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Chapter 1

Introduction

This dissertation develops and analyzes higher order computational �uid dynamics (CFD) simula-

tions for coupled �uid-structure interactions as well as large de�ection vehicle motions. The �ow

regime ranges across subsonic, transonic and supersonic Mach numbers and inviscid and viscid

boundary conditions. The primary objective for the CFD solver is to provide time-accurate surface

pressures and stresses for coupling into a corresponding structural motion solver.

The author works in the Computational Aero Servo Elasticity Laboratory (CASELab) at Okla-

homa State University. Our mission is to provide support to NASA Dryden's �ight test programs.

The primary task is developing tools for aircraft �utter evaluation, primarily with military aircraft.

These vehicles have intrinsic simulation challenges. Operation is within a wide �ight envelope in-

cluding transonic Mach numbers. Vehicle geometries are complex and contain large ratios of scale.

Vehicle operation often involves multiple body problems such as store releases, formation �ight, and

relative motion. Figure 1.1 conceptually shows possible operations.

Figure 1.1: Motion Concepts

Nomenclature and abbreviations used in this dissertation are presented in Appendix A.

1.1 Requirements

This section discusses the requirements needed for aeroelastic simulations in the CASELab.

A small discussion of the catagories of unsteady �ow will assist in formulating requirements. The

lack of unsteadiness in a �ow de�nes a steady �ow. Numerically, many steady CFD solvers use

a non-time-accurate unsteady time advancement. The next catagory is unsteady �ow with steady

boundary conditions. This dissertation concerns the last catagory: unsteady �ow with unsteady
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boundary conditions. The laboratory's current state of the art is unsteady boundary with small

de�ections (inviscid) and unsteady �ow (viscous).

The CASELab specializes in aeroelastic �utter predictions for high performance aircraft. Aeroe-

lasticity in general occurs when stable aerodynamics and stable structural dynamics couple into an

unstable system. Flutter usually results in the failure of the o�ending aerodynamic surface, often

leading to loss of the vehicle and to loss of life.

For simulation purposes with a systems approach, the structural stability about an equilibrium

point is su�cient for �utter prediction. Possible non-linear responses further away from the equi-

librium point are not particularly useful; limit-cycle oscillations limited through aerodynamics are

likely just as dangerous as the lead-up to the full limit cycle amplitude.

Thus, the structure is modeled with modeshapes and a linear structural di�erential equation

about the previously mentioned equilibrium point. Modeshapes Φ are determined through an up-

front �nite element simulation of the structure's free body response much like a ground vibrational

test in aircraft certi�cation. Structural motion is modeled with

[M ] Φ̈ + [C] Φ̇ + [K] Φ = (F )

where [M ], [C], [K] and (F ) are the generalized mass, damping, sti�ness, and forces. Generalized

forces result from the imposition of an external pressure from the �ow �eld. Thus, the generalized

force is the integration of the pressure �eld and the modeshape

Fi =

ˆ
P · Φi dA

Figure 1.2 visually shows the analysis procedure. The structural model on the right is the �nite

Figure 1.2: Aeroelasticity Simulation Flow with Structural Modeshapes

element representation of the aircraft's structural properties. The model on the left shows the

aerodynamic vehicle generating surface pressures. Time advancement occurs within the coupled

aerodynamics and generalized motion simulations.

2



Comparing the structural and aerodynamics simulation indicates that the simulation bottleneck

lies with the aerodynamics simulation. For most simulations, the aerodynamics portion takes well

into 99% of the total time. Reduced order modeling techniques are available[57] for reducing the

simulation cost for particular aerodynamic geometries with a system-identi�cation routine. This

technique contains some signi�cant hurdles[8] with respect to training cost. Regardless, improving

the aerodynamics simulation speed and accuracy is a priority.

1.1.1 Elastic Motion in Navier-Stokes Flow

In inviscid �ows, transpiration e�ciently describes elastic motion of boundaries. Transpiration

simulates boundary motion with perturbed surface normals. Transpiration is fast and e�cient but

requires a non-zero boundary velocity. See Fisher[21] for more details. Transpiration constrains

boundary �ow to a non-normal vector (Fig. 1.3). In Navier-Stokes �ows, this strategy fails; non-

normal velocity vectors are always identically zero. To date, no e�ective and fast algorithm is

available; one example is Shyy[69].

Figure 1.3: Transpiration

There are also coupling e�ects beween structural dynamics and rigid body dynamics. Large

structural de�ections can change �ight dynamics. For example, the unmanned Helios aircraft was

a solar powered �ying wing with a large aspect ratio and �exible wing. The NASA Helios accident

report[56] stated that �...the rapid divergence of the pitch oscillation when the dihedral reached 40

feet (the third event) was not expected.� The chain of events leading to the crash is fascinating: tur-

bulence, �exible geometry change, unstable longitudinal �ight dynamics (doubling every period[56]),

excessive dynamic pressure, local structural failure, and impacting the ocean.
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1.1.2 Simulation Turnaround Time

There is a need for fast turnaround time. Spending months simulating a particular case is not

particularly desirable or fundable. The objective is to solve a problem with the least amount of

input for the most amount of output.

1.2 Current Simulation Tools

The Structural Analysis Routines[25] (STARS) code developed at NASA Dryden supports Dryden's

�ight tests with a suite of multidisciplinary tools for structural, aerodynamic, thermal, and control

system analysis. STARS has aeroelastic simulation capabilities with linear and non-linear aerody-

namics. Stability and control simulations and sensor simulations are also available. Recent programs

supported by the STARS code include the X�29, X�33, F�18 AAW, and HyperX. The computational

�uid dynamics component of STARS solves the Euler and Navier-Stokes governing equations. The

recent addition of a non-inertial reference frame CFD formulation extends the capabilities of STARS

to include rotational and translational motions[14].

The current aerodynamic simulation process is visually described in Figure 1.4 for the inviscid

Euler3d solver. A simulation starts with creating or importing the aerodynamic geometry, then

Figure 1.4: STARS Euler3d CFD Procedure

creating a grid, running the CFD solver and �nally plotting or re�ning the solution. With the

modularity shown above, this dissertation seeks only to replace the CFD Solver module.

In this section, we will attempt to list the known de�ciencies and concerns with the current �uid

solver. The euler3d package is robust and has served our lab well, but we would like to improve the

following issues.

1.2.1 Test case Size and Solution Quality

The CASELab often struggles to obtain research quality simulations for whole aircraft. The problem

is simply a matter of scale; we need to capture local �uid behavior over a large, moving, transonic
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aircraft.

A recent attempt to characterize the F18 AAW �utter boundary for a single ASE experiment[24]

required months of computational time. Even at over 1 million elements, the F18's unstructured

grid still needed vastly more elements. With the current code, modern workstation and desktop

computers contain su�cient memory and storage for simulations requiring months or years. The

issue is solution speed, not storage capacity.

Non-linear �ight dynamics and viscous regimes amplify the grid size problem by requiring ac-

curate solutions throughout a long simulation. To be fair, normal �ight dynamics do not require

expensive �uid dynamics solutions. Low frequency phugoid motion simulations likely only need a

linear aerodynamics approximation. Large amplitude and unusual attitude motions require better

quality solutions with more complexs �uid models.

1.2.2 Technology Limitation

Test case size and solution quality is e�ectively limited by the available computer power. Compu-

tation time limits our simulations to about 1 million elements for an unsteady test case requiring

1 month of CPU time. If we need Navier-Stokes solutions, a common heuristic suggests increas-

ing CPU-time by one order of magnitude. Thus, we are looking at solutions around two orders of

magnitude slower than what is required for daily �ight-test support.

Moore's Law historically shows a doubling of computer power every 1.5 years. Two orders of

magnitude via Moore's law will require about 10 years. Even advancing computer technology will

not solve our problems and waiting is not an e�ective solution. Anecdotal evidence suggests that

improvements in solution speed are exactly negated by increasing solution complexity.

1.2.3 Solution Methodology and E�ciency

Solution e�ciency is a di�cult criterion to evaluate; we will always �nd a faster, but perhaps less

useful, methodology in the literature.

Arti�cial dissipation is an ine�cient method in the current solver. Arti�cial dissipation, necessary

for solution stability but not for solving the governing equations, requires 50% of the total CFD

solution time. This gives us room to change the complexity/dissipation operating point.

Converting an Euler code to Navier-Stokes, Mo�tt[50] found that second derivative speci�cation

becomes more di�cult, and potentially unstable, with linear elements. Also, the current solution

method uses piecewise continuous boundary conditions, which creates slope discontinuities at nodes

and zero-order accurate surface stresses.
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1.2.4 Adjustable Parameters

All CFD solvers require simulation parameters, but too many parameters cause problems. Euler3d

reformed[14] the STARS code by removing several adjustable parameters. However, Euler3d still

has multiple adjustable parameters: timestep, inner loop cycles, CFL, and dissipation. Each of these

free parameters requires training and experience to avoid computational errors.

A natural tendency is to decrease CPU time at the expense of actual accuracy. We can only

measure accuracy by running a still longer simulation. We have to �ght to keep ourselves in a

converged situation. Faced with a month long simulation, we must constantly remind ourselves that

a poor simulation takes a week and a good simulation takes a month. Shorter simulations are too

tempting and measuring solution convergence is not black and white. A code should steer the user

to make conservative choices.

1.2.5 Grid Generation

Grid generation is a key to good solutions. The current surface and volume generation codes are

notoriously picky about input �les. For Navier-Stokes solutions, the size ratio between element sizes

varies with Reynolds number and location. The current surface grid code often appears to create a

failure condition when element size ratios exceed 10000:1. Thus, if a simulation region is 1000 inches

(25 meters), we likely cannot grid below 0.1 inch (2.5 millimeters), which implies a minimum solution

scale of about 0.5 inch (13 millimeters). Mo�tt[50] found that grid system encounters di�culties

with small elements needed for viscous solutions.

1.3 Rationale

This section develops a rationale for investigating higher order CFD methods. It begins with an

analysis of current performance and accuracy. Next, a literature review of higher order methods is

given. The section ends with two initial higher order solutions of �uid-like governing equations.

1.3.1 Current Performance

This section discusses a single technical point, computer memory bandwidth, with respect to the

current performance of the Euler3d CFD code. This couples both computer architecture with

numerical methods and �uid dynamics. It is presented as a series of facts and observations that lead

to a �nal statement.
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• Fact 1: Fluid dynamics depends on �uid state gradients. In other words, �uid �ow simulations

require �uid properties at nearby physical locations.

