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NOMENCLATURE 

 

ijσ  Stress component ( Pa ) 

ijε  Strain component 

σ  Normal stress ( Pa ) 

τ  Shear stress ( Pa ) 

maxσ  Maximum normal stress in cohesive layer ( Pa ) 

maxτ  Maximum shear stress in cohesive layer ( Pa ) 

maxε  Maximum normal strain in cohesive layer 

maxγ  Maximum shear strain in cohesive layer 

ch  Cohesive layer thickness ( m ) 

sepφ  Cohesive layer work-of-separation ( 2/ mJ ) 

G  Strain energy release rate ( 2/ mJ ) 

E  Young’s modulus ( Pa ) 

υ  Poisson’s ratio 

ρ  Material density ( 3/ mKg ) 

ψ  Helmholtz free energy ( 3/ mJ ) 

m  Moisture concentration ( 3/ mKg ) 



 xvi
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R  External nodal force vector ( N ) 
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D  Elasticity matrix 

epD  Elasto-plastic stiffness matrix 

ysσ  Yield stress ( Pa ) 

H ′  Strain hardening function ( Pa ) 

pε  Equivalent plastic strain 
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iJ ′  Deviatoric stress invariant 



 1

 

CHAPTER  I 

INTRODUCTION 

1.1   Applications of Adhesive Material 

 The use of structural adhesives is rapidly increasing as they offer distinct 

advantages over conventional mechanical fastening technique. Laminated composites and 

thin film structures are some of the most popular applications in industry. Fiber 

reinforced polymer (FRP) composite is a new application of cohesive material in industry 

and civil engineering. It is necessary to better understand the nature and the reliability of 

the bonding between the layers or at the bimaterial interface. Many polymeric materials, 

including structural adhesives, exhibit nonlinear and time-dependent behaviors and quite 

sensitive to the change of temperature and moisture penetrant concentration. Therefore 

the load-carrying requirements of the cohesive layer, time-dependent material properties, 

and coupled hygrothermal effect in the adhesive layer, stress concentration and non-linear 

deformation near the crack tip, crack initiation and propagation (debond) within the 

interface between two materials are some of the essential factors that should be 

considered to get a reliable solution. 

 Fiber reinforced polymers are a class of advanced composite materials that have 

been extensively used as lightweight, performance-enhancing materials in aerospace, 

automobile, and defense industries for quite some time. Over the past few years there has 

been extensive research into their potential applications in the construction industry. 
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However, the actual application of FRP composite in civil engineering sector has been 

slow especially as concrete reinforcement. One of the chief reasons for their slow 

acceptance is because of a lack of reliable predictive models and sound design guidelines 

for their use in civil infrastructure applications.  

 One promising prospect of the application of FRP composite materials in civil 

engineering is infrastructure repair and retrofit. FRP materials have been used to 

strengthen the concrete beam element of buildings and bridges with low cost and high 

strengthening effect [1]. This allowed increasing the strength and/or ductility of these 

structures while benefiting from the FRP material advantages including: ease of 

application, high strength-to-weight ratio, and excellent resistance against corrosion and 

chemical attacks. Ritchie et al. [2] studied the behavior of concrete beams strengthened 

by bonding FRP (glass, carbon, and aramid) plates to the tension zone and showed that 

FRP reinforcement increased beam stiffness by 17-79% and beam ultimate strength by 

40-97%. New uses of FRP sheets to upgrade the resistance of steel structures have 

recently been studied. A considerable increase in the strength and stiffness of the 

rehabilitated steel bridge girders was observed [3]. A major concern for such retrofitting 

is the debonding of polymeric adhesive that could compromise the reinforcing effect of 

the FRP. When exposed to harsh environments, degradation of the adhesive bond could 

lead to delamination of the FRP reinforcement that could ultimately lead to catastrophic 

failure. 

 Thin film structure appears mainly as coating in a wide variety of applications and 

in multilayer structures in microelectronic devices and package. Since poor bonding 

results in crack or delamination, fracture mechanics is a natural approach for 
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characterizing the resistance to failure and making durability or reliability prediction. At 

the same time, several experimental methods, including peel test, blister test, indentation 

test, and scratch test etc., have been used to determine the interfacial bond strength or 

toughness. One problem common to all of these methods is that global plastic dissipation 

makes it difficult to extract the true toughness of the interface. A new test method, 

peninsula blister test, can minimize the plastic dissipation and hence be an effective 

approach to measure the fracture toughness of the thin film structures. 

 Laminated composites have the advantage of low weight and high strength 

compared to the structural metals, and hence obtain an increasing application in 

aerospace industry. Delamination, which is created when two layers debond from each 

other, is a common type of failure mode in layered composites without the through-the-

thickness reinforcement. The initiation of delamination growth is usually controlled by 

mode I and mode II fracture toughness. Numerical approach with mixed mode failure 

criterion is an effective way to investigate the delamination of the layered composites. 

 

1.2   Cohesive Zone Model 

 An important issue when considering failure is the observation that most 

engineering materials are not perfectly brittle in the Griffith sense but display some 

ductility after reaching the strength limit. In fact, for most engineering materials there 

exists a small zone in front of the crack tip, in which small-scale yielding, micro cracking 

and void initiation, growth and coalescence take place. If this fracture process zone is 

sufficiently small compared to the structural dimensions, linear-elastic fracture mechanics 

concept can apply. However, if this is not the case, the cohesive forces that exist in this 
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fracture process zone must be taken into account. The most powerful and natural way is 

to use cohesive zone model, which was introduced by Barenblatt [4] and Dugdale [5] for 

elastic-plastic fracture in ductile metals, and for quasi-brittle materials by Hillerborg et al. 

[6] in his so-called fictitious crack model. 

 The fracture process zone approach of Needleman [7, 8] and Tvergaard and 

Hutchinson [9, 10] involves attributing a prescribed traction-separation law to the 

interface and, because it allows crack growth to occur, the associated plastic dissipation 

from loading and unloading of points that are passed by the crack front is rigorously 

accounted for. As a result, the selected traction-separation law determines the work-of-

separation (or adhesive fracture energy), which is the work required to create a unit area 

of fully developed crack [11]. 

 In the past two decades or so, cohesive zone models have become very popular 

and have been recognized to be an important tool for describing fracture in engineering 

materials. Especially when the crack path is known in advance, either from experimental 

evidence or because of the structure of the material (such as in laminated composites), 

cohesive zone model has been used with great success. Song and Waas [12], Shawan and 

Waas [13], and El-Sayed and Sridharan [14] successfully employed cohesive zone model 

to investigate the fracture properties in laminated composites. In those cases, the finite 

element mesh was constructed such that the known crack path coincides with the element 

boundaries. 

 The most common failure form of FRP composite plate bonded concrete structure 

is the delamination of the FRP plate from the concrete component. The debond process of 

FRP plate usually initiates and propagates along the adhesive-concrete or adhesive-FRP 
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interface, which is known in advance. The cohesive zone model is thus a good tool for 

investigation of local fracture processes in FRP delamination. 

 Fatigue crack growth is traditionally characterized via linear elastic fracture 

mechanics concepts where crack growth rates are correlated with the change in energy 

release rate or the maximum value of the energy release rate in a cycle. This approach has 

worked well for metals and polymers alike, especially in dry, room temperature 

environments, where conditions are still generally linearly elastic. Correlation between 

crack growth rates and elastic fracture parameters do become suspect in polymers near 

their glass transition and when saturated by a solvent. Cohesive zone modeling offers a 

solution to this difficulty in the sense that if the near-tip damage can be accounted for in 

the traction-separation law of the interphase then the local non-linear inelastic behavior of 

the material can be coupled into any analysis directly [15]. 

 

1.3   Coupled Hygrothermal Effect on Cohesive Layer 

 Moisture can cause a host of reliability problems at interfaces including interface 

bond degradation and debonding. Two mechanisms can be identified. First, moisture at 

an interface can reduce the interface bonding strength dramatically by altering the 

chemical bonds. Second, when an interface with a crack or a crack-like defect is under 

tensile stress, stress corrosion may allow crack growth at stresses much lower than 

critical fracture would require [16]. 

 The influence of moisture diffusion on crack growth along an interface is not yet 

fully understood. Environmental cracking in a polymer typically occurs in the presence of 

a penetrant, such as moisture, and mechanical strain. It has been postulated that the 
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mechanism involved in environmental crack growth in a polymer involves a small zone 

of craze formation and/or plasticization at the crack tip. For thermoset resins, such as 

epoxy, energy absorption at the crack tip is primarily by a shear yielding process and not 

by crazing. Consequently, for a thermoset epoxy, the zone of plasticization ahead of the 

crack tip must be determined using a diffusion law for non-porous media, such as Fick’s 

law. However, quite frequently, polymer composites exhibit deviations from the classical 

Fickian treatment, termed as anomalous or non-Fickian diffusion, especially at elevated 

temperatures and stress levels, and at high relative humidity. Sophisticated hygrothermal 

models have been developed and verified by Roy [17-20] to account for anomalous 

diffusion.  

 

1.4   Cohesive Layer Model 

 Cohesive layer model employs a thin layer of material, which is placed between 

two adjacent layers for laminated structures and multi-layer structures, or along the 

bimaterial interface, or along a predicted cracking path in a single material (e.g. concrete 

and metal) to simulate the elastic-plastic failure in ductile or quasi-brittle material in the 

vicinity of the debond tip. It allows debond (or failure) to initiate and grow in these 

elements along a prescribed debond path. The vicinity of debond tip can be divided into 

three characteristic zones: elastic zone, damage zone, and debonded zone. The 

corresponding stress-strain traction-separation relation may take different forms in each 

zone for different materials, different loading and environmental conditions to cope with 

any particular nonlinear behavior in front of the debond tip. 
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 The thickness of cohesive layer is an important parameter in the cohesive layer 

model. It should be noted that the cohesive layer thickness is not arbitrary in cohesive 

layer model, and it is related to some characteristic length-scale of the debond process, 

such as crack opening displacement (COD). Cohesive layer thickness can be determined 

from the maximum deformation at the debond tip and the maximum strain maxε  in 

cohesive layer at failure.  

 Environmental degradation is usually found in adhesive material and therefore 

results in the change of the material properties such as maxε  and maxσ  (maximum stress) 

When investigating the moisture degradation, two-dimensional and three-dimensional 

moisture diffusion in the cohesive layer can be directly simulated in a two-dimensional or 

three-dimensional cohesive layer. Mixed mode I and mode II fracture is the common 

failure form of cohesive layer and sometimes even includes mode III. Mixed mode failure 

and corresponding failure criteria can also be easily implemented in cohesive layer model 

to predict the debond process in adhesive layer. 

 

1.5   Objective and Contents 

 The objective of this research is to construct a cohesive layer model from 

fundamental principles of continuum mechanics and thermodynamics, take into account 

the strain rate dependent material properties, non-Fickian Hygrothermal effects as well as 

diffusion-induced degradation in the cohesive layer. By means of the cohesive layer 

model, the effect of rate-dependent material properties, environmental degradation of the 

adhesive material, dynamic response involving material and geometric nonlinearity under 

blast load, quasi-static debond initiation and propagation of the adhesive layer were 
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studied to provide a better understanding of the strengthening effect and reliability of 

FRP plated structures. 

 In Chapter I, a brief literature review of the application and research status of 

structural adhesive and FRP bonded structure, and the motivations of this research are 

presented. 

 In Chapter II, two-dimensional and three-dimensional cohesive layer constitutive 

models with prescribed traction-separation laws were constructed from fundamental 

principles of continuum mechanics and thermodynamics. Based on debond tip 

deformation, work-of-separation or strain energy release rate, criteria for mixed mode I 

and mode II debond (and even includes mode III) were developed to predict the debond 

initiation and propagation of the cohesive layer. 

 In Chapter III, an analytical solution was derived by introducing a correction term 

into the original Williams’ solution to predict the transverse stress in a cohesive layer 

when considering the deformation of a stiff substrate. Implementation of the cohesive 

layer model into a test-bed finite element code was carried out and code verification was 

performed. Benchmark comparisons of finite element prediction of both global critical 

load and local stress field with analytical solution for a DCB specimen resulted in good 

agreement after modifications were made to the original Williams’ solution. A sensitivity 

study was conducted to evaluate the influence of cohesive layer thickness on local 

parameters such as damage zone length, and global parameter such as critical force. 

 In Chapter IV, a two-dimensional cohesive layer constitutive model involving 

strain dependent, non-Fickian hygrothermal effects as well as diffusion induced 

degradation in the cohesive layer was constructed. Numerical simulation of a wedge-test 
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including debond growth caused by synergistic interactions between local stress and 

diffusing moisture was also presented to demonstrate the ability of the cohesive layer 

model to simulate environmental cracking. 

 In Chapter V, a three-dimensional cohesive layer model and corresponding mixed 

mode failure (debond) criterion were implemented in a test-bed finite element code to 

simulate the full three-dimensional peninsula blister test. Issues such as large 

deformation, time-dependent material behavior, and residual stresses in the thin film were 

considered in the simulation model. Distinctive numerical techniques were successfully 

employed to simulate the unique liquid loading process. FEA simulation results were also 

compared with analytical solution and test data. Good agreement was obtained. 

 In Chapter VI, cohesive layer model with strain-rate dependent traction-separation 

constitutive law was implemented in a test-bed FEA code to simulate a moving wedge 

test. Time-dependent material properties of the adhesive material were considered and 

quasi-static debond growth of the adhesive layer was successfully simulated by this code. 

Results predicted by the computational model were benchmarked through comparison 

with analytical solutions and mixed mode fracture tests. 

 In Chapter VII, cohesive layer model was used to study the dynamic response of a 

FRP bonded concrete beam under blast loading. Implicit Hilber-Hughes-Taylor (HHT) 

method was employed in the model to allow better control of numerical damping. Long 

term and short term responses were obtained and their effects on the failure of the 

adhesive layer were investigated. Dynamic responses of the structure with an initial crack 

and its effect on debond initiation were also studied. 
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 In Chapter VIII, a two-dimensional implicit dynamic finite element formulation 

including material and geometric nonlinearity was derived and implemented into a test-

bed FEA code. Model verification under very large deformation was successfully 

performed through comparison with ABAQUS FEA predictions. Subsequently, the 

NOVA-3D FEA model was applied to a circular steel plate with a polymer coating 

subjected to intensive blast loading, and the effect of polymer coating on the nonlinear 

dynamic response was numerically investigated. 

 In Chapter IX, conclusions are presented based on the study of the cohesive layer 

model and its applications on various engineering structures. 
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CHAPTER  II 

COHESIVE LAYER MODEL 

 This chapter gives a detailed description of the cohesive layer model for two-

dimensional and three-dimensional cases. It includes the definition of cohesive layer, the 

constitutive laws for the cohesive layer, the concept of work-of-separation, and the mixed 

mode failure criteria. 

 

2.1   Cohesive Layer Configuration 

 Ductile polymeric adhesive materials usually have a nonlinear normal and shear 

stress-strain response. In the event of crack initiation and propagation in such polymeric 

materials, there exists a damage zone ahead of the debond tip, in which, craze and void 

initiation, growth and coalescence take place. The cohesive forces in the damage region 

must be taken into account to capture the behavior of the failing material in this zone, 

especially if the zone size is not sufficiently small compared to characteristic structural 

dimensions. The vicinity of debond tip can be divided into three common zones: an 

elastic/viscoelastic zone, a damage zone, and a debonded zone, as depicted in Fig. 2-1(a). 

The corresponding stress-strain (or traction-separation) relation may take different 

nonlinear forms in each zone for different materials and different loading conditions. 
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(a)  Debond tip traction force 
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             (b)  Traction-separation law near debond tip 

Fig. 2.1   Three characteristic zones near debond tip  

and corresponding stress-strain relations 

 

 In order to model this nonlinear behavior near the debond tip, a cohesive layer, 

which is a thin layer of cohesive finite elements, can be placed between two adjacent 

layers for laminated structures and multi-layer structures, or along the bimaterial 

interface, or along a predicted cracking path in a single material (e.g. concrete and metal). 

It allows debond (or failure) to initiate and grow in these elements and different stress-

r 

z

Elastic zone              Damage zone       Debonded zone 
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strain traction-separation laws can be selected to cope with any particular nonlinear 

behavior in front of the debond tip. An example of the traction-separation law for a 

cohesive layer is shown schematically in Fig. 2-1(b). 

 The thickness, ch , of cohesive layer is an important parameter in the cohesive 

layer model. It is not arbitrary, but is directly related to a characteristic length parameter 

(δ ), such as crack opening displacement (COD). In this simulation, maxεδ ch=  and maxε  

is the maximum strain that could be reached at debond tip. Environmental degradation in 

cohesive material is included in the cohesive layer model through the change of the 

material properties maxσ  and maxε . When investigating the moisture induced degradation, 

two-dimensional and three-dimensional moisture diffusion in the cohesive layer can be 

directly simulated. Mixed mode failure and corresponding failure criteria can also be 

easily established to predict the debond process.  

 

2.2   Cohesive Layer Constitutive Equations 

2.2.1  Triangular Stress-Strain Traction-Separation Law 

 Triangular stress-strain traction-separation law is a simple and commonly used 

model for cohesive material (Fig. 2-2), especially in theoretical analysis. Considering the 

stress and strain of mode I debond (opening mode) in the direction perpendicular to the 

debond surface, three types of zone are defined as follow: 

 Elastic zone: when the transverse strain max

3
εε ≤ , stress linearly increases with 

strain, stress reaches its maximum value maxσσ =  at max

3
εε = . 
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 Damage zone: when the transverse strain max

3
εε > , stress decreases gradually 

from its maximum to zero as strain approaches maxε . 

 Debond (failure) zone: when the transverse strain maxεε > , stress remains zero 

which implies a full debond or separate of the cohesive layer. 

 

 

Fig. 2-2   Normalized triangular stress-strain traction-separation law for a cohesive layer 

 

 The maximum stress maxσ  and maximum strain maxε , which are material 

properties, are functions of time, strain rate, temperature and moisture concentration etc., 

and represent the prescribed maximum stress and strain that could be reached in cohesive 

layer when the cohesive layer debonds along a specified direction. 

 

2.2.2  2-D Cubic Stress-Strain Traction-Separation Law 

 Based on fundamental principles of continuum mechanics, for two-dimensional 

case, a more accurate cohesive layer constitutive relationship takes the cubic form as 



 15

employed by Needleman [7] (Fig. 2-3). In the direction perpendicular to the debond 

surface, the transverse normal stress is given by, 
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Fig. 2-3   Cubic stress-strain traction-separation law for a cohesive layer 

 

 In the direction of debond growth, linear elastic response is assumed, and the 

axial normal stress is given by,  

 11max11
max

max
11 εσε

ε
σσ ==                                                                                     (2-2) 

where, the normalized strain in a given direction is defined as 
maxε
εε ii

ii =  (no sum on i).  

σ 
/ σ

m
ax

 

ε / εmax 
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 A similar treatment to the one developed in Eq. (2-1) is prescribed for the shear 

12σ  response, with the proviso that the shear stress is independent of the sign of shear 

strain. 

