers, J., A, Bender, B., and A., MacFarlane, B., 1978.

“Ceramics Sintered Directly froom Sol-gels.”. Materials Science Research, 11,

pp. 79 – 86.

[21] L, Hench, L., G, O., and L., Nogues, J., 1986. “Role of Chemical Additives

in Sol-gel Processing.”. Materials Research Society Symposia Proceedings, 73,

pp. 35 – 47.

[22] Barrow, D., Petroff, T., and Sayer, M., 1995. “Thick ceramic coatings using a

sol gel based ceramic-ceramic 0-3 composite”. Surface & Coatings Technology,

76(1-3), pp. 113–118.

[23] Xu, Y., Nakahira, A., and Niihara, K., 1994. “Characteristics of Al2O3-

SiC Nanocomposite Prepared by Sol-gel Processing”. Nippon Seramikkusu

Kyokai Gakujutsu Ronbunshi - Journal of the Ceramic Society of Japan, 102(3),

pp. 312–315.

[24] Brook, R., 1995. Processing of Ceramics, Part II. Materials Science and Tech-

nology: A Comprehensive Treatment., Vol. 17B. John Wiley & Son: New York.

[25] A., P. R. “Preceramic Polymer Derived Si3N4 Composites with Continuous

Fiber Reinforcement”. apability Brochures for: SwRI Mechanical and Materials

Engineering.

[26] Greil, P., 2000. “Polymer derived engineering ceramics”. Advanced Engineering

Materials, 2(6), pp. 339–348.

87



[27] Riedel, R., Mera, G., Hauser, R., and Klonczynski, A., 2006. “Silicon-based

polymer-derived ceramics: Synthesis properties and applications - A review”.

Journal of the Ceramic Society of Japan, 114(1330), pp. 425–444.

[28] Lipowitx, J., 1991. “Polymer-Derived Ceramic Fibers”. American Ceramic

Society Bulletin, 70(12), pp. 1888–1894.

[29] He, J., Scarlete, M., and Harrod, J., 1995. “Silicon-Nitride and Silicon Carboni-

tride by the Pyrolysis of Poly(Methylsiladiazane)”. Journal of the American

Ceramic Society, 78(11), pp. 3009–3017.

[30] Laine, R., and Babonneau, F., 1993. “Preceramic Polymer routes to Silicon-

Carbide”. Chemistry of Materials, 5(3), pp. 260–279.

[31] Wideman, T., Remsen, E., Cortez, E., Chlanda, V., and Sneddon, L., 1998.

“Amine-modified polyborazylenes: Second-generation precursors to boron ni-

tride”. Chemisty of Materials, 10(1), pp. 412–421.

[32] Sato, K., Tezuka, A., Funayama, O., Isoda, T., Terada, Y., Kato, S., and Iwata,

M., 1999. “Fabrication and pressure testing of a gas-turbine component manu-

factured by a preceramic-polymer-impregnation method”. Composites Science

and Technology, 59(6), pp. 853–859.

[33] Shah, S., and Raj, R., 2002. “Mechanical properties of a fully dense polymer

derived ceramic made by a novel pressure casting process”. Acta Materialia,

50(16), pp. 4093–4103.

[34] Tredway, W., 1998. “Materials science - Toughened ceramics”. Science,

282(5392), pp. 1275–1275.

[35] Schick, H. L., 1966. “Thermodynamics of Certain Refractory Comounds”. Aca-

demic Press, 1, pp. 1–402.

88



[36] Munro, R., 1997. “Material properties of a sintered alpha-SiC”. Journal of

Physical and Chemical Reference Data, 26(5), pp. 1195–1203.

[37] Hinoki, T., and Kohyama, A., 2005. “Current status of SiC/SiC composites

for nuclear applications”. Annales de Chimie: Science des Materiaux, 30(6),

pp. 659 – 671.

[38] Alkan, Z., Kugeler, K., Kaulbarsch, R., and Manter, C., 2001. “Silicon Car-

bide Encapsulated Fuel Pellets for Light Water Reactors”. Progress in Nuclear

Energy, 38(3-4), pp. 411 – 414.

[39] Lee, Y. W., Lee, S., Kim, H., Joung, C., and Degueldre, C., 2003. “Study on the

mechanical properties and thermal conductivity of silicon carbide-, zirconia- and

magnesia aluminate-based simulated inert matrix nuclear fuel materials after

cyclic thermal shock”. Journal of Nuclear Materials, 319, pp. 15 – 23.

[40] Lewinsohn, A. C., Jones, H. R., Colombo, P., and Riccardi, B., 2002. “Silicon

carbide-based materials for joining silicon carbide composites for fusion energy

applications”. Journal of Nuclear Materials, 307-311(2 SUPPL), pp. 1232 –

1236.

[41] Senor, D. J., Youngblood, G. E., Brimhall, J. L., Trimble, D. J., Newsome, G.,

and Woods, J., 1996. “Dimensional stability and strength of neutron-irradiated

SiC-based fibers”. Fusion Technology, 30(3), pp. 956–968.

[42] Hollenberg, G. W., Henager, C. H., Youngblood, G. E., Trimble, D. J., Simon-

son, S. A., Newsome, G. A., and Lewis, E., 1995. “The effect of irradiation on

the stability and properties of monolithic silicon-carbide and SiC f/SiC com-

posites up to 25 dpa”. Journal of Nuclear Materials, 219, pp. 70–86.

[43] Snead, L. L., Osborne, M., and More, K. L., 1995. “Effects of radiation on

SiC-based Nicalon fibers”. Journal of materials research, 10(3), pp. 736–747.

89



[44] Snead, L. L., Katoh, Y., Kohyama, A., Bailey, J., Vaughn, N., and Lowden,

R., 2000. “Evaluation of neutron irradiated near-stoichiometric silicon carbide

fiber composites”. Journal of Nuclear Materials, 283, pp. 551–555.

[45] Newsome, G., Snead, L., Hinoki, T., Katoh, Y., and Peters, D., 2007. “Eval-

uation of neutron irradiated silicon carbide and silicon carbide composites”.

Journal of Nuclear Materials, 371(1-3), pp. 76–89.

[46] Katoh, Y., Snead, L. L., Henager, C. H., Hasegawa, A., Kohyama, A., Riccardi,

B., and Hegeman, H., 2007. “Current status and critical issues for development

of SiC composites for fusion applications”. Journal of Nuclear Materials, 367,

pp. 659–671.

[47] Singh, A. K., Zunjarrao, S. C., and Singh, R. P., 2008. “Processing of uranium

oxide and silicon carbide based fuel using polymer infiltration and pyrolysis”.

in review: Journal of Nuclear Materials.

[48] Wan, J., Gasch, Matthew, J., and Mukherjee, Amiya, K., 2002. “Silicon ni-

tride/silicon carbide nanocomposites from polymer precursor”. Ceramic Engi-

neering and Science Proceedings, 23(4), pp. 665–672.

[49] Danko, G., Silberglitt, R., Colombo, P., Pippel, E., and Woltersdorf, J., 2000.

“Comparison of microwave hybrid and conventional heating of preceramic poly-

mers to form silicon carbide and silicon oxycarbide ceramics”. Journal of the

American Ceramic Society, 83(7), pp. 1617–1625.

[50] Mitchell, Brian, S., Zhang, H., Maljkovic, N., Ade, M., Kurtenbach, D., and

Muller, E., 1999. “Formation of nanocrystalline silicon carbide powder from

chlorine-containing polycarbosilane precursors”. Journal of the American Ce-

ramic Society, 82(8), pp. 2249–2251.

90



[51] Szlufarska, I., Nakano, A., and Vashishta, P., 2005. “A crossover in the mechan-

ical response of nanocrystalline ceramics”. Science, 309(5736), pp. 911–914.

[52] Veprek, S., Nesladek, P., Niederhofer, A., Glatz, F., Jilek, M., and Sima, M.,

1998. “Recent progress in the superhard nanocrystalline composites: towards

their industrialization and understanding of the origin of the superhardness”.

