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1. CHAPTER I 

 

 

1.1 INTRODUCTION 

 

A web is any flexible thin material. Webs are made in continuous production processes. The 

webs are often stored in wound roll form, since this is the only convenient means of storing 

long lengths of flexible material. A production roll of polyester film that is 48 gages 

(0.00048”) in thickness might be 4 feet in diameter. If the web is wound on a 6” diameter 

core there can be nearly 60 miles of web length in the roll. That polyester web could be 

nearly 300 inches wide when made, but costumer rolls to be shipped could be only 6 inches 

to 60 inches in width depending on the products to be made. Thus a particular web might be 

60 miles long, 60 inches wide, and 0.00048 inches in thickness. Plastic films, papers, foils, 

and thin metal sheets are examples of webs. Web handling can be defined as all processes 

employed during the transportation of webs. Cutting, coating, slitting, printing, laminating 

and drying are some of the processes that add value to the web. During these processes, web 

materials must travel around several rollers in the process equipment.  
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During the transportation of webs trough process machinery, compressive stresses are 

induced in webs and these compressive stresses may cause instabilities. If these instabilities 

occur in free spans, which are the sections of web between two rollers, they are called 

troughs and if they occur at rollers, they are called wrinkles (Figure 1). Wrinkles and troughs 

result in loss of value and quality of the webs. For instance, if wrinkles may cause permanent 

damages to the webs the result is wasted web and highly priced downtime of web lines. The 

processes such as laminating, printing on paper, metalizing of films or coating require web to 

be planar. Troughs may affect these processes and like wrinkles the result is waste of 

material and time. As a result, wrinkles and troughs are two important engineering problems 

in the web handling industry. 

 

 

Figure 1. 1 Troughs and Wrinkles 

 

There are three types of wrinkles. Machine direction wrinkles, cross machine direction 

wrinkles and shear wrinkles. The machine direction [MD] is the direction of the web travel 

through the web process machine and the cross machine direction [CMD] is the direction that 

is perpendicular to the machine direction (i.e. across the web width). MD wrinkles occur 
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because of the compressive forces in the CMD. CMD wrinkles are produced during winding 

or unwinding processes due to interlayer slippage that may be the result of air entrainment 

[1]. Shear forces due to the imperfect rollers, misaligned rollers and non uniform webs may 

result in shear troughs and wrinkles. 

 

Shear wrinkles can result from misaligned or tapered rollers [1, 2]. Shear wrinkles can be 

classified as regime one wrinkles and regime two wrinkles.  
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Figure 1. 2 Regime I and Regime II Wrinkles 

 

Regime one wrinkles are diagonal wrinkles which occur because of the presence of a lateral 

shear force in the web. The shear force might be due to a misaligned or tapered roller. The 
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shear forces in a web which are necessary to cause troughs or wrinkles are very small. The 

misalignments and tapers which cause the shear forces are unintentional. For regime one 

troughs and wrinkles to occur there must be sufficient traction between the web and the 

rollers to react the shear forces. The shear forces occur because when traction is adequate the 

web will attempt to gain normal entry to the downstream roller. The concept or law of 

normal entry of a web to a roller is attributed to Lorig [3]. Regime two wrinkles are 

dependent on traction and velocity between the web and the roller. In this case, if traction is 

insufficient, CMD compressive stresses cannot develop in the web. Frictional restraint forces 

between the web and the roller are required to sustain wrinkles. Increases in web tension 

result in increased normal forces between the web and roller and act to decrease the air films 

which develop between web and roller. Air films can develop between webs and rollers due 

to the hydrodynamic entrainment of air. Increased web tension and normal force act to 

decrease the thickness of the air films. The air films result in decrease in traction between the 

web and rollers. Thus an increase in web tension will increase the potential frictional forces 

that would be needed to sustain a wrinkle on a roller. The normal entry rule may be violated 

as a result [3]. Good et al [4] showed that regime two wrinkles could be predicted. In this 

proposal it will be assumed that sufficient traction exist between webs and rollers such that 

only regime one wrinkles need to be considered. 

Wrinkles are defined as buckling of webs around rollers. Webs have very small resistance to 

compression in free spans. Webs may withstand more compressive stress on the rollers than 

free span, because the web has greater stability in the form of a cylindrical shell than it has a 

flat plate. The critical CMD compressive stress needed to wrinkle the web can be predicted 

using classical cylindrical shell buckling expressions. 
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Previous research by Webb[9], Beisel[12] and Mallya[15] have shown that web wrinkles on 

rollers can be predicted by analyzing the compressive CMD stresses that form in the web as 

it contacts rollers. These compressive stresses arise due to troughs that have already formed 

in the free span prior to the rollers. The troughs themselves may be the result of many 

disturbances that exist in web lines. Misaligned rollers, tapered rollers and web non 

uniformities (such as holes) are examples of such disturbances. Thus, it could be stated that 

web wrinkles on rollers are the result of two instabilities. A disturbance is first required to 

induce a trough instability in the free span. The first instability has now occurred. The web 

that was planar in the free span has now troughed. After the troughs appear CMD 

compressive stresses will arise in the web entering the roller downstream of that span. 

 

When the troughs first appear, the CMD stress in the web entering the roller may be small. 

Thus, whatever disturbance produced the trough initially may have to become yet larger 

before sufficient CMD compressive stress can be generated in the web on the roller to 

produce an MD wrinkle. At this point, the second instability has occurred. The web on the 

roller that earlier had the shape of a sector of a cylindrical shell has now buckled. Thus, it has 

been proven that the prediction of wrinkles upon a roller involves: 

     (1) An instability (troughs) occurring in the span upstream of the roller. 

     (2) As whatever disturbance increases that produced the troughs in step (1), a post 

buckling analysis must be undertaken. It will bill seen that as the disturbance increases that a 

CMD compressive stress will arise in the web on the downstream roller. 

     (3) As the disturbance yet increase further the CMD compressive stress in the web on the 
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downstream roller is also increasing. As this CMD stress increases it will finally surpass the 

cylindrical shell buckling stress. At this point, with sufficient friction between the web and 

the roller, a wrinkle will form in the web on the roller.  

 

The purpose of this study is to develop efficient computational tools that can accomplish the 

analyses required in step (1), (2), and (3). 
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2. CHAPTER II  

 

 

2.1 LITERATURE REVIEW   

 

The literature has been reviewed and the findings will be broken into two sections. First the 

basic theories of membrane instability will be reviewed. Second, those studies which 

examine web instability will be reviewed. At the close of this chapter a final summary of the 

findings will be included and a statement of proposed research will be presented. 

 

2.2 Theory of Membrane Instability 

 

Wagner [18] prepared a treatise on sheet metal girders with very thin webs. Probably this 

study is the earliest investigation of the mechanics of wrinkling membranes. He worked to 

develop the structural method of sheet metal girders. His methods were based on the 
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assumption of the low stiffness in bending of the metal web. He worked to explain the 

behavior of the thin metal webs in beams carrying a shear load well in excess of the initial 

buckling value. He proposed tension field theory. Tension field theory helps to analyze 

flexible structures that can support tension, but have no ability to resist compression. This 

theory was further developed by Reissner [23], Stein-Hedgepeth [19] and Mikolas [20, 21].  

Miller-Hedgepeth [5] and Miller et al. [6, 22] adopted this theory to the finite element 

method. Tension field theory can be applied to the web lines due to the fact that web lines 

can support tension but cannot carry compression and also web materials are flexible 

structures. 

 

Stein and Hedgepeth [19] suggested a particularly useful approach concerning partly 

wrinkling membranes. This work is a seminal work in this field. They derived a theory to 

predict the stresses and deformations of stretched membrane structural components for loads 

under which part of the membrane wrinkles. Their theory was based on the basic assumption 

that a membrane has no bending stiffness and because of this can carry no compressive 

stress. They applied their theory to in-plane bending of a stretched rectangular membrane, a 

pressurized cylinder, and to the rotation of a hub in a stretched circular membrane. They 

presented stresses and deformations in equation form for the wrinkled and unwrinkled 

regions. The membrane they considered is elastic, isotropic, has no bending stiffness, and 

cannot carry compressive stress. In their work they considered average strains and 

displacements of the wrinkling material rather than detailed deformations of each wrinkle. In 

terms of the wrinkling equations given, their theory was limited in the sense that average 

strains must be small compared with unity. They started to investigate the wrinkling region 
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by looking the principal stresses. They used a criterion that if both principal stresses are zero, 

the membrane is unloaded and thus will not wrinkle. Their criteria for a wrinkled membrane 

is one principal stress must be zero and other principal stress is non zero and tensile. The 

nonzero principal stress may be assumed to act along the crest of the wrinkle.    

 

The approach that was developed by Stein and Hedgepeth [19] was further developed and 

applied by Mikolas [20, 21]. He presented experiments and analysis for the wrinkling 

behavior of stretched membranes under the influence of a torque loading through an attached 

hub. He found that theory and experimental results were in a very good agreement. The work 

done by Stein and Hedgepeth [19] and Mikolas [20, 21] were closed form solutions and did 

not involve the finite element method. The principal stress criterion that they used is 

employed in our current approach. 

 

Miller and Hedgepeth [5] developed a new algorithm for finite element analysis based on the 

same assumptions and field equations after finding some critical disadvantages connected 

with the Stein and Hedgepeth [19] approach. This work may be the most important study in 

this field. In their algorithm the element stiffness is dependent on the current principal 

strains. Wrinkling membrane elements can have either taut behavior, wrinkled behavior or 

slack behavior. In taut behavior both principal stresses are larger than zero, in wrinkled 

behavior one of the principal stresses is greater than zero the other is equal to zero and in 

slack behavior both principal stresses are equal to zero. In their algorithm, in the first load 

step all elements are assumed to taut behavior. In the consecutive steps, element behaviors 
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are calculated with respect to strain states of previous steps. In other words, the decision on 

the stress state is made using the criteria based upon principal strains. In the algorithm they 

apply load step by step and they continue to solve for a particular load step until the 

convergence is achieved for that load step. In the proposed research, the algorithm that is 

employed is similar to Miller and Hedgepeth’s algorithm. 

 

Miller et al. [6, 22] investigated the algorithm further. They presented the efficiency and 

accuracy of the algorithm by applying it to the problems Stein and Hedgepeth [19] studied. 

They described the algorithm more detailed in these studies. They also described how Miller 

and Hedgepeth [5] derived the D-taut, D-slack and D-wrinkled constitutive matrices in detail. 
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2.3 Applications of Instability Analyses to Webs  

 

Shelton [17] studied the steering effects of downstream misaligned roller. He modeled web 

span as a beam. His work helped us to justify boundary conditions which should be 

associated with a straight uniform web approaching a misaligned roller when there is 

sufficient friction to enforce the kinematic boundary conditions. 

 

 

Figure 2.1 Boundary Conditions for Misaligned Roller 

 

He determined that the concept of normal entry that had been used in the drive belt industry 

can also be used in web guiding systems. He stated that V i and θi can be arbitrary set equal to 

zero without effecting the relative lateral deformation within the span. 

 

θj is the misalignment of the downstream roller at j, and due to the law of normal entry the 

slope of the web at j will be θj. Shelton proved that the final boundary condition was the 

downstream moment being zero. Thus Mj(L) = Vj’’ (L) = 0. In our problem these boundary 

conditions will be used while modeling the instability of a web due to a downstream 
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misaligned roller. 

Gehlbach, et al. [32] proposed buckling criteria for troughed webs in a free span. They 

showed experimental verification for downstream misaligned roller case. In their work, 

isotropic web properties were considered. 

 

Gopal and Kedl [33] were the fist people who used finite element analysis and a commercial 

FE code to study trough formation in the web span between rollers. They modeled a web 

span by using triangular plate elements and they used ABAQUS FE commercial code. They 

were successful to predict deformations of a web due to the misaligned roller.  

 

Benson et al. [8] developed a finite element model for wrinkling analysis and called this code 

FEWA. They used this code to make calculations in their paper. Their aim was to better 

understand the conditions which cause wrinkle formation. They worked to predict locations 

where troughs would form and predict magnitudes of compressive stresses. They compared 

some of their results with the results from the nonlinear version of commercial code 

ABAQUS. In their code instead of using Wagner’s tension field theory they used the tension 

field theory that Wu [24, 25, and 26] introduced first. In this method, it is assumed that out of 

plane deflection relieves compressive stress across a wrinkle and that there is an associated 

strain with this deflection.  

 

Roisum [28, 29, 30, and 31] described wrinkling phenomena in detail. He explained 
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wrinkling, air entrainment, tension control, roller design, problems associated with profile 

variations, why and how wrinkles form, the types of wrinkles, troubleshooting techniques. 

He explained the importance of the problem due to the material cost and waste for the 

producers. While doing this he explained the subject in a simple way rather than an academic 

way.  

 

Shelton [14] worked on buckling of webs. He modeled a web as a buckled plate or a shell. 

He studied buckled wavelengths of webs in free spans and on rollers.  He predicted the 

wavelength of the buckled form and he compared these results with experimental data.  

 

Good et al. [4] worked on velocity independent and velocity dependent wrinkles. Velocity 

dependence occurs when velocities are high enough and web tension is low enough to allow 

sufficient air entrainment between webs and rollers that Shelton’s boundary conditions [17] 

are no longer valid.  They found that velocity dependent wrinkles can be avoided by using 

enough traction and suitable web line conditions. 

 

Hashimoto [34] worked on the studies done by Beisel [2, 10], which is a theoretical model 

for predicting the web wrinkling due to the misaligned roller. The theoretical model was 

established upon the experimental results. The experiments which he did were for non 

uniform webs with different Young’s modulus in MD and CMD directions. He compared 

these experimental results with the model and he verified the accuracy of the model.  
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Jones and McCann [35] studied wrinkling of webs on rollers and drums. They used a new 

variational analysis based on the method of Rayleigh-Ritz. They modeled the wrinkling as a 

continuous sine wave in a web on a roller or a drum. They reported that a shell buckling on a 

rigid support in an outward mode is similar to wrinkling on rollers.  

 

Beisel [2, 10] studied wrinkling phenomena due to the misaligned roller. In his study, he 

considered orthotropic material properties. He showed that while wrinkle formation would 

require post buckling analysis, prediction of trough formation can be expressed by closed 

form solution. 

 

Papandreadis [7] employed finite element methods to predict troughs in the webs. He studied 

effects of several parameters on the amount of lateral contraction of the web. He examined 

the effects of web material properties (Poisson’s ratio, modulus of elasticity) and web 

geometry (various length-to-width ratios), web thickness, loading conditions (tensile loading, 

combination of tension and shear forces) on the wrinkling phenomenon. He used a finite 

element code, named NASTRAN (Nasa Structural Analysis), to analyze the buckling of 

panels and the resulting shapes (like wavelength of the corrugations, number of waves).  

Webb [9] was the first person who tried to couple the behavior of the web in the free span to 

the web on the roller. Probably, the most important finding in his work was that CMD 

compressive stresses were forming in the web on the roller due to the troughs that had 

already formed in the free spans.  He used quadrilateral elements within the commercial 

finite element code COSMOS to predict wrinkles due to the downstream misaligned roller. 
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He observed that there is a linear relationship between wrinkleθ  and troughθ  . He performed 

experiments to measure the deflection as a result of a misaligned roller. He found that the 

misalignment required to form a wrinkle was roughly twice that to form a trough over a wide 

range of parameters. He tested a wide range of web material properties, web thickness, and 

span length to width ratio (often called span ratio). He tried to find a relationship between the 

width reduction of the web and web buckling. He modeled the web crossing the roller using 

regular elastic elements. He used wrinkling membrane elements for the web in free span. In 

Fig.2.2 Webb’s approach to the problem is presented. 

 

 

Figure 2.2 Webb’s Model 

 

In Fig.2.3 the boundary conditions and the applied loads in Webb’s model is shown. 
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Figure 2.3 Webb’s Model: Boundary Conditions and Applied Loads 

 

Timoshenko [11] showed the axial buckling stress for a sector of a cylinder is the same per 

unit circumferential length as that of a complete cylinder. He found that ycrσ  is 

 

23 (1 )
ycr

h E

R
σ

ν
= − ⋅

⋅ −
 (2.1) 

 

The web wrapped around the roller can be assumed to be sector of a cylindrical shell. Shelton 

[14] studied with the mechanics of buckling and he hypothesized that the web wrapped 

around the roller is shows similarity to an internally pressured thin cylinder vessel. He found 

that the tension in the web performs like the hoop stress in a pressurized cylinder and that a 
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pressure results between the web and roller. He discussed that Eq.2.1 may indeed be 

appropriate to use in modeling a web buckling on a roller. 

Good and Beisel [10] developed an instability criterion for orthotropic web in shell form in 

order to predict wrinkling of webs: 

 

3(1 )

x y

ycr

x y

E Et

R v y
σ = −

−
 (2.2) 

 

where R is the radius of the cylinder, t is the thickness of the web, Ex and Ey are the elastic 

modulus in x and y directions respectively, and v is Poisson’s ratio. Beisel performed many 

tests of aluminum soda cans which were near perfect in geometry. He found that the buckling 

stress approached that given by Timoshenko’s expression and concluded that the earlier 

disagreement being due to shell imperfections must have been correct. Thus expressions 2.1 

and 2.2 appear to be applicable to sectors of web transiting rollers.   If the compressive 

stresses in the web on the roller reach theycrσ , the web will buckle.   

 

Webb [9] increased the shear forces used to simulate the misalignment of the roller until the 

compressive stress induced in the web on the roller reaches the ycrσ  value in (Eq.2.2). When 

the critical compressive CMD stress was reached, he determined the rotation of the 

downstream roller from the displacements output by the finite element code. The 

experimental critical misalignment of the roller and the rotation of the web at the entry of the 
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roller computed using finite element model did not match well. He proposed that the 

experimental critical misalignment of the roller crθ  is the sum of the critical angles predicted 

by the model for troughing, ,cr troughθ  and for wrinkling, ,cr wrinkleθ  in verifying his model. This 

was found later to be incorrect by Beisel [12].  

 

Webb’s work was carried forward by Beisel [12]. Beisel studied troughing and wrinkling due 

to roller misalignment, roller taper, and roller crown. There is some similarity between the 

effects of roller misalignment and taper on troughs and wrinkles. In both cases the web is 

steered laterally in the machine and a shear stress results in the web. The misaligned roller 

induces the misalignment angle and a lateral deformation at the misaligned roller. The 

tapered roller induces a lateral deformation and a bending moment at the tapered roller. 

Beisel’s method of modeling the problem with COSMOS was different from the Webb’s 

method of modeling the problem. Beisel achieved good agreement with his models and the 

experimental results. His model and his results will be introduced in Chapter IV and Chapter 

V. 

 

Swift [39] examined steering of drive belts. He worked with the concept of a couple 

developed in a web approaching a tapered or crowned roller and the resulting steering of the 

web. He suggests the minimum amount of taper or crown which should be employed to 

control the web with minimum interference of stresses in the web. He gave experimental 

results to support his suggestions for corrective measures. 
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Shelton [44] discussed misaligned and tapered rollers, and he mentioned multiple web span 

interactions and moment transfer. In his thesis, Beisel [12] compared his model with 

Shelton’s model for the critical taper required to cause troughs to form in a web span 

approaching a tapered roller. 

 

Good and Beisel [45] worked on the formation of troughs due to tapered rollers. They 

attempted to determine whether the procedure that was employed for misaligned rollers 

would be applicable to the case of downstream tapered rollers. This work was a part of 

Beisel’s thesis [12].   

 

Brown [46] presented a new method for modeling the elastic behavior of webs conveyed 

over rollers. He worked on lateral displacement of a misaligned roller and lateral 

displacement of a tapered roller. He suggested two modifications of the web boundary 

conditions. One was a generalization of the normal entry rule and the other was the addition 

of what he named the normal strain rule. With a numerical partial differential equation 

solver, he solved two dimensional plane stress equations and compared the results with 

earlier models. 

 

Shimizu et al. [47] and Shimizu [48] worked on plates which have holes and are subjected to 

tensile load. They used the finite element method in their work. They investigated the effects 

of aspect ratios (height/width) and shapes of holes to the k which is the buckling coefficient 
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of the plate described by Timoshenko and Gere [11]. They determined that with that 

curvatures on corners of holes have little effect in improving the tension buckling strength 

and that the buckling coefficient increases corresponding to the increasing aspect ratio.  

 

El-Sawy and Martini [49] studied the effects of plate aspect ratio (height/width), hole size, 

hole location and loading ratio on the buckling coefficient k of rectangular perforated plates 

subjected to uniform end compression in the x direction and compression or tension in the y 

direction. 

 

Mallya [15] was the first person to examine the effects of holes in process machinery in web 

handling industry. He applied Beisel’s method of modeling to web wrinkles due to circular 

and elliptical discontinuities in the web. He studied the behavior of webs with voids traveling 

over a roller. He compared experimental results and finite element model results that he 

modeled using commercial FE code COSMOS. He studied elliptical voids and circular holes 

in terms of generating wrinkles. His FE model was similar in form to Beisel’s FE model with 

respect to boundary conditions and using five panels. His model and results will be 

introduced in Chapter VI. 

Kara [16] also used similar modeling method to predict the occurrence of wrinkles due to 

length variation across the web width. He attempted to find the critical conditions that would 

induce wrinkles. He heated the center of the web during his experiments to achieve length 

variation. He also used COSMOS FE commercial code to model his case, and used 

experimental findings to confirm his FE model. 
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Relevant books include, ‘Theory of Elastic Stability’ written by Timoshenko and Gere [11], 

‘Introduction to Finite Elements in Engineering’ written by Chandrupatla and Belegundu 

[36], ‘Finite Elements and Approximation’ written by Zeinkiewicz and Morgan [37] and 

Visual basic Excel for Dummies [27]. Also ‘Finite Element Analysis Class Notes’ from 

Good [38] is used for finite element part of the study. 
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2.4 Summary  

 

The tension field theory can be applied to webs in web lines because the web can support 

tension but cannot carry compression. Wagner [18] proposed tension field theory. His theory 

was further developed by Raissner [23], Stein and Hedgepeth [19] and Mikolas [21, 22]. 

Miller and Hedgepeth [5] developed a new algorithm for finite element analysis based on this 

field equation. This algorithm is the most common algorithm used to examine wrinkles. 

Lorig [3] developed the normal entry rule for a web approaching a roller. Shelton [17] found 

that the moment in a web is zero when it approaches a misaligned roller. In the web handling 

area, Gopal and Kedl [33] were the first to employ a commercial finite element code to study 

trough formation in the web span between the rollers. 

Webb [9] attempted to model wrinkle formation due to a misaligned roller. He used partly 

wrinkling membrane elements while modeling the web span. He used the commercial finite 

element code called COSMOS while modeling his work, and shell buckling criteria to 

determine whether wrinkling occurred. 

Beisel [12] made the most recent attempts to model wrinkle formation due to the misaligned 

roller and the tapered roller. He modeled the web between the rollers by wrinkling membrane 

elements and linked it to the classical shell buckling criteria as Webb [9] did. He studied 

webs approaching misaligned rollers and tapered rollers. He used the commercial finite 

element code COSMOS to model these cases. He compared his model results with his 

experimental results .These results showed good agreement. 

Mallya [15] was the first person who investigated the effects of voids on the stability of 
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webs. He performed experiments and modeled circular and elliptical discontinuities in webs 

in web lines. He also used the commercial finite element code COSMOS in his models and 

his model results and test results matched well. 

 

 

2.5 Statement of Proposed Research  

 

In the literature no citations were found for the wrinkling instability of moving webs that did 

not involve the use of commercial finite element codes for solution. Use of commercial finite 

element codes by novice users to solve nonlinear problems associated with web instability is 

difficult. 

 

The objective of the proposed research will be to develop user friendly finite element codes 

that will solve nonlinear instability problems associated with strain state dependent material 

properties and boundary conditions of moving webs. This code will be unique and will have 

economic value by helping minimize web material losses as described in the introduction.  
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3. CHAPTER III 

 

 

3.1 FINITE ELEMENT EQUATIONS  

 

In this chapter, the finite element equations will be described in detail. Displacement, strain 

and stress equations, the element stiffness matrix, meshing, banded matrix and their relations 

will be studied. A discussion of the solution method for cases in which the elasticity matrix 

[D] is not constant will be given. 

 

3.2 Two Dimensional Four Node Quadrilateral Elements 

 

In this study, two dimensional four node quadrilateral elements are used. In this section the 

equations and properties of four node quadrilateral elements will be given briefly. 
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The stiffness matrix for quadrilateral elements can be found from the strain energy term in a 

continuum. 