• Fact 2: The Euler3d CFD solver uses an unstructured grid with �uid states stored at segment

endpoints. Thus, adjacent physical locations do not, and cannot, map to adjacent memory

locations.

• Fact 3: Euler3d uses elemental operations. Thus, a single operation will require variables from

potentially nearby to potentially far away memory locations. This is likely a guaranteed RAM

cache miss.

• Fact 4: Euler3d is written in Fortran. Fortran stores arrays in a column major format. For

example, the next memory location after a(3, 12) is a(4, 12). By contrast, memory location

a(3, 13) could be a signi�cant distance from a(3, 12).

• Fact 5: Fortran compilers warn users to use column major arrays for maximum performance.

Intel claims a 30% or more hit in performance for using row major addressing[31].

• Observation: Reversing the order of arrays did not signi�cantly a�ect Euler3d's performance.

It was originally written in row major format (i.e., the "wrong" way).

• Conclusion: The memory performance benchmark relevant to Euler3d appears to be the ran-

dom memory recall rate and not the adjacent-memory-sweep bandwidth.

We can get an understanding of this by visually inspecting the mass matrix for a simple test case

with a second order expansion. The left image of Figure 1.5 is the discretized grid. The right

image of Figure 1.5 shows non-zero components of the mass matrix. A strong diagonal component

is evident but no decoupled block diagonal structure exists. Euler3d is categorized as using global

operations as every computation requires widely spread memory access.

1.3.2 Current Accuracy with Euler2d

The objective of this section is to determine accuracy with respect to grid convergence and CPU

time. The geometry is a cylinder with Mach 0.1 cross �ow. The linear element euler2d code is used.

The solution domain is a disk of inner radius 1 and outer radius 20.

The initial step generated grids of decreasing element sizes. For reference, Figure 1.6 compares

element sizes just ahead of the leading edge; each block is 1 radius by 1 radius. For this 2D grid, we

expect and �nd that the number of elements scales with (∆x)2.
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Figure 1.5: Box Grid and Mass Matrix

∆x: 0.5 0.2 0.1 0.05 0.03

Figure 1.6: Cylinder: Relative Grid Size at Leading Edge

The freestream at Mach 0.1 travels from left to right. Next, the euler2d program was run to

enthalpy residual convergence of 10−8. Pressure contours are shown in the lower row of Figure 1.7.

The coarse 0.5 grid really only shows the most basic problem physics, a pressure increase at

the leading edge; however, signi�cant aliased 2h waves[10] are seen. Decreasing element sizes to

the 0.05 case, the improved grid resolution allows for better aft cylinder pressure recovery. Visual

di�erences becomes ine�ective after the 0.05 case. Dissipation is critical in this experiment, but we

tried to minimize those e�ects with low dissipation value (0.15). From the contour plots, we can

see a quasi-separation is moving the pressure peaks back along the cylinder. The non-zero Mach

number (M=0.1) will also slightly change the solution �eld. However, for a cylinder geometry, the

comparison is likely near optimal. Perhaps numerical dissipation makes the comparison unfair, but

the solution method represents how we solve actual problems.

For a more thorough comparison, we use inviscid incompressible ideal aerodynamics. For inviscid
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∆x: 0.5 0.2 0.1 0.05 0.03

Figure 1.7: Cylinder: Grid and Solution

cross �ow past a cylinder of radius 1, the stream-function is

Ψ = V∞y

(
1− 1

r2

)
For a vertical cut-line at x = −1, the u and v velocities are

u =
dΨ

dy
=
y4 + 3y2

(y2 + 1)2

v = −dΨ

dx
=

−2y

(y2 + 1)2

Also, we need the pressure coe�cient, which is de�ned as

Cp =
1− V 2

q

Now, Figure 1.8 compares the ideal u velocity and pressure coe�cient (Cp) with the grid-converging

euler2d CFD solutions.

The upper plot shows the velocity converging to the ideal velocity quickly; we'll leave the rate of

convergence until later. The pressure coe�cient seems to converge more slowly, but it still visually

approaches the ideal curve. Zooming into the fore stagnation point along the leading edge shows

that the convergence is not smoothly approaching the ideal curve, but has uneven variance, even if

the macro-plot looks smooth.

Along the cylinder surface, the pressure coe�cient appears to approach the ideal distribution

(Fig. 1.9). We also see the non-physical and non-isentropic separation remnants along the aft cylinder

(x > 0.8). Again, lowering dissipation assists with converging to the ideal solution but hurts the

high wavenumber stability.

Finally, we consider the time, error, and grid relationships. This project's primary objective

concerns establishing the operating e�ciency region. Figure 1.10 (left) presents RMS error for Cp
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Figure 1.8: Cylinder: Y Cut-line at the Cylinder's Leading Edge
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Figure 1.9: Cylinder: Surface Pressure Coe�cient, Cp

and u versus grid convergence ∆x for the cylinder. From the contour plots and surface pressure

plot, a RMS error below 10−1 seems preferable. The log-log slope is -0.975 such that an accuracy

model is

RMS = 1.5∆x0.975

The euler2d formulation is based on second order accuracy, so the experimental slope is less optimal

than the -2 that theory suggests. Accuracy loss contributions likely result from the linearized �ux

integrals and the dissipation scheme.

More importantly, the right part of Figure 1.10 presents CPU Time versus RMS error. A model

of time for a given error is

T ∝ (RMS)
4
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Figure 1.10: Cylinder: Y Cut-line Data Analysis

Matching the soft RMS error limit of 10−1 maps to the straight part of the CPU Time curve (CPU

Time ≈ 102). Referring to Bar Yoseph[3] places our current code, euler2d, in a likely-to-bene�t

region, since we are just started into the linear part of the log-log plot. If we expect higher quality

solutions (∆x = 0.05 or 0.03), higher-order becomes signi�cantly more attractive. Comparing only

Cp also makes higher-order methods more attractive.

1.3.3 Dynamic Simulations in the Literature

The published literature provides an opportunity to explore and evaluate possible dynamic sim-

ulation concepts. Rotational and translational dynamic grids are presented for super maneuver-

ing aircraft[14, 23]. However, their non-rigid-body motions are restricted to small de�ections.

The overlapping multiple-interacting-grid methods appear popular for store separation simulations.

Tomaro[72] and Cenko[12] demonstrate multiple-grid based dynamic meshing for CFD predictions

of JDAM store separations with the F�18. Löhner[45] and Prewitt[64] developed overlapping grid

Chimera methods for CFD solutions. Grid element selection and assembly appears to be the limiting

process for their overlapping-grid methods. Helicopter rotor simulations seem to prefer sliding and

overset meshes to take advantage of the harmonic rotational motion[59, 29]. The literature shows

that many dynamic meshing concepts are available for exploration and evaluation. Most appear

somewhat di�cult to implement with complex bookkeeping.
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1.3.4 Higher Order E�ciency in the Literature

A primary concern for CFD simulations is the solution e�ciency. Solution methods with e�ciencies

di�ering by constants are mitigated with parallel processing and other computer science techniques.

We are more concerned with methods causing solution e�ciencies to di�er by orders of magnitude.

A preliminary review of the literature suggested that higher order expansions are the latter catagory.

Spectral/higher-order CFD is not new. Weather forecasting continues to use global spectral

methods since starting in the 1950's [10], but use in traditional �uid dynamics has only recently

become accepted. For spectral methods, Boyd[10] has hundreds of references on global spectral

methods. Most di�erential equations textbooks discuss the Fourier harmonic method, a subset of

global spectral methods. We focus on unstructured element grids. However, as Karnidaikis[35]

states, �Use of unstructured spectral/hp element methods in computational �uid dynamics has been

very limited to date.� Disappointing panel method results in the 1980's left skepticism toward higher

order CFD simulations. The literature generally agreed that higher order linear panel methods only

marginally improved accuracy when given the more complex development and higher CPU e�ort.

Yet, acceptance of higher order methods for CFD has grown in recent years.

The primary rationale for higher-order expansions is e�ciency. All methods should approach

the exact solution in the limit, but the more e�cient method is preferred. By e�ciency, we mean:

the lowest CPU time for a given solution quality. However, time and solution quality are not easily

predicted given a particular scheme and implementation. So, we turn to approximations and order

analysis.

Boyd[10] suggests that errors for a spectral expansion of N terms behave as,

ε ≈ O
(
N−N

)
This approximation shows a strong advantage for higher-order expansions; however, we must re-

member that runtime increases with order N.

Löhner[44] shows that we should �strive for schemes of higher order as the dimensionality of the

problem increases.� He claims that most CFD codes are initially formulated and tested in 1D, but

generally simulate 3D �ows. This suggests that if the minimum operating order for a steady 1D

simulation is 2 terms, then a 3D transient simulation should probably use at least 6 terms.

Karniadakis[35] suggests that for �engineering accuracy of 10%� for a linear advection governing

equation, the work W required for a solution of length M versus scheme orders of 2, 4, and 6 is

approximately

W2 ∝ 20M1/2 W4 ∝ 14M1/4 W6 ∝ 15M1/6
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For long term simulations, the higher order approximation becomes favored.

Fidkowski[19] claims that runtime T for a given error E is

T = O

((
pE−1/p

)wd
/F

)
where p is the expansion order, w is the algorithm complexity, d is the problem dimension, and F is

the computer speed. He shows that for �stringent� accuracy requirements, the runtime T depends

�exponentially on p, w, and d�. For small errors, expansion gives

lim
E<<1

T ≈ E−wdp

Again, we see that larger expansion order p is preferable. Also, Löhner's claim that expansion order

should increase with increasing dimensionality appears again. Fidkowski[20] defended a high order

discontinuous CFD solver. His method uses multigrid and line smoothing techniques. No unsteady

time-accurate solutions are presented or discussed; the multigrid technique assures steady solutions.

He claims that �higher order is advantageous over grid re�nement when high accuracy is required.�

Bonhaus[9] found that higher order SU/PG methods spatially converged as expected. He ex-

pressed concern over the accuracy and generation of curved boundaries: �Particularly di�cult to

generate are meshes that are highly stretched to compute viscous �ows - simply moving the bound-

ary control points to match the surface creates overlapping elements which are unacceptable to the

scheme.�[9] He reports values for solution convergence but not solution timing.

Bassi and Rebay[6] present steady subsonic and supersonic Navier-Stokes solutions for an NACA

0012 airfoil with orders of 1, 2, 3 and 4. Flow �eld contours and integrated pressures suggest using

at least a 4 term expansion. Lomtev[46] presents a supersonic NACA 4420 airfoil (Fig. 1.5) with

�P = 1 in front of the shock and P = 6 behind the shock.� A detached and recirculating region is

captured with only 30 elements around the entire airfoil.

