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1 INTRODUCTION 

Ground-source heat pump (GSHP) systems offer an attractive alternative for 

residential and commercial heating and cooling applications because of their higher 

energy efficiency compared with conventional systems. However, the higher first cost of 

GSHP systems has been a significant constraint for wider application of the technology, 

especially in commercial and institutional applications. The first cost of a GSHP system 

in residential applications is almost double that of standard central equipment. Compared 

to rooftop unitary systems in commercial applications, the first cost of a GSHP system is 

20% to 40% higher (Kavanaugh and Rafferty 1997).  Many commercial and institutional 

buildings have high internal heat gains and are generally cooling-dominated, therefore 

rejecting more heat to the ground than they extract on an annual basis. Less typical, some 

commercial and institutional buildings are heating-dominated, and extract more heat from 

the ground than they reject to the ground on an annual basis. Depending on the 

imbalance, the ground temperature surrounding the heat exchanger can rise or fall over 

the system operation period.  This will negatively impact the system performance. This 

may be mitigated by increasing the ground-loop heat exchanger (GLHE) size, further 

increasing the system first cost.   
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One option to reduce the size of the GLHE, and therefore the first cost of the 

system, is to reduce the imbalance in the ground thermal loads by incorporating a 

supplemental heat source or sink into the system. GSHP systems that incorporate a 

supplemental heat source or sink have been referred to as ‘hybrid GSHP systems’ 

(HGSHP systems). Supplemental heat rejection can be accomplished with a cooling 

tower, fluid cooler, pond, or pavement heating system. Supplemental heat sources could 

be solar thermal collectors, boilers, greenhouses and so on.  
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Figure 1.1 A schematic of a typical hybrid GSHP system using a closed-circuit cooling tower as a 

supplemental heat rejecter 

In the hybrid ground source heat pump system, the most common configuration of 

the system usually uses a cooling tower or fluid cooler as the supplemental heat rejecter, 
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as shown in Figure 1.1. For this system, the tower is typically isolated from the ground 

loop heat exchanger with a plate frame heat exchanger. The ground loop heat exchanger 

and the plate frame heat exchanger are placed in parallel in the system and a mixing valve 

is used to control the fluid flow through these two components.  

1.1 Design of HGSHP Systems 

Kavanaugh and Rafferty (1997) developed a design procedure to size the GLHE 

and the supplemental heat source or sink. For the cooling dominated building, the ground 

loop heat exchanger of the hybrid ground source heat pump system is then sized to meet 

the heating loads of the system, balanced by a reduced portion of the cooling loads. The 

required ground loop is then much smaller compared to the ground loop that would meet 

all of the heating and cooling loads. For the heating dominated building, the ground loop 

of the hybrid ground source heat pump system is then sized to meet the cooling loads of 

the system, balanced by a reduced portion of the heating loads. 

One paper (Singh and Foster 1998) described a cooling dominated elementary 

school with 85,000ft2 of conditioned area in Atlantic City, New Jersey. The estimated 

installation cost of a hybrid ground source heat pump system was $1,139,100 compared 

to the $1,204,100 for the 100% geothermal heat pump system. The $65,000 savings was 

achieved by replacing 90 boreholes (400 ft deep) with 66 boreholes (400 ft deep) and a 

117 ton closed circuit cooler. The predicted annual maintenance expense of the hybrid 

ground source heat pump system was $3,896 more than that of the 100% geothermal heat 

pump system. The annual cost of the energy consumption for the hybrid GSHP system 

was $1,618 less than the cost of the GSHP system. The overall life-cycle cost analysis 
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of two systems showed that the hybrid GSHP system has a shorter payback time than the 

GSHP system because the savings of the drilling costs and system energy consumption 

costs more than offset the increased maintenance costs and for the cooling tower. 

1.2 Modeling of HGSHP Systems 

In order to evaluate design procedures, control strategies and energy consumption, 

the ability to model the HGSHP system is needed. In this study, the system will be 

modeled and simulated using the HVACSIM+ (Clark 1985) modeling environment. 

Various system component models including heat pumps, pumps, GLHE and open-circuit 

cooling towers have been developed or modified for use in HVACSIM+ (Khan et al. 

2003; Khan 2004; Liu and Spitler 2004).  

 The ability to predict the short-term behavior of ground loop heat exchangers is 

critical to the design and energy analysis of both the GSHP and HGSHP systems. 

Thermal load profiles vary significantly from building to building – GLHE designs can 

be dominated by long-term heat build-up or short-term peak loads. In some extreme 

cases, where the GLHE design is dominated by short-term peak loads, temperatures in 

the GLHE can rise rapidly; say 5-10ºC in one to two hours. For such short-term peak 

loads, the thermal mass of the fluid can significantly dampen the temperature response of 

the ground loop. The over prediction of the temperature rise (or fall) in turn can cause an 

over prediction of the required GLHE length. Furthermore, the temperature response can 

be damped by the fluid in the rest of the system, in addition to the fluid in the borehole.  

The temperature response also has a secondary impact on the predicted energy 

consumption of the system, as the COP of the heat pump varies with entering fluid 
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temperature.  Therefore, it is desirable to be able to model the effect of fluid thermal mass 

on the short-term behavior of the GLHE accurately. 

In GSHP systems, antifreeze mixtures are often used as a heat transfer fluid.  

Generally, the flow rate in the GLHE is designed so as to ensure turbulent flow in the 

tube to guarantee a low convective heat transfer resistance. However, for some antifreeze 

types, the large increase in viscosity as the temperature decreases may result in transition 

to laminar flow, or require an otherwise unnecessarily high system flow rate. For 

example, at 20ºC, the viscosity of 20% weight concentration propylene glycol is 0.0022 

Pa.s and the density is 1021 kg/m3. At –5ºC, the viscosity increases to 0.0057 Pa.s and the 

density increases to 1026 kg/m3. Thus, with the same volumetric flow rate, the Reynolds 

number at –5ºC is only about 39% of the value at 20ºC. If this results in transition from 

turbulent to laminar flow, the convective resistance will increase significantly. In order to 

evaluate the trade-offs between high system flow rates and occasional excursions into the 

laminar regime, it is desirable to include the effects of varying convective resistance in 

the GLHE model. 

While it is desirable to model both the variable convective resistance and the 

thermal mass in the borehole, the previous published GLHE models (Carslaw and Jaeger 

1947; Eskilson 1987; Deerman and Kavanaugh 1991; Yavuzturk and Spitler 1999) did 

not simultaneously account for these two phenomena. Therefore, a more accurate GLHE 

model is highly desired for the HGSHP system simulation. 

1.3 Control of HGSHP Systems 
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Control of the supplemental heat rejecter is an important issue for the hybrid 

ground source heat pump system. A wide range of control strategies and setpoints are 

possible, and it is expected that they will have a significant effect on the system 

performance. Figure 1.2 shows the relationship between the COP of a heat pump 

(ClimateMaster GS060) and the entering fluid temperature (EFT) of the heat pump. In 

cooling mode, the heat pump has better performance as the EFT decreases. In heating 

mode, performance of the heat pump improves with higher EFT. Operating the 

supplemental heat rejecter at the cooling mode will help to lower the EFT of the heat 

pump, giving a higher efficiency. A common method of HGSHP system control runs the 

supplemental heat rejecter only when the heat pump EFT exceeds 90°F. However, there 

may be many hours when the supplemental heat rejecter could reduce EFT to 70°F. If 

this is done, heat pump COP can increase from 3.4 to 4.5, reducing electricity 

consumption by 24%, while minimally increasing cooling tower power costs. Running at 

lower loop temperature could also have a penalty for heating. Despite these 

complications, there is significant potential for energy savings by carefully controlling 

the supplemental heat rejecter.  
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Figure 1.2 COP of a heat pump (ClimateMaster GS060) with the entering fluid temperature of the 

heat pump 

For a hybrid ground source heat pump system, a set point temperature control 

strategy is often used to operate the cooling tower (Kavanaugh and Rafferty 1997; 

Yavuzturk and Spitler 2000; Ramamoorthy et al. 2001). The cooling tower is activated 

when the entering fluid temperature (EFT) of the heat pump or the exiting fluid 

temperature (ExFT) exceeds an upper limit temperature. However, for different locations 

and systems, the value of the upper limit temperature could vary over a wide range, that 

is “anywhere between 75°F and 95°F” (ASHRAE 1995) (p. 8.2).   

Another control strategy might be called a temperature difference control strategy 

(Yavuzturk and Spitler 2000). When the temperature difference between the entering or 

exiting fluid temperature of the heat pump and the ambient wet-bulb temperature (open 

circuit cooling tower) or the ambient dry-bulb temperature (closed circuit fluid cooler) 

exceeds a set value, the supplemental heat rejecter is activated. Yavuzturk and Spitler 
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looked at temperature difference setpoints of 3.6°F (2°C) and 14.4°F (8°C) but did not 

attempt to optimize the design and control. It should be noted that the temperature 

difference control strategy depends on the measurement of the ambient wet-bulb 

temperature. The wet bulb temperature has a typical uncertainty of ± 0.5ºC even in an 

experiment (Gentry et al. 2006). Simulations in which the wet bulb temperature is 

assumed to be measured perfectly do not reflect reality. This suggests that, in practice, 

caution is warranted in using a control based on wet bulb temperature.   

A third type of control strategy, which might be called a  “preset schedule control” 

was evaluated by Yavuzturk and Spitler (2000). To avoid a long-term temperature rise, 

the supplemental heat rejecters were set to run for six hours during the night to store 

“cool” in the ground. Also, a set point temperature control strategy works with the “preset 

schedule control” to avoid potentially high loop temperatures. Yavazturk and Spitler used 

three different preset schedules to run the supplemental heat rejecter: 12:00 a.m. to 6:00 

a.m. year-round, 12:00 a.m. to 6:00 a.m. during the months of January through March, 

and 12:00 a.m. to 6:00 a.m. during the months of June through August. Yavuzturk and 

Spitler did not apply time-of-day utility rates to calculate the electricity cost and did not 

attempt to optimize the schedule. 

All of the control strategies face the challenge of how to choose a proper setpoint 

value or preset schedule to optimally control the system to get the minimum system 

operating cost. A lot of issues will effect the choice of the setpoint value or the preset 

schedule such as building location, building type, HGSHP system design, HGSHP system 

component characteristics, etc. Since optimization of the HGSHP system control strategy 
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has not been investigated, the current available control strategies might be far from 

optimal. Therefore, more sophisticated control strategies which are able to optimally 

control the HGSHP system are highly desirable. With these control strategies, the 

setpoint choice should be less dependent on the building type, HGSHP system design, etc 

and should be easier to be determined.   

1.4 Optimal Control of HGSHP Systems 

In a hybrid ground source heat pump system, there are multiple degrees of freedom 

in controlling the supplemental heat rejecter. As a result, the HGSHP system would have 

a different performance and the energy consumption. In the Paragon Center in Allentown, 

Pennsylvania (Gilbreath 1996), the HGSHP system performance for different system 

designs and control strategies was investigated with a spreadsheet analysis. Comparison 

of results showed that the estimated energy usage of one of the HGSHP system scenarios 

would vary about 3% with different control strategies. In an office building in Tulsa, 

Oklahoma, Yavuzturk and Spitler (2000) showed variations of 4-6% in HGSHP system 

operating cost with different control strategy setpoints and similar cooling tower sizes. 

For a wider range of cases, with different control strategies, setpoints, and cooling tower 

sizes, operating costs varied by up to 15%.  

As mentioned above, previously published works have not tried to optimize the 

control strategies. Yet, there is clearly potential for energy savings by adjusting the 

control of HGSHP systems. Therefore, investigation of optimal control strategies is 

highly desirable. 
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1.5 Objectives 

The objectives of this research are discussed in detail after the background and 

literature review. But, in short, the objective is to develop optimal control strategies and 

set points for hybrid ground source heat pump systems. When we talk about the optimal 

control, it means we try to find the best control of the system to get the minimum system 

operation cost. Firstly, the HGSHP system will be modeled and simulated using the 

HVACSIM+. In this part, because the previous ground loop heat exchanger models did 

not account for variable convective resistance and thermal mass in the borehole 

simultaneously, a revised GLHE model will be developed. Also, some additional 

components of the HGSHP system will be modeled and cast as HVACSIM+ component 

models. Secondly, because only a few control strategies for HGSHP system have been 

investigated, a wide range of the control strategies will be developed. Optimization will 

be applied in an attempt to develop generally applicable optimal control strategies.  
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2 BACKGROUND AND LITERATURE REVIEW 

In this chapter, a review of component models of hybrid ground source heat pump 

systems will be presented. Secondly, literature about the design of hybrid GSHP systems 

and control approaches for hybrid GSHP systems will be summarized. 

2.1 HGSHP System Component Models 

In this section, the literature review focuses on modeling of the ground loop heat 

exchanger, heat pumps, cooling towers and fluid coolers. 

2.1.1 Ground Loop Heat Exchanger Model 

The ground loop heat exchanger can be buried either horizontally in trenches or 

vertically in boreholes. The choice of whether the system is horizontal or vertical depends 

on available land, local soil type, and excavation costs. In many cases, a vertical ground 

loop heat exchanger system is used where the available land area is limited. The vertical 

ground loop heat exchanger configuration options include single and double U-tubes, 

small and large-diameter spirals, standing column wells, and “spider” heat exchangers 

(IGSHPA 1997). In practice, spirals and “spider” configuration of heat exchangers are 

not used commercially due to the installation difficulty. The standing column well had 

limited geographical range (Deng et al. 2005; O'Neill et al. 2006). Therefore, the focus of 

this work is vertical ground heat exchangers with single and double U-tube. 
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A typical configuration is shown in Figure 2.1, though most HGSHP system would 

have more boreholes.  The working fluid (usually water or antifreeze solution) circulates 

through the ground loop heat exchanger, rejects heat to the ground in cooling mode or 

extracts heat from the ground in heating mode.  
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Figure 2.1 A schematic of a typical hybrid GSHP system using a closed-circuit cooling tower as a 

supplemental heat rejecter 

Vertical single U-tube boreholes typically range from 50 to 120 meters (164 to 394 

ft) deep and are typically around 10 to 15 cm (4 to 6 inches) in diameter. All but the 

smallest systems use multiple boreholes. It is not uncommon for large systems to have 
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more than 100 boreholes. In order to decrease the thermal interaction between the 

boreholes, each borehole is typically placed at least 4.5 m (15ft) from all other boreholes. 

After the U-tube installation, the borehole will be backfilled with grout, as shown in 

Figure 2.1. The backfill is used to prevent pollution transfer via water movement and to 

provide good thermal contact between the U-tube and the soil. The fluid temperature 

varies through the U-tube and the pipe wall temperatures of each U-tube pipe are 

different, therefore there is thermal short-circuiting between the pipe legs of the U-tube. 

Both the dimensional scale and thermal capacitance of the borehole are much 

smaller relative to those of the infinite ground outside of the borehole. The thermal 

energy change of the borehole over a year is a very small portion of the total heat flow 

(Rottmayer et al. 1997). However, the short-term response is important for design 

considerations that limit the minimum and maximum entering fluid temperature to the 

borehole. Also the existence of a backfill leads to a nonhomogeneous medium around the 

U-tubes. Therefore, the heat transfer process of the ground loop heat exchanger is usually 

analyzed in two separated regions: outside and inside the borehole. To simulate the 

detailed thermal transfer process of the vertical ground loop heat exchanger, there are 

three domains of interest. 

1. Outside the borehole — conduction. The thermal transfer process outside a 

single borehole may be treated as a line or cylinder source in a finite or semi-

infinite medium heat conduction transfer problem. The end effects may or may 

not be accounted for. Approaches include: infinite line source model (Ingersoll 

and Plass 1948), finite line source model (Eskilson 1987; Zeng et al. 2002), 
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infinite cylindrical source model (Kavanaugh 1985; Deerman and Kavanaugh 

1991; Dobson et al. 1995; Bernier 2001; Young 2004), numerical models 

(Eskilson 1987; Hellstrom 1991; Muraya 1994; Rottmayer et al. 1997; 

Yavuzturk et al. 1999; Rees 2000) and response factor models (Eskilson 1987; 

Yavuzturk and Spitler 1999; Young 2004).  

The thermal interaction between the boreholes in long time scale is significant 

(Yavuzturk 1999) and must be accounted for (Eskilson and Claesson 1988; 

Sutton et al. 2002).  

In area where groundwater movement in cracks and permeable zones is 

significant, the groundwater impact on the heat transfer may have a significant 

effect (Eskilson 1987; Rees 2000) and must be accounted for (Deng 2004).  

2. Inside the borehole — conduction and convection. The heat transfer inside the 

borehole includes heat conduction between the U-tube inner pipe wall and 

borehole wall, heat conduction between the different U-tube legs, and heat 

convection between the working fluid and the U-tube inner pipe wall. The heat 

conduction depends on tube geometry in the borehole, pipe thermal properties, 

and grout thermal properties. To a lesser degree, it may also depend on the 

ground thermal properties. The heat convection depends on working fluid 

properties, fluid flow rate, and fluid temperatures. 

The heat transfer process inside the borehole can be simplified as a one-

dimensional, two-dimensional, or quasi-three-dimensional problem depending 
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on the assumptions made. If the fluid temperature variation along the borehole 

depth is not considered and the axial heat conduction in the borehole is assumed 

to be negligible because the borehole depth is far greater than its diameter, then 

the heat transfer process inside the borehole can be regarded as a two-

dimensional heat transfer problem (Muraya 1994; Rottmayer et al. 1997; 

Yavuzturk et al. 1999; Rees 2000). The two-dimensional heat transfer model 

can be further simplified as a one-dimensional model with the “equivalent U-

tube diameter” (Deerman and Kavanaugh 1991; Gu and O'Neal 1998). In the 

axial direction, the axial heat conduction of grout, pipe and fluid are assumed to 

be negligible compared to the axial heat transfer amount carried by the fluid 

flow. Thus, only heat diffusion carried by the fluid flow is considered. The heat 

transfer process inside the borehole can be also treated as a quasi-three-

dimensional model (Dobson et al. 1995; Rottmayer et al. 1997; Zeng et al. 

2002), which allows the fluid temperature to vary with the borehole depth.  

As mentioned above, the annual thermal energy change of the borehole is very 

small compared to the amount outside the borehole. Thus it is a common 

practice that the heat transfer in the borehole is approximated as a quasi-steady-

state phenomenon in annual simulations and the thermal capacitance of grout 

and fluid is neglected. However, for dynamic simulation of the ground loop 

heat exchanger down to hourly and sub-hourly time steps, the thermal 

capacitance of the grout and fluid would have a significant impact on the short 

term response of the borehole system (Young 2004; Xu and Spitler 2006). This, 

in turn, impacts the design of GLHE. In some extreme cases, where the GLHE 
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design is dominated by short-term peak loads, temperatures in the GLHE can 

rise rapidly; say 5-10ºC in one to two hours. For such short-term peak loads, the 

thermal mass of the fluid can significantly dampen the temperature response of 

the ground loop. 

Another facet of the heat transfer process inside the borehole is the short-

circuiting between the U-tube legs. In cooling mode, the warmer fluid flows 

into the U-tube, rejects heat to the ground and a relatively cold fluid flows back 

to the heat pump. Near the top of the borehole, the two fluid streams may have 

a significant temperature difference, on the order of 5°C. The existence of heat 

conduction between the U-tube different legs reduces the borehole heat 

rejection/extraction of the ground loop heat exchanger. Therefore, some models 

have included the effects of short-circuiting in the heat transfer process inside 

the borehole (Kavanaugh 1985; Deerman and Kavanaugh 1991; Dobson et al. 

1995; Muraya et al. 1996; Zeng et al. 2002).  

3. Building and heat pumps — time-varying boundary conditions. A constant heat 

transfer rate or fluid temperature is often used as the boundary condition in the 

development of the ground loop heat exchanger model. In practical systems, the 

heat transfer rate of the ground loop heat exchanger varies continuously due to 

the heating/cooling system load variations. To apply the models to a variable 

heat transfer rate, the temperature change is calculated by superposition of the 

contributions of different heat pulses with different time intervals (Ingersoll and 

Plass 1948). However, for a long time period simulation, the computational 
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time for superposition of the “historical” temperature would be tremendous. 

Therefore, several algorithms have been developed to aggregate the loads to 

reduce the computational time (Deerman and Kavanaugh 1991; Yavuzturk and 

Spitler 1999; Bernier 2001; Bernier et al. 2004). 

A literature review yields several approaches for design and dimensioning of the 

vertical ground loop heat exchangers. Most of the approaches fall into one of three 

categories: analytical models, numerical models, and response factor models. A summary 

of the ground loop heat exchanger models published in the literature is shown in Table 

2.1.  

 In Table 2.1, each GLHE model is summarized in terms of the three domains of 

interest: conduction outside borehole, heat transfer inside borehole, treatment of time-

varying boundary conditions. Also Table 2.1 indicates whether or not the model is 

validated against experimental measurements. The following details are summarized. 

1. Conduction outside borehole 

a. Whether the model may be characterized as analytical, numerical or 

response factor based. 

b. The model performs one-dimensional, two-dimensional, or three-

dimensional simulation. 

c. Does the model account for interference between the boreholes? 

d. Can the model account for the impact of groundwater movement? 
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2. Heat transfer inside borehole 

a. Is this treated with an analytical or numerical model? 

b. The model performs one-dimensional, two-dimensional, or three-

dimensional simulation. 

c. The model performs steady-state or dynamic simulation (Is the thermal 

capacity of fluid, pipe wall, and grout accounted for?). 

d. Can the model account for grout or other backfill with different thermal 

properties? (If soil is selected, this means the model cannot account for 

different thermal properties of the grout or backfill.) 

e. What GLHE configurations does the model support (e.g., single U-tube, 

double U-tube)? 

f. Does the model account for short-circuiting between the U-tube legs? 

3. Does the model include a load aggregation algorithm? 

4. Is the model experimentally validated? 

For additional information or qualification not included above, footnotes are 

provided and listed after the Table 2.1. 

In the following section, a selective literature review of these GLHE models will 

be included. Due to the large amount of literature, the literature review mainly focuses on 
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those models which are aimed at GSHP/HGSHP system simulation, though some 

background is provided on analytical models. 
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Table 2.1 Literature Review Summary for Ground Loop Heat Exchanger Models 
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Ingersoll and Plass (1948) LSM √   √    √  √  √  √        
Eskilson (1987) FLSM √    √ √ √ √  √  √   √  √     

Zeng et al. (2002; 2003) FLSM √    √ √  √   √ 1 √   √  √     
Kavanaugh et al.(1985; 1997); Deerman and 

Kavanaugh (1991) CSM √   √  √  √  √  √   √  √ √ √ √ √ 

Gu and O’Neal (1998; 1998) CSM √   √    √  √  √   √  √    √ 
Fujii et al. (2004) CSM √   √                  

Bernier et al. (2001; 2004) CSM √   √  √  √  √  √   √  √   √  
Dobson et al. (1995) CSM √   √  √   √  √  √ √   √  √  √ 

Young (2004) STSM √   √  √  √   √  √  √  √   √  
Eskilson et al. (1987; 1988) LSTM  √ √ √  √ √ √  √  √   √  √ √    

Mei and Baxter (1986) FDM                      
Muraya et al. (1994; 1996) FEM  √   √    √  √  √  √  √  √   

Rottmayer et al. (1997) FDM  √   √ √   √  √ 1  √ 2  √  √  √   
Rees (2000) FVM  √   √  √  √    √  √  √ √    

Yavuzturk and Spitler (1999; 2001) STSM  √ √  √ √   √  √  √  √  √   √ √ 
Hellstrom (1991); Shonder et al, (1999) DST  √   √ √   √ √   √  √  √ √ √   

Sutton et al. (2002) CSM  √   √ √   √ √   √  √  √ √ √   
Lei (1993) FDM  √       √  √  √ √   √  √  √ 

Shonder and Beck (1999) FDM  √  √     √ √   √  √  √     
Kohl et al. (1995; 2002); Signorelli et al. (2005) FEM  √   √ 3 √ √  √  √ 3  √  √  √ √ √  √ 

Al-Khoury et al. (2005) FEM  √   √ 4  √  √  √ 4  √  √  √     
Bi et al. (2002) FDM  √   √    √  √  √ √    √ 5   √ 

        1: A quasi-three dimensional model. The fluid temperature changes over the borehole depth. 
        2: The thermal capacity of grout and pipe wall is neglected, but thermal capacity of fluid is accounted for. 
        3: For co-axial tube borehole, the model performs 3-D simulation by 2-D geometry.  
        4: The model performs 3-D simulation. 
        5: The ground heat exchanger configuration is vertical double spiral coil.
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2.1.1.1 Modeling of Vertical Ground Loop Heat Exchangers - Analytical 

Analytical solutions, e. g. line source model (LSM), finite line source model 

(FLSM), and infinite cylindrical source model (ICSM) have been used for modeling and 

dimensioning vertical ground loop heat exchangers. They are described below.  

Kelvin’s Line Source Theory 

The earliest approach to calculate the heat transfer of the heat exchanger in the 

ground is Kelvin’s line source model (Ingersoll and Plass 1948). This model is based on 

approximating the borehole as an infinite long line source of heat, or sink in an infinite 

medium (i.e., soil) and assuming end effects are negligible.  The soil acts as a heat 

rejection (extraction) medium, which has an assumed uniform and constant initial 

temperature. The temperature at any point in the medium is calculated by: 
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=        (2-2) 

T  = Temperature of ground at any selected distance, r  from the line source (°C 

[°F]). When the distance r equals to the pipe radius, the temperature represents 

the pipe wall temperature. 

ffT  = Far-field undisturbed ground temperature (°C [°F]). 
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'Q  = Heat transfer rate of the source (W/m [Btu/ft-hr]), 

r  = Distance from center line of the borehole (m [ft]), 

sk  = Thermal conductivity of the ground (W/m-K [Btu/hr-ft-°F]), 

α  = Thermal diffusivity of the ground, defined as 
c

ks

ρ
α = , (m2/s [ft2/hr]), 

ρ  = Density of the ground (kg/m3 [lbm/ft3]),  

c  = Specific heat of the ground (kJ/kg-K [Btu/lbm-F]), 

t  = Time since the start of operation (s [hr]), 

β  = Integration variable, defined as 
)'(2 tt

r
−

=
α

β  

Ingersoll and Plass estimated that the line source model is exact for a true line 

source and it can be applied to small pipes (2” diameter or less) with negligible error after 

a few hours of operation. For large pipes (e.g. 4” to 8”) and for periods less than a few 

days, the line source model would have an error in temperature calculation, which can be 

estimated.  

Ingersoll and Plass provided several examples of using the line source model for 

calculating the pipe wall and the soil temperature for a single tube in homogeneous 

medium. However, the real U-tube configuration is different from Ingersoll and Plass’s 

examples. The use of a U-tube and grout with different thermal conductivity from the 
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surrounding soil further complicated the analysis. In order to practically use this model, 

further assumptions and additions are needed. One possible approach (Spitler 2003) 

involves using the LSM to compute the temperature at the borehole wall due to a line 

source at the center of the borehole, and then a borehole resistance is used to compute the 

difference between the borehole wall temperature and the average fluid temperature. 

Thus the thermal mass of the fluid and ground are, at best, approximated as if the 

borehole were filled with soil. Borehole-to-borehole thermal interference may be 

modeled by superposition (Ingersoll and Plass 1948).  

Finite Line-Source Model 

A finite line source analytical model has been developed for a single borehole 

ground loop heat exchanger (Eskilson 1987; Eskilson and Claesson 1988; Zeng et al. 

2002; Zeng et al. 2003; Diao et al. 2004). The heat conduction outside the borehole is 

treated as a finite line source in a semi-infinite medium, which has a constant initial and 

boundary temperature for field and upper surface. In the finite line source model, end 

effects are not negligible and the real borehole wall temperature varies along the borehole 

depth, especially near the end of borehole region.  

The analytical solution of the finite line source model was derived by Eskilson 

(1987) and Zeng et al. (2002) respectively. The temperature is obtained by integrating 

contributions of imaginary  point source distributed along the borehole (Eskilson 1987).  
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22 )( szrr −+=+  22 )( szrr ++=−   

Where  

D  = Depth of thermally insulated upper part of the borehole (m [ft]).  

H  = Depth of borehole (m [ft]). 

z  = The depth of selected point around the finite line source (m [ft]). 

s  = Integrating parameter. 

Zeng et al. (2002) gave a similar equation to Eskilson, except for setting the D  

value as zero.  

The borehole wall temperature bT  varies along the borehole depth, especially near 

the end; therefore, it is more reasonable to use the integral mean temperature of the 

borehole wall to represent the heat transfer between the borehole and the ground 

(Eskilson 1987). The borehole wall temperature for a single borehole can be calculated 

by: 
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Eskilson states that the lower time limit α/5 2
brt >  is necessary for the use of a 

line sink at 0=r  instead of brr = . For a typical borehole of 10cm (4”) diameter and 

saturated clay, the time would correspond to about 1~2 days. Therefore, the finite line 

source model may be used to model the heat transfer of the ground loop heat exchanger 

for long time steps.  

Since the finite-line source model has the lower time limited α/5 2
brt > , the 

thermal capacity of the borehole is negligible at this time scale. A one-dimensional 

steady-state analytical model is used by Eskilson (1987) to represent the heat transfer 

process inside the borehole and the thermal resistance is calculated using the Multipole 

method (Bennet et al. 1987), which is able to model the complicated configurations 

inside the borehole.  

As a follow-up study, Zeng et al. (Zeng et al. 2003; Diao et al. 2004) developed a 

quasi-three-dimensional model to calculate the heat transfer inside the borehole. In their 

model, the fluid temperature and pipe wall temperature vary in the axial direction. The 

quasi-three-dimensional model inside the borehole is able to estimate the impact of the 

short-circuiting among U-tube legs, and to evaluate the system performance of the 

different fluid circuit arrangements in the double U-tube. The solution of this problem 

was derived by Laplace transformation (Zeng et al. 2003). Zeng and Diao (2003) 

represent the fluid temperature profiles of five different fluid circuit arrangements for the 

double U-tubes. They show that the double U-tube in parallel circuit demonstrates a 

better performance than the double U-tube in series circuit. 
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Infinite Cylindrical Heat Source Model 

A literature search revealed a number of publications on the cylindrical source 

model of the vertical ground loop heat exchanger. The infinite cylindrical heat source 

model, first presented by Carslaw and Jaeger (1947) and Ingersoll et al. (1954), and later 

refined by Kavanaugh at al. (Kavanaugh 1985; Deerman and Kavanaugh 1991; 

Kavanaugh 1995) to model the heat transfer process of the vertical ground loop heat 

exchanger. Subsequent work on the cylindrical model includes: Gu and O’Neal’s (1998; 

1998) analytical solution of the cylindrical source model and the “equivalent U-tube 

diameter”, Fugii et al.’s (2004) approximation of cylindrical source function calculation, 

Dobson et al.’s (1995) short-circuiting calculation between U-tube legs and on-off cycle 

model of GLHE, and Bernier’s (2001) whole ground-coupled heat pump system 

simulation based on the most refined cylindrical source model.  

The cylindrical source model assumes the single borehole as a single infinite 

isolated pipe surrounded by an infinite solid with constant properties. With a constant 

heat flux at the pipe wall, the temperature of point under consideration at or near the pipe 

is calculated as follows: 

ff
s

b TpFoG
Hk

qT += ),('     (2-6) 

Where 

'q  = Heat transfer rate applied to the ground per unit of borehole depth (W/m [Btu/ft-

hr]), a positive value implies heating. 
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sk  = Thermal conductivity of the soil, (W/m-K [Btu/hr-ft-F]), 

),( pFoG = Referred as the cylindrical source function (Ingersoll et al. 1954),  

p  = Ratio of the radius where the temperature is calculated over the outside of pipe 

( or ). When the ratio is equal to 1, the temperature represents the outer pipe wall 

temperature. 

Fo  = The Fourier number, defined as: 2r
tFo sα= . And sα  is the soil diffusivity 

(m2/s [ft2/hr]). 

The cylindrical source model only works directly for the single borehole. 

Kavanaugh and Rafferty (1997) developed a procedure to adjust the initial undisturbed 

ground temperature ffT to estimate the interference between adjacent boreholes.  

The heat transfer inside the borehole is represented by solving a one-dimensional 

(Deerman and Kavanaugh 1991; Bernier 2001) or quasi-two-dimensional (Dobson et al. 

1995) steady-state heat transfer process in a cylindrical pipe. Deerman and Kavanaugh 

used the “equivalent U-tube diameter” (Bose 1984; Mei and Baxter 1986) to evaluate the 

equivalent thermal resistance between the fluid and the borehole wall. Bernier (2001) 

used the “shape factors” (Remund 1999) of the borehole to calculate the thermal 

resistance of the borehole.  

Applying the most refined cylindrical source model of GLHE, a heat pump model 

that interpolates the manufacturer’s catalog data, and a curve fit model of variable speed 
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drive circulation pump, Bernier (2001) developed an annual simulation of the ground-

coupled heat pump system based on an hourly time step. The simulated temperatures and 

system energy consumption are compared against the DST model (Hellstrom et al. 1996; 

Shonder et al. 2000) results and the agreement of the temperatures from these two models 

is quite good.  

Carslaw and Jaeger (1959) presented two forms of the cylindrical source solution. 

The first form (Carslaw and Jaeger, 1959, Section 11.5, p. 334-339) assumes either a 

fixed temperature or fixed flux at the boundary ar = , and does not consider heat transfer 

within the cylinder. This form was used by Deerman and Kavanaugh (1991); Dobsen et 

al. (1995); Bernier (2001) and Fujii et al. (2004). In all of these works, the heat transfer 

from the fluid to the borehole wall is approximated as a quasi-steady-state phenomenon 

and the thermal capacitance of grout and fluid is neglected. Therefore, like the line source 

model, the cylindrical source model has limited accuracy for dynamic simulation at short 

time steps.  

The second form of the cylindrical source solution given by Carslaw and Jaeger 

(1959) assumes that the infinite region with uniform properties is bounded internally by a 

single infinite circular cylinder of a perfect conductor with thermal capacitance (Carslaw 

and Jaeger, 1959, Section 11.7, p. 341-345). Carslaw and Jaeger (1959) gave, as an 

example, a model of a buried electrical cable (BEC).  
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Figure 2.2 Diagram of a buried electrical cable model (and Borehole Fluid Thermal Mass Model) 

The diagram of the buried electrical cable is shown in Figure 2.2, where there is a 

core surrounded by insulation which is surrounded by a sheath.  The core and sheath have 

finite thermal capacitance, but infinite conductivity. The insulation has a finite thermal 

conductivity but no thermal capacitance. Young (2004) applied this BEC model to the 

borehole system, with each input of the BEC model having an analogous input with 

respect to the borehole. These are shown parenthetically in Figure 2.2. The solution is 

then given for core temperature coreT  due to a constant heat input to the core. 

In the ground loop heat exchanger, fluid in the U-tube helps to damp the response 

to peak loads.  Furthermore, fluid outside the U-tube, but circulating through the system 

has the same effect – it damps the response to peak loads.  Therefore, Young introduced a 
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fluid factor to offer the capability of accounting for fluid thermal mass, both inside the U-

tube and in the rest of the system.  Thus, the model was called the borehole fluid thermal 

mass (BFTM) model (Young 2004). The fluid factor is defined as the ratio of the fluid 

thermal mass in the system to the fluid thermal mass in the U-tube and a typical value for 

an actual system is two. 

The analytical solution of the core temperature can be calculated (Carslaw and 

Jaeger 1959): 

ff
s

l
core ThG

k
q

T += ),,,( 21 ταα      (2-7) 

Where 

sb kRh π2= , 1
2

1 /2 Scrb ρπα = , 2
2

2 /2 Scrb ρπα = � 2/ brtατ =  

Where (In the following, “BEC” refers to the Carslaw and Jaeger presentation of the 

buried electrical cable model. “BFTM” refers to Young’s adaptation as the borehole fluid 

thermal mass model.)  

sk  = Thermal conductivity of soil (W/m-ºC [Btu/hr-ft-ºF]); 

bR  = BEC: thermal resistance of insulation; BFTM: borehole thermal resistance, (m-

 ºC/ W [hr-ft-ºF/ Btu]); 

br  = BEC: cable radius; BFTM: borehole radius, (m [ft]); 

ρ  = Density of soil (kg/m3 [lbm/ft3]); 

c  = Special heat of the soil (J/kg-K [Btu/lbm-ºF]); 
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1S  = BEC: volumetric thermal capacity of core; BFTM: volumetric thermal capacity 

of fluid, (J/m-K [Btu/ft-ºF]); 

2S  = BEC: volumetric thermal capacity of sheath; BFTM: volumetric thermal 

capacity of grout, (J/m-K [Btu/ft-ºF]); 

α  = Thermal diffusivity of the soil (m2/s [ft2/s]). 

Since the geometry of the borehole with a single U-tube is not the same as the 

buried electrical cable, Young developed a procedure for matching the BEC parameters 

to the U-tube geometry. To maintain the identical thermal mass of fluid and grout, the 

cross sectional areas of the fluid and grout were maintained from the actual U-tube to the 

BEC representation. This is done by choosing an equivalent diameter of the core as 2  of 

the original diameter of inner U-tube.  

In the BEC model, the sheath (grout) and core (fluid) are assumed to be thermal 

masses without resistance and might be called “lumped capacitances” located at the 

outside and inside of the “lumped thermal resistance” of borehole, as shown in Figure 

2.2.  In the borehole, the thermal capacity of grout and fluid is distributed continuously in 

the borehole domain, as well as the thermal resistance of borehole. In practice, the 

continuous distribution of thermal capacitance might be adequately approximated with 

enough lumps, as in a finite volume model.  

However, Young  (2004) found that two lumps, with one lump being the fluid and 

the other being the grout, did not give sufficient accuracy. Since the distribution of the 

two lumps in somewhat arbitrary, Young introduced a grout allocation factor (GAF) that 

adjusted the distribution of the grout thermal mass between the two lumps. The GAF 
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value is defined as a fraction of the thermal capacity of the grout to be moved from the 

outside of the borehole thermal resistance to the inside of the borehole thermal resistance. 

The new equivalent thermal capacitance of grout and fluid was used in modeling the 

borehole thermal heat transfer process. A detailed finite volume model, GEMS2D (Rees 

2000), was used to validate the accuracy of the BFTM model and to determine the 

suitable GAF values for different configurations of borehole. It was found that the best 

GAF value was related to borehole diameter, shank spacing, borehole diameter and fluid 

factor. Young attempted to find a functional relationship between GAF and these 

parameters, but was unsuccessful. Instead, he tabulated values of GAF for various 

combinations of these parameters. 

Nevertheless, since the BFTM model accounts for the thermal capacity of grout 

and fluid, it is expected to give better accuracy of the GLHE temperature response at 

short time steps than the first form of the cylindrical source solution. However, Young 

compared the BFTM model to the line source model. He showed that, for very short 

duration peak loads of 1 to 2 hours, the difference in peak temperature predictions could 

be 1.3ºC (2.3ºF) between the BFTM model and the line source model.  

Young used the BFTM model to calculate the short time response of the borehole; 

this was integrated with another model to find the long-term response. More details of the 

response factor model will be introduced in the section 2.1.1.3. Applying the BFTM 

model in the GLHE design procedure, Young also showed that the sizing of the ground 

heat exchangers could be highly sensitive to the peak temperature prediction, especially 

for buildings dominated by short-term peak loads. Furthermore, the temperature response 
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also has a secondary impact on the predicted energy consumption of the system, as the 

COP of the heat pump varies with entering fluid temperature. Therefore, it is desirable to 

be able to model the short-term behavior accurately. 

2.1.1.2 Modeling of Vertical Ground Loop Heat Exchangers - Numerical 

Direct numerical solutions have been used to model ground heat exchangers. 

Various methods have been used to solve the physical field problem, e.g. finite difference 

(Lei 1993; Rottmayer et al. 1997), finite element (Muraya et al. 1996; Kohl et al. 2002; 

Signorelli et al. 2005), finite volume model (Rees 2000). But, due to computational time 

requirements, these numerical models are not useful for incorporation into a building 

simulation program with hourly or sub-hourly time steps. In the following section, only a 

brief selective literature review of these numerical models will be given.  

Finite Difference Method 

Finite Difference Models (FDM) have been used for modeling ground heat 

exchangers. In FDM, the borehole/U-tube geometry is not conveniently represented in 

either a rectangular or a radial-angular grid. Different treatments of geometry of 

borehole/U-tube (Rottmayer et al. 1997; Yavuzturk et al. 1999; Rees 2000) have been 

used in FDM and the following discussion will focus on these treatments. 

Lei (1993) developed a two-dimensional finite difference model on a radial-axial 

coordinate system for vertical ground heat exchanger. The Hopkins’ (1983) thermal 

short-circuiting model  was used. The model assumed that, in the vertical direction, the 

heat transfer in the pipe and ground was negligible and there was only heat transfer 
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caused by the fluid flow in the U-tube. In the horizontal cross section, it was assumed that 

there was only heat flow in the radial direction for all regions except in the pipe the small 

area between the two adjacent pipes. The U-tube interval surface area was divided into 

two parts: surface area that exchanges heat with an infinite ground and surface area that 

exchanges heat with the adjacent tube section. The former surface temperatures and areas 

were used as boundary conditions to calculate the heat conduction between the tube wall 

and the infinite ground. The latter surface temperatures were used to calculate the short-

circuiting between U-tube legs. These two surface temperatures were obtained by solving 

the heat balance equation of each tube interval, including the heat transfer rate brought by 

the fluid flow. In Lei’s model, the proportion of two parts of U-tube interval surface is 

important and depends on the geometric relation between two pipes. Lei chose six 

different proportion values to run the simulation and compared against experimental data. 

However, Lei mentioned how to divide the U-tube interval surface into two parts was not 

determined and needed to be investigated.  

Rottmayer et al. (1997) developed a quasi-three-dimensional finite difference 

method for vertical single U-tube ground heat exchanger. Like Lei’s assumption, 

Rottmayer et al. assume that the only axial heat transfer is via the fluid.  

In Rottmayer et al’s model, a cylindrical finite-difference grid is used for the 

horizontal cross section. The U-tube in the finite-difference mesh is not circular but is 

approximated by matching the perimeter of the modeled non-circular tube to the actual 

circular tube perimeter, as shown in Figure 2.3. The borehole resistance with noncircular 

mesh differs from the circular tube and an empirically determined geometric factor is 
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used to modify the thermal resistance of noncircular mesh to get a better agreement of 

simulated results between the noncircular mesh and the circular tube. 

 

Figure 2.3 Cylindrical finite-difference grid used to calculate the heat transfer at one depth 

(Rottmayer et al. 1997) 

In this model, the thermal mass of the tube wall and grout is neglected and the 

authors claim this approximation is acceptable in annual simulations. However, as the 

authors indicated, neglecting the pipe wall and grout capacitances might affect the short 

time temperature response.  

Compared to Lei’s model, Rottmayer et al’s model presents the geometry of the 

borehole more accurately. But it is expected that the computational time is expensive to 

solve this quasi-three-dimensional numerical problem. 

Yavuzturk and Spitler (1999) developed a transient two-dimensional model for 

vertical ground heat exchangers. Neglecting the heat transfer in the vertical direction, the 
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heat transfer of the ground heat exchanger was simplified as a two-dimensional (radial-

angular) heat transfer problem. Similar to Rottmayer et al’s work, a cylindrical finite-

difference grid was used for the horizontal cross section and treatment must be adopted 

for modeling the non-circular tube. Yavuzturk and Spitler developed an algebraic 

algorithm to automatically generate numerical grids in polar coordinates for the ground 

heat exchanger geometry, as shown as Figure 2.4. The “pie sector” in the figure has an 

equivalent inner perimeter with the tube inside perimeter and has an identical wall 

thickness with the pipe thickness.  

A constant heat flux is used as the boundary condition for the “pie-sector” 

approximation. In order to get near-identical result to the real geometry of the circular U-

tube, an equivalent heat flux is calculated by matching the inside perimeter of the circular 

pipe to the inside perimeter of the pie sector and by establishing identical heat flux and 

resistance conditions near the pipe wall. An equivalent conductivity of pipe wall is 

determined which gives the same resistance as the actual convection coefficient at the 

inside of the U-tube and conduction though the pipe wall.  

Rottmayer et al’s model and Yavuzturk and Spitler’s model are three-dimensional 

or two-dimensional numerical models and both require expensive computational time and 

not suitable for direct incorporation into a building simulation program with hourly or 

shorter time steps. However, Yavuzturk and Spitler’s model accounts for the thermal 

mass of grout, tube wall and fluid, and is capable of modeling the short term response of 

ground loop heat exchanger. Yavuzturk and Spitler’s model is used to generate response 
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factors, which are suitable for annual HGSHP system simulation. More details will be 

introduced in Section 2.1.1.3. 

 

Figure 2.4 Simplified representation of the borehole region on the numerical model domain using the 

pie-sector approximation for the U-tube pipes. (Yavuzturk and Spitler, 1999) 

Noting that the temperature distribution in the soil at a large distance from the U-

tube is similar to that which is caused by single pipe, Shonder and Beck (1999) developed 

a one-dimensional radial finite difference model for single borehole. In this one-

dimensional model, the U-tube was simplified as one tube in the borehole and an 

effective pipe radius was used to represent the U-tube geometry. A film was added at the 

outer surface of the pipe to account for the thermal capacity of the pipes and fluid. The 

purpose of this model was prediction of ground thermal conductivity from in-situ thermal 

conductivity test. Accordingly, parameters such as thermal conductivity of the thermal 
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film, volumetric heat capacity of the thermal film, the thickness of the thermal film and 

the effective pipe radius are treated as unknown and then estimated from the 

experimental data. While this one-dimensional model was originally developed to predict 

the thermal properties of the grout and soil, it might be useful for GLHE simulation if 

methodology for determining the parameters without experimental measurements was 

developed. Since this one-dimensional model requires much less computational time than 

the detailed numerical models, it could be suitable for incorporation into a building 

simulation program. 

Finite Element Model 

Muraya et al. (1996) developed a two-dimensional finite element model (FEM), 

which they used to perform a parametric study of the ground loop heat exchanger.  Kohl 

et al. (2002) developed a three-dimensional finite element program – FRACTure (Kohl 

and Hopkirk 1995) for the co-axial tube borehole  (Kohl et al. 2002). This program was 

also used for the double U-tube borehole (Signorelli et al. 2005).  

One of advantages of the finite element model is that its grid scheme is able to 

closely represent the actual borehole with little geometrical approximation. Therefore, the 

finite element model can easily evaluate the impact of (1) irregular geometry because of 

the U-tube two legs; (2) unsymmetric loading of the two legs; (3) nonhomogeneous 

media caused by backfill which is used to enhance the heat transfer of the U-tube. 

However, due to the expensive computational time reason, these finite elemental models 

are not directly useful for the building system simulation.  
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Finite Volume Method  

The heat transfer of ground loop heat exchanger can be solved by using the finite 

volume model (FVM). A General Elliptical Multi-block Solver (GEMS2D), a finite 

volume program, was developed by Building and Environment Thermal Systems 

Research Group at Oklahoma State University (Rees 2000) and is used to simulate the 

heat transfer of the ground heat exchanger (2004) and standing column well (Deng 2004).  

GEMS2D is developed with both orthogonal Cartesian grids and boundary fitted 

grids. The boundary fitted grids enable the method to be applied to complex geometries 

such as U-tube in a ground loop heat exchanger.  A two dimensional boundary fitted grid 

representing a cross section through a ground loop heat exchanger is shown in Figure 2.5. 

Unsymmetric loading of the two legs can be modeled. Based on Young’s work (2004), 

GEMS2D can closely match the thermal resistances calculated by the Multipole 

resistance method (Bennet et al. 1987). Without the sort of simplifications required for 

the FDM, GEMS2D is able to solve complicated two-dimensional grids. Also the thermal 

mass of the borehole and fluid are accounted for in the model and GEMS2D is capable of 

dealing with both steady-state and transient problems. Therefore, GEMS2D was used as a 

reference model for the other numerical models (Deng 2004; Young 2004). However, 

like other detailed numerical models, the computational time of GEMS2D limits its 

application for the HGSHP system simulation. 
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Block 1 – fluid and pipe 
Block 2 – fluid and pipe 
Block 3 – grout 
Block 4 – grout 
Block 5 - soil 
 

 

Figure 2.5 Grid for a cross section of a borehole (Young 2004) 

 

2.1.1.3 Modeling of Vertical Ground Loop Heat Exchangers – Response Factors      

A third approach, which allows for computationally efficient simulation, involves 

the development of response functions, used in a response factor (g-function) model, 

which allows the ground heat exchangers to be modeled with a time series. Eskilson 

(1987) developed g-functions for long time steps, and later a short time step response 

factor method was developed by Yavuzturk and Spitler (1999).  Using the response factor 

model, the simulation of the ground loop heat exchanger is computationally efficient and 
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the annual simulation of HGSHP systems with hourly or shorter time steps becomes 

practical. The following section introduces the response factor models. 

Long Time Step (LTS) Response Factor Model 

Eskilson (1987) developed an approach to determine the temperature distribution 

around a borehole based on a hybrid model combining analytical and numerical solution 

techniques.  First, a two-dimensional numerical calculation is made using transient finite-

difference equations on a radial-axial coordinate system for a single borehole in 

homogeneous ground with constant initial and boundary conditions.  The thermal 

capacitance of the individual borehole elements such as the pipe wall and the grout are 

neglected.  The temperature fields from a single borehole with a step heat input are 

superimposed in space to obtain the response from the whole borehole field. 

Secondly, the temperature response of the borehole field is converted to a set of 

non-dimensional temperature response factors, called g-functions.  The g-function allows 

the calculation of the temperature change at the borehole wall in response to a step heat 

input for a time step.  Once the response of the borehole field to a single step heat pulse is 

represented with a g-function, the response to any arbitrary heat rejection/extraction 

function can be determined by devolving the heat rejection/extraction into a series of step 

functions, and superimposing the response to each step function, as shown in the 

following example that is based on the nomenclature presented in Figure 2.6.  

Multiple borehole systems are used to support the large heat pump systems. The 

thermal process in the ground field with a number of thermal interacting boreholes is 
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quite complex. Instead of using three-dimensional numerical method to solve the 

problem, Eskilson uses the superposition method to simply the three-dimensional heat 

transfer process with the complex geometry to cylindrically symmetric ones. 