 

2.2.3  3-D Cubic Stress-Strain Traction-Separation Law 

 Three-dimensional cohesive layer treatment is often necessary for some structures 

like peninsula blister specimen, which is used to measure the interfacial fracture 

toughness in thin film structures. A full three-dimensional cohesive layer model was 

constructed in this study to meet this requirement. By extending the above two-

dimensional cohesive layer model just described, the constitutive law for a three-

dimensional cohesive layer can be expressed in a similar manner as shown in Eqs. (2-3) 

and (2-4). Again, nonlinear responses are considered for transverse stress components 

31σ , 32σ , and 33σ , while for other stress components linear elastic response is assumed. 
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2.3   Cohesive Layer Work-of-Separation 

 For a given stress-strain traction-separation law, the work-of-separation (or strain 

energy) is the work needed to fully separate a unit area of cohesive layer, which is given 

by the total area under the prescribed stress-strain curve. 

 Under the triangular stress-strain traction-separation law as shown in Fig. 2-2, for 

pure mode I debond, 

 cc
I
sep hdh maxmax

0 2
1)(

max

εσεεσφ
σ

== ∫                                                                       (2-5) 

 and for pure mode II debond, 

 cc
II
sep hdh maxmax

0 2
1)(

max

γτγγτφ
γ

== ∫                                                                         (2-6) 

 Similarly, under the cubic stress-strain traction-separation law as shown in Fig. 2-

3, 

 cc
I
sep hdh maxmax

0 16
9)(

max

εσεεσφ
σ

== ∫                                                                     (2-7) 

 cc
II
sep hdh maxmax

0 16
9)(

max

γτγγτφ
γ

== ∫                                                                       (2-8) 

where ch  is the thickness of the cohesive layer. 

 

2.4   Failure Criteria of Mixed Mode Debond 

 Mixed mode I and mode II debond is the common failure form of cohesive layer, 

while pure mode I or mode II debond is only a special case under certain conditions. It is 
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necessary to establish a failure criterion such that it contains both the contributions of 

mode I and mode II debond, and in some cases even includes mode III. 

 

2.4.1  Criterion Based on Prescribed Maximum Strain 

 At the debond tip, when the strains satisfy the following condition, cohesive layer 

will debond [21], 

 δ
γ
γ

α
ε
ε

α =⎟⎟⎠

⎞
⎜⎜⎝

⎛
+⎟⎟⎠

⎞
⎜⎜⎝

⎛
2

max
2

2

max
1

xyy                                                                           (2-9) 

where yε  and xyγ  are the transverse normal strain and shear strain respectively, maxε and 

maxγ  are the prescribed normal and shear failure strains of the cohesive layer, 

respectively. 1α , 2α , and δ  are constants and 121 === δαα  was taken in this study. 

 

2.4.2  Criterion Based on Strain Energy Release Rate 

 The strain energy release rate in the cohesive layer during mixed mode debond, 

G ,  due to the traction-separation force can be partitioned into the opening (mode I) and 

shear (mode II) components, IG  and IIG  respectively, in such a way that, 

 III GGG +=                                                                                                     (2-10) 

 Each individual component can be calculated by integrating the mode I and II 

traction-separation curves (Fig. 2-4) 

 ∫=
t

dGI

ε

εεσ
0

)(                                                                                                  (2-11) 
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 ∫=
t

dGII

γ

γγτ
0

)(                                                                                                  (2-12) 

where 
maxσ
σσ = , 

maxτ
ττ = , 

maxε
εε = , 

maxγ
γγ =  are normalized stresses and strains in 

the specific directions,  respectively. 
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Fig. 2-4   Cubic stress-strain traction-separation law  

and strain energy release rate for a cohesive layer 

 

 Considering the energy required to separate the cohesive layer, the cohesive layer 

debond process can be better predicted by means of the following criterion 

 e
G
G
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where, IG  and IIG  are the respective values of the ambient energy release rates given by 

the area under the corresponding stress-strain curves under a given applied loading. 
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CIG  and 

CIIG  are the critical strain energy release rates in pure mode I and mode 

II debond, respectively. 

 m, n, and e are material constants, Kutlu and Chang [22] found that 1=== enm  

provided the best fit to their experimental data. 

 When neglecting energy dissipation in the bulk adhesive, critical strain energy 

release rate of cohesive layer is equal to the work-of-separation sepφ  (the total area under 

mode I or mode II traction-separation curves for 10 ≤≤ ε , Fig. 2-4), which is the energy 

necessary to generate unit debond length (2-D case) or area (3-D case). Thus for the cubic 

stress-strain traction-separation law, integrating Eq. (2-3) over the limits [ ]0, ε  for the 

case of pure mode I debond and [ ]0, γ  for the case of pure mode II debond,  
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εεεεσεεσ
ε

+−== ∫ ccI hdhG                                    (2-14) 
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2

2
1(

4
27)( 432

maxmax
0

γγγγτγγτ
γ

+−== ∫ ccII hdhG                                    (2-15) 

 And therefore, IcI GG →  as 1→ε , and IIcII GG →  as 1→γ  giving 

 ccI hdhG
C maxmax

0 16
9)(

max

εσεεσ
ε

== ∫                                                                   (2-16) 

 ccII hdhG
C maxmax

0 16
9)(

max

γτγγτ
γ

== ∫                                                                    (2-17) 

 For triangular stress-strain traction-separation law, a similar procedure can be 

applied. 

 Where, ch  is the cohesive layer thickness. It should be noted that the cohesive 

layer thickness is not arbitrary in cohesive layer model, and it is related to some 
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characteristic length-scale of the debond process, such as COD. Determination of 

cohesive layer thickness from test data will be discussed in a later section. 

 A phase angle is defined to describe the mode-mix of the failure (debond) in a 

cohesive layer 
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where *
IG  and *

IIG  are the strain energy release rates at which debond of cohesive layer 

initiates. 

 In the case of the presence of anti-plane shear stress (mode III), the mixed mode 

debond criterion can be expressed as 

 1=++
IIIc

III
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G
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G
G

G
G                                                                                        (2-19) 

and the phase angle between mode I and mode III is given by, 
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CHAPTER  III 

DEVELOPMENT OF AN ANALYTICAL SOLUTION 

FOR COHESIVE LAYER MODEL AND MODEL VERIFICATION 

 

 The objective of this chapter is to find an analytical solution to the cohesive 

damage zone at the interface between a fiber reinforced polymer (FRP) plate and 

concrete substrate. An analytical solution was derived to predict the stress in cohesive 

layer when considering the deformation in a stiff substrate. A two-dimensional cohesive 

layer model with a prescribed stress-strain traction-separation law as described in Chapter 

II was employed in this study. For comparison purpose, the cohesive layer model was 

implemented into a test-bed finite element code (NOVA-3D). Detailed benchmark 

comparisons of analytical results with finite element predictions for a double cantilever 

beam specimen for model verification were performed and issues related to cohesive 

layer thickness were investigated. It was observed that the assumption of a rigid substrate 

in analytical modeling can lead to inaccurate analytical prediction of cohesive damage 

zone length and stress distribution near debond tip. 

 

3.1   Analytical Solution from Cohesive Zone Model 

 Williams and Hadavinia [23] used a cohesive zone model with various simple 

forms of cohesive traction-separation laws to analyze the global features and local stress 
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distribution of a double cantilever beam specimen (DCB, shown in Fig. 3-1). The DCB 

specimen is modeled as a cantilever beam with elastic foundation as shown in Fig. 3-2. 

The deformation of the beam is given by the equation 

 
EI
w

dx
vd =4

4

                                                                                                           (3-1) 
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Fig. 3-1   A cohesive layer in a double cantilever beam (DCB) 
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Fig. 3-2   Schematic debonding of a double cantilever beam showing cohesive layer with 
elastic zone and damage zone ( 1 [0, ]x l∈ ) 
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 Where E is the Young’s modulus of the beam, v is the deflection of beam at its 

mid-plane, b is the width, and w is the distributed load per unit length of the beam that 

can be related to the stress in the cohesive layer by ybw σ−= . 

 The stress yσ  in the cohesive zone is modeled by a triangular elastic-linear-

damage traction-separation law referring to the stress in the cohesive zone (as depicted in 

Fig. 2-2), where maxv  is the displacement at final fracture, maxσ  is the maximum stress in 

the cohesive zone at 
3
maxv

v = . 

(a)  In the damage zone: 

 )(
2

3
max

max

max vv
v

b
bw y −=−=

σσ                                                                            (3-2) 

Let 

 
max

max4
1 2

3
EIv
bσλ =                                                                                                      (3-3) 

Thus Eq. (3-1) becomes 

 )( max
4
14

4

vv
dx

vd −= λ                                                                                              (3-4) 

and the corresponding solution is, 

 112111112111max cossincoshsinh xCxCxBxBvv λλλλ ++++=                      (3-5) 

(b)  In the elastic zone: 

 v
v
b

bw y
max

max3 σσ −=−=                                                                                      (3-6) 

Let 
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max

max4
2 4

3
EIv
bσλ =                                                                                                      (3-7) 

 v
dx

vd 4
24

4

4λ−=                                                                                                       (3-8) 

and the solution is given by, 

 )cossin( 222221
22 xAxAev x λλλ += −                                                                  (3-9) 

 There are a total six unknown coefficients in Eqs. (3-5, 3-9). Along with the 

unknown damage length l and the critical force crP , it requires eight boundary conditions 

to determine the beam deformation and the corresponding stresses in the cohesive layer. 

Two force boundary conditions are provided by force and moment equilibrium at the 

crack tip 01 =x . Continuity conditions imposed at the boundary of the elastic zone and 

damage zone yield another four boundary conditions by matching v , 
dx
dv , 2

2

dx
vd , 3

3

dx
vd  at 

lx =1  and 02 =x . Finally, two displacement boundary conditions are maxvv =  at 01 =x  

and 
3
maxv

v =  at lx =1 . 

 From max1 )0( vv = , 

 022 =+ CB                                                                                                       (3-10) 

EI
aP

dx
vd cr=)0(2

1
2

, where a is the crack length 

 2
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22 2 λEI
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 Eqs. (3-10 ~ 3-17) are nonlinear in terms of damage length l. Solutions are sought 

by an iterative numerical predictor-corrector method as follows: Damage length l is 

varied from 0.0 to 1.0 mm with interval of 0.001~0.01mm for the current specimen, and 

thereby Eqs. (3-10 ~ 3-16) become a set of linear equations that can be solved to obtain 

the constants coefficients 1A , 2A , 1B , 2B , 1C , 2C  and the crack initiation load crP  for a 

specified damage length l. These constants and corresponding damage length l are then 

substituted into Eq. (3-17) and, because the equation is not exactly solved, the solution 
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error is numerically estimated. The correct solution for damage length l and the constants 

is the one that minimizes the error. 

 

3.2   Analytical Solution from Cohesive Layer Model 

 In Williams’ solution, deformation of the beam transverse to beam axis is 

neglected, therefore the displacement in y-direction (v) at the centerline of the beam is 

considered as the deformation of the cohesive zone. Maximum deformation maxv  at the 

debond tip, which is independent of the geometry and material properties of the beam, is 

the characteristic length scale of the cohesive zone model. When applying cohesive zone 

approach to a cohesive layer model, maximum deformation can be expressed as 

maxmax εchv = , where maxε  is the maximum strain in the cohesive layer at failure, which is 

assumed to be a material property. As a result, the cohesive layer thickness ch  is no 

longer arbitrary, but is uniquely determined by the relation 
max

max

ε
vhc = . When considering 

the transverse deformation of the beam, ch  is an important factor in evaluating the 

relative stiffness of beam and the cohesive layer in the transverse direction. 

 The Young’s modulus of the beam (concrete) is usually much higher than that of 

the cohesive layer. On the other hand, the thickness of the beam is also much greater than 

that of the cohesive layer. Consequently the transverse deformation of the beam is 

comparable to the deformation in the cohesive layer and thus cannot be neglected. A 

small lateral deformation of the beam will greatly change the stress in the cohesive layer. 

FEA results clearly show the difference between the deflection of the beam at the 
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centerline and the deformation of the cohesive layer (that is, the displacement at the 

beam-cohesive layer interface represents the deformation of the cohesive layer) (Fig. 3-

3). As can be seen in Fig. 3-3 the displacement at the interface is generally smaller than 

the displacement at the centerline of the beam, the latter being the summation of the 

transverse deformations of the beam and the cohesive layer. 
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Fig. 3-3   Transverse deformation comparison between beam centerline  

and cohesive interface using FEA 

 

 Thus, the total displacement v in y-direction at the centerline of the beam is 

composed of two parts: deformation bv  of the beam and deformation cv  of the cohesive 

layer, such that 

 cb vvv +=                                                                                                         (3-18) 

 Assume that the transverse stress at the interface and in the cohesive layer is 

cy σσ = , and 0=yσ  at the free top surface of the beam. A distribution law for yσ  



 29

through the height of the beam ( bh ) must be assumed to calculate the deformation of the 

beam (see Fig. 3-4). The actual distribution law for transverse stress can be obtained from 

elastic FEA analysis. Three idealized distribution laws for yσ  were evaluated in this 

study: 

beam
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Fig. 3-4   Transverse stress distribution in the beam and cohesive layer 
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 The corresponding lateral deformations in the lower half of the beam are, 

respectively: 
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(c)  Cubic:        
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where bE  is the Young’s modulus of the beam, and bh  is the height of the beam.  

 The above results can be generalized as 
b

bc
b E

h
kv
σ

= , which represents the lateral 

deformation of the beam, where k is the coefficient determined by the distribution of yσ  

along the y-direction within the beam given by Eq. (3-20). From Eq. (3-20), the values of 

k are 
8
3 , 

24
7 , 

64
15  for linear, quadratic and cubic distributions, respectively. 

 The analytical solution to the DCB specimen bonded by a cohesive layer with 

small but finite thickness can now be derived as follows. 

(a)  In the damage zone: 

 From Eq. (3-2), 
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 Displacement at the centerline of the beam is  

 ⎟⎟⎠

⎞
⎜⎜⎝

⎛
−−=+=

b

b
ycb E

h
k

v
vvvv

max

max
max 3

2
σ

σ                                                            (3-22) 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−

−=−=

b

b
bb

bb

y

E
hkvIE

bvv
IE

b
dx

vd

max

max
max4

4

3
2

)(

σ

σ
                                             (3-23) 
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 The governing equation becomes 

 )( max
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(b)  In the elastic zone: 
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 Defining, 
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 Governing Eqs. (3-25, 3-29) are of a similar form with the original Williams’ Eqs. 

(3-4, 3-8). But the coefficients 1λ  and 2λ  are different because of the presence of the 

extra term 
b

b

E
hk  which represents the transverse deformation of the beam (note that 

0=k  gives the original Williams’ solution). A solution procedure and boundary 

conditions similar to the ones used for solving Eqs. (3-4, 3-8) can be employed to solve 

Eqs. (3-25, 3-29) to determine the unknown constants. 

 Regarding the boundary conditions for Eqs. (3-25, 3-29), the two force boundary 

conditions and four displacement continuity conditions are same as the original solution 
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because these conditions are directly related to the beam. But the two displacement 

conditions, which are related to the cohesive layer, are a little different.  

 First, at lx =1  and 02 =x , the deformation of cohesive layer cv  (not v at the 

centerline of the beam) equals 
3
maxv

 and the corresponding stress is maxσ . 

 
3
maxv

vvv bc =−=                                                                                             (3-30) 

 Therefore the corresponding Eqs. (3-13, 3-14) become 
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 On the other hand, at 01 =x , transverse stress 0=yσ  in the concrete beam, so 

that the lateral deformation of beam 0=bv , therefore maxvvvvv ccb ==+=  which is 

same as Eq. (3-10). 

 

3.3   Comparison between Analytical Solution and FEA Results 

 A double cantilever beam (DCB) consisting of two substrates bonded with a thin 

layer of epoxy adhesive is shown in Fig. 3-1. The entire layer of epoxy is modeled with 
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special cohesive layer elements which obey the prescribed stress-strain traction-

separation law. A cohesive layer thickness mmhc 02.0=  and beam height mmhb 1=  

were used in this example, and the initial debond length mma 15=  corresponds to the 

unbonded portion of the beam. Unlike the usual linear elastic fracture mechanics 

modeling method of a sharp crack tip of zero tip radius, the localized fracture process 

zone in the current study has a small but finite thickness ch . Substrate beam is modeled 

as linear elastic, and the material properties used in this analysis are listed in Table 3-1. 

 

Table 3-1   Material properties for concrete and epoxy adhesive 

 Concrete Epoxy 

Young’s modulus  ( GPa ) 27.5 3.85 

Shear modulus  ( GPa ) 11.0 1.54 

Poisson’s ratio 0.25 0.25 

maxσ   ( MPa ) -- 30.0 

maxε  -- 0.0526 

 

 

 

Fig. 3-5   Finite element mesh of a DCB specimen with symmetry boundary conditions 
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 Considering the symmetry boundary conditions along the centerline of epoxy 

adhesive layer, only half of the DCB specimen is modeled. Fig. 3-5 shows the actual 

finite element mesh (8-node quadrilateral element) with applied symmetry boundary 

conditions. A very fine mesh is used to model the sharp stress gradients in the damage 

region. Plane strain conditions are assumed. Convergence study shows that converged 

results were obtained when the geometries of the elements in the crack tip area are 

smaller than 
10
1  of the length of the damage zone. 

 A constant beam tip displacement (instead of applied force) is specified in the 

FEA analysis to simulate a wedge test and to ensure that stable debond growth would 

occur. Debond growth (or cohesive layer element failure) is characterized by the 

transverse mechanical strain in the cohesive elements exceeding the specified maximum 

strain maxε  in the cohesive layer beyond which the transverse stress goes to zero as 

defined by the cohesive constitutive law depicted in Fig. 2-2. Instead of node release and 

element deletion schemes used in most finite element codes, a failed element remains 

active in the subsequent analysis while the stiffness of the element is reduced close to 

zero. 

 Analytical results with different k values are obtained and compared with 

numerical results from FEA as shown in Fig. 3-6. It can be seen that the best agreement 

with the FEA results is reached with the correction coefficient 
64
15=k , which represents 

a cubic distribution of transverse stress in the beam. This cubic stress distribution is also 

verified by FEA simulation of the stress field in the concrete beam. The length of damage 

zone l decreases as the k increases, which implies a greater transverse deformation in the 
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beam under the same stress at the interface of beam and the cohesive layer. Due to the 

complexity of the transverse stress distribution, especially near the crack tip, k may take 

different values under different combination of material properties and geometries of the 

concrete beam and the cohesive layer. Further, as shown in Fig. 3-7, the deviation of the 

FEA results from the analytical solutions within the damage zone is likely attributable to 

the use of eight-node quadrilateral elements with quadratic interpolation that could result 

in linear variation of through-thickness strain within the fracture localization zone. 