For more insight, we turn to commercial CFD codes. Through market selection, these codes

are �ltered to provide robust performance and accuracy. Out of 17 commerical external-�ow �uid-

structure-interation transient CFD solvers sampled, only 1 speci�cally mentioned a higher order

scheme (Argo, P=2). Fluent mentioned a higher order upwinding method with their �nite volume

code.

1.3.5 Blasius Higher Order

This section's objective is to solve the Blasius Boundary Layer equation[74]

f ′′′ + ff ′ = 0
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with the boundary conditions

f ′ (0) = f (0) = 0

and

f ′ (∞) = 1

So far, no analytical solution to the Blasius equation exists. White[74] gives numerically generated

function values. White suggests using a shooting method coupled with a Runge Kutta routine.

We solved a multiple element solution to the Blasius equation. The grid is composed of 5

elements of varying size and covering η from 0 to 10. The far right of Figure 1.11 shows the grid.

The solution method will be generated for an arbitrary grid and polynomial order. Inter-element

connections become important and require function and derivative matching up to derivative order

D. The methodology is to reduce R to zero using Matlab's fsolve function. Each of the �ve elements

contains a 20 degree of freedom Chebyschev basis function.

The solution visually matches the known solution. Figure 1.11 gives f(η), f ′(η), f ′′(η) for this

numerical simulation (lines) and White's tabulated data (dots). The results match White within

his 5 signi�cant �gures. The present method has an advantage over Runge-Kutta shooting in that

intermediate values are exactly known from the solved coe�cients and basis functions.

1.3.6 Burgers Equation

Burgers equation is the 1D simpli�ed advection di�usion equation without the pressure term

du

dt
+
dF

dx
− ν d

2u

dx2
= 0

where the advective �ux is

F =
1

2
u2

When we apply Galerkin's method, we obtain a symmetric mass matrix, a non-linear advection term,

and a linear di�usion term. Thus Burgers equation exercises the fundamental numerical routines for

any Euler or Navier-Stokes solver.

ˆ
φi
du

dt
dx+

ˆ
φiFdx−

ˆ
φiν

d2u

dx2
dx = 0

Applying integration by parts replaces derivatives with boundary conditions to give

ˆ
φiφdx

da

dt
=

ˆ
dφi
dx

dF

dx
dx− ν

ˆ
dφi
dx

du

dx
dx a

−φ (1)F (1) + φ (0)F (0)

+νφ (1)
dφ (1)

dx
a− νφ (0)

dφ (0)

dx
a
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Figure 1.11: Blasius Multiple Element Solution

Conceptually, the parts are

M
da

dt
= RHS(a)

The numerical solution is plotted in Figure 1.12 for an 8 term expansion with 10 elements. The

initial sine wave advects as expected and forms a shock as expected. As the governing equation is

a single state form of the Euler equations with no pressure, the spacial and temporal behavior is

encouraging.

1.3.7 1D Euler Compressible

As a �nal preliminary test, the 1D Euler equations were solved with a variable order solver. For

simpli�cation, all �ow characteristics

[
(u+ a) u (u− a)

]
are positive. This corresponds to

supersonic compressible �ow. This experiment was performed in Matlab.

First, grid convergence is shown. This is formally called h convergence. Both solutions are 1st

order linear. The horizontal axis is a harmonic spacial location; the vertical axis is time. Colors

represent the pressure distribution.
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Figure 1.12: Burgers Equation Numerical Solution

Next, order convergence is shown. This is formally called p convergence. Both have the same

total number of degrees of freedom. The left solution is 1st order; the right solution is 7th order.

The higher order solution clearly has some issues with solution stabilization eminating from the

shocks. This was noted and corrected with a simple stabilization method.

1.4 Hypothesis

In short, this project seeks to research computation �uid dynamics simulations of aeroelasticity and

arbitrary boundary motions. The literature indicates that higher order solutions are advantageous

with respect to e�ciency. A simple comparison with the current CFD solver concurs with simple

Figure 1.13: 1D Euler: h convergence
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Figure 1.14: 1D Euler: p convergence

higher order tests.

The hypothesis for this higher order CFD project is, The prediction e�ciency of super maneu-

vering, deforming and constantly remeshing three-dimensional unsteady Navier-Stokes computational

�uid dynamics is improved by moving from linear to higher-order simulation methods.

17



Chapter 2

Higher Order Basis Function

The basis function ties individual values at speci�c points to a continuous �eld of values. In other

words, the basis function approximates the solution within an element. The general form for an

approximation u and coe�cients a is

u = φiai

The goal is to �nd a robust basis set φi.

2.1 Literature Review

The basis function maps coe�cients to values. As Boyd[10] states, �The general rule is: Geometry

chooses the basis set. The engineer never has to make a choice.� Boyd's rule is technically correct

but historically idealistic. Idealism aside, the current geometry suggests a tri-symmetric basis set

for the natural triangular element. Later, we will see that the Belzier B-Spline �ts the geometry and

thus the rule.

A polynomial �moment�[35] basis φ = xm is simple but with an undesirable exponentially growing

mass matrix condition number. A general rule is that just because a basis set is orthogonal and can

represent any Nth order function does not also indicate that it is numerically identical to a di�erent

Nth order function.

The Lagrange basis is common by virtue of being nodally decoupled, a value of one at one node

and zero at all others. For greater than 1D, Karniadakis[35] states that �there is not a closed-form

expression for the Lagrange polynomial through an arbitrary set of points....�

Boyd strongly recommends a Chebyshev basis as a �moral principle�. This is a specially stretched

Fourier basis with similar properties. In fact, the Chebyshev basis is de�ned in terms of a cosine

function[10]

Tn (cosθ) = cos (nθ)

The advantages of Fourier series are concentrated in computational speed between coe�cients and

values. Unfortunately, transferring the basic Fourier series to triangles is not trivial.
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Figure 2.1: Collapsed Coordinate

The literature has volumes of CFD codes where the authors use non-symmetrical mapping func-

tions to transform a particularly interesting basis function onto a di�erent geometry. One compelling

reason is sum factorization[35]. These schemes are also full of singularities and non-constant ele-

mental Jacobians. Sum factorization reduces the work required to compute basis operations but

increases the work required to tranfer from a local to a global frame. Karniadakis[35] states

The sum factorization or tensor product technique was �rst recognized by Orszag and is

considered to be the key to the e�ciency of spectral methods.... We therefore see that

this factorization has reduced the [two-dimensional] cost from an O
(
P 4
)
operation to

an O
(
P 3
)
operation.

For triangles and tetrahedra, sum factorization requires a modi�ed element geometry seen in Fig-

ure 2.1. Point C has a singular Jacobian and multiple values. The Jacobian becomes an extra

computation that must be made at each point.

2.2 1D Bezier Splines

For this project, the selected basis function is the Belzier Spline (B-Spline). First, the mathematical

de�nition of the B-Spline in 1D on a reference segment is

p(ζ1, ζ2) =
∑
i+j=d

cij
d!

i!j!
ζi1ζ

j
2

where the coordinate directions are dependent with the relation

ζ2 + ζ1 = 1

Figure 2.2 shows the 1D B-Spline for P = 1 through P = 9. Further inspection of the B-Spline's

19



P=1

0 0.5 1
0

0.5

1

P=1

0 0.5 1
0

0.5

1

P=2

0 0.5 1
0

0.5

1

P=2

0 0.5 1
0

0.5

1

P=2

0 0.5 1
0

0.5

1

P=3

0 0.5 1
0

0.5

1

P=3

0 0.5 1
0

0.5

1

P=3

0 0.5 1
0

0.5

1

P=3

0 0.5 1
0

0.5

1

P=4

0 0.5 1
0

0.5

1

P=4

0 0.5 1
0

0.5

1

P=4

0 0.5 1
0

0.5

1

P=4

0 0.5 1
0

0.5

1

P=4

0 0.5 1
0

0.5

1

P=5

0 0.5 1
0

0.5

1

P=5

0 0.5 1
0

0.5

1

P=5

0 0.5 1
0

0.5

1

P=5

0 0.5 1
0

0.5

1

P=5

0 0.5 1
0

0.5

1

P=5

0 0.5 1
0

0.5

1

P=6

0 0.5 1
0

0.5

1

P=6

0 0.5 1
0

0.5

1

P=6

0 0.5 1
0

0.5

1

P=6

0 0.5 1
0

0.5

1

P=6

0 0.5 1
0

0.5

1

P=6

0 0.5 1
0

0.5

1

P=6

0 0.5 1
0

0.5

1

P=7

0 0.5 1
0

0.5

1

P=7

0 0.5 1
0

0.5

1

P=7

0 0.5 1
0

0.5

1

P=7

0 0.5 1
0

0.5

1

P=7

0 0.5 1
0

0.5

1

P=7

0 0.5 1
0

0.5

1

P=7

0 0.5 1
0

0.5

1

P=7

0 0.5 1
0

0.5

1

P=8

0 0.5 1
0

0.5

1

P=8

0 0.5 1
0

0.5

1

P=8

0 0.5 1
0

0.5

1

P=8

0 0.5 1
0

0.5

1

P=8

0 0.5 1
0

0.5

1

P=8

0 0.5 1
0

0.5

1

P=8

0 0.5 1
0

0.5

1

P=8

0 0.5 1
0

0.5

1

P=8

0 0.5 1
0

0.5

1

P=9

0 0.5 1
0

0.5

1

P=9

0 0.5 1
0

0.5

1

P=9

0 0.5 1
0

0.5

1

P=9

0 0.5 1
0

0.5

1

P=9

0 0.5 1
0

0.5

1

P=9

0 0.5 1
0

0.5

1

P=9

0 0.5 1
0

0.5

1

P=9

0 0.5 1
0

0.5

1

P=9

0 0.5 1
0

0.5

1

P=9

0 0.5 1
0

0.5

1

Figure 2.2: B-Spline Basis Functions

de�nition shows that some useful properties are: convex shell (i.e., values remain inside an envelope

of coe�cients magnitudes), tri-symmetric about natural coordinates, polynomial basis, unit norm

and the maximum is regularly spaced.

2.2.1 Derivatives

The derivative with the directional derivative operator D is

Dp(P ) =
∑
i+j=d

cij
d!

i!j!
ζi−1
1 ζj2iDζ1

+
∑
i+j=d

cij
d!

i!j!
ζi1ζ

j−1
2 jDζ2

Reindexing i and j allows the derivative to reappear as a lower order B-Spline with a derivative

coe�cient vector ĉij

Dp(P ) =
∑

i+j=d−1

ĉij
(d− 1)!

i!j!
ζi1ζ

j
2

with

ĉij = dc(i+1)jDζ1 + dci(j+1)Dζ2
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This simpli�es the implementation. A similar derivation is possible for higher derivatives; the

coe�cient stencil becomes wider.