Surface & Coatings Technology, 109(1-3), pp. 138–147.

[53] Zhao, Y., Qian, J., Daemen, L., Pantea, C., Zhang, J., Voronin, G., and Zerda,

T., 2004. “Enhancement of fracture toughness in nanostructured diamond-SiC

composites”. Applied Physics Letters, 84(8), pp. 1356–1358.

[54] Liao, F., Girshick, S., Mook, W., Gerberich, W., and Zachariah, M., 2005. “Su-

perhard nanocrystalline silicon carbide films”. Applied Physics Letters, 86(17).

[55] Madar, R., 2004. “Materials science - Silicon carbide in contention”. Nature,

430(7003), pp. 974–975.

[56] Vassen, R., and Stover, D., 1999. “Processing and properties of nanograin silicon

carbide”. Journal of the American Ceramic Society, 82(10), pp. 2585–2593.

[57] Tymiak, N., Iordanoglou, D. I., Neumann, D., Gidwani, A., Fonzo, F. D., Fan,

M. H., Rao, N., Gerberich, W. W., McMurry, P. H., Heberlein, J. V. R., and

Girshick, S. L.“, 1999.”. Proceedings of the 14th International Symposium on

Plasma Chemistry, 3.

[58] Richter, V., and Von Ruthendorf, M., 1999. “On hardness and toughness of ul-

trafine and nanocrystalline hard materials”. Internaltion Journal of Refractory

Metals & Hard Materials, 17(1-3), pp. 141–152.

[59] Kroll, P., 2005. “Modelling polymer-derived ceramics”. Journal of the European

Ceramic Society, 25(2-3), pp. 163–174.

91



[60] Kulikovsky, V., Vorlicek, V., Bohac, P., Kurdyumov, A., and Jastrabik, L.,

2004. “Mechanical properties of hydrogen-free a-C : Si films”. Diamond and

Related Materials, 13(4-8), pp. 1350–1355.

[61] Amkreutz, M., and Frauenheim, T., 2002. “Understanding precursor-derived

amorphous Si-C-N ceramics on the atomic scale”. Physical Review B, 65(13),

p. 134113.

[62] Matsunaga, K., Iwamoto, Y., Fisher, C., and Matsubara, H., 1999. “Molecular

dynamics study of atomic structures in amorphous Si-C-N ceramics”. Journal

of the Ceramic Society of Japan, 107(11), pp. 1025–1031.

[63] Hall, E., 1951. “The Deformation and Ageing of Mild Steel. 3. Discussion of

Results”. Proceedings of the Physical Society of London Section B, 64(381),

pp. 747–753.

[64] Petch, N., 1953. “The Clevage Strength of Polycrystals”. Journal of the Iron

and Steel Institute, 174(1), pp. 25–28.

[65] Lu, Y., and Liaw, P., 2001. “The mechanical properties of nanostructured

materials”. JOM-Journal of the Minerals, Metals & Materials Society, 53(3),

pp. 31–35.

[66] Chokshi, A., Rosen, A., Karch, J., and Gleiter, H., 1989. “On the Validity of

the Hall-Petch Relationship in Nanocrystalline Materials”. Scripta Metallurgica,

23(10), pp. 1679–1683.

[67] Schiotz, J., Di Tolla, F., and Jacobsen, K., 1998. “Softening of nanocrystalline

metals at very small grain sizes”. Nature, 391(6667), pp. 561–563.

92



[68] Carsley, J., Ning, J., Milligan, W., Hackney, S., and AIFANTIS, E., 1995. “A

Simple, Mixtures-Based Model for the Grain-Size Dependence of Strength in

Nanophase Metals”. Nanostructured Materials, 5(4), pp. 441–448.

[69] Elsherik, A., Erb, U., Palumbo, G., and Aust, K., 1992. “Deviations from Hall-

Petch Behavior in As-Prepared Nanocrystalline Nickel”. Scripta Metallurgica

ET Materialia, 27(9), pp. 1185–1188.

[70] Fourgere, G., Weertman, J., Siegel, R., and Kim, S., 1992. “Grain-Size Depen-

dent Hardening and Softening of Nanocrystalline Cu and Pd”. Scripta Metal-

lurgica ET Materialia, 26(12), pp. 1879–1883.

[71] Nieman, G., Weertman, J., and Siegel, R., 1991. “Mechanical-Behaviour of

Nanocrystalline Cu and Pd”. Journal of Materials Research, 6(5), pp. 1012–

1027.

[72] Sanders, P., Youngdahl, C., and Weertman, J., 1997. “The strength of nanocrys-

talline metals with and without flaws”. Materials Science and Engineering A-

Structure Properties, Microstructure and Processing, 234, pp. 77–82.

[73] Siegel, R., 1994. “What do we really know about the atomic-scale structures

of Nanophase Materials”. Journal of Physics and Chemistry of Solids, 55(10),

pp. 1097–1106.

[74] Yip, S., 1998. “Nanocrystals - The strongest size”. Nature, 391(6667), pp. 532–

533.

[75] Veprek, S., and Argon, A., 2002. “Towards the understanding of mechanical

properties of super- and ultrahard nanocomposites”. Journal of Vaccum Science

& Technology B, 20(2), pp. 650–664.

93



[76] Kroll, P., 2003. “Modelling and simulation of amorphous silicon oxycarbide”.

Journal of Materials Chemistry, 13(7), pp. 1657–1668.

[77] Umesaki, N., Hirosaki, N., and Hirao, K., 1992. “Structural Characterization

of Amorphous-Silicon Nitride by Molecular-Dymanics Simulation”. Journal of

Non-Crystalline Solids, 150(1-3), pp. 120–125.

[78] de Brito Mota, F., Justo, J., and Fazzio, A., 1998. “Structural properties of

amorphous silicon nitride”. Physical Review B, 58(13), pp. 8323–8328.

[79] Verbeek, W., 1973. Ger. Pat. No. 2218960 (U.S. Pat. No. 38533567).

[80] Verbeek, W., and Winter, G., 1974. Ger. Pat. No. 2236078.

[81] Yajima, S., Hayashi, J., and Omori, M., 1975. “Continuous Silicon-Carbide

Fiber of High-Tensile Strength”. Journal of Physical Chemistry B(9), pp. 931–

934.

[82] Jones, R. H., and Henager Jr., C. H., 2005. “Subcritical crack growth processes

in SiC/SiC ceramic matrix composites”. Journal of the European Ceramic So-

ciety, 25(10 SPEC ISS), pp. 1717 – 1722.

[83] Pouskouleli, G., 1989. “Metallorganic Compounds as Preceramic Materials.1.

Non-Oxide Ceramics”. Ceramics International, 15(4), pp. 213–229.

[84] Peuckert, M., Vaahs, T., and Bruck, M., 1990. “Ceramics from Organomettalic

Polymers”. Advanced Materials, 2(9), pp. 398–404.

[85] Procopio, L., and Berry, D., 1991. “Dehydrogenative Coupling of Trialkylsi-

lanes Mediated by Ruthenium Phosphine Complexes - Catalytic Synthesis of

Carbosilanes”. Journal of the American Ceramic Society, 113(10), pp. 4039–

4040.

94



[86] Whitmarsh, C., and Interrante, L., 1991. “Synthesis and Structure of a Highly

Branched Polycarbosilane Derived from (Chloromethyl)trichlorosilane”. Or-

gonometaillics, 10(5), pp. 1336–1344.

[87] Wu, H., and Interrante, L., 1992. “Preparation of Poly(dichlorosilaethylene) and

Poly(silaethylene) via Ring-Opening Polymerization”. Macromolecules, 25(6),

pp. 1840–1841.

[88] BIirot, M., Pillot, J., and Dunogues, J., 1995. “Comprehensive Chemistry of

Polycarbosilanes, Polysilazanes and Polycarbosilazanes as Precursors of Ceram-

ics”. Chemical Reviews, 95(5), pp. 1443–1477.

