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CHAPTER 1

INTRODUCTION

The read/write (R/W) heads of a hard disk drive are very sensitive to external shock

and vibration. Shock and vibration dynamics can cause head/disk impact (HDI). If

the impact occurs in the area where data is stored, data loss or permanent damage

can occur. Typically, there is a maximum shock and vibration specification limit that

corresponds to a given head design. Shock specifications are determined for both

operational and non-operational states. Disk drives will usually be subject to higher

shock levels during the non-operational state primarily resulting from shipping and

handling. During this process, the drive could incur dynamics from both linear and

rotational shocks. In order to prevent damage and data loss, disk drive manufacturers

have developed methods to suppress the effects of external, non-operational dynam-

ics. However, existing designs increase product costs and sacrifice seek performance

resulting from the added shock protection. This research introduces enhanced me-

chanical design and control methods that provide adequate shock protection against

linear and rotational dynamics while eliminating the additional cost and performance

reduction associated with current designs.

In the case of rotary shocks, modern designs incorporate latching or locking mech-

anisms to hold the actuator arm at a specific position when the drive is not in op-

eration. This allows higher non-operational dynamics to be tolerated and prevents

a fatal event, caused by a drop or careless handling, that would physically damage

the drive. The majority of the latch designs that exist today are passive and require

external sources of mechanical energy. For example, certain latch designs take ad-
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vantage of the high velocity airflow generated by the spinning disks for actuation [1].

Other designs rely on the inertia of a separate member that moves when a shock is

imparted to the drive [2]. Although not as common, some latches are designed to

take advantage of magnetic forces that are inherent in the actuator magnetic circuit

or supplied by a separate magnet [3, 4].

Air vane and inertial style latches are the most commonly used in industry today.

Both styles are preferred for their high shock resistance capabilities. Inertial latches

are common in drives sized for notebook computers and consumer electronics. An

inertial-style latch is shown in Figure 1.1. The latch consists of a separate inertial

member rotating about a designated pivot point. Both the pivot location and inertia

of the member are designed so that the member engages the actuator arm in a finite

time while subject to a specified range of rotary shock amplitudes and pulse widths.

Inertial

members

Engagement

Pivot

Figure 1.1: Inertial latch concept (Courtesy of Fujitsu Corp).
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The engagement contact effectively blocks actuator motion and prevents the R/W

heads from moving into the data zone. The timing of this engagement can become

problematic, inconsistent, or even impossible if wide ranges of shock resistance are

required. For example, the latch design may meet a specified upper amplitude limit

at the expense of lower amplitudes. Therefore, it is possible for inertial latches to

engage the actuator at higher shock amplitudes, but “miss” at lower amplitudes.

Air latches are typically found in desktop and server drives where larger disk sizes

and higher spindle speeds provide stronger air flow currents. Figure 1.2 depicts an air

latch consisting of a small, nominal, return bias and a “vane” member that protrudes

radially along the disks obstructing potential airflow. Opposite the air vane is an

engagement feature that keeps the actuator arm locked in shipping position when the

drive is off. When power is applied to the drive, force is applied to the latch vane as

a result of the airflow from spinning disks. The latch overcomes the return bias and

stays open as long as power is applied and the disks are spinning.

Air vane

Engagement

Latch

pivot

Figure 1.2: Air latch concept (Courtesy of Quantum Corp).
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Disk drive manufacturers typically benefit from reducing the disk count or “depop-

ulating” a given product. This allows the manufacturer to design only one set of

mechanics and provide customers with different levels of capacity. Reducing the disk

count, however, would obviously change the aerodynamics and the air latch opera-

tion. Therefore, difficulties can arise in implementation of a common air latch with

a product scheduled for depopulation. Multiple latch designs may be required which

is undesirable.

Magnetic, bi-stable latches are not as common because of their low shock resis-

tance capability. They are typically found in high-end server drives where shock

requirements are not so stringent. The bi-stable latch is called such because it has

two stable equilibrium points. A typical bi-stable latch is shown in Figure 1.3. A

plastic member rotates about a designated pivot pin. A magnet is molded into the

plastic member and is attracted to two separate steel pins. The proximity of the

magnet determines to which pin the magnet is attracted.

Steel

equilibrium

contact points

Latch pivotEngagement

Magnet

Figure 1.3: Bi-stable latch concept (Courtesy of Seagate Technology).
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A properly designed bistable latch is not allowed to rest between the two pins. The

engagement contact dynamics between the latch and actuator arm are analogous to

that of two spur gears. The latch is actuated by the disk drive actuator itself. Hence,

while closed, the latch is required to overcome the actuator arm inertia subject to

a rotational shock. Conversely, the disk drive actuator must overcome the latch

holding force when the drive is powered on. So the latch holding torque requirement

conflicts with the actuator arm opening torque requirement. Most bi-stable latches are

positioned behind the actuator limiting the coil length. A longer coil generally results

in higher torque capability and improved seek performance of the actuator. Also,

because there is impact involved during latching, the potential exists for particulate

generation which can be fatal to a disk drive and, therefore, presents reliability issues.

All three of the previously mentioned latches result in additional cost that can be-

come significant in high volume products. One low-cost alternative proposes adding

an external bias to the arm. A magnetic bias is induced by attaching a steel object

to the arm that rotates in the magnetic air gap of the actuator [5]. This latching

mechanism has the advantage of a single, inexpensive mechanical part. Additionally,

the size of the actuator is less restricted so motor performance can be optimized.

Also, the magnetic bias provides a non-contact solution which eliminates particulate

generation that is associated with latches. The disadvantage is that the bias force

is typically nonlinear, and exists over most, if not all, of the actuator stroke which

influences drive operation and seek controller performance. Further, the bias force

nonlinearity is an unmatched uncertainty [6], which presents an additional challenge

for the controller design. Backstepping techniques [7] are available to handle certain

unmatched conditions in nonlinear systems. However, even if the bounds on the bias

are known, the worst case bias value is required as an estimate for all drives in or-

der to prevent saturation. If the bias could be estimated for each individual drive,

5



some additional seek performance could be obtained on drives that do not repre-

sent the worst case. A seek controller must be developed that can compensate for

uncertain bias nonlinearities without sacrificing performance. Adaptive control tech-

niques represent one method that can be used to handle effects of uncertain system

parameters [8]. Although there has been no known published results in adaptive seek

control applied to disk drives, the uncertain magnetic bias problem has definitive

characteristics that make it a desirable candidate. Furthermore, distributions can be

determined on a given disk drive population by performing a tolerance analysis on

the mechanical design. Therefore, the bias parameters can be bounded even though

the bias characteristics are unknown for each individual drive.

The research proposes fulfilling the rotary shock resistance requirements using

a pure magnetic bias that results in reduced cost and virtually none of the issues

mentioned above. In this research, an actuator is designed based on typical design

constraints used in the disk drive industry. An initial lumped parameter design was

carried out first to quickly get an idea of the optimized coil geometry and air gap

flux density. To further refine the lumped parameter results into a more realistic

representation, a solid model of the actuator was created with the actual geometric

constraints resulting in a more distributed parameter design. Magnetic and structural

finite element methods were used to give a more accurate value of the coil inductance,

arm inertia, and air gap flux density. Using the previously calculated arm inertia and

a predetermined sweep angle, a bias feature is designed to restore the arm back to the

nominal shipping location after the impact of a rotary shock. The actuator is manu-

factured according to a proposed set of design specifications and the motor physical

parameters are measured. A third-order dynamic model for the actuator with the

added bias feature is developed. Bounds on the magnetic bias magnitude and posi-

tion are determined relative to geometric tolerance studies. A stable, model-based,

adaptive seek controller is designed and experiments are conducted using a laser vi-
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brometer for position and velocity feedback. A performance comparison is made on

the effects of sample rate and accuracy of nominal bias approximation. A projection

algorithm is also implemented to limit the bias estimate to within the known bound-

ing tolerances. The adaptive controller requires measurement feedback availability of

all system states. However, disk drives do not typically possess this direct measure-

ment capability in production. Therefore, an output feedback controller is developed

to estimate the states and control the actuator under magnetic bias influence. The

design is constructed based only on current measurement with specific assumptions

on the nonlinearity. Experiments are performed to verify the design.

As previously mentioned, rotational shocks can be suppressed by implementing an

external bias or latching mechanism that holds the disk drive actuator and R/W heads

at the disk inner radius in the absence of power. These methods, however, will not

provide adequate protection from linear shocks. To provide linear shock robustness,

manufacturers design the R/W heads to rest on a “textured”, circumferential band at

the disk inner radius (Fig 1.4). The texture prevents any adherence of the R/W heads

to the disk and provides an area of contact away from the data zone in the presence of

linear shocks. Therefore, any head/disk interference (HDI) will occur in the texture

zone where no data is present. This method has proven to be relatively effective

and is currently used in enterprise and server-class drives susceptible to less frequent,

low amplitude shock levels. However, drives scheduled for notebook computers and

consumer electronic devices will naturally experience higher shock levels. Frequent

and severe HDI will cause media divots in the zone textured area (Fig 1.5). When

power is applied and the disks begin to spin, these divots can disrupt the airflow

and actually contact the heads causing catastrophic failure during the disk spin-up

process.
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20 µm

Figure 1.4: Laser zone texture at inner radius

Figure 1.5: Disk damage resulting from linear shock HDI
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To combat the issue, many disk drive manufacturers prefer to keep the heads com-

pletely off the disks when the drive is not operating. The common method adopted

in industry is to park the tip of the actuator on a ramp located outside the disk outer

diameter [9]. Figure 1.6 shows a typical non-operational configuration with actuator

parked on a ramp and heads suspended off the disks. When the drive is powered on,

the actuator moves the heads off the ramp and onto the disks where normal operation

occurs. When the drive is powered off, residual energy from the disk spindle motor

back-emf is used to move the actuator, unloading the heads off the disks and onto the

ramp. One issue that has had much attention recently is the effects of HDI during

the loading process and how to prevent it. Figure 1.7 shows an example of HDI from

ramp loading where the edge of the R/W head has created a divot in the disk. It

has been shown that HDI during loading is primarily dependent on vertical loading

velocity along with the pitch and roll angle of the head [10, 11]. These two factors are

Ramp

Suspension

R/ W Heads

Figure 1.6: Ramp load concept (Courtesy of Fujitsu Corp)
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100 µm

Figure 1.7: Disk damage resulting from ramp loading HDI

a function of the head suspension spring constant, actuator angular velocity, and the

ramp incline [12]. The suspension spring force is a very controlled parameter because

of the effects of aerodynamics and fly height during operation. It is not likely that this

parameter will be adjusted to compensate for ramp loading. Additionally, the ramp

incline can be restricted by the geometric limitations of the drive form factor. There

is flexibility, however, on the angular velocity parameter and disk drive load/unload

(L/UL) controllers typically regulate the velocity moving on and off the ramp. This

is usually accomplished by estimating the motor back-emf which is proportional to

angular velocity. Therefore, it is advantageous to have an idea of the motor back-emf

factor characteristics across the entire stroke. The shape of the motor back-emf or

torque factor across the actuator stroke (sweep angle) is dependent on the geometry

of the magnets. Most L/UL disk drives will have relatively constant torque factors

within the normal operating stroke on the disk and reduce to a lower value on the

ramp.
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Figure 1.8: Conventional actuator illustrating uncontrollability.

Disk drive actuator magnets are polarized such that the gap flux density is equal

and opposite for each of the two active coil lengths inside the air gap. The location

where the magnet polarity changes is called the magnetic transition (MT). Because

the magnetic flux flow in the air gap has opposite direction on each side of the MT,

the current, i, flowing through the coil produces a force, F , in the active lengths

as shown in Figure 1.8(a). Each active coil length contributes, roughly, one-half of

the total torque produced by the actuator. If the actuator continues to rotate, one

active length will cross the MT where both active lengths are subject to magnetic

flux flow in the same direction. In this case, the actuator stops resulting from equal

and opposite forces imparted to each coil active length (Fig. 1.8(b)). Because both

active coil lengths are influenced equally by similar flux density, the actuator cannot

be moved from this position by applying current through the coil. The condition

depicted in Figure 1.8(b) renders the system uncontrollable. Increasing the coil and

magnet arc length is the solution that is currently used in industry. The magnet

arc length increase effectively changes the MT location and prevents both active coil

lengths from overlapping the MT. This accounts for the extra stroke angle that must
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be traveled to access the ramp past the outer disk diameter without going through

the uncontrollable condition. However, increasing the coil size increases the inertia

of the actuator, reducing seek performance. Seek performance is also influenced by

the magnet surface area. The air gap magnetic flux density is inversely proportional

to the magnet surface area. Increasing the magnet surface area effectively reduces

the amount of torque generated by the actuator. Also since magnet cost is directly

related to the physical volume of material, a cost increase will result from increasing

the magnet size. In fact, depending on product sales volume, the cost increase for a

given product could be in the millions of dollars. Therefore, implementing the ramp

L/UL solution results in a significant cost increase from increased magnet volume.

Additionally, a torque reduction is realized along with an inertia increase which are

both detrimental to seek time performance. Figure 1.9 exhibits the extra magnet

required for a nominal ramp load actuator design.

Excess
magnet

Figure 1.9: Left of the red line depicts additional magnet material required specifically

to provide actuation while maneuvering on the ramp.
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One concept that has been proposed uses a conventional actuator to perform the

L/UL operation [13, 14]. The design requires the actuator coil active lengths to

travel over and through the MT which presents an uncontrollable set in the state-

space. To promote travel through the uncontrollable set, a special head loading

algorithm was developed. It was proposed that current be applied through the coil

to move the actuator in a specific direction. Current is then removed from the coil

when both active lengths cross the MT and reapplied with opposite polarity to keep

the actuator moving in the same direction (Fig. 1.10). The maneuver is performed

open-loop using a set of voltage pulses. The pulse widths and amplitudes are tuned

until a successful loading is achieved. However, because of the open-loop nature of

the system, there is no knowledge of the actual loading velocity. Distributions will

exist in the actuator physical parameters for large production volumes and it may

be difficult if not impossible to achieve a desired loading velocity using open-loop

voltage pulses. Furthermore, factors such as disk windage, temperature, and ramp

wear could cause variations in loading velocity over the life of a product. Therefore,

a closed-loop solution is necessary.

There has been much discussion in the literature about dealing with uncontrollable

sets, but most techniques promote avoidance. However, for the ramp loading design

with conventional actuator, the set is unavoidable and must be reached to complete

the control maneuver. Furthermore, an input singularity is also exhibited on the

uncontrollable set. Therefore, from an input-output perspective, the system relative

degree is not well defined. Previous research investigating system characteristics at

or near input singularities primarily propose system approximation methods. In [15],

a method is developed for reference trajectory tracking of systems through singular

points. A control law is designed based on an approximation of the true system by

neglecting higher order terms that would result in a definitive input/output map.
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Figure 1.10: Actuator after traveling through MT. Current polarity is reversed.

Bounded tracking is only guaranteed in a neighborhood of the true system singular

points because the neglected terms may become significant further away from the

singular condtion. System characteristics are defined and presented as necessary

conditions for stability of the error dynamics under the proposed control law. The

ball and beam system (BBS) exhibits an ill-defined relative degree and was used

extensively as a demonstrative platform for studying this phenomena. The work

of [15] was extended in [16] to systems with uncertain parameters. An adaptive

control law was derived to produce bounded tracking and parameter estimates. The

control law was based on the approximate model of [15] while the parameter update

law was derived from an observer based on the exact model. The authors continued

with a refined control law in [17] using exact input-output tracking away from the

singular condition and switched to the approximate law of [15] within some threshold.

The switching scheme included an exponential term to ensure a finite switching rate.

The control law required the necessary conditions of [15] in addition to a “slowly

varying” reference trajectory near singular points and stable zero dynamics. The
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BBS was used for controller evaluation. A similar switching control scheme (without

the exponential term) was introduced in [18] and extensive analysis was performed

to determined what affect the zero dynamics would have on the control performance.

Sufficient conditions were given for bounded tracking and, again, the BBS was used as

a demonstrative platform. The results in [19] show that the switching control scheme

proposed in [18] is applicable for a wider class of nonlinear systems. When the region

of the approximate linearization control law is attractive to the exact zero dynamics,

it is possible that the closed-loop system under the switching control scheme is still

stable. Approximate tracking through the input singularity requires the system to

satisfy local controllability within the region of operation. The commutational ramp

load actuator, however, possesses an uncontrollable condition that coincides with an

input singularity.

This work focuses on the design, integration, analysis, and implementation of a

disk drive actuator with a unique application to ramp loading. The design eliminates

material costs from larger magnets and coils typically inherited with ramp load de-

signs. Therefore, the shock resistance of ramp loading is retained while realizing the

cost and performance benefits of a conventional actuator. A reference model of the

system is derived along with an extensive study of the system dynamic behavior. A

sufficient condition is developed to facilitate a maneuver through an uncontrollable,

singularity along the ramp. A trajectory is generated to specifically fulfill the re-

quirement when tracked using closed-loop control. A formal procedure is developed

outlining the trajectory design method along with stable, state-feedback and output

feedback controllers designed to track the trajectory. A disk drive is fabricated with

the unique actuator to support ramp loading. Experiments are performed to verify

the overall design concept.

The research focuses on enhanced mechanical and servo controller designs for disk

drives that reduce cost and eliminate quality concerns associated with suppressing the
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effects of non-operational shocks. The contributions of this research are summarized

as follows:

• A method of magnetic bias design to meet specific rotational shock performance

requirements is discussed. Magnetic finite element analysis is employed to de-

sign a bias capable of resisting a rotational shock specified with a half-sine

acceleration amplitude and duration. The magnetic bias energy is required to

be greater than the energy produced by the shock calculated over the actuator

sweep angle. A formal derivation and computational process is given.

• Many issues exist for current methods of rotational shock resistance. A mag-

netic bias solution presents the best option from a quality and cost perspective.

However, the magnetic bias solution is not popular because of the associated

servo control issues. New controllers are developed that allow for the use of

a pure magnetic bias while maintaining seek performance. Robustness issues

are also handled with knowledge of bias distributions for a large population of

drives. The results are substantiated with experiments.

• Accurate modeling of the magnetic bias requires an increase in model complex-

ity. An increase in memory or processor capability is required to perform the

calculations necessary for the control law computation. It is suggested, how-

ever, that a sample rate increase could recover some of the performance lost by

reducing modeling accuracy. Therefore, a feasible solution would still be avail-

able for applications that are memory or processor limited. A comparative study

was conducted to determine performance trade-offs between modeling accuracy

of the magnetic bias and available sample rate resulting from computational

requirements. Experimental results form the basis of the conclusions.

• Much work has been done on detection and avoidance of uncontrollable sets in a

system state space. Since the ramp load problem does not allow for avoidance,
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the system must pass through the uncontrollable set. A sufficient condition is

derived that guarantees maneuvering through an uncontrollable, singular mani-

fold. A trajectory generation methodology, based on the sufficient condition, is

presented that allows for successful passage through the system uncontrollable,

singularity.

• Ramp loading is a common method of preventing damage resulting from non-

operational linear shocks. However, a cost increase and performance reduction

is realized using existing ramp loading techniques. A new mechanical design and

closed-loop control scheme is developed to realize the shock benefits of ramp

loading while preserving the enhanced seek performance and cost reduction

benefits of a conventional, non-ramp load actuator.

Chapter 2 details a mechanical design solution for rotary shock performance.

The actuator with magnetic bias is designed corresponding to associated design con-

straints. A dynamic model of the actuator is developed to include the nonlinearity

due to the arm bias. Two control strategies are proposed in Chapter 3 and compar-

ative experimental results are discussed. The ramp load design solution is presented

in Chapter 4 and a unique disk drive is fabricated to support commutational ramp

loading corresponding to the proposed design. Measurements are taken of the actua-

tor physical parameters to verify the design. Dynamic analysis of the commutational

ramp load actuator system behavior is given in Chapter 5 where a sufficient condition

for moving through uncontrollable, singular points is presented. Chapter 6 details a

trajectory generation strategy that maneuvers the actuator through the uncontrol-

lable region when tracked using closed loop control. Stable, state-feedback and output

feedback controllers are designed to track the proposed trajectory. Experiments are

conducted to verify and validate the overall commutational ramp load concept. A

final summary and description of future work is given in Chapter 7.
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CHAPTER 2

ACTUATOR DESIGN WITH NONLINEAR MAGNETIC BIAS

From a product quality and cost reduction perspective, a pure magnetic bias design

is advantageous for suppressing the effects of non-operational, rotary shocks in disk

drives. However, a pure magnetic bias is rarely used because it is nonlinear and

reduces seek controller performance. This chapter discusses the requirements and

methods for design of a disk drive actuator a with pure magnetic bias. The design

constraints are addressed in Section 2.1 where special consideration is given to form

factor geometry, magnetic flux leakage, and rotational shock performance. The actu-

ator and magnetic bias design are developed in Section 2.2. A dynamic model of the

actuator that includes the nonlinearity due to the arm bias is given in Section 2.3. A

summary of conclusions is given in Section 2.4. The control problem will be addressed

in Chapter 3.

2.1 Design Constraints

Before beginning the actuator design, certain performance requirements must be de-

fined. The move-time is defined as the time required by the actuator to move the

arm from an initial location on the disk to the neighborhood of a desired destina-

tion. The third-stroke move-time is the time required to move one-third of the total

available sweep angle. The settle time is defined as the time required by the actuator

to converge on the desired destination within the neighborhood. The seek time is

the sum of the move and settle-time. An obvious approach to improving move-time

would be to increase the available power. However, customer constraints and industry
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Table 2.1: Actuator performance requirements

Parameter Spec

Max move-time 10 msec

Move power 6.5 W

Max PCB Flux leakage 100 Gauss

Coil mass 3.2 grams

Rotary shock amplitude 40 krad/s2

Rotary shock pulse width 2 msec

Voltage Saturation limit 11 V

standards limit the amount of overall power a given disk drive can consume and move

power factors into that limitation. Mounted below the actuator is a printed circuit

board (PCB) that contains the disk drive electronics. In order to reduce the effects

of electromagnetic interference and prevent small ferrous particles from adhering to

the PCB, a maximum actuator flux leakage specification is required at the PCB sur-

face. As previously mentioned, operating and non-operating shock disturbances can

be detrimental and even fatal to disk drive performance. Robustness to operational

shock and vibration are achieved by minimizing the arm imbalance. A constraint on

the voice-coil mass is necessary to meet the imbalance requirements. In the case of

a non-operational rotational shock, a maximum limit is specified that the latching

mechanism is guaranteed to meet. The performance requirements being considered

for this particular disk drive application are given in Table 2.1. Industry standards

limit the size or form-factor of a disk drive and therefore the size of the actuator.