Fortunately, the stress distribution in the damage zone does not have a significant effect 

on the process of debond initiation and propagation in the cohesive layer. 
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Fig. 3-6   Stress distribution with different correction coefficient k 
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 Furthermore, different cohesive layer thickness and debond lengths were used to 

verify the agreement between analytical solutions and FEA simulation results, for both 

global and local metrics as discussed in the following paragraphs. 

 

 

Fig. 3-7   Reaction force comparison for different normalized cohesive layer thicknesses 

 

 To study the effect of cohesive layer thickness on a global metric such as critical 

force (Pcr), the comparisons are conducted under the assumption that the cohesive layer 

deformation at the debond tip is equal to the maximum strain maxε  of the cohesive layer 

(critical strain). For most practical cases, the ratio of cohesive layer thickness to beam 

thickness (
b

c

h
h ) is in the range of 0.02 ~ 0.15. Critical reaction force versus normalized 

cohesive layer thickness (
b

c

h
h ) is studied and good agreement is obtained between 
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analytical and FEA solutions. As shown in Fig. 3-7, the critical reaction force by FEA is 

slightly lower than the analytical predictions. This error is probably due to the fact that at 

the crack tip ( 01 =x ) the transverse displacement at the interface is actually slightly 

greater than that at the beam centerline (see Fig. 3-3), thereby reducing the reaction force 

required. 

 To study the effect of debond length on reaction force, two kinds of boundary 

conditions are used:  

(a)  Deformation control: under the same critical deformation at debond tip for FEA and 

analytical solution  

(b)  Displacement control: under the same free end displacement for FEA and analytical 

solution.  

 Good agreement is observed in both cases as shown in Fig. 3-8. 
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Fig. 3-8   Reaction force comparison for different debond lengths  
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Fig. 3-9   Damage length comparison for different cohesive layer thicknesses 

 

 For local stress verifications, cohesive layer stress distribution in crack tip region 

is determined by evaluating damage length l. It can be observed from Fig. 3-9 and from 

Table 3-2 that the results from FEA are in good agreement with the modified Williams’ 

analytical solution when the normalized thickness lies between 0.02 and 0.15. When 

20.0>
b

c

h
h

, that is, when the thickness of cohesive layer is relatively large, the 

deformation of the beam is relatively small compared with the deformation of the 

cohesive layer. As a result, the influence of the correction factor is no longer significant 

and the FEA solution approaches the original (unmodified) Williams’ solution. Fig. 3-10 

shows how cohesive layer thickness ch  influences local transverse stress distribution near 

crack tip as characterized by the damage length l. Good agreement is observed between 

analytical prediction and FEA results. 
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Fig. 3-10   Stress distributions for different cohesive layer thicknesses 

 

Table 3-2   Variation of damage length with different cohesive layer thicknesses 

Damage length ( mm ) 

b

c

h
h  

Analytical NOVA-3D 
Error ( % ) 

0.02 0.186 0.190 2.15 

0.05 0.336 0.332 1.19 

0.10 0.446 0.437 2.02 

0.15 0.513 0.534 4.09 

0.20 0.562 0.587 4.45 

 

 It was observed that the modification to Williams’ model has little effect on 

global metrics (i.e. critical force and free end displacement), while for localized damage 

zone length and local stress distribution the effect of different values of k is significant as 
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depicted in Fig. 3-6, Fig. 3-9 and Table 3-3. It can be concluded that value of k has 

significant effect on the damage length, and 
64
15=k  results in the best agreement with 

FEA for the cohesive layer model with normalized thickness ranging from 0.02 to 0.15. 

For smaller or larger cohesive layer thickness, the relative lateral deformation of cohesive 

layer and concrete beam will change significantly. Further analytical studies are 

necessary to address these specific conditions. 

 

Table 3-3   Analytical and numerical solutions of damage length 

Correction factor k 0 15/64 7/24 3/8 FEA 

Damage length l  ( mm ) 0.328 0.186 0.156 0.116 0.190 

 

 

3.4   Conclusions 

 An analytical solution was derived by introducing a correction term into the 

original Williams’ solution to predict the transverse stress in a cohesive layer when 

considering the deformation in a stiff substrate. Implementation of the cohesive layer 

model into a test-bed finite element code was carried out and code verification was 

performed. Benchmark comparisons of finite element prediction of both global critical 

load and local stress field with analytical results for a DCB specimen resulted in good 

agreement after modifications were made to the original Williams’ solution. A sensitivity 

study was conducted to evaluate the influence of cohesive layer thickness on local 

parameters such as damage zone length, and global parameter such as critical force. From 
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the present studies it can be concluded that both local and global cohesive layer 

parameters are fairly sensitive to the cohesive layer thickness, whereas the correction 

factor (k) to Williams’ original solution significantly influences the local stress 

distribution and damage length. 
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CHAPTER  IV 

HYGROTHERMAL EFFECT ON COHESIVE LAYER 

 

 The objective of this chapter is to model the synergistic bond degradation 

mechanism that may occur at the interface between a fiber reinforced polymer (FRP) and 

concrete. For this purpose, a two-dimensional cohesive layer involving strain-dependent, 

non-Fickian hygrothermal effects as well as diffusion induced degradation in the 

cohesive layer was constructed. The model was implemented in a test-bed finite element 

code (NOVA-3D). Results from demonstration cases involving synergistic bond 

degradation were presented. 

 

4.1   Introduction 

 The influence of moisture diffusion on crack growth along an interface is not yet 

fully understood. Environmental cracking in a polymer typically occurs in the presence of 

a penetrant, such as moisture, and stress. It has been postulated that the mechanism 

involved in environmental crack growth in a polymer involves a small zone of craze 

formation and/or plasticization at the crack tip. For thermoset resins, such as epoxy, 

energy absorption at the crack tip is primarily by a shear yielding process and not by 

crazing. Consequently, for a thermoset epoxy, the zone of plasticization ahead of the 

crack tip must be determined using a diffusion law for non-porous media, such as Fick’s 
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law. However, quite frequently, polymer composites exhibit deviations from the classical 

Fickian treatment, termed as anomalous or non-Fickian diffusion, especially at elevated 

temperatures and stress levels, and at high relative humidity. Some researchers have 

suggested that the deviation can be explained by a two-stage Fickian process [24, 25]. 

Others claim that the diffusion process in a polymer is really non-Fickian [26, 27]. 

Sophisticated hygrothermal models have been developed and verified by Roy [17-20] to 

account for anomalous diffusion.  

 The objective of this chapter is to model the synergistic bond degradation 

mechanisms that might occur at the interface due to interactions between stress, cohesive 

damage, and penetrant diffusion. For this purpose, a two-dimensional cohesive layer 

constitutive model with a prescribed traction-separation law is constructed from basic 

principles of continuum mechanics and thermodynamics, taking into account non-Fickian 

hygrothermal effects that are likely to occur within the cohesive layer. 

 

4.2   Fickian Diffusion 

 Diffusion is the process by which matter is transported from one part of a system 

to another as a result of random molecular motions. In 1855, Fick first put diffusion on a 

quantitative basis by adopting the mathematical equation of heat conduction. The theory 

of diffusion in isotropic substance is therefore based on the hypothesis that the rate of 

transfer of diffusing substance through unit area of a section is proportional to the 

concentration gradient measured normal to the section, i.e. 

 
x
CDf
∂
∂−=                                                                                                           (4-1) 
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where C is the concentration of diffusing substance, D is called diffusion coefficient or 

diffusivity, and is the function of coordinate x, y, and z (location) and concentration C. 

 Considering the mass balance of diffusing substance, we have 
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 The fundamental differential equation of diffusion in an isotropic medium (where 

D is independent of the concentration C and location) can be expressed as 
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and this is the so-called Fickian diffusion. 

 

4.3   Non-Fickian Diffusion (Strain Assisted Diffusion) 

 For a two-dimensional cohesive layer of finite thickness ch , under plane-strain 

conditions as shown in Fig. 4-1, the Helmholtz free energy per unit volume is given by, 
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where the mechanical strain components are defined as, 
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 )()( 1111 REFREF mmTTE −−−−= βαε  

 )()( 2222 REFREF mmTTE −−−−= βαε  

  1212 E=ε  

and, 

 ρ      :  mass density of material in the cohesive layer 

 11ε     :  mechanical strain component in x direction 

 22ε     :  mechanical strain component normal to crack face (in y direction)  

 12ε     :  shear strain component tangential to crack face 

 ijE      :  total (kinematic) strain components 

 m       :  moisture concentration in the cohesive layer at time t 

 REFm  :  reference moisture concentration  

 T        :  temperature in the cohesive layer at time t 

 REFT    :  reference temperature 

 )(Tα  :  linear coefficient of thermal expansion 

 )(Tβ  :  linear coefficient of moisture expansion 

 

moisture 
diffusion 

y

x

cohesive layer 

concrete beam 
 

Fig. 4-1.   A cohesive layer with moisture diffusion in a DCB beam 
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 From reduced entropy inequality, the cohesive stresses are defined by,  
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 Similarly, 

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) 3

1218
2
122217

12
2
216

3
2215

2
1213122212

2
22112291171263

12
12

,4,3

,2,,3,2

,,,,2,

εεε
εεεεεε
εεεε

ψρσ

TmCTmC

TmCTmCTmCTmC

TmCTmCTmCTmCTmC

E

++

++++

++++=

∂
∂=

      (4-8) 

 

 Chemical potential of the diffusing vapor is defined by Weistman [28], 
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 From conservation of mass, the governing Equation for two-dimensional moisture 

diffusion is, 

 yx ffm
t x y

∂⎛ ⎞∂∂ = − +⎜ ⎟∂ ∂ ∂⎝ ⎠
                                                                                          (4-10) 
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where the moisture flux, ˆ ˆx x y yf f n f n= +
r

 , in the absence of temperature gradients is 

given by, 
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 Assuming isotropic material and using the chain rule, 
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 Assuming isothermal condition and substituting Eqs. (4-9, 4-12, 4-13) into Eq. (4-

10), gives 
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 If the unknown material coefficients are expanded in a Taylor Series about a 

reference moisture concentration value 
REFm , and retaining terms up to second order in 

change in moisture concentration, 
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 In order to benchmark the present model against an established cohesive zone 

model, some of the unknown material coefficients were determined by assuming a cubic 

traction-separation law similar to the one proposed by Needleman [7] and modified by 

El-Sayed and Sridharan [14] for a finite-thickness cohesive layer, giving, 

 ( ) ( ) ( ) ( )[ ]2
0000 ,~,1,ˆ,C mTmCmTmCTmCTm REFREFREF Δ+Δ+=  

 ( ) 0,1 =TmC  

 ( ) 0,2 =TmC  

 ( ) 0,3 =TmC  

 ( ) ( ) ( ) ( )[ ]2
444 ,~,1, mTmCmTmCTTmC REFREF

MAX

MAX Δ+Δ+=
ε

σ  

 ( ) ( ) ( ) ( )[ ]2
555 ,~,1

8
27, mTmCmTmCTTmC REFREF

MAX

MAX Δ+Δ+=
ε

σ  



 49

 ( ) ( ) ( ) ( )[ ]2
666 ,~,1

8
27, mTmCmTmCTTmC REFREF

MAX

MAX Δ+Δ+=
γ

τ  

 
( )
( )
( ) ⎪

⎭

⎪
⎬
⎫

=
=
=

0,
0,
0,

9

8

7

TmC
TmC
TmC

              assume    0=ν  

 ( ) ( ) ( ) ( )[ ]2
1010210 ,~,1

2
9, mTmCmTmCTTmC REFREF

MAX

MAX Δ+Δ+−=
ε

σ  

 ( ) 0,11 =TmC  

 ( ) 0,12 =TmC  

 ( ) ( ) ( ) ( )[ ]2
1313213 ,~,1

2
9, mTmCmTmCTTmC REFREF

MAX

MAX Δ+Δ+−=
γ

τ  

 ( ) ( ) ( ) ( )[ ]2
1414314 ,~,1

16
27, mTmCmTmCTTmC REFREF

MAX

MAX Δ+Δ+=
ε

σ  

 ( ) 0,15 =TmC  

 ( ) 0,16 =TmC  

 ( ) 0,17 =TmC  

 ( ) ( ) ( ) ( )[ ]2
1818318 ,~,1

16
27, mTmCmTmCTTmC REFREF

MAX

MAX Δ+Δ+=
γ

τ  

 Substituting these definitions in expressions for ,,, 122211 σσσ  (Eqs. 4-6, 4-7, and 

4-8) results in, 
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ε

σ
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ˆ2  

gives 
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Similarly, 
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where the maximum tensile stress in the cohesive layer is MAXσ  and characteristic 

interface length δ  is related to the layer thickness ch  by, 
MAX

ch
ε
δ= . 

 And finally the shear stress can be expressed as, 
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where 
MAXMAXMAX γ
εε

ε
εε

ε
εε 12

12
22

22
11

11 ,, === , the maximum shear stress in the cohesive 

layer is MAXτ . 

 The consistent diffusivities mD  and εD  for the cohesive layer are obtained by 

substituting the definitions of the material coefficients into Eqs. (4-14a, 4-14b), 
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4.4   Cohesive Layer Diffusion Boundary Conditions 

 Assuming that the chemical potential of the ambient vapor on the exposed 

boundary of the cohesive zone remains constant with respect to time [28], the resulting 

concentration at the boundary of the cohesive zone (crack tip) can be derived as,  

 ( ) bBOUNDARYijmT μεμ =,,                                                                               (4-21) 
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 An equation about the unknown moisture concentration mΔ  at the boundary can 

be derived in the form of 02 =+Δ+Δ cmbma . 

 Therefore the boundary concentration can be solved  
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4.5   Cohesive Layer Work-of-Separation 

 For pure Mode I or Mode II fracture, the work-of-separation at the cohesive 

interface (of finite thickness ch ) per unit volume in the presence of moisture 

concentration ( mΔ ) is given by 
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or write in the short form 
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 The thickness of the cohesive layer, ch , is a measure of the fracture localization 

zone and it is directly related to the characteristic length scale of the fracture process zone 

controlled by specific fracture mechanism [29]. The area under the normalized stress-

strain curve (
max

0 1ε
ε

≤ ≤ ) shown in Fig. 4-2 represents the work-of-separation of the 

cohesive layer. From Eqs. (4-25, 4-26) and experimental results, it can be observed that 

the work-of-separation decreases at elevated temperature and higher moisture 

concentration due to the physical or chemical degradation at the interface through a 

decrease in the maximum peel stress and a corresponding reduction in the area under the 

curve. When considering the time-dependent behavior of the polymeric adhesive, work-

of-separation is also a function of time. Lower work-of-separation would imply lower 

critical strain energy release rate, and therefore, lower resistance to crack growth. 
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4.6   Cohesive Layer Degradation and FEA Simulation 

 The proposed cohesive layer model was implemented in an in-house finite 

element code, NOVA-3D. In the previous section, the parameters iC  and iC~  are material 

constants to be determined experimentally. Moisture diffusion tests and fracture 

experiments are necessary to characterize these coefficients. 

 

4.6.1  Cohesive Layer Degradation due to Moisture Concentration 

 When moisture diffuses into the cohesive layer, two effects occur concurrently. 

First, the cohesive layer begins to swell thereby causing the local stress state to change 

due to the constraining effect of the surrounding adherends. Secondly, it is likely that 

moisture will penetrate the bulk cohesive layer to reach the cohesive interface (or 

interphase), and then rapidly diffuse along the interface. At the interface, water molecules 

typically react with the chemical bonds across the interface especially in the presence of 

tensile stress, because stress provides additional driving force for the bond rupturing 

process. Such chemical reactions transform strong covalent bonds to weak Van der Waals 

bonds, thereby significantly weakening the interface strength and fracture toughness. The 

bond-strength degradation could be important even when the change in moisture 

concentration is relatively small (~10%) [16]. 

 Due to a lack of available bond degradation data from ongoing experiments to 

allow characterization of material coefficients in Eq. (4-15) at present time, a simple 
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bond strength degradation scheme (as illustrated in Fig. 4-2) was employed for the 

present analysis while preserving the basic framework presented in Eq. (4-15). 

 
Fig. 4-2.   Depiction of the influence of moisture in cohesive layer on work-of-separation 

 

4.6.2  FEA Simulation Results 

 Fully coupled stress and diffusion analyses were invoked in this investigation, 

analogous to simulating a wedge-test under wet conditions. For the DCB specimen, 

moisture diffusion analysis is activated only in the cohesive layer, with moisture 

boundary conditions applied at the exposed surface at 0x =  as depicted in Fig. 4-1. A 

cohesive layer thickness mmhc 02.0=  and beam height mmhb 1=  were used, Material 

properties used in this analysis are listed in Tables 3-1, and the diffusivity of the cohesive 

layer is 8 25.22 10 /mm s−× .  

 With time, moisture gradually diffuses from the exposed debond tip ( 0x = ) into 

the originally dry elements in the cohesive layer. Due to the lack of the material 
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coefficients defining non-Fickian diffusivities given by Eq. (4-15), linear Fickian 

diffusion with constant boundary concentration ( 38 /101 mmgmb
−×= ) was modeled in 

the cohesive layer for this demonstration case. Fig. 4-3 depicts the moisture concentration 

profiles plotted along the bond length with the origin at the original location of the 

debond tip at four different time steps. The corresponding analytical solutions for one-

dimensional Fick’s law are also plotted in Fig. 4-3 for diffusion model verification. It is 

evident that the concentration profiles predicted by the finite element diffusion analysis 

are in excellent agreement with the analytical solution for the linear case. Incidentally, 

the horizontal dashed line in Fig. 4-3 corresponds to 10% of saturation concentration and 

its purpose will be discussed in the following paragraphs. 
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Fig. 4-3   Comparison of predicted moisture concentration profiles 

 

 A phenomenological step-function degradation law is assumed in the analysis 

such that when the local moisture concentration is greater than or equal to %10  of the 
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saturation concentration corresponding to the dashed horizontal line in Fig. 4-3, the 

corresponding maximum stress ( maxσ ) in the cohesive traction-separation law is reduced 

by %10 . For numerical stability, a linear degradation is assumed when the concentration 

is between 0 and %10 . The length of the moisture-induced cohesive strength degradation 

zone at various time steps is indicated by the intersection of the concentration profile and 

the horizontal dashed line in Fig. 4-3. 
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Fig. 4-4   Debond growth in a cohesive layer due to moisture degradation 

 

 In this demonstration case, a constant beam tip displacement is applied at all times 

for the DCB, simulating a wedge test. The debond growth predicted at the crack tip by 
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the finite element analysis is 0.16 mm at initial time ( 0=t ) under dry conditions as 

shown in Fig. 4-4(a). Over time, as moisture diffusion and subsequent bond degradation 

takes place, debond propagation occurs and the failure length increases to 0.57 mm over a 

period of 6107.3 × seconds, as depicted in Fig. 4-4(b). Failure (or debond) length is 

determined by observing if the transverse mechanical strain, 22ε , has exceeded the 

prescribed maximum transverse strain, maxε , along the bond length. Fig. 4-5 shows that 

the transverse mechanical strain monotonically increases with time due to the formation 

of cohesive damage, material failure, and resultant debond propagation. The location of 

the crack tip of the failure zone at various time steps is indicated by the intersection of the 

mechanical strain and the horizontal dashed line in Fig. 4-5 indicating failure strain, maxε  

(debond length increases from 0.16 mm to 0.57 mm due to strength degradation caused by 

moisture diffusion). 
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 The reduction in corresponding transverse stress distribution at different time 

steps is plotted along bond length in Fig. 4-6. The progressive reduction in the peak stress 

magnitude is due to degradation of bond strength caused by moisture ingress. Evolution 

of debond length with time is plotted in Fig. 4-7, and the decrease in reaction force due to 

the degradation of cohesive layer stiffness with time is shown in Fig.4-8. It is evident that 

for the present case, debond growth is driven by a synergistic interaction of moisture 

diffusion and transverse stress near the debond tip as discussed in the following 

paragraph. 
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Fig. 4-6.   Transverse stresses along bond length at different moments 

 

 There are two important milestones during the diffusion-assisted debond growth 

process, 4
1 108×=t  second and 6

2 107.3 ×=t  second (see Fig. 4-7). For 10 tt <≤ , the 

moisture concentration ahead of the crack tip is not high enough to result in significant 
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degradation to the cohesive layer. Therefore, no debond growth occurs during this period. 