2.2.2 Integration

The integral over the line element given a polynomial distribution is the identity[42]

I =

ˆ
A

ζl1ζ
m
2 dA =

l!m!

(l +m+ 1)!

Recall that the B-Spline de�nition in 1D is

p(ζ1, ζ2) =
∑
i+j=d

cij
d!

i!j!
ζi1ζ

j
2

Notice that the B-Spline de�nition and the polynomial integral both contain l!m! and 1/i!j!. These

directly cancel when applying the polynomial integration identity to the B-Spline. Applying gives

integrals for a known value coe�cient vector.

I =

ˆ
p

=
∑
i+j=d

cij
d!

i!j!

l!m!

(i+ j + 1)!

=
∑
i+j=d

cij
d!

(d+ 1)!

=
1

(d+ 1)

∑
i+j=d

cij

Simply put, B-Spline integration is a simple summation of coe�cients divided by the number of

coe�cients. Compared with Gauss numerical integration, the integration weights are constant. This

should simplify implementation.

2.2.3 Multiplication

Multiplication is another critical operation. The B-Spline is

p(P ) =
∑
i+j=d

cij
d!

i!j!
ζi1ζ

j
2

De�ne e as

eij =
d!

i!j!

Multiplication is

p(P )q (P ) =
∑

i+j=d1

cij
d!

i!j!
ζi1ζ

j
2

∑
m+n=d2

dmn
d!

m!n!
ζm1 ζ

n
2
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compare with p for each value gives

p(P )q (P ) =
∑

s+t=d1+d2

fst
d!

s!t!
ζs1ζ

t
2

Multiplication Patterns

This section attempts to �nd patterns in the numerical multiplication of two B-Splines with coef-

�cients a and b. Notice that multiplication routines can be pre-calculated for known orders. This

gives an equivalent set of coe�cients f such that

f = M (a, b)

For example, multiplication of an order 2 by an order 1 gives the four coe�cents of f as

f1 ≡ f30 =
c20e20c10e10

e30

f2 ≡ f21 =
c11e11c10e10 + c20e20c01e01

e21

f3 ≡ f12 =
c11e11c01e01 + c02e02c10e10

e12

f4 ≡ f03 =
c02e02c01e01

e03

This can be hardcoded for e�ciency for each speci�c multiplication.
d20

d11

d02

 =


a10 0

a01 a10

0 a01


 b10

b01




d40

d31

d22

d13

d04


=



a20 0 0

a11 a20 0

a02 a11 a20

0 a02 a11

0 0 a02




b20

b11

b02


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

d60

d51

d42

d33

d24

d15

d06



=



a40 0 0

a31 a40 0

a22 a31 a40

a13 a22 a31

a04 a13 a22

a04 a13

a04




b20

b11

b02



Combining gives



ab40

ab31

ab22

ab13

ab04


=



a20 0 0

a11 a20 0

a02 a11 a20

0 a02 a11

0 0 a02




b20

b11

b02

 =



a20b20

a11b20 + a20b11

a02b20 + a11b11 + a20b02

a02b11 + a11b02

a02b02




d60

d51

d42

d33

d24

d15

d06



=



ab40

ab31 ab40

ab22 ab31 ab40

ab13 ab22 ab31

ab04 ab13 ab22

ab04 ab13

ab04




c20

c11

c02



This operation is convienent and numerically practical.

2.2.4 Conversion between Orders

Here, conversion between di�erent polynomial orders is discussed. Naturally, conversion is only

loss-less∗ when converting to a higher order polynomial. Order conversion does not require sym-

bolic algebra. Multiplication already provides a method to increase order. Replicating the above

∗Loss-less means that information is not lost; the original function can be recovered.
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conversion from 4 to 6 is possible by multiplying by a unit basis of order 2.

d60e60

d51e51

d42e42

d33e33

d24e42

d15e15

d06e06



=



b40e40

b31e31 b40e40

b22e22 b31e31 b40e40

b13e13 b22e22 b31e31

b04e04 b13e13 b22e22

b04e04 b13e13

b04e04




c20e20

c11e11

c02e02



where cij = 1. Remember that all terms are premultiplied by eij .

d60

d51

d42

d33

d24

d15

d06



=



e20e40
e60

e11e40
e51

e20b31
e51

e02e40
e42

e11b31
e42

e20b22
e42

e02b31
e33

e11b22
e33

e20b13
e33

e02b22
e42

e11b13
e42

e20b04
e42

e02b13
e15

e11b04
e15

e02b04
e06





b40

b31

b22

b13

b04



=



1

1
3

2
3

1
15

8
15

2
5

1
5

3
5

1
5

2
5

8
15

1
15

2
3

1
3

1





b40

b31

b22

b13

b04



2.3 2D Bezier Splines

The B-Spline de�nition in 2D is

p(ζ1, ζ2, ζ3) =
∑

i+j+k=d

cijk
d!

i!j!k!
ζi1ζ

j
2ζ
k
3

The 2D form has the same useful characteristics that the 1D form contains. The number of coe�-

cients is

N =
(d+ 1)(d+ 2)

2
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s i j k g

1 4 0 0 1

2 3 1 0 2

3 3 0 1 2

4 2 2 0 3

5 2 1 1 3

6 2 0 2 3

7 1 3 0 4

8 1 2 1 4

9 1 1 2 4

10 1 0 3 4

11 0 4 0 5

12 0 3 1 5

13 0 2 2 5

14 0 1 3 5

15 0 0 4 5

Table 2.1: B-Spline Indices and Mapping for d = 4

2.3.1 2D Indices

B-Splines are de�ned with an ijk notation. For e�cient computer implementations, we prefer a

single index s. So we need a function S to map R3 to R1

s = S(i, j, k, d)

The inverse map is also needed.

{i, j, k} = S−1(s, d)

Understandably, multiple S mapping functions exist; S is not unique. The following develops a

mapping corresponding to Table 2.1 for d = 4, where i is the most signi�cant index and k is the least

signi�cant index. Figure 2.3 graphically shows the triangle geometry, indices, and group number for

a d = 4 B-Spline expansion.

The mapping function S is

s = 1 + k +

g−1∑
x=1

x
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Figure 2.3: B-Spline Geometry and Indices for d = 4

Substituting for an arithmetic series identity[75] gives

s = 1 + k +
g2 − g

2

The group number is

g = d− i+ 1

or

g = j + k + 1

Simplifying gives

s = 1 + k +
d

2
− i

2
− di+

d2 + i2

2

or

s = 1 +
j + 3k

2
+ jk +

j2 + k2

2

The inverse mapping function is extracted by noticing that

i = d− g + 1

k = s− g2 − g
2
− 1

j = d− i− k

This still requires �nding g. But, s is in group g if

s = 1 + k +
g2 − g

2
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Solving for g gives

g =
1

2
+

√
1− 8(1 + k − s)

2

=
1

2
+

√
8s− 8k − 7

2

Unfortunately, we don't know k. However, we do know that changing k does not in�uence the group

number. So, we set k = 0 and round-down g to an integer. This gives

g = b
(

1

2
+

√
8s− 7

2

)
or in Fortran

g = int

(
1

2
+

√
8s− 7

2

)

2.3.2 Integration

The integral over the natural triangle given a polynomial distribution is[42]

I =

ˆ
A

ζl1ζ
m
2 ζ

n
3 dΩ =

l!m!n!

(l +m+ n+ 2)!

Again, the B-Spline function and the integration identity cancel the factorial terms. Substitution

for the basis de�nition and applying the exact integral identity above gives

I =

ˆ
p

=
∑

i+j+k=d

cijk
d!

i!j!k!

l!m!n!

(i+ j + k + 2)!

=
∑

i+j+k=d

cijk
d!

(d+ 2)!

=
1

(d+ 2) (d+ 1)

∑
i+j+k=d

cijk

Substitution with N , the number of coe�cients, reduces integration to

I =
1

2N

∑
c

or

I =
1

2N

∑
c

Again, B-Spline integration over the local element is a simple summation of coe�cients divided by

twice the number of coe�cients. The B-Spline basis is well suited to coe�cient based integration.
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2.3.3 Multiplication

The B-Spline is

p(ζ1, ζ2, ζ3) =
∑

i+j+k=d

cijk
d!

i!j!k!
ζi1ζ

j
2ζ
k
3

Multiplication is

p(P )q (P ) =
∑

i+j+k=d1

aijk
d!

i!j!k!
ζi1ζ

j
2ζ
k
3

∑
m+n+o=d2

bmno
d!

m!n!o!
ζm1 ζ

n
2 ζ

o
2

compare with p for each value gives

p(P )q (P ) =
∑

s+t+u=d1+d2

fst
d!

s!t!u!
ζs1ζ

t
2ζ
u
3

For example, this expands to



f200

f110

f101

f020

f011

f002


=



b100

b010 b100

b001 b100

b010

b001 b010

b001




a100

a010

a001





f300

f210

f201

f120

f111

f102

f030

f021

f012

f003



=



a100

a010 a100

a001 a100

a010 a100

a001 a010 a100

a001 a100

a010

a001 a010

a001 a010

a001





b200

b110

b101

b020

b011

b002


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

f300

f210

f201

f120

f111

f102

f030

f021

f012

f003



=



b200

b110 b200

b101 b200

b020 b110

b011 b101 b110

b002 b101

b020

b011 b020

b002 b011

b002




a100

a010

a001





b400

b310

b301

b220

b211

b202

b130

b121

b112

b103

b040

b031

b022

b013

b004



=



a200

a110 a200

a101 a200

a020 a110 a200

a011 a101 a110 a200

a002 a101 a200

a020 a101

a011 a020 a101 a110

a002 a011 a101 a110

a002 a101

a020

a011 a020

a002 a011 a020

a002 a011

a002





b200

b110

b101

b020

b011

b002



This form is not as simple as the 1D counterpart. This added complexity dooms direct coe�cient

multiplication.

2.3.4 Derivatives

The de�nition of the basis is

p(ζ1, ζ2, ζ3) =
∑

i+j+k=d

cijk
d!

i!j!k!
ζi1ζ

j
2ζ
k
3
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Using a derivative operator D for a generic direction, the basis derivative is

Dp(ζ1, ζ2, ζ3) =
∑

i+j+k=d

cijk
d!

i!j!k!