This limitation restricts the height and profile of the magnetic circuit. The actuator

is typically mounted in one corner of the drive shell and allowed to extend out to

the arm pivot location. The PCB, base mounting shell, cover, and magnetic circuit

thickness must all sum to less than the form-factor height. The voice-coil profile is
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Figure 2.1: Lumped actuator profile showing bottom half with coil

limited by the sweep angle or total stroke of the actuator. The geometric constraints

imposed on the actuator profile, height, and sweep angle were 1246 mm2, 1575 mm,

and 32◦, respectively.

2.2 Design Methods

The following section describes the voice-coil motor design procedure. A lumped

parameter model for the coil and magnetic circuit is developed. The design is further

refined in Section 2.2.2 using finite-element modeling and compared to the lumped

design. In Section 2.2.3 a magnetic bias is designed to restore the actuator arm back

to the nominal shipping location after the impact of a rotational shock.

2.2.1 Lumped Parameter Design

To quickly get a reasonable estimate of the performance, a lumped parameter model

was established and analyzed. An initial profile for the actuator components was

developed based on the geometric profile constraints and shown in Figure 2.1. Given

the coil profile constraints, a trapezoidal shape was assumed having an average mean
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Figure 2.2: Lumped parameter coil profile

turn length of 200.2 mm. The average mean turn (AMT) length is noted as the dotted

line in Figure 2.2 and the bobbin is the trapezoidal interior that the coil wire is wound

around. In order to balance the arm, a coil mass of 3.2 grams was required and pure

copper was selected as the material for the conductor. Iteration on the diameter and

length was performed until the mass and profile targets were met. A diameter of

0.183 mm was selected to give a total wire length of 10 m. The resistance, R, of the

wire was calculated using

R = ρ
lw
Aw

(2.1)

where ρ is the resistivity of copper and lw and Aw are the length and cross-sectional

area of the wire, respectively. The inductance, L, is a function of the geometry of the

coil and the number of turns according to [20]

L =
N2µoAb

tc
(2.2)

where N is the number of turns, µo = 4π × 10−7 is the permeability of air, Ab

is the trapezoidal area of the bobbin, and tc is the coil axial thickness. Table 2.2

lists the results from the coil lumped parameter design. The coil design coupled
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Table 2.2: Coil design parameters

Parameter Spec

Wire diam. (dw) 0.183 mm

Mean turn (lc) 200.2 mm

Bobbin area (Ab) 131.7 mm2

Thickness (tc) 3.05 mm

Turns (N) 223

Resistance (R) 8.7 Ω

Inductance (L) 2.7 mH

Mass (mc) 3.2 grams

with the actuator arm resulted in a motor inertia of 47.31 g · cm2. A standard,

lumped parameter method [21] was used for the magnetic circuit design based on

the geometric constraints. The general configuration for the magnetic circuit of the

actuator is a tandem C-core as shown in Figure 2.3. The overall height and profile of

the motor is designed to maximize the available space. The magnet and steel thickness

are optimized to magnetically saturate the steel without exceeding the flux leakage

specification. Each magnet is polarized using the configuration shown in Figure 2.3

where N and S represent a north and south pole, respectively. A lumped estimate

of the circuit performance can be calculated using a simplified version of Maxwell’s

equations [22]. The total magnetic flux, Φ, flowing through the circuit is constant

and can be represented by

Φ = BmAm = BgAg = BsAs (2.3)

where Bm, Bg, and Bs are the flux densities of the magnet, air gap, and steel, re-

spectively and Am, Ag, and As are the corresponding cross-sectional areas. The
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Figure 2.3: General tandem C-core actuator configuration

magnetizing force around the C-core loop yields the current spanning that loop

i = Hmtm +Hgtg +Hsls (2.4)

where i is the loop current and Hm, Hg, and Hs are the magnetizing force of the

magnet, air gap, and steel, respectively. The variables tm and tg are the magnet

thickness and air gap thickness, respectively. The steel length, ls, is the median

distance the flux travels through the steel. Because permanent magnets in air do

not generate current and the steel is assumed to have infinite permeability (Hs = 0),

Equation (2.4) reduces to

Hmtm +Hgtg = 0. (2.5)

Ampere’s law defines the relationship of magnetic properties in the air gap as

Bg = µoHg (2.6)

From Figure 2.3, Wm and Lm are the geometric width and length of a whole magnet,

respectively. Noting that Am = Ag = 0.5WmLm for the C-core circuit and combin-

ing equations (2.3), (2.5), and (2.6), a relationship is provided between the magnet
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Table 2.3: Lumped parameter magnetic circuit design

Parameter Spec

Overall height 15.75 mm

Steel transition length 22.66 mm

Steel thickness 3.02 mm

Magnet thickness 2.89 mm

Magnet area 216.7 mm2

Air gap thickness 3.91 mm

Steel saturation 1.7 Tesla

Air gap flux density 0.806 Tesla

parameters Bm and Hm as a function of only the magnet and air gap thickness,

Bm

µoHm

= −2tm
tg
. (2.7)

Therefore the operating point of the magnetic circuit can be determined using equa-

tion (2.6) and the demagnetization characteristics of a high energy magnetic material

selected to fulfill the design requirements. The air gap thickness, tg, is fixed by the

coil thickness and a clearance of 0.43 mm on each side of the coil for a total air gap

thickness of tg = 3.91 mm. The design was optimized by iterating for tm and ts

using equations (2.3), (2.7), and the demagnetization characteristics until a desired

steel saturation level of 1.7 Tesla was achieved. The optimized values of tm and ts

were determined to be 2.89 mm and 3.02 mm, respectively for a gap flux density of

0.806 Tesla. The magnetic circuit parameters are summarized in Table 2.3. Using the

coil design information along with the magnetic circuit parameters, the motor torque

factor, Kt, can be calculated as

Kt = 2NBgla (2.8)
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Figure 2.4: Distributed actuator geometry showing bottom half with coil

where la is the distance from the arm pivot to the midpoint of the coil active length.

The active length of the coil is defined as the portion of the coil inside the air gap.

Based on the computed coil and magnetic circuit parameters, the torque factor was

determined to be Kt = 87 N-mm/amp.

2.2.2 Distributed Parameter Design

The lumped parameter design in the previous section provided a satisfactory initial

design. However, assumptions made in the lumped design typically result in overesti-

mates of the performance parameters once the design is manufactured. It was desired

to more accurately predict the performance of the actuator and further refine the

system by simulating with finite-element modeling (FEM). A solid model was defined

(Fig. 2.4) representing all of the internal drive geometric constraints and an initial

finite-element mesh was generated using the geometric design parameters described

in the previous section as a starting point.

The coil thickness remained 3.05 mm, but the profile was contoured as in Fig-

ure 2.4. The FEM estimate of the coil inductance was 1.15 mH which is lower than

that estimated from the lumped design. The finite-element coil geometry is shown
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Figure 2.5: FEM coil geometry

Figure 2.6: Magnetic circuit leakage at PCB (FEM results)

in Figure 2.5. The PCB is approximately 4.27 mm below the bottom steel plate of

the actuator. It was desired to keep the leakage flux density below 50 Gauss at the

PCB meeting the requirement given in Table 2.1. Beginning with the lumped param-

eter values, the steel and magnet thicknesses were slightly varied until this value was

reached. Steel and magnet thickness of 2.92 mm and 3.0 mm, respectively resulted in

a flux leakage limit of approximately 47 Gauss at the PCB (Fig 2.6). The maximum

air gap flux density from FEM was 0.78 Tesla (Fig 2.7) which is 3.7% lower than

predicted from the lumped parameter model. The peak torque factor was computed

to be 14% lower than the lumped estimate. The results are summarized in Table 2.4.
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Figure 2.7: Magnetic circuit air gap flux density (FEM results)

Table 2.4: Dynamic model parameter comparison

Parameter Lumped Distributed

Torque factor (Kt) 87 N-mm/amp 75 N-mm/amp

Inertia (J) 47.31 g-cm2 47.31 g-cm2

Coil resistance (R) 8.7 Ω 8.7 Ω

Coil inductance (L) 2.6 mH 1.15 mH

Voltage limit (Vmax) 11 Volts 11 Volts

Move angle (θf ) 10.6◦ 10.6◦
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Figure 2.8: Torque factor profile

Variation of the flux density at the air gap edges causes nonlinearity in the torque

factor at the sweep angle extremes. The torque factor computed throughout the

sweep angle is shown in Figure 2.8. The value of the torque factor at the sweep angle

extremes is 7.3% lower than the center.

2.2.3 Magnetic Bias Design

It was necessary to design a bias force across the sweep angle to restore the arm back

to the nominal shipping location after the impact of a rotational shock. The angular

acceleration of the shock, αs, is specified as a half-sine pulse [23, 24]

αs(t) = Ap sin
(π

τ
t
)

(2.9)

where Ap is the maximum shock amplitude and τ is the shock pulse width. Integration

of (2.9) with respect to time using αs(0) = ωs(0) = 0 gives the angular velocity

ωs(t) =
τAp
π

[

1 − cos
(π

τ
t
)]

. (2.10)
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The torque on the arm resulting from the shock can be described by

Ts(t) = Jαs(t) = JAp sin
(π

τ
t
)

(2.11)

and the total energy, Es, of the shock is the time integral of the shock power,

Ps = Tsωs, over the pulse width. After integrating and simplifying,

Es(t) =

∫ τ

0

Ts(t)ωs(t)dt =
2J(Apτ)

2

π2
. (2.12)

The energy of a bias torque, Eb, can be computed from

Eb =

∫ θT

0

ψ(θ)dθ (2.13)

where ψ(θ) is the bias torque as a function of the arm sweep angle, θT . The strategy

is to design a bias torque that applies an energy equivalent to that of the shock

(Eb = Es) and bring the arm to rest after traveling a desired angular displacement.

Using equations (2.10) through (2.12) and the shock specifications, the shock energy

was determined to be 6.13 mJ. Therefore, if a constant bias is chosen to bring the

arm to rest within the total sweep angle, the magnitude of the bias torque required

is

ψ =
Es
θT

= 11 N-mm. (2.14)

Ideally, a constant and passive bias torque would be most desirable for controller

design. A passive bias can be obtained by pressing a steel pin into the actuator arm,

partially protruding into the air gap of the magnetic circuit as shown in Figure 2.9.

A force is generated proportional to the flux density gradient in the steel feature at

the corresponding location. Shaping of the torque profile can be achieved by chang-

ing the location and size of the steel member. Depending on the shock specification,

the magnetic bias may be required to provide a considerable torque relative to the

available torque produced by the actuator. The data flex circuit is typically opti-

mized to minimize bias within the given geometric constraints of the disk drive form
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Figure 2.9: Bias feature design on actuator arm

factor. It was shown in [25] that the primary degrees of freedom for optimization

of flex circuit design are layer thickness, free length, and slope location of the flex

attachment points. Those three parameters can be selected to provide a desired bias

characteristic within the constraints. The energy of the torque profile throughout

the sweep angle was calculated from (2.13) and desired to be larger than the shock

energy computed from (2.12). The resulting bias contribution from flex circuit and

magnetic sources is nonlinear and a combined torque profile can be represented as an

n-th order polynomial of the form

ψ(θ) =
n∑

k=0

ckθ
k (2.15)

where θ is the angular position and ck is the k-th order coeffiecient.

An actuator was manufactured to meet the modeled performance requirements

designed in Section 2.2. The following values of 48.26 g-cm2, 71.5 N-mm/amp, 8.82 Ω,

and 1.11 mH were measured for the inertia, torque factor, resistance, and inductance,

respectively. The bias torque was also measured and is shown as a function of actuator

sweep angle in Figure 2.10. A fixture was designed that allowed a torque sensor to
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Figure 2.10: Measured magnetic bias torque

be attached directly to the actuator pivot. Beginning with the actuator arm parked

at the inner radius of the disks, the bias torque was measured across the entire sweep

angle of approximately θT = 32◦. The final bias concept is shown in Figure 2.11.

2.3 Dynamic Model

Noting that the magnetic bias opposes the arm torque when positive current is ap-

plied, the mechanical dynamics of the actuator can be represented as

Jθ̈ = Kt i− ψ(θ) (2.16)

where θ is the angular position, J is the arm inertia, and Kt is the torque factor as

defined in the previous section. The electrical circuit dynamics of the actuator are

described by

Vs = R i+ L
di

dt
+ Vb (2.17)

where Vb = Ktθ̇ is the back electro-motive force, R and L are as defined in Section 2.2,

and Vs is the supply voltage control signal. Choosing the states as x1 = θ, x2 = θ̇,
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Figure 2.11: Experimental drive magnetic bias concept

x3 = i, and denoting the control input as u = Vs, the system can be represented in

state-space form as

ẋ = Ax+Bu− Bψψ(x1), (2.18)

A =









0 1 0

0 0 Kt

J

0 −Kt

L
−R
L









, B =









0

0
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, Bψ =









0

1
J

0









.

It is noted that the matrix Bψ, of the bias nonlinearity, is not in the range space of

the input matrix, B. Therefore, the system does not satisfy the matching condition.

2.4 Summary

A voice-coil motor actuator for a disk drive was designed to meet specific move-time

performance requirements. An initial lumped parameter design was evaluated and fol-

lowed by a more accurate distributed parameter solution using finite-element analysis.
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A comparison revealed the lumped representation to be an ambitious estimate of the

distributed design. A non-contact, magnetic bias latching mechanism was designed

to fulfill the non-operational, rotary shock requirements. It was determined that the

combined flex circuit and magnetic bias torque profile was nonlinear throughout the

actuator sweep angle. An actuator was manufactured to meet the desired design

requirements and measurements were taken of the motor physical parameters. A

third-order dynamic model was developed for the actuator which included the bias

force nonlinearity.
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CHAPTER 3

SEEK CONTROL WITH NONLINEAR BIAS EFFECTS

The magnetic bias designed to resist non-operational shock affects seek control dur-

ing the drive operational state. Thus, it is necessary to design a feedback controller

that can compensate for the bias. It is also desired that the actuator be capable of

tracking a predetermined trajectory generated from a reference model. This chapter

investigates multiple control solutions designed to fulfill the tracking task. With the

availability of full-state feedback, an adaptive controller is developed that handles the

effects of uncertainty in the bias torque. Because full-state feedback is not available

in production disk drives, an output feedback controller was also developed using

only current measurement. In this case, it is assumed the bias is represented by a

known polynomial model which possesses a locally Lipschitz property. Simulations

and experiments are conducted to verify performance of both controllers. The first

section describes the technique used to generate the model-reference trajectories. Sec-

tion 3.2 discusses a linear state-feedback control design and issues associated with

nonlinear bias influence while tracking. The adaptive controller is described in Sec-

tion 3.3 and 3.4 along with experimental results and a performance trade-off study.

The chapter concludes with an output feedback design to address the lack of state

measurement in production disk drives.
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3.1 Trajectory Generation

To minimize vibration, acoustic energy, and power, it was desired that the reference

model produce a smooth trajectory for the controller to track. This was achieved

by modeling the trajectory as a high-order polynomial with appropriate boundary

conditions [26]. Using the boundary conditions

θ(0) = θ̇(0) = θ̈(0) =
...
θ (0) = 0

θ̇(tf) = θ̈(tf) =
...
θ (tf ) = 0

θ(tf ) = θf

(3.1)

the coefficients, βk, of a unique seventh-order polynomial

θr(t) =
7∑

k=0

βkt
k (3.2)

were determined (k = 0, 1, . . . 7). A trajectory was then defined for θ̇r, θ̈r, and
...
θ r.

The reference trajectory for current was computed from

ir(t) =
J

Kt

θ̈r(t) (3.3)

and the reference voltage from

Vr(t) =
LJ

Kt

...
θ r(t) +Rir(t) +Ktθ̇r(t). (3.4)

Injecting the reference waveform (3.4) into the corresponding reference model

ẋr = Axr +BVr (3.5)

produces the state reference trajectory. A reference trajectory was generated based on

(2.18) with the measured physical parameters of Section 2.2.3. It was determined that

the fastest third-stroke, state-reference trajectory the system could produce while re-

maining below the 11 volt saturation level was 9.2 msec. The final reference trajectory

move-time will be the target for the subsequent analysis.
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3.2 Linear State-Feedback Control Design

The error between the reference trajectory designed in the previous section and the

actual state trajectory is defined as e(t) = x(t) − xr(t). By choosing the control law

u(t) = −Ke(t) + Vr, (3.6)

the error dynamics can be written by subtracting (3.5) from (2.18) as

ė = ẋ− ẋr = (A− BK)e−Bψψ(x1) (3.7)

It is desired to select the gain vector, K, so that the actual system states track the

reference state trajectories, thereby forcing the error dynamics to zero. Choosing a

Lyapunov function candidate

V (e) = e>Pe (3.8)

where P is a symmetric, positive-definite matrix and taking the derivative of V along

the trajectories of (3.7) gives

V̇ (e) = e>(PAc + A>
c P )e− 2e>PBψψ(x1)

≤ −λmin(Q)‖e‖2 + 2‖e‖‖P‖‖Bψψ(x1)‖

where P is the solution of the linear time-invariant Lyapunov equation

PAc + A>
c P = −Q

with Ac = A−BK and λmin(Q) is the minimum eigenvalue of Q. Therefore, tracking

error convergence is only guaranteed if

‖e‖ > 2λmax(P )

λmin(Q)
‖BψΨ(x1)‖

To enlarge the domain of attraction, a stable model-reference adaptive controller is

developed in the following section.
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3.3 Adaptive Controller Design

One method of compensating for the magnetic bias uncertainty during a seek op-

eration is through implementation of an adaptive controller. The goal is to design

an adaptive controller that will estimate the uncertain coefficients of the nonlinear

bias in the dynamic model and result in tracking error convergence. To simplify the

derivation, the motor physical parameters are defined as

µ0 =
Kt

J
, µ1 =

1

J
, µ2 =

Kt

L
, µ3 =

R

L
. (3.9)

Further, the nonlinear bias term ψ(x1) can be defined in the vector form as

ψ(x1) = wT c (3.10)

where w> = [xn1 , x
n−1
1 , xn−2

1 , · · · , 1] and c> = [cn, cn−1, cn−2, · · · , c0]. Choosing the

control law as

u = L(ẋ3r + µ2x2r + µ3x3r + uf), (3.11)

the error dynamics using (2.18) are given by

ė1 = e2

ė2 = µ0e3 − µ1w
T c (3.12)

ė3 = −µ2e2 − µ3e3 + uf

The signal, uf , is an auxiliary control signal to be determined later. Two variables,

s1 and s2 are defined in terms of the tracking error as

s1 = e2 + λe1, (3.13)

s2 = µ0e3 − µ1w
T ĉ+ α1e1 + α2e2 (3.14)

where ĉ is the estimate of the parameter vector c, and α1, α2 are positive gains. The

choice of s1 was developed so that driving s1 → 0 results in an invariant manifold
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such that e1, e2 → 0. The selection of s2 is motivated by the fact that bias is not

included in the reference model. Therefore, e3 should take on some value that is

proportional to the current required to offset the effects of magnetic bias. Hence,

s2 → 0 =⇒ µ0e3 → µ1w
T ĉ in order to compensate for bias. The dynamics of s1 and

s2 can be determined using (3.12) as

ṡ1 = −α1e1 − (α2 − λ)e2 + µ1w
T c̃+ s2, (3.15)

ṡ2 = −µ0(µ2e2 + µ3e3 − α2e3 − uf) + α1e2

− µ1(x2v
T ĉ+ wT ˙̂c+ α2w

T c) (3.16)

where vT = [nxn−1
1 , (n− 1)xn−2

1 , · · · , 0] and c̃ = ĉ− c. If the auxiliary control signal,

uf , is chosen to be

uf = µ2e2 + µ3e3 − α2e3 −
α1e2 + α3s2 + s1

µ0
+
α2µ1w

T ĉ+ µ1x2v
T ĉ+ µ1w

T ˙̂c

µ0
(3.17)

the dynamics of s2 become

ṡ2 = −α3s2 − s1 + µ1α2w
T c̃ (3.18)

A Lyapunov function candidate is chosen as

V (s1, s2, c̃) =
1

2
(s2

1 + s2
2 + c̃>Γc̃) (3.19)

where Γ is a symmetric positive definite gain matrix. Differentiating V along the

trajectories of (3.15) and (3.18), and simplifying, gives

V̇ = s1ṡ1 + s2ṡ2 + ˙̃c>Γc̃

= −(α2 − λ)s2
1 − α3s

2
2 − (α1 − α2λ+ λ2)e1s1

+µ1s1w
T c̃+ α2µ1s2w

T c̃+ ˙̃c>Γc̃. (3.20)

As previously mentioned, bounds on the bias torque profile are known for a given drive

population. This translates to bounds on the bias polynomial coefficients. With this

knowledge, consider the function

P(ĉ) = ĉ>ĉ− c>u cu (3.21)
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where cu is the known vector of coefficients that constitute the bias polynomial upper

bound. A gradient projection algorithm [27] can be used to keep ĉ within the convex

set S where

S := {ĉ ∈ R
n | P(ĉ) ≤ 0} (3.22)

Now, consider the “smooth projection operator”, Proj(·), which will be used to esti-

mate ĉ while maintaining (3.22). Let ˙̂c = Proj(ĉ, y) where

Proj(ĉ, y) =







y, if P(ĉ) < 0.

y, if P(ĉ) = 0 and ∇>
P y ≤ 0.

y − Γ
∇>

P∇P

∇>
PΓ∇P

y, otherwise,

(3.23)

y = −µ1(s1 + α2s2)w
>Γ−1, and ∇P =

[
∂P
∂ĉ

]>

Using the projection algorithm (3.23) along with the control law (3.11) and (3.17)

results in

V̇ = −(α2 − λ)s2
1 − α3s

2
2 − (α1 − α2λ+ λ2)e1s1. (3.24)

If the gains are chosen such that

α2 > λ, α1 − α2λ+ λ2 = 0, and α3 > 0, (3.25)

then

V̇ = −(α2 − λ)s2
1 − α3s

2
2 ≤ 0. (3.26)

So s1 ∈ L2 ∩ L∞, s2 ∈ L2 ∩ L∞, and c̃ ∈ L∞. Further, ṡ1 ∈ L∞ and ṡ2 ∈ L∞. Using

Barbalat’s lemma [28], s1 → 0 and s2 → 0. Since s1 = e2 + λe1, e1 → 0 and e2 → 0.