 

  Q1              Q2              Q3         

t1            t2                   t3

Time Time 

Q1’ 

Q2’ 

Q3’ 

t1          t2                 t3 

 

Figure 2.6 Superposition of Piece-Wise Linear Step Heat Inputs in Time 

In this case, the irregular heat pulse as shown in the left of the Figure 2.5 can be 

discretized into several continuous heat pulses with different durations. For example, the 

basic heat pulse of level Q1’=Q1 applied for the entire duration from 0 to t3. The 

subsequent pulses are superimposed as Q2’=Q2-Q1 effective for time from t1 to t3 and 

Q3’=Q3-Q2 effective for the time from t2 to t3. Thus, the borehole wall temperature at time 

t3 can be determined by adding the responses of the three step functions. Mathematically, 

the superposition gives the borehole wall temperature at the end of the nth time period as: 
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Where: 

t = Time, (s) 

st  = Time scale, defined as α9/2Hts = , (-) 

H  = Borehole depth, (m) 

k  = Ground thermal conductivity, (W/m-K) 

bT  = Average borehole temperature, (ºC) 

ffT  = Undisturbed ground temperature, (ºC) 

q  = Heat rejection pulse, (W/m) 

br  = Borehole radius, (m) 

i  = The index to denote the end of a time step (the end of the 1st hour or 2nd month 

etc.)  

Figure 2.7 shows the temperature response factor curves (g-functions) plotted 

versus non-dimensional time for various multiple borehole configurations and a single 

borehole. The g-functions in Figure 2.7 correspond to borehole configurations with a 

fixed ratio of 0.1 between the borehole spacing and the borehole depth.  The thermal 

interaction between the boreholes is stronger as the number of boreholes in the field is 

increased and as the time of operation increases. 
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Figure 2.7 Temperature response factors (g-functions) for various multiple borehole configurations 

compared to the temperature response curve for a single borehole (Yavuzturk 1999) 

The detailed numerical model used in developing the g-functions approximates 

the borehole as a line source of finite length, so that the borehole end effects can be 

considered.  The approximation of the borehole as a finite-length line source has the 

resultant problem that it is only valid for times estimated by Eskilson to be greater than 

α/5 2
br . However, much of the data developed by Eskilson does not cover periods of less 

than a month.  (For a heavy, saturated soil and a 76 m deep borehole, the g-function for 

the single borehole presented in Figure 2.7 is only applicable for times in excess of 60 

days.) When applied for a short-time system simulation, Eskilson’s method cannot 

accurately model a system with transient operation. Eskilson’s method may then be 

referred to as the long time-step g-function method.  

Short Time Step (STS) Response Factor Model 
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 Yavuzturk et al. (Yavuzturk and Spitler 1999; Yavuzturk et al. 1999) extended 

Eskilson’s long time-step model to short time steps by developing short time-step g-

functions with a two-dimensional (radial-angular) finite volume method, which utilized 

an automated gridding procedure and a “pie-sector” representation of the U-tubes. The 

two-dimensional numerical method was discussed previously in Section 2.1.1.2. Because 

the short time-step g-function represented the response of the entire ground heat 

exchanger including the fluid, it necessarily utilized a fixed convective resistance. 

The short time-step g function values can be obtained from the borehole 

temperature and they line up very well with Eskilson’s long time-step g functions. For 

typical rations of borehole radius to borehole depth, the short time-step g function data 

respond to the time step between 2.5 minutes and 200 minutes. For practical purpose, the 

short time-step response factor model is used for the time shorter than 200 hours and the 

long time-step response factor model is applicable for the time longer than 200 hours 

(Yavuzturk 1999).  

Using the short time-step g function model, Yavuzturk and Spitler (1999) 

developed a TRNSYS component model for GLHE and presented an annual hourly 

simulation of the GSHP system. Later, Yavuzturk and Spitler (2001) validated the short 

time-step model of the vertical GLHE against the actual operational data from an 

elementary school building.   

Following the same general approach, but with a simpler model of the borehole, 

Young’s BFTM model (2004) was also used to generate the short time step response 

factors of GLHE. Integrated with Eskilson’s long time-step response factor model, a 
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response factor model of the GLHE was built into GLHEPRO (Spitler 2006), which is a 

tool for designing ground loop heat exchangers for use with ground source heat pump 

systems. 

Response factor models of GLHE can simulate the heat transfer of ground loop 

heat exchanger in any time scale. These models are computationally efficient, and 

therefore suitable to run an annual simulation of GSHP system with hourly or sub-hourly 

time steps in a relatively short time. 

2.1.1.4 Modeling of Vertical Ground Loop Heat Exchangers – Load Aggregation 

Algorithm 

In analytical and response factor models of ground loop heat exchangers, the 

current borehole wall temperature is calculated by superimposing the response from 

different “historical” heat pulses with different durations, as shown in Figure 2.6. For a 

long time period simulations, the computational time for superposition of the “historical” 

temperatures would be considerable expensive. However these temperature changes are 

negligible when happened time of the “historical” heat flux is long enough. Therefore, 

some load aggregation algorithms have been developed to deal with the “historical” heat 

flux and try to save the computational time and they are introduced in this section. 

Deerman and Kavanaugh’s Work  

Deerman and Kavanaugh (1991) described two simplified methods to truncate the 

cumulative effect of the prior heat flux on the temperature of current time. Method 1 

includes one prior day’s heat flux effect on the temperature change of the current time. 
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Method 2 sets the number of prior days based on the magnitude of the current daily run 

time fraction of heat pumps. The rule of method 2 is descried as follows: (1) when the 

current run fraction of heat pumps is greater than 35%, then no prior days will be 

considered, and (2) when the current run fraction of heat pumps is 10%, 15 prior days 

“historical” heat flux would be used. Based on the comparison against the measurement 

data, Deerman and Kavanaugh suggested that method 1 should be used for both hourly 

and daily simulations.  

Yavuzturk and Spitler’s Work 

Yavuzturk and Spitler (1999) developed a loads aggregation algorithm for ground 

loop heat exchangers. The loads on the ground loop heat exchanger were divided into the 

“lumped” and immediate thermal history. The loads that occur more than a certain time 

ago (for example, 192hours) were be “lumped” together into large blocks and an average 

heat flux was used for calculating the temperature response. For any give time-step after 

the first load-aggregated time block, the average borehole wall temperature is computed 

by superimposing the temperature changes from the “lumped” block loads and then the 

temperature changes from the short time-step loads. By using this load aggregation 

algorithm (192 hours recent history and lumped periods of 730 hours), for a 20-year 

hourly time step simulation, the computational time was reduced to less than 1% of non-

aggregated scheme (Yavuzturk 1999).  

Bernier et al. Work 
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Bernier (2001; 2004) developed a load aggregation scheme for ground loop heat 

exchanger. Bernier (2001) split the historical heat flux into two time periods at the time 

mt . The borehole wall temperature varying caused by the heat flux before the time mt is 

calculated by an average heat transfer rate over the time interval from 0 to mt . The 

temperature varying after the time mt  to the current time nt  is calculated by the 

individual heat transfer rate of each period.  

Bernier made a comparison of the computational time, the heat pump and pump 

energy consumption by using different mn tt −  values as 24, 168, 672 and 1344 hours. 

The computational time in case of 24 hours was 2.2% of the time for the case of 1344 

hours. The maximum fluid temperature leaving the heat pump of the 24-hour case was 

5°C (9°F) lower than the temperature of the 1344-hour case. The annual energy 

consumption of the heat pump(s) and circulation pump(s) in case of 24 hours was 3.3% 

lower than the annual energy consumption for the case of 1344 hours. 

As the follow-up study, Bernier et al. (2004)) developed a multiple load 

aggregation algorithm (MLAA) for the GSHP system. As with the previous work, the 

loads were divided into main intervals under the “past” and “immediate” thermal history. 

The new feature is that the “past” thermal history has four time intervals, defined as daily, 

weekly, monthly and yearly time intervals. Period mX , wX , dX  and hX  of 360, 168, 48, 

and 12 hours are recommended for the ground loop heat exchanger simulation. Applying 

MLAA, the one-year and ten-year simulations of GSHP system were compared against 

the DST method results (Hellstrom 1991) and had a very good agreement. It took three 
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minutes to run annual hourly simulation of GSHP system with the MLAA on a Pentium 

166 MHz PC equipped with 32MB RAM and using Windows 98. 

2.1.2 Heat Pump Model 

In HGSHP systems, air-to-water or water-to-water heat pumps are used. The 

approaches for modeling heat pump generally fall into extremes which are detailed 

deterministic models and equation-fitting models. 

Detailed deterministic heat pump models are based on applying thermodynamic 

laws and fundamental heat and mass transfer relations for individual components, namely 

compressor, expansion device, condenser and evaporator (Parise 1986; Bennet et al. 

1987; Cecchini and Marchal 1991; Stefanuk et al. 1992; Iu et al. 2003). Parameters are 

introduced to describe the detailed physical geometry and operation of each component. 

The model is able to reproduce the behavior of the actual units. Detailed deterministic 

heat pump models require many details for each component to get the parameters, which 

are usually not available from heat pump manufacturers’ catalogs, such as compressor 

speed, displacement volume, clearance ratio (Parise 1986), saturation pressures in both 

evaporator and condenser, superheating and subcooling (Cecchini and Marchal 1991). 

Therefore, detailed deterministic heat pump models are usually suitable for heat pump 

designers but not for engineers designing heat pump system and who only have heat 

pump manufacturer catalog data available.  

Equation-fitting heat pump models treat the system as a black box and fit the 

system performance to one or a few equations (Lash 1992; Tang 2005). The equation 
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coefficients are estimated from the catalog data using somewhat procedures. The 

equation-fitting approach does not require internally measured data, thus the equation-

fitting models are suitable for users that only have access to manufacturers’ catalog data. 

As mentioned above, the parameters are estimated from the catalog data and the models 

usually have a good prediction of heat pump performance. In actual practical systems, the 

fluid temperatures and flow rates occasionally go beyond the catalog data. Therefore, the 

equation-fit model may not be able to predict heat pump performance well when the fluid 

temperatures and/or flow rates are too high or too low.  

Jin and Spitler (2002; 2003) developed a parameter estimation-based heat pump 

model. This model is developed from the detailed deterministic approach, but it only 

requires input data that are readily available from manufacturers’ catalog. The parameters 

were estimated from catalog data using a multi-variable optimization procedure. This 

new heat pump model has a better capacity of modeling heat pump than the equation-

fitting model and allows some extrapolation beyond the catalog data.  

In this HGSHP system study, Tang’s (2005) equation-fit heat pump model  and 

Jin and Spitler’s (2002) parameter estimation heat pump model equation-fit model are 

used for modeling a single heat pump. However, in the study of a multiple heat pumps 

system, an equation-fit multiple heat pump model is used to simplify the system 

simulation without modeling each single heat pump.  

In the study of buildings with many heat pumps, it is difficult to model each heat 

pump independently. As an alternative, a new “gang-of-heat-pumps” model will be 

developed. 
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2.1.3 Cooling Tower/Fluid Cooler Model 

In an HGSHP system, cooling towers or fluid cooler are typically used as the 

supplemental heat rejecter. There are two-basic types of cooling tower: open-circuit 

cooling tower and closed-circuit cooling towers. The open cooling tower exposes water 

to be cooled directly to the atmosphere and is also called a direct-contact cooling tower.  

In the closed-circuit cooling tower, the fluid to be cooled flows in the internal circuit and 

never contacts the atmosphere and the tower is also called an indirect-contact cooling 

tower. 

Using open-circuit cooling tower as the heat rejecter for HGSHP systems has 

disadvantage of turning low-maintenance GSHP system into high-maintenance HGSHP 

system. Also, due to concerns about legionnaires' disease, many building owners are 

reluctant to use open-circuit cooling tower. A closed-circuit cooling tower/fluid cooler 

can be used as a supplemental heat rejecter. The closed-circuit cooling tower/fluid cooler 

requires low maintenance and water treatment, and can be operated during the winter 

without labor-intensive anti-icing measures.  

2.1.3.1 Modeling of Cooling Tower/Fluid Cooler 

A number of cooling tower models has be developed for both open cooling towers 

(Bernier 1994; Soylemez 1999; Benton et al. 2002; Lebrun and Silva 2002; Khan et al. 

2004; Kloppers and Kroger 2005) and closed-circuit cooling tower/fluid coolers 

(Zalewski and Gryglaszewski 1997; Hasan and Siren 2002; Lebrun et al. 2004; Stabat 

and Marchio 2004; DOE 2007).  
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The fundamental heat transfer theory of the open cooling tower was developed by 

Merkel (1925). In Merkel’s model, three critical assumptions used to simplify the 

calculation are the Lewis factor is equal to 1, the air exiting the tower is saturated vapor 

and the water loss due to evaporation can be neglected.  

Based on the same assumptions of Merkel’s model, Webb et al. (Webb 1984; 

Webb and Villacres 1984) introduced the effectiveness-NTU (number of transfer units) 

(ε-NTU) design method for counterflow or crossflow cooling towers. The ε-NTU method 

usually only requires dry-bulb, wet-bulb, and water inlet temperature as input data to 

predict the performance of cooling tower. It is suitable for users that have limited data 

available.  

Various methods have been used to practically size and predict cooling tower 

(Soylemez 1999) based on NTU method, e.g. variable UA model for indirect-contact 

cooling tower model (Stabat and Marchio 2004), variable UA model for both direct and 

indirect contact cooling tower model (Lebrun and Silva 2002; Lebrun et al. 2004), the 

fouling model for the open cooling tower (Khan et al. 2004). 

Beyond the ε-NTU method, more detailed models have been developed for 

cooling tower (Bernier 1994; Zalewski and Gryglaszewski 1997; Hasan and Siren 2002; 

Kloppers and Kroger 2005). These models divide the cooling tower into small elements 

along the height of cooling tower and heat and mass transfer are considered for each 

elemental volume.  The arrangement of tubes may or may not be considered (Hasan and 

Siren 2002). These detailed models can predict how cooling tower performance is 
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affected by fill height, water retention time, and air and water mass flow rates. However, 

these models need data which are usually not available from manufacturer catalogs.  

In this study of HGSHP system, an ε-NTU method will be used for modeling both 

open and closed-circuit cooling towers. Also a fluid cooler model will be developed. 

2.1.3.2 Control of Cooling Tower/Fluid Cooler 

Most of the time, cooling towers and fluid coolers are not running at their full 

capacity. Accordingly, some form of capacity control is required to optimally control a 

cooling tower to maintain desired fluid temperatures and to give the best performance. 

EPRI (1993) and ASHRAE (2000) have presented several scenarios for control the 

cooling tower: a bypass valve, modulating dampers, fan cycling, a two-speed fan, 

variable frequency drives (VFD), and multiple cells.  

When a cooling tower is to be used in subfreezing climates, treatment is required 

to prevent the cooling tower from freezing. For an open cooling tower, capacity control is 

used to maintain the temperature of the water leaving the tower well above freezing. For 

closed-circuit cooling towers, a common protection is to use an antifreeze solution. Or 

supplemental heat may be provided to the heat exchanger. ASHRAE Standard 90.1 also 

suggests, in a closed-circuit tower, a minimal flow of water around the tower shall be 

provided for freeze protection. However, this minimal flow protection might also be 

applied in open cooling tower, especially in where the atmosphere temperature is only 

occasionally below zero.  
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In this study of HGSHP system, a single speed fan cooling tower/fluid cooler will 

be used as the supplemental heat rejecter.  

2.2 HGSHP Systems and Control Approaches 

In this section, hybrid GSHP system configurations will be discussed. Secondly, 

design procedures for HGSHP system will be reviewed. Then, performance of several 

real and hypothetical hybrid GSHP systems will be presented. In addition, currently 

recommended controls of HGSHP systems will be summarized.  

2.2.1 HGSHP System Configuration 

The design of an HGSHP system has many degrees of freedom and there are 

many possible configurations of HGSHP systems. For example, the supplemental heat 

rejecter can be in series or in parallel with the ground heat exchanger. Flow to individual 

heat pumps might be controlled with two-way valves or primary-secondary pumping. The 

supplemental heat rejecter might be an open cooling tower, a closed-circuit cooling tower 

or a dry fluid cooler.  
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Figure 2.8 A schematic of a typical hybrid GSHP system using a closed-circuit cooling tower as a 

supplemental heat rejecter 

A common configuration of the system uses a cooling tower or fluid cooler as the 

supplemental heat rejecter, as shown in Figure 2.9. For this configuration, the tower is 

typically isolated from the ground loop heat exchanger with a plate frame heat exchanger. 

The ground loop heat exchanger and the plate frame heat exchanger are placed in parallel 

in the system and a mixing valve is used to control the fluid flow through these two 

components. This “parallel-connected” system layout is suitable for an HGSHP system 

with large flow rate and a relatively small number of boreholes. In this case, all of the 

system flow cannot feasibly pass through the GLHE without requiring excessive 

pumping power. No recommendation for distribution of the flow between the GLHE and 
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the plate heat exchanger are given in the literature. However, distribution must be made 

and this will be investigated in this study. 

 

Figure 2.9 A schematic of a typical hybrid GSHP system using a closed-circuit cooling tower as a 

supplemental heat rejecter (DOE 2006) 

Another configuration of the HGSHP is shown as in Figure 2.9. For this system, 

the tower (presumably a closed-circuit tower) is piped in series with the ground heat 

exchanger. This “serially-connected” system layout is suitable for the system with a 

relatively small cooling tower and large number of boreholes. In this case, the entire 

system flow can pass through the boreholes and the pressure drop will still be acceptable. 

A diverter valve is used to control the flow rate through the cooling tower. 

2.2.2 HGSHP System Design Method 

Designing an HGSHP system requires sizing of both GLHE and supplemental 

heat source or sink. In the following section, the literature related to sizing these two 

components will be reviewed. 
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2.2.2.1 Sizing GLHE of GSHP System 

Several procedures are available for sizing the vertical ground loop heat 

exchanger of GSHP system, such as IGSHPA (Bose 1984), Kavanaugh et al. (Kavanaugh 

and Rafferty 1997; Kavanaugh 1998). Also some commercial software is available for 

vertical ground heat exchanger design, such as GLHEPRO (Spitler 2006), GCHPCalc 

(GeoKISS 2006), GS2000TM (CRI 2006), Ground Loop Design (GaiaGeothermal 2006), 

GLD (GBTI 2006). Shonder et al. (1999; 2000) compared six vertical ground heat 

exchanger design methods for residential and commercial applications. However, the 

only published procedures for sizing HGSHP are given by Kavanaugh and Rafferty 

(1997) and Kavanaugh (1998). These are discussed in the following section. 

2.2.2.2 Sizing GLHE and Supplemental Heat Source or Sink of HGSHP System  

Kavanaugh and Rafferty (1997) gave a design procedure for sizing the GLHE and 

supplemental heat source or sink of the HGSHP system and later Kavanaugh (1998) 

revised this design procedure.  

Firstly, Kavanaugh and Rafferty developed a procedure (they referred to this as 

the “Long Way” procedure) to calculate the required length for the 100% geothermal 

ground source heat pump system. The required borehole length for cooling is: 
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The required borehole length for heating is: 
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Where: 

scF  = short-circuit heat loss factor, (-) 

CL  = required borehole length for cooling, (ft) 

hL  = required borehole length for heating, (ft) 

mPLF  = part-load factor during design month, (-) 

aq  = net annual average heat transfer to the ground, (Btu/h) 

lcq  = building design cooling block load, (Btu/h) 

hcq  = building design heating block load, (Btu/h) 

gaR  = effective thermal resistance of the ground, annual pulse, (h-ft-ºF/Btu) 

gdR  = effective thermal resistance of the ground, daily pulse, (h-ft-ºF/Btu) 

gmR  = effective thermal resistance of the ground, monthly pulse, (h-ft-ººF/Btu) 

bR  = thermal resistance of borehole, (h-ft-ºF/Btu) 

gt  = undisturbed ground temperature, (ºF) 

pt  = temperature penalty for interference of adjacent borehole, (ºF) 

wit  = liquid temperature at heat pump inlet, (ºF) 
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wot  = liquid temperature at heat pump outlet, (ºF) 

cW  = power input at design cooling load, (W) 

hW  = power input at design heating load, (W) 

 In the above formulas, heat transfer rates, building loads, and temperature 

penalties are positive for heating and negative for cooling.  

 In the design manual, Kavanaugh and Rafferty (1997) describe detailed 

procedures to determine each term in Equations 2-10 and 2-11, including U-tube thermal 

resistance bR , soil properties and ground thermal resistance ( gaR , gdR  and gmR ), heat 

rates for the system ( mPLF , aq , lcq , lcq , cW  and hW ), and GCHP system temperature 

( gt , wit , wot  and pt ).   

After getting two borehole lengths for heating and cooling of the system, a larger 

one will be chosen as the borehole length of the 100% geothermal ground source heat 

pump system. 

 In the “Long Way” design procedure, zone-by-zone design day loads and annual 

equivalent heating and cooling hours are required and the heat rates for the system is 

calculated with a spreadsheet procedure. To simplify the calculation procedure, a 

“Shorter Method” was described in the design manual (Kavanaugh and Rafferty 1997).  

The simplified method includes: 

1. Using the building block load rather than zone-by-zone loads. 
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2. Using estimates of average equivalent full-load operating hours rather than 

individual zone hours. 

3. Using average values of equivalent EER and COP rather than using individual 

unit values. 

4. Using the tabulated values to estimate the temperature penalty pt  due to long-

term heat change in the ground loop. 

 Then Equation (2-10 and (2-10 are simplified to  
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Where: 

fhfc CC ,  = Correction factors account for the amount of heat rejected or absorbed 

by the heat pumps. The values depend on the respective EER and COP of 

the units and are provided in the design manual.  

And the net annual average heat transfer to the ground, aq  is calculated by 

Hours
EFLHqCEFLHqC
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Where: 

cEFLH , HEFLH = Annual equivalent full-load cooling and heating hours, hours. 

For the cooling or heating constrained GSHP system, a supplemental heat source 

or sink is incorporated to eliminate the imbalance of the ground thermal load (More 

discussion about the cooling/heating constrained is presented in Section 6.3.1). 

Kavanaugh and Rafferty (1997) gave a design procedure for sizing the borehole and 

supplemental heat source or sink of a HGSHP system, later revised by Kavanaugh 

(1998).  After calculating the required borehole lengths for the cooling demand and 

heating demanding respectively, the supplemental heat source or sink is sized from the 

difference between the two required borehole lengths. For a cooling constrained GSHP 

system, the required borehole length for cooling is greater than the required heating 

length. Therefore, when designing an HGSHP system, the borehole length of the hybrid 

ground source heat pump system is sized to meet the heating loads of the system, and it 

will handle some portion of the system cooling loads as well. The additional system 

cooling loads are handled by the supplemental heat rejection component(s). Similarly, for 

a heating constrained GSHP system, the required borehole length for cooling is less than 

the required heating length. For the HGSHP system design, the borehole length of the 

hybrid ground source heat pump system is sized to meet the system cooling loads, and it 

will handle some portion of the system heating loads as well. The additional system 

heating loads are handled by the supplemental heat source(s).   

After getting the capacity, the cooling tower is specified by the nominal water 

flow rate, which is defined as the flow rate of water cooled from 95ºF to 85ºF with a 78ºF 
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wet bulb temperature. However, in an actual HGSHP system, the peak inlet water 

temperature of cooling tower might be higher than 95ºF (110ºF) and the local peak wet 

bulb temperature is often lower than 78ºF. As a result, the cooling tower/fluid cooler 

would provide more cooling capacity than the nominal capacity expected in the HGSHP 

system. Therefore, Kavanaugh’s design procedure will tend to oversize the cooling 

tower/fluid cooler.  

 Later, Kavanaugh (1998) recommended a new procedure based on the “Shorter 

Method”. The new recommended procedure is: 

1. Use Equation (2-11 and (2-12 to get the required borehole lengths for heating 

and cooling respectively. And the total flow rate of the system is also 

calculated. The optimal flow rate of the system is usually between 2.5 to 3.0 

gpm/ton (Kavanaugh and Rafferty 1997).  

2. Choose a minimum design heat pump entering water temperature (EWT) to 

calculate the required borehole length for heating. In warm climates, a value 

of 45ºF (7ºC) for EWT is recommend to avoid the use of antifreeze solution of 

the system. This calculation will reduce the borehole length to a smaller but 

acceptable value. 

3. Size the cooler using the Equation (2-14 based on the assumption that fluid 

has a 10ºF temperature change through both the heat pump condenser and 

cooling tower. In that case, the capacity of heat pump and cooler can be 

specified by giving the fluid flow rate of the each component. 
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 Where: 

coolergpm  = Heat rejection capacity of cooler in gallons per minute (gpm) 

based on a 10ºF range. To convert this to Mbtu/h, multiple gpm by 

5, and to convert to kW, multiply gpm by 1.465. 

4. Recalculate the net annual average heat being rejected into the ground aq  

based on the current capacity of the fluid cooler. For typical buildings 

(occupancy 40 to 100 hours per week with internal loads less than 50% if the 

total at design cooling conditions), new equivalent full-load hours in cooling 

( CEFLCH ) are estimated from: 
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5. Repeat Step 2, Step 3 and Step 4 until the calculation of the size of the fluid 

cooler is converged.  

6.  The required operating hours of the fluid cooler CoolerHours  is calculated by: 
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=  (2-16) 

Using the revised GSHSP system design procedure, Kavanaugh (1998) presented 

an example of HGSHP design procedures in three locations: Mobile, Ala., Louisville, 

Ky,; and Minneapolis, Minn. The results showed that the HGSHP system is more 

economic in moderate climates where the required borehole length for cooling is much 

greater than the required borehole length for heating. In that case, the savings of the 

drilling costs more than offsets the increased maintenance costs and for the cooler. 

The procedures described above are intended for design of a new HGSHP system. 

In some existing GSHP systems, an improperly-sized GLHE can not meet the 

cooling/heating loads of the system. In this case, a supplemental heat source or sink is 

added into the system to help meet loads of the system. This might be referred to as a 

“retrofit design”. Because Kavanaugh’s design procedure simultaneously sizes the GLHE 

and supplemental heat rejecter, it cannot be used for sizing heat source when the GLHE 

size is fixed. At this point, Kavanaugh’s design procedure cannot be used for sizing heat 

source or sink for a “retrofit” HGSHP system. Therefore, a suitable design procedure is 

desired. Also as mentioned above, Kavanaugh’s design procedure will tend to oversize 

the cooling tower/fluid cooler and an improved procedure should be investigated. 

2.2.3 HGSHP System Performance 

The design of an HGSHP system depends on various factors, such as investment 

budget, building layout, available layout of borehole field, geological conditions, etc. The 
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design and performance of several real and hypothetical HGSHP systems have been 

published. In this section, published work on HGSHP system design and operation is 

summarized.  

2.2.3.1 K-12 School Building, Southeastern Wyoming 

Chiasson et al. (2004) examined energy-saving opportunities in a retrofit of an 

HVAC system for a typical kindergarten through twelfth grade (K-12) school in 

Southeastern Wyoming using an HGSHP system with a supplemental solar thermal 

collector array and ventilation air heat recovery.  

The building is a 4,925m2, single-story school building and is divided into six 

main zones. In each zone, an air handling units (AHU) is used to distribute air to each 

room. Two different configurations of hypothetical GSHP system were designed for the 

school building. Decentralized GSHP systems, were used for each classroom, which has 

its own ground loop. A central HGSHP system with ground loop and solar collector array 

is used to handle all the non-classroom building loads and all outdoor air loads, as shown 

in Figure 2.11. A constant flow pumping system was simulated in the solar collector 

loop. A variable flow pumping system was used in the primary building loop. 

The solar collector was activated when two conditions were met: (1) solar 

radiation was greater than zero; and (2) the exiting fluid temperature from the solar 

collector was greater than its entering fluid temperature. The flow rate in the primary 

building loop was scaled to the peak flow rate according to the ratio of the current hourly 

load to the peak building load. 
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Figure 2.10 Schematic diagram of the geothermal heat pump/solar collector system (Chiasson et al. 

2004) 

Chiasson and Yavuzturk simulated the hypothetical HGSHP system and 

compared against the simulated existing AHU system. First, the results show that the use 

of the solar collector array yields a savings in the central GLHE size of 34%. Secondly, 

the results showed that new GSHP/HGSHP system would save about 74% operating 

energy annually and a large portion of saving is from eliminating AHU fan power. 

Consider the first cost of the retrofit system, the proposed GSHP/HSGHP system yields a 

simple payback period of about 9.5 years.  

Chiasson and Yavazturk (2003) also presented a study of this same school 

building, located in six U.S. cities using typical meteorological year (TMY) weather data. 

Both fixed solar collector array and an azimuth-tracking solar collector array were 

investigated for the HGSHP system. The authors carried out an economic analysis based 

on different ground thermal conductivities, borehole drill costs. Increasing the thermal 
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conductivity of the ground would result in a decrease in the reduction of GLHE length 

per unit collector area. The HGSHP system with solar collectors was economically viable 

at drilling costs exceeding a range of $6/ft to $10/ft. 

2.2.3.2 Building 1562, Fort Polk, LA 

Phetteplace and Sullivan (1998) investigated a hybrid GSHP system with a 

closed-circuit cooling tower. A 24,000ft2 (2,230m2) administration building, at Ft. Polk, 

La., was renovated in 1994. The new system includes 14 water-to-air heat pumps with a 

total cooling capacity of approximately 120 tons (422kW). The system includes 79 

closed-loop vertical geothermal wells and a 78 ton (274kW) closed-circuit cooling tower. 

The cooling tower and the geothermal well are placed in series. Because the total flow 

rate in the system was about 300gpm (18.9L/s) and greater than the nominal flow rate of 

the cooling tower (100gpm, 6.3 L/s), a bypass across the cooling tower was designed.  

The cooling tower was controlled by the water loop temperature. The cooling 

tower and sump pump were activated when the loop temperature leaving the heat pumps 

reached 97ºF (36ºC). The cooling tower and sump pump were off when loop temperature 

was lower than approximately 95ºF (35ºC).  

The information of all the components was measured to inspect the performance 

of the HGSHP system. The measurement results showed, for 22 months of operation, the 

ground loops rejected about 2,304 Mbtu (765 MWh) of heat, while they supplied 53.2 

Mbtu (15.6 MWh) of heat. The cooling tower rejected a total of 2,375 Mbtu (696 MWh) 

during the whole period. 



 

 68

 Over the 22 months period, the total energy consumption for the HGSHP system 

was 726 MWh. The energy consumption of the heat pump is about 77% of the total, the 

circulation pump is about 19%, the closed-circuit cooling tower is 3%, and the tower 

sump pump is 1%. Since a constant flow circulation pump was designed for the system, a 

large pumping energy consumption was observed. Phetteplace and Sullivan predicted the 

total energy consumption of the system if a variable speed pumping system was 

incorporated. As a result, the total energy consumption of the system would be reduced 

by 8.5% and the circulating pump energy would be reduced by 45%.  

Phetteplace and Sullivan observed a maximal loop temperature (105.6 ºF) of the 

system. At this temperature, the efficient of the heat pump would be lower than desired. 

The reason was that a 97ºF (36ºC) set point was used to control the cooling tower, 

however, a set point value of 85ºF (29.4ºC) was originally recommended by the designer. 

Phetteplace and Sullivan noticed that the average run time for the cooling tower over the 

22 months was approximately 30%. To prevent the loop temperature from continuously 

rising over the operation periods, a lower set point temperature was recommend by 

Phetteplace and Sullivan to increase the run time of the cooling tower to reject more heat 

to the ground. According to their analysis, if the EWT were lowered from its average 

value of 94.6ºF (34.8ºC) to an average value of 85ºF (29.4ºC), the cooling EER would 

increase by 9%. Thus, the energy consumption of heat pumps would drop by 9% and the 

total system energy consumption would drop by 7%. Even if the cooling tower energy 

consumption was doubled, the increase in energy consumption would be offset by the 

increased cooling performance of the heat pumps.  
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2.2.3.3 Paragon Center - Allentown, PA 

The Paragon Center is a 7432 m2 (80,000ft2), 4-story office building in 

Allentown, Pennsylvania (Singh and Foster 1998). The original system design for the 

building was a 100% geothermal closed loop heat pump system, with 55 boreholes, 52 m 

(152ft) deep. However, subsequent drilling in the intended ground loop location was not 

able to go below 33.5 m (115ft) because of the high water flow in a limestone strata. 

Either drilling a 52m deep borehole or increasing the number of boreholes at the 33.5m 

borehole depth would increase the installation costs and exceed the project budget. 

Instead of a 100% geothermal heat pump system, the system design was modified 

to use a hybrid ground source heat pump system with a closed circuit cooler. A total of 88 

boreholes, 38m (125ft) deep was used for 281 kW (80tons) of cooling capacity of the 

system and a closed circuit cooler was selected to remove the remaining 422 kW 

(120tons) of cooling capacity. Using the hybrid GSHP system, the first cost of the 

projected was able to be controlled within the construction budget.  

Singh and Foster did not mention the control strategy of the hybrid system. They 

noted that after using the heat recovery, variable speed drives on the pump and 

monitoring control, over more than two full years of operation, the project annual 

operating cost was less than $0.0929/m2 ($1.00/ft2) at an average electric cost of 

$0.08/kWh, including demand charges.  
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2.2.3.4 Elementary School Building, West Atlantic City, NJ 

An elementary school, in the Atlantic City, New Jersey area, has total 7898m2 

(85,000ft2) conditional space (Singh and Foster 1998). (More details were given in 

Section 1.1) The total cooling requirement including the outside air is 967kW (275tons). 

Using heat recovery equipment, the cooling requirement for the loop would be reduced to 

879 kW (250 tons). The original design was a 100% closed loop geothermal heat pump 

system with 90 boreholes, 122m (400ft) deep. 

The available area was not sufficient for the 90 borehole arrangement. Therefore, 

a hybrid GSHP system with a closed circuit cooler was designed to reduce the number of 

boreholes to fit within the available area. The revised system design incorporated 66 

boreholes, 122 m (400ft) deep to cover all the heat extraction of the system and to 

provide 468 kW (133 tons) of cooling capacity. The additional 411 kW (117 tons) 

cooling capacity was provided by the closed circuit cooler.  

2.2.4 HGSHP System Optimal Design and Control 

The following section describes previous research work. The word “optimal” 

should be taken broadly; some of this work compared different control strategies and 

recommended the best strategies; other work attempted to optimize set points.  

2.2.4.1 Yavuzturk and Spitler (2000) Investigation of Control Strategy 

Yavuzturk and Spitler (2000) presented a study of various control strategies of a 

HGSHP system with a cooling tower as the supplemental heat rejecter. A 1,320 m2 
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(14,205ft2) office building was chosen as the example building for the comparative study. 

The example building was analyzed considering two different climate regions, Houston, 

TX, for its hot and humid climate and Tulsa, OK, for its moderate climate. Both of the 

buildings in two locations were cooling dominated but the building in Tulsa, OK also had 

a significant heating load.  

The hybrid ground-source heat pump system was constructed in the TRNSYS  

modeling environment (Klein 1996). The open-circuit cooling tower was isolated with a 

plate frame heat exchanger. The plate frame heat exchanger and the ground loop heat 

exchanger were in series and a two-position valve was used to divert flow to the plate 

heat exchanger.  

Yavuzturk and Spitler used an iterative approach to size the GLHE and 

supplemental heat rejecter. The GLHE and supplemental heat rejecter were sized by 

limits on the maximum and the minimum heat pump EFTs for a specified duration of 

system operation. In theory, the supplemental heat rejecter was sized to balance the 

annual ground energy rejection with the annual ground energy extraction. In practice, a 

large cooling tower was initially selected for the HGSHP system. Then, the final required 

cooling tower capacity was determined by adjusting the cooling tower size and 

simulating the HGSHP system until the maximum-allowable peak EFT of heat pump 

occurs. This was done for each control strategy. Yavuzturk and Spitler were mainly 

concerned about the impact of various control strategies on the system performance. 

Therefore, they did not optimize the component sizes. As they mentioned, an optimal 

design procedure was highly recommended for future research.  
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A total of five cases and eight different control strategies were simulated for the 

example building in each location. The base case was a ground-source heat pump system 

with no supplemental heat rejecter. Case 2 was a ground-source heat pump system with 

an “undersized” ground loop heat exchanger. Case 3 through Case 5 were all hybrid 

ground-source heat pump system with identical component sizes but they had different 

control strategies. In Case 3, the cooling tower was controlled based on the set point 

control strategy. The tower was activated when ExFT > 96.5ºF (35.8ºC) for Case 3a and 

the tower was activated when EFT > 96.5ºF (35.8ºC) for Case 3b. In Case 4, the 

temperature difference between the fluid temperature entering heat pump and the ambient 

wet-bulb temperature was chosen to control the cooling tower. In case 4a, the tower was 

run when the temperature difference was greater than 3.6ºF (2ºC) and was switched off 

when the temperature difference was less than 2.7ºF (1.5ºC).  In case 4b, the tower was 

run when the temperature difference was greater than 14.4ºF (8ºC) and was switched off 

when the temperature difference was less than 2.7ºF (1.5ºC). In case 4C, the tower was 

switched on when temperature difference was greater than 3.6ºF (2ºC) and was turned off 

when the temperature difference was less than 2.7ºF (1.5ºC). In Case 5, the cooling tower 

was activated based on preset schedule. In Case 5a, the cooling tower was run between 

12:00 a.m. and 6:00 a.m. year-round. It was also run when the EFT exceeded 96.5ºF 

(35.8ºC).  In Case 5b, the preset schedule was only used from January to March. In Case 

5C, the preset schedule was used from June to August. 

Yavuzturk and Spitler presented the energy consumption and the life-cycle cost of 

all the cases and control strategies over a 20-years period. In all different control 

strategies, Case 4 had the lowest life-cycle cost for the example buildings in both 
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locations. The reason was that this strategy had lower EFTs, giving better heat pump 

performance in cooling mode and a smaller cooling tower gives lower first cost.  

In case 5, the cooling tower was forced to run in the preset schedule in addition to 

running it when the EFT exceeds the set point, as in case 3b. Comparing case 5 to case 

3b, the operating cost of HGSHP system of case 5 is slightly higher than that of case 3b. 

However, the cooling tower size is much smaller in case 5, thus the life-cycle cost of case 

5 is smaller than that of case 3b.  

In Yavuzturk and Spitler’s HGSHP system configuration, the PHE is piped in 

series with the ground heat exchanger. This system layout is suitable for the small 

HGSHP system in which the entire system flow passes through the boreholes and the 

pressure drop is still acceptable. Compared to the 100% geothermal system, Yavuzturk 

and Spitler noted that the pumping cost of the hybrid system attributed to the economic 

saving. In their scheme, a lower number of boreholes allowed lower flow rates, thus the 

pump energy consumption was reduced significantly.  

Yavuzturk and Spitler compared several different control strategies and 

recommended the control strategies based on the difference between the ExFT of heat 

pump and the outside wet-bulb temperature. However, all these strategies were not 

optimized and may not be generally applicable to different building types and locations.  

2.2.4.2 Ramamoorthy et al.’s Work on HGSHP System Optimal Design  

For a cooling dominated building, a shallow pond can be added into the GSHP 

system as a supplemental heat rejecter. Chiasson et al. (2000) developed a shallow pond 
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model for simulation of a hybrid GSHP system. Based on Chiasson et al.’s shallow pond 

model (2000) and Yavuzturk and Spitler’s GLHE model (1999), Ramamoorthy et al. 

(2001) aimed to optimize the size of the ground loop heat exchanger and the pond cooler 

of HGSHP system to minimize the system energy consumption.  

This study used the same small office building and the same two locations as 

Yavuzturk and Spitler (2000). The ground loop heat exchanger and cooling pond were 

designed in series and a two-position valve was used to divert flow to pond heat 

exchanger. Both primary and secondary loop were designed with a constant flow 

pumping system.   

Applying Yavuzturk and Spitler’s (2000) result of the HGSHP system control 

strategies, the temperature difference between the average pond temperature and the heat 

pump exiting fluid temperature was used to control the cooling pond operation. In 

Ramamoorthy et al.’s study, the temperature differential selected was 8ºC(14.4ºF)  with a 

dead band range of 5ºC (9ºF). 

Following the same general approach of Yavuzturk and Spitler (2000), an 

iterative approach was used to size the GLHE and cooling pond. The GLHE and cooling 

pond were sized to maintain the heat pump entering fluid temperature between 

approximately -3.4ºC (25ºF) and 40.6ºC (105ºF), which came from the heat pump 

manufacturer’s data. The lower limiting temperature of entering heat pump was 

suggested to be 18ºF (10ºC) higher than the freezing point of the antifreeze mixture.   
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Ramamoorthy et al. simulated a base case only with GLHE and four cases with 

different sizes of GLHE and cooling pond in each location. For the building in Houston, 

TX, as more pond heat exchanger coils were added into the system, the ground loop heat 

exchanger size was reduced. When the number of pond heat exchanger coils was 2, 4, 6 

and 8, the total GLHE depth was 34.5%, 22.7%, 15.6% and 11.4% of the total depth of 

the base case.  For the building in Tulsa, OK, when the number of pond slinky coils was 

1, 2, 4 and 6, the total GLHE depth was 70.5%, 71.4%, 75.6% and 79.7% of the total 

depth of base case.  In Tulsa, the effect of pong heat exchanger size on GLHE size 

showed an opposite trend with that of Houston. The reason is, in Tulsa, increasing the 

pond heat exchanger size required a larger size of GLHE to meet the minimum heat 

pump inlet fluid temperature because of the relatively higher peak heating load of the 

system.  

Ramamoorthy et al. noted that the total HGSHP system energy consumption was 

decreased compared to the 100% geothermal system in both locations. The increased 

energy consumption of the pump for the secondary loop was offset by the energy savings 

of the heat pumps due to a lower inlet fluid temperature in cooling mode and the energy 

savings of the main circulation pump due to a smaller size of GLHE.  

Ramamoorthy et al. presented the life-cycle cost of all the cases over a 20-year 

system simulation.  The results showed that the HGSHP system with the largest pond coil 

size had the lowest life-cycle cost for Houston, which was 34.2% of the base case. And 

the hybrid system with 2 pond heat exchanger coils had the lowest life-cycle cost for 

Tulsa, 78.2% of the base case.  
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Ramamoorthy et al. investigated the impact of varying the dead band 

temperatures on the system life-cycle cost for the two HGSHP systems with lowest life 

cost in Houston and Tulsa. The life-cycle cost for the different control strategies varied 

within 1% for Houston and within 0.2% for Tulsa. Ramamoorthy et al. attributed the 

small changes of life cost to the fact that the system cost was mainly from the heat pump 

energy consumption and the changing of dead band temperatures would have little impact 

on the heat pump performance. However, another important reason Ramamoorthy et al. 

did not mention is that the hybrid systems were already optimized and there was not 

much possibility for changing the operating cost by changing the dead band temperatures. 

For those hybrid systems in which the component sizes have been not optimized, the 

impact of the control strategy on the system performance still needs to be investigated.  

2.2.4.3 Khan’s Work on GSHP System Optimal Design 

A hydronic pavement heating system also can be used as a supplemental heat 

rejecter of the hybrid ground source heat pump system to reduce the required size the 

ground loop heat exchanger. Chiasson et al. (2000) developed a model for simulating the 

performance of a pavement heating system as a supplemental heat rejecter with GSHP 

system. Khan et al. (2003; 2004) tried to optimize the HGSHP system design with a 

pavement heating system.  

Khan (2004) utilized GenOpt (Wetter 2000) coupled with HVACSIM+ to optimize 

the design of GSHP system. The eight optimized parameters in the design of the GSHP 

system included GLHE length, number of boreholes, U-tube diameter, borehole diameter, 

ground thermal conductivity, heat pump capacity, antifreeze type and concentration. 
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Khan developed a “Buffer Program”, an interface between GenOpt and HVACSIM+. 

Together, the three programs would automatically adjust the parameter values, run the 

simulation and iterate to get the minimal life cost of the GSHP system. Due to the 

extremely expensive computational time for a 20-year simulation, Khan only ran the one-

year optimization simulation. This was not successful, as it drove the loop size to be so 

small that it would be insufficient to run for more than a year. For a 20-year simulation, a 

varied time step was suggested by Khan to save simulation time, but he did not complete 

that method.  

Khan et al. (2003) simulated two HGSHP systems with pavement heating system 

and compared them with the base case, which was a 100% geothermal system without 

any pavement heating system. The pavement heating system was in series with the 

ground loop heat exchanger. The temperature difference between the heat pump exiting 

fluid temperature and pavement exiting fluid temperature was used to control the 

secondary loop. The pavement heating system was activated when the temperature 

difference exceeds 5ºC (9ºF), and is turned off when the difference falls below 0ºC (0ºF). 

The simulated results showed that life cost of the HGSHP system with the 

pavement heating was lower than the 100% geothermal system. However, in Khan et al.’s 

study, the sizes of GLHE and pavement were not optimized, neither is the control 

strategy of the pavement heating system.  
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2.3 Summary of the Literature 

From the review of the literature discussed in the previous sections, the following 

conclusions can be drawn: 

1. Analytical and numerical models have been developed for modeling and 

dimensioning vertical ground loop heat exchangers. The analytical GLHE 

models are usually used for long time period simulation and not suitable for the 

short time response calculation. Due to the computational time requirements, 

numerical models are not suitable for direct incorporation in a building 

simulation program with hourly or sub-hourly time steps.  

2. Response factor models of GLHE with integrated short-time step and long time 

step response factor is able to simulate the heat transfer of ground loop heat 

exchanger in any time scale. Applying the load aggregation algorithm, the 

response factor model is computationally efficient, and it can be used to run an 

annual hourly (or shorter time-step) simulation of the GSHP system in a 

relatively short time. 

3. The short-term behavior of ground loop heat exchangers is critical to the design 

and energy analysis of both the GSHP and HGSHP systems. In practical GSHP 

systems, the convection resistance varies due to changing flow rates and fluid 

temperatures and needs to be evaluated. However, the previous published 

GLHE models did not simultaneously account for these two phenomena. 
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Therefore, a more accurate GLHE model is highly desired for the HGSHP 

system simulation. 

4. Heat pump models and open-circuit cooling tower models have been developed 

for the simulation of HGSHP systems. In the study of buildings with many heat 

pumps, it is difficult to model each heat pump independently. As an alternative, 

a new “gang-of-heat-pumps” model is desired. And also a closed-circuit 

cooling tower/fluid cooler model is required for the simulation of the HGSHP 

system.  

5. Two HGSHP system configurations serial or parallel connection of the 

auxiliary heat rejecter device are in use now. However, strategies for 

controlling the distribution of flow between the cooling tower and the GLHE in 

parallel-connected HGSHP systems are not well-developed.  

6. Several design procedures and software are available for sizing the vertical 

ground loop heat exchanger. Kavanaugh et al. (Kavanaugh and Rafferty 1997; 

Kavanaugh 1998) developed a procedure for sizing both GLHE and 

supplemental heat source or sink. But Kavanaugh’s design procedure will tend 

to oversize the cooling tower and it is not suitable for the “retrofit design”. An 

improved design procedure should be investigated. 

7. Ramamoorthy et al. (2001) tried to optimized the design of HGSHP system 

with shallow pond to minimize the system energy consumption. Khan 

(2004)developed a “buffer” program for optimization of GSHP system. 



 

 80

However, optimization HGSHP systems with other types of heat source or sink 

have not been investigated. 

8. Several control strategies of HGSHP are available now, including set point 

control, set temperature difference control and “preset schedule control”. The 

temperature difference control strategy was recommended by Yavuzturk and 

Spitler (2000). However, since optimization of the HGSHP system control 

strategy has not been investigated, the currently available control strategies 

might be far from optimal and not generally applicable. 
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3 DEFINITION OF THE PROBLEM AND OBJECTIVES 

3.1 Introduction 

Ground-source heat pump systems are used for residential and commercial 

heating and cooling application because of their higher energy efficiency. However, the 

high first cost of the GSHP system has been a constraint for its wider application. Hybrid 

ground-source heat pump systems that incorporate a supplemental heat source or sink 

have been used to reduce the size of GLHE, and therefore the first cost the system.  

Previous research has investigated evaluation of HGSHP systems, system 

component modeling, design procedures, control strategies, and energy consumption 

analysis. However, from the review of the literature in last chapter, control strategies of 

HGSHP systems are not well-developed. This research is aimed at developing optimal 

control strategies and set points for hybrid ground-source heat pump systems in order to 

improve the performance of HGSHP system. 

3.2 Objectives 

The main objective of this research is to develop optimal control strategies for 

HGSHP systems. Necessary sub-objectives to meet this objective include the following: 
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3.2.1 Developing HGSHP System Simulation and Requisite 

Component Models 

Short-term response of the ground heat exchanger is an important aspect of 

HGSHP system performance. The thermal mass of the fluid can significantly dampen the 

short-term temperature response of the ground loop. In HGSHP systems, the convection 

resistance varies due to changing flow rates and fluid temperatures. The previously 

published GLHE models did not simultaneously account for these two phenomena. 

Therefore, an improved GLHE model, which simultaneously accounts for both 

phenomena will be developed. GEMS2D(Rees 2000) will be used as a reference model 

for validation of the new GLHE model. 

Other system component models including heat pumps, cooling tower/fluid cooler 

and pumps model also will be developed or modified for simulation of HGSHP systems. 

3.2.2 Validation of HGSHP System Simulation 

HVACSIM+ is used as the testbed for the simulation of HGSHP systems. The 

simulation of component models and overall HGSHP systems is required to be validated 

against experimental data. The OSU hybrid ground source facility provided water 

temperature and flow rates at various points on the hydronic loop as well as power 

consumption for all loop equipment. This data set were sufficient to benchmark the 

accuracy of the simulation testbed. Therefore, the experimental validation of both 

component models and overall HGSHP systems was provided. Gentry et al. (2006) 

reported a 7 month period validation of HGSHP system simulation using the data from 
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the OSU HGSHP research facility. In this research, the validation will be extended to a 

12 month period. Also as reported by Gentry et al. (2006) report, the heat pump model 

performed poorly with catalog data when the actual flow rates on both sides of the heat 

pump were larger than catalog data. For the extended validation, a parameter estimation-

based heat pump model (Jin and Spitler 2002) will be investigated.  

3.2.3 Developing Design Procedure of HGSHP System 

Two HGSHP system configurations - serial or parallel connection of the auxiliary 

heat rejecter device - are in use now. Preliminary testing has shown that there are a large 

number of scenarios where the serial connection is infeasible. For an HGSHP system 

with large flow rate and a relatively small number of boreholes, all the system flow 

cannot feasibly pass through the GLHE without requiring excessive pumping power. In 

this research, a parallel-connected HGSHP system will be investigated. However, 

strategies for controlling the distribution of flow between the cooling tower and the 

GLHE in parallel-connected HGSHP systems are not well-developed. Therefore, 

strategies for controlling the distribution of flow in parallel-connected HGSHP systems 

will be developed. 

