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1. CHAPTERII

1.1 INTRODUCTION

A web is any flexible thin material. Webs are made in continpooguction processes. The
webs are often stored in wound roll form, since this is the only comtemieans of storing
long lengths of flexible material. A production roll of polyestémfthat is 48 gages
(0.00048") in thickness might be 4 feet in diameter. If the weloisnd on a 6” diameter
core there can be nearly 60 miles of web length in the roll. poblgester web could be
nearly 300 inches wide when made, but costumer rolls to be shippedbsoahly 6 inches
to 60 inches in width depending on the products to be made. Thus a paviiellaright be
60 miles long, 60 inches wide, and 0.00048 inches in thickness. Plasticddpers, foils,
and thin metal sheets are examples of webs. Web handling aiefibed as all processes
employed during the transportation of webs. Cutting, coating, sligingting, laminating
and drying are some of the processes that add value to the welg Dwse processes, web

materials must travel around several rollers in the process equipment.



During the transportation of webs trough process machinery, convaressesses are
induced in webs and these compressive stresses may causeitiestalbithese instabilities
occur in free spans, which are the sections of web betweerrdirers, they are called
troughsand if they occur at rollers, they are calednkles(Figure 1). Wrinkles and troughs
result in loss of value and quality of the webs. For instaneajrikles may cause permanent
damages to the webs the result is wasted web and highédmtamvntime of web lines. The
processes such as laminating, printing on paper, metalizinighefdr coating require web to
be planar. Troughs may affect these processes and like wrirldegsesult is waste of
material and time. As a result, wrinkles and troughs are two tantoengineering problems

in the web handling industry.

Troughs occur at free span
* Wrinkles occur at Rollers

@ +

Roller Free Span Roller

Figure 1. 1 Troughs and Wrinkles

There are three types of wrinkles. Machine direction wrinklegsssc machine direction
wrinkles and shear wrinkles. The machine direction [MD] is thectlon of the web travel
through the web process machine and the cross machine direction [CMD{lisettimn that

is perpendicular to the machine direction (i.e. across the web whMi)wrinkles occur



because of the compressive forces in the CMD. CMD wrinklepradguced during winding
or unwinding processes due to interlayer slippage that may besihle ogair entrainment
[1]. Shear forces due to the imperfect rollers, misalignedrsolad non uniform webs may

result in shear troughs and wrinkles.

Shear wrinkles can result from misaligned or tapered rojler2]. Shear wrinkles can be

classified as regime one wrinkles and regime two wrinkles.

A
o
Q.
o
l_
) =
= _“é > Wrinkles
£ | © *
o | X Regime |
©
@
=
é L»
5 Planar, Troughed, or Slack Edge Spans
>

Web Tension

Figure 1. 2 Regime | and Regime Il Wrinkles

Regime one wrinkles are diagonal wrinkles which occur becdu$e presence of a lateral

shear force in the web. The shear force might be due to agneslor tapered roller. The



shear forces in a web which are necessary to cause troughsklesvare very small. The
misalignments and tapers which cause the shear forces arentiomal. For regime one
troughs and wrinkles to occur there must be sufficient traction batwee web and the
rollers to react the shear forces. The shear forces occurdeeaden traction is adequate the
web will attempt to gain normal entry to the downstream molldne concept or law of
normal entry of a web to a roller is attributed to Lorig [3].giRee two wrinkles are
dependent on traction and velocity between the web and the roller. badl@sif traction is
insufficient, CMD compressive stresses cannot develop in the wieboiral restraint forces
between the web and the roller are required to sustain wrinklggabes in web tension
result in increased normal forces between the web and rollercata decrease the air films
which develop between web and roller. Air films can develop éetvwebs and rollers due
to the hydrodynamic entrainment of air. Increased web tensionnandal force act to
decrease the thickness of the air films. The air filmslt@s decrease in traction between the
web and rollers. Thus an increase in web tension will incribgspotential frictional forces
that would be needed to sustain a wrinkle on a roller. The normglreite may be violated
as a result [3]. Good et al [4] showed that regime two wringtedd be predicted. In this
proposal it will be assumed that sufficient traction exist betweebs and rollers such that

only regime one wrinkles need to be considered.

Wrinkles are defined as buckling of webs around rollers. Webs hayewll resistance to
compression in free spans. Webs may withstand more compreses® atrthe rollers than
free span, because the web has greater stability in the faanoydihdrical shell than it has a
flat plate. The critical CMD compressive stress neededritikie the web can be predicted

using classical cylindrical shell buckling expressions.



Previous research by Webb[9], Beisel[12] and Mallya[15] have shownvdtawrinkles on
rollers can be predicted by analyzing the compressive Ck3s&s that form in the web as
it contacts rollers. These compressive stresses arise dueigbg that have already formed
in the free span prior to the rollers. The troughs themselvesbmafe result of many
disturbances that exist in web lines. Misaligned rollers, &pevollers and web non
uniformities (such as holes) are examples of such disturbances.ifTtmudd be stated that
web wrinkles on rollers are the result of two instabilities. gtutbance is first required to
induce a trough instability in the free span. The first instgidilas now occurred. The web
that was planar in the free span has now troughed. After thehgoagpear CMD

compressive stresses will arise in the web entering the roller downsiféhat span.

When the troughs first appear, the CMD stress in the web entdenroller may be small.
Thus, whatever disturbance produced the trough initially may have to eegetmarger
before sufficient CMD compressive stress can be generatdaeinvéb on the roller to
produce an MD wrinkle. At this point, the second instability has oeduiThe web on the
roller that earlier had the shape of a sector of a cylindsteal has now buckled. Thus, it has

been proven that the prediction of wrinkles upon a roller involves:

(1) An instability (troughs) occurring in the span upstream of the roller.

(2) As whatever disturbance increases that produced the trougitepin(l), a post
buckling analysis must be undertaken. It will bill seen that aditterbance increases that a

CMD compressive stress will arise in the web on the downstream roller.

(3) As the disturbance yet increase further the CMD comprestséss in the web on the

5



downstream roller is also increasing. As this CMD stresgeases it will finally surpass the
cylindrical shell buckling stress. At this point, with sufficiénttion between the web and

the roller, a wrinkle will form in the web on the roller.

The purpose of this study is to develop efficient computational toolsdnadccomplish the

analyses required in step (1), (2), and (3).



2. CHAPTER I

2.1 LITERATURE REVIEW

The literature has been reviewed and the findings will be brokenvit sections. First the
basic theories of membrane instability will be reviewed. Secdmaset studies which
examine web instability will be reviewed. At the close of tiapter a final summary of the

findings will be included and a statement of proposed research will be presented

2.2 Theory of Membrane Instability

Wagner [18] prepared a treatise on sheet metal girders wightivie webs. Probably this
study is the earliest investigation of the mechanics of wrnigkinembranes. He worked to
develop the structural method of sheet metal girders. His methods besed on the

7



assumption of the low stiffness in bending of the metal web. Hé&edoto explain the
behavior of the thin metal webs in beams carrying a shear lehdrnwexcess of the initial
buckling value. He proposed tension field theory. Tension field thkelys to analyze
flexible structures that can support tension, but have no abilitystst mompression. This
theory was further developed by Reissner [23], Stein-Hedgep®irahd Mikolas [20, 21].
Miller-Hedgepeth [5] and Miller et al. [6, 22] adopted thieedry to the finite element
method. Tension field theory can be applied to the web lines due tadhth&t web lines
can support tension but cannot carry compression and also web mateeiallexible

structures.

Stein and Hedgepeth [19] suggested a particularly useful appraauterning partly
wrinkling membranes. This work is a seminal work in this field.yTterived a theory to
predict the stresses and deformations of stretched membracieistr components for loads
under which part of the membrane wrinkles. Their theory was based baditeassumption
that a membrane has no bending stiffness and because of thisrgamac@ompressive
stress. They applied their theory to in-plane bending of alsé@tectangular membrane, a
pressurized cylinder, and to the rotation of a hub in a stretcihedaci membrane. They
presented stresses and deformations in equation form for the wrinktediravrinkled
regions. The membrane they considered is elastic, isotropic, hasndm@stiffness, and
cannot carry compressive stress. In their work they considerethges strains and
displacements of the wrinkling material rather than detailed mhefitons of each wrinkle. In
terms of the wrinkling equations given, their theory was limitedhe sense that average

strains must be small compared with unity. They started to igaéstthe wrinkling region

8



by looking the principal stresses. They used a criterionftbath principal stresses are zero,
the membrane is unloaded and thus will not wrinkle. Their criteria fwrinkled membrane
is one principal stress must be zero and other principal sgregsizero and tensile. The

nonzero principal stress may be assumed to act along the crest of the.wrinkle

The approach that was developed by Stein and Hedgepeth [19] wes fileveloped and
applied by Mikolas [20, 21]. He presented experiments and andtysithe wrinkling
behavior of stretched membranes under the influenagafue loading through an attached
hub. He found that theory and experimental results were in a vedyagmeement. The work
done by Stein and Hedgepeth [19] and Mikolas [20, 21] were closed &butioas and did
not involve the finite element method. The principal stress aitethat they used is

employed in our current approach.

Miller and Hedgepeth [5] developed a new algorithm for finite el@nanalysis based on the
same assumptions and field equations after finding some culisadlvantages connected
with the Stein and Hedgepeth [19] approach. This work may be theimmustant study in
this field. In their algorithm the element stiffness is dependenthe current principal
strains. Wrinkling membrane elements can have either taut behaviokled behavior or
slack behavior. In taut behavior both principal stresses arer liyge zero, in wrinkled
behavior one of the principal stresses is greater than zeathéeis equal to zero and in
slack behavior both principal stresses are equal to zero. Inallgenithm, in the first load

step all elements are assumed to taut behavior. In the consetepseedlement behaviors



are calculated with respect to strain states of previous $tepther words, the decision on
the stress state is made using the criteria based uporpptistiains. In the algorithm they
apply load step by step and they continue to solve for a partikaddr step until the
convergence is achieved for that load step. In the proposed redbaraigorithm that is

employed is similar to Miller and Hedgepeth'’s algorithm.

Miller et al. [6, 22] investigated the algorithm further. Thaesented the efficiency and
accuracy of the algorithm by applying it to the problemsnSaeid Hedgepeth [19] studied.
They described the algorithm more detailed in these studies.aldwegescribed how Miller

and Hedgepeth [5] derived the D-taut, D-slack and D-wrinkled constitutivecesain detail.
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2.3 Applications of Instability Analyses to Webs

Shelton [17] studied the steering effects of downstream mpnsdi roller. He modeled web
span as a beam. His work helped us to justify boundary conditions whichd sheul
associated with a straight uniform web approaching a misaligneer nolhen there is

sufficient friction to enforce the kinematic boundary conditions.

Oi Vi Web Vj 6j

Web Travel

Figure 2.1 Boundary Conditions for Misaligned Roller

He determined that the concept of normal entry that had been useddrive belt industry
can also be used in web guiding systems. He statettitaatloi can be arbitrary set equal to

zero without effecting the relative lateral deformation within the span.

0j is the misalignment of the downstreaatier at j, and due to the law of normal entry the
slope of the web at j will b8j. Shelton proved that the final boundary condition was the
downstream moment being zero. Thuglyi= Vj (L) = 0. In our problem these boundary

conditions will be used while modeling the instability of a web tluea downstream
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misaligned roller.

Gehlbach, et al. [32] proposed buckling criteria for troughed webs neeaspan. They
showed experimental verification for downstream misaligned ralese. In their work,

isotropic web properties were considered.

Gopal and Kedl [33] were the fist people who used finite elemehissmand a commercial
FE code to study trough formation in the web span between rdlleey. modeled a web
span by using triangular plate elements and they used ABAQUSEercial code. They

were successful to predict deformations of a web due to the misaligned roller.

Benson et al. [8] developed a finite element model for wrinklingyarsahnd called this code
FEWA. They used this code to make calculations in their paper. &lmeiwas to better
understand the conditions which cause wrinkle formation. They worked tatpi@chtions
where troughs would form and predict magnitudes of compressiveestrd$gey compared
some of their results with the results from the nonlinear versiocommercial code
ABAQUS. In their code instead of using Wagner’s tension fieldrihéhey used the tension
field theory that Wu [24, 25, and 26] introduced first. In this method, gssraed that out of
plane deflection relieves compressive stress across a wan#l¢hat there is an associated

strain with this deflection.

Roisum [28, 29, 30, and 31] described wrinkling phenomena in detail. He reeglai
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wrinkling, air entrainment, tension control, roller design, problemecszsted with profile
variations, why and how wrinkles form, the types of wrinkles, troubletshg techniques.
He explained the importance of the problem due to the matersal and waste for the
producers. While doing this he explained the subject in a simpleatlzer than an academic

way.

Shelton [14] worked on buckling of webs. He modeled a web as a buckledpkatehell.
He studied buckled wavelengths of webs in free spans and on rolspredicted the

wavelength of the buckled form and he compared these results with experimental da

Good et al. [4] worked on velocity independent and velocity dependent veinkétocity

dependence occurs when velocities are high enough and web tersiorersough to allow
sufficient air entrainment between webs and rollers that Sheltmmindary conditions [17]
are no longer valid. They found that velocity dependent wrinklesbeaavoided by using

enough traction and suitable web line conditions.

Hashimoto [34] worked on the studies done by Beisel [2, 10], whichthsaetical model
for predicting the web wrinkling due to the misaligned roller. Tieotetical model was
established upon the experimental results. The experiments whichd heedt for non
uniform webs with different Young’s modulus in MD and CMD directions. démpared

these experimental results with the model and he verified the accuraeyrobtlel.
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Jones and McCann [35] studied wrinkling of webs on rollers and drums. uBaelya new
variational analysis based on the method of Rayleigh-Ritz. Tloelel®d the wrinkling as a
continuous sine wave in a web on a roller or a drum. They reportea shail buckling on a

rigid support in an outward mode is similar to wrinkling on rollers.

Beisel [2, 10] studied wrinkling phenomena due to the misaligned-.ratienis study, he
considered orthotropic material properties. He showed that while wrfokination would
require post buckling analysis, prediction of trough formation canxpeegsed by closed

form solution.

Papandreadis [7] employed finite element methods to predict troughes webs. He studied
effects of several parameters on the amount of lateral coatraxftthe web. He examined
the effects of web material properties (Poisson’s ratio, modoiduslasticity) and web
geometry (various length-to-width ratios), web thickness, loadingitions (tensile loading,
combination of tension and shear forces) on the wrinkling phenomenon. He fisgd a
element code, named NASTRAMdsa Structural Analysis), to analyze the buckling of

panels and the resulting shapes (like wavelength of the corrugations, number of waves)

Webb [9] was the first person who tried to couple the behavior ofi¢thein the free span to
the web on the roller. Probably, the most important finding in hikwas that CMD
compressive stresses were forming in the web on the rolleradtige ttroughs that had
already formed in the free spans. He used quadrilateral miemathin the commercial
finite element code COSMOS to predict wrinkles due to the dovamstraisaligned roller.
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He observed that there is a linear relationship betw#gp,. and 6,

ougn - He performed
experiments to measure the deflection as a result of a gmedliroller. He found that the
misalignment required to form a wrinkle was roughly twice tbdbrm a trough over a wide
range of parameters. He tested a wide range of web maissf@rties, web thickness, and
span length to width ratio (often called span ratio). He tridohtba relationship between the
width reduction of the web and web buckling. He modeled the web croksimgller using

regular elastic elements. He used wrinkling membrane elerfeeritse web in free span. In

Fig.2.2 Webb’s approach to the problem is presented.

<+ Web on upstream roller

\l/ \l/ \l/ Web direction

&——  Web span

X £&——  Web on downstream roller

Figure 2.2 Webb’s Model

In Fig.2.3 the boundary conditions and the applied loads in Webb’s model is shown.
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> Prescribed Displacement
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Lo« [mm

Figure 2.3 Webb’s Model: Boundary Conditions and Applied Loads

Timoshenko [11] showed the axial buckling stress for a sector diraleyis the same per

unit circumferential length as that of a complete cylinder. He foundsthats

__n._ 5 2.1)

The web wrapped around the roller can be assumed to be sector of a cylihetlc&elton
[14] studied with the mechanics of buckling and he hypothesizedttibatveb wrapped
around the roller is shows similarity to an internally presstivedcylinder vessel. He found

that the tension in the web performs like the hoop stress in aipresscylinder and that a
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pressure results between the web and roller. He discussed that BEgy.indeed be

appropriate to use in modeling a web buckling on a roller.

Good and Beisel [10] developed an instability criterion for orthotrogb im shell form in

order to predict wrinkling of webs:

_t V65 2.2)

Oy =71
g R Y, 3(1_ Vx yy)

whereR is the radius of the cylindetjs the thickness of the webx and Ey are¢he elastic
modulus in x and y directions respectively, anid Poisson’s ratio. Beisel performed many
tests of aluminum soda cans which were near perfect in geometry. He foutie thatkling
stress approached that given by Timoshenko’s expression and concludékletlesirlier
disagreement being due to shell imperfections must have beentcdiras expressions 2.1
and 2.2 appear to be applicable to sectors of web transitingsrolldf the compressive

stresses in the web on the roller reackvt)l;e the web will buckle.

Webb [9] increased the shear forces used to simulate thegnisaint of the roller until the

compressive stress induced in the web on the roller reaches, thealue in (Eq.2.2). When

the critical compressive CMD stress was reached, he deterntivee rotation of the
downstream roller from the displacements output by the finitenexieé code. The

experimental critical misalignment of the roller and the rotabf the web at the entry of the
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roller computed using finite element model did not match well. Hpgsed that the

experimental critical misalignment of the rollér is the sum of the critical angles predicted

by the model for troughing,, ..., and for wrinklingg, in verifying his model. This

r,wrinkle

was found later to be incorrect by Beisel [12].

Webb’s work was carried forward by Beisel [12]. Beisel stutliedghing and wrinkling due
to roller misalignment, roller taper, and roller crown. Thaereame similarity between the
effects of roller misalignment and taper on troughs and wrinkheboth cases the web is
steered laterally in the machine and a shear stresssra@siuhe web. The misaligned roller
induces the misalignment angle and a lateral deformatiomeatmisaligned roller. The
tapered roller induces a lateral deformation and a bending moméme aapered roller.
Beisel's method of modeling the problem with COSMOS was @iffefrom the Webb’s
method of modeling the problem. Beisel achieved good agreement withddgels and the
experimental results. His model and his results will be introdurc&€hapter 1V and Chapter

V.

Swift [39] examined steering of drive belts. He worked with do@icept of a couple
developed in a web approaching a tapered or crowned roller and uhengesteering of the
web. He suggests the minimum amount of taper or crown which should fieyenh to

control the web with minimum interference of stresses in thb. wle gave experimental

results to support his suggestions for corrective measures.
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Shelton [44] discussed misaligned and tapered rollers, and he mdntttgple web span
interactions and moment transfer. In his thesis, Beisel [12] ceuphis model with
Shelton’s model for the critical taper required to cause trougherto in a web span

approaching a tapered roller.

Good and Beisel [45] worked on the formation of troughs due to tapefeds. They
attempted to determine whether the procedure that was employedidaligned rollers
would be applicable to the case of downstream tapered rollers. Dhiswas a part of

Beisel's thesis [12].

Brown [46] presented a new method for modeling the elastic behavieelus conveyed
over rollers. He worked on lateral displacement of a misaligndler and lateral
displacement of a tapered roller. He suggested two modificatbbriee web boundary
conditions. One was a generalization of the normal entry rule arathteewas the addition
of what he named the normal strain rule. With a numerical gbatdifferential equation
solver, he solved two dimensional plane stress equations and companegsiilie with

earlier models.

Shimizu et al. [47] and Shimizu [48] worked on plates which have hatksi@ subjected to
tensile load. They used the finite element method in their worky iflvestigated the effects

of aspect ratios (height/width) and shapes of holes t& wiaich is the buckling coefficient
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of the plate described by Timoshenko and Gere [11]. They deterntire¢ with that
curvatures on corners of holes have little effect in improvingehsion buckling strength

and that the buckling coefficient increases corresponding to the increapiect ratio.

El-Sawy and Martini [49] studied the effects of plate aspaiid (height/width), hole size,
hole location and loading ratio on the buckling coefficieonf rectangular perforated plates
subjected to uniform end compression in xhdirection and compression or tension in yhe

direction.

Mallya [15] was the first person to examine the effectsadés in process machinery in web
handling industry. He applied Beisel's method of modeling to webkias due to circular
and elliptical discontinuities in the web. He studied the behavismebt with voids traveling
over a roller. He compared experimental results and finite eemedel results that he
modeled using commercial FE code COSMOS. He studied elliptiods amid circular holes
in terms of generating wrinkles. His FE model was simiidorm to Beisel's FE model with
respect to boundary conditions and using five panels. His model ands resliltbe

introduced in Chapter VI.

Kara [16] also used similar modeling method to predict the occ@rehwrinkles due to
length variation across the web width. He attempted to find theaticonditions that would
induce wrinkles. He heated the center of the web during his expesitteathieve length
variation. He also used COSMOS FE commercial code to model dsis, @and used
experimental findings to confirm his FE model.
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Relevant books include, ‘Theory of Elastic Stability’ writtenThgnoshenko and Gere [11],
‘Introduction to Finite Elements in Engineering’ written by Chandtlgpand Belegundu
[36], ‘Finite Elements and Approximation’ written by Zeinkiewiand Morgan [37] and
Visual basic Excel for Dummies [27]. Also ‘Finite Element PAsés Class Notes’ from

Good [38] is used for finite element part of the study.
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2.4 Summary

The tension field theory can be applied to webs in web lineause the web can support
tension but cannot carry compression. Wagner [18] proposed tension frtg tHes theory
was further developed by Raissner [23], Stein and HedgepethafitbMikolas [21, 22].
Miller and Hedgepeth [5] developed a new algorithm for finite elemenysinddased on this

field equation. This algorithm is the most common algorithm used to examineestinkl

Lorig [3] developed the normal entry rule for a web approachimdier.r Shelton [17] found
that the moment in a web is zero when it approaches a misdlgller. In the web handling
area, Gopal and Kedl [33] were the first to employ a commidnaige element code to study

trough formation in the web span between the rollers.

Webb [9] attempted to model wrinkle formation due to a misalignddrrdtie used partly
wrinkling membrane elements while modeling the web span. He usedittmercial finite
element code called COSMOS while modeling his work, and shell ibgcktliteria to

determine whether wrinkling occurred.

Beisel [12] made the most recent attempts to model wrinkiedtion due to the misaligned
roller and the tapered roller. He modeled the web between thesrojlevrinkling membrane
elements and linked it to the classical shell buckling critasiaVebb [9] did. He studied
webs approaching misaligned rollers and tapered rollers. H& thee commercial finite
element code COSMOS to model these cases. He compared his esmdtd with his

experimental results .These results showed good agreement.

Mallya [15] was the first person who investigated the effectsoids on the stability of
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webs. He performed experiments and modeled circular andcdligtiscontinuities in webs
in web lines. He also used the commercial finite element cod&MIIS in his models and

his model results and test results matched well.

2.5 Statement of Proposed Research

In the literature no citations were found for the wrinkling instabdf moving webs that did
not involve the use of commercial finite element codes for solutlea.of commercial finite
element codes by novice users to solve nonlinear problems assodthtecly instability is

difficult.

The objective of the proposed research will be to develop usedliriéinite element codes
that will solve nonlinear instability problems associated withirststate dependent material
properties and boundary conditions of moving webs. This code will be uniqueilahdwe

economic value by helping minimize web material losses as described irrtitlei@tion.

23



3. CHAPTER Il

3.1 FINITE ELEMENT EQUATIONS

In this chapter, the finite element equations will be describatefail. Displacement, strain
and stress equations, the element stiffness matrix, meshing, baattedand their relations
will be studied. A discussion of the solution method for cases inhvthie elasticity matrix

[D] is not constant will be given.

3.2 Two Dimensional Four Node Quadrilateral Elements

In this study, two dimension&bur node quadrilateral elemengse used. In this section the

equations and properties of four node quadrilateral elements will be given.briefly
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The stiffness matrix for quadrilateral elements can be foword the strain energy term in a

continuum.