At roughly 1tt = , the 10% concentration front impinges on the debond tip and triggers 

debond growth as shown in Fig. 4-6. For 21 ttt ≤≤ , the moisture concentration ahead of 

the debond tip becomes high enough (>10%) such that the onset of bond degradation 

occurs, resulting in steady debond growth as shown in Fig. 4-7. In this regime, the 

debond growth is driven by the rate of propagation of the 10% concentration front, and 

therefore can be said to be diffusion-controlled. Finally, for 2tt > , the debond driving 

force (shown in Fig. 4-8) falls below a threshold value such that no further synergistic 

debond growth is possible. In this case, the peak transverse stress in the cohesive layer 

has decreased to max9.0 σ  as shown in Fig. 4-6 due to the assumed moisture degradation 

characteristics. At the same time the transverse deformation (Fig. 4-4) and debond length 

(Fig. 4-7) have reached steady state values, respectively. 
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Fig. 4-7   Predicted evolution of debond length with time 
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Fig. 4-8   Reaction force decreases with time 

 

4.7   Conclusions 

 A two-dimensional cohesive layer constitutive model with a prescribed traction-

separation law was constructed from basic principles of continuum mechanics and 

thermodynamics, taking into account concentration-dependent and strain-dependent non-

Fickian hygrothermal effects that are likely to occur within a cohesive layer. 

Implementation of the model in a test-bed finite element code was carried out and code 

verification was performed. Numerical simulation of a wedge-test involving debond 

growth caused by synergistic interactions between local stress and diffusing moisture was 

also presented to demonstrate the ability of the cohesive layer model to simulate 

environmental cracking. 
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CHAPTER  V 

NUMERICAL SIMUILATION OF PENINSULA BLISTER TEST 

 

The objective of this paper is to examine three-dimensional and viscoelastic 

effects in the peninsula blister test for thin film adhesion, which is considered an effective 

way to measure the interfacial fracture toughness of bonded thin film structures. As will 

be demonstrated in this Chapter, analytical solutions are sometimes inadequate for 

accurately simulating peninsula blister experiments because linear elastic behavior is 

assumed in the thin film as well as in the debonding process zone at the interface. For this 

purpose, a three-dimensional cohesive layer model and corresponding liquid loading 

simulation algorithm were developed and implemented into an in-house test-bed finite 

element analysis (FEA) code (NOVA-3D). Features such as three-dimensional mixed-

mode debonding, large displacements and rotations, residual stresses in the thin film, and 

time-dependent (viscoelastic) effects in the thin film were considered. Numerical 

convergence and a stable debond growth were obtained over a fairly large debond length 

when suitably refined FEA mesh and liquid volume increment were employed. Detailed 

benchmark comparisons of the finite element predictions with analytical solutions and 

experimental results were performed, and good agreement was obtained. 
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5.1   Introduction 

Laminated thin film structures appear in a wide variety of applications such as 

multilayer structures, microelectronic devices, and packages. The increasing application 

of thin films in industry has made it necessary to better understand the nature and the 

reliability of the bonding between layers or bi-material interface. Since poor bonding 

results in a crack or delamination, fracture mechanics is a natural approach for 

characterizing the resistance to failure and making durability or reliability prediction. For 

this purpose, several experimental methods, including peel tests, blister tests, indentation 

tests, scratch tests etc., have been used to determine the interfacial bond strength or 

toughness. 

The peel test is a simple and perhaps the most commonly used method for 

examining the strength of adhesively bonded layers. In a peel test, a thin flexible strip 

that is bonded to a substrate is pulled off at a certain angle to the underlying substrate. In 

the absence of any plastic deformation and residual stresses, adhesive fracture energy Γ  

can be derived directly [30] from the peel force through 

 P)cos1( ϕ−=Γ                                                                                                  (5-1) 

where P  is the peel force per unit width of the film and ϕ  is the peel angle. 

In reality, plastic deformation in the peeling arm and crack tip singularity are 

present in all the peel test specimens, and were investigated by Kim et al. [31], Kinloch et 

al. [32], and Wei and Hutchinson [33]. It implies that a significant portion of the 

mechanical energy applied in peeling is dissipated and, if not properly accounted for, will 

lead to significant overestimates of the adhesive fracture energy. This is particularly true 
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when the yield strength of the peeling film is relatively low and the degree of adhesion is 

high. 

The pressurized circular blister test was developed by Williams [34] as an 

alternative approach to minimize dissipation effects and overcome some of the other 

drawbacks of the peel test. In many blister tests, a pressurized fluid (usually water is used 

and considered as incompressible) is injected between the faces of the crack between the 

film and substrate via a hole through the substrate. A uniform fluid pressure is applied to 

the thin film and hence the problems associated with mechanical contact and gripping are 

avoided. Furthermore, the axisymmetry of the circular blister configuration greatly 

minimize edge effects and effects due to specimen nonuniformity. 

The standard blister configuration (circular blister) was first introduced by 

Dannenberg [35] in 1961 to measure the adhesion of thick organic coating to metal. As 

tougher interface were examined, problems were encountered with tensile failure in 

blister film prior to debond at the interface. Another disadvantage of circular blister is 

that the strain energy release rate increases as the fourth power of the debond radius, thus 

making accurate evaluation of the debond radius essential, and resulting in a very 

unstable fracture specimen. Several alternative configurations with higher strain energy 

release rates were developed. These configurations include island blister proposed by 

Allen and Senturia [36], constrained blister proposed by Napolitano et al. [37] and Chang 

et al. [38], and peninsula blister proposed by Dillard and Bao [39]. 

In a constrained blister specimen, even though the strain energy release rate is 

independent of debond radius, the effect of friction between the delaminating film and the 

constraint could be significant, raising concern about the difficulty of analyzing contact 
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problems with large deformation. In the island blister specimen, debond growth occurs 

radially inwards on the island. A moderate increase in compliance is produced by a 

relative small increase in debond area, thereby giving rise to high strain energy release 

rates. As the island radius decreases with debonding, the calculated strain energy release 

rates increase in an unbounded manner. 

 

 
Fig. 5-1   Peninsula blister specimen and possible debond sites 

 

The peninsula blister is an extension of the island blister concept. Its name is 

derived from the fact that debonding will occur along a narrow “peninsula” which 

extends into the blister region, as shown in Fig. 5-1. The peninsula blister configuration 

not only maintains the high energy release rate of the island blister but also provides a 

constant energy release rate as the adhesive debond progresses. Added features include 

the larger debond area and additional data points that can be obtained from a single 

specimen. A consistent set of analyses by Liechti and Shirani [40] showed that the only 

configuration among circular, island, and peninsula blister specimen with a homogeneous 
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delaminating layer that did not suffer any yielding was a relatively thick peninsula blister 

configuration. A subsequent cohesive zone fracture analysis by Shirani and Liechti [41] 

found that only 6% of the work input was dissipated as global plastic dissipation in a 

polyimide thin film on aluminum, a relatively tough interface. Disadvantages of the 

peninsula blister test include the lack of symmetry and difficulties in the fabrication of 

the specimen for certain material systems. 

Despite its promising advantages, the peninsula blister configuration has not 

gained wide acceptance in the adhesion testing community. One problem is the relatively 

complex nature of the specimen fabrication although this can be alleviated by suitable 

masks.  Another is the relatively complex nature of the analysis particularly when large 

deformations and rotations and residual stresses are encountered. Both issues have 

recently been addressed [42]. One issue that is yet to be resolved on the analytical front is 

an accounting of the viscoelastic nature of many adhesives, particularly under long term 

loadings [43]. On the other hand, problems were also encountered in numerical 

simulation of peninsula blister test, such as the loss of axisymmetric geometry, mixed 

mode I and mode II nonlinear fracture (and even mode III), large deflections and 

rotations in the film and adhesive layer, and large debond length. Another problem is the 

special loading methodology of the blister test. It employs a liquid-volume-control 

loading approach which is obviously different from any general applied force or 

displacement loading methods. 

The purpose of the work presented here was to consider optimum geometries for 

peninsula blister specimens while accounting for geometric nonlinearities, viscoelastic 

effects and mixed-mode debonding. A three-dimensional cohesive layer model and 
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corresponding liquid loading simulation algorithm were developed and implemented into 

an in-house test-bed FEA code (NOVA-3D). Numerical convergence was achieved with 

suitable increment of liquid volume and with reasonable FEA mesh refinement. Steady-

state debond growth was obtained over a fairly large portion of the specimen. The finite 

element results were benchmarked against analytical solutions and experimental data. 

 

5.2   Constitutive Law and Failure Criterion of Cohesive Layer 

Peninsula blister specimen is a full three-dimensional configuration. Three-

dimensional stress-strain traction-separation law is adopted to simulate the cohesive layer 

as shown in Eqs. (2-3, 2-4). 

In peninsula blister specimen, shear force perpendicular to the peninsula direction 

(corresponding to mode III fracture) was observed in peninsula blister test and 

simulation. A more complex failure criterion that contains the contribution of mode III 

debond was used in this case. 

 1=++
IIIc

III

IIc

II

Ic

I

G
G

G
G

G
G                                                                                          (5-2) 

Detailed description of the 3-D cohesive layer model and its failure criterion is 

given in Chapter II. 

 

5.3   Specimen Geometry and Energy Release Rates 

Proper choices of the geometry and, in particular, the aspect ratios of the 

peninsula blister specimen and regions within it are essential in order to ensure that 
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debond initiation and propagation occurs in the 1-direction along the narrow peninsula 

area as shown in Fig. 5-1. Debonding at sites 2 and 3 is also possible but is undesirable. 

From the standpoint of linear elastic fracture mechanics, the energy release rate can be 

used to predict crack initiation and propagation; it can be viewed as the driving force for 

crack propagation or debond growth. When the deflection of the film is on the order of 

the film thickness, the theory of linear elastic thin plates can be applied in this case. 

Dillard and Bao [39] determined the analytical solution of the strain energy release rates 

for debonding at the three sites under a given liquid pressure p  
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where D  is the bending stiffness of the film given by 
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3

υ−
= EhD                                                                                                    (5-6) 

E , υ , and h  are its Young’s modulus, Poisson’s ratio, and thickness, 

respectively. 

Numerical results from FEA analysis (NOVA-3D) are in very good agreement 

with Dillard’s analytical solutions as shown in Fig. 5-2 and 5-3. It can be seen from Fig. 

5-3 that higher energy release rate G  can be achieved at site 1 for a small peninsula 

width. Therefore, when the peninsula width is relatively small (e.g. 0.2b
a

< ), debond will 
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occur preferentially at site 1 rather than site 3 (because 1 3G G> ). It should also be noted 

that 1G  is greater than 2G  for all b
a

 ratios, implying debond of the peninsula would 

always propagate along the peninsula length rather than across the width. As evident 

from Fig 5-2, in order to obtain large energy release rates with the peninsula specimen, 

the most effective way is to select small values of b
a

. It is suggested that 0.1b
a

=  is likely 

to be the most practical choice, as overly small b
a

 will increase difficulties in fabricating 

specimen. 
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Fig. 5-2   Effect of relative peninsula width on the energy release rate 
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Fig. 5-3   Effect of blister region aspect ratio on the energy release rate 
(Analytical solution is derived from 22 >al ) 

 

Aspect ratio of the blister region (
2
l
a

) also deserves examination. The derivation 

of strain energy release rates discussed earlier (Eqs. 5-3 ~ 5-5) was based on a plate with 

infinite length and clamped along the two remaining boundaries. According to 

Timoshenko and Woinowsky-Krieger [44], for an aspect ratio of 2, the deviation in the 

mid-plane deflection of a fully clamped plate (all four sides clamped) from the infinite 

plate solution is only 2%. It can be concluded that when the aspect ratio 2
2
l
a

>  in the 

wider inflated region, and 2L l
a b

− >
−

 at the end of the peninsula (i.e. the narrow inflated 

regions at the two sides of the peninsula), errors in the above derivation from infinite 

plate solution are negligible. Furthermore, a constant energy release rate 1G  is obtained 

when debond occurs within the limits of 4 2( )a l L a b< < − − . FEA simulations point to 
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similar conclusion as shown in Fig. 5-3. When aspect ratio 1.5
2
l
a

< , value of energy 

release rate 1G  increases as the debond grows. For larger blister lengths, energy release 

rate remains constant and converges to the solution of the infinitely long plate. 

Additional verifications using numerical techniques will be presented in section 5. 

 

5.4   Time-Dependent Behavior of Polymeric Thin Film 

Polymeric thin films typically display some time-dependent behavior, such as, 

creep and/or relaxation due to molecular motion. A linear viscoelastic model was 

employed in the current study to simulate the time-dependent behavior of the polymeric 

film. 

The three-dimensional constitutive equations of linear viscoelastic material are, 

 τ
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θτσ dtKt
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)(3)(                                                                                   (5-7) 
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where ijs  and ije  are the stress and mechanical strain deviators, respectively, kkεθ =  is 

the volumetric strain. The bulk relaxation modulus )(tK  and shear relaxation modulus 

)(tμ  can be expressed using Prony Series as, 
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The linear viscoelastic model for the thin film was implemented into the FEA 

simulation code NOVA-3D. FEA simulations of debond in a peninsular blister specimen 

using elastic and viscoelastic thin film were conducted and compared with test data. 

 

5.5   Simulations of Debonding in the Peninsula Blister Experiment 

5.5.1  Simulation under Small Deformation 

A three-dimensional cohesive layer model with 20-node quadratic brick element 

was implemented into a test-bed FEA code NOVA-3D. Convergence studies showed that 

stable debonding was obtained within a fairly large debond region if the aspect ratio of 

the element in the debond tip area and the increment of liquid volume (loading 

increment) are sufficiently small. As the liquid is injected into the blister at a constant 

rate, the pressure also increases linearly with time (or liquid volume) before debond 

occurs. When the failure criterion given by Eq. (5-2) is satisfied, the cohesive layer 

elements at the debond tip fail and debonding initiates. Instead of the node release and 

element deletion schemes used in most finite element codes, a failed element remains 

active in the subsequent analysis while the stiffness of the element is reduced to 

approximately zero. As the cohesive layer elements fail, new surfaces are generated and 

the pressurized liquid occupies the newly debonded volume . 

In the present work, the original aspect ratio at the beginning of simulation is set 

as 0.75
2
l
a

= . During the simulation, as the debond initiates and propagates, the film 

deflection and aspect ratio increase while liquid pressure decreases, as shown in Fig. 5-4. 
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When the aspect ratio is greater than 1.5, liquid pressure stabilizes and remains constant, 

and a constant strain energy release rate is obtained. However, the maximum deflection 

in the thin film increases continuously until the aspect ratio is greater than 2. As alluded 

to earlier, this result agrees with Timoshenko’s solution for infinite plate [44]. Debond 

process near the end of the peninsula was also studied in this paper. When the aspect ratio 

in the inflated region 1.5L l
a b

− <
−

, pressure will start to increase due to the boundary 

effects (These simulation results will be discussed in Section 6.3). From both analytical 

and FEA simulations, it can be concluded that the effective test domain for peninsula 

blister test is: 1.5
2
l
a

>  and 1.5L l
a b

− >
−

. When debond occurs within this domain, 

constant strain energy release rates will be obtained. 
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Fig. 5-4   Peninsula blister responses over large debond lengths 
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5.5.2  Peninsula Blister Specimen and Test Results 

The data used here was obtained from a peninsula blister specimen with 

dimensions 35.56L mm= , 15.24l mm= , 2 10.16a mm= , 2 1.27b mm=  ( 2 0.125
2

b
a

= ) 

with an initial aspect ratio 1.5
2
l
a

=  (as illustrated in Fig. 5-1). The epoxy thin film in the 

current simulation was assumed as linear elastic and its Young’s modulus was 

1.78E GPa= , Poisson’s ratio was 0.3υ = , and film thickness was 0.127fh mm= . 

Residual stresses 5.7R R
x y MPaσ σ= =  were obtained from bulge tests and, for analysis, 

were applied to the thin film before loading. The aluminum substrate was considered to 

be rigid both. The critical energy release rates (or fracture energy) extracted from the 

blister test was 2100 ~ 110 /cG J m=  (including residual stresses) and 

2130 ~ 140 /cG J m=  (without residual stress). In addition, a critical pressure of 80.9kPa  

was observed at debond initiation, along with a constant pressure of 86.5kPa  during 

stable debonding. 

The adhesive material which was used to bond the epoxy thin film to the substrate 

is Hysol EA9696, with an adhesive strength of max 42.7MPaσ = . The maximum strain in 

the adhesive layer is assumed to be max 0.1ε = . When applying cohesive layer model to 

this specimen, a cohesive layer thickness 0.0416ch mm=  was determined from Eq. (2-

16) (including residual stresses in the thin film and a fracture energy 2100 /cG J m= ). 

It should be clarified here that in the present case, the thickness of adhesive layer 

is different from the cohesive layer thickness. The latter is determined by adhesive 
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material properties and corresponding fracture energy or debond energy as presented in 

Eq. (2-16). Consequently, only a portion of the adhesive layer is modeled by the special 

three-dimensional cohesive layer elements and the remainder of the adhesive layer was 

modeled by regular elements. Exact measurements of the adhesive layer thickness in 

peninsula blister specimen are difficult and the debond process is not sensitive to the 

adhesive layer thickness. Therefore we can reasonably assume that the adhesive layer 

thickness is equal to the cohesive layer thickness. In other words, only one layer of 

cohesive layer elements was employed to represent the entire adhesive layer. 

 

5.5.3  Simulation with Large Deformation and Residual Stresses 

For peninsula blister specimen, both the thin film and adhesive layer experience 

large deflections and rotations near the debond tip during debond growth. An updated 

Lagrangian (UL) formulation [45] was employed to cope with the geometrical nonlinear 

characteristics in the thin film (nonlinear strain-displacement relations, while the stress-

strain relation in the thin film is still linear). The UL formulation was combined with 

Cauchy stress and Almansi strain tensor as energy conjugates. 