Kavanaugh’s (1998) design procedure has been developed for sizing the GLHE 

and supplemental heat source or sink. Kavanaugh’s design procedure will tend to 

oversize the cooling tower and it is not suitable for the “retrofit design”. Therefore, the 

existing design procedure of HGSHP system will be tested and, as needed, will be revised 

or new design procedures will be developed. GLHEPRO (Spitler 2006) is a tool for 

designing ground loop heat exchangers for use with ground source heat pump system. A 
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new version of GLHEPRO will be developed for designing HGSHP systems. The new 

version of GLHEPRO will work for designing a new HGSHP system and a “retrofit 

design”. Also the new version of GLHEPRO will use a new algorithm to look for the 

right size of cooling tower. 

3.2.4 Investigation and Optimization of HGSHP System Control 

Several control strategies (Yavuzturk and Spitler 2000) have been developed for 

HGSHP systems, including set point control, set temperature difference control and 

“preset schedule control”. Control strategies based on the difference between the ExFT of 

heat pump and the outside wet-bulb temperature were recommended. However, all these 

control strategies were not optimized and may not be generally applicable to different 

building types and locations. Therefore these three control strategies will be investigated. 

A wide range of new control strategies will also be developed for HGSHP systems. 

All the control strategies of HGSHP system will be optimized. A “buffer 

program”, an interface between GenOpt (Wetter 2000) and HVACSIM+ will be 

developed for the control strategies. For each of the specified HGSHP systems, the three 

programs would automatically adjust the parameter values (setpoint values), run the 

simulation and iterate to get the minimal operation cost of the HGSHP system. The 

purpose of running the optimization study is to search for the best setpoint value of each 

control strategy for each specified HGSHP system and try to find whether there is a 

common setpoint value which is generally applicable for all HGSHP systems. If so, 

generally applicable control strategies would be developed for all HGSHP systems. 
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Based on the parametric study and optimization work, generally applicable optimal 

control strategies will be developed. 
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4 Developing HGSHP System Simulation and Requisite 

Component Models 

The main objective of this chapter is to develop an HGSHP system simulation and 

the requisite component models within HVACSIM+. Therefore, in this chapter, the 

component models requisite for HGSHP system simulation will be introduced first. In 

this research, for an optimization study, a large number of simulations are required. It is 

computationally expensive to run a large amount of 20-year simulation with hourly time 

step. Therefore, a new scheme for accelerating the multiyear simulation of HGSHP 

system is also developed in this chapter.    

In this chapter, the primary work involves development of an improved GLHE 

model and development of a scheme for accelerating the multiyear simulation of the 

HGSHP system. The improved GLHE model accounts for the thermal mass of fluid and 

variable convective thermal resistance simultaneously and has a more accurate prediction 

of GLHE at short time steps. Other system component models including multiple heat 

pumps, closed-circuit cooling tower and variable speed pumps are developed or modified 

for the simulation of HGSHP systems. All these models are cast as HVACSIM+ 

component models. Some other system component models, including single heat pump, 

open-circuit cooling tower, plate heat exchanger and constant speed pump, have been 
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previously developed as HVACSIM+ component models and they will be introduced 

briefly here.  

4.1 Vertical Ground Loop Heat Exchanger Model 

Like the Yavuzturk and Spitler model (1999), the new ground loop heat 

exchanger model is an extension to the original long time-step Eskilson model (Eskilson 

1987).  However, whereas that model used a short time-step g-function to account for 

short time-step effects, the new model replaces the response function approach at short 

time-steps with a one-dimensional numerical model, which explicitly accounts for the 

thermal mass of the fluid and the convective resistance as a function of flow rate, fluid 

mixture, and fluid temperature. 

4.1.1 Eskilson’s Long Time-Step Temperature Response Factors 

Model 

Eskilson (1987) developed an approach to determine the temperature response of 

a multiple borehole ground loop heat exchanger based on dimensionless temperature 

response factors. The calculation of response factors has three steps. Firstly, a two-

dimensional numerical calculation is made to determine the temperature response of a 

single borehole to a unit step function heat pulse. Secondly, for multiple borehole 

systems, a spatial superposition method is applied to determine the temperature 

responses. Thirdly, the temperature response of the borehole wall vs. time response is 

nondimensionalized and the curves of dimensionless temperature response factors vs. 

dimensionless time for different configurations are called g-functions. 
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With the response factors of the borehole wall to a single step heat pulse, the 

response to any arbitrary heat rejection/extraction function can be determined by 

devolving the heat rejection/extraction into a series of step functions, and superimposing 

the response to each step function. (More details were given in Section 2.1.1.3). The 

borehole wall temperature at the end of the nth time period can be calculated as: 
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Where: 

t = Time, (s) 

st  = Time scale, defined as α9/2Hts = , (-) 

H  = Borehole depth, (m) 

groundk  = Ground thermal conductivity, (W/m-K) 

bT  = Average borehole temperature, (ºC) 

ffT  = Undisturbed ground temperature, (ºC) 

q  = Heat rejection pulse, (W/m) 

br  = Borehole radius, (m) 

i  = The index to denote the end of a time step (the end of the 1st hour or 2nd month 

etc.)  

The average fluid temperature can be calculated if the thermal resistance of 

borehole BHR  is known: 
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The numerical model used in developing the time-step g-function approximates 

the borehole as a line source of finite length and it is only valid for times estimated by 

Eskilson to be greater than α/5 2
br . For a typical borehole, that might imply times from 3 

to 6 hours. However, much of the data developed by Eskilson does not cover periods of 

less than a month. When applied for a short-time system simulation, Eskilson’s method 

cannot accurately model a system with transient operation and a short time-step response 

factor model is desired. 

4.1.2 One-Dimensional Numerical Model for Short Time-Step 

Response 

Yavuzturk and Spitler (1999; Yavuzturk et al. 1999) extended Eskilson’s long 

time-step model to short time steps by developing short time-step g-functions with a two-

dimensional (radial-angular) finite volume method, which utilized an automated gridding 

procedure and a “pie-sector” representation of the U-tubes. Because the short time-step g-

function represented the response of the entire ground heat exchanger, it necessarily 

utilized a fixed convective resistance. The authors later found it necessary (Yavuzturk 

and Spitler 2001) to modify the model to include variable convective resistance, but this 

was done at the expense of modeling the thermal mass of the fluid in the borehole.   

In order to simultaneously account for variable convective resistance and thermal 

mass in the borehole, a one-dimensional numerical model is used directly to compute the 
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short time-step response. This is integrated with Eskilson’s long time-step model. By 

careful control of the one-dimensional model parameters, the model is able to give 

acceptably accurate short-term response, without the computational time that would be 

required to run such a model continuously throughout the simulation. The representation 

of a single U-tube ground heat exchanger with a one-dimensional model is illustrated in 

Figure 4.1. At short times, end effects can be neglected. 

Fluid Fluid

Grout

Ground 

U-tube 

  

Fluid 

Grout 

Ground 

U-tube 

 

Figure 4.1 A schematic drawing of a borehole system (left) and a schematic drawing of the simplified 

one-dimension model (right). 

The one-dimensional model has a fluid core, an equivalent convective resistance 

layer, a tube layer, a grout layer, and is surrounded by the ground.  In order to get near-

identical results to the more detailed two-dimensional model, it is important to specify the 

one-dimensional geometry and thermal properties in an “equivalent” manner: 

• Equivalent volumetric thermal mass of fluid -- the cross-sectional area of the 

fluid multiplied by the density and specific heat in the 1-d model should be 

equivalent to the actual 2-d geometry.  It is also possible to account for 
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additional fluid in the system outside of the borehole by increasing the thermal 

mass to account for the total volume of fluid in the system. 

• The 1-d outer tube diameter is equal to 2  the outer diameter of the actual U-

tube.  This maintains the grout thermal mass and is also a standard 

approximation used for cylinder-source models of U-tubes. 

• A thin artificial layer in the 1-d model between the fluid and grout represents 

the convective resistance.  An equivalent conductivity is determined which 

gives the same resistance as the actual convection coefficient at the inside of 

the U-tube. 

• The resistance between the inner tube wall and the borehole wall is 

determined with the multipole method (Bennet et al. 1987).  A single 

equivalent conductivity for the tube layer and grout layer is based on this 

resistance.  However, the tube grout layers have different thermal masses, set 

to match their actual individual thermal masses.  The layer representing the 

tube wall in the 1-d model has the same thickness as the actual tube wall.  The 

grout layer thickness is chosen to maintain the borehole diameter. 

The gridding procedure and specification of the parameters are discussed in more 

detail below. 

Governing Equation 



 

 92

The one-dimensional transient conduction equation in polar co-ordinates is 

expressed as: 
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This equation is discretized using a fully implicit volume approach (Patankar 

1991).  

Geometry and Gridding Procedure 
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Figure 4.2 A schematic drawing of the simplified one-dimension model for the finite volume method 

The geometry of the one-dimensional model is shown in Figure 4.2. Working 

from the outside in: 

• farr  is the far-field radius and is set to 10 m; the soil region is represented by 

500 cells. 
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• boreholer  is set to the actual borehole radius; the grout region is represented by 

27 cells. 

• tubeoutr ,  is set to 2  times the outer radius of the actual U-tube; the tube region 

is represented by 4 cells. 

• tubeinr ,  is set to tubeUtubeout rr −Δ−, , where tubeUr −Δ  is the actual U-tube wall 

thickness. 

• convectioninr ,  is set to tubeintubein rr ,, 4
1 Δ− ; the artificial convection layer is 

represented by 1 cells. 

• fluidr  is set to tubeinconvectionin rr ,, 4
1 Δ− ; the artificial convection layer is 

represented by 3 cells.  The fluid is represented as an annulus because it is 

assumed to have very high thermal conductivity, i.e. a lumped capacitance for 

which the internal distribution of temperature is uniform, and the actual heat 

input is then represented as a heat flux boundary condition. 

Equivalent Volumetric Thermal Mass of Fluid 

In the ground loop heat exchanger system, fluid inside the U-tube and elsewhere 

in the system helps to damp the response to peak loads. Since this can be critical in the 

design of some systems, it is desirable to account for this in the model.   

The equivalent thermal mass of the fluid can be calculated from: 
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fluidtubeinactualfluidequivfluidconvectionin CrCrr 2
,,,

22
, 2)( ππ =−   (4-4) 

Where: 

fluidequivC ,  = Equivalent volumetric thermal capacity of fluid, (kJ/m3-K [Btu/ft3-F]); 

fluidC   = Volumetric thermal capacity of fluid, (kJ/m3-K [Btu/ft3-F]); 

tubeinactualr ,,  = Inner radius of the actual U-tube, (m [ft]). 

The fluid at any cross-section in the U-tube is assumed to be at a uniform 

temperature. In the 1-d model, this is enforced by setting the thermal conductivity of the 

fluid to a high value (200 W/m-K). Finally, the fluid inside the system, but outside the U-

tube may be accounted for by multiplying the fluidequivC ,  by the “Fluid Factor”.  A typical 

value for an actual system is two. 

Equivalent Thermal Conductivity of Tube and Grout 

In order to get near-identical results with the two-dimensional model, the borehole 

thermal resistance in the simplified one-dimensional model should be exactly equal to the 

thermal resistance of the actual two-dimensional borehole. The multipole method (Bennet 

et al. 1987) is used to calculate the thermal resistance between the borehole wall and the 

convective resistance, accounting for the differing grout and U-tube thermal 

conductivities. The multipole method is a highly accurate analytical method and has 

compared very well to a two-dimensional boundary-fitted coordinate finite volume 

numerical model (Rees 2000). 
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 The single equivalent conductivity assumed for the grout and tube layers can be 

calculated once the equivalent thermal resistance has been calculated with the multipole 

method: 

TGequiv

tubeinborehole
TGequiv R

rr
k

,

,
, 2

)/ln(
π

=      (4-5) 

Where:   

TGequivk ,  = Equivalent conductivity of tube and grout layers, (W/m-K [Btu/hr-

ft°F]); 

TGequivR ,  = Equivalent thermal resistance between the borehole wall and convective 

resistance, (m-K/W [hr-ft-°F/Btu]). 

 

Equivalent Conductivity for Convection Layer 

The multipole method is also used to calculate the thermal resistance between the 

borehole wall and the fluid, BHR  as before, except including a specific value of the 

convective resistance. Then the equivalent thermal resistance of the artificial convection 

layer is:  

TGequivBHconvectionequiv RRR ,, −=     (4-6) 

The convective resistance is approximated as a conductive layer of thickness ¼ 

the U-tube wall thickness.  The equivalent thermal conductivity of the convection layer, 

convectionequivk , , can then be expressed as: 
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convectionequivconvectionintubeinconvectionequiv Rrrk ,,,, 2/)/ln( π=   (4-7) 

The thermal mass of the convection heat transfer layer is set to a near-zero value, 

1 J/m3-K.   

Currently, the multipole method is called at each time step to calculate the 

borehole thermal resistance after the convection coefficient has been calculated.  

Gnielinski’s (Hellstrom 1991) correlation is used to calculate the Nusselt number when 

the flow in the U-tube is in turbulent: 

)2300(Re
)1(Pr)2/(7.121

Pr)1000)(Re2/(
3/22/1 >
−+

−
=

f
fNu    (4-8) 

Where: 

Re  =Reynolds number, (-) 

Pr  = Prandtl number, (-) 

f  = Fanning friction factor, (-). f  for smooth pipes is given by Petuhkov (Hellstrom 

1991) as 2]28.3ln(Re)58.1[ −−=f . 

The Nusselt number is set to 4.364 when the flow in the tube is in laminar, 

2300Re ≤ . Since this method will result in a discontinuity at the transition point, a linear 

correlation is used to smooth the Nusselt number when 2400Re2200 ≤≤ . 
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4.1.3 One-Dimensional Numerical Model Validation and Error 

Analysis 

Analytical solution, e.g. line source model (LSM), finite line source model 

(FLSM), and infinite cylindrical source model (CSM) are usually used for long time 

period simulation and are not suitable for the short time response calculation. As a result, 

the analytical solutions can not be used to validate the one-dimensional numerical model 

for short time-step response. In this research, the General Elliptical Multi-block Solver 

(GEMS2D) (Rees 2000) was used for the validation of the one-dimensional numerical 

model. As described in previous Section 2.1.1.2, GEMS2D is capable of dealing with 

both long time-step and short time-step simulation of the ground loop heat exchanger. 

Therefore, GEMS2D was used as a reference model for the other numerical models 

(Deng 2004; Young 2004).  

Young (2004) used six sets of different test cases for the validation of his BFTM 

model for short time-step response. The same six sets of test cases were used for the 

comparison here between the one-dimensional numerical model and GEMS2D. The 

parameters varied between each of the test cases are given in Table 4.1. The test cases 

used a range of different borehole diameters, shank spacing, grout conductivities, soil 

conductivities, grout heat capacities and fluid factors. (Shank spacing is defined as the 

size of the gap between the pipes of the U-tubes.) These selected values included the 

common values used in vertical ground loop heat exchangers. The remaining parameters 

common to all test cases are given in Table 4.2.  
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Table 4.1 Input Data varied for model validation test cases 

Test Case Test Case Group Varied Properties 
A B C D 

BH diameter 
mm (in) 

76.2 
(3) 

114.3 
(4.5) 

152.4 
(5) 

190.5 
(8) 

Shank Spacing 
mm (in) 

3.127 
(0.123) 

15.83 
(0.623) 

28.52 
(1.12) 

41.23 
(1.62) 

1 
Different 
borehole 
diameters 

Rbh 
m-K/W (hr-ft-F/Btu) 

0.1222 
(0.2115) 

0.183 
(0.3167) 

0.2232 
(0.3862) 

0.2523 
(0.4366) 

Shank Spacing 
mm (in) 

3.18 
(0.1252) 

15.8 
(0.6220) 

28.6 
(1.1260) 

41.3 
(1.6260) 2 Different 

shank spacing Rbh 
m-K/W (hr-ft-F/Btu))

0.2134 
(0.3693) 

0.183 
(0.3167) 

0.1568 
(0.2713) 

0.13 
(0.2250) 

Grout Conductivity 
W/m-K (Btu/hr-ft-F) 

0.25 
(0.15) 

0.7443 
(0.43) 

1.5 
(0.87) 

-- 
3 Different grout 

conductivities Rbh 
m-K/W (hr-ft-F/Btu) 

0.4400 
(0.7614) 

0.1822 
(0.3153) 

0.1158 
(0.2004) 

-- 

Soil Conductivity 
W/m-K (Btu/hr-ft-F) 

0.5 
(0.29) 

1.5 
(0.87) 

2.5 
(1.45) 

8 
(4.62) 4 Different soil 

conductivities Rbh 
m-K/W (hr-ft-F/Btu) 

0.1868 
(0.3232) 

0.1841 
(0.3186) 

0.183 
(0.3167) 

0.1814 
(0.3139) 

Grout Volumetric 
Heat Capacity 

MJ/m3-K (Btu/ft3-F) 

2 
(29.8) 

3.9 
(58.2) 

8 
(119) 

-- 
5 

Different grout 
volumetric 

heat 
capacities Rbh 

m-K/W (hr-ft-F/Btu) 
0.183 

(0.3167) 
0.183 

(0.3167) 
0.183 

(0.3167) 
-- 

Fluid factor (-) 1 2 4 -- 
6 Different fluid 

factor Rbh 
m-K/W (hr-ft-F/Btu) 

0.183 
(0.3167) 

0.183 
(0.3167) 

0.183 
(0.3167) 

-- 
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Table 4.2 Input data common to all validation test cases 

Borehole Diameter  = 114 mm 4.5 in 

Borehole Length  = 100 m 262.5 ft 

U-tube Inside Diameter  = 27.44 mm 1.08 in 

U-tube Outside Diameter = 33.41 mm 1.32 in 

Shank Spacing (m) = 15.83 mm 0.62 in 

Soil Conductivity  = 2.5 W/m-K 1.45 Btu/hr-ft-F 

Grout Conductivity = 0.7443 W/m-K 0.43 Btu/hr-ft-F 

U-Tube Conductivity = 0.3895 W/m-K 0.225 Btu/hr-ft-F 

Soil Volumetric Heat Capacity = 2.5 MJ/m3-K 37.3 Btu/ft3-F 

Grout Volumetric Heat Capacity = 3.9 MJ/m3-K 58.2 Btu/ft3-F 

Tube Volumetric Heat Capacity = 1.77 MJ/m3-K 26.4 Btu/ft3-F 

Fluid Convection Coefficient = 1690 W/m2-K 298 Btu/hr-ft2-F 

Step pulse heat input  = 40.4 W/m 42.0 Btu/hr-ft 

Fluid Type = Water 

Average Fluid Temperature  = 20 ºC 68 ºF 

Fluid Factor = 1 

 

The temperature predictions have been compared in terms of relative error where 

the error is scaled according to the difference between the GEMS2D determined fluid 

temperature and the far field (initial) temperature at each time step: 

%100
)(
)(

2

2 ×
−
−

= −

FarFieldDGEMS

DOneDGEMS

TT
TT

rorRelativeEr    (4-9) 

 

 



 

 100

Table 4.3 Relative error (%) between the GEMS2D and one-dimensional numerical results for each 

test case at 1 and 10 hours simulated time (1-min, time step) 

Test Case Group A B C D 

Time 1 hr 10 hr 1 hr 10 hr 1 hr 10 hr 1 hr 10 hr 

1 
Different 
borehole 
diameters 

5.12 0.07 3.53 -0.43 2.91 -0.37 0.85 -1.97 

2 Different shank 
spacing 4.53 -0.56 3.53 -0.43 4.34 -0.33 7.83 -1.18 

3 Different grout 
conductivities -8.25 -2.53 3.53 -0.43 8.75 -0.26 -- -- 

4 Different soil 
conductivities 3.37 -0.33 1.57 -0.41 3.53 -0.43 3.50 -0.52 

5 
Different grout 

volumetric 
heat capacities 

0.45 -0.37 1.60 -0.44 6.87 -0.62 -- -- 

6 Different fluid 
factor 3.53 -0.43 2.53 0.71 2.07 0.66 -- -- 

 

 The resulting relative error found after one hour and 10 hours of simulation are 

given in Table 4.3. For most of cases, the relative errors are consistently less than 1% 

after 10 hours of simulation time. For the large borehole diameter case (Case 1D), the 

large shank spacing case (Case 2D) and the small grout conductivity case (Case 3A), the 

relative errors were larger than 1%. 

 Figure 4.3 illustrates for case 1A the predicted average fluid temperature given by 

one-dimensional model against that given by the GEMS2D model. In this case the 

relative error is less than 2% after the first hour of simulation and the decreases to a value 

of about -0.4% after 10 hours.  
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Figure 4.4 shows the same results plotted for the first hours. The absolute 

temperature error after the first minute is approximately 0.39ºC (0.7ºF) decreasing to 

0.02ºC (0.36ºF) after thirty minutes. Similar behavior was observed in other cases, where 

the average relative error was found to be smaller than 1% of the temperature rise. (More 

validation results were given in Appendix A.) 

Fluid Average Temperature Comparison (Case 1B)
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Figure 4.3 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 1B. 
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Fluid Average Temperature Comparison (Case 1B)
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Figure 4.4 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

over the first hour of simulation for Test Case 1B. 

 

4.1.4 Summary of One-Dimensional Numerical Model 

A short time-step model for vertical ground loop heat exchanger with variable 

convective resistance and thermal mass of the fluid was developed. The temperature 

response at short time-steps is calculated with a one-dimensional numerical model, which 

explicated accounts for the thermal mass of the fluid and the convective resistance as a 

function of flow rate, fluid mixture, and fluid temperature. In this model, the multipole 

method (Bennet et al. 1987) is used to calibrate the one-dimensional resistances so that 

they always match the total two-dimensional resistance. At the same time, the thermal 

mass of the individual components is maintained in the one-dimensional model. By 
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carefully controlling these parameters, the one-dimensional model compares very 

favorably to the detailed boundary-fitted coordinates finite volume model (GEMS2D).  

4.1.5 Implementation as a Ground Heat Exchanger Model 

In the Yavuzturk and Spitler (1999) model, the borehole wall temperature was 

determined by adding the temperature responses due to the heat inputs at different time 

steps, as described in Section 2.1.1.3. In the new GLHE model, the LTS g-function model 

is used to compute the borehole wall temperature due to excitations that occurred more 

than 24 hours ago. In turn, the fluid temperature due to excitations that occurred more 

than 24 hours ago is computed with the borehole resistance. Then, the STS model is used 

to determine the response of the fluid temperature to excitations that occurred less than 

24 hours ago. Finally the two-responses are superimposed. On top of this, the model will 

iterate the current time step’s heat extraction rate and fluid temperature.   

4.1.5.1 Aggregation of Ground Loads and Yavuzturk and Spitler’s (1999) Short 

Time Step Model 

A load aggregation scheme for ground loop heat exchanger was applied for the 

Yavuzturk and Spitler’s (1999) short time-step and Eskilson’s (1987) long time-step 

response factor model. The loads on the ground loop heat exchanger were divided into 

the “lumped” and immediate thermal history. 
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Figure 4.5 Hourly load of ground loop heat exchanger in 48 hours 
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Figure 4.6 Average load of the first 24 hours and hourly loads in the next 24 hours 
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Figure 4.7 Lumped loads for LTS model and artificial hourly loads for STS model  
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For illustration purposes, assume the first 48-hour hourly loads ( nhourq , ) of ground 

loop heat exchanger is illustrated as Figure 4.5. At the end of 48 hours, the loads that 

occur more than 24 hours ago are “lumped” together into a daily-averaged load ( 1,dayq ), 

as shown in Figure 4.6.  The subsequent 24-hour hourly loads are superimposed as 

artificial hourly loads ( '
,nhourq ), as shown in Figure 4.7. 

Then the borehole wall temperature is computed by superposing the temperature 

changes from the “lumped” block loads and the temperature changes from the short time-

steps loads. More details about the aggregation of ground loads and the short time-step 

model are given by Yavuzturk and Spitler’s (1999). 

To provide an example for the load aggregation and using Yavuzturk and Spitler’s 

(1999) short time-step and long time-step response factor models, the borehole wall 

temperature for the 37th hour is calculated.  For the 37th hour, the load is superposed by a 

daily-averaged load ( 1,dayq ) and the artificial hourly loads ( '
,nhourq ). The daily-averaged 

load with the corresponding long time-step (daily step) g-functions yields the temperature 

response at the end of 37th hour. Then the artificial hourly loads ( '
,nhourq ) for the 

remaining 13 hours are superimposed in hourly steps with corresponding hourly g-

function values to obtain the temperature at the 37th hour.  
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Where: 

m  = Index for the load aggregated time blocks; 

n  = Index for the hourly time steps; 

g  = g-functions of borehole; 

37,bT  = Borehole wall temperature at the end of 37th hour, (ºC).  

4.1.5.2 Implementation of One-dimensional Numerical Model and LTS Model 

In the new GLHE model, a similar procedure is applied to couple the one-

dimensional numerical model and LTS model to calculate the average fluid temperature.  

In Yavuzturk and Spitler’s (1999) procedure, the borehole wall temperature 

changes due to the short time-step loads are calculated using the short time-step g-

function (the last term on the right side of Equation 4-10). In the new GLHE model, the 

temperature changes due to the short-time loads are calculated by the one-dimensional 

numerical model directly.  

For the example in the last section, the borehole wall temperature at the 37th hour 

is then calculated by: 
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Where: 
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termshortT −Δ  = The temperature changes due to the recent artificial hourly loads 

( '
,nhourq ) started at the 25th hour. It is calculated using the one-dimensional 

numerical model. 

As presented in Equation 4-11, the borehole wall temperature at the 37th hour is 

calculated by superposing the temperature changes from the “lumped” block loads and 

the temperature changes from the short time-steps loads. When applying the one-

dimensional numerical model to calculate the short time-step temperature response 

termshortT −Δ  from the artificial hourly loads ( '
,nhourq ), the temperature changes from the 

“lumped” block loads ( 1,dayq ) need to be considered. 

4.1.6 Component Model for HVACSIM+ 

Using the one-dimensional numerical model and Eskilson’s (1987) long time-step 

model, an HVACSIM+ component mode of the new ground loop heat exchanger 

(TYPE621) was developed. The diagram can be seen in Figure 4.8, showing all inputs, 

outputs and parameters needed to run the model.  
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Figure 4.8 TYPE 621 1-d and LTS GLHE HVACSIM+ model diagram. 

In the diagram: 

EFT   = Entering fluid temperature to the borehole, ºC; 

 fluidm&   = Mass flow rate of fluid, kg/s; 

ExFT   = Exiting fluid temperature from the borehole, ºC; 

averageT   = Average fluid temperature of ground loop heat exchanger, ºC; 

Q   = Heat transfer rate of the ground loop heat exchanger, W; 

Re   = Reynolds number; 
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Nu   = Nusselt Number; 

convectiveR  = Convective thermal resistance, m-k/W; 

BHR   = Thermal resistance of borehole, m-k/W; 

borheoleN  = The number of borehole in each group; 

H   = Borehole length, m; 

boreholeD  = Borehole diameter, m; 

tubeinD ,   = Inner diameter of the actual U-tube, m; 

tubeoutD ,  =Outer diameter of the actual U-tube;  

tubeK    = Conductivity of tube, W/m-K; 

tubeC   = Volumetric thermal capacity of tube, J/m3-K; 

groutK   = Conductivity of grout, W/m-K; 

groutC   = Volumetric thermal capacity of grout, J/m3-K; 

groundK   = Conductivity of ground, W/m-K; 

groundC   = Volumetric thermal capacity of ground, J/m3-K;  

ffT   = Undisturbed ground temperature, ºC; 

Fluid Type  = The type of working fluid: (0 for water, 1 for propylene glycol, 2 for 

Ethylene glycol);  

CONC  = Weight of antifreeze concentration in solution; 

NPAIRS  = Number of pairs of g-function data;  

Gfunc   = G-functions; 

boreholeGroup    = Group number of borehole.  
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The one-dimensional numerical model and LTS model of ground loop heat 

exchanger was built into GLHEPRO (Spitler 2006). Using GLHEPRO, the parameter file 

for the TYPE621 model can be automatically generated.  

4.1.7 Example Application for the GLHE Model 

An example application is provided using an imaginary peak-load-dominant 

building in Birmingham, AL – a one-story, 547 m2 church with a significant peak cooling 

or heating load of duration two hours occurring on a weekly basis.  The building load was 

calculated using BLAST (1986) and the load profile is shown in Figure 4.9 (heating load 

is positive and cooling load is negative).  
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Figure 4.9 Annual hourly building load for the church building in Birmingham, AL. 
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Eight Climate Master GSV/H070 water-to-air heat pumps with a nominal cooling 

capacity of 21 kW are used, together  capable of meeting the design requirement. The 

heat pumps are modeled within HVACSIM+ using a simple component model that 

determines the heat pump COP as a polynomial function of entering fluid temperature 

and mass flow rate. The model then returns the exiting fluid temperature, which is an 

input to the ground heat exchanger model. 
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Figure 4.10 Hourly ground loop fluid temperature profiles for the church building in Birmingham, 

AL. 

A 16-borehole ground heat exchanger, laid out in a 4x4 grid with boreholes 76.2 

m deep, and other parameters shown in previously Table 4.2 is utilized.  The total 

volumetric flow rate of the ground heat exchanger is 9.1 L/s. The undisturbed ground 

temperature in Birmingham is 18.3 ºC. In this system, the fluid factor of the GSHP 
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system is selected as 2 to account for the fluid in the distribution piping. The hourly 

entering and exiting fluid temperatures for the first year of operation are shown in Figure 

4.10.  The model is commonly used for multi-year simulations. 
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Figure 4.11 Detailed GLHE outlet temperatures for different fluid factors 

The effect of different fluid factor values can be seen in Figure 4.11, which shows 

21 hours of operation that includes a peak heating period.  The 0.1 value of fluid factor 

would be representative of a simulation that did not include the effect of the thermal fluid 

mass; the value of 1 would account only for the thermal mass of fluid in the borehole; the 

value of 2 would be typical if the thermal mass of fluid in the distribution portion of the 

system is included; larger values might be representative of a system with long pipe runs 

or where additional fluid storage is intentionally included.  The differences shown here 
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might be expected to give a relatively small difference in energy consumption prediction.  

However, as sizing of the ground heat exchangers can be highly sensitive to the peak 

temperature prediction, the difference in fluid factor can have a significant impact on the 

GLHE design. (Young 2004) 
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Figure 4.12 Detailed GLHE outlet fluid temperatures for different convection coefficient models. 

To illustrate the use of the model in a situation where variable convective 

resistance may be important, the church building is modeled in Detroit, with 36 boreholes 

in a 6x6 grid, and a 30% by weight mixture of propylene glycol and water.  Figure 4.12 

shows a case where the flow transitions from turbulent (hour 322), Re=2428, to laminar 

(hour 324), Re=1893.  As a result, the convection coefficient drops from 499 W/m2-K to 

69 W/m2-K and the total borehole resistance increases from 0.193 W/m2-K to 0.274 

W/m2-K. Table 4.4 summarizes the intermediate properties. In the constant convection 
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case, the fluid properties are determined at 10ºC. At this temperature, the flow remains 

turbulent (Re=2558) and the borehole resistance is 0.194 W/m2-K. In practice, GLHE 

flow rates are usually designed to remain in the turbulent regime. So, for many cases, this 

feature is not needed and the extra computational effort is not justified. However, there is 

no evidence that keeping flow rates high enough so that the GLHE is always in the 

turbulent regime is universally a good practice. This model allows for further 

investigation of design practice.  

Table 4.4 Comparison between the variable convection and constant convection cases 

Variable Convection 
Case Hour 

322 324 

Constant 
Convection 

Case 

Tmean (C) 8.8 3.1 10 

Viscosity (Pa·s) 0.005065 0.006502 0.004808 

Density (kg/m3) 1034 1035 1034 

Volume heat capacity (kJ/m3·K) 3935 3930 3936 

Conductivity (W/m·K) 0.4315 0.4268 0.4326 

Re 2428 1893 2558 

Nu 31.2 4.4 33.1 

Convective coefficient (W/ m2·K) 499 69 530 

Borehole resistance (m·K/W) 0.194 0.273 0.193 

 

4.1.8 Simplified STS GLHE Model 

For cases where the flow in the tube is always turbulent, the convective thermal 

resistance is much smaller relative to the thermal resistance of the grout and pipe. 
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Therefore, the changing of heat transfer rate of the ground loop heat exchanger brought 

by the variation of convective thermal resistance due to different fluid temperatures and 

flow rates can be negligible. A simplified GLHE model may then be developed without 

considering the variable convective thermal resistance but still accounting for the thermal 

mass of fluid. 

This simplified short time-step model is similar to Yavuzturk and Spitler’s (1999) 

short time-step model described in Section 4.1.5.1, but with a different approach for 

obtaining the short time-step g-functions. Using a one-dimensional numerical model, the 

temperature response of a single borehole to a unit step heat pulse at short time-steps can 

be obtained. Applying the same procedure to calculate the long time step response factors 

(Eskilson 1987), the temperature response of the borehole at the short time step vs. time 

response is nondimensionalized and the short time step response factors are obtained. 

This simplified model is referred to as the short time-step (STS) response factor model.  

The resulting short time-step g-function values are plotted in Figure 4.13 side by 

side with the long time-step g-function values for a single borehole and an 8 x 8 borehole 

field calculated using GLHEPRO. The short time-step g-functions generated by one-

dimensional numerical model line up very well with Eskilson’ long time-step g-function. 
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Figure 4.13 Short time-step g-function curve as an extension of the long time-step g-functions plotted 

for a single and a 8x8 borehole field. 

Without applying the one-dimensional numerical model to calculate the 

temperature response at short time-steps, in the simplified GLHE model, the borehole 

wall temperature is calculated by adding the temperature response due to the heat inputs 

at different time steps, as illustrated in Equation 4-10.   

Using the simplified model, an HVACSIM+ component model of the new ground 

loop heat exchanger (TYPE620) was developed. The diagram can be seen in Figure 4.14, 

showing all inputs, outputs and parameters needed to run the model.  
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Figure 4.14 TYPE 620 New STS and LTS GLHE model diagram. 

Using GLHEPRO (Spitler 2006), the parameter file for the TYPE620 model can 

be automatically generated. 

4.1.9 Investigation of Simulation Time Step 

During the simulation process of the GLHE model, it was found the GLHE model 

caused some errors when the time step was too small or the GLHE length was too large. 

Figure 4.15 and 4.17 show the GLHE fluid temperature comparison between the 

experimental data and simulation result with different simulation time steps. As shown in 

Figure 4.15, most of the time, the simulated GLHE outlet temperatures with 1-minute 

time steps match quite well with the experimentally measured temperatures. However, 

there are some points when the entering fluid temperature changes suddenly (heat pump 

switches on or off), the simulated GLHE temperatures showed quite a difference with the 
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measured data. Figure 4.16 shows the temperature comparison for a 30 minutes period. 

At time 12:55 PM, the entering fluid temperature of the GLHE decreased because the 

heat pump was off. Because of the thermal mass in the borehole and transport delay of 

the fluid flow, at short time steps, the simulated average GLHE temperature would not 

respond to the inlet fluid temperature changing instantly. Also in the GLHE model, there 

was an assumption that the fluid temperature changed linearly along the length of the 

borehole. Therefore, while the average fluid temperature at time 12:55 PM is higher than 

the EFT, it may be correct. However, the ExFT is higher than either the average fluid 

temperature or the EFT, and this is incorrect.  

In the real heat transfer process of the borehole, the fluid temperature changes 

more like an exponential decay (representing long term temperature rise or fall). When 

the time step is big enough and the loop length is not too long, the impact of the thermal 

mass of the borehole on the fluid temperature changing would not be significant and the 

linear assumption would be acceptable for the GLHE model. The validity of the linear 

assumption depends on several parameters: the thermal mass of the borehole, the fluid 

factor, the borehole length and the simulation time step. Figure 4.17 shows the GLHE 

fluid temperature comparison at 5-minute time step. At 5-minute time step, the simulated 

GLHE outlet fluid temperatures matched quite well with the experimentally measured 

temperatures. To more accurately calculate the GLHE temperature sudden changing at 

small time step, a 3-d model or a 2-d radial-axial model which addresses the fluid 

temperature gradient along the borehole is required. 
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Also as shown in Figure 4.16, a phenomena of heat transport delay was observed. 

For the borehole of 75 m (258ft) deep, it took about 7 minutes for the fluid to pass 

through. In Figure 4.15, when the inlet fluid temperature suddenly changes, the outlet 

fluid temperature would not change significantly until 7 minutes later. However, the 

current GLHE model is not able to address the fluid transport delay issue. Again, a 3-d 

model or 2-d radial-axial model will help to address the fluid transport delay issue, which 

happens in the real borehole heat transfer process. 
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Figure 4.15 GLHE fluid temperatures at 1-minute time step in three hours 



 

 120

GLHE Fluid Temperature(Time Step=1 Minute)
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Figure 4.16 GLHE fluid temperatures at 1-minute time step in half an hour 
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Figure 4.17 GLHE fluid temperatures at 5-minute time step 
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4.1.10 Summary of GLHE Model Results 

Like the Yavuzturk and Spitler (1999) model, the one-dimensional numerical 

model and LTS GLHE model is an extension to the original long time-step Eskilson 

(1987) model. However, whereas that model used a short time-step g-function to account 

for short time-step effects, the new GLHE model uses a one-dimensional numerical 

model to calculate the borehole wall temperature at short time-steps directly. A new 

approach has been developed to couple the one-dimensional numerical and LTS response 

factor model together for modeling vertical GLHE. 

The one-dimensional numerical model coupled with LTS model was cast as 

HVACSIM+ component model as TYPE621. An annual hourly simulation GSHP system 

in a church building was carried out to demonstrate this new GLHE model and illustrate 

the effect of thermal mass and variable convective resistance.  

Generally, the flow rate in the ground loop heat exchangers is designed so as to 

ensure turbulent flow in the tube. In this case, the variation of convective thermal 

resistance due to fluid temperatures and flow rates has little effect on the heat transfer 

rate of the ground loop heat exchanger.  Using one-dimensional numerical model, a new 

STS response factor model is then developed with fixed convective thermal resistance. 

The new STS and LTS model was cast as HVACSIM+ component model as TYPE620. 

A validation for the new GLHE model is highly desirable. The one-dimensional 

numerical model has been verified using GEMS2D (Rees 2000). Additional experimental 

validation of the new GLHE model is provided in Chapter 5, using operating data 
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collected at from an HGSHP research facility (Hern 2004) located on the campus of 

Oklahoma State University.  

Firstly, the verification of the effects of fluid thermal mass is carried out. An 

experimentally estimated fluid factor is used for the validation of the GLHE model. 

Comparison of the simulation results with different fluid factor values is presented in 

Chapter 5.  

4.2 Heat Pump Models 

In this research, two different heat pump models are used. Jin and Spitler’s (2002) 

parameter estimation-based heat pump model is used for modeling a single heat pump. 

The parameter estimation-based heat pump model also is used in experimental validation 

of HGSHP system simulation (Chapter 5). This model is discussed briefly in Section 

4.2.1 below. 

In the study of buildings with many heat pumps, it is difficult to model each heat 

pump independently. As an alternative, a “gang-of-heat-pumps” model is developed as 

part of this work. This model considers, in aggregation, the behavior of all heat pumps in 

the building. This model is described in Section 4.2.2 below. 

4.2.1 Parameter Estimation Heat Pump Model 

The selected heat pump model, TYPE559,  is based on a parameter estimation 

based model developed by Jin and Spitler (2002). The parameter estimation based model 

uses a thermodynamic analysis of the refrigeration cycle, simplified heat exchanger 
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models, and a detailed model of the refrigerant compressor. The parameters of the model 

are estimated from the manufacturer’s catalog data using a multi-variable optimization 

procedure. This has better performance than equation-fit models for modeling heat pumps 

when the fluid temperatures and flow rates go beyond the catalog data. 

The estimated parameters include piston displacement, clearance factor, load side 

heat transfer coefficient, source side heat transfer coefficient, a proportional loss factor 

accounting for the electromechanical loss of the compressor, constant part of the 

electromechanical loss, pressure drop across the suction and discharge valves, and 

superheat temperature. A detailed description of the model can be found in Jin and Spitler 

(2002; 2003). 

In the parameter estimation-based heat pump model, the heating/cooling capacity 

is calculated based on the fluid inlet temperatures and flow rates on two sides of the heat 

pump. However, for this implementation the model has been cast to take loads as inputs, 

which are used when the heat pump runs with partial loads.   

In Chapter 5, average experimental data of 5-minute time step was collected for 

validation and the heat pump might be switched on or off during the 5-minute time step 

of simulation. Therefore, an approach to deal with the heat pump partial duty at 5-minute 

time steps is described in Section 5.2.1. 

The parameter estimation based heat pump model (TYPE559) diagram can be 

seen in Figure 4.18, showing all the inputs, outputs and parameters needed to run the 
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model. A multi-variable optimization procedure has been developed to generate these 

parameters from the heat pump manufacturer’s catalog data.  
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Figure 4.18 TYPE 559 parameter estimation based heat pump HVACSIM+ model diagram. 

In the diagram: 

CoolingLoad  = System required cooling load, (W); 
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HeatingLoad  = System required heating load, (W); 

LSEFT   = Entering fluid temperature of heat pump at load side, (ºC); 

SSEFT   = Entering fluid temperature of heat pump at source side, (ºC); 

LSm&   = Mass flow rate at heat pump load side, (kg/s); 

SSm&   = Mass flow rate at heat pump source side, (kg/s); 

Power  = Heat pump power consumption, (kW); 

LSQ&   = Heat pump total heating/cooling capacity, (kW); 

COP   = Heat pump COP, (-); 

SSQ&   = Heat pump source side heat transfer rate, (kW); 

PLR   = Heat pump part load ratio, (-); 

LSx FTE  = Exiting fluid temperature on heat pump load side, (ºC); 

SSx FTE  = Exiting fluid temperature on heat pump source side, (ºC); 

nominalCOP  = Nominal COP of heat pump, (-); 

 nominal,heatingQ&  = Nominal heating capacity of heat pump, (kW); 

minPLR   = Minimal part load ratio of heat pump, (-); 

maxPLR  = Maximal part load ratio of heat pump, (-); 

optPLR    = Optimal part load ratio of heat pump, (-); 

nominalLS,m&   = Nominal volumetric flow rate at heat pump load side, (m3/s); 

nominalSS,m&   = Nominal volumetric flow rate at heat pump source side, (m3/s); 

heatingLS,UA  = Load side heat transfer coefficient at heating mode, (kW/K); 
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heatingSS,UA  = Source side heat transfer coefficient at heating mode, (kW/K); 

heatingsh,T  = Superheat temperature at heating mode, (ºC); 

heatingloss,W  = Constant part of the electromechanical losses at heating mode, (kW); 

heatingη  = Electromechanical loss factor proportional to power consumption at 

heating mode, (-) 

heatingPD  = Piston displacement at heating mode, (m3/s); 

heatingsuction,P  = Pressure drop across the suction valve at heating mode, (kPa); 

heatingC   = Clearance factor at heating mode, (-); 

nominal,coolingQ&  = Nominal cooling capacity of heat pump, (kW); 

coolingLS,UA  = Load side heat transfer coefficient at cooling mode, (kW/K); 

coolingSS,UA  = Source side heat transfer coefficient at cooling mode, (kW/K); 

coolingsh,T  = Superheat temperature at cooling mode, (ºC); 

coolingloss,W  = Constant part of the electromechanical losses at cooling mode, (kW); 

coolingη  = Electromechanical loss factor proportional to power consumption at 

cooling mode, (-) 

coolingPD  = Piston displacement at cooling mode, (m3/s); 

coolingsuction,P  = Pressure drop across the suction valve at cooling mode, (kPa); 

coolingC   = Clearance factor at heating mode, (-); 

LSTypeFluid  = The type of working fluid at heat pump load side: (0 for water, 1 for 

propylene glycol, 2 for Ethylene glycol);  
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LSConc  = Weight of antifreeze concentration in solution at heat pump load side; 

SSTypeFluid  = The type of working fluid at heat pump source side: (0 for water, 1 for 

propylene glycol, 2 for Ethylene glycol);  

SSConc  = Weight of antifreeze concentration in solution at heat pump source side; 

high sunction,P  = High pressure to shut off heat pump, (kPa); 

low sunction,P  = Low pressure to shut off heat pump, (kPa); 

TimeCycle  = Heat pump unit cycle time, (s). 

4.2.2 Gang-of-Heat-Pumps Model 

The purpose of the “gang-of-heat-pumps” model is to represent multiple heat 

pumps without the need to have separate models for each individual heat pump. In 

particular, the total power consumption and heat transfer rate to/from the water loop are 

of interest for this work. 

In addition, the model also determines the average number of heat pumps on in 

any time step and the required flow rate on the source side of heat pumps. Following 

ASHRAE Standard 90.1 the heat pumps are assumed to be equipped with two-way valve 

on the source water supply that opens only when the heat pump is on. When the total load 

seen by the building during any given time step is varied, the total number of heat pumps 

on is changed as well as the system flow rate at the source side of heat pumps. 

In this model, the number of heat pumps and the system flow rate are determined 

first. At any given time step the number of heat pumps, in heating and cooling, is 
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determined by calculating the number that are needed to meet the required load, heating 

and cooling, with the nominal heating and cooling capacity (This is an approximation that 

all the heat pumps operate at the design conditions and provide the nominal heating and 

cooling capacity). Then, the system flow rate that corresponds to the number of heat 

pumps operation is also determined. This flow rate is output in order to be passed to the 

variable speed pump model, TYPE 592. 

Variable speed pumping systems typically have a lower limit of about 30% of full 

flow rate. Since every heat pump is equipped with a two-way valve, a bypass is opened 

when less than 30% of full flow is required with the heat pumps on. When the calculated 

system flow rate is less than the minimal system flow rate, it will then be set as minimal 

system flow rate. In effect, the gang-of-heat-pumps model is also modeling the bypass 

control. The calculated system flow rate for that time step is then send to the variable 

speed pumping model, discussed in Section 4.4.2, where the pumping power is 

calculated. 

An equation-fitting model was developed to calculate the heating and cooling 

COPs of heat pumps, as shown in Equation 4-12 and 4-13 below. Of particular interest 

are the effects of variation in entering fluid temperature and flow rates for this work. 

ss
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Where: 
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heatingCOP  = Heat pump coefficient of performance during heating mode, (-); 

coolingCOP  = Heat pump coefficient of performance during cooling mode,(-); 

EFT   = Entering fluid temperature at the source side of heat pump, (ºC); 

sm&   = Mass flow rate of a single heat pumps, (kg/s); 

61−C   = Fitted coefficients for heating mode, (-); 

127−C   = Fitted coefficients for cooling mode, (-). 

Once the heating and cooling COPs are calculated, the power consumption of heat 

pumps is calculated by dividing the load, heating and/or cooling, by the COP. The 

existing fluid temperature of heat pumps is calculated from the heat transfer rate on the 

heat pumps source side, the system flow rate and the entering fluid temperature. 

The gang-of-heat-pumps model, TYPE557, diagram can be seen in Figure 4.19, 

showing all the inputs, outputs and parameters needed to run the model. 
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Figure 4.19 TYPE 557 gang-of-heat-pumps HVACSIM+ model diagram 

In the diagram: 

ssm&   = Mass flow rate of fluid at heat pump source side, (kg/s); 

121−COEF  = Coefficients corresponding to 1C  to 12C ; 

fullflowm&  = Mass flow rate of fluid at heat pump source side when all the pumps are 

on, (kg/s); 



 

 131

minm&  = Minimal flow rate of fluid at heat pump source side, usually set at 30% 

of fullflowm& , (kg/s); 

actualm&  = Actual flow rate of fluid at heat pump source side, (kg/s); 

minEFT  = Minimal entering fluid temperature at heat pump source side, (ºC); 

maxEFT  = Maximal entering fluid temperature at heat pump source side, (ºC); 

heatingtotalQ ,
&  = Total heating capacity of heat pumps, (kW); 

coolingtotalQ ,
&  = Total cooling capacity of heat pumps, (kW). 

A multi-variable optimization procedure has been developed to generate these 

parameters from the heat pump manufacturer’s catalog data. This gang-of-heat-pumps 

model is used for the investigation of HGSHP system control strategy in Chapter 7. 

4.3 Cooling Tower Models 

In an HGSHP system, both open-circuit cooling towers and closed-circuit cooling 

towers maybe be used as supplemental heat rejecters. In this section, two existing open-

circuit cooling tower models in HVACSIM+ are described briefly. A closed-circuit 

cooling tower model based on the Stabat and Marchio (2004) simplified indirect-contact 

evaporative cooling-tower model is developed. The model is cast as an HVACSIM+ 

component model and verified with manufacturer’s catalog data. 

4.3.1 Open-circuit Cooling Tower Models 

Two open-circuit cooling tower models have been developed as HVACSIM+ 

component models: one is the fixed UA cooling tower model developed by Khan (2004) 
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and another is the variable UA cooling tower model based on Lebrun and Silva (2002). 

Applying the effectiveness-NTU method, the open-circuit cooling tower is modeled as a 

counter flow heat exchanger with water at one side and moist air treated as an equivalent 

ideal gas at the other side. Moist air enthalpy is used to calculate the heat transfer rate on 

the air side by assuming the enthalpy is a function of air wet bulb temperature. A detailed 

description of the effectiveness-NTU model can be found in Khan (2004).  

4.3.1.1 Fixed UA Open-circuit Cooling Tower Model 

The fixed UA open-circuit cooling tower model, TYPE 765, is based on a model 

developed by Khan (2004). The parameter UA is calculated from the manufacturer’s 

catalog data.  

The fixed UA open-circuit cooling tower model, TYPE765, diagram can be seen 

in Figure 4.20, showing all the inputs, output and parameters. This fixed UA open-circuit 

cooling tower model is used for the investigation of control strategies of HGSHP 

systems. 
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Figure 4.20 TYPE 765 fixed UA open-circuit cooling tower HVACSIM+ model diagram. 

In the diagram: 

Signal   = Control signal of the cooling tower, 1: On and 0: Off. 

4.3.1.2 Variable UA Open-circuit Cooling Tower Model 

In the variable UA open-circuit cooling tower model, the UA value is calculated 

from Equation 4-14. 

moistairp

pey
a

x
w C

C
mmkUA

,

][ &&=      (4-14) 

Where:  

UA   = Cooling tower overall heat transfer coefficient times area, (W/K); 

wm&   = Mass flow rate of water, (kg/s); 
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am&   = Mass flow rate of air, (kg/s); 

peC   = Effective specific heat of moist air, (J/kg-K); 

moistairpC ,  = Specific heat of moist air, (J/kg-K); 

yxk ,,   = Coefficients to be fitted. 

The coefficients yxk ,,  can be determined based on the experimentally measured 

data.  

The variable UA open-circuit cooling tower model, TYPE768, diagram can be 

seen in Figure 4.21, showing all the inputs, output and parameters. This variable UA 

open-circuit cooling tower model is used for the experimental validation of HGSHP 

system simulation.  
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Figure 4.21  TYPE 768 variable UA open-circuit cooling tower HVACSIM+ model diagram. 
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4.3.2 Closed-circuit Cooling Tower Model 

The closed-circuit cooling tower can operate at the wet or dry regime. The closed-

circuit cooling tower model deals with both these two phenomena. 