1
U :IEO'ngV (3.1)

\Y

In finite elements we consider the total strainrgpdo be sum of the strain energies from
each element. Eq.3.2 can be obtained by repladvgby tdA in Eq.3.1, wherd is the

uniform thickness of an element.
1 .
U =Ztej§a cdA (3.2)

The small strain displacement relations for two eligional problems can be written as:

au
€, OX
e=le, b= % (3.3)
") lou ev
_+_
oy OX

Whereu andv are the deformations in tlxeandy directions respectively. In two-dimensional
fields, the displacement components at each poittie domain of the finite element can be

represented as functions of two coordinate dirastio

u=[u(x y, (% yI' (3.4)
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For the general quadrilateral element shown in3Flgthe nodal displacement vector is

q= [0 G G- G

> <

> X

Figure 3.1 Four Node Quadrilateral Element

The finite element method uses concept of shapetins to develop interpolations

systematically.

According to the concept, the shape functions rhasieveloped for the master element. The

master element is defined in natural coordinatés;() and has a square shape in the natural
coordinate system (Fig.3.2). The Lagrange shapetiums aréN,, N,, N, and N, Shape

functions take the value of unity at the node whbey are defined and the value zero at the
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other nodes. For exampll, takes the value one of unity at node one and tilevalue

zero at the other nodes.

n
(1!-1) A (1,1)
Node 4 Node 3
> &
(0,0)
Node1 Node 2

-1,-1) (1-1)

Figure 3. 2 Quadrilateral Elementsiliy Space (Master Element)

At the edgest =+1andn =+1 N, is equal to zero. Sd\, must be a function like,
N, = c(1-¢) (1-7) (3.5)

c is a constant that can be determined easily. SMcés equal to one at node one, where

& =-1andn =-L1.If we put these values at Eq.3.5,
1=c(1- (1) (- ¢ 1)) (3.6)

yields c=1/4.Finally N, can be written as,

N, =5 (-8 @-n) @7)
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By using the same procedulg, N,, N, and N, can be written as,

1
N1=Z(1—§) (1-7)

N, =§(1+5) L-7)
) (3.8)
N, =3 @+€) @)

N, =5 (-&) @)

Now, the shape functions can be used to interpthatelisplacement at any point within the

domain of the element using the equations:

u=Ng+Ng+ Ng+ N g

(3.9
v=Ng+ N,g+ Ng+ Ngq
if N is,
N, ON, ON, ON, O
1 2 3 4 (3'10)
O N, O N, ON, O N,
then the displacement can be written as:
o]
g,
0
u N, ON, ON, ON, O q
W=\, 1= ° : : “1=[N]{q} (3.11)
NN O N, O N O N, (o8
O
4
% |

with the help of shape functions a point in theredat can be described as,
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X= N+ Ny X+ Nyx+ N, g

(3.12)
y=Ny+ N+ N+ Ny,

The shape functions can also be used to genenat@pabetween the cartesian coordinates
(x,y) and the natural coordinate§,f;). Since the same shape functions have been used to
interpolate deformation within an element and toagate the coordinate map equations this
is called an isoparametric formulation. The straiationships (3.3) require derivatives with
respect to cartesian coordinates. We currently biaveleformations and vdefined as shape
functions, which are functions of the natural caoates & andz, multiplied by nodal
deformations that are constants. So, to determiaatrains in cartesian coordinates we must
first relate the derivatives of deformations inurat coordinates £,7) to derivatives in
cartesian coordinatesy). If a displacement function i®, y coordinates isi=u(x, y) then

this function can be considered to be an impliciuinction of & andp

asu = u[X&,71), Y&, n)]. Differentiation due to the chain rule,

ou oduox aouady

0 OXOE Oy o

(3.13)
ou_oudx, dudy
on oxon 0oyon
If we define the Jacobian matrix as,
x oy
o0& 0
3|9 9¢ (3.14)
x o
on 0on

We can rewrite Eq.3.13 as,
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ou OX 0y | [ou ou

0 o0& 0O

S{_|05 0g|]ox|_y |OX (3.15)
ou OX oy | |ou ou

on on on|loy ay

It seems that the Jacobian can transform derivativecartesian coordinates to derivatives

with respect to natural coordinates. By using Bj.8q.3.12 can be written as,

K= 2 @) Qx5 @) Qon it B8) @ b, (B6) (B
(3.16)

V=308 Qo 5 @ ) Qo hyoty (0 E) (@ o (6 @

With the help of EQ.3.16 Jacobian term Eq.3.14lmawritten as,

3o 1{—(1—n)>9+(1—77)><2+(1+77)><3— )%, - En)yp+ E7)y+ Gr)y- Gy )M}

A --EX - (P (M EK— (1€)X, = (BE)%— (& )yt (& )y (BE )y,
(3.17)
this equation can be written as,
‘]11 ‘]12
J{Jm ZJ (3.18)

Now the Jacobian can be inverted and rewrite E§.®Jproduce derivatives that are related

to strains:
ou ou
OX|  11]0¢
@ =J ou (3.19)
oy on
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by using EQ.3.17, EQ.3.19 can be written as

ou @

OX _ 1 J22 - ‘J12 o0& (3 20)
oul det-J, J,||ou '
oy on

by following the same proceduvadisplacements can be obtained as,

v o
OX _ 1 |y —Jdy||0¢ (3.21)
@ detJ -J,, J, ﬂ
oy on

The equatioroxoy=detJo&on has a proof in reference [36].
By using Eq.3.3, Eq.3.20, Eq.3.21 and defining Arioa as,
J,, —J, 0 0

—Jy Jy (3.22)
_‘]22 ‘]11 Jzz - le

ou ou

ou o0& o0&

g | | J, -J, 0 0O 2—” 2—”

P PR i 1 0o -3, 3, 19T Al (3.23)

y oy detJ 2T v ov

Yy au ov VY22 Yn J =iy % %
P o o

on on

with the help of 3.17 G matrice can be defined as,
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-@-7> 0 @) O H®n) 0 -En) O
g1 -1-¢) 0 -W¢g) 0 &) O &) O
4 0 -Q-n) 0 @En) O (Bn) 0 - &7n)

0 -1-¢) 0-(<&) O (BS) 0 (%<

(3.24)

and using the displacement vector Eq.3.9 the d&vies ofu and vcan be written in the

natural coordinates as a function of the nodal meftions,

ou
0&
ou -@-n) 0 @») O (&n) O -@Fp) O

on|_1/-1-¢) 0 -@¢g) 0 (EFg) O &<S)

ol 4 0 -1-n) 0 @Tn) 0 (Fn) 0 - (¥7n)
0¢ 0 -1-¢) 0 -@®¢&) 0 HEE) 0 (FS
v
on

g=Gqg (3.25)

If B is defined a88=AG, by usingEq.3.23 and Eq.3.25 strain term can be written as,

I _3 0 -Q-7) 0 @-7) O @®En) O —-(Fn) O

T A ~1-¢) 0 -(W¢) 0 WE) 0 @E&) O
E= 0 o -J,, J,

4detJ 0 -@-7) 0 (@&n) O EFn) 0 - (&n)

e e Tl o g o-@we) 0 @) 0 @

(3.26)

two dimensional constitutive relations will be ugedrelate stress to strainc =D ¢ and

now,
c=DBqg (3.27)
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By using EQ.3.26 and EQq.3.27 the strain energylteﬁmZteJ'% o '¢dA , becomes,

U :Z%qT [teﬁ B DBdet J ¢ dy] c
- W (3.28)

1
=N"=g"k®
Ee 201 q
where k is 8x8 element stiffness matrix:

ke = tH B' DBdet J o o (3.29)

-1-1

These integrals can be evaluated by using numeinéagration methods. The Gaussian

approach will be considered for this purpose.

3.3 Numerical Integration by Gaussian Approach

By integrating in natural coordinates the boundsimégration are much simplified. In
cartesian coordinates tlyebounds will be functions of and thex-bounds will be functions

of y. In natural coordinates our bounds are from -1ftwboth £ and, . Series can be used

to take the integrals (Eqg.3.29).By using the Gausguadrature approach; integration can be

evaluated using weights and points. These poietalap calledsauss points
1

| = [ (¢ ~ af () +o,f(E)+L +o,1(E) (3.30)
-1
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Eq.3.30 is an example af- point approximation. Here o, »,K @, are weights and

&, &K & are the Gauss points. If a one point formulanpl®yed, the integral becomes:

|=[(9)d¢ ~ o f (&) (3.31)
If a two point formula is employed, the integratbmes:
| =[f(5)d¢ ~ o, f (&) + 0, () (3:32)

The finite element method naturally incorporatesiecerror as a numerical approximation.
The complex continuums were modeled with many dirddlements with simple shape
functions to represent the element deformations3(Byj Hence, it would be undesirable to
incorporate additional error in the integration sifffness terms. It is desirable that the

integration be exact. In a one point formula twoapseters are considergo and &) .
Suppose that our integration is required be exdenwf (£) a polynomial of is order one.
So, supposef (&) is a functionf(£)=a,+a . If we selectw, =2andé, =0 Gaussian

quadrature will yield an exact result.

In a two point formula there are four parametershoose(o,, ®,,&, and¢&,) .Suppose that

f(£) must be exact for a cubic polynomiaf,(¢) =a, + a &+ a&* + a, &%, The error term

will be,

Error = [ (8, +a &+ a8 + &) & ~[ o, f(£) +0,1(£)] =0 (3.33)
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Solution yields four nonlinear equations and thayehthe unique solution,

w=0,=1

G=-5=-1/\3 230

As a result by using two Gauss points and by uthegvalues in Eq.3.34 a cubic expression
or less can be integrated exactly. By increasiegitimber of Gauss points, different weights

(w) and different locationg&) can be found. In the FE algorithm that is devetbpethis

study two Gauss points are used.

Two Dimensional Integrals

The equation 3.29 for our stiffness terms involives-dimensional integrals. So we need to

extend Gaussian quadrature to the two dimensiotegiial form:

=] [ remazay (3:35)

-1-1
If I is in a form like Eq.3.39, can be written as,

1 n

= [ 12w (& Tdn

n

2w [

n
=1 i=1

2

i=1 j

Q

wf(&.7m)] (3.36)

Q
.Mj

1]
P

W W, f(& 177; )

Stiffness matrix (Eqg.3.29) is two-dimensional imag The product ofB'DBdetJ is
guadratic in terms of and 7 .So two point Gauss Quadrature yield an exact telsus 8x8
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matrix so it has 64 elements. Each term must beulzded by using EQ.3.36. If

f(&,n)=t, (B'DBdetJ ); putting two for nin Eqg.3.36 yields,

K, = W F(&,7)+ W, F(E,7 )+ Wow (£ L7 )+ Wa fE .7 )

(3.37)
where
V\ﬁ:szl
1 1 (3.38)
&=m \/5 & =1, \/:—3
After input of these weights and Gauss points theoEq.3.3'k; can be found as,
1 1 1 1 1 1 1 1
-~ f(-——,——=)+ f(——,—=)+ f(—=,—=)+ f (—=,— 3.39
SRR TR R TR R (3.59)
n
A
1 1
=72 11
° ®’
-
[ J [ J
A 1 2 A : 1 1)
211 NEENE
( 7 \/é)

Figure 3.3 Two Points Gauss Quadrature using 22 ru
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3.4 The Global Stiffness Matrix and Matrix Banding

The element stiffness matix an 8x8 matrix and it has 64 elements. Aftecwaling all
stiffness matrices for all elements, thebal stiffnessmatrix need to be formed from the

element stiffness matrices. In Fig. 3.4 the platdivided inton elements, this procedure is

called meshing For every element each of the stiffness terh{s,7)=t_ (B’ DBdetJ), is

evaluated using EQ.3.29. While calculating the geohglobal stiffness matrix, if a node is
only used by one element, its stiffness terms shbal placed in the global stiffness matrix
directly (like Fig.3.4 node 1). If a node is usedttvo elements (like Fig.3.4 nodes 3,5..) ,
stiffness terms for this node from two elements iesadded to form the stiffness terms of
the global stiffness matrix for that node. Lastlyainode is used by four elements (like
Fig.3.4 nodes 4,6...) stiffness terms for that ndien four elements must be added to form

the global stiffness matrix.

Figure 3.4 A Simple Model for Global Stiffness Matr
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Figure 3.5 A Quadrilateral Element and Nodal Displaents

In Eq.3.40 and Eq.3.41 the stiffness matrices lement one and element two displayed in

Fig.3.4 are shown

klll k112 k113 k114 kl15 klle K 17 K 18 | ‘| [Fe]
kl22 k123 k124 k125 K 26 K 2 K 28 (o7 F
Ky Koy K Ky Ka Ky O3 Fs

K

kl44 kl45 k146 48 g4 Fa

K
Ky Ky Ky K| || |Fo (3.40)
55 56 57 58
sym Ree R67 Res Qe Fo
kl77 k178 qr Ilj
L klss L® LT
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k211 I<212 k213 k214 k® 15 K 16 K 17 K 18 [gs Fs
K% K Kb Ko Ko Ky Koy Oe Fe

K 3| | F

k244 k245 k? 46 k? 47 k? 48 Os Fs
K’ K5 K7 Kog| |G ) Fo S4Y

sym l@eﬁ 1867 Izes Qo Fio
k277 k278 Oh1 Fi1

k288 | Q2| | Frz

After global stiffness matrix is formed, all dispaments are calculated by usi@qussian
elimination methodAfter finding displacements, strains and stre$sesll elements can be
calculated. In the algorithm that is developed tiser decides the mesh density. 1000 or
more elements may be needed for long spans simsati he resulting stiffness matrix will
be large and much computational time will be regplifor solutions. Computational times
can be large because a multistep solution willdzpiired where loads are slowly increased
and the D] matrices updated after each load step. Thus ittee &f the stiffness matrix
becomes important because the system of updatedi@usi will be solved many times. The
stiffness matrix in our problem is symmetric matrixinstead of using the whole stiffness
matrix thebandedform of the stiffness matrix can be employed ardilice the computation

time.

To explain the form of the banded matrix, assuna the plate in Fig.3.4 is meshed with
only two elements. In Eq.3.30 and 3.31 the stiffnemtrixes of two elements were given.

So, the global stiffness matrix for the plate Jgi:
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1 1
K11 Koo

1
Koo

sym

kl13 I<114 kl15 klle K 17 ¢ 8 0 0 0O
klzs k124 klzs k126 ¢ 27 K 28 0 0
k133 k134 k135 k136 K 37 klss 0 0
k144 k145 |<146 it 4 it 8 0 o

k55+‘<211 k156+ k212 k157+ k213 k15§ k214 k215 k216

k166+ kzzz k167+ k223 kles* 5 24 k225 kzzs

kl77+‘<233 kl78+ k234 k235 k236

kl88+k244 |<245 k246

k255 k256

k266

ql
q2
q3

a5
g6
q7
g8
q9
q10
qll

| a12]

F1
F2
F3

F5

Fo
F10
F11

| F12]

(3.42)

The banded form of 3.42 is shown in 3.43. The badihrof the matrix has been reduced to

8.

kl13 I<114
I‘124 klzs
kl35 k136
kl46 K 47

1 2 1 2
Kgz+ k13 Ksgr k14

1 2 2
Kegh kK 24 Kk 25

<35 36
K 46 < 47
sz Ksg
K 0
0 0
0 0

kl15 klle kl17 K 18
klze kl27 klzs 0
k137 k138 0o o
k148 0 0 0
k215 k216 K 17 2 18
K2 06 Ko Kigg O

2
Kig7 kgg0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

(3.43)

Banded matrix equation solvers exist which helpgreatly reduce the computational time

associated with solving set the set of equatiomsigwach load step.
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To conclude, the element stiffness terms are caedl from EQ.3.29 where
f(&n)=t, (B DBdetJ), . After developing element stiffness matrices, ghabal stiffness

matrix is formed. After the total potential enengyformed, which is the sum of the strain
energy terms from EQ.3.28 and the work potentiahtdrnal and external forces, the theory
of minimum total potential can be used. The resgltsystems of equations that must be

solved have the form:
Kq=F (3.44)

This set of equations is arranged in the bandad fiiscussed and then solved for the nodal

deformations {q}. After finding displacements straican be calculated from,

The stress and elastic strain components are delayea set of coefficients known as

Generalized Hooke's Law. This law can be written as
c=D&e=DBq (3.46)

WhereD is equivalent elasticity matrix.
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3.5 A [D] Matrix for Plane Stress-Isotropic Material and Partly Wrinkl ed Membrane

Elements

The D matrix is used while forming element stiffness mxas and finding element stresses.
The algorithm that is developed is nonlinear sitiee membran® matrix is dependent on
principal strains. In our models, elastic elemerts used for the web on the rollers and for
the exiting free span. Partly wrinkled membranenelets that were developed by Miller and
Hedgepeth [5] are used for the web in test frea.spaeD matrix can be explicitly stated for

any material. For the plane stress state for anojgic material, stress strain relations can be

written as:
1
&, = E(O'X Vo)
1
£, = E (o,—Vvo,) (3.47)
V== @+ V)r,,

\Y 0
D=_E 1 0 (3.48)
1-V?
o o @V
L 2 i

In taut membrane behavior, both principal stresgseggreater than zero and the web cannot
trough or buckles out of plane. In taut behavibe two in-plane principal strains may both

be greater than zero @ can be greater than zero apndless than zero as long as the ratio
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(&,1¢&,) is greater than the negative value of Poissaati® (—v) . The [D] matrix given in

EQ.3.48 is used to relate stress to strain in (@nbrane elements exhibiting taut behavior
and (2) in linear elastic elements, used to mdaelvieb upon rollers. For the linear elastic
elements there are no conditions placed upon th@ithis [D] matrix, the principal stresses

and strains can take on positive and negative salue

When unsupported membrane elements have a finstipal straine, less than zero this
infers that the second principal strain is alsoatieg and less thag, from the rules we use

to order principal strains. In this case the meméralements exhibit a slack or unstressed

behavior between stress and strain and the [D]ixnatnull.

In wrinkled membrane behavior the first princip#less o, is greater than zero and the
second principal stress, is zero. In terms of strain this behavior is reprged with a first
principal strain ¢, greater than zero but now the second principalirste, is always
negative. Not onlyg, is negative, but the ratio ok{/¢, <—-v). For a simple membrane in

uniform tension with no lateral constraint we woelpect a lateral contraction governed by

the expressios, =—-ve, . We would expect this lateral contraction occurilev the web
remained planar, no buckling would be expected. él@wif ¢, becomes more negative than
—-ve, we would expect a compressivg stress to have developed but since membranes by
definition can withstand no compressiwg stress without buckling, we would assume this

element has entered the wrinkled state. For thenklad membrane positive nonzero
principal stress can be supposed to act along timkle. In a wrinkled membrane element in

longitudinal tension, ifo, is the nonzero positive principal stress, the imgnal direction
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will be observed to be parallel to the wrinkles. tBg property of Mohr’s circle it is known

that

(3.49)

whereR is the radius of Mohr’s circle for strains a@ds the distance from the origin of the
coordinate system to the center of the circle. @ams thin flat membrane in a state of plane
stress in ax-y coordinate system. Let the principal axes | angklrotated through an angle

a relative to thex-y axes (Figure 3.6).

Figure 3.6 Mohr’s Circle for Plane Strain

From the Fig.3.6
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&+e
£, —Rcosr+2 %

:ﬁ_Rcosb

Substituting the value of R (Eq.3.49) into Eq.3ykflds

& — 8 +&
e, =(2 2)00521+ 2
) 2

& teg,
&, = 5 —(

€

“%2ycosm
2
Eq. 3.51 yields

l(1+ cosx }r (& cos2

4 (1 cosx }r (& cos2
If P=cos2x, then Eq.3.52 becomes

=4 21+ P)+22 2(1-P)

& (g &
:E(l P)+ 2(1+ P)

Also y,, can be calculated from Fig.3.6.

Vv =2Rsin 2

—2( 2)sm?o: € —¢,)sin2

If Q=sin2x then Eq.3.54 becomes

7xy = (81 _gZ)Q
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As a result, the usual strain transformation eguatyield,

& &
& =—@1+P)+—=@1-P
. 2( ) 2( )

g, :%(1— P)+€—22 (1+ P) (3.56)
7xy :le_ng
where

&, —&
P=cos Zxr = !

“ame (3.57)
Q=sin 2 =—19_

& =&

Within a wrinkled region usual elasticity equatiahs not apply. Instead, the assumption of

negligible bending stress in the membrane yieldssthess state as:

o,=E¢ ; 0,=0 (3.58)
Or
o, = %(1+ P)o, o, = LZL 1+ P)Es,
81 81
o, = E(l_ Plo, = o,= > (1- P)Eg, (3.59)
1 1
Ty = EQGl Ty = > QEs,

Expressing stresses in terms of strains in the fofmr = Deis desirable for numerical
analysisD is 3x3 matrix,c = (o,,0,,7,,)" and &=(¢,&,7,)" . Because the problem

is statically determinant within the wrinkled regi¢for example o, =0 independent of the
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valuess, and e, ) D is singular and many possible representation®fare possible. 14
plays role of Poisson’s ratio thér=-¢,/&,. In a wrinkled region1 is always greater

Poisson’s ratio [19]. In some point$ can take the value 1. So, choosihgatrix similar to

EQ.3.48 is not a right choice because of fliél— 1*) term. ConsideD matrix is like

a b C
b d e (3.60)
c e f

If Eq.3.60 substitute inter = D¢ and impose EQq.3.56 and Eq.3.59 yields

(1+P) (@1-P) 20 0 O 0 (a & P
1-P) (@+P) -20 0 O 0 [|b 0
0 @P) 0 @P) R 0 |jc|_ _JEP 3.60)
0 @-P) 0 P)-2 0 ||d 0
0 0 @+P) 0 (@P) D ||e Q
0 0 1-P) 0 (WPrX ||f 0

Solutions for the elements & matrix are not unique because the coefficient imatr

Eq.3.61 is not singular. If b=0 selected and regddaato Eq.3.61 it is found that

(3.62)

The resultingD matrix is the matrix which is presented by Millend Hedgepeth [5] for

partly wrinkled membranef matrix is:
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20+P) 0 Q
D=—| 0 21-P) Q (3.63)
0 Q 1

where P and Q stated at Eq.3.57. As a result, immmdels elastic elements and wrinkled
membrane elements are used. For the elements welheegion on the rollers, ti@ matrix
(Eq.3.48) is used to relate stress to strain. Tleenents in the web span have strain
dependenD matrices as explained below. Although the sladkali®r is possible in some
applications it is not possible in a nonlinear fatation which employs an incremental force
method. Once edge slackness begins in a web usiiogca method, convergence to an
equilibrium solution is not possible. Convergenceuld be possible using an incremental
displacement solution. Since this research is ®dum applications where edge slackness

does not occur, an incremental force solution veagatable.

O<¢g andovg, > —¢, O<¢g andovg, <-¢, All other cases
o, T o,=0 o,=0
- — - — 0,=0
O-l O-l O-l Gl
oy
Bi-axial Tension Slack in one direction Slack in two direction

Figure 3.7 Behaviors of Wrinkling Membrane Elemdi]

D matrices are defined for all allowable behaviftesut, wrinkled and slack). In Fig 3.7

behaviors of wrinkling membrane elements can ba.s&euseful algorithm for choosing D
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matrix may be expressed as [5]:

6, <0
6, >0 and ve <-¢, (3.64)

OO0 O
1
D OO

:otherwise

WhereD matrices are defined as,

D.=0 (3.65)

S

For slack behavior, as

. 1 v 0
D; = slv 1 0 (3.66)
1-v
0 0 (I-v)/2

For taut behavior, and as

20+P) 0 Q
DW:% 0 20-P) Q (3.67)
Q Q 1

For wrinkled behavior whereP=cos2x Q= sinZ and as stated in Eq.3.57. These

algorithms will be used to establish the code wilitbe explained in the following chapters.
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4. CHAPTER IV

4.1 MISALIGNED ROLLERS

In this chapter the work done of Beisel [12] wile tbriefly reviewed. The algorithm

developed will be explained step by step. Alsodbée that implements the algorithm will be

described. Then the measures taken to decreasdi@Blnd to automate the code will be

discussed. Finally a new slack edge criterion fezatigned rollers will be developed.

4.2 Beisel's Method for Modeling Wrinkles Due to the Misaligned Rollers

Beisel developed a method to model wrinkle fornrattue to a downstream misaligned
roller. Like Webb he used commercial FE code COSMB& used wrinkling membrane

elements in free spans to allow troughs to formFig.4.1 Beisel's wrinkling model for
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misaligned roller is shown.