1

2
T

V

U dVσ ε= ∫  (3.1) 

In finite elements we consider the total strain energy to be sum of the strain energies from 

each element. Eq.3.2 can be obtained by replacing dV  by tdA in Eq.3.1, where t is the 

uniform thickness of an element.  

1

2
T

e
e e

U t dAσ ε= ∑ ∫  (3.2) 

The small strain displacement relations for two dimensional problems can be written as: 

 

x

y

xy

u

x
v

y

u v

y x

ε

ε ε

γ

 ∂
 

∂   
   ∂

= =   
∂   

   ∂ ∂
+ 

∂ ∂ 

 (3.3) 

 

Where u and v are the deformations in the x and y directions respectively. In two-dimensional 

fields, the displacement components at each point in the domain of the finite element can be 

represented as functions of two coordinate directions. 

u = [ ( , ), ( , )]Tu x y v x y  (3.4) 
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For the general quadrilateral element shown in Fig.3.1, the nodal displacement vector is  

q = 1 2 3 8[ , , ,..., ]Tq q q q   
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Figure 3.1  Four Node Quadrilateral Element 

 

The finite element method uses concept of shape functions to develop interpolations 

systematically. 

According to the concept, the shape functions must be developed for the master element. The 

master element is defined in natural coordinates ( ,ξ η  ) and has a square shape in the natural 

coordinate system (Fig.3.2). The Lagrange shape functions are 1 2 3 4, , .N N N and N  Shape 

functions take the value of unity at the node where they are defined and the value zero at the 
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other nodes. For example 1N  takes the value one of unity at node one and takes the value 

zero at the other nodes. 

ξ

η

 

Figure 3. 2 Quadrilateral Elements Inξ ,η  Space (Master Element) 

 

At the edges 1 1andξ η= + = +  1N  is equal to zero. So, 1N  must be a function like, 

1 (1 ) (1 )N c ξ η= − −  (3.5) 

c is a constant that can be determined easily. Since 1N  is equal to one at node one, where 

1 1andξ η= − = − .If we put these values at Eq.3.5, 

1 (1 ( 1)) (1 ( 1))c= − − − −  (3.6) 

yields 1/ 4c= .Finally 1N  can be written as, 

1

1
(1 ) (1 )

4
N ξ η= − −  (3.7) 
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By using the same procedure 1 2 3 4, ,N N N and N  can be written as, 

1

2

3

4

1
(1 ) (1 )

4
1

(1 ) (1 )
4
1

(1 ) (1 )
4
1

(1 ) (1 )
4

N

N

N

N

ξ η

ξ η

ξ η

ξ η

= − −

= + −

= + +

= − +

 (3.8) 

Now, the shape functions can be used to interpolate the displacement at any point within the 

domain of the element using the equations: 

1 1 2 3 3 5 4 7

1 2 2 4 3 6 4 8

u N q N q N q N q

v N q N q N q N q

= + + +

= + + +
 (3.9) 

if N is, 

1 2 3 4

1 2 3 4

0 0 0 0

0 0 0 0

N N N N

N N N N

 
 
 

 (3.10) 

then the displacement can be written as: 
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1

2

3

41 2 3 4

51 2 3 4
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0 0 0 0
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 

    = = =         
 
 
 
  

 (3.11) 

with the help of shape functions a point in the element can be described as, 
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1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

x N x N x N x N x

y N y N y N y N y

= + + +

= + + +
 (3.12) 

The shape functions can also be used to generate a map between the cartesian coordinates 

(x,y) and the natural coordinates (,ξ η ). Since the same shape functions have been used to 

interpolate deformation within an element and to generate the coordinate map equations this 

is called an isoparametric formulation. The strain relationships (3.3) require derivatives with 

respect to cartesian coordinates. We currently have the deformations u and v defined as shape 

functions, which are functions of the natural coordinates ,andξ η  multiplied by nodal 

deformations that are constants. So, to determine the strains in cartesian coordinates we must 

first relate the derivatives of deformations in natural coordinates ( ,ξ η ) to derivatives in 

cartesian coordinates(x,y). If a displacement function in ,x y coordinates is ( , )u u x y=  then 

this function can be considered to be an implicit function of andξ η  

as [ ( , ) , ( , ) ]u u x yξ η ξ η= . Differentiation due to the chain rule, 

u u x u y

x y

u u x u y

x y

ξ ξ ξ

η η η

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂

 (3.13) 

If we define the Jacobian matrix as, 

J

x y

x y

ξ ξ

η η

∂ ∂ 
 ∂ ∂
 =

∂ ∂ 
 ∂ ∂ 

 (3.14) 

We can rewrite Eq.3.13 as, 
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=J
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u uu x y
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  ∂ ∂     ∂ ∂ ∂       

 (3.15) 

It seems that the Jacobian can transform derivatives in cartesian coordinates to derivatives 

with respect to natural coordinates. By using Eq.3.8, Eq.3.12 can be written as, 

1 2 3 4

1 2 3 4

1 1 1 1
(1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 )

4 4 4 4
1 1 1 1

(1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 )
4 4 4 4

x x x x x

y y y y y

ξ η ξ η ξ η ξ η

ξ η ξ η ξ η ξ η

= − − + + − + + + + − +

= − − + + − + + + + − +
 (3.16) 

With the help of Eq.3.16 Jacobian term Eq.3.14 can be written as, 

 

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

(1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 )1
J

(1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 )4
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η η η η η η η η
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− − + − + + − + − − + − + + − + 
=  − − − + + + − − − − − + + + + − 

 (3.17) 

this equation can be written as, 

11 12

21 22

J
J J

J J

 
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 
 (3.18) 

Now the Jacobian can be inverted and rewrite Eq.3.15 to produce derivatives that are related 

to strains: 

1J
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y
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η

−
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 (3.19) 
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by using Eq.3.17, Eq.3.19 can be written as 

22 12

21 11

1

det J

uu
J Jx

u J J u
y
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η

∂ ∂ 
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 (3.20) 

by following the same procedure v displacements can be obtained as, 
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 (3.21) 

The equation detx y J ξ η∂ ∂ = ∂ ∂  has a proof in reference [36].  

By using Eq.3.3, Eq.3.20, Eq.3.21 and defining A matrice as, 
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The strain displacement relations can be written as 
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 (3.23) 

with the help of 3.17  G matrice can be defined as, 
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and using the displacement vector Eq.3.9  the derivatives of u and v can be written in the 

natural coordinates as a function of the nodal deformations, 
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If B is defined as B=AG, by using Eq.3.23 and Eq.3.25 strain term can be written as, 
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two dimensional constitutive relations will be used to relate stress to strain  Dσ ε=  and 

now, 

D B qσ =  (3.27) 
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By using Eq.3.26 and Eq.3.27 the strain energy term
1
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e
e e

U t dAσ ε= ∑ ∫  , becomes, 
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∑
 (3.28) 

where k is 8x8 element stiffness matrix:  

1 1

1 1

dete T
ek t B DB J d dξ η

− −

= ∫ ∫  (3.29) 

These integrals can be evaluated by using numerical integration methods. The Gaussian 

approach will be considered for this purpose. 

 

3.3 Numerical Integration by Gaussian Approach 

 

By integrating in natural coordinates the bounds of integration are much simplified. In 

cartesian coordinates the y-bounds will be functions of x and the x-bounds will be functions 

of y. In natural coordinates our bounds are from -1 to1 for both andξ η . Series can be used 

to take the integrals (Eq.3.29).By using the Gaussian quadrature approach; integration can be 

evaluated using weights and points. These points are also called Gauss points.  

1

1 1 2 2

1

( ) ( ) ( ) ( )n nI f d f f fξ ξ ω ξ ω ξ ω ξ
−

= ≈ + + +∫ L  (3.30) 
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Eq.3.30 is an example of n- point approximation. Here 1 2, nω ω ωK  are weights and 

1 2, nξ ξ ξK  are the Gauss points. If a one point formula is employed, the integral becomes: 

1

1 1

1

( ) ( )I f d fξ ξ ω ξ
−

= ≈∫  (3.31) 

If a two point formula is employed, the integral becomes: 

1

1 1 2 2

1

( ) ( ) ( )I f d f fξ ξ ω ξ ω ξ
−

= ≈ +∫  (3.32) 

The finite element method naturally incorporates some error as a numerical approximation. 

The complex continuums were modeled with many finite elements with simple shape 

functions to represent the element deformations (Eq.3.8). Hence, it would be undesirable to 

incorporate additional error in the integration of stiffness terms. It is desirable that the 

integration be exact. In a one point formula two parameters are considered1 1( )andω ξ . 

Suppose that our integration is required be exact when ( )f ξ  a polynomial of is order one. 

So, suppose ( )f ξ  is a function 0 1( )f a aξ ξ= + . If we select 1 12 0andω ξ= =  Gaussian 

quadrature will yield an exact result. 

In a two point formula there are four parameters to choose 1 2 1 2( , , )andω ω ξ ξ .Suppose that 

( )f ξ  must be exact for a cubic polynomial, 2 3
0 1 2 3( )f a a a aξ ξ ξ ξ= + + + . The error term 

will be, 

1
2 3

0 1 2 3 1 1 2 2

1

( ) [ ( ) ( )] 0Error a a a a d f fξ ξ ξ ξ ω ξ ω ξ
−

= + + + − + =∫  (3.33) 
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Solution yields four nonlinear equations and they have the unique solution, 

1 2

1 2

1

1/ 3

ω ω

ξ ξ

= =

= − = −
 (3.34) 

As a result by using two Gauss points and by using the values in Eq.3.34 a cubic expression 

or less can be integrated exactly. By increasing the number of Gauss points, different weights 

( )ω and different locations ( )ξ  can be found. In the FE algorithm that is developed in this 

study two Gauss points are used.  

 

Two Dimensional Integrals 

The equation 3.29 for our stiffness terms involves two-dimensional integrals. So we need to 

extend Gaussian quadrature to the two dimensional integral form: 

1 1

1 1

( , )I f d dξ η ξ η
− −

= ∫ ∫  (3.35) 

If I is in a form like Eq.3.35, I can be written as, 

1

11

1 1

1 1

[ ( , ) ]

[ ( , ) ]

( , )

n

i i
i

n n

j i i j
j i

n n

i j i j
i j

I w f d

w w f

w w f

ξ η η

ξ η

ξ η

=−

= =

= =

≈

≈

≈

∑∫

∑ ∑

∑∑

 (3.36) 

Stiffness matrix (Eq.3.29) is two-dimensional integral. The product of detTB DB J  is 

quadratic in terms of andξ η .So two point Gauss Quadrature yield an exact result. It is 8x8 
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matrix so it has 64 elements. Each term must be calculated by using Eq.3.36. If 

( , ) ( det )T
e ijf t B DB Jξ η = putting two for n in Eq.3.36 yields, 

2 2
1 1 1 1 2 1 2 2 1 2 1 2 2 2( , ) ( , ) ( , ) ( , )ijk w f w w f w w f w fξ η ξ η ξ η ξ η≈ + + +  (3.37) 

where 

1 2

1 1 2 2

1

1 1

3 3

w w

andξ η ξ η

= =

= = − = =
 (3.38) 

After input of these weights and Gauss points into the Eq.3.37 kij can be found as, 

1 1 1 1 1 1 1 1
( , ) ( , ) ( , ) ( , )

3 3 3 3 3 3 3 3
ijk f f f f≈ − − + − + − +  (3.39) 

ξ

η

1 1
( , )

3 3

1 1
( , )

3 3
−1 1

( , )
3 3

− −

1 1
( , )

3 3
−

1 2

3 4

 

Figure 3.3 Two Points Gauss Quadrature using 2x2 rule. 
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3.4 The Global Stiffness Matrix and Matrix Banding 

 

The element stiffness matrix is an 8x8 matrix and it has 64 elements. After calculating all 

stiffness matrices for all elements, the global stiffness matrix need to be formed from the 

element stiffness matrices. In Fig. 3.4 the plate is divided into n elements, this procedure is 

called meshing. For every element each of the stiffness terms ( , ) ( det )T
e ijf t B DB Jξ η =  is 

evaluated using Eq.3.29. While calculating the terms of global stiffness matrix, if a node is 

only used by one element, its stiffness terms should be placed in the global stiffness matrix 

directly (like Fig.3.4 node 1). If a node is used by two elements (like Fig.3.4 nodes 3,5..) , 

stiffness terms for this node from two elements must be added to form the stiffness terms of  

the global stiffness matrix for that node. Lastly if a node is used by four elements (like 

Fig.3.4 nodes 4,6…) stiffness  terms for that node  from four elements must be added to form 

the global stiffness matrix.  

 

Figure 3.4 A Simple Model for Global Stiffness Matrix 
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Figure 3.5 A Quadrilateral Element and Nodal Displacements 

In Eq.3.40 and Eq.3.41 the stiffness matrices for element one and element two displayed in 

Fig.3.4 are shown  
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 (3.40) 
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 (3.41) 

 

After global stiffness matrix is formed, all displacements are calculated by using Gaussian 

elimination method. After finding displacements, strains and stresses for all elements can be 

calculated. In the algorithm that is developed the user decides the mesh density. 1000 or 

more elements may be needed for long spans simulations. The resulting stiffness matrix will 

be large and much computational time will be required for solutions. Computational times 

can be large because a multistep solution will be required where loads are slowly increased 

and the [D] matrices updated after each load step. Thus the size of the stiffness matrix 

becomes important because the system of updated equations will be solved many times. The 

stiffness matrix in our problem is a symmetric matrix. Instead of using the whole stiffness 

matrix the banded form of the stiffness matrix can be employed and reduce the computation 

time.  

To explain the form of the banded matrix, assume that the plate in Fig.3.4 is meshed with 

only two elements. In Eq.3.30 and 3.31 the stiffness matrixes of two elements were given. 

So, the global stiffness matrix for the plate will be: 
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1 1 1 1 1 1 1 1
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 (3.42) 

The banded form of 3.42 is shown in 3.43. The bandwidth of the matrix has been reduced to 

8. 
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 (3.43) 

Banded matrix equation solvers exist which helps to greatly reduce the computational time 

associated with solving set the set of equations during each load step. 
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To conclude, the element stiffness terms are calculated from Eq.3.29 where 

( , ) ( det )T
e ijf t B DB Jξ η =  . After developing element stiffness matrices, the global stiffness 

matrix is formed. After the total potential energy is formed, which is the sum of the strain 

energy terms from Eq.3.28 and the work potential of internal and external forces, the theory 

of minimum total potential can be used. The resulting systems of equations that must be 

solved have the form: 

K q F=  (3.44) 

This set of equations is arranged in the banded form discussed and then solved for the nodal 

deformations {q}. After finding displacements strains can be calculated from, 

B qε =  (3.45) 

The stress and elastic strain components are related by a set of coefficients known as 

Generalized Hooke’s Law. This law can be written as, 

D D B qσ ε= =  (3.46) 

Where D is equivalent elasticity matrix.  
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3.5 A [D] Matrix for Plane Stress-Isotropic Material and Partly Wrinkl ed Membrane 

Elements 

 

The D matrix is used while forming element stiffness matrixes and finding element stresses. 

The algorithm that is developed is nonlinear since the membrane D matrix is dependent on 

principal strains. In our models, elastic elements are used for the web on the rollers and for 

the exiting free span. Partly wrinkled membrane elements that were developed by Miller and 

Hedgepeth [5] are used for the web in test free span. The D matrix can be explicitly stated for 

any material. For the plane stress state for an isotropic material, stress strain relations can be 

written as: 

1
( )

1
( )

2
(1 )

x x y

y y x

xy xy

v
E

v
E

v
E

ε σ σ

ε σ σ

γ τ

= −

= −

= +

 (3.47) 

By solving for the stresses in Eq.3.47 the D matrix can be found: 

2

1 0

1 0
1

(1 )
0 0

2

v
E

D v
v

v

 
 
 

=  −  −
 
 

 (3.48) 

In taut membrane behavior, both principal stresses are greater than zero and the web cannot 

trough or buckles out of plane. In taut behavior, the two in-plane principal strains may both 

be greater than zero or 1ε  can be greater than zero and 2ε  less than zero as long as the ratio 



 43

( 2 1/ε ε ) is greater than the negative value of Poisson’s ratio ( v− ) . The [D] matrix given in 

Eq.3.48 is used to relate stress to strain in (1) membrane elements exhibiting taut behavior 

and (2) in linear elastic elements, used to model the web upon rollers. For the linear elastic 

elements there are no conditions placed upon the use of this [D] matrix, the principal stresses 

and strains can take on positive and negative values. 

When unsupported membrane elements have a first principal strain 1ε  less than zero this 

infers that the second principal strain is also negative and less than 1ε  from the rules we use 

to order principal strains. In this case the membrane elements exhibit a slack or unstressed 

behavior between stress and strain and the [D] matrix is null. 

In wrinkled membrane behavior the first principal stress 1σ  is greater than zero and the 

second principal stress 2σ  is zero. In terms of strain this behavior is represented with a first 

principal strain 1ε  greater than zero but now the second principal strain 2ε  is always 

negative. Not only 2ε  is negative, but the ratio of (2 1/ vε ε < − ). For a simple membrane in 

uniform tension with no lateral constraint we would expect a lateral contraction governed by 

the expression2 1vε ε= −  . We would expect this lateral contraction occur while the web 

remained planar, no buckling would be expected. However if 2ε  becomes more negative than 

1vε−  we would expect a compressive 2σ  stress to have developed but since membranes by 

definition can withstand no compressive 2σ  stress without buckling, we would assume this 

element has entered the wrinkled state. For the wrinkled membrane positive nonzero 

principal stress can be supposed to act along the wrinkle. In a wrinkled membrane element in 

longitudinal tension, if 1σ  is the nonzero positive principal stress, the longitudinal direction 
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will be observed to be parallel to the wrinkles. By the property of Mohr’s circle it is known 

that 

 

1 2

2

2
x y

R

O

ε ε

ε ε

−
=

+
=

 (3.49) 

where R is the radius of Mohr’s circle for strains and O is the distance from the origin of the 

coordinate system to the center of the circle. Consider a thin flat membrane in a state of plane 

stress in an x-y coordinate system. Let the principal axes I and II be rotated through an angle 

α  relative to the x-y axes (Figure 3.6).  

 

2α

xyγ

xε
yε

ε

 

Figure 3.6 Mohr’s Circle for Plane Strain  

From the Fig.3.6 
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1 2

1 2

cos 2
2

cos 2
2

x

y

R

R

ε ε
ε α

ε ε
ε α

+
= +

+
= −

 (3.50) 

Substituting the value of R (Eq.3.49) into Eq.3.50 yields 

1 2 1 2

1 2 1 2

( )cos 2
2 2

( )cos 2
2 2

x

y

ε ε ε ε
ε α

ε ε ε ε
ε α

− +
= +

+ −
= −

 (3.51) 

Eq. 3.51 yields 

1 2

1 2

(1 cos 2 ) (1 cos 2 )
2 2

(1 cos 2 ) (1 cos 2 )
2 2

x

y

ε ε
ε α α

ε ε
ε α α

= + + −

= − + +
 (3.52) 

If cos 2P α= , then Eq.3.52 becomes 

1 2

1 2

(1 ) (1 )
2 2

(1 ) (1 )
2 2

x

y

P P

P P

ε ε
ε

ε ε
ε

= + + −

= − + +
 (3.53) 

Also xyγ can be calculated from Fig.3.6. 

1 2
1 2

2 sin 2

2( )sin 2 ( )sin 2
2

xy

xy

Rγ α

ε ε
γ α ε ε α

=

−
= = −

 (3.54) 

If sin 2Q α=  then Eq.3.54 becomes  

1 2( )xy Qγ ε ε= −  (3.55) 
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As a result, the usual strain transformation equations yield, 

1 2

1 2

1 2

(1 ) (1 )
2 2

(1 ) (1 )
2 2

x

y

xy

P P

P P

Q Q

ε ε
ε

ε ε
ε

γ ε ε

= + + −

= − + +

= −

 (3.56) 

where 

1 2

1 2

cos 2

sin 2

x y

xy

P

Q

ε ε
α

ε ε

γ
α

ε ε

−
= =

−

= =
−

 (3.57) 

Within a wrinkled region usual elasticity equations do not apply. Instead, the assumption of 

negligible bending stress in the membrane yields the stress state as: 

1 1 2; 0Eσ ε σ= =  (3.58) 

Or 

1 1

1 1
1 1

1 1

1 1
(1 ) (1 )

2 2

(1 ) (1 )
2 2
1 1

2 2

x x

y y

xy xy

P P E

P P E

Q QE

σ σ σ ε

ε ε
σ σ σ ε

τ σ τ ε

= + = +

= − ⇒ = −

= =

 (3.59) 

Expressing stresses in terms of strains in the form of Dσ ε= is desirable for numerical 

analysis. D is 3 3×  matrix, ( , , ) ( , , )T T
x y xy x y xyandσ σ σ τ ε ε ε γ= = . Because the problem 

is statically determinant within the wrinkled region (for example  2 0σ =  independent of the 
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values 1 2andε ε  ) D is singular and many possible representations for D are possible. If λ  

plays role of Poisson’s ratio then 2 1/λ ε ε= − . In a wrinkled region λ  is always greater 

Poisson’s ratio [19]. In some points  λ  can take the value 1. So, choosing D matrix similar to 

Eq.3.48 is not a right choice because of the  21/(1 )λ−  term. Consider D matrix is like 

a b c

b d e

c e f

 
 
 
  

 (3.60) 

If Eq.3.60 substitute into Dσ ε=  and impose Eq.3.56 and Eq.3.59 yields 

(1 ) (1 ) 2 0 0 0 (1 )

(1 ) (1 ) 2 0 0 0 0

0 (1 ) 0 (1 ) 2 0 (1 )

0 (1 ) 0 (1 ) 2 0 0

0 0 (1 ) 0 (1 ) 2

0 0 (1 ) 0 (1 ) 2 0

P P Q a P

P P Q b

P P Q c P
E

P P Q d

P P Q e Q

P P Q f

+ − +     
     − + −     
     + − −

=    
− + −     

    + −
    

− + −     

 (3.61) 

Solutions for the elements of D matrix are not unique because the coefficient matrix in 

Eq.3.61 is not singular. If b=0 selected and replaced into Eq.3.61 it is found that 

(1 ) ; (1 )
2 2

;
4 4

E E
a P d P

E E
c e Q f

= + = −

= = =
 (3.62) 

The resulting D matrix is the matrix which is presented by Miller and Hedgepeth [5] for 

partly wrinkled membranes. D matrix is:   
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2(1 ) 0

0 2(1 )
4

0 1

P Q
E

D P Q

Q

+ 
 = − 
  

 (3.63) 

where P and Q stated at Eq.3.57. As a result, in our models elastic elements and wrinkled 

membrane elements are used. For the elements in the web region on the rollers, the D matrix 

(Eq.3.48) is used to relate stress to strain. The elements in the web span have strain 

dependent D matrices as explained below. Although the slack behavior is possible in some 

applications it is not possible in a nonlinear formulation which employs an incremental force 

method. Once edge slackness begins in a web using a force method, convergence to an 

equilibrium solution is not possible. Convergence would be possible using an incremental 

displacement solution. Since this research is focused on applications where edge slackness 

does not occur, an incremental force solution was acceptable. 

1σ1σ1σ 1σ

2σ

2σ 2 0σ =

1 0σ =

2 0σ =

1 1 20 andε υε ε< > − 1 1 20 andε υε ε< < −

 

Figure 3.7 Behaviors of Wrinkling Membrane Elements [12]  

D matrices are defined for all allowable behaviors (taut, wrinkled and slack). In Fig 3.7 

behaviors of wrinkling membrane elements can be seen. A useful algorithm for choosing D 
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matrix may be expressed as [5]: 

 

1

1 1 2

; 0

; 0

;

s

w

T

D D

D D and

D D otherwise

ε

ε υε ε

= <

= > < −

=

 (3.64) 

 

Where D matrices are defined as, 

0sD =  (3.65) 

For slack behavior, as 

2

1 0

1 0
1

0 0 (1 ) / 2
T

E
D

υ

υ
υ

υ

 
 =  −
 − 

 (3.66) 

For taut behavior, and as 

 

2(1 ) 0

0 2(1 )
4

1
W

P Q
E

D P Q

Q Q

+ 
 = − 
  

 (3.67) 

 

For wrinkled behavior where cos 2 , sin 2P Qα α= =  and as stated in Eq.3.57. These 

algorithms will be used to establish the code that will be explained in the following chapters. 
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4. CHAPTER IV 

 

 

4.1 MISALIGNED ROLLERS 

 

In this chapter the work done of Beisel [12] will be briefly reviewed.  The algorithm 

developed will be explained step by step. Also the code that implements the algorithm will be 

described. Then the measures taken to decrease CPU time and to automate the code will be 

discussed. Finally a new slack edge criterion for misaligned rollers will be developed. 