[89] Aldinger, F., Weinmann, M., and Bill, J., 1998. “Precursor-derived Si-B-C-N

ceramics”. Puer and Applied Chemistry, 70(2), pp. 439–448.

[90] Kipping, F., 1924. “Organic derivatives of silicon Part XXX Complex silicohy-

drocarbons [SiPh2]n”. Journal of the Chemical Society, 125, pp. 2291–2297.

[91] Burkhard, C. A., 1949. “Polydimethylsilanes”. Journal of the American Chem-

ical Society, 71(3), pp. 963–964.

[92] Seyferth, D., Wood, T., Tracy, H., and Robison, J., 1992. “Near- Stoichiomet-

ric Silicon-Carbide from an Economical Poysilane Precursor”. Journal of the

American Ceramic Society, 75(5), pp. 1300–1302.

[93] Walker, B., Rice, R., Becher, P., Bender, B., and Coblenz, W., 1983. “Prepara-

tion and Properties of Monolithic and Composite Ceramics Produced by Poly-

mer Pyrolysis”. American Ceramic Society Bulletin, 62(8), pp. 916–923.

[94] West, R., David, L., Djurovich, P., Yu, H., and Sinclair, R., 1983. “Polysi-

astyrene - Phenylmethylsilane - Dimethylsilane Co-Polymers as Precursors to

Silicon-Carbide”. American Ceramic Society Bulletin, 62(8), pp. 899–903.

95



[95] Seyferth, D., and F., Y. Y., 1987. “Method for forming new preceramic polymers

containing silicon”. Massachusetts Institute of Technology (Cambridge, MA).

[96] Interrante, L. V., Whitmarsh, C., Sherwood, W., Wu, H.-J., Lewis, R., and

Maciel, G., 1994. “High yield polycarbosilane precursors to stoichiometric SiC.

Synthesis, pyrolysis and application”. Proceedings of the 1994 MRS Spring

Meeting, Apr 4-8 1994, San Francisco, CA, USA, 346, pp. 593–603.

[97] Berbon, Min, Z., Dietrich, Donald, R., Marshall, David, B., and Hasselman, D.,

2001. “Transverse thermal conductivity of thin C/SiC composites fabricated by

slurry infiltration and pyrolysis”. Journal of the American Ceramic Society,

84(10), pp. 2229–2234.

[98] Dong, S., Katoh, Y., Kohyama, A., Schwab, S., and Snead, L., 2002. “Mi-

crostructural evolution and mechanical performances of SiC/SiC composites by

polymer impregnation/microwave pyrolysis (PIMP) process”. Ceramics Inter-

national, 28(8), pp. 899–905.

[99] Interrante, L., Jacobs, J., Sherwood, W., and Whitmarsh, C., 1997. “Fabrica-

tion and properties of fiber- and particulate-reinforced SiC matrix composites

obtained with (A)HPCS as the matrix source”. Key Engineering Materials,

127-131(Pt 1), pp. 271–278.

[100] Moraes, Kevin, V., and Interrante, Leonard, V., 2003. “Processing, fracture

toughness, and vickers hardness of allylhydridopolycarbosilane-derived silicon

carbide”. Journal of the American Ceramic Society, 86(2), pp. 342–346.

[101] Whitmarsh, C. K., and Interrante, L. V., 1992. “Carbosilane polymer precursors

to silicon carbide ceramics”. Rensselaer Polytechnic Institute (Troy, NY).

96



[102] Rushkin, I., Shen, Q., Lehman, S., and Interrante, L., 1997. “Modification of

a hyperbranched hydridopolycarbosilane as a route to new polycarbosilanes”.

Macromolecules, 30(11), pp. 3141 – 3146.

[103] Interrante, L., Moraes, K., Liu, Q., Lu, N., Puerta, A., and Sneddon, L., 2002.

“Silicon-based ceramics from polymer precursors”. Pure and Applied Chemistry,

74(11), pp. 2111–2117.

[104] Zheng, J., and Akinc, M., 2001. “Green state joining of SiC without applied

pressure”. Journal of the American Ceramic Society, 84(11), pp. 2479–2483.

[105] Solomon, Alvin, A., Fourcade, J., Lee, S.-G., Kuchibhotla, S., Revankar, S.,

Latta, R., Holman, Peter, L., and McCoy, J. K., 2004. “The polymer impreg-

nation and pyrolysis method for producing enhanced conductivity LWR fuels”.

Proceedings of the 2004 International Meeting on LWR Fuel Performance, Or-

lando, Florida, September 19-22, 2004, American Nuclear Society, La Grange

Park, IL 60526, United States, pp. 146155. Paper 1028., pp. 146–155.

[106] Ozcivici, E., and Singh, R., 2005. “Fabrication and characterization of ceramic

foams based on silicon carbide matrix and hollow alumino-silicate spheres”.

Journal of the American Ceramic Society, 88(12), pp. 3338–3345.

[107] Singh, A. K., Zunjarrao, S. C., and Singh, R. P., 2006. “Silicon Carbide and

Uranium Oxide based Composite Fuel Preparation using Polymer Infiltration

and Pyrolysis”. Proceedings of ICONE 14, 14th International Conference On

Nuclear Engineering, Miami, USA, July 17-20, 2006.

[108] VanLandingham, Mark, R., 2003. “Review of instrumented indentation”. Jour-

nal of Research of the National Institute of Standards and Technology, 108(4),

pp. 249–265.

97



[109] Nechanicky, M., Chew, K., Sellinger, A., and Laine, R., 2000. “alpha-Silicon

carbide/beta-silicon carbide particulate composites via polymer infiltration and

pyrolysis (PIP) processing using polymethylsilane”. Journal of the European

Ceramic Society, 20(4), pp. 441–451.

[110] Kerdiles, S., Rizk, R., Gourbilleau, F., Perez-Rodriguez, A., Garrido, B.,

Gonzalez-Varona, O., and Morante, J., 2000. “Low temperature direct growth

of nanocrystalline silicon carbide films”. Materials Science and Engineering

B-Solid State Materials for Advanced Technology, 69, pp. 530–535.

[111] Zhang, H., and Xu, Z., 2002. “Microstructure of nanocrystalline SiC films

deposited by modified plasma-enhanced chemical vapor deposition”. Optical

Materials, 20(3), pp. 177–181.

[112] Ying, Y., Gu, Y., Li, Z., Gu, H., Cheng, L., and Qian, Y., 2004. “A simple route

to nanocrystalline silicon carbide”. Journal of Solid State Chemistry, 177(11),

pp. 4163–4166.

[113] Kotani, M., Inoue, T., Kohyama, A., Katoh, Y., and Okamura, K., 2003. “Ef-

fect of SiC particle dispersion on microstructure and mechanical properties of

polymer-derived SiC/SiC composite”. Materials Science and Engineering A,

357(1-2), pp. 376 – 385.

[114] “ASTM-C830-00”. American Society for Testing and Materials, West Con-

shohocken, PA.

[115] Ovri, J. E. O., 2000. “A parametric study of the biaxial strength test for brittle

materials”. Materials Chemistry and Physics, 66(1), pp. 1 – 5.

[116] Lee, M.-S., and Bent, S. F., 1997. “Bonding and thermal reactivity in thin

a-SiC:H films grown by methylsilane CVD”. Journal of Physical Chemistry B,

101(45), pp. 9195 – 9205.

98



[117] Hurwitz, F. I., Kacik, T. A., Bu, X.-Y., Masnovi, J., Heimann, P. J., and

Beyene, K., 1994. “Conversion of polymers of methyl- and vinylsilane to SiC

ceramics”. Journal of Engineering and Applied Science, 346, pp. 623 – 628.

[118] Wang, X., Zunjarrao, S. C., Hui, Z., and P, S. R., 2006. “Advanced Process

Model for Polymer Pyrolysis and Uranium Ceramic Material Processing”. 14th

International Conference on Nuclear Engineering.

[119] Cullity, B. D., 1978. Elements of X-ray Diffraction. Addison-Wesley Publishing

Co. Unc., London.