A typical finite element mesh for the three-dimensional peninsula specimen is 

shown in Fig. 5-5. Only one layer of three-dimensional 20-node brick element was used 

to model both the thin film and a portion of the adhesive layer. In the plane of the film, 

element dimension along the debond (peninsula) direction is greatly dependent on the 

film thickness as smaller film thickness will experience larger bending deformation near 

the debond tip; a fine mesh was used to account for the sharp stress gradients and large 

curvature near the debond tip. Convergence studies showed that the critical pressure is 
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rather sensitive to the element dimension in the peninsula direction (Table 5-1). However, 

when the ratio of element size in the x-direction to film thickness was 0.4fx hΔ = , 

convergence was achieved. 

 

Y

Z

X

Node # = 7389 Ele # = 978 Cohesive Ele # = 186

 
 

Fig. 5-5   3-D FEA mesh with 20-node brick element 

(Viewed from the bottom, elements on the top are the cohesive layer element) 

 

Table 5-1   Different element size in peninsula direction 

Element size ( fhxΔ *) 1.6 0.8 0.4 0.2 

Critical pressure (kPa) 110.5 100.0 95.5 94.0 

Deflection ( fhw ) 3.87 3.70 3.62 3.59 

Liquid volume (mm3) 46.6 44.2 43.0 42.6 

*: xΔ  is the element dimension in peninsula direction, fh  is the film thickness, 

w is the maximum deflection in the thin film 
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Residual stresses, due to mismatch of thermal coefficients of expansion are 

usually present in the thin film following cure. Assuming a thermal expansion coefficient 

0.0001/o Cα =  and a temperature change 23oT CΔ = − , resulted in uniform residual 

stresses 5.7R R
x y MPaσ σ= =  throughout the thin film. 

The effect of residual stresses on critical pressure and maximum deflection were 

considered (Table 5-2) for equibiaxial residual stresses ranging from 0 to 15 MPa. The 

impact on critical pressure and maximum deflection were noticeable. The mode I/II phase 

angle φ  ranged from 38 ~ 53o o  while the mode I/III phase angle ϕ  varied from 9 ~ 13o o  

over the residual stress levels that were considered. They remained nearly constant during 

debond growth. This indicates that mixed-mode I/II debond failure is dominant and the 

mode III contribution is relatively small, and may be neglected in peninsula blister 

specimen. 

 

Table 5-2   Effect of residual stresses on debond process as predicted by FEA simulations 

Residual stress R
y

R
x σσ =  ( MPa ) 0 3.0 5.7 10.0 15.0 

Critical pressure ( KPa ) 79.7 88.6 95.5 106.0 116.6 

Maximum deflection ( fhw ) 4.01 3.81 3.62 3.35 3.08 

Liquid volume (mm3 ) 48.0 45.2 43.0 40.2 36.8 

Phase angle (I and II)  ( o ) 53.5 49.5 46.1 41.8 37.8 

Phase angle (I and III)  ( o ) 12.6 11.9 11.3 10.4 9.7 

Note: Phase angle is the average value for the elements along the perpendicular direction 

of the peninsula. 
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Measured and predicted pressure and maximum deflection history are given in 

Fig. 5-6. Stable debond pressure predicted by the elastic FEA simulation is 

96.0P KPa= , which is approximately 11% higher than the test value of 86.5P KPa= . 

The error is probably due to the fact that the viscoelastic effects in the thin film were 

ignored. Another possible source of error is that the simple failure criterion given by Eq. 

(5-2) may not exactly reflect the real debond conditions. The initial aspect ratio (
2
l
a

) of 

current peninsula blister specimen is 1.5, and therefore the pressure would remain 

constant during debond growth process while maximum deflection increases 

continuously as the debond propagates until the aspect ratio reaches 2.5. This is in 

agreement with that derived from the theory of thin plates. Three-dimensional film 

displacement profiles from FEA simulations at different stages of debonding are shown 

in Fig. 5-7. 

The debonding process near the end of the peninsula region was also studied. 

According to the analytical solution derived from the theory of elastic plates, pressure 

will start to increase when the aspect ratio in the narrow region 1.5L l
a b

− <
−

. FEA 

simulation results showed (Fig. 5-8) that when the debond tip approached the end of the 

peninsula (an aspect ratio 1.0L l
a b

− <
−

), the pressure and film deflection started to increase 

with debond growth. 

  

 

 



 79

 

Time (x1000 sec)

P
re

ss
ur

e
(K

P
a)

D
eb

on
d

le
ng

th
(m

m
)

0 1 2 3 4
0

20

40

60

80

100

0

1

2

3

4

5

6

7

8

9

Liquid pressure
Debond length
Debond initiation
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(b)  Simulation results 
 

Fig. 5-6   FEA simulation of peninsula blister responses  

(with large deformation and residual stresses) 
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(a)  Aspect ratio = 1 
 

 
(b)  Aspect ratio = 2 

 

 
(c)  Aspect ratio = 2.5 

 
Fig.5-7   Simulated 3-D film displacement profiles at different stages of debonding 
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Fig. 5-8   Predicted liquid pressure and film deflection increase  

when debond approaches the end of the peninsula 

 

5.5.4  Simulation Including Time-Dependent Effect 

In the simulation of geometrically nonlinear, elastic debonding in thin film 

peninsula blister specimens with an initial aspect ratio of 1.5, critical pressure remains 

constant once the debond has initiated. However, in the actual peninsula blister test, a 

moderate increase in pressure was observed in the early stages of debond growth (Fig. 5-

6). This suggested that there might be some time-dependent effects in the epoxy thin film. 

Due to unavailability of the time-dependent material properties of the epoxy thin film in 

the current blister test, a demonstration simulation considering linear viscoelastic effects 

in the thin film was performed to examine the influence of time-dependent material 

properties on the critical pressure and the debond process. 
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For the purpose of highlighting the effect of linear viscoelasticity of the thin film, 

the material properties for a linear viscoelastic epoxy thin film corresponding to the 

elastic film were defined and scaled from the tested values as follows: the tensile 

modulus 0 1.78E GPa=  and Poisson’s ratio 0 0.3υ =  of the elastic thin film correspond to 

the values of the viscoelastic tensile relaxation modulus, ( )E t , and Poisson’s ratio, ( )tυ , 

at the time 0t = , i.e., 

 0 0
( ) 1.78

t
E E t GPa

=
= =  

 0 0
( ) 0.3

t
tυ υ

=
= =  

For a typical linear viscoelastic epoxy thin film, material properties such as bulk 

relaxation modulus )(tK , shear relaxation modulus )(tμ , tensile modulus )(tE , and 

Poisson’s ratio )(tυ  at room temperature can be expressed in the form of a Prony Series. 

The Prony Series coefficients for the epoxy thin film are listed in Table 5-3 using data 

obtained for an epoxy [46]. 

For a liquid injection rate 380 /R mm hour= , the simulation accounting for large 

deformations and residual stresses showed that the liquid pressure remained constant 

after debond initiation for a linearly elastic thin film. However, for a viscoelastic thin film 

(Fig. 5-9a), the liquid pressure did increase at the early stages of debond growth before 

reaching a steady state value. Stable debond processes with constant liquid pressures 

were obtained in both cases with constant but slightly different energy release rates. 
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Table 5-3   Material properties of a viscoelastic epoxy  

 )( iLog τ  iK  (MPa) iμ (MPa) iE (MPa) iυ  

1 -4.3 24.64 0.22 0.21 -3.11 x 10-4 

2 -3.3 25.54 0.45 0.11 -4.95 x 10-4 

3 -2.3 104.24 20.88 68.48 -8.31 x 10-4 

4 -1.3 29.14 20.32 29.72 -1.13 x 10-3 

5 -0.3 150.32 22.11 93.33 -3.19 x 10-3 

6 0.7 155.61 160.32 387.51 -2.40 x 10-3 

7 1.7 440.03 161.77 491.45 -5.44 x 10-3 

8 2.7 330.48 310.46 758.45 -6.53 x 10-3 

9 3.7 438.32 159.01 552.47 -1.19 x 10-2 

10 4.7 226.82 187.85 377.34 -1.66 x 10-2 

11 5.7 206.62 71.09 256.68 -1.74 x 10-2 

12 6.7 245.83 63.80 137.01 -2.59 x 10-2 

13 7.7 49.88 21.35 95.43 -6.03 x 10-2 

14 8.7 169.51 20.31 47.03 -1.18 x 10-2 

15 9.7 34.86 11.30 53.36 3.00 x 10-3 

16 10.7 82.59 6.45 15.69 -3.04 x 10-3 

17 11.7 11.97 3.08 17.01 2.20 x 10-3 

18 12.7 40.06 0.25 4.14 -9.92 x 10-4 

19 13.7 8.54 1.29 7.19 1.57 x 10-4 

 ∞  2337.41 12.34 36.91 0.4974 

*: At room temperature 23.5°C and relative humidity 35% 
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(a)  Liquid pressure history 
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(b)  Debond length history 

 

Fig. 5-9   Peninsula blister test data and FEA simulation results  

(with large deformation and residual stresses) 
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Measurements and simulation results for both elastic and viscoelastic thin films 

are shown in Fig. 5-9 and tabulated in Table 5-4 for comparison. Fig. 5-9(a) compares the 

pressure history as a function of time, while Fig. 5-9(b) depicts comparison of the debond 

growth history. From Fig. 5-9 and Table 5-4 it is evident that including viscoelastic time-

dependence in the thin film response results in a significant reduction in the error 

between simulations and test data. It should be noted that the slight discrepancy in the 

time scales of the simulation and test data is due to some leakage of liquid that was 

observed during the peninsula blister test especially at elevated pressure levels. 

When a lower liquid injection rate 310 /R mm hour=  was employed for the 

viscoelastic thin film simulation, the debond initiation pressure decreased from 88.5KPa  

(corresponding to 380 /R mm hour= ) to 84.0KPa  while the peak pressure and stable 

debond pressure remained unchanged. Thus it is likely that the debond initiation pressure 

will be closer to the test value of 80.9kPa  as the injection rate is decreased. 

 

Table 5-4   Peninsula blister test data and FEA predictions  

with elastic and viscoelastic thin film 

 

Test data  Linear elastic thin film Viscoelastic thin film 
Event 

Time Pressure Time Pressure Error Time Pressure Error

Debond initiation 2250 80.9 1880 94.5 16.8 2210 88.5 9.39 

Peak pressure 2980 88.9 1910 96.0 7.99 2340 95.5 7.42 

Stable debond 3400 86.5 1910 96.0 11.0 2490 91.5 5.78 

Unit: Time -- second,  Pressure -- kPa ,  Error -- %  (predicted pressure  

          compared with test data)  
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5.6   Conclusions 

Peninsula blister specimen is an effective way to measure the interfacial fracture 

toughness of a variety of adhesive bond systems as it offers very high energy release rate 

values and maintains constant energy release rates over a large range of debond lengths. 

A three-dimensional cohesive layer model and a corresponding three-dimensional mixed-

mode failure (debond) criterion were developed based on the principles of continuum 

mechanics and fracture mechanics. It was implemented in a finite element code to 

simulate quasi static debonding in the peninsula blister test. Numerical convergence and 

stable debond growth were obtained over a fairly large range of debond lengths. The 

results from FEA simulations were in reasonable agreement with both an analytical 

solution and test data. Suitable geometries for the peninsula blister specimen were studied 

by both analytical and FEA approaches and guidelines were reiterated for the design of 

peninsula blister specimen. FEA simulation results also showed that large deflections, 

time-dependent material behavior, and residual stresses in the thin film are important 

factors that should be considered in simulations of the peninsula blister test in order to 

extract the interfacial fracture toughness of a given adhesive system. 
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CHAPTER  VI 

SIMULATION OF TIME-DEPENDENT DEBOND GROWTH 

 

 The objective of this chapter is to model the synergistic bond degradation 

mechanisms that may occur at the interface between a fiber reinforced polymer (FRP) 

and a substrate. FEA Simulation of a wedge test was conducted, and the time-dependent 

effect in the adhesive layer was involved in the simulation model. The results predicted 

by the computational model were benchmarked through comparison with analytical 

solutions and mixed mode fracture tests. Steady debond growth was obtained after the 

wedge front entered the originally bonded area, which is consistent with the observations 

from wedge tests. 

 

6.1   Introduction 

 Polymeric thin films usually display some time-dependent behaviors due to 

molecular motion. This effect was also observed in blister test and creep test on a fully 

clamped polymeric plate. A linear viscoelastic model was introduced to simulate the 

time-dependent behavior of the polymeric film by peninsula blister test (Chapter V). 

 Non-Fickian hygrothermal effects on cohesive layer are derived in Chapter IV. It 

should be noted that in the present approach, expansion of Helmholtz free energy in 

terms of convolution integrals was not carried out to directly include viscoelasticity in the 
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cohesive stress-strain law. This is because the use of convolution integrals in addition to 

temperature and moisture dependence would render the cohesive stress-strain law 

intractable as far as characterization of the convolution coefficients is concerned. 

Therefore, in the interest of tractability, a simplified approach is employed where the 

rate-dependent behavior in the cohesive layer is implemented through the 

characterization of rate-dependence of the maximum stresses and maximum strains in the 

cohesive layer as presented in Table 6-1. 

 The remainder of the polymeric adhesive outside the cohesive layer is modeled as 

a nonlinear viscoelastic continuum with time-dependent constitutive behavior. The 

influence of temperature and moisture concentration on the work-of-separation and on 

crack growth is derived from first-principles. The model is implemented in a test-bed 

finite element code NOVA-3D. Results predicted by the cohesive layer model are 

benchmarked through comparison with experimental data from mixed-mode fracture 

experiments performed using a moving wedge test. Rate-dependent debond process was 

also investigated with this model under different debond speeds. 

 

6.2   Failure Criterion Based on Work-of-Separation 

 Several mixed mode failure criteria of the cohesive layer are described in Chapter 

II. A new failure criterion based on fracture energy was introduced to predict the debond 

process of a wedge test. Fracture energy Γ2  of the adhesive was extracted from the 

wedge test. Let the fracture energy Γ2  equal to the work-of-separation of cohesive layer 

with mixed mode I and mode II fracture, gives 

 )(2 II
sep

I
sepsep βφαφηηφ +==Γ                                                                            (6-1) 
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 Where I
sepφ  and II

sepφ  are the work-of-separation of pure mode I and mode II 

debond, respectively (Chapter II and Chapter IV) 

 For pure mode I  fracture under dry conditions ( 0=Δm ): c
I
sep hmaxmax16

9 εσφ =  

 For pure mode II fracture under dry conditions ( 0=Δm ): c
II
sep hmaxmax16

9 γτφ =  

 sepφ  is the total work-of-separation of the mixed mode debond. It is easy to derive 

the relation II
sep

I
sepsep βφαφφ += , where α  and β  are constants determined by the failure 

type (i.e. mode mix) of the cohesive layer. Comparing the idealized cohesive stress-strain 

curve in Fig. 2-3 with the uniaxial tension test data of the adhesive material in Fig. 6-1, it 

was found that the actual work-of-separation from the test data is less than the theoretic 

one predicted by traction-separation law due to the premature failure of epoxy primer. 

Thus a correction factor 75.0=η  was introduced to reflect the difference. 

 

 
Fig. 6-1   Stress-strain relation of epoxy under different strain rates (test data) 
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 Therefore cohesive layer thickness ch  can be obtained from Eq. (6-1) if the 

fracture energy Γ2  or work-of-separation sepφ , which is the energy necessary to generate 

unit debond length, is known from experiment or analytical methods. 

 

6.3   Nonlinear Viscoelastic Model and Fracture Energy 

 A linear viscoelastic model is described in Chapter V, material constitutive 

equations are listed in Eqs. (5-7, 5-8) and the time-dependent material properties can be 

expressed with Prony series as shown in Eqs. (5-9, 5-10). 

 A nonlinear viscoelastic model for the bulk adhesive using modified free volume 

approach [47] was also implemented in the code. A strain-based formulation proposed by 

Popelar and Liechti [48] entails a nonlinear shift-factor based on free-volume given by, 
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)(            (6-2) 

 The generalized J-integral for large deformation with pseudo-stress model 

proposed by Schapery [49] is also used for fracture modeling, 

 ∫
Γ

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−Φ= dL
x

u
TdyJ

R
iR

iv                                                                               (6-3) 

 For this case, the critical work input required to initiate the crack (or, the fracture 

initiation energy) can be expressed in terms of the time-dependent far-field parameter vJ . 

 ∫ ∂
∂

−=Γ
t

v
Ri d

J
tDE

0

)(2 τ
τ

τ                                                                                 (6-4) 
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6.4   Moving Wedge Test 

 To study the properties of polymer adhesive and its debond process under 

different environmental conditions and strain-rates, a set of moving wedge tests were 

performed on the interface between the concrete substrate and the epoxy primer (Wedge 

test was performed by Dr. Liechti and his co-workers at The University of Texas at 

Austin). As shown in Fig. 6-2, the specimen for moving wedge test consists of essentially 

two layers of material: a concrete substrate and an epoxy primer layer. Wedge tests were 

performed under room conditions (temperature 23.5°C and relative humidity 35%). 

hw 
a

 

Fv 

Concrete

Epoxy layer 

L

H 

he

Vw 

X 

Y 

 
 

mmL 50=  , mmH 8=  , mmhw 0.2=  , mmhe 76.0=  , 

width mmB 4.18=  , initial mma 20=  

 
Fig. 6-2   Specimen of a moving wedge test 

 

 The wedge pushed the epoxy primer coating at a constant wedge speed of 

sec/04.0 mmVw = , which is equal to the debond speed during steady debond growth 

process. The debond length a, which is measured from wedge front to debond tip, wedge 
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displacement, and transverse reaction force Fv  were measured as functions of time. The 

concrete is considered as elastic with a Young’s modulus of 37GPa, and Poisson’s ratio 

of 0.15. The properties of the epoxy in the cohesive layer were obtained using the 

methodology described below. It should be noted that the FRP layer was not included in 

the experimental or analytical work presented, because the focus of this research is to 

obtain the debond strength between the epoxy and the concrete substrate. 

 

6.5   Numerical Simulation of Wedge Test 

 The proposed cohesive layer model with hygrothermal effect and cohesive layer 

failure was implemented in a test-bed finite element code (NOVA-3D). Wedge test 

simulations were successfully conducted with the code and were benchmarked with 

mixed mode fracture experiments. 

 A strong time-dependent effect in the epoxy primer was revealed in the wedge 

tests. In the numerical simulation of wedge tests, the epoxy primer layer was considered 

as a viscoelastic continuum with time-dependent behavior. At room temperature the 

viscoelastic material properties, bulk relaxation modulus )(tK  and shear relaxation 

modulus )(tμ , can be expressed with Prony Series, and the Prony Series coefficients are 

listed in Table 5-3. Test results of steady state debond length and transverse reaction 

force are shown in Fig. 6-3 and Fig. 6-4. During steady state debond growth, constant 

debond length mma 5.5=  and vertical reaction force NFv 0.40= . 
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Fig. 6-3   Debond length vs. time (test result and FEA prediction) 
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Fig. 6-4   Vertical reaction force vs. time (test result and FEA prediction) 
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 Material properties of the epoxy primer were also tested under different strain 

rates as shown in Fig. 6-1. Maximum stress maxσ  under different strain rate and the 

corresponding strain 0ε , which is the strain at maxσσ = , were extracted from the test 

curves. According to the cubic traction-separation law for cohesive layer model (shown 

in Fig. 2-3) maximum strain can be obtained by 0max 3εε = . 