Nodes coupled along dotted lings provide normal entry exit and travel across rollers

Horizontal Lines Coupled in y direction Vertical dotted lines coupled in x direction
& >
< 2>
S >
P Wrinkling Membrane Elements used < Regular elastic elements in all other N
in this panel only e panels

9
9
9

Uniform shear force applied at outside ends Well? on " Web line tensiom applied at both ends of web

of web span mlsRaoll?eTe Center node constrained in x and y direction

Panel 1 Panel 2 Panel 3 Panel 4 Panel 5

Figure 4.1 Beisel's FE Wrinkle Model for Misaligh®oller

Contrary to Webb, he used five panels of elemeattser than three panels. The first panel
represents the web on the upstream roller. Thensepanel represents the free span where
wrinkling membrane elements are used. The thirdepaepresents the web on the
downstream misaligned roller. He employed the fowmd fifth panels to enforce desired
boundary conditions. First, he applied tensiorhtoweb when he reached the desired tension

load he began to apply shear force to the modshewn in Fig. 4.1.

Beisel employed this five panel model for the faling reasons:

A. The asymmetric shear forces allowed him to maklelzero moment boundary condition

at the misaligned roller found by Shelton [17].

B. The fourth panel was modeled using regular el&é&ments. This was done because the
fourth panel acts to increase the bending stiffdsbe elastic elements in panel three. The

failure sequence of events was:

1. Troughs form at a critical Engf misalignment given by Beisel's previous
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work [2]. In the finite element code the troughe anodeled by elements that may assume

the wrinkled membrane behavior described in Chdfitefhis happens whenever, <0. In

a real web this does not occur until éne stress becomes more negative than the buckling

stress in the free spar), (o, __zh 3(1EJX2) ; h is thickness, ana is the distance
a -V

between two rollers [12]). The onset of troughs bampredicted with linear buckling theory
with closed form expressions developed by Beisg].[To predict wrinkling of the web on
rollers requires non-linear analysis since the rargefree span has already buckled in the

form of troughs.

2. After troughs form CMD compsa® stresses begin to appear in the elastic
elements in panel three that border panel two. s ghear forces and the associated
misalignment is increased further, these CMD cosgive stresses become more negative
and finally approach the value in Eq. 2.1, at whpdint wrinkles are eminent. The elastic
elements in the panel four restrict the bendinganel three due to the troughs that have

formed in panel two.

Beisel increased the shear forces until the atittompressive stress given by Eg. 2.1 was
induced in the linear elastic elements at the enitthhe misaligned downstream roller. Then,
he concluded that the rotation of the nodes attitey of the downstream roller should be

equal to the angle misalignment in the roller.

Beisel and Webb ran similar experiments to deteentive onset of wrinkle formation due to
the misaligned downstream roller. Beisel compared results with these experimental

results. He modeled a polyester web with a thickn&s0.00092 in (92 gages). The web
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parameters for this web were a Young’ Modulus a20Q0 psi, a Poisson’s ratio of 0.3, a
web width of 6” and again the thickness was 0.G009he rollers had a radius of 1.45”
ando, from the Eq.2.1 was about -270 psi. He modeledl®” and 30" span lengths and

compared his results with the experimental findingsFig.4.2-Fig.4.4 the comparison of

model and experimental data is presented.

0.012
i *
0.01 41— ¢ experimental data 5
A FE wrinkle mode s A
~0.008 A Zx
g »
=0.006 A =
S 0.004
0.002
0 I I I I I I I I
0 5 10 15 20 25 30 35 40 45
Tension (Ibs)
Figure 4.2 L = 6” Span Results
0.025
¢ experimental data A A
0.02 - _ ~
A FE wrinkle mode é
5 0.015- pa
g x4
S, 0.01-
0.005
0 T T T T T T T T
0 5 10 15 20 25 30 35 40 45

Tension (Ibs)

Figure 4.3 L = 18” Span Results
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0.04

JAN
& experimrental data 4 *
0.03 | A FEwrinkie model é é
g L@
< 002
8
0.01
O T T T T T T T T
0 5 10 15 20 25 30 35 40 45

Tension (Ibs)

Figure 4.4 L = 30” Span Results

As seen from these three charts, the results frenmbdel and experimental results show
good agreement. So Beisel's model was successfastimating wrinkle formation due to
misaligned roller for a typical web span. In hiadst he compared his results with Webb’s

results. He claims that his model yields betteultsgshan Webb’s model. He also claimed
that the assumption that Webb proposéd (s the sum oft, ., andd,, ,..) is not true.

Beisel achieved good agreement with experimentult® without relying upon Webb’s

assumption.

4.3 A New Algorithm for Predicting Wrinkles Due to the Misaligned Rollers

As mentioned in the introduction, there are thrgmes$ of wrinkles: MD wrinkles, CMD
wrinkles and shear wrinkles. Shear wrinkles canupctue to roller imperfections such as
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misaligned rollers or tapered rollers. The goahig new algorithm is to codify and automate
the analysis that Beisel perfected using a commaleficite element code (COSMOS). The
term “shear wrinkle” resulted from the realizatitrat these troughs and finally wrinkles
were the result of shear forces in the web. Boéhrtiisaligned roller and the tapered roller

induce shear in the web.

Beisel [12] was successful to develop a methodpfedicting web wrinkles on rollers by
using membrane elements described by Miller andgeleeth [5]. He applied this method to
the prediction of wrinkles due to misalignment atiers, tapered rollers and crowned rollers

and he confirmed his results with laboratory tests.

Beisel used commercial finite element code COSM®8pply this method. In this method

while the elements representing the web on robeesmodeled with elastic elements, the
web in the free spans are modeled with wrinkle nramd elements. These elements cannot
react compressive stresses and they can be infaheee states. These states include taut
web, wrinkled web and slack web. In the taut wedttestthe elements can resist tensile
stresses in both principal directions. In the wiedkweb state, membrane elements can
withstand tensile principal stress in one directeomd zero stress in the other principal

direction. In the slack web state, the elementsceary no stresses in any direction.

In this algorithm, forces are increased in to thedetcstep by step. In the first step, all
elements are modeled with elastic elements. Alteffitst step, the principal strains for each
element in free spans are calculated and storedisByg principal strains, code will select

which of D matrices given below for three statel @ used for the next load step.
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D=D, ;¢<0
D=D, ;>0 and veg <-¢, (4.1)
D=D, ;otherwise

whereD matrices are defined at Eq.3.65-3.67. After cogerce is obtained in each step, the
compressive CMD stresses in the linear elastic esnare reviewed. If those stresses
remain greater than the Timoshenko shell bucklingss (Eq.2.1) the shear force would be
increased. If the CMD stresses in these elemem@nbe more negative than the Timoshenko
shell buckling stress (Eg.2.1), the shear force ldvaneed to decrease and a bracketing
method would be employed to determine what shearefovould produce a negative a
negative CMD stress essentially equal to the Tiraokb buckling stress. Once
accomplished, the misalignment or taper that indutteat level of shear force would be

determined.

By using the method explained above, a finite el#ngede will be developed in Excel VBA
(Visual Basic Excel). This code can be executeaniyn PC with Excel installed without need
of a commercial FE code license and it allows useranalyze the misaligned roller case
using a simple Excel based interface. The advantégeis code will be that users will not
need any linear or nonlinear finite element backgrbto execute the code. They do not have
to know the kinetic and kinematic boundary condisidor misaligned rollers. The inputs will
include parameters such as web tension, web wagr) length, roller diameter, Poisson’s
ratio and elastic modulus. When executed the catleautomatically form a finite element
mesh based upon the inputs with elastic quadrdbtetements representing the web

supported by rollers and with wrinkle membrane qil@gral elements representing the web
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in the free span. The first code will implement bdary conditions for a web approaching a

misaligned roller. Other boundary conditions wil tudied later.

Beisel [2, 12] and Webb [9] studied the misaligmelier case. The boundary conditions that
they used are first proposed by Shelton [14] amah tBood et al. [4]. They considered the

web span as a beam. A classic beam is one whictvébespan length would be ten times

longer than the width. Shear effects become “immt?twhen%v< 10. Tension becomes

“important” when the lateral deformations becommgéa “important” in this context means

that these effects have sizable influence on tieedbhdeformations of the web.

The boundary conditions that are used by Beis€l22, Webb [9], and others will be used in
this model. The validity of using these boundarpditons was verified by comparison to

experimental results by these authors.

The normal entry condition of a web approachingoker was enforced using coupling
equations which enforce multipoint constraints.dsrof adjacent nodes crossing a roller in
panel one and panel five had their CMD displacemeatipled. Each adjacent line of nodes
was coupled separately and in this way Poissonracidn of the web could occur
unimpeded. There was no coupling of nodes in the iweontact with the misaligned roller.
Since the moment in the web in the vicinity of timésaligned roller is small or zero the
deformations of nodes are nearly that associatddamigid body rotation. This results in the

normal entry condition being satisfied in the welbha misaligned roller without enforcing a
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multi-point constraint. The lines of nodes in thBIQ at the exit of panel one and entry of
panel five were each coupled in machine directispldcement. This procedure was done to
ensure the maximum moment in the free web spangm@ctat the border between span one

and span two and the border between span fourpardfsve.

The system that is modeled is shown in Fig .4.5.

Misaligned Downstream Roller
Panel 3

* Panel5

Rotation of Misalignment «—@ T @

Wrinkling Membrane Elements
are used in Panel2 and Panel4

<«+—  Panel2

Upstream Roller Panel1

Regular Elastic Elements are used
in Panell, Panel3 and Panel5

Figure 4.5 The System That is Modeled

The system of five panels is shown in Fig.4.5 medeh Fig.4.6. The coupling discussed

earlier is also shown.
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0 Shear force

Horizontal Lines Coupled in y direction Vertical dotted Lines Coupled in y direction ~  Traction force

Wrinkling Membrane Elements o Wrinkling Membrane Elements
Uniform shear force applied at outside ends Web line tensiom applied at both ends of web
of web span Center node constrained in x and y direction
Roller Web Span Roller Web Span Roller
Panel1 Panel2 Panel3 Panel4 Panel5

Figure 4.6 Misaligned Roller FE Wrinkle Model

The model is divided into five sections. The fipsinel represents the web on the upstream
roller. The coupled nodes in this panel are usezhforce normal entry and exit on upstream
roller. The second panel represents the entry wen 40 the misaligned roller. Here
wrinkling membrane elements are used to simulate tehavior which allow troughs.
Different from Beisel's model at the first attemjpte fourth panel is also modeled with
wrinkling membrane elements. Shear forces are eghalh the web on the upstream and
downstream rollers to simulate the shear, momet |ateral deformations of a web passing
over a misaligned roller. The third panel represehe web on the downstream misaligned
roller. A central node is fixed in the MD and CMDreattions to prevent rigid body
translations of the model. Rigid body rotation reyented by the coupling of the CMD
deformations of the lines of nodes crossing panel and panel five. The fourth panel and
the fifth panel elements and boundary conditionkp lemsure the zero moment boundary

condition at the misaligned roller. The flow chiamt the program is shown in Fig. 4.7.
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Input Variables
From Excel
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Quadrilateral
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Yes

Develop
Stiffnesses For
Roller 3 And Add
To Global Stiff.
Mat. Use DT To
Develop Kijj

Apply Constraints
To the Model

L]

Apply Shear and
Normal Forces to
the Model

v

Solve KQ=F
System And Find
Displacements

v

Calculate Stresses
from

o = DBq

Calculate Roller
Misalignment
using
Displacements of
Elastic Axis On
Roller 2

Write Streses
For
Roller1,Span
1 and Roller2

v

iteration < 5

Load Level<20

No

Load Level= Load
Level+1

Figure 4.7 Flow Chart for New Algorithm
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The stiffness terms for the elements on the upstnedler are calculated by usiiyr, Then
these stiffness terms are assembled into the gkilfdess matrix. The same procedure is
followed for the other web regions on the rolleFar the web span® matrix for the
elements will be formed differently. At the firstdd level and first iteratioD+ is used for all
elements. Then, for all remaining load levels amdall iterations, the program selects one of
the threeD matrices from (Eq.3.64) D-taut, D-wrinkled or D-slack by evaluating the
principal strains calculated in a previous stegsained in Eq. 3.65-67The nonlinearity

for this case is due to the variable D matricestf@ span elements as the shear loads
increase. After selectin matrices, elemental stiffness matrices are foraretithe stiffness
terms will be assembled into the global stiffnesdrir using the same procedure as the web

on the rollers.

After the global stiffness matrix is formed, lineg nodes in the MD on the first and fifth
panels are coupled in tlyedirection and the point at the center of the masléked inx and

y directions as shown in figure 4.6.

Next, the shear and traction forces are appligdg¢system. From the set of equati&iQd=F
the displacements@} can now be calculated. Straing:{ and stresses ¢} can then be

determined using the displacements. The strainscai@ilated using=BQ, stresses are
calculated with the aid ofoc=DBQ for all elements. After calculating strains, pipad

strains are also determined from the cartesiamnstiso that the propdd matrices can be

selected for the next iteration or for the nextdldevel.

The shear and tension forces are applied incredhenta 20 steps. Five iterations are

performed for each load step to allow P and Q tovemge. As mentioned before if the
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principal axes one and two are rotated throughrmteac relative to thex-y axes,P is the

cosine of that angle ar@ s the sine of that angle.

For each new load step, the code first uses tmeipél strains calculated in th& &eration

of the previous load step to determine the stat¢hefwrinkling membrane for the 1st
iteration. Then, the strains calculated in the fieration for that load level are used to select
D matrices for the second iteration. The procedutecantinue in the same way. At each
iteration, the strains calculated for the previdgesation are used to selddtmatrices till the
maximum iteration number (5) is reached for thadistep. The analysis proceeds in load
steps with iterative analysis steps occurring witeach load step. The iterative analysis
steps are necessary to allow the values of P and €pnverge in the elements with the
wrinkled behavior prior to moving to the next losigp. In Fig.4.8 it shows how P and Q

(Eq.3.57) behave with iteration for an elementamél 2.

Convergence of P Convergence of Q

0.995
0.99
0.985
098
0.975
0.97
0.965 —o—>Seriesl
0.96
0.955
0.95

P=cos 2 alfa

Q=sin 2 alfa

-0.2 —e—Seriesl

Iteration Iteration

Figure 4.8 Convergences of P and Q
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Figure 4.9 Excel Input for the Program

In Fig. 4.9, the screen where the web parametergput to the code is shown. As seen from
the Excel input screen, the user enters the paeasnsuch as width of the web, a roll

dimension (quarter circumference of the roller3pan length dimension, the thickness of the
web, the elastic modulus of the web, Poisson’sdRaitthe web, and the web tension in units
of traction (stress) in the x direction. Also theear in y direction in units of traction (stress)
to the Excel sheet is input. In the “m height elata& cell, user enters the mesh density
alongx direction. In “n1 roll elements” cell, user inpute mesh density of the rollers along
y direction. Similarly in n2 span elements cell udecides about the mesh density of the
span elements alongdirection. This is not the final form of input. the next chapters the

efforts for the final form of input will be discusd.
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The output of the code developed to predict wrmkldue to downstream misaligned roller

are o, and o, stresses for all elements on upstream rollerdtvenstream roller and in the

web span between the upstream and the downstrdi@mai@ shown in Figure 4.10.
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5] i Formst  Took Dsta  Window  Help Type a questionfor help = o @ X
N EH S SRR PRI E -0 c 8 s s R v -[Bler @
£ anal <18 ~[Bl7 U |EE=EES % o B E Y- |
FO4 v 7 -259. 64956212066
o i i i =~ e | FP | FQ [ FR | Fs | EL | FU | FV | FW | FX | FY [ FZ | GA @& | & | &y

O, STRESSES AT ROLLER 2 ELEMENTS

‘5 ““ ‘m “‘ ‘m‘”"b

428 5 6 853 93 111 1077 -F7.7 -427 -18246 -6.393 -1.1722 0.8669 1.4669 1.4913 1.3632 1.269 1.2308 1.123
18.7/22 24 292 32 347 39.792| -269.6| -137.9 -72.691 -37.63 -18.922 -9.221 -4.365 -1.9525 -0.568 0.625 2.0663 3.756
3236 38 413 43 437 43.104 -262.6 -188.6 -127.65 -85.35 -57.341 -39.32 -27.89 -20.502 -15.27 -10.75 -5.725 0.941
42245 46 472 48 47.8 48.843 -217.9 -182.7 -147.69 -116.6 -91.749 -72.94 -59.14 -49.022 -4122 -3443 -27.28 -18
48650 50 50.3 51 508 50875 -172.9 -157.1 -140.09 -123.2 -107.9 -94.96 -84.56 -76.407 -69.87 -6423 -58.77 -53
51451 51 51 51 503 49818 -130.2 -126.4 -120.45 -114 -108.06 -103.1 -99.29 -96.753 -95.17 -94.11 -83.12 -92.3
52251 50 47.7 47 458 44784 9228 -93.12 -94106 -95.17 -96.753 -99.29 -103.1 -108.06 -114 -120.5 -126.4 -130
47.3/45 44 40.7 39 37.7 36.183 -52.98 -58.77 -64.229 -69.87 -76.407 -84.56 -9496 -107.9 -123.2 -140.1 -157.1 -173
37.640 39 321 29 272 25813 -18.03 -27.28 -34433 -41.22 -49.022 -59.14 -72.94 -91.749 -116.6 -147.7 -182.7 -218
24622 21 21 20 16.8 15.066 0.9412 -5725 -10.762 -15.27 -20.502 -27.89 -39.32 -57.341 8535 -127.6 -188.6 -263
11.210 9 9.68 9.6 9.01 6.8654| 3.7558 2.0663 0.6255 -0.568 -1.9525 -4.365 -9.221 -18.922 -37.63 -72.69 -137.9 -270
238 2 2 213 22 209 1.3648 1.1228 1.2308 1.2692 1.3632 1.4913 1.4669 0.8669 -1.1722 -6.393 -18.25 -42.7 -77.7

|‘ﬂ‘m““m‘”“‘>‘“‘”‘

2

“5 ‘m “‘ ‘m "-" ‘b ‘“ "\' ‘*

2

18]
(3

« v w\Sheet1 { Sheetz / Sheet3 / I¢ |
aw~ Lg | agroshapes> N\ N (1O 4l £ (8] | & - 2 - A -

HeE
Ready

Figure 4.10 Excel Output for Stresses

For this case critical buckling stress by Eq.2.absut -270 psi. The marked row of stresses
are the stresses of the elements at the entryeotidlvnstream roller. The elements at the
entry of the roller buckle first. After the outpist displayed the minimum (most negative)
stress in these elements should be compared vétbritical shell buckling stress. If unequal,

then the shear force should be increased or dexteagil the minimum compressive stress
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in the elements at the entry of the downstreanero#aches the critical shell buckling stress.
In Fig.4.10, the maximum compressive stress (-26%e@iched the Timoshenko shell
buckling stress (-270). At this instant, the angjigplayed as an output in Figure 4.9. is the
critical angle of misalignment of the downstreansaligned roller for the onset of wrinkling

(0.0073 rad.).

4.4 Comparison of Results with Previous Works

The code that was developed was executed for sases defined by Beisel and the code
results are compared with Beisel's experimental@adesults. As mentioned in the previous
chapter he used a commercial FE code called COSE@Snodeled the misaligned roller
case. He performed his tests using 92 gage potyeste to verify his model. For this web,
Young's Modulus is 712000 psi, Poisson’s ratio i8,Ghe width of web is 6” and the
thickness is 0.00092”. The roller has a radiud @b”. Eqg.2.1 yields about -270 psi for the

critical shell buckling stress for this case.

Beisel was comparing the stresses at the noddseagrttry of the roller with the critical
compressive stress predicted by Timoshenko shetiklimg criteria. In this study,
compressive stresses in the elements at the ehtiyeaoller are used in the comparison
instead of nodal stresses. Stresses at four Gauss pf the elements are computed and their

averages are found as elemental stresses.

The following graphs in Fig. 4.11-13 show the expental critical angle of misalignment at
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the downstream roller, the angle predicted by Bsiseodel and by Yurtcu’s model for 67,

18" and 30” web span lengths.

Wrinkles Due to the Misalignment,92 ga Polyester,L=6"
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Figure 4.11 Comparison of 6” Span Results
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Figure 4.12 Comparison of 18” Span Results
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Wrinkles Due to the Misalignment,92 ga Polyester,L=30"
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Figure 4.13 Comparison of 30” Span Results

From the figures, it can be seen that the restiltiseocode developed agree well with the lab

test data and the results of the commercial code.

4.5 Improvement of Execution Time

It was found that execution the code for long sphas twenty load steps with five internal
iterations in each load step required a large ama@inCPU time. For example, 2000
elements may be employed in a long span case.Meoy element we have an (8*8) stiffness
matrix. Forming the global stiffness matrix for 208lements and solving it 100 times (five

iterations in 20 load steps) required extensive @Rlg. Although we use banded matrix in
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our code long spans could require three hoursddyme a result on a single core computer.

Due to these long execution times the next focus #@ecreasing the CPU time. First the
number of iterations was decreased from five to, tven from two to one, and the result was
not significantly changed. Then step by step tlaal Istep increments were decreased from
twenty to four, and still reasonable results wechieved. However, it was found that

decreasing the load step increments to less thanciused the results to err dramatically.
This problem is appears to converge with four loaetlements and one iteration within each

load increment.

It was mentioned in the previous section that Beisedeled the second span with elastic
elements, but that wrinkling membrane elements wses in this code. This means that we

were calculating principal strains to select whizimatrix would be used for every element

in span two. Beisel ran taut elements in the sedmraspan because the model wa80a
wrap case. For the misaligned roller case thisemtbjthe upstream span to shear and the
downstream span to twist. A web span will absotlrge amount of twist without forming

negativeo, stresses. So Beisel assumed the D in all elemetk®idownstream span would

remain taut. We forced D matrices to beiDthe second free span. This also provided better
agreement between our code and other results. @lmamdement types from wrinkling
membrane elements to elastic elements also helpedetrease CPU time. Our code
produced reasonable results, and did this withcorsds. After making these changes, the
flowchart of our program will be like Fig.4.14. Thme WRINKLINGsystem'will be
applied to the part of the new chart that beginterafMesh Model with Quadrilateral
Elements” and continues to “Load Level<4”. This mamill be used while attempting to

automate the code in Part 4.6.
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Figure 4.14 Flow Chart of Computer Code for Impib&xecution Speed
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4.6 Automating the Code

From Fig 4.9 it can be seen that the user enteeers such as web width, roller wrap arc
length, span length, web thickness, web elastic utusgd Poisson’s ratio, the number of
elements across the web width, the number of elesydwn the span length, the number of
elements across the roller, the web tension anarsibe research objective was to limit the
inputs that could be comprehended by users witknoavledge of the finite element method.
These would include only web width, roller wrap Begth, span length, web thickness, web

elastic modulus, Poisson’s ratio and web tension

One of the inputs required by the code is web tensiVeb tension is one of a very few
parameters that are controllable in a web procemshime. Thus it would be optimal for a
chart to be produced for the user that shows howhnmisalignment is allowable as a
function of web tension, rather than computing whaalignment in a roller is acceptable at
one tension. The user can then decide to solvasahility problem by better aligning the
rollers or by changing the web tension. Thus ther gfiould enter only certain parameters
and the code will determine the mesh parameters shreér force required to induce

wrinkling.

To automate the mesh parameters the code was egexeieral times to explore what mesh
density was required to produce a converged regetly reasonable results were obtained by
dividing the width and span length per piece penafision and dividing the rollers with the

integer part of six times of one-fourth of rollerccimference. The mesh density is delimited
for very long span lengths, very short span lengtasy long wide webs and very short wide

webs. The meshing procedure and convergence chiickevaddressed more detailed at

72



Chapter VIII.

The next step was determining how to automate #aech for the shear force that was
required to induce the wrinkle instability. The usaputs the web tension. A linear
interpolation scheme was used to determine the sbe. One level of shear will produce a

certain level of compressive, stress at the misaligned roller, which can berdeted by

the code. A second level of shear will produce lagotevel of compressiver, stress.