[120] Cheary, R. W., and Coelho, A. A., 1996. “Programs XFIT and FOURYA,

deposited in CCP14 Powder Diffraction Library, Engineering and Physical Sci-

ences Research Council, Daresbury Laboratory, Warrington, England.”.

[121] Williams, D., and Carter, C. B., 1996. Transmission Electron Microscopy: A

Textbook for Materials Science. Kluwer Academic / Plenum Publishers, New

York.

[122] Meyers, M., Mishra, A., and Benson, D., 2006. “Mechanical properties of

nanocrystalline materials”. Progress in Materials Science, 51(4), pp. 427–556.

[123] Fu, H., Benson, D., and Meyers, M., 2001. “Analytical and computational

description of effect of grain size on yield stress of metals”. Acta Materialia,

49(13), pp. 2567–2582.

[124] Wei, Y., and Anand, L., 2004. “Grain-boundary sliding and separation in

polycrystalline metals: application to nanocrystalline fcc metals”. Journal of

the Mechanics and Physics of Solids, 52(11), pp. 2587–2616.

99



[125] Van Swygenhoven, H., Spaczer, M., and Caro, A., 1999. “Microscopic de-

scription of plasticity in computer generated metallic nanophase samples: A

comparison between Cu and Ni”. Acta Materialia, 47(10), pp. 3117–3126.

[126] Van Swygenhoven, H., Caro, A., and Farkas, D., 2001. “A molecular dynamics

study of polycrystalline fcc metals at the nanoscale: grain boundary structure

and its influence on plastic deformation”. Materials Science and Engineering A -

Structural Materials - Properties, Microstructure and Processing, 309, pp. 440–

444.

[127] Van Swygenhoven, H., Caro, A., and Farkas, D., 2001. “Grain boundary struc-

ture and its influence on plastic deformation of polycrystalline FCC metals

at the nanoscale: A molecular dynamics study”. Scripta Materialia, 44(8-9),

pp. 1513–1516.

[128] Derlet, P., Hasnaoui, A., and Van Swygenhoven, H., 2003. “Atomistic simula-

tions as guidance to experiments”. Scripta Materialia, 49(7), pp. 629–635.

[129] Hasnaoui, A., Derlet, P., and Van Swygenhoven, H., 2004. “Interaction between

dislocations and grain boundaries under an indenter - a molecular dynamics

simulation”. Acta Materialia, 52(8), pp. 2251–2258.

[130] Kim, H., Estrin, Y., and Bush, M., 2000. “Plastic deformation behaviour of

fine-grained materials”. Acta Materialia, 48(2), pp. 493–504.

[131] Zhou, J., Li, Y., Zhu, R., and Zhang, Z., 2007. “The grain size and poros-

ity dependent elastic moduli and yield strength of nanocrystalline ceramics”.

Materials Science and Engineering A - Structural Materials - Properties, Mi-

crostructure and Processing, 445, pp. 717–724.

[132] Budianski,B., 1970. “Thermal and Thermoelastic Properties of Isotropic Com-

posites”. Journal of Composite Materials, 4, pp. 286–295.

100



[133] Tadmor, E., Phillips, R., and Ortiz, M., 1996. “Mixed atomistic and continuum

models of deformation in solids”. Langmuir, 12(19), pp. 4529–4534.

[134] Tadmor, E., Ortiz, M., and Phillips, R., 1996. “Quasicontinuum analysis of

defects in solids”. Philosophical Magazine A - Physics of Condensed Matter

Structure, Defects and Mechanical Properties, 73(6), pp. 1529–1563.

[135] Shenoy, V., Miller, R., Tadmor, E., Phillips, R., and Ortiz, M., 1998. “Quasi-

continuum models of interfacial structure and deformation”. Physical Review

Letters, 80(4), pp. 742–745.

[136] Shenoy, V., Miller, R., Tadmor, E., Rodney, D., Phillips, R., and Ortiz, M.,

1999. “An adaptive finite element approach to atomic-scale mechanics - the

quasicontinuum method”. Journal of the Mechanics and Physics of Solids,

47(3), pp. 611–642.

[137] Sansoz, F., and Molinari, J., 2004. “Incidence of atom shuffling on the shear

and decohesion behavior of a symmetric tilt grain boundary in copper”. Scripta

Materialia, 50(10), pp. 1283–1288.

[138] Bardenhagen, S., and Kober, E., 2004. “The generalized interpolation material

point method”. CMES-Computer Modeling in Engineering& Sciences, 5(6),

pp. 477–495.

[139] Lu, H., Daphalapurkar, N., Wang, B., Roy, S., and Komanduri, R., 2006.

“Multiscale simulation from atomistic to continuum-coupling molecular dynam-

ics (MD) with the material point method (MPM)”. Philosophical Magazine,

86(20), pp. 2971–2994.

[140] Ma, J., Liu, Y., Lu, H., and Komanduri, R., 2006. “Multiscale simulation

of nanoindentation using the generalized interpolation material point (GIMP)

101



method, dislocation dynamics (DD) and molecular dynamics (MD)”. CMES-

Computer Modeling in Engineering & Sciences, 16(1), pp. 41–55.

[141] Tan, H., 2001. “A Lattice Material Point Method that can Adaptively Link

Continuum and Atomistic Simulations of Fracture in Nanocomposite Ceramic”.

Sixth U.S. National Congress on Computational Mechanics.

[142] Daphalapurkar, N., 2002. “Multiscale Simulation from Atomistic to Continuum

– Coupling Molecular Dynamics (MD) with Material Point Method (MPM)”.

Oklahoma State University - MS Thesis.

[143] BOOTS, B., 1982. “The Arrangement of Cells in Random Networks”. Metal-

lography, 15(1), pp. 53–62.

[144] Sfantos, G., and Aliabadi, M., 2007. “A boundary cohesive grain element formu-

lation for modelling intergranular microfracture in polycrystalline brittle ma-

terials”. International Journal for Numerical Methods in Engieering, 69(8),

pp. 1590–1626.

[145] Fu, H., Benson, D., and Meyers, M., 2004. “Computational description of

nanocrystalline deformation based on crystal plasticity”. Acta Materialia,

52(15), pp. 4413–4425.

[146] Zhang, K., Zhang, D., Feng, R., and Wu, M., 2005. “Microdamage in polycrys-

talline ceramics under dynamic compression and tension”. Journal of Applied

Physics, 98(2), p. 023505.

[147] Kumar, S., Kurtz, S., and Agarwala, V., 1996. “Micro-stress distribution within

polycrystalline aggregate”. Acta Mechanica, 114(1-4), pp. 203–216.

[148] http://people.scs.fsu.edu/~burkardt/m_src/cvt_demo/cvt_square_uniform.m,

Internet link retrieved on March 12, 2008.

102



[149] Du, Q., Faber, V., and Gunzburger, M., 1999. “Centroidal Voronoi tessellations:

Applications and algorithms”. SIAM Review, 41(4), pp. 637–676.

[150] Munro, R., and Freiman, S., 1999. “Correlation of fracture toughness and

strength”. Journal of the American Ceramic Society, 82(8), pp. 2246–2248.

[151] Zunjarrao, S. C., Singh, A. K., and Singh, R. P., 2006. “Structe- Property

Relationships in Polymer Derived Amorphous/Nano-crystalline Silicon Carbide

for Nuclear Applications”. Proceedings of ICONE 14, 14th International Con-

ference On Nuclear Engineering.

103



APPENDIX A

Matlab code to generate Voronoi diagram

function [p,t] = cvt_square_uniform(n, sample_num, delaunay_display)

%% CVT_SQUARE_UNIFORM demonstrates how a CVT

% can be computed and displayed in MATLAB.

% Discussion:

% This simple example carries out an iterative CVT calculation

% in the unit square, with a uniform density.

% The initial placement of the generators is random.