 Base on the extracted material properties (listed in Table 6-1), the strain rate-

dependent traction-separation law for cohesive layer model can be determined under a 

given strain rate. 

 

Table 6-1   maxσ  and maxε  under different strain rate ε&  

sec)//( mmε&  )(max MPaσ )( max0 σσε =at  0max 3εε =  

0.00015 26 0.025 0.075 

0.0015 38 0.030 0.090 

0.015 57 0.035 0.105 

 

FEA simulation of debond growth: 

(a). Determination of fracture energy: 

 Under the measured wedge speed or debond speed at steady stage 

sec/104 5 mVdtda w
−×== , the corresponding fracture energy 2/4632 mJ=Γ  was 

obtained by means of a linear fit to the test data shown in Fig. 6-5. 
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Fig. 6-5   Fracture energy Γ2  vs. debond speed 

 

(b). Estimation of the average transverse strain rate in cohesive layer: 

 Stress-strain relation of the epoxy primer changes significantly with applied 

strain-rate (Fig. 6-1). To determine the material properties, transverse strain rate in the 

cohesive layer during the loading process of the wedge test must be determined. 

Unfortunately, transverse strain rate in cohesive layer is hard to measure during a wedge 

test, as it changes with location and time, and is affected by cohesive layer thickness. 

From FEA results, the average transverse strain rate was found to depend on the debond-

speed as given by 
dt
dap=ε& , with the coefficient 10≈p . Therefore, the estimated 

average strain rate is sec//0004.0 mm≈ε&  for the case of wedge speed or debond speed 

sec/104 5 mVdtda w
−×== . 

(c). Determination of the traction-separation law of the cohesive layer: 
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 From the strain rate ( sec//0004.0 mm≈ε& ) derived in the previous section, linear 

interpolation of the data in Table 6-1 gives, 

 MPa4.31maxmax == τσ  

 081.0maxmax == γε  

(d). Determination of cohesive layer thickness: 

 Only vertical reaction force, the load applied on epoxy primer by wedge at the 

point of contact, is considered in the present FEA simulation. Actually, horizontal 

reaction force does exist in the wedge tests between the wedge and epoxy primer due to 

friction, and this force would weaken the effect of shear stress on the debond process. 

 The failure criterion for the cohesive layer expressed in Eq. (6-1) is employed in 

this example. Based on the fact that the shear strain near the debond tip was almost twice 

as large as the normal strain, 5.0=α  and 0.1=β  were selected for the cohesive layer 

simulation model. From this, the cohesive layer thickness to be used in the analysis, 

mmhc 288.0= , was obtained. 

(e). FEA simulation of wedge-test:  

 Once the traction-separation law and the cohesive layer thickness were 

determined, FEA simulations could be performed. FEA mesh employed for wedge test 

simulation is shown in Fig. 6-6.  

 Predicted debond length and transverse reaction force histories are shown in Fig. 

6-3 and Fig. 6-4 for comparison with measured data. At the time sec500=t , the wedge 

front entered the interface zone that was originally bonded, and after that time steady 

debond growth was observed. Debond length and vertical reaction force were 5.7 mm 

and 35.5 N respectively at steady-state debond growth, which compares well with the test 
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data, 5.5 mm and 40.0 N, as shown in Fig.6-3 and Fig. 6-4, respectively. The differences 

between FEA solutions and test results are probably due to the error in the estimated 

average strain rate in the cohesive layer and the effect of horizontal reaction force which 

was ignored in the analysis. 

 

 

 

Fig. 6-6   FEA mesh and contour for J-integral 

 

Table 6-2   FEA results with various wedge speeds 

sec)/(m
dt
daVw =  6104 −×  5104 −×  4104 −×  3104 −×  

)/(2 2mJΓ  404 463 522 581 

sec)//( mmε&  0.00004 0.0004 0.004 0.04 

)(maxmax MPaτσ = 15.9 31.4 46.9 62.4 

)/(maxmax mmγε = 0.066 0.081 0.096 0.111 

)(mmhc  0.608 0.288 0.183 0.133 

)(mma  5.4 5.7 6.0 6.2 

)(NFv  30.6 35.5 38.5 39.6 
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 Wedge tests with various wedge speeds were simulated by the FEA code, and the 

results are listed in Table 6-2. It can be observed that steady state debond length and 

reaction force increase with increase in the wedge speed or debond speed. 

 

6.6   Conclusions 

 A two-dimensional cohesive layer constitutive model with a prescribed traction-

separation law is constructed from fundamental principles of continuum mechanics and 

thermodynamics, taking into account strain-dependent, non-Fickian hygrothermal effects 

as well as diffusion induced degradation in the cohesive layer. The influence of 

temperature and moisture concentration on the work-of-separation and on crack growth is 

derived from first-principles. The model is implemented in a test-bed finite element code 

and code verification was performed. Results predicted by the computational model are 

benchmarked through comparison with analytical solutions and mixed mode fracture test. 

Steady debond growth was obtained after the wedge front enters the originally bonded 

area, and this is consistent with the observations from wedge tests. Rate-dependent 

behavior in the cohesive layer was implemented through the characterization of rate-

dependence of the maximum stresses and maximum strains in the cohesive layer as 

presented in Table 6-1. 

 From the simulation results it can be concluded that stress-strain relation of 

cohesive layer is obviously rate-dependent and the cohesive layer thickness is an 

important characteristic parameter of the cohesive layer model, and it is quite sensitive to 

the fracture toughness and the stress-strain relation of cohesive material. Simulation of 

wedge tests under different wedge speeds was also presented to demonstrate the rate-
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dependent behavior of cohesive layer model and the ability of the cohesive layer model to 

simulate transient as well as steady-state debond growth at various strain rates. 
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CHAPTER  VII 

FRP BONDED STRUCTURE UNDER BLAST LOAD 

 

The objective of this chapter is to study the dynamic responses of fiber reinforced 

polymer (FRP) bonded structure under blast load by means of cohesive layer model. An 

exponential distribution of blast pressure was used in the simulation to solve the 

equations of motion. Long term and short term dynamic responses were obtained and 

their effects on the failure of the cohesive layer were investigated. This chapter is only a 

preliminary study, more work needs to be done to address the dynamic debond of FRP 

structure under blast load. 

 

7.1   Introduction 

 A structure may experience blast load due to military actions, accidental 

explosions or terrorist activities. Such load may cause severe damage or collapse due to 

their high intensity, dynamic nature, and usually different direction compared to common 

design load [50]. Collapse of one structural member in the vicinity of the source of the 

explosion, may then create critical stress redistributions and lead to collapse of other 

members, and eventually, of the whole structure. One example of such a failure is the 

well-known collapse of the Alfred P. Murrah Federal Building in Oklahoma City, 

Oklahoma, following a terrorist attack [51, 52]. 
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 For some structures blast-resistant design may be required, if their use is such that 

there is a high risk for such a blast loading incident to be encountered. For such 

structures, it is desirable to establish design procedure and construction techniques 

necessary to achieve the required strength to resist the applied blast loads. 

 The problem can be tackled in several different ways. The approach that more 

accurately describes the dynamic response of structure to explosive loads is via numerical 

analysis, usually by means of finite element method. Such analysis can capture the 

geometry of the structure, the spatial and temporal distribution of the applied blast 

pressure, as well as the effects of material and geometric nonlinearity, in a satisfactory 

manner [53, 54]. 

 Fiber reinforced polymer (FRP) bonded structures have been widely used in 

defense industry and civil engineering for infrastructure repair and retrofit. Not much 

study on the dynamic response of FRP bonded structures has been conducted, and the 

dynamic response and failure mechanism of the adhesive layer under blast loading are 

not clear. This preliminary study focuses on the dynamic response of FRP bonded 

structure under blast loads by means of cohesive layer model. 

 

7.2   Implicit Integration Methods 

 The equation of motion for linear structural dynamic problems after spatial 

description by finite element method can be written as 

 + + =&& &MU CU KU R                                                                                          (7-1) 
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where M , K , C  are the system mass matrix, stiffness matrix and damping matrix, R  is 

the externally applied force vector, U , d
dt

=& UU , and 
2

2

d
dt

=&& UU  are the unknown 

displacement, velocity, and acceleration vectors, respectively, which generally are 

functions of time t . 

 For transient response analysis, the initial conditions at 0=t  are given by  

 00t=
=U u   

 00t=
=&U v                                                                                                            (7-2) 

 00t=
=&&U a  

 Base on the known solution at time t , direct integration method can be applied to 

obtain the solution at time t t+ Δ , where tΔ  is the given discrete time interval. The 

commonly used effective direct integration methods can be classified into two categories: 

explicit integration method and implicit integration method. Explicit integration method 

(e.g. the central difference method) is based on using the equilibrium conditions at time t  

(Eq. 7-1) to seek the solution at time t t+ Δ . On the other hand, implicit integration 

method including the Houbolt, Wilson, Newmark and HHT methods, which will be 

introduced in the following sections, uses the equilibrium conditions at time t t+ Δ . 

 

7.2.1  Houbolt Method  

 Focusing attention on the inertial class of dynamical elasticity problems, implicit 

methods are attractive (although some analysts prefer explicit methods). The implicit 

Houbolt method [55] was developed in 1950 and is one of the earliest employed for the 
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calculation of the structural response of an airplane subjected to dynamic loads. It uses 

the concept of displacement difference equivalents to approximate the velocity and 

acceleration components, and thereby establishes a recurrence relation that can be used to 

solve for the step-by-step response of the structure as shown in Eq. (7-3, 7-4). In Houbolt 

method, the generality and physical aspects of the basic equilibrium are preserved. It’s a 

two-step backward difference method. From a stability and accuracy point of view, it is 

unconditionally stable, second-order accurate, and is not suitable for higher frequency 

dynamic problems.  

 2
2

1 (2 5 4 )t t t t t t t t t

t
+Δ +Δ +Δ − Δ= − + −

Δ
&&U U U U U                                                       (7-3) 

 21 (11 18 9 2 )
6

t t t t t t t t t

t
+Δ +Δ −Δ − Δ= − + −

Δ
&U U U U U                                                  (7-4) 

 

7.2.2  Newmark Method 

 In 1959, Newmark [56] introduced an implicit method of computation for the 

solution of problems in structural dynamics, which is perhaps the most popular algorithm 

for numerical solutions of structural dynamic problems. The algorithm assumes that the 

average acceleration is constant over an integration time step 

 t t t t t t+Δ +Δ +Δ+ =&&MU KU R                                                                                     (7-5) 

 (1 )t t t t t t tδ δ+Δ +Δ⎡ ⎤= + − + Δ⎣ ⎦
& & && &&U U U U                                                                   (7-6) 

 21( )
2

t t t t t t tt tα α+Δ +Δ⎡ ⎤= + Δ + − + Δ⎢ ⎥⎣ ⎦
& && &&U U U U U                                                    (7-7) 

 There are two free parameters δ  and α  which control the stability and accuracy 

of the algorithms. The algorithm is first-order accurate, unconditionally stable and 
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dissipative if the parameters satisfy the relation 
2
12 >≥ δα . For the algorithm to be 

accurate to second order and unconditionally stable, 
2
1=δ  and 

4
1≥α  are required. 

However, then it is non-dissipative. 

 

7.2.3  Wilson-θ  Method  

 The Wilson-θ  method [57] is essentially an extension of the average acceleration 

approximation in which the variation between time t  and t t+ Δ  is assumed to be linear. 

In particular, the Wilson-θ  method assumes that the acceleration is linear between t  and 

tt Δ+θ , with 0.1≥θ . It is indicated that when θ = 1.4 the obtained solution is most 

accurate and stable.  

 ( )t t t t t

t
τ θτ

θ
+ + Δ= + −

Δ
&& && && &&U U U U                                                                              (7-8) 

 
2

( )
2

t t t t t t

t
τ θττ

θ
+ + Δ= + + −

Δ
& & && && &&U U U U U                                                                  (7-9) 

where 0.1≥θ , and tΔ≤≤ θτ0 . 

 The algorithm is second-order accurate, unconditionally stable and dissipative 

(high frequency numerical dissipation)  

 

7.2.4  HHT Method 

 To control the algorithmic damping, Hilber, Hughes and Taylor [58] (called HHT 

method or α -method) made an extension to the Newmark method. With the HHT 

method it is possible to introduce numerical dissipation (numerical damping) without 
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degrading the order of accuracy, and this numerical damping can be continuously 

controlled. Decreasing α  implies increasing the numerical damping. This damping is 

low for low-frequency modes and high for the high-frequency modes. 

 (1 )t t t t t t t t t t t tα α+Δ +Δ +Δ +Δ +Δ+ + − =&&M U K U K U R                                               (7-10) 

 (1 )t t t t t t tγ γ+Δ +Δ⎡ ⎤= + − + Δ⎣ ⎦
& & && &&U U U U                                                                 (7-11) 

 21( )
2

t t t t t t tt tβ β+Δ +Δ⎡ ⎤= + Δ + − + Δ⎢ ⎥⎣ ⎦
& && &&U U U U U                                                  (7-12) 

 It is second-order accurate and unconditionally stable if 2)1(
4
1 αβ −= , 

αγ −=
2
1 , and 0

3
1 ≤≤− α . 

 When considering physical damping, the HHT method can be expressed as  

(1 ) (1 )t t t t t t t t t t t t t t t t t tα α α α+Δ +Δ +Δ +Δ +Δ +Δ +Δ+ + − + + − =&& & &M U C U C U K U K U R               (7-13) 

or 

(1 ) (1 )t t t t t t t t t t t t t t tα α α α+Δ +Δ +Δ +Δ +Δ +Δ+ + − + + − =&& & &M U C U C U F F R                           (7-14) 

 Where vector t t+ΔR  is the externally applied nodal force in the configuration at 

time tt Δ+ ,  the vector tF  and t t+ΔF  are the nodal point force that corresponding to the 

element stress in this configuration at time t  and tt Δ+ , respectively. When 0=α  the 

HHT method is reduced to the Newmark method. 

 Under given initial conditions as shown in Eq. (7-2) and ignoring physical 

damping, dynamic equilibrium equations can be solved by HHT method as follows: 
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(1 )t t t t t t tγ γ+Δ +Δ⎡ ⎤= + − + Δ⎣ ⎦
& & && &&U U U U                                                                               

 

7.3   Blast Load 

 A typical blast loading pressure applied on an object can be characterized by its 

peak reflected pressure rP  and positive phase duration dt . The peak overpressure of blast 

loading can be empirically expressed as [59], 

 KPa
ZZZ

Pr 8034.0215481.84497.139
32 −++=                                               (7-16) 

where 
3 W

RZ =  is called the scaled distance, R  is the distance from the center of a 

spherical charge (point source) in meter and W  is the charge mass expressed in 

kilograms of equivalent TNT, as illustrated in Fig.7-1. 

 The time history of the pressure is very often simplified into a triangular 

distribution when ignoring the negative phase. 
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 The evolution of blast load pressure P  with time t  can be simulated more 

accurately by an exponential distribution [60], which is adopted in the present study. 
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Fig. 7-1   A simply supported concrete beam bonded with FRP under blast load 
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Fig. 7-2   Triangular and exponential distributions of blast load 
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 Where dt  is the time of reversal of direction of pressure, and b  is a shape 

parameter depending on the dimensionless scaled distance Z . 

 Triangular distribution and exponential distribution histories with different shape 

parameters are shown in Fig. 7-2, and the shape parameter 1=b  is used in current study. 

 The blast loading exerts an impulse on the structure, which is equal to the integral 

of the total external force over time,  

 ∫= dt dAdttPI
0

)(                                                                                                (7-19) 

 The zero-period impulse ( 0→dt ) results in an initial velocity 0v  (let initial 

momentum equal to the input impulse I ) prescribed throughout the structure.[60] 

 Impulses of triangular and exponential loading distribution are listed on Table 7-1 

(for comparison, only positive phase duration is considered with exponential loading). It 

can be found that the triangular distribution is of higher impulse than exponential 

distribution under the same peak pressure and duration time, and thus is more 

conservative than exponential distribution. 

 

Table 7-1   Impulses of different load distributions 

Exponential distribution 
 

Triangular 

distribution b = 1 b = 2 b = 3 

Impulse ( sec⋅N ) 0.5 0.368 0.284 0.228 
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7.4   Dynamic Response of FRP Bonded Structure 

7.4.1  Short Term and Long Term Responses in Cohesive Layer 

 A simply supported concrete beam with FRP bonded on the top side or on both 

top and bottom sides is shown in Fig. 7-1. The schematic finite element mesh and 

corresponding blast load distribution along beam span is shown in Fig. 7-3 (only half 

structure is modeled due to symmetric conditions). The length of the beam is mL 2= , 

height mH b 1.0= , and width mB 1=  (plane strain conditions), thickness of FRP is 

mmhp 5= , and cohesive layer thickness is mmhc 2.0= . Material properties of 

concrete, FRP, and the epoxy layer are listed in Table 7-2. The explosive was placed at 

the mid-span m0.1  above the top surface of the beam, the mass of explosive is kg5.0  

TNT, and the duration time of the explosion pressure is mstd 0.1= . 

 

 

 

Fig. 7-3   Schematic FEA mesh and distribution of blast load along the beam 

 

 

 

Pressure distribution
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Table 7-2   Material properties of concrete, epoxy adhesive and FRP 

 Concrete Epoxy FRP 

Young’s Modulus  ( GPa ) 27.5 3.85 3.43 

Shear Modulus  ( GPa ) 11.0 1.54 1.29 

Poisson’s Ratio 0.25 0.25 0.33 

maxσ   ( MPa ) -- 30.0 -- 

maxε   ( m/m ) -- 0.0526 -- 

Density ( 3/ mKg  ) 2500 1100 1600 

  

 Two different kinds of responses of FRP plate bonded concrete beam under blast 

load were observed form the FEA simulation results. One is at the very beginning of the 

explosion (e.g. dtt 3< ), especially within the positive phase dtt ≤ . During this period, 

intense blast load is applied on the beam and results in a forced vibration. This period is 

too short to allow significant bending displacement or other displacement to develop in 

the beam. Therefore the only stress component in the cohesive layer is the vertical stress 

yσ  due to the propagation of stress wave (tensile and compressive vibration in y  

direction) and the frequencies of vibrations in this direction are much higher than that of 

bending vibrations. Very small time step ( 0.2 ~ 1.0t sμΔ = ) was employed in the 

simulation to capture the stress wave propagating along the height of the beam and 

reflecting at the top and bottom surfaces of the beam or at the bi-material interfaces. It 

can be clearly seen in Fig. 7-4 that yσ  decrease with time due to numerical damping of 

high frequency components by the HHT method used in the simulation. 
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Fig. 7-4   Short term response yσ  in the top and bottom cohesive layers at mid-span 

 

 

 
 

Fig. 7-5   Long term response xσ  in the top and bottom cohesive layer at mid-span 

  

 After the initial period, blast pressure load decreases with time, at the same time 

vertical stress yσ  also decays because of energy dissipation. When the external load is 

small enough, stable free vibration (bending deformation) will occur with relatively lower 
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frequencies. In this period, the dominant stress in cohesive layer is xσ  which is caused by 

bending deformation while transverse stress yσ  and shear xyτ  is relatively small. Large 

time steps ( 1.0 ~ 20.0t sμΔ = ) were employed to simulate the bending vibration of the 

beam and the bending stress xσ  history is shown in Fig. 7-5. It was found that numerical 

damping is not significant in the relatively low frequency bending vibration.  