(
ζi−1
1 ζj2ζ

k
3 iDζ1 + ζi1ζ

j−1
2 ζk3 jDζ2 + ζi1ζ

j
2ζ
k−1
3 kDζ3

)
Renumbering the sum gives

Dp(P ) =
∑

i+j+k=d−1

ĉijk
(d− 1)!

i!j!k!
ζi1ζ

j
2ζ
k
3

with

ĉijk = dc(i+1)jkDζ1 + dci(j+1)kDζ2 + dcij(k+1)Dζ3

Notice that the derivative B-Spline is one order lower. In practice, up-converting back to order d is

recommended. Conversion is discussed in Section 2.3.5.

Example

Remembering the geometry constraint ζ1 + ζ2 + ζ3 = 1 implies dζ1 = −dζ2 − dζ3. For example, to

pick out the ζ1 derivative, the operator is
Dζ1

Dζ2

Dζ3

 =


1

0

−1


so the coe�cients are

ĉijk = dc(i+1)jk − dcij(k+1)

These coe�cients form the new B-Spline representing the zeta directional derivative.

2.3.5 Conversion

Converting orders is necessary to simplify the spline mathematics. Conversion allows for operations

in the lowest necessary order for numerical e�ciency†. Up-conversion preserves function information;

down-conversion loses information and will not be discussed. When using the previously derived

multiplication operation, up-conversion from order m to order n requires multiplication by a unity

spline of the di�erence n−m.

†Compare with Gauss Integration where operations must either be performed optimally on a variable local grid or

sub-optimally on a local grid necessary to capture the highest order operation.
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For example, to convert a 1st order spline to a second order spline requires multiplying by a 1st

order unity spline. In matrix form, the operation is

f200

f110

f101

f020

f011

f002


=



b100

b010 b100

b001 b100

b010

b001 b010

b001




1

1

1



As implemented, all operations return a spline corresponding to multiples of the state variable order.

2.4 Value Based Operations

The above B-Spline operations are wonderful from a numerical standpoint but are unusably slow.

So the mathematical operations will be revisited with absolute speed as a goal.

2.4.1 Values and Coe�cients

In general, converting between coe�cients and values takes the form

V = [B] a

A major di�erence with value based operations is that values must be calculated at o� nodal points.

The number of nodal points needed for a given order is known beforehand, so the conceptual process

is to directly convert values from the coe�cients.

2.4.2 Integration

Integration is perfectly e�cient for the B-Spline; the integral reduces to a simple summation of

coe�cients. In general, converting between coe�cients and values takes the form

V = [B] a

so that the coe�cients are

a =
[
B−1

]
V

Remembering that the B-Spline integral is of the form

I =
1

C

∑
a

31



allows the integral to be written as

I =
1

C

∑[
B−1

]
V

Expanding the de�nition of a sum gives the following integral form

I =
1

C

[
1 1 1 · · · 1

] [
B−1

]


V1

V2

V3

...

VN


Three terms can be premultiplied and stored to give

I = wiVi

where

w =
1

C

[
1 1 1 · · · 1

] [
B−1

]
This form requires an identical number of operations as before but with values rather than coe�-

cients.

2.4.3 Multiplication

The primary slowness comes from multiplication of coe�cients. The objective is to convert to value

based operations when multiplying. Multiplication is trivial.

M(Vi,Wj) = δijViWj

The primary constraint is that the pointwise multiplication must include a su�cient number of

points to capture the relevant order. Multiplying a c order function with a d order function yields

a c+ d order function. This requires all values be computed in the highest resulting order. Failure

to maintain a su�cient order results in aliasing.

2.4.4 Derivatives

Value based derivatives are more complicated. From the spline section, the directional derivative

coe�cients are functions of value coe�cients

adζi = [Dζi] a

Converting to coe�cients from values is a known process

a =
[
B−1

]
V
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Combining gives

adζi = [Dζi]
[
B−1

]
V

Unfortunately, di�erentiation reduces the absolute order by one. The resulting derivative values are

Vζi =
[
B+
]
adζi =

[
B+
]

[Dζi]
[
B−1

]
V

The matrix terms are constant and should be premultiplied and stored for each order and direction.
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Chapter 3

Higher Order Methodology

This chapter describes the governing equations and forms a higher order numerical method for their

solution. The solution domain is decomposed into triangular �nite elements. The �uid dynamics

governing equations are conservation of mass, momentum, energy, and entropy on a di�erential �uid

element. This section de�nes the �uid properties and develops the partial di�erential equations

describing the �uid dynamics.

3.1 Nomenclature and Properties of Fluids

This section discusses thermodynamic, �uid, and �ow properties and their nomenclature. The

section discusses the ideal gas model and �ow scales. This project exclusively uses the ideal gas

approximation. Remembering that this project's goals are to investigate concepts and methods

weakens the need to use better gas models. For comparison, the ideal gas model is designed for

standard temperature and pressure gas states in single state gases. For more information regarding

the ideal gas's operating limitations refer to Moran[52]. For an ideal gas, the ratio of constant

pressure to constant volume speci�c heat is

γ =
cp
cv

The gas constant for the ideal gas model is de�ned as

R = cp − cv

Thermodynamic �uid properties are de�ned by Moran[52] as �macroscopic characteristics of a

system such as mass, volume, energy and temperature to which numerical values can be assigned

at a given time without knowledge of the history of the system.� Speci�c properties refer to unit

amounts per unit of mass.

The density is de�ned as

ρ
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The velocity vector is

U = V =

 u

v


Total speci�c energy is

e

Total Energy is

E = ρe

Internal speci�c energy is

ê = eint = e− 1

2
V · V

Internal Energy is

Ê = ρe− 1

2
ρV · V

Temperature with the assumption of ideal gas is

T =
ê

cv
=

1

cv

(
e− 1

2
V · V

)
Pressure with the assumption of ideal gas is

p = ρRT = ρ (γ − 1)

(
e− 1

2
V · V

)
= (γ − 1)

(
Ê
)

Speci�c Enthalpy is

h = e+RT = ê+
p

ρ
+

1

2
V · V =

γ

γ − 1

p

ρ
+

1

2
V · V

Total Enthalpy is

H = E + p

Speci�c entropy is

s

Entropy is

S = ρs

Viscosity is

µ

Bulk Viscosity is

λ̂ = λµ
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Figure 3.1: Natural Triangle Element

Flow property models are non-dimensional representations of �ow characteristic scales. The

Mach number assuming an ideal gas is

M =
V

a
= V/

√
γ (γ − 1)

(
e− 1

2
V · V

)
when the acoustic speed is

a =
√
γRT =

√
γ (γ − 1)

(
e− 1

2
V · V

)
The Reynolds number is

Re =
ρV L

µ

The Prandtl number is

Pr =
µcp
k

These properties and characteristics are su�cient to describe the inviscid and viscous �ows under

consideration in this project.

3.2 2D Coordinate System

The solution domain is decomposed into many triangular elements. These elements provide the

structure necessary for locating and computing values from a solution state vector. The representa-

tion used for this project is a natural coordinate system.

A natural coordinate system for triangles provides 3 fold symmetry of a triangle. Coordinate

directions begin at edges with value zero and proceed to the opposing vertex with value one. Figure

3.1 shows a reference triangle with this natural coordinate system. For 2D, the triangle description

requires three dependent coordinates, ζ1,ζ2,ζ3, where the summation of these coordinates must be
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unity.

ζ1 + ζ2 + ζ3 = 1

The B-Spline coordinate easily �ts into the triangle's natural coordinate system. Later, the need

to reduce a 2D triangle to 1D segments will become important with boundary integrals. One

dimensional segment descriptions are created by reduction of the 2D descriptions to two dependent

coordinates.

3.2.1 Linear Geometry Element

The natural coordinate system described above is a local coordinate system. Potentially, the local

coordinates could be mapped to a non-linear curved element. For this project the geometry mapping

is restricted to a linear map. There are implications to this linear map, especially when describing

and enforcing boundary conditions. These implications will be discussed later.

Returning to the concept of a linear mapping between the local and global coordinates allow for

a simple mapping function. The local to global coordinate transform is[26]
1

x

y

 =


1 1 1

x1 x2 x3

y1 y2 y3




ζ1

ζ2

ζ3


where x and y are nodal locations. The upper row of ones indicates the constraint that within

the element, the summation of dependent local coordinates is exactly 1. Substituting the top row

reduces the transform to two independent coordinates[14] x

y

 =

 x3

y3

+

 (x1 − x3) (x2 − x3)

(y1 − y3) (y1 − y3)


 ζ1

ζ2


=

 x3

y3

+

 x13 x23

y13 y23


 ζ1

ζ2


=

 x3

y3

+B

 ζ1

ζ2


Notationally, the coordinate form x13 indicates x1 − x3. This is in a form useful for numerical

calculations. It is noted that the reference coordinates for the third node place the element's location;

the B transformation matrix indicates the orientation.

For later use, a transformation must be created from the global to the local frame. Specifying
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the Jacobian as the transpose of the B gives

J =

 x13 y13

x23 y23

 = BT

The Inverse Jacobian is

J−1 =
1

det J

 y23 −y13

−x23 x13

 =
1

2A

 y23 −y13

−x23 x13


Notice that the determinate of the B matrix is twice the element's area.

3.2.2 Derivatives

Transforming derivatives from the global frame to the local frame is a necessary operation. From

the chain rule, derivatives in the local frame are related to derivatives in the global frame by d
dζ1

d
dζ2

 =

 dx1

dη1
dx2

dη1

dx1

dη2
dx2

dη2


 d

dx

d
dy


The matrix converting derivatives was de�ned above as the Jacobian.