 

4.2  Beisel’s Method for Modeling Wrinkles Due to the Misaligned Rollers 

 

Beisel developed a method to model wrinkle formation due to a downstream misaligned 

roller. Like Webb he used commercial FE code COSMOS. He used wrinkling membrane 

elements in free spans to allow troughs to form. In Fig.4.1 Beisel’s wrinkling model for 
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misaligned roller is shown. 

 

 Figure 4.1 Beisel’s FE Wrinkle Model for Misaligned Roller 

 

Contrary to Webb, he used five panels of elements rather than three panels. The first panel 

represents the web on the upstream roller. The second panel represents the free span where 

wrinkling membrane elements are used. The third panel represents the web on the 

downstream misaligned roller. He employed the fourth and fifth panels to enforce desired 

boundary conditions. First, he applied tension to the web when he reached the desired tension 

load he began to apply shear force to the model as shown in Fig. 4.1.  

Beisel employed this five panel model for the following reasons: 

A. The asymmetric shear forces allowed him to model the zero moment boundary condition 

at the misaligned roller found by Shelton [17]. 

B. The fourth panel was modeled using regular elastic elements. This was done because the 

fourth panel acts to increase the bending stiffness of the elastic elements in panel three. The 

failure sequence of events was: 

                  1. Troughs form at a critical angle of misalignment given by Beisel’s previous 
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work [2]. In the finite element code the troughs are modeled by elements that may assume 

the wrinkled membrane behavior described in Chapter III. This happens whenever2 0σ < . In 

a real web this does not occur until the2σ  stress becomes more negative than the buckling 

stress in the free spanycrσ  (
23(1 )

x
ycr

Eh

a

σπ
σ

ν
= −

−
  ; h is thickness, and a is the distance 

between two rollers [12]). The onset of troughs can be predicted with linear buckling theory 

with closed form expressions developed by Beisel [12]. To predict wrinkling of the web on 

rollers requires non-linear analysis since the entering free span has already buckled in the 

form of troughs. 

                  2. After troughs form CMD compressive stresses begin to appear in the elastic 

elements in panel three that border panel two. As the shear forces and the associated 

misalignment is increased further, these CMD compressive stresses become more negative 

and finally approach the value in Eq. 2.1, at which point wrinkles are eminent. The elastic 

elements in the panel four restrict the bending in panel three due to the troughs that have 

formed in panel two. 

 Beisel increased the shear forces until the critical compressive stress given by Eq. 2.1 was 

induced in the linear elastic elements at the entry of the misaligned downstream roller. Then, 

he concluded that the rotation of the nodes at the entry of the downstream roller should be 

equal to the angle misalignment in the roller. 

Beisel and Webb ran similar experiments to determine the onset of wrinkle formation due to 

the misaligned downstream roller. Beisel compared his results with these experimental 

results. He modeled a polyester web with a thickness of 0.00092 in (92 gages). The web 
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parameters for this web were a Young’ Modulus of 712000 psi, a Poisson’s ratio of 0.3, a 

web width of 6’’ and again the thickness was 0.00092’’. The rollers had a radius of 1.45’’ 

and ycrσ  from the Eq.2.1 was about -270 psi. He modeled 6’’; 18’’ and 30’’ span lengths and 

compared his results with the experimental findings. In Fig.4.2-Fig.4.4 the comparison of 

model and experimental data is presented. 
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Figure 4.2 L = 6’’ Span Results  
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Figure 4.3 L = 18’’ Span Results  
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Figure 4.4 L = 30’’ Span Results  

 

As seen from these three charts, the results from FE model and experimental results show 

good agreement. So Beisel’s model was successful in estimating wrinkle formation due to 

misaligned roller for a typical web span. In his study he compared his results with Webb’s 

results. He claims that his model yields better results than Webb’s model. He also claimed 

that the assumption that Webb proposed (crθ  is the sum of ,cr troughθ  and ,cr wrinkleθ ) is not true. 

Beisel achieved good agreement with experimental results without relying upon Webb’s 

assumption. 

 

4.3 A New Algorithm for Predicting Wrinkles Due to the Misaligned Rollers 

 

As mentioned in the introduction, there are three types of wrinkles: MD wrinkles, CMD 

wrinkles and shear wrinkles. Shear wrinkles can occur due to roller imperfections such as 
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misaligned rollers or tapered rollers. The goal of this new algorithm is to codify and automate 

the analysis that Beisel perfected using a commercial finite element code (COSMOS). The 

term “shear wrinkle” resulted from the realization that these troughs and finally wrinkles 

were the result of shear forces in the web. Both the misaligned roller and the tapered roller 

induce shear in the web. 

Beisel [12] was successful to develop a method for predicting web wrinkles on rollers by 

using membrane elements described by Miller and Hedgepeth [5]. He applied this method to 

the prediction of wrinkles due to misalignment in rollers, tapered rollers and crowned rollers 

and he confirmed his results with laboratory tests.  

Beisel used commercial finite element code COSMOS to apply this method. In this method 

while the elements representing the web on rollers are modeled with elastic elements, the 

web in the free spans are modeled with wrinkle membrane elements. These elements cannot 

react compressive stresses and they can be in one of three states. These states include taut 

web, wrinkled web and slack web. In the taut web state, the elements can resist tensile 

stresses in both principal directions. In the wrinkled web state, membrane elements can 

withstand tensile principal stress in one direction and zero stress in the other principal 

direction. In the slack web state, the elements can carry no stresses in any direction.  

 

In this algorithm, forces are increased in to the model step by step. In the first step, all 

elements are modeled with elastic elements. After the first step, the principal strains for each 

element in free spans are calculated and stored. By using principal strains, code will select 

which of D matrices given below for three states will be used for the next load step.  
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where D matrices are defined at Eq.3.65-3.67. After convergence is obtained in each step, the 

compressive CMD stresses in the linear elastic elements are reviewed. If those stresses 

remain greater than the Timoshenko shell buckling stress (Eq.2.1) the shear force would be 

increased. If the CMD stresses in these elements became more negative than the Timoshenko 

shell buckling stress (Eq.2.1), the shear force would need to decrease and a bracketing 

method would be employed to determine what shear force would produce a negative a 

negative CMD stress essentially equal to the Timoshenko buckling stress. Once 

accomplished, the misalignment or taper that induced that level of shear force would be 

determined.  

 

By using the method explained above, a finite element code will be developed in Excel VBA 

(Visual Basic Excel). This code can be executed in any PC with Excel installed without need 

of a commercial FE code license and it allows users to analyze the misaligned roller case 

using a simple Excel based interface. The advantage of this code will be that users will not 

need any linear or nonlinear finite element background to execute the code. They do not have 

to know the kinetic and kinematic boundary conditions for misaligned rollers. The inputs will 

include parameters such as web tension, web width, span length, roller diameter, Poisson’s 

ratio and elastic modulus. When executed the code will automatically form a finite element 

mesh based upon the inputs with elastic quadrilateral elements representing the web 

supported by rollers and with wrinkle membrane quadrilateral elements representing the web 
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in the free span. The first code will implement boundary conditions for a web approaching a 

misaligned roller. Other boundary conditions will be studied later. 

 

Beisel [2, 12] and Webb [9] studied the misaligned roller case. The boundary conditions that 

they used are first proposed by Shelton [14] and then Good et al. [4].  They considered the 

web span as a beam. A classic beam is one which the web span length would be ten times 

longer than the width. Shear effects become “important” when 10L
w < . Tension becomes 

“important” when the lateral deformations become large. “important” in this context means 

that these effects have sizable influence on the lateral deformations of the web. 

The boundary conditions that are used by Beisel [2, 12], Webb [9], and others will be used in 

this model. The validity of using these boundary conditions was verified by comparison to 

experimental results by these authors. 

 

The normal entry condition of a web approaching a roller was enforced using coupling 

equations which enforce multipoint constraints. Lines of adjacent nodes crossing a roller in 

panel one and panel five had their CMD displacements coupled. Each adjacent line of nodes 

was coupled separately and in this way Poisson contraction of the web could occur 

unimpeded. There was no coupling of nodes in the web in contact with the misaligned roller. 

Since the moment in the web in the vicinity of the misaligned roller is small or zero the 

deformations of nodes are nearly that associated with a rigid body rotation. This results in the 

normal entry condition being satisfied in the web at the misaligned roller without enforcing a 
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multi-point constraint. The lines of nodes in the CMD at the exit of panel one and entry of 

panel five were each coupled in machine direction displacement. This procedure was done to 

ensure the maximum moment in the free web spans occurred at the border between span one 

and span two and the border between span four and span five. 

The system that is modeled is shown in Fig .4.5. 

 

 

Figure 4.5 The System That is Modeled 

 

The system of five panels is shown in Fig.4.5 modeled in Fig.4.6. The coupling discussed 

earlier is also shown.  
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Figure 4.6 Misaligned Roller FE Wrinkle Model 

 

The model is divided into five sections. The first panel represents the web on the upstream 

roller. The coupled nodes in this panel are used to enforce normal entry and exit on upstream 

roller. The second panel represents the entry web span to the misaligned roller. Here 

wrinkling membrane elements are used to simulate web behavior which allow troughs. 

Different from Beisel’s model at the first attempt the fourth panel is also modeled with 

wrinkling membrane elements. Shear forces are applied to the web on the upstream and 

downstream rollers to simulate the shear, moment, and lateral deformations of a web passing 

over a misaligned roller. The third panel represents the web on the downstream misaligned 

roller. A central node is fixed in the MD and CMD directions to prevent rigid body 

translations of the model. Rigid body rotation is prevented by the coupling of the CMD 

deformations of the lines of nodes crossing panel one and panel five. The fourth panel and 

the fifth panel elements and boundary conditions help ensure the zero moment boundary 

condition at the misaligned roller. The flow chart for the program is shown in Fig. 4.7. 
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Figure 4.7 Flow Chart for New Algorithm 



 62

The stiffness terms for the elements on the upstream roller are calculated by using DT. Then 

these stiffness terms are assembled into the global stiffness matrix. The same procedure is 

followed for the other web regions on the rollers. For the web spans D matrix for the 

elements will be formed differently. At the first load level and first iteration DT is used for all 

elements. Then, for all remaining load levels and for all iterations, the program selects one of 

the three D matrices from (Eq. 3.64) D-taut, D-wrinkled or D-slack by evaluating the 

principal strains calculated in a previous step as explained in Eq. 3.65-67. The nonlinearity 

for this case is due to the variable D matrices for the span elements as the shear loads 

increase. After selecting D matrices, elemental stiffness matrices are formed and the stiffness 

terms will be assembled into the global stiffness matrix using the same procedure as the web 

on the rollers. 

After the global stiffness matrix is formed, lines of nodes in the MD on the first and fifth 

panels are coupled in the y direction and the point at the center of the model is fixed in x and 

y directions as shown in figure 4.6. 

Next, the shear and traction forces are applied to the system. From the set of equations KQ=F 

the displacements {Q} can now be calculated. Strains {ε } and stresses {σ } can then be 

determined using the displacements. The strains are calculated using BQε = , stresses are 

calculated with the aid of  DBQσ =  for all elements. After calculating strains, principal 

strains are also determined from the cartesian strains so that the proper D matrices can be 

selected for the next iteration or for the next load level.  

The shear and tension forces are applied incrementally in 20 steps. Five iterations are 

performed for each load step to allow P and Q to converge. As mentioned before if the 
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principal axes one and two are rotated through an angle α  relative to the x-y axes, P is the 

cosine of that angle and Q is the sine of that angle.  

For each new load step, the code first uses the principal strains calculated in the 5th iteration 

of the previous load step to determine the state of the wrinkling membrane for the 1st 

iteration. Then, the strains calculated in the first iteration for that load level are used to select 

D matrices for the second iteration. The procedure will continue in the same way. At each 

iteration, the strains calculated for the previous iteration are used to select D matrices till the 

maximum iteration number (5) is reached for that load step. The analysis proceeds in load 

steps with iterative analysis steps occurring within each load step.  The iterative analysis 

steps are necessary to allow the values of P and Q to converge in the elements with the 

wrinkled behavior prior to moving to the next load step. In Fig.4.8 it shows how P and Q 

(Eq.3.57) behave with iteration for an element in Panel 2. 

 

Figure 4.8 Convergences of P and Q 

 



 64

 

Figure 4.9 Excel Input for the Program 

 

In Fig. 4.9, the screen where the web parameters are input to the code is shown. As seen from 

the Excel input screen, the user enters the parameters such as width of the web, a roll 

dimension (quarter circumference of the roller), a span length dimension, the thickness of the 

web, the elastic modulus of the web, Poisson’s Ratio of the web, and the web tension in units 

of traction (stress) in the x direction. Also the shear in y direction in units of traction (stress) 

to the Excel sheet is input. In the “m height elements” cell, user enters the mesh density 

along x direction. In “n1 roll elements” cell, user inputs the mesh density of the rollers along 

y direction. Similarly in n2 span elements cell user decides about the mesh density of the 

span elements along y direction. This is not the final form of input. In the next chapters the 

efforts for the final form of input will be discussed. 
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The output of the code developed to predict wrinkling due to downstream misaligned roller 

are x yandσ σ  stresses for all elements on upstream roller, the downstream roller and in the 

web span between the upstream and the downstream roller are shown in Figure 4.10. 

 

 

Figure 4.10 Excel Output for Stresses 

 

For this case critical buckling stress by Eq.2.1 is about -270 psi. The marked row of stresses 

are the stresses of the elements at the entry of the downstream roller. The elements at the 

entry of the roller buckle first. After the output is displayed the minimum (most negative) 

stress in these elements should be compared with the critical shell buckling stress. If unequal, 

then the shear force should be increased or decreased until the minimum compressive stress 
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in the elements at the entry of the downstream roller reaches the critical shell buckling stress. 

In Fig.4.10, the maximum compressive stress (-269.6) reached the Timoshenko shell 

buckling stress (-270). At this instant, the angle displayed as an output in Figure 4.9.  is the 

critical angle of misalignment of the downstream misaligned roller for the onset of wrinkling 

(0.0073 rad.).  

 

4.4 Comparison of Results with Previous Works 

 

The code that was developed was executed for some cases defined by Beisel and the code 

results are compared with Beisel’s experimental and FE results. As mentioned in the previous 

chapter he used a commercial FE code called COSMOS and modeled the misaligned roller 

case. He performed his tests using 92 gage polyester web to verify his model. For this web, 

Young’s Modulus is 712000 psi, Poisson’s ratio is 0.3, the width of web is 6’’ and the 

thickness is 0.00092’’. The roller has a radius of 1.45’’. Eq.2.1 yields about -270 psi for the 

critical shell buckling stress for this case. 

Beisel was comparing the stresses at the nodes at the entry of the roller with the critical 

compressive stress predicted by Timoshenko shell buckling criteria. In this study, 

compressive stresses in the elements at the entry of the roller are used in the comparison 

instead of nodal stresses. Stresses at four Gauss points of the elements are computed and their 

averages are found as elemental stresses. 

The following graphs in Fig. 4.11-13 show the experimental critical angle of misalignment at 
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the downstream roller, the angle predicted by Beisel’s model and by Yurtcu’s model for 6’’, 

18” and 30’’ web span lengths.  
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Figure 4.11 Comparison of 6’’ Span Results 
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Figure 4.12 Comparison of 18’’ Span Results 
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Figure 4.13 Comparison of 30’’ Span Results 

 

From the figures, it can be seen that the results of the code developed agree well with the lab 

test data and the results of the commercial code.  

 

4.5 Improvement of Execution Time 

 

It was found that execution the code for long spans that twenty load steps with five internal 

iterations in each load step required a large amount of CPU time. For example, 2000 

elements may be employed in a long span case. For every element we have an (8*8) stiffness 

matrix. Forming the global stiffness matrix for 2000 elements and solving it 100 times (five 

iterations in 20 load steps) required extensive CPU time. Although we use banded matrix in 
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our code long spans could require three hours to produce a result on a single core computer. 

Due to these long execution times the next focus was decreasing the CPU time. First the 

number of iterations was decreased from five to two, then from two to one, and the result was 

not significantly changed. Then step by step the load step increments were decreased from 

twenty to four, and still reasonable results were achieved. However, it was found that 

decreasing the load step increments to less than four caused the results to err dramatically. 

This problem is appears to converge with four load increments and one iteration within each 

load increment.  

It was mentioned in the previous section that Beisel modeled the second span with elastic 

elements, but that wrinkling membrane elements were used in this code. This means that we 

were calculating principal strains to select which D matrix would be used for every element 

in span two. Beisel ran taut elements in the second free span because the model was a 090  

wrap case. For the misaligned roller case this subjects the upstream span to shear and the 

downstream span to twist. A web span will absorb a large amount of twist without forming 

negative 2σ stresses. So Beisel assumed the D in all elements in the downstream span would 

remain taut. We forced D matrices to be DT in the second free span. This also provided better 

agreement between our code and other results. Changing element types from wrinkling 

membrane elements to elastic elements also helped to decrease CPU time. Our code 

produced reasonable results, and did this within seconds. After making these changes, the 

flowchart of our program will be like Fig.4.14. The name “WRINKLINGsystem” will be 

applied to the part of the new chart that begins after “Mesh Model with Quadrilateral 

Elements” and continues to “Load Level<4”. This name will be used while attempting to 

automate the code in Part 4.6. 
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Figure 4.14 Flow Chart of Computer Code for Improved Execution Speed 
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4.6 Automating the Code 

 

From Fig 4.9 it can be seen that the user enters parameters such as web width, roller wrap arc 

length, span length, web thickness, web elastic modulus, Poisson’s ratio, the number of 

elements across the web width, the number of elements down the span length, the number of 

elements across the roller, the web tension and shear. The research objective was to limit the 

inputs that could be comprehended by users with no knowledge of the finite element method. 

These would include only web width, roller wrap arc length, span length, web thickness, web 

elastic modulus, Poisson’s ratio and web tension. 

One of the inputs required by the code is web tension. Web tension is one of a very few 

parameters that are controllable in a web process machine. Thus it would be optimal for a 

chart to be produced for the user that shows how much misalignment is allowable as a 

function of web tension, rather than computing what misalignment in a roller is acceptable at 

one tension. The user can then decide to solve an instability problem by better aligning the 

rollers or by changing the web tension. Thus the user should enter only certain parameters 

and the code will determine the mesh parameters and shear force required to induce 

wrinkling. 

To automate the mesh parameters the code was executed several times to explore what mesh 

density was required to produce a converged result. Very reasonable results were obtained by 

dividing the width and span length per piece per dimension and dividing the rollers with the 

integer part of six times of one-fourth of roller circumference. The mesh density is delimited 

for very long span lengths, very short span lengths, very long wide webs and very short wide 

webs. The meshing procedure and convergence check will be addressed more detailed at 
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Chapter VIII. 

The next step was determining how to automate the search for the shear force that was 

required to induce the wrinkle instability. The user inputs the web tension. A linear 

interpolation scheme was used to determine the shear force. One level of shear will produce a 

certain level of compressive yσ  stress at the misaligned roller, which can be determined by 

the code. A second level of shear will produce another level of compressive yσ  stress. 

Interpolation can be used to estimate the level of shear that will produce the shell buckling 

stress. It is an estimate because this is nonlinear analysis. That estimate can then be input to 

the code to help refine the actual shear level that will induce wrinkling. A slack edge criteria 

was used as a starting point. If a slack edge forms during the computations the code will fail. 

This is because increased shear will not result in increased compressive stress in the web on 

the roller, it will only increase slackness. For more information about slack edge criteria 

earlier work done by Good [40] can be visited. Web spans can be modeled as beams [12]. 

From Euler-Bernoulli beam bending theory the stress in the cross-section is: 

 
F My

A I
σ = ±  (4.2) 

If this stress is equal to zero, a slack edge occurs. If our web has a thickness of t, width of w, 

span length of L and the applied traction in x direction is Tx the shear stress (Txy) for the web 

to be slack can be calculated from Eq.4.2 as: 

 20 x

w
M

T
I

σ = = −  (4.3) 

Where moment M is calculated from: 
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 xyM T w t L= × × ×  (4.4) 

If  this value put into Eq.4.2 and do the calculations Txy (Tslack) will be found as  

6
x

xy

T w
T

L

×
=  (4.5) 

This was used as the starting value of Traction XY (shear) in the code (Fig.4.9).It found that 

for all cases computed the compressive stress in the first row of elements in the roller two 

was lower (less negative) than the value that was calculated from Timoshenko buckling 

criteria (Eq.2.1). Thus it found that if the shear value in Eq.4.5 was used as traction xy (Tslack) 

and half of it ( Tslack/2) one could be sure that there were two data points which would 

produce compressive stresses less than that is needed to buckle the web (Tcritical) (Figure 

4.15).  

criticalσ

2σ

1σ

 

Figure 4.15 Linear Interpolation I 
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After finding two points we can estimate Tcritical from the tangenttanα : 

22 1tan
( / 2)

critical

Slack Slack Critical SlackT T T T

σ σσ σ
α

−−
= =

− −
 (4.6) 

 

from here Tcritical can be found as: 

2

2 1

( ) ( ( / 2))
( / 2)critical Slack Slack

Critical Slack

T T
T T

σ σ
σ σ

− × −
= +

−
 (4.7) 

 

The algorithm for Linear Interpretation I can be seen in Figure 4.16. The code takes the value 

of web tension (traction x) from Excel input page and calculates F1, F2 and F3 values with 

the help of Tslack (Eq.4.5). Here F1 is equal to Tslack /2, F2 is equal to Tslack and F3 is equal to 

2* Tslack .Than code runs for F1 and F2 values within the WRINKLINGsystem and calculates 

Sigma1 and Sigma2 values. By using Eq.4.7 code calculates Tcritical . The code checks 

whether Tcritical is larger than two times of Tslack . This was done because during the runs it 

was observed that if this was not done, the value of Tcritical increases dramatically because of 

the angle between two points. Taking this step helps control Tcritical value. Then the code runs 

WRINKLINGsystem for Tcritical value and finds SigmaS. The code continues this process until 

SigmaS is bigger than the Timoshenko buckling criteria (Sigmacritical). At the end of Linear 

Interpolation I, there is a F1 value which is less than the traction that is needed to buckle the 

web, and there is a F2 value which is more than the traction that is needed to buckle the web 

(Figure 4.17). 
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Figure 4.16 Flow Chart for Linear Interpolation I 
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The code for linear interpolation one will be: 

TRACTIONXY = (TRACTIONX * H) / (6 * (L1 + L2 + L1 + L2 + L1)) 

F2 = TRACTIONXY 

F3 = 2 * TRACTIONXY 

Do Until sigmaS > syrc 

    FORCEXY = F2 * H * te 

    NFORCEXY = FORCEXY / m 

    Call WRINKLINGsystem  

    sigma2 = critical 

    F1 = F2 / 2 

    FORCEXY = F1 * H * te 

    NFORCEXY = FORCEXY / m 

    Call WRINKLINGsystem 

    sigma1 = critical 

    FS = ((sycr - sigma2) * (F2 - F1)) / (sigma2 - sigma1) + F2     

       If FS > F3 And control = 0 Then 

       FS = F3 

       control = control + 1 

       End If 

    FORCEXY = FS * H * te 

    NFORCEXY = FORCEXY / m 

    Call WRINKLINGsystem     

    sigmaS = critical 

    F1 = F2 

    F2 = FS 

Loop 
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After establishing values F1 and F2 we can start Linear Interpolation II process. The new 

problem will look like Figure 4.17. 