 

7.4.2  Critical Debond Locations of FRP Bonded Beam 

 As discussed in the previous section, there are two sorts of dynamic responses 

under blast load. Considering the short term response, the distribution of vertical stress 

yσ  in cohesive layer along the beam is shown in Fig. 7-6. The stress component near the 

end of the beam is only 1
3

 of that at mid-span. Even considering the moisture degradation 

of the cohesive layer near the end of the beam, debond is not likely to occur in this area. 

Therefore debond near the mid-span is the likely failure location for simply supported 

beam due to the short term response. 

 As for long term response, bending stress xσ  is negligible at the end of the beam 

according to the theory of beam and FEA simulation in this study pointed the same result. 

FEA result of the distribution of stress component xσ  along the beam is shown in Fig. 7-

7. Obviously we can conclude that debond is not likely to occur at the end of the beam.  

The possible debond locations of the FRP bonded beam are near the mid span where the 

stress components xσ  and yσ  are relatively high under both long term and short term 

responses. 
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Fig. 7-6   Typical distribution of stress yσ  in a cohesive layer 

 

 
Fig. 7-7   Typical distribution of stress xσ  in a cohesive layer 

 

7.4.3  Explosive at Different Locations 

 Any load can be decomposed to a sum of a symmetrical load and a skew 

symmetrical load. The symmetric portion will excite the first mode vibration and other 
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symmetrical modes (for simply supported beam, the first mode is a symmetric mode). 

The skew symmetrical portion will excite the second mode vibration and other skew 

symmetrical modes. 

 The FEA mesh and load distribution of a simply supported beam under off-center 

load are shown in Fig. 7-8. The amplitude limits of stress xσ  for explosive loaded at 

different locations along the beam span are shown in Fig. 7-9. We find that when the 

explosive is located near mid span, the maximum stress of xσ  occurs at mid span. As 

location of explosive is moved from mid span towards the end of the beam, xσ  at mid 

span will decrease while xσ  near 1
4

 span will increase. When the explosive is close to 

the end (less than 1
8

 span) the overall load acting on the beam decreases very fast, which 

results in a decrease of the dynamic response. We also find that the maximum dynamic 

response will be obtained near 1
4

 span of the loading side when the explosive is located 

between 1
8

 span and 1
4

 span. 

 For the short term response, the maximum value of transverse peel stress, yσ , 

mainly depends on the applied peak pressure crP , and the location of the maximum yσ  

usually occurs directly below the explosive. Therefore the location of maximum yσ  will 

change with the location of the explosive. 
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Fig. 7-8   FEA mesh f a simply supported beam under off side load 

 

 

Fig. 7-9   Stress limits of xσ  as function of explosive location along beam axis 

 

7.4.4  Concrete Beam with Initial Cracks 

 Cracks usually exist in most concrete structures during their service life. A 

demonstration example was study in this simulation to investigate the effect of the cracks 
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in the concrete beam on the failure of cohesive layer. A single vertical crack with a length 

of 1
4

 beam height is introduced in the concrete beam as shown in Fig. 7-10. 

 To clearly depict the effect of the crack, the crack was suddenly introduced at a 

certain time after the blast load is applied on the beam. Significant changes in the stress 

were found in those adhesive elements near the crack. Normal stress xσ  in element 1 

(Fig. 7-11) and shear stress xyτ  in element 2 (Fig. 7-12) experience a big jump when a 

crack was introduced in concrete beam. These high level stresses would likely induce a 

mode I or mode II debond initiation and propagation in the cohesive layer. 

 

 

Fig. 7-10   A simply supported FRP bonded beam with an initial crack in concrete 
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Fig. 7-11   Comparison of axial stress xσ  in the cohesive layer before and after concrete 
cracking (Cracking occurred at mst 50= ) 

 

 

Fig. 7-12   Comparison of shear stress xyτ  in the cohesive layer before and after concrete 
cracking (Cracking occurred at mst 50= ) 
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7.5   Conclusions 

 For this preliminary study, cohesive layer model under blast load was constructed 

and implemented into a test-bed FEA code. Implicit HHT method was used in the model 

to allow better control of numerical damping. Long term responses and short term 

responses were obtained and their contributions to the debond processes in the cohesive 

layer were found to be significantly different. Introduction of a crack in the concrete 

would induce stress concentrations near the crack tip and result in debond initiation in the 

vicinity of the crack. 
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CHAPTER  VIII 

DYNAMIC ANALYSIS WITH MATERIAL AND  

GEOMETRIC NONLINEARITY 

 

 The objective of this chapter is to study the dynamic responses of structures with 

very large transient displacement and deformation under blast loading. A two-

dimensional implicit dynamic finite element formulation including material and 

geometric nonlinearity was derived and implemented into a test-bed FEA code (NOVA-

3D). Model verification was successfully performed through comparison with ABAQUS 

FEA predictions. Subsequently, the NOVA-3D FEA model was applied to a circular steel 

plate with a polymer coating subjected to intensive blast loading, and the effect of 

polymer coating on the nonlinear dynamic response was numerically investigated. 

 

8.1   Modeling of Material and Geometric Nonlinearity  

 Dynamic loading of structures often cause excursions of stresses well into the 

inelastic range and the influence of geometry changes on nonlinear response is also 

significant in many cases. Blast loading applied on a structure usually results in very 

large displacement and deformation in a short period of time, which also implies a very 

high strain rate in the structure. Therefore both material and geometric nonlinear effects 

need to be considered when evaluating the dynamic response under blast load. 
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8.1.1  Material Nonlinearity 

 Material behavior under dynamic loading is very complex and experimental 

information is limited. For example, the instantaneous yield stress is significantly 

influenced by the rate of strain. Also, the value of the elastic modulus is sometimes found 

to be dependent on the strain rate. Stress wave generated by dynamic loading usually 

causes high stress levels and therefore results in significant plastic deformation in the 

structure. However, in the current study, due a lack of experimental data, we assume that 

the material properties are rate independent while incorporating elasto-plastic material 

behavior in the test-bed FEA code. 

 The situation is complicated by the fact that different classes of materials exhibit 

different elasto-plastic characteristics. The Tresca and Von Mises yield criteria, which 

closely approximate metal plasticity behavior, are considered in the current study. After 

initial yielding, the stress level at which further plastic deformation occurs may be 

dependent on the current level of plastic strain. Such a phenomenon is termed work 

hardening or strain hardening. Thus the yield surface will vary at each stage of the plastic 

deformation, with the subsequent yield surface being dependent on the magnitude of the 

plastic strains in some way.  

 Various models which describe strain hardening plasticity in a material are 

illustrated in Fig. 8-1. A perfectly plastic material is shown in Fig. 8-1(a) where the yield 

stress level does not depend in any way on the degree of plastic strain. If the subsequent 

yield surface is a uniform expansion of the original yield surface, without translation as 

shown in Fig. 8-1(b), the strain hardening model is said to be isotropic. On the other hand 

if the subsequent yield surface preserves its shape and orientation but translates in the 
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stress space as a rigid body as shown in Fig. 8-1(c), kinematic strain hardening is said to 

take place. 

 .  

Fig. 8-1   Mathematic models for representation of strain hardening behavior 

 

 If we ignore the Bauschinger effect due to cyclic loading, isotropic strain 

hardening material behavior is the simplest way to model strain hardening. Isotropic 

strain hardening law is expressed as  

 ( ) o
ys p ys pHσ ε σ ε′= +                                                                                           (8-1) 

(a)  Perfect plastic 

(b)  Isotropic strain hardening 

(c)  Kinematic strain hardening 

σ

σ

σ

τ

τ

τ

Initial yield surface 
Current yield surface 
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where 2
3

p p
p ij ijd dε = ε ε  is the accumulated effective plastic strain. Initial uniaxial yield 

stress o
ysσ  and strain hardening function H ′  are material properties which can be 

determined experimentally from a simple uniaxial yield test. The hardening function is 

defined as [61], 

 

E
E

EH
T

T

−
=

1

'                                                                                                       (8-2) 

Where E  and TE  are slopes of the stress-strain curve in the elastic and elasto-plastic 

stage, respectively, as illustrated in Fig. 8-2. Parameter H ′  is a material property and 

remains constant for the linear strain hardening material used in this study. 

 

 

Fig. 8-2   Elasto-plastic linear strain hardening behavior for uniaxial case 

 

Stress σ  

Strain ε  

Slope E -- Elastic modulus 

Slope ET -- Elasto-plastic modulus 
0
ysσ  
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 When the stress level exceeds yield stress, material yielding will occur and plastic 

deformation will be generated. The widely used yield criteria are: 

(a). The Von Mises yield criterion which can be expressed as  

 ysJ σσ ≥′= 23                                                                                                  (8-3) 

Where, σ  is termed the effective stress or equivalent stress, ysσ  is the uniaxial tensile 

yield stress, 2J ′  is the second deviatoric stress invariant,  

( ) ( ) ( ) ( )2 2 2 2 2 2 2
2 1 2 2 3 3 1

1 1 1
2 6 2ij ij x y z xyJ σ σ σ σ σ σ σ σ σ τ⎡ ⎤′ ′ ′ ′= = − + − + − = + + +⎣ ⎦σ σ       (8-4) 

Where iσ  ( 3,2,1=i ) are the principal stresses in three orthogonal principal directions. 

(b). The Tresca yield criterion has an alternative form, 

 ysJ σθσ ≥′= cos2 2                                                                                          (8-5) 

 Where, 23
2

3

)(2
333sin

J
J
′

−=θ  , 13sin1 ≤≤− θ  and 
2

3
2

πθπ ≤≤− . 3J  is the third stress 

invariant 

 3
1
3 ij jk kiJ = σ σ σ                                                                                                   (8-6) 

 

8.1.2  Numerical Formulation for Elasto-Plastic Problems  

 The complete two-dimensional elasto-plastic incremental stress-strain relation can 

be written as [61], 

 epd d= Dσ ε                                                                                                        (8-7) 

Where epD  is the elasto-plastic stiffness matrix 
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T

ep TH
= −

′ +
D D

D

d dD D
d a

,       =Dd Da                                                                   (8-8) 

and D  is the elastic stiffness matrix. 

 In order to calculate the matrix epD , we need to evaluate the flow vector a , 

which can be expressed as, 

 1 1 2 2 3 3C C C= + +a a a a                                                                                         (8-9) 

Where, 

 { }1 1, 1, 0, 1T =a  

 { }2
2

1 , , 2 ,
2

T
x y xy zJ

σ σ τ σ′ ′ ′=
′

a                                                                  (8-10) 

 22 2 2
3 , , 2 ,

3 3 3
T

y z x z z xy x y xy
J J Jσ σ σ σ σ τ σ σ τ′ ′ ′⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′ ′ ′= + + − − +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

a  

And the three scalar constants 1C , 2C , and 3C  are given in Table 8-1 for the Tresca and 

Von Mises yield criteria. 

 

Table 8-1   Constants defining the yield surface 

Yield criterion C1 C2 C3 

Von Mises 0 3  0 

29θ ≤ o  0 )3tantan1(cos2 θθθ +  
θ
θ
3cos

sin3

2J ′
 

Tresca* 

29θ > o  0 3  0 

              *: For Tresca criterion, 30θ = ± o  results in numerical singularity  
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 Once material stiffness matrix epD  is obtained from Eq. (8-8), elasto-plastic 

element stiffness matrix T
T ep d

Ω
= Ω∫K B D B  can be evaluated at each Gauss point. 

 Under the conditions of plane stress ( 0=zσ ), plane strain ( 0=zε ) or axial 

symmetry, simplified form of epD  can be derived. 

 For isotropic plane strain and axisymmetric analysis, elastic stiffness matrix is 

given by, 

 

1 0
1

(1 ) 1 0
(1 )(1 2 ) 1

1 20 0
2(1 )

E

υ
υ

υ υ
υ υ υ

υ
υ

⎡ ⎤
⎢ ⎥−⎢ ⎥

− ⎢ ⎥= ⎢ ⎥+ − −
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

D                                                     (8-11) 
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2 2 1

3
3

4

4 1

1

1

1

E a M
d

Ed a M
d Ga
d E a M

ν

ν

ν

⎧ ⎫+⎪ ⎪+⎧ ⎫ ⎪ ⎪
⎪ ⎪ ⎪ ⎪+⎪ ⎪ ⎪ ⎪= = = +⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎪ ⎪+⎪ ⎪+⎩ ⎭

Dd Da ,     
)21)(1(

)( 421
1 νν

ν
−+
++= aaaEM                        (8-12) 

Where E  , G , and υ  are Young’s modulus, shear modulus, and Poisson’s ratio, 

respectively. ia  are the components of flow vector a . 

 For plane stress, elastic stiffness matrix is, 

 2

1 0
1 0

1
10 0

2

E
υ

υ
υ

υ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥− ⎢ ⎥−
⎢ ⎥
⎣ ⎦

D                                                                                 (8-13) 
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3
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4 2

1

1

1

E a M
d

Ed a M
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d E a M

ν

ν

ν

⎧ ⎫+⎪ ⎪+⎧ ⎫ ⎪ ⎪
⎪ ⎪ ⎪ ⎪+⎪ ⎪ ⎪ ⎪= = = +⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
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Dd Da ,     2
21

2 1
)(

ν
ν

−
+

=
aaEM                              (8-14) 

 

Numerical iteration procedure for elasto-plastic material is described as follow [61]: 

1. Solve the simultaneous equations for the thr  iteration at a certain load step by Newton-

Raphson method and obtain displacement increments rdu  and strain increments rdε . 

2. Compute stress increments r r
ed d= Dσ ε  (subscript e  denotes that fully elastic 

behavior is assumed initially) as shown in Fig. 8-3. 

3. Accumulate the total stress for each Gauss point: 1r r r
e ed−= +σ σ σ . 

 

 

 
Fig. 8-3   Incremental stress changes at a point in an elasto-plastic continuum 
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4. Check: 11 −− ′+=> r
p

o
ysys

r H εσσσ  at each Gauss point. Four possible cases are listed in 

table bellow: 

Previously yielded?   Yes Previously yielded?   No 

?1−> rr
e σσ  ?r o

e ysσ σ>  

No (unloading) Yes (loading) No Yes 

  Gauss point is 

unloading 

elastically 

  Go to step 7 

 

  Stress increase 

  Stress increment must 

be reduced to the yield 

surface 

  Calculate reduction 

factor 1==
AC
ABR  

  Go to step 5 

  Elastic  

  Go to step 7 

  Yielding 

  Extra stress must be 

reduced to the yield 

surface 

  Calculate reduction 

factor

1

r o
e ys
r r
e

ABR
AC

σ σ
σ σ −

−
= =

−
 

  Go to step 5 

 

5. Update 1 (1 )r r r
eR d−= + −σ σ σ  (at each yielded Gauss point and satisfy the specified 

yield criterion) 

6. Eliminate the remaining portion of stress r
eRdσ  : 

a) Determine the number of subincrement m  into which the excess stress r
eRdσ  is 

to be divided, where m  is given by the nearest integer of ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
o
ys

ys
r

ek
σ

σσ
, and k  is 

a constant that determines the accuracy of the reduction process. Typically, 

105 << k  can satisfy the requirement of general FEA simulation ( 8=k  was used 

in the current study). 

b) Iterate over each subincrement m  
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c) Compute vector a  and Dd  by Eq. (8-9), Eq. (8-12) or (8-14)  

d) Compute 1 0T
Td d

H
λ ε= ≥

′ + Da d
a Da

, where 
r
eRdd

m
ε =Dd σ  

e) Compute 1 (1 )
r

r r r e
e

Rd dR d
m m

λ−= + − + − Ddσσ σ σ  

      (After the summation process, it will result in 1r r r
ed dλ−= + − Ddσ σ σ  to give the 

       stress point that is reduced to the yield surface) 

f) Compute effective plastic strain: 1
T r

r r
p p

dλε ε
σ

−= + a σ   

g) End of subincrement iterations over m   

h) Compute effective stress rσ  and current yield stress o r
ys pHσ ε′+  

i) Scale the stress 
o r
ys pr r

r

Hσ ε
σ

′+
=σ σ  

7. For elastic Gauss points calculate rσ  as 1r r r
ed−= +σ σ σ  

 In this manner the converged element stresses which satisfy the elasto-plastic 

stress-strain relation and the yield criterion for the thr  load step is obtained. 

 

8.1.3  Geometric Nonlinearity 

 To allow for geometrically nonlinear elastic and plastic behavior we can use 

either a Total Lagrangian (TL) or Updated Lagrangian (UL) coordinate system. The UL 

formulation is based on the same procedures that are used in the TL formulation, but in 

the solution all static and kinematic variables are referred to the last calculated 

configuration. Both the TL and UL formulations include all kinematic nonlinear effects 
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due to large displacement, large rotations, and large strains. The Updated Lagrangian 

formulation was selected in the current dynamic analysis to model the geometrically 

nonlinear behaviors as used in Chapter V for simulating peninsula blister test. In addition, 

Cauchy stress and Almansi strain tensor were used as energy conjugates in present study. 

 The basic problem in general nonlinear analysis is to find the state of equilibrium 

of a body corresponding to the applied loads. Assuming that the externally applied loads 

are described as a function of time (independent of deformation), the equilibrium 

conditions of a system of finite elements representing the body under consideration can 

be expressed as 

 0t t− =R F                                                                                                       (8-15) 

 Where tR  is a vector containing externally applied loads and tF  is a vector of the 

internal nodal forces corresponding to element stress at time t . 