4.3.2.1 Theoretical Closed-circuit Cooling Tower Model 

Using the Stabat and Marchio (2004) simplified indirect-contact evaporative 

cooling-tower model, a closed-circuit cooling tower model was developed. The heat 

exchange process of the closed-circuit cooling tower coils at wet regime is shown in 

Figure 4.22. The heat exchange of the closed-circuit cooling tower coil includes two 

parts: 1) the heat transfer between the air and the water film outside the tube; and 2) the 

heat transfer between the water in the tube and the water film outside the tube. The heat 

transfer between the water and the water film includes: the convection in the tube; the 

conduction through the tube and the heat transfer between the external surface and 

convection in the water film. The heat transfer between water and air can be represented 

by an overall heat transfer coefficient. 
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Figure 4.22 Heat exchanger scheme of closed-circuit cooling tower coils in wet regime.  

Applying the Effectiveness-NTU method for a counter flow single pass heat 

exchanger, the effectiveness (ε ) of a closed-circuit cooling tower is calculated and the 

equations are listed in Table 4.5. The calculation would have two different heat transfer 

coefficients ( tt AU ) based on the two different operating regimes. 
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Table 4.5 Effectiveness-NTU relations in wet and dry regimes 

Wet regime Dry regime 
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Where: 

ε   = Effectiveness, (-); 

wowi TT ,  = Inlet and outlet water temperature, (ºC); 

aoai TT ,   = Inlet and outlet air dry-bulb temperature, (ºC); 

am&   = Mass flow rate of air, (kg/s); 

wm&   = Mass flow rate of water, (kg/s); 

wc   = Specific heat of water, (kJ/kg-K); 

int, AAext  = Surface area at external side and internal side, (m2); 

ext
wet
ext AU  = Air-side heat transfer coefficient in wet regime, (W/K); 

ext
dry
ext AU  = Air-side heat transfer coefficient in dry regime, (W/K); 
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intint AU wet  = Water-side heat transfer coefficient, (W/K). 

Air-side Heat Transfer Coefficient 

On the air-side heat transfer, Stabat and Marchio (2004) correlated the air-side 

heat transfer coefficients  as: 

   8.0
, apsatwetextext

wet
ext mcAU &β=  (wet regime)   (4-15) 

8.0
, apadryextext

dry
ext mcAU &β=  (dry regime)   (4-16) 

Where: 

psatC   = Specified heat of saturated air, (J/kg-K); 

pac   = Specified heat of air, (J/kg-K); 

wetext ,β   = Constant to be fitted for wet regime.  

dryext ,β   = Constant to be fitted for dry regime.  

Water-side Heat Transfer Coefficient 

On the water-side heat transfer, the conductive resistance through the tubes is 

negligible compared to the convective resistance on both sides of the tube. The water-side 

heat transfer coefficient, ext
wet
ext AU , can be decomposed as: 

ext
film

c
w
cext

wet
ext AhAhAU

111

int

+=      (4-17) 

Where: 
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w
ch   = Convective heat transfer coefficient of water in the tube, (W/m2-K); 

film
ch  = Heat transfer coefficient between tube surface and water film, (W/m2-

K). 

In the tube, the Dittus – Boelter correlation (Incropera and Dewitt (2002) ) is 

used: 

)10(RePrRe023.0 43.08.0

int

>=
d
k

h ww
c    (4-18) 

Where: 

wk   = Conductivity of water, (W/m-K); 

intd   = Diameter of inner tube; (m). 

 Stabat and Marchio (2004) gave a general form for the correlation of film
ch  for the 

heat transfer coefficient between the tube surface and water film: 

    n

ext

sprayfilm
c d

G
Ch )(

&
=      (4-19) 

Where: 

sprayG&   = Flow rate of spray water per unit breadth, (kg/m2-s); 

extd   = Diameter of outer tube; (m); 

nC,   = Constants to be fitted.  

 Then Equation 4-17 can be simplified as: 
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5.08.0
int,

3.08.0
intint PrRe −=∝ wwwet

wet mAU μβ &    (4-20) 

Where: 

wμ   = Dynamic viscosity, (kg/m-s). 

wetint,β   = Constant to be fitted. 

When the cooling tower runs in the dry regime, neglecting the conductive 

resistance through the tubes, the water-side heat transfer coefficient, intint AU dry  ,  can be 

decomposed as:  

intintint

11
AhAU w

c
dry =       (4-21) 

Applying the Dittus – Boelter correlation (Incropera and Dewitt (2002)), Equation 

4-21 can be simplified as: 

    5.08.0
int,

3.08.0
intint PrRe −=∝ wwdry

dry mAU μβ &     (4-22) 

Where: 

dryint,β   = Constant to be fitted. 

Overall Heat Transfer Coefficient 

The overall heat transfer coefficient of closed-circuit cooling tower can be 

expressed as: 
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+=  (dry regime)  (4-24) 

The coefficients wetext ,β , wetint,β , dryext ,β and dryint,β are fitted using manufacturer’s 

catalog data. 

The variable UA open-circuit cooling tower model, TYPE768, diagram can be 

seen in Figure 4.23, showing all the inputs, output and parameters.  
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Figure 4.23 TYPE 764 closed-circuit cooling tower HVACSIM+ model diagram. 

In the diagram, 

dbairEFT ,  = Entering air dry bulb temperature, (C); 

Mode   = Cooling tower mode, (0:  dry regime; 1: wet regime); 

fanPower  = Fan power of cooling tower; (kW); 
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pumpPower  = Circulation pump power of cooling tower; (kW). 

4.3.2.2 Verification of Closed-circuit Cooling Tower Model 

The closed-circuit cooling tower model has been compared on the manufacturer’s 

catalog data at different wet-bulb temperatures, inlet water temperatures and water flow 

rates for a selected closed-circuit cooling tower. (B.A.C. Model: VFL-024-22H). The 

estimated coefficients for the selected cooling tower in the wet regime are 36.0, =wetextβ  

and 15.0int, =wetβ . The estimated coefficients for the selected cooling tower in dry 

regime are 70.0, =dryextβ  and 75.30int, =dryβ . As shown in Figure 4.24, the heat transfer 

rates predicted by the model match well with the manufacturer’s catalog data, with all 

prediction within 5%. Also as shown in the figure, a closed-circuit cooling tower at wet 

regime has a much higher heat rejection rate than that when it operates at dry regime.  
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Figure 4.24 Calculated heat rejection rate vs. catalog heat rejection rate both at wet and dry 

regime. 

4.4 Pump Models 

In a variable flow pumping system, pump speed is adjusted to maintain a constant 

differential pressure across the heat pump unit loop supply and return headers. This 

insures adequate flow across the heat pump. When a heat pump is turned off, a two-way 

valve on the heat pump supply closes. As the number of closed valves increases, the 

pump’s speed is reduced to maintain a constant differential pressure. Based on the 

physics of centrifugal pumps, the power required is approximately proportional to the 

cube of the flow rate in this scenario. As most buildings have a substantial number of low 

part-load hours, a significant amount of energy can be saved by using a variable speed 

drive (VSD). Therefore, a VSD pump model is developed.  
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A simple variable speed drive pump is also used in the secondary loop of HGSHP 

systems for the cooling tower. The simple variable speed drive pump mode has been 

developed as an HVACSIM+ component model and is described below.  

4.4.1 A Simple Variable Speed Pumping Model 

The selected simple variable speed pumping model is TYPE582. The simple 

variable speed pumping model calculates the pumping power using a cubic relationship 

between the fraction of full power (FFP) and fraction of full flow (FFF). Pump motor 

efficiency is not explicitly considered in the model, but can be included in the nominal 

efficiency. 

The constant speed pump model, TYPE582, diagram can be seen in Figure 4.25, 

showing all the inputs, output and parameters. 
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Figure 4.25 TYPE 582 constant speed pumping HVACSIM+ model diagram. 
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In the diagram: 

wm&   = Mass flow rate of pump, (kg/s); 

η   = Pump efficiency at the nominal flow rate, (-); 

nominalw,m&  = Pump nominal mass flow rate, (kg/s); 

nominalPD  = Pressure drop at the nominal flow rate, (kPa); 

actualwm ,&  = Pump actual mass flow rate with control, (kg/s); 

inputQ&   = Heat input to the loop by the pump, (kW). 

4.4.2 A Detailed Variable Speed Pumping Model 

Relying on a user-precomputed curve for fraction of full power vs. fraction of full 

flow of the system, a dimensionless equation fit of fraction of full power against fraction 

of full flow will be developed for this VSD pump. Using user-specified full flow 

pumping power and the required flow from the “gang-of-heat-pumps” model (TYPE559), 

the energy consumption can be determined. 

First the FFF is calculated, which is based on the ratio of actual flow rate to the 

design flow rate: 

design

actual

m
m

FFF
&

&
=       (4-25) 

Where: 

FFF    = Fraction of full flow, (-); 
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actualm&    = Mass flow rate required by the heat pumps, (kg/s); 

designm&    = Mass flow rate of a system if all heat pumps are in operation, (kg/s). 

Next, the FFP is computed using a polynomial with fitted coefficients:  

3
3

2
210 FFFCFFFCFFFCCFFP ⋅+⋅+⋅+=    (4-26) 

Where: 

30−C   = FFP coefficients.  

 To determine the coefficients in Equation 4.23 above, the total pressure drop at 

the full design flow rate is calculated for the system. A pump is selected to meet the flow 

rate and the pump head. Using data from the selected pump, non-dimensional equations 

of head vs. flow and efficiency vs. flow are obtained.  An analysis is performed in a 

spreadsheet to determine pump speed, pressure drop, and pumping power over the full 

range of possible system flow rate (a lower limit of 30% of full flow rate).  In this 

procedure, a strategy for controlling the distribution of flow to GLHE and PHE/cooling 

tower is required to calculate the system pressure drop at different system flow rates, 

which is provided in Chapter 6. Then, a polynomial equation of fraction of full power as 

a function of fraction of full flow is obtained. Figure 4.26 shows FFF vs. FFP for a 

HGSHP system.  



 

 147

 

System Pumping Curve (flow vs. power)

y = 0.5523x3 + 0.9158x2 - 0.6369x + 0.1724

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Flow/Max Flow

Po
w

er
/M

ax
 P

ow
er

POWER

Poly. (POWER)

 

Figure 4.26 Fraction of Full Flow vs. Fraction of Full Power 

 Motor and drive losses are accounted for with a single efficiency number: 

motordesignPowerFFPPower η/⋅=     (4-27) 

Where: 

designPower   = Power required by the pump at full flow, (W); 

motorη   = Pump motor efficiency, (-).  

By assuming all the pumping power is added into loop except the motor/drive 

losses, the exiting fluid temperature of pump is calculated: 
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pww

motor
inletoutlet cm

Power
TT

&

η
+=      (4-28) 

Variable speed pumping systems typically have a lower limit of about 30% of full 

flow rate. Therefore, a minimum flow rate check minm& is cast in the model to ensure the 

variable speed pump has a flow rate no less than 30% of full flow rate.  

 

 
 

TYPE 592 
Variable Speed  

 Pumping Model 

OUTPUTS 

PA
R

A
M

E
T

E
R

S
wm&  

motorη  

TypeFluid  

wEFT  

nominalw,m  

 

INPUTS 

Signal  

inputQ&  Power  wExFT  actualwm ,&  

Conc  

nominalPower  

0C  

1C  

2C  

3C  

minm&  

 

Figure 4.27 TYPE 592 constant speed pumping HVACSIM+ model diagram 

The variable speed pumping model, TYPE592, diagram can be seen in Figure 

4.27, showing all the inputs, output and parameters.  

In the diagram: 

nominalPower  = Pump power at nominal flow rate, (kW); 

minm&   = Minimal mass flow rate requited by the variable speed drive, (kg/s). 
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4.5 Plate Heat Exchanger Models 

HGSHP systems often use a plate frame heat exchanger to isolate the cooling 

tower from the rest of the system. The plate frame heat exchanger is modeled as a counter 

flow heat exchanger and the effectiveness-NTU method is applied. Three different ways 

have been developed to calculate the heat transfer coefficient UA: a fixed UA, a variable 

UA without fouling and a variable UA with fouling. These three methods are introduced 

in this section.  

In this research, the plate frame heat exchanger model is intended for use in a 

large parametric study, where it is highly desirable to avoid having to select a specified 

heat exchanger from a manufacturer’s catalog data, fit coefficients, etc. A simple 

approach has been developed by Gentry (2007) for modeling the plate frame heat 

exchange. This approach is also introduced in this section.  

4.5.1 Effectiveness-NTU PHE Model 

In the effectiveness-NTU method, the UA value is a key factor for the calculation 

of the heat transfer of the plate heat exchanger. Two methods have been developed for 

the calculation of UA. They are used for the validation of HGSHP system simulation in 

Chapter 5.  

Variable UA Without Fouling Model 
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 In the variable UA without fouling model, assuming that the conductive thermal 

resistance of plate is negligible, the UA may be calculated as the sum of the convective 

thermal resistances at two sides of plate heat exchanger and: 

   
cchhtt AhAhAU

111
+=       (4-29) 

Where: 

tt AU   = Total heat transfer coefficient area product, (W/K); 

hh   = Convective heat transfer coefficient on hot fluid side, (W/m2-K); 

ch   = Convective heat transfer coefficient on cold fluid side, (W/m2-K); 

hA   = Heat exchanger area on hot fluid side, (m2); 

cA   = Heat exchanger area on cold fluid side, (m2). 

Ayub (2003) reviewed more than forty reference for the plate heat exchanger 

model. Despite the differences, many of the models for convection with the plate heat 

exchanger fall into a general form as:  

nm
L CNu PrRe1=       (4-30) 

Where the coefficients C1, m and n is determined based on the different geometry 

of the plate heat exchanger and the flow rate. 

While Equation 4-30 might be evaluated with detailed knowledge of the plate heat 

exchanger geometry, this information is generally not available. Rather, only with catalog 

data for the plate heat exchanger, a model that gives heat transfer rate and ExFT with 
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EFT, m&  is desired. This can be done with the general approach described by Rabehl et al. 

(1999).  

We are interested in finding hA  on both sides of the heat exchanger, and both 

sides are assumed to have the same general form of the correlation. Applying the 

definition of Nusselt number, Reynolds number and Prandtl number, the equation for hA  

can be reduced to: 

fluid
n

m

m

kQChA Pr1 ν
=       (4-31) 

Where: 

Q  = Volumetric flow rate of fluid, (m3/s); 

ν  = Dynamic viscosity of fluid, (m2/s); 

fluidk  = Thermal conductivity of the fluid, (W/m-K); 

nmC ,,1 = Constants to be fitted. 

A best estimate of the values of nmC ,,1  for both hot fluid and cold fluid sides is 

determined from the plate heat exchanger manufacturer’s catalog data by minimizing the 

sum-of-the-squares-of-the-error of the UA values. 

Variable UA With Fouling Model 

Fouling is always observed on the plate heat exchanger surface and reduces heat 

transfer and increases the resistance to fluid flow. Therefore, a variable UA with fouling 
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model is developed to represent the phenomena. The heat transfer performance of heat 

exchanger with fouling (Barrow and Sherwin 1994) can be calculated as: 

cleanfoulingfouled UA
R

UA
)1()1( +=     (4-32) 

Where: 

fouledUA
)1(  = Resistance with fouling, (K/W); 

cleanUA
)1(  = Resistance in the clean condition and determined by Equation 4-29, 

(K/W); 

foulingR  = Thermal resistance of fouling, (K/W). 

The thermal resistance of fouling, foulingR , is time related and can be developed in 

the form of (Knudsen 1984): 

)1( Bt
fouling eRR −

∞ −=       (4-33) 

The constant ∞R  and B  are obtained experimentally. 

HVACSIM+ Component Model 

A plate frame heat exchanger HVACSIM+ component mode, TYPE 666, is been 

developed for this effectiveness-NTU method. The UA value is input as a boundary 

condition of the model, which is user-precalculated based on the manufacturer’s catalog 

data or experimental measurements. 
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The effectiveness-NTU PHE model, TYPE666, diagram can be seen in Figure 

4.28, showing all the inputs, output and parameters.  

 UA  
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Figure 4.28 TYPE 666 effectiveness-NTU PHE HVACSIM+ model diagram. 

In the diagram: 

hpc ,  = Specific heat of hot fluid, (kJ/kg-K); 

cpc ,  = Specific heat of hot fluid, (kJ/kg-K). 

4.5.2 Variable Effectiveness PHE Model 

In this research, the plate frame heat exchanger model is intended for use in a 

large parametric study, where it is highly desirable to avoid having to select a specified 

heat exchanger from a manufacturer’s catalog data, fit coefficients, etc. A simplified 

effectiveness approach has been developed by Gentry (2007) for modeling the plate 



 

 154

frame heat exchanger. This approach has the advantage of being able to use the same 

model over a wide range of size and only the nominal needs to be specified uniquely to 

model a specific size of plate heat exchanger.   

It was found from the plate frame heat exchanger manufacturer’s catalog data that 

there is a generic polynomial relationship between the effectiveness of PHE and the 

fraction of full flow (FFF) at one side of PHE, as described in Equation 4-34: 

3
3

2
210 EFFCEFFCEFFCC ⋅+⋅+⋅+=ε     (4-34) 

 The values of coefficients 30−C  for the Mueller plate heat exchangers are listed in 

the following table. A detailed description of the variable effectiveness PHE model can 

be found in Gentry (2007).  

Table 4.6 coefficients 30−C  for the Mueller plate heat exchangers 

0C  0.1839 2C  -1.272 

1C  1.4249 3C  0.4431 

 

The variable effectiveness PHE model, TYPE665, diagram can be seen in Figure 

4.29, showing all the inputs, output and parameters. 

In the diagram: 

nominalε   = Effectiveness of PHE at the nominal full flow rate, (-); 

nominalm&  = Nominal full flow rate of hot fluid in HGSHP systems, (kg/s). 
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Figure 4.29 Type 665 variable effectiveness PHE HVACSIM+ model diagram. 

4.6 HVACSIM+ System Simulation Implementation 

An HGSHP system simulation in HVACSIM+ visual tool is shown in Figures 

4.30 and 4.31. Figure 4.30 shows the full schematic with all system connections shown. 

Figure 4.31 shows the flow direction from component to component and the controller 

connection.  

A parallel-connected HGSHP system as shown in Figure 2.8 is set up for the 

simulation. The main loop includes heat pumps, a variable speed circulation pump for the 

main loop, ground loop heat exchanger, a three-way valve, a mixing valve and a plate 

frame heat exchanger. The secondary loop includes a constant speed circulation pump for 

the secondary loop, an open-circuit cooling tower and the plate frame heat exchanger. 



 

 156

Heat Pump 

GLHE 

VSD Pump Const. Pump 

Cooling Tower PHX 

2nd Loop 
Controller3-way valve 

Mixing valve 
 

Figure 4.30 HVSCSIM+ visual tool model showing system connections. 

A secondary loop controller is used to control the operation of cooling tower and 

circulation pump. Here, an EFT control strategy is used by the controller. When the EFT 

of the heat pumps exceeds an upper limit temperature, a control signal of “ON” is sent to 

the cooling tower and the secondary loop circulation pump. When the EFT of the heat 

pumps is below a lower limit temperature, a control signal of “OFF” is sent to the cooling 

tower and the secondary loop circulation pump to shut down the secondary loop. 

In HVACSIM+, all the variables in one superblock are solved simultaneously. 

However, the sudden transients due to the controllers switching between on and off 

causes problems with the convergence of the entire system when trying to solve both 

control signals and temperatures used to drive the control signals, within the same time 

step.  Therefore, in order to simulate the HGSHP system with a controller, two 
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superblocks are needed to handle the discontinuity caused by the controller. All the 

components except the controller are set in Superblock 1 and the controller is set in 

Superblock 2. At one time step, the temperatures and flow rates in Superblock 1 are 

solved simultaneously first, and then the temperatures are passed to the controller in 

Superblock 2. After getting the control signal, the simulation moves to the next time step. 

The control signal obtained from the last time step is then used to control the cooling 

tower, the secondary circulation pump, the plate frame heat exchanger and the three-way 

valve. Adding a superblock gives, in effect, a transit delay to the system and allows the 

control signal to be based on the previous time step’s temperature values. Adding a 

superblock has an effect equivalent to adding a plug flow thermal mass to the loop. More 

discussion is given by Gentry (2007). 
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Figure 4.31 System flow direction and controller direction in HVACSIM+ visual tool. 

4.7 Accelerating Multiyear Simulation of HGSHP Systems 

In HGSHP systems, the ground temperature surrounding the GLHE can rise or 

fall over the system operation period depending on the heat imbalance of the ground. 

Therefore the GLHE performance and the heat pump energy consumption vary over the 

system operation period and usually a 20-year simulation will be carried out to evaluate 

the overall performance of the system. Applying the load aggregation algorithm, the new 

GLHE model is computationally efficient. However, for an optimization study, a large 

number of simulations – in the thousands – are required. It is still computationally 

expensive to run a large number of 20-year simulations with an hourly time step. 

Therefore, a new scheme is developed for accelerating the multiyear simulation of 

HGSHP system. The accelerated algorithm has two parts – a variable time step aspect 
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and a simplified life cycle cost calculation procedure. They are described in the following 

two sections. 

4.7.1 Accelerating Multiyear Simulation Scheme 

The scheme investigated here involves using large time steps for a significant part 

of the simulation in order to save computational time. Smaller time steps are used to 

improve accuracy for part of the simulation. 

Preliminary testing shows the GLHE loop temperature over the 20-year operation 

period varies as shown in Figures 4.32, 4.33, and 4.44 covering a single week of 

operation, a single year, and 20 years respectively.   
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Figure 4.32 Hourly heat pump EFT of a HGSHP system for a single week 
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Hourly Heat Pump EFT For A Single Year
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Figure 4.33 Hourly heat pump EFT of a HGSHP system for a single year 

Monthly average heat pump EFT for 20 Years
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Figure 4.34 Monthly average heat pump EFT of a HGSHP system for 20 years 
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Overall, the 20 year heat pump EFT response loads are something like a 

superposition of:  

• an exponential decay (representing long term temperature rise or fall)  

• a sinusoid with period of one year 

• diurnal variations with randomness caused by varying weather patterns 

The scheme takes advantage of the fact that, for a well designed HGSHP system, 

the annual ground heat rejection and ground heat extraction are nearly balanced. In this 

case, the annual peak ground temperature remains almost unchanged over the operation 

time (20 years), especially over the later years of the system operation period, as shown 

in Figure 4.34. As a result, the 20-year HSGHP system energy consumption remains 

almost unchanged over the operation time (20 years), especially over the later years of 

the system operation period, as shown in Figure 4.35. Therefore, a shorter period 

simulation is possible for HGSHP systems without causing too much energy error in the 

consumption prediction. In this research, an 8-year simulation is carried out to represent 

the overall system performance over a 20-year period.  

Also a variable time step scheme is developed for the 8-year simulation to 

accelerate the simulation. In the calculation of the life cycle cost of the system, only the 

operating cost of the first year and the 8th year are required (Details are given in Section 

4.7.2). Therefore, in the 8-year system simulation, these two years: 1st and 8th year, are 

simulated with hourly time step, which would provide a detailed and accurate hourly 

result. And the other years are simulated with 6-hour time step. In practice, the simulation 
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of other years with a large time step will bring an error of the 8th year result. Therefore, in 

order to minimize the error of the 8th year result caused by the variable time step, the 7th 

year is also simulated with hourly time step. And the years from 2nd to 6th are simulated 

with 6-hour time step. 
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Figure 4.35 Annual HGSHP system energy consumption for 20 years. 

Figure 4.36 shows the annual HGSHP system energy consumption between the 

detailed 20-year hourly simulation and the accelerating simulation for three years: 1st, 7th 

and 8th year. The system energy consumption at the 1st year is exactly same for the two 

methods. The relative error of the accelerating simulation at the 7th and 8th year is about 

0.1%.  

It takes 34 seconds to run an HGSHP system simulation with 8-year variable time 

steps scheme and 185 seconds to run the simulation with 20-year hourly time step scheme 
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on an AMD 2.10 GHz PC equipped with 1GB RAM and using Windows XP.  For a large 

number of simulations, the computational time savings are significant. 
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Figure 4.36 Annual energy consumption of HGSHP between the detailed 20-year hourly 

simulation and accelerating simulation. 

4.7.2 Life Cycle Cost Analysis Methodology 

In this section, a procedure is developed to estimate the overall system 

performance for the accelerating simulation.  

The life cycle cost (LCC) of the HGSHP system is done on a representative value 

with an assumed life of 20 years and annual interest rate (IR) of 6%. The net present 

value (NPV) of a HGSHP system operating cost with 20-year hourly simulation can be 

represented as: 
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∑
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n

n
n IROCNPV      (4-35) 

Where: 

nOC  = The system operation cost, ($). 

If the system operation cost nOC  of each year is the same, then Equation 4-35 can 

be simplified as:   

20

20

)1(
1)1(

IRIR
IROCNPV avg +

−+
=      (4-36) 

Where: 

avgOC   = Average operating cost of HGSHP system over 20 years.  

As seen in Figure 4.35, the 20-year HSGHP system energy consumption remains 

almost unchanged over the operation time (20 years). Therefore, an average operating 

cost, avgOC ,  is used to calculate the net present value (NPV) of a HGSHP system. The 

average operating cost of the HGSHP system avgOC  is calculated based on a weighted 

average of the 1st year and 8th year: 

)1(** 8,1, ratioOCratioOCOC yearyearavg −+=    (4-37) 

Where:  

1,yearOC  = Operating cost of HGSHP system for the 1st year; 



 

 165

8,yearOC  = Operating cost of HGSHP system for the 8th year; 

ratio   = Weight ratio, here a value of 0.05 is selected, (-). 

 After getting the average operating cost of the HGSHP system, the NPV of the 

system is calculated by Equation 4.38. 

For the HGSHP system shown in the Figure 4.35 and Figure 4.36, the net present 

value of system is listed in Table 4.7 with an electricity price of 7 ¢/kWh. Two 

approaches were applied for this calculation: 1) a 20-year simulation with hourly time 

step and the NPV is calculated by Equation 4-35; 2) an 8-year simulation with variable 

time step and the NPV is calculated by Equation 4-36. Applying the 8-year variable time 

steps simulation and the simplified NPV calculation, the relative error of the net present 

value of the HGSHP system operating cost is about 0.1%.  

Table 4.7 Net present value of system operating cost over 20 years. 

Case CPU Time 
(second) 

Net present value 
($) 

20-year hourly 
simulation 185 158,221 

8-year variable time 
steps simulation 34 158,405 

4.7.3 Verification of Multiyear Simulation Scheme for Optimization 

Study 

One objective of this research is to develop the HGSHP system control strategy to 

optimize the operation of the HGSHP system. A buffer program developed in Chapter 7 

is used to search for the best setpoint of each control strategy for different combinations 
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of system design, building type and location. In this buffer program, an accelerating 

simulation scheme is used to save the computational time. In this section, the influence of 

this accelerating simulation scheme on the optimization results of the HGSHP system 

control strategy is investigated.  

Two different multiyear simulation approaches are used in the buffer program for 

the HGSHP system simulation and the net present value calculation: 1) a 20-year 

simulation with hourly time step and the NPV is calculated from each year result 

(Equation 4-36); 2) an 8-year simulation with variable time step and the NPV is 

calculated from 1st and 8th year result (Equation 4-36). Three control strategies developed 

by Yavuzturk and Spitler (2000) are be used for the investigation. Due to the expensive 

computational time for the optimization with a 20-year hourly time step simulation, only 

one location for the office building and the motel building case is chosen for the 

comparison. The details about the office building and the motel building are available in 

Section 7.1. For each building type, four different HGSHP systems with combination of 

different size of the GLHE and the cooling tower were designed. More details about the 

system component sizes are available in Section 7.3. 

The optimized setpoint values of the three control strategies with the different 

simulation scheme are listed in Table 4.8 and plotted in Figure 4.37. The 20-years NPV 

of the system operation cost calculated by the different methods are listed in Table 4.8 

and plotted in Figure 4.38. From the results in Figure 4.37 and 4.38, the optimal setpoint 

value estimated from the 20-year hourly simulation method and the optimal setpoint 

value estimated from the 8-year variable time step simulation method are nearly the 
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same, both for the office building and motel building cases. For the office building in “B-

ExFT” case, the setpoint value difference is 0.6ºC and the NPV of the system 20-year 

operation cost difference is about 0.1%. For the motel building in “D-ExFT” case, the 

setpoint value difference is 0.8ºC and the NPV of the system 20-year operation cost 

difference is about 0.1%. However, the computational time of these two simulation 

schemes showed a huge difference. Using the 20-year hourly simulation scheme, it took 

about 552 minutes to run a single case. And using the 8-year variable time step 

simulation scheme, it only took about 77 minutes to run a single case.  

In this Section 4.7, a new scheme was developed for accelerating the multiyear 

simulation of HGSHP system. An 8-year variable time step simulation scheme only took 

about one-fifth the computational time of a 20-year hourly time step simulation scheme. 

Applying the 8-year variable time step simulation and a simplified life cycle cost 

procedure, the relative error of the net present value of the HGSHP system operating cost 

is about 0.1%. The investigation of the optimization of the three old control strategies 

showed that the accelerating simulation scheme has a very small influence on the 

optimized setpoint result. Therefore, in this study, the accelerating simulation scheme is 

used for the investigation of the HGSHP system. 
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Table 4.8 Comparison of setpoint values and the Net present value of system operating cost 

between two different simulation schemes. 

Office Building Motel Building 

Case Description Scheme Set 
Point 
(ºC) 

20-years 
NPV 

operation 
cost($) 

operation 
cost 

difference

Set 
Point 
(ºC) 

20-years 
NPV 

operation 
cost($) 

operation 
cost 

difference

Detailed 23.1 164,488 22.6 24,032 
A-EFT 

Accelerating 23.3 163,840 -0.4% 23.0 24,063 0.1% 
Detailed 21.6 149,880 25.1 24,014 B-EFT 

Accelerating 21.7 150,044 0.1% 24.6 24,003 0.0% 
Detailed 23.1 166,711 22.2 22,124 C-EFT 

Accelerating 23.2 165,642 -0.6% 22.2 22,140 0.1% 
Detailed 22.4 147,781 24.6 22,143 D-EFT 

Accelerating 22.4 147,932 0.1% 24.5 22,162 0.1% 
Detailed 26.3 164,081 31.2 24,028 A-ExFT 

Accelerating 26.5 163,408 -0.4% 30.6 24,029 0.0% 
Detailed 24.4 149,541 33.8 24,010 B-ExFT 

Accelerating 25.0 149,709 0.1% 33.6 24,013 0.0% 
Detailed 26.5 166,453 30.3 22,122 C-ExFT 

Accelerating 26.4 165,288 -0.7% 30.4 22,138 0.1% 
Detailed 24.8 147,310 33.2 22,141 D-ExFT 

Accelerating 24.9 147,453 0.1% 32.4 22,161 0.1% 
Detailed 11.8 165,044 11.4 24,084 A-Tdiff 

Accelerating 11.8 164,377 -0.4% 11.5 24,110 0.1% 
Detailed 9.1 150,300 12.8 24,102 B-Tdiff 

Accelerating 9.2 150,459 0.1% 12.9 24,124 0.1% 
Detailed 10.8 168,381 11.2 22,229 C-Tdiff 

Accelerating 10.8 167,300 -0.6% 11.3 22,246 0.1% 
Detailed 8.9 148,334 12.4 22,242 D-Tdiff 

Accelerating 9.0 148,464 0.1% 12.3 22,257 0.1% 
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Comparison of Optimized SetPoint Value
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Figure 4.37 Comparison of setpoint values between two different simulation schemes 

System Annual Operation Cost Comparison
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Figure 4.38 Comparison of the Net present value of system operating cost between two different 

simulation schemes 
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4.8 Summary 

In this chapter, HGSHP system simulation and requisite component models were 

developed. A summary of the component models is listed in Table 4.9. 

Table 4.9 A summary of the component models of HGSHP system simulation 

Model Type Number Description Author’s work1 

TYPE 621 1-d and LTS model Developing 
GLHE 

TYPE 620 New STS and LTS model Developing 

TYPE 559 
Parameter estimation based heat pump 

model 
Applying 

Heat Pump 

TYPE 557 Gang-of-heat-pumps model Developing 

TYPE 765 Fixed UA model Using Open-circuit 

Cooling Tower TYPE 768 Variable UA model Using 

Closed-circuit 

Cooling Tower 
TYPE 764 Variable UA model Applying 

TYPE 582 Simple variable speed pumping model Using 
Pump 

TYPE 592 Detailed variable speed pumping model Developing 

TYPE 665 Variable effectiveness model Using Plate frame heat 

exchanger TYPE 665 Variable UA model with/without fouling Using/Developing 

1: Author’s work on the component model can be divided into three categories: developing, applying and using. Developing means 

author developed a new model and cast it as an HVACSIM+ component model; applying means author applied an existing model and 

cast it as an HVACSIM+ component model; using means author used a previously developed HVACSIM+ component model.  

In this chapter, a one-dimensional numerical model and an LTS model of GLHE 

were developed. The new GLHE model used a one-dimensional numerical model to 

calculate the borehole wall temperature at short time-steps directly without using the 

superposition approach. Then a new approach was developed to couple the one-
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dimensional numerical and the LTS response factor model together for modeling the 

vertical GLHE.  

The one-dimensional numerical model was validated using the detailed boundary-

fitted coordinates finite volume model (GSME2D). 

The one-dimensional numerical model coupled with the LTS model was cast as 

HVACSIM+ component model as TYPE621. An annual hourly simulation GSHP system 

in a church building was carried out to demonstrate this new GLHE model and illustrate 

the effect of thermal mass and the variable convective resistance.  

Generally, the flow rate in the ground loop heat exchangers is designed so as to 

ensure turbulent flow in the tube and the convective thermal resistance has little effect on 

the overall thermal resistance of borehole. Therefore, using the one-dimensional 

numerical model, a new STS response factor model is then developed with fixed 

convective thermal resistance. The new STS and LTS model was cast as HVACSIM+ 

component model as TYPE620. 

Two heat pump models were developed in this chapter. A parameter estimation-

based heat pump model was developed for a single heat pump and this model is used for 

the experimental validation of HGSHP system simulation in Chapter 5. A gang-of-heat-

pump model based on equation-fit method was developed to represent multiple heat 

pumps and this model is used for the investigation of HGSHP system control strategy in 

Chapter 7. 
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Two open-circuit cooling tower models were briefly introduced in this chapter 

and they are used for the validation of HGSHP system simulation and the investigation of 

HGSHP system control strategy respectively in Chapter 7. 

One variable UA model based on the effectiveness-NTU method for closed-

circuit cooling tower was developed in this chapter. And this model is used for the 

validation of HGSHP system simulation in Chapter 5. 

Two variable speed pump models were developed in this chapter. These two 

pump models are used for the HGSHP simulation and investigation of HGSHP system 

control strategy in Chapter 7. 

An effectiveness-NTU method based plate frame heat exchanger model was 

developed. Three ways of calculating of UA values were introduced: fixed UA, variable 

UA without fouling model and variable UA with fouling model. This model is used for 

the experimental validation of HGSHP system simulation in Chapter 5. Also a previously 

developed plate frame heat exchanger using a variable effectiveness model was 

introduced. And this model is used for the investigation of HGSHP system control 

strategy in Chapter 7. 

A new scheme was developed for accelerating the multiyear simulation of 

HGSHP system. An 8-year variable time step simulation only took about one-fifth 

computational time of a 20-year hourly time step simulation. The comparison between 

the 8-year variable time step simulation and the 20-year hourly time step simulation 

showed that the relative error of the net present value of the HGSHP system operating 
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cost is about 0.1% and the accelerating simulation scheme has a very small influence on 

the optimized setpoint value of the control strategies.  
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5 VALIDATION OF HGSHP SYSTEM SIMULATION 

The validation of the HGSHP system simulation presented in Chapter 4 is highly 

desirable. In this chapter, the HGSHP system component models and system simulation 

will be validated against the experimental data from a HGSHP research facility. First, the 

experimental HGSHP research facility (Hern 2004) will be introduced. Second, the 

parameters of each component model for modeling the HGSHP system will be presented. 

Then the validation of each component model, individually and within the system 

simulation, will be presented. Finally, for the system validation, two variations of the 

system simulation approach will be investigated: 1) the cooling tower is modeled as a 

boundary condition taken from the experimental data, and 2) the cooling tower is 

modeled with a controller that mimicks the actual controller.  

As a joint project, the author and Gentry (2007) worked together on the 

preliminary system simulation and validation. Gentry et al. (2006) presented a report on 

the validation of the HGSHP system simulation using seven months of data from the 

OSU HGSHP research facility. Therefore, in this chapter, some work overlaps with the 

Gentry (2007) work. However, compared to the Gentry work, significant additional work 

has been done for the validation of HGSHP system simulation. The main improvements 

include: 
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• In this research, the validation of HGSHP system simulation is extended to a 12 

month period. It includes a continuous 7-month cooling season and portions of 

two heating seasons. 

• As reported by Gentry et al. (2006), the equation-fit heat pump model 

performed poorly with catalog data when the actual flow rates on both sides of 

the heat pump were larger than catalog data. For the extended validation, a 

parameter estimation-based heat pump model (Jin and Spitler 2002) is utilized 

and performs well. 

• In the simulation of the GLHE, Gentry et al. (2006) calibrated three parameters: 

the undisturbed ground temperature, the grout thermal conductivity and the 

ground thermal conductivity based on the measured experimental data. In this 

research, these parameters are recalibrated over a 12-month period.  

For the GLHE model presented in Chapter 4 (TYPE620), validation of the 

thermal mass effect case validation is carried out. An experimentally estimated 

fluid factor is used for the validation of the GLHE model. Comparison of the 

simulation results with different fluid factor values is also presented.  

Also for the validation of the variable convective thermal resistance aspect of 

the TYPE621 model, a planned experiment will be carried out in the HGSHP 

research facility. A variable flow rate experiment will be designed so as to 

transition from laminar flow to turbulent flow in the borehole U-tube. The 
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experiment will be used for the validation of the variable convective thermal 

resistance case. 

• Instead of using a plate frame heat exchanger model, Gentry et al. (2006) used a 

generic heat exchanger model to simulate the plate heat exchanger. In this 

research, based on the literature summary of Ayub (2003), a general form of a 

plate heat exchanger convection correlation is integrated with the heat 

exchanger model. The correlations are fitted using catalog data.  

In the experimentation, fouling was observed on the cooling tower supply of the 

loop and the UA values of the plate heat exchanger decreased substantially. For 

lack of a method to predict the fouling, a heuristic approach was taken by 

Gentry et al. (2006) by adding a fouling factor that increased linearly with time. 

In this research, the heat exchanger model incorporates a fouling sub-model 

(Barrow and Sherwin 1994).  

5.1 Experimental Facility 

Both system component models and the entire HGSHP system simulation will be 

validated against the experimental data. The experimental data have been collected from 

an HGSHP research facility (Hern 2004) located on the campus of Oklahoma State 

University. The HGSHP system configuration is shown in Figure 5.1.  

At the heat pumps’ load side, chilled water and hot water generated by the 

HGSHP system serve two small buildings. The facility allows the source side of the heat 

pumps to be connected to a ground loop heat exchanger, an open-circuit cooling tower, 
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and/or a pond loop heat exchanger. These can be connected in any combination, but for 

the duration of these experiments, they were configured as a typical HGSHP system, with 

a GLHE and a cooling tower. The ground loop heat exchanger and the plate frame heat 

exchanger are placed in series in the system and a three-way valve is used to bypass the 

plate frame heat exchanger when the system runs in heating model. A variable speed 

pump was designed for the main loop of the heat pumps’ source side. In the secondary 

loop, an open-circuit cooling tower is isolated from the ground loop heat exchanger with 

the plate frame heat exchanger. A constant speed pump was selected to serve the cooling 

tower loop. The cooling tower and secondary loop circulation pump were controlled with 

a programmable control system, which allowed a user-input control scheme. Brief 

descriptions of each component of the HGSHP system are given. A detailed description 

of the HGSHP research facility can be found in Hern (2004) and Gentry (2007).  

 

Figure 5.1 HGSHP configuration for validation (Gentry et al. 2006) 
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5.1.1 Heat Pumps 

Two identical water-to-water heat pumps (Florida Heat Pump WP036-1CSC-

FXX), of nominal capacity 10.6 kW are used to provide the chilled water and hot water. 

The load side of heat pumps consists of two 1.1m3 water storage tanks that are used to 

serve two small buildings with hydronic heating and cooling systems. For the time period 

of interest in this simulation, only one heat pump is used at a time.  In the 12-month 

operation from March 2005 to February 2006, cooling was provided between March 30 

and November 27 of 2005; heating was provided for the other periods.  The system was 

modeled with two heat pumps; one is for heating and the other is for cooling respectively.  

Catalog data – 35 points in cooling and 25 points in heating mode – at a range of flow 

rates and entering water temperatures on both the source side and load side are available 

from the manufacturer and are used to generate the heat pump model coefficients, as 

described in Section 5.2.1 below.  

5.1.2 GLHE 

The GLHE has, in total, 4 vertical boreholes and one horizontal loop. For these 

experiments, only 3 vertical boreholes are connected, as shown in Figure 4.32. The 

vertical boreholes are each approximately 75m (258ft) deep, 114 mm (4.5”) in diameter 

and consist of a single HDPE U-tube of nominal diameter 19.05mm (3/4”), backfilled 

with bentonite grout. The ground thermal conductivity was estimated with an in-situ 

thermal conductivity test (Austin et al. 2000) and the volumetric specific heat was 

estimated from knowledge of the geology. The undisturbed ground temperature was 
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estimated with an in-situ water filled borehole temperature measurement. Comparisons of 

these in situ results with calibrated values are given in Section 5.2.2 below.  

5.1.3 Cooling Tower 

A direct-contact evaporative cooling tower (Amcot Model 5) with nominal 

capacity of 14.75kW (4.2 tons) (defined at a water flow rate of 0.63L/s (10gpm) being 

cooled from 35ºC (95ºF) to 29.4ºC (85ºF) with an outdoor wet bulb temperature of 

25.6ºC (78ºF)) is connected to the source-side of the heat pumps via an isolation plate 

frame heat exchanger.  

5.1.4 Plate Frame Heat Exchanger 

The plate frame heat exchanger (Paul Mueller PHE AT4C-20) has a nominal 

capacity of 9.3 kW with flow rates of 0.5 L/s on both sides of the heat exchanger and a 

temperature difference of 19.4oC between the inlet temperatures. The manufacturer gave 

an additional 15 data points at various flow rates and temperatures. The data are used to 

generate coefficients for the plate frame heat exchanger model described in Section 4.5.1. 

5.1.5 Piping 

In addition to the components that are shown explicitly in Figure 4.32, there is 

buried piping that connects the GLHE to the plant building (approximately 30 m in each 

direction), buried piping that connects the cooling tower to the plant building 

(approximately 31 m in each direction), and exposed (to the plant room environment) 

piping that connects the components inside the building (approximately 12 m in each 
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direction). Under many conditions, e.g. when the piping is insulated, heat losses and 

gains to/from the piping may be negligible. However, buried, uninsulated piping, as used 

to connect the cooling tower and GLHE may have a not-insignificant amount of heat 

transfer. 

5.1.6 Experimental Measurement Uncertainty 

A detailed uncertainty analysis was performed by Hern (2004).  As can be seen 

from Figure 5.1, thermocouples after calibration, with an uncertainty of approximately 

±0.11oC, were placed on the inlets and outlets of all components. Vortex and paddle 

wheel flow meters were utilized to measure flow through the heat pump – GLHE loop 

and through the cooling tower loop; expressions for their uncertainty were given by Hern 

(2004). The watt transducers are installed in the system to measure the power used by the 

cooling tower, circulating pumps, and heat pumps. This data set will be sufficient to 

benchmark the accuracy of the simulation model. 

Heat transfer rates are determined as the product of the mass flow rate, specific 

heat and TΔ . Given the uncertainty in temperature measurement, the fractional 

uncertainty in the temperature difference measurement is: 

T
Ce t Δ

±
=Δ

o16.0      5-1 

Then, the fractional uncertainty of the heat transfer rate may be given as: 

22
flowtHTR eee +±= Δ      5-2 
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Where: 

flowe    = Fractional error in the flow rate. 

This value changes throughout the experiment for each measurement, but typical 

values may be given, and for most components, the error bounds on the experimental 

measurement are also plotted. 

5.2 Component Model and System Simulation Validation – Cooling 

Tower Operation Set with Boundary Condition 

In this HGSHP system validation, two approaches to modeling the cooling tower 

control have been taken: 

1. For the first set of simulations, cooling tower on/off operation is simply set as 

a boundary condition taken from the experiment.  In this case, all control 

interactions are, in effect, treated as boundary conditions. The type of 

simulation was particularly useful as the first phase of the validation, in which 

the behavior of each component model was the first concern. In this set of 

simulations, the comparisons of interest include the fluid temperatures at any 

point in the loop and the heat transfer rates of the various components.  

2. For the second set of simulations, a simple model of the cooling tower 

controller takes the difference between the outdoor ambient wet-bulb 

temperature, provided as a boundary condition, and the simulated exiting heat 

pump fluid temperature.  When the difference exceeds a specified value, 3 ºC, 
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the cooling tower is switched on.  When the difference falls below another 

specified value, 1 ºC, the cooling tower is switched off. The phase of the 

validation was primarily concerned with the behavior of the system as a 

whole. The validation of the HGSHP system simulation with cooling tower 

control simulated is presented in Section 5.3.  

In this section, validation of each component model, individually and with the 

system simulation (cooling tower operation set with boundary condition) are presented. 

“Individually” means validation of the component model by itself where the input 

temperatures are taken from experimental data.  “Within the system simulation” means 

validation of the component model where the input temperatures are computed by the 

system simulation, when all fluid temperatures are being solved simultaneously. 

5.2.1 Heat Pumps 

In this HGSHP system, the experimental entering fluid temperatures at the source 

side of heat pump were lower than the temperatures given by manufacturer’s catalog. 

And the flow rates at both the load and source sides of the heat pumps were greater than 

the flow rates from the manufacturer’s catalog. An equation-fit heat pump model was 

developed by Gentry (2007) and it performed poorly when one of the input variables fell 

outside the range of data which were used to fit the equations. 

In this research, the parameter estimation-based heat pump model described in 

Section 4.2.1 is utilized.  The parameter estimation-based heat pump model has a better 
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capability of modeling heat pump than the equation-fit model and allows some 

extrapolation beyond the catalog data.  

As described in Section 4.2.1, the parameter estimation-based heat pump model 

has an algorithm to calculate the capacity approximately when the heat pump runs at 

partial load. In this experiment, average experimental data of 5-minute time step was 

colleted for validation and the heat pump might be switched on or off during the 5-minute 

time step of simulation. The heat pump model uses the load side experimental heat 

transfer rate as an input.  First, the heat pump model calculates the heating/cooling 

capacity based on the inlet fluid temperatures and flow rates at both sides of the heat 

pump. Then the input load side heat transfer rate and the computed capacity are 

compared and when the partial load ratio (input load side heat transfer rate divided by the 

computed capacity) is less than 0.8, which indicates the heat pump is in partial duty, the 

input load side heat transfer rate is then used as the heat pump capacity. When the partial 

load ratio is greater then 0.8, which indicates the heat pump runs at full duty 

approximately, the model calculated heating/cooling capacity is used as the heat pump 

capacity. 

The coefficients for the parameter estimation-based heat pump model descried in 

Section 4.2.1 were calculated with a program written by Tang (2005). The program read 

in the heat pump data (from manufacturer’s catalog or from experimental measurements) 

and fitted the coefficients by using the generalized least-squares method. The coefficients 

for the heat pump models are listed in Table 5.1. 
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Table 5.1 Heat pump coefficients 

Coefficient Name 

Coefficients 
obtained based on 

manufacturer’s 
data 

Coefficients 
obtained based 
on experimental 

data 

Heating Mode 

Load side heat transfer coefficient (kW/K) 2.029 1.898 

Source side heat transfer coefficient  (kW/K) 1.896 2.191 

Superheat Temperature (ºC) 1.8 1.6 

Constant part of the electromechanical power loss (kW) 0.784 1.400 

Electromechanical loss factor (-) 0.78 1.11 

Piston displacement (m3/s) 0.003 0.002 

Pressure drop across the suction valve (kPa) 0.92 1.04 

Clearance factor (-) 0.153 0.051 

Cooling Mode 

Load side heat transfer coefficient (kW/K) 2.503 2.932 

Source side heat transfer coefficient  (kW/K) 2.938 3.775 

Superheat Temperature (ºC) 0.5 0.6 

Constant part of the electromechanical power loss (kW) 1.399 0.817 

Electromechanical loss factor (-) 1.14 0.87 

Piston displacement (m3/s) 0.003 0.002 

Pressure drop across the suction valve (kPa) 0.87 0.95 

Clearance factor (-) 0.161 0.005 

 

 Coefficients for the parameter estimation-based heat pump model were initially 

calculated using manufacturer’s catalog data – the resulting model is labeled as 

“uncalibrated” in Figures 5.2-5.5.  In Figures 5.2 and 5.3, the “uncalibrated” heat pump 

model gave quite good results in heating mode in spite of the fact that the actual flow 
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rates on both sides of the heat pump were larger than manufacturer’s catalog data. In 

Figure 5.4-5.5, the “uncalibrated” heat pump model gave poor results in cooling mode.  

The reason was that the experimental data of heat pump did not have a heat balance in 

cooling mode but the coefficients for the heat pump were calculated from the catalog data 

in which the heat pump had a perfect heat balance.   

Therefore, it was addressed in our case by using experimentally-measured data 

points in the data set and recalculating the model coefficients.  The heat imbalance of 

heat pump also was considered in the recast heat pump model.  Table 5.2, Figure 5.4 and 

Figure 5.5 show substantial improvements when this calibration is done. 

Table 5.2 Summary of Uncertainties in HP model 

Model 

Source 
Side 
HTR 

RMSE 
(W) 

Source Side 
HTR Mean 
Bias Error 

(W) 

Load 
Side 
HTR 

RMSE 
(W) 

Load Side 
HTR Mean 
Bias Error 

(W) 

Power 
RMSE 

(W) 

Power 
Mean 
Bias 
Error 
(W) 

Source Side 
HTR 

Typical 
Uncertainty 

Load Side 
HTR 

Typical 
Uncertainty 

Power 
Typical 

Uncertainty
Simulated (calibrated 
system simulation) 360 -5 445 25 79 2 
Simulated(calibrated 
component simulation) 482 -54 510 -19 87 6 
Simulated(uncalibrated 
component simulation) 642 -287 504 112 191 -74 

450 W 500 W 4.5 W 
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Figure 5.2 HP Source side ExFT for a typical heating day. 
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Figure 5.3  HP power consumption and heat transfer rate for a typical heating day. 
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Figure 5.4  HP Source side ExFT for a typical cooling day. 
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Figure 5.5 HP power consumption and heat transfer rate for a typical cooling day. 
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5.2.2 GLHE 

In this section, validations of the ground loop heat exchanger model, individually 

and with the system simulation are presented, using the operating data collected from the 

HGSHP research facility. This is presented in Section 5.2.2.1.  