Interpolation can be used to estimate the levelhefar that will produce the shell buckling
stress. It is an estimate because this is nonliaealysis. That estimate can then be input to
the code to help refine the actual shear levelwhilhinduce wrinkling. A slack edge criteria
was used as a starting point. If a slack edge falangg the computations the code will fail.
This is because increased shear will not resuligreased compressive stress in the web on
the roller, it will only increase slackness. For rmmanformation about slack edge criteria
earlier work done by Good [40] can be visited. Véplans can be modeled as beams [12].
From Euler-Bernoulli beam bending theory the stregbe cross-section is:

o= %i@ 4.2)

If this stress is equal to zero, a slack edge @cdliour web has a thicknesstoiwvidth of w,
span length of and the applied traction idirection isTxthe shear stres3,{) for the web

to be slack can be calculated from Eq.4.2 as:

NS

c=0=T,——2 (4.3)

Where moment M is calculated from:
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M =T, xwxtxL 4.4)

If this value put into Eq.4.2 and do the calcalasT,y (Tsiac) Will be found as

T xw
T - _x 4.5
Sl (4.5)

This was used as the starting valuel'dction XY(shear) in the code (Fig.4.9).1t found that
for all cases computed the compressive stresseiritst row of elements in the roller two
was lower (less negative) than the value that wasutated from Timoshenko buckling
criteria (Eq.2.1). Thus it found that if the shgalue in Eq.4.5 was used @maction xy (Tsjack)
and half of it (Tsacd2) One could be sure that there were two datatgoirhich would

produce compressive stresses less than that isddedbuckle the web (fica) (Figure

4.15).
Tslack/2 Tslack Teritical
3 » Shear
o, \
a
O. > .
O-critical ------
\/
Max o,

Figure 4.15 Linear Interpolation |
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After finding two points we can estimalgiica from the tangerting :

0,—0; O —0,

tana = — critical (46)
TSIack - (TSIack/ 2) TCriticaI_ TSIack

from hereTiticar can be found as:

TCriticaI — (Gcritical - 62) x (TSIack B (TSIack/ 2)) + (TSIack/ 2) (47)

0,—0,

The algorithm for Linear Interpretation | can bersén Figure 4.16. The code takes the value
of web tension (tractiom) from Excel input page and calculatés, F2 andF3 values with
the help ofTsack(EQ.4.5). Herd=1 is equal tOl5ck /2, F2 is equal tolsack andF3 is equal to

2* Tsiack - Than code runs fdfl andF2 values within thaVRINKLINGsystemand calculates
Sigmal and Sigma2values. By using EQ.4.7 code calculafggica . The code checks
whetherTiica IS larger than two times dff,cx. This was done because during the runs it
was observed that if this was not done, the vafuk. Q.. increases dramatically because of
the angle between two points. Taking this stepshegmtrolT.iico Value. Then the code runs
WRINKLINGsystenfor Titica Value and findsSSigmaSThe code continues this process until
SigmaSs bigger than the Timoshenko buckling critef&gfnacritica). At the end of Linear
Interpolation 1, there is &1 value which is less than the traction that is eeet buckle the
web, and there is &2 value which is more than the traction that is meetb buckle the web

(Figure 4.17).
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Input Traction X

F2 = Tslack,
F1=(Tslack/2)
F3=(2* Tslack

Call
WRINKLINGsytem
For F2

Find Sigma2

[

Call
WRINKLINGsytem
For F1
Find Sigmat

\

Calculate Tcritical
from linear
interpolation

s Tcritical >F
And
Control=0

Tritical=F3
Control=control+1

Call
WRINKLINGsytem
For Tcritical
Find Sigma$S

F1=F2
F2= Tcritical

Is Sigma$S >
Sigmacritical

Yes

Figure 4.16 Flow Chart for Linear Interpolation |
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The code for linear interpolation one will be:

TRACTIONXY = (TRACTIONX * H) / (6 * (L1 + L2 + L1 +L2 + L1))
F2 = TRACTIONXY
F3 =2 * TRACTIONXY
Do Until sigma$S > syrc
FORCEXY =F2*H *te
NFORCEXY = FORCEXY / m
Call WRINKLINGsystem
sigma?2 = critical
F1=F2/2
FORCEXY =F1*H *te
NFORCEXY = FORCEXY / m
Call WRINKLINGsystem
sigmal = critical
FS = ((sycr - sigma2) * (F2 - F1)) / (sigma&gmal) + F2
If FS > F3 And control = 0 Then
FS=F3
control = control + 1
End If
FORCEXY =FS *H *te
NFORCEXY = FORCEXY /m
Call WRINKLINGsystem
sigmas = critical
Fl1=F2
F2=FS

Loop
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After establishing values F1 and F2 we can stamedr Interpolation Il process. The new

problem will look like Figure 4.17.

F1 Tcritical F2
» Shear
0
[24
O-critical
[24
e
\j
Max o,
Figure 4.17 Linear Interpolation I
From Fig.4.17Tiica Can be found as:
Tcritical = (Gcritical — O-l) . (F 2_ Fl) + Fl (48)

0,0,

Here the aim is to approadBiiica Value by changing the valuesietf and F2 The flowchart

for Linear Interpolation Il can be seen at Figurk84

78



Call
WRINKLINGsystem
For F2
Find Sigma 2

Call
WRINKLINGsystem
For F1
Find Sigma 1

Calculate Teritical
From Linear Interpolation

Call
WRINKLINGsystem
For Teritical
Find Sigma$S

Is

F1=Tcritical Sigmas> F2=Tcritical
Sigmacritical
Is No

Sigmas>=Downlimit
And
SigmaS<=Uplimir

Figure 4.18 Flow Chart for Linear Interpolation Il

From Linear Interpolation Ithe values F1 and F2 are known. By using Eqi4:&a was
calculated and SigmaS was found. If Sigmas is grabtin Sigmacritical we replad@;ical

with F2. If not we replac@iicas With F1. This process was continued until Sigmas i
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between the limits. In case of misaligned rollersecathe lower limit was set to
0.99*Sigmacritical and the upper limit was set t01tSigmacritical. The code for Linear

Interpolation Il will then be:

Downlimit = 0.99 * sycr
Uplimit = 1.01 * sycr
Do Until Downlimit <= sigma$S And sigmaS <= Uplimit
FORCEXY =F2*H *te
NFORCEXY = FORCEXY /m
Call WRINKLINGsystem
sigma2 = critical
FORCEXY =F1*H *te
NFORCEXY = FORCEXY / m
Call WRINKLINGsystem
sigmal = critical
FS = ((sycr - sigmal) * (F2 - F1)) / (sigmag&igmal) + F1
FORCEXY =FS *H *te
NFORCEXY = FORCEXY /m
Call WRINKLINGsystem
sigmas = critical
If sigmasS > sycr Then
F2=FS
Elself sigma$S < sycr Then
F1=FS
End If

Loop

Linear Interpolation |, Linear interpolation Il an/RINKLINGsystentan be seen in the
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Appendix. After automating, Excel input of the cotlidl look like Figure 4.19.
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Figure 4.19 Excel Input for the Automated Program

Here the user is supposed to enter web width, $gagth, thickness, elastic modulus,
Poisson’s ratio, roller radius and the web tensi@ther parameters are calculated
automatically. Meshing elements are calculated \Eitleel equations and shemaaction xy
required to induce wrinkles is calculated withire tikode as mentioned above. After
execution the code provides the following outpatal time of execution (67 seconds), the
maximum compressive stress (-266.8 psi) in thet fisv of elements and the roller
misalignment angle (in degrees) that produced toatpressive stress. For this case the
sigma critical value calculated from TimoshenkoWing criteria (Eq.2.1) is -270 psi. So the
interpolation scheme discussed has produced a essipe stress in the first row of elements
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that is very close to the critical value.

The results from the automated code are shown gurés 4.20-22 and the results are

compared with Beisel’'s commercial FE results arsdést data.
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Figure 4.20 Comparison of 6” Span Case with thredMed Code
Wrinkles Due to the Misalighment,92 ga Polyester, L=18"
0.025
3 ¢
]
= 002 7
5
g 0015 Q & Beisel's Model (COSMOS)
80
S o001
b OBeisel Lab. Test
3 0.005
]
e« @ Yurtcu's Modified Code (VBA)
0
0 2000 4000 6000 8000
MD Tension (psi)

Figure 4.21 Comparison of 18” Span Case withNualified Code
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Figure 4.22 Comparison of 30” Span Case with tredied Code

The execution time of the modified code is mucls l#san the previous version. In the
previous version execution time was around twdited hours and code was able to give one
result for the specified shear force. For the mieditode the execution time is around five to
ten minutes and the modified code finds the rigigas force that will buckle the web by

itself. Over the parameter ranges of these exantpiesnodified code appears to mesh the

problem adequately and yields good results aea8ibn levels.
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4.7 A New Slack Edge Criteria for a Misaligned Roller

In Figure 4.23, buckling region of a 92 gage pdigesveb can be seen. For this web
Young’s Modulus is 725000 psi, Poisson’s ratio.[3, @he width of web is 6”, length of the

web is 40” and the thickness is 0.00092". If 6Gi¥) MD stress applied to the system we are
able to see wrinkles after the trough formation20D0 psi applied to the system after the

formation of troughs slack edge occurs and we atealble to see wrinkles.

. . —C_=—Trough (Deg)
Buckling Regio onFes
w=Slack Edge (Deg)
6 ——Wrinkle (Deg)
e v T i
Minimum min
5 —Tension to B FEAWrinkle Data Point
Sustain
Wrinkles v
2 Slack Edge
< Wrinkl
> . rinkles
% 3 Ex|st
=
< m
E 2 “ AEEEEEEENE NN
@ .—;ﬁ_-DD!_.___ oA
= it mE, Troughs
7 - Exist
1 ‘H if AN o e 0 0.0.0.0.0.00.0.008606 .00 Sy
4 Planar Web
-
0 ub : ||

0.0 2000.0 4000.0 6000.0 8000.0 10000.0

MD Stress (psi)

Figure 4.23 Slack Edge

The code was delivered to the Web Handling Resed@ertier sponsors. One of the sponsors

used the code with a low span (L/W) ratio. In tbase W (width of the web) was five times
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larger than L (length of the web). With that specifeb tension that was applied to the web
a slack edge was supposed to occur. But Excel V&#e avas came up with a result which
means wrinkles was occurred after the trough faomainstead of a slack edge. The case

was also modeled with COSMOS and the result wagsiarilar with Excel VBA code.

In the derivation of Eqg.4.5 shear deformation waglected. For L/W values of 0.2 it was
obvious that shear deformation is important. Thusas determined that a new slack edge

criteria was needed that did account for shearrdefbon.

$b

Elastic Axis

— ——
—

0

N slackedge

Figure 4.24 Slack Edge Criteria

The previous slack edge expression was derivediaas&uler beam theory:

T.a

eslackEdge: m (49)
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Here, a is length of the web, b is width of the web (Fig3), h is thickness and E represents
elastic modulus. To derive a new criteria the Tihesko beam theory was used that

incorporates both shear and tension stiffening.

Figure 4.25 Beams with Shear

If wis deformation, the slope of the beamx isand can be found from:

. OW 8Wb+%

“ OX 4 oX  0X ( )

Here @ is related to moment and is related to shear.

00 _M&) ang ,-FX (4.11)

OX El GA,

The moment can be calculated from Eq.4.10 by using.11

Moment= W=40, +y,,= M) +iﬁ (4.12)
El  GA ox
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Figure 4.26 Moment in a Beam

At the boundarx=0,

ow
OX

F

A (4.13)

x=0 :?/

The momentM (x)= F(L-X) and H ¥= F, and substituting into Eq.4.12 yields

w ==X g

4.14
5 (4.14)
Integrating yields
W'—i(Lx—X—Z)jLCl (4.15)
El 2 '
F
From Eq.4.13 Y| === C, so Eq.4.15 becomes
x=0 GA‘S
2
wetx-X5F (4.16)
El 27 GA

Finally integration of Eq.4.16 yields,
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F X, Fx
W—E(LXZ—E)'F@'F Q

It is known thatw|,_ =0. SoC,become®. We seekd,

critical

2
L ecritical = F( L + i)
Xt 2El  GA

w]

Solving for the steering forde yields:

6,

F — critical
L 1
Gt o)
2EI GA

This allows us to calculate the momenka®,

M — FL — ecritical L

L2 1
(E‘Fa)

The beam bending stress from moment can now balatdd as,

O_B — M y — ecritical LV_VE
| ( .1 y| 2!
2EI  GA

The normal stress due to web tension can be cédclisom,

In taut behaviorw" > o® if o' = o® the slack case occurs. Saif = &,
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(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)



ecritical LV_V — l (423)
( L N 1 ) 21 wb
2El  GA
From hered,..., can be calculated as,
T 2 2l
) (4.24)

0. .. . = —+
critical vazb( E G %

For a rectangular cross sectidn:%,G __E and A _> bw. Substituting into
12 2(+v) 6
Eqg.4.24 yields,
Hcritical :L(l—i_ﬁgg (1+V)) (425)
w(Ebw) 5

In the calculations beginning from Eg4.10, L folaspength, w for span width and t for

thickness were used. If we replace them with ddogth, b for width and h for thickness, it

will be found,
Ta b, 2
0. =— @A+ (=)P=@A+v 4.26
critical b( Eh@ ( ( a) 5 ( )) ( )

If this result is compared with Eq. 4.9 it will bund that

Ta b,, 2
b(END ((ja) g(1+v)) (4.27)

is the effect of shear force with Timoshenko beheoty. If v~ 0.3 then the term is
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2 1
—(1+V)=—.
5( ) 2

So Eq.4.26 can be simplified as,

Ta 1 b,
Hcritical = m (1+ E (ja) ) (428)

If W >L (b>a) then shear effects are becoming significant.ifstance ifW=5L as it was in

the case that we came up with earlier then,

Ta 11105
ecriticaITimoshenkoz b( Eh@ 2 ~13 (4 29)
0 B Ta B '

criticalEuler
b(Ehb

Eq. 4.26 supersedes Eq.4.9 and can be used foldmgtland short spans.
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5. CHAPTER V

5.1 TAPERED ROLLERS

In this chapter, a brief definition of tapered eodl, previous work modeling with tapered
roller cases with commercial finite element coddslve reviewed. Then a new model based

on using Excel VBA will be given.

5.2 Description of Tapered Rollers and Beisel’'s Method for Modeling Wrinkes Due

to the Tapered Rollers

A tapered roller is defined as a roller with a &rlg varying radius across its width [12].
Tapered rollers are commonly seen in the web hagdhdustry. The process of roller

manufacture will almost certainly result in rollessth a slight taper. These tapered rollers
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are produced unintentionally; the use of taperdbbreoin web lines may result in web
damage. To solve this problem, machining technigasinvolve feedback can be used, but
this will be costly. Therefore, knowing the amoohtaper that will not result in harm to the

web process is beneficial for the industry.

In Figure 5.1 a web approaching the tapered radeshown. In the figure, the taper is

somewhat over-emphasized so that it can be seen.

Average radius of Ar Roller radius

roller R,
\ |

)
Position across the

— | web

Figure 5.1 Tapered Roller Profile

The radius of the roller at any point across thathvis:

r(y)=my+ R (5.1)

Herem s the slope of the roller. The velocity across ttbller width is:

V(y) = r(y)o=(my+ R)o (5.2)

Here w is the angular velocity of the roller. The averagsb velocity can be found by using
average roller radius as:
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V,,=Rw® (5.3)
Variation in the velocity across the web width wiluse a stress and strain upon the web:

V(y)-V.
gmd(y)z%:%’ and o(y)= emd(gz%my (5.4)

These equations assume the web and roller achleesame velocity at contact. The

variation in stress across the web width causésesisg moment on the web:

b
2 —Emhy — mEhb
~o(y) hydy= jb R dy= 2R

2

(5.5)

<
I
l\)‘l‘r"—;l\l\cr

wherem is roller taperRyis roller radiusE is Young’s Modulush is thickness ant is web

width.

Beisel [12] determined that wrinkle formation dweat downstream tapered roller is similar
to the wrinkle formation due to a misaligned rallds in the misaligned roller case, he used
Timoshenko buckling criteria (Eq.2.1) to decide thee the web on the tapered roller will

wrinkle or not. His wrinkle model for the taperealer is shown in the Figure 5.2.

Nodes coupled along dotted lines, to provide noenétly, exit and travel across rollers

Horizontal dotted lines coupled in y direction Vertical dotted lines coupled in x direction
. Y 4
<« ----1 ¢ -- ¢ ————— >
Dl 1 Web span being studied TASY—W. Y B
- 4 - w P h Nodes coupled iny directionto | [~~~ B
<« ---- . -- e e N >
<« ----1 Y Wrinkling membrane elements -- A ) S -
<---- 1 -=r 1t 0 §F---- >

Uniform shear force (3)
Web line tension applied at both ends of web

applied at both ends of middle roller

Figure 5.2 Beisel Tapered Roller Model [12]
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As in the misaligned case, he divided the model five panels. The first panel is the web on
the upstream roller. The second panel represeataéh span being studied. The third panel
represents the tapered roller. The fourth panekessmts the web between the tapered roller
and third roller, and the fifth panel representstthird roller. He locked the nodes in the first
panel along horizontal lines. Each node on thenmst move with the same y displacement
as the rest of the nodes on the same line. Thagvalfor Poisson contraction due to web line
tension but requires a zero slope at the beginairtge troughed web span. He also locked
the nodes at the exit of the upstream roller inxlirection along a vertical line to simulate
the roller gripping the web in a no-slip conditidtie used wrinkling membrane elements in
the second panel. Along the right edge of the stkqmenel he locked the nodes along
horizontal lines in thg direction for a very short distance. He did tlmsehsure the normal
entry of the web to the tapered roller. He modéhedright hand side of the model to enforce

the boundary conditions.

He executed the model by first applying web linesten and then increasing shear force
until the compressive stress across the first révelastic nodes on the elastic wrinkling
membrane element boundary reached the criticalevaiedicted by Eq. 2.1. Then he
calculated the moment associated with the lastabapan elements by using Eqg. 5.5. He

calculated the critical taper that would inducenktes.

He obtained the experimental results for the onsetrinkles due to a downstream tapered
roller. He compared his experimental results andlehoesults for two materials. In the
following chapters, we will compare our model réswlith his experimental results and with

his model results.
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5.3 A New Algorithm for Predicting Wrinkles Due to the Tapered Rollers

As mentioned earlier, shear wrinkles can occur doetapered rollers. Beisel [12]
successfully modeled the tapered roller case byguie commercial finite element code
COSMOS. As in the misaligned case he used wrinkinggnbrane elements while modeling
the elements between the upstream roller and therdd roller. The goal of our new
algorithm related to the tapered roller is to cpdihd automate the analysis that Beisel did
with the commercial finite element code COSMOS. if&into the misaligned roller case a
finite element code that calculates critical tapdl be developed in Excel VBA by using
wrinkling membrane elements. The boundary condstiaill be similar to Beisel’'s model

boundary conditions.

The problem is modeled material on the upstreateradhe upstream span, the web on the
tapered roller, the downstream span, and finallfenel on the downstream roller. The

system that is modeled is shown in Fig.5.3.
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Tapered Roller Downstream Roller,

— @ T Q / Panel 5

Panel 4

Wrinkling Membrane Elements

<— Panel2 are used in Panel 2

Upstream Roller, Panel 1 R lar Elastic El ‘ q
egular Elastic Elements are use
T | + at other panels

Figure 5.3 The Figure for Tapered Roller

The system with a tapered roller shown in Figu®i8.modeled like the Figure 5.4 shown

below.

0 Shear force

. . . o In this area high mesh density is used Traction force
Horizontal lines coupled in'y direction ’I\ Vertical dotted lines coupled in y direction >
Wrinkling Membrane Elements o )
& Y S )
Uniform shear force applied at spah ane Web line tension applied at both ends of web
span five and tapered roller Center node constrained in x and y direction
Roller Web Span Roller Web Span Roller

We divide last column element into ten elements and we
constraint seven points from the right points along
the horizontal lines in the y direction

Figure 5.4 Tapered Roller FE Wrinkle Model
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The new model is similar to the misaligned rollase. The model was divided into five
panels. The first panel was the panel on the upsireoller. The second panel was
representing the web between upstream roller goeted roller. Here wrinkling membrane
elements were used; in the rest of the model ela#@ments were used. The third panel
represents the tapered roller. The fourth and fifémels help to achieve the no moment
boundary condition at the tapered roller. Boundamyditions and loads were enforced which
Beisel found to be appropriate for the taperederollThe center is pinned to prevent rigid
body motions. Multi-point constraints were appl@deach row of nodes on the entering and
exiting rollers. Along the right edge of the secqrathel (span one), Beisel locked the nodes
along horizontal lines in the y direction for a yeshort distance to ensure normal entry. In
contrast to his method, high mesh was used atasterbw of the span one element (ten
elements were used in the last row elements) angasnts along the horizontal lines were
locked in the y direction. This was decided aftging many ways to achieve normal entry to
the tapered roller. The flowchart for the prograanshown in Fig.5.5. It is similar to the

misaligned roller flowchart so it will not explainhere in detalil.
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Figure 5.5 The Flow Chart for Tapered Roller
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In the tapered roller flowchart the forces are egapin five time steps. After five steps from
the first row of elements the moment is calculaad by using Eq. 5.5 critical taper is also
calculated. Assume that the stresses of the tnstaf elements at tapered roller look like

Fig.5.6. Here, one half of the width is demonsttate

Al A
O-‘ ............................. hi

Figure 5.6 Calculating Moment and Critical Taper

MomentisM =F h ando, = F/ A. From these two equations the moment of an elensnt

n
be calculated froriv :ZJiA h. If all moments are added the total moment offitts¢ row
i=1

of the elements of the tapered roller is foundhi$ value put into Eq .5.5 the critical taper
for that specific case is found. At the end of thhele, the code calculates total moment and

taper for that case.

The name SystemWrinkler'will be applied to the part of the flow chart () that begins
after “Mesh Model with Quadrilateral Elements” aoontinues to “Load Level <5” .This

term will be used in the following chapter.
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5.4 Automating the Code

Similar to the misaligned roller case, it was aimfed the user to enter only certain
parameters such as web width, roller wrap dimensspan length, web thickness, elastic
modulus, Poisson’s ratio, and web tension, andtlhencode. The attempts to automate the
code began with trying to automate the mesh. Aftening many cases, it was determined
that reasonable results were achieved by using tBlements per dimension for the web
width, one element for every dimension of the wehns and the integer part of four times of
the roll dimension for rollers. Excel equations &veised to set these values. The meshing

procedure and convergence check will be addressed detailed at Chapter VIII.

The flowcharts for Linear Interpolations | and teaused for automating the tapered roller
case. Similar methods to the misaligned case waped. Tgack and Tgacd2 (EQ.4.5) were
used as a starting point for Linear InterpolatiomlIFig.4.16 and Fig.4.18, if we use the term
SystemWrinkleinstead ofWRINKLINGsystemthe way the new flow chart works can be
explained. After automating our tapered roller ctueExcel input of the code will look like

Figure 5.7.
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Figure 5.7 Excel Input of Tapered Roller

Here the user is supposed to enter web width, dpaension, thickness, elastic modulus,
Poisson’s ratio, roller radius and the web tensisiter entering these parameters with the
help of the Excel equations the mesh parametess,famth of the circumferences of the
rollers (L1 roll dimension in Fig.5.7) and the sigecalculated from Timoshenko’s buckling
criteria (Sigma Critical in Fig.5.7 that is founein Eq. 2.1) can be calculated. After clicking
the EXECUTEDbutton, the code runs Linear Interpolation | andear Interpolation Il. As a
result of using the code, the maximum stress afiteerow of elements (MAX sigma ),
total moment at the first row of elements (Momeri)d the critical taper (mcr) that will

result in a wrinkle for that specific element fdrat specific case are given as an output.
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Figure 5.7 shows that for that element the stredsutated from Timoshenko’s buckling
criteria is -247 psi. After linear interpolatiorthe code finds a maximum stress of -245 psi,
which is very close to the Timoshenko bucklingemd. The critical taper for the case shown

in Fig. 5.7 is found to be 0.00127 (in/in). Thaele calculated this case within six minutes.

5.5 Comparison of Results with Previous Works for the Tapered Roller

Beisel [12] performed experiments and obtained dathcompared his experimental results
with his model. The results from the Excel VBA codidl be compared with his FE model

results and his experimental results.