Also, s2 → 0 =⇒ µ0e3 → µ1w
T ĉ. Expressing the control law in terms of the tracking

error results in the following theorem:
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Theorem 3.1 For the actuator dynamics with nonlinear magnetic bias (2.18), con-

sider the following control law and adaptation law

u = L[ẋ3r + µ2x2r + µ3x3r +
(
ρ11 + ρ12w

TΓ−1w
)
e1

+
(
ρ21 + ρ22w

TΓ−1w
)
e2 +

(
ρ31 + ρ32w

TΓ−1w
)
e3 (3.27)

+ ρc1x2v
T ĉ+ ρc2w

>ĉ+ ρc3w
TΓ−1wwT ĉ]

˙̂c = Proj(ĉ, y) (3.28)

where

y = µ2
1αΓ−1ww>ĉ+ (σ1e1 + σ2e2 + σ3e3)Γ

−1w, (3.29)

ρ11 = − (λ+α1α3)
µ0

, ρ12 = µ1σ1

µ0
,

ρ21 = µ2µ0−α1−α2α3−1
µ0

, ρ22 = µ1σ2

µ0
,

ρ31 = µ3 − α2 − α3, ρ32 = µ1σ3

µ0
,

ρc1 = µ1

µ0
, ρc2 = µ1(α2+α3)

µ0
, ρc3 =

µ3
1
α2

µ0
,

σ1 = −µ1(λ+ α1α2), σ2 = −µ1(1 + α2
2), σ3 = −µ0µ1α2.

If the gains α1, α2 and λ are chosen such that α2 > λ, α1−α2λ+λ2 = 0, and α3 > 0,

then all the signals, e1, e2, e3, ĉ, are bounded, and e1 and e2 asymptotically converge

to zero.
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Figure 3.1: Bias torque boundary with tolerance variation

3.3.1 Simulation Results

Simulations were conducted for the control designs developed in the previous sections.

All tracking trajectories were designed for a third-stroke move as outlined in the

performance requirements. The sweep angle was partitioned into three sectors, Sk,

each comprising one-third of the overall stroke, θT , where

Sk :=

{

θ ∈ R | (k − 1)θT
3

≤ θ ≤ k θT
3

}

, k = 1 . . . 3 (3.30)

where 0 rad corresponds to the disk inner radius. The sectors are illustrated in

Figure 3.1. The magnetic force dominates the bias to about 0.3 rad (17.2◦). When

the actuator rotates to the outer radius, influence from the magnetic field is lost as the

bias feature exits the air gap and flex circuit compression torque becomes dominant.

Because the largest bias influence and variation exists in S2, the following discussion

is based on results from that sector. Figure 3.1 also shows the bounds on the magnetic
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bias computed through tolerance analysis of the magnetic design. The bias was fit to

a nominal fifth-order polynomial with coefficients

c5 = 0.4518, c4 = −0.8749, c3 = 0.6232, c2 = −0.1883, c1 = 0.0186, c0 = 0.0098.

The geometric tolerance analysis bounds were determined by a ±7% envelope about

the nominal polynomial fit. The state-feedback gain vector, K, was selected so that

the poles of Ac = A− BK were at least five times faster than the third-stroke move

time target. The desired final time, tf = 9.2 msec ≈ 680 rad/s, suggests that the

closed loop poles be located at −3500 rad/s resulting in

K = [3110, 2.59, 3.37] (3.31)

The control was chosen as in (3.6) and simulations were performed for a third-stroke

move in S2. When tracking the 9.2 msec target moving outward, the controller satu-

rates. However, saturation is not exhibited when moving inward, and a control effort

margin exists. The results suggest that better performance might be attainable, on

average without saturation, by considering the directional dependence in the reference

trajectory design. It was determined that the fastest outward trajectory the system

could track without saturation was 10.7 msec (Fig. 3.2). Therefore, in order to meet

the 9.2 msec average target, the system would be required to track an inward, 7.7

msec trajectory move. The simulation results show that the system was capable of

tracking 8.95 msec inward without saturation (Fig. 3.3). The inward/outward move-

time results in an average of 9.82 msec which exceeds the linear model target, but

remains below the 10 msec specifications.
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Figure 3.2: State feedback simulated outward move performance optimized for satu-

ration in S2; actual (solid), reference (dashed).
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Figure 3.3: State feedback simulated inward move performance optimized for satura-

tion in S2; actual (solid), reference (dashed).
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For the adaptive controller (3.27), the gains, αk, were selected so that the error

dynamics be five times the speed of the predicted third-stroke move. For the purpose

of simulation, the nominal modeled bias was used and the estimated bias initial

conditions were set to the minimum bias curve, ψmin, of Figure 3.1. The trajectory

tracking coefficients were chosen such that λ = wn, α2 = 2wn, and α3 = wn where

wn = 3500. Equation (3.25) results in α1 = w2
n, and the parameter gain matrix, Γ,

was determined iteratively as

Γ = diag{2.5×10−22, 10−20, 2×10−16, 2.5×10−14, 10−12, 3.3×10−9, 2×10−7} (3.32)

Similar to the state-feedback case, the move-time performance was direction depen-

dent. Therefore, the directional optimization used in the linear state-feedback con-

troller case was also implemented here. The adaptive design was capable of tracking

the optimal state-feedback trajectory with less control effort. More aggressive refer-

ence trajectories were generated and the controller was re-optimized. The tracking

results for an inward and outward maneuver are shown in Figures 3.4 and 3.5, respec-

tively. The performance combined for an average move-time of 9.5 msec which was

0.3 msec faster than state-feedback control. Also, the higher performance move was

achieved with less overall error and comparable power consumption to that of state-

feedback. The bias coefficient dynamics as a ratio of the estimate to the true value

are shown in Figure 3.6 and 3.7 for an inward and outward maneuver, respectively.

The adaptation gains are markedly large and no relevant adaptation is noticed in the

higher-order bias polynomial coefficients indicating the higher-order terms could be

neglected. Table 3.1 summarizes the simulated controller performance.
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Figure 3.4: Adaptive control simulated inward move performance in S2. Bias coeffi-

cients initially 7% lower than nominal; actual (solid), reference (dashed).
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Figure 3.5: Adaptive control simulated outward move performance in S2. Bias coef-

ficients initially 7% lower than nominal; actual (solid), reference (dashed).
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Bias coefficients initially 7% lower than nominal; actual (solid), reference (dashed).
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Table 3.1: Simulated controller performance summary

Parameter State Feedback Adaptive

Outward Inward Outward Inward

Move-time (msec) 10.7 8.95 10.4 8.6

Max Voltage (V) 10.935 10.935 10.92 10.99

Mean power (W) 6.2 3.8 6.07 4.02

Pos. error norm 0.059 0.057 4.15e-4 9.81e-4

Final pos. error (10−6rad) -81.7 -1780 -1.62 -5.20

3.3.2 Experimental Results

Figure 3.8 depicts the experimental setup which consisted of a disk drive containing

the designed actuator and a laser doppler vibrometer (LDV) to provide position and

velocity feedback. The laser was targeted on the side of the actuator arm approxi-

mately 23.24 mm from the pivot (Fig 3.9). Because the disks are highly reflective,

removing them was necessary to minimize the laser scatter and maintain a satisfac-

tory measurement signal. Also, the reflectivity range of the laser only allowed for a 5◦

move capability. Current feedback was achieved by measuring the voltage drop across

a 0.2 Ω sense resistor. A proportional-integral controller was implemented to move

and regulate the actuator 2◦ off the nominal shipping position. Experiments were

conducted for the control designs developed in the previous sections. All tracking

trajectories were designed for a 5◦, 10 msec move. The control was chosen as in (3.6)

and iterative tuning of the state-feedback gain vector resulted in K = [150, 1, 0.5].

The control loop was executed at 20 kHz which is over 50 times the speed of the

closed loop poles ensuring that the dynamics of the zero-order hold could be ne-

glected. Data was collected for multiple groups of 100 seeks to ensure repeatability.
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Figure 3.10: State feedback performance (10 seek sample)

Figure 3.10 shows the control and error performance of a representative sample of

10 seeks. For the adaptive control of (3.27) without projection (∇>
P = 0), the initial

conditions of the bias coefficient estimate were set at the lower bound (-7%). As in

the state-feedback case the sample rate was set at 20 kHz and tuning showed the

best trajectory tracking coefficients to be such that λ = wn, α2 = 2wn, and α3 = wn

where wn = 400π. Equation (3.25) results in α1 = w2
n. The adaptation gain matrix

was determined iteratively as

Γ = diag{10−7, 10−9, 10−12, 10−13, 10−14, 10−15}. (3.33)

It is noted that the gains are considerably larger compared to those used in simulation

resulting from the magnetic bias estimated as a function of radian angle rather than

degrees. Tracking error performance for a 10 seek sample is shown in Figure 3.11

along with the estimated bias coefficients in Figure 3.12. The position tracking error

was significantly less than the state feedback case with comparable power consump-

tion. It was noted that the coefficients would occasionally drift outside the expected
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Figure 3.11: Adaptive controller performance (10 seek sample)

boundary limits during a given test run. To ensure that the coefficients remained

close to the bounding limits, the gradient projection algorithm of (3.23) was imple-

mented and included in the comparison. The results of the adaptive controller with

projection are shown in Figure 3.13. Adaptive control with projection performance

remained superior to the state-feedback case, but slightly worse than without projec-

tion. Adaptive control with projection gave a 12.4% and 1.6% increase in tracking

error norm for position and velocity, respectively, when compared to adaptation with-

out projection. The algorithm did effectively contain the coefficient trajectories as

shown in Figure 3.14. Projection seemed to have the most influence on the higher

order coefficients and was invoked 1262 times in a 2000 point, 10 seek sample run.

The comparison results are summarized in Table 3.2.
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Figure 3.12: Estimated coefficient dynamics
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Figure 3.13: Adaptive controller performance with projection (10 seek sample)
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Figure 3.14: Estimated coefficient dynamics with projection

Table 3.2: Controller experimental performance summary

Parameter State Feedback Adaptive Adaptive w/Proj

Pos. error L2 norm 0.0661 0.0161 0.0181

Vel. error L2 norm 14.45 11.94 12.13

Max Voltage (V) 5.078 5.534 5.292

Mean power (mW) 793 825 819
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Table 3.3: Magnetic bias polynomial coefficients

Order c5 c4 c3 c2 c1 c0

3 - - 0.0294 -0.0191 0.0002 0.0014

4 - -0.2145 0.2802 -0.1133 0.0124 0.0011

5 0.4518 -0.8749 0.6232 -0.1883 0.0186 0.0098

3.4 Modeling Accuracy and Sample Rate Effects

Accurate modeling of the magnetic bias results in increased model complexity. An

increase in memory or processor capability might be required to perform the calcu-

lations necessary for the adaptive control law computation. It is suggested, however,

that a sample rate increase could recover some of the performance lost by reducing

the modeling accuracy. Therefore, a feasible solution would still be available for ap-

plications that are memory or processor limited. A comparative study was conducted

to determine performance trade-offs between modeling accuracy of the magnetic bias

and available sample rate resulting from computational requirements.

The bias was fit to polynomials of order three, four, and five. Performance com-

parisons were made using different estimates of the nonlinear bias function. Reducing

the order of the polynomial estimate lowers the accuracy of the model and could in-

crease the tracking error. However, the computation required for the control law is

also reduced and, therefore, allows a sample rate increase and potentially improved

tracking performance. The coefficients are given in Table 3.3. The control was chosen

as (3.11) without projection and the initial conditions of the bias coefficient estimate

were set at the lower bound (-7%). The sample rates were set at 30, 25, and 20 kHz

for the bias estimate polynomials of 3, 4, and 5, respectively. Tuning showed the best
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Table 3.4: Magnetic bias controller adaptation gains

Order γ5 γ4 γ3 γ2 γ1 γ0

3 - - 9.0e-11 8.0e-13 3.0e-13 3.0e-15

4 - 4.0e-9 8.0e-11 4.0e-13 9.0e-14 1.0e-15

5 1.0e-7 4.0e-9 1.0e-12 1.0e-13 1.0e-14 1.0e-15

trajectory tracking coefficients to be such that wn = 400π and

λ = wn, α1 = w2
n, α2 = 2wn, α3 = wn.

The adaptation gains Γ = diag{γn, · · · , γ0} where n is the bias polynomial estimate

order, were determined iteratively and are given in Table 3.4. Reducing the order of

the polynomial fit decreases the performance of the controller as expected. However,

some or all of the performance could be recovered with a sample rate increase. In

fact, a fourth order bias polynomial estimate outperformed the fifth-order estimate

when the sample rate was increased by 5 kHz. The third-order estimate came close

to achieving that of the fifth-order with a 10 kHz increase. Therefore, if the sam-

pling resources are available, the complexity of the controller can be reduced while

maintaining comparable performance. The comparison results are summarized in

Table 3.5 and Figure 3.15.

Table 3.5: Bias modeling accuracy-sample rate study (L2 norm)

Rate→ 20 kHz 25 kHz 30 kHz

Order↓ e1 e2 e1 e2 e1 e2

3 0.0517 17.11 0.0313 14.77 0.0182 11.21

4 0.0329 13.92 0.0153 10.34 - -

5 0.0161 11.94 - - - -
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Figure 3.15: Bias modeling accuracy-sample rate study (L2 norm)

3.5 Output Feedback Design

The previous controllers developed solutions based on the assumption that all states

were readily available for feedback. However, direct velocity measurement is typically

not available in production disk drives and, therefore, an output feedback solution

is necessary. Although the position error signal (PES) would normally be used, this

section considers a more restrictive solution based only on current measurement and

relies on a nonlinear observer to supply the control law with the required state esti-

mates.
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3.5.1 Preliminaries

The dynamic model of (2.18) is modified to support current as the output (y = i),

resulting in

ẋ = Ax+Bu+Bψψ(Hx) (3.34)

y = Cx

A =









0 1 0

0 0 Kt

J

0 −Kt

L
−R
L









, B =









0

0

1
L









, Bψ =









0

− 1
J

0









C = [0 0 1] H = [1 0 0]

The controller developed in the next section requires observability of the linear com-

ponent. It can be readily determined that the system (3.34) does not satisfy this

requirement. The issue can be overcome by redefining the nonlinearity as

φ(x1) = µ1[ψ(x1) − c1x1] (3.35)

and recruiting the linear term, µ1c1x1 into A. Equation (3.34) now becomes

ẋ = Aφx+Bu+Bφφ(Hx) (3.36)

y = Cx

where

Aφ =









0 1 0

−µ1c1 0 µ0

0 −µ2 −µ3









, Bφ =









0

−1

0









and

µ0 =
Kt

J
, µ1 =

1

J
, µ2 =

Kt

L
, µ3 =

R

L
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The output feedback tracking controller is developed with the following assumptions:

Assumption 3.1 The nonlinearity, φ(Hx), is Lipschitz with respect to the state,

‖φ(Hxa) − φ(Hxb)‖ ≤ γ‖Hxa −Hxb‖ (3.37)

∀xa, xb ∈ X X := {x ∈ R
3|x1 ∈ Θ}

where γ is the Lipschitz constant and Θ is the set of all possible actuator sweep angles.

Assumption 3.2 The pair (Aφ, B) is controllable.

Assumption 3.3 The pair (Aφ, C) is observable.

Remark 3.1 Assumption 3.1 will always be satisfied for a polynomial representa-

tion (3.35) when the polynomial order k ≥ 0. Assumption 3.2 is always satisfied for

the generic disk drive dynamics described by (3.36) with Kt 6= 0. Assumption 3.3 will

be satisfied for all c1 6= 0.

The following definition is necessary prior to developing the output feedback control

law.

Definition 3.1 [29] The distance between an observable pair (M,No) and the set of

pairs with an unobservable, purely imaginary mode is

δ(M,No) = min
ω∈R

σmin






jωI −M

No






where j =
√
−1, I is the identity matrix, and σmin(·) is the minimum singular value

of the matrix (·).

Similarly, δ(M>, N>
c ) is the distance between a controllable pair, (M,Nc), and the

set of pairs with an uncontrollable, purely imaginary mode.
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3.5.2 Full State Feedback Controller Design

It is desired the system track a predetermined trajectory, xr, based on the reference

model

ẋr = Aφxr +Bφφ(Hxr) (3.38)

Consider the control law

u = uff + us + ufb (3.39)

where

uff = L(ẋ3r + µ3x3r + µ2x2r) (3.40)

is the feed-forward term, us and ufb are the linear stabilization and feedback terms,

respectively to be determined. Substituting (3.39) into (3.36) and subtracting (3.38)

gives the tracking error dynamics

ė = Aφe+Bc(us + ufb) +Bφ(φ(Hx) − φ(Hxr)) (3.41)

where e = x − xr and Bc = [0 0 1]>. Now, if Aφ is not Hurwitz it can be stabilized

using

us = −Kse (3.42)

resulting in

ė = Ase+Bcufb − Bφ[φ(Hx) − φ(Hxr)] (3.43)

where Ks is the stablizing gain vector and As = Aφ − BcKs is Hurwitz. Choose

ufb = − Kc

‖Bc‖2
e (3.44)

where Kc is the feedback gain vector,

Ac = As −
BcKc

‖Bc‖2
, (3.45)
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and consider the Lyapunov function

Vc(e) = e>Pce, Pc = P>
c , Pc > 0 (3.46)

Differentiating Vc along the trajectory of (3.43) results in

V̇c(e) = e>(A>
c Pc + PcAc)e+ 2e>PcBφ[φ(Hx) − φ(Hxr)]

≤ e>(A>
c Pc + PcAc)e+ 2γ‖Bφ‖ ‖H‖ ‖Pce‖ ‖e‖ (3.47)

If
√
β = ‖Bφ‖ ‖H‖ then

e>(Pc − γ
√

βI)2e ≥ 0. (3.48)

Expanding the left side of (3.48) results in

e>(PcPc + γ2βI)e ≥ 2γ
√

β‖Pce‖ ‖e‖.

It follows that

V̇c(e) ≤ e>(A>
c Pc + PcAc + PcPc + γ2βI)e. (3.49)

So for any ηc > 0, V̇c(e) ≤ −ηc‖e‖2 if

A>
c Pc + PcAc + PcPc + γ2βI = −ηcI (3.50)

The choice of the control gain vector

Kc =
1

2
B>
c Pc (3.51)

results in

A>
s Pc + PcAs + Pc

(

I − BcB
>
c

‖Bc‖2

)

Pc + (γ2β + ηc)I = 0 (3.52)

Since As is Hurwitz, I − BcB
>
c

‖Bc‖2 ≥ 0, and (γ2β + ηc) > 0, a solution, Pc, to the

ARE (3.52) exists if the associated Hamiltonian matrix

Hc =






As I − BcB
>
c

‖Bc‖2

−(γ2β + ηc)I −A>
s




 (3.53)

is hyperbolic.
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Lemma 3.1 Hc is hyperbolic if

√

γ2β + ηc < δ

(

A>
s ,
√

γ2β + ηc
B>
c

‖Bc‖

)

,
√

β = ‖Bφ‖ ‖H‖ (3.54)

Proof. The eigenvalues of Hc may be obtained by considering

det(sI − Hc) = det






sI −As −
(

I − BcB
>
c

‖Bc‖2

)

(γ2β + ηc)I sI + A>
s






= (−1)n det






(γ2β + ηc)I sI + A>
s

sI −As −
(

I − BcB
>
c

‖Bc‖2

)




 (3.55)

Since (γ2β + ηc) > 0, the determinant of the block matrix (3.55) can be written as

det(sI − Hc) = (−1)n (γ2β + ηc) det

[(

−I +
BcB

>
c

‖Bc‖2

)

− (sI − As)(γ
2β + ηc)

−1(sI + A>
s )

]

= (−1)n det

[

(γ2β + ηc)

(

−I +
BcB

>
c

‖Bc‖2

)

− (sI − As)(sI + A>
s )

]

Letting s = −jω and noting that

−(−jωI − As)(−jωI + A>
s ) = (−jωI − As)(jωI − A>

s )

it follows that ±jω is an eigenvalue of Hc if the matrix

Λ(−jω) =

[

(−jωI −As)(jωI − A>
s ) + (γ2β + ηc)

BcB
>
c

‖Bc‖2
− (γ2β + ηc)I

]

=






jωI −A>
s√

γ2β+ηc B
>
c

‖Bc‖






∗ 




jωI − A>
s√

γ2β+ηc B
>
c

‖Bc‖




− (γ2β + ηc)I

is singular. Noting from Definition 3.1 that

δ2

(

A>
s ,
√

γ2β + ηc
B>
c

‖Bc‖

)

≤






jωI −A>
s√

γ2β+ηc B
>
c

‖Bc‖






∗ 




jωI − A>
s√

γ2β+ηc B
>
c

‖Bc‖






the eigenvalues of H will always have nonzero real parts if

δ2

(

A>
s ,
√

γ2β + ηc
B>
c

‖Bc‖

)

− (γ2β + ηc) > 0 or

√

γ2β + ηc < δ

(

A>
s ,
√

γ2β + ηc
B>
c

‖Bc‖

)

,
√

β = ‖Bφ‖ ‖H‖
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Combining equations (3.40), (3.42), and (3.44) gives the tracking control law

u = L(ẋ3r + µ3x3r + µ2x2r) −
(

Ks +
Kc

‖Bc‖2

)

e (3.56)

For the nonlinear disk drive dynamics given by (3.34), the tracking control law (3.56)

renders the error dynamics (3.41) with Assumptions 3.1 and 3.2, exponentially stable

if (3.54) is satisfied.