Also in this section, verification of the effects of the thermal mass of fluid is 

presented. An experimental estimated fluid factor is used for the validation of the GLHE 

model in Section 5.2.2.1. In Section 5.2.2.2, different fluid factors are used and the 

comparison of the simulation results is presented. 

5.2.2.1 Validation of GLHE of HGSHP System 

As previously shown in Section 4.1.3, the heat transfer of the ground loop heat 

exchanger is related to the geometry of the borehole and thermal properties of the fluid, 

grout, and surrounding ground. After the borehole is installed, most of the borehole 

geometric parameters are determined except the shank spacing, which varies with the 

installation, but is typically new the “B” configuration specified in GLHEPRO. The 

GLHE simulation result depends on three parameters that are required to be estimated 

precisely: the undisturbed ground temperature, the effective grout thermal conductivity, 

and the effective ground thermal conductivity. The effective grout thermal conductivity is 

the grout conductivity, which gives the best approximation of the borehole thermal 

resistance assuming the “B” spacing. The effective ground thermal conductivity is the 

best overall value that represents all the layers of rock and soil intersected by the 

boreholes. 
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For large commercial systems, these parameters are typically estimated as part of 

an in-situ thermal conductivity test, which would be performed for one or a few test 

boreholes (Austin et al. 2000; Shonder and Beck 2000; Gehlin and Nordell 2003). 

Additional uncertainty, beyond sensor error, is introduced because of the 

nonhomogeneous nature of the ground; the time-varying nature of the undisturbed ground 

temperature, which is affected by seasonal changes near the surface; and downhole 

variations in the U-tube location and borehole diameters. Hern (2004) measured all these 

three parameters foe each of the three boreholes: the range of values and mean values are 

summarized in Table 5.3. The calibrated values shown in the last column of Table 5.3 are 

found by minimizing the sum-of-the-squares-of-the-error of the GLHE exiting fluid 

temperature for the 12 month period evaluated here. Because the parameters are 

interrelated, the calibration may find best-fit values that are outside the estimated 

uncertainty range of the experimental measurements, as found for the effective grout 

thermal conductivity.  

Table 5.3 GLHE Parameters 

Parameter 
Range 

measured by 
Hern (2004) 

Mean 
measured by 
Hern (2004) 

Estimated 
Uncertainty 

Calibrated 
Value 

Undisturbed ground temperature  
(oC) 

17.1-17.4 17.25 ± 1.0 º C 18.2 

Effective grout thermal conductivity 
(W/m-K) 

1.07-1.09 1.08 ± 15% 1.05 

Effective ground thermal conductivity 
(W/m-K) 

2.4-2.7 2.55 ± 15% 2.8 

 
Figure 5.6 compares experimental and simulated outlet temperature from the 

component GLHE simulation (calibrated and uncalibrated) as well as the system 
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simulation (calibrated only) for five hours of a typical cooling day. Figure 5.7 gives the 

heat transfer rates for the same time period. During these five hours, the heat pump went 

through two on/off cycles. During the off portion of the cycle, it may be noted that there 

is a small negative heat transfer rate. The circulation pump was operated continuously. 

Also, during this time period, the cooling tower was operated continuously, and heat was 

exchanged between the ground and the horizontal piping that runs between the plant and 

the cooling tower. The net effect is the small negative heat transfer rate; i.e. heat is being 

extracted from the ground, and is “pre-cooling” the ground during the heat pump off 

cycle. 

For the component simulations, the experimental inlet temperature was used to 

drive the model. The results of the calibrated component model here did not bring much 

difference compared to those from the uncalibrated component model over this 12-month 

period simulation. It may be inferred from this that the thermal properties measured with 

the in situ test give adequate accuracy. The system simulation, which uses the inlet 

temperature calculated by the simulation, shows an increased amount of error. 

For the uncalibrated component model simulation, the root mean square error 

(RMSE) of the heat transfer rate over the twelve month evaluation period is 605 W; the 

mean bias error (MBE) is 196 W, the simulation predicted, on average, 196 W more heat 

rejection than was experimentally measured. The calibrated component model simulation 

has a lower RMSE of 552 W; the MBE is -184 W, the simulation predicted, on average, 

184 W less heat rejection than was experimentally measured. Finally, when the calibrated 
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model is run as part of the system simulation, the RMSE increases to 834 W, but the 

MBE is 31 W.   

These errors should be compared to the experimental uncertainty of the heat 

transfer measurement.  The uncertainty varies with flow rate and TΔ , but a typical value 

when the heat pump is operating is ±400 W.  Figure 5.7 shows the upper and lower 

bounds on the experimental uncertainty.  As shown, most of the calibrated component 

simulation and the system simulation results are within the bounds of experimental 

uncertainty.  
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Figure 5.6 GLHE ExFTs for five hours of a typical cooling day 
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Figure 5.7 GLHE heat transfer (rejection) rates for five hours of a typical cooling day. 

5.2.2.2 Verification of the Effects of Fluid Thermal Mass 

In Section 5.2.2.1, an experimentally estimated fluid factor was used for the 

simulation of the ground loop heat exchanger. Calculation of the volume mass of the 

fluid in the ground loop heat exchanger and that outside the U-tube in the HGSHP 

system, a fluid factor value of 1.4 is estimated.  

The thermal mass of the fluid inside and outside the U-tube dampens the 

temperature response of the ground loop heat exchanger. In this section, four different 

fluid factor values (0.1, 1, 1.4, 2) are selected for the ground loop heat exchanger 

simulation. The value 0.1 would be representative of a simulation that did not include the 

effect of the thermal fluid mass; the value of 1 would account only for the thermal mass 

of fluid in the borehole; the value of 1.4 was estimated based on the HGSHP system 
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layout; the value of 2 would be a typical value for a HGSHP system with a relatively 

large pipe layout. The simulated fluid exiting temperatures and the heat transfer rates 

against the experimentally measured data in a typical cooling day were presented in 

previously Figure 5.8 and Figure 5.9.  
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Figure 5.8 GLHE ExFTs for five hours of a typical cooling day 
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Figure 5.9 GLHE heat transfer (rejection) rates with different fluid factors for five hours of a typical 

cooling day. 

In Figure 5.8, when the heat pump cycles on/off, the exiting fluid temperature of 

the small fluid factor case rises/drops much faster that that of the large fluid factor case. 

As a result, the heat transfer rate of the ground loop heat exchanger of the small fluid 

factor case is smaller than the heat transfer rate of the large fluid factor case, as shown in 

Figure 5.9.  

Table 5.4 shows the root mean square error (RMSE) of the heat transfer rate over 

the twelve month evaluation period for different fluid factor cases. The case with fluid 

factor 1 had the relatively smallest RMSE. When the fluid factor became smaller or 

larger, the RMSE of heat transfer rate would increase. The case with the experimentally 

estimated fluid factor 1.4 had a larger RMSE of heat transfer rate than the case with fluid 

factor 1. The effect of the fluid thermal mass still needs to be checked. 
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Table 5.4 GLHE Parameters 

Fluid Factor RMSE(W) MBE(W) 

FF=0.1 662 -186 

FF=1 502 -184 

FF=1.4 552 -184 

FF=2 746 -183 

 

5.2.3 Cooling Tower  

Two open-circuit cooling tower models previously descried in Section 4.3.1 are 

experimentally validated here.  

The first model is a fixed UA model and the parameter UA is calculated from 

cooling tower manufacturer’s catalog data. The cooling tower manufacturer (Amcot 

Model 5) gave only a single operating point as catalog data, as listed in Table 5.5. The 

estimated parameter UA value is 800 W/K. 

Table 5.5 Cooling tower manufacturer’s data (Amcot Model 5) 

Model 
Nominal 

Water Flow 
(GPM) 

Air 
Volume 
(CFM) 

Pump 
Head 
(FT.) 

Fan 
Motor 
(HP) 

EFT 
(F) 

ExFT 
(F) 

Entering Air Wet 
Bulb Temp 

(F) 

5 10 2,100 5 0.167 95 85 78 

 The second model is variable UA model. The coefficients yxk ,,  in Equation 4-

16 were estimated based on the experimentally measured data. The final variable UA 

model results in: 

    [ ]
moistairp

pe
awe C

C
mmUA

,

41.011.1764 &&=     5-3 
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Figures 5.10 and 5.11 show results for a five-hour of a typical cooling day, in 

which the cooling tower was on. Here, the uncalibrated component simulation represents 

the results from the fixed UA model; while the calibrated simulations represent results 

with the variable-UA model. The calibrated model gives a small improvement over the 

uncalibrated component model simulation.  The RMSE in the heat transfer rate is 1553 W 

for the uncalibrated component simulation.  Going to the calibrated variable UA model 

only reduces the RMSE to 1542 W. The MBE goes from 388 W to 480 W of 

overprediction by the simulation.  When the calibrated model is simulated as part of the 

system, the RMSE is 1302 W and the MBE is 165 W of underprediction by the 

simulation.  

The lower and upper bounds of the experimental uncertainty in the cooling tower 

heat transfer rate measurement are shown in Figure 5.9.  In addition, the simulation has 

an experimental uncertainty component – the wet bulb temperature (an input) has a 

typical uncertainty of ± 0.5ºC – and this results in an uncertainty in the simulation results.  

Error bars are shown for a couple sample points in Figure 5.9.  The uncertainty caused by 

the uncertainty in the wet bulb temperature appears to be the limiting factor in the 

simulation.  This also suggests that, in practice, caution is warranted in using a control 

based on wet bulb temperature. 
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Figure 5.10 Cooling tower ExFTs for a typical cooling day 
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Figure 5.11 Cooling tower heat transfer rates for a typical cooling day. 
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5.2.4 Plate Frame Heat Exchanger  

The two variable UA with/without fouling plate frame heat exchanger models 

previously descried in Section 4.5.1 are validated here.  

Initially, the variable UA without fouling model was utilized for the simulation. 

Sixteen data points were available from the manufacturer of the plate frame heat 

exchanger model (Paul Mueller PHE AT4C-20), which are listed in Table 5.6. 

Table 5.6 Plate frame heat exchanger manufacturer’s data (Gentry 2007). 

Loop Side (Hot) CT Side (Cold)         

EFT 
(ºF) 

Flow rate 
(GPM) 

EFT 
(ºF) 

Flow rate 
(GPM) 

HTR 
(Btu/hr) 

LMTD 
(ºF) 

U 
(Btu/ft2-

hr-ºF) 

Heat 
Transfer 
Area (ft2)

100 6 75 6 21,448 17.8 405 3 

120 6 85 6 23,737 27.0 296 3 

140 6 95 6 35,467 33.0 361 3 

100 8 75 8 28,597 17.8 540 3 

120 8 85 8 31,650 27.0 394 3 

140 8 95 8 47,289 33.0 482 3 

100 12 75 12 41,703 18.0 779 3 

120 12 85 12 47,474 27.0 591 3 

140 12 95 12 70,934 33.0 723 3 

100 14 75 14 47,262 18.2 874 3 

120 14 85 14 55,387 27.0 690 3 

140 14 95 14 82,756 33.0 843 3 

140 6 95 10 56,200 29.7 638 3 

140 12 95 8 70,934 30.0 797 3 

140 14 95 6 62,046 29.7 704 3 

120 10 85 14 59,368 24.7 809 3 

120 6 85 14 44,540 24.0 624 3 

120 8 85 12 51,457 24.1 718 3 
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The manufacturer’s data were used to estimate the parameters nmC ,,1  in 

Equation 4.31 at both sides of plate frame heat exchanger. In this application, based on 

Ayub (2003) summary of plate frame heat exchanger model, the parameter m was set as 

0.667 and the parameter n was set as 0.33. The parameter 1C  at both sides of the plate 

frame heat exchanger is estimated as shown in Table 5.7. 

 

Table 5.7 The parameters for the plate frame heat exchanger model 

Parameter m  n  1C  of heat 
pump side 

1C  of 
cooling 

tower side 

∞R  
(K/W) 

B  
(hours) 

Value 0.667 0.333 23.50 18.52 0.00186 2655 

 

However, the calculation of the UA value at every time step based on 

experimental measurements revealed two phenomena: 

1. In the first six month cooling period of experimentation (April- September), 

significant fouling was observed on the cooling tower supply of the loop and 

the UA decreased substantially.  

2. From October, bleach was added in the cooling tower circulation loop and the 

cooling tower loop was cleaned almost every two days. As a result, the UA 

remained relatively stable in the following two months (October-November). 

Therefore, two different models were utilized for modeling these two phenomena: 
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1. For the first six month cooling period, the variable UA with Knudsen’s 

fouling model (1984) was used for modeling the plate frame heat exchanger. 

The constant ∞R  and B  were addressed based on experimentally measured 

data, which were listed in Table 5.7. 

2. In the next two cooling month period, the variable UA without fouling model 

was used. 

Figure 5.12 shows a comparison of the various simulations with the experimental 

results.  Clearly, the original approach, without the fouling model, yields large errors. 

With the fouling model the system simulations give heat transfer rates that are 

substantially improved. The RMSE of the heat transfer rate prediction is 694 W for the 

uncalibrated model; 415 W for the calibrated model; and 625 W for the model in the 

system simulation.  The MBE is 285 W of overprediction for the uncalibrated model; 20 

W of overprediction for the calibrated model; and 160 W of overprediction for the model 

in the system simulation.   

The parameters of the plate frame heat exchanger model with fouling ∞R  and B  

were addressed based on experimental measurements and the model performed well.  

However, without having experimental measurements in advance of operation, the 

inherently unpredictable nature of fouling leaves a difficulty for the system designer.  



 

 201

Plate Frame HX Heat Transfer Rate

0

1

2

3

4

5

6

2005-9-15 10:48 2005-9-15 12:00 2005-9-15 13:12 2005-9-15 14:24 2005-9-15 15:36 2005-9-15 16:48 2005-9-15 18:00

H
TR

(k
W

)
Experimental Simulated (uncalibrated component simulation)

Simulated (calibrated component simulation) Simulated (calibrated system simulation)

Experimental + uncertainty Experimental - uncertainty

 

Figure 5.12 Plate frame heat exchanger heat transfer rate for a typical cooling day. 

5.2.5 Pipe 

As described above in the “Experimental Facility” section, the uninsulated piping, 

either exposed to the environment or buried in the ground, has some not insignificant heat 

losses or gains.  These heat transfers vary significantly over time.  For example, the heat 

loss from the buried pipe leading to the cooling tower will be high (say 650 watts on 

average for the first 10 minutes) when the cooling tower is first switched on.  After, say, 

an hour of cooling tower run time, the heat loss may drop to 350 watts. 
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As buried horizontal piping is a common feature of ground source heat pump 

systems, it would be useful to develop a component model that predicts the heat losses or 

gains.  However, at present, no such model is available, and another approach was taken.  

A simple component model was developed that took the measured heat gain or loss as an 

input provided as a boundary condition, and computed the outlet temperature as:  

p

s
inout Cm

Q
TT

&
+=       5-4 

Where: 

 outT  = The temperature of the water leaving the pipe, (ºC); 

inT  = The temperature of the water entering the run of pipe, (ºC); 

sQ  = The measured heat transfer rate, (W). 

This approach worked satisfactorily when the cooling tower control was treated as 

a boundary condition so that the simulated cooling tower on/off operation matched the 

experiment well. For cases where the cooling tower control was simulated, the short time 

variations in the empirical pipe heat losses or gains for the piping running to and from the 

cooling tower are no longer meaningful. Instead, a new boundary condition was 

developed that used the average heat gain/loss during cooling tower runtime for each 

component for each day. This was set as the boundary condition for every time step of 

the day, and maintained the heat loss or gain approximately correctly to the extent that 

the simulated daily cooling tower runtime matched the actual daily runtime. 
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5.3 System Simulation Validation – Cooling Tower Control Simulated 

After adjusting component models and their parameters while setting the cooling 

tower operation to exactly match the experimental data, attention may be turned to the 

broader question of how the model performs with the cooling tower control explicitly 

modeled.  Again, this is the simulation that is of interest for validation from a designer’s 

perspective.  In addition to looking at the final calibrated simulation, the intermediate 

steps between the starting case and the final calibrated simulation will also be examined.  

Three results are of primary interest: system energy consumption, cooling tower run time, 

and maximum entering fluid temperature to the heat pump. 

Starting with the system energy consumption, Figure 5.13 shows the component-

by-component energy consumption over the entire period, starting with the completely 

uncalibrated mode case, then showing each incremental improvement. Clearly, the 

improved cooling tower model and ground loop heat exchanger model bring little 

difference in total energy consumption of system. The improved heat pump model has a 

significant improvement of heat pump energy consumption. By way of explanation, 

energy consumption by the heat pump is the largest component of the system energy and 

is about 57% of total system energy consumption. While there is definitely a relationship 

between entering fluid temperature and energy consumption, a few degrees Celsius error 

does not make a significant difference in energy consumption, so small errors in the 

GLHE model or cooling tower are not as important as errors in the heat pump model. 

 



 

 204

Energy Consumption (kW-hr)

7941
7283

79417937
7241 7271

4527 4527
4527

45274527
4527

682

674

682

703695

670

384

380

384377

391 395

5000

7000

9000

11000

13000

15000

Starting Simulation Improved CT Model Improved GLHE Model Improved HP Model Improved PHX Model Experimental

En
er

gy
(k

W
-h

r)

CT Pump Energy

CTFan Energy

Source Side Pump
Energy

HP Energy

 

Figure 5.13 System energy consumption – incrementally improved simulations vs. experimental 

measurements.  Note: Y-axis begins at 5000 kW-hr 

The monthly energy consumption for the final calibrated simulation and the 

experiment is shown in Figure 5.14.  There is quite a good match between the simulated 

energy consumption and the experimental measurements. 
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Figure 5.14 Experimental vs. simulated monthly energy consumption 

The cooling tower run times predicted by each model variation and the 

experiment are summarized in Table 5.8.  Again, all variations of the model fall within a 

few percent of the experimental results, and this accuracy should be quite adequate for 

any design simulation. 

Table 5.8 Cooling tower run times 

 

Starting 
Case 

Improved 
CT 

Model 

Improved 
GLHE 
Model 

Improved 
HP 

Model 

Improved 
PHE 

Model 
Experimental

Cooling Tower 
Run Time (Hours) 2793 2843 2843 2896 2929 2809 

 



 

 206

A final parameter of interest is the predicted maximum entering fluid temperature. 

Ground loop heat exchangers serving cooling-dominated buildings are generally sized to 

not exceed a maximum entering fluid temperature, so this parameter is of particular 

interest.  Also the minimum entering fluid temperature of the heat pump is compared. As 

shown in Table 5.9, all of the simulations overpredict the maximum entering fluid 

temperature and underpredict the minimum entering fluid temperature. 

Table 5.9 Maximum and minimum heat pump entering fluid temperatures. 

  
Starting 
Case 

Improved 
GLHE 
Model 

Improved 
CT 

Model 

Improved 
HP 

Model 

Improved 
PHE Model-

Final 
Simulation Experimental 

Max HP 
EFT (ºC) 30.7 30.9 30.9 31.0 31.2 30.1 

Min HP 
EFT (ºC) 10.0 10.0 10.0 10.4 10.4 10.7 

 

5.4 Conclusions 

This chapter described a validation of a hybrid ground source heat pump system 

simulation. The experimental data were collected from the OSU HGSHP research facility 

(Hern 2004). The validation coved a 12 month period, including a continuous 7-month 

cooling season and portions of two heating seasons.  

In this HGSHP system validation, two approaches were used for the simulation. 

First, the HGSHP system was simulated with the cooling tower on/off operation set as a 

boundary condition taken from the experiment. The type of simulation provided insight 

into the nature of the each component model performance while the cooling tower 
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operation schedule is forced to match the experiment. After the validation of each 

component model, the HGSHP system was simulated with a temperature difference 

control strategy. When the difference exceeds a specified value, 3 ºC, the cooling tower is 

switched on.  When the difference falls below another specified value, 1 ºC, the cooling 

tower is switched off. With cooling tower control simulated, the simulated operation of 

the cooling tower drifts from the actual operation. Hence, only energy consumption can 

be feasibly compared. Although the unclibrated system simulation energy consumption 

matched the actual system energy consumption within 6%, a serial of calibrations were 

applied to the simulation. 

• A parameter estimation-based heat pump model (Jin and Spitler 2002) was 

utilized and performed well when the actual flow rates on both sides of the heat 

pump were larger than catalog data. 

• For the simulation of GLHE, three parameters: the undisturbed ground 

temperature, the grout thermal conductivity and the ground thermal 

conductivity had been recalibrated based on the measured experimental data 

and the GLHE model performed well.  

• In the validation of GLHE, an experimentally estimated fluid factor was used 

for the validation of the GLHE model. For purpose of validation of thermal 

mass of fluid of GLHE model, several other fluid factor values had been 

selected for the simulation of GLHE and comparison of the simulation results 

was presented. 
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• In the experimentation, fouling was observed on the cooling tower supply of the 

loop and the UA values of the plate heat exchanger decreased substantially. In 

this research, a new plate frame heat exchanger model with fouling model 

(Barrow and Sherwin 1994) was used and performed well.  

After the validation of each component model, the HGSHP system was simulated 

with a temperature difference control strategy and compared against the experimentally 

measured data. The simulation gave total energy consumption about 0.2% higher than the 

experiment. 
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6 DEVELOPING DESIGN PROCEDURE OF HGSHP 

SYSTEMS 

The main objective of this chapter is to develop a new design procedure for 

HGSHP systems. The design of an HGSHP system involves specifying the system 

configuration (parallel or serial) and sizing the system components. Therefore, in this 

chapter, issue related to HGSHP system configuration will first be summarized. In this 

research, a parallel-connected system will be investigated. The control of distribution of 

flow to the GLHE and PHE/cooling tower will be then discussed. A new design 

procedure-GLHEPRO will be developed for sizing the HGSHP system components. The 

new design procedure is capable of being used for both a new HGSHP and a “retrofit” 

HGSHP system. A new algorithm in the design procedure will be presented to determine 

the right size of cooling tower. Finally, an example of designing an HGSHP system will 

be presented. 

6.1 HGSHP System Configuration  

The design of an HGSHP system has many degrees of freedom and there are 

many possible configurations of HGSHP systems. According to the layout of the 

supplemental heat rejecter and the ground loop heat exchanger, the system can be divided 

into two categories: 1) parallel-connected system, and 2) serially-connected system. In 

the parallel-connected HGSHP system, the ground loop heat exchanger and
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PHE/cooling tower are placed in parallel. In the serially-connected HGSHP system, the 

ground loop heat exchanger and PHE/cooling tower are placed in series. More details 

were given in Section 2.2.1. 

The parallel-connected system layout is suitable for an HGSHP system with large 

flow rate and a relatively small number of boreholes. In this case all system flow cannot 

feasibly pass through the GLHE without requiring excessive pumping power. A three-

way valve is used to control the fluid flow through these two components. However, no 

recommendation for distribution of the flow between the GLHE and the PHE/cooling 

tower is given in the literature.  

The serially-connected system layout is suitable for the system with a relatively 

small cooling tower and large number of boreholes. In this case, the entire system flow 

can pass through the boreholes and the pressure drop will still be acceptable.  

Serial and parallel configurations are possible. However, preliminary testing has 

shown that there are a large number of scenarios where the serial connection is infeasible. 

For an HGSHP system with large flow rate and a relatively small number of boreholes, 

all the system flow cannot feasibly pass through the GLHE without requiring excessive 

pumping power. A possibility for the serially-connected layout is that the diverter valves 

are added into the system and help to control the flow rate though the GLHE and the 

PHE/cooling tower in order to avoid the excessive pressure drop through each 

component. However, no recommendation for the control of these diverters is given in 

the literature. When variable flow pumping is designed for the HGSHP system, control of 
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the diverter for each component becomes more difficult. Therefore, in this research, a 

parallel-connected HGSHP system will be investigated. 

6.2 Flow Control 

In a variable flow pumping system, the pump speed is controlled to maintain a 

constant pressure difference across the heat pumps. This results in the system flow being 

scaled to the peak flow rate according to the ratio of the current number of heat pumps in 

operation to the total number of heat pumps. Variable speed pumping systems typically 

have a lower limit of about 30% of full speed and this limit has been assumed here. When 

the system flow rate varies, the distribution of flow to the GLHE and PHE/cooling tower 

may also change, though how this should be controlled is not immediately apparent. 

Therefore, a strategy for controlling the distribution of flow to the GLHE and 

PHE/cooling tower is developed. The general guidelines for developing the flow 

distribution control strategy are as follows: a) the control strategy is physically possible; 

b) flow is able to pass through each component without requiring excessive pumping 

power; c) some flow always passes through the GLHE when the cooling tower is running 

to allow for the possibility of cooling down the ground. The following two section 

describe the control strategy as applied to the bypass valve and GLHE/PHE distribution 

valve. 
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Figure 6.1 A schematic of a parallel-connected HGSHP system with flow distribution 

control. 

6.2.1 Control of Two-way Valve for Bypass  

In a variable flow pumping system, pump speed is adjusted to maintain a constant 

differential pressure across the heat pump unit loop supply and return headers. This 

insures adequate flow across the heat pump. When a heat pump is turned off, a two-way 

valve on the heat pump supply closes. As the number of closed valves increases, the 

pump’s speed is reduced to maintain a constant differential pressure. In this case, a 

significant amount of energy can be saved by using a variable speed drive. 

The variable speed drive pump has a lower limit of 30% of full flow rate. As the 

number of closed two-way valves increases, a total flow rate to the heat pumps may 
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become less than 30% of the system full flow rate. As a result, the differential pressure 

across the heat pump unit loop supply and return headers will be larger than a preset 

value (differential pressure at 30% of the system full flow rate) and a control signal will 

be sent to the two-way valve to turn on the bypass. This two-way valve control strategy 

ensures that the variable speed drive pump does not go below the limit of 30% of the 

system full flow rate. 

6.2.2 Control of Three-way Valve for Flow Distribution  

As shown in Figure 6.1, a three-way valve is used to control flow distribution 

between the GLHE and PHE/cooling tower. Two differential pressures are used to 

control this three-way valve: 1) differential pressure across the GLHE loop supply and 

return headers, GHEPΔ ; and 2) differential pressure across the PHE loop supply and return 

headers, PHEPΔ .  

Based on the state of the cooling tower, the HGSHP system has two different flow 

distribution control strategies, which are illustrated in Figure 6.2 and Figure 6.3. 
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Figure 6.2 A schematic of flow distribution control strategy when cooling tower is on. 
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Figure 6.3 A schematic of flow distribution control strategy when cooling tower is off. 
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In the Figure 6.2 and Figure 6.3, designGHE,m&  is the design mass flow rate through 

the ground loop heat exchanger, which is determined by assuming each borehole has a 

design flow rate (e.g. 3 gpm/per borehole). designPHE,m&  is the design mass flow rate through 

the plate heat exchanger, which is the same as the flow rate of the cooling tower.  

Cooling Tower ON 

When the cooling tower is on, the control strategy of flow distribution is 

described as follows: 

1. The HGSHP system has a lower limit of 30% of system full flow rate. When 

this low limit is reached and the cooling tower is on (Area I in Figure 6.2), 

15% of the system full flow goes through the GLHE loop and 15% of the 

system full flow goes through the PHE/cooling tower loop. This setting 

ensures that some flow always passes through the GLHE when the cooling 

tower is running to allow for the possibility of cooling down the ground. 

2. When the HGSHP system has a flow rate greater than designPHE,m& + designGHE,m&  

(Area IV and V in Figure 6.2), the flow is distributed between the GLHE and 

PHE to ensure the system has a minimal pressure drop and only requires the 

least amount of circulation pumping power. 

The differential pressures across the two loops at their design flow rate are 

usually not the same. Therefore, in order to have the same differential pressure 

across the GLHE loop and the PHE loop, the flow rate of the loop with a 
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larger differential pressure (the GLHE loop in Figure 6.2) remains unchanged 

and the flow rate of the loop with a smaller differential pressure (the PHE loop 

in Figure 6.2) increases until it has a same differential pressure as the other 

loop. This process is illustrated as Area IV in Figure 6.2. 

When the differential pressures across the two loops are the same and the 

system flow rate keeps increasing, the system flow is distributed between the 

two loops to ensure the two loops have a same differential pressure across the 

loop. This process is illustrated as Area V in Figure 6.2. 

3. When the HGSHP system has a flow rate between the 30% lower limit of the 

system full flow rate and the design flow of designlPHE,m& + designGHE,m& (Area II and 

III in Figure 6.2), the additional flow goes through the PHE loop prior to the 

GHE loop and the GLHE loop remains at 15% of the system full flow until 

the PHE loop has the design flow rate of designlPHE,m& . This process is illustrated 

as Area II in Figure 6.2.  

As the system flow rate increases further, the PHE loop remains at the design 

flow rate of designlPHE,m&  and the additional flow goes through the GLHE loop 

until the loop has the design flow rate of designGHE,m& . This process is illustrated 

as Area III in Figure 6.2. 

This setting ensures that when the cooling tower is on, some flow always 

passes through the plate heat exchanger. 
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Cooling Tower OFF 

When the cooling tower is off, the control strategy of flow distribution is 

described as follows: 

1. When the HGSHP system has a lower limit of 30% of the system full flow 

rate (Area I in Figure 6.3), all 30% of the system full flow goes to the GLHE 

loop and no flow goes through the PHE/cooling tower loop. 

2. When the HGSHP system has a flow rate greater than designGHE,m&  (Area III and 

IV in Figure 6.3), the flow is distributed between the GLHE and PHE to 

ensure the system has a minimal pressure drop and has a minimal circulation 

pumping power. 

As described previously, the differential pressures across the two loops are not 

usually the same with their design flow rates. Therefore, in order to have the 

same differential pressure across the GLHE loop and the PHE loop, the same 

control strategy described previously is applied to distribute the flow between 

the GLHE loop and PHE loop. The flow rate of the GLHE loop with the larger 

differential pressure remains unchanged and the flow rate of the PHE loop 

with a smaller differential pressure increases until the PHE loop has a same 

differential pressure as the GLHE loop. This process is illustrated as Area III 

in Figure 6.3. 

When the differential pressures across the two loops are equal and the system 

flow rate keeps increasing, the system flow is distributed between the two 
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loops to ensure the two loops have a similar differential pressure across the 

loop. This process is illustrated as Area IV in Figure 6.3. 

3. When the HGSHP system has a flow rate between the lower limit of 30% of 

the system full flow rate and the design flow of designGHE,m& (Area II in Figure 

6.3), all the flow goes through the GLHE loop and no flow goes through the 

PHE/cooling tower loop. 

To implement the control strategy described above, the differential pressure 

across the GLHE loop, GHEPΔ , and the differential pressure across the PHE loop, PHEPΔ , 

are used to control the three-way valve to distribute flow to these two components.  

dsnGHEP ,Δ  is the differential pressure across the GLHE loop supply and return 

headers when the GLHE loop has a design mass flow rate designGHE,m& . dsnPHEP ,Δ  is the 

differential pressure across the PHE loop supply and return headers when the PHE loop 

has a design mass flow rate designlPHE,m& . %15,GHEPΔ  is the differential pressure across the 

GLHE loop supply and return headers when the GLHE loop has 15% of the system full 

flow rate. %15,PHEPΔ  is the differential pressure across the GLHE loop supply and return 

headers when the GLHE loop has a 15% of the system full flow rate. 

The pressure drop through the GLHE loop, GHEPΔ , and the PHE loop PHEPΔ  is 

measured and used to control the three-way valve that splits the flow through these two 

components. When the system flow is determined, the three-way valve can always reach 

a steady-state position and realize the flow control strategy above. All possible control 
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states are listed in Table 6.1 and Table 6.2, which are for cooling tower on and off, 

respectively. 
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Table 6.1 Control process of three-way valve when cooling tower is on (assuming that dsnGHEP ,Δ > dsnPHEP ,Δ > %15,PHEPΔ ) 

 
ΔPPHE 

< %15,PHEPΔ  

ΔPPHE 

= %15,PHEPΔ  

%15,PHEPΔ < 

ΔPPHE 

< dsnPHEP ,Δ  

ΔPPHE=

dsnPHEP ,Δ  

dsnPHEP ,Δ <ΔPPH

E 

< dsnGHEP ,Δ  

ΔPPHE= 

dsnGHEP ,Δ  ΔPPHE> dsnGHEP ,Δ  

State   (A) (B) (C) (D) (E) 

ΔPGHE < %15,GHEPΔ  -- -- 

Adjust Valve to:  
↓ ΔPPHE; ↑ ΔPGHE 

Aim:  
State (F) or (G) 

Adjust Valve to:  
↓ ΔPPHE; ↑ ΔPGHE 

Aim:  
State (F) or (G) 

Adjust Valve to:  
↓ ΔPPHE; ↑ ΔPGHE 

Aim:  
State (F), (G), (H), 
(O), or (W) 

Adjust Valve to:  
↓ ΔPPHE; ↑ ΔPGHE 

Aim:  
State (F), (G), (H) 
(O), (V), or (W) 

Adjust Valve to:  
↓ ΔPPHE; ↑ ΔPGHE 

Aim:  
State (F), (G), (H), (O), (V), 
(W), (Z) or (AF)         

State  (F) (G) (H) (I) (J) (K) 

ΔPGHE = %15,GHEPΔ  -- 

Steady-state 
 

Remain the valve 
position 

Steady-state 
 

Remain the valve 
position 

Steady-state 
 

Remain the valve 
position 

Adjust Valve to:  
↓ ΔPPHE; ↑ ΔPGHE 

Aim:  
State (O), (V), or 
(W) 

Adjust Valve to:  
↓ ΔPPHE; ↑ ΔPGHE 

Aim:  
State (O), (V), or 
(W) 

Adjust Valve to:  
↓ ΔPPHE; ↑ ΔPGHE 

Aim:  
State (O), (V), (W), (Z) or 
(AF) 

State (L) (M) (N) (O) (P) (Q) (R) 

%15,GHEPΔ  < ΔPGHE 

< dsnGHEP ,Δ  

Adjust Valve to:  
↑ ΔPPHE; ↓ ΔPGHE 

Aim:  
State (F), (G), (H), 
or (O) 

Adjust Valve to:  
↑ ΔPPHE; ↓ ΔPGHE 

Aim:  
State (G), (H), or 
(O) 

Adjust Valve to:  
↑ ΔPPHE; ↓ ΔPGHE 

Aim:  
State (G), (H), or 
(O) 

Steady-state 
 

Remain the valve 
position 

Adjust Valve to:  
↓ ΔPPHE;  ↑ ΔPGHE 

Aim:  
State (O), (V), or 
(W) 

Adjust Valve to:  
↓ ΔPPHE; ↑ΔPGHE 

Aim:  
State (O), (V), or 
(W) 

Adjust Valve to:  
↓ ΔPPHE;  ↑ ΔPGHE 

Aim:  
State (O), (V), (W), (Z) or 
(AF) 

State (S) (T) (U) (V) (W) (Z) (Y) 

ΔPGHE= dsnGHEP ,Δ  

Adjust Valve to:  
↑ ΔPPHE; ↓ ΔPGHE 

Aim:  
State (F), (G), (H), 
or (O) 

Adjust Valve to:  
↑ ΔPPHE; ↓ ΔPGHE 

Aim:  
State (G), (H), or 
(O) 

Adjust Valve to:  
↑ ΔPPHE; ↓ ΔPGHE 

Aim:  
State (G), (H), or 
(O) 

Steady-state 
 

Remain the Valve 
Position 

Steady-state 
 

Remain the Valve 
Position 

Steady-state 
 

Remain the Valve 
Position 

Adjust Valve to:  
↓ ΔPPHE;  ↑ ΔPGHE 

Aim:  
State (W), (Z) or (AF) 

State (Z) (AA) (AB) (AC) (AD) (AE) (AF) 

ΔPGHE> dsnGHEP ,Δ  

Adjust Valve to:  
↑ ΔPPHE; ↓ ΔPGHE 

Aim:  
State (F), (G), (H), 
(O), (V), (W), (Z) or 
(AF) 

Adjust Valve to:  
↑ ΔPPHE; ↓ ΔPGHE 

Aim:  
State (G), (H), (O), 
(V), (W), (Z) or 
(AF) 

Adjust Valve to:  
↑ ΔPPHE; ↓ ΔPGHE 

Aim:  
State (G), (H), (O), 
(V), (W), (Z) or 
(AF) 

Adjust Valve to:  
↑ ΔPPHE; ↓ ΔPGHE 

Aim:  
State (O), (V), (W), 
(Z) or (AF) 

Adjust Valve to:  
↑ ΔPPHE; ↓ ΔPGHE 

Aim:  
State (W), (Z) or 
(AF) 

Adjust Valve to:  
↑ ΔPPHE; ↓ ΔPGHE 

Aim:  
State (AF) 

If(ΔPPHE= ΔPGHE) 
  Steady-state 
Elseif(ΔPPHE< ΔPGHE) 
  Adjust Valve to:  ↑ ΔPPHE; 
↓ ΔPGHE  Till: ΔPPHE =ΔPGHE 
Elseif(ΔPPHE> ΔPGHE) 
  Adjust Valve to:  ↓ ΔPPHE; 
↑ ΔPGHE  Till: ΔPPHE =ΔPGHE 
Endif 
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Table 6.2 Control process of three-way valve when cooling tower is off (assume that dsnGHEP ,Δ > norPHEP ,Δ ) 

 ΔPPHE = 0 ΔPPHE ≤ dsnGHEP ,Δ  ΔPPHE > dsnGHEP ,Δ  

State (A) (B) (C) 

ΔPGHE ≤ dsnGHEP ,Δ  
Steady-state 

 
Remain the Valve Position 

Adjust Valve to:  
↓ ΔPPHE;  ↑ ΔPGHE 

Aim:  
        State (A), (D) or (E) 

Adjust Valve to:  
↓ ΔPPHE;  ↑ ΔPGHE 

Aim:  
   State (A), (D), (E) or (I) 

State (D) (E) (F) 

ΔPGHE = dsnGHEP ,Δ  
Steady-state 

 
Remain the Valve Position 

Steady-state 
 

Remain the Valve Position 

Adjust Valve to:  
↓ ΔPPHE;  ↑ ΔPGHE 

Aim:  
             State (I) 

State (G) (H) (I) 

ΔPGHE > dsnGHEP ,Δ  

Adjust Valve to:  
↑ ΔPPHE; ↓ ΔPGHE 

Aim:  
State (E) or (I) 

Adjust Valve to:  
↑ ΔPPHE; ↓ ΔPGHE 

Aim:  
State (E)  or (I) 

 

If(ΔPPHE= ΔPGHE) 
Steady-state 

ElseIf(ΔPPHE< ΔPGHE) 
  Adjust Valve to:  ↑ ΔPPHE; ↓ ΔPGHE 
  Till:     ΔPPHE = ΔPGHE 
ElseIf(ΔPPHE> ΔPGHE) 
 Adjust Valve to:  ↓ ΔPPHE; ↑ ΔPGHE 
  Till:     ΔPPHE = ΔPGHE 
EndIf 
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As shown in Table 6.1, when the cooling tower is on, the three-way valve has a 

total of thirty-two states according to the different values of GHEPΔ  and PHEPΔ . However, 

following the instructions in Table 6.1, the three-way valve position is adjusted and it is 

always able to reach one of the eight steady states (State F, G, H, O, V, W, Z, or AF), 

which is the gray cell in Table 6.1.  

For an example, when ΔPPHE< %15,PHEPΔ  and ΔPGHE< %15,GHEPΔ , the state of the 

three-way valve is State A. In this case, the flow rate of the GLHE is less than 15% of the 

system full flow rate and the flow rate of the PHE is greater than 15% of the system full 

flow rate but less than the nominal flow rate of the PHE, designPHE,m& . From Figure 6.2, the 

mass flow rate of the PHE falls in Area II and the mass flow rate of the GLHE falls into 

Area I. Therefore, the three-way valve is adjusted to increase the mass flow rate of the 

GLHE and accordingly the mass flow rate of the PHE decreases. As a result, the three-

way valve position could be at the state (F), where the ΔPGHE = %15,GHEPΔ  and ΔPPHE 

= %15,PHEPΔ . Or three-way valve position could be at the state (G), where the ΔPGHE 

= %15,GHEPΔ  and %15,PHEPΔ < ΔPPHE < norPHEP ,Δ . These two states are both possible and 

steady.  

Also as shown in Table 6.2, when the cooling tower is off, the three-way valve 

has a total of nine states according to the different values of GHEPΔ  and PHEPΔ . Following 

the instructions in Table 6.2, the three-way valve position is adjusted and it is always able 

to reach one of the three steady states (State D, E, or I), which is the gray cell in Table 

6.2. 



 

 223

In summary, this section developed a strategy for controlling the distribution of 

flow to GLHE and PHE/cooling tower in the parallel-connected HGSHP system. The 

control strategy is based on the two differential pressures of the GLHE and PHE loops 

and is physically feasible. By carefully controlling the flow through each component, the 

HGSHP system has a minimal pressure drop and therefore requires a minimum 

circulation pumping power. While the application of this control strategy, some flow 

always passes through the GLHE when the cooling tower is running to allow for the 

possibility of cooling down the ground. 

6.3 HGSHP System Design Procedure 

In this section, a new design procedure implemented in GLHEPRO is developed 

for sizing the HGSHP system components. GLHEPRO (Spitler 2006) is a tool for 

designing ground loop heat exchangers for use with ground source heat pump systems. 

The new version of GLHEPRO allows the sizing a new HGSHP system and a “retrofit 

design”. Before the design procedure for the HGSHP system is introduced, a discussion 

of heating/cooling dominated systems and heating/cooling constrained system is 

presented first. 

6.3.1 Heating/Cooling Dominated Systems vs. Heating/Cooling 

Constrained Systems 

Usually, when a GSHP system is referred to as a cooling dominated system, it 

means that the ground loop heat exchanger of the GSHP system will reject more heat to 

the ground than it extracts on an annual basis. As a result, the ground temperature 
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surrounding the heat exchanger will rise over the system operation period. When a GSHP 

system is referred to as a heating dominated system, it means that the ground loop heat 

exchangers of the GSHP system extract more heat from the ground than it rejects on an 

annual basis. As a result, the ground temperature surrounding the heat exchanger will fall 

over the system operation period. However, a cooling dominated system does not 

necessarily mean that the required borehole length for cooling is greater than the required 

length for heating. The required borehole length for cooling/heating not only depends on 

the system heat rejection/extraction demand, but also on the potential ability of the 

ground loop heat exchanger for heat rejection/extraction. The latter is determined by the 

allowed heat pump entering fluid temperature (EFT) and by the undisturbed ground 

temperature. It is entirely possible that, due to a small difference between the temperature 

limits on the heat pump and the ground temperature, a GSHP system design may be 

constrained by one mode of operation (heating or cooling), while the “dominant” mode is 

the opposite.  For this reason, two new terms are introduced: “heating constrained” and 

“cooling constrained”; these terms describe systems whose designs are driven by the 

system heat extraction or rejection, respectively. 

For instance, for one model of commercial heat pump, the allowed minimum EFT 

is -6.7ºC (20ºF) and the allowed maximum heat pump EFT is 43.3ºC (110ºF). When pure 

water is used as the working fluid, to prevent the fluid from freezing, the allowed 

minimum heat pump EFT is set to 6ºC (42.8ºF). These two temperature limits are used to 

size the borehole to ensure that the GLHE exiting fluid temperature will not exceed either 

of them. The undisturbed ground temperature is about 15ºC (59ºF) in Tulsa, OK and is 

about 10ºC (50ºF) in Chicago, IL. So, the allowed temperature difference is 28.3ºC for 
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GLHE heat rejection and 9ºC for GLHE heat extraction in Tulsa, while the allowed 

temperature difference is 33.3ºC for GLHE heat rejection and 4ºC for GLHE heat 

extraction in Chicago. These temperature differences drive the sizing of the GLHE. In 

other words, although a system (like the building in Chicago) may have more demand for 

heat rejection than heat extraction, it is not necessarily true that the required borehole 

length for cooling will be larger than that for heating. In Figure 6.4, the heat pump EFTs 

of two different GSHP systems are shown, one in Tulsa, and another in Chicago, but 

otherwise identical. Both GSHP systems have more cooling demand than heating 

demand, and the heat pump EFTs rise over the system operation period. In the Tulsa case, 

the maximum heat pump EFT is 43.3ºC (110ºF) in the 236th month and the minimum 

heat pump EFT is 10.6ºC (51.1ºF) in the 1st month. In the Chicago case, the maximum 

heat pump EFT is 22.8ºC (73ºF) in 235th month and the minimum heat pump EFT is 6ºC 

(42.8ºF) in the 1st month. Thus, even though both systems are cooling dominated, the 

small difference between the heat pump minimum allowed fluid temperature and the 

undisturbed ground temperature in Chicago causes this system to be sized based on 

heating. The Chicago system is heating constrained, while the Tulsa system is cooling 

constrained. However, in the Chicago, if a 20% propylene glycol/water solution is used 

as the working fluid, the freezing point of the fluid is -8.1ºC (17.4ºF). When sizing the 

borehole length, the lower temperature limit of heat pump EFT can now be set as -4.1ºC 

(24.6ºF). Therefore, the allowed temperature difference is 33.3ºC for GLHE heat 

rejection and 14.1ºC for GLHE heat extraction. As a result, the maximum heat pump EFT 

is 43.3ºC (110ºF) in the 235th month and the minimum heat pump EFT is -3ºC (27.2ºF) 

in the 1st month. By adding antifreeze to the working fluid and thereby lowering the 
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lower temperature limit on the heat pump, the heating constrained system can be 

transformed into a cooling constrained system. 

 

Figure 6.4 Heat pump entering fluid temperatures for different system designs 

In this research, the study mainly focus on the the HGSHP system for the cooling 

constrained system is and the HGSHP system design and control strategy for the cooling 

constrained system are investigated. 

6.3.2 Design GLHE for GSHP Systems 

Before the design procedure for the HGSHP system is presented, the methodology 

of GLHEPRO for designing ground loop heat exchangers for use with GSHP systems is 

introduced here first. GLHEPRO (Spitler 2000) is a tool originally developed for 
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designing ground loop heat exchangers for use with ground source heat pump systems. 

The methodology of GLHEPRO to size GLHE of GSHP systems is summarized below. 

More details are given by Spitler (2000). 

1. Input all the necessary data, including: 

• Monthly heating and cooling loads on the heat pump or heat pumps; 

• Monthly peak heating and cooling loads on the heat pump or heat 

pumps; 

• Information about the heat pump or heat pumps, from which the 

relationship between the entering fluid temperature to the heat pump 

and the heat rejected to the ground for a given cooling load and the 

heat extracted from the ground for a given heating load can be 

determined; 

• Thermal properties of the ground; 

• Geometric configuration of the ground loop heat exchanger; 

• Borehole diameters, U-tube diameter, grout thermal properties. 

2. Calculate the borehole thermal resistance and then g-functions of the borehole 

are automatically updated. 

3. Specify the minimum and maximum entering fluid temperature of the heat 

pump and length of the design period.  
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The minimum and maximum entering fluid temperature of heat pump are very 

important to the outcome of the design. Either the minimum or maximum 

entering fluid temperature will control the borehole depth, while also affecting 

the overall energy consumption. For cooling dominated buildings, the annual 

heat rejection exceeds the annual heat extraction. When this occurs, the 

entering fluid temperature rises from year to year. Therefore, a maximum 

entering fluid temperature (EFT) into the heat pump is used to control the 

borehole depth. The a minimum heat pump EFT controls the borehole depth 

for heating dominated buildings. 

For example, using the ClimateMaster Genesis Heat Pump, a maximum EFT 

of 43.33 ºC (110 ºF) is allowed. The minimum EFT is selected based on the 

freezing point of the working fluid. If water is used a margin of safety might 

be incorporated by choosing a minimum EFT of 6 ºC (42.8 ºF). 

4. Run GLHE sizing function and output the design results. 

The sizing function iteratively adjusts the borehole depth, for each iteration, 

recomputing the STS g-functions, and running the simulation until the 

borehole depth that satisfied the temperature constraints is found.  

After the program gets the desired borehole length, a summary of GSHP 

system design is presented. Additional results are provided in an output file. 

Usually, the annual heat rejection and the annual heat extraction of the GLHE are 

not balanced. Depending on the imbalance, the heat pump entering fluid temperatures of 
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rise or drop over the system operation period. When the heat pump entering fluid 

temperature just reaches the user-specified maximum or minimum entering fluid 

temperature, while not exceeding the other limit, the size of the ground loop heat 

exchanger is the right size for the GSHP system. 

6.3.3 Design New HGSHP Systems 

In HGSHP systems, a supplemental heat source or sink into the system is added 

into the system to handle some portion of the system loads, therefore reducing the size of 

the GLHE and the first cost of the system. In this section, a new design procedure is 

implemented in GLHEPRO for sizing the HGSHP system components. 

Kavanaugh and Rafferty (1997) gave a design procedure for sizing the GLHE and 

supplemental heat source or sink and later Kavanaugh (1998) revised the design 

procedure. Firstly, Kavanaugh and Rafferty developed a procedure to calculate the 

required borehole lengths for cooling and heating respectively. In this procedure, the 

annual equivalent heating and cooling hours are required for the calculation of the GLHE 

system heat extraction/rejection rate, which is done with a spreadsheet procedure. The 

effects of annual, monthly, daily, and peak (four hour block load) heat pulses are used to 

compute the required borehole length for both heating and cooling. Secondly, the size of 

supplemental heat source or sink is sized from the difference of the two required borehole 

lengths. For a cooling constrained building, by assuming that the fluid has a 10ºF 

temperature change through the heat pump condenser and cooling tower, the capacity of 

the cooler is specified in terms of the fluid flow rate, shown in Equation 2-14. For further 

information on this procedure, see Section 2.2.2.2.  
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One possibility for specifying the design of a HGSHP system is to describe it on 

the basis of the GSHP system that could be designed to account for the entirety of the 

system heating and cooling loads; this is shown in Figure 6.5. Point 1 in this figure 

represents the base GSHP system, with no supplemental heating or cooling. As 

supplemental heating or cooling is added to the system, the design moves to the left or 

right on the figure, respectively. Additionally, since the system now has a higher capacity 

for heating or cooling, a smaller borehole length can be used—a downward movement on 

the figure. The other points on the figure represent both a heating (point 2’) and cooling 

(point 2) HGSHP system design; the task is to find just how far to move within this 

domain to find the optimum system design. 