 

criticalσ

2σ

1σ

 

Figure 4.17 Linear Interpolation II 

 

From Fig.4.17 Tcritical can be found as: 

1

2 1

( ) ( 2 1)
1critical

critical

F F
T F

σ σ
σ σ

− × −
= +

−
 (4.8) 

Here the aim is to approach Tcritical value by changing the values of F1 and F2. The flowchart 

for Linear Interpolation II can be seen at Figure 4.18.  
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Figure 4.18 Flow Chart for Linear Interpolation II 

 

From Linear Interpolation I the values F1 and F2 are known. By using Eq.4.8 Tcritical was 

calculated and SigmaS was found. If SigmaS is greater than Sigmacritical we replace Tcritical 

with F2. If not we replace Tcritical with F1. This process was continued until SigmaS is 
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between the limits. In case of misaligned roller case the lower limit was set to 

0.99*Sigmacritical and the upper limit was set to 1.01*Sigmacritical. The code for Linear 

Interpolation II will then be: 

Downlimit = 0.99 * sycr 

Uplimit = 1.01 * sycr 

Do Until Downlimit <= sigmaS And sigmaS <= Uplimit 

    FORCEXY = F2 * H * te 

    NFORCEXY = FORCEXY / m 

    Call WRINKLINGsystem  

    sigma2 = critical       

    FORCEXY = F1 * H * te 

    NFORCEXY = FORCEXY / m 

    Call WRINKLINGsystem 

    sigma1 = critical 

    FS = ((sycr - sigma1) * (F2 - F1)) / (sigma2 - sigma1) + F1 

    FORCEXY = FS * H * te 

    NFORCEXY = FORCEXY / m 

    Call WRINKLINGsystem     

    sigmaS = critical      

       If sigmaS > sycr Then 

                    F2 = FS 

        ElseIf sigmaS < sycr Then 

                     F1 = FS 

        End If 

Loop 

Linear Interpolation I, Linear interpolation II and WRINKLINGsystem can be seen in the 
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Appendix. After automating, Excel input of the code will look like Figure 4.19. 

 

Figure 4.19 Excel Input for the Automated Program 

Here the user is supposed to enter web width, span length, thickness, elastic modulus, 

Poisson’s ratio, roller radius and the web tension. Other parameters are calculated 

automatically. Meshing elements are calculated with Excel equations and shear traction xy 

required to induce wrinkles is calculated within the code as mentioned above. After 

execution the code provides the following output: total time of execution (67 seconds), the 

maximum compressive stress (-266.8 psi) in the first row of elements and the roller 

misalignment angle (in degrees) that produced that compressive stress. For this case the 

sigma critical value calculated from Timoshenko buckling criteria (Eq.2.1) is -270 psi. So the 

interpolation scheme discussed has produced a compressive stress in the first row of elements 
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that is very close to the critical value.  

The results from the automated code are shown in Figures 4.20-22 and the results are 

compared with Beisel’s commercial FE results and his test data. 
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 Figure 4.20 Comparison of 6’’ Span Case with the Modified Code 
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 Figure 4.21 Comparison of 18’’ Span Case with the Modified Code 
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Figure 4.22 Comparison of 30’’ Span Case with the Modified Code 

 

The execution time of the modified code is much less than the previous version. In the 

previous version execution time was around two to three hours and code was able to give one 

result for the specified shear force. For the modified code the execution time is around five to 

ten minutes and the modified code finds the right shear force that will buckle the web by 

itself. Over the parameter ranges of these examples the modified code appears to mesh the 

problem adequately and yields good results at all tension levels. 
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4.7 A New Slack Edge Criteria for a Misaligned Roller 

 

In Figure 4.23, buckling region of a 92 gage polyester web can be seen. For this web 

Young’s Modulus is 725000 psi, Poisson’s ratio is 0.3, the width of web is 6’’, length of the 

web is 40” and the thickness is 0.00092’’. If 6000 psi MD stress applied to the system we are 

able to see wrinkles after the trough formation. If 2000 psi applied to the system after the 

formation of troughs slack edge occurs and we are not able to see wrinkles. 

 

 

Figure 4.23 Slack Edge 

 

The code was delivered to the Web Handling Research Center sponsors. One of the sponsors 

used the code with a low span (L/W) ratio. In that case W (width of the web) was five times 
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larger than L (length of the web). With that specific web tension that was applied to the web 

a slack edge was supposed to occur. But Excel VBA code was came up with a result which 

means wrinkles was occurred after the trough formation instead of a slack edge. The case 

was also modeled with COSMOS and the result was very similar with Excel VBA code.  

In the derivation of Eq.4.5 shear deformation was neglected. For L/W values of 0.2 it was 

obvious that shear deformation is important. Thus it was determined that a new slack edge 

criteria was needed that did account for shear deformation. 

 

 

Figure 4.24 Slack Edge Criteria 

 

The previous slack edge expression was derived based on Euler beam theory: 

( )
x

SlackEdge

T a

b Ehb
θ =  (4.9) 
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Here, a  is length of the web, b is width of the web (Fig.4.23), h is thickness and E represents 

elastic modulus. To derive a new criteria the Timoshenko beam theory was used that 

incorporates both shear and tension stiffening. 

 

 

Figure 4.25 Beams with Shear  

 

If w is deformation, the slope of the beam isα , and can be found from: 

' b sw ww
w

x x x
α θ γ

∂ ∂∂
= = = + = +

∂ ∂ ∂
 (4.10) 

Here θ  is related to moment and γ  is related to shear.  

( ) ( )

s

M x F x
and

x EI GA

θ
γ

∂
= =

∂
 (4.11) 

The moment can be calculated from Eq.4.10 by using Eq.4.11 

( ) 1
" , , .x x

s

M x F
Moment w

EI GA x
θ γ

∂
= = + = +

∂
 (4.12) 



 87

 

Figure 4.26 Moment in a Beam 

 

At the boundary 0x = ,  

0
0

x
x S

w F

x GA
γ

=
=

∂
= =

∂
 (4.13) 

The moment ( ) ( ) ( )M x F L x and F x F= − =  , and substituting into Eq.4.12 yields 

( )
" 0

F L x
w

EI

−
= +  (4.14) 

Integrating yields 

2

1' ( )
2

F x
w Lx C

EI
= − +  (4.15) 

From Eq.4.13    1
0x

S

F
C

GA
γ

=
= =  so Eq.4.15 becomes 

2

' ( )
2 S

F x F
w Lx

EI GA
= − +  (4.16) 

Finally integration of  Eq.4.16 yields, 
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3
2

2( )
6 S

F x Fx
w Lx C

EI GA
= − + +  (4.17) 

It is known that 
0

0
x

w
=

= . So 2C becomes 0. We seek  criticalθ at x=L .From Eq.4.16, 

2 1
' ( )

2criticalx L
S

L
w F

EI GA
θ

=
= = +  (4.18) 

Solving for the steering force F yields: 

2 1
( )
2

critical

S

F
L

EI GA

θ
=

+
 (4.19) 

This allows us to calculate the moment at x=0, 

2.
1
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L
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 (4.20) 

The beam bending stress from moment can now be calculated as, 

max 2

1
1 2

( )
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B critical

S

M w
y L

LI I
EI GA

θ
σ

 
 
 = =
 

+ 
 

 (4.21) 

The normal stress due to web tension can be calculated from, 

T T

wb
σ =  (4.22) 

In taut behavior T Bσ σ>  if T Bσ σ=  the slack case occurs. So if T Bσ σ= , 
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 (4.23) 

From here criticalθ  can be calculated as, 

2

2

2
( )critical

S

T L I

Lw b E GA
θ = +  (4.24) 

For a rectangular cross section 
3 5

,
12 2(1 ) 6S

bw E
I G and A bw

v
= = =

+
. Substituting into 

Eq.4.24 yields, 

2

2

2
(1 (1 ))

( ) 5critical

TL w
v

w Ebw L
θ = + +  (4.25) 

In the calculations beginning from Eq4.10, L for span length, w for span width and t for 

thickness were used. If we replace them with a for length, b for width and h for thickness, it 

will be found, 

2 2
(1 ( ) (1 ))

( ) 5critical

Ta b
v

b Ehb a
θ = + +  (4.26) 

If this result is compared with Eq. 4.9 it will be found that 

2 2
(( ) (1 ))

( ) 5

Ta b
v

b Ehb a
+  (4.27) 

is the effect of shear force with Timoshenko beam theory. If 0.3v ≈  then the term is 
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2 1
(1 )

5 2
v+ ≈ .  

So Eq.4.26 can be simplified as, 

21
(1 ( ) )

( ) 2critical

Ta b

b Ehb a
θ = +  (4.28) 

If W >L (b>a) then shear effects are becoming significant. For instance if W=5L as it was in 

the case that we came up with earlier then, 

1
(1 25)

( ) 2
13

( )

criticalTimoshenko

criticalEuler

Ta

b Ehb
Ta

b Ehb

θ
θ

+
≅ ≅  (4.29) 

Eq. 4.26 supersedes Eq.4.9 and can be used for both long and short spans. 
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5. CHAPTER V 

 

 

5.1 TAPERED ROLLERS 

 

In this chapter, a brief definition of tapered rollers, previous work modeling with tapered 

roller cases with commercial finite element codes will be reviewed. Then a new model based 

on using Excel VBA will be given.  

 

5.2 Description of Tapered Rollers and Beisel’s Method for Modeling Wrinkles Due 

to the Tapered Rollers  

 

A tapered roller is defined as a roller with a linearly varying radius across its width [12]. 

Tapered rollers are commonly seen in the web handling industry. The process of roller 

manufacture will almost certainly result in rollers with a slight taper. These tapered rollers 
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are produced unintentionally; the use of tapered rollers in web lines may result in web 

damage. To solve this problem, machining techniques that involve feedback can be used, but 

this will be costly. Therefore, knowing the amount of taper that will not result in harm to the 

web process is beneficial for the industry. 

In Figure 5.1 a web approaching the tapered roller is shown. In the figure, the taper is 

somewhat over-emphasized so that it can be seen.   

 

y

r Roller radius

Position across the 

web

Average radius of 

roller Ro

 

Figure 5.1 Tapered Roller Profile  

 

The radius of the roller at any point across the width is: 

( ) or y my R= +  (5.1) 

Here m is the slope of the roller. The velocity across the roller width is: 

( ) ( ) ( )oV y r y my Rω ω= = +  (5.2) 

Here ω  is the angular velocity of the roller. The average web velocity can be found by using 

average roller radius as: 
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avg oV Rω=  (5.3) 

Variation in the velocity across the web width will cause a stress and strain upon the web: 

( )
( )

( ) ( )avg
md md

avg o o

V y V my Emy
y and y E y

V R R
ε σ ε

−
= = = =  (5.4) 

These equations assume the web and roller achieve the same velocity at contact. The 

variation in stress across the web width causes a steering moment on the web: 

( )
2 32 2

2 2

12

b b

j
b b o o

Emhy mEhb
M y hydy dy

R R
σ

− −

− −
= − = =∫ ∫  (5.5) 

where m is roller taper, R0 is roller radius, E is Young’s Modulus, h is thickness and b is web 

width. 

Beisel [12] determined that wrinkle formation due to a downstream tapered roller is similar 

to the wrinkle formation due to a misaligned roller. As in the misaligned roller case, he used 

Timoshenko buckling criteria (Eq.2.1) to decide whether the web on the tapered roller will 

wrinkle or not. His wrinkle model for the tapered roller is shown in the Figure 5.2. 

 

Figure 5.2 Beisel Tapered Roller Model [12] 

Web span being studied 

Wrinkling membrane elements 

Nodes coupled along dotted lines, to provide normal entry, exit and travel across rollers 
Horizontal dotted lines coupled in y direction Vertical dotted lines coupled in x direction 

Uniform shear force (2fyj) 

applied at both ends of middle roller 
and end of web spans 

Web line tension applied at both ends of web 

Nodes coupled in y direction to 
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As in the misaligned case, he divided the model into five panels. The first panel is the web on 

the upstream roller. The second panel represents the web span being studied. The third panel 

represents the tapered roller. The fourth panel represents the web between the tapered roller 

and third roller, and the fifth panel represents the third roller. He locked the nodes in the first 

panel along horizontal lines. Each node on the line must move with the same y displacement 

as the rest of the nodes on the same line. This allows for Poisson contraction due to web line 

tension but requires a zero slope at the beginning of the troughed web span. He also locked 

the nodes at the exit of the upstream roller in the x direction along a vertical line to simulate 

the roller gripping the web in a no-slip condition. He used wrinkling membrane elements in 

the second panel. Along the right edge of the second panel he locked the nodes along 

horizontal lines in the y direction for a very short distance. He did this to ensure the normal 

entry of the web to the tapered roller. He modeled the right hand side of the model to enforce 

the boundary conditions.  

He executed the model by first applying web line tension and then increasing shear force 

until the compressive stress across the first row of elastic nodes on the elastic wrinkling 

membrane element boundary reached the critical value predicted by Eq. 2.1. Then he 

calculated the moment associated with the last row of span elements by using Eq. 5.5. He 

calculated the critical taper that would induce wrinkles. 

He obtained the experimental results for the onset of wrinkles due to a downstream tapered 

roller. He compared his experimental results and model results for two materials. In the 

following chapters, we will compare our model results with his experimental results and with 

his model results.    
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5.3 A New Algorithm for Predicting Wrinkles Due to the Tapered Rollers 

 

As mentioned earlier, shear wrinkles can occur due to tapered rollers. Beisel [12] 

successfully modeled the tapered roller case by using the commercial finite element code 

COSMOS. As in the misaligned case he used wrinkling membrane elements while modeling 

the elements between the upstream roller and the tapered roller. The goal of our new 

algorithm related to the tapered roller is to codify and automate the analysis that Beisel did 

with the commercial finite element code COSMOS. Similar to the misaligned roller case a 

finite element code that calculates critical taper will be developed in Excel VBA by using 

wrinkling membrane elements. The boundary conditions will be similar to Beisel’s model 

boundary conditions. 

 

The problem is modeled material on the upstream roller, the upstream span, the web on the 

tapered roller, the downstream span, and finally material on the downstream roller. The 

system that is modeled is shown in Fig.5.3. 
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Figure 5.3 The Figure for Tapered Roller 

 

The system with a tapered roller shown in Figure 5.3 is modeled like the Figure 5.4 shown 

below. 

 

 

Figure 5.4 Tapered Roller FE Wrinkle Model 
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The new model is similar to the misaligned roller case. The model was divided into five 

panels. The first panel was the panel on the upstream roller. The second panel was 

representing the web between upstream roller and tapered roller. Here wrinkling membrane 

elements were used; in the rest of the model elastic elements were used. The third panel 

represents the tapered roller. The fourth and fifth panels help to achieve the no moment 

boundary condition at the tapered roller. Boundary conditions and loads were enforced which 

Beisel found to be appropriate for the tapered roller. The center is pinned to prevent rigid 

body motions. Multi-point constraints were applied on each row of nodes on the entering and 

exiting rollers. Along the right edge of the second panel (span one), Beisel locked the nodes 

along horizontal lines in the y direction for a very short distance to ensure normal entry. In 

contrast to his method, high mesh was used at the last row of the span one element (ten 

elements were used in the last row elements) and six points along the horizontal lines were 

locked in the y direction. This was decided after trying many ways to achieve normal entry to 

the tapered roller. The flowchart for the program is shown in Fig.5.5. It is similar to the 

misaligned roller flowchart so it will not explain it here in detail.  
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Figure 5.5 The Flow Chart for Tapered Roller 
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In the tapered roller flowchart the forces are applied in five time steps. After five steps from 

the first row of elements the moment is calculated and by using Eq. 5.5 critical taper is also 

calculated. Assume that the stresses of the first row of elements at tapered roller look like 

Fig.5.6. Here, one half of the width is demonstrated.  
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Figure 5.6 Calculating Moment and Critical Taper 

 

Moment is M F h=  and /x F Aσ = . From these two equations the moment of an element can 

be calculated from
1

n

i i i
i

M A hσ
=

= ∑ . If all moments are added the total moment of the first row 

of the elements of the tapered roller is found. If this value put into Eq .5.5 the critical taper 

for that specific case is found. At the end of the code, the code calculates total moment and 

taper for that case. 

The name “SystemWrinkler” will be applied to the part of the flow chart (Fig.5.5) that begins 

after “Mesh Model with Quadrilateral Elements” and continues to “Load Level <5” .This 

term will be used in the following chapter. 
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5.4 Automating the Code 

 

Similar to the misaligned roller case, it was aimed for the user to enter only certain 

parameters such as web width, roller wrap dimension, span length, web thickness, elastic 

modulus, Poisson’s ratio, and web tension, and run the code. The attempts to automate the 

code began with trying to automate the mesh. After running many cases, it was determined 

that reasonable results were achieved by using three elements per dimension for the web 

width, one element for every dimension of the web spans and the integer part of four times of 

the roll dimension for rollers. Excel equations were used to set these values. The meshing 

procedure and convergence check will be addressed more detailed at Chapter VIII. 

The flowcharts for Linear Interpolations I and II are used for automating the tapered roller 

case. Similar methods to the misaligned case were applied. Tslack and Tslack/2 (Eq.4.5) were 

used as a starting point for Linear Interpolation I. In Fig.4.16 and Fig.4.18, if we use the term 

SystemWrinkler instead of WRINKLINGsystem, the way the new flow chart works can be 

explained. After automating our tapered roller code the Excel input of the code will look like 

Figure 5.7. 
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Figure 5.7 Excel Input of Tapered Roller 

 

Here the user is supposed to enter web width, span dimension, thickness, elastic modulus, 

Poisson’s ratio, roller radius and the web tension. After entering these parameters with the 

help of the Excel equations the mesh parameters, one fourth of the circumferences of the 

rollers (L1 roll dimension in Fig.5.7) and the stress calculated from Timoshenko’s buckling 

criteria (Sigma Critical in Fig.5.7 that is found from Eq. 2.1) can be calculated. After clicking 

the EXECUTE button, the code runs Linear Interpolation I and Linear Interpolation II.  As a 

result of using the code, the maximum stress at the first row of elements (MAX sigma y), 

total moment at the first row of elements (Moment), and the critical taper (mcr) that will 

result in a wrinkle for that specific element for that specific case are given as an output. 
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Figure 5.7 shows that for that element the stress calculated from Timoshenko’s buckling 

criteria is -247 psi. After linear interpolations, the code finds a maximum stress of -245 psi, 

which is very close to the Timoshenko buckling criteria. The critical taper for the case shown 

in Fig. 5.7 is found to be 0.00127 (in/in).   The code calculated this case within six minutes. 

 

5.5 Comparison of Results with Previous Works for the Tapered Roller 

 

Beisel [12] performed experiments and obtained data and compared his experimental results 

with his model. The results from the Excel VBA code will be compared with his FE model 

results and his experimental results.  

The first web he tested was a 92 gage (0.00092”) opaque polyester with a Young’s Modulus 

of Ex = 712000 psi, a Poisson’s Ratio of ν = 0.3, and a width of W = 6”.  The nominal radius 

of his tapered roller was Ro = 1.49”. The compressive stress required by Eq.2.1 was 

approximately -265 psi for this case. Comparison of our results with his FE model and his 

experimental results are given below. 
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Figure 5.8 Wrinkles Due to Taper, 92 ga Polyester, L=10” 
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Figure 5.9 Wrinkles Due to Taper, 92 ga Polyester, L=20” 
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Figure 5.10 Wrinkles Due to Taper, 92 ga Polyester, L=30” 
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Figure 5.11 Wrinkles Due to Taper, 92 ga Polyester, L=40” 
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Figure 5.8-11 shows a good agreement between our model results and his model results and 

his experimental results. For the 10” case some drift from the data can be observed. For 

longer spans (20”, 30” and 40”) our model tracks correctly with changes in span length. 

 

He also compared his model results with other test results. This was a relatively thin web, a 

56 ga Polyester, with a Young’s Modulus of Ex = 658000 psi, an assumed Poisson’s ratio of 

ν = 0.3, and a width of W = 6”.   The critical stress calculated from Eq.2.1 is -150 psi. The 

results from the Excel VBA code will be compared with both his model results and his 

experimental results below. 
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Figure 5.12 Wrinkles Due to Taper, 56 ga Polyester, L=10” 



 107

 

-0.0002

0.0003

0.0008

0.0013

0.0018

0 10 20 30

M
cr

(i
n

/i
n

)

Tension

56 ga Polyester, L=20"

Beisel's Model (COSMOS)

Beisel Lab.Test

Yurtcu's Model(VBA)

 

Figure 5.13 Wrinkles Due to Taper, 56 ga Polyester, L=20” 
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Figure 5.14 Wrinkles Due to Taper, 56 ga Polyester, L=30” 
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Figure 5.15 Wrinkles Due to Taper, 56 ga Polyester, L=40” 

 

Analysis of Fig.5.8 and Fig.5.15 may suggest the limitations of the model for use in short 

web spans with high web tensions. In longer spans tested (20”, 30” and 40”) our model 

follows the experimental values. It can be said that for the ranges tested our model provides 

acceptable results in all cases. 
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6. CHAPTER VI 

 

 

6.1 HOLES IN WEBS 

 

In this chapter, the previous work done by Mallya [15] concerning holes in webs and his 

modeling using the commercial finite element code COSMOS will be reviewed. Then a new 

model based on using Excel VBA will be described.     

 

6.2 Mallya’s Method for Modeling Wrinkles Due to Circular Discontinuity 

 

Converting processes often require that shapes be cut in webs. These webs must be handled 

in process machines without wrinkles. Some webs may have holes of various shapes 

intentionally cut into them as a part of the manufacturing or converting processes. Mallya 

[15] studied how these holes affect the web’s propensity to wrinkle. In his experiments, he 
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bored a hole in roll of 79 gage thick polyester film 12 inches wide with a ½ inch diameter bit 

in the center of a roll. He unwound the roll, and transported the web through a test section in 

a span of 28 inch long over rollers with a radius of 2 inches. He observed that troughs formed 

around the hole region and that wrinkles formed on the downstream roller. He also observed 

that the level of web tension affected the distance between the hole and the downstream 

roller when the wrinkles first appeared on the downstream roller. Troughs and wrinkles due 

to a circular hole can be seen in Figure 6.1. As seen in the figure, two wrinkles would form at 

both sides of the hole. 

 

Wrinkles

Troughs

 

Figure 6.1 Troughs and wrinkles due to a circular hole in the web [41] 

 

The hole would travel very close to the downstream roller before wrinkles were seen at low 

tension. If tension was low enough, wrinkles were not visible. At high tension values the 

distance between the downstream roller and the hole was much larger before wrinkles were 
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seen. He recorded the distance between the hole and the tangent line at fixed values of web 

tension. This distance is L is defined in Figure 6.2.  

 

 

Figure 6.2 Distance Between the Hole and the Tangent Line  

 

Like Beisel he modeled the hole case using the commercial finite element code COSMOS. 

He also modeled the problem by using five panels: upstream roller, test free span, 

downstream roller, exiting free span and exiting roller. In Figure 6.3 a schematic of the 

Mallya’s finite element model is shown.  
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xσ xσ

 

Figure 6.3 Mallya’s Model  

 

In the test free span he used wrinkling-membrane quadrilateral eight node elements; in other 

parts he used linear elastic quadrilateral eight node elements. He used eight node elements 

because that facilitated modeling the hole. He made the hole in the web by deleting a few 

elements in the region where the hole was located, and modified the position of the 

neighboring nodes to create a circular hole of 0.5 inch diameter. He constrained one node in 

the web span through the x direction to constrain the web from moving in x direction. He 

constrained the centerline of the web to prevent web to deform in the cross machine 

direction. He coupled the cross machine direction deformations of rows of nodes on the 

rollers to lock them together near the rollers. He followed this procedure to enforce normal 

entry of the web into the rollers. He increased the  xσ  machine direction stress linearly until 

negative cross machine direction stresses of the Timoshenko buckling criteria (Eq.2.1) was 

attained.  

He compared his experimental results and model results. In the following chapters we will 

compare our model results with his experimental results and with his model results.    
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6.3 A New Algorithm for Predicting Wrinkles Due to a Circular Discontinuity 

 

The circular hole case was modeled by using Excel VBA. The model is similar to the 

misaligned roller case model and tapered roller case model. The material on the upstream 

roller, the upstream span where the hole is traveling, the downstream roller, the downstream 

span, and finally material on the exiting roller were modeled. In the upstream span wrinkling 

membrane elements were used. Elastic membrane elements were used at other parts of the 

system. The system that is modeled is shown in Fig.6.4. 

 

Regular Elastic Elements are used 

at other panels

Upstream Roller, Panel 1

Wrinkling Membrane Elements 

are used in Panel 2 
Panel 2 

Panel 4 

Downstream Roller Panel 5 

Hole is traveling in Panel 2

 

Figure 6.4 The Figure for the Hole Model Traveling Between Rollers  
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Because of the symmetry of the problem half of the problem was modeled to take the 

advantage of the computational time. In Figure 6.5 the method of modeling the problem is 

shown. 