3.5.3 Observer Design

Consider the observer

˙̂x = Aφx̂+Bu− Bφφ(Hx̂) +

(

Ls +
γ2 + εo
‖C‖2

Lfb
)

(y − Cx̂) (3.57)

where Ls,Lfb ∈ R
3 are observer gains and εo ≥ −γ2. Defining the observer error as

x̃ = x− x̂ results in dynamics

˙̃x =

[

Aφ −
(

Ls +
γ2 + εo
‖C‖2

Lfb
)

C

]

x̃+Bφ[φ(Hx) − φ(Hx̂)] (3.58)

Using the Lyapunov function

Vo(x̃) = x̃>Pox̃, Po = P>
o , Po > 0 (3.59)

and differentiating Vo along the trajectory of (3.58) gives results similar to (3.47)

V̇o(x̃) = x̃>
[

A>
o Po + PoAo −

γ2 + εo
‖C‖2

(C>L>
fbPo + PoLfbC)

]

x̃ (3.60)

+ 2x̃>PoBφ[φ(Hx) − φ(Hx̂)]

≤ x̃>
[

A>
o Po + PoAo −

γ2 + εo
‖C‖2

(C>L>
fbPo + PoLfbC) + PoPo + γ2βI

]

x̃

where Ao = Aφ − LsC is Hurwitz. If the observer feedback gain vector is chosen as

Lfb =
1

2
P−1
o C> (3.61)
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then for any ηo > 0, V̇o(e) ≤ −ηo‖x̃‖2 if

A>
o Po + PoAo −

γ2 + εo
‖C‖2

C>C + PoPo + (γ2β + ηo)I = 0 (3.62)

Following the preceding results, a solution, Po, to the ARE (3.62) exists if the asso-

ciated Hamiltonian matrix

Ho =






Ao I

−(γ2β + ηo)I + γ2+εo

‖C‖2 C
>C −A>

o




 (3.63)

is hyperbolic. Using a similar analysis from Lemma 3.1, results in the analogous

sufficient condition

√

γ2β + ηo < δ

(

Ao,

√

γ2 + εo
‖C‖ C

)

,
√

β = ‖Bφ‖ ‖H‖ (3.64)

3.5.4 Output Feedback

Theorem 3.2 Let X := {x ∈ R
3|x1 ∈ Θ} where Θ is the set of all possible actuator

sweep angles and φ(Hx) is Lipschitz according to (3.37). The output feedback tracking

control law

uof = L(ẋ3r + µ3x3r + µ2x2r) −Kcê (3.65)

with ê = x̂ − xr renders the tracking error dynamics (3.41) and observer error dy-

namics (3.58) exponentially stable for all x ∈ X.

Proof. Substituting (3.65) into (3.36) gives

ė = Ace+BcKcx̃+ φ(Hx) − φ(Hxr) (3.66)

Now, recall Vc(e) = e>Pce, so

V̇c(e) ≤ −ηc‖e‖2 + 2e>PcBcKcx̃ (3.67)

≤ −ηc‖e‖2 + 2PcBcKc‖e‖ ‖x̃‖ (3.68)

≤ −ηc‖e‖2 + ξc‖e‖ ‖x̃‖ (3.69)
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where ξc = 2‖PcBcKc‖. Consider

W (e, x̃) = ξVc(e) + Vo(x̃) (3.70)

where ξ = ηcηo

ξ2c
. Taking the time derivative of (3.70) yields

Ẇ (e, x̃) ≤ −η
2
cηo
ξ2
c

‖e‖2 +
ηcηo
ξc

‖e‖ ‖x̃‖ − ηo‖x̃‖2 (3.71)

≤ −1

2

(
η2
cηo
ξ2
c

‖e‖2 + ηo‖x̃‖2

)

(3.72)

where equation (3.72) follows from (3.71) by completing the square and noting that

(
1√
2

ηc
√
ηo

ξc
‖e‖ − 1√

2

√
ηo‖x̃‖

)2

≥ 0 (3.73)

Therefore, W (e, x̃) is a Lyapunov function and e, x̃→ 0 exponentially as t→ ∞.

Remark 3.2 The number δ is realization dependent. Therefore, a coordinate trans-

formation can be used to reduce the value of γ and increase δ [30]. When using

standard SI units, the actuator inertia is typically very small relative to Kt, R, and

L, therefore the inertia can be lumped into the Lipschitz nonlinearity where a simi-

larity transformation can be used to reduce the constant.

3.5.5 Experimental Results

The experimental disk drive possessed similar specifications to that used in Sec-

tion 3.3.2. Measurement of the actuator physical parameters resulted in 48.06 g-cm2,

62.4 N-mm/amp, 9.22 Ω, and 1.11 mH for the inertia, torque constant, coil resis-

tance, and coil inductance, respectively. The bias polynomial with coefficients were

determined as

c5 = 0.4518; c4 = −0.8749; c3 = 0.6232; c2 = −0.1883; c1 = 0.0186; c0 = 0.0098

A reference trajectory was generated based on the method of Section 3.1. To ensure

that the bias was significant relative to available torque, the maximum seek current
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was limited to 0.5 amps and reflected in the reference trajectory. This results in a

maximum bias that is 5% of the current limited torque capability of the actuator.

Because only a finite number of drives were available for testing, the limitation also

protected the hardware from damage while tuning gains. Smooth trajectories were

generated based on the 0.5 amp saturation limit for seek lengths of 0.0873 rad (5◦),

0.1745 rad (10◦), and 0.3491 rad (20◦). The resulting seek times were 9.3 msec, 13.0

msec, and 18.7 msec, respectively. The seek time is actually conservative compared

to the capability of the actuator in order to provide the current limitation. This

limitation can be relaxed in a production setting and trajectories can be designed for

current corresponding to the typical 11 V saturation limit. The Lipschitz constant

for φ was calculated as γ = 5496, ∀x ∈ X. Because c1 > 0, Aφ in (3.36) is stable.

Therefore, the stabilization gains Ks,Ls are not necessary. However, it was desired

to modify the tracking performance of the linear system. The poles of the tracking

control law were placed at [−80 −76 −7860] resulting in a stabilization gain vector

of

Ks = [1078.84 19.11 7.30]

A performance gain was also desired for the observer and placement of the observer

stabilization poles resulted in

L>
s = [−36.55 −3815.6 1181.3]

A similarity transformation e = Tce
′ as discussed in [30] where

‖T−1
c φ(HTcxa) − T−1

c φ(HTcxb)‖ ≤ γ′‖xa − xb‖ (3.74)

can be used to reduce the Lipschitz constant and increase the value of δ. Transfor-

mations were chosen as

Tc = diag{1 104 200}, e = Tce
′

To = diag{1 104 1}, x̃ = Tox̃
′
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resulting in the tracking controller and observer Lipschitz constants γ′c = 0.5505 and

γ′o = 0.5496, respectively.

To get an initial estimate of appropriate controller and observer gains and ensure

convergence using only current feedback, simulations were conducted for the three

designated seek lengths. A satisfactory solution was determined through iteration

with state feedback controller gain vector

Ksim = Ks +
Kc

‖Bc‖2
= [1244.63 20.12 9.33]

and ηc = 0.01 resulting in δ = 0.596. An initial observer gain vector

L>
sim =

(

Ls +
γ2 + εo
‖C‖2

Lfb
)>

= [−37.20 −3848.42 1243.02]

was determined with ηo = 10−4 and εo = −0.3 resulting in δ = 0.5498. Therefore,

both conditions (3.54) and (3.64) were satisfied with the corresponding gain vectors.

Simulation results for a 0.1745 rad seek are depicted in Figure 3.16.
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Figure 3.16: Simulation error results (0.1745 rad)
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Disc drive

Amplifier
Current measurement

circuit

Figure 3.17: Experimental setup

Loading the states with initial conditions [x1 x2 x3] = [0.01 1 0.1], convergence is

noted for both the tracking and observer errors while the controller output limits the

current within the required bounds. The gains Ksim and Lsim were used as prelimi-

nary gains for experimental evaluation of the output feedback controller. Within the

experimental platform, the actuator was driven by a digital signal processor (DSP)

board with analog I/O peripherals. Voltage output from the DSP board was injected

through a bipolar amplifier and into the disk drive actuator. Current feedback was

achieved by recording the voltage across a 0.2 Ω sense resistor connected in series

with the actuator coil. The experimental setup is shown in Figure 3.17. The initial

gains from simulation analysis resulted in performance that exceeded the 0.5 amp

limitation. The controller and observer gains were retuned to produce the desired

performance. The final tracking control gain vector of

Kcx = [962.21 12.19 9.28] (3.75)
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was checked to ensure

A>
cxPcx + PcxAcx + PcxPcx + (γ2β2 + ηc)I = 0 (3.76)

was satisfied where Acx = A− BcKcx and

Pcx =









28.4028 −0.0677 −0.1418

−0.0677 0.0071 0.0137

−0.1418 0.0137 0.0269









Similarly, the observer gains were tuned to

L>
ox = [−104.25 − 2559.17 1642.60] (3.77)

where Aox = A− LoxC and

A>
oxPox + PoxAox + PoxPox + (γ2β2 + ηo)I = 0 (3.78)

is satisfied resulting in

Pox =









2.7747 −0.0009 −0.0327

−0.0009 0.0012 0.0023

−0.0327 0.0023 0.0048









Figures 3.18 and 3.19 show the results of the output feedback tracking controller im-

plemented at 25 kHz for 0.0873 rad and 0.1745 rad seeks, respectively. The observer

was loaded with initial conditions [x̂1 x̂2 x̂3] = [0 0 0]. The controller immediately

compensates for bias error with some overshoot indicating the gains could be relaxed

further for improved shaping of the initial transient response. The tracking errors are

shown in Figures 3.20 and 3.21 along with corresponding norms given in Table 3.6.

Position and velocity error increased with seek length while current error decreased.

Also, the current observer exhibited improved performance as the seek length in-

creased. The observer error current norms were 0.3795, 0.3469, and 0.2958, for seek

lengths 0.0873, 0.1745, and 0.3491 rad, respectively. An additional trial of the 0.0873
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rad seek is presented (Fig. 3.22) with the observer initialized at [x̂1 x̂2 x̂3] = [0 0 0.1]>

to demonstrate convergence.

Remark 3.3 The transformation Tc in (3.74) modifies the Lipschitz condition. The

nonlinearity now becomes a function of t11x1 where t11 = Tc(1, 1) is the first diagonal

element of Tc. Therefore, choosing t11 = 1 preserves the scope of the Lipschitz constant

to remain in the set Θ.

Table 3.6: Error norms

Length 0.0873 rad 0.1745 rad 0.3491 rad

Position 0.0113 0.0166 0.0311

Velocity 2.9831 3.6380 4.6177

Current 0.5254 0.5186 0.3654

Observer 0.3795 0.3469 0.2958
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Figure 3.18: Experimental seek results (0.0873 rad)
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Figure 3.19: Experimental seek results (0.1745 rad)
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Figure 3.20: Experimental seek error (0.0873 rad)
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Figure 3.21: Experimental seek error (0.1745 rad)
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Figure 3.22: Experimental seek with observer initial condition (0.0873 rad)
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3.6 Summary

Efforts were undertaken to evaluate seek control designs that compensate for a disk

drive actuator influenced by nonlinear bias effects. A linear state-feedback and an

adaptive controller were developed to track predetermined reference trajectories. Sim-

ulation results revealed that the performance of both controllers was within the re-

quired specifications. Overall, the adaptive controller was capable of tracking with

less error and comparable power. Experiments were conducted to verify the simula-

tion results and experiments confirmed that the adaptive control outperforms state-

feedback with slightly more power consumption. Since bounds on the bias estimate

were known, a projection algorithm was implemented to constrain the bias estimate

within the known bounds. Although the performance criteria were met, adding pro-

jection resulted in a tracking performance reduction compared to the control law

without projection. The adaptive controller adds a degree of complexity to the over-

all implementation and practical memory or processor resources may not be available.

Therefore, performance effects from variation in bias estimate accuracy and sample

rate were investigated. It was determined that controller performance lost by a re-

duction in bias modeling accuracy could be recovered by an increase in sample rate.

Therefore, if sampling resources are available, the complexity of the controller can be

reduced without a significant sacrifice in performance.

Because direct velocity measurement is typically unavailable in production disk

drives, the research also investigated solutions in the absence of full-state feedback.

The bias nonlinearity was shown to be locally Lipschitz and an output feedback

tracking controller, using only current measurement, was developed for the actuator

performing a seek maneuver. The output feedback controller was shown to be expo-

nentially stable and satisfy the separation principle. Experiments show the controller
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to successfully track predetermined reference trajectories with a bias 5% of the max-

imum available torque. The position and velocity tracking error increased with seek

length while current error decreased. Experiments also revealed observer convergence

with initial condition variation.
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CHAPTER 4

THE COMMUTATIONAL RAMP LOAD ACTUATOR

The following chapter focuses on the design of a disk drive actuator with a unique

application to ramp loading. The solution retains the linear shock resistance of ramp

loading while realizing the cost and performance benefits of a conventional actua-

tor. Material costs from larger magnets and coils typically inherited with ramp load

designs are eliminated.

The ramp load actuator design and performance requirements are presented in

Section 4.1 along with specifications for rotary shock. A nominal ramp load actuator

is designed in parallel and compared with the new proposed commutational design.

Section 4.2 develops a model of the system and reveals conditions at which the actua-

tor is uncontrollable. The shock and move-time performance is verified in Section 4.3

with simulation analysis. In Section 4.4, a unique disk drive is fabricated with the

designed actuator to support commutational ramp loading. The actuator physical

parameters are measured to verify and validate the proposed design. A summary is

given in Section 4.5.

4.1 Actuator Design

This section discusses the details of a disk drive actuator design for commutational

ramp loading. Performance criteria and design constraints are outlined to establish

target goals. Voice-coil motor actuators for both nominal and commutational con-

figurations are developed in parallel for comparison. The framework for a ramp and

magnetic bias design is also presented for the commutational configuration.
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4.1.1 Design Constraints/Requirements

Because the overall geometric form factor and operating environment remain within

the industry standards, the commutational ramp load disk drive maintains design

constraints analogous to those described in Section 2.1. However, contrary to the

actuator designed in Chapter 2, this particular disk drive is targeted for a high-end,

server application where data throughput is considered a top priority. Therefore,

more emphasis is required on actuator performance rather than cost and rotational

shock resistance. The requirements being considered for this particular disk drive

application are given in Table 4.1.

Table 4.1: Actuator design constraints

Parameter Spec

Max third-stroke move-time 6 msec

Max PCB Flux leakage 100 Gauss

Coil mass 1.25 grams

Rotary shock amplitude 30 krad/s2

Rotary shock pulse width 2 msec

Voltage saturation limit 11 V

Actuator profile 2236 mm2

Acutator height 15.75 mm

Data zone width 20.93 mm

4.1.2 Voice Coil Motor

For comparison, a nominal ramp load voice-coil motor was designed in parallel with

the new, proposed commutational actuator. Both designs were optimized based on

the constraints defined in the previous section. The following differences highlight
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the additional design flexibility inherent to the proposed, commutational ramp load

actuator:

1. Decreased magnet arc length results in reduced active magnet surface area.

Since gap flux density is inversely proportional to magnet surface area, gap flux

density increases along with available torque. A cost reduction is also realized.

2. The arc length reduction allows a decrease in the inactive coil lengths. Since

this area provides no torque contribution, it can be eliminated resulting in a

potential rotary arm inertia reduction. If it is desired to maintain the inertia,

active length can be added to the coil thereby minimizing a torque generation

performance impact.

3. The ramp arc length can be increased allowing for increased travel distance

along the ramp. Therefore, ramp friction along with magnetic and flex bias

forces can be used to combat the effects of rotational shocks possibly rendering

a latch requirement unnecessary.

4. Following from items 1 and 3, if performance takes priority over cost, the de-

signer has the option of using the latch space for extra steel to provide an

additional flux path which improves the efficiency of the magnetic circuit. In-

creased magnet thickness would increase the gap flux density along with avail-

able torque.

Two motors were developed using the geometric constraints of Section 4.1.1. The high

performance design path relative to item 4 was chosen for the proposed commutational

ramp load actuator design. Therefore, the coil and rotary arm were designed for

minimal inertia within resonance stiffness constraints. Additional steel will be added

to enhance the flux density of the magnetic circuit and the rotary shock specification

will be met without an additional latching mechanism. The design methods used for
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the coil and magnetic circuit are analogous to those in Section 2.2. In order to balance

the rotary arm, a coil mass of 1.25 grams was required and pure copper was selected as

the material for the conductor. Iteration on the diameter and length was performed

until the mass and profile targets were met for both coil designs. The resistance and

inductance of the coil was calculated using (2.1) and (2.2), respectively. Table 4.2

lists the results from the coil lumped parameter design for both actuators. The coil

design coupled with the arm resulted in a motor inertia of 38.76 and 37.63 g · cm2

for the nominal and commutational L/UL rotary arms, respectively. The arm length

was 45.72 mm resulting in a sweep angle of 0.4619 rad. As described in Section 2.2,

form factor constraints restrict the magnetic circuit profile and the air gap is fixed by

the coil thickness.

Table 4.2: Lumped parameter coil design.

Parameter Nom. L/UL Comm. L/UL

Conductor Copper Copper

Wire diam. (mm) 0.1549 0.1575

Mean turn (mm) 77.47 67.1

Bobbin area (mm2) 37.67 31.39

Thickness (mm) 1.194 1.524

Turns 96 104

Resistance (Ω) 6.56 6.21

Inductance (mH) 0.335 0.323

Mass (g) 1.25 1.24

Therefore, optimization becomes a function of magnet and steel pole thickness.

Neodymium-Iron-Boron high energy magnet material was used with an energy of 398

kJ/m3. The optimized magnetic circuit design parameters of Table 4.3 resulted in

demagnetization load lines [21] of 1.85 and 2.3 and data zone torque factors, Kt,
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Table 4.3: Magnetic circuit design comparison

Parameter Nom. L/UL Comm. L/UL

Overall height (mm) 15.875 15.875

Pole transition length (mm) 27.94 27.94

Pole thickness (mm) 4.572 3.02

Magnet thickness (mm) 2.032 2.89

Magnet area (mm2) 346.77 314.51

Air gap thickness (mm) 2.201 2.5146

Steel saturation (Tesla) 1.7 1.7

Air gap flux density (Tesla) 0.912 0.963

of 0.0567 and 0.0651 N · m/amp for the nominal and commutational L/UL designs,

respectively. The design was further refined with magnetic finite-element modeling.

4.1.3 Magnetic Bias Design

Latches, in ramp load disk drives, are used to hold the actuator arm at the nominal

shipping location in the event of a rotational shock. The nominal shipping loca-

tion is typically a state when the arm is resting against a rigid member called the

outer crash stop (OCS) with R/W heads parked off the disk surface. With the pro-

posed commutational ramp load actuator, it was desired to design a bias force across

the ramp angle to restore the arm back to the nominal shipping location after the

impact of a rotational shock. The methods from Section 2.2.3 were used to determine

the necessary bias energy. However, in this case the strategy is to design the magnetic

bias torque, complemented with ramp friction, that applies an energy greater than or

equal to that of the shock (Eb ≥ Es). The total bias energy prohibits the arm from

traveling past a desired angular displacement. For this design, it is required that

the arm angular displacement resulting from rotational shock be less than the total
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Figure 4.1: Magnetic bias feature

ramp angle, θr. Using equations (2.10) through (2.12) and the shock specifications

of Table 4.1, the shock energy was determined to be 2.75 mJ. As in Section 2.2.3,

a passive magnetic bias was obtained by attaching a steel member to the arm and

partially protruding into the air gap of the magnetic circuit. Figure 4.1 illustrates the

magnetic bias feature design for the commutational ramp load actuator. To avoid the

issues of bias impact during seeking operations described in Chapter 3, it was desired

the bias dissipate prior to actuator arm entry into the data zone. During the shock

phase, bias and friction work together to bring the arm to rest after traveling some

angular displacement along the ramp. A subsequent restoration phase must occur

to return the arm back to the OCS. Because the friction forces oppose the direction

of actuator motion, the magnetic bias must overcome friction during the restoration

phase. The overall bias design results in the following energy relationships

Eb = Em + Ef ≥ Es, Em > Ef (4.1)
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where Em and Ef are the energies from magnetic bias and friction, respectively.

Using finite-element analysis, shaping of the magnetic torque profile was achieved

by changing the location and geometric parameters of the steel. The energy of the

torque profile throughout the ramp angle was calculated from (2.13), where θT = θr,

and desired to be larger than the shock energy computed from (2.12). The total bias

energy, ψ, contains both magnetic and friction components

ψ(θ) = Tb(θ) + Tfx, Tb(θ) =

n∑

k=0

ckθ
k (4.2)

where the bias torque, Tb, can be represented as a polynomial function of angular

position with coefficients, ck, and Tfx is the maximum dynamic friction component

represented by viscous and coloumb effects. The resulting FEM torque factor and

magnetic bias characteristics along the ramp angle are shown in Figure 4.2.
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4.1.4 Ramp Design

Traditional ramp L/UL designs require additional magnet material to provide actu-

ation for rotating the actuator arm off the disks. Typical ramp designs minimize arc

length to reduce the extra costs associated with magnetic material. For the commu-

tational L/UL actuator, more angular rotation off the disk is actually preferred. It is

desirable to rotate the arm far enough off the disks so that the single coil active length

is within the region of uniform magnetic field (recall Fig. 1.10). This will maximize

the available torque at the beginning of a load maneuver. Also, greater travel along

the ramp will increase the energy available for a magnetic bias and friction to resist

the effects of rotational shock. Other than the total ramp arc length, the standard

considerations were taken into account when designing the ramp. The maximum ver-

tical load velocity is the velocity the heads can depart the ramp without impacting

the disk surface. This velocity is a function of the air bearing hydrodynamic analysis.