 The basic approach in an incremental step-by-step solution is to assuming that the 

solution for the discrete time t  is known, and that the solution for the discrete time tt Δ+  

is required.  Hence, considering Eq. (8-15) at time tt Δ+  we have, 

 0t t t t+Δ +Δ− =R F                                                                                                (8-16) 

 Since the solution at time t  is known, we can write 

 t t t+Δ = +F F F                                                                                                  (8-17) 

where F  is the incremental in nodal force corresponding to the increment in element 

displacement and stress from time t  to time tt Δ+ . This vector can be approximated 

using a tangent stiffness matrix tK  

 t≅F K U                                                                                                           (8-18) 

Where U  is a vector of incremental nodal displacements and 
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t

t
t

∂=
∂

FK
U

                                                                                                         (8-19) 

Substituting Eq. (8-17) and (8-18) into (8-16), we have, 

 t t t t+Δ= −K U R F                                                                                              (8-20) 

And solving for U , we can get an approximation to the displacement at time tt Δ+  

 t t t+Δ ≅ +U U U                                                                                                  (8-21) 

 We can evaluate the stress and corresponding nodal force according to the 

approximate displacement solution t t+ΔU  at time tt Δ+ . However, because of the 

assumption in Eq. (8-18), such a solution may be subject to very significant errors. In 

practice, it is necessary to iterate until the solution of Eq. (8-16) is obtained to sufficient 

accuracy. 

 The widely used iteration methods in finite element analysis are based on the 

classical Newton-Raphson technique (refer to [62] for details). The equations used in the 

Newton-Raphson iteration are (for iteration step LL,3,2,1=i ) 

 

( 1) ( ) ( 1)

( ) ( 1) ( )

i t t i t t i t t

i t t i t t i

− +Δ +Δ − +Δ

+Δ − +Δ

Δ = −

= + Δ

K U R F

U U U

                                                                     (8-22) 

with the initial conditions: 

 (0) t t t+Δ =U U  

 (0) t t t+Δ =K K                                                                                                      (8-23) 

 (0) t t t+Δ =F F  
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8.1.4  Hilber-Hughes-Taylor (HHT) method for temporal discretization 

 Now we can derive the incremental formulation of Hilber-Hughes-Taylor (HHT) 

method (see Chapter VII for details about HHT algorithm) from the classical Newton-

Raphson technique. From Eq. (7-10) and (8-22), we have 

 ( ) ( 1)(1 ) (1 )t t t t t t i t t i t t tα α α+Δ +Δ +Δ +Δ − +Δ+ + Δ = − + +&&M U K U R F F                        (8-24) 

From Eq. (7-12), 

 ( )2

1 1 1 1
2

t t t t t t t

t tβ β β
+Δ +Δ ⎛ ⎞= − − − −⎜ ⎟Δ Δ ⎝ ⎠

&& & &&U U U U U                                            (8-25) 

Substituting into Eq. (8-24), we have 

( )( ) ( 1) ( 1)
2

1 1 1ˆ (1 ) 1
2

t t i t t i t t t t t i t t t t t

t t
α α

β β β
+Δ +Δ − +Δ +Δ − +Δ⎡ ⎤⎛ ⎞Δ = − + + − − − − −⎢ ⎥⎜ ⎟Δ Δ ⎝ ⎠⎣ ⎦

& &&K U R F F M U U U U

 
                                                                                                                                      (8-26) 

Where, 2

1ˆ (1 )t t t t t t

t
α

β
+Δ +Δ +Δ= + +

Δ
K K M  

 Eq. (8-26) is the final iteration form of incremental HHT formulation. The right 

hand side is the residual force term which can be obtained from the equilibrium solution 

at previous time step t  and the latest thi )1( −  iteration results of current time step tt Δ+ . 

 

8.2   Model Verification 

 Material and geometric nonlinear models as described in previous section were 

implemented in a test-bed FEA code NOVA-3D. Model verifications were performed on 

a single element subjected to uniform extension and simple shear through comparison 

with predictions by commercial software package ABAQUS version 6.5-1. 
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8.2.1  Single Element Extension Verification 

 A single element specimen under uniform extension is illustrated in Fig. 8-4 and 

plane strain conditions are applied. To verify the capability of NOVA for simulating 

nonlinear material  behavior, a linear strain hardening function was assumed in this study 

as shown in Fig. 8-2, material properties are: GPaE 200= , GPaET 40= , 

400o
ys MPaσ = , ==

−
=′ GPa

E
E

EH
T

T 50
1

constant. The loading process used in the 

simulation consists of three steps: loading to material yield, unloading to zero, and then 

reloading to material yield again. 

 8-node quadratic element with 33×  Gauss integration was used in both NOVA 

and ABAQUS for accurate comparison. Predicted responses from NOVA-3D were 

compared with that from commercial software package ABAQUS, and excellent 

agreement was observed (Fig. 8-5). In Fig. 8-5, some residual Von Mises stresses were 

observed in both ABAQUS and NOVA-3D due to the constrained extension (plane 

strain) after the external load was reduced to zero (unloading). 

 
Fig. 8-4   Single element extension (plane strain conditions) 
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Fig. 8-5   Stress-strain relation comparison between NOVA and ABAQUS 

 

8.2.2  Simple Shear Verification 

 A single element specimen considering material and geometric nonlinearity was 

simulated under simple shear conditions (Fig. 8-6). Displacement controlled loading was 

employed to ensure the stability of the loading process. Material properties were assumed 

to be the same as in single element extension. Very large shear deformation, up to 300%, 

was applied to test the capability and robustness of the algorithm described in section 8.1. 

Simulation results showed that the algorithm used in the study is rather robust to cope 

with large deformation and nonlinear material behavior as depicted in Fig. 8-7. Good 

agreement was observed between NOVA-3D and ABAQUS results when the shear strain 
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is less than 100%. Discrepancy at high strain level is possibly due to the distortion of the 

single element used in this case. 

 
Fig. 8-6   Single element under simple shear (displacement control) 

 

 
Fig. 8-7   Single element shear stress vs. shear strain for simple shear 

 

 To avoid extensive distortion in the single element specimen, a refined FEA mesh 

( 1919× ) was used in the simple shear simulation, and better agreement was obtained, as 
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shown in Fig. 8-8. Global shear stress (or applied shear force), local shear stress and 

equivalent plastic strain at the center of the specimen are shown in Fig. 8-8, 8-9, and 8-

10. It can be concluded that the predictions from NOVA-3D match very well with that 

from ABAQUS especially when the global shear strain is less than 100%. The deformed 

shape of the specimen with 200% shear deformation is shown in Fig. 8-11. 

 

0.0E+00

5.0E+09

1.0E+10

1.5E+10

2.0E+10

2.5E+10

0 0.5 1 1.5 2

Shear strain

A
pp

lie
d 

fo
rc

e 
(N

)

ABAQUS

NOVA 3-D

 

Fig. 8-8   Applied shear force vs. shear strain (global comparison, 1919×  mesh) 
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Fig. 8-9   Shear stress at the center of the specimen (local comparison, 1919×  mesh) 
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Fig. 8-10   Equivalent plastic strain at the center of the specimen ( 1919×  mesh) 
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Fig. 8-11   Deformation of a simple shear specimen with 200% shear strain 

 ( 1919×  mesh) 
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8.3   Dynamic Response of a Circular Steel Plate with Coating under Blast Load 

8.3.1  Modeling of a Clamped Circular Steel Plate with Coating 

 In the current simulation, blast loading of a clamped circular steel plate with 

polymer coating on both sides was considered. The axisymmetric two-dimensional model 

is shown in Fig. 8-12. Because of the intense pressure of the instantaneous blast load, 

both steel plate and polymeric coating are considered as linear strain hardening elasto-

plastic materials, and the material properties are listed in Table 8-2. Uniformly distributed 

pressure was applied at the center of the plate with a diameter of 50mm to simulate blast 

loading, which corresponding to a circular-shaped explosive directly placed above the 

center of the plate. A peak pressure MPaPr 70=  with exponential time history, duration 

time mstd 1= , and shape factor 1=b  were assumed in the simulation (see Chapter VII 

and Fig. 7-2 for details of the blast load). 

 

Fig. 8-12   Axisymmetric model of a circular steel plate with coating 

r

z 

Pressure  P(t) 

Polymer coating , thickness hp = 1mm 
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 An FEA mesh (as shown in Fig. 8-13) with 408 ( 851× ) eight-node quadratic 

element (one element for each coating layer and 6 elements for steel plate in the vertical 

direction to capture the large deformation of the plate) was used in the simulation 

performed by FEA code NOVA-3D. To capture the contribution of high frequency 

vibration modes and to adapt to the high strain-rate in the plate, a very small time step 

0.2t sμΔ =  was employed at the beginning of the simulation. Subsequently, step size was 

gradually increased to save computation time. 

 
Table 8-2   Material properties of steel plate and polymer coating 

Material )(GPaE  )(GPaET  υ  )(GPaH ′  )(0 MPaysσ  )/( 3mKgρ

Steel 200 2.5 0.28 2.532 400 7800 

Coating* 8 4 0.40 8 30 1200 

*: Coating material is glass fiber reinforced polyurethane.  

 

Fig. 8-13   FEA mesh for simulating steel plate with coating (dimensions not scaled) 

 

8.3.2  Numerical Damping of HHT Method 

 In HHT method (Eq. 8-26), constant α  ( 0
3
1 ≤≤− α ) is a parameter that can 

continuously control the numerical damping of the structure; with 0=α  this algorithm is 

reduced to Newmark method which is non-dissipative. Numerical damping of HHT  
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(a)  Radial stress history in steel, with and without numerical damping 
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(b)  Radial stress history in coating, with and without numerical damping 

Fig. 8-14   Numerical damping of HHT method on high-frequency modes 

 



 140

method on high-frequency modes was found to be effective in the current simulation of 

the dynamic responses. High frequency components in the stress responses were damped 

out when the numerical damping 1.0−=α  was introduced in the dynamic simulation. 

Smoother curves of stress history in both steel plate and coating were obtained as shown 

in Fig. 8-14. 

 It was also observed that the influence of parameter α  on plate deflection (Fig. 8-

15) is insignificant. The reason is that the stress is the first derivative of displacement and 

therefore is more sensitive to the numerical noise due to the high frequency vibration 

modes. 
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Fig. 8-15   Numerical damping of HHT method on plate deflection 
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8.3.3  Dynamic Responses under Different Load Levels 

 Dynamic response is very complex when material and geometric nonlinearity are 

involved in the structure. Large displacement and large deformation may change the 

system mass matrix and the nonlinear material properties will result in a continuous 

change in system stiffness matrix as plastic straining occurs and develops in the structure. 

Therefore different vibration profiles of the plate with different frequency spectrum will 

be observed under different load levels as illustrated in Fig. 8-16. 

 When peak pressure MPaPr 10≤ , the plate is in an elastic state without any 

plastic deformation occurring in the steel plate and polymeric coating. The plate vibrates 

around the equilibrium position which is the original position before the load was 

applied. As peak pressure is increased, plastic deformation occurs in the steel plate first, 

and then, in the polymeric coating. Maximum equivalent plastic strains in the steel plate 

and polymeric coating at the center of the plate increase with the applied peak load as 

shown in Fig. 8-17. The variation in minimum and maximum deflections with the applied 

peak pressure is shown in Fig. 8-18. As plastic deformation progresses, plate becomes 

stiffer and stiffer due to the strain hardening effect of both the steel plate and polymeric 

coating and therefore results in the increase of fundamental frequency of the plate 

structure as clearly revealed in Fig. 8-16. 
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Fig. 8-16   Central deflection history under various peak pressure levels 
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Fig. 8-17   Maximum equivalent plastic strain at plate center  

under various peak pressure levels 
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Fig. 8-18   Minimum and maximum deflections under various peak pressure levels 

 

8.3.4  Effects of Coating on Plate Responses 

 To study the effect of the polymeric coating on the dynamic response of the steel 

plate, steel plate with elastic coating, elasto-plastic coating and without any coating were 

simulated under blast loading for comparison. Significant changes of central deflection of 

the plate (Fig. 8-19), radial stress in the polymer coating at the plate center (Fig. 8-20), 

and equivalent plastic strain at the center, bottom surface of the steel plate (Fig. 8-21) 

were observed from FEA simulation. Maximum equivalent plastic strains at the bottom 

surface of the steel plate plotted along the radial direction are shown in Fig. 8-22. Highest 

plastic strain occurred in the steel plate without any coating, while about 20% reduction 

of plastic strain in the steel plate was observed at the center of the plate after 1mm thick 

elasto-plastic coatings were applied on both sides of the steel plate. Compared with 

elasto-plastic coating, elastic coating can sustain higher stress (Fig. 8-20) and provide 

Peak
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stronger constraining effect on the steel plate, and therefore, allow lower plastic strain to 

occur in the steel plate. But it is usually not realistic for polymer material to stay in elastic 

state under large deformation. Elasto-plastic material behavior of the polymer coating is a 

practical approach to simulate the effect of polymer coating on steel plate.  

 It was also observed from Fig. 8-20 and 8-21 that the maximum stress and plastic 

straining usually occur at the very beginning of the blast loading process, i.e. 

mstt d 5.0
2
1 =< . After that period, no further plastic deformation occurs and the plate 

vibration will gradually decay due to energy dissipation. Equivalent plastic strain (PEEQ) 

distribution in steel plate and polymer coating as well as their permanent deformation is 

shown in Fig. 8-23. 
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Fig. 8-19   Central deflection history of the plate 
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Fig. 8-20   Radial stress history in polymer coating 
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Fig. 8-21   History of equivalent plastic strain in steel plate 
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Fig. 8-22   Maximum equivalent plastic strain at the bottom surface of steel plate 

(Strain values are 0.131, 0.107, and 0.0929 for the three cases at the plate center) 
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Fig. 8-23   Equivalent plastic strain in steel plate and permanent deformation (not scaled) 
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8.3.5  Time-Dependent Effect of Polymeric Coating 

 Polymeric materials usually display some time-dependent behavior due to 

molecular motion. To investigate the time-dependent effect of the coating material on the 

plate responses, a viscoelastic coating material with Prony series as listed in Table 5-3 

was considered in the simulation. For comparison, a corresponding elastic coating was 

constructed as follow: its material properties are identical to the instantaneous values of 

the viscoelastic tensile relaxation modulus, )(tE , and Poisson’s ratio, )(tυ , at the time 

0=t , i.e. 

 GPatEE
t

372.3)(
00 ==

=
 

 391.0)(
00 ==

=t
tυυ  

 Very small differences in plate deflection (Fig. 8-24) and stress in steel plate (Fig. 

8-25) at the center of the plate were observed between elastic and viscoelastic coatings 

due to the very short time period of the blast loading. An interesting phenomenon is that a 

significant stress relaxation in viscoelastic coating was observed in NOVA-3D 

predictions as shown in Fig. 8-26. Similar results were also observed from ABAQUS 

FEA predictions. This might be due to the existence of high frequency oscillation in the 

viscoelastic coating, which dissipated part of the strain energy that was stored in the 

viscoelastic coating, thereby causing stresses to relax. 
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Fig. 8-24   Central deflection history of the plate 
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Fig. 8-25   Radial stress history in steel plate at the plate center 
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Fig. 8-26   Radial stress history in polymer coating at the plate center 

 

8.4   Conclusions 

 Material and geometric nonlinearity consideration are often essential when 

evaluating the structural dynamic responses under blast loading. The Updated Lagrangian 

(UL) formulation was chosen to handle the large displacement, large rotations, and large 

deformations in the current study. Isotropic linear strain hardening law combined with 

Tresca and Von Mises yield criteria was used to capture the material nonlinearity. 

Material and geometric nonlinear models were implemented into a test-bed FEA code 

NOVA-3D. Code verification under very large deformation showed that the nonlinear 

model used in current study is accurate and robust. HHT algorithm involving nonlinear 

kinematics and material behavior was implemented and used to predict the dynamic 

responses of a steel plate with polymeric coating under blast load. It was observed that 
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polymer coating applied on the steel plate would significantly decrease the plastic strain 

in the steel plate (~20%). The effects of the factors such as the numerical damping, time-

dependent behavior of polymeric coating, and different external pressure levels were 

found to be important to the dynamic responses under blast load. 
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CHAPTER IX 

CONCLUSIONS 

 

 To simulate the debond initiation and propagation in the adhesive layer of FRP 

bonded concrete structures, two-dimensional and three-dimensional cohesive layer 

constitutive models with prescribed traction-separation laws were constructed from 

fundamental principles of continuum mechanics and thermodynamics, taking into 

account non-Fickian hygrothermal effects that are likely to occur within a cohesive layer. 

Based on debond tip deformation or strain energy release rate, failure criteria for mixed 

mode I and mode II debond (and even mode III) were developed to predict the debond of 

FRP. 

 The cohesive layer model was implemented into a test-bed finite element code 

NOVA-3D and code verification was performed on a double cantilever beam (DCB). 

Benchmark comparisons of finite element predictions of global load and local stress field 

with the analytical solutions for a DCB specimen resulted in a good agreement after 

modifications were made to the original Williams’ solution. Simulations were also 

successfully performed on blister test and wedge test, which demonstrates the ability of 

the cohesive layer model to simulate adhesive debond and debond growth in different 

structures and under different loading conditions. 

 From the study of the DCB specimen, it can be concluded that both local and 

global cohesive layer parameters are fairly sensitive to the cohesive layer thickness, 
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whereas the correction factor (k) to Williams’ original solution significantly influences 

the local stress distribution and damage length. 

 Numerical simulation of a wedge-test involving debond growth caused by 

synergistic interactions between local stress and diffusing moisture was performed to 

demonstrate the ability of the cohesive-layer model to simulate environmental cracking. 

 A finite element code based on cohesive layer model was developed to simulate 

the complex process of the peninsula blister test. Convergence and stable debond growth 

were obtained over a fairly large debond length, FEA simulation results are in good 

agreement with both analytical solution and test data. Geometry of peninsula blister 

specimen was studied by both analytical and FEA approaches and recommendations were 

made toward the design of peninsula blister specimens. FEA simulation results also 

showed that large deflections, time-dependent material behavior, and residual stresses in 

the thin film are important factors that should be considered in simulations of the 

peninsula blister test in order to extract the interfacial fracture toughness of a given 

adhesive system. 

 From the simulation results of wedge test it can be concluded that stress-strain 

relation of cohesive layer is rate-dependent. The cohesive layer thickness is an important 

characteristic parameter of the cohesive layer model, and it is quite sensitive to the 

fracture toughness and the stress-strain relation of cohesive material. Simulation of 

wedge tests under different wedge speeds was also presented to demonstrate the rate-

dependent behavior of cohesive layer model and the ability of the cohesive layer model to 

simulate transient as well as steady-state debond growth at various strain rates. 
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 Implicit HHT method with numerical damping was used in current study to study 

the dynamic response of FRP plated concrete structure under blast load. Long term 

responses and short term responses were obtained and their contributions to the debond 

of FRP from concrete were found to be significantly different. Introduction of a crack in 

the concrete would induce stress concentration near the crack tip and therefore result in 

debond initiation in the vicinity of the crack. 

 Material and geometric nonlinear consideration are often essential when 

evaluating dynamic response of structures under blast loading. Code verification under 

very large deformation showed that the nonlinear model used in current study is accurate 

and robust. HHT algorithm involving nonlinear kinematics and material behavior was 

implemented and used to predict the dynamic responses of a steel plate with polymer 

coating under blast loads. It was found that polymer coating applied on steel plate would 

decrease the plastic strain in the steel plate (~20%). The effects of the factors such as the 

numerical damping, time-dependent behavior of polymeric coating, and different external 

pressure levels were found to be important to the dynamic responses under blast load. 
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