%

% Modified:

% 22 May 2006

% Author:

% John Burkardt

% Source:

% http://people.scs.fsu.edu/~burkardt/m_src/cvt_demo/cvt_square_uniform.m

% Reference:

% Qiang Du, Vance Faber, Max Gunzburger,

% Centroidal Voronoi Tessellations: Applications and Algorithms,

% SIAM Review,

% Volume 41, 1999, pages 637-676.

%

% Parameters:

%% Input, integer N, the number of generators.

%% Input, integer SAMPLE_NUM, the number of sample points.

%% Input, logical DELAUNAY_DISPLAY, is TRUE (nonzero) if the

% Delaunay triangulation is to be displayed.

%% Output, real P(N,2), the location of the generators.

%% Output, integer T(NT,3), information defining the Delaunay

% triangulation of the generators. NT is the number of triangles,

% which varies depending on the arrangement of the generators.

%

fprintf ( 1, ’\n’ );
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fprintf ( 1, ’CVT_SQUARE_UNIFORM:\n’ );

fprintf ( 1, ’ A simple demonstration of a CVT computation\n’ );

fprintf ( 1, ’ (Centroidal Voronoi Tessellation)\n’ );

fprintf ( 1, ’ in a square, with a uniform density.\n’ );

if ( nargin < 1 )

n =5;

fprintf ( 1, ’\n’ );

fprintf ( 1, ’CVT_SQUARE_UNIFORM - Note:\n’ );

fprintf ( 1, ’ No value of N was supplied.\n’ );

fprintf ( 1, ’ N is the number of generators.\n’ );

fprintf ( 1, ’ A default value N = %d will be used.\n’, n );

else

fprintf ( 1, ’\n’ );

fprintf ( 1, ’ User specified number of generators = %d\n’, n );

end

if ( nargin < 2 )

sample_num = 1000 * n;

fprintf ( 1, ’\n’ );

fprintf ( 1, ’CVT_SQUARE_UNIFORM - Note:\n’ );

fprintf ( 1, ’ No value of SAMPLE_NUM was supplied.\n’ );

fprintf ( 1, ’ SAMPLE_NUM is the number of sample points.\n’ );

fprintf ( 1, ’ A default value SAMPLE_NUM = %d will be used.\n’, ..

sample_num );

else

fprintf ( 1, ’\n’ );

fprintf ( 1, ’ User specified number of sample points = %d\n’, ..

sample_num );

end

if ( nargin < 3 )

delaunay_display = 0;

fprintf ( 1, ’\n’ );

fprintf ( 1, ’CVT_SQUARE_UNIFORM - Note:\n’ );

fprintf ( 1, ’ No value of DELAUNAY_DISPLAY was supplied.\n’ );

fprintf ( 1, ’ DELAUNAY_DISPLAY is TRUE (nonzero) if the\n’ );

fprintf ( 1, ’ Delaunay triangulation is also to be displayed.\n’ );

fprintf ( 1, ’ A default value DELAUNAY_DISPLAY = %d will be used.\n’, ..

delaunay_display );

else
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fprintf ( 1, ’\n’ );

fprintf ( 1, ’ User specified DELAUNAY_DISPLAY = %d\n’, ...

delaunay_display );

end

%

% This switch is set to 1 (TRUE) if the ACCUMARRAY command is

% available. That speeds up the calculation a lot.

% If you don’t have the ACCUMARRAY command, just set this to 0.

%

fprintf ( 1, ’\n’ );

fprintf ( 1, ’CVT_SQUARE_UNIFORM:\n’ );

fprintf ( 1, ’ MATLAB’’s ACCUMARRAY command can be used for faster\n’ );

fprintf ( 1, ’ computation. This command is not available in\n’ );

fprintf ( 1, ’ some versions of MATLAB. If ACCUMARRAY is available,\n’ );

fprintf ( 1, ’ simply make sure that the ACCUMARAY_AVAILABLE variable\n’ );

fprintf ( 1, ’ is set to 1!\n’ );

accumarray_available = 1;

if ( accumarray_available )

fprintf ( 1, ’\n’ );

fprintf ( 1, ’ The ACCUMARRAY command will be used.\n’ );

else

fprintf ( 1, ’\n’ );

fprintf ( 1, ’ The ACCUMARRAY command will NOT be used.\n’ );

end

%

% Clear the figure screen, if already open.

%

clf

%

% Randomize the initial locations of the generators

% in the unit square. If another region is used,

% then this initialization should be changed.

%

p = rand ( n, 2 );

it = 0;

while ( 1 )

%

106



% Compute the Delaunay triangle information

% T for the current nodes.

%

t = delaunay ( p(:,1), p(:,2) );

%

% Display the Delaunay triangulation, if requested.

%

if ( delaunay_display )

subplot ( 1, 2, 2 )

trimesh ( t, p(:,1), p(:,2), zeros(n,1) )

axis ( [ -0.1, 1.1, -0.1, 1.1 ] )

line ( [ 0.0, 1.0, 1.0, 0.0, 0.0 ], [ 0.0, 0.0, 1.0, 1.0, 0.0 ], ...

’Color’, ’r’ );

title_string = sprintf ( ’Delaunay, step %d’, it );

title ( title_string );

axis equal

view ( 2 )

end

%

% Display the CVT generators, and the associated Voronoi diagram.

%

if ( delaunay_display )

subplot ( 1, 2, 1 )

end

voronoi ( p(:,1), p(:,2), t );

axis ( [ -0.1, 1.1, -0.1, 1.1 ] )

line ( [ 0.0, 1.0, 1.0, 0.0, 0.0 ], [ 0.0, 0.0, 1.0, 1.0, 0.0 ], ...

’Color’, ’r’ );

title_string = sprintf ( ’Voronoi, step %d’, it );

title ( title_string );

axis equal

drawnow

%

% Generate sample points.

%

% These sample points implicitly define the geometry of the region.

% If the region is not a unit square, then the range of the sample

% data must be changed.

%

% The data is sampled uniformly. If a nonuniform density is desired,

107



% then the sampling must be done in a biased way.

%

xs = rand ( sample_num, 1 );

ys = rand ( sample_num, 1 );

%

% For each sample point, find K, the index of the nearest generator.

% We do this efficiently by using the Delaunay information with

% Matlab’s DSEARCH command, rather than a brute force nearest neighbor

% computation.

%

k(1:sample_num,1) = dsearch ( p(:,1), p(:,2), t, xs, ys );

%

% The centroid of the Voronoi region associated with each generator

% is approximated by the average of the sample points it was closest to.

%

if ( accumarray_available )

count(1:n) = accumarray ( k, ones(sample_num,1) );

centroid(1,1:n) = accumarray ( k, xs );

centroid(2,1:n) = accumarray ( k, ys );

else

count(1:n) = 0;

centroid(1,1:n) = 0;

centroid(2,1:n) = 0;

for i = 1 : sample_num

j = k(i);

count(j) = count(j) + 1;

centroid(1,j) = centroid(1,j) + xs(i);

centroid(2,j) = centroid(2,j) + ys(i);

end

end

%

% Replace the generators by the centroids.