The first web he tested was a 92 gage (0.0009Z4)o@ polyester with a Young’s Modulus
of Ex = 712000 psi, a Poisson’s Ratiovof 0.3, and a width of W = 6”. The nominal radius
of his tapered roller was ,R= 1.49”. The compressive stress required by Eqwak

approximately -265 psi for this case. Comparisomwf results with his FE model and his

experimental results are given below.
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Figure 5.8 Wrinkles Due to Taper, 92 ga Polyedtef,0”
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Figure 5.9 Wrinkles Due to Taper, 92 ga Polyedtep0”
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Figure 5.10 Wrinkles Due to Taper, 92 ga Polye$te80”
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Figure 5.11 Wrinkles Due to Taper, 92 ga Polyested0”
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Figure 5.8-11 shows a good agreement between odelmesults and his model results and
his experimental results. For the 10" case somi flom the data can be observed. For

longer spans (20”7, 30” and 40”) our model tracksectly with changes in span length.

He also compared his model results with otherrestlts. This was a relatively thin web, a
56 ga Polyester, with a Young’s Modulus gf £658000 psi, an assumed Poisson’s ratio of
v = 0.3, and a width of W = 6”. The critical stressdculated from Eqg.2.1 is -150 psi. The
results from the Excel VBA code will be comparedhnboth his model results and his

experimental results below.

56 ga Polyester, L=10"
0.002
0.0015 |
= KR
S~
£ = O
= 0.001 (& © Beisel's Model (COSMOS)
S *»
= 0.0005 g ’ ‘ O Beisel Lab.Test
. & Yurtcu's Model(VBA)
0
0 5 10 15 20 25
Tension

Figure 5.12 Wrinkles Due to Taper, 56 ga Polyestet0”
106



56 ga Polyester, L=20"

0.0018
0.0013 i%gi
z .
S~
é 0.0008 ¢ Beisel's Model (COSMOS)
§ O Beisel Lab.Test
0.0003 # Yurtcu's Model(VBA)
Tension
Figure 5.13 Wrinkles Due to Taper, 56 ga Polye$te?0”
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Figure 5.14 Wrinkles Due to Taper, 56 ga Polye4te80”
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Figure 5.15 Wrinkles Due to Taper, 56 ga Polyested0”

Analysis of Fig.5.8 and Fig.5.15 may suggest thatéitions of the model for use in short
web spans with high web tensions. In longer spastged (207, 30" and 40”) our model
follows the experimental values. It can be said tbathe ranges tested our model provides

acceptable results in all cases.
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6. CHAPTER VI

6.1 HOLES IN WEBS

In this chapter, the previous work done by Mally&][ concerning holes in webs and his
modeling using the commercial finite element cod@SMOS will be reviewed. Then a new

model based on using Excel VBA will be described.

6.2 Mallya’s Method for Modeling Wrinkles Due to Circular Discontinuity

Converting processes often require that shapesitoe evebs. These webs must be handled
in process machines without wrinkles. Some webs maye holes of various shapes
intentionally cut into them as a part of the mawntifeing or converting processes. Mallya

[15] studied how these holes affect the web’s pngfig to wrinkle. In his experiments, he
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bored a hole in roll of 79 gage thick polyestemfil2 inches wide with a %2 inch diameter bit
in the center of a roll. He unwound the roll, arahsported the web through a test section in
a span of 28 inch long over rollers with a raditi2 enches. He observed that troughs formed
around the hole region and that wrinkles formedh@ndownstream roller. He also observed
that the level of web tension affected the distabewgveen the hole and the downstream
roller when the wrinkles first appeared on the dstnegam roller. Troughs and wrinkles due

to a circular hole can be seen in Figure 6.1. A& $e the figure, two wrinkles would form at

both sides of the hole.

Figure 6.1 Troughs and wrinkles due to a circut@ein the web [41]

The hole would travel very close to the downstrealier before wrinkles were seen at low
tension. If tension was low enough, wrinkles weas wvisible. At high tension values the

distance between the downstream roller and the wwatemuch larger before wrinkles were
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seen. He recorded the distance between the hol¢éhartdngent line at fixed values of web

tension. This distance Isis defined in Figure 6.2.

Tangent Line

Wrinkles

Web Travel .
—_D Hole d=12"Q) i Troughs :

Figure 6.2 Distance Between the Hole and the Tarigae

Like Beisel he modeled the hole case using the cential finite element code COSMOS.
He also modeled the problem by using five panelsstream roller, test free span,
downstream roller, exiting free span and exitingero In Figure 6.3 a schematic of the

Mallya’s finite element model is shown.
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Figure 6.3 Mallya’s Model

In the test free span he used wrinkling-membraraglglateral eight node elements; in other
parts he used linear elastic quadrilateral eiglitenelements. He used eight node elements
because that facilitated modeling the hole. He ntadehole in the web by deleting a few
elements in the region where the hole was located, modified the position of the
neighboring nodes to create a circular hole ofilich diameter. He constrained one node in
the web span through thedirection to constrain the web from movingxrdirection. He
constrained the centerline of the web to prevenb we deform in the cross machine
direction. He coupled the cross machine directiefonations of rows of nodes on the
rollers to lock them together near the rollers. fellowed this procedure to enforce normal

entry of the web into the rollers. He increased g machine direction stress linearly until

negative cross machine direction stresses of the3henko buckling criteria (Eq.2.1) was

attained.

He compared his experimental results and modeltsedn the following chapters we will

compare our model results with his experimentalltesand with his model results.
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6.3 A New Algorithm for Predicting Wrinkles Due to a Circular Discontinuity

The circular hole case was modeled by using ExdRVThe model is similar to the

misaligned roller case model and tapered rollee casdel. The material on the upstream
roller, the upstream span where the hole is tragekhe downstream roller, the downstream
span, and finally material on the exiting rollerresenodeled. In the upstream span wrinkling
membrane elements were used. Elastic membrane rlemere used at other parts of the

system. The system that is modeled is shown if6Hig.

Panel 5

Downstream Roller\ @ T @ /

Panel 4
Wrinkling Membrane Elements

<+— Panel 2 are used in Panel 2

Hole is traveling in Panel 2
Upstream Roller Panel1

Regular Elastic Elements are used
\Q at other panels

Figure 6.4 The Figure for the Hole Model TravelBetween Rollers
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Because of the symmetry of the problem half of pneblem was modeled to take the

advantage of the computational time. In Figure tBé method of modeling the problem is

shown.
¢« Traction force We constraint one extra point from the eT of span one Horizontal Lines Coupled in y direction  Right line constrained in x direction
&
e ——————————————————————— &
6 Wrinkling Membrane Elements N
€ — (<
% E B KE
)] 7\ ) — :
NS AEES AEAYIEA) o ANES) A D AL AL A
Web line tension applied at left end of the web
Center line constrained in y direction
Roller Web Span Roller Web Span Roller

Figure 6.5 The Web Hole FE Wrinkle Model

The center line was constrained in the y directoprevent the web from deforming in the
cross machine direction. The right line of thedhioller in thex direction was constrained
and traction force was applied only from the umstreroller which is different from the
tapered roller and misaligned roller cases. Thisddmn helped to prevent web rigid body
motion in thex direction. The cross machine direction deformatiohrows of nodes on the
rollers are coupled to lock them together neardiiers so as to enforce normal entry of the
web to the roller. In the second roller as seeRi@6.5 one extra point from the first span
was constrained with the points of roller two tdiage normal entry to the second roller.

The hole region was meshed as seen in Fig.6.6.
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Total 4n elements in /1 and 72 regions

/T\

Figure 6.6 Meshing the Hole Region

The span two region was divided into six paitse,,y,,7,.4,and f,. The y, region
represents the hole region. One more element wed aisthe first and fourth rows in
region, and one less element was used in the semahdhird rows in thes region. This
helped to have total of 4n elements that will alloging previous codes sub modules. The

Excel output for the hole regiory{) can be seen at Figure 6.7.
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0.5 4 L 4 L 4 ¢ L 4

0.4

0.2 *

0.1

23.8 24 24.2 24.4 24.6 24.8 25

Figure 6.7 Excel Output of Hole Region

The traction forces were applied in four steps. Tlbwchart for the program is shown in
Fig.6.8. It is similar to the misaligned roller atapered roller flow chart so it will not be
explained here in detail. The naméOIDsysterhwill be applied to the part of the flow chart
(Fig.6.8) that begins after “Mesh Model with Quéateral Elements” and continuous to

“Load Level < 4”. This term will be used while eqpting the automation of the code.
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Stiffnesses For
Roller 3 And Add
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v
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Figure 6.8 The Flowchart for Circular Discontinuity
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As an output the code calculates the maximum cosspwe stress at the first row of elements

from roller two.

6.4 Automating the Code

Here, in contrast to other cases, it aimed foruer the user to enter only certain parameters
such as web width, roller radius, span length, Witkness, elastic modulus, Poisson’s ratio
and then the code to run automatically. The usémat enter web tension or shear force in
this case. First step was automating the meshr Aftening many cases it was found that
dividing the web width to the roller radius and idimg the web width to the integer even
part of that value, one element for every dimenswrthe web spans, and the integer part of
four times the roll dimension for rollers gave @aasble results. The Excel equations were
used to set these values. The meshing procedureamdrgence check will be addressed

more detailed at Chapter VIII.

In the hole case, the code attempts to find the teebion that will generate a wrinkle for a
given hole distance. The goal was automating fipdimat web tension. For that purpose a
starting point was needed. It was found that theimmim tension required to sustain a
wrinkle over the surface of a roller could be uasd starting point. If it is assumed that the

web tension is uniform across the web width (Figh).
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Wr2

Figure 6.9 The Section of Web over the roller

Here from the Fig.6.9 [42]:

T, W t* E
Frcion=—2—1y ; F, =0, tl=————— and F,,=0 6.1
friction r 2 H wrinkl Y, r 3(1_\/2) CMD ( )

By performing the ASTM standard test, D1894 [43]:

Fricion = F

wrinkle

u=t = (6.2)

rJ3(1-v?)

friction

Lw, _t_E
r 2

If some calculations were done from Eq.6.2 it fotimat:

o

T = Oy o v

w

(6.3)

From our experienceis much smaller thaw and x is around 0.3. As a result it can be said

that the value oy, is very close tas, , ,and o, is much smaller than the tension that is

y,cr ! r
needed to buckle the web. 9, and 2T, were used as a starting point fobnear
Interpolation I (Fig.4.16). By taking the user inputs from Excekghing the problem, and

using these values innear Interpolation landLinear Interpolationll it is possible to find

the critical tension that buckles the web.
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6.5 Comparison of Results with Previous Works for Wrinkles Due to Holes

Mallya compared his experiment results with histéirelement model results. The results

from the Excel VBA code will be compared with higoerimental results and test results.

The web he tested was 79 gage thick polyesteryiith a width of 12 in. The span length
was 28 in and the roller radius was 2 in. This pstgr has a Young’s modulus of 712000 psi
and an assumed Poisson’s ratio of 0.3. For theggepies the Timoshenko buckling stress

was found to be around -170 psi by using Eq. 2l §omparison can be seen in Figure

6.10.
Comparison of Results for Hole

8

7

6 &
g° £ S
-g 4 w < Mallya's Model (COSMOS)
-3 OMallya Test Results

2 @ @ Yurtcu's Model (VBA)

1 A

0 [

0 1 2 3 4 5 6
Tension (pli)

Figure 6.10 Comparisons of Results for Hole

By changing the mesh of the problem we are ableotopare a circle, a square and an
equilateral quadrangle hole shapes. In Figure th&lExcel output of the square region and
in Figure 6.12 Excel output of equilateral quadtanggion can be seen. Here diameters of

the holes have the same length (2r in Fig.6.4, &ridl6.12).
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Chart Title
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0.4
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0.2 * PY # Seriesl
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Figure 6.11 Excel output of square
0.6
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0.4
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L 4 L 4
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2 2
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23.8 24 24.2 24.4 24.6 24.8 25
X

Figure 6.12 Excel output of equilateral quadrangle

In Figure 6.13 comparison of these three shapebeaeen.
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Figure 6.13 Comparison of Circle, Equilateral Qaadle and Square Shaped Holes

As seen from Fig.6.13 it can be said that amongraular hole, a square hole and an
equilateral quadrangle hole, the equilateral gusglea shape requires more tension to
wrinkle. This conclusion can be explained by themednt stiffness matrix. In an element
stiffness matrix the area term is constant. Tha afeequilateral quadrangle hole is less than
the areas of the other holes. Therefore, removingcailateral quadrangle hole from the web
has less effect on the web stiffness. As a regudthole is needed in a web for any reason,
we can suggest that it be an equilateral quadramgle, because by using an equilateral

guadrangle hole, more tension can be applied tovéie

It can be seen from Fig.6.10 that up to a certawel| the linear behavior of the problem is
obvious. This encouraged us to update the codertavith only certain parameters such as

web width, roller wrap length, span length, web khiss, elastic modulus and Poisson’s
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ratio. One fourth of the span length and half & $ippan length were used as the location for
the hole. Since the behavior always appears lirstaight line behavior is assumed for the

tension levels at intermediate location.

The problem was meshed and the tension was cadulghen the circular hole was at a
distance of ¥4 of the span length by uslimgear Interpolation landLinear Interpolation II.
Then the tension was calculated when the circutde s at a distance of %2 of the span
length by usind.inear Interpolation landLinear Interpolation Il. The flowchart in Figure

6.14 shows how new algorithm works.
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Figure 6.14 Flow Chart for Automating Hole Code
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After automating the code, the Excel interfacehaf ¢ode will look like Figure 6.15. As seen
from the figure, the user inputs the web width,rsfEngth, web thickness, elastic modulus,
Poisson’s ratio, diameter of void, roller radiusdahe coefficient of friction. By using the
Excel equations the code calculates mesh paramdtensshenko buckling criteria (Sigma
Critical), the minimum tension to sustain a wrinkigy.6.3), and the L1 roll dimension as an
output. When the user clicks tlEeXECUTEbutton the code calculates the tension that will
buckle the web when the hole is %1 of the span keagtay from the circumference line (here
28/4=7"). The code then calculates the tensiohwhihbuckle the web when the hole is 1/2
of the span length away from the circumference (imexe 28/2=14"). Finally, by using these
points with the help of Excel, the relation betweka tension and the distance of the hole
from the downstream roller is plotted. For this en@tl by the help of this plot it can be

suggested to run this material at less than 1.8 mrder to avoid wrinkles.
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Figure 6.15 Excel Interface of Circular Void Ex&8A Code

Now it can be said that an Excel VBA code thatapable of finding the relation between the

hole distance and tension automatically have beaétew.
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/. CHAPTER VII

7.1 NON UNIFORMITIES IN WEBS

In this chapter, non uniformities in webs will dedied. Modeling the case with commercial

finite element code COSMOS and modeling the catie Excel VBA will be described.

Mallya [15] proved that the modeling method develbby Beisel for modeling wrinkling of
webs encountering misaligned rollers and taperddrsowas also viable for studying how
holes in webs cause wrinkles. The research doreebguthor has shown this same modeling

is possible with user friendly Excel VBA codes.

The sponsors of the Web Handling Research Centee weecited by the results of this
research, because some of their worst problemsaarsed by web non uniformity. A hole is
an example of the worst non uniformity possible.nylaf these sponsors handle webs that

are made by processes that are far from perfecta Assult, webs often have length,
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thickness, and density non uniformities.

Thus the research on the effects of voids on weskixcited them because they saw potential
application of the same modeling methods to stundy dffect of web non uniformity on
wrinkling. So, a new investigation has begun wheregion in the web differs in some way
from the surrounding web. Perhaps it is thinnerttocker. Perhaps the non uniformity
occupies a large portion of the web width or peshiais relatively small. The end result will
be a development tool that can be used to deterthesize and degree of a non uniformity

that is permissible without the development of welnkles.

7.2 Modeling Non uniformities with Commercial Finite Element CodeCOSMOS

Devising controlled experiments with non uniformbses very difficult. It was decided to
model these problems with COSMOS and study thewahal he data from COSMOS was

compared with the data from a developed Excel VBAecand helped us to verify the code.

Instead of a circular void a circular region witduced thickness was modeled and the
remainder of the web was left uniform. The case efemtl with five sections, the upstream
roller, the upstream span, the downstream rolkex,downstream span, and finally material

on the last roller (Fig.7.1).

In the free span wrinkling membrane eight node eleisi were used. In the other regions
linear elastic quadrilateral eight node elementsewesed. One node in the web span was

constrained in th& direction to prevent web from moving in tKedirection. The centerline
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of the web was constrained to prevent web defoonati the cross machine direction.
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—+ f—+ i

Upstream Test Free Downstream Exiting Free Exiting
Roller Span Roller Span Roller

Figure 7. 1 Non uniform Web Models (COSMOS)

All nodes were constrained i direction so that the web remains planar. Thektigss of
the non uniformity was varied. Tension was appbgdising a pressure curve on the edges
of the webs along the direction as shown in Figure 7.1. The non unifaem®a was modeled

in the web with its center on the axis of symmeiige tension was increased linearly until
negative cross machine direction stresses of theodhenko buckling stress (Eg. 2.1) was

attained.

The web modeled was a 0.001 inch thick film andleer radius of 1.45 inch was chosen. In
the first case the web width was 6 inch and the $pagth was 18 inch. In the second case
the web width was 50 inch and the span length viagéh. The web’s Young’s modulus

was 712000 psi and Poisson's ratio was assumede t0.h For these properties the

Timoshenko buckling stress was found to be aro@fd psi (Eq.2.1).

In Fig.7.2 an example of the model is shown. Heeeweb width was 6 inch; the span length
was 18 inch. The thickness of the non uniform avaa 0.0008 inch, the non uniform area

was 2 inch in diameter and the non uniform area 3vasch away from the second roller.
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Figure 7. 2 Critical CMD Stresses Developed WhenNbn uniform Area is 3” Away From

the Roller

For a six inch wide web the finite element analys&s conducted with the non uniformities
at different distances from the roller. The fiftych wide and fifty inch long web span was
modeled with the same web material propertieshénfifty inch wide case the non uniform

region is three inches away from the downstreaterrahd diameter versus tension required

to induce wrinkles was investigated.
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7.3 A New Algorithm for Predicting Wrinkles Due to the Circular Non unif ormities

An Excel VBA model was developed whose purpose twasletermine when web non
uniformity would cause web wrinkles. The non unifidty was assumed to be circular in
shape and centrally located widthwise in the wdie thickness of the non uniformity was
constant but different from that of the surroundwwgb. The model is similar to the
misaligned roller case, tapered roller case and gase. The material on the upstream roller,
the upstream span where the non uniform regiomaieling, the downstream roller, the
downstream span, and finally material on the egitioller were modeled. In the upstream
span wrinkling membrane elements were used anbeabther parts of the system elastic

membrane elements were used. The system modedbdws in Fig.7.3.

Downstream Roller—____ @ T Q rd

Panel4

Panel5

Wrinkling Membrane Elements

- Panel2 are used in Panel 2

Non uniform circular shaped
Upstream RollerPandl material is traveling in Panel 2

Regular Elastic Elements are used
\@ at other panels

Non uniform circular shaped
1 region

Nonuni.

Figure 7. 3 A Web with a Non uniform Circular Shdpgeegion Travelling Between Rollers
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This case is similar to the void case because efstimmetry and half of the problem was
modeled to take the advantage of the computatioma. In the figure below (Fig.7.4) the

method of modeling the problem is shown.

1

Traction force Web line tension applied at left end of the web Right line constrained in x direction

<

Wrinkling Membrane Elements

ANAANANAAN

Fa\y
AAAAAAA{%6%4%AAAQAAQQQAAAAAAAAAAAAAQE

Center line constrained in y direction

Roller Web Span Roller Web Span Roller

Figure 7. 4 The Model for the Non uniform Hole Séd Material

Similar to the void case the center line was cais&d in they direction to prevent the web
from deforming in the CMD direction. Traction foreeas applied from the upstream roller
and the downstream end of the web at the exit eftliird roller was constrained in the
direction. This helped to prevent web rigid bodytimo in thex direction. Other than that no
other boundary conditions were applied to the motleé non uniform area was meshed as

seen in Fig.7.5.
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Figure 7.5 Meshing the Non uniform Region

The model is very similar to the void case. Thengpa region was meshed in six parts. The

7, region represents the non uniform area and th@wuding area. This situation differs

from the void case because new elements were addee void area to represent the web
non uniformity which could be less or greater thia@ surrounding web. While calculating
stiffness terms and stresses of the elements the @@iculates the non uniform area stiffness

terms with non uniform thickness value. The meghtiie non uniform regiony,) can be

seen at Fig.7.6.
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Figure 7. 6 Troughs and Wrinkles

The traction forces associated with web tensionewagplied in four load steps and two
iterations were made within every load step to eahiconvergence. The flowchart for the
Excel VBA code is shown in Fig.7.7. The flowchasimilar to the previous flowcharts. The
name NONUNIFORMsystefmwill be applied to the part of the flow chart {r.7) that
begins after “Mesh Model with Quadrilateral Elensrand continuous to “Load Level < 4",
This term will be used while explaining the autoimatof the code. As an output the code

calculates the maximum compressive stress atr@iveof elements from roller two.
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Figure 7. 7 The Flowchart for Non uniform Webs
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7.4 Comparison of COSMOS and Excel VBA Results

As mentioned before doing controlled experimenthwion uniform webs is difficult. So,
data taken from commercial finite element code CQ@&Wvere compared with Excel VBA

code to verify Excel VBA code.

The web modeled was 0.001 inch thick. The rolleiusawas 1.45 inch. The web’s Young’s
modulus was 712000 psi and Poisson’s ratio wasnesuo be 0.3. The web width was 6
inch and the span length was 18 inch. For thespepties Timoshenko buckling stress was
found to be -297 psi from Eqg.2.1. Two different namform area properties were modeled

for comparison.

Fig.7.8 and Fig.7.9 show the results for the weth ih6 inch wide and 18 inch long. The non
uniform area has a thickness of 0.0008 inch. Thedter of the non uniform area is 3 inches
in Fig.7.8 and 2 inches in Fig.7.9. The web hakiekbhess of 0.001 inch. In the charts L
(distance from the roller) versus the tension megiito induce wrinkles is shown using both

COSMOS and results from the developed VBA code.
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Figure 7. 9 Wrinkles Due to Non uniformities, 2% t' = 0.0008”

The web material properties were kept the samettadhickness of the non uniform area

was decreased to 0.0001 inch. Fig.7.10 and Figshiv results for these cases.
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Figure 7. 11 Wrinkles Due to Non uniformities, 225 t' = 0.0001”

Gargeyi Baipa, a master student at Web Handlingge&ebh Center performed a sensitivity
analysis of how the different aspects of the norfoumities affect wrinkling by using

COSMOS. She modeled 50 inch wide and 50 inch lormg web. The web modeled was
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0.001 inch thick. The roller radius was 1.45 inthe web’s Young’s modulus was 712000
psi and the Poisson’s ratio was assumed to beTh&se results will be used to further

validify the results produced by the VBA code depeld.

For the 50 inch wide web Baipa modeled non unifem@a 3 inch away from the second
roller and she modeled different diameters for naiform area. In Fig.7.12 comparison of
Baipa’s COSMOS model and Yurtcu’'s Excel VBA modekhown. In the chart diameter of

void versus the tension required to induce wrirkkisishown.
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0 5 10 15
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Figure 7. 12 Wrinkles Due to Non uniformities, 3% t' = 0.0005”

The results from the two analyses shown in Fig.Fi8-7.11 and Fig.7.12 agree well with
each other. Thus, it appears the Excel VBA codesldged produces similar results to the

commercial finite element code COSMOS.
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7.5 Automating the Excel VBA Code

The automation process was very similar to the zagk in Chapter 6. The user is supposed
to enter only basic parameters such as web widtler radius, span length, web thickness,
elastic modulus, Poisson’s ratio, non uniformitgesand thickness of the non uniform area.
Firstly mesh parameters were decided. If the dimoensf the web width wag, from the
Excel interface the value was multiplied with four and the even value of tesult was
attained tom and the web width was divided into elements. If the dimension of the web
length wasy, from the Excel interface even valueyofvas taken as2 and the web length
was divided intn2 elements. If the value of one fourth of the roiecumference wag the
even integer value of three timeszofas given to thal. The roller area was divided int2
elements. The Excel equations were used to se¢ tedses. For very short, for very long
and for extreme cases mesh parameters are linfikedmeshing procedure and convergence

check will be addressed more detailed at Chaptir VI

To automate determining the minimum tension regluicesustain a wrinkle over the surface
of a roller a method similar to that used for tloédvcase was employed (Section 6.4). Like
the void casd,, (min.tension required to sustain a wrinkle) anf,2vere used as a starting
point for Linear Interpolation I. After Linear Interpolation landLinear Interpolation Ilthe
critical tension that buckles the web was found tfee non uniform area for the specific

distance from the second roller.