 

Figure 6.5 Conceptual diagram of HGSHP system design procedure 

Following the idea above, a temperature limit-optimized simulation-based design 

method is developed to size the borehole length and supplemental sink or source 
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simultaneously. For a standard GSHP system without a supplemental heat source or sink, 

the GLHE of the system is sized to ensure than heat pump EFT will not exceed either the 

lower or the upper temperature limit. The size of the GLHE will be such that the heat 

pump EFT will just meet either the maximum or the minimum temperature limit, in 

which cases the system is said to be cooling constrained or heating constrained, 

respectively. The heat pump EFTs of a cooling constrained and heating constrained 

GSHP system are shown in Figure 6.6. The basic idea of this HGSHP system design 

method comes from the fact that for a cooling/heating constrained GSHP system, a 

supplemental heat sink or source can be added into the system to decrease the borehole 

length. In a cooling constrained GSHP system, an upper temperature limit is used to 

control the borehole length. If some portion of the cooling loads is removed by the 

supplemental cooler, the borehole length can be reduced until the heat pump EFT meets 

the lower temperature limit in addition to the upper temperature limit. In that case, the 

borehole length can not be reduced any further since the GLHE could no longer meet the 

system heating demand. The same principles can be applied to a heating constrained 

GSHP system. In a heating constrained GSHP system, the lower temperature limit is used 

to control the borehole length. If some portion of the heating loads is met by a 

supplemental heat source, the borehole length can be reduced until the heat pump EFT 

also meets the upper temperature limit. In that case, the borehole length can not be 

reduced any further since the GLHE could no longer meet the system cooling demand. 

The desired outcome of this method—meeting both temperature limits simultaneously—

is shown as the HGSHP system data plotted in Figure 6.6; the detailed design procedure 

is described below. 
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Figure 6.6 Heat pump EFTs of an HGSHP system at the different design stages 

 

1. Calculate the borehole length of a GSHP system.  For this procedure, two new 

factors, LoadsRatio  and LengthRatio , are introduced. The definitions of the two 

factors are given by Equations 1 and 2.  LoadsRatio  is introduced to adjust the 

monthly cooling or heating loads so that some portion of the loads is assumed 

to be handled by the supplemental device. The value of LoadsRatio  is between -

1 and 1; a negative value means the GSHP system is heating advanced, while 

a positive value indicates that the system is cooling advanced. LengthRatio  is 

adjusted to get the borehole length of the HGSHP system so that, with the 

adjusted borehole length and loads, the calculated heat pump maximum EFT 

will equal the upper temperature limit and the heat pump minimum EFT will 
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equal the lower temperature limit.  The value of LengthRatio  is between 0 and 1, 

with a value of 1 indicating that the length is the same as for the GSHP 

system. The Nelder-Mead simplex method (Nelder and Mead 1965) is used to 

search for the value of LengthRatio  and LoadsRatio  that minimizes the objective 

function developed for the HGSHP simulation. The objective function is the 

sum of the squares of the error (SSQE) of the calculated heat pump minimum 

and maximum temperature compared to the heat pump temperature limits, as 

shown in Equation 3. After the optimization, the borehole length is, then, the 

minimum required borehole length for the HGSHP system. The adjusted loads 

are the loads which will be removed by the GLHE of the HGSHP system.   

SystemGSHPofLengthGLHE
SystemHGSHPofLengthGLHERatiolength =    (6-1)  

SystemofLoadsHeatingCoolingTotal
sdevicealsupplementbymetLoadsHeatingCoolingRatioloads

/
)(/

=  (6-2) 

2)(2)( setcalsetcal MinEFTMinEFTMaxEFTMaxEFTSSQE −+−=   (6-3) 

2. Calculate the capacity of the supplemental heat sink/source component. Once 

the GLHE length of the HGSHP system and the loads met by the GLHE are 

determined, the peak heat rejection and peak heat extraction of the GLHE can 

be calculated. In this way, the capacity of the supplemental heat rejection or 

extraction component can be obtained.  

HGSHPrejectionpeakGSHPrejectionpeakrejection GLHEQGLHEQalSupplementQ ,,,, )()()( &&& −=  (6-4) 

HGSHPextractionpeakGSHPextractionpeakextraction GLHEQGLHEQalSupplementQ ,,,, )()()( &&& −=  (6-5) 
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Where: 

rejectionalSupplementQ )(& : the capacity of the supplemental heat rejecter, (kW); 

GSHPrejectionpeakGLHEQ ,,)(& : the peak heat rejection of the GLHE in a GSHP system, 

(kW); 

HGSHPrejectionpeakGLHEQ ,,)(& : the peak heat rejection of the GLHE in an HGSHP system, 

(kW). 

extractionalSupplementQ )(& : the capacity of the supplemental heat source, (kW); 

GSHPextractionpeakGLHEQ ,,)(& : the peak heat extraction of the GLHE in a GSHP system, 

(kW); 

HGSHPextractionpeakGLHEQ ,,)(& : the peak heat extraction of the GLHE in an HGSHP 

system, (kW).s 

3. Calculate the nominal size cooling tower at the nominal design conditions. 

Once the capacity of the cooling tower of the HGSHP system is obtained by 

the program, following the procedure described by Kavanaugh (1998), the 

size of the cooling tower can be specified in terms of the nominal water flow 

rate, which is determined from the cooling tower capacity as the flow rate of 

water cooled from 35ºC (95ºF) to 29.4ºC (85ºF) with a 25.6ºC (78ºF) wet bulb 

temperature.  

However, this procedure described by Kavanaugh (1998) will tend to oversize 

the cooling tower/fluid cooler. A new algorithm to size cooling tower is based 

on the local peak wetbulb temperature and the peak ExFT of heat pump. It 

will be discussed in Section 6.3.5. 
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6.3.4 Procedure of GLHEPRO for Designing “Retrofit” HGSHP 

Systems 

The procedures described in Section 6.3.3 size the GLHE and cooling tower 

simultaneously and they are intended for design of a new HGSHP system. In some 

existing GSHP systems, an improperly-sized GLHE can not meet the cooling/heating 

loads of the system. In this case, a supplemental heat source or sink is added into the 

system to help meet loads of the system. This might be referred to as a “retrofit design”. 

The design procedure for a “retrofit” HGSHP system is presented in this section. 

For a cooling dominated building, the GLHE size, givenL , is given, then the 

capacity of the cooling tower is calculated by being scale to the maximum capacity of 

cooling tower of a new HGSHP system: 

minmax

max
max, LL

LL
QQ given

CTCT −

−
=      (6-6) 

Where: 

maxL  = The maximum required GLHE length, obtained from a GSHP system, (m); 

minL  = The shortest desired GLHE length, obtained for a new HGSHP system, (m); 

max,CTQ = The maximum capacity of the cooling tower, for a new HGSHP system, (W). 

 The procedure for sizing the cooling tower for a “retrofit” HGSHP system is 

described as follows. 
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1. Run GLHE sizing function for GSHP system to determine the GLHE size, 

maxL . The GLHE sizing procedures are previously described in Section 6.3.2. 

2. Run GLHE sizing function for a HGSHP system to get the shortest length of 

GLHE, minL . Also the capacity of cooling tower, max,CTQ , is available. The 

procedures are previously described in Section 6.3.3.  

3. Calculate the capacity of the cooling tower desired for the “retrofit” HGSHP 

system.  The capacity of the cooling tower is calculated by Equation 6.8. 

6.3.5 Sizing Cooling Tower 

The new version of GLHEPRO gives the required size of the cooling tower for a 

HGSHP system in terms of heat rejection capacity. It also specifies the cooling tower size 

in terms of the nominal water flow rate (Kavanaugh 1998), which is determined from the 

cooling tower capacity as the flow rate of water cooled from 35ºC (95ºF) to 29.4ºC (85ºF) 

with a 25.6ºC (78ºF) wet bulb temperature.   

In an actual HGSHP system, the peak inlet water temperature of cooling tower 

might be higher than 35ºC (95ºF) (perhaps as high as 43.3ºC (110ºF)) and the local wet 

bulb temperatures may often be lower than 25.6ºC (78ºF). As a result, the cooling tower 

design procedure described by Kavanaugh (1998) will tend to oversize the cooling 

tower/fluid cooler. Therefore a new algorithm is developed here more accurately to 

determine the required size of cooling tower.  



 

 237

A possible algorithm for sizing cooling tower is based on the local peak wetbulb 

temperature and the peak ExFT of heat pump. Assuming peak heat pump ExFT (on the 

order of 100ºF - 115ºF) coincident with local peak wetbulb temperature, the practical 

cooling capacity of cooling tower for the HGSHP system can be calculated, which will be 

greater than the cooling capacity of cooling tower at the nominal design conditions. Then 

looking at the cooling tower manufacturer’s catalog data, a smaller size of cooling tower 

will be chosen for the HGSHP system. The detailed procedure is as follows: 

1. Select the local outdoor peak wetbulb temperature.  

There are several possibilities to determine the local peak wetbulb 

temperature. The website of the U.S. Department of Energy (DOE 2007) 

provides the Typical Meteorological Year (TMY) weather data of more than 

250 cities in North American. The local outdoor peak wetbulb temperature 

can be calculated. Also the local outdoor peak wetbulb temperature can be 

obtained from ASHRAE Standard weather data (ASHRAE 2005). In this 

research, the local outdoor peak wetbulb temperature is calculated from the 

Typical Meteorological Year (TMY) weather data. 

2. Select the peak inlet fluid temperature of cooling tower. 

At this point, the peak heat pump ExFT is selected as the peak inlet fluid 

temperature of the cooling tower. Knowing the heat pump rejection rate and 

the fluid flow rate, the peak heat pump ExFT can be determined from user-

specified maximum heat pump EFT. Some heat pump manufacturers give an 
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allowable ExFT of heat pump as 110ºF - 120ºF. In this research, a temperature 

of 115ºF is selected as the peak inlet fluid temperature of cooling tower. 

3. Choose a cooling tower from a database of cooling towers to meet the 

required capacity of the cooling tower. Although cooling tower capacities can 

be represented in more than one way, it is convenient to use the fixed-UA 

model in Section 4.3.1.1 to determine UA values for a range of cooling tower 

and place than in a database, as shown in Table 6.3. 

Table 6.3 User-precalculated database of cooling towers from the manufacturer 

(ArctiChill) 

CT 
Nominal 
Capacity 
kW(tons) 

waterm&  
kg/s(GPM) 

airm&  
kg/s(CFM) 

UA 
W/K(Btu/h-ºF) 

Fan Power 
kW(HP) 

10.6(3) 0.38(6) 0.49(870) 420(222) 0.124(1/6) 
17.6(5) 0.63(10) 1.19(2,100) 648(342) 0.124(1/6) 
28.1(8) 1.01(16) 1.48(2,620) 1,086(573) 0.124(1/6) 
35.2(10) 1.26(20) 1.98(3,500) 1,139(601) 0.186(1/4) 
52.8(15) 1.89(30) 2.66(4,700) 2,058(1,086) 0.186(1/4) 
70.3(20) 2.52(40) 3.57(6,300) 2,740(1,446) 0.373(1/2) 
87.9(25) 3.15(50) 3.96(7,000) 3,529(1,862) 0.559(3/4) 
106(30) 3.85(61) 4.59(8,100) 4,371(2,306) 0.746(1) 
141(40) 5.24(83) 5.55(9,800) 6,183(3,262) 1.119(1.5) 
176(50) 6.62(105) 6.51(11,500) 8,068(4,257) 1.119(1.5) 
211(60) 7.89(125) 8.32(14,700) 9,243(4,877) 1.119(1.5) 
246(70) 9.15(145) 9.91(17,500) 10,717(5,654) 1.119(1.5) 
281(80) 10.6(168) 10.7(18,900) 12,715(6,709) 1.491(2) 
352(100) 13.12(208) 13.87(24,500) 15,368(8,108) 2.237(3) 
440(125) 16.53(262) 16.46(29,060) 19,987(10,545) 2.237(3) 
528(150) 20.06(318) 18.83(33,260) 25,122(13,255) 3.729(5) 
615(175) 23.28(369) 22.79(40,250) 28,419(14,994) 3.729(5) 
703(200) 26.88(426) 24.78(43,760) 33,278(17,558) 3.729(5) 
791(225) 29.02(460) 34.7(61,270) 37,566(19,820) 5.593(7.5) 
879(250) 32.81(520) 34.7(61,270) 44,964(23,723) 5.593(7.5) 

1055(300) 39.12(620) 43.61(77,020) 58,466(30,847) 7.457(10) 
1231(350) 46.94(744) 43.61(77,020) 64,794(34,186) 7.457(10) 
1407(400) 53.31(845) 51.55(91,030) 99,366(52,426) 11.186(15) 
1758(500) 70.22(1,113) 51.55(91,030) 114,391(60,354) 11.186(15) 
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2110(600) 80.63(1,278) 70.79(125,000) 172,226(90,868) 14.914(20) 
2462(700) 97.54(1,546) 70.79(125,000) 140,737(74,254) 14.914(20) 
2813(800) 107.44(1,703) 99.1(175,000) 134,286(70,850) 22.371(30) 

3517(1000) 142.14(2,253) 99.1(175,000) 221,942(117,099) 22.371(30) 
4396(1250) 178.17(2,824) 123.96(218,900) 269,798(142,348) 29.828(40) 
5275(1500) 213.24(3,380) 149.95(218,900) 315,644(166,537) 37.285(40) 

 

Then, given the peak outdoor wetbulb temperature and peak cooling tower 

inlet fluid temperatures, the database can be searched to find the smallest UA 

cooling tower that meets the required heat rejection rate.  

In summary, by assuming peak heat pump ExFT (on the order of 100ºF - 115ºF) 

coincident with local peak wetbulb temperature, a smaller size of cooling tower will be 

chosen for the HGSHP system. A demonstration case of design a new HGSHP system 

and a “retrofit” HGSHP system for an office building will be presented in the next 

section. In this case, the procedure of sizing the cooling tower will also be presented.  

6.4 Example of Designing HGSHP Systems 

In this section, an example application of designing a HGSHP system is provided 

using an office building in Tulsa, Oklahoma. Three different systems are designed for 

this office building: 1) 100% GSHP system; 2) a new HGSHP system; and 3) a “retrofit” 

HGSHP with given GLHE size. 

6.4.1 Office Building 

The test building was based on a typical floor plan from the Bank of Oklahoma 

(BOK) Tower in Tulsa, OK. The office building has 52 stories, of which only three 
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stories with 7,144m2 floor area are modeled for this work. The building was modeled and 

simulated using DesignBuilder (2006) and the building load profile is shown in Figure 

6.7. The office building has more cooling loads than heating loads in Tulsa, OK (a warm-

humid climate zone). For further information on this building, see Section 7.1.1. 

Office Building Loads for Tulsa
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Figure 6.7 Annual hourly building load for the office building in Tulsa, OK. 

6.4.2 System Design 

The office building has 30 zones and two Climate Master GSH/SCS 060 water-to-

water heat pumps with a nominal cooling capacity of 17.5 kW are used for each zone. 

The system has a total 42.8 kg/s (680gpm) of full flow rate. 

Since the office building has more cooling requirement than heating in this case, 

the HGSHP system with an open-circuit cooling tower was designed for this building. To 
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demonstrate the design procedures of HGSHP systems, two different HGSHP systems 

were designed for this office building: 1) a new HGSHP system; and 2) a “retrofit” 

HGSHP with given GLHE size. But first, a 100% GSHP system will be designed for this 

building. 

6.4.2.1 Design a GSHP system 

GLHEPRO was used for designing ground loop heat exchangers for the GSHP 

system. The program is controlled from the main dialog box shown in Figure 6.8.  

 

Figure 6.8 Main dialog box of GLHEPRO 

1. Following the procedures described in Section 6.3.2, firstly, input all the 

necessary data.  
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In this case, most of the information requires by the program is shown in 

Figure 6.5. Details such as borehole radius, borehole spacing, undisturbed 

ground temperature, and flow rate were entered here. Borehole geometry and 

heat pump were both selected from a library. An initial guess of borehole 

depth is required. 

The loads were determined with EnergyPlus and pasted from a spreadsheet 

into the heat pump loads dialog box, shown in Figure 6.9. In this case, because 

the building loads were too big for the allowed size of GLHE in the program 

library, only half of the building loads were used. 

 

Figure 6.9 Heat Pump Loads Dialog Box 
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The GLHEPRO program uses a simple approximation for the peak loads. 

They are represented by the user as a square-wave type pulse, specified by 

giving the peaking cooling and heating load for each day, and the number of 

hours for which the peak applies. More details about the approximation for the 

peak loads are given by Spitler (2000).  

2. Calculate the borehole thermal resistance and update g-functions of the 

borehole. 

The borehole thermal resistance is determined using the borehole thermal 

resistance calculator, shown in Figure 6.10. Most entries are close to self-

explanatory. In this dialog box, user can choose different types of borehole: 

single U-tube, double U-tube and concentric tube. Details such as tube 

diameters, shank spacing, fluid factor, thermal properties of soil, grout and 

pipe are entered here. The fluid convection coefficient can be specified by 

giving the value directly or using Equation 4-8, which is implemented in 

GLHEPRO. When the borehole thermal resistance is calculated the g-

functions of the borehole are automatically updated. 
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Figure 6.10 G-function and borehole resistance calculator dialog box. 

3. Specify the minimum, maximum entering fluid temperature of heat pump and 

length of the design period. Run GSHP system GLHE sizing function. 

Once all necessary input data have been entered, the user can proceed with the 

design. In GLHEPRO this is done by choosing the GLHE size option. The 

GLHESize control dialog box is shown in Figure 6.11.  
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Using the ClimateMaster GSH/SCS 060 Heat Pump, a maximum entering 

fluid temperature (EFT) of 43.33 ºC (110 ºF) to the heat pump is allowed. 

Here the working fluid was water and a minimum EFT of 6 ºC (42.8 ºF) was 

selected. For this system design, a 20-year design period was selected. 

 

Figure 6.11 GLHE size dialog box. 

The GLHEPRO Size program gave a depth of 87.6 m for the 80 boreholes that 

serve half of the loads of the office building, as shown in Figure 6.12. 

Therefore a GSHP system with total 160 boreholes, 87.6 m deep would be an 

adequate design for the office building in Tulsa, OK. 
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Figure 6.12 Summary of results for GSHP system design 

6.4.2.2 Design a new HGSHP system 

Next, an HGSHP system with an open-circuit cooling tower was designed. 

The procedures described in Section 6.3.3, are implemented in GLHEPRO and 

run by selected HGSHP GLHE/CT Sizing function as shown in Figure 6.13. The 

resulting depth for the 80 boreholes is 49.5 m, and an open-circuit cooling tower with 

capacity of 119.9 kW was recommended for the half loads of the office building, as 

shown in Figure 6.14. The additional of the cooling tower allows on 40% reduction in 

required GLHE size compared to the GSHP system. Therefore, an HGSHP system with 

total 160 boreholes, 49.5 m deep, and an open-circuit cooling tower with capacity of 

239.8 kW are suitable for the office building in Tulsa, OK. 
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Figure 6.13 HGSHP GLHE/CT sizing function in GLHEPRO.  

 

Figure 6.14 Main dialog box of GLHEPRO 

Then, outside of GLHEPRO, procedures described in Section 6.3.5 were used to 

select a cooling tower from the cooling tower manufacturer database in Table 6.3. 



 

 248

1. From the Typical Meteorological Year (TMY) weather data (DOE 2007), a 

temperature of 26.7ºC(80.1ºF) was select as the local outdoor peak wetbulb 

temperature in Tulsa, OK. 

2. Using the ClimateMaster GSH/SCS 060 Heat Pump, a maximum allowed 

ExFT of heat pump is about 50ºC (122ºF). In this case, a temperature of 115ºF 

was selected as the peak inlet fluid temperature of cooling tower. 

3. The desired capacity of open-circuit cooling tower is 239.8 kW. Applying the 

fixed-UA open-circuit cooling tower model in Section 4.3.1.1, after several 

tries, an ACT-50 Model from Table 6.3 was selected for the new HGSHP 

system. The cooling tower has a nominal capacity of 50tons (176 kW), but at 

the conditions described in Steps 1 and 2, it can provide a capacity of 284kW. 

Applying the procedure described by Kavanaugh (1998) to select the cooling 

tower, the flow rate of water is cooled from 35ºC (95ºF) to 29.4ºC (85ºF) with a 25.6ºC 

(78ºF) wet bulb temperature. This corresponds to an ACT-100 Mode from Table 6.3 was 

selected in order to meet the desired capacity of 239.8 kW. The selected cooling tower 

has double the capacity determined in Step 3. This is because, with a higher inlet fluid 

temperature of the cooling tower and a slightly higher local wetbulb temperature, the 

cooling tower is able to provide more heat rejection than its nominal capacity. 

6.4.2.3 Design a “Retrofit” HGSHP system 

In this section, a “retrofit” HGSHP system was designed for the office building. It 

was assumed that there was an existing GSHP system with total 160 boreholes, 68.6 m 
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deep had been designed for this office building. This GLHE would be 20% undersized 

compared to the system designed in Section 6.4.2.1. The improperly-sized GLHE would 

not meet the cooling loads of the office building and would overheat over time. In this 

case, an open-circuit cooling tower was added into the system to help meet loads of the 

system. The problem, then, is to find the cooling tower size that will fix the probslem.  

Following the design procedures in Section 6.3.4, the capacity of the cooling 

tower is calculated outside of GLHEPRO by hand.   

kWkWQCT 120
792314014

10969140149.239 =
−
−

×=  

Applying the same procedure as in the last section, an ACT-30 Model from Table 

6.3 was selected for the “retrofit” HGSHP system. If the procedure described by 

Kavanaugh (1998) was applied, an ACT-40 Model from Table 6.3 would be selected for 

the “retrofit” HGSHP system. The selected cooling tower has much larger capacity than 

that of the ACT-30 Model. 

Therefore, a “retrofit” HGSHP system with total 160 boreholes, 68.6 m deep, and 

an ACT-30 Model cooling tower with nominal capacity of 120 kW was designed for the 

office building in Tulsa, OK.  

6.4.3 Discussion of System Design Results 

Three different systems were designed for this cooling dominated office building: 

1) 100% GSHP system; 2) a new HGSHP system; and 3) a “retrofit” HGSHP with given 

GLHE size. The designed results are listed in Table 6.4. 
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Table 6.4 System design results for the office building in Tulsa, OK. 

Cooling 
tower Size Cooling tower Model 

System GLHE size Capacity 
(kW) 

New 
procedure 

Kavanaugh 
procedure 

100% GSHP 
system m

mborehole
014,14

6.87160
=

×
 -- -- -- 

New HGSHP 
system m

mborehole
7923

5.49160
=

×  240 ACT-50 ACT-100 

“Retrofit” HGSHP 
system m

mborehole
10969

8.68160
=

×  120 ACT-30 ACT-40 

 

These three systems are all workable for the office building in Tulsa, OK. 

However, the design of a GSHP/HGSHP system depends on various factors, considering 

the investment budget, building layout, available layout of borehole field, geological 

conditions, etc. Therefore, performance simulation will be helpful to determine which 

system is the best choice. 

6.5 Comparison Study of HGSHP System Design Methods 

Currently, there are two approaches can be used to design HGSHP system: the 

Kavanaugh and Rafferty (1997) procedure and the new procedure developed in this 

chapter. Also the Buffer Program, an interface between GenOpt (Wetter 2000) and 

HVACSIM+, developed in Chapter 7 can be used to optimize the design of HGSHP 

systems. In this section, a small study for a few building types and locations is carried out 

to compare these two design procedures’ results to optimized design results.   
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6.5.1 GenOpt Design Method 

The Buffer Program developed in Chapter 7 can be used to optimize the design of 

HGSHP systems. When the control strategy is specified, the buffer program can 

automatically adjust the design parameters (GLHE length and cooling tower size), run the 

simulation and iterate to get the minimal life cycle cost of the HGSHP system.   

The flow diagram of the program is shown in Figure 6.15. Details about the 

aspects of the HVACSIM+ simulation and GenOpt are discussed in Section 7.2. It should 

be noted that this is only a reference procedure. While life cycle cost is, of course, a good 

way to optimize any system, this method requires far too much computation time to be 

practical. While either of the first two methods take just a few minutes to complete, this 

method may take several hours to complete. 
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Figure 6.15 Optimization methodology flow diagram. 

6.5.2 Methodology for System Simulation and Analysis 

6.5.2.1 Example HGSHP Application System Description  

Two different building types: office building and motel building are chosen for 

the comparison study. The test office building was based on a typical floor plan from the 

Bank of Oklahoma (BOK) Tower in Tulsa, OK. The office building is 52 stories, of 

which only three stories with a total area of 7,144m2 are modeled for this work. The test 

motel building was based on an actual motel in Tulsa, Oklahoma as described by Chen 

(1996). The motel building is a 2-story building with 1,037m2. For this research a 
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building with a load ranging from 100 to 500-tons was desired. Therefore the motel 

building was modeled as three identical buildings having ten floors with the same floor 

plan by Gentry (2007). The detail information of the office building and motel building 

are available in Section 7.1.1 and 7.1.2. 

6.5.2.2 Climatic Consideration – Building Loads 

Briggs et al. (2002) presented climate classification for building energy codes and 

standards on the basis of heating degree days, cooling degree days, and humidity.  For 

each climate zone, Briggs et al. provided a representative U.S. city (More details are 

available in Section 7.1.3). In this study, six representative cities were chosen for 

considering multiple different climate zones. The cities are: Memphis, TN, representing a 

warm-humid climate zone; El Paso, TX, representing a warm-dry climate zone; 

Albuquerque, NM, representing a mixed-dry climate zone; Baltimore, MD, representing a 

mixed-humid climate zone; and Houston, TX, representing a hot-humid climate zone. 

Together with the city of Tulsa, OK, which also represents a warm-humid climate zone 

and was used since it is the actual location of the building used, the building loads for 

these six cities were calculated with EnergyPlus. Peak loads and annual equivalent full-

load hours (EFLH) for all citied are summarized in Table 6.5. 

As expected based on building locations, the office building has higher cooling 

loads than heating loads in all six climate zones and is therefore cooling-dominated in 

each location. Additionally, the GSHP systems for the office building in all six climate 

zones are all cooling constrained. Therefore, a HGSHP system with an open-circuit 
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cooling tower as the supplemental heat rejecter is designed for the building in six 

difference climate zones.   

Table 6.5 Summary of design data for each simulation case 

 Tulsa, OK El Paso, TX Albuquerque, 
NM 

Memphis, 
TN 

Baltimore, 
MD 

Houston, 
TX 

Office Building Loads Summary 
qpeak,heating 
kW(MBTU/h)  763(2,603)  433(1,477)  607(2,071) 694(2,368) 739(2,521) 730(2,091) 
qpeak,cooling 
kW(MBTU/h) 931(3,176) 910(3,105)  788(2,689) 936(3,139) 897(3,060) 819(2,794) 
Annual EFLH - 
heating 89 36 71 48 118 20 
Annual EFLH - 
cooling 660 1009 898 797 599 1121 
Annual heat 
rejection/annual 
heat extraction 10.8 70.5 19.5 26.5 7.3 75.9 
Motel Building Loads Summary 
qpeak,heating 
kW(MBTU/h)  459(1,918)  173(725) 282(1,178) 320(1,338) 404(1,692) 288(1,206) 
qpeak,cooling 
kW(MBTU/h) 729(3,049) 776(3,244)  740(3,097) 687(2,874) 685(2,863) 663(2,773) 
Annual EFLH - 
heating 195 64 227 142 338 55 
Annual EFLH - 
cooling 1330 1589 1380 1639 1013 2003 
Annual heat 
rejection/annual 
heat extraction 6.8 111.1 10 14.6 3.2 60.6 
Ground Thermal Properties 
ksoil W/m-
K(Btu/h-ft-ºF) 3.5(2.02) 3.5(2.02) 3.5(2.02) 3.5(2.02) 3.5(2.02) 3.5(2.02) 

Tground ºC(ºF) 15(59) 17.8(64) 13.9(57) 15.6(60) 13.9(57) 23.5(74) 
pcρ  kJ/ m3-

K(Btu/ºF-ft3) 
2,160(32.21) 2,160(32.21) 2,160(32.21) 2,160(32.21) 2,160(32.21) 2,160(32.21) 

GLHE Design Summary 
rborehole  m(in) 0.055(2.17) 0.055(2.17) 0.055(2.17) 0.055(2.17) 0.055(2.17) 0.055(2.17) 
Rborehole m-
K/W(h-ft-
ºF/BTU) 

0.209(0.363) 0.209(0.363) 0.209(0.363) 0.209(0.363) 0.209(0.363) 0.209(0.363) 

 

6.5.2.3 Thermal Mass of System 

In the HVACSIM+ simulation, the only component model that explicitly accounts 

for thermal mass effects is the GLHE model. In the simulation, two thermal storage tanks 
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were added into the system simulation to account for the thermal mass of the equipment 

(i.e., heat pumps) and the thermal mass in the pipe system. 

To determine the thermal mass of the heat pumps in the system, a simplified 

methodology based on the dynamic heat pump model (Didion and Mulroy 1983) was 

developed.  In the Didion and Mulroy model, a time constant, 1τ  , was used to account for 

the heat storage dynamics of heat pump. The time constant 1τ  was experimentally 

identified and a reasonable value of 1τ  typically falls in a range between 60s and 180s.  

By applying the energy balance on the fluid in the system, the time constant 1τ  

can be deduced in terms of  mm &/=τ , where m  is the equivalent volume of the fluid 

caused by the heat pump, and m&  is the system flow rate, m3/s. Knowing values of the 

time constant, which was determined from experimental data, and the system flow rate, 

the equivalent volume of the fluid caused by the heat pumps can be determined. 

To determine the fluid thermal mass in the pipe system, the pipe layouts were 

designed for the office building and the motel building. The fluid volumes in two 

building pipe systems were calculated. 

6.5.2.4 Operating and Control Strategies 

The objective of this comparison is to investigate the impact of each design 

procedure on the system operation rather than develop an optimal control strategy for the 

HGSHP system. Yavuzturk and Spitler (2000) investigated several different control 

strategies for the HGSHP system. The study showed that the best results were achieved 

when the cooling tower is controlled based on the difference between the heat pump 
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entering fluid temperature and the outside wet-bulb temperature. In this present study, a 

similar temperature difference control strategy was adopted, as well as an additional 

strategy for comparison 

• Control 1. When the difference between the heat pump exiting fluid 

temperature and the outside ambient air-wet-bulb temperature is greater than 

2ºC (3.6ºF), the cooling tower fan and the secondary fluid circulation loop 

pump are activated. When the temperature difference is less then 1ºC (1.8ºF), 

the cooling tower fan and the secondary fluid circulation loop pump are turned 

off.  

• Control 2. Another control strategy using the heat pump entering fluid 

temperature (Yavuzturk and Spitler 2000) was also utilized for the 

comparison. When the heat pump entering fluid temperature is greater than 

32.2ºC (90ºF), the cooling tower fan and the secondary fluid circulation loop 

pump are activated. When the temperature is less then 27.2ºC (81ºF), the 

cooling tower fan and the secondary fluid circulation loop pump are turned 

off.  

A parallel-connected HGSHP system is set up for the simulation in HVACSIM+. 

More details about the system simulation in HVACSIM+ are available in Section 4.6.  
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6.5.3 Comparison Results and Discussion  

6.5.3.1 Office Building System Design Results 

The three different HGSHP system design methods described previously were 

used to design the HGSHP system for the office building in six different climate zones.  

The design results, including the open-loop cooling tower size, the number of boreholes, 

and the depth of each borehole, are summarized in Table 6.6.  In the table, the Kavanaugh 

and Rafferty design method is labeled as Method 1; the new GLHEPRO design method is 

labeled as Method 2 and the GenOpt design method is labeled as Method 3. Using 

Method 3, the choice of control strategy will affect the system operation cost, and, 

additionally, the optimal system design results. Therefore, Table 6.6 lists the two 

different results of Method 3; these are shown as Methods 3-1 and 3-2, for the two 

control strategies described above. Also shown in the table is, for Methods 1 and 2, the 

ratio of the total borehole length of the HGSHP system to that of the GSHP system; it 

should be noted that the number of boreholes is not necessarily the same between the 

two. Also, there is no ratio data for Method 3, as this procedure does not involve first 

designing a GSHP system as a base. 
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Table 6.6 Summary of design results for each simulation case 

Cities Tulsa, OK El Paso, TX 
Design Method 1 2 3-1 3-2 1 2 3-1 3-2 
Number of Boreholes 100 100 100 100 24 48 56 56 

Borehole depth, m (ft) 98.45 
(323.00) 

79.23 
(259.94) 

73.53 
(241.24) 

72.56 
(238.06)

128.25 
(420.77) 

82.35 
(270.18) 

45.04 
(147.77) 

67.45 
(221.29) 

Borehole depth ratio, 
HGSHP/GSHP 0.443 0.565 --- --- 0.099 0.171 --- --- 

Capacity of cooling 
tower, kW (tons) 

383.7 
(109) 

154.9 
(44) 

59.8 
(17) 59.8 (17) 464.6 

(132) 246.4 (70) 383.7 
(109) 

306.2 
(87) 

Cities Albuquerque, NM Memphis, TN 
Design Method 1 2 3-1 3-2 1 2 3-1 3-2 
Number of Boreholes 64 100 100 100 64 100 100 100 

Borehole depth, m (ft) 117.02 
(383.92) 

72.99 
(239.47) 

55.44 
(181.89) 

52.16 
(171.13)

116.92 
(383.60) 

76.11 
(249.70) 

56.44 
(185.17) 

53.25 
(174.70) 

Borehole depth ratio, 
HGSHP/GSHP 0.368 0.508 --- --- 0.302 0.445 --- --- 

Capacity of cooling 
tower, kW (tons) 

306.2 
(87) 

123.2 
(35) 

183.0 
(52) 

183.0 
(52) 

464.6 
(132) 183.0 (52) 211.2 (60) 211.2 

(60) 
Cities Baltimore, MD Houston, TX 
Design Method 1 2 3-1 3-2 1 2 3-1 3-2 
Number of Boreholes 120 120 120 120 42 60 60 60 

Borehole depth, m (ft) 97.15 
(318.73) 

73.12 
(239.90) 

64.78 
(212.53) 

63.97 
(209.88)

156.57 
(513.68) 

87.18 
(286.02) 

67.97 
(223.00) 

54.72 
(179.53) 

Borehole depth ratio, 
HGSHP/GSHP 0.697 0.710 --- --- 0.132 0.196 --- --- 

Capacity of cooling 
tower, kW (tons) 

183.0 
(52) 73.9 (21) 42.2 

(12) 42.2 (12) 464.6 
(132) 306.2 (87) 246.4 (70) 383.7 

(109) 

 

Tulsa, OK. For the HGSHP system in Tulsa, OK, Method 1 gave the largest 

GLHE length  while Method 3 gave the smallest GLHE length. The GLHE size from the 

Method 2 (7,923m) was fairly close to the GLHE length from Method 3 (7,256m and 

7,353m for the two control strategies). The cooling tower size from Method 1 was much 

larger than that from the other two methods. The reason is that, in the design procedures 

of both Method 2 and Method 3, the cooling tower was sized based on the local outdoor 

peak wetbulb temperature, 26.7 ºC (80 ºF)  and the heat pump peak exiting fluid 

temperature, 46.1ºC (115ºF). However, in Method 1, the cooling tower was sized by 

assuming that the fluid was cooled from 35ºC (95ºF) to 29.4ºC (85ºF) with a 25.6ºC 

(78ºF) wet bulb temperature. This method tends to oversize the cooling tower. 
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For the HGSHP system design using Method 3, using the different control 

strategies did not cause a significant change in the system design results. The cooling 

tower sizes were the same and the difference in GLHE length was within 7%. 

El Paso, TX. For the HGSHP system in El Paso, TX, the three design procedures 

gave out quite different design results. Method 2 gave out the largest GLHE size 

(3,953m). Using Method 3, the results varied greatly between the two control strategies— 

3,777m for the set EFT control strategy and 2,522m for the set Tdiff control strategy.  

Using Method 3, the HGSHP system with a larger GLHE size had a relatively smaller 

cooling tower size and, similarly, the HGSHP system with a smaller GLHE size had a 

relative larger cooling tower size. Because of using the different control strategies, the 

fraction of system cooling loads removed by the cooling tower was different (horizontal 

position of Point 2 in Figure 6.5). This difference can be seen from the Average Annual 

Energy Consumption for Cooling Tower Fan entry in Table 6.7. The fan power of these 

two sizes of cooling tower were the same, but the average annual energy comsumption of 

the cooling tower fan in Method 3-1 (8,135kWh), the set Tdiff control case, was much 

higher than the energy consumption in Method 3-2 (1,428kWh), the set EFT control case, 

which means the cooling tower in the set Tdiff control case ran more hours and rejected 

more heat from the loop than the cooling tower in the set EFT control case. 

Albuquerque, NM. and Memphis, TN. For the HGSHP systems in 

Albuquerque, NM and Memphis, TN, Methods 1 and 2 gave similar GLHE lengths, but 

the cooling tower sizes from the Method 2 were again much smaller than the cooling 

tower sizes from Method 1. Method 3 gave out the smallest GLHE length for both of the 
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climate zones; the different control strategies did not cause a significant difference in the 

system design result. The cooling tower sizes were also the same. The difference in 

GLHE length was within 5% in the Albuquerque case and within 6% in the Memphis 

case. 

Baltimore, MD.  For the HGSHP system in Baltimore, MD, Methods 2 and 3 

gave similar GLHE lengths and cooling tower sizes. Method 1 gave out a much larger 

GLHE length and larger cooling tower size than from the other two methods. In Table 

6.7, the HGSHP system with set EFT control strategy results (Control 2) shows that the 

cooling tower fan power and the annual run time of the cooling tower was zero. That 

means the cooling tower has not been turned on because with a relatively large GLHE 

length the loop temperature does not reach the 32.2ºC (90ºF) design temperature, above 

which the cooling tower is turned on. The GLHE is oversized due to the closer balance 

between heating and cooling loads and the low ground temperature, as shown in Table 2; 

both of these factors combine to create the oversizing in Method 1. Additionally, the 

large cooling tower is specified because this design method is equation-based, not 

simulation-based.  Since no simulation is ever performed, the method has no way of 

knowing that the EFT will never exceed the cooling tower set point—in other words, that 

a cooling tower is not needed with the specified GLHE length. This is a substantial flaw 

in this particular design method.  

Houston, TX. For the HGSHP system in Houston, TX, the three design 

procedures gave out quite different design results. Like the system in El Paso, using the 

different control strategies, the systems designed with Method 3 had quite different 



 

 261

GLHE lengths and cooling tower sizes for the same building. The HGSHP system with a 

larger GLHE had a relatively smaller cooling tower size, and the HGSHP system with a 

smaller GLHE had a relatively larger cooling tower size.  

Using the GLHE and cooling tower size from each design method, the HGSHP 

system with the two control strategies described earlier for each climate zone was 

simulated using the HVACSIM+ modeling environment.  Pure water was utilized as the 

working fluid of the system.  Based on common manufacturer specifications, a maximum 

entering fluid temperature of 43.33ºC (110ºF) was specified; the minimum exiting fluid 

temperature was set at 2ºC (35.6ºF) to prevent freezing in the water loop.  For each 

simulation case, the heat pump maximum entering fluid temperature and the minimum 

exiting fluid temperature are listed in Table 6.7.  In most of the simulation cases, the heat 

pump entering and exiting fluid temperatures were within the allowed temperature range. 

In some HGSHP system simulation cases, though, the minimum exiting fluid temperature 

of the heat pump could be lower than the design temperature limit (2ºC); the average 

number of hours that the heat pump fluid temperature exceeded the design temperature 

limits in one year are listed in Table 6.7.   

In the Tulsa cases with the GLHE and cooling tower size from Method 2, for both 

control strategies, the simulated minimum heat pump exiting fluid temperature was 1.5ºC 

(34.7ºF).  The heat pump exiting fluid temperature was lower than 2ºC in only one hour 

per year.  In the simulation cases with the Method 3 design results, the minimum heat 

pump exiting fluid temperature was as low as 0.8ºC (33.4ºF) in Memphis, and the total 

hours that the heat pump exiting fluid temperature was lower than 2ºC in one year 
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averaged 2.3 hours.  In these cases, the minimum heat pump exiting fluid temperatures 

were lower than the allowed temperature, but the temperature was still within an 

acceptable region and would not cause a freezing problem. The total hours that the 

temperature went out of range in one year was about one to two hours.  Therefore, all 

these design methods gave a feasible HGSHP system design. 

6.5.3.2 Analysis of Office System Performance 

For each combination of HGSHP system design and control strategy, the annual 

system component energy consumptions, as obtained from the HVACSIM+ simulation, 

are listed in Table 6.7 and shown in Figure 6.16. As can be seen in Figure 6.16, in the 

HGSHP system, 80%-90% of energy was consumed by the heat pump, and 5%-8% of 

energy was by the primary circulation pump. The cooling tower fan and the secondary 

loop circulation pump consume about 2%-10% of total system energy depending on 

system design and control strategy. 
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Figure 6.16 HGSHP system annual energy consumption in each office building simulation case 

With different HGSHP system component sizes, the system energy consumption 

was different. In Figure 6.16, for each climate zone and control strategy, the system with 

a relatively larger GLHE length and cooling tower size would have a relatively smaller 

total system energy consumption.  With a larger GLHE length and cooling tower size, the 

system was able to reject the same amount of system cooling loads with relative lower 

fluid temperatures. As a result, the heat pump had higher COPs in cooling mode and 

consumed less energy. For example, in the Tulsa set EFT control case, the system 

designed with Method 1 had larger GLHE and cooling tower sizes than the system 

designed with Method 2. As a result, this system had a lower annual energy consumption. 

For systems designed with either Method 1 or Method 2, the systems had identical 

GLHE and cooling tower sizes. Applying the different control strategies, the run time of 
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the cooling tower, the cooling tower fan power, the circulation pump energy consumption 

and the heat pump energy consumption were different. For example, the system designed 

from Method 2 in Tulsa had an annual cooling tower run time of 595 hours in the set EFT 

case as opposed to 4,669 hours in the set Tdiff case. Because, in the latter case, the 

cooling tower ran more hours and rejected more heat from the system loop, the heat 

pump had higher COPs and lower energy consumption. Although in the set Tdiff control 

case, the cooling tower fan and the secondary loop circulation pump consumed more 

energy than the fan and pump in the set EFT case, the annual total system energy of the 

set Tdiff case (198,738kWh) was less than the energy consumption in the set EFT case 

(200,669kWh). For the system designed with the Method 1 in Tulsa using the set Tdiff 

control strategy, the cooling tower ran more hours and rejected more heat than the 

cooling tower in the set EFT case. As a result, the heat pump had a smaller annual energy 

consumption. However, because the cooling tower and secondary loop circulation pump 

were much larger than those from Method 2 and therefore consumed more energy, the 

heat pump energy savings brought by running the cooling tower for more hours could not 

make up for the extra energy consumed by running the cooling tower fan and secondary 

loop pump. In this case, the annual total system energy consumption using the Tdiff 

control strategy was higher than the system using the EFT control strategy.   

The choice of control strategy will obviously affect the performance of the 

HGSHP system. However, the total system energy consumption also depends on the 

climate zone, system design, etc. In this study, we have not attempted to investigate the 

optimum control strategy for the HGSHP system but note that such a development is a 

highly desirable topic for further research.  
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6.5.3.3 Office System Installation and Operating Cost Analysis 

A 20-year life-cycle cost analysis was performed to evaluate the various cases 

from different HGSHP design methods. A net present value (NPV) was selected to 

compare the different simulation cases. The present value of the system operating costs 

and the system first costs are calculated based on series of assumptions. In this study, 

issues related to the maintenance of supplemental heat rejecters and related equipment 

were not considered. 

• The cost of the ground heat exchanger is calculated at $6.00 per foot 

($19.67/m) of the borehole (Kavanaugh 1998). This amount includes the 

horizontal runs and connections. 

• The first cost of the cooling tower, including the isolation plate heat 

exchanger, is calculated at $275.00 per ton ($78.13/kW) of cooling tower capacity 

(Means 2006). This amount includes other equipment and apparatus required for 

controls. 

• The cost of auxiliary equipment and materials for the cooling tower and the 

plate heat exchanger is estimated to be 10% of the first cost. 

• The cost of electricity is assumed to be $0.07 per kWh. 

• A 6% annual percentage rate is used for the present value analysis. Annual 

compounding is used for the 20-year analysis. 
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Table 6.8 summarizes the open-loop cooling tower size, the number of and depth 

of borehole, the first cost of the system, the average annual system component operating 

cost, the net-present value for 20-year system operating cost and the system life cycle 

cost for each simulation case. The HGSHP system life cycle cost of each simulation case 

is shown in Figure 6.17. 

As can be seen in Figure 6.17, the HGSHP system designed from Method 3 

produced the minimum system life cycle cost. The reason is quite obvious. In this 

method, the program automatically adjusts the GLHE size and cooling tower size, runs 

the HGSHP system simulation, and iterates to determine the minimum life cycle cost of 

the HGSHP system; in other words, the method is supposed to produce the system with 

the lowest life cycle cost. In most cases, the systems designed with Method 2 had a lower 

system life cycle cost than the system designed with Method 1 except for the systems in 

El Paso, TX.. 

The different control strategies also caused a difference in the system life cycle 

cost. Yavuzturk and Spitler (2000) investigated several control strategies for the HGSHP 

system in a small office building. In their study, they found the system with the set Tdiff 

control strategy had the smallest system life-cycle cost. However, in this study, this 

conclusion is not always true. For the system designed with Method 1 in Tulsa, the 

system with the set EFT control strategy had a lower life-cycle cost than the system with 

the set Tdiff control strategy. Again, the HGSHP system life-cycle cost not only depends 

the control strategy but also depends on the climate zone and the system design. As 

discussed previously, the purpose of this paper is to compare the different HGSHP 
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system design procedures but not to investigate the best choice of control strategy for the 

HGSHP system. Further research about HGSHP system control is highly desired.  