%

p(1:n,1) = ( centroid(1,1:n) ./ count(1:n) )’;

p(1:n,2) = ( centroid(2,1:n) ./ count(1:n) )’;
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string = input ( ’RETURN, or Q to quit: ’, ’s’ );

if ( string == ’q’ | string == ’Q’ )

[vx,vy] = voronoi ( p(:,1), p(:,2), t )

break

end

it = it + 1;

end

fprintf ( 1, ’\n’ );

fprintf ( 1, ’CVT_SQUARE_UNIFORM:\n’ );

fprintf ( 1, ’ Normal end of execution.\n’ );
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APPENDIX B

Code in C to create grains from seeds and vertices of voronoi diagram

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

// ******************VARIABLES USED**********************

// (x1, y1), (x2, y2): start and end coordinates of the edges

// (px, py): coordinates of seed points

// ne: total number of edges

// ng: total number of grains

// xl, xu, yl, yu: lower and upper limits of the region in x and y directions respectively

// nge: number of edges of a grain having coordinate (px,py)

// slp: sloape of a line joining a vertex and the respective seed point

// eps: cutoff = 0.000001 because of the float

// dist: disance between two points

// th: angle between two lines

// xgrarr, ygrarr: coordinates of all vertices in the required order

// fp: file pointer for input file, here it is input.txt

// ft: file pointer for output file, here it is output.txt

// *******************************************************

main(){

float x1[1000], x2[1000], y1[1000], y2[1000], slp, xu, xl, yu, yl;

float x3[1000], y3[1000], px[1000], py[1000], xv[1000], yv[1000];

float eps = 0.000001, dist[1000], temp, xgr[1000], ygr[1000];

float xgrarr[1000], ygrarr[1000], th[1000], xgr2[1000], ygr2[1000];

int ne, ng, i, j, m1=0, m2=0, k, m, nge[1000], count=0, count2 = 0;

FILE *fp, *ft;

// Read input from file "input.txt"

fp = fopen("input.txt", "r");
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fscanf(fp, "%d %d %f %f %f %f", &ne, &ng, &xl, &xu, &yl, &yu);

for(i = 0; i<ne; i++)

fscanf(fp, "%f", &x1[i]);

for(i = 0; i<ne; i++)

fscanf(fp, "%f", &x2[i]);

for(i = 0; i<ne; i++)

fscanf(fp, "%f", &y1[i]);

for(i = 0; i<ne; i++)

fscanf(fp, "%f", &y2[i]);

for (i=0; i<ng; i++)

fscanf(fp, "%f %f %d", &px[i], &py[i], &nge[i]);

fclose(fp);

// Check if the lines are inside the required region

// bounded by x1, xu, yl and yu. If lines are outside

// then discarding them.

for (i=0; i<ne; i++){

m1 = 0;

m2 = 0;

if(x1[i] < xl) m1 = 1;

else if(x1[i] > xu) m1 = 1;

else if(y1[i] < yl) m1 = 1;

else if(y1[i] > yu) m1 = 1;

if (x2[i] < xl) m2 = 1;

else if (x2[i] > xu) m2 = 1;

else if (y2[i] < yl) m2 = 1;

else if (y2[i] > yu) m2 = 1;

if (m1 && m2){

for (j=i; j<ne-1; j++){

x1[j] = x1[j+1];

x2[j] = x2[j+1];

y1[j] = y1[j+1];

y2[j] = y2[j+1];

}

ne = ne-1;

i--;

}

}

// Take the intercept of the lines which are partially inside
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// the bounded region with the boundary of the region. Discard

// that part of the lines which are falling outside the boundary.

for(i = 0; i<ne; i++){

slp = (y2[i] - y1[i])/(x2[i] - x1[i]);

if (x1[i] < xl) {

x1[i] = xl;

y1[i] = y2[i] - slp*x2[i];

}

else if (x1[i] > xu){

x1[i] = xu;

y1[i] = y2[i] + slp*(x1[i] - x2[i]);

}

if (y1[i] < yl) {

y1[i] = yl;

x1[i] = x2[i] - y2[i]/slp;

}

else if (y1[i] > yu){

y1[i] = yu;

x1[i] = x2[i] + (y1[i] - y2[i])/slp;

}

if (x2[i] < xl) {

x2[i] = xl;

y2[i] = y1[i] - slp*x1[i];

}

else if (x2[i] > xu){

x2[i] = xu;

y2[i] = y1[i] + slp*(x2[i] - x1[i]);

}

if (y2[i] < yl) {

y2[i] = yl;

x2[i] = x1[i] - y1[i]/slp;

}

else if (y2[i] > yu){

y2[i] = yu;

x2[i] = x1[i] + (y2[i] - y1[i])/slp;

}

}

// Grain formation starts from here.
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for (i=0; i<ne; i++){

x3[i] = x2[i];

y3[i] = y2[i];

x2[i] = x1[i];

y2[i] = y1[i];

}

k = 0;

for (i=0; i<ne; i++){

xv[k] = x2[i];

yv[k] = y2[i];

k++;

xv[k] = x3[i];

yv[k] = y3[i];

k++;

}

for (i=0; i<k; i++){

for (j=i+1; j<k; j++){

if((fabs(xv[i]-xv[j]) < eps) && (fabs(yv[i]-yv[j]) < eps)){

for (m=j; m<(k-1); m++){

xv[m] = xv[m+1];

yv[m] = yv[m+1];

}

j = j-1;

k = k-1;

}

}

}

xv[k] = xl;

yv[k] = yl;

xv[k+1] = xu;

yv[k+1] = yl;

xv[k+2] = xu;

yv[k+2] = yu;

xv[k+3] = xl;

yv[k+3] =yu;

k = k+4;

for (i=0; i<1000; i++){

dist[i] = 0.00000000;

xgrarr[i] = 0.0000000;

ygrarr[i] = 0.0000000;

113



th[i] = 0.0000000;

xgr2[i] = 0.0000000;

ygr2[i] = 0.0000000;

}

// Calculate distance of all vertices from all seed points

// and arrange in accending order. This will help to find

// vertices sorrounding the respective seed points

for (i=0; i<ng; i++){

for (j=0; j<k; j++)

dist[j] = sqrt((px[i] - xv[j])*(px[i] - xv[j]) + (py[i] - yv[j])*(py[i] - yv[j]));

for (j=0; j<k-1; j++){

for (m=0; m<k-1-j; m++){

if(dist[m+1] < dist[m]){

temp = dist[m];

dist[m] = dist[m+1];

dist[m+1] = temp;

temp = xv[m];

xv[m] = xv[m+1];

xv[m+1] = temp;

temp = yv[m];

yv[m] = yv[m+1];

yv[m+1] = temp;

}

}

}

for (j=0; j<nge[i]; j++){

xgr[count] = xv[j];

ygr[count] = yv[j];

count++;

}

}

// Now we have all vertices of a grain together but they are

// not in any order (clockwise/counterclockwise). So calculate

// the angle between line joining the seed point and corresponding

// vertices and the x-direction. Then according to these angles

// arrange the vertices in clockwise manner.

count = 0;
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count2 = 0;

for (i=0; i<ng; i++){

for (j=0; j<nge[i]; j++){

th[j] = atan(fabs(py[i]-ygr[count])/fabs(px[i]-xgr[count]));

if((xgr[count] > px[i]) && (ygr[count] > py[i]))

th[j] = th[j];

else if((xgr[count] < px[i]) && (ygr[count] > py[i]))

th[j] = 3.141593 - th[j];

else if((xgr[count] < px[i]) && (ygr[count] < py[i]))

th[j] = th[j] + 3.141593;

else if((xgr[count] > px[i]) && (ygr[count] < py[i]))

th[j] = 2.0*3.141593 - th[j];

xgr2[j] = xgr[count];

ygr2[j] = ygr[count];

count++;

}

for (j=0; j<nge[i]-1; j++){

for (m=0; m<nge[i]-1-j; m++){

if(th[m+1] < th[m]){

temp = th[m];

th[m] = th[m+1];

th[m+1] = temp;

temp = xgr2[m];

xgr2[m] = xgr2[m+1];

xgr2[m+1] = temp;

temp = ygr2[m];

ygr2[m] = ygr2[m+1];

ygr2[m+1] = temp;

}

}

}

for (j=0; j<nge[i]; j++){

xgrarr[count2] = xgr2[j];

ygrarr[count2] = ygr2[j];

count2++;

}

xgrarr[count2] = xgr2[0];

ygrarr[count2] = ygr2[0];

count2++;

}
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// Write the arranged vertices in the file output.txt

fp = fopen("output.txt", "w");

ft = fopen("output_Excel.txt", "w");

m = 0;

m1 = 0;

for (i=0; i<ng; i++){

for (j=0; j<=nge[i]; j++){

fprintf(ft, "%f\t%f\n", xgrarr[m1], ygrarr[m1]);

m1++;

}

fprintf(ft, "\n\n");