Based on the air bearing hydrodynamics, the maximum vertical load velocity was

determined to be 54 mm/s. The ramp thickness was set by the vertical geometric

restrictions on disk spacing. The desired ramp arc length and ramp thickness resulted

in a departure angle of 0.21 rad relative to the disk surface. The maximum allowable

horizontal loading velocity was 254 mm/s and determined from the vertical velocity

and ramp departure angle.

An injection molding process was desired for ramp manufacture and a polypheny-

lene sulphide (PPS) was selected as the ramp material. The PPS was impregnated

with 5% polytetrafluoroethylene (Teflon R©) to achieve a desired µ = 0.15 friction

coefficient between the ramp and lift tab satisfying equation (4.1). A 5% carbon fiber

was also used for electrostatic discharge protection. Results of the ramp design are

summarized in Table 4.4.
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Table 4.4: Ramp design parameters

Parameter Spec

Ramp thickness 1.5 mm

Ramp departure angle 0.21 rad

Ramp centerline radius 48.3 mm

Ramp vertical spacing 2.2 mm

Lift tab/ramp friction coef. 0.15

Max vertical load velocity 54 mm/s

Max horizontal load velocity 254 mm/s

4.2 Modeling

The ramp load disk drive actuator can be described by a combination of mechanical

and electrical dynamic equations. The mechanical dynamics are represented by

Jθ̈ = Kt(θ)i− Tb(θ) − Tf sat(θ̇) (4.3)

where θ is the actuator arm angular position, J is the actuator inertia, and i is

the current applied in the coil. The torque factor, Kt, which is relatively constant

during operation in the data zone, becomes a function of the actuator arm angle

while on the ramp. There exists a condition rendering the actuator uncontrollable

by induced current while traveling on the ramp. Figure 4.2 illustrates the torque

factor characteristics along the ramp angle. The uncontrollable condition occurs at

a “critical angle”, θc, corresponding to Kt(θc) = 0. The critical angle is measured as

the actuator rotates counter-clockwise from the parked position at the outer crash

stop (OCS). The ramp angle, θr, is the total angle the actuator travels from the OCS

to the end of the ramp. Since the magnitude of the torque factor decreases as the

actuator approaches the critical angle, it is advantageous to design the ramp angle

such that a single active length is within the uniform magnetic field region of the air
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gap when parked at the OCS. This will ensure torque is maximized at the beginning

of a maneuver and provides the relationship

KDZ
t ≈ −2KOCS

t

where KDZ
t and KOCS

t are the torque factor in the data zone and at the outer crash

stop, respectively. As described in Section 4.1.3, the bias torque, Tb(θ), is a function

of actuator arm angle and is required to prevent an unrecoverable condition at θc

that may be induced by an external disturbance. The bias assists the actuator in

returning to the OCS without requiring current to be present in the coil. The friction

torque, Tf sat(θ̇), results from the suspension lift tab/ramp surface interaction during

a L/UL operation and is dependent on the direction of actuator motion. A saturation

function is used to represent viscous and coloumb effects

Tf sat(θ̇) =







Tfx, θ̇ > ωx

Tfx

ωx
θ̇, −ωx ≤ θ̇ ≤ ωx

−Tfx, θ̇ < −ωx

(4.4)

where Tfx is the maximum dynamic friction torque and ωx is the angular velocity

at which that torque is attained. Equation (4.5) represents the electrical dynamics

where R and L are the coil resistance and inductance, respectively.

Vs = Ri+ L
di

dt
+Kt(θ)θ̇ (4.5)

The supply voltage, Vs, is available as input to the system. Referring to Figure 4.2

and noting that

Kt(θ)







< 0, θ < θc

= 0, θ = θc

> 0, θ > θc

(4.6)

the commutation requirement becomes apparent by rearranging (4.3) and (4.5) as

d2θ

dt2
=

1

J

[

Kt(θ)i− Tb(θ) − Tf sat(θ̇)
]

(4.7)

di

dt
=

1

L

[

Vs −Kt(θ)θ̇ − Ri
]

(4.8)
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When θ < θc, Kt(θ) < 0. Therefore, from (4.7), i < 0 is required to overcome the bias

and friction torques and move the actuator a positive angular displacement toward

the end of the ramp. When θ > θc, Kt(θ) > 0 and the current must change sign

(i > 0) to maintain the direction of actuator motion.

The motor torque factor and bias can both be represented as m and n-th order

polynomial expressions, respectively of the form

Kt(θ) =
m∑

k=0

bkθ
k Tb(θ) =

n∑

k=0

ckθ
k (4.9)

where bk and ck are the k-th order coefficients. For θ > θr, magnetic bias and friction

torque vanish and KDZ
t = Kt(θ > θr) is relatively constant throughout the data zone

resulting in a linear model representation.

4.3 Performance Analysis

It is necessary to determine if the design meets the performance requirements out-

lined in Section 4.1.1. Using the resulting design parameters of the previous section,

fulfillment of the requirements are evaluated through simulation.

4.3.1 Non-operational Shock Performance

Based on the bias and ramp designs of Section 4.1.3 and 4.1.4, respectively, the

system resistance to a rotational shock could be determined. The drive state is non-

operational, so the supply voltage is removed and the shock input, αs, as defined

in (2.9) enters the dynamics of (4.7) and (4.8) as

J
d2θ

dt2
= Kt(θ)i− Tb(θ) − Tf sat(θ̇) + Jαs (4.10)

L
di

dt
= −Kt(θ)θ̇ − Ri (4.11)

Table 4.5 depicts the results of a tolerance analysis on the system physical parameters.

Worst-case bounds were chosen on each parameter that would exhibit maximum

83



Table 4.5: System physical parameters for shock robustness

Parameter Spec

Acutator inertia 37.63 ± 1.13 g · cm2

Torque factor ±7%

Coil resistance 6.21 ± 0.31 Ω

Coil inductance 0.323±0.013 mH

Bias feature volume 7.38±0.15 mm3

Bias feature position ±0.15 mm

Ramp dynamic friction 0.12±0.014 N·mm

Lift tab/ramp position 0±0.0037 rad

angular displacement of the rotary arm for the half-sine pulse acceleration shock.

Simulations reveal the system can withstand up to 34 krad/s2 and be restored back to

the nominal, parked position at the OCS (Fig. 4.3) meeting the 30 krad/s2 minimum

requirement of Section 4.1.1. The peak displacement is about 0.28 rad which is

less than the ramp angle of θr = 0.314 rad. In this case, both bias and friction

work against the actuator arm response to a shock. When the actuator finally rests

at some point within the ramp angle, the bias is required to restore the actuator

arm back to the OCS. Recall that friction torque works against the bias during the

restoration stage. Therefore, the bias torque must always exceed the friction torque

at all positions within the ramp angle. This may discourage the designer from relying

too heavily on friction for rotary shock protection as head population increases.

4.3.2 Move-time Performance

The move-time performance of the motor was evaluated based on an open-loop, time-

optimal maneuver. The objective of the time-optimal maneuver is to choose an

input that moves the actuator from rest to a desired position, θf , in the shortest
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Figure 4.3: Rotational shock performance

possible time. The optimal input to obtain minimum-time response is maximum effort

throughout the interval of operation [31]. For a stable, linear differential equation of

order n, it has been shown [32] that the solution will be optimized if the input is chosen

to take the saturation voltage value of +Vsat or − Vsat in the required time interval

[0, tf ] and reverse polarity n− 1 times at appropriate instances. Bias from magnetic

and friction influences are no longer present in the data zone and the torque factor

becomes constant. Therefore, the third-order dynamics of (4.3) and (4.5) become

linear. For a third-order linear system, the input voltage command will be maximum

available and switch sign twice

Vs =







Vsat, 0 ≤ t ≤ t1

−Vsat, t1 ≤ t ≤ t2

Vsat, t2 ≤ t < tf

0, t ≥ tf

(4.12)
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Table 4.6: Dynamic model parameter comparison

Parameter Nominal L/UL Commutative L/UL

Torque factor (N-mm/amp) 56.73 65.06

Inertia (g-cm2) 38.76 37.63

Coil resistance (Ω) 6.56 6.21

Coil inductance (mH) 0.335 0.323

Voltage limit (V) 11 11

Move angle (rad) 0.154 0.154

The input switches polarity within the interval at times t1 and t2. The switch times

of the third-order system were determined using the boundary conditions and solving

a set of simultaneous equations. The equations are elaborate, however, and require

a numerical, iterative solution [33]. Switch and move-time results were computed for

the values listed in Table 4.6. The third-stroke, time-optimal moves were completed

in 5.11 msec and 4.60 msec for the nominal and commutative designs, respectively.

Therefore, a 10% performance increase was noticed with the commutative design using

the enhancement items discussed in Section 4.1.2. Figure 4.4 shows the time-optimal

move comparison across the data zone.

4.4 Experimental Validation

This section discusses the verification and validation of the overall ramp load actuator

system. Extensive measurements were taken to verify the design parameters calcu-

lated in Section 4.1. Two disk drives were fabricated and experiments were performed

to determine the actual shock capability of both. The open-loop characteristics of

the system are discussed in Section 4.4.3 and the behavior of the actuator as it moves

through the critical angle is revealed.
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Figure 4.4: Time-optimal move comparison in the data zone

4.4.1 Actuator Physical Parameters

A prototype disk drive was fabricated (Fig. 4.5) corresponding to the design of the

previous sections. An effort was undertaken to verify the design of all performance

parameters contributing to the system dynamics. A linear stepper motor was outfit-

ted with a gaussmeter probe to measure gap and leakage flux densities. The magnetic

circuit assembly was mounted to a rotational stepper motor to produce angular mo-

tion relative to the probe. The system was automated and gauss measurements were

taken at 1.27 mm and 0.0157 rad increments of linear and angular displacement,

respectively. The gap flux density results are shown in Figure 4.6. The gap flux

density becomes more uniform approaching the magnet pole center, typical in disk

drive magnetic circuit designs, and peaks at approximately 0.929 Tesla. The leakage

was measured in a plane 3.71 mm from the lower steel surface simulating the nominal

distance of the PCB location. Figure 4.7 shows the PCB measurement area influenced

by flux leakage underneath the magnetic circuit. The maximum leakage flux density
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Figure 4.7: Leakage measurement area at PCB location

of 81.6 Gauss (Fig. 4.8) occurred along the magnetic pole transition projection well

below the requirement of Table 4.1.

A test fixture was available where a ramp could be supported by two perpendic-

ularly aligned load cells. As the actuator moved along the ramp, the normal and

tangential force produced by the lift tab was recorded. The lift tab normal force on

the ramp, Fs, was measured at 2.5 grams. The ratio of the tangential force and nor-

mal force resulted in the desired friction coefficient, µ = 0.15. The torque resulting

from friction is Tf = nh rpµFs, where rp =0.048 m is the distance from actuator pivot

to lift tab and nh = 4 is the number of heads (lift tabs) with which the actuator is

populated.

A fixture was designed that allowed a torque sensor to be attached directly to the

actuator pivot. Current was injected in the coil of a rotary arm without magnetic bias

and the resulting torque was recorded. Beginning with the actuator arm parked at the

OCS, the torque factor was measured across the entire sweep angle of approximately
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Figure 4.8: Leakage flux density at PCB location (Gauss)

45◦. The first 18◦ of rotation occurs on the ramp (θr = 18◦) in which the motor

torque factor undergoes a sign change. The critical angle was measured at θc = 8.3◦,

where Kt(θc) = 0. The test was repeated without current injection for a magnetically

biased actuator. Measurements for torque factor and bias along the sweep angle were

compared to theoretical results and shown in Figure 4.9. A reduction of 4.4% and

3.6% were noted for torque factor and bias, respectively. The polynomial coefficients

corresponding to (4.9) are given in Table 4.7.

Table 4.7: Polynomial coefficients

k −→ 6 5 4 3 2 1 0

bk 921.46 -586.51 58.82 19.59 -2.379 0.1705 -0.0316

ck – – – 0.6989 -0.4666 0.0636 0.0046
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Figure 4.9: Comparisons for torque factor and bias

The inertia was determined by mounting the rotary arm assembly pivot to a

structure with a known torsional spring constant. An impulse was delivered to the

inertia/spring system and the natural frequency was observed resulting in J = kt/ω
2
n,

where kt is the torsional spring constant and ωn is the measured natural frequency.

The inertia was calculated to be 38.49 g · cm2 which is approximately 2.3% more than

predicted in Section 4.1.2. Resistance and inductance were measured with standard

metering equipment resulting in values of 6.26 Ω and 0.311 mH, respectively. Reeval-

uation of the shock and move-time performance for the measured values resulted in

32 krad/s2 and 4.76 msec, respectively.

4.4.2 Rotational Shock Performance

Two of the prototype disk drives were tested for shock performance on a rotary shock

table. The table rotation axis was located about the actuator arm pivot center to

represent a worst case rotational shock. The experiments were designed as pass/fail
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by inspecting the drive for damage after each shock. Shock levels of 20, 30, 35, and 40

krad/s2 were imparted to each drive. The actuator arms on both drives were restored

back to the OCS for levels up to 35 krad/s2 without failure meeting the 30 krad/s2

specification. Shock tests at 40 krad/s2, however, forced the heads off the ramp and

into the data zone. The heads adhered to the surface of the disk and could not be

recovered. Disk slippage was noticed on one drive after testing at 35 krad/s2 resulting

from insufficient clamping force on the disk pack.

4.4.3 Open-Loop Analysis

An experiment was performed to demonstrate the dynamic characteristics of the

actuator moving through the critical angle. The actuator was driven by digital signal

processor (DSP) hardware with analog I/O peripherals. Voltage output from the DSP

hardware was injected through a bipolar amplifier and into the ramp L/UL disk drive

of Figure 4.5. Current feedback was achieved by measuring the voltage drop across a

0.2 Ω sense resistor connected in series with the actuator coil. The experimental setup

is shown in Figure 4.10. With the actuator arm positioned on the ramp against the

OCS, a -6 volt, 7 msec pulse was injected into the coil. The procedure was repeated

with the R/W heads positioned off the ramp and inside the data zone. The behavior

of current was recorded for both scenarios and is shown in Figure 4.11. Notice that

as the actuator arm moves along the ramp, the critical angle, θc, can be identified

by a polarity reversal in the current measurement when the input voltage is zero.

Although the arm is moving, the back-emf (torque) factor is zero at θc, hence current

is not induced. Any maneuver in the data zone, however, always induces a current in

the coil even after the voltage is removed. The rate of current decay is larger in the

data zone resulting from a higher back-emf (torque) factor in that area.
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Figure 4.11: Open-loop maneuver comparison
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4.5 Summary

A unique actuator system for disk drive ramp loading was designed, possessing both

low cost and higher performance characteristics over nominal designs used in industry

today. When compared to a nominal ramp load design, a 10% reduction in move-

time was exhibited with the proposed commutational actuator design. Therefore, it

is no longer necessary to trade-off increases in move-time or material costs for the

shock resistant advantages of ramp loading. A low cost, magnetic bias was designed

to restore the actuator to the nominal shipping location and prevent equilibrium

in a region of uncontrollability exhibited along the ramp angle. The bias, when

combined with ramp friction, also allows the actuator to meet common industry non-

operational, rotary shock requirements. A prototype disk drive was manufactured

using the proposed design criteria and experiments were conducted to validate the

design parameters.
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CHAPTER 5

DYNAMIC ANALYSIS OF THE COMMUTATIONAL

RAMP LOAD ACTUATOR

The disk drive actuator designed in the previous chapter provides a lower cost, ramp

load solution compared to existing ramp load designs used in industry today. Linear

shock resistance is preserved and a performance increase is realized by optimizing

the magnetic circuit and arm inertia with the resulting new geometry. There exists,

however, a location on the ramp where the actuator exhibits an uncontrollable, input

singularity. This chapter characterizes the commutational ramp load (CRL) actuator

dynamics in detail and compares the behavior to that of the well-known ball and beam

system (BBS) that has enjoyed considerable attention throughout the literature. Al-

though both systems possess similar characteristics, analysis reveals the deficiency

of existing control solutions to properly handle the CRL actuator dynamics. The

chapter concludes with a sufficient condition for successfully maneuvering through

the uncontrollable singularity providing a basis for reference trajectory design. Some

mathematical preliminaries necessary for the following theoretical development initi-

ate the discussion.

5.1 Preliminaries

Consider the SISO system of the form

ẋ = f(x) + g(x)u (5.1)

y = h(x)
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defined on a smooth, connected, n-dimensional manifold, M . The mappings

f : M → R
n and g : M → R

n are drift and input vector fields defined on M , respec-

tively. The output map h : M → R is also smooth.

Definition 5.1 A function δ(x) is O(x)m if there exists k ∈ R \ 0 such that

lim
|x|→0

|δ(x)|
|x|m = k.

Let Uε ⊂M such that when δ < ε, sup{δ | Bδ ⊂ Uε} = ε where Bδ is a ball of radius

δ centered at the origin.

Definition 5.2 A function β : R
n × R → R is said to be uniformly higher order on

Uε × Bσ ⊂ R
n × R, ε > 0, if for some σ > 0, there exists a monotone increasing

function, W (ε), such that

|β(x, u)| ≤ εW (ε)[|x| + |u|], x ∈ Uε, |u| ≤ σ. (5.2)

Because the control task will invariably be that of steering the system (5.1) to

track some predetermined reference trajectory, it is of interest to determine what

states, xf ∈ M are reachable from some other arbitrary initial state, x0 ∈ M . Let

V ∞(M) be the Lie algebra of C∞ vector fields on M .

Definition 5.3 The controllability algebra, C, is the smallest subalgebra of V∞(M)

that contains f, g.

Definition 5.4 The controllability distribution, ∆C(x) is the distribution generated

by the controllability algebra

∆C(x) = span{X(x) | X ∈ C}.

Since C is a subalgebra it follows that ∆C is involutive.
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Definition 5.5 (Reachability) The system (5.1) is locally reachable from a point

x0 ∈M if there exists a neighborhood V of x0 such that for each xf ∈ V , there exists

T > 0, class K function ζ, and u = {u(t) | ‖u‖ ≤ ζ(‖x‖), t ∈ [0, T ]}, where the system

starting at x0 and time t = 0, reaches xf at time T.

Let RV (x0, T ) be the reachable set from x0 at time T > 0, following trajectories which

remain for t ≤ T in the neighborhood V of x0. Furthermore, define the cumulative

reachable set as

RV
T (x0) =

⋃

τ≤T

RV (x0, τ)

Theorem 5.1 (Controllability rank condition) Consider the nonlinear system

(5.1) with dynamics on an n-dimensional manifold, M and local coordinates (x1, . . . , xn).

If

dim ∆C(x0) = n (5.3)

at a point x0 ∈ M , then for any neighborhood V of x0 and T > 0 the set RV
T (x0)

contains a non-empty subset of M . If (5.3) holds for all x ∈ M , then the system is

locally reachable.

Although a system may violate Theorem 5.1, observing a condition where

0 < dim ∆C(x0) < n may warrant further analysis as the following definition and

lemma suggest.

Definition 5.6 A submanifold Sx is an integral manifold of a distribution ∆ on M

if

TxS = ∆(x), ∀x ∈ Sx

where TxS is the tangent space of Sx at x.
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Lemma 5.1 If ∆C(x0) is a controllability distribution of (5.1) at x0 and

dim ∆C(x0) = k < n, then there exists a submanifold

Sx0
:= {x ∈M | xk+1 = pk+1, . . . , xn = pn} (5.4)

such that Sx0
is an integral manifold of ∆C(x0) for each fixed set of constants,

pk+1, . . . , pn.

The totality of submanifolds parameterized by constants pk+1, . . . , pn forms a foliation

of M and each submanifold (5.4) is a leaf of this foliation.

The interested reader is referred to [34, 35, 36, 37] for a more comprehensive

insight to the material of this section.

5.2 Approximate Input/Output Linearization of Nonregular Systems

The input/output relationship of (5.1) can be characterized by taking consecutive Lie

derivatives of the output until the input appears

y = h(x)

ẏ = Lfh(x)

... (5.5)

y(γ−1) = Lγ−1
f h(x)

y(γ) = Lγfh(x) + LgL
γ−1
f h(x)u

where γ ≤ n is the system relative degree. Since M is smooth and connected, it is

always possible to find a diffeomorphism, Π : x 7→ (ξ, η), representing the system in
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a cascaded canonical form as

ξ̇1 = ξ2

ξ̇2 = ξ3

... (5.6)

ξ̇γ−1 = ξγ

ξ̇γ = ρ(ξ) + β(ξ)u

η̇ = q(ξ, η) (5.7)

where ξ1 = h(x). The system represented as (5.6)-(5.7) is said to be in normal

form [34] and the n− γ equations (5.7) are the system internal dynamics. A system

satisfying Theorem 5.1 guarantees the existence of an output which renders the system

relative degree γ = n. Normally, the control input

u = −
Lγfh(x) − v

LgL
γ−1
f h(x)

(5.8)

will result in y(γ) = v and is sufficient to yield linear, stable input/output error

tracking of a reference, yr, if v induces a Hurwitz polynomial,

v = y(γ)
r + aγ−1(y

γ−1
r − yγ−1) + · · ·+ a0(yr − y).