 

 

Figure 6.5 The Web Hole FE Wrinkle Model  

 

The center line was constrained in the y direction to prevent the web from deforming in the 

cross machine direction. The right line of the third roller in the x direction was constrained 

and traction force was applied only from the upstream roller which is different from the 

tapered roller and misaligned roller cases. This condition helped to prevent web rigid body 

motion in the x direction. The cross machine direction deformations of rows of nodes on the 

rollers are coupled to lock them together near the rollers so as to enforce normal entry of the 

web to the roller. In the second roller as seen in Fig.6.5 one extra point from the first span 

was constrained with the points of roller two to achieve normal entry to the second roller. 

The hole region was meshed as seen in Fig.6.6. 
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Figure 6.6 Meshing the Hole Region  

 

The span two region was divided into six parts 1 2 1 2 1 1, , , , andα α γ γ β β .  The 2γ  region 

represents the hole region. One more element was used at the first and fourth rows in γ  

region, and one less element was used in the second and third rows in the γ  region. This 

helped to have total of 4n elements that will allow using previous codes sub modules. The 

Excel output for the hole region (2γ ) can be seen at Figure 6.7. 
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Figure 6.7 Excel Output of Hole Region 

 

The traction forces were applied in four steps. The flowchart for the program is shown in 

Fig.6.8. It is similar to the misaligned roller and tapered roller flow chart so it will not be 

explained here in detail. The name “VOIDsystem” will be applied to the part of the flow chart 

(Fig.6.8) that begins after “Mesh Model with Quadrilateral Elements” and continuous to 

“Load Level < 4”. This term will be used while explaining the automation of the code.   
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Figure 6.8 The Flowchart for Circular Discontinuity  
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As an output the code calculates the maximum compressive stress at the first row of elements 

from roller two. 

 

6.4 Automating the Code 

 

Here, in contrast to other cases, it aimed for the user the user to enter only certain parameters 

such as web width, roller radius, span length, web thickness, elastic modulus, Poisson’s ratio 

and then the code to run automatically. The user will not enter web tension or shear force in 

this case. First step was automating the mesh. After running many cases it was found that 

dividing the web width to the roller radius and dividing the web width to the integer even 

part of that value, one element for every dimension for the web spans, and the integer part of 

four times the roll dimension for rollers gave reasonable results. The Excel equations were 

used to set these values. The meshing procedure and convergence check will be addressed 

more detailed at Chapter VIII. 

In the hole case, the code attempts to find the web tension that will generate a wrinkle for a 

given hole distance. The goal was automating finding that web tension. For that purpose a 

starting point was needed. It was found that the minimum tension required to sustain a 

wrinkle over the surface of a roller could be used as a starting point. If it is assumed that the 

web tension is uniform across the web width (Figure 6.9).  
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,y crσ

 

 Figure 6.9 The Section of Web over the roller   

 

Here from the Fig.6.9 [42]: 
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By performing the ASTM standard test, D1894 [43]: 
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If some calculations were done from Eq.6.2 it found that: 

,

2
w y cr

r
T

w
σ

µ
=  (6.3) 

From our experience r is much smaller than w and  µ  is around 0.3. As a result it can be said 

that the value of Tw is very close to ,y crσ ,and ,y crσ is much smaller than the tension that is 

needed to buckle the web. So Tw and 2 Tw were used as a starting point for Linear 

Interpolation I (Fig.4.16). By taking the user inputs from Excel, meshing the problem, and 

using these values in Linear Interpolation I and Linear InterpolationII  it is possible to find 

the critical tension that buckles the web. 
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6.5  Comparison of Results with Previous Works for Wrinkles Due to Holes 

Mallya compared his experiment results with his finite element model results. The results 

from the Excel VBA code will be compared with his experimental results and test results.   

The web he tested was 79 gage thick polyester film with a width of 12 in. The span length 

was 28 in and the roller radius was 2 in. This polyester has a Young’s modulus of 712000 psi 

and an assumed Poisson’s ratio of 0.3. For these properties the Timoshenko buckling stress 

was found to be around -170 psi by using Eq. 2.1. The comparison can be seen in Figure 

6.10. 
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Figure 6.10 Comparisons of Results for Hole  

By changing the mesh of the problem we are able to compare a circle, a square and an 

equilateral quadrangle hole shapes. In Figure 6.11 the Excel output of the square region and 

in Figure 6.12 Excel output of equilateral quadrangle region can be seen. Here diameters of 

the holes have the same length (2r in Fig.6.4, 6.11 and 6.12).   
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Figure 6.11 Excel output of square 
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Figure 6.12 Excel output of equilateral quadrangle 

 

In Figure 6.13 comparison of these three shapes can be seen. 
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Figure 6.13 Comparison of Circle, Equilateral Quadrangle and Square Shaped Holes 

 

As seen from Fig.6.13 it can be said that among a circular hole, a square hole and an 

equilateral quadrangle hole, the equilateral quadrangle shape requires more tension to 

wrinkle. This conclusion can be explained by the element stiffness matrix. In an element 

stiffness matrix the area term is constant. The area of equilateral quadrangle hole is less than 

the areas of the other holes. Therefore, removing an equilateral quadrangle hole from the web 

has less effect on the web stiffness. As a result, if a hole is needed in a web for any reason, 

we can suggest that it be an equilateral quadrangle hole, because by using an equilateral 

quadrangle hole, more tension can be applied to the web. 

It can be seen from Fig.6.10 that up to a certain level, the linear behavior of the problem is 

obvious. This encouraged us to update the code to run with only certain parameters such as 

web width, roller wrap length, span length, web thickness, elastic modulus and Poisson’s 
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ratio. One fourth of the span length and half of the span length were used as the location for 

the hole. Since the behavior always appears linear, straight line behavior is assumed for the 

tension levels at intermediate location.  

The problem was meshed and the tension was calculated when the circular hole was at a 

distance of ¼ of the span length by using Linear Interpolation I and Linear Interpolation II. 

Then the tension was calculated when the circular hole is at a distance of ½ of the span 

length by using Linear Interpolation I and Linear Interpolation II.  The flowchart in Figure 

6.14 shows how new algorithm works.  
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Figure 6.14 Flow Chart for Automating Hole Code 
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After automating the code, the Excel interface of the code will look like Figure 6.15. As seen 

from the figure, the user inputs the web width, span length, web thickness, elastic modulus, 

Poisson’s ratio, diameter of void, roller radius, and the coefficient of friction. By using the 

Excel equations the code calculates mesh parameters, Timoshenko buckling criteria (Sigma 

Critical), the minimum tension to sustain a wrinkle (Eq.6.3), and the L1 roll dimension as an 

output. When the user clicks the EXECUTE button the code calculates the tension that will 

buckle the web when the hole is ¼ of the span length away from the circumference line (here 

28/4=7”).  The code then calculates the tension that will buckle the web when the hole is 1/2 

of the span length away from the circumference line (here 28/2=14”). Finally, by using these 

points with the help of Excel, the relation between the tension and the distance of the hole 

from the downstream roller is plotted. For this material by the help of this plot it can be 

suggested to run this material at less than 1.8 pli in order to avoid wrinkles. 
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Figure 6.15 Excel Interface of Circular Void Excel VBA Code 

 

Now it can be said that an Excel VBA code that is capable of finding the relation between the 

hole distance and tension automatically have been written. 
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7. CHAPTER VII 

 

 

7.1 NON UNIFORMITIES IN WEBS 

 

In this chapter, non uniformities in webs will be studied. Modeling the case with commercial 

finite element code COSMOS and modeling the case with Excel VBA will be described. 

Mallya [15] proved that the modeling method developed by Beisel for modeling wrinkling of 

webs encountering misaligned rollers and tapered rollers was also viable for studying how 

holes in webs cause wrinkles. The research done by the author has shown this same modeling 

is possible with user friendly Excel VBA codes. 

The sponsors of the Web Handling Research Center were excited by the results of this 

research, because some of their worst problems are caused by web non uniformity. A hole is 

an example of the worst non uniformity possible. Many of these sponsors handle webs that 

are made by processes that are far from perfect. As a result, webs often have length, 
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thickness, and density non uniformities. 

Thus the research on the effects of voids on wrinkles excited them because they saw potential 

application of the same modeling methods to study the effect of web non uniformity on 

wrinkling. So, a new investigation has begun where a region in the web differs in some way 

from the surrounding web. Perhaps it is thinner or thicker. Perhaps the non uniformity 

occupies a large portion of the web width or perhaps it is relatively small. The end result will 

be a development tool that can be used to determine the size and degree of a non uniformity 

that is permissible without the development of web wrinkles.  

 

7.2 Modeling Non uniformities with Commercial Finite Element Code COSMOS 

 

Devising controlled experiments with non uniform webs is very difficult. It was decided to 

model these problems with COSMOS and study the behavior. The data from COSMOS was 

compared with the data from a developed Excel VBA code and helped us to verify the code. 

Instead of a circular void a circular region with reduced thickness was modeled and the 

remainder of the web was left uniform. The case modeled with five sections, the upstream 

roller, the upstream span, the downstream roller, the downstream span, and finally material 

on the last roller (Fig.7.1).  

In the free span wrinkling membrane eight node elements were used. In the other regions 

linear elastic quadrilateral eight node elements were used. One node in the web span was 

constrained in the X direction to prevent web from moving in the X direction. The centerline 



 130

of the web was constrained to prevent web deformation in the cross machine direction. 

 

 Figure 7. 1 Non uniform Web Models (COSMOS) 

 

All nodes were constrained in Z direction so that the web remains planar. The thickness of 

the non uniformity was varied. Tension was applied by using a pressure curve on the edges 

of the webs along the X direction as shown in Figure 7.1. The non uniform area was modeled 

in the web with its center on the axis of symmetry. The tension was increased linearly until 

negative cross machine direction stresses of the Timoshenko buckling stress (Eq. 2.1) was 

attained.  

The web modeled was a 0.001 inch thick film and a roller radius of 1.45 inch was chosen. In 

the first case the web width was 6 inch and the span length was 18 inch. In the second case 

the web width was 50 inch and the span length was 50 inch. The web’s Young’s modulus 

was 712000 psi and Poisson's ratio was assumed to be 0.3. For these properties the 

Timoshenko buckling stress was found to be around -297 psi (Eq.2.1).  

In Fig.7.2 an example of the model is shown. Here the web width was 6 inch; the span length 

was 18 inch. The thickness of the non uniform area was 0.0008 inch, the non uniform area 

was 2 inch in diameter and the non uniform area was 3 inch away from the second roller. 
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Figure 7. 2 Critical CMD Stresses Developed When the Non uniform Area is 3” Away From 

the Roller 

 

For a six inch wide web the finite element analysis was conducted with the non uniformities 

at different distances from the roller. The fifty inch wide and fifty inch long web span was 

modeled with the same web material properties. In the fifty inch wide case the non uniform 

region is three inches away from the downstream roller and diameter versus tension required 

to induce wrinkles was investigated.    
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7.3 A New Algorithm for Predicting Wrinkles Due to the Circular Non unif ormities  

 

An Excel VBA model was developed whose purpose was to determine when web non 

uniformity would cause web wrinkles. The non uniformity was assumed to be circular in 

shape and centrally located widthwise in the web. The thickness of the non uniformity was 

constant but different from that of the surrounding web. The model is similar to the 

misaligned roller case, tapered roller case and void case. The material on the upstream roller, 

the upstream span where the non uniform region is traveling, the downstream roller, the 

downstream span, and finally material on the exiting roller were modeled. In the upstream 

span wrinkling membrane elements were used and at the other parts of the system elastic 

membrane elements were used. The system modeled is shown in Fig.7.3. 

 

Figure 7. 3 A Web with a Non uniform Circular Shaped Region Travelling Between Rollers 
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This case is similar to the void case because of the symmetry and half of the problem was 

modeled to take the advantage of the computational time. In the figure below (Fig.7.4) the 

method of modeling the problem is shown. 

 

 

 Figure 7. 4 The Model for the Non uniform Hole Shaped Material  

 

Similar to the void case the center line was constrained in the y direction to prevent the web 

from deforming in the CMD direction. Traction force was applied from the upstream roller 

and the downstream end of the web at the exit of the third roller was constrained in the x 

direction. This helped to prevent web rigid body motion in the x direction. Other than that no 

other boundary conditions were applied to the model. The non uniform area was meshed as 

seen in Fig.7.5. 
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 Figure 7.5 Meshing the Non uniform Region 

 

The model is very similar to the void case. The span two region was meshed in six parts. The  

2γ  region represents the non uniform area and the surrounding area. This situation differs 

from the void case because new elements were added in the void area to represent the web 

non uniformity which could be less or greater than the surrounding web. While calculating 

stiffness terms and stresses of the elements the code calculates the non uniform area stiffness 

terms with non uniform thickness value. The mesh for the non uniform region (2γ ) can be 

seen at Fig.7.6. 
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Figure 7. 6 Troughs and Wrinkles 

 

The traction forces associated with web tension were applied in four load steps and two 

iterations were made within every load step to achieve convergence. The flowchart for the 

Excel VBA code is shown in Fig.7.7. The flowchart is similar to the previous flowcharts. The 

name “NONUNIFORMsystem” will be applied to the part of the flow chart (Fig.7.7) that 

begins after “Mesh Model with Quadrilateral Elements” and continuous to “Load Level < 4”. 

This term will be used while explaining the automation of the code. As an output the code 

calculates the maximum compressive stress at first row of elements from roller two. 

 



 136

 



 137

 

Figure 7. 7 The Flowchart for Non uniform Webs 
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7.4 Comparison of COSMOS and Excel VBA Results  

 

As mentioned before doing controlled experiments with non uniform webs is difficult. So, 

data taken from commercial finite element code COSMOS were compared with Excel VBA 

code to verify Excel VBA code.  

The web modeled was 0.001 inch thick. The roller radius was 1.45 inch. The web’s Young’s 

modulus was 712000 psi and Poisson’s ratio was assumed to be 0.3. The web width was 6 

inch and the span length was 18 inch. For these properties Timoshenko buckling stress was 

found to be -297 psi from Eq.2.1. Two different non uniform area properties were modeled 

for comparison.  

Fig.7.8 and Fig.7.9 show the results for the web that is 6 inch wide and 18 inch long. The non 

uniform area has a thickness of 0.0008 inch. The diameter of the non uniform area is 3 inches 

in Fig.7.8 and 2 inches in Fig.7.9. The web has a thickness of 0.001 inch. In the charts L 

(distance from the roller) versus the tension required to induce wrinkles is shown using both 

COSMOS and results from the developed VBA code. 
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Figure 7. 8 Wrinkles Due to Non uniformities, 2r = 3”, t’ = 0.0008”  
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Figure 7. 9 Wrinkles Due to Non uniformities, 2r = 2”, t’ = 0.0008” 

The web material properties were kept the same and the thickness of the non uniform area 

was decreased to 0.0001 inch. Fig.7.10 and Fig.7.11 show results for these cases. 
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Figure 7. 10 Wrinkles Due to Non uniformities, 2r = 3”, t’ = 0.0001” 

0

1

2

3

4

5

0 0.5 1 1.5

L(
in

)

Tension (pli)

Cosmos Results

VBA Excel Results

 

Figure 7. 11 Wrinkles Due to Non uniformities, 2r = 2”, t’ = 0.0001” 

Gargeyi Baipa, a master student at Web Handling Research Center performed a sensitivity 

analysis of how the different aspects of the non uniformities affect wrinkling by using 

COSMOS. She modeled 50 inch wide and 50 inch long wide web. The web modeled was 
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0.001 inch thick. The roller radius was 1.45 inch. The web’s Young’s modulus was 712000 

psi and the Poisson’s ratio was assumed to be 0.3. These results will be used to further 

validify the results produced by the VBA code developed.  

For the 50 inch wide web Baipa modeled non uniform area 3 inch away from the second 

roller and she modeled different diameters for non uniform area. In Fig.7.12 comparison of 

Baipa’s COSMOS model and Yurtcu’s Excel VBA model is shown. In the chart diameter of 

void versus the tension required to induce wrinkling is shown. 
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Figure 7. 12 Wrinkles Due to Non uniformities, L = 3”, t’ = 0.0005” 

 

The results from the two analyses shown in Fig.7.8- Fig.7.11 and Fig.7.12 agree well with 

each other. Thus, it appears the Excel VBA code developed produces similar results to the 

commercial finite element code COSMOS. 
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7.5 Automating the Excel VBA Code 

 

The automation process was very similar to the void case in Chapter 6. The user is supposed 

to enter only basic parameters such as web width, roller radius, span length, web thickness, 

elastic modulus, Poisson’s ratio, non uniformity size and thickness of the non uniform area. 

Firstly mesh parameters were decided. If the dimension of the web width was x, from the 

Excel interface the value x was multiplied with four and the even value of the result was 

attained to m and the web width was divided into m elements. If the dimension of the web 

length was y, from the Excel interface even value of y was taken as n2 and the web length 

was divided into n2 elements. If the value of one fourth of the roller circumference was z, the 

even integer value of three times of z was given to the n1. The roller area was divided into n2 

elements. The Excel equations were used to set these values. For very short, for very long 

and for extreme cases mesh parameters are limited. The meshing procedure and convergence 

check will be addressed more detailed at Chapter VIII. 

To automate determining the minimum tension required to sustain a wrinkle over the surface 

of a roller a method similar to that used for the void case was employed (Section 6.4). Like 

the void case Tw    (min.tension required to sustain a wrinkle) and 2 Tw were used as a starting 

point for Linear Interpolation I . After Linear Interpolation I and Linear Interpolation II the 

critical tension that buckles the web was found for the non uniform area for the specific 

distance from the second roller.  

By using the linear behavior of the problem ¼ of the span length and ½ of the span length 

were used. The problem was meshed and the tension was calculated when the non uniform 
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area was at a distance of ¼ of the span length by using Linear Interpolation I and Linear 

Interpolation II. Then, the tension was calculated when the non uniform area was at a 

distance of ½ of the span length by using Linear Interpolation I and Linear Interpolation II. 

Since the behavior always appears linear like the void case, straight line behavior is assumed 

for the tension levels at intermediate location. The flowchart is similar to the void case 

(Fig.6.14). 

After automating the code the Excel interface of the code will look like Figure 7.13. 

 

Figure 7. 13 The Excel Interface of Non uniform Excel VBA Code 

 

The user is supposed to input the web width, span length, web thickness, elastic modulus, 
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Poisson’s ratio, diameter of void, roller radius, the coefficient of friction, and different from 

the void code, the thickness of the non uniform area. With the help of Excel equations the 

code calculates mesh parameters, Timoshenko bucking criteria (from Eq.2.1), the minimum 

tension to sustain a wrinkle (from Eq.6.3), and one fourth of the circumference of the roller 

(L1 roll dimension).  

When user clicks the EXECUTE button the code calculates the tension that will buckle the 

web when the non uniform area is ¼ of the span length away from the circumference line 

(here 18/4 = 4.5”). Then the code calculates the tension that will buckle the web when the 

non uniform area is 1/2 of the span length away from the circumference line (here 18/2=9”). 

By using these two points the relation between the tension and the distance of the non 

uniform area is plotted.  

It can be said that an Excel VBA code that can find the relation between the non uniform area 

distance from the second roller versus the tension have been written successfully.    
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8. CHAPTER VIII 

 

 

8.1 CONVERGENCE CHECK 

 

All finite element analysis requires convergence checking. In this development quadrilateral 

elements have been employed. They have been employed to model the onset of wrinkling for 

a uniform web encountering a misaligned roller and a tapered roller. These elements were 

also used to nonuniform webs approaching aligned cylindrical rollers. The non uniformity 

could take the form of a centrally located circular void. It could also take the form of a 

centrally located circular region whose thickness was either less or greater than the 

surrounding web. 

Each case presents different distributions of MD and CMD stresses in the web and each case 

is meshed differently. Algorithms will be developed for each case to ensure convergence. 
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8.2 The Misaligned Roller Case 

In Chapter IV a VBA algorithm was presented to predict the onset of wrinkling for a web 

approaching a misaligned roller. The rules used to generate meshes were sufficient to 

produce a threshold misalignment angle, associated with the onset of wrinkling, which 

matched Beisel’s test results. 

The user is prompted to input the real span width x in units of inches. The Excel interface 

uses the Even Function to convert the real variable x to an even integer, m 

(i.e.4 6 6x m< ≤ → = ). The web width was then divided into m elements. If the value of m 

was less than six, the value six was assigned to the value of m. If the value of m was larger 

than thirty, the value thirty was assigned to the value of m. Thus narrow webs would be 

assigned no less than six elements across the web width and wide webs would be assigned no 

more than thirty elements across the web width.  

The user is also prompted to input the dimension of the web span length (y). The Excel 

interface would then convert the real number y to an even integer n2. The span length was 

divided into n2 elements. If the value of n2 input was larger than fifty, the value fifty was 

assigned to the value of n2. If the value of n2 input was less than six, the value six was 

assigned to the value of n2. Thus short web spans could be assigned no less than six elements 

and long web spans could be assigned no more than fifty elements. 

The user is also prompted to enter the roller diameter. Only ninety degree wrap angles were 

considered for the misaligned roller. The length of web wrapping the roller was one-fourth of 

the roller circumference. The Excel interface converted six times the wrap length to an even 

integer which was assigned to the variable n1. Thus the wrap length was divided into n1 
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elements. The value of n1 was limited to not exceed thirty and not be less than six. The mesh 

density across the web width in this region was set equal to m elements across the web width 

to ensure compatibility with the entering free span, previously discussed. A generic mesh for 

the model is shown below. 
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Figure 8.1 Meshing the Model 

In Chapter IV, the mesh parameters that were described were shown to yield reasonable 

results compared with the experimental results. A convergence check must be done to ensure 

that the mesh parameters that were described would be accurate for cases other than those 

that had been tested. For this purpose the code was modified to check whether the results that 

were output were converged or not. 

The code was updated to run two meshes in addition to the original mesh. After running the 

two additional meshes the results were compared with the results from the original mesh. If 

the results from the second mesh were within 5% of the results output for the first mesh the 

code would stop and the results output for the second mesh were provided as output. If the 

results from the first and second meshes were not within 5% the code was run again with yet 

a higher mesh density.   
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In this convergence check, the second mesh was the mesh which has already been described. 

The density of the first mesh was less than that of the second mesh. The third mesh density 

was greater than that of the second mesh. For the first and third meshes the mesh parameters 

m and n2 values were either increased or decreased.  

The flowchart for the code that incorporates convergence checks is shown in Fig.8.2. 
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Figure 8. 2 The Flowchart for the Convergence Check 
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After incorporating these convergence criteria into the code, the code was used to again 

analyze Beisel’s test cases. The original results were shown in Figures 4.20-4.22. The new 

results are shown in Figure 8.3-8.5. Whichever mesh produced the converged result is shown 

in the charts. These results compare nicely with Beisel’s test data and the results of his 

COSMOS models.  
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Figure 8.3 Comparison of 6” Span Case after the Convergence Check 
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Figure 8.4 Comparison of 18” Span Case after the Convergence Check 
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Figure 8.5 Comparison of 30” Span Case after the Convergence Check 
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In the Fig.8.6 the results for a specific case is shown as an example. Here span length is 30” 

and the tension is 7000 psi. The convergence criteria appear to work well for the test cases. 
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Figure 8.6 Converging Result for a Specific Case for Misaligned Roller Case 

In the chart results from different meshes are plotted. As seen from the figure, after running 

the case with three different meshes result is converging. 

It has been shown that the code converges nicely for cases from Chapter IV. Some other 

cases were picked to see whether the convergence routine works well. First case was a long 

narrow web. The free span length was 100 inches long and the web width was 6 inches wide. 

Other material properties were kept the same like the Beisel’s test material properties. In the 

Fig.8.7 the result for this case is shown. 
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Figure 8. 7 Converging Result for a Long Narrow Web 

In the second case a wide web was selected. The web was 50 inches wide and 30 inches long. 

In the Fig.8.8 result for this case is shown. 

0.001

0.0014

0.0018

0.0022

0.0026

0.003

1 2

R
o

ll
e

r 
M

is
a

li
g

n
m

e
n

t 
(R

a
d

)

Mesh Number

L= 30", W=50", Tension=2000 psi

L= 30", W=50", 

Tension=2000 psi

 

Figure 8. 8 Converging Result for a Wide Web 

At the Fig.8.15 and Fig.8.16 results from different meshes are plotted. As seen from the 

figures the cases were converged after running two meshes. 
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As a last example a different material was selected.  The web parameters for this web were a 

Young’ Modulus of 725000 psi, a Poisson’s ratio of 0.3, a web width of 50’’ and the 

thickness was 0.002’’. The rollers had a radius of 1.45’’ and ycrσ  from the Eq .2.1 was about 

-605 psi. The case was modeled with COSMOS. The critical angle of misalignment of the 

downstream misaligned roller for the onset of wrinkling was calculated around 0.005 radians 

with COSMOS. In Fig.8.9 result from this case was shown. 
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Figure 8. 9 Converging Result for 0.002” Thick 50” Wide Web 

As seen from the figure after running the case with two different meshes result is converging. 