J =

 dx1

dη1
dx2

dη1

dx1

dη2
dx2

dη2


Typically for �nite element calculations, the derivatives in the global frame are calculated from

local frame derivatives. Inverting the previous transformation gives

 d
dx

d
dy

 = J−1

 d
dζ1

d
dζ2


where J−1 is referring to the inverse Jacobian. Matrix inversion for this 2 by 2 matrix is exactly

J−1 =
1

det J

 dx2

dη2
−dx2

dη1

−dx1

dη2
dx1

dη1


=

1

2A

 dx2

dη2
−dx2

dη1

−dx1

dη2
dx1

dη1


The form is simpli�ed by recalling that the cross product of triangle edge di�erences, in the guise of

a determinate, equals twice the triangle's area. In terms of global coordinate di�erences and element

area, the inverse Jacobian is

J−1 =
1

2A

 y23 −y13

−x23 x13


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Decomposed Jacobian

Later, decomposing the Jacobian and inverse Jacobian matrix will provide an elegant approach to

removing an integration term in the governing equations. Notice that the inverse Jacobian contains

a permutation of the J terms divided by the determinate of the Jacobian, |J |. More importantly,

the permuted terms in J−1 are well behaved. The modi�ed Jacobian without the|J |term is

Ĵ−1 = |J | J−1 =

 dx2

dη2
−dx2

dη1

−dx1

dη2
dx1

dη1

 =

 dη̂1
dx

dη̂1
dy

dη̂2
dx

dη̂2
dy


Alternatively, this is  d

dx

d
dy

 =
1

|J | Ĵ
−1

 d
dζ1

d
dζ2


Directional Derivatives

Transferring the directional derivative between frames also involves the Jacobian transpose dx

dy

 =

 dx
dζ1

dx
dζ2

dy
dζ1

dy
dζ2


 dζ1

dζ2

 = JT

 dζ1

dζ2

 =

(
dζ1 dζ2

)
[J ]

Thus, the local frame directions necessary for unit global frame operations are dζ1

dζ2

 = J−T

 dx

dy

 =
1

2A

 dx2

dη2
−dx1

dη2

−dx2

dη1
dx1

dη1


 dx

dy


So for the x direction global frame, the directional derivative is

dx =

 dz1

dz2

 =
1

2A

 dx2

dη2
−dx1

dη2

−dx2

dη1
dx1

dη1


 1

0


For the y direction, the global frame directional derivative is

dy =

 dz1

dz2

 =
1

2A

 dx2

dη2
−dx1

dη2

−dx2

dη1
dx1

dη1


 0

1

 =
1

|J |

(
0 1

)[
Ĵ−1

]
This allows us to compute global frame derivatives with local frame operators.

3.2.3 Integration

Integration is a critical operation for Galerkin based Finite Element solvers. The governing equations

are derived in a global frame; however, element operations are in the local element frame. The area

mapping between frames is through the element's Jacobian. For a global domain V with an elemental

domain Ω, the following is an identity.

39



ˆ
V

F (X)dV =

ˆ
Ω

F (η) |J | dΩ

When the dimensionality is known (i.e., 1D, 2D, or 3D), integrals may be expressed in local elemental

coordinates with the knowledge that not all coordinates are independent. For example, a 2D integral

may appear as ˆ
F (η) |J | dη1dη2dη3

even though the constraint η1 + η2 + η3 = 1 holds. In general, the Ω terminology more closely �ts

the numerical integration process, which operates on the local element as a whole.

Integration by Parts

Integration by parts via Green's theorem is used often in �nite element derivations. As confusion

often arises with this transformation, the derivation and assumptions are explicitly stated without

proof. Green's theorem[71] is

ˆ
(∇u · w + u∇ · w) dΩ =

ˆ
uv · ndΓ

with the requirements that u and w are continuously di�erentiable[67], which is often stated as C1.

The derivatives of u and w should be continuous.

For further understanding, the integration by parts identity is derived. First, take two functions

u and w. Take the divergence of their product and expand with the chain rule. This requires that

u and w be di�erentiable.

∇ · (uw) = u · ∇w +∇u · w

Now take the volume integral

ˆ
Ω

∇ · (uw) dΩ =

ˆ
Ω

u · ∇w dΩ +

ˆ
Ω

∇u · w dΩ

Remembering the divergence integral theorem with its assumption of continuous derivatives as

ˆ
Ω

div(v) dΩ =

ˆ
Γ

v · ndΓ

allows for substitution into the previous volume integral.

ˆ
Γ

uw · ndΓ =

ˆ
Ω

u · ∇w dΩ +

ˆ
Ω

∇u · w dΩ

For Galerkin �nite elements, the following equivalent form is used

ˆ
Ω

φ · ∇F dΩ = −
ˆ

Ω

∇φ · F dΩ +

ˆ
Γ

φF · ndΓ
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The assumptions can often be slightly relaxed. For the FE form, let the Flux F be continuous

across an elemental boundary. Also let the basis functions be the traditional hat function that is

not di�erentially continuous across an elemental boundary. We need to calculate

ˆ
Ω

φ · ∇F dΩ

which is split into

−
ˆ

Ω

∇φ · F dΩ

and

+

ˆ
Γ

φF · ndΓ

for all elemental boundaries. Notice that for the �rst term, ∇φ is discontinuous across elements

boundaries. For the second term, the interior-element boundary integrals exactly cancel since the

basis functions and F are continuous at boundaries. Thus, boundary integral global reduction

eliminating internal boundary integrals remains consistent when both F and φ are at least C0.

Numerical Integration

The traditional method of numerical integration is Gauss quadrature. The general form is

ˆ
fdA ≈ wifi (xi)

when given optimized locations xi and weights wi. This scheme is exact for well-behaved polynomial

functions given su�ent points. Unfortunately, the derivation of multidimensional higher order Gauss

quadrature formulas requires signi�cant computational optimization in a solution space full of local

optimums. Gauss integration formulas for triangles and tetrahedra become increasingly scarce for

moderate degrees (P > 5) and essentially non-existent for truly higher order (P > 8). This project

attempted to generate higher order Gauss integration formulas via the Jinyun[33] and Keast[37]

papers. Low order generation was successful; higher order generation failed.

3.2.4 Element Boundary Normals

Boundary conditions require boundary normals. The normals are applied in two parts of the solver:

boundary �uxes and boundary constraints applied through the mass matrix. For an Euler slip

boundary condition, normals from the connecting boundary elements must be identical. For a given

element, boundary velocities are constrained to a normal velocity of zero

V · n = 0
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From the governing equations, in�nite accelerations are not physically consistent. Thus, at a com-

mon face, each directional velocity component is C0 continuous. Removing the normal velocity

components simultaneously from both elements reduces the entire velocity to zero. Thus, two adja-

cent elements must have identical normals along their shared face. A shorter alternative description

is: Euler solutions are scale independent. Finite element grids tend to ruin the scale independence.

Past inviscid solvers, such as Euler3d, calculate and use an area weighted normal for all nodes.

In equation form for two 1D face elements at a common vertex, this is

nW = A1

 nx

ny


1

+A2

 nx

ny


2

As an interesting aside, this method has a rarely-discussed assumption of boundary element cur-

vature when using a linear grid. That is, an isoparameteric linear basis solver with area weighted

normals numerically contains variable boundary normals even though the formulation is based on

a constant normal. For �ow tangency, the area weighting coupled with nodal integration points is

numerically equivalent to assuming a curved boundary. Regardless, most methods use the actual

linear element's normal for boundary �uxes and integration. The resulting loss of conservation is

likely to be proportional to the di�erence in adjacent normals. That is, if the edge boundary normals

and not parametric with the interior integration, then the integratiom by parts expansion is not ex-

act. Luckily, typical grids require small elements and small changes in normals between adjacent

elements. For typical converged grids, the loss should be small.

For many grids, a full nonlinear element and the associated variable Jacobian is both expensive

and unnecessary. A notable exception would be for boundary elements. Even then, actual adjacent

element normals for geometry converged grids only vary a few degrees.

3.3 Governing Equations

The governing equations in a non-inertial frame are the 2D compressible Navier-Stokes equations.

Compressible indicates that density is variable. Navier-Stokes indicates the presence of stress terms

resulting from velocity gradients.

With a 2D compressible Navier-Stokes �ow, the corresponding conservative states are

U =



ρ

ρu

ρv

ρe


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A general form of the governing equations contains temporal terms dU/dt, advection �ux terms ∇F ,

body terms B, and non-inertial frame source terms S

dU

dt
+∇F = B + S

The �ux terms are composed of inviscid and viscous terms,

F = F I − FV

Each of these terms is discussed in detail below.

3.3.1 Inviscid Flux

The inviscid �uxes are

F Ix =



ρu

ρu2 + p

ρuv

ρuh


F Iy =



ρv

ρvu

ρv2 + p

ρvh


With the assumption of an ideal gas, the pressure is

P = (γ − 1)

(
ρe− 1

2
ρV 2

)
The enthalpy is

h = e+
p

ρ

3.3.2 Viscous Flux

The viscous �uxes are

FVx =



0

τxx

τxy

uτxx + vτxy − qx


FVy =



0

τyx

τyy

uτyx + vτyy − qy


The viscous stress tensor τ is

τ =

 τxx τxy

τyx τyy


With a Newtonian �uid, stresses are linear combinations of velocity gradients. The stress model is

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ δijλ∇u
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Often, the velocity divergence term is incorporated into the other term with the assumption of a

constant bulk viscosity λ. A rationale and discussion is beyond this project's scope. See White[74]

for more information.

The surface stress tensor is needed for lift and drag calculations. Stresses and integrated forces

are in the global frame. Recalling the Cauchy equations from structural mechanics gives the surface

traction on an arbitrary surface as

Tx = τxxnx + τxyny

Ty = τxynx + τyyny

The surface area projected in the x direction along a surface of length L is

Ax = Lnx

Thus, the force in the x direction is

Fx = TxnxL

Fx = τxxn
2
xL+ τxynynxL

The y direction force is

Fy = TxnxL

Fy = τxynxnyL+ τyyn
2
y

Projecting the stress to the local elemental surface and then re-projecting the resulting force back

into a global frame is not necessary.

The heat �ux vector is

q = −k∇T

Viscous �ows and boundary layers can be sensitive to heat �ux. Adding the heat �ux term also

requires specifying a heat �ux boundary condition. As this involves �uid-structure coupling, a more

detailed model of the vehicle's thermal characteristics would be required.

3.3.3 Body Forces

Body forces in �ight dynamics are typically only gravity induced

B =



0

ρgx

ρgy

0



44



Figure 3.2: ALE frames

The source terms describe non-inertial frame motion (states in body reference frame)

S = −ρ


0

a′t + ΩVr

a′t · (V ′t + Vr)


Derivation and use of the non-inertial frame is given in Cowan's dissertation[14].

3.3.4 Arbitrary Lagrangian Eulerian

A critical technology is coupling motion boundary conditions into the CFD solver. Previous work

by Cowan[14] developed a non-inertial formulation of the Euler equations to allow arbitrary grid

translation and rotation in the body frame. Unfortunately, the body frame motion capability only

allows for rigid body motion; relative motion is not modeled. This ALE section introduces local grid

motion into the CFD formulation.

Arbitrary Lagrangian Eulerian (ALE) allows local grid motion in the Navier-Stokes governing

equations with a grid velocity �eld appended to the �ow states. Conceptually, ALE is a reference

frame modi�cation[30, 16] as shown in Figure 3.2. The inertial frame is frame X; the reference frame

is x.