By using the linear behavior of the problem ¥4 & #pan length and ¥z of the span length

were used. The problem was meshed and the tensiercalculated when the non uniform

142



area was at a distance of ¥4 of the span lengthsimglLinear Interpolation landLinear
Interpolation 1l. Then, the tension was calculated when the non umifarea was at a
distance of ¥ of the span length by usimgear Interpolation landLinear Interpolation II.
Since the behavior always appears linear like théd gase, straight line behavior is assumed
for the tension levels at intermediate locatione Tlowchart is similar to the void case

(Fig.6.14).

After automating the code the Excel interface ef¢bde will look like Figure 7.13.
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Figure 7. 13 The Excel Interface of Non uniform EX¢BA Code

The user is supposed to input the web width, spagth, web thickness, elastic modulus,
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Poisson’s ratio, diameter of void, roller radidsg toefficient of friction, and different from
the void code, the thickness of the non unifornraak®ith the help of Excel equations the
code calculates mesh parameters, Timoshenko buckitegia (from Eq.2.1), the minimum
tension to sustain a wrinkle (from EQ.6.3), and tmath of the circumference of the roller

(L2 roll dimension).

When user clicks theXECUTEDbutton the code calculates the tension that witkite the

web when the non uniform area is ¥ of the spantheagay from the circumference line
(here 18/4 = 4.5"). Then the code calculates theite that will buckle the web when the
non uniform area is 1/2 of the span length awasnftbe circumference line (here 18/2=9").
By using these two points the relation between tdresion and the distance of the non

uniform area is plotted.

It can be said that an Excel VBA code that can fiverelation between the non uniform area

distance from the second roller versus the tensawe been written successfully.

144



8. CHAPTER VIII

8.1 CONVERGENCE CHECK

All finite element analysis requires convergenceating. In this development quadrilateral
elements have been employed. They have been ermdgioyeodel the onset of wrinkling for
a uniform web encountering a misaligned roller anthpered roller. These elements were
also used to nonuniform webs approaching aligneahdrycal rollers. The non uniformity
could take the form of a centrally located circwaid. It could also take the form of a
centrally located circular region whose thicknesasweither less or greater than the

surrounding web.

Each case presents different distributions of MB @WMD stresses in the web and each case

is meshed differently. Algorithms will be developfed each case to ensure convergence.
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8.2 The Misaligned Roller Case

In Chapter IV a VBA algorithm was presented to methe onset of wrinkling for a web
approaching a misaligned roller. The rules usedyeoerate meshes were sufficient to
produce a threshold misalignment angle, associati¢ll the onset of wrinkling, which

matched Beisel’s test results.

The user is prompted to input the real span widih units of inches. The Excel interface
uses the Even Function to convert the real variakleto an even integer, m
(i.,e.4< x< 6— m= 6). The web width was then divided intboelements. If the value oh
was less than six, the value six was assignedetvdtue ofm. If the value ofm was larger
than thirty, the value thirty was assigned to tladug ofm. Thus narrow webs would be
assigned no less than six elements across the vagh and wide webs would be assigned no

more than thirty elements across the web width.

The user is also prompted to input the dimensiothef web span lengthy)( The Excel
interface would then convert the real numpdo an even integar2. The span length was
divided inton2 elements. If the value af2 input was larger than fifty, the value fifty was
assigned to the value oR. If the value ofn2 input was less than six, the value six was
assigned to the value o2 Thus short web spans could be assigned no lassstk elements

and long web spans could be assigned no more iftxaeléments.

The user is also prompted to enter the roller diam@nly ninety degree wrap angles were
considered for the misaligned roller. The lengthwveb wrapping the roller was one-fourth of
the roller circumference. The Excel interface coteak six times the wrap length to an even

integer which was assigned to the variable Thus the wrap length was divided imd
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elements. The value ofL was limited to not exceed thirty and not be lessthix. The mesh
density across the web width in this region wassgeil tom elements across the web width
to ensure compatibility with the entering free spameviously discussed. A generic mesh for

the model is shown below.

Divided into n1 Divided into n1 Divided into n1
parts parts parts
<> <> <>
ko] —
0 E o 2 o) @
205 o Upstream Span S Downstream Span =
S Eco (14 o

- > - >
Divided into n2 Divided into n2
parts parts

Figure 8.1 Meshing the Model

In Chapter IV, the mesh parameters that were destrivere shown to yield reasonable
results compared with the experimental resultsoAvergence check must be done to ensure
that the mesh parameters that were described wWimilgccurate for cases other than those
that had been tested. For this purpose the codenedsgied to check whether the results that

were output were Converged or not.

The code was updated to run two meshes in addibidhe original mesh. After running the

two additional meshes the results were comparekl thé results from the original mesh. If

the results from the second mesh were within 5% efresults output for the first mesh the
code would stop and the results output for the rs@ecnesh were provided as output. If the
results from the first and second meshes were itbinnb% the code was run again with yet
a higher mesh density.
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In this convergence check, the second mesh wanéisé which has already been described.
The density of the first mesh was less than thahefsecond mesh. The third mesh density
was greater than that of the second mesh. Foirteahd third meshes the mesh parameters

m andn2 values were either increased or decreased.

The flowchart for the code that incorporates cogeace checks is shown in Fig.8.2.
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Run the case with
First Mesh
Parameters and Find
Result One
m =m-(m/2-1)
n2=n2-(n2/2-1)

v

Run the case with
Second Mesh
Parameters and Find
Result Two
m =m
n2=n2

Run the case with
Third Mesh
Parameters and Find
Result Three
m =m+(m/2-1)
n2=n2+(n2/2-1)

Is 0.95*Result One<=
Result Two
<=1.05*Result One

v

Write “Result
. Is 0.95*Result Two<= Not
Write Result Result Three Converged,
Two <=1.05"Result Two Enter Mesh
Parameters
Manually”

Write Result
Three

\ J

@

Figure 8. 2 The Flowchart for the Convergence Check
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After incorporating these convergence criteria itie code, the code was used to again
analyze Beisel's test cases. The original resuédsevehown in Figures 4.20-4.22. The new
results are shown in Figure 8.3-8.5. Whichever npesduced the converged result is shown
in the charts. These results compare nicely witisds test data and the results of his

COSMOS models.

Wrinkles Due to the Misalignment,92 ga Polyester,L=6"

0.02
£
[o]
£ 0.015
=)
c
()
€
& 001 cal
-%: - @ @ $ Beisel's Model (COSMOS)
)
s Mesh 2 Mesh 2 OBeisel Lab. Test
2 0.005 @ Yurtcu's Model (VBA)
nog Mesh 3

0
0 2000 4000 6000 8000
MD Tension (psi)

Figure 8.3 Comparison of 6” Span Case after thev€gence Check
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Wrinkles Due to the Misalignment,92 ga Polyester, L=18"

0.025
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% 0.02 Mesh 2
S 0.015 6 Mesh 2
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2 Mesh 2
8 o001
2 OBeisel Lab. Test
2 0.005
]
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2000 4000 6000 8000
MD Tension (psi)
Figure 8.4 Comparison of 18” Span Case after thev€mence Check
Wrinkles Due to the Misalignment,92 ga Polyester,L=30"
0.05
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£ 0.04
z s
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8 o0.02 @
s Mesh 3 OBeisel Lab. Test
2 001 @ Yurtcu's Model (VBA)
2
0
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Figure 8.5 Comparison of 30” Span Case after thev€mence Check
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In the Fig.8.6 the results for a specific casehmwa as an example. Here span length is 30”

and the tension is 7000 psi. The convergence ieriggapear to work well for the test cases.

L=30 inc Tension=7000 psi

__ 0072
O
g 0.06
£ 0.048
£
& 0036 ¢ &
2 0024
S
5 0012
b 0

1 2 3

Mesh Number

Figure 8.6 Converging Result for a Specific CaseMisaligned Roller Case

In the chart results from different meshes aret@tbtAs seen from the figure, after running

the case with three different meshes result is eajing.

It has been shown that the code converges nicelgdses from Chapter IV. Some other
cases were picked to see whether the convergentaeavorks well. First case was a long
narrow web. The free span length was 100 inches donl the web width was 6 inches wide.
Other material properties were kept the same likeBeisel's test material properties. In the

Fig.8.7 the result for this case is shown.
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L= 100", W=6", Tension=10000 psi

0.22

0.214

0.208

0.202 & L=100", W=6",

0.196 Tension=10000 psi

0.19

Roller Misalignment(Rad)

Mesh Number

Figure 8. 7 Converging Result for a Long Narrow Web

In the second case a wide web was selected. Theva®0 inches wide and 30 inches long.

In the Fig.8.8 result for this case is shown.

L= 30", W=50", Tension=2000 psi

0.003

0.0026

0.0022 ¢

L 4

0.0018 L= 30", W=50",

0.0014 Tension=2000 psi

Roller Misalignment (Rad)

0.001

Mesh Number

Figure 8. 8 Converging Result for a Wide Web

At the Fig.8.15 and Fig.8.16 results from differenéshes are plotted. As seen from the

figures the cases were converged after runningneshes.
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As a last example a different material was seleciBue web parameters for this web were a
Young' Modulus of 725000 psi, a Poisson’s ratio®8, a web width of 50” and the
thickness was 0.002". The rollers had a radiu.db” and o, from the Eq .2.1 was about
-605 psi. The case was modeled with COSMOS. Thieariangle of misalignment of the

downstream misaligned roller for the onset of wiimdk was calculated around 0.005 radians

with COSMOS. In Fig.8.9 result from this case wiasven.

0.02
)
e
— 0.015
o)
[
[}
£
0 0.01 & L=10",W=50", Tension=
2 5000 psi
=
5 0.005 % <© COSMOS Result
35 g
o
0
1 2
Mesh Number

Figure 8. 9 Converging Result for 0.002” Thick 30@ide Web

As seen from the figure after running the case i different meshes result is converging.

8.3 The Tapered Roller Case

The development of the mesh parameters and coma¥geheck for web wrinkling due to

tapered rollers was similar to the developmenttiermisaligned roller case.

If the dimension of the web width wasfrom the Excel interface the valdevas multiplied

with three and the Even Function value of the tesals assigned to. Different from the
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misaligned roller case was multiplied with three because during the datloon of moment
more elements were needed for a sensitive calouldfithe value om was less than six, the
value six was given to the valuerof If the value oim was bigger than thirty, the value thirty

was given to the value oh.

If the dimension of the web length waginches) the Excel interface used the Even value of
y to assignn2, the number of elements in the MD in the free spdre variablen2 was
limited to not exceed fifty and it was limited t@ Imot less than six. The assignmenn®f

was identical to the misaligned roller case.

The even integer value of four times of the onatfoof the roller circumference was given
to the mesh parametarl. Thenlvalue was limited to not exceed from thirty andited to

not less than six.

After calculating the values of, n1 and n2he problem was meshed as shown in Figure 8.1.
The values ofm, n1 and n2vere decided after running many cases. As shov@hepter V
the results calculated from the mesh parametersrided herein were provided good

agreement with the experimental results.

Similar to the misaligned roller case a convergectoeck must be done to verify that the
mesh parameters that were suggested are validfotast cases. For that purpose the tapered

roller case code was updated to check convergencifferent cases.

The code was updated to run for two meshes otlaer ttat which was just described. The
first mesh was less dense than those which werided. The second mesh resulted from
the mesh parameters that were described. Afterimgrthe first and second mesh the code

checked whether the result from second case wdsmwso of the result that was output
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from the first case. If the results were within &€ results that were calculated from the
second case were output. If the result from tre¢ End second mesh were not within 5%, the

code would then compute results using the thirdnmé&he algorithm for that routine is like
Fig.8.10.

Run the Tapered
Roller Case with First
Mesh Parameters
and Find Result One
m =m-(m/2-1)
n2=n2-(n2/2-1)

v

Run the Tapered Roller
Case with with Second
Mesh Parameters and
Find Result Two
m =m
n2=n2

Run the Tapered
Roller Case with Third
Mesh Parameters and

Find Result Three
m =m+(m/2-1)
n2=n2+(n2/2-1)

Is 0.95*Result One<=
Result Two
<=1.05*Result One

Write “Result
Not

Is 0.95*Result Two<=
Write Result

Result Three gg?eﬁe;/?:sdﬁ
Two <=1.05*Result Two Parameters

Manually”

Write Result
Three

Figure 8. 10 The Flowchart for the Tapered Roller
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After doing the chances the results shown previourslFig.5.9-11were updated as shown

Fig.8.11-13.

Whichever mesh produced the converged result iwsho the charts. These results compare

nicely with Beisel's test data and the resultsief@OSMOS models.

92 ga Polyester, L=20"
0.002
0.0015
= o Gl
= 0.001 g Mesh 2
= : Mesh 2 © Beisel's Model (COSMOS)
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0
0 5 10 15 20 25 30
Tension

Figure 8.11 Converging Results for 20” Case
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92 ga Polyester, L=30"
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Figure 8.11 Converging Results for 30” Case
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Figure 8.11 Converging Results for 40" Case
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As an example of how the results converged afteretliuns, a specific case is shown in

Fig.8.14. Here the span length is 30” and the webion is 16.72 Ibs.

L=30 inch Tension=16.72 lbs
0.0018
0.0016
T 0.0014
% 0.0012 L 4 *
§ 0.001 & Seriesl
0.0008
0.0006
1 2 3
Mesh1, Mesh2, Mesh3

Figure 8. 14 Converging Result for a Specific Clasd apered Roller Problem

It has been shown that the code converges nicelgaiges from Chapter V. Some other cases

were picked to see whether the convergence routanks well.

In the first case free span length was 60 inchieg Bnd the web width was 24 inches wide.
Other material properties were kept the same likeBeisel's test material properties. In the

Fig.8.15 the result for this case is shown.
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L=60",W=24" T=25 lbs

0.0002
0.00019
0.00018
0.00017
0.00016 * 2 2
0.00015
0.00014
0.00013
0.00012
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& L=60",W=24" T=25 lbs

Mesh1,Mesh2

Figure 8.15 Converging Result for a 60" Long Web

In the second case, free span length was 80 idohgsand the web width was 24 inches

wide. In the Fig.8.16 the result for this casehigven.

L=80",W=24",T=30 lbs

0.00022
0.00021
0.0002
0.00019
0.00018 ¢
0.00017
0.00016
0.00015
0.00014

Mcr(in/in)

& L=80",W=24",T=30 Ibs

Mesh1,Mesh2

Figure 8.16 Converging Result for a 80" Long Web
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At the Fig.8.15 and Fig.8.16 results from differenéshes are plotted. As seen from the

figures the cases were converged after runningweshes.

8.4 The Central Circular Void Case

For the circular void case the code was modified¢heck for convergence and to run for

three different mesh parameters if needed.

If the user chooses the dimension of the web wadthh and the radius of the central void as
r, the even integer value ok/() was assigned to the varialbie which is the number of
elements across the web width. The purpose of tsedem like that was to divide the web
width homogeneously. The value of was limited to not exceed forty eight and it was

limited to be not less than twenty.

If the dimension of the web span length waénches) the Excel interface used the Even
value ofy to assigm2, the number of elements in tMD in the free span. The variabi@
was limited to not exceed fifty and it was limitembe not less than six. This parameter was

set identically for the misaligned roller and thpéred roller case.

The web was assumed to wrap the roller 90 degtetige value of one fourth of the roller
circumference wag, the even integer value of three timeszofvas given to thenl, the
number of elements in thdD crossing the roller. The value 01 was limited to not exceed

thirty and not be less than six.

These mesh parameters were the suggested meshepensaand their validity was shown at

chapter six to model cases that were tested itati@atory. The values oh andn2 for the
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first mesh used in the convergence code are shelomb
m=m-8,n2=n2-2 (8.1)

For the second mesh the suggested values werekisatly the third mesh the values rof

andn2 are shown below:
m=m+8,n2=n2+2 (8.2)

In the void case the code was executed twice tyshe impact of the hole location in the
free span on the tension level required to indudaldes. The first run was executed when
the circular hole was at a distance of ¥4 of theagpagth from the downstream roller and the
second run was executed when the circular holeawvasdistance of ¥z of the span length
from the downstream roller. The code was modifi@dun for the first and second meshes
for the first point and check whether the resutrirthe second mesh was within 5% of the
result that was calculated from the first mesto% relation was not valid the code was run
with the third mesh. For the second point the ah@t mesh was made based upon which
mesh resulted in convergence for the first pointhé second mesh produced convergence
for the first point the second point was also dal@d with the second mesh. If the second

mesh was not produced convergence for the firgttpthie second point was calculated using

the third mesh.

The flowchart for the convergence check for thedwmse is shown in Fig.8.17.
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Figure 8. 17 Convergence Check for the Void Case
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After updating the code the case seen at Fig.6.4% mun again. The result is shown at

Fig.8.12.

16
14 } Mesh 2
12
- No Wrinkles /
g 10 /' =—&—VYurtcu's Model (VBA)
@ 8
]
T 6 Mesh Zﬁ O Mallya's Test data
4 |74Ej[_,
mz[u Wrinkle ——Linear (Yurtcu's Model
2 riniles (VBA))
O
o L O
0 2 4 6 8 10
Tension (pli)

Figure 8. 18 Result of Modified Code for the CasEigure 6.15

To show the convergence routine works well, twoyvdifferent cases from those that
produced the test data were executed. The firgt was a wide web. The material properties
and other dimensions were kept the same and theh widthe web was increased to 50

inches. In the Fig.8.19 the result for this casshswn.
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W=50",L=28"
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Figure 8.19 Convergence Result for a Wide Web facular Void Code

The second case was a long web. The material grepand other dimensions were kept the

same and the length of the web was increased tint@@s. In the Fig.8.20 the result for this

case is shown.

L=100", w=12"
60
: 7
40 7

—¢=—=100", W=12"
) //
20 Linear (L=100",

w=12")

10

Figure 8.20 Convergence Result for a Long Web forular Void Code
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8.5 The Central Circular Non Uniform Web Case

For the non uniformities case the code was modthecheck convergence very similar to the

void case.

If the dimension the user input for web width wa@nches) the Excel interface multiplied
the valuex (in) by four and the Even function value of the restds assigned to variahhe,

the number of elements across the web width. IvHiee ofm was less than twenty two, the
value twenty two was given to the valuerof If the value ofm was larger than fifty, the
value fifty was assigned to the valuerof This is different from the void case because the

central circular non uniform region may occupy r@éa area than the central circular void.

If the dimension the user input for web span leng#isy (in), the Excel interface evaluated
the Even Function value gfand assigned it to the variabi2 The variablen2 was limited

to not exceed fifty and it was limited to be nadehan ten.

The web was assumed to wrap the roller 90 deglete value of one fourth of the roller
circumference wag, the even integer value of three timeszoivas given to thenl, the
number of elements in thdD crossing the roller. The value 1 was limited to not exceed

thirty and not be less than six.

Similar to the void case in the non uniformitieseavas run twice to determine the impact of
the non uniformity location in the web span onweb tension required to induce a wrinkle.
For the first point the code was run for mesh ame aesh two. For the first mesh the values
of m andn2 were taken from Eq.8.1. The second mesh parametes those described in

the previous paragraphs. The code was executedethdts from the second mesh were
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reviewed to determine if they were within 5% of ttesult from the first mesh. If so, the
output result that was calculated from the secoadimwas output as the converged values. If
the results from meshes were not within 5%, theedben executed the third mesh. If the
result from mesh three were within 5% of those frm@sh two, the mesh three results were
output as the converged values. For the third nileslvalues o and n2were taken from
Eqg.8.2. The flowchart for the non uniform caseimilar to the flowchart that is shown in
Fig.8.17. After modifying the code the case seeRi@t7.13 was run again. The results are

shown in Fig.8.21.
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Figure 8. 21 Result of Modified Code for the CasEigure 7.15

To check whether the routine produces convergenoeta case from Fig.7.12 was selected.
It was a 50 inch wide and 50 inch long wide webe T¥eb modeled was 0.001 inch thick.

The roller radius was 1.45 inch. The web’s Youngisdulus was 712000 psi and the
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Poisson’s ratio was assumed to be 0.3. The norommifirea was 3 inch away from the
second roller and the diameters of non uniform avaea 3 inches. In Fig.8.22 the results

from COSMOS and Yurtcu's modified Excel VBA are sho
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Figure 8. 22 Result of Modified Code for a Wide ngoNeb
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9. CHAPTER IV

9.1 SUMMARY

The objective of the proposed research was to mi@terwhether user friendly finite element
codes could be developed that would solve nonlimestability problems associated with

strain state dependent material properties anddayyrconditions of moving webs.

The results of the work show that for the case wfed encountering a misaligned roller, a
web encountering a tapered roller, for the caseeatral circular discontinuity, and for the

case of central circular non uniformities thisndact possible. The codes developed rely on
inputs of simple geometry and material parametdrghvshould be apparent to the user.
From there on the code executes automaticallyanmibshing of the problem, the generation

of the elastic and wrinkle membrane elements, &edsblution of the nonlinear instability
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problem. The results from this codes have been shiowompare favorably with test results

and results from commercial FE codes.

Interpolation methods were used successfully whleomating the code. During the first
interpolation process two tension levels that wecelow to wrinkle the web were chosen. At
the end of the first interpolation process these $tarting tension levels were increased in
such a way that one was greater than the tensaanwili buckle the web and the other was
less than the tension that will buckle the webeAfhe second interpolation process the code

was found the tension that would buckle the web.

While working on misaligned roller case a new sladge criterion that could be used for

both long spans and short spans was established.

While modeling the hole case a circle hole, a sglmie and a equilateral quadrangle hole
were compared and it is found that among these thoée shapes the quadrangle shaped hole
could withstand more tension prior to wrinkling.ughif cutting voids in webs is necessary,

this hole shape is more robust than others intmnegigirinkles.

9.2 RECOMMENDATIONS FOR THE FUTURE STUDY

In this study, problems are modeled in five sedidhe upstream roller, the upstream span,
the downstream roller, the downstream span andeggting roller. In the future these
problems can be modeled in seven or more sectiwhshee behavior of the problem can be

observed in more detail.
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For the tapered roller case, the model that wagesigd had limitations for short web spans.
In the future, if boundary conditions that wouldveo both long web spans and short web
spans the code that calculates the taper for solleuld be modified to give reasonable

results for short web spans too.