8.3 The Tapered Roller Case 

The development of the mesh parameters and convergence check for web wrinkling due to 

tapered rollers was similar to the development for the misaligned roller case.  

If the dimension of the web width was x, from the Excel interface the value x was multiplied 

with three and the Even Function value of the result was assigned to m. Different from the 
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misaligned roller case x was multiplied with three because during the calculation of moment 

more elements were needed for a sensitive calculation. If the value of m was less than six, the 

value six was given to the value of m. If the value of m was bigger than thirty, the value thirty 

was given to the value of m.  

If the dimension of the web length was y (inches), the Excel interface used the Even value of 

y to assign n2, the number of elements in the MD in the free span. The variable n2 was 

limited to not exceed fifty and it was limited to be not less than six. The assignment of n2 

was identical to the misaligned roller case. 

The even integer value of four times of the one fourth of the roller circumference was given 

to the mesh parameter  n1. The n1 value was limited to not exceed from thirty and limited to 

not less than six. 

After calculating the values of m, n1 and n2 the problem was meshed as shown in Figure 8.1. 

The values of m, n1 and n2 were decided after running many cases. As shown in Chapter V 

the results calculated from the mesh parameters described herein were provided good 

agreement with the experimental results.  

Similar to the misaligned roller case a convergence check must be done to verify that the 

mesh parameters that were suggested are valid for non test cases. For that purpose the tapered 

roller case code was updated to check convergence for different cases.   

The code was updated to run for two meshes other than that which was just described. The 

first mesh was less dense than those which were described. The second mesh resulted from 

the mesh parameters that were described. After running the first and second mesh the code 

checked whether the result from second case was within 5% of the result that was output 



 156

from the first case. If the results were within 5% the results that were calculated from the 

second case were output. If the result from the first and second mesh were not within 5%, the 

code would then compute results using the third mesh.  The algorithm for that routine is like 

Fig.8.10.  
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Figure 8. 10 The Flowchart for the Tapered Roller 
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After doing the chances the results shown previously in Fig.5.9-11were updated as shown 

Fig.8.11-13. 

Whichever mesh produced the converged result is shown in the charts. These results compare 

nicely with Beisel’s test data and the results of his COSMOS models.  
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Figure 8.11 Converging Results for 20” Case 
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Figure 8.11 Converging Results for 30” Case 
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Figure 8.11 Converging Results for 40” Case 
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As an example of how the results converged after three runs, a specific case is shown in 

Fig.8.14. Here the span length is 30” and the web tension is 16.72 lbs. 
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Figure 8. 14 Converging Result for a Specific Case for Tapered Roller Problem  

 

It has been shown that the code converges nicely for cases from Chapter V. Some other cases 

were picked to see whether the convergence routine works well.  

In the first case free span length was 60 inches long and the web width was 24 inches wide. 

Other material properties were kept the same like the Beisel’s test material properties. In the 

Fig.8.15 the result for this case is shown. 
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Figure 8.15 Converging Result for a 60” Long Web 

In the second case, free span length was 80 inches long and the web width was 24 inches 

wide. In the Fig.8.16 the result for this case is shown. 
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Figure 8.16 Converging Result for a 80” Long Web 
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At the Fig.8.15 and Fig.8.16 results from different meshes are plotted. As seen from the 

figures the cases were converged after running two meshes. 

 

8.4 The Central Circular Void Case 

For the circular void case the code was modified to check for convergence and to run for 

three different mesh parameters if needed. 

If the user chooses the dimension of the web width as x, and the radius of the central void as 

r, the even integer value of (x/r) was assigned to the variable m which is the number of 

elements across the web width. The purpose of selecting m like that was to divide the web 

width homogeneously. The value of m was limited to not exceed forty eight and it was 

limited to be not less than twenty.  

If the dimension of the web span length was y (inches), the Excel interface used the Even 

value of y to assign n2, the number of elements in the MD in the free span. The variable n2 

was limited to not exceed fifty and it was limited to be not less than six. This parameter was 

set identically for the misaligned roller and the tapered roller case. 

The web was assumed to wrap the roller 90 degrees. If the value of one fourth of the roller 

circumference was z, the even integer value of three times of z was given to the n1, the 

number of elements in the MD crossing the roller. The value of n1 was limited to not exceed 

thirty and not be less than six. 

These mesh parameters were the suggested mesh parameters and their validity was shown at 

chapter six to model cases that were tested in the laboratory. The values of m and n2 for the 
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first mesh used in the convergence code are shown below: 

m = m – 8, n2 = n2 – 2 (8.1) 

For the second mesh the suggested values were used. Finally the third mesh the values of m 

and n2 are shown below: 

m = m + 8, n2 = n2 + 2 (8.2) 

In the void case the code was executed twice to study the impact of the hole location in the 

free span on the tension level required to induce wrinkles. The first run was executed when 

the circular hole was at a distance of ¼ of the span length from the downstream roller and the 

second run was executed when the circular hole was at a distance of ½ of the span length 

from the downstream roller. The code was modified to run for the first and second meshes 

for the first point and check whether the result from the second mesh was within 5% of the 

result that was calculated from the first mesh. If 5% relation was not valid the code was run 

with the third mesh. For the second point the choice of mesh was made based upon which 

mesh resulted in convergence for the first point. If the second mesh produced convergence 

for the first point the second point was also calculated with the second mesh. If the second 

mesh was not produced convergence for the first point, the second point was calculated using 

the third mesh. 

The flowchart for the convergence check for the void case is shown in Fig.8.17.  
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Figure 8. 17 Convergence Check for the Void Case 
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After updating the code the case seen at Fig.6.15 was run again. The result is shown at 

Fig.8.12.  
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Figure 8. 18 Result of Modified Code for the Case at Figure 6.15 

 

To show the convergence routine works well, two very different cases from those that 

produced the test data were executed. The first case was a wide web. The material properties 

and other dimensions were kept the same and the width of the web was increased to 50 

inches. In the Fig.8.19 the result for this case is shown. 
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Figure 8.19 Convergence Result for a Wide Web for Circular Void Code 

The second case was a long web. The material properties and other dimensions were kept the 

same and the length of the web was increased to 100 inches. In the Fig.8.20 the result for this 

case is shown. 
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Figure 8.20 Convergence Result for a Long Web for Circular Void Code 
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8.5 The Central Circular Non Uniform Web Case 

 

For the non uniformities case the code was modified to check convergence very similar to the 

void case.  

If the dimension the user input for web width was x (inches), the Excel interface multiplied 

the value x (in) by four and the Even function value of the result was assigned to variable m, 

the number of elements across the web width. If the value of m was less than twenty two, the 

value twenty two was given to the value of m. If the value of m was larger than fifty, the 

value fifty was assigned to the value of m. This is different from the void case because the 

central circular non uniform region may occupy a larger area than the central circular void.   

If the dimension the user input for web span length was y (in), the Excel interface evaluated 

the Even Function value of y and assigned it to the variable n2. The variable n2 was limited 

to not exceed fifty and it was limited to be not less than ten. 

The web was assumed to wrap the roller 90 degrees. If the value of one fourth of the roller 

circumference was z, the even integer value of three times of z was given to the n1, the 

number of elements in the MD crossing the roller. The value of n1 was limited to not exceed 

thirty and not be less than six. 

Similar to the void case in the non uniformities case was run twice to determine the impact of 

the non uniformity location in the web span on the web tension required to induce a wrinkle. 

For the first point the code was run for mesh one and mesh two. For the first mesh the values 

of m and n2 were taken from Eq.8.1. The second mesh parameters were those described in 

the previous paragraphs. The code was executed the results from the second mesh were 
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reviewed to determine if they were within 5% of the result from the first mesh. If so, the 

output result that was calculated from the second mesh was output as the converged values. If 

the results from meshes were not within 5%, the code then executed the third mesh. If the 

result from mesh three were within 5% of those from mesh two, the mesh three results were 

output as the converged values. For the third mesh the values of m and n2 were taken from 

Eq.8.2. The flowchart for the non uniform case is similar to the flowchart that is shown in 

Fig.8.17. After modifying the code the case seen at Fig.7.13 was run again. The results are 

shown in Fig.8.21.  
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Figure 8. 21 Result of Modified Code for the Case at Figure 7.15  

To check whether the routine produces convergence or not a case from Fig.7.12 was selected. 

It was a 50 inch wide and 50 inch long wide web. The web modeled was 0.001 inch thick. 

The roller radius was 1.45 inch. The web’s Young’s modulus was 712000 psi and the 
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Poisson’s ratio was assumed to be 0.3. The non uniform area was 3 inch away from the 

second roller and the diameters of non uniform area was 3 inches. In Fig.8.22 the results 

from COSMOS and Yurtcu’s modified Excel VBA are shown.  

 

0

5

10

15

20

25

30

0 5 10 15 20 25 30

L-
N

o
n

u
n

if
o

rm
 A

re
a

 (
in

c)

Tension (pli)

Cosmos Result

Yurtcu's Model (VBA)

Linear (Yurtcu's Model (VBA))

No Wrinkles

Wrinkles

Mesh 2

Mesh 2

 

Figure 8. 22 Result of Modified Code for a Wide, Long Web  
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9. CHAPTER IV 

 

 

9.1 SUMMARY 

 

The objective of the proposed research was to determine whether user friendly finite element 

codes could be developed that would solve nonlinear instability problems associated with 

strain state dependent material properties and boundary conditions of moving webs.  

 

The results of the work show that for the case of a web encountering a misaligned roller, a 

web encountering a tapered roller, for the case of central circular discontinuity, and for the 

case of central circular non uniformities this is in fact possible. The codes developed rely on 

inputs of simple geometry and material parameters which should be apparent to the user. 

From there on the code executes automatically in the meshing of the problem, the generation 

of the elastic and wrinkle membrane elements, and the solution of the nonlinear instability 



 170

problem. The results from this codes have been shown to compare favorably with test results 

and results from commercial FE codes.  

Interpolation methods were used successfully while automating the code. During the first 

interpolation process two tension levels that were too low to wrinkle the web were chosen. At 

the end of the first interpolation process these two starting tension levels were increased in 

such a way that one was greater than the tension that will buckle the web and the other was 

less than the tension that will buckle the web. After the second interpolation process the code 

was found the tension that would buckle the web. 

While working on misaligned roller case a new slack edge criterion that could be used for 

both long spans and short spans was established.  

While modeling the hole case a circle hole, a square hole and a equilateral quadrangle hole 

were compared and it is found that among these three hole shapes the quadrangle shaped hole 

could withstand more tension prior to wrinkling. Thus if cutting voids in webs is necessary, 

this hole shape is more robust than others in resisting wrinkles.  

 

9.2   RECOMMENDATIONS FOR THE FUTURE STUDY 

 

In this study, problems are modeled in five sections: the upstream roller, the upstream span, 

the downstream roller, the downstream span and the existing roller. In the future these 

problems can be modeled in seven or more sections and the behavior of the problem can be 

observed in more detail. 
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For the tapered roller case, the model that was suggested had limitations for short web spans. 

In the future, if boundary conditions that would cover both long web spans and short web 

spans the code that calculates the taper for rollers could be modified to give reasonable 

results for short web spans too.    

For the misaligned roller case, the tapered roller case and the centrally located circular void 

case, the results of the Excel VBA code compared well with experimental results. For the 

non uniform web case the results of the Excel VBA code were not compared with the 

experimental results, since none existed. In the future, if successful experiments are 

completed, the results of the code could be compared with the experimental results. Since the 

VBA code results and COSMOS results compare well, there is at least numerical validation.   
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APPENDIX EXCEL VBA CODE FOR MISALIGNED ROLLERS  

 

Option Explicit 
Dim H, L1, L2, W, W1 As Double 'dimensional paramet ers of domain 
Dim n1, n2, k1, m, en As Integer ' mesh density par ameters 
Dim z1, z2, m1, m2, m3, m4, q1, q2 As Integer 'loop  counters 
Dim roll1P(), roll2P(), roll3P(), span1P(), span2P( ) As Double 
Dim roll1en, roll2en, roll3en, span1en, span2en As Integer 
Dim KG(), ke(), u(), FG(), ue(8) As Double 
Dim te As Double 'element thickness 
Dim p(8) As Integer 'local to global pointer 
Dim matcons, E, v, D(3, 3) As Double 
Dim x1, x2, x3, x4, y1, y2, y3, y4 As Double 
Dim sf1t, sf1s, sf2t, sf2s, sf3t, sf3s, sf4t, sf4s As Double 
Dim detJ, J11, J12, J21, J22 As Double 
Dim BL(3, 8), t, s, gp(2) As Double 
Dim STRAINP(2), STRAINXY(), STRESSXY(), PP, QQ As D ouble 
Dim pfixing(), pbinding(), pubinding(), pload(), PC , Control As Double 
Dim sdummy, dimdummy, sbw As Integer 
Dim para, critical, Sigma2, Sigma1, SigmaS, sycr As  Double 
Dim PSTRAIN(), PQSTATE(), ELEMENTSTATE(), ESA(), ST RAINPAVE() As Double 
Dim iterload, iterloadT, itercon As Integer 
Dim TRACTIONX, TRACTIONXY, FORCEX, FORCEXY, NFORCEX , NFORCEXY, F1, F2, F3, FS As Double 
Dim D1, D2, Tangent, Angle, Downlimit, Uplimit As D ouble 
Dim clock As Double 
Dim TempAngle1, TempAngle2, TempAngle3, TempSigmaS1 , TempSigmaS2, TempSigmaS3, TempFS1, 
TempFS2, TempFS3 As Double 
Dim Meshparameter As Integer 
 
 
Sub WRINKLINGmain() 
clock = Timer 
 
Meshparameter = 1 
Control = 0 
SigmaS = 0 
Range("message").Clear 
Range("arad").Clear 
Range("message2").Clear 
 
Call WRINKLINGmesh 
 
Call WRINKLINGmain2 
Range("ARAD") = Angle 
TempAngle1 = Angle 
 
Range("MAXSY") = SigmaS 
TempSigmaS1 = SigmaS 
 
Range("TXY") = FS 
TempFS1 = FS 
 
'increasing mesh density 
 
Meshparameter = 2 
Control = 0 
SigmaS = 0 
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Range("message").Clear 
Range("arad").Clear 
 
Call WRINKLINGmesh 
 
Call WRINKLINGmain2 
Range("ARAD") = Angle 
TempAngle2 = Angle 
 
Range("MAXSY") = SigmaS 
TempSigmaS2 = SigmaS 
 
Range("TXY") = FS 
TempFS2 = FS 
 
 
  If (0.95 * TempAngle1) <= TempAngle2 Or (1.05 * T empAngle1) >= TempAngle2 Then 
 
               Range("ARAD") = TempAngle2 
               
               Range("MAXSY") = TempSigmaS2 
 
               Range("TXY") = TempFS1 
               Range("message2") = "Result Converge d" 
                
               Else: 
                      
                     Meshparameter = 3 
                     Control = 0 
                     SigmaS = 0 
                     Range("message").Clear 
                     Range("arad").Clear 
 
                     Call WRINKLINGmesh 
 
                     Call WRINKLINGmain2 
                     Range("ARAD") = Angle 
                     TempAngle3 = Angle 
 
                     Range("MAXSY") = SigmaS 
                     TempSigmaS3 = SigmaS 
 
                     Range("TXY") = FS 
                     TempFS3 = FS 
    
                     If (0.95 * TempAngle2) <= Temp Angle3 Or (1.05 * TempAngle2) >= 
TempAngle3 Then 
                     Range("message2") = "Result Co nverged" 
                     Else: Range("message2") = "Res ult Not Converged,Please Enter Mesh 
Parameters Manually" 
                     End If 
    
  End If 
                        
                             
Range(Cells(40, 2), Cells(40, 2)) = TempAngle1 
Range(Cells(40, 3), Cells(40, 3)) = TempAngle2 
Range(Cells(40, 4), Cells(40, 4)) = TempAngle3 
 
 
Range("TT") = Timer - clock 
Range("message") = "FEA Complete" 
End Sub 
 
Sub WRINKLINGmain2() 
 
 
'Worksheets("Sheet1").Activate 
 
'Range(Cells(17, 1), Cells(17, 1)).Clear 
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'traction components input 
 
sycr = Range("SYCR") 
 
TRACTIONX = Range("TX") 
FORCEX = TRACTIONX * H * te 
NFORCEX = FORCEX / m 
 
 
 
TRACTIONXY = (TRACTIONX * H) / (6 * (W1 + L2 + L1 +  L2 + W1)) 
F2 = TRACTIONXY 
F3 = 2 * TRACTIONXY 
 
Do Until SigmaS > sycr 
 
 
    FORCEXY = F2 * H * te 
    NFORCEXY = FORCEXY / m 
 
    Call WRINKLINGsystem 
  
    Sigma2 = critical 
 
 
    F1 = F2 / 2 
 
    FORCEXY = F1 * H * te 
    NFORCEXY = FORCEXY / m 
 
    Call WRINKLINGsystem 
 
    Sigma1 = critical 
 
    FS = ((sycr - Sigma2) * (F2 - F1)) / (Sigma2 - Sigma1) + F2 
     
    If FS > F3 And Control = 0 Then 
    FS = F3 
    Control = Control + 1 
    End If 
 
    FORCEXY = FS * H * te 
    NFORCEXY = FORCEXY / m 
 
    Call WRINKLINGsystem 
     
    SigmaS = critical 
 
    F1 = F2 
    F2 = FS 
                    
 
 
Loop 
 
 
 
Downlimit = 0.95 * sycr 
Uplimit = 1.05 * sycr 
 
Do Until Downlimit <= SigmaS And SigmaS <= Uplimit 
 
    FORCEXY = F2 * H * te 
    NFORCEXY = FORCEXY / m 
 
    Call WRINKLINGsystem 
  
    Sigma2 = critical 
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    FORCEXY = F1 * H * te 
    NFORCEXY = FORCEXY / m 
 
    Call WRINKLINGsystem 
 
    Sigma1 = critical 
 
 
 
    FS = ((sycr - Sigma1) * (F2 - F1)) / (Sigma2 - Sigma1) + F1 
 
    FORCEXY = FS * H * te 
    NFORCEXY = FORCEXY / m 
 
    Call WRINKLINGsystem 
     
    SigmaS = critical 
        
       If SigmaS > sycr Then 
                    F2 = FS 
        
        
        ElseIf SigmaS < sycr Then 
                     F1 = FS 
 
        End If 
 
 
Loop 
 
 
D1 = u(2 * ((k1 + n2 + n1) * (m + 1) + m / 2 + 1)) 
D2 = u(2 * ((k1 + n2) * (m + 1) + m / 2 + 1)) 
 
Tangent = (D1) / (L1 / 2) 
Angle = Atn(Tangent) 
 
 
'Worksheets("StressX").Activate 
'Worksheets("StressX").Cells.ClearContents 
'For q1 = 1 To k1 + n2 + n1 
'For q2 = 1 To m 
'en = (q1 - 1) * m + q2 
 
''Range(Cells(25 - q2, q1 + 10 + (k1 + n2 + n1 + 2)  * (iterload - 1)), Cells(25 - q2, q1 + 10 
+ (k1 + n2 + n1 + 2) * (iterload - 1))) = ESA(en, 1 ) 
''Range(Cells(55 - q2, q1 + 10 + (k1 + n2 + n1 + 2)  * (iterload - 1)), Cells(55 - q2, q1 + 10 
+ (k1 + n2 + n1 + 2) * (iterload - 1))) = ESA(en, 2 ) 
 
'Range(Cells(25 - q2, q1 + 6), Cells(25 - q2, q1 + 6)) = ESA(en, 1) 
''Range(Cells(55 - q2, q1 + 6), Cells(55 - q2, q1 +  6)) = ESA(en, 2) 
''Range(Cells(85 - q2, q1 + 6), Cells(85 - q2, q1 +  6)) = ESA(en, 3) 
'Next 
'Next 
 
 
'For q1 = 1 To k1 
'Range(Cells(24 - m, q1 + 6), Cells(24 - m, q1 + 6) ) = q1 
''Range(Cells(54 - m, q1 + 6), Cells(54 - m, q1 + 6 )) = q1 
'Next 
 
'For q1 = 1 To n2 
'Range(Cells(24 - m, q1 + k1 + 6), Cells(24 - m, q1  + k1 + 6)) = q1 
''Range(Cells(54 - m, q1 + k1 + 6), Cells(54 - m, q 1 + k1 + 6)) = q1 
'Next 
 
'For q1 = 1 To n1 
'Range(Cells(24 - m, q1 + k1 + n2 + 6), Cells(24 - m, q1 + k1 + n2 + 6)) = q1 
''Range(Cells(54 - m, q1 + k1 + n2 + 6), Cells(54 -  m, q1 + k1 + n2 + 6)) = q1 
'Next 
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'For q1 = 1 To m 
'Range(Cells(25 - q1, 6), Cells(25 - q1, 6)) = q1 
''Range(Cells(55 - q1, 6), Cells(55 - q1, 6)) = q1 
'Next 
 
'Worksheets("StressY").Activate 
'Worksheets("StressY").Cells.ClearContents 
'For q1 = 1 To k1 + n2 + n1 
'For q2 = 1 To m 
'en = (q1 - 1) * m + q2 
 
''Range(Cells(25 - q2, q1 + 10 + (k1 + n2 + n1 + 2)  * (iterload - 1)), Cells(25 - q2, q1 + 10 
+ (k1 + n2 + n1 + 2) * (iterload - 1))) = ESA(en, 1 ) 
''Range(Cells(55 - q2, q1 + 10 + (k1 + n2 + n1 + 2)  * (iterload - 1)), Cells(55 - q2, q1 + 10 
+ (k1 + n2 + n1 + 2) * (iterload - 1))) = ESA(en, 2 ) 
 
'Range(Cells(25 - q2, q1 + 6), Cells(25 - q2, q1 + 6)) = ESA(en, 2) 
''Range(Cells(55 - q2, q1 + 6), Cells(55 - q2, q1 +  6)) = ESA(en, 2) 
''Range(Cells(85 - q2, q1 + 6), Cells(85 - q2, q1 +  6)) = ESA(en, 3) 
'Next 
'Next 
 
 
'For q1 = 1 To k1 
'Range(Cells(24 - m, q1 + 6), Cells(24 - m, q1 + 6) ) = q1 
''Range(Cells(54 - m, q1 + 6), Cells(54 - m, q1 + 6 )) = q1 
'Next 
 
'For q1 = 1 To n2 
'Range(Cells(24 - m, q1 + k1 + 6), Cells(24 - m, q1  + k1 + 6)) = q1 
''Range(Cells(54 - m, q1 + k1 + 6), Cells(54 - m, q 1 + k1 + 6)) = q1 
'Next 
 
'For q1 = 1 To n1 
'Range(Cells(24 - m, q1 + k1 + n2 + 6), Cells(24 - m, q1 + k1 + n2 + 6)) = q1 
''Range(Cells(54 - m, q1 + k1 + n2 + 6), Cells(54 -  m, q1 + k1 + n2 + 6)) = q1 
'Next 
 
'For q1 = 1 To m 
'Range(Cells(25 - q1, 6), Cells(25 - q1, 6)) = q1 
''Range(Cells(55 - q1, 6), Cells(55 - q1, 6)) = q1 
'Next 
 
'Worksheets("StressXY").Activate 
'Worksheets("StressXY").Cells.ClearContents 
'For q1 = 1 To k1 + n2 + n1 
'For q2 = 1 To m 
'en = (q1 - 1) * m + q2 
 
''Range(Cells(25 - q2, q1 + 10 + (k1 + n2 + n1 + 2)  * (iterload - 1)), Cells(25 - q2, q1 + 10 
+ (k1 + n2 + n1 + 2) * (iterload - 1))) = ESA(en, 1 ) 
''Range(Cells(55 - q2, q1 + 10 + (k1 + n2 + n1 + 2)  * (iterload - 1)), Cells(55 - q2, q1 + 10 
+ (k1 + n2 + n1 + 2) * (iterload - 1))) = ESA(en, 2 ) 
 