Conversion between the frames is through ζ. This gives a frame Jacobian of

J =

∣∣∣∣ dxidXj

∣∣∣∣
The time derivative of the Jacobian is[16]

dJ

dt
= J

dWi

dxi

This indicates that the rate of change of the transformation depends on the velocity divergence. As

might be expected, we will later see that this term is mirrored in the Lagrangian frame kinematics.
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The time derivative of a property f is[16]

∂f

∂t

∣∣∣∣
X

=
∂f

∂t

∣∣∣∣
x

+
∂f

∂xi

∂xi
∂t

But with dx/dt being the x frame velocity w, this is also

∂f

∂t

∣∣∣∣
X

=
∂f

∂t

∣∣∣∣
x

+
∂f

∂xi
Wi

So for the �uid equations, we have[16, 42]

∂U

∂t
+
∂F I

∂xj
− ∂FV

∂xj
= 0

The states are

U =


ρJ

ρuiJ

ρeJ


The inviscid �uxes are

F I = J


ρ (uj −Wj)

ρui (uj −Wj) + δijp

ρe (uj −Wj) + puj


The grid velocity transformation appears in the Jacobian term and the advection term uj −Wj .

The viscous �uxes, being frame invariant, are identical to the normal Navier-Stokes �uxes

FV = J


0

σji

ukσkj − qj


At this point, the governing equations contain the frame transformation term J . Further simpli-

�cation is possible by expanding the temporal terms. For example, the momentum term expanded

with the chain rule is

dρuiJ

dt
= J

dρui
dt

+ ρui
dJ

dt

Remembering the de�nition of the frame Jacobian gives

dρuiJ

dt
= J

dρui
dt

+ ρuiJ
dWk

dxk

Presumably, the frame Jacobian is non-zero, so reducing gives

dU

dt
+
dF I

dxj
+
dWj

dxj
U = 0
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where

U =


ρ

ρui

ρe



F I =


ρ (uj −Wj)

ρui (uj −Wj) + δijp

ρe (uj −Wj) + puj



FV =


0

σji

ukσkj − qj


Thus, the ALE equations are exactly the inertial equations with the addition of grid divergence

terms U dW/dx and relative velocity terms u−W in the Euler �uxes.

Adding relative grid motion to an existing Eulerian frame CFD solver is practical and requires

few modi�cations. Furthermore, comparing these ALE terms with Cowan's source terms shows

interesting similarities. Conceptually, these two forms should be identical when restricted to rigid

body motion.

ALE Compression Veri�cation

At this point, we cautiously check whether or not these equations re�ect reality. The objective is to

compress a 2D closed control volume in the y direction. From mass conservation, the �nal density

re�ects the ratio of initial to �nal volume. If a unit square is slowly compressed from the bottom

edge with a uniform upward velocity w of 1, the density is

ρ(t) =
Mass(t)

V olume(t)
=

ρ0

1− t

This is the intuitive control volume approach.

With the ALE equations, the density equation is

dρ

dt
= −ρdwj

dxj
− d (ρ(uj −Wj))

dxj

Now, the grid motion W is constrained to exactly the �uid velocity u. The uniform compression

velocity creates a time-varying velocity gradient

dwy
dx

=
1

L−Wt
=

1

1− t

47



The governing equation, being in a pure Lagrangian frame, reduces to

dρ

dt
= −ρ 1

1− t

Integration of this equation gives

ρf =
ρ0

1− t
The governing equation result matches the control volume result.

3.3.5 Entropy

Entropy is a governing equation for solution feasibility. CFD codes require dissipation in some form.

In these terms, this project uses entropy not as a governing equation marched forward in time, but as

a predictive and corrective dissipation scheme. Most CFD codes use an ad-hoc dissipation scheme.

Merriam investigates a common dissipation scheme and makes the following comments.[48]

The [Tadmor] scheme is nevertheless instructive as written. It shows the one-to-one

correspondence between local violations of the second law and unphysical features of

the �ow (oscillations). This in turn shows the importance of satisfying a local entropy

condition in addition to a global one.

Bluntly put, solutions with non-physical oscillations violate the 2nd law.

Boyd[10] views the dissipation/blowup problem as �spectral blocking�. The good news is that

the spectral expansion allows for a more e�cient way to apply dissipation. From turbulence theory,

energy cascades governs the gross behavior for perturbations at di�erent wavelengths[62]. The non-

linear governing equations disperses the energy bandwidth as time advances. An aliasing problem

occurs when energy moving to higher frequencies can not be represented by the �nite bandwidth

numerical method.

The current Euler3d dissipation routine requires about 50% of the total solution time for a linear

dissipation routine. It is strongly recommended to use an entropy formulation, if possible.

Governing Equations

Entropy measures a system's energy spread. For an ideal gas between two states, the di�erential

change in entropy is

ds = cv
dT

T
+R

dv

v

or

∆s = cv ln
p2ρ

γ
1

p1ρ
γ
2
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As a control volume based transport governing equation, Naterer[53] gives

dρs

dt
+

d

dxi

(
ρuis−

k

T

dT

dxi

)
=

k

T 2

(
dT

dxi

)2

+
τij
T

dui
dxj

Expanding and reducing gives

dρs

dt
+

d

dxi
(ρuis) =

τij
T

dui
dxj

+
k

T

d2T

dx2
i

Notice that the conduction term is kept in this derivation.

Dissipation Function

The dissipation function models the heat generation by linear viscous dissipation.

Φ = τij ˙γij

This is the contraction of the stress tensor and the velocity gradients[54].

Φ = τij
∂ui
∂xj

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ δijλ

(
∂uk
∂xk

)
First pull out µ so that Φ only contains velocity gradients and de�ningλ̂ = λ/µ

Φ = µΦ̂

Φ̂ =

(
∂ui
∂xj

∂ui
∂xj

+
∂uj
∂xi

∂ui
∂xj

)
+ δij λ̂

(
∂uk
∂xk

∂ui
∂xj

)

Φ̂ =

(
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+ 2

(
∂v

∂x

∂u

∂y

))
+ λ̂

(
∂u

∂x

2

+
∂v

∂y

2)

Φ̂ =

(
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂v

∂x
+
∂u

∂y

)2
)

+ λ̂

(
∂u

∂x
+
∂v

∂y

)2

Dimensionless Derivation

The dimensionless form with reference de�nitions is

Uo
Lo

∂

∂t?
(ρoρ

?sos
?) +

1

Lo

d

dx?i
(ρoρ

?Uou
?
i sos

?)

−k 1

L2
o

cp
γU2

o

γU2
o

cp

1

T ?
d2T ?

dx?2i

− cp
γU2

o

µ̂µo
T ?

Φ?
U2
o

L2
o

≥ 0
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Expanding and dividing by ρosoUo/Lo

∂

∂t?
(ρ?s?) +

d

dx?i
(ρ?u?i s

?)

−k 1

ρoso

1

Lo

cp
γU2

o

γUo
cp

1

T ?
d2T ?

dx?2i

− 1

ρoso

cp
γU2

o

µ̂µo
T ?

Φ?
Uo
Lo

≥ 0

Divide the viscous dissipative term by Re and the temperature dissipation term by Re and Pr.

∂

∂t?
(ρ?s?) +

d

dx?i
(ρ?u?i s

?)

−k 1

ρocp

1

Lo

cp
γU2

o

γUo
cp

µocp
kPr

ρoUoLo
Reµo

1

T ?
d2T ?

dx?2i

− 1

ρocp

ρoUoLo
Reµo

cp
γU2

o

µ̂µo
T ?

Φ?
Uo
Lo

≥ 0

This reduces to

∂

∂t?
(ρ?s?) +

d

dx?i
(ρ?u?i s

?)

− 1

Pr

1

Re

1

T ?
d2T ?

dx?2i

− 1

Re

1

γ

µ̂

T ?
Φ? ≥ 0

Finally, substitute T ? = e?int to give

∂

∂t?
(ρ?s?) +

d

dx?i
(ρ?u?i s

?)

− 1

Pr

1

Re

1

e?int

d2e?int
dx?2i

− 1

Re

1

γ

µ̂

e?int
Φ? ≥ 0

The �nal non-dimensional form is

∂

∂t?
(ρ?s?) +

d

dx?i
(ρ?u?i s

?) =
1

Pr

1

Re

1

e?int

d2e?int
dx?2i

+
1

Re

1

γ

µ̂

e?int
Φ?

Entropy Final Form

Dimensional form is

dρs

dt
+

d

dxi
(ρuis) =

k

T

d2T

dx2
i

+
Φ

T

The non-dimensional form is

∂

∂t?
(ρ?s?) +

d

dx?i
(ρ?u?i s

?) =
1

Pr

1

Re

1

e?int

d2e?int
dx?2i

+
1

Re

1

γ

µ̂

e?int
Φ?
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3.4 Non-Dimensionalization

Non-dimensionalization scales the simulation values to unit computational values. Additionally,

non-dimensionalization allows for the congregation of problem-scale terms.

• Density, ρ? = ρ/ρo

• Velocity, u? = u/Uo

• Pressure, p? = p/ρoU
2
o

• Energy, e? = e/U2
o

• Entropy, s? = s/cp

• Time, t? = tUo/Lo

• Location, x? = x/Lo

• Temperature, T ? = T/To = T/
U2
o

cv
= T/

γU2
o

cp

• Viscosity, µ? = µ/µo

Subsequent use of a particular variable will imply the non-dimensional version.

3.4.1 Governing Equations

The Euler and Navier-Stokes governing equations are generalized to

dU

dt
+∇F + U∇W = B + S

The dimensional values are[14]

U =



ρo

ρoUo

ρoUo

ρoU
2
o


U?

F =



ρoUo

ρoU
2
o

ρoU
2
o

ρoU
3
o


F ?
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S = SoS
? =



ρo
Uo
Lo

ρo
U2
o

Lo

ρo
U2
o

Lo

ρo
U2
o

Lo
U2
o


S?

Bo = So = [Uo]
Uo
Lo

Substitution gives

Uo
Lo

d

dt?
([Uo]U

?) +
1

Lo
∇ ([Fo]F

?) + [Uo]U
? 1

Lo
∇ ([Uo]W

?) = [Bo]B
? + [So]S

?

Reducing gives

d

dt?
(U?) +∇ (F ?) + U?∇W ? = B? + S? (3.1)

3.4.2 Euler Terms

The Euler �ux terms non-dimensionalized are

F ? =
F

Fo

The mass term is

F ?ρ =
1

ρoUo
ρu

=
ρoUo
ρoUo

ρ?u?