However, if there exists a submanifold Ms ⊂M where

Ms = {x ∈M | LgLγ−1
f h(x) = 0}

then an input singular condition exists in the control law (5.8), the relative degree

becomes undefined, and exact input/output linearization is not achievable. This

condition can be overcome by approximating the output and corresponding derivatives

on the singular submanifold, Ms [15]. In the following study, it is assumed that there

exists a singular point {xs ∈ Ms | xs = LgL
γ−1
f h(xs) = 0}. If this is not the case,

the system can be transformed to a new set of coordinates through an appropriate
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diffeomorphism. Consider a set of C∞ functions αk(x) and βk(x), k = 1, . . . , γ where

h(x) = α1(x) + β0(x, u) (5.9)

and β0(x, u) is O(x, u)2. Differentiating α1(x) along system trajectories gives

α̇1(x) = Lfα1(x) + Lgα1(x)u (5.10)

If Lgα1(x) is O(x)m, m ≥ 1, the term is small in a neighborhood of xs relative to

other system terms and can be neglected. Choosing α2(x) such that

Lf+guα1(x) = α2(x) + β1(x, u) (5.11)

where β1(x, u) is O(x, u)2 results in a similar analysis. Continuing the procedure until

the control term Lgαγ(x) is O(x)1 results in

Lf+guαγ(x) = b(x) + a(x)u+ βγ(x) (5.12)

where a(x) is O(x)1 and an approximate input/output map with relative degree γ is

achieved.

Definition 5.7 (Robust relative degree) A nonlinear system (5.1) has a robust

relative degree, γ, if there exist smooth functions αk(x), k = 1, . . . , γ such that

h(x) = α1(x) + β0(x, u)

Lf+guαk(x) = αk+1(x) + βk(x, u), k = 1, . . . , γ − 1 (5.13)

Lf+guαγ(x) = b(x) + a(x)u + βγ(x)

where the functions βk(x, u), k = 0, . . . , γ are O(x, u)2 and a(x) is O(x)1.

The neglected functions, βk(x, u), are O(x, u)2 in a neighborhood of the origin. The

approximation can be extended to larger regions if the functions further satisfy Defi-

nition 5.2.
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Theorem 5.2 [15] Consider the dynamics (5.1) defined on M and that there exists

a singular submanifold Ms ⊂M . Let Uε be a neighborhood of some xs ∈Ms centered

at the origin and suppose that

• the zero dynamics of the approximate system, η̇ = q(0, η), are exponentially

stable and q is Lipschitz in ξ and η.

• the functions βk(x, u) are uniformly higher order on Uε × Bσ.

Then for sufficiently small ε and for desired trajectories with sufficiently small values,

the state of the closed loop system with control law

u =
−b(x) + v

a(x)

will remain bounded and the tracking error will be O(ε).

Stability is only guaranteed, however, within some operating range Uε and when

the neglected βk terms become large outside Uε, unbounded errors and instability

can occur. Solutions developed in [17, 18] expand the operating range by using

approximate tracking near Ms and switching to the exact law prior to departing Uε.

5.3 The Ball and Beam System

Many of the proposed solutions pertaining to input singularities are developed using

the classic ball and beam system (BBS) as a demonstrative platform. The BBS

consists of a beam free to rotate in a vertical plane by applying a torque at the center

of rotation and a ball free to roll along the length of the beam (Fig 5.1). It is required

that the ball remain in contact with the beam and roll without slippage. The control

objective is to apply a torque input to the beam such that the ball tracks a given

reference trajectory. Let the moment of inertia of the beam be Jm, the mass and

moment of inertia of the ball be m and Jl, respectively, the radius of the ball be

rl, and the acceleration of gravity be G. Choosing the beam angle θ and the ball
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Figure 5.1: Ball and beam system.

displacement r as position coordinates for the system, the equations of motion are

given by

(
Jl
r2
l

+m

)

r̈ +mG sin θ −mrθ̇2 = 0 (5.14)

(mr2 + Jm + Jl)θ̈ + 2mrṙθ̇ +mGr cos θ = τ (5.15)

where τ is the torque applied to the beam. For simplicity, the cumulative inertia term

is assigned

m
Jl

r2
l

+m
= 1

Additionally, representing the coordinates of the input space using the nonlinear

transformation

τ = (mr2 + Jm + Jl) u+ 2mrṙθ̇ +mGr cos θ (5.16)
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results in a new input, u. Defining the system in local physical coordinates

[r ṙ θ θ̇]T = [x1 x2 x3 x4]
T , the system can be written in state-space form as

ẋ1 = x2

ẋ2 = x1x
2
4 −G sin x3

ẋ3 = x4 (5.17)

ẋ4 = u

y = x1

Following the usual input/output linearization procedure (5.5), the output, y = x1,

is differentiated until the input appears

y = x1

ẏ = x2 (5.18)

ÿ = x1x
2
4 −G sin x3

...
y = x2x

2
4 − x4 cosx3

︸ ︷︷ ︸

b(x)

+ 2x1x4
︸ ︷︷ ︸

a(x)

u

If a(x) is nonzero in the region of interest, then the system relative degree is three

and the control law

u =
−b(x) + v

a(x)
(5.19)

will yield a linear input/output relationship described by
...
y = v. However, the control

coefficient, a(x), is zero whenever the beam angular velocity, x4 = θ̇, or ball position,

x1 = r, are zero creating a singular condition in the control input and defining a

singular submanifold, Ms := {x ∈ R
4 | x1x4 = 0}. Further analysis of (5.18) also

reveals a relative degree that becomes undefined for all x ∈Ms.

Linearization of (5.17) about xTs = [x1 x2 x3 x4]
T = [0 0 0 0]T gives

ẋ = Ax+Bu (5.20)
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where

A =












0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0












B =












0

0

0

1












(5.21)

It can be readily determined that the linear controllability matrix,

Cl = [B | AB | A2B | A3B]

is full rank thereby implying RV
T (xs) 6= ∅ for the nonlinear system [36]. Therefore, any

nonzero control input (torque) will produce a nonzero beam angular velocity (θ̇ 6= 0),

setting the ball in motion to produce a new ball position (r 6= 0) in a neighborhood

of the singular point.

Consider constructing an approximate system using the technique of Section 5.2.

A nonlinear change of coordinates letting ξ1 = α1(x) = x1 and choosing αi(·) at each

step gives

ξ̇1 = x2
︸︷︷︸

ξ2=α2(x)

ξ̇1 = ξ2

ξ̇2 = −G sin x3 + x1x
2
4

︸ ︷︷ ︸

ξ3=α3(x)

ξ̇2 = ξ3 (5.22)

ξ̇3 = −Gx4 cosx3 + x2x
2
4

︸ ︷︷ ︸

ξ4=α4(x)

+ 2x1x4 u
︸ ︷︷ ︸

β3(x,u)

ξ̇3 = ξ4 + β3(x, u)

ξ̇4 = x1x
2
4

︸︷︷︸

b(x)

− (G cosx3 − 2x2x4)
︸ ︷︷ ︸

a(x)

u ξ̇4 = b(x) + a(x)u

where the term β3(x, u) is neglected. By Definition 5.7, the system has robust relative

degree γ = 4. The control law (5.19) can now be used to linearize the approximate

system (5.22) and, by Theorem 5.2, maneuver the ball through the singular manifold,

Ms, with bounded tracking error.
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5.4 The Disk Drive Commutational L/UL Actuator

Using results from Chapter 4, the dynamics of the CRL actuator in local physical

coordinates x1 = θ, x2 = θ̇, x3 = i, and u = Vs gives the third-order state space

representation

ẋ1 = x2

ẋ2 =
1

J
[Kt(x1)x3 − Tb(x1) − Tf sat(x2)] (5.23)

ẋ3 =
1

L
[−Kt(x1)x2 − Rx3 + u]

defined on M . For the purpose of analysis, consider Tb(x1) = Tf = 0, ∀x ∈ M such

that

ẋ1 = x2

ẋ2 = Kt(x1)x3 (5.24)

ẋ3 = −Kt(x1)x2 − x3 + u

where inertia, resistance, and inductance all take values of unity. The drift and input

vector fields in (5.1) take the form

f(x) =









x2

Kt(x1)x3

−Kt(x1)x2 − x3









, g(x) =









0

0

1









(5.25)

With output, y = x2, the input/output relationship is

y = x2

ẏ = Kt(x1)x3

ÿ =
∂Kt

∂x1

x2x3 −K2
t (x1)x2 −Kt(x1)x3

︸ ︷︷ ︸

b(x)

+Kt(x1)
︸ ︷︷ ︸

a(x)

u

If Kt(x1) is nonzero in the region of interest, then the system has relative degree γ = 2

and the control law (5.19) can be used to provide a linear input/output relationship.
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However, if there exists some {x ∈M | Kt(x1) = 0}, then a singular condition exists

along with an undefined relative degree. An approximate system using the method

of Section 5.2 with diffeomorphism Π : x 7→ (ξ, η) where ξ1 = α1(x) = x2 gives

ξ̇1 = Kt(x1)x3
︸ ︷︷ ︸

ξ2=α2(x)

ξ̇2 =
∂Kt

∂x1
x2x3 −K2

t (x1)x2 −Kt(x1)x3

︸ ︷︷ ︸

ξ3=α3(x)

+Kt(x1)u
︸ ︷︷ ︸

β2(x)

ξ̇3 = K2
t (x1)x2 − 3

∂Kt

∂x1
Kt(x1)x

2
2 (5.26)

+

[
∂2Kt

∂x2
1

x2
2 +

∂Kt

∂x1
Kt(x1)x3 − 2

∂Kt

∂x1
x2 −K3

t (x1) +Kt(x1)

]

x3

−
[
∂Kt

∂x1
x2 +Kt(x1)

]

u

...

ξ̇k = αk+1(Kt(x1), x2, x3) + βk(x, u)

η̇ = x1

Analysis of (5.26) reveals that all terms with x3 and u are products with Kt and x2

defining a singular submanifold

Ms :=

{

x ∈M
∣
∣
∣
∂Kt

∂x1
x2 = Kt(x1)

}

Therefore, the CRL system also fails to have a robust relative degree. It is of interest

to determine the reachable set from the singular manifold. Even if exact input/output

linearization cannot be achieved from Ms, the potential of reaching other states may

exist as in the ball and beam example. Without loss of generality, assume for the

exact system, Kt(0) = 0 and the equilibrium point xTc = [0 0 0] ∈ Ms. Consider the

controllability subalgebra, C, at xc on Ms formed by taking successive Lie brackets of

f and g on Ms

adfg = [f, g] =
∂g

∂x
f − ∂f

∂x
g (5.27)
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where

f(xc) =









0

0

0









∂f

∂x
(xc) =









0 1 0

0 0 0

0 0 −1









g(xc) =









0

0

1









∂g

∂x
(xc) = [0] (5.28)

Repeated Lie brackets take the form

adkfg = −∂f
∂x

(xc) ad
(k−1)
f , k = 0, 1, 2, . . . (5.29)

resulting in

C(xc) =









0 · · ·

0 · · ·

(−1)k · · ·









, k = 0, 1, 2, . . . (5.30)

Therefore, the controllability distribution ∆C(xc) = span{C(xc)} has dimension

dim ∆C(xc) = 1 and the system is not locally reachable at xc. Furthermore, there ex-

ists no output resulting in a relative degree γ = 3 system on xc. However, Lemma 5.1

suggests that RV
T (xc) is non-empty and that some portion of the system can continue

to be manipulated with control input leading to the following theorem

Theorem 5.3 Consider the CRL system with dynamics (5.24) and controllability

distribution ∆C(xc) where dim ∆C(xc) = 1 < 3. There exists a neighborhood U of xc

and constant p2 such that the submanifold

Sxc
:= {x ∈ Ms | x1 = 0, x2 = p2}

is an integral manifold of ∆C(xc) Then for any neighborhood U of xc and for all T > 0,

RV
T (xc) is contained in Sxc

. Furthermore, RV
T (xc) contains a non-empty open set of

the integral manifold Sxc
. Hence the system restricted to Sxc

is locally reachable.
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Proof. Since f(x) + g(x)u ∈ C for any u and x ∈ M , the system (5.24) for xc can be

restricted to Sxc
which, by Lemma 5.1, is an integral manifold of

dim{Sxc
} = dim{∆C(xc)}.

The existence of a non-empty RV
T (xc) follows from Theorem 5.1.

The submanifold Sxc
is a leaf of the foliation generated by parameterizing all admissi-

ble values of angular velocity according to x2 = p2 for each constant p2. Theorem 5.3

can be applied to each foliation leaf resulting in a velocity independent reachable

set. The reachable set in this case is the set of all admissible values of current with

dynamics described by

ẋ3 = −Kt(x1)x2 − x3 + u (5.31)

and the point xc ∈Mc is defined as an uncontrollable, input singularity or a “critical

point” where Mc := {x ∈Ms | dim ∆C(xc) < n}.

This phenomena may be further investigated by revisiting the BBS without the

influence of gravity (G = 0). Mathematically, the system of (5.17) now becomes

ẋ1 = x2

ẋ2 = x1x
2
4 (5.32)

ẋ3 = x4

ẋ4 = u

and continues to exhibit an undefined relative degree. Following the system approxi-

mation construction procedure as in (5.22) gives
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ξ̇1 = x2
︸︷︷︸

ξ2=α2(x)

ξ̇2 = x1x
2
4

︸︷︷︸

ξ3=α3(x)

ξ̇3 = x2x
2
4

︸︷︷︸

ξ4=α4(x)

+ 2x1x4 u
︸ ︷︷ ︸

β3(x,u)

(5.33)

ξ̇4 = x1x
3
4

︸︷︷︸

ξ4=α4(x)

+ 2x2x4 u
︸ ︷︷ ︸

β4(x,u)

...

ξ̇k = αk+1(x1, x2, x4) + βk(x1, x2, x4)u

where all terms with u are products of x4. Therefore, without gravity, the BBS also

fails to possess a robust relative degree. Furthermore, the absence of gravity alters

controllability about the singular point. Reevaluation of the system controllability

at xTc = [x1 x2 x3 x4]
T = [0 0 0 0]T with the new dynamics of (5.33) gives the

controllability subalgebra

C(xc) = [ad0
fg | adfg] =












0 0

0 0

0 −1

1 0












, adkfg = [0] , ∀ k > 1 (5.34)

where

f(xc) =












0

0

0

0












∂f

∂x
(xc) =












0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0












g(xc) =












0

0

0

1












∂g

∂x
(xc) = [0]

So the controllability distribution ∆C(xc) = span{C(xc)}, has dimension

dim ∆C(xc) = 2 < 4, and the system is, therefore, not locally reachable from xc on M .
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From a physical perspective, radial motion (r, ṙ) of the ball cannot be induced by a

nonzero angular position of the beam. Without gravity, there is no reachable state in

ball position or velocity from xc resulting from an applied torque to the beam. Values

of beam angular position and velocity remain reachable, however, and a result similar

to Theorem 5.3 implies the existence of a foliation parameterized by all admissible

values of beam angular position, p3. Therefore, a non-empty RV
T (xc) ⊂ Sxc

exists

where the submanifold

Sxc
:= {x ∈M | x1 = 0, x3 = p3}

constitutes a leaf of the foliation for each fixed constant, p3.

Introduction of a bias term in the CRL system designed using the guidelines of

Section 4.1.3 alters the drift vector field. For simplicity, it is assumed that the constant

and first-order coefficient terms of the bias polynomial estimate are c0 = c1 = 1. The

drift vector field at xTs = [0 0 0] now becomes

f(xs) =









0

−1

0









∂f

∂x
(xs) =









0 1 0

−1 0 0

0 0 −1









(5.35)

The controllability subalgebra remains unchanged and, therefore, the bias offers no

assistance in defining a relative degree. However, the bias does change the equilibrium

state of the system. The next section details the CRL system equilibrium analysis and

gives a sufficient condition for maneuvering through the uncontrollable singularity.
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5.5 Commutational Ramp Load Actuator Dynamic Analysis

Based on the modeling development in Chapter 4, the actuator static and dynamic

behavior on the ramp is investigated. This section establishes equilibria existing

within the ramp angle and defines conditions at which they occur. A sufficient con-

dition ensuring actuator motion through the equilibria and critical point xc is given.

There exists two forced equilibrium points, xeq− and xeq+, depending on the location

of the actuator arm relative to the critical angle, x1c. Evaluating the left side of

equation (5.23) to zero, the equilibrium points are shown to occur when

Kt(x1eq)usat − RTb(x1eq) = 0 (5.36)

where usat is the saturation voltage for the system. Knowing Kt(x1) and Tb(x1), the

equilibrium points can be determined as a function of usat and the coil resistance

where x1eq− < x1c < x1eq+. Consider Uc ⊂M containing Mc such that

Uc := {x ∈M | x1eq− < x1 < x1eq+}

Four possibilities exist corresponding to the dynamics of equation (5.23) when maneu-

vering through Uc with and without input commutation. Two input voltage levels,

±usat are used along with the design parameters developed in Section 4.4 to demon-

strate each case. Using equation (5.36) along with the bias and torque factor polyno-

mial expressions of (4.9) with coefficients from Table 4.7, the two equilibrium points

were computed at 0.1360 rad and 0.1534 rad for x1eq− and x1eq+, respectively. The

critical angle x1c = 0.1449 rad lies between the two equilibrium points. The following

four cases reflect the possible scenarios for an attempted ramp load maneuver with

the proposed commutational actuator.

111



Case 1: No commutation (u = −usat) The actuator initially moves away from

the OCS through x1c, but is forced back toward the OCS when x1 > x1c. The

cycle continues and a stable focus results about x1eq− as shown in Figure 5.2.
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Figure 5.2: Actuator ramp dynamic characteristics without commutation

112



The remaining three scenarios occur when the input voltage switches polarity

u = −usat, 0 ≤ t < ts or u = usat, t ≥ ts at some switching time, ts.

Case 2: The actuator initially moves away from the OCS. The input voltage reverses

polarity at ts = 3.5 msec at an angle x1(ts) < x1eq+. There is not enough initial

velocity to reach x1eq+ and the actuator returns to the OCS (Fig. 5.3).
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Figure 5.3: Dynamic characteristics with commutation. Actuator forced back to OCS

113



Case 3: Similar to Case 2, but ts = 3.929 msec occurs later than Case 2 where there

is just enough initial velocity such that x2 = 0 at x1eq+. As shown in Figure 5.4,

the actuator rests at x1eq+.
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Figure 5.4: Dynamic characteristics with commutation. Actuator rests at x1eq+
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Case 4: The input polarity reversal occurs at ts = 6.0 msec such that x2 > 0 at

x1eq+ and the actuator moves through x1eq+ and loads the heads onto the disk
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Figure 5.5: Dynamic characteristics with commutation. Actuator loads onto disks
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The latter three cases suggest that there exists a minimum, critical angular veloc-

ity, x2c, such that if the actuator reaches x2c prior to reaching, Uc, it can successfully

pass through Uc to some {x ∈ M | x1 > x1eq+}. Transform the CRL system to a

new set of local physical coordinates z = [θ ω α] on M through the diffeomorphism

Π : x 7→ z

θ = x1

ω = x2 (5.37)

α =
1

J
[Kt(x1)x3 − Tb(x1) − Tf ]

where θ, ω, α are the angular position, velocity, and acceleration, respectively, defined

as

ω =
dθ

dt
, α =

dω

dt
(5.38)

The equations in (5.38) can be rewritten to establish a time independent relationship

between angular velocity and acceleration

ω
dω

dθ
= α(θ) or ω dω = α(θ) dθ (5.39)

Integrating both sides of (5.39) and noting the expression for angular acceleration

from (5.37) gives

1

2

[
ω2(θeq+, i) − ω2

c (θo, i)
]

=

∫ θeq+

θo

α(ζ) dζ

ω2(θeq+, i) − ω2
c (θo, i) =

2

J

{∫ θeq+

θo

[Kt(ζ)i− Tb(ζ) − Tf ] dζ

}

where ωc(θo, i) is the actuator initial velocity at some θo < θeq+. If

ω2
c (θo, i) =

∣
∣
∣
∣

2

J

{∫ θeq+

θo

[Kt(ζ)i− Tb(ζ)] dζ − Tf(θeq+ − θo)

}∣
∣
∣
∣
, ∀ z ∈ Uc

then ω2(θeq+, i) ≥ 0 and the actuator will either pass through or rest at θeq+, respec-

tively. If

ω2
c (θo, i) >

∣
∣
∣
∣

2

J

{∫ θeq+

θo

[Kt(ζ)i− Tb(ζ)]dζ − Tf(θeq+ − θo)

}∣
∣
∣
∣
, ∀ z ∈ Uc (5.40)
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then ω2(θeq+, i) > 0 and the actuator will pass through θeq+ for all z ∈ Uc. Therefore,

knowing the design tolerances, an upper bound on the right side of (5.40) can be de-

termined resulting in an input that guarantees (5.40) is satisfied. The above example

for the CRL system leads to a general formulation for a class of systems defined on

uncontrollable, singular manifolds.

Theorem 5.4 Consider the nonlinear system (5.1) defined on a smooth, connected,

n-dimensional manifold M represented in the normal form as

ξ̇1 = ξ2

ξ̇2 = ξ3

... (5.41)

ξ̇k−1 = ξk

ξ̇k = ξk+1

ξ̇k+1 = ρ(ξ) + β(ξ)u

η̇ = q(ξ, η)

where 2 ≤ k ≤ (n− 1). Let Uc be an open neighborhood of a critical point ξc ∈ Mc

where

Mc := {ξ ∈M | β(ξ) = 0, ξj = 0, j = 2, . . . , k}

and consider the one-dimensional submanifold Θc ⊂ Uc,

Θc := {ξ ∈ Uc | ξk−1 6= 0, ξk−1 ∈ (a, b)}

where [a, b] is in the closure of Uc. There exists a set

MΩ :=

{

ξ ∈M
∣
∣
∣ ξ2

k >

∣
∣
∣
∣
2

∫ b

a

ξk+1dξk−1

∣
∣
∣
∣
, ∀ ξ ∈ Uc

}

such that if the system is driven to MΩ, it can successfully pass through Uc.

117



Proof. Integration of the time-independent relationship

ξkdξk = ξk+1dξk−1

results in

ξ2
kb − ξ2

ka = 2

∫

Θc

ξk+1dξk−1 = 2

∫ b

a

ξk+1dξk−1

where ξka and ξkb are the values of ξk in the submanifold, Θc, corresponding to

ξk−1 = a and ξk−1 = b, respectively. Therefore, if

ξ2
ka >

∣
∣
∣
∣
2

∫ b

a

ξk+1dξk−1

∣
∣
∣
∣
, ∀ ξ ∈ Uc

then ξ2
kb > 0 and ξ̇k−1 > 0 for ξk−1 = b. Since b is in the boundary set of Uc, the

system moves to a point outside of Uc.