 

Figure 6.17 HGSHP system life cycle cost in each office building simulation case 
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Table 6.7 Summary of energy consumption and fluid temperature for each office building simulation case 

Control Strategy Set EFT (Control 2) Set Tdiff (Control 1) Set EFT (Control 2) Set Tdiff (Control 1) 
Design Method 1 2 3 1 2 3 1 2 3 1 2 3 

Cities Tulsa, OK El Paso, TX 
Average Annual Energy Consumption 
Heat Pump (kWh) 175,601 183,704 195,748 163,985 175,296 190,409 268,672 276,990 267,717 237,363 258,497 245,769 
Primary Loop Pump (kWh) 15,365 16,018 14,800 15,365 16,018 14,788 14,987 16,520 16,656 14,987 16,520 16,043 
Cooling Tower Fan (kWh) 259 281 134 5,098 2,199 897 2,276 1,191 1,428 9,849 5,291 8,135 
Secondary Loop Pump (kWh) 491 666 279 9,702 5,225 1,866 5,943 2,351 3,419 25,753 10,465 15,485 
Total annual energy consumption 
(kWh) 191,716 200,669 210,961 194,150 198,738 207,961 291,878 297,052 289,220 287,952 290,773 285,433 
Average CT run time (hours) 220 595 748 4,337 4,669 5,003 1,594 1,577 1,528 6,906 7,019 6,922 
HP EFT Max, 8 years operation (ºC/ºF) 34.1/93.4 35.0/95.0 42.6/108.7 28.0/82.4 34.4/93.9 42.1/107.1 46.7/116.1 42.3/108.1 42.5/108.5 32.8/91.0 40.0/104.0 35.5/95.9 
HP ExFT Min, 8 years operation (ºC/ºF) 3.8/38.8 1.5/34.7 0.9/33.6 3.3/37.9 1.5/34.7 1.0/33.8 4.9/40.8 7.3/45.1 7.4/45.3 5.4/41.7 4.2/39.6 1.5/34.7 
Hours EFT/ExFT out of range in a year 0 1 1.3 0 1 1.3 0 0 0 0 0 0.7 
Cities Albuquerque, NM Memphis, TN 
Average Annual Energy Consumption 
Heat Pump (kWh) 197,751 201,996 206,431 172,508 188,984 189,759 208,038 214,942 224,357 193,988 204,593 212,239 
Primary Loop Pump (kWh) 14,855 15,965 15,991 14,855 15,965 16,037 18,298 16,724 16,327 18,298 16,724 16,394 
Cooling Tower Fan (kWh) 401 263 530 4,905 2,049 3,067 1,047 470 718 6,784 2,775 3,312 
Secondary Loop Pump (kWh) 959 789 1,054 11,766 6,154 6,117 2,730 934 1,231 17,734 5,533 5,693 
Total annual energy consumption 
(kWh) 213,966 219,013 224,007 204,034 213,152 214,980 230,112 233,069 242,633 236,804 229,625 237,638 
Average CT run time (hours) 429 705 942 5,260 5,500 5,466 732 835 1,100 4,756 4,944 5,088 
HP EFT Max, 8 years operation (ºC/ºF) 35.2/95.4 36.2/97.2 37.3/99.1 28.0/82.4 35.7/96.3 36.1/97.0 37.6/99.7 36.0/96.8 39.2/102.6 30.2/86.4 35.8/96.4 38.4/101.1 
HP ExFT Min, 8 years operation (ºC/ºF) 4.1/39.4 3.838.8 1.3/34.3 2.7/36.9 3.5/38.3 1.4/34.5 2.6/36.7 3.7/38.7 0.8/33.4 2.5/36.5 3.6/38.5 1.2/34.2 
Hours EFT/ExFT out of range in a year 0 0 1.7 0 0 1 0 0 2.3 0 0 1 
Cities Baltimore, MD Houston, TX 
Average Annual Energy Consumption 
Heat Pump (kWh) 150,434 161,371 168,191 140,274 153,494 162,132 264,401 274,816 277,392 253,473 264,311 279,515 
Primary Loop Pump (kWh) 15,800 15,659 15,389 15,800 15,659 15,405 20,406 15,952 15,678 20,406 15,952 16,027 
Cooling Tower Fan (kWh) 0 53 56 2,857 1,198 729 2,686 1,814 2,443 11,184 7,384 6,024 
Secondary Loop Pump (kWh) 0 131 78 5,699 2,990 1,009 7,007 4,338 4,640 29,218 17,689 11,905 
Total annual energy consumption 
(kWh) 10,530 11,296 11,773 9,819 10,745 11,349 18,508 19,237 19,417 17,743 18,502 19,566 
Average CT run time (hours) 0 234 418 5,093 5,349 5,427 1,879 1,939 4,146 7,835 7,907 7,984 
HP EFT Max, 8 years operation (ºC/ºF) 31.8/89.2 34.1/93.4 39.1/102.4 25.8/78.4 33.6/92.5 38.4/101.1 40.5/104.9 40.5/104.9 41.4/106.5 32.6/90.7 37.8/100.0 42.6/108.7 
HP ExFT Min, 8 years operation (ºC/ºF) 4.2/39.6 2.2/36.0 1.1/34.0 4.2/39.6 2.2/36.0 1.2/34.2 6.7/44.1 6.0/42.8 0.8/33.4 5.0/41.0 4.5/40.1 1.7/35.1 
Hours EFT/ExFT out of range in a year 0 0 1.3 0 0 1 0 0 1.3 0 0 0.7 
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Table 6.8 Summary of Net Present Value and system first costs for each office building simulation case 

Control Strategy Set EFT (Control 2) Set Tdiff (Control 1) Set EFT (Control 2) Set Tdiff (Control 1) 
Design Method 1 2 3 1 2 3 1 2 3 1 2 3 

Cities Tulsa, OK El Paso, TX 
Total Length of Loop Installation (m) 9,845 7,923 7,256 9,845 7,923 7,353 3,078 3,953 3,777 3,078 3,953 2,522 
Total Cost of Loop Installation ($) 193,848 155,995 142,876 193,848 155,995 144,783 60,606 77,840 74,359 60,606 77,840 49,653 
First Cost of Cooling Tower + PHX 
incl. Control  ($) 29,980 12,006 4,577 29,980 12,006 4,577 36,382 19,225 23,800 36,382 19,225 29,979 
Cost of Auxiliary Equipment ($) 2,998 1,201 458 2,998 1,201 458 3,638 1,922 2,380 3,638 1,922 2,998 
Total First Cost of Equipment ($) 226,826 169,202 147,910 226,826 169,202 149,818 100,626 98,987 100,539 100,626 98,987 82,630 
Average Annual Operating Cost ($) 13,420 14,047 14,767 13,591 13,912 14,558 20,431 20,793 20,245 20,159 20,354 19,980 
Present Year of 20-year-Operation ($) 153,928 161,116 169,379 155,882 159,565 166,971 234,348 238,502 232,213 231,195 233,460 229,173 
Present Value of Total Cost ($) 380,754 330,318 317,290 382,708 328,768 316,788 334,973 337,489 332,752 331,821 332,447 311,803 
Cities Albuquerque, NM Memphis, TN 
Total Length of Loop Installation (m) 7,489 7,299 5,216 7,489 7,299 5,544 7,483 7,611 5,325 7,483 7,611 5,644 
Total Cost of Loop Installation ($) 147,458 143,712 102,696 147,458 143,712 109,156 147,340 149,861 104,849 147,340 149,861 111,125 
First Cost of Cooling Tower + PHX 
incl. Control  ($) 23,795 9,504 14,310 23,795 9,504 14,310 36,382 14,310 16,591 36,382 14,310 16,591 
Cost of Auxiliary Equipment ($) 2,380 950 1,431 2,380 950 1,431 3,638 1,431 1,659 3,638 1,431 1,659 
Total First Cost of Equipment ($) 173,633 154,166 118,436 173,633 154,166 124,897 187,360 165,601 123,100 187,360 165,601 129,376 
Average Annual Operating Cost ($) 14,978 15,331 15,680 14,823 14,921 15,049 16,108 16,315 16,984 16,576 16,074 16,636 
Present Year of 20-year-Operation ($) 171,792 175,844 179,854 163,818 171,139 172,606 184,756 187,130 194,809 190,129 184,364 190,798 
Present Value of Total Cost ($) 345,425 330,010 298,290 337,451 325,305 297,503 372,116 352,731 317,909 377,489 349,966 320,174 
Cities Baltimore, MD Houston, TX 
Total Length of Loop Installation (m) 11,658 8,774 7,676 11,658 8,774 7,774 6,576 5,231 3,283 6,576 5,231 4,078 
Total Cost of Loop Installation ($) 229,546 172,752 151,145 229,546 172,752 153,065 129,481 103,000 64,645 129,481 103,000 80,298 
First Cost of Cooling Tower + PHX 
incl. Control  ($) 14,310 5,713 3,428 14,310 5,713 3,428 36,382 23,795 29,980 36,382 23,795 19,225 
Cost of Auxiliary Equipment ($) 1,431 571 343 1,431 571 343 3,638 2,380 2,998 3,638 2,380 1,922 
Total First Cost of Equipment ($) 245,287 179,036 154,916 245,287 179,036 156,836 169,502 129,175 97,622 169,502 129,175 101,446 
Average Annual Operating Cost ($) 11,636 12,405 12,859 11,524 12,134 12,549 20,614 20,785 21,010 21,999 21,374 21,943 
Present Year of 20-year-Operation ($) 133,469 142,284 147,503 132,181 139,175 143,940 236,451 238,395 240,992 252,335 245,153 251,684 
Present Value of Total Cost ($) 378,755 321,320 302,419 377,467 318,211 300,775 405,953 367,570 338,614 421,836 374,328 353,129 
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6.5.3.4 Motel Building System Design Results 

The three different HGSHP system design methods were used to design the 

HGSHP system for the motel building in the same six different climate zones. The design 

results, are summarized in Table 6.9. The definition of the design method labels are the 

identical with the definition in Table 6.6.  

Table 6.9 Summary of design results for each motel building simulation case 

Cities Tulsa, OK El Paso, TX 
Design Method 1 2 3-1 3-2 1 2 3-1 3-2 
Number of Boreholes 300 144 144 144 40 40 40 40 

Borehole depth, m (ft) 72.68 
(238.46) 

67.47 
(221.34) 

67.60 
(221.78) 

69.16 
(226.90)

87.63 
(287.48) 

75.03 
(246.15) 

38.85 
(127.46) 

43.78 
(143.62) 

Borehole depth ratio, 
HGSHP/GSHP 0.952 0.493 --- --- 0.114 0.104 --- --- 

Capacity of cooling 
tower, kW (tons) 

306.2 
(87) 

154.9 
(44) 

154.9 
(44) 

73.9 
(21) 

542.1 
(154) 

383.7 
(109) 

383.7 
(109) 

383.7 
(109) 

Cities Albuquerque, NM Memphis, TN 
Design Method 1 2 3-1 3-2 1 2 3-1 3-2 
Number of Boreholes 150 64 64 64 200 128 128 128 

Borehole depth, m (ft) 82.68 
(271.26) 

96.47 
(316.5) 

38.34 
(125.8) 

40.34 
(132.36)

67.74 
(222.24) 

65.88 
(216.15) 

45.97 
(150.82) 

46.97 
(154.1) 

Borehole depth ratio, 
HGSHP/GSHP 0.613 0.308 --- --- 0.656 0.400 --- --- 

Capacity of cooling 
tower, kW (tons) 

306.2 
(87) 

246.4 
(70) 

383.7 
(109) 

383.7 
(109) 

383.7 
(109) 

183.0 
(52) 

246.4 
(70) 

183.0 
(52) 

Cities Baltimore, MD Houston, TX 
Design Method 1 2 3-1 3-2 1 2 3-1 3-2 
Number of Boreholes 200 150 150 150 64 48 48 48 

Borehole depth, m (ft) 99.57 
(326.66) 

65.47 
(214.79) 

68.97 
(226.29) 

69.72 
(228.74)

92.30 
(302.81) 

84.33 
(276.68) 

64.98 
(213.19) 

66.40 
(217.83) 

Borehole depth ratio, 
HGSHP/GSHP 0.902 0.626 --- --- 0.149 0.107 --- --- 

Capacity of cooling 
tower, kW (tons) 

123.2 
(35) 

88.0 
(25) 

10.6 
(3) 

42.2 
(12) 

542.1 
(154) 

383.7 
(109) 

246.4 
(70) 

246.4 
(70) 

  

For each simulation case, the annual system component energy consumptions are 

listed in Table 6.10 and shown in Figure 6.18. A 20-year life-cycle cost analysis was 

performed to evaluate the each case. The present value of the system operating costs, the 
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system first costs and the system life cycle costs are listed in Table 6.11 and shown in 

Figure 6.19.  
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Figure 6.18 HGSHP system annual energy consumption in each motel building simulation case 
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Figure 6.19 HGSHP system life cycle cost in each motel building simulation case 
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Table 6.10 Summary of energy consumption and fluid temperature for each motel building simulation case 

Control Strategy Set EFT (Control 2) Set Tdiff (Control 1) Set EFT (Control 2) Set Tdiff (Control 1) 
Design Method 1 2 3 1 2 3 1 2 3 1 2 3 

Cities Tulsa, OK El Paso, TX 
Average Annual Energy Consumption 
Heat Pump (kWh) 281,494 350,710 344,524 322,920 348,124 331,070 421,284 423,341 435,557 381,006 387,261 409,872 
Primary Loop Pump (kWh) 17,851 17,852 17,852 17,855 17,847 17,847 22,453 22,453 22,453 22,453 22,453 22,453 
Cooling Tower Fan (kWh) 0 242 243 6,152 3,113 1,487 6,350 4,788 5,952 11,889 8,439 8,464 
Secondary Loop Pump (kWh) 0 574 576 14,743 7,395 3,708 14,295 9,103 11,320 26,783 16,059 16,105 
Total annual energy consumption 
(kWh) 299,345 369,377 363,195 361,669 376,479 354,112 464,382 459,685 475,283 442,131 434,213 456,893 
Average CT run time (hours) 0 513 515 6,590 6,608 6,633 3,834 4,069 5,061 7,182 7,179 7,199 
HP EFT Max, 8 years operation (ºC/ºF) 24.1/75.4 34.2/93.6 34.2/93.6 29.8/85.6 32.8/91 36.1/97 36.8/98.2 36.7/98.1 36.9/98.4 30.2/86.4 33.8/92.8 36.1/97 
HP ExFT Min, 8 years operation (ºC/ºF) 6.7/44.1 1/33.8 1/33.8 3.2/37.8 1/33.8 1.2/34.2 7/44.6 6.1/43 1.8/35.2 6.2/43.2 5.3/41.5 1.8/35.2 
Hours EFT/ExFT out of range in a year 0 5.7 5.7 0 5.7 4.3 0 0 2 0 0 0.7 
Cities Albuquerque, NM Memphis, TN 
Average Annual Energy Consumption 
Heat Pump (kWh) 358,845 415,357 431,505 327,074 364,572 396,506 308,906 349,482 361,512 326,461 323,753 342,459 
Primary Loop Pump (kWh) 22,453 22,453 22,453 22,461 22,452 22,452 17,169 17,169 17,169 17,169 17,160 17,160 
Cooling Tower Fan (kWh) 42 1,251 4,804 5,615 4,719 7,541 0 523 1,377 8,221 3,929 3,932 
Secondary Loop Pump (kWh) 101 2,468 9,131 13,463 9,329 14,344 0 1,039 2,718 15,638 7,831 7,836 
Total annual energy consumption 
(kWh) 381,440 441,529 467,893 368,613 401,072 440,843 326,075 368,213 382,776 367,489 352,674 371,388 
Average CT run time (hours) 45 1,655 4,082 6,018 6,257 6,412 0 929 1,823 6,990 6,998 5,256 
HP EFT Max, 8 years operation (ºC/ºF) 33/91.4 36/96.8 36.7/98.1 25.9/78.6 35.2/95.4 36.2/97.2 31.5/88.7 33.6/92.5 35/95 31.2/88.2 32.6/90.7 37.3/99.1 
HP ExFT Min, 8 years operation (ºC/ºF) 6.9/44.4 5.9/42.6 1.2/34.2 6.9/44.4 5.9/42.6 1.6/34.9 7/44.6 4.2/39.6 1.1/34 4.5/40.1 4/39.2 1.3/34.3 
Hours EFT/ExFT out of range in a year 0 0 3.3 0 0 2 0 0 6.3 0 0 5 
Cities Baltimore, MD Houston, TX 
Average Annual Energy Consumption 
Heat Pump (kWh) 234,307 308,600 266,737 241,130 358,189 258,406 437,807 447,434 466,247 429,082 439,184 457,547 
Primary Loop Pump (kWh) 12,243 12,245 12,245 12,246 12,243 12,243 17,713 17,713 17,713 17,713 17,713 17,713 
Cooling Tower Fan (kWh) 0 18 1 2,136 1,570 771 8,687 6,762 4,503 14,069 9,929 6,338 
Secondary Loop Pump (kWh) 0 48 5 6,416 4,278 1,067 19,538 12,849 8,889 31,669 18,878 12,522 
Total annual energy consumption 
(kWh) 16,401 21,602 18,672 16,879 25,073 18,088 30,646 31,320 32,637 30,036 30,743 32,028 
Average CT run time (hours) 857 857 857 857 857 857 1,240 1,240 1,240 1,240 1,240 1,240 
HP EFT Max, 8 years operation (ºC/ºF) 22.9/73.2 33.5/92.3 35.7/96.3 22.4/72.3 31.4/88.5 32.7/90.9 34.5/94.1 35.5/95.9 42.5/108.5 33.5/92.3 34.7/94.5 42.4/108.3 
HP ExFT Min, 8 years operation (ºC/ºF) 5.6/42.1 0.9/33.6 1.4/34.5 1.8/35.2 0.9/33.6 1.5/34.7 9.8/49.6 5.5/41.9 1.7/35.1 9.6/49.3 5.2/41.4 1.7/35.1 
Hours EFT/ExFT out of range in a year 0 19 11.3 0.7 20.3 10 0 0 1.7 0 0 1.7 
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Table 6.11 Summary of Net Present Value and system first costs for each motel building simulation case 

Control Strategy Set EFT (Control 2) Set Tdiff (Control 1) Set EFT (Control 2) Set Tdiff (Control 1) 
Design Method 1 2 3 1 2 3 1 2 3 1 2 3 

Cities Tulsa, OK El Paso, TX 
Total Length of Loop Installation (m) 21,805 9,715 9,734 21,805 9,715 9,959 3,505 3,001 1,554 3,505 3,001 1,751 
Total Cost of Loop Installation ($) 429,344 191,297 191,653 429,344 191,297 196,083 69,017 59,095 30,593 69,017 59,095 34,482 
First Cost of Cooling Tower + PHX 
incl. Control  ($) 23,795 12,006 12,006 23,795 12,006 5,713 42,222 29,980 29,980 42,222 29,980 29,980 
Cost of Auxiliary Equipment ($) 2,380 1,201 1,201 2,380 1,201 571 4,222 2,998 2,998 4,222 2,998 2,998 
Total First Cost of Equipment ($) 455,519 204,504 204,860 455,519 204,504 202,367 115,461 92,073 63,571 115,461 92,073 67,460 
Average Annual Operating Cost ($) 19,705 24,550 24,117 22,604 24,369 23,175 29,490 29,634 30,489 26,670 27,108 28,691 
Present Year of 20-year-Operation ($) 240,342 296,571 291,607 290,382 302,273 284,314 372,850 369,078 381,602 354,985 348,627 366,837 
Present Value of Total Cost ($) 695,861 501,075 496,467 745,901 506,777 486,682 488,311 461,151 445,173 470,446 440,700 434,297 
Cities Albuquerque, NM Memphis, TN 
Total Length of Loop Installation (m) 12,402 6,174 2,454 12,402 6,174 2,582 13,548 8,433 5,884 13,548 8,433 6,012 
Total Cost of Loop Installation ($) 244,203 121,562 48,319 244,203 121,562 50,840 266,768 166,042 115,856 266,768 166,042 118,376 
First Cost of Cooling Tower + PHX 
incl. Control  ($) 23,795 19,225 29,980 23,795 19,225 29,980 29,980 14,310 19,225 29,980 14,310 14,310 
Cost of Auxiliary Equipment ($) 2,380 1,922 2,998 2,380 1,922 2,998 2,998 1,431 1,922 2,998 1,431 1,431 
Total First Cost of Equipment ($) 270,378 142,709 81,297 270,378 142,709 83,817 299,746 181,783 137,003 299,746 181,783 134,117 
Average Annual Operating Cost ($) 25,119 29,075 30,205 22,895 25,520 27,755 21,623 24,464 25,306 22,852 22,663 23,972 
Present Year of 20-year-Operation ($) 306,256 354,501 375,669 295,958 322,018 353,951 261,804 295,636 307,329 295,055 283,160 298,185 
Present Value of Total Cost ($) 576,634 497,211 456,966 566,336 464,728 437,768 561,550 477,419 444,332 594,801 464,942 432,302 
Cities Baltimore, MD Houston, TX 
Total Length of Loop Installation (m) 19,913 9,820 10,346 19,913 9,820 10,458 5,907 4,048 3,119 5,907 4,048 3,187 
Total Cost of Loop Installation ($) 392,079 193,352 203,703 392,079 193,352 205,914 116,313 79,713 61,404 116,313 79,713 62,762 
First Cost of Cooling Tower + PHX 
incl. Control  ($) 9,504 6,983 689 9,504 6,983 3,428 42,222 29,980 19,225 42,222 29,980 19,225 
Cost of Auxiliary Equipment ($) 950 698 69 950 698 343 4,222 2,998 1,922 4,222 2,998 1,922 
Total First Cost of Equipment ($) 402,533 201,033 204,461 402,533 201,033 209,685 162,757 112,691 82,552 162,757 112,691 83,909 
Average Annual Operating Cost ($) 16,401 21,602 18,672 16,879 25,073 18,088 30,646 31,320 32,637 30,036 30,743 32,028 
Present Year of 20-year-Operation ($) 197,954 257,658 223,998 210,301 302,113 218,779 388,396 389,209 399,321 395,452 389,968 396,726 
Present Value of Total Cost ($) 600,487 458,690 428,459 612,834 503,146 428,464 551,153 501,900 481,873 558,209 502,659 480,634 
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6.5.4 Comparison Conclusions and Recommendations 

This section provides a comparative study of three HGSHP system design method 

for commercial applications: a required borehole length difference equation-based 

method (Kavanaugh and Rafferty method), a temperature limit-optimized simulation-

based method (GLHEPRO method), and a life cycle cost-optimized simulation-based 

method (GenOpt method). An office building and a motel building was used as the test 

building and modeled using EnergyPlus for six U.S. cities: Tulsa, OK; El Paso, TX; 

Albuquerque, NM; Memphis, TN; Baltimore, MD; and Houston TX. The HGSHP system 

is modeled and simulated using the HVACSIM+ modeling environment. Overall system 

performance was evaluated using a 20-year life-cycle cost analysis. 

Some specific conclusions of this study are as follows: 

1. In the required borehole length difference equation-based method, the cooling 

tower was sized by assuming that the fluid was cooled from 35ºC (95ºF) to 

29.4ºC (85ºF) with a 25.6ºC (78ºF) wet bulb temperature. In the design 

procedures of the two simulation-based methods, the cooling tower was sized 

based on the local outdoor peak wetbulb temperature and the heat pump peak 

exiting fluid temperature. These methods consistently gave out a smaller 

cooling tower size. 

2. All three HGSHP system design methods presented in this paper gave feasible 

HGSHP system designs for the office building in the six different climate 

zones. Although, in some cases, there were a few hours each year in which the 
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simulated heat pump exiting fluid temperatures exceeded the allowed 

temperature limits of the heat pump, the temperature would not cause 

freezing. For different building locations and system control strategies, the 

three design methods gave different system component sizes. 

3. For the Baltimore case, the equation-based method produced both a very large 

GLHE and cooling tower. When a simulation was performed, it was 

determined that the cooling tower would never turn on, as the ground loop 

was more than capable of handling the load. This is a substantial flaw in this 

particular design method, as it resulted in unnecessary equipment, and 

therefore a higher total cost. 

4. The HGSHP system designed from the life cycle cost-optimized simulation-

based method had the minimum system life cycle cost, as anticipated. In most 

cases, the systems designed with the temperature limit-optimized simulation-

based method had a lower system life cycle cost than the systems designed 

with the required borehole length difference equation-based method, except 

for the systems in El Paso, TX. 

6.6 Conclusions 

In this chapter, a design procedure was developed for sizing the HGSHP system 

components. The design of an HGSHP system has many degrees of freedom and there 

are many possible configurations of HGSHP systems. Therefore, in this chapter, the 

configurations of HGSHP systems were investigated firstly. In HGSHP systems, the 
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GLHE and PHE/cooling tower can be placed in serial or in parallel. However, 

preliminary testing has shown that there are a large number of scenarios where the serial 

connection is infeasible. Therefore, in this research, a parallel-connected HGSHP system 

is investigated.  

In HGSHP systems, variable flow pumping system will likely be utilized save 

pumping energy. When the system flow rate varies, the distribution of flow to GLHE and 

PHE/cooling tower may also change. A strategy for controlling the distribution of flow 

between GLHE and PHE/cooling tower was developed. This flow distribution control 

strategy is physically feasible. Applying this flow distribution control strategy, flow is 

able to pass through each component without requiring excessive pumping power.  

A new design procedure, implemented in GLHEPRO, was developed for sizing 

the HGSHP system components. The new design procedure is capable of being used for 

both a new HGSHP and a “retrofit” HGSHP system. For a new HGSHP system, 

GLHEPRO gives out the size of GLHE and open-circuit cooling tower simultaneously. 

For designing a “retrofit” HGSHP with giving GLHE size, GLHEPRO gives out the 

required capacity of the cooling tower, which is added into the system to help meet loads 

of the system. 

In Kavanaugh’s (1998) design procedure, the cooling tower is sized at the 

nominal design conditions: the cooling tower capacity as the flow rate of water cooled 

from 35ºC (95ºF) to 29.4ºC (85ºF) with a 25.6ºC (78ºF) wet bulb temperature. This 

cooling tower design procedure will tend to oversize the cooling tower/fluid cooler 

because of a possibly higher entering fluid temperature and a possibly lower local peak 
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wetbulb temperature. In this chapter, a new algorithm was developed to size cooling 

towers based on the local peak wetbulb temperature and the peak ExFT of heat pump. 

This procedure gives a much smaller cooling tower size than that from Kavanaugh (1998) 

design procedure.  

An example of design a HGSHP system for a cooling dominated office building 

in Tulsa, OK, was presented in this chapter. Three different systems were designed for 

office building: 1) 100% GSHP system; 2) a new HGSHP system; and 3) a “retrofit” 

HGSHP with given GLHE size. 

A comparative study of three hybrid ground source heat pump system design 

procedures is presented. The three design procedures are: the Kavanaugh and Rafferty 

(1997) procedure, the new procedure developed in this chapter and the GenOpt design 

procedure. An actual office building and a motel building is used as the test building and 

modeled using EnergyPlus for six U.S. cities: Tulsa, OK; El Paso, TX; Albuquerque, 

NM; and Memphis, TN. The HGSHP system is modeled and simulated using the 

HVACSIM+ modeling environment. Overall system performance was evaluated using a 

20-year life-cycle cost analysis. In general, the HGSHP designed from the new 

GLHRPRO design procedure would have a smaller GLHE and cooling tower size and a 

smaller system initial cost and the life cycle cost than the system designed from the 

Kavanaugh and Rafferty procedure. 
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7 INVESTIGATION AND OPTIMIZATION OF HGSHP 

SYSTEM CONTROLS 

In this chapter, controls of HGSHP systems will be investigated. The study aims 

to develop generally applicable optimal control strategies. Three different building types 

and 16 U.S. cities are chosen to provide different building load profiles for the 

investigation of HGSHP system controls. Firstly, three control strategies previously 

developed (Yavuzturk and Spitler 2000) will be optimized. Optimal setpoints of the three 

control strategies are investigated to try to find common setpoint values which are 

generally applicable for all HGSHP systems. Then a range of new control strategies will 

be investigated for HGSHP systems. Two current ideas to be tested are described in 

Section 7.4. Finally, recommendations about generic control strategies for HGSHP 

systems will be presented.  

7.1 Test Buildings and cities 

For the purpose of estimating control strategies of HGSHP systems under 

different conditions, different building types and building locations are chosen to provide 

different building loads profile. 
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Test building types will include: 

o Office building 

o Motel building 

7.1.1 Office Building 

The test office building was based on a typical floor plan from the Bank of 

Oklahoma (BOK) Tower in Tulsa, OK. The office building is 52 stories, of which only 

three stories with 7,144m2 are modeled for this work. The building glazing area is 60%-

70% of the exterior envelope. More details about the BOK building are readily available 

in Feng’s M.S. thesis (1999). 

Each of the three floors has ten zones, 6 perimeter zones and 4 core zones. The 

building was modeled and simulated using DesignBuilder (DesignBuilder 2006) and 

EnergyPlus by Gentry (2007). The following assumptions have been used to determine 

the annual building loads.  

• Office occupancy of 1 person per 5 m2 (54 ft2). 

• Equipment heat gains of 10 W/m2 (0.9 W/ft2). 

• Lighting heat gains of 13.13 W/m2 (1.18 W/ft2). 

• Minimum fresh air per person of 9.4 L/s-person (20 ft3/min-person). 

• Infiltration of 0.5 ACH. 
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• Day time (7am-6pm, Monday-Friday), night time and weekend thermostat 

setting are specified for each zone. During the day, the temperature set point is 

20.0 ºC (68 ºF) for heating and 24 ºC (75.2 ºF) for cooling. A night and 

weekend setback has been set for 5 ºC (41 ºF) for heating and 30 ºC (86 ºF) 

for cooling.  

The calculated office building loads for El Paso, TX are shown in Figure 7.1. 

Additional results for other locations are available in Appendix B.  

Office Building Loads In El Paso, TX
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Figure 7.1 Office building loads for El Paso, TX. 
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7.1.2 Motel Building 

The test motel building was based on an actual motel in Tulsa, Oklahoma as 

described by Chen (1996). The motel building is a 2-story building with 1,037m2. For 

this research a building with a load ranging from 100 to 500-tons was desired. Therefore 

the motel building was modeled as three identical buildings having ten floors with the 

same floor plan by Gentry (2007). (This did not include the swimming pool in Chen’s 

(1996) motel) The building was modeled and simulated using DesignBuilder 

(DesignBuilder 2006) and EnergyPlus (Gentry 2007). The following assumptions have 

been used to the annual building loads calculation.  

• Motel occupancy of 1 person per 36.23 m2 (390 ft2). 

• Equipment heat gains of 3.33 W/m2 (0.3 W/ft2). 

• Lighting heat gains of 7.76 W/m2 (0.7 W/ft2). 

• Minimum fresh air per person of 7 L/s-person (15 ft3/min-person). 

• Infiltration of 0.2 each. 

• Thermostat settings are specified for each zone. The temperature set point is 

20.0 ºC (68 ºF) for heating and 24 ºC (75.2 ºF) for cooling. There is no 

setback.  

The calculated motel building loads for Tulsa, OK are shown in Figure 7.2. Motel 

building loads in other locations are available in Appendix B.  
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Motel Building Loads In Tulsa, OK
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Figure 7.2 Motel building loads for Tulsa, OK. 

7.1.3 Test Cities 

Briggs et al. (2002) presented climate classification for building energy codes and 

standards on the basis of heat degree days, cooling degree days, and humidity. Figure 7.3 

shows a map of the climate zone of the U.S. and Table 7.1 gives their description. Of the 

17 climate zones, representative cities are given for those 15 zones that exist within the 

U.S.  

It should be noted that the main objective of this research is to investigate and 

optimize HGSHP systems control strategies. Specifically, this means a control strategy 

for operation of the supplemental heat rejecter. Therefore, only those cities in which the 

buildings are cooling constrained will be chosen for the investigation of controls. After 
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the load investigation, GSHP system design investigation, 5 cities together with Tulsa, 

OK, in total 6 cities, are chosen for the study of control strategies of HGSHP system. The 

six cities are: Tulsa, OK; El Paso, TX; Albuquerque, NM; Memphis, TN; Baltimore, MD; 

and Houston, TX. The office building and motel building in Miami, FL. and Phoenix, AZ 

has little demand for heating. For these two climate zones, a water loop heat pump 

system would be a better choice than the HGSHP system. 

 

Figure 7.3 Map of Briggs et al.’s proposed climate zones (2002). 
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Table 7.1 Description of climate zones (Briggs et al. 2002) 

Zone No. Climate Zone 
Name and Type Representative U.S. City 

1A Very Hot-Humid Miami, Fl 
1B Very Hot-Dry - - - 
2A Hot-Humid Houston, TX 
2B Hot-Dry Phoenix, AZ 
3A Warm-Humid Memphis, TN 
3B Warm-Dry El Paso, TX 
3C Warm-Marine San Francisco, CA 
4A Mixed-Humid Baltimore, MD 
4B Mixed-Dry Albuquerque, NM 
4C Mixed-Marine Salem, OR 
5A Cool-Humid Chicago, IL 
5B Cool-Dry Boise, ID 
5C Cool-Marine - - - 
6A Cold-Humid Burlington, VT 
6B Cold-Dry Helena, MT 
7 Very Cold Duluth, MN 
8 Subarctic Fairbanks, AK 
3A Warm-Humid Tulsa, OK 

7.2 Methodology 

Yavuzturk and Spitler (2000) developed three control strategies for HGSHP 

system, including set point control, set temperature difference control and “preset 

schedule control”. Optimization of these three control strategies has not been investigated 

and the best set point values for these control strategies are unknown. Therefore, these 

control strategies might or might not be generally applicable for all HGSHP systems. 

Therefore, additional control strategies will be developed and investigated.  

In this section, a general approach has been developed to optimize the best set 

point value of the candidate control strategy. The general procedure is as follows: 

1. Choose a candidate control strategy. 
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This could be any control strategy with setpoints to be determined. 

2. Optimize the setpoints for a range of building types and climates. 

Using the buffer program developed in this chapter, the optimization program 

searches to find the best setpoint values for the candidate control strategy with 

different combinations of the HGSHP system designs, building types and 

climates.  

3. Formulate generic control strategy 

The results from step 2 are reviewed. A generic control strategy, i.e. based on a 

single set of setpoints for all system variations/buildings/climates, is sought. 

Alternatively, two or three sets of setpoints might be utilized, if the choice of 

which set to use can be readily correlated to climate or chosen based on other 

objective criteria. The generic control strategy is not expected to perform as well 

as the individually-optimized setpoints developed in step 2.  However, what is 

sought is a control strategy with generic setpoints for which the performance 

approaches that of the individually-optimized setpoints. It is expected that some 

control strategies, e.g adaptive control strategies, will be more suitable as generic 

control strategies than others.  

4. Test the generic control strategy against the individually-optimized control 

strategies. 

For a range of system variations/buildings/climates, the performance of the 

generic control strategy will be compared against the performance of the 
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individually-optimized control strategy.  Generic control strategies that compare 

favorably to the individually-optimized control strategies may be recommended 

for use.  It is expected that the insights gained will lead to synthesis of new 

candidate control strategies and the process will be repeated, starting with step 1.   

7.2.1 Different HGSHP System Designs 

The main objective of this research is to investigate and optimize HGSHP systems 

control strategies. Specifically, this means a control strategy for operation of the 

supplemental heat rejecter. However, the design of the HGSHP system has an impact on 

both HGSHP system performance and the control strategy. Therefore, in the investigation 

of HGSHP system control strategies, the influence of different HGSHP system designs 

will be considered. 

For a new HGSHP system, a properly-sized GLHE and cooling tower will be 

designed. In some existing GSHP systems, a larger size of GLHE than that of new 

HGSHP system is designed but it can not meet the cooling loads of the system. Therefore 

a supplemental cooling tower is added into the system to help meet the loads of the 

system, which is referred to as a “retrofit design”. Both the new HGSHP system and 

“retrofit design” HGSHP system work well but they have different sizes of GLHE. For 

sizing the cooling tower, Kavanaugh’s design procedure (1998) tends to oversize the 

cooling tower and the new version of GLHEPRO gives out a smaller size of cooling 

tower that that from Kavanaugh’s design procedure. More details about sizing the GLHE 

and cooling tower are given in Chapter 4.  



 

 288

Therefore, in this research, HGSHP systems with combination of different sizes 

of GLHE and cooling tower are designed for investigation of control strategy. The 

different combinations represent designs of new systems with Kavanaugh’s procedure 

and the new GLHEPRO procedure and designs of “retrofit” systems with different 

amount of GLHE undersizing. 

In practice, a new HGSHP system with shortest size of GLHE and a “retrofit 

design” HGSHP system with a larger size of GLHE are used. The GLHE size of the 

“retrofit design” HGSHP system, retrofitL ,  is determined from the GLHE size of a new 

HGSHP system and the GLHE size of a GSHP system. 

)(
2
1

minmax LLLretrofit +=      7-1 

Where:  

minL  = The minimum length of GLHE, which is calculated from a new HGSHP 

system, (m); 

maxL  = The maximum length of GLHE, which is calculated from a GSHP system, (m). 

For each size of GLHE, two different sizes of cooling tower are designed. One 

cooling tower is sized from the new procedure described in Section 6.3.4 and the other 

cooling tower is sized from Kavanaugh’s design procedure. Therefore, for a particular 

building type and location, four different HGSHP systems are designed for the 

investigation of the control strategies, which are listed in Table 7.2.   
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Table 7.2 HGSHP systems with different sizes of GLHE and cooling tower 

System Case GLHE size Cooling tower Size 

A minL  NewCT  for minL  

B minL  KavaCT  for minL  

C maxL  NewCT  for maxL  

D maxL  KavaCT  for maxL  

  

7.2.2 Methodology for Optimizing Control Strategies 

An approach has been developed to optimize the best set point values of the 

candidate control strategies for the three building types in 16 U.S. locations. There are 

three main components of the optimization methodology: 

1. Buffer Program 

2. HVACSIM+ 

3. GenOpt 

A “buffer program”, an interface between GenOpt (Wetter 2000) and 

HVACSIM+ is developed for these three control strategies. For each of the specified 

HGSHP systems, the three programs would automatically adjust the parameter values 

(setpoint values), run the simulation and iterate to get the minimal operation cost of the 

HGSHP system. The three work together as shown below in the flow diagram in Figure 

7.4. Each of the three main optimization components will be discussed in mode detail in 

the following sections. 
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Start Buffer Program 

Specify GLHE and CT size for four HGSHP systems 

Call 
HVACSIM+ Read output file  

Estimate 
system cost  

Call GenOpt to 
initialize set 
point value 

Calculate thermal 
resistance of GLHE 

and g-functions  

Specified parameter for 
HP, CT, PHE, Pump 
and flow distribution 

controller 

Write dfn file for 
3rd time 

Recall GenOpt to 
reset set point value 

Minimum 
operating cost

End Buffer Program 

All HGSHP 
cases 

completed

No, move to next HGSHP system case 

Yes 

Yes 

No 

Specify boundary 
file, wetbulb file, 
gfuncCreater file 

Write result summary file  

Write dfn file for 
1st time 

Write dfn file for 
2nd time 

 

Figure 7.4 Optimization methodology flow diagram. 
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7.2.3 HVACSIM+ 

The HVACSIM+ HGSHP system model is comprised of six different component 

models that are connected together to form a HGSHP system. The component models are 

listed below along with the section number where more detailed information can be 

found on each model. 

1. GLHE model – Section 4.1.7. 

2. Heat pump model – Section 4.2.2. 

3. Open-circuit cooling tower model – Section 4.3.1.1. 

4. Main loop variable speed circulation pump model – Section 4.4.2. 

5. Secondary loop variable speed circulation pump model – Section 4.4.1. 

6. Plate frame heat exchanger model – Section 4.5.2. 

The HVACSIM+ model was formed from the HGSHP schematic that is shown in 

Figure 6.1, and is discussed in more details in Chapter 4. 

In order to perform a simulation for a specified HGSHP system, building type, 

location and control strategy, HVACSIM+ needs five files: 

1. Input file (INPUTFILE.dat), which specified the names of the boundary file, 

definition file and output file. 
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2. The boundary file (*.bnd), which contains site-specified weather data and 

building site-specified heating and cooling loads. 

3. The definition file (*.dfn), which describes the system configuration and 

parameter site-specific parameter values. 

4. The wetbulb temperature file (Wetbulb.txt), which contains site-specified 

outdoor air wetbulb temperature and is used for the variable time step scheme 

for the multiyear simulation in Section 4.7.1. 

5. The timestep file (TIMESTEP.txt), which contains information about the 

variable time step scheme for the multiyear simulation in Section 4.7.1.  

All these five files are created by buffer program for each HGSHP system, 

building type, location and control strategy. Details are presented in Section 7.2.5. 

7.2.4 GenOpt 

GenOpt (Wetter 2000), a generic optimization program, minimizes an objective 

function by adjusting the interested parameters. GenOpt can be coupled to any simulation 

program that has text-based I/O. Khan (2004) utilized GenOpt (Wetter 2000) coupled 

with HVACSIM+ to optimize the design of GSHP system. In this research, GenOpt 

(Wetter 2000), coupled with HVACSIM+, is used to optimize the setpoint of the three 

control strategies for each building type and each location. 
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In GenOpt, the Nelder Mead ONeill algorithm is used to optimize the setpoint of 

the three control strategies. More details about the optimization algorithms are available 

in Wetter (2000). 

The way that GenOpt works together with the buffer program and HVACSIM+ is 

presented in the next section.  

7.2.5 Buffer Program 

The “buffer program” is an interface between GenOpt (Wetter 2000) and 

HVACSIM+ and runs the optimization for these three control strategies automatically, as 

shown in Figure 7.5.  
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Figure 7.5 Buffer program dialog box. 

As illustrated in Figure 7.4, the procedure of the buffer program is described as 

follows: 

1. For the building type and location, the buffer program designs four HGSHP 

systems with combination of different sizes of GLHE and cooling tower. 

Details are available in Section 7.2.1. For each HGSHP, all the selected 

control strategies will be applied. Here, three control strategies will be 

investigated: 1) set EFT; 2) set ExFT; and 3) set Tdiff. 
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2. For each building type, location and the specified control strategy, the buffer 

program generates three files: 1) the wetbulb temperature file; 2) boundary 

file; and 3) gfuncCreater file. The first two files are required for running an 

HGSHP system simulation in HVACSIM+. The gfuncCreater.dat file contains 

the information of the GLHE and will be read by the buffer program to 

calculate the thermal resistance of borehole and g-functions of the GLHE 

without calling GLHEPRO. This is calculated in Step 4.  

3. Update the dfn file from a template file for the first time. In the dfn file, the 

size of GLHE and cooling tower is updated. 

4. For each HGSHP system with the specified size of the GLHE, the buffer 

program calculates the thermal resistance of boreholes and the g-functions of 

GLHE. The required GLHE information is read from the gfuncCreater.dat file 

from Step 2. Details about the calculation of the thermal resistance of 

boreholes and the g-functions of the GLHE are available in Section 4.1. 

5.  For each HGSHP system, the buffer program calculates the parameters for 

heat pumps, cooling tower, plate frame heat exchanger, circulation pumps and 

flow distribution controller. Details are available in Chapter 4. 

6. Update the dfn file for the second time. In the dfn file, the parameters of 

GLHE, heat pumps, cooling tower, plate frame heat exchange, circulation 

pumps and flow distribution controller will be updated. Till now, all the 
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parameters of the HGSHP system are ready except for the set point value of 

the selected control strategy. 

7. Call GenOpt to initialize the set point value of the selected control strategy. 

8. Update the dfn file for the 3rd time. In the dfn file, the set point value of the 

selected control strategy will be updated. 

9. Call HVACSIM+ to run the HGSHP system simulation. 

10. Read the simulation result file.  

11. Estimate the HGSHP system operating cost by the buffer program. The 

system operation cost is calculated with the electricity price of $0.08/kW-hr. 

Then the system operation cost is written to a file, which will be read by 

GenOpt. 

12. GenOpt reads in the objective function (the system operating cost) to judge 

whether the convergence (the smallest system operating cost) is reached or 

not. If the convergence is not reached, GenOpt will generate the new 

parameter (the setpoint value). And then go to Step 8 to rerun the simulation. 

If the convergence is reached, go to the next step. 

13. If all the cases are optimized, go to the next step. If not, go to Step 2 to run the 

other cases. 

14. After all the cases are optimized, the buffer program will read the results of all 

case and write a summary report file. 
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In order to run the optimization for a specified building type, location and control 

strategy, the buffer program needs six files.  

1. “Building loads.lod” file, which contains the annual hourly heating and 

cooling loads of the specified building type and location. 

2. “Weather.dat” file, which contains the selected local weather data. 

3. “HGSHP basic size.dat” file, which contains the design results of a new 

HGSHP system and a GSHP system for the specified building type and 

location. Details about the design procedure are available in Chapter 6.  

4. “PipeAndPumping.txt” file, which contains information of the specified 

HGSHP system layout, pipe and system flow for the specified building type. 

5. “TowerAndPHE.txt” file, which is a database of cooling tower and plate 

frame heat exchanger. The database is calculated from the cooling tower and 

plate frame heat exchanger manufacturer’s catalog data. 

6. “SystemData.dat” file, which contains the file name needed to run the buffer 

program. Also the file has the information about the variable names that are 

required for estimating the system operation cost. 

In this section, the buffer program, which couples GenOpt and HVACSIM+, has 

been developed to optimize three control strategies for the HGSHP system designs, 

building types and locations. Using the buffer program, the best setpoint value of each 
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control strategy for each specified HGSHP system, building types and location are 

obtained automatically without manually setting up and running the simulations.  

7.3 Investigation of Previously Developed Control Strategies 

Using the buffer program, the best setpoint value of preciously developed 

(Yavuzturk and Spitler 2000) control strategy for each specified HGSHP system, building 

types and location are obtained. Based on the investigation, the author will try to find 

whether there is a common setpoint value which is generally applicable for all HGSHP 

systems. If so, generally applicable control strategies would be developed for all HGSHP 

systems. 

Two building types and six cities have been used for the investigation of the three 

control strategies. For each building types and location, four different HGSHP systems 

with combination of different size of the GLHE and the cooling tower were designed. 

The study cases are listed in Table 7.3. 

The three controls to be investigated are: heat pumps EFT, heat pumps ExFT, and 

the temperature difference between ExFT and the ambient wet-bulb temperature.  A dead 

band of 1ºC was used for these three controls. E.g. if the objective (temperature or 

temperature difference) exceeds the setpoint value, the cooling tower turns on; if the 

objective (temperature or temperature difference) is lower than the setpoint value minus 

the dead band, the cooling tower turns off. Also for each HGSHP system, a heat pump 

EFT of 32.2ºC (90ºF) is used to control the cooling tower, which is referred as the base 
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case. The annual system operation cost with optimized control strategy is then compared 

to the base case. 

 Table 7.3 HGSHP systems with different sizes of GLHE and cooling tower 

Office Building Motel Building 

Building Type 
and Location 

System 
Design 
Case 

GLHE 
size (m) 

Cooling 
tower 
Size 

(Model) 

GLHE 
size (m) 

Cooling 
tower 
Size 

(Model) 
A 8,606 ACT-50 9,716 ACT-10 
B 8,606 ACT-100 9,716 ACT-14 
C 11,408 ACT-30 14,712 ACT-8 

Tulsa 

D 11,408 ACT-50 14,712 ACT-10 
A 8,092 ACT-9 6,174 ACT-11 
B 8,092 ACT-14 6,174 ACT-16 
C 11,302 ACT-7 13,124 ACT-9 Albuquerque 

D 11,302 ACT-10 13,124 ACT-13 
A 4,744 ACT-14 3,000 ACT-15 
B 4,744 ACT-19 3,000 ACT-20 
C 13,616 ACT-10 15,892 ACT-12 El Paso 

D 13,616 ACT-15 15,892 ACT-15 
A 7,974 ACT-12 8,432 ACT-11 
B 7,974 ACT-15 8,432 ACT-14 
C 12,586 ACT-9 14,748 ACT-9 Memphis 

D 12,586 ACT-11 14,748 ACT-10 
A 8,774 ACT-7 9,820 ACT-8 
B 8,774 ACT-11 9,820 ACT-12 
C 10,568 ACT-5 12,756 ACT-6 Baltimore 

D 10,568 ACT-8 12,756 ACT-9 
A 5,232 ACT-14 4,048 ACT-15 
B 5,232 ACT-20 4,048 ACT-19 
C 15,927 ACT-10 20,976 ACT-12 Houston 

D 15,927 ACT-15 20,976 ACT-15 
 

Run the buffer program, the setpoint of the applied control strategy for each 

HGSHP system was optimized and a minimum system operation cost was obtained. The 

annual operation costs of all cases are shown below. Figure 7.6, Figure 7.7 and Figure 7.8 
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shows system annual operation costs for the office building in Tulsa, Albuquerque, El 

Paso, Memphis, Baltimore and Houston.   

Office Building System Annual Operation Costs

10000

11000

12000

13000

14000

15000

16000

A-
BC

A-
EF

T

A-
Ex

FT

A-
Td

iff

B-
BC

B-
EF

T

B-
Ex

FT

B-
Td

iff

C
-B

C

C
-E

FT

C
-E

xF
T

C
-T

di
ff

D
-B

C

D
-E

FT

D
-E

xF
T

D
-T

di
ff

A-
BC

A-
EF

T

A-
Ex

FT

A-
Td

iff

B-
BC

B-
EF

T

B-
Ex

FT

B-
Td

iff

C
-B

C

C
-E

FT

C
-E

xF
T

C
-T

di
ff

D
-B

C

D
-E

FT

D
-E

xF
T

D
-T

di
ff

Tulsa Albuquerque

C
os

t($
)

CT Pump
Cooling Tower
Main Loop Pump
Heat Pump

 
Figure 7.6 Office building system annual operation cost in Tulsa and Albuquerque. 
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Figure 7.7 Office building system annual operation cost in El Paso and Memphis. 
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Figure 7.8 Office building system annual operation cost in El Paso and Memphis. 



 

 302

The annual system operation cost savings are shown in Figure 7.9 showing the 

annual system operation cost savings compared to the base case results. These results will 

be discussed after the motel results are presented. 

Office Building System Annual Costs Savings (%)
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Figure 7.9 Annual operation cost saving for the office building (old controls). 

Figure 7.10, Figure 7.11 and Figure 7.12 shows system annual operation costs for 

the motel building in Tulsa, Albuquerque, El Paso, Memphis, Baltimore and Houston.  
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Motel Building System Annual Operation Costs
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Figure 7.10 Motel building system annual operation cost in Tulsa and Albuquerque. 
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Figure 7.11 Motel building system annual operation cost in El Paso and Memphis. 
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Figure 7.12 Motel building system annual operation cost in Baltimore and Houston. 

The annual system operation cost savings are shown in Figure 7.13 showing the 

annual system operation cost savings compared to the base case results. 
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Motel Building System Annual Costs Savings (%)
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Figure 7.13 Annual operation cost saving for the motel building (old controls). 

As can be seen in Figure 7.6-7.8 and Figure 7.10-7.12, for the cases with the same 

system design, the HGSHP systems with three optimized control strategies have almost 

the same operating cost. The set Tdiff control strategy did not show any significant saving 

compared to the set EFT and ExFT control strategies when they were optimized. Some 

cases with the set Tdiff control strategy even had a higher operation cost than the base 

case. However, the set Tdiff control strategy depends on an accurate measurement of the 

wetbulb temperature, which is problematic. Therefore, the set Tdiff control strategy would 

be not recommended if the optimized setpoint values for the other control strategies are 

available. 
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In Figures 7.6-7.8 and Figures 7.10-7.12, for the cases with the different system 

designs, the HGSHP systems with a relatively larger GLHE size and a relatively larger 

cooling tower size would have a relatively lower operation cost. However, these HGSHP 

systems have a relatively higher first cost.  

In Figure 7.9 and Figure 7.13, compared to the base case with a control strategy of 

setting heat pump EFT as 32.2ºC (90ºF), the three control strategies with optimized 

setpoint values show high variance for the system operation cost savings. For the office 

building, the operation cost savings for the different cases ranges from about 2% to 11%. 

For the motel building, the operation cost savings for the different cases ranges from 

about 0% to 23%. For some cases, the operation cost savings were negative because the 

base case control strategy (EFT setpoint) offered a minimum operating cost.  

The optimized setpoint of the three controls strategies can be seen in Figure 7.14 

both for the office building and motel building. For each specific building type and 

location, the optimized setpoint values of the specific control strategy are different for 

different HGSHP system designs. In this figure, the maximum, the minimum and the 

mean optimized setpoint values caused by different HGSHP system designs are plotted. 

For a specific building type and location, the different HGSHP system designs would 

bring a quite difference of the best setpoint values. Also the best setpoint values of each 

control strategy for different building types and locations are scatter over a wide range. 

Taking the Tulsa office and motel building as examples, Figure 7.15 shows the annual 

energy costs for the four different HGSHP system designs vs. the different setpoints of 

the setting EFT control strategy. The setpoint value of the setting EFT control strategy 
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varies from 10ºC to 32.5ºC. As can be seen in Figure 7.15, with the variation of the 

setpoint value, the system operation cost varies moderately and the difference between 

the maximum operation cost and the minimum operation cost is about 6%. Although 

Figure 7.15 does not show the exact best setpoint value for each system design, the figure 

shows the best setpoint values for different building types and system designs as ranging 

from 22ºC to 25ºC. The results are consistent with those in Figure 7.14. Therefore, for 

these three control strategies, there is no generally-applicable setpoint for different 

combinations of HGSHP system design, building type and location. In general, the 

setpoint of the setting EFT control strategy ranges between 10ºC (50ºF) and 25ºC (77ºF); 

the setpoint of setting ExFT control strategy ranges between 15ºC (59ºF) and 30ºC (86ºF); 

and the set temperature difference of setting Tdiff control strategy ranges between 2ºC 

(3.6ºF) and 15ºC (27ºF). 
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Optimized Set Point of Control Strategies
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Figure 7.14 Optimized setpoint of three control strategies for office and motel building. 
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Figure 7.15 The sensitivity of the HGSHP system operation costs to the setpoint of the setting EFT 

control in Tulsa, office building. 
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7.4 Development of New Control Strategies 

The investigation of the previously developed control strategies (Yavuzturk and 

Spitler 2000)  showed for these control strategies there are no generally-applicable 

setpoints that can be used widely. To get a minimum operation cost of each specified 

HGSHP system, a buffer program is required to get the best setpoint, which is usually not 

feasible for the designer and engineer. Therefore, in this section, new control strategies 

will be developed, which aim to be generally-applicable for all HGSHP systems. 

7.4.1 Control Strategy Based on System Loads 

The primary idea of this control strategy is that when there are higher cooling 

loads, it might be good to run the cooling tower more to reject more heat from the loop. 

Therefore, the loads on the heat pumps might be used to control the cooling tower.  