}

fprintf(fp, "%d\tr\t%f\t%f\t%f\t%f\n\n", ng, xl, xu, yl, yu);

for (i=0; i<ng; i++){

fprintf(fp, "%d\n", nge[i]);

for (j=0; j<=nge[i]; j++){

fprintf(fp, "%f\t%f\n", xgrarr[m], ygrarr[m]);

m++;

}

fprintf(fp, "\n\n");

}

fprintf(fp, "\n\n\n");

for(i=0; i<ng; i++){

fprintf(fp, "%f\t%f\n", px[i], py[i]);

}

fclose(fp);

}
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APPENDIX C

Code in C to apply isotropic compression to Voronoi grains and calculate

crystalline volume fraction

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

// ******************VARIABLES USED**********************

// (x, y):coordinates of all vertices

// (px, py): coordinates of seed points

// r: factor by which each vertices of the grains need to be compressed

// n: total number of grains

// xl, xu, yl, yu: lower and upper limits of the region in x and y directions respectively

// eps: cutoff = 0.000001 because of the float

// th: angle between two lines

// fp: file pointer for input and output files

// *******************************************************

main(){

float x[1000], y[1000], px[1000], py[1000], xu, xl, yu, yl, r, R, th, eps = 0.000001;

float area = 0.0, s, a, b, c, trix[3], triy[3];

int n, fc[1000], i, j, k=0;

FILE *fp;

// Read all the input from file input.txt in the required format

fp = fopen("input.txt","r");

fscanf(fp, "%d %f %f %f %f %f", &n, &r, &xl, &xu, &yl, &yu);

for(i=0; i<n; i++){

fscanf(fp, "%d", &fc[i]);

for(j=0; j<=fc[i]; j++){

k = k + 1;

fscanf(fp, "%f %f", &x[k-1], &y[k-1]);

}
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}

k = 0;

for(i=0; i<n; i++)

fscanf(fp, "%f %f", &px[i], &py[i]);

fclose(fp);

// Translate all the vertices of the respective grains towards the seed point

// by the amount r.

for(i=0; i<n; i++){

for(j=0; j<=fc[i]; j++){

k = k + 1;

if(((fabs(x[k-1] - xl) < eps) && (fabs(y[k-1] - yl) < eps)));

else if(((fabs(x[k-1] - xu) < eps) && (fabs(y[k-1] - yl) < eps)));

else if(((fabs(x[k-1] - xu) < eps) && (fabs(y[k-1] - yu) < eps)));

else if(((fabs(x[k-1] - xl) < eps) && (fabs(y[k-1] - yu) < eps)));

else if((fabs(y[k-1] - yl) < eps) || (fabs(y[k-1] - yu) < eps)) {

if(x[k-1] > px[i])

x[k-1] = x[k-1] - r;

else

x[k-1] = x[k-1] + r;

}

else if((fabs(x[k-1] - xl) < eps) || (fabs(x[k-1] - xu) < eps)) {

if(y[k-1] > py[i])

y[k-1] = y[k-1] - r;

else

y[k-1] = y[k-1] + r;

}

else {

if((x[k-1] > px[i]) && (y[k-1] > py[i])){

th = atanf((y[k-1] - py[i])/(x[k-1] - px[i]));

x[k-1] = x[k-1] - r*cosf(th);

y[k-1] = y[k-1] - r*sinf(th);

}

else if((x[k-1] < px[i]) && (y[k-1] > py[i])){

th = atanf((y[k-1] - py[i])/(px[i] - x[k-1]));

x[k-1] = x[k-1] + r*cosf(th);

y[k-1] = y[k-1] - r*sinf(th);

}

else if((x[k-1] < px[i]) && (y[k-1] < py[i])){

th = atanf((py[i] - y[k-1])/(px[i] - x[k-1]));
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x[k-1] = x[k-1] + r*cosf(th);

y[k-1] = y[k-1] + r*sinf(th);

}

else if((x[k-1] > px[i]) && (y[k-1] < py[i])){

th = atanf((py[i] - y[k-1])/(x[k-1] - px[i]));

x[k-1] = x[k-1] - r*cosf(th);

y[k-1] = y[k-1] + r*sinf(th);

}

}

}

}

k = 0;

// Calculate the area of all grains by joining all the vertices to

// the respective seed points and evaluating the area of the triangles

for(i=0; i<n; i++){

trix[0] = px[i];

triy[0] = py[i];

for(j=0; j<fc[i]; j++){

trix[1] = x[k];

triy[1] = y[k];

trix[2] = x[k+1];

triy[2] = y[k+1];

k = k+1;

area = area + 0.5 * fabs((trix[2]*triy[0] - trix[0]*triy[2]) + (trix[1]*triy[2] - trix[2]*triy[1])

+ (trix[0]*triy[1] - trix[1]*triy[0]));

}

k = k+1;

}

k = 0;

// Write the output in the required format in the file output.txt

fp = fopen("output.txt", "w");

for(i=0; i<n; i++){

for(j=0; j<=fc[i]; j++){

k = k+1;

fprintf(fp, "%f, %f\n", x[k-1], y[k-1]);

}

fprintf(fp, "\n\n");
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}

fprintf(fp, "Area of the Crystalline phase = %f\n", area);

fprintf(fp, "Area of the Amorphous phase = %f\n", 1.0-area);

fclose(fp);

}
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APPENDIX D

Sample PYTHON code to create a model in ABAQUS with 1 grain and

1 grain boundary, developed as individual parts

’’’

-----------------------------------------------------------------------------

Sample PYTHON code that creates 1 grains and 1 grain boundary using the coordinates

included in the code. To create multiple grains (say, N) the same command given below must be

repeated N times with coordinates of each grain included. In addition the code for c

reating the grain boundary must be repeated for N times with corresponding coordinates

to create N grain boundary regions around N grains, respectively.

At the end, instances are created for each grain and grain boundary.

-----------------------------------------------------------------------------

’’’

from abaqus import *

import testUtils

testUtils.setBackwardCompatibility()

from abaqusConstants import *

import part, material, section, assembly, step, interaction

import regionToolset, displayGroupMdbToolset as dgm, mesh, load, job

#----------------------------------------------------------------------------

# Create a model

Mdb()

modelName = ’PC_10g_88_12’

myModel = mdb.Model(name=modelName)

# Create a new viewport in which to display the model

# and the results of the analysis.

myViewport = session.Viewport(name=modelName)

myViewport.makeCurrent()

myViewport.maximize()

#---------------------------------------------------------------------------

# Create 1 grain

# Create a sketch for the base feature

#------------------------------------------
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mySketch = myModel.ConstrainedSketch(name=’Sketch 1’, sheetSize=1)

xyg1 = ((0.012249, 0.311764),

(0.297288, 0.294469),

(0.314673, 0.012124),

(0.012698, 0.012042),

(0.012249, 0.311764))

for i in range(len(xyg1)-1):

mySketch.Line(point1=xyg1[i],

point2=xyg1[i+1])

myPart = myModel.Part(name=’grain1’, dimensionality=TWO_D_PLANAR, type=DEFORMABLE_BODY)

myPart.BaseShell(sketch=mySketch)

mySketch.unsetPrimaryObject()

#------------------------------------------

#The above set must be repeated N times with corresponding coordinates to generate N grains.

#------------------------------------------

### END OF GRAINS, NOW TO CREATE GRAIN BOUNDARIES -------------------------------------------

# Create a sketch for the base feature

#------------------------------------------

mySketch = myModel.ConstrainedSketch(name=’Sketch 11’, sheetSize=1)

xyCoordsInner = ((0.012249, 0.311764),

(0.297288, 0.294469),

(0.314673, 0.012124),

(0.012698, 0.012042),

(0.012249, 0.311764))

xyCoordsOuter = ((0.000000, 0.324263),

(0.309400, 0.307100),

(0.327293, 0.000000),

(0.000000, 0.000000),

(0.000000, 0.324263))

for i in range(len(xyCoordsInner)-1):

mySketch.Line(point1=xyCoordsInner[i],

point2=xyCoordsInner[i+1])

for i in range(len(xyCoordsOuter)-1):

mySketch.Line(point1=xyCoordsOuter[i],

point2=xyCoordsOuter[i+1])

myPart = myModel.Part(name=’GB1’, dimensionality=TWO_D_PLANAR, type=DEFORMABLE_BODY)

myPart.BaseShell(sketch=mySketch)

mySketch.unsetPrimaryObject()

#------------------------------------------
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#The above set must be repeated N times with corresponding coordinates to generate N grains.