The sufficient condition of Theorem 5.4 will prove to be a crucial basis for generation

of an admissible reference trajectory that can be tracked using closed loop control for

a successful ramp load maneuver.

5.6 Summary

This chapter developed the general characteristics of systems possessing controllable

and uncontrollable singularities. Terminology and control solutions from current liter-

ature are presented for handling singularities along with applications to the classic ball

and beam system. A comparison is presented between the ball and beam and com-

mutational ramp load systems. The comparison reveals deficiencies in the existing

control solutions when applied to commutational ramp loading with an uncontrol-

lable, singular point. Equilibria existing within the ramp angle are established and

conditions at which they occur are defined. A sufficient condition for manuevering

through the uncontrollable singularity is given and a general formulation is developed

for a class of systems possessing this quality.
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CHAPTER 6

DISK DRIVE COMMUTATIONAL RAMP LOAD CONTROL

The contributions of this chapter include the integration and implementation of the

commutational ramp load disk drive actuator designed in Chapter 4. Operation of

the concept requires an input polarity reversal to maneuver the actuator through

an uncontrollable region along the ramp. A trajectory is developed based on the

analysis of Chapter 5 to provide a tracking reference and promote motion through

the uncontrollable region. A formal procedure is developed to facilitate the trajec-

tory design method. Finally, two controllers are developed to specifically fulfill the

tracking requirement. Both controllers compensate for nonlinearities during a ramp

load maneuver, but allow for easy transition to a linear controller upon loading and

entry into the data zone. Extensive experiments are conducted to verify both design

concepts.

A description of the performance requirements and trajectory generation proce-

dure for commutational ramp loading are presented in Section 6.1 and 6.2, respec-

tively. A robust state feedback controller to track the reference trajectory is developed

in Section 6.3. To compensate for the absence of position and velocity measurement,

an output feedback tracking controller is given in Section 6.4. Simulations and ex-

periments are performed to verify the designs. Section 6.5 summarizes the results.

6.1 Performance Requirements

To protect the disk drive against data loss or catastrophic damage, three primary

performance constraints are necessary. As discussed in Chapter 1, the vertical and
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Table 6.1: Performance requirements

Parameter Max Value

Max Loading velocity (ωl) 5.56 rad/s

Max Head acceleration (αmax) 20.4 krad/s2

Max Control output (V) 11 V

Min Sample rate (fs) 20 kHz

horizontal head loading velocities must be regulated to prevent HDI. Table 4.4 lists

these velocities for the ramp load disk drive designed in Chapter 4. Based on the

actuator arm pivot to head distance it was determined that a maximum angular

loading velocity of ωl ≤ 5.56 rad/s (10 in/s at the head) could be achieved without

HDI. Additionally, a linear head acceleration limit exists to prevent damage to the

head/suspension interface. The R/W head is attached to a suspension (Fig. 6.1)

designed with an inherent acceleration limit to avoid structural damage. The limit

for the particular drive under study was 980 m/s2 (1000 g) corresponding to an

angular acceleration αmax = 20.4 krad/s2. Finally, it is required that the ramp loading

maneuver execute within the 11 V saturation voltage of the amplifier. Table 6.1

summarizes the performance requirements.

6.2 Trajectory Design

Following the analysis of Chapters 4 and 5, the actuator becomes uncontrollable at a

critical angle, θc. An implementation consideration is that there is actually a neigh-

borhood around θc where Kt(θ) is very small and V → Vsat during tracking. An

angle or zone exists within which the velocity and position states cannot be tracked.

Using the results of Chapter 5, a trajectory generation strategy must be developed

for successful passage of the actuator through this zone while providing a smooth,
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Suspension

Lift tab

R/W head

Figure 6.1: Suspension lift tab on ramp

continuous state trajectory. A strategy is proposed that considers the primary con-

straints of maximum angular loading velocity, ωl, maximum angular acceleration,

αmax, and the saturation voltage Vsat. It is assumed that Kt(θ) and Tb(θ) are known.

The loading velocity should be achieved prior to the ramp loading angle, θr, but sub-

sequent to θc. An angle, ∆θc, is chosen as a design parameter and selected so that

θc is centered within ∆θc. The strategy requires the trajectory be mapped into three

sectors (Fig. 6.2) based on angular position

S1 := [0, θ−] ; S2 := [θ−, θ+] ; S3 := [θ+, θr] (6.1)

where

θ− = θc −
∆θc
2

and θ+ = θc +
∆θc
2
.

Recall from Section 5.5 that the input saturates at the equilibrium points. Therefore,

it is desirable that the set Θc := [θeq−, θeq+] ⊂ S2 to guarantee controllability in

sectors S1 and S3. Ideally, ωl would be achieved as the actuator exits S2, minimizing

the error in S3 prior to the actuator departing the ramp and loading onto the disk.
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It follows that velocity is constant in S3 (ωS3 = ωl) and position is required to vary

linearly according to constant velocity. The current trajectory in S3 is calculated to

sustain ωS3 based on the acceleration required to overcome the bias and frictional

torques

iS3 =
Tfx + Tb(θS3)

Kt(θS3)
(6.2)

Since it is known that little or no control effort will be available for controlling the

mechanical dynamics within ∆θc (S2), Theorem 5.4 can be used to determine the min-

imum initial angular velocity, ωS2o, required to overcome magnetic bias and dynamic

friction torques for sustained actuator motion. Assuming a linear velocity decay to

wl, this required angular velocity can be estimated from (5.40) as

ωS2o =

√

ω2
l +

2(Tbx + Tfx −Ktxi)∆θc
J

(6.3)

>

√
∣
∣
∣
∣

2

J

{∫

θ

−θ+ [Kt(ζ)i− Tb(ζ)] dζ − Tfx(θ+ − θ−)

}∣
∣
∣
∣
, ∀ θ ∈ S2

where Tbx and Ktx are the maximum bias torque and torque factor within S2, respec-

tively. While inside S2, linear velocity decay is observed beginning at ωS2o and ending

at ωS2f = ωl. The initial and final position θS2o = θ− and θS2f = θ+, respectively,

correspond to the boundaries of S2 and the position trajectory within S2 is parabolic

resulting from the linear velocity decay. It follows from Theorem 5.3 that current re-

mains controllable in S2 at or near the critical angle. Since current has little effect on

the actuator dynamics within S2, it is advantageous to reverse polarity and increase

the current to an initial value, iS3o, that will sustain the actuator at the loading veloc-

ity, ωl, upon entering S3. Therefore, a smooth trajectory is generated from iS2o = 0

to iS2f = iS3o. Prior to entering S2, a smooth trajectory can be generated in S1 with

initial and final conditions

θS1o = ωS1o = αS1o = 0, θS1f = θ−, ωS1f = ωS2o, αS1f = − Tfx + Tbx
J

(6.4)
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The current is computed from the angular acceleration trajectory as

iS1 =
J(αS1 − αS1f)

Kt(θS1)
(6.5)

Subtraction of αS1f results in an initial value, iS1o, to immediately compensate for

effects of bias and friction. Also, iS1f = iS2o = 0 to ensure saturation is not reached

for small values of Kt(θ) upon entering S2. The trajectory generation procedure is

summarized in the following five steps:

1. Determine the constraints ωl, αmax, and Vsat and select the size of ∆θc.

2. Map the ramp angle into three sectors as indicated in (6.1). The trajectory in S3

corresponds to sustaining the constant loading velocity ωS3 = ωl. Position, θS3,

increases linearly corresponding to constant velocity and, with measurements

of Kt(θ), Tb(θ), and Tf , the current trajectory is computed using (6.2).

3. The initial and final conditions, θS2o and θS2f , respectively correspond to the

boundaries of S2 in (6.1). The final velocity ωS2f = ωS3 = ωl and the initial

velocity, ωS2o, can be determined from (6.3). The velocity profile will decay

linearly within S2 and θS2 will be parabolic corresponding to linear velocity.

Represent the current trajectory, iS2, as a smooth, continuous function begin-

ning from iS2o = 0 to iS2f = iS3o.

4. Generate a smooth, continuous trajectory in S1 corresponding to the initial and

final conditions (6.4). The current trajectory, iS1, corresponds to (6.5).

5. Ensure that the constraints are met. If not, adjust ∆θc and repeat the proce-

dure.

An example trajectory is shown in Figure 6.2.
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Figure 6.2: Example ramp load trajectory profile

6.3 Robust State-Feedback Control

A method is required to track the trajectory developed in Section 6.2 while adhering

to the constraints outlined in Section 6.1. A robust control law is developed that

provides stability and compensation for small errors that may exist in association with

relative differences in torque factor and bias based on reference and actual position.

A variation is also presented that is particularly advantageous for systems that are

sample rate limited under low disturbance conditions.
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6.3.1 Controller Design

Choosing the states as x1 = θ, x2 = θ̇, x3 = i, and the control u = Vs gives the

third-order state space representation

ẋ1 = x2

ẋ2 =
1

J
[Kt(x1)x3 − Tb(x1) − Tf sat(x2)] (6.6)

ẋ3 =
1

L
[−Kt(x1)x2 − Rx3 + u]

The system becomes uncontrollable at θc as discussed in Section 6.2. Additionally,

the controller must not exceed Vsat which can be problematic when Kt(θ) becomes

small. Using the sector mapping introduced in Section 6.2, the controller gains can

be chosen constant in each sector with smooth, continuous transitions near the sec-

tor boundaries. Each sector has individual tracking priorities and the gains can be

weighted based on the tracking priority of each state within a sector. For example, it is

important to keep the velocity and position error low in S1. The current tracking per-

formance, however, can be relaxed while only constraining u < Vsat. Therefore, more

weighting can be applied to position and velocity error in S1. In S2, because of the

controllability condition, the position and velocity trajectory designed in Section 6.2

assume dynamics from induced current are negligible. Therefore, an appropriate

choice for the velocity and position gains would be zero. It is important, however,

for current to be driven from iS2o = 0 to iS2f accurately so that errors are small upon

entry into S3. Therefore, weighting on current tracking could be increased in S2. The

resulting control gains take the form of a vector valued function, Kj(x1), (j = 1, 2, 3)

where each element of Kj is a sector dependent constant with smooth, continuous

transitions between each sector. As discussed in Section 4.2, a sign change in Kt(x1)

requires a sign change in x3 to maintain directional consistency with the position

and velocity trajectory. Compensation for this requirement is inherent in the cur-

rent trajectory. However, this is not reflected in the position and velocity trajectory.
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Therefore, direct multiplication of the position and velocity portion of the control law

by Kt(θ) will satisfy the requirement. The final control law takes the form

us = −Kt(x1)[K1(x1)e1 + K2(x1)e2] −K3(x1)e3 + Vr (6.7)

where K1(x1), K2(x1), and K3(x1) are continuous gain functions, ej = xj − xjr is

the state tracking error, and xjr is the desired trajectory of the j-th state. The

feed-forward reference voltage is represented by

Vr = Lẋ3r +Rx3r +Kt(x1r)x2r (6.8)

Since the torque factor and bias terms in the reference trajectory are based on desired

position rather than actual position, additional analysis is required for stability. The

following control law

usp = L[K1p(x1)e1 + K2p(x1)e2 −K3p(x1)e3 + ∆u] + Vr (6.9)

where Kjp(x1) are smooth, continuous gain functions provides stability in S1 and S3

when large parameter perturbations are present resulting from position error. An

auxiliary control, ∆u, is used to compensate for the perturbations. With knowledge

of Kt, Tb, and Tf , the reference trajectory dynamics are chosen as

ẋ1r = x2r

ẋ2r =
1

J
[Kt(x1r)x3r − Tb(x1r) − Tf sat(x2r)] (6.10)

ẋ3r =
1

L
[−Kt(x1r)x2r −Rx3r]

Subtracting (6.10) from (6.6) and substituting usp for u gives the error dynamics

ė1 = e2

ė2 =
1

J
[Kt(x1)e3 + ∆Ktx3r − ∆Tb − ∆Tf ] (6.11)

ė3 =
1

L
[−Kt(x1)e2 −Re3 − ∆Ktx2r] + usp − Vr
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where

∆Kt = Kt(x1) −Kt(x1r),

∆Tb = Tb(x1) − Tb(x1r), (6.12)

∆Tf = Tf sat(x2) − Tf sat(x2r).

The equations in (6.12) represent the physical parameter perturbations resulting from

differences in the desired and actual position.

Theorem 6.1 The control law (6.9) with

K1p(x1) =
J

Kt(x1)

[
γ2

1λ− γ2
1γ2λ

]

K2p(x1) =
Kt(x1)

L
+

J

Kt(x1)

[
γ2

1 − γ1γ2λ− γ2
1γ2

]
(6.13)

K3p(x1) =
R

L
− K̇m(x1)

Kt(x1)
− λ− γ1γ2

∆u =
∆Kt

L
x2r −

1

Kt(x1)
[(∆Kt)

′x3r + ∆Ktẋ3r − (∆Tb)
′ − (∆Tf )

′]

− 1

Kt(x1)
[(λ+ γ1γ2)(∆Ktx3r − ∆Tb − ∆Tf )] (6.14)

where λ, γ1 > 0, γ2 > 1 and (·)′ denotes d(·)
dt

renders the error dynamics (6.11)

exponentially stable in the sectors S1 and S3.

Proof. Consider the following change of variables:

s1 = e2 + λe1 (6.15)

with dynamics

ṡ1 = ė2 + λė1 (6.16)

=
1

J
[Kt(x1)e3 + ∆Ktx3r − ∆Tb − ∆Tf ] + λe2 (6.17)

Defining s2 as

s2 =
Kt(x1)

J
e3 +

∆Ktx3r − ∆Tb − ∆Tf
J

+ λe2 + γ1s1 (6.18)
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results in

ṡ1 = −γ1s1 + s2 (6.19)

The dynamics of s2 are

ṡ2 =
K̇t(x1)

J
e3 +

Kt(x1)

J
ė3 +

(∆Kt)
′x3r + ∆Ktẋ3r − (∆Tb)

′ − (∆Tf )
′

J
+ λė2 + γ1ṡ1

(6.20)

Substituting the error dynamics (6.11) with control law (6.9), into (6.20) and simpli-

fying gives

ṡ2 = (1 − γ2)γ1s2 (6.21)

Combining (6.19) and (6.21) and recalling γ1 > 0, γ2 > 1 gives exponentially stable

dynamics in s 




ṡ1

ṡ2




 =






−γ1 1

0 (1 − γ2)γ1











s1

s2




 (6.22)

Therefore, s1 → 0 and s2 → 0 exponentially. Since s1 = e2 + λe1 and λ > 0, e1 → 0

and e2 → 0 exponentially.

Remark 6.1 Notice that e3 does not converge to zero. From (6.18)

e3 → − ∆Ktx3d − ∆Tb − ∆Tf
Kt(x1)

(6.23)

The variable, s2, is selected so that the current is used to compensate for any errors

that exist in the torque factor and bias relative to the actual and reference position.

Remark 6.2 Only three gains need to be chosen. Choose γ1 and γ2 for the desired

convergence to the invariant manifold {e ∈ R
3 | e2 + λe1 = 0}. Choose λ for the

desired convergence once on the manifold.

Remark 6.3 The torque factor Kt ≈ 0 in S2. Therefore, only current trajectory

tracking is achieved. Transitioning to the following state feedback control law

uS2
= −KS2

3 e3 + Lẋ3r +Rx3r (6.24)
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in S2 where KS2
3 > −R results in the exponentially stable current dynamics

ė3 = −
(
R +KS2

3

L

)

e3 (6.25)

Similar to (6.7), position and velocity cannot be tracked in S2 and the gain functions

require a transition. Since the addition of ∆u adds an extra element of complexity to

the controller, the performance benefits may not be justified. For sample rate limited

systems not subject to large disturbances, the difference may be small enough to be

neglected. Comparison experimental results for both scenarios are presented in the

next section.

6.3.2 Experimental Results

The experimental setup described in Section 4.4.3 was used as the test platform.

Computation of the control law was fulfilled by the digital signal processor (DSP)

board and the control voltage was output from the DSP board through the bipo-

lar amplifier. The voltage drop was fed back into the DSP board to calculate the

states necessary to update the control law. The velocity was computed based on a

measurement of current

x2 =
u−Rx3

Kt(x1)
(6.26)

and integrated to get the position, x1. The velocity obtained by using (6.26) was

shown to be relatively accurate when compared to laser doppler vibrometer (LDV)

measurements and provides a simple, implementable solution. It is evident from (6.26),

however, that the velocity computation can become distorted near θc whenKt is small.

Depending on the noise level of the signals, this becomes another consideration for

selecting ∆θc. The sample rate was set at 25 kHz and ∆θc was chosen to be 3◦

(0.0524 rad). The head loading velocity limit was set at 127 mm/s which results

in ωl ≤ 2.8 rad/s. A trajectory was generated based on the procedure discussed in

Section 6.2. The selected control gains are given in Table 6.2 and a sample of the
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Figure 6.3: Results from ramp load state-feedback control

trajectory tracking performance for a ramp loading maneuver using (6.7) is shown in

Figure 6.3. The figure shows the loading velocity and voltage saturation require-

ments to be satisfied. Additionally, the maximum angular acceleration imparted to

the head was calculated to be α = 4.67 krad/s2 which is well below αmax. Therefore,

all the constraints were satisfied using the state-feedback controller. Because Kt is

small in S2, and K1 and K2 are zero, velocity and position were not computed directly

in S2.

Table 6.2: State-feedback control gains

Gain S1 S2 S3

K1 25000 0 5000

K2 40 0 30

K3 0.01 20 0.01
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The region around the ramp cannot be shrouded to direct air flow. Therefore, disk

windage can have a significant effect on low velocity tracking in S3. This is seen as non-

periodic “ripple” in the control signal of Figure 6.3. The ramps used were unfinished,

injection mold prototypes which can also have an effect on the controller during

low velocity tracking. The error norms using controller (6.7) and (6.9) are given in

Table 6.3. The norms reflect the weighting strategy discussed in Section 6.3.1 where

current tracking performance only becomes significant while maneuvering through

the critical angle. Control law (6.9) exhibited slightly improved position and velocity

tracking performance. The increase in current error results from the added terms in

∆u that compensate for errors in the torque factor and bias relative to the actual and

reference trajectory.

Table 6.3: Controller performance

L2 norm S1 S2 S3

us usp us usp us usp

e1 0.02 0.016 - - 0.06 0.04

e2 9.33 8.21 - - 15.57 13.33

e3 1.42 1.61 0.01 0.01 1.23 1.55

6.4 Output Feedback Control

The controller in Section 6.3 relies on full state feedback where the velocity and posi-

tion states were computed using current measurement and neglecting coil inductance

effects. This section develops a more comprehensive solution including a state ob-

server that considers the entire nonlinear model. A stable, output feedback design

with nonlinear observation is provided for state estimation feedback similar to the
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design of Section 3.5. By redefining the nonlinearities as

Kφ(x1) =







Kt(x1) −KOCS
t , θ < θc

Kt(x1) −KDZ
t , θ > θc

(6.27)

Tφ(x1) = Tb(x1) − c1x1 (6.28)

equation (6.6) can be rewritten as

ẋ = Ax+Bu+ Φ(x) (6.29)

y = Cx

where

A =









0 1 0

−µ1c1 0 µ1ν

0 −µ3ν −µ3R









, ν =







KOCS
t , x1 < θc

KDZ
t , x1 > θc

(6.30)

B =









0

0

µ3









CT =









0

0

1









(6.31)

and

Φ(x) =









0

µ1{Kφ(x1)x3 − Tφ(x1) − Tf sat(x2)}

−µ3Kφ(x1)x2









(6.32)

where µ1 = 1
J

and µ3 = 1
L
. Equation (6.30) defines two separate model representations

dependent on the actuator position relative to the critical angle. The controller design

presented in the next section requires the vector valued nonlinearity, Φ, be locally

Lipschitz within the set of all possible actuator angular positions on the ramp

‖Φ(xa) − Φ(xb)‖ ≤ γ ‖xa − xb‖ (6.33)

∀xa, xb ∈ X X := {x ∈ R
3| 0 ≤ x1 ≤ θr}
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Lemma 6.1 Let Φ : U → R
n be a vector valued funtion continuous on some U ⊂ R

n.

Suppose that [∂Φ/∂x] exists and is continuous on U . If for a convex subset X ⊂ U ,

there is a constant γ ≥ 0 such that

∥
∥
∥
∥

∂Φ

∂x
(x)

∥
∥
∥
∥

2

≤ γ, ∀x ∈ X

then

‖Φ(xa) − Φ(xb)‖2 ≤ γ‖xa − xb‖2, ∀x ∈ X

Proof. Consider a vector z ∈ R
n where ‖z‖2 = 1 and let ρ(s) = (1 − s)xa + sxb for

all s ∈ R such that ρ(s) ∈ U . Since X ⊂ U is convex, ρ(s) ∈ X, ∀ s ∈ [0, 1]. Further-

more, q(s) = z>Φ(ρ(s)) is a real valued function that is continuously differentiable in

an open interval of [0, 1]. From the mean-value theorem, there exists s0 ∈ (0, 1) such

that

q(1) − q(0) = q′(s0)

It follows that

z>[Φ(xa) − Φ(xb)] = z>
[
∂Φ

∂x
(ρ(x))

]

(xb − xa)

‖Φ(xa) − Φ(xb)‖2 = ‖z‖2

∥
∥
∥
∥

∂Φ

∂x
(ρ(x))

∥
∥
∥
∥

2

‖xb − xa‖2

≤ γ ‖xb − xa‖2

Since, Φ as defined in (6.32) is a C1 vector field for all x ∈ X, [∂Φ/∂x] exists and

is finite. Therefore, by Lemma 6.1, a Lipschitz constant can be determined satisfy-

ing (6.33).