'Range(Cells(25 - q2, q1 + 6), Cells(25 - q2, q1 + 6)) = ESA(en, 3) 
''Range(Cells(55 - q2, q1 + 6), Cells(55 - q2, q1 +  6)) = ESA(en, 2) 
''Range(Cells(85 - q2, q1 + 6), Cells(85 - q2, q1 +  6)) = ESA(en, 3) 
'Next 
'Next 
 
 
'For q1 = 1 To k1 
'Range(Cells(24 - m, q1 + 6), Cells(24 - m, q1 + 6) ) = q1 
''Range(Cells(54 - m, q1 + 6), Cells(54 - m, q1 + 6 )) = q1 
'Next 
 
'For q1 = 1 To n2 
'Range(Cells(24 - m, q1 + k1 + 6), Cells(24 - m, q1  + k1 + 6)) = q1 
''Range(Cells(54 - m, q1 + k1 + 6), Cells(54 - m, q 1 + k1 + 6)) = q1 
'Next 
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'For q1 = 1 To n1 
'Range(Cells(24 - m, q1 + k1 + n2 + 6), Cells(24 - m, q1 + k1 + n2 + 6)) = q1 
''Range(Cells(54 - m, q1 + k1 + n2 + 6), Cells(54 -  m, q1 + k1 + n2 + 6)) = q1 
'Next 
 
'For q1 = 1 To m 
'Range(Cells(25 - q1, 6), Cells(25 - q1, 6)) = q1 
''Range(Cells(55 - q1, 6), Cells(55 - q1, 6)) = q1 
'Next 
 
'Worksheets("Roller Misalignment").Activate 
End Sub 
Sub WRINKLINGsystem() 
 
 
 
For iterload = 1 To 4 
 
'For itercon = 1 To 1 
 
 
Range(Cells(24, 2), Cells(24, 2)) = iterload 
'Range(Cells(25, 2), Cells(25, 2)) = itercon 
 
 
 
 
'ReDim KG(2 * (k1 + n2 + n1 + n2 + k1 + 1) * (m + 1 ), 2 * ((k1) * (m + 1) + 2)), FG(2 * (k1 + 
n2 + n1 + n2 + k1 + 1) * (m + 1)) 
ReDim KG(2 * (k1 + n2 + n1 + n2 + k1 + 1) * (m + 1) , 2 * (m + 3)), FG(2 * (k1 + n2 + n1 + n2 
+ k1 + 1) * (m + 1)) 
 
'form roll1 region's elements 
 
Call ROLLmaterial 
 
For q1 = 1 To k1 
For q2 = 1 To m 
 
en = (q1 - 1) * m + q2 
 
x1 = roll1P(en, 1) 
x2 = roll1P(en, 2) 
x3 = roll1P(en, 3) 
x4 = roll1P(en, 4) 
y1 = roll1P(en, 5) 
y2 = roll1P(en, 6) 
y3 = roll1P(en, 7) 
y4 = roll1P(en, 8) 
 
 
Call WRINKLINGelement 
 
 
'pointers 
 
p(1) = 2 * ((q1 - 1) * (m + 1) + q2) - 1 
p(2) = 2 * ((q1 - 1) * (m + 1) + q2) 
 
p(3) = 2 * ((q1 - 1) * (m + 1) + q2 + 1) - 1 
p(4) = 2 * ((q1 - 1) * (m + 1) + q2 + 1) 
 
p(5) = 2 * ((q1) * (m + 1) + q2) - 1 
p(6) = 2 * ((q1) * (m + 1) + q2) 
 
p(7) = 2 * ((q1) * (m + 1) + q2 + 1) - 1 
p(8) = 2 * ((q1) * (m + 1) + q2 + 1) 
 
 
For m1 = 1 To 8 
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For m2 = m1 To 8 
KG(p(m1), p(m2) - p(m1) + 1) = KG(p(m1), p(m2) - p( m1) + 1) + ke(m1, m2) 
Next 
Next 
 
 
Next 
Next 
 
'form span1 region's elements 
For q1 = 1 To n2 
For q2 = 1 To m 
 
en = (q1 - 1) * m + q2 
 
 
 
x1 = span1P(en, 1) 
x2 = span1P(en, 2) 
x3 = span1P(en, 3) 
x4 = span1P(en, 4) 
y1 = span1P(en, 5) 
y2 = span1P(en, 6) 
y3 = span1P(en, 7) 
y4 = span1P(en, 8) 
 
'pointers 
 
p(1) = 2 * ((k1 + q1 - 1) * (m + 1) + q2) - 1 
p(2) = 2 * ((k1 + q1 - 1) * (m + 1) + q2) 
 
p(3) = 2 * ((k1 + q1 - 1) * (m + 1) + q2 + 1) - 1 
p(4) = 2 * ((k1 + q1 - 1) * (m + 1) + q2 + 1) 
 
p(5) = 2 * ((k1 + q1) * (m + 1) + q2) - 1 
p(6) = 2 * ((k1 + q1) * (m + 1) + q2) 
 
p(7) = 2 * ((k1 + q1) * (m + 1) + q2 + 1) - 1 
p(8) = 2 * ((k1 + q1) * (m + 1) + q2 + 1) 
 
For m1 = 1 To 8 
ue(m1) = u(p(m1)) 
Next 
 
 
Call WRINKLINGstrain  'calculate ex,ey,exy,e1,e2 
 
 
Call WRINKLINGcriteria 'check for the state Taut?Sl ack?Wrinkled? 
 
 
Call WRINKLINGelement 'form element stiffness matri x 
 
 
For m1 = 1 To 8 
For m2 = m1 To 8 
KG(p(m1), p(m2) - p(m1) + 1) = KG(p(m1), p(m2) - p( m1) + 1) + ke(m1, m2) 
Next 
Next 
 
 
Next 
Next 
 
'form roll2 region's elements 
Call ROLLmaterial 
 
For q1 = 1 To n1 
For q2 = 1 To m 
 
en = (q1 - 1) * m + q2 
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x1 = roll2P(en, 1) 
x2 = roll2P(en, 2) 
x3 = roll2P(en, 3) 
x4 = roll2P(en, 4) 
y1 = roll2P(en, 5) 
y2 = roll2P(en, 6) 
y3 = roll2P(en, 7) 
y4 = roll2P(en, 8) 
 
Call WRINKLINGelement 
 
'pointers 
 
p(1) = 2 * ((k1 + n2 + q1 - 1) * (m + 1) + q2) - 1 
p(2) = 2 * ((k1 + n2 + q1 - 1) * (m + 1) + q2) 
 
p(3) = 2 * ((k1 + n2 + q1 - 1) * (m + 1) + q2 + 1) - 1 
p(4) = 2 * ((k1 + n2 + q1 - 1) * (m + 1) + q2 + 1) 
 
p(5) = 2 * ((k1 + n2 + q1) * (m + 1) + q2) - 1 
p(6) = 2 * ((k1 + n2 + q1) * (m + 1) + q2) 
 
p(7) = 2 * ((k1 + n2 + q1) * (m + 1) + q2 + 1) - 1 
p(8) = 2 * ((k1 + n2 + q1) * (m + 1) + q2 + 1) 
 
 
For m1 = 1 To 8 
For m2 = m1 To 8 
KG(p(m1), p(m2) - p(m1) + 1) = KG(p(m1), p(m2) - p( m1) + 1) + ke(m1, m2) 
Next 
Next 
 
 
Next 
Next 
 
'form span2 region's elements 
For q1 = 1 To n2 
For q2 = 1 To m 
 
en = (q1 - 1) * m + q2 
 
x1 = span2P(en, 1) 
x2 = span2P(en, 2) 
x3 = span2P(en, 3) 
x4 = span2P(en, 4) 
y1 = span2P(en, 5) 
y2 = span2P(en, 6) 
y3 = span2P(en, 7) 
y4 = span2P(en, 8) 
 
 
'pointers 
 
p(1) = 2 * ((k1 + n2 + n1 + q1 - 1) * (m + 1) + q2)  - 1 
p(2) = 2 * ((k1 + n2 + n1 + q1 - 1) * (m + 1) + q2)  
 
p(3) = 2 * ((k1 + n2 + n1 + q1 - 1) * (m + 1) + q2 + 1) - 1 
p(4) = 2 * ((k1 + n2 + n1 + q1 - 1) * (m + 1) + q2 + 1) 
 
p(5) = 2 * ((k1 + n2 + n1 + q1) * (m + 1) + q2) - 1  
p(6) = 2 * ((k1 + n2 + n1 + q1) * (m + 1) + q2) 
 
p(7) = 2 * ((k1 + n2 + n1 + q1) * (m + 1) + q2 + 1)  - 1 
p(8) = 2 * ((k1 + n2 + n1 + q1) * (m + 1) + q2 + 1)  
 
For m1 = 1 To 8 
ue(m1) = u(p(m1)) 
Next 
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'Call WRINKLINGstrain  'calculate ex,ey,exy,e1,e2 
 
'Call WRINKLINGcriteria 'check for the state Taut?S lack?Wrinkled? 
 
Call ROLLmaterial 
 
Call WRINKLINGelement 'form element stiffness matri x 
 
 
 
For m1 = 1 To 8 
For m2 = m1 To 8 
KG(p(m1), p(m2) - p(m1) + 1) = KG(p(m1), p(m2) - p( m1) + 1) + ke(m1, m2) 
Next 
Next 
 
 
Next 
Next 
 
'form roll3 region's elements 
 
Call ROLLmaterial 
 
For q1 = 1 To k1 
For q2 = 1 To m 
 
en = (q1 - 1) * m + q2 
 
x1 = roll3P(en, 1) 
x2 = roll3P(en, 2) 
x3 = roll3P(en, 3) 
x4 = roll3P(en, 4) 
y1 = roll3P(en, 5) 
y2 = roll3P(en, 6) 
y3 = roll3P(en, 7) 
y4 = roll3P(en, 8) 
 
Call WRINKLINGelement 
 
'pointers 
 
p(1) = 2 * ((k1 + n2 + n1 + n2 + q1 - 1) * (m + 1) + q2) - 1 'k1 + n2 + n1+n2 
p(2) = 2 * ((k1 + n2 + n1 + n2 + q1 - 1) * (m + 1) + q2) 
 
p(3) = 2 * ((k1 + n2 + n1 + n2 + q1 - 1) * (m + 1) + q2 + 1) - 1 
p(4) = 2 * ((k1 + n2 + n1 + n2 + q1 - 1) * (m + 1) + q2 + 1) 
 
p(5) = 2 * ((k1 + n2 + n1 + n2 + q1) * (m + 1) + q2 ) - 1 
p(6) = 2 * ((k1 + n2 + n1 + n2 + q1) * (m + 1) + q2 ) 
 
p(7) = 2 * ((k1 + n2 + n1 + n2 + q1) * (m + 1) + q2  + 1) - 1 
p(8) = 2 * ((k1 + n2 + n1 + n2 + q1) * (m + 1) + q2  + 1) 
 
 
For m1 = 1 To 8 
For m2 = m1 To 8 
KG(p(m1), p(m2) - p(m1) + 1) = KG(p(m1), p(m2) - p( m1) + 1) + ke(m1, m2) 
Next 
Next 
 
 
Next 
Next 
 
'determine penalty number 
PC = 0 
For m1 = 1 To 2 * (m + 1) * (k1 + n2 + n1 + n2 + k1  + 1) 
 
If KG(m1, 1) > PC Then PC = KG(m1, 1) 
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Next 
 
PC = PC * 10000 
 
'apply constraints 
 
Call WRINKLINGconstraints 
 
'apply force 
 
Call WRINKLINGforceshear 
 
Call WRINKLINGforcenormal 
 
 
'solve system 
 
Call WRINKLINGsolver 
 
'check state of the elements 
 
'Call WRINKLINGcheck 
 
'print state of the elements 
 
'For q1 = 1 To n2 
'For q2 = 1 To m 
 
'en = (q1 - 1) * m + q2 
 
'Range(Cells(5 + en, 4), Cells(5 + en, 4)) = en 
'Range(Cells(5 + en, 4 + itercon), Cells(5 + en, 4 + itercon)) = PQSTATE(en, 1) 
'Range(Cells(5 + en, 16 + itercon), Cells(5 + en, 1 6 + itercon)) = PQSTATE(en, 2) 
 
'Next 
'Next 
 
'For q1 = 1 To n2 
'For q2 = 1 To m 
 
'en = (q1 - 1) * m + q2 
 
'Range(Cells(5 + en, 9 + iter), Cells(5 + en, 9 + i ter)) = PQSTATE(en + n2 * m, 1) 
 
'Next 
'Next 
 
'Next 'itercon 
Next 'iterload 
 
 
 
Call WRINKLINGstresscalc 
 
'For q1 = 1 To k1 + n2 + n1 
'For q2 = 1 To m 
'en = (q1 - 1) * m + q2 
 
'Range(Cells(25 - q2, q1 + 10 + (k1 + n2 + n1 + 2) * (iterload - 1)), Cells(25 - q2, q1 + 10 
+ (k1 + n2 + n1 + 2) * (iterload - 1))) = ESA(en, 1 ) 
'Range(Cells(55 - q2, q1 + 10 + (k1 + n2 + n1 + 2) * (iterload - 1)), Cells(55 - q2, q1 + 10 
+ (k1 + n2 + n1 + 2) * (iterload - 1))) = ESA(en, 2 ) 
 
'Range(Cells(25 - q2, q1 + 6), Cells(25 - q2, q1 + 6)) = ESA(en, 1) 
'Range(Cells(55 - q2, q1 + 6), Cells(55 - q2, q1 + 6)) = ESA(en, 2) 
'Range(Cells(85 - q2, q1 + 6), Cells(85 - q2, q1 + 6)) = ESA(en, 3) 
'Next 
'Next 
 
critical = 0 
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    For q1 = 1 To m 
    en = (k1 + n2) * m + q1 
    If critical < Abs(ESA(en, 2)) Then critical = A bs(ESA(en, 2)) 
 
    Next 
     
'For q1 = 1 To k1 
'Range(Cells(24 - m, q1 + 6), Cells(24 - m, q1 + 6) ) = q1 
'Range(Cells(54 - m, q1 + 6), Cells(54 - m, q1 + 6) ) = q1 
'Next 
 
'For q1 = 1 To n2 
'Range(Cells(24 - m, q1 + k1 + 6), Cells(24 - m, q1  + k1 + 6)) = q1 
'Range(Cells(54 - m, q1 + k1 + 6), Cells(54 - m, q1  + k1 + 6)) = q1 
'Next 
 
'For q1 = 1 To n1 
'Range(Cells(24 - m, q1 + k1 + n2 + 6), Cells(24 - m, q1 + k1 + n2 + 6)) = q1 
'Range(Cells(54 - m, q1 + k1 + n2 + 6), Cells(54 - m, q1 + k1 + n2 + 6)) = q1 
'Next 
 
'For q1 = 1 To m 
'Range(Cells(25 - q1, 6), Cells(25 - q1, 6)) = q1 
'Range(Cells(55 - q1, 6), Cells(55 - q1, 6)) = q1 
'Next 
 
'Call WRINKLINGstresscalc 
 
 
'print u 
'For m1 = 1 To (m + 1) 
'For m2 = 1 To n1 + 1 
'Range(Cells(5 + m1, 4 + m2), Cells(5 + m1, 4 + m2) ) = u(2 * ((m2 - 1) * (m + 1) + m1)) 
'Next 
'Next 
 
'For m1 = 1 To (m + 1) 
 
'Range(Cells(6 + m + m1, 5), Cells(6 + m + m1, 5)) = u(2 * ((3 * n1 + 2 * n2) * (m + 1) + 
m1)) 
 
'Next 
 
End Sub 
Sub WRINKLINGmesh() 
 
 
'input variables 
 
H = Range("WW") 
 
 
m = Range("mw") 
 
If m > 30 Then m = 30 
If m < 6 Then m = 6 
 
If Meshparameter = 1 Then 
   m = m - (m / 2 - 1) 
    
   ElseIf Meshparameter = 2 Then 
   m = m 
    
   ElseIf Meshparameter = 3 Then 
   m = m + (m / 2 - 1) 
End If 
                     
If (m Mod 2) <> 0 Then m = m + 1 
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L1 = Range("rs") 
 
 
L2 = Range("fs") 
 
n1 = Range("rsn") 
 If n1 > 30 Then n1 = 30 
 If n1 < 6 Then n1 = 6 
 
 
n2 = Range("fsn") 
 If n2 > 50 Then n2 = 50 
 If n2 < 6 Then n2 = 6 
 
 If Meshparameter = 1 Then 
   n2 = n2 - (n2 / 2 - 1) 
 ElseIf Meshparameter = 2 Then 
   n2 = n2 
 ElseIf Meshparameter = 3 Then 
   n2 = n2 + (n2 / 2 - 1) 
 End If 
 
If (n2 Mod 2) <> 0 Then n2 = n2 + 1 
 
 
te = Range("TE") 
E = Range("Ex") 
v = Range("Prxy") 
 
'k1 = 10 
'W = H / m 
'W1 = k1 * W 
k1 = n1 
W1 = L1 
 
 
'gauss points 
gp(1) = 0.57735 
gp(2) = -0.57735 
 
'penalty constraint 
 
PC = 10 ^ 12 
 
'ReDim KG(2 * (k1 + n2 + n1 + n2 + k1) * (m + 1), 2  * ((k1) * (m + 1) + 1)), u(2 * (k1 + n2 + 
n1 + n2 + k1 + 1) * (m + 1)) 
ReDim KG(2 * (k1 + n2 + n1 + n2 + k1) * (m + 1), 2 * (m + 3)), u(2 * (k1 + n2 + n1 + n2 + k1 
+ 1) * (m + 1)) 
 
ReDim FG(2 * (k1 + n2 + n1 + n2 + k1 + 1) * (m + 1) ) 
 
ReDim pbinding(k1 + 1) 
ReDim pload(m + 1) 
ReDim pfixing(2 * (m + 1)) 
 
ReDim PSTRAIN(2 * m * n2, 2), PQSTATE(2 * m * n2, 2 ), ELEMENTSTATE(2 * m * n2) 
ReDim ESA((k1 + n1 + n2) * m, 3) 
 
'form up roll1 region position array 
 
roll1en = k1 * m 
 
ReDim roll1P(roll1en, 8) 
 
For q1 = 1 To k1 
For q2 = 1 To m 
en = (q1 - 1) * m + q2 
 
roll1P(en, 1) = (q1 - 1) * W1 / k1 
roll1P(en, 2) = roll1P(en, 1) 
roll1P(en, 3) = (q1) * W1 / k1 
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roll1P(en, 4) = roll1P(en, 3) 
 
roll1P(en, 5) = (q2 - 1) * H / m 
roll1P(en, 6) = (q2) * H / m 
roll1P(en, 7) = roll1P(en, 5) 
roll1P(en, 8) = roll1P(en, 6) 
 
 
Next 
Next 
 
 
'form up span1 region position array 
 
span1en = n2 * m 
 
ReDim span1P(span1en, 8) 
 
For q1 = 1 To n2 
For q2 = 1 To m 
en = (q1 - 1) * m + q2 
 
 
 
span1P(en, 1) = W1 + (q1 - 1) * L2 / n2 
span1P(en, 2) = span1P(en, 1) 
span1P(en, 3) = W1 + (q1) * L2 / n2 
span1P(en, 4) = span1P(en, 3) 
 
span1P(en, 5) = (q2 - 1) * H / m 
span1P(en, 6) = (q2) * H / m 
span1P(en, 7) = span1P(en, 5) 
span1P(en, 8) = span1P(en, 6) 
 
 
Next 
Next 
 
 
'form up roll2 region position array 
roll2en = n1 * m 
 
ReDim roll2P(roll2en, 8) 
 
For q1 = 1 To n1 
For q2 = 1 To m 
en = (q1 - 1) * m + q2 
 
roll2P(en, 1) = W1 + L2 + (q1 - 1) * L1 / n1 
roll2P(en, 2) = roll2P(en, 1) 
roll2P(en, 3) = W1 + L2 + (q1) * L1 / n1 
roll2P(en, 4) = roll2P(en, 3) 
 
roll2P(en, 5) = (q2 - 1) * H / m 
roll2P(en, 6) = (q2) * H / m 
roll2P(en, 7) = roll2P(en, 5) 
roll2P(en, 8) = roll2P(en, 6) 
 
 
Next 
Next 
 
'form up span2 region position array 
 
span2en = n2 * m 
 
ReDim span2P(span1en, 8) 
 
For q1 = 1 To n2 
For q2 = 1 To m 
en = (q1 - 1) * m + q2 
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span2P(en, 1) = W1 + L1 + L2 + (q1 - 1) * L2 / n2 
span2P(en, 2) = span2P(en, 1) 
span2P(en, 3) = W1 + L1 + L2 + (q1) * L2 / n2 
span2P(en, 4) = span2P(en, 3) 
 
span2P(en, 5) = (q2 - 1) * H / m 
span2P(en, 6) = (q2) * H / m 
span2P(en, 7) = span2P(en, 5) 
span2P(en, 8) = span2P(en, 6) 
 
 
Next 
Next 
 
'form up roll3 region position array 
roll3en = n1 * m 
 
ReDim roll3P(roll3en, 8) 
 
For q1 = 1 To k1 
For q2 = 1 To m 
en = (q1 - 1) * m + q2 
 
roll3P(en, 1) = W1 + L2 + L1 + L2 + (q1 - 1) * W1 /  k1 
roll3P(en, 2) = roll3P(en, 1) 
roll3P(en, 3) = W1 + L2 + L1 + L2 + (q1) * W1 / k1 
roll3P(en, 4) = roll3P(en, 3) 
 
roll3P(en, 5) = (q2 - 1) * H / m 
roll3P(en, 6) = (q2) * H / m 
roll3P(en, 7) = roll3P(en, 5) 
roll3P(en, 8) = roll3P(en, 6) 
 
 
Next 
Next 
 
 
End Sub 
 
 
Sub WRINKLINGelement() 
 
ReDim ke(8, 8) 
 
For z1 = 1 To 2 
For z2 = 1 To 2 
 
t = gp(z1) 
s = gp(z2) 
 
'derivatives of shape functions 
sf1t = (-1 + s) / 4 
sf1s = (-1 + t) / 4 
 
sf2t = (-1 - s) / 4 
sf2s = (1 - t) / 4 
 
sf3t = (1 - s) / 4 
sf3s = (-1 - t) / 4 
 
sf4t = (1 + s) / 4 
sf4s = (1 + t) / 4 
 
'calculate jakobien 
 
J11 = x1 * sf1t + x2 * sf2t + x3 * sf3t + x4 * sf4t  
J12 = y1 * sf1t + y2 * sf2t + y3 * sf3t + y4 * sf4t  
J21 = x1 * sf1s + x2 * sf2s + x3 * sf3s + x4 * sf4s  
J22 = y1 * sf1s + y2 * sf2s + y3 * sf3s + y4 * sf4s  
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detJ = J11 * J22 - J12 * J21 
 
'linear calculate strain gradient matrix 
 
BL(1, 1) = (-J12 * sf1s + J22 * sf1t) / detJ 
BL(3, 1) = (J11 * sf1s - J21 * sf1t) / detJ 
BL(2, 2) = BL(3, 1) 
BL(3, 2) = BL(1, 1) 
 
BL(1, 3) = (-J12 * sf2s + J22 * sf2t) / detJ 
BL(3, 3) = (J11 * sf2s - J21 * sf2t) / detJ 
BL(2, 4) = BL(3, 3) 
BL(3, 4) = BL(1, 3) 
 
BL(1, 5) = (-J12 * sf3s + J22 * sf3t) / detJ 
BL(3, 5) = (J11 * sf3s - J21 * sf3t) / detJ 
BL(2, 6) = BL(3, 5) 
BL(3, 6) = BL(1, 5) 
 
BL(1, 7) = (-J12 * sf4s + J22 * sf4t) / detJ 
BL(3, 7) = (J11 * sf4s - J21 * sf4t) / detJ 
BL(2, 8) = BL(3, 7) 
BL(3, 8) = BL(1, 7) 
 
 
For m1 = 1 To 8 
For m2 = m1 To 8 
For m3 = 1 To 3 
For m4 = 1 To 3 
 
ke(m1, m2) = ke(m1, m2) + BL(m3, m1) * D(m3, m4) * BL(m4, m2) * te * detJ 
Next 
Next 
Next 
Next 
 
 
 
Next 
Next 
 
 
 
End Sub 
 
 
 
Sub ROLLmaterial() 
Erase D 
matcons = E / (1 - v ^ 2) 
D(1, 1) = matcons 
D(1, 2) = v * matcons 
D(2, 1) = D(1, 2) 
D(2, 2) = D(1, 1) 
D(3, 3) = matcons * (1 - v) / 2 
 