In practice, the ΔT across the heat pumps might be a sufficient indicator of the 

system loads. A detailed study of the system loads was carried out for the HGSHP 

systems with the optimized control strategies in last section. The system loads and the 

heat pump power consumptions for the office and the motel building in Tulsa, OK are 

shown in Figure 7.16. In this figure, the system loads and the heat pump power 

consumption are plotted against the ΔT across the heat pumps. As shown in Figure 7.16, 

most of the system cooling loads occur when the heat pump ΔT is less than -6 ºC (-10.8 

ºF). 87.3% of the office building cooling loads and 94.4% of the motel building cooling 

loads occurred when the heat pump ΔT is less than -6 ºC. As a result, 81.3% of the heat 

pump power for the office building and 86.2% of the heat pump power for the motel 
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building consumed when the heat pump ΔT is less than -6 ºC. In the HGSHP system, the 

system flow rate was about 2.3gpm/ton for the office building and about 2.1gpm/ton for 

the motel building. 
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Figure 7.16 System loads and heat pump power consumptions of office and motel building in Tulsa, 

OK. 

A new control strategy is then developed for the HGSHP system. The temperature 

difference across the heat pumps is used to control the cooling tower. 

• When ΔT ≤ -6 ºC (-10.8 ºF), cooling tower is always on. 

• When -6 ºC (-10.8 ºF) < ΔT < 0 ºC (0ºF), one of three alternatives:  
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o When EFT >22 ºC (71.6 ºF), cooling tower is on; when EFT ≤ 21 ºC 

(69.8 ºF), cooling tower is off. This control strategy is labeled as 

“Load + EFT”. 

o When ExFT > 24 ºC (75.2 ºF), cooling tower is on; when ExFT ≤ 23ºC 

(73.4 ºF), cooling tower is off. This control strategy is labeled as 

“Load + EFT”. 

o When Tdiff > 10 ºC (18 ºF), cooling tower is on; when Tdiff ≤ 9 ºC (16.2 

ºF), cooling tower is off. The Tdiff is the temperature difference 

between the heat pump ExFT and outdoor air wetbulb temperature. 

This control strategy is labeled as “Load + Tdiff”. 

The setpoint value of each control strategy is selected from the Figure 

7.14 based on the optimization work of these three control strategies. 

• When ΔT > 0 ºC (0 ºF), cooling tower is off.  

The results for the new control strategies are shown below in Figures 7.17, 7.18 

and 7.19 for the office building and Figures 7.20, 7.21 and 7.22 for the motel building. 

The figures show percent savings of the system annual operation costs for the three 

optimized control strategies discussed above in Section 7.3 and the three control 

strategies based on the system loads developed in this section. 

As can be seen in the figures, for the office and motel building, most of the new 

control strategy cases, which do not have the benefit of individually optimized setpoints, 
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have similar or better savings than the individually optimized control strategy cases in the 

last section. In some motel cases, the new control strategy gave negative energy savings. 

The reason is that in these cases, the GLHE length is sized large enough to remove most 

of the cooling loads and the cooling tower run only a few hours (cooling tower energy 

consumption from the Figure 7.11 to 7.13). Using the new control strategy, the cooling 

tower ran more hours but did not yield too much energy savings for the heat pumps. And 

the total energy consumption of the system got higher because of the energy consumed 

by the cooling tower and the secondary loop circulation pump.  

The new control strategies are generally-applicable for the different combinations 

of HGSHP system design, building type and location, without individually optimizing 

setpoint for a specific building and location combination. The new control strategies of 

“Load + EFT” and “Load + ExFT” use easy-to-measure quantities — loop temperatures 

to control the cooling tower and are physically feasible. 

One issue of system loads control strategies needed to be considered is how to 

determine the setpoint of the heat pump ΔT. The system load control strategies relies on 

the heat pump ΔT as a subobject measure of load. In practice, the heat pump ΔT value 

varies with the different system flow rates. To apply this system load control strategy in 

practice, the system design flow rate and the system design heat rejection rate are 

required to determine the temperature difference setpoint. In a variable flow rate system, 

the heat pump ΔT value typically varies from 4.5 ºC (8.0 ºF) to 6.7 ºC (12.0 ºF) under 

design condition. The actual design heat pump ΔT would be used in practice as the 

setpoint. 
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Office Building System Annual Costs Savings (%)
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Figure 7.17 Annual operation cost saving for the office building in Tulsa and Albuquerque (system 

loads controls). 
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Figure 7.18 Annual operation cost saving for the office building in El Paso and Memphis (system 

loads controls). 
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Office Building System Annual Costs Savings (%)
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Figure 7.19 Annual operation cost saving for the office building in Baltimore and Houston (system 
loads controls). 

Motel Building System Annual Costs Savings (%)
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Figure 7.20 Annual operation cost saving for the motel building in Tulsa and Albuquerque (system 

loads controls). 
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Motel Building System Annual Costs Savings (%)
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Figure 7.21 Annual operation cost saving for the motel building in Tulsa and Albuquerque (system 

loads controls). 
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Figure 7.22 Annual operation cost saving for the motel building in Tulsa and Albuquerque (system 

loads controls). 
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7.4.2 Forecast Control 

The general idea of the forecast control strategy depends on the ability to predict 

the future loads of heat pumps. Based on the forecast heat pump loads (for the next 12 

hours, 24 hours or other periods), a new control strategy would estimate the energy 

consumption of running the cooling tower and the possible energy savings of heat pumps 

from running the cooling tower in the coming time. Then the control strategy will decide 

whether to run the cooling tower or not. One of the advantages of the forecast control 

strategy is that it is adaptive. However, this control strategy depends on the ability to 

estimate the possible energy savings of heat pumps in future from running cooling tower 

at the current time. It also depends on the availability of a forecast loads. 

The proposed procedure of the forecast control strategy is summarized as follows: 

1. Obtain the heat pump loads for the next 24 hours (or other periods).  

There are several ways to get the heat pump loads. One is forecasting the heat 

pump loads for the next 24 hours. Another way is using the historical loads as 

the forecast loads. Considering that much of time the building loads will be 

similar to the previous week, the historical heat pump loads a week ago might 

be used for the control strategy instead of the forecasted heat pump loads. 

2. Obtain the outdoor wetbulb temperature at the current time. 

3. Estimate the cooling tower heat rejection rate if the cooling tower is on at the 

current time. 
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Without running the system simulation, it is difficult to get the cooling tower 

heat rejection rate when the cooling tower is on. An algorithm is developed to 

estimate the cooling tower heat rejection rate without running the system 

simulation.  

In an HGSHP system, the cooling tower heat rejection rates and the 

temperature difference between the heat pump ExFT and the outdoor air 

wetbulb temperature, wbExFT TT
HP
−Δ , are shown below in Figure 7.23. 

Therefore, a linear correlation between the cooling tower heat rejection rate 

and the temperature difference wbExFT TT
HP
−Δ  is developed to estimate the 

cooling tower heat rejection rate. In practice, this correlation could be revised 

continuously based on recent measured data. 

Applying this linear correlation, the heat pump ExFT and the outdoor air 

wetbulb temperature at the current time are available and then the cooling 

tower heat rejection rate, CTq& , is calculated.  

)( wbHPCT TExFTfq −=&     (7-2)  
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Figure 7.23 The correlation between the cooling tower HTR and the temperature difference 

wbHP TExFTT −Δ  

4. Calculate the heat pump entering fluid temperature differences in the next 24 

hours if the cooling tower is on in the coming hour. 

In the HGSHP system, when the cooling tower is on and has a heat rejection 

rate of CTq& , the heat rejection rate of the GLHE decreases by  CTq& . As a result, 

the exiting fluid temperature of the GLHE (the heat pumps’ EFT) will drop by 

HPEFTΔ , which gives a reduction of heat pumps power consumption.  

Therefore, if the heat pump EFT difference HPEFTΔ  is available, there is 

possibility to obtain the heat pumps’ power savings caused by running the 

cooling tower.  
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Using the g-function-based GLHE model developed in Section 4.1.8, the 

GLHE ExFT differences (heat pumps EFT difference, HPEFTΔ  ) in the 24 

hours  caused by a heat pulse of CTq&  are calculated using the following 

equation. 

∑
=

−−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
+

−=Δ
24

1

11,,

1,,,

,
2

)(

)(

i

b

s

nn

ground

iCTiCT

BHiCTiCTiHP

H
r

t
ttg

k
qq

RqqEFT

π
  (7-3) 

Where:   

t   = Time, (s) 

st   = Time scale, defined as α9/2Hts = , (-) 

iHPEFT ,Δ  = The heat pump EFT difference at thi  time step, (ºC) 

iCTq ,  = Heat rejection pulse of the cooling tower at thi  time step, (W/m) 

H   = Borehole depth, (m) 

groundk  = Ground thermal conductivity, (W/m-K) 

br   = Borehole radius, (m) 

BHR  = Borehole thermal resistance, (m-K/W) 

i   = The index to denote the end of a time step. 

The exiting fluid temperature difference of a GLHE caused by a single hourly 

heat pulse is shown in Figure 7.24. As seen in the figure, the temperature 

difference reaches a peak when the heat pulse is applied. After the heat pulse 

is back to zero, the temperature difference drops quickly. After 24 hours, the 

temperature difference almost equals zero.  
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Figure 7.24 GLHE temperature differences in 24 hours caused by a single heat pulse. 

5. Estimate heat pumps’ COP and COPΔ  for the next 24 hours. 

Figure 7.25 shows the COP of a selected heat pump against the heat pump EFT. A 

linear correlation is developed to approximately estimate the heat pump COP 

from the heat pump EFT. The heat pump EFT at the current time is used to 

calculate the heat pump COP and this COP value is applied for the next 24 hours. 

Knowing the heat pump EFT difference, HPEFTΔ , this linear correlation also is 

used to calculate the heat pump COPΔ . 

)( ,iHPi EFTfCOP Δ=Δ     (7-4)  
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Figure 7.25 COP of a heat pump (ClimateMaster GS060) against the heat pump 

EFT. 

6. Calculate the heat pumps power savings. 

Knowing the heat pump COPΔ  and the heat pump loads in the next 24 hours, 

the total heat pump power savings in the next 24 hours are then calculated. 

∑
= Δ+

−=Δ
24

1
)(

i ii

i

i

i
HP COPCOP

dCoolingLoa
COP

dCoolingLoa
Power   (7-5 ) 

7. Determine to run the cooling tower or not. 

The power required to run the cooling tower and secondary loop circulation 

pump, CTPower , is known. This power consumption is then compared to the 

heat pump power saving, HPPowerΔ . IF the CTPower  < HPPowerΔ , cooling 

tower is on; if the HPCT PowerPower Δ≥  , cooling tower is off. 
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 In this research, two methods were used to get the heat pump loads in the next 24 

hours. The first one is to use heat pump loads calculated from EnergyPlus, which are the 

exact loads for the next 24 hours. This method is labeled as “Forecast” in the result 

figures and represents a perfect forecast. Another method is to use the heat pumps’ loads 

one week ago to represent the loads for the next 24 hours. This method is labeled as 

“Historical” in the result figures. These two methods bracket what could be done with 

this strategy. 

The results for the “Forecast” and “Historical” control strategies are shown below 

in Figures 7.26, 7.27 and 7.28 for the office building and are shown in Figures 7.29, 7.30 

and 7.31 for the motel building. The figures show percent savings of the system annual 

operation costs for the three optimized control strategies discussed above in Section 7.3, 

the control strategies based on the system loads developed in Senction 7.4.1, and the 

forecast/historical control strategies developed in this section. 

As can be seen in the figures, for the office building, most of the forecast control 

strategy cases had the highest percent savings compared to the previous control 

strategies. Without the perfect prediction of the loads, the historical control strategy cases 

applied the loads week ago but still have good percent savings. For the motel building, 

most of the cases with the forecast/historical control strategy have good percent savings 

compared to the other controls. But maximum savings are not guaranteed. In some motel 

cases, the forecast/historical control strategies gave negative energy savings as well the 

heat pump ΔT control. Again, the cooling tower ran more hours than the base case but 

did not yield energy savings for the heat pumps. 
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The new control strategies are capable of being applied for the different 

combinations of HGSHP system design, building type and location. At every time step, 

the control strategy estimates the possible energy savings of heat pumps in future from 

running cooling tower at the current time and then determines to run the cooling tower or 

not. Therefore, the forecast control strategy is a real-time control strategy and is adaptive.  

This forecast control strategy depends on the availability of a forecast loads. As 

an alternative, the historical loads are used. In the process of the forecast control strategy, 

approximate correlations are used to calculate the cooling tower heat rejection rate and 

the heat pump COP. Also a wetbulb temperature is required for this control strategy. 

These issues bring some uncertainties in the actual performance of the forecast control 

strategy.  

In am attempt to further improve the historical control strategy, a new approach is 

investigated to provide more accurate prediction loads instead of using the loads that 

occurred one week ago. The new “Historical” load prediction scheme is:  for working 

days from Monday to Friday, use the loads happened in the last working day; for the 

weekend, use the loads happened in the last weekend day. The office building results are 

shown in Figure 7.32 and the motel building results are shown in Figure 7.33. The 

investigation results of the new “Historical” control strategy showed that the percent 

savings of the system annual operation costs is decreased (1% to 4%) for the office 

building and the percent savings is increased (1%) for the motel building. The reason is 

that for the motel building, the system operation schedule is continuous during the 

weekday and weekend. Therefore the new load prediction scheme is able to get more 
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accurate load prediction than the old scheme for the motel building. For the office 

building, the system operation schedule is discontinuous between the weekday and 

weekend. The system loads on Monday and Friday would have quite significant 

difference for the office building. Therefore, the new load prediction scheme is not able 

to bring a more accurate load prediction than the old scheme and it has a lower energy 

saving. 
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Figure 7.26 Annual operation cost saving for the office building in El Paso and Memphis 

(Forecast/Historical controls). 
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Figure 7.27 Annual operation cost saving for the office building in El Paso and Memphis 

(Forecast/Historical controls). 
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Figure 7.28 Annual operation cost saving for the office building in Baltimore and Houston 
(Forecast/Historical controls). 
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Figure 7.29 Annual operation cost saving for the motel building in Tulsa and Albuquerque 

(Forecast/Historical controls). 
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Figure 7.30 Annual operation cost saving for the motel building in El Paso and Memphis 

(Forecast/Historical controls). 
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Figure 7.31 Annual operation cost saving for the motel building in Baltimore and Houston 

(Forecast/Historical controls). 
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Figure 7.32 Annual operation cost saving for the office building in six climate zones (Forecast, 

Old/New Historical controls). 
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Figure 7.33 Annual operation cost saving for the motel building in six climate zones (Forecast, 

Old/New Historical controls). 
  

7.4.3 Varied EFT/ExFT Control 

A new control strategy based on the long term variations of loop temperature is 

developed for the HGSHP systems in this section. The original idea of this control 

strategy depends on the variation of loop temperature. When there are higher cooling 

loads, the loop temperature would rise; it might be good to run the cooling tower more to 

reject more heat from the loop. When there are lower cooling loads, the loop temperature 

would drop; it might be good to decrease the run time of cooling tower. Therefore, the 

variation of loop temperature might be used to control the cooling tower. In practice, the 

procedure is described as follows: 
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1. Measure the loop temperature variation in the past time (48 hours, one week 

or other period). 

2. If the loop temperature rises, which indicates there are more cooling loads in 

the system, then lower the setpoint value of EFT/ExFT to run the cooling 

tower more. If the loop temperature drops, which indicates there are less 

cooling loads in the system, raise the setpoint value of EFT/ExFT to run the 

cooling tower less.  

The relationship between the setpoint of EFT/ExFT and the variations of the loop 

temperature can be represented by the equations below: 

21setpoint )( CTEFTCEFT groundavg +−×=     (7-6 ) 

21setpoint )( CTExFTCExFT groundavg +−×=     (7-7) 

Where: 

setpointEFT , setpointExFT  = The setpoint value of EFT/ExFT for the control, (ºC); 

avgEFT , avgExFT  = Average entering/exiting fluid temperature to the heat pump over 

the last N hours, (ºC); 

N  = Number of hours in averaging period; 

groundT   = The undisturbed ground temperature, (ºC); 

1C , 2C   = Coefficients to be determined. 

An investigation of the optimization setpoint of EFT and ExFT as a function of 

the temperature difference between the avgEFT  and groundT  is showed as Figure 7.34. For 
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different combinations of HGSHP system design, building type and location, there are  

quite constant linear relationships between the setpoint of EFT/ExFT and the ΔT. Also 

the N  value is almost a constant value for the different combinations of HGSHP system 

design, building type and location: N =210 hours for the setting EFT case and N =215 

hours for the setting ExFT case. Therefore, these two linear equations in Figure 7.34 are 

applied for the new control strategies. In addition, the supplemental cooling tower is on 

when the entering fluid temperature to the heat pump exceeds 29.4ºC (85ºF) or when the 

exiting fluid temperature of the heat pump exceeds 37.8ºC (100ºF). The setting varied 

EFT/ExFT setpoint is shown in Figure 7.35. When the averaged EFT/ExFT is lower than 

the undisturbed ground temperature, the cooling tower is off. 
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Figure 7.34 The linear relationship between the EFTset/ExFTset and the deltaT.  
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Varied EFT/ExFT Setpoint
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Figure 7.35 The setting varied EFT/ExFT setpoints for the varied EFT/ExFT control strategies.  

 

The results for the varied EFT/ExFT control strategies are shown below in 

Figures 7.36 and 7.37 for the office building and are shown in Figures 7.38 and 7.39 for 

the motel building. The two new control strategies are labeled as “Varied EFT” and 

“Varied ExFT”. As can be seen in the figures, for the office and motel building, most of 

cases with the new varied EFT/ExFT control strategy have similar or better savings than 

the individual optimized control strategy cases described in Section 7.3. For the motel 

building, some of the cases with the new varied EFT control strategy had a smaller 

energy saving than the varied ExFT control strategy cases. The investigation of the 

detailed results showed the system energy was related to the constant setting heat pump 

EFT of 29.4ºC (85ºF) or ExFT 37.8ºC (100ºF). In some cases (Tulsa motel system A) 

these two setting temperatures were too high and the heat pumps could have more energy 

savings by running the cooling tower more hours. In some cases (Houston motel system 
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D) the setpoint temperature was too lowe and the cooling tower ran more hours but did 

not yield much energy savings for the heat pumps. Therefore, to apply this varied 

EFT/ExFT control strategy in practice, it is recommended that the engineer adjusts the 

constant heat pump EFT/ExFT based on the system measured operation data. If the heat 

pump EFT/ExFT always meets the setpoint temperature, it is recommended to lower the 

setting EFT/ExFT to run the cooling tower more. If the heat pump EFT/ExFT seldom 

meets the setpoint temperature, it is recommended to raise the setpoint EFT/ExFT to run 

cooling tower less. 

 

Office Building System Annual Costs Savings (%)

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

A
-B

C
A

-E
FT

A
-E

xF
T

A
-V

ar
ie

d 
E

FT
A

-V
ar

ie
d 

E
xF

T
B

-B
C

B
-E

FT
B

-E
xF

T
B

-V
ar

ie
d 

E
FT

B
-V

ar
ie

d 
E

xF
T

C
-B

C
C

-E
FT

C
-E

xF
T

C
-V

ar
ie

d 
E

FT
C

-V
ar

ie
d 

E
xF

T
D

-B
C

D
-E

FT
D

-E
xF

T
D

-V
ar

ie
d 

E
FT

D
-V

ar
ie

d 
E

xF
T

A
-B

C
A

-E
FT

A
-E

xF
T

A
-V

ar
ie

d 
E

FT
A

-V
ar

ie
d 

E
xF

T
B

-B
C

B
-E

FT
B

-E
xF

T
B

-V
ar

ie
d 

E
FT

B
-V

ar
ie

d 
E

xF
T

C
-B

C
C

-E
FT

C
-E

xF
T

C
-V

ar
ie

d 
E

FT
C

-V
ar

ie
d 

E
xF

T
D

-B
C

D
-E

FT
D

-E
xF

T
D

-V
ar

ie
d 

E
FT

D
-V

ar
ie

d 
E

xF
T

A
-B

C
A

-E
FT

A
-E

xF
T

A
-V

ar
ie

d 
E

FT
A

-V
ar

ie
d 

E
xF

T
B

-B
C

B
-E

FT
B

-E
xF

T
B

-V
ar

ie
d 

E
FT

B
-V

ar
ie

d 
E

xF
T

C
-B

C
C

-E
FT

C
-E

xF
T

C
-V

ar
ie

d 
E

FT
C

-V
ar

ie
d 

E
xF

T
D

-B
C

D
-E

FT
D

-E
xF

T
D

-V
ar

ie
d 

E
FT

D
-V

ar
ie

d 
E

xF
T

Tulsa Albuquerque El Paso

 
Figure 7.36 Annual operation cost saving for the office building in Tulsa, Albuquerque and El Paso 

(Varied EFT/ExFT controls). 
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Figure 7.37 Annual operation cost saving for the office building in Memphis, Baltimore and Houston 

(Varied EFT/ExFT controls). 
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Figure 7.38 Annual operation cost saving for the motel building in Tulsa, Albuquerque and El Paso 

(Varied EFT/ExFT controls). 
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Figure 7.39Annual operation cost saving for the motel building in Memphis, Baltimore and Houston 

(Varied EFT/ExFT controls). 

7.5 Results Verification 

The results presented in the above sections only show annual performance. The 

system performance over a few days is highly desired so that the various control schemes 

can be compared in some detail. The office building in Tulsa is chosen for additional 

review. 

• The HGSHP system design (A) for the office building in Tulsa is reviewed.  

• Totally five control strategies for this HGSHP system are reviewed:  

o base case with set EFT 32.2 ºC (90 ºF).  
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o set EFT of 23.3 ºC (73.9 ºF), this control setpoint gives 3.6% savings 

in annual operation cost over the base case.  

o Load (ΔT ≤ -6 ºC (-10.8 ºF)) + EFT (22 ºC (71.6 ºF)), and this control 

gives 3.9% savings in annual operation cost over the base case. 

o Forecast control with perfect loads prediction, and this control gives 

4.7% savings in annual operation cost over the base case. 

o Varied EFT with additional setting EFT of 22 ºC (71.6 ºF), this control 

setpoint gives 3.5% savings in annual operation cost over the base 

case. 

• A shoulder season day, February 28th, and a summer day, July 1st, were 

chosen for an in-depth review.  

Figure 7.40 shows the heat pump entering fluid temperature and cooling tower 

state (0: Off/1: On) for the control 1 to control 3 in February 28th. Also the system 

heating and cooling loads are plotted in this figure. As can be seen, the morning starts off 

with a short period of heating followed by a period of cooling. In the base case, the 

setpoint of EFT is 32.2 ºC (90 ºF) and the heat pump EFT never goes higher than this set 

point. Therefore, the cooling tower never turns on. However, the heat pump entering fluid 

temperature is above 23.3 ºC (73.9 ºF) for several hours, which is the setpoint of the EFT 

control, therefore the cooling tower has three hours on. In Figure 7.40, the temperature 

difference of heat pumps, HPTΔ , is also plotted (positive for cooling mode). In the 

morning, the system has some cooling loads but not enough to make HPTΔ  exceed 6 ºC 
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(10.8 ºF) or make the heat pump EFT to be higher than 22 ºC (71.6 ºF). Therefore, the 

cooling tower remains off. At 12:00, the system has a higher cooling load and the heat 

pump HPTΔ  is greater than 6 ºC (10.8 ºF). Therefore, the cooling tower turns on until 

18:00.  

Figure 7.41 shows the heat pump entering fluid temperature and cooling tower 

state (0: Off/1: On) for the control 1, control 2 and control 4 in February 28th.  As can be 

seen, at 11:00, the forecast control with perfect load prediction shows there are 

significant cooling loads in the coming hours. The control strategy then determines 

whether to run the cooling tower or not by estimating the possible energy savings of heat 

pumps in the next 24 hours from running cooling tower at the current time. The state of 

the cooling tower is on from 11:00, which means the heat pump energy savings in the 

next 24 hours exceeds the energy input for the cooling tower and the circulation pump 

during that time. Using the forecast control, the cooling tower is on from 11:00, even 

through at this hour, the system does not have too much cooling demand, but the system 

will benefit from running the cooling tower during that time. 

Figure 7.42 shows the heat pump entering fluid temperature and cooling tower 

state (0: Off/1: On) for the control 2 and control 5 in February 28th. Also the varied 

setpoint value of control 5 is plotted in Figure 7.42. As can be seen in the figure, at 12:00 

PM, the entering fluid temperature of heat pump is 17.8 ºC (64 ºF) and greater than the 

varied EFT setpoint of 17.7 ºC (63.9 ºF). Therefore, the cooling tower turns on until 

19:00.  
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Figure 7.40 Heat pump EFT and cooling tower state of Load + EFT control strategy (Feb 28th) 
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Figure 7.41 Heat pump EFT and cooling tower state of forecast control strategy (Feb 28th) 
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Heat Pump EFT (Feb 28)
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Figure 7.42 Heat pump EFT and cooling tower state of varied EFT control strategy (Feb 28th) 

 

Figure 7.43 shows the heat pump cooling COP for all the controls in February 

28th. Figure 7.44 shows the heat pump power consumption for all the controls. As can be 

seen, the base case has the lowest COPs because it has the highest heat pump EFT. The 

varied EFT control has the highest COPs because it runs the cooling tower longer than 

the other controls. As a result, the base case has the highest heat pump power 

consumption and the varied control has the lowest heat pump power consumption.  
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Heat Pump Cooling COP (Feb 28)
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Figure 7.43 Heat pump cooling COP of all control strategies (Feb 28th) 
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Figure 7.44 Heat pump power of all control strategies (Feb 28th) 
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Table 7.4 lists the system energy for consumption by component and the total 

system energy consumption for the day February 28th. As in shown, the forecast control 

has the biggest percent saving for this day.  

Table 7.4 System energy consumption (Feb 28th) 

Energy Consumption Base 
Case Set EFT Load + 

EFT Forecast Varied 
EFT 

Heat Pump (kWh) 551.8 534.7 517.1 511.9 507.9 
Main Circ Pump (kWh) 40.1 40.1 40.1 40.1 40.1 

Cooling Tower run time (hours) 0 3 6 7 8 
Cooling Tower Fan (kWh) 0.0 3.4 6.7 7.8 9.0 

Cooling Tower Circ Pump (kWh) 0.0 1.4 2.8 3.3 3.8 
Total (kWh) 591.9 582.6 572.8 570.2 568.7 
Saving (%) -- 1.6% 3.2% 3.7% 3.9% 

 

Figure 7.45 shows the heat pump entering fluid temperature and cooling tower 

state (0: Off/1: On) for the control 1 to control 3 in July 1st. Also the system heating and 

cooling loads are plotted in this figure. In this summer day, the system has no heating 

load and has cooling loads for 10 hours. In the base case, the heat pump EFT goes above 

the set point of 32.2 ºC (90 ºF) and the cooling tower turns on for 10 hours. In the set 

EFT case, there are more hours that heat pump EFT goes above the set point of 23.3 ºC 

(73.9 ºF) and the cooling tower runs 12 hours. In the daytime, the system has significant 

cooling demand and the temperature difference of heat pumps, HPTΔ  (positive for 

cooling mode) is higher than 6 ºC (10.8 ºF). Therefore, the cooling tower is turned on for 

10 hours.  

Figure 7.46 shows the heat pump entering fluid temperature and cooling tower 

state (0: Off/1: On) for the control 1, control 2 and control 4 in July 1st. As can be seen, at 
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5:00 in the morning, the system has no cooling demand. However, the forecast control 

predicts there will be more cooling loads in the coming hours. If the cooling tower turns 

on at the current time, the system would have more energy savings from the heat pumps 

in the next 24 hours than the power consumed by the cooling tower and the circulation 

pump. Therefore the cooling tower turns on at 5:00 and 6:00 although there is no cooling 

demand at these tow hours. As a result, at the first few hours in the work time, the 

forecast control has the lower heat pump EFTs than the other controls.  

Figure 7.47 shows the heat pump entering fluid temperature and cooling tower 

state (0: Off/1: On) for the control 2 and control 5 in July 1st. Also the varied setpoint 

value of control 5 is plotted in Figure 7.47. As can be seen in the figure, at 8:00 AM, the 

entering fluid temperature of heat pump is 37.5 ºC (99.5 ºF) and greater than the varied 

EFT setpoint of 22 ºC (71.6 ºF). Therefore, the cooling tower turns on until 21:00.  
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Figure 7.45 Heat pump EFT and cooling tower state of Load + EFT control strategy (July 1st) 
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Figure 7.46 Heat pump EFT and cooling tower state of forecast control strategy (July 1st) 
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Figure 7.47 Heat pump EFT and cooling tower state of varied EFT control strategy (July 1st) 

 

Figure 7.48 shows the heat pump cooling COP for all the controls in July 1st. 

Figure 7.49 shows the heat pump power consumption for all the controls. As can be seen, 

in the first few hours of the day time, the forecast control has the highest COPs because it 

pre-runs the cooling tower in the morning before the working hours to cool down the 

ground. As a result, in the first few hours of the work time, the heat pumps have a higher 

COP caused by the lower heat pump EFT.  



 

 344

Heat Pump Cooling COP (Jul 1)
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Figure 7.48 Heat pump cooling COP of all control strategies (July 1st) 
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Figure 7.49 Heat pump cooling power of all control strategies (July 1st) 
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Table 7.5 lists the system energy for consumption by component and the total 

system energy consumption for the summer day July 1st. As in shown, the forecast 

control has the biggest percent savings for this day. In this day, the set EFT and forecast 

control both run the cooling tower for 12 hours. But the system energy consumptions 

show about 2% energy difference. In this case, the forecast control runs the cooling tower 

more efficaciously by running at more advantageous times than the set EFT control. 

Table 7.5 System energy consumption (July 1st) 

Energy Consumption Base 
Case Set EFT Load + 

EFT Forecast Varied 
EFT 

Heat Pump (kWh) 1923.4 1914.3 1913.5 1868.3 1902.5 
Main Circ Pump (kWh) 81.5 81.5 81.5 81.5 81.5 

Cooling Tower run time (hours) 10 12 10 12 14 
Cooling Tower Fan (kWh) 11.2 13.4 11.2 13.4 15.7 
Cooling Tower Circ Pump 

(kWh) 4.7 5.7 4.7 5.7 6.6 

Total (kWh) 2030.8 2026.8 2020.9 1980.8 2020.2 
Saving (%)  0.2% 0.5% 2.5% 0.5% 

 

7.6 Conclusions 

This chapter aims to develop generally applicable optimal control strategies. Two 

building types and six U.S. cities are chosen to provide different building loads profile for 

the study of HGSHP system controls. A buffer program has been developed to optimize 

the setpoint of the different control strategies for different combinations of HGSHP 

system design, building type and location. 

Several control strategies have been developed and investigated: 

• Previously developed (Yavuzturk and Spitler 2000) control strategies 
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Three control strategies had been developed by Yavuzturk and Spitler (2000) : 1) 

set heat pump EFT; 2) set heat pump ExFT; and 3) set temperature difference 

between the heat pump ExFT and outdoor air wetbulb temperature. Using the 

buffer program, these three control strategies were optimized.  

The optimization results showed that the HGSHP systems with three optimized 

control strategies had almost the same operating cost. The set Tdiff control strategy 

did not show any significant saving compared to the set EFT and ExFT control 

strategies when they were all optimized. However, the set Tdiff control strategy 

depends on an accurate measurement of the wetbulb temperature, which is 

problematic. Therefore, the set Tdiff control strategy would be not recommended if 

the optimized setpoint for the other control strategies is available. 

The optimization results also showed that the optimized setpoint of the three 

control strategies for different building types and locations are scattered over a 

wide range. Therefore, for these three control strategies, there is no generally-

applicable setpoint being applicable for different combinations of HGSHP system 

design, building type and location. 

• Control strategy base on the system loads 

A new control strategy based on the system loads has been developed. An 

investigation of the optimization results of three old control strategies showed,  

for the HGSHP systems with variable speed pumping design, more than 80% of 

the system cooling loads and heat pump energy consumptions occurred at the heat 
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pump ΔT being less than -6 ºC (-10.8 ºF). Therefore, the temperature difference 

across the heat pumps is used to control the cooling tower. Three control 

strategies, which combine the heat pump ΔT and set EFT/ExFT/Tdiff, have been 

developed for the HGSHP systems. 

The new control strategies are generically applicable for the different 

combinations of HGSHP system design, building type and location. Without 

requiring to run the optimization program, the systems still have a good operation 

cost saving. The new control strategies of “Load + EFT” and “Load + ExFT” use 

the easy-to-measure quantities — loop temperatures to control the cooling tower 

and are physically feasible. 

• Forecast/historical control 

A forecast/historical control strategy has been developed. Using the 

forecast/historical system loads, the control strategy estimates the possible energy 

savings of heat pumps in future from running cooling tower at the current time 

and then determines to run the cooling tower or not. A procedure has been 

developed to realize this forecast/historical control strategy. Two different 

approaches were used to get the predicted system loads: 1) perfect forecast system 

loads from EnergyPlus+; 2) historical system loads happened one week ago.  

The results showed that most of the forecast control strategy cases had the highest 

percent savings compared to the previous control strategies. Without the perfect 

prediction of the loads, the historical control strategy cases still have good 
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savings. A new historical load prediction scheme was developed to aim to 

provided a more accurate load prediction for the control. However, the 

performance of this new historical load prediction scheme depends on the 

building operating schedule.  

The forecast/historical control strategies are generically capable for the different 

combinations of HGSHP system design, building type and location. At every time 

step, the control strategy estimates the possible energy savings of heat pumps in 

future from running cooling tower at the current time and then determines to run 

the cooling tower or not. Therefore, the forecast control strategy is a real-time 

control strategy and is adaptive.  

• Varied EFT/ExFT control strategy 

A new varied EFT/ExFT control strategy based on long term variation of the loop 

temperature has been developed. An investigation of the optimization showed 

there are quite constant linear relationships between the setpoint of EFT/ExFT 

and the averaged loop temperature variation over the last N hours. The number of 

hours in the averaging period can be set as a constant. Therefore, the linear 

function is used to calculate the setpoint of EFT/ExFT based on the variation of 

the EFT/ExFT over the last N hours. Coupled with a constant setting EFT/ExFT, 

the varied EFT/ExFT control strategies have been developed for the HGSHP 

systems. 
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The results showed the cases with the varied EFT/ExFT case have similar system 

energy savings compared to the individual optimized control strategy case. 

However, the system energy saving is related to the constant EFT/ExFT setting 

temperatures. Adjusting the constant EFT/ExFT setpoint temperature based on the 

real system operation data is highly recommended when applying this varied 

EFT/ExFT control strategy. 
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8 CONCLUSIONS AND FUTURE WORK 

8.1 Summary of Work 

This research aims at developing optimal control strategies and set points for 

HGSHP systems to improve the system performance. The research has successfully meet 

the four sub-objectives as follows: 

• Developing HGSHP system simulation and requisite component models 

In Chapter 4, all requisite component models for the HGSHP system simulation 

have been developed or presented, including: two GLHE models, two heat pump 

models, two open-circuit cooling tower models, one closed-circuit cooling tower 

model, two variable speed pump models, two plate frame heat exchanger models. 

All have been cast as HVACSIM+ component models. The HGSHP system 

simulation has been implemented in HVACSIM+.  

A new scheme has been developed for accelerating the multiyear simulation of 

HGSHP system. The accelerated algorithm has two parts: a variable time step 

aspect and a simplified life cycle cost calculation procedure. The comparison 

between the detailed simulation scheme and the accelerated algorithm showed the 

difference of optimized setpoint values is less than 0.8ºC and the relative error of 

the system operation cost is less than 1%. 
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• Validating HGSHP system simulation 

In Chapter 5, the HGSHP system simulation was validated against the 

experimental data collected from the OSU HGSHP research facility (Hern 2004). 

The validation covered a 12 month period, including a continuous 7-month 

cooling season and portions of two heating seasons.  

In this HGSHP system validation, two approaches were used for the simulation. 

First, the HGSHP system was simulated with the cooling tower on/off operation 

set as a boundary condition taken from the experiment, in which the behavior of 

each component model was the first concern. After the calibration of each 

component model, the HGSHP system was simulated with a temperature 

difference control strategy. The simulation gave total energy consumption about 

0.2% higher than the experiment. 

• Developing new design procedures of HGSHP system 

In Chapter 6, HGSHP system configurations (parallel-connected and serial 

connected) were investigated first. A parallel-connected HGSHP system was 

chosen for further investigation. Then for the parallel-connect HGSHP system, a 

strategy for controlling the flow distribution between GLHE and PHE/cooling 

tower was developed. Applying this flow distribution control strategy, flow is 

able to pass through each component without requiring excessive pumping power.  

In Chapter 6, a new design procedure, implemented in GLHEPRO, was developed 

for sizing the HGSHP system components. The new design procedure is capable 



 

 352

of being used for both a new HGSHP and a “retrofit” HGSHP system. Also in 

Chapter 6, a new algorithm was developed to size the cooling tower based on the 

local peak wetbulb temperature and the peak ExFT of heat pump. This procedure 

gives a much smaller cooling tower size than that given by the Kavanaugh (1998) 

design procedure.  

Chapter 6 presents a comparison study of three HGSHP system design method for 

commercial applicationd: Kavanaugh and Rafferty method; GLHEPro method 

and GenOpt method. An office building and a motel building in six U.S. cities 

were used as the test building. In general, the HGSHP designed from the new 

GLHRPRO design procedure would have a smaller GLHE and cooling tower size 

and a smaller system life cycle cost than the system designed from the Kavanaugh 

and Rafferty procedure.  

• Investigation and Optimization of HGSHP system control 

In Chapter 7, two building types and six U.S. cities are chosen for the study of 

HGSHP system controls. A buffer program has been developed to optimize the 

setpoint of the candidate control strategies for different combinations of HGSHP 

system design, building type and location. Also the buffer program can be 

modified to run the simulation for the generic control strategy and to optimize the 

HGSHP system design. 

In Chapter 7, three previously developed control strategies (Yavuzturk and Spitler 

2000) were investigated. Using the buffer program, the three control strategies 
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have been optimized to try to find a best setpoint being generically applicable for 

all HGSHP systems. With individual optimized control, the office building system 

operation cost savings range between 2% and 11% of the base case. For the motel 

building, the system operation cost savings range from 1% to 23% compared to 

the base case. In general, the setpoint of setting EFT control strategy ranges 

between 10ºC (50ºF) and 25ºC (77ºF); the setpoint of the setting ExFT control 

strategy ranges between 15ºC (59ºF) and 30ºC (86ºF); and the set temperature 

difference of setting Tdiff control strategy ranges between 2ºC (3.6ºF) and 15ºC 

(27ºF). However, the study results showed there is no point that is optimal for all 

building/climate combinations.  

In Chapter 7, three new control strategies were developed: the system load control 

strategy, the forecast/historical control strategy and the varied EFT/ExFT control 

strategy.  

Most of the system load control strategy cases, which do not have the benefit of 

individually optimized setpoints, have similar or better savings than the 

individually optimized control strategy cases described above (Office: savings 

from 2% to 16%; Motel: savings from 0% to 23%). The system load control 

strategies relies on the heat pump ΔT as a subobject measure of load. In practice, 

the heat pump ΔT value varies with the different system flow rates. To apply this 

system load control strategy in practice, the system design flow rate and the 

system design heat rejection rate are required to determine the temperature 

difference setpoint. In a variable flow rate system, the heat pump ΔT value 
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typically varies from 4.5 ºC (8.0 ºF) to 6.7 ºC (12.0 ºF) under design condition. 

The actual design heat pump ΔT would be used in practice as the setpoint. 

The forecast control strategy cases have typically higher percent savings 

compared to the system load control strategies (Office: savings from 2% to 16%; 

Motel: savings from 0% to 23%). Realistically the perfect prediction of the loads 

is not possible, an alternative strategy is to use historical loads from 1 weeks 

earlier as a subrogate. The historical control strategy cases have good savings, 

typically not more 1% lower than the savings from the forecast control strategy. 

The forecast/historical control strategy depends on the ability to estimate the 

possible energy savings of heat pumps using the GLHE g-functions. In the 

forecast control strategy, approximate correlations are used to calculate the 

cooling tower heat rejection rate and the heat pump COP. These issues would 

bring challenges when integrating the forecast/historical control strategy into an 

actual HGSHP control system. But the forecast/historical control strategy is a 

real-time control strategy and is adaptive. If the g-functions of the GLHE are 

available, the forecast/historical control strategy will bring more energy savings 

than the other control strategy. 

A new varied EFT/ExFT control strategy based on long term variation of the loop 

temperature has been developed. A linear relationship between the setpoint of 

EFT/ExFT and the averaged loop temperature variation was developed. Coupled 

with a constant setting EFT/ExFT, the varied EFT/ExFT control strategies have 

been developed for the HGSHP systems. 
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The systems with the varied EFT/ExFT control strategy have similar system 

energy savings compared to the individual optimized control strategy case. 

However, the system energy saving is related to the constant EFT/ExFT setting 

temperatures. Adjusting the constant EFT/ExFT setting temperature based on the 

real system operation data is highly recommended when applying this varied 

EFT/ExFT control strategy. 

These three new control strategies do not require running optimization but the 

systems still have a good percent energy savings. They approach being 

generically applicable for the different combinations of HGSHP system design, 

building type and location. 

8.2 Recommendations for Future Research 

Recommendations for future research including the following: 

• The validation of variable convective resistance aspect of the GLHE model 

A validation of variable convective resistance aspect of the GLHE model is highly 

desirable. A varied flow rate experiment can be designed so as to transition 

between laminar flow and turbulent flow in the borehole tube. The measured 

experimental flow rates, the inlet and outlet fluid temperature of the borehole can 

be used for validation of the variable convective thermal resistance case. 

• 3-d or 2-d radial-axial GLHE model 
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During the simulation process of the GLHE model, it was found the GLHE model 

caused some errors when the time step was too small or the GLHE length was too 

large. In the GLHE model, there was an assumption that the fluid temperature 

changed linearly along the length of the borehole. However, in the real heat 

transfer process of the borehole, the fluid temperature changes more like an 

exponential decay (representing long term temperature rise or fall). When the time 

step is big enough and the loop length is not too long, the linear assumption does 

not cause too much errors of the calculated outlet fluid temperature. However, 

when the time step is small and inlet fluid temperature changes suddenly, using 

the linear assumption, the simulated fluid outlet temperature could be out of the 

range. To solve this problem, a 3-d model or a 2-d radial-axial model which 

addresses the fluid temperature gradient along the borehole is required. Also in 

the GLHE experiments, a phenomena of heat transport delay was observed. For 

the borehole of 75 m (258ft) deep, it took about 7 minutes for the fluid to pass 

through. The current GLHE model is not able to address the fluid transport delay 

issue. Again a 3-d model or 2-d radial-axial model will help to address the fluid 

transport delay issue, which happens in the real borehole heat transfer process. 

• The buried pipe model and the exposed pipe model 

In the HGSHP system, there is buried piping that connects the GLHE to the plant 

building, buried piping that connects the cooling tower to the plant building, and 

exposed piping that connects the components inside the building. For lack of a 

method to predict the heat transfer of these pipes, a heuristic pipe model was 
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taken by using the measured heat gain or loss as an input. As horizontally-buried 

piping is a common feature of GSHP systems, it would be useful to have a 

horizontally-buried piping component model. Also an exposed pipe model is 

desired. 

• Comparison of HGSHP design procedure to two current projects. 

The HGSHP design procedure developed in this research has been compared 

against the Kavanaugh and Rafferty (1997) procedure and the GenOpt design 

procedure. Two projects are currently in progress related to the design of HGSHP 

systems. One is the ASHRAE Research Project 1384 being performed at the Solar 

Energy Laboratory, University of Wisconsin. Another project is being carried out 

by Andrew Chiasson at the University of Wyoming. Both of these projects are 

aimed at developing design procedures for HGSHP systems. When some results 

of these two projects are available, a comparison of design results for HGSHP 

system of different design procedures is highly desired. 

• Testing of the system loads control strategy and varied EFT/ExFT control 

strategies.  

The system loads control strategy and varied EFT/ExFT control strategies have 

been developed and it is desired to test the new control strategies in the actual 

HGSHP system. 

• Improvement of the forecast/historical control strategy 
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The forecast/historical control strategies depend on an accurate measurement of 

the wetbulb temperature, which is problematic. Therefore, the outdoor drybulb 

temperature at current time might be used for predict the heat rejection rate of the 

cooling tower, which is measured more accurately and easily than the wetbulb 

temperature. However, the correlation between the cooling tower heat rejection 

rate and outdoor drybulb temperature is unknown. Therefore, further investigation 

is required.  

• Self-training feature of the control strategies 

For the new control strategies, a possible way to improve the performance of the 

controls is to add self-training feature into the controls. For example, in the 

forecast/historical control strategy, approximate correlations are used to calculate 

the cooling tower heat rejection rate and the heat pump COP. These correlations 

might not predict the cooling tower heat rejection rate and the heat pump COP 

perfectly in a real HGSHP system. Then a self-training feature can be added into 

the control strategy. For example, using the historical data of the cooling tower 

rejection rate, the temperature difference between the heat pump ExFT and the 

outdoor wetbulb temperature are collected into a database. Using some 

algorithms, the correlation between the cooling tower heat transfer rate and the 

temperature difference will be updated using the new collected historical 

experimental data. By this self-training feature, even if the initial correlation has a 

poor prediction of the cooling tower heat rejection rate, after collecting a mount of 

experimental data, the correlation will be updated based on the experimental data. 
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As a result, the control strategies will have a more accurate prediction of the 

cooling tower heat rejection rate. Similar approaches will be applied to the 

calculation of heat pump COP.  
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APPENDIX A One-Dimensional Numerical Model 

Validation 

 The one-dimensional numerical model developed in Section 4.1.2 was validated 

using GEMS2D (Rees 2000). Totally six group of test cases were carried out for the 

validation of the one-dimensional numerical model. The varied parameters of borehole 

include: borehole diameters, shank spacing, grout conductivities, soil conductivities, 

grout heat capacities and fluid factors. The selected values included the common values 

used in the vertical ground loop heat exchangers and were listed in Table 4.1. The 

remaining parameters common to all test cases were given in Table 4.2. 

 In Section 4.1.2, only detailed comparison result of case 1A was provided. In this 

appendix, comparison results of all test cases were listed in six groups with respect to the 

varied parameters. The case number in the following figures can be checked out in Table 

4.1. 
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Group 1: Borehole Diameter Validation 

Fluid Average Temperature Comparison (Case 1A)
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Figure A.1 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 1A. 

Fluid Average Temperature Comparison (Case 1B)
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Figure A.2 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 1B. 
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Fluid Average Temperature Comparison (Case 1C)
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Figure A.3 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 1C. 

Fluid Average Temperature Comparison (Case 1D)
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Figure A.4 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 1D. 
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Group 3: Shank Spacing Validation 

Fluid Average Temperature Comparison (Case 2A)
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Figure A.5 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 2A. 
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Figure A.6 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 2B. 
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Fluid Average Temperature Comparison (Case 2C)
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Figure A.7 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 2C. 

Fluid Average Temperature Comparison (Case 2D)
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Figure A.8 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 2D. 
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Group 3: Grout Conductivity Validation 

Fluid Average Temperature Comparison (Case 3A)
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Figure A.9 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 3A. 
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Figure A.10 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 3B. 
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Fluid Average Temperature Comparison (Case 3C)
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Figure A.11 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 3C. 
 
Group 4: Ground Conductivity Validation 

Fluid Average Temperature Comparison (Case 4A)
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Figure A.12 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 4A. 



 

 384

Fluid Average Temperature Comparison (Case 4B)
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Figure A.13 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 4B. 

Fluid Average Temperature Comparison (Case 4C)
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Figure A.14 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 4C. 
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Fluid Average Temperature Comparison (Case 4D)
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 Figure A.15 Comparison of the one-dimensional model and GEMS2D model temperature 

predictions for Test Case 4D. 
 
Group 5 Grout Heat Capacity Validation 

Fluid Average Temperature Comparison (Case 5A)
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 Figure A.16 Comparison of the one-dimensional model and GEMS2D model temperature 

predictions for Test Case 5A. 
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Fluid Average Temperature Comparison (Case 5B)
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Figure A.17 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 5B. 
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 Figure A.18 Comparison of the one-dimensional model and GEMS2D model temperature 

predictions for Test Case 5C. 
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Group 6 Fluid Factor Validation 

Fluid Average Temperature Comparison (Case 6A)
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Figure A.19 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 6A. 
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Figure A.20 Comparison of the one-dimensional model and GEMS2D model temperature predictions 

for Test Case 6B. 
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Fluid Average Temperature Comparison (Case 6C)

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(hours)

Te
m

p(
o C

)

32

35

38

41

44

47

50

Te
m

p(
o F

)

GEMS2D

ONE-D Model

Fluid Factor = 4

 
 Figure A.16 Comparison of the one-dimensional model and GEMS2D model temperature 

predictions for Test Case 6C. 
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APPENDIX B Building Loads in Different Climates 

Currently, only the office building and motel building have used for the control strategies 

investigation. Also only four cities in Table 7.1 have been chosen for the investigation. In 

Section 7.1, only the office building loads in El Paso, NM and the motel building loads in 

Tulsa, OK were presented. In this appendix, all the building loads for these four cities are 

presented. The buildings were modeled and simulated using EnergyPlus.  
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Figure B.1 Office building loads in Tulsa, OK. 
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Office Building Loads In Albuquerque, NM
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Figure B.2 Office building loads in Albuquerque, NM. 

Office Building Loads In El Paso, TX
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Figure B.3 Office building loads in El Paso, TX. 
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Office Building Loads In Memphis, TN
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Figure B.4 Office building loads in Memphis, TN. 

Office Building Loads In Baltimore, MD

-1000

-800

-600

-400

-200

0

200

400

600

800

0 730 1460 2190 2920 3650 4380 5110 5840 6570 7300 8030 8760

Time(hours)

Lo
ad

(k
W

)

Heating Load (kW) Cooling Load (kW)

 
Figure B.5 Office building loads in Baltimore, MD. 
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Office Building Loads In Houston, TX

-1000

-800

-600

-400

-200

0

200

400

600

800

0 730 1460 2190 2920 3650 4380 5110 5840 6570 7300 8030 8760

Time(hours)

Lo
ad

(k
W

)
Heating Load (kW) Cooling Load (kW)

 
Figure B.6 Office building loads in Houston, MD. 

Motel Building 

Motel Building Loads In Tulsa, OK
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Figure B.7 Motel building loads in Tulsa, OK. 
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Motel Building Loads In Albuquerque, NM
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Figure B.8 Motel building loads in Albuquerque, NM. 

 

Motel Building Loads In El Paso, TX
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Figure B.9 Motel building loads in El Paso, TX. 
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Motel Building Loads In Memphis, TN
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Figure B.10 Motel building loads in Memphis, TN. 

Motel Building Loads In Baltimore, MD
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Figure B.11 Motel building loads in Baltimore, MD. 
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Motel Building Loads In Houston, TX
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Figure B.12 Motel building loads in Houston, MD. 
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HGSHP system components and was implemented in GLHEPRO. A comparative study 
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