For the misaligned roller case, the tapered raese and the centrally located circular void
case, the results of the Excel VBA code comparelll with experimental results. For the

non uniform web case the results of the Excel VB#&le were not compared with the
experimental results, since none existed. In theiréy if successful experiments are
completed, the results of the code could be condparth the experimental results. Since the

VBA code results and COSMOS results compare wadket is at least numerical validation.
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APPENDIX EXCEL VBA CODE FOR MISALIGNED ROLLERS

Option Explicit

Dim H, L1, L2, W, W1 As Double 'dimensional paramet ers of domain
Dim n1, n2, k1, m, en As Integer ' mesh density par ameters

Dim z1, z2, m1, m2, m3, m4, q1, g2 As Integer 'loop counters
Dim roll1P(), roll2P(), roll3P(), spanlP(), span2P( ) As Double
Dim rolllen, roll2en, roll3en, spanlen, span2en As Integer

Dim KG(), ke(), u(), FG(), ue(8) As Double

Dim te As Double 'element thickness

Dim p(8) As Integer 'local to global pointer

Dim matcons, E, v, D(3, 3) As Double

Dim x1, x2, x3, x4, y1, y2, y3, y4 As Double

Dim sflt, sfls, sf2t, sf2s, sf3t, sf3s, sfat, sf4s As Double
Dim detJ, J11, J12, J21, J22 As Double

Dim BL(3, 8), t, s, gp(2) As Double

Dim STRAINP(2), STRAINXY(), STRESSXY(), PP, QQ As D ouble

Dim pfixing(), pbinding(), pubinding(), pload(), PC , Control As Double
Dim sdummy, dimdummy, sbw As Integer

Dim para, critical, Sigma2, Sigmal, Sigmas, sycr As Double

Dim PSTRAIN(), PQSTATE(), ELEMENTSTATE(), ESA(), ST RAINPAVE() As Double

Dim iterload, iterloadT, itercon As Integer
Dim TRACTIONX, TRACTIONXY, FORCEX, FORCEXY, NFORCEX , NFORCEXY, F1, F2, F3, FS As Double

Dim D1, D2, Tangent, Angle, Downlimit, Uplimit As D ouble
Dim clock As Double
Dim TempAnglel, TempAngle2, TempAngle3, TempSigmaS1 , TempSigmaS2, TempSigmaS3, TempFS1,

TempFS2, TempFS3 As Double
Dim Meshparameter As Integer

Sub WRINKLINGmain()
clock = Timer

Meshparameter = 1
Control =0

SigmaS =0
Range("message").Clear
Range("arad").Clear
Range("message2").Clear

Call WRINKLINGmesh
Call WRINKLINGmain2
Range("ARAD") = Angle
TempAnglel = Angle

Range("MAXSY") = SigmaS
TempSigmaS1 = SigmaS

Range("TXY") = FS
TempFS1 =FS

'increasing mesh density
Meshparameter = 2

Control =0
SigmaS =0
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Range("message").Clear
Range("arad").Clear

Call WRINKLINGmesh

Call WRINKLINGmain2
Range("ARAD") = Angle
TempAngle2 = Angle

Range("MAXSY") = SigmaS
TempSigmaS2 = SigmaS

Range("TXY") = FS
TempFS2 = FS

If (0.95 * TempAnglel) <= TempAngle2 Or (1.05* T
Range("ARAD") = TempAngle2
Range("MAXSY") = TempSigmaS2

Range("TXY") = TempFS1
Range("message2") = "Result Converge

Else:

Meshparameter = 3
Control =0

SigmaS =0
Range("message").Clear
Range("arad").Clear

Call WRINKLINGmesh

Call WRINKLINGmain2
Range("ARAD") = Angle
TempAngle3 = Angle

Range("MAXSY") = SigmaS
TempSigmaS3 = SigmaS

Range("TXY") = FS
TempFS3 =FS

If (0.95 * TempAngle2) <= Temp
TempAngle3 Then

Range("message2") = "Result Co

Else: Range("message2") = "Res
Parameters Manually"

End If

End If
Range(Cells(40, 2), Cells(40, 2)) = TempAnglel

Range(Cells(40, 3), Cells(40, 3)) = TempAngle2
Range(Cells(40, 4), Cells(40, 4)) = TempAngle3

Range("TT") = Timer - clock
Range("message") = "FEA Complete"
End Sub

Sub WRINKLINGmain2()

'Worksheets("Sheetl1").Activate

'Range(Cells(17, 1), Cells(17, 1)).Clear
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'traction components input
sycr = Range("SYCR")
TRACTIONX = Range("TX")

FORCEX = TRACTIONX * H * te
NFORCEX = FORCEX / m

TRACTIONXY = (TRACTIONX *H) / (6 * (W1 + L2 + L1 +
F2 = TRACTIONXY
F3 =2 * TRACTIONXY
Do Until SigmaS > sycr
FORCEXY =F2*H *te
NFORCEXY = FORCEXY /m
Call WRINKLINGsystem

Sigma2 = critical

F1=F2/2

FORCEXY =F1*H*te
NFORCEXY = FORCEXY /' m

Call WRINKLINGsystem

Sigmal = critical

FS = ((sycr - Sigma2) * (F2 - F1)) / (Sigma2 -
If FS > F3 And Control = 0 Then

FS=F3

Control = Control + 1

End If

FORCEXY =FS *H * te
NFORCEXY = FORCEXY /' m

Call WRINKLINGsystem
Sigmas = critical

F1=F2
F2=FS

Loop

Downlimit = 0.95 * sycr
Uplimit = 1.05 * sycr

Do Until Downlimit <= SigmaS And Sigma$S <= Uplimit

FORCEXY =F2*H * te
NFORCEXY = FORCEXY /' m

Call WRINKLINGsystem

Sigma2 = critical
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FORCEXY =F1*H *te
NFORCEXY = FORCEXY /' m

Call WRINKLINGsystem

Sigmal = critical

FS = ((sycr - Sigmal) * (F2 - F1)) / (Sigma2 -

FORCEXY =FS*H*te
NFORCEXY = FORCEXY /' m

Call WRINKLINGsystem
Sigmas = critical

If SigmasS > sycr Then
F2=FS

Elself SigmasS < sycr Then
F1=FS

End If

Loop

Dl=u@*((kl1+n2+nl)*(m+1)+m/2+1))
D2=u@*(k1+n2)*(m+1)+m/2+1))

Tangent = (D1)/ (L1/2)
Angle = Atn(Tangent)

'Worksheets("StressX").Activate
'Worksheets("StressX").Cells.ClearContents
'Forql=1Tokl+n2+nl
'Forg2=1Tom

'en=(ql-1)*m+qg2

"Range(Cells(25-92,q1 + 10 + (k1 + n2 + n1 + 2)
+ (k1 + n2 + nl + 2) * (iterload - 1))) = ESA(en, 1
"Range(Cells(55 - g2, q1 + 10 + (k1 + n2 + n1 + 2)
+ (k1 + n2 + nl1 + 2) * (iterload - 1))) = ESA(en, 2

'Range(Cells(25 - g2, q1 + 6), Cells(25 - g2, q1 +
"Range(Cells(55 - g2, q1 + 6), Cells(55 - g2, q1 +
"Range(Cells(85 - g2, g1 + 6), Cells(85 - g2, q1 +
'Next
‘Next

'Forgl=1Tokl

'Range(Cells(24 - m, g1 + 6), Cells(24 - m, g1 + 6)
"Range(Cells(54 - m, q1 + 6), Cells(54 - m, g1 + 6
'Next

'Forgl=1Ton2

'Range(Cells(24 - m, g1 + k1 + 6), Cells(24 - m, g1
"Range(Cells(54 - m, q1 + k1 + 6), Cells(54 - m, q
'Next

'Forgl=1Tonl

'Range(Cells(24 - m, q1 + k1 + n2 + 6), Cells(24 -
"Range(Cells(54 - m, g1 + k1 + n2 + 6), Cells(54 -
‘Next
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'Forgl=1Tom

'Range(Cells(25 - g1, 6), Cells(25 - q1, 6)) =gl
"Range(Cells(55 - g1, 6), Cells(55 - q1, 6)) =gl
‘Next

'Worksheets("StressY").Activate
'Worksheets("StressY").Cells.ClearContents
'Forql=1Tokl+n2+nl
'Forg2=1Tom

'en=(ql-1)*m+g2

"Range(Cells(25-92,q1 + 10 + (k1 + n2 + n1 + 2)
+ (k1 + n2 + nl + 2) * (iterload - 1))) = ESA(en, 1
"Range(Cells(55 - g2, q1 + 10 + (k1 + n2 + n1 + 2)
+ (k1 + n2 + nl + 2) * (iterload - 1))) = ESA(en, 2

'Range(Cells(25 - g2, q1 + 6), Cells(25 - g2, q1 +
"Range(Cells(55 - g2, gl + 6), Cells(55 - g2, q1 +
"Range(Cells(85 - g2, g1 + 6), Cells(85 - g2, q1 +
‘Next
‘Next

'Forgl=1Tokl

'Range(Cells(24 - m, g1 + 6), Cells(24 - m, g1 + 6)
"Range(Cells(54 - m, q1 + 6), Cells(54 - m, g1 + 6
'Next

'Forgl=1Ton2

'Range(Cells(24 - m, g1 + k1 + 6), Cells(24 - m, g1
"Range(Cells(54 - m, q1 + k1 + 6), Cells(54 - m, q
'Next

'Forgl=1Tonl

'Range(Cells(24 - m, q1 + k1 + n2 + 6), Cells(24 -
"Range(Cells(54 - m, g1 + k1 + n2 + 6), Cells(54 -
‘Next

'Forgl=1Tom

'Range(Cells(25 - g1, 6), Cells(25 - q1, 6)) = q1
"Range(Cells(55 - g1, 6), Cells(55 - g1, 6)) = ql1
‘Next

'Worksheets("StressXY").Activate
'Worksheets("StressXY").Cells.ClearContents
'Forql=1Tokl+n2+nl

'Forg2=1Tom

'en=(ql-1)*m+qg2

"Range(Cells(25-92,q1 + 10 + (k1 + n2 + n1 + 2)
+ (k1 + n2 + nl + 2) * (iterload - 1))) = ESA(en, 1
"Range(Cells(55 - g2, q1 + 10 + (k1 + n2 + n1 + 2)
+ (k1 + n2 + nl + 2) * (iterload - 1))) = ESA(en, 2

'Range(Cells(25 - g2, q1 + 6), Cells(25 - g2, q1 +
"Range(Cells(55 - g2, g1 + 6), Cells(55 - g2, q1 +
"Range(Cells(85 - g2, gl + 6), Cells(85 - g2, q1 +
‘Next
‘Next

'Forql=1Tokl

'Range(Cells(24 - m, g1 + 6), Cells(24 - m, g1 + 6)
"Range(Cells(54 - m, g1 + 6), Cells(54 - m, g1 + 6
'Next

'Forgl=1Ton2

'Range(Cells(24 - m, g1 + k1 + 6), Cells(24 - m, q1
"Range(Cells(54 - m, q1 + k1 + 6), Cells(54 - m, q
‘Next
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'Forgl=1Tonl

'Range(Cells(24 - m, q1 + k1 + n2 + 6), Cells(24 -
"Range(Cells(54 - m, q1 + k1 + n2 + 6), Cells(54 -
‘Next

'Forgl=1Tom

'Range(Cells(25 - g1, 6), Cells(25 - q1, 6)) = ql
"Range(Cells(55 - g1, 6), Cells(55 - q1, 6)) = q1
‘Next

'Worksheets("Roller Misalignment").Activate
End Sub
Sub WRINKLINGsystem()

For iterload =1 To 4

'Foritercon=1To 1

Range(Cells(24, 2), Cells(24, 2)) = iterload
'Range(Cells(25, 2), Cells(25, 2)) = itercon

'ReDImKG2*(k1+n2+nl+n2+kl+1)*(m+1
n2+nl+n2+k1+1)*(m+1))
ReDIMmKG(2*(k1+n2+nl+n2+kl1+1)*(m+1)
+kl1+1)*(m+1))

‘form roll1 region's elements
Call ROLLmaterial

Forql=1Tokl
Forg2=1Tom

en=(ql-1)*m+qg2

x1 =roll1P(en, 1)
x2 =roll1P(en, 2)
x3 =roll1P(en, 3)
x4 = roll1P(en, 4)
y1 =roll1P(en, 5)
y2 =roll1P(en, 6)
y3 =roll1P(en, 7)
y4 = roll1P(en, 8)

Call WRINKLINGelement

'pointers

p(1)=2*((ql-1)*(m+1)+q2)-1
p(2)=2*((ql-1)*(m+1)+q2)

pB)=2*(gl-1)*(m+1)+qg2+1)-1
p@)=2*((@l-1)*(M+1)+qg2+1)

p(5)=2*((q1)* (m+1)+q2)-1
p(6) =2*((q1) * (m + 1) + q2)

p(7)=2*((ql)*(m+1)+g2+1)-1
p@)=2*((@1)*(Mm+1)+q2+1)

Forml1=1To8
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Form2=ml1To 8

KG(p(m1), p(m2) - p(m1) + 1) = KG(p(m1), p(m2) - p(
Next

Next

Next
Next

‘form spanl region's elements
Forgql=1Ton2
Forg2=1Tom

en=(gl-1)*m+g2

x1 = spanlP(en, 1)
X2 = spanlP(en, 2)
x3 = spanlP(en, 3)
x4 = spanlP(en, 4)
yl = span1P(en, 5)
y2 = spanlP(en, 6)
y3 = spanlP(en, 7)
y4 = spanlP(en, 8)

'pointers

p(l)=2*((kl+ql-1)*(m+1)+q2)-1
p(2)=2*(kl1+qgl-1)*(m+1)+q2)

pB)=2*(kl+qgql-1)*(m+1)+qg2+1)-1
p(4)=2*(kl+ql-1)*(m+1)+qg2+1)

p(3) =2*((kL+ql)*(m+1)+qg2)-1
p(6) =2* (k1 +ql)*(m+1)+q2)

p(7)=2*((k1+gl)*(m+1)+g2+1)-1
p@B)=2*(kl+qgl)*(m+1)+qg2+1)

Forml1=1To8

ue(ml) = u(p(ml))
Next

Call WRINKLINGstrain ‘calculate ex,ey,exy,el,e2

Call WRINKLINGcriteria 'check for the state Taut?SI

Call WRINKLINGelement ‘form element stiffness matri

Forml1=1To8

Form2=ml1To 8

KG(p(m1), p(m2) - p(m1) + 1) = KG(p(m1), p(m2) - p(
Next

Next

Next
Next

‘form roll2 region's elements
Call ROLLmaterial

Forgl=1Tonl
Forg2=1Tom

en=(gl-1)*m+g2

m1) + 1) + ke(m1, m2)

ack?Wrinkled?

m1l) + 1) + ke(m1, m2)



x1 = roll2P(en, 1)
x2 =roll2P(en, 2)
x3 =roll2P(en, 3)
x4 =roll2P(en, 4)
y1 =roll2P(en, 5)
y2 =roll2P(en, 6)
y3 =roll2P(en, 7)
y4 = roll2P(en, 8)

Call WRINKLINGelement
'pointers

p)=2*((kl+n2+ql-1)*(m+1)+qg2)-1
p2)=2*((kl+n2+qgl-1)*(m+1)+qg2)

pB)=2*((k1+n2+9gl-1)*(m+1)+qg2+1) -1
p@d)=2*((kl+n2+ql-1)*(m+1)+qg2+1)

p(3) =2*((kL+n2+ql)*(m+1)+qg2)-1
p(6) =2* ((k1+n2+ql)*(m+1)+q2)

p7)=2*((kl1+n2+qgl)*(m+1)+g2+1)-1
p@)=2*((k1+n2+qgl)*(m+1)+qg2+1)

Forml1=1To8

Form2=ml1To8

KG(p(m1), p(m2) - p(ml) + 1) = KG(p(m1), p(m2) - p( m1) + 1) + ke(ml, m2)
Next

Next

Next
Next

‘form span2 region's elements
Forgl=1Ton2
Forg2=1Tom

en=(gl-1)*m+g2

x1 = span2P(en, 1)
X2 = span2P(en, 2)
x3 = span2P(en, 3)
x4 = span2P(en, 4)
y1 = span2P(en, 5)
y2 = span2P(en, 6)
y3 = span2P(en, 7)
y4 = span2P(en, 8)

'pointers

pl)=2*((kL+n2+nl+ql-1)*(m+1)+q2) -1
p2)=2*((kl+n2+nl+qgl-1)*(m+1)+q2)
pB)=2*((kl1+n2+nl+qgl-1)*(m+1)+qg2 +1)-1
p4)=2*((kl+n2+nl+qgl-1)*(m+1)+qg2 +1)

pB)=2*((kl+n2+nl+qgl)*(m+1)+qg2)-1
p6)=2*((k1+n2+nl+ql)*(m+1)+qg2)

p(7)=2*((kl1+n2+nl+ql)*(m+1)+qg2+1) -1
p@B)=2*((kl1+n2+nl+ql)*(m+1)+qg2+1)

Forml1=1To8

ue(ml) = u(p(ml))
Next
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'Call WRINKLINGstrain ‘calculate ex,ey,exy,el,e2
'Call WRINKLINGcriteria 'check for the state Taut?S

Call ROLLmaterial

Call WRINKLINGelement 'form element stiffness matri

Forml1=1To8
Form2=ml1To 8

KG(p(m1), p(m2) - p(m1) + 1) = KG(p(m1), p(m2) - p(

Next
Next

Next
Next

‘form roll3 region's elements
Call ROLLmaterial

Forql=1Tokl
Forg2=1Tom

en=(ql-1)*m+qg2

x1 =roll3P(en, 1)
x2 =roll3P(en, 2)
x3 =roll3P(en, 3)
x4 = rolI3P(en, 4)
y1 =roll3P(en, 5)
y2 = roll3P(en, 6)
y3 =roll3P(en, 7)
y4 = roll3P(en, 8)

Call WRINKLINGelement
'pointers

pl)=2*((kl1+n2+nl+n2+ql-1)*(m+1)
p2)=2*((kl1+n2+nl+n2+ql-1)*(m+1)

pB)=2*(kl+n2+nl+n2+ql-1)*(m+1)
p@)=2*((kl1+n2+nl+n2+ql-1)*(m+1)

pB)=2*((kl+n2+nl+n2+ql)*(m+1)+qg2
p6)=2*((k1L+n2+nl+n2+qgl)*(m+1)+qg2

p(7)=2*((kl+n2+nl+n2+ql)*(m+1)+qg2
p@B)=2*((kl+n2+nl+n2+ql)*(m+1)+qg2

Forml1=1To8
Form2=ml1To8

KG(p(m1), p(m2) - p(m1) + 1) = KG(p(m1), p(m2) - p(

Next
Next

Next

Next

'determine penalty number

PC=0
Forml=1To2*(m+1)*(kl+n2+nl+n2+Kkl

If KG(m1, 1) > PC Then PC = KG(m1, 1)
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Next

PC = PC * 10000

‘apply constraints

Call WRINKLINGconstraints
‘apply force

Call WRINKLINGforceshear

Call WRINKLINGforcenormal

'solve system

Call WRINKLINGsolver
'check state of the elements
'Call WRINKLINGcheck
'print state of the elements

'Forgl=1Ton2
'Forg2=1Tom

'en=(ql-1)*m+q2

'Range(Cells(5 + en, 4), Cells(5 + en, 4)) = en
'Range(Cells(5 + en, 4 + itercon), Cells(5 + en, 4
'Range(Cells(5 + en, 16 + itercon), Cells(5 + en, 1

'Next
'Next

'Forgl=1Ton2
'Forg2=1Tom

'en=(ql-1)*m+q2
'Range(Cells(5 + en, 9 + iter), Cells(5 + en, 9 +i

'Next
'Next

'Next 'itercon
Next ‘iterload

Call WRINKLINGstresscalc

'Forql=1Tokl+n2+nl
'Forg2=1Tom
'en=(ql-1)*m+g2

'Range(Cells(25- 92,1 + 10 + (k1 + n2 + n1 + 2)
+ (k1 + n2 + nl + 2) * (iterload - 1))) = ESA(en, 1
'Range(Cells(55 - g2, q1 + 10 + (k1 + n2 + n1 + 2)
+ (k1 + n2 + nl + 2) * (iterload - 1))) = ESA(en, 2

'Range(Cells(25 - g2, gl + 6), Cells(25 - g2, q1 +
'Range(Cells(55 - g2, gl + 6), Cells(55 - g2, q1 +
'Range(Cells(85 - g2, q1 + 6), Cells(85 - g2, q1 +
‘Next
'Next

critical =0
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+ itercon)) = PQSTATE(en, 1)
6 + itercon)) = PQSTATE(en, 2)

ter)) = PQSTATE(en + n2 * m, 1)

* (iterload - 1)), Cells(25 - g2, 1 + 10
* (iterload - 1)), Cells(55 - g2, g1 + 10
)

6)) = ESA(en, 1)

6)) = ESA(en, 2)
6)) = ESA(en, 3)



Forgl=1Tom
en=(kl+n2)*m+ql
If critical < Abs(ESA(en, 2)) Then critical = A

Next

'Forgl=1Tokl

'Range(Cells(24 - m, g1 + 6), Cells(24 - m, g1 + 6)
'Range(Cells(54 - m, g1 + 6), Cells(54 - m, g1 + 6)
'Next

'Forgl=1Ton2

'Range(Cells(24 - m, g1 + k1 + 6), Cells(24 - m, g1
'Range(Cells(54 - m, g1 + k1 + 6), Cells(54 - m, q1
'Next

'Forgl=1Tonl

'Range(Cells(24 - m, q1 + k1 + n2 + 6), Cells(24 -
'Range(Cells(54 - m, q1 + k1 + n2 + 6), Cells(54 -
‘Next

'Forgl=1Tom

'Range(Cells(25 - g1, 6), Cells(25 - q1, 6)) =gl
'Range(Cells(55 - g1, 6), Cells(55 - q1, 6)) = g1
‘Next

'Call WRINKLINGstresscalc

'print u

'Forml=1To(m+1)

'Form2=1Tonl+1

'Range(Cells(5 + m1, 4 + m2), Cells(5 + m1, 4 + m2)
‘Next

'Next

'Forml=1To(m+1)

'Range(Cells(6 + m + m1, 5), Cells(6 + m + m1, 5))
m1))

‘Next

End Sub

Sub WRINKLINGmesh()
'input variables

H = Range("WW")

m = Range("mw")

If m> 30 Then m =30
Ifm<6Thenm=6

If Meshparameter = 1 Then
m=m-(m/2-1)

Elself Meshparameter = 2 Then
m=m
Elself Meshparameter = 3 Then
m=m+(m/2-1)

End If

If(mMod2)<>0Thenm=m+1
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L1 = Range("rs")

L2 = Range("fs")

nl = Range("rsn")
If n1 >30 Thennl =30
Ifnl<6Thennl=6

n2 = Range("fsn")
If n2 > 50 Then n2 = 50
Ifn2<6Thenn2=6

If Meshparameter = 1 Then
n2=n2-(Mn2/2-1)

Elself Meshparameter = 2 Then
n2 =n2

Elself Meshparameter = 3 Then
n2=n2+(n2/2-1)

End If

If (N2 Mod 2) <>0Thenn2=n2+1

te = Range("TE")
E = Range("Ex")
v = Range("Prxy")

'k1=10
'W=H/m
'W1=k1*W
kl=nl
Wwi=1L1

'gauss points
gp(1) =0.57735
gp(2) =-0.57735

'penalty constraint

pPC=10"12

'ReDim KG(2* (k1 +n2+nl1+n2+kl)*(m+1),2
nl+n2+k1l+1)*(m+1))

ReDIm KG(2* (k1 +n2+nl+n2+kl)*(m+1),2
+1)*(m+ 1))
ReDIMmFG(2*(k1+n2+nl+n2+kl+1)*(m+1)
ReDim pbinding(k1 + 1)

ReDim pload(m + 1)

ReDim pfixing(2 * (m + 1))

ReDim PSTRAIN(2 * m * n2, 2), PQSTATE(2 * m * n2, 2
ReDim ESA((k1 + n1 + n2) * m, 3)

‘form up roll1 region position array
rolllen =k1*m

ReDim roll1P(roll1len, 8)
Forgl=1Tokl

Forg2=1Tom
en=(gl-1)*m+g2

rolllP(en, 1) = (g1 - 1) *W1/kl1

roll1P(en, 2) = roll1P(en, 1)
roll1P(en, 3) = (q1) * W1/ k1

* (K1) * (m + 1) + 1)), u(2 * (K1 +n2 +

*(m+3)), u2* (k1 +n2+nl+n2+Kkl

), ELEMENTSTATE(2 * m * n2)
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roll1P(en, 4) = roll1P(en, 3)

rolllP(en,5)=(g2-1)*H/m
rolllP(en, 6) =(g2) *H/m
roll1P(en, 7) = roll1P(en, 5)
roll1P(en, 8) = roll1P(en, 6)

Next
Next

‘form up spanl region position array
spanlen=n2*m
ReDim spanlP(spanlen, 8)

Forql=1Ton2
Forg2=1Tom
en=(gl-1)*m+g2

spanlP(en, 1) =W1+(ql-1)*L2/n2
spanlP(en, 2) = span1P(en, 1)
spanlP(en, 3) = W1 + (g1) * L2/ n2
spanlP(en, 4) = spanlP(en, 3)

spanlP(en,5)=(q2-1)*H/m
spanlP(en, 6) =(g2)*H/m

spanlP(en, 7) = spanlP(en, 5)
spanlP(en, 8) = spanlP(en, 6)

Next
Next

‘form up roll2 region position array
roll2en=nl*m

ReDim roll2P(roll2en, 8)

Forql=1Tonl
Forg2=1Tom
en=(gl-1)*m+g2

roll2P(en, 1) =W1+L2+(gl-1)*L1/nl
roll2P(en, 2) = roll2P(en, 1)

roll2P(en, 3) =W1 + L2 +(gq1) *L1/nl
roll2P(en, 4) = roll2P(en, 3)

roll2P(en,5)=(g2-1)*H/m
roll2P(en, 6) = (g2) *H/m

roll2P(en, 7) = roll2P(en, 5)
roll2P(en, 8) = roll2P(en, 6)