#------------------------------------------

# Creating Instances. This will put all parts in one assembly

a = mdb.models[’PC_10g_88_12’].rootAssembly

p = mdb.models[’PC_10g_88_12’].parts[’grain1’]

a.Instance(name=’grain10’, part=p, dependent=OFF)

p = mdb.models[’PC_10g_88_12’].parts[’GB1’]

a.Instance(name=’GB1’, part=p, dependent=OFF)

#------------------------------------------

#The above set must be repeated 2N times with corresponding names for N grains + N grain boundaries.

#------------------------------------------
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APPENDIX E

Sample PYTHON code to create a 2 dimensional model in ABAQUS as

single part with 10 grains in a unit square

’’’

-----------------------------------------------------------------------------

Sample PYTHON code that creates a 2 dimensional single part with (10) grains drawn in a unit square

using coordinates for vertices of the grains included in the code.

-----------------------------------------------------------------------------

’’’

from abaqus import *

import testUtils

testUtils.setBackwardCompatibility()

from abaqusConstants import *

import part, material, section, assembly, step, interaction, partition

import regionToolset, displayGroupMdbToolset as dgm, mesh, load, job

#----------------------------------------------------------------------------

# Create a model

Mdb()

modelName = ’Model-1’

myModel = mdb.Model(name=modelName)

# Create a new viewport in which to display the model

# and the results of the analysis.

myViewport = session.Viewport(name=modelName)

myViewport.makeCurrent()

myViewport.maximize()

#---------------------------------------------------------------------------

# Create a sketch for the base feature

s1 = myModel.ConstrainedSketch(name=’Sketch 1’, sheetSize=1)

xyg1 = ((0.000000, 0),

(0,1),

(1, 1),

(1, 0),
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(0, 0))

for i in range(len(xyg1)-1):

s1.Line(point1=xyg1[i],

point2=xyg1[i+1])

myPart = myModel.Part(name=’Part-1’, dimensionality=TWO_D_PLANAR, type=DEFORMABLE_BODY)

myPart.BaseShell(sketch=s1)

s1.unsetPrimaryObject()

#---------------------------------------------------------------------------

p = mdb.models[’Model-1’].parts[’Part-1’]

session.viewports[’Viewport: 1’].setValues(displayedObject=p)

p = mdb.models[’Model-1’].parts[’Part-1’]

f, e, d1 = p.faces, p.edges, p.datums

g, v, d, c = s1.geometry, s1.vertices, s1.dimensions, s1.constraints

s1.setPrimaryObject(option=SUPERIMPOSE)

p = mdb.models[’Model-1’].parts[’Part-1’]

p.projectReferencesOntoSketch(sketch=s1, filter=COPLANAR_EDGES)

s1.Line(point1=(0.000000, 0.294263),point2=(0.288636, 0.285447))

s1.Line(point1=(0.288636, 0.285447),point2=(0.297293, 0.000000))

s1.Line(point1=(0.297293, 0.000000),point2=(0.000000, 0.000000))

s1.Line(point1=(0.000000, 0.000000),point2=(0.000000, 0.294263))

s1.Line(point1=(0.332539, 0.288006),point2=(0.388058, 0.343339))

s1.Line(point1=(0.388058, 0.343339),point2=(0.625421, 0.256398))

s1.Line(point1=(0.625421, 0.256398),point2=(0.605043, 0.000000))

s1.Line(point1=(0.605043, 0.000000),point2=(0.357293, 0.000000))

s1.Line(point1=(0.357293, 0.000000),point2=(0.332539, 0.288006))

s1.Line(point1=(0.676431, 0.253231),point2=(0.734353, 0.298308))

s1.Line(point1=(0.734353, 0.298308),point2=(1.000000, 0.259342))

s1.Line(point1=(1.000000, 0.259342),point2=(1.000000, 0.000000))

s1.Line(point1=(1.000000, 0.000000),point2=(0.665043, 0.000000))

s1.Line(point1=(0.665043, 0.000000),point2=(0.676431, 0.253231))

s1.Line(point1=(1.000000, 0.319342),point2=(0.740232, 0.345593))

s1.Line(point1=(0.740232, 0.345593),point2=(0.732539, 0.610708))

s1.Line(point1=(0.732539, 0.610708),point2=(1.000000, 0.624524))

s1.Line(point1=(1.000000, 0.624524),point2=(1.000000, 0.319342))

s1.Line(point1=(1.000000, 0.684524),point2=(0.729002, 0.658549))
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s1.Line(point1=(0.729002, 0.658549),point2=(0.703045, 0.677030))

s1.Line(point1=(0.703045, 0.677030),point2=(0.670634, 0.775627))

s1.Line(point1=(0.670634, 0.775627),point2=(0.732477, 1.000000))

s1.Line(point1=(0.732477, 1.000000),point2=(1.000000, 1.000000))

s1.Line(point1=(1.000000, 1.000000),point2=(1.000000, 0.684524))

s1.Line(point1=(0.672477, 1.000000),point2=(0.620434, 0.788770))

s1.Line(point1=(0.620434, 0.788770),point2=(0.363382, 0.834907))

s1.Line(point1=(0.363382, 0.834907),point2=(0.324880, 1.000000))

s1.Line(point1=(0.324880, 1.000000),point2=(0.672477, 1.000000))

s1.Line(point1=(0.264880, 1.000000),point2=(0.306807, 0.821665))

s1.Line(point1=(0.306807, 0.821665),point2=(0.246159, 0.682328))

s1.Line(point1=(0.246159, 0.682328),point2=(0.000000, 0.664629))

s1.Line(point1=(0.000000, 0.664629),point2=(0.000000, 1.000000))

s1.Line(point1=(0.000000, 1.000000),point2=(0.264880, 1.000000))

s1.Line(point1=(0.000000, 0.604629),point2=(0.250692, 0.629808))

s1.Line(point1=(0.250692, 0.629808),point2=(0.349551, 0.498825))

s1.Line(point1=(0.349551, 0.498825),point2=(0.348425, 0.384410))

s1.Line(point1=(0.348425, 0.384410),point2=(0.291146, 0.330907))

s1.Line(point1=(0.291146, 0.330907),point2=(0.000000, 0.354263))

s1.Line(point1=(0.000000, 0.354263),point2=(0.000000, 0.604629))

s1.Line(point1=(0.292420, 0.661386),point2=(0.391663, 0.530689))

s1.Line(point1=(0.391663, 0.530689),point2=(0.653171, 0.658824))

s1.Line(point1=(0.653171, 0.658824),point2=(0.614465, 0.755121))

s1.Line(point1=(0.614465, 0.755121),point2=(0.357094, 0.798906))

s1.Line(point1=(0.357094, 0.798906),point2=(0.292420, 0.661386))

s1.Line(point1=(0.408493, 0.496927),point2=(0.668218, 0.628638))

s1.Line(point1=(0.668218, 0.628638),point2=(0.694003, 0.609919))

s1.Line(point1=(0.694003, 0.609919),point2=(0.697305, 0.344709))

s1.Line(point1=(0.697305, 0.344709),point2=(0.640489, 0.298245))

s1.Line(point1=(0.640489, 0.298245),point2=(0.402227, 0.382679))

s1.Line(point1=(0.402227, 0.382679),point2=(0.408493, 0.496927))

p = mdb.models[’Model-1’].parts[’Part-1’]

f = p.faces

pickedFaces = f.getSequenceFromMask(mask=(’[#1 ]’, ), )

e1, d2 = p.edges, p.datums
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p.PartitionFaceBySketch(faces=pickedFaces, sketch=s1)

s1.unsetPrimaryObject()
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