It can be readily determined that (A,B) is controllable for θ 6= θc and observability

of (A,C) requires c1 6= 0. Consideration of this requirement can be taken during the

actuator design phase. The designer has flexibility on positioning and size of the

magnetic bias feature which will ultimately effect the profile of the restoration bias

133



torque over the ramp angle. Therefore, a profile can be developed that delivers a

non-zero linear component when approximating magnetic bias torque.

6.4.1 Controller Design

A predetermined reference trajectory, xr, satisfies a reference model

ẋr = Axr +Bur + Φ(xr) (6.34)

In order to fulfill the ramp loading requirements and manage the nonlinearities out-

lined in Section 4.2, an output feedback controller is developed. The controller con-

sists of a linear state feedback control law coupled with a nonlinear observer. A new

metric is derived from Definition 3.1 to analyze the stability properties of the system

error dynamics

δs(A) = δ(A, 0)

where δs represents the distance to instability of a system matrix, A.

Theorem 6.2 Let X := {x ∈ R
3| 0 ≤ x1 ≤ θr} where θr is the actuator ramp angle

and Φ(x) is Lipschitz according to (6.33). The output tracking control law

u = L(ẋ3r + µ3x3r + µ2x2r) −Kcê (6.35)

with ê = x̂− xr and nonlinear observer

˙̂x = Ax̂+Bu+ Φ(x̂) + Lo(y − Cx̂) (6.36)

where Kc,Lo ∈ R
3 are gain vectors chosen such that Ac = A−BKc and Ao = A−LoC

are Hurwitz, renders the tracking error dynamics

ė = Ace+ Φ(x) − Φ(xr), e = x− xr (6.37)

and observer error dynamics

˙̃x = Aox̃+ Φ(x) − Φ(x̂), x̃ = x− x̂ (6.38)
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exponentially stable for all x ∈ X if

γ < δs(Ac) and γ < δs(Ao) (6.39)

Proof. Substituting (6.35) into (6.6) gives

ė = Ace+BcKcx̃+ Φ(x) − Φ(xr) (6.40)

Consider a Lyapunov function candidate

V (e, x̃) = ξeTPce+ x̃TPox̃ (6.41)

where ξ is a positive constant and Pc, Po ∈ R
3×3 are symmetric, positive definite.

Taking the time derivative of (6.41) yields

V̇ (e, x̃) = ξ{eT (ATc Pc + PcAc)e+ 2eTPc[Φ(x) − Φ(xr)] + 2eTPcBcKcx̃}

+ x̃T [ATo Po + PoAo]x̃+ 2x̃TPo[Φ(x) − Φ(x̂)]

≤ ξ{eT (ATc Pc + PcAc)e+ 2γ‖Pce‖ ‖e‖ + 2PcBcKc‖e‖ ‖x̃‖}

+ x̃T (ATo Po + PoAo)x̃+ 2γ‖Pox̃‖ ‖x̃‖ (6.42)

≤ ξ{eT (ATc Pc + PcAc + PcPc + γ2I)e+ 2PcBcKc‖e‖ ‖x̃‖}

+ x̃T (ATo Po + PoAo + PoPo + γ2I)x̃

Now, from Lemma 3.1, for any ηc, ηo > 0, there exist symmetric, positive definite

Pc, Po such that

ATc Pc +PcAc+PcPc+ γ2I = −ηcI and ATo Po +PoAo +PoPo + γ2I = −ηoI (6.43)

if the associated Hamiltonian matrices

Hc =







Ac I

−(γ2 + ηc)I −ATc







and Ho =







Ao I

−(γ2 + ηo)I −ATo







(6.44)

are hyperbolic. From (6.39) in the hypothesis, consider the continuous function

f(γ) = γ2 − δ2
s(Ac) < 0. Since f is continuous, there exists ηc > 0 such that

f(γ) = γ2 + ηc − δ2
s(Ac) < 0 or

√

γ2 + ηc < δs(Ac)
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A similar continuity argument can be made regarding the observer resulting in

√

γ2 + ηo < δs(Ao)

Therefore, the Hamiltonian matrices of (6.44) are hyperbolic and it follows from (6.43)

that

V̇c(e, x̃) ≤ −ξηc‖e‖2 + 2ξPcBcKc‖e‖ ‖x̃‖ − ηo‖x̃‖2 (6.45)

Defining ξc = 2‖PcBcKc‖, ξ = ηcηo

ξ2c
, and noting

(
1√
2

ηc
√
ηo

ξc
‖e‖ − 1√

2

√
ηo‖x̃‖

)2

≥ 0 (6.46)

gives

V̇ (e, x̃) ≤ −ξηc‖e‖2 + ξξc‖e‖ ‖x̃‖ − ηo‖x̃‖2 (6.47)

≤ −η
2
cηo
ξ2
c

‖e‖2 +
ηcηo
ξc

‖e‖ ‖x̃‖ − ηo‖x̃‖2 (6.48)

≤ −1

2

(
η2
cηo
ξ2
c

‖e‖2 + ηo‖x̃‖2

)

(6.49)

Therefore, V (e, x̃) is a Lyapunov function and e, x̃→ 0 exponentially as t→ ∞.

Remark 6.4 Since Ac and Ao are both Hurwitz, the controller (6.35) and observer (6.36)

provide stable tracking dynamics in the data zone when nonlinear effects dissipate.

Therefore, a seamless transition can occur when the actuator moves between the ramp

and data zone region without redesigning the controller and observer gains.

6.4.2 Simulation Results

Simulations were performed to get an initial estimate of the appropriate controller

and observer gains required for a successful ramp load maneuver. It was also desired

to evaluate the controller performance based on realistic variational limits of the state

initial conditions. Geometric tolerance analysis of the actuator R/W heads relative

to the ramp position resulted in a potential variation of 0.0037 rad. It was assumed
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Figure 6.4: Output feedback reference trajectory profile

the actuator would always be motionless prior to a loading maneuver and therefore,

have no initial velocity observation error. Amplifier noise levels, however, could vary

as much as 10 mA peak-to-peak. Based on the tolerance analysis, the simulation

was loaded with the state and observer initial conditions x0 = [0.0037 0 0.01]T and

x̂0 = [0 0 0]T , respectively. Choosing ∆θc = 0.0524 rad (3◦), and loading velocity

ωl = 5.56 rad/s (10 in/s), a trajectory was generated based on the procedure defined

in Section 6.2. The sector transitions occur at 10 msec and 15.1 msec, for S1 → S2

and S2 → S3, respectively. The trajectory is shown in Figure 6.4 and results in

a maximum angular acceleration of αmax = 4.867 krad/s2; well below the required

limit. An iteration procedure was undertaken to determine a set of gains that satisfy

the requirements of Section 6.4.1 and provide an initial reference for tuning during

the experimental phase. In this case δs was evaluated for condition (6.39) subsequent

to selecting the gains Kc and Lo. The following computational results are for the

controller design in S1 and the system representation (6.29). Recall from Remark 3.2,
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a coordinate transformation can be used to reduce the value of γ and increase δs.

From the Lipschitz condition with transformation, Tc,

‖T−1
c φ(Tcxa) − T−1

c φ(Tcxb)‖ ≤ γ′‖xa − xb‖ (6.50)

The Lipschitz constant was determined as γ′ = 1.35 using a transformation

Tc = diag[1 106 105]

The state feedback control gains

KS1
c = [−2094 −3.74 0.13] (6.51)

result in a distance to instability δs(Ac) = 2.16. Choosing ηc = 1 results in
√

(γ′)2 + ηc =

1.68 < 2.16 which satisfies (6.39) resulting in the symmetric, positive definite solution

Pc =









0.003 0.006 −0.0002

0.006 1.501 −0.049

−0.0002 −0.049 0.0016









(6.52)

For the observer design, the Lipschitz condition is

‖T−1
o φ(Toxa) − T−1

o φ(Toxb)‖ ≤ γ′‖xa − xb‖ (6.53)

The Lipschitz constant was determined as γ′ = 1.35 using the transformation

To = diag[1 105 105]

The observer gains

LS1
o = [−573 87096 1950] (6.54)

result in a distance to instability δs(Ao) = 2.73. Choosing ηo = 1 results in
√

(γ′)2 + ηo =

1.68 < 2.73 which satisfies (6.39) resulting in the symmetric, positive definite solution

Po =









35.44 −0.702 0.0014

−0.702 0.024 0.00004

0.0014 0.00004 0.0001









(6.55)

The following computational results are for the controller design in S3:

138



Transformation: Tc = diag[1 106 105] −→ γ′ = 1.35

Control gains: KS3
c = [1594 3.74 0.13] −→ δs(Ac) = 3.27

Condition: ηc = 1 −→
√

(γ′)2 + ηc = 1.67 < 3.27

Pc =









0.003 0.41 0.03

0.41 52.90 3.48

0.027 3.48 0.23









Transformation: To = diag[1 105 105] −→ γ′ = 1.35

Observer gains: LS3
o = [−103 −38982 1973] −→ δs(Ao) = 2.12

Condition: ηo = 1 →
√

(γ′)2 + ηo = 1.68 < 2.12

Po =









32.61 −0.004 −0.001

−0.004 0.0306 −0.00002

−0.001 −0.00002 0.00005









Control in S2 involved only the current dynamics (5.31) and the gains were selected

as noted in Table 6.4.

The ramp load simulation results are shown in Figures 6.5-6.7. Figure 6.6 mani-

fests the gain strategy discussed in Section 6.3.1 where position and velocity tracking

is prioritized in S1 and S3 while current is prioritized in S2.
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Table 6.4: Simulation controller gains

Gain S1 S2 S3

Kc1 -2094 0 1594

Kc2 -3.74 0 3.74

Kc3 0.13 13.5 0.13

Lo1 -573 0 -103

Lo2 87096 0 -38982

Lo3 1950 843 1973

0 0.01 0.02 0.03 0.04
−0.1

0

0.1

0.2

0.3

P
os

iti
on

 (
ra

d)

0 0.01 0.02 0.03 0.04
−5

0

5

10

15

20

Time (sec)

V
el

oc
ity

 (
ra

d/
s)

0 0.01 0.02 0.03 0.04
−1

−0.5

0

0.5

C
ur

re
nt

 (
am

ps
)

0 0.01 0.02 0.03 0.04
−8

−6

−4

−2

0

2

4

Time (sec)

C
on

tr
ol

 (
V

)

Figure 6.5: Simulated trajectory profiles (observer with toleranced initial conditions)
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Figure 6.7: Simulated observer error (observer with toleranced initial conditions)
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6.4.3 Experimental Results

To ultimately verify the feasibility of the proposed ramp loading design scheme, ex-

periments were necessary to evaluate the performance in a realistic test case. The

test setup of Section 4.4.3 was used for experimental analysis. It was desired to track

the state reference trajectory developed for simulation in Section 6.4.2 while meeting

the performance requirements of Table 6.1. The observer was loaded with the ini-

tial conditions x̂0 = [0 0 0]T and the results from Table 6.4 were used as an initial

set of gains. Iterative tuning of several L/UL operations produced an admissible set

of gains which satisfied the tracking requirements of Section 6.4.1. The following

computational results are for the controller design in S1:

Transformation: Tc = diag[1 105 106] −→ γ′ = 1.35

Control gains: KS1
c = [−830 −1.63 0.3] −→ δs(Ac) = 2.50

Condition: ηc = 1 −→
√

(γ′)2 + ηc = 1.68 < 2.50

Pc =









0.003 0.154 −0.487

0.154 8.64 −27.86

−0.487 −27.86 89.95









Transformation: To = diag[1 105 105] −→ γ′ = 1.35

Observer gains: LS1
o = [112.5 45991 808] −→ δs(Ao) = 2.08

Condition: ηo = 1 →
√

(γ′)2 + ηo = 1.68 < 2.08

Po =









1.002 −0.06 −0.0005

−0.06 0.016 0.00006

−0.0005 0.00006 0.00006
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The following computational results are for the controller design in S3

Transformation: Tc = diag[1 105 105] −→ γ′ = 1.35

Control gains: KS3
c = [100 3.5 0.3] −→ δs(Ac) = 1.82

Condition: ηc = 1 −→
√

(γ′)2 + ηc = 1.68 < 1.82

Pc =









0.039 0.550 0.355

0.550 7.712 4.987

0.355 4.987 3.227









Transformation: To = diag[1 105 105] −→ γ′ = 1.35

Observer gains: LS3
o = [−112.5 −45991 808] −→ δs(Ao) = 1.74

Condition: ηo = 1 →
√

(γ′)2 + ηo = 1.68 < 1.74

Po =









2.92 −0.131 0.0012

−0.131 0.042 −0.0001

0.0012 −0.0001 0.0001









Table 6.5: Experimental controller gains

Gain S1 S2 S3

Kc1 -830 0 100

Kc2 -1.63 0 3.5

Kc3 0.3 5 0.3

Lo1 112.5 0 -112.5

Lo2 45991 0 -45991

Lo3 808 808 808

Control in S2 involved only the current dynamics and the gains were selected as noted

in Table 6.5. Figure 6.8 shows a sample trajectory of a typical ramp load maneuver
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Figure 6.8: Experimental trajectory profiles

using the gains of Table 6.5. The inherent filtering characteristics of the observer

is noticed when compared to the state feedback results of Figure 6.3. Therefore,

the controller is less sensitive to high frequency windage disturbances prior to head

loading. The tracking performance exhibited in Figure 6.9 reflects the weighting

strategy discussed in Section 6.3.1 where current tracking performance only becomes

significant while maneuvering through the critical angle. The position and velocity

error increase as expected in S2 while the current error decreases. The converse is

true in S1 and S3. It can be verified that the loading velocity and control input

requirements are met. It is desirable that any velocity error present at the end of

the maneuver satisfy ê2 < 0 indicating x̂2 < ωl. Additionally, the maximum angular

acceleration imparted to the head was calculated to be α < 5.5 krad/s2 which is well

below αmax and the position error stays within 0.0075 rad (0.43◦). The large transient

at the beginning of the current profile is a result of immediate bias compensation

reflected in the reference trajectory. Figure 6.10 shows acceptable performance of the
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current observer below 40 mA after the initial transient and below 10 mA in S3 prior

to loading. The two anomalies at 8 msec and 16 msec result from travel through the

sector boundaries where the observer transitions between open and closed loop in the

position and velocity states. Repeatability was verified by completing 50 consecutive

L/UL cycles without failure.
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Figure 6.9: Experimental tracking error performance
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Figure 6.10: Current observer error

6.5 Summary

The research studied feasibility of ramp L/UL functionality and performance using a

unique ramp load disk drive actuator. A model reference trajectory generation scheme

is developed that, when tracked using closed loop control, moves the actuator through

the uncontrollable region for a successful load onto the disk. The motor torque factor,

bias, and friction nonlinearities can be represented by functions that are Lipschitz

within the actuator state-space. A robust, state-feedback control law was designed

that compensates for errors in the actual and calculated states as functions of the

nonlinearities. To compensate for lack of direct position and velocity measurement, a

stable, output feedback tracking controller was developed to track the trajectory while

handling the nonlinear effects. Experiments were performed on a unique ramp load

disk drive to verify the proposed ramp loading scheme. The output feedback controller
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provided high frequency disturbance attenuation during tracking while meeting all

necessary performance requirements. Repeatability was demonstrated by sequentially

completing a series of L/UL operations.
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CHAPTER 7

SUMMARY AND FUTURE WORK

As disk drive manufacturers search for cost reduction opportunities, customers con-

tinue to demand steady quality and performance improvements. Shock damage of the

head/disk interface is one area that causes many quality issues and cost constraints.

Some of the most damaging shocks occur when the drive is in a non-operational

state. These shocks can be both linear and rotational in nature. Many of the meth-

ods currently used to suppress shock dynamics preserve servo control performance

at the expense of cost increases and quality issues. This research focused on en-

hanced disk drive actuator design and control strategies that improve performance

while reducing part cost and quality concerns associated with suppressing the effects

of non-operational shocks.

A voice-coil motor actuator for a disk drive was designed in Chapter 2 to meet

specific move-time performance requirements. Using an energy equivalence method,

a quantitative determination was derived of the bias torque necessary to reject a

rotational shock and return the actuator arm back to the nominal shipping position.

A stainless steel member was designed and attached to the actuator arm producing a

non-contact, magnetic bias to fulfill the non-operational, rotary shock requirements.

The magnetic bias provided a low cost, reliable alternative to latches currently used

in industry today. However, it was determined that the overall magnetic and flex

circuit bias torque profile was nonlinear throughout the actuator sweep angle which

can have detrimental effects on seek performance. The actuator was manufactured

according to the desired design requirements and measurements were taken of the
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motor physical parameters. A dynamic model was developed for the actuator, which

included the bias force nonlinearity.

Seek control methodologies to combat the nonlinearity induced by the bias design

are presented. It was assumed that the exact bias characteristic was unknown for

a given drive population, but a nominal estimate was measured for a specific drive.

An adaptive controller was designed to track a predetermined reference trajectory

and compensate for bias uncertainty. A state-feedback controller was developed for

comparison. Experiments were conducted to verify the design and performance re-

quirements. The experiments confirmed that the adaptive control outperforms the

state-feedback with slightly more power consumption. A geometric tolerance analysis

resulted in bounds that constrain the bias torque for a given drive population. With

knowledge of the bounds, a projection algorithm was implemented to constrain the

bias estimate below a cumulative upper bound. A performance reduction was noted

with the addition of projection along with an increase in implementation complexity.

Overall, the adaptive controller adds a degree of complexity that promotes sample

rate limitations resulting from processor computation delay. Additional memory or

processor resources might be required which may not be feasible for disk drives target-

ing low cost markets. Performance effects from a reduction in bias estimate accuracy

were also investigated. It was determined that controller performance lost by a re-

duction in bias modeling accuracy could be recovered by an increase in sample rate.

Therefore, if sampling resources are available, the complexity of the controller can be

reduced without significant sacrifices in performance. The experimental environment

produced a velocity measurement which allowed full state feedback for the control

law computation. However, production disk drives are not capable of direct velocity

measurement. An output feedback tracking controller, using only current measure-

ment, was developed for the actuator performing a seek maneuver. In this case, the

bias was assumed to be known exactly and shown to be locally Lipschitz within the
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actuator sweep angle. In addition to satisfying the separation principle, the output

feedback controller induced exponentially stable tracking error dynamics. Experi-

mentally, the controller exhibited successful tracking performance of a predetermined

reference trajectory with a bias 5% of the maximum available torque. The position

and velocity tracking error increased with seek length while current error decreased.

Experiments also revealed observer convergence with initial condition variation.

Non-operational shocks can also inflict undesirable linear dynamics. Chapter 4

discusses a reliable, low cost solution for suppressing the effects of non-operational

linear shocks. The solution uses a well-known linear shock protection scheme by park-

ing the R/W heads on a ramp when the drive is not in operation. The heads are

loaded on and off of the disks when the drive power is turned on and off, respectively.

Loading and unloading was performed with a unique, low cost actuator that provided

a lower cost, higher torque solution while realizing the shock resistance benefits of

ramp loading. However, when used in a ramp loading scheme, the actuator exhibits

a region that is not controllable by induced coil current. A voice-coil motor actuator

was designed and optimized for cost and performance without consideration for ramp

loading. The methods of Chapter 2 were used to develop a magnetic bias solution for

rotary shock and prevent the actuator from resting at the uncontrollable condition.

Both the motor torque factor and magnetic bias were shown to be nonlinear along the

ramp angle. A ramp design was also discussed that defines the velocity with which

the heads are required to load onto the disks. A disk drive was fabricated to provide

ramp loading capability with the unique actuator. All actuator physical parameters

were measured to verify the design and simulations coupled with experiments revealed

the expected shock and move time performance requirements were satisfied. Results

were compared to a nominal L/UL actuator to demonstrating superiority of the com-

mutational ramp load (CRL) design. A final open-loop experiment was performed to

characterize and identify the uncontrollable region.
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In addition to the uncontrollable condition the CRL actuator exhibits an input

singularity that makes exact input/output tracking impossible. The input singularity

coincides with the uncontrollable condition at a specific critical point further compli-

cating the control design. The CRL actuator is compared to the well-known ball and

beam system where a deficiency is revealed in the ability of existing control methods

to track in a neighborhood of the critical point. An extensive dynamic analysis of

the CRL actuator resulted in a sufficient condition guaranteeing motion through the

critical point which sets the basis of trajectory generation for closed loop control.

It was necessary to design a reference trajectory such that, when tracked, moves

the actuator through the uncontrollable region for a successful load onto the disk.

A step-by-step trajectory generation procedure was proposed based on the sufficient

condition and two controllers were developed to track the trajectory throughout the

loading process. One controller used full-state feedback and provides robustness to

errors in the actual and calculated states as functions of the nonlinearities. To com-

pensate for lack of direct position and velocity measurement, an exponentially stable,

output feedback controller was developed to track the trajectory while handling the

nonlinear effects. Experimental results revealed that both controllers tracked the tra-

jectory and successfully loaded the R/W heads on the disk while maintaining the

required ramp loading specifications. The inherent filtering characteristics of the

output feedback controller provided robustness to high frequency disk windage dis-

turbances as the actuator rotated close to the disk outer radius. Repeatability was

demonstrated by sequentially completing a series of L/UL operations.

This work investigated a nonlinear bias solution for actuator protection against

non-operational rotary shock. Armed with full-state feedback, an adaptive controller

is developed to compensate for the nonlinearity and any associated uncertainties dur-

ing a seek maneuver. Knowing that direct velocity measurement is unavailable in pro-

duction disk drives, an output feedback controller, using only current measurement,
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is designed to handle nonlinear effects when an exact description of the nonlinearity

is known. Future work should combine the scenarios and investigate output feedback

control with uncertain nonlinear effects. Similarly for the CRL actuator, compensa-

tion for uncertain effects in friction, disk windage, and actuator physical parameters

should be implemented with output feedback control. Additionally, the theoretical

development of provided for non-regular systems should be expanded to further char-

acterize and compensate for the effects of uncontrollable, input singularities.
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