End Sub 
 
 
Sub WRINKLINGstrain() 
 
ReDim STRAINXY(3) 
For z1 = 1 To 2 
For z2 = 1 To 2 
 
 
t = gp(z1) 
s = gp(z2) 
 
'derivatives of shape functions 
sf1t = (-1 + s) / 4 
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sf1s = (-1 + t) / 4 
 
sf2t = (-1 - s) / 4 
sf2s = (1 - t) / 4 
 
sf3t = (1 - s) / 4 
sf3s = (-1 - t) / 4 
 
sf4t = (1 + s) / 4 
sf4s = (1 + t) / 4 
 
'calculate jakobien 
 
J11 = x1 * sf1t + x2 * sf2t + x3 * sf3t + x4 * sf4t  
J12 = y1 * sf1t + y2 * sf2t + y3 * sf3t + y4 * sf4t  
J21 = x1 * sf1s + x2 * sf2s + x3 * sf3s + x4 * sf4s  
J22 = y1 * sf1s + y2 * sf2s + y3 * sf3s + y4 * sf4s  
detJ = J11 * J22 - J12 * J21 
 
'linear calculate strain gradient matrix 
 
BL(1, 1) = (-J12 * sf1s + J22 * sf1t) / detJ 
BL(3, 1) = (J11 * sf1s - J21 * sf1t) / detJ 
BL(2, 2) = BL(3, 1) 
BL(3, 2) = BL(1, 1) 
 
BL(1, 3) = (-J12 * sf2s + J22 * sf2t) / detJ 
BL(3, 3) = (J11 * sf2s - J21 * sf2t) / detJ 
BL(2, 4) = BL(3, 3) 
BL(3, 4) = BL(1, 3) 
 
BL(1, 5) = (-J12 * sf3s + J22 * sf3t) / detJ 
BL(3, 5) = (J11 * sf3s - J21 * sf3t) / detJ 
BL(2, 6) = BL(3, 5) 
BL(3, 6) = BL(1, 5) 
 
BL(1, 7) = (-J12 * sf4s + J22 * sf4t) / detJ 
BL(3, 7) = (J11 * sf4s - J21 * sf4t) / detJ 
BL(2, 8) = BL(3, 7) 
BL(3, 8) = BL(1, 7) 
 
For m1 = 1 To 3 
For m2 = 1 To 8 
STRAINXY(m1) = STRAINXY(m1) + BL(m1, m2) * ue(m2) 
Next 
Next 
 
Next 
Next 
 
STRAINP(1) = (STRAINXY(1) / 4 + STRAINXY(2) / 4) / 2 + ((STRAINXY(1) / 4 - STRAINXY(2) / 4) ^ 
2 + (STRAINXY(3) / 4) ^ 2) ^ 0.5 / 2 
STRAINP(2) = (STRAINXY(1) / 4 + STRAINXY(2) / 4) / 2 - ((STRAINXY(1) / 4 - STRAINXY(2) / 4) ^ 
2 + (STRAINXY(3) / 4) ^ 2) ^ 0.5 / 2 
 
 
 
End Sub 
 
Sub WRINKLINGcriteria() 
 
 
 
If STRAINP(1) < 0 Then 
Erase D 
Range("message") = "MD Stress input is too small, a  slack edge occurs prior to wrinkling" 
Worksheets("Roller Misalignment").Activate 
End 
  
 
ElseIf STRAINP(1) > 0 And v * STRAINP(1) < -STRAINP (2) Then 
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Erase D 
PP = (STRAINXY(1) / 4 - STRAINXY(2) / 4) / (STRAINP (1) - STRAINP(2)) 
QQ = (STRAINXY(3) / 4) / ((STRAINP(1) - STRAINP(2)) ) 
D(1, 1) = (1 + PP) * E / 2 
D(2, 2) = (1 - PP) * E / 2 
D(3, 3) = E / 4 
D(1, 3) = QQ * E / 4 
D(2, 3) = D(1, 3) 
D(3, 1) = D(1, 3) 
D(3, 2) = D(1, 3) 
D(1, 2) = 0 
D(2, 1) = 0 
Else 
Erase D 
matcons = E / (1 - v ^ 2) 
D(1, 1) = matcons 
D(1, 2) = v * matcons 
D(2, 1) = D(1, 2) 
D(2, 2) = D(1, 1) 
D(3, 3) = matcons * (1 - v) / 2 
 
 
End If 
 
End Sub 
 
 
Sub WRINKLINGconstraints() 
 
'fixing of middle line 
 
For m1 = 1 To m + 1 
pfixing(m1) = (2 * k1 + n1 + 2 * n2) * (m + 1) / 2 + m1 
Next 
 
For m1 = m / 2 + 1 To m / 2 + 1 
'For m1 = 1 To m + 1 
 
KG(2 * pfixing(m1) - 1, 1) = KG(2 * pfixing(m1) - 1 , 1) + PC 
Next 
 
 
For m1 = m / 2 + 1 To m / 2 + 1 
'For m1 = 1 To m + 1 
KG(2 * pfixing(m1), 1) = KG(2 * pfixing(m1), 1) + P C 
Next 
 
 
'binding roll1 region's points in v direction 
 
For m1 = 1 To m + 1 
 
For m2 = 1 To k1 + 1 
pbinding(m2) = 2 * (m1 + (m + 1) * (m2 - 1)) 
Next 
 
For m2 = 1 To k1 
KG(pbinding(m2), 1) = KG(pbinding(m2), 1) + PC 
KG(pbinding(m2 + 1), 1) = KG(pbinding(m2 + 1), 1) +  PC 
KG(pbinding(m2), pbinding(m2 + 1) - pbinding(m2) + 1) = KG(pbinding(m2), pbinding(m2 + 1) - 
pbinding(m2) + 1) - PC 
Next 
 
'**** 
'KG(pbinding(1), 1) = KG(pbinding(1), 1) + PC 
'KG(pbinding(k1 + 1), 1) = KG(pbinding(k1 + 1), 1) + PC 
'**** 
 
'For q1 = 1 To n1 
'For q2 = q1 + 1 To n1 + 1 
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'KG(pbinding(q1), pbinding(q2) - pbinding(q1) + 1) = KG(pbinding(q1), pbinding(q2) - 
pbinding(q1) + 1) - PC 
 
'Next 
'Next 
 
'For q1 = 1 To n1 
 
'KG(pbinding(q1), pbinding(q1 + 1) - pbinding(q1) +  1) = KG(pbinding(q1), pbinding(q1 + 1) - 
pbinding(q1) + 1) - PC 
 
'Next 
 
'***** 
'KG(pbinding(1), pbinding(k1 + 1) - pbinding(1) + 1 ) = KG(pbinding(1), pbinding(k1 + 1) - 
pbinding(1) + 1) - PC 
'***** 
 
Next 
 
'binding roll1 region's first line points in u dire ction 
 
ReDim pubinding(m + 1) 
 
For m1 = 1 To m + 1 
pubinding(m1) = 2 * m1 - 1 
Next 
 
For m1 = 1 To m 
KG(pubinding(m1), 1) = KG(pubinding(m1), 1) + PC 
KG(pubinding(m1 + 1), 1) = KG(pubinding(m1 + 1), 1)  + PC 
KG(pubinding(m1), pubinding(m1 + 1) - pubinding(m1)  + 1) = KG(pubinding(m1), pubinding(m1 + 
1) - pubinding(m1) + 1) - PC 
Next 
 
 
 
 
'binding roll3 region's points in v direction 
 
For m1 = 1 To m + 1 
 
For m2 = 1 To k1 + 1 
pbinding(m2) = 2 * (m1 + (m + 1) * (m2 - 1) + (k1 +  n2 + n1 + n2) * (m + 1)) 
Next 
 
 
For m2 = 1 To k1 
KG(pbinding(m2), 1) = KG(pbinding(m2), 1) + PC 
KG(pbinding(m2 + 1), 1) = KG(pbinding(m2 + 1), 1) +  PC 
KG(pbinding(m2), pbinding(m2 + 1) - pbinding(m2) + 1) = KG(pbinding(m2), pbinding(m2 + 1) - 
pbinding(m2) + 1) - PC 
Next 
 
 
'For q1 = 1 To n1 + 1 
'KG(pbinding(q1), 1) = KG(pbinding(q1), 1) + PC 
'Next 
 
'******* 
'KG(pbinding(1), 1) = KG(pbinding(1), 1) + PC 
'KG(pbinding(k1 + 1), 1) = KG(pbinding(k1 + 1), 1) + PC 
'******* 
 
'For q1 = 1 To n1 
'For q2 = q1 + 1 To n1 + 1 
 
'KG(pbinding(q1), pbinding(q2) - pbinding(q1) + 1) = KG(pbinding(q1), pbinding(q2) - 
pbinding(q1) + 1) - PC 
 
'Next 
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'Next 
 
'For q1 = 1 To n1 
 
'KG(pbinding(q1), pbinding(q1 + 1) - pbinding(q1) +  1) = KG(pbinding(q1), pbinding(q1 + 1) - 
pbinding(q1) + 1) - PC 
 
'Next 
 
'****** 
'KG(pbinding(1), pbinding(k1 + 1) - pbinding(1) + 1 ) = KG(pbinding(1), pbinding(k1 + 1) - 
pbinding(1) + 1) - PC 
'****** 
 
Next 
 
'binding roll3 region's first line points in u dire ction 
 
ReDim pubinding(m + 1) 
 
For m1 = 1 To m + 1 
pubinding(m1) = 2 * ((2 * k1 + 2 * n2 + n1) * (m + 1) + m1) - 1 
Next 
 
For m1 = 1 To m 
KG(pubinding(m1), 1) = KG(pubinding(m1), 1) + PC 
KG(pubinding(m1 + 1), 1) = KG(pubinding(m1 + 1), 1)  + PC 
KG(pubinding(m1), pubinding(m1 + 1) - pubinding(m1)  + 1) = KG(pubinding(m1), pubinding(m1 + 
1) - pubinding(m1) + 1) - PC 
Next 
 
 
 
 
End Sub 
Sub WRINKLINGforcenormal() 
 
'ReDim FG(2 * (3 * n1 + 2 * n2 + 1) * (m + 1)) 
 
'iterloadT = iterload 
 
'If iterload > 10 Then 
'iterloadT = 10 
'End If 
 
For m1 = 2 To m 
pload(m1) = 2 * m1 - 1 
FG(pload(m1)) = -NFORCEX * iterload / 4 
Next 
 
For m1 = 2 To m 
pload(m1) = 2 * (m1 + (k1 + n2 + n1 + n2 + k1) * (m  + 1)) - 1 
FG(pload(m1)) = NFORCEX * iterload / 4 
Next 
 
'edges 
FG(1) = -(NFORCEX / 2) * iterload / 4 
FG(2 * (m + 1) - 1) = -(NFORCEX / 2) * iterload / 4  
 
FG(2 * (m + 1) * (k1 + n2 + n1 + n2 + k1 + 1) - 1) = (NFORCEX / 2) * iterload / 4 
FG(2 * ((m + 1) * (k1 + n2 + n1 + n2 + k1) + 1) - 1 ) = (NFORCEX / 2) * iterload / 4 
 
 
End Sub 
 
Sub WRINKLINGforceshear() 
'ReDim FG(2 * (3 * n1 + 2 * n2 + 1) * (m + 1)) 
 
For m1 = 2 To m 
pload(m1) = 2 * m1 
FG(pload(m1)) = -NFORCEXY * iterload / 4 
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Next 
 
For m1 = 2 To m 
pload(m1) = 2 * (m1 + (k1 + n2 + n1 + n2 + k1) * (m  + 1)) 
FG(pload(m1)) = NFORCEXY * iterload / 4 
Next 
 
'edges 
FG(2) = -(NFORCEXY / 2) * iterload / 4 
FG(2 * (m + 1)) = -(NFORCEXY / 2) * iterload / 4 
 
FG(2 * (m + 1) * (k1 + n2 + n1 + n2 + k1 + 1)) = (N FORCEXY / 2) * iterload / 4 
FG(2 * ((m + 1) * (k1 + n2 + n1 + n2 + k1) + 1)) = (NFORCEXY / 2) * iterload / 4 
End Sub 
 
 
Sub WRINKLINGsolver() 
 
'required dummies 
'dimdummy 
 
dimdummy = 2 * (k1 + n2 + n1 + n2 + k1 + 1) * (m + 1) 
ReDim u(dimdummy) 
 
'band reduction 
'sbw = 2 * ((k1) * (m + 1) + 1)  'semi band width 
 
sbw = 2 * (m + 3) 
 
For m1 = 1 To dimdummy - 1 
 If m1 <= dimdummy - sbw + 1 Then 
 sdummy = m1 + sbw - 1 
 Else 
 sdummy = dimdummy 
 End If 
 For m2 = m1 + 1 To sdummy 
 para = KG(m1, m2 - m1 + 1) / KG(m1, 1) 
  For m3 = m2 To sdummy 
   KG(m2, m3 - m2 + 1) = KG(m2, m3 - m2 + 1) - para  * KG(m1, m3 - m1 + 1) 
     
    Next 
  FG(m2) = FG(m2) - FG(m1) * para 
    
 Next 
 
Next 
   
'back substituion 
  
For m1 = dimdummy To 1 Step -1 
 If m1 > dimdummy - sbw + 1 Then 
 sdummy = dimdummy 
 Else 
 sdummy = m1 + sbw - 1 
 End If 
 For m2 = m1 + 1 To sdummy 
  FG(m1) = FG(m1) - u(m2) * KG(m1, m2 - m1 + 1) 
 Next 
  
 u(m1) = FG(m1) / KG(m1, 1) 
 
Next 
 
End Sub 
Sub WRINKLINGcheck() 
 
'span1 
 
For q1 = 1 To n2 
For q2 = 1 To m 
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en = (q1 - 1) * m + q2 
 
 
 
x1 = span1P(en, 1) 
x2 = span1P(en, 2) 
x3 = span1P(en, 3) 
x4 = span1P(en, 4) 
y1 = span1P(en, 5) 
y2 = span1P(en, 6) 
y3 = span1P(en, 7) 
y4 = span1P(en, 8) 
 
'pointers 
 
p(1) = 2 * ((n1 + q1 - 1) * (m + 1) + q2) - 1 
p(2) = 2 * ((n1 + q1 - 1) * (m + 1) + q2) 
 
p(3) = 2 * ((n1 + q1 - 1) * (m + 1) + q2 + 1) - 1 
p(4) = 2 * ((n1 + q1 - 1) * (m + 1) + q2 + 1) 
 
p(5) = 2 * ((n1 + q1) * (m + 1) + q2) - 1 
p(6) = 2 * ((n1 + q1) * (m + 1) + q2) 
 
p(7) = 2 * ((n1 + q1) * (m + 1) + q2 + 1) - 1 
p(8) = 2 * ((n1 + q1) * (m + 1) + q2 + 1) 
 
For m1 = 1 To 8 
ue(m1) = u(p(m1)) 
Next 
 
ReDim STRAINPAVE(2) 
 
Call WRINKLINGstrain 
 
STRAINPAVE(1) = STRAINP(1) 
STRAINPAVE(2) = STRAINP(2) 
 
For m1 = 1 To 2 
PSTRAIN(en, m1) = STRAINPAVE(m1) 
Next 
 
PP = (STRAINXY(1) / 4 - STRAINXY(2) / 4) / (STRAINP AVE(1) - STRAINPAVE(2)) 
QQ = (STRAINXY(3) / 4) / ((STRAINPAVE(1) - STRAINPA VE(2))) 
 
PQSTATE(en, 1) = PP 
PQSTATE(en, 2) = QQ 
 
If STRAINPAVE(1) < 0 Then 
ELEMENTSTATE(en) = 1 
ElseIf STRAINPAVE(1) > 0 And v * STRAINPAVE(1) < -S TRAINPAVE(2) Then 
ELEMENTSTATE(en) = 2 
Else 
ELEMENTSTATE(en) = 3 
End If 
 
Next 
Next 
 
'span2 
 
For q1 = 1 To n2 
For q2 = 1 To m 
 
en = (q1 - 1) * m + q2 
 
x1 = span2P(en, 1) 
x2 = span2P(en, 2) 
x3 = span2P(en, 3) 
x4 = span2P(en, 4) 
y1 = span2P(en, 5) 
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y2 = span2P(en, 6) 
y3 = span2P(en, 7) 
y4 = span2P(en, 8) 
 
 
'pointers 
 
p(1) = 2 * ((2 * n1 + n2 + q1 - 1) * (m + 1) + q2) - 1 
p(2) = 2 * ((2 * n1 + n2 + q1 - 1) * (m + 1) + q2) 
 
p(3) = 2 * ((2 * n1 + n2 + q1 - 1) * (m + 1) + q2 +  1) - 1 
p(4) = 2 * ((2 * n1 + n2 + q1 - 1) * (m + 1) + q2 +  1) 
 
p(5) = 2 * ((2 * n1 + n2 + q1) * (m + 1) + q2) - 1 
p(6) = 2 * ((2 * n1 + n2 + q1) * (m + 1) + q2) 
 
p(7) = 2 * ((2 * n1 + n2 + q1) * (m + 1) + q2 + 1) - 1 
p(8) = 2 * ((2 * n1 + n2 + q1) * (m + 1) + q2 + 1) 
 
 
For m1 = 1 To 8 
ue(m1) = u(p(m1)) 
Next 
 
ReDim STRAINPAVE(2) 
 
Call WRINKLINGstrain 
STRAINPAVE(1) = STRAINP(1) 
STRAINPAVE(2) = STRAINP(2) 
 
For m1 = 1 To 2 
PSTRAIN(en + n2 * m, m1) = STRAINPAVE(m1) 
Next 
 
PP = (STRAINXY(1) / 4 - STRAINXY(2) / 4) / (STRAINP AVE(1) - STRAINPAVE(2)) 
QQ = (STRAINXY(3) / 4) / ((STRAINPAVE(1) - STRAINPA VE(2))) 
 
PQSTATE(en + n2 * m, 1) = PP 
PQSTATE(en + n2 * m, 2) = QQ 
 
If STRAINPAVE(1) < 0 Then 
ELEMENTSTATE(en + n2 * m) = 1 
ElseIf STRAINPAVE(1) > 0 And v * STRAINPAVE(1) < -S TRAINPAVE(2) Then 
ELEMENTSTATE(en + n2 * m) = 2 
Else 
ELEMENTSTATE(en + n2 * m) = 3 
End If 
 
 
Next 
Next 
 
 
End Sub 
Sub WRINKLINGstresscalc() 
 
'calculate stresses for roll1 region 
 
Call ROLLmaterial 
 
For q1 = 1 To k1 
For q2 = 1 To m 
 
en = (q1 - 1) * m + q2 
ReDim STRESSXY(3) 
 
x1 = roll1P(en, 1) 
x2 = roll1P(en, 2) 
x3 = roll1P(en, 3) 
x4 = roll1P(en, 4) 
y1 = roll1P(en, 5) 
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y2 = roll1P(en, 6) 
y3 = roll1P(en, 7) 
y4 = roll1P(en, 8) 
 
'pointers 
 
p(1) = 2 * ((q1 - 1) * (m + 1) + q2) - 1 
p(2) = 2 * ((q1 - 1) * (m + 1) + q2) 
 
p(3) = 2 * ((q1 - 1) * (m + 1) + q2 + 1) - 1 
p(4) = 2 * ((q1 - 1) * (m + 1) + q2 + 1) 
 
p(5) = 2 * ((q1) * (m + 1) + q2) - 1 
p(6) = 2 * ((q1) * (m + 1) + q2) 
 
p(7) = 2 * ((q1) * (m + 1) + q2 + 1) - 1 
p(8) = 2 * ((q1) * (m + 1) + q2 + 1) 
 
 
For m1 = 1 To 8 
ue(m1) = u(p(m1)) 
Next 
 
ReDim STRESSXY(3) 
 
Call WRINKLINGstrain 
 
STRESSXY(1) = D(1, 1) * STRAINXY(1) / 4 + D(1, 2) *  STRAINXY(2) / 4 
STRESSXY(2) = D(1, 2) * STRAINXY(1) / 4 + D(2, 2) *  STRAINXY(2) / 4 
STRESSXY(3) = D(3, 3) * STRAINXY(3) / 4 
 
For m1 = 1 To 3 
ESA(en, m1) = STRESSXY(m1) 
Next 
 
Next 
Next 
 
'calculate stresses for span1 region 
For q1 = 1 To n2 
For q2 = 1 To m 
 
en = (q1 - 1) * m + q2 
ReDim STRESSXY(3) 
 
x1 = span1P(en, 1) 
x2 = span1P(en, 2) 
x3 = span1P(en, 3) 
x4 = span1P(en, 4) 
y1 = span1P(en, 5) 
y2 = span1P(en, 6) 
y3 = span1P(en, 7) 
y4 = span1P(en, 8) 
 
'pointers 
 
p(1) = 2 * ((k1 + q1 - 1) * (m + 1) + q2) - 1 
p(2) = 2 * ((k1 + q1 - 1) * (m + 1) + q2) 
 
p(3) = 2 * ((k1 + q1 - 1) * (m + 1) + q2 + 1) - 1 
p(4) = 2 * ((k1 + q1 - 1) * (m + 1) + q2 + 1) 
 
p(5) = 2 * ((k1 + q1) * (m + 1) + q2) - 1 
p(6) = 2 * ((k1 + q1) * (m + 1) + q2) 
 
p(7) = 2 * ((k1 + q1) * (m + 1) + q2 + 1) - 1 
p(8) = 2 * ((k1 + q1) * (m + 1) + q2 + 1) 
 
For m1 = 1 To 8 
ue(m1) = u(p(m1)) 
Next 
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Call WRINKLINGstrain 
 
Call WRINKLINGcriteria 
 
STRESSXY(1) = D(1, 1) * STRAINXY(1) / 4 + D(1, 2) *  STRAINXY(2) / 4 + D(1, 3) * STRAINXY(3) / 
4 
STRESSXY(2) = D(2, 1) * STRAINXY(1) / 4 + D(2, 2) *  STRAINXY(2) / 4 + D(2, 3) * STRAINXY(3) / 
4 
STRESSXY(3) = D(3, 1) * STRAINXY(1) / 4 + D(3, 2) *  STRAINXY(2) / 4 + D(3, 3) * STRAINXY(3) / 
4 
 
For m1 = 1 To 3 
ESA(en + k1 * m, m1) = STRESSXY(m1) 
Next 
 
Next 
Next 
 
'calculate stresses for roll2 region 
Call ROLLmaterial 
 
For q1 = 1 To n1 
For q2 = 1 To m 
 
en = (q1 - 1) * m + q2 
ReDim STRESSXY(3) 
 
x1 = roll2P(en, 1) 
x2 = roll2P(en, 2) 
x3 = roll2P(en, 3) 
x4 = roll2P(en, 4) 
y1 = roll2P(en, 5) 
y2 = roll2P(en, 6) 
y3 = roll2P(en, 7) 
y4 = roll2P(en, 8) 
'pointers 
 
p(1) = 2 * ((k1 + n2 + q1 - 1) * (m + 1) + q2) - 1 
p(2) = 2 * ((k1 + n2 + q1 - 1) * (m + 1) + q2) 
 
p(3) = 2 * ((k1 + n2 + q1 - 1) * (m + 1) + q2 + 1) - 1 
p(4) = 2 * ((k1 + n2 + q1 - 1) * (m + 1) + q2 + 1) 
 
p(5) = 2 * ((k1 + n2 + q1) * (m + 1) + q2) - 1 
p(6) = 2 * ((k1 + n2 + q1) * (m + 1) + q2) 
 
p(7) = 2 * ((k1 + n2 + q1) * (m + 1) + q2 + 1) - 1 
p(8) = 2 * ((k1 + n2 + q1) * (m + 1) + q2 + 1) 
 
 
For m1 = 1 To 8 
ue(m1) = u(p(m1)) 
Next 
 
ReDim STRESSXY(3) 
Call WRINKLINGstrain 
STRESSXY(1) = D(1, 1) * STRAINXY(1) / 4 + D(1, 2) *  STRAINXY(2) / 4 
STRESSXY(2) = D(1, 2) * STRAINXY(1) / 4 + D(2, 2) *  STRAINXY(2) / 4 
STRESSXY(3) = D(3, 3) * STRAINXY(3) / 4 
 
For m1 = 1 To 3 
ESA(en + (k1 + n2) * m, m1) = STRESSXY(m1) 
Next 
 
Next 
Next 
 
 
End Sub 
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