Next

Next

‘form up span2 region position array
span2en =n2*m

ReDim span2P(spanlen, 8)
Forql=1Ton2

Forg2=1Tom
en=(gl-1)*m+g2
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span2P(en, 1) =W1 + L1+ L2+ (gl-1)*L2/n2
span2P(en, 2) = span2P(en, 1)

span2P(en, 3)=W1 +L1+L2+(ql)*L2/n2
span2P(en, 4) = span2P(en, 3)

span2P(en,5)=(g2-1)*H/m
span2P(en, 6) =(g2) *H/m

span2P(en, 7) = span2P(en, 5)
span2P(en, 8) = span2P(en, 6)

Next
Next

‘form up roll3 region position array
roll3en=nl*m

ReDim roll3P(roll3en, 8)

Forql=1Tokl
Forg2=1Tom
en=(ql-1)*m+qg2

roll3P(en, 1) =W1+ L2+ L1+L2+(gl-1)*W1/
rollI3P(en, 2) = roll3P(en, 1)
roll3P(en, 3) =W1 + L2 + L1+ L2+ (ql) *W1/kl
roll3P(en, 4) = roll3P(en, 3)

roll3P(en, 5)=(g2-1)*H/m
roll3P(en, 6) =(g2) *H/m
roll3P(en, 7) = roll3P(en, 5)
roll3P(en, 8) = roll3P(en, 6)

Next
Next

End Sub

Sub WRINKLINGelement()
ReDim ke(8, 8)

Forz1=1To2
Forz2=1To 2

t=gp(z1)
s =9p(z2)

'derivatives of shape functions
sfit=(-1+s)/4
sfls=(-1+1t)/4

sf2t=(-1-s)/4
sf2s=(1-t)/4

sf3dt=(1-s)/4
sf3s=(-1-t)/4

sfat=(1+s)/4
sfds=(1+t)/4

‘calculate jakobien

J11 =x1 * sflt + x2 * sf2t + x3 * sf3t + x4 * sf4t
J12 = y1 * sflt + y2 * sf2t + y3 * sf3t + y4 * sf4t
J21 = x1 * sfls + x2 * sf2s + x3 * sf3s + x4 * sf4s
J22 =yl * sfls + y2 * sf2s + y3 * sf3s + y4 * sf4s
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detd =J11 *J22 - J12 * J21
'linear calculate strain gradient matrix

BL(L, 1) = (-J12 * sfls + J22 * sflt) / detd
BL(3, 1) = (J11 * sfls - J21 * sflt) / detd
BL(2, 2) = BL(3, 1)

BL(3, 2) = BL(L, 1)

BL(L, 3) = (-J12 * sf2s + J22 * sf2t) / detJ
BL(3, 3) = (J11 * sf2s - J21 * sf2t) / detd
BL(2, 4) = BL(3, 3)

BL(3, 4) = BL(1, 3)

BL(L, 5) = (-J12 * sf3s + J22 * sf3t) / detd
BL(3, 5) = (J11 * sf3s - J21 * sf3t) / detd
BL(2, 6) = BL(3, 5)

BL(3, 6) = BL(L, 5)

BL(L, 7) = (-J12 * sfds + J22 * sf4t) / detJ
BL(3, 7) = (J11 * sfds - J21 * sfat) / det]
BL(2, 8) = BL(3, 7)

BL(3, 8) = BL(1, 7)

Forml1=1To8
Form2=ml1To8
Form3=1To 3
Form4=1To 3

ke(m1, m2) = ke(m1, m2) + BL(m3, m1) * D(m3, m4) *
Next
Next
Next
Next

Next
Next

End Sub

Sub ROLLmaterial()

Erase D
matcons=E/(1-v"2)

D(1, 1) = matcons

D(1, 2) = v * matcons

D(2, 1) =D(1, 2)
D(2,2)=D(1, 1)

D(3, 3) =matcons * (1 -v) /2

End Sub

Sub WRINKLINGstrain()

ReDim STRAINXY(3)
Forz1=1To2
Forz2=1To 2

t=gp(z1)
s =gp(z2)

'derivatives of shape functions
sflt=(-1+s)/4
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sfls=(-1+1t)/4

sf2t=(-1-s)/4
sf2s=(1-t)/4

sf3dt=(1-s)/4
sf3s=(-1-t)/4

sfat=(1+s)/4
sfds=(1+t)/4

‘calculate jakobien

J11 = x1 * sflt + x2 * sf2t + x3 * sf3t + x4 * sf4t
J12 =yl * sflt + y2 * sf2t + y3 * sf3t + y4 * sf4t
J21 = x1 * sfls + x2 * sf2s + x3 * sf3s + x4 * sf4s
J22 =yl * sfls + y2 * sf2s + y3 * sf3s + y4 * sf4ds
detd =J11 *J22 - J12 * J21

'linear calculate strain gradient matrix

BL(L, 1) = (-J12 * sfls + J22 * sfit) / det]
BL(3, 1) = (J11 * sfls - J21 * sfit) / detd
BL(2, 2) = BL(3, 1)

BL(3, 2) = BL(L, 1)

BL(L, 3) = (-J12 * sf2s + J22 * sf2t) / detJ
BL(3, 3) = (J11 * sf2s - J21 * sf2t) / detd
BL(2, 4) = BL(3, 3)

BL(3, 4) = BL(1, 3)

BL(L, 5) = (-J12 * sf3s + J22 * sf3t) / detd
BL(3, 5) = (J11 * sf3s - J21 * sf3t) / detd
BL(2, 6) = BL(3, 5)

BL(3, 6) = BL(L, 5)

BL(L, 7) = (-J12 * sfds + J22 * sf4t) / detJ
BL(3, 7) = (J11 * sfds - J21 * sfat) / det]
BL(2, 8) = BL(3, 7)

BL(3, 8) = BL(1, 7)

Forml1=1To3

Form2=1To8

STRAINXY(m1) = STRAINXY(m1) + BL(m1, m2) * ue(m2)
Next

Next

Next
Next

STRAINP(1) = (STRAINXY(1) / 4 + STRAINXY(2) / 4) / 2 + ((STRAINXY(1) / 4 - STRAINXY(2) / 4) »
2 + (STRAINXY(3) / 4) A 2) 7 0.5/ 2

STRAINP(2) = (STRAINXY(L) / 4 + STRAINXY(2) / 4) / 2 - ((STRAINXY(L) / 4 - STRAINXY(2) / 4) ~
2 + (STRAINXY(3) /4) A 2) 0.5/ 2

End Sub

Sub WRINKLINGcriteria()

If STRAINP(1) < 0 Then

Erase D

Range("message") = "MD Stress input is too small, a slack edge occurs prior to wrinkling"
Worksheets("Roller Misalignment").Activate

End

Elself STRAINP(1) > 0 And v * STRAINP(1) < -STRAINP (2) Then
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Erase D

PP = (STRAINXY(1) / 4 - STRAINXY(2) / 4) / (STRAINP
QQ = (STRAINXY(3) / 4) / (STRAINP(1) - STRAINP(2))
D(1,1)=(1+PP)*E/2

D(2,2)=(1-PP)*E/2

D(3,3)=E/4

D(1,3)=QQ*E/4

D(2, 3) =D(1, 3)

D(3, 1) =D(1, 3)

D(3,2)=D(1, 3)

D(1,2)=0

D(2,1)=0

Else

Erase D

matcons=E/(1-v"2)

D(1, 1) = matcons

D(1, 2) = v * matcons

D(2, 1) =D(1, 2)

D(2,2)=D(1, 1)

D(3, 3) = matcons * (1 -v) /2

End If

End Sub

Sub WRINKLINGconstraints()
fixing of middle line

Formli=1Tom+1
pfixing(ml) = (2*kl+nl+2*n2)*(m+1)/2
Next

Forml=m/2+1Tom/2+1
'Forml=1Tom+1

KG(2 * pfixing(m1) - 1, 1) = KG(2 * pfixing(m1) - 1
Next

Forml=m/2+1Tom/2+1
'Forml=1Tom+1

KG(2 * pfixing(m1), 1) = KG(2 * pfixing(m1), 1) + P
Next

'binding roll1 region's points in v direction
Forml=1Tom+1

Form2=1Tokl+1
pbinding(m2) =2 * (m1 + (m + 1) * (m2 - 1))
Next

Form2=1Tokl

KG(pbinding(m2), 1) = KG(pbinding(m2), 1) + PC
KG(pbinding(m2 + 1), 1) = KG(pbinding(m2 + 1), 1) +
KG(pbinding(m2), pbinding(m2 + 1) - pbinding(m2) +
pbinding(m2) + 1) - PC

Next

Thkkk

'KG(pbinding(1), 1) = KG(pbinding(1), 1) + PC
'KG(pbinding(k1 + 1), 1) = KG(pbinding(kl1 + 1), 1)

Thkkk

'Forql=1Tonl
'Forg2=ql+1Tonl+1

(1) - STRAINP(2))
)

+ml

,1)+PC

PC
1) = KG(pbinding(m2), pbinding(m2 + 1) -
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'KG(pbinding(ql), pbinding(g2) - pbinding(gql) + 1)
pbinding(gl) + 1) - PC

'Next
'Next

'Forql=1Tonl

'KG(pbinding(q1), pbinding(ql + 1) - pbinding(ql) +
pbinding(gl) + 1) - PC

'Next

Thkkkk

'KG(pbinding(1), pbinding(k1 + 1) - pbinding(1) + 1
pbinding(1) + 1) - PC

Thkkkk

Next
'binding roll1 region's first line points in u dire
ReDim pubinding(m + 1)

Forml=1Tom+1
pubinding(ml)=2*ml-1
Next

Forml=1Tom

KG(pubinding(m1), 1) = KG(pubinding(m1), 1) + PC
KG(pubinding(m1 + 1), 1) = KG(pubinding(m1 + 1), 1)
KG(pubinding(m1), pubinding(m1 + 1) - pubinding(m1)
1) - pubinding(m1) + 1) - PC

Next

'binding roll3 region's points in v direction
Forml=1Tom+1

Form2=1Tokl+1
pbinding(m2) =2 * (m1 + (m + 1) * (m2 - 1) + (k1 +
Next

Form2=1Tokl

KG(pbinding(m2), 1) = KG(pbinding(m2), 1) + PC
KG(pbinding(m2 + 1), 1) = KG(pbinding(m2 + 1), 1) +
KG(pbinding(m2), pbinding(m2 + 1) - pbinding(m2) +
pbinding(m2) + 1) - PC

Next

'Forgl=1Tonl+1
'KG(pbinding(gql), 1) = KG(pbinding(ql), 1) + PC
'Next

Thkkkkkk

'KG(pbinding(1), 1) = KG(pbinding(1), 1) + PC
'KG(pbinding(k1 + 1), 1) = KG(pbinding(kl1 + 1), 1)

Thkkkkkk

'Forql=1Tonl
'Forg2=ql+1Tonl+1

'KG(pbinding(ql), pbinding(g2) - pbinding(gql) + 1)
pbinding(gl) + 1) - PC

'Next

= KG(pbinding(ql), pbinding(qg2) -

1) = KG(pbinding(ql), pbinding(ql + 1) -

) = KG(pbinding(1), pbinding(k1 + 1) -

ction

+PC
+ 1) = KG(pubinding(m1), pubinding(m1 +

n2 +nl+n2)*(m + 1))

PC

1) = KG(pbinding(m2), pbinding(m2 + 1) -

+PC

= KG(pbinding(ql), pbinding(q2) -
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‘Next
'Forql=1Tonl

'KG(pbinding(q1), pbinding(ql + 1) - pbinding(ql) +
pbinding(gl) + 1) - PC

'Next

Thkkkkk

'KG(pbinding(1), pbinding(k1 + 1) - pbinding(1) + 1
pbinding(1) + 1) - PC

Thkkkkk

Next
'binding roll3 region's first line points in u dire
ReDim pubinding(m + 1)

Formli=1Tom+1
pubinding(ml) =2*((2*k1+2*n2+nl)*(m+
Next

Forml1=1Tom

KG(pubinding(m1), 1) = KG(pubinding(m1), 1) + PC
KG(pubinding(m1 + 1), 1) = KG(pubinding(m1 + 1), 1)
KG(pubinding(m1), pubinding(m1 + 1) - pubinding(m1)
1) - pubinding(m1) + 1) - PC

Next

End Sub
Sub WRINKLINGforcenormal()

'ReDimFG(2*(3*n1+2*n2+1)*(m+ 1))
'iterloadT = iterload

'If iterload > 10 Then
'iterloadT = 10
'End If

Forml=2Tom

pload(ml)=2*ml-1

FG(pload(m1)) = -NFORCEX * iterload / 4
Next

Forml=2Tom

pload(m1) =2* (m1 + (k1 + n2+ nl +n2 + k1) * (m
FG(pload(m1)) = NFORCEX * iterload / 4

Next

'edges
FG(1) = -(NFORCEX / 2) * iterload / 4
FG(2* (m + 1) - 1) = -(NFORCEX / 2) * iterload / 4

FG2*m+1)*(k1+n2+nl+n2+kl+1)-1)
FGR*(m+1)*(kl+n2+nl+n2+kl)+1)-1
End Sub

Sub WRINKLINGforceshear()
'ReDImFG(2*(3*n1+2*n2+1)*(m+1))

Forml1=2Tom
pload(ml) =2 *ml
FG(pload(m1)) = -NFORCEXY * iterload / 4

1) = KG(pbinding(ql), pbinding(ql + 1) -

) = KG(pbinding(1), pbinding(k1 + 1) -

ction

1)+mi)-1

+PC
+ 1) = KG(pubinding(m1), pubinding(m1 +

+1)-1

= (NFORCEX / 2) * iterload / 4
) = (NFORCEX/ 2) * iterload / 4
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Next

Forml1=2Tom

pload(ml) =2* (m1 + (k1 + n2 + n1 + n2 + k1) * (m
FG(pload(m1)) = NFORCEXY * iterload / 4

Next

‘edges
FG(2) = -(NFORCEXY / 2) * iterload / 4
FG(2 * (m + 1)) = -(NFORCEXY / 2) * iterload / 4

FGR2*(m+1)*(kL+n2+nl+n2+kl+1)=(N
FG2*((m+1)*(kl+n2+nl+n2+Kkl)+1))=
End Sub

Sub WRINKLINGsolver()

'required dummies
‘dimdummy

dimdummy=2*(kl+n2+nl+n2+kl+1)*(m+
ReDim u(dimdummy)

'band reduction
'sbw =2 * ((k1) * (m + 1) + 1) 'semi band width

sbw =2*(m + 3)

For m1 =1 To dimdummy - 1
If m1 <= dimdummy - sbw + 1 Then
sdummy = m1 + sbw -1
Else
sdummy = dimdummy
End If
For m2 =ml + 1 To sdummy
para = KG(m1, m2 - m1 + 1) / KG(m1, 1)
For m3 = m2 To sdummy
KG(m2, m3-m2 + 1) = KG(m2, m3 - m2 + 1) - para

Next
FG(m2) = FG(m2) - FG(m1) * para

Next
Next
'back substituion

For m1 = dimdummy To 1 Step -1
If m1 > dimdummy - sbw + 1 Then
sdummy = dimdummy
Else
sdummy = m1 + sbw -1
End If
For m2 =ml + 1 To sdummy
FG(m1) = FG(m1) - u(m2) * KG(m1, m2 - m1 + 1)
Next

u(ml) = FG(ml) / KG(m1, 1)
Next

End Sub
Sub WRINKLINGcheck()

'spanl

Forql=1Ton2
Forg2=1Tom

+1)

FORCEXY / 2) * iterload / 4
(NFORCEXY / 2) * iterload / 4

1)

*KG(m1, m3-ml+1)
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en=(gl-1)*m+g2

x1 = spanlP(en, 1)
x2 = spanlP(en, 2)
x3 = spanlP(en, 3)
x4 = spanlP(en, 4)
y1 = span1P(en, 5)
y2 = spanlP(en, 6)
y3 = spanlP(en, 7)
y4 = spanlP(en, 8)

'pointers

p(1)=2*((n1+qgl-1)*(m+1)+q2)-1
p(2)=2*((n1+ql-1)*(m+1)+0q2)

pB)=2*((n1+qgl-1)*(m+1)+qg2+1)-1
p@4)=2*((n1+qgl-1)*(m+1)+q2+1)

p(G)=2*((n1+ql)*(m+1)+q2)-1
p(6) =2*((n1+ql)*(m+1)+02)

p(7)=2*({(n1+qgl)*(m+1)+g2+1)-1
p@B)=2*((n1+ql)*(m+1)+qg2+1)

Forml1=1To8

ue(ml) = u(p(ml))

Next

ReDim STRAINPAVE(2)
Call WRINKLINGstrain

STRAINPAVE(1) = STRAINP(1)
STRAINPAVE(2) = STRAINP(2)

Forml1=1To2

PSTRAIN(en, m1) = STRAINPAVE(m1)

Next

PP = (STRAINXY(1) / 4 - STRAINXY(2) / 4) / (STRAINP AVE(1) - STRAINPAVE(2))
QQ = (STRAINXY(3) / 4) | (STRAINPAVE(1) - STRAINPA VE(2)))

PQSTATE(en, 1) = PP
PQSTATE(en, 2) = QQ

If STRAINPAVE(1) <0 Then

ELEMENTSTATE(en) =1

Elself STRAINPAVE(1) > 0 And v * STRAINPAVE(1) < -S TRAINPAVE(2) Then
ELEMENTSTATE(en) =2

Else

ELEMENTSTATE(en) = 3

End If

Next
Next

'span2

Forql=1Ton2
Forg2=1Tom

en=(ql-1)*m+qg2

x1 = span2P(en, 1)
x2 = span2P(en, 2)
x3 = span2P(en, 3)
x4 = span2P(en, 4)
y1 = span2P(en, 5)
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y2 = span2P(en, 6)
y3 = span2P(en, 7)
y4 = span2P(en, 8)

'pointers

p)=2*((2*n1l+n2+ql-1)*(m+1)+q2)
p)=2*({(2*n1+n2+qgl-1)*(m+1)+qg2)

pB)=2*((2*nl+n2+qgl-1)*(m+1)+qg2+
p@d)=2*((2*nl+n2+qgl-1)*(m+1)+qg2+

pB)=2*((2*n1+n2+ql)*(m+1)+qg2)-1
p(6)=2*(2*nl+n2+ql)*(m+1)+q2)

p(7M)=2*({(2*n1+n2+ql)*(mM+1)+qg2+1)
p@)=2*((2*n1+n2+ql)*(mM+1)+qg2+1)

Forml1=1To8
ue(ml) = u(p(ml))
Next

ReDim STRAINPAVE(2)

Call WRINKLINGstrain
STRAINPAVE(1) = STRAINP(1)
STRAINPAVE(2) = STRAINP(2)

Forml1=1To2
PSTRAIN(en + n2 * m, m1) = STRAINPAVE(m1)
Next

PP = (STRAINXY(1) / 4 - STRAINXY(2) / 4) / (STRAINP
QQ = (STRAINXY(3) / 4) / ((STRAINPAVE(L) - STRAINPA

PQSTATE(en + n2 *m, 1) = PP
PQSTATE(en + n2 *m, 2) = QQ

If STRAINPAVE(1) <0 Then
ELEMENTSTATE(en+n2*m) =1

Elself STRAINPAVE(1) > 0 And v * STRAINPAVE(1) < -S

ELEMENTSTATE(en + n2 * m) = 2
Else

ELEMENTSTATE(en +n2*m) =3
End If

Next
Next

End Sub
Sub WRINKLINGstresscalc()

‘calculate stresses for rolll region
Call ROLLmaterial

Forgl=1Tokl
Forg2=1Tom

en=(gl-1)*m+qg2
ReDim STRESSXY(3)

x1 =roll1P(en, 1)
x2 =rolllP(en, 2)
x3 =roll1P(en, 3)
x4 =roll1P(en, 4)
y1 =roll1P(en, 5)
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y2 =roll1P(en, 6)
y3 =roll1P(en, 7)
y4 = roll1P(en, 8)

'pointers

p(1)=2*((ql-1)*(m+1)+q2)-1
p(2)=2*((ql-1)*(m+1)+q2)

pB)=2*((ql-1)*(m+1)+g2+1)-1
p4)=2*((gl-1)*(m+1)+qg2+1)

p(5)=2*((ql)*(m+ 1) +q2)-1
p(6) =2*((a1) * (m + 1) + q2)

p(7)=2*((ql)*(m+1)+g2+1)-1
p@)=2*((gl)*(m+1)+g2+1)

Forml1=1To8
ue(ml) = u(p(ml))
Next

ReDim STRESSXY(3)
Call WRINKLINGstrain

STRESSXY(1) = D(1, 1) * STRAINXY(1) / 4 + D(1, 2) * STRAINXY(2) / 4
STRESSXY(2) = D(1, 2) * STRAINXY(1) / 4 + D(2, 2) * STRAINXY(2) / 4
STRESSXY(3) = D(3, 3) * STRAINXY(3) / 4

Forml1=1To3
ESA(en, m1) = STRESSXY(m1)
Next

Next
Next

'calculate stresses for spanl region
Forql=1Ton2
Forg2=1Tom

en=(gl-1)*m+g2
ReDim STRESSXY(3)

x1 = spanlP(en, 1)
x2 = spanlP(en, 2)
x3 = spanlP(en, 3)
x4 = spanlP(en, 4)
y1 =spanlP(en, 5)
y2 = spanlP(en, 6)
y3 = spanlP(en, 7)
y4 = spanlP(en, 8)

'pointers

p(l)=2*((kl+ql-1)*(m+1)+q2)-1
p2)=2*((kl1+ql-1)*(m+1)+q2)

pB)=2*(kl+gl-1)*(m+1)+g2+1)-1
p@d)=2*(kl+ql-1)*(m+1)+q2+1)

p(3) =2*((kL+ql)*(m+1)+q2)-1
p(6) =2 ((k1+ql)*(m+1)+q2)

p(7)=2*((kl+ql)*(m+1)+g2+1)-1
p@)=2*((k1+ql)*(m+1)+qg2+1)

Forml1=1To8

ue(ml) = u(p(m1))
Next
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Call WRINKLINGstrain
Call WRINKLINGcriteria

STRESSXY(1) = D(1, 1) * STRAINXY(1) / 4 + D(1, 2) *
4
STRESSXY(2) = D(2, 1) * STRAINXY(1) / 4 + D(2, 2) *
4
STRESSXY(3) = D(3, 1) * STRAINXY(1) / 4 + D(3, 2) *
4

Forml1=1To3
ESA(en + k1 * m, m1l) = STRESSXY(m1)
Next

Next
Next

‘calculate stresses for roll2 region
Call ROLLmaterial

Forql=1Tonl
Forg2=1Tom

en=(gl-1)*m+g2
ReDim STRESSXY(3)

x1 = roll2P(en, 1)
x2 =roll2P(en, 2)
x3 =roll2P(en, 3)
x4 =roll2P(en, 4)
y1 =roll2P(en, 5)
y2 =roll2P(en, 6)
y3 =roll2P(en, 7)
y4 = roll2P(en, 8)
'pointers

pl)=2*((kl+n2+ql-1)*(m+1)+qg2)-1
p@2)=2*((kL+n2+ql-1)*(m+1)+q2)

pB)=2*((k1+n2+9gl-1)*(m+1)+qg2+1)
p@d)=2*((kl+n2+ql-1)*(m+1)+qg2+1)

p(5)=2*((kL+n2+ql)*(m+1)+q2)-1
p(6) =2* ((kL+n2+ql)*(m+1)+q2)

p(7)=2*(kl+n2+ql)*(m+1)+g2+1)-1
p@)=2*(kL+n2+ql)*(m+1)+qg2+1)

Forml1=1To8
ue(ml) = u(p(ml))
Next

ReDim STRESSXY(3)

Call WRINKLINGstrain

STRESSXY(1) = D(1, 1) * STRAINXY(1) / 4 + D(1, 2) *
STRESSXY(2) = D(1, 2) * STRAINXY(1) /4 + D(2, 2) *
STRESSXY(3) = D(3, 3) * STRAINXY(3) / 4

Forml1=1To3

ESA(en + (k1 + n2) * m, m1) = STRESSXY(m1)
Next

Next

Next

End Sub
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