= ρ?u?

The momentum terms are

F ?ρu =
1

ρoU2
o

(ρuiuj + δijp)

=
ρoU

2
o

ρoU2
o

(
ρ?u?i u

?
j −

1

2
V ? · V ?

)
+
ρoU

2
o

ρoU2
o

(δij (γ − 1) ρ?e?)

= ρ?u?i u
?
j + δijp

?

The energy terms are

F ?ρe =
1

ρoU3
o

ρuih

=
ρoUoU

2
o

ρoU3
o

ρ?u?i h
?

= ρ?u?i h
?

The non-dimensional Euler �ux terms do not contain scaling constants. Inviscid Euler �uid

dynamics is scale independent.
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3.4.3 Viscous Terms

The non-dimensionalization of the viscous stress �ux term is

F ? =
F

Fo

The momentum terms are

F ?ρu =
µ̂µo
ρoU2

o

(
Uo
Lo

(
∂u?i
∂x?j

+
∂u?j
∂x?i

)
+ δij λ̂

Uo
Lo
∇?u?

)

=
µ̂

Re

((
∂u?i
∂x?j

+
∂u?j
∂x?i

)
+ δij λ̂∇?u?

)
The energy term is

F ?ρe =
1

ρoU3
o

(
Uou

?
j

Uo
Lo
µ̂µoτ

?
ij −

k

cv

U2
o

Lo
∇?i e?int

)
=

µo
ρoUoLo

(
u?j µ̂τ

?
ij −

k

cv

1

µo
∇?i e?int

)
=

µo
ρoUoLo

(
u?j µ̂τ

?
ij −

k

cv

1

µo

µocp
Prk

cvγ

cp
∇?i e?int

)
=

1

Re

(
u?j µ̂τ

?
ij −

γ

Pr
∇?i e?int

)
=

1

Re
u?j µ̂τ

?
ij −

γ

RePr
∇?i e?int

Unlike the Euler equations, the viscous �ux terms contain scaling reference constants: the

Reynolds Number for stress terms and the Prandtl Number for heat conduction. Viscous �uid

dynamics is scale dependent.

3.5 Numerical Form of Governing Equations

This section discusses how the governing equations are formed into a numerical routine. The raw

NS governing equations are not in a form convenient for numerical solutions. Additionally, the

numerical iteration requires the equations in a canonical form. Applying the Galerkin method to

the Navier-Stokes equations creates a weak formulation where through summation of parts, each

element is represented∑
e

ˆ
V

φi

(
−dU
dt
−
dF Ij
dxj

+
dFVj
dxj

− dWj

dxj
U

)
dV +

ˆ
V

φi (B + S) dV = 0

For reference, the total Galerkin energy equation is[13]

L = T −Π

=
1

2
Q̇TMQ̇− 1

2
QTKQ−QTF
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This becomes relevant when considering boundary condition contraint methods.

3.5.1 Mass

The mass term is formed from the terms containing time derivatives. In the traditional Galerkin

method, the mass terms are in the form of a mass matrix.

Mij =

ˆ
φiφjdV

Expanded, this is

Mij =

ˆ
φiφj |J (η1, η2)| dΩ

3.5.2 Inviscid Fluxes

The inviscid �uxes F I are the Euler �uxes. Consistent with tradition, the inviscid �uxes are trans-

formed with Green's theorem

−
ˆ
V

φi
dF Ij
dxj

dV =

ˆ
V

dφi
dxj

F Ij dV −
˛
φi
(
F Ij · nj

)
dS

Interior

The interior term is ˆ
V

dφi
dxj

F Ij dV

Expanding for the reference element gives

ˆ
dφi
dxj

F Ij |J | dΩ

The basis and �ux terms must be reoriented into the global coordinate directions

dφi
dxj

F Ij =
1

|J |

(
dφi
dx̂

dφi
dŷ

) F Ix

F Iy


Substitution gives the Galerkin term

ˆ (
dφi
dx̂

dφi
dŷ

) F Ix

F Iy

 dΩ
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Boundary

The boundary term is

−
˛
φi
(
F Ij · nj

)
dS

When considering dSe along an edge e is integrated in zeta space dl from 0 to 1, the edge Jacobian

|Je| is required

−
ˆ
φi
(
F I · ne

)
|Je| dl

Calculating the �ux in the normal direction expands into

F I · ne = Fxnx + Fyny

Substituting and reducing for the inviscid �ux gives

F I · ne =



ρ (u− ug)

ρu (u− ug) + p

ρv (u− ug)

ρe (u− ug) + pu


nx +



ρ (v − vg)

ρu (v − vg)

ρv (v − vg) + p

ρe (v − vg) + pv


ny

=



ρ (C · n̂)

ρu (C · n̂)

ρv (C · n̂)

ρe (C · n̂) + p (V · n̂)


+



0

pnx

pny

0


where

C =

 (u− ug)

(v − vg)

 V =

 u

v

 n̂ =

 nx

ny


and ugand vgare the grid velocities for an ALE formulation. This form simpli�es the implementation

by only tracking the normal �ux components.

3.5.3 Viscous Fluxes

The viscous �uxes before and after applying Green's theorem are

ˆ
V

φi
dFVj
dxj

dV = −
ˆ
V

dφi
dxj

FVj dV +

˛
φi
(
FVj · nj

)
dS

Be aware that since Green's theorem requires a continuous �ux F , the boundary �uxes at adjoining

elements edges do not cancel. Unlike the inviscid case, inviscid boundary terms must be calculated

and accumulated for each element.
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Interior

The interior term is

−
ˆ
V

dφi
dxj

FVj dV

Substitution for derivatives and integration area gives

−
ˆ (

dφi
dx̂

dφi
dŷ

) FVx

FVy

 dΩ

Boundary

The boundary term is ˛
φi
(
FVj · nj

)
dS

Calculating the �ux in the normal direction expands into

FV · ne = Fxnx + Fyny

Substituting and reducing for the inviscid �ux gives

FV · ne =



0

τxx

τxy

uτxx + vτxy − qx


nx +



0

τyx

τyy

uτyx + vτyy − qy


ny

where

n̂ =

 nx

ny


3.5.4 Source Terms

The body force and source terms involve external forces and usually do not contain temporal or

spacial derivatives of states. ˆ
V

φiSdV

Here, S is used as a generic summation of all source and body terms.

3.5.5 ALE Terms

The ALE terms represent the local grid motion. These terms contain states and grid divergence

−
ˆ
φiU

dWj

dxj
dV
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Additionally, the grid velocity vector W is known to be continuous. Gradient continuity of W is not

assured. For most internal elements however, W will be zero.

Expanding for the derivative and referential area gives

−
ˆ
φiU

1

|J |

(
dW1

dx̂
+
dW2

dŷ

)
|J | dΩ

Reducing gives

−
ˆ
φiU

(
dW1

dx̂
+
dW2

dŷ

)
dΩ

3.5.6 Entropy Constraint

Here we constrain entropy through increasing the local dissipation. Reordering the non-dimensional

entropy transport equation gives

e?int
∂

∂t?
(ρ?s?) + e?int

d

dx?i
(ρ?u?i s

?) =
1

Re

(
1

Pr

d2e?int
dx?2i

+
1

γ
µ̂Φ?

)
The Re required to satisfy the entropy equation is

1

Re
= e?int

∂
∂t? (ρ?s?) + d

dx?i
(ρ?u?i s

?)(
1
Pr

d2e?int
dx?2i

+ 1
γ µ̂Φ?

)
Alternatively, adding a �ctitious dissipation ΦF to the governing equation gives

∂

∂t?
(ρ?s?) +

d

dx?i
(ρ?u?i s

?) =
1

Pr

1

Re

1

e?int

d2e?int
dx?2i

+
1

Re

1

γ

µ̂

e?int
(Φ?) +

1

e?int
Φ?F

or

e?int
∂

∂t?
(ρ?s?) + e?int

d

dx?i
(ρ?u?i s

?)− 1

Re

1

Pr

d2e?int
dx?2i

=
1

Re

1

γ
µ̂ (Φ?) + Φ?F

or

Φ?F = e?int
∂

∂t?
(ρ?s?) + e?int

d

dx?i
(ρ?u?i s

?)− 1

Re

1

Pr

d2e?int
dx?2i

− 1

Re

1

γ
µ̂Φ?

If dissipation is applied only to the divergence of velocity, the additional �ux terms are

τij = δijλD∇u

FVx =



0

τxx

0

uτxx


FVy =



0

0

τyy

vτyy


with a dissipation function of

Φ?D = λD

(
∂u

∂x
+
∂v

∂y

)2
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Solving for λDgives

λD =
e?int

∂
∂t? (ρ?s?) + e?int

d
dx?i

(ρ?u?i s
?)− 1

Re
1
Pr

d2e?int
dx?2i

− 1
Re

1
γ µ̂Φ?(

∂u
∂x + ∂v

∂y

)2

3.5.7 Boundary Conditions

The boundary conditions implemented are No Slip and Freestream. It is important not to let bound-

ary conditions modify the governing equations. Both the boundary conditions and the governing

equations must be satis�ed simulateously. The approach here is to set the boundary conditions

and keep them satis�ed by constraining temporal derivatives. Implementation is through a linear

addition to the mass matrix. The approach is expandable to linear function constraints as might be

given in Euler no-�ow boundary conditions.

Multipoint constraints modify the potential energy equation with a Lyaponov-stable energy

modi�cation[49, 38]. For a constraint function f(q) = 0, the additional potential energy is[13]

Πc =
1

2
C (f(q))

2

Following through with the Galerkin approach gives a constraint residual addition of

Rc = −C df(q)

dq
f(q)

The constraint is especially e�cient to implement when f(q) is a linear function of state q.

Constraining values rather than derivatives signi�cantly increases the solution sti�ness by the

constraint constant C.

Known State Boundary Condition (No Slip)

A static state boundary condition is one where a particular �uid variable U has a known time

variation. The constraint equation is

Π =
1

2
C

(
daU
dt
− k
)2

The residual term is

R = −
(
daU
dt
− k
)

Addition of a controller loop allows for boundary condition enforcement of initially non-compliant

�elds. A single order controller likely is best for stability robustness.

k = λ (aU − aUo)

The gain λ would be a solution dependent parameter. Remember that this strategy is not valid for

time accuracy and would only be considered for steady solutions.
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Function Boundary Condition (Slip)

A function state boundary condition is one where more than one �uid variable combine in a constraint

equation. For the purposes of this paper, only linear functions are useful and will be considered.

The constraint equation for the slip condition

V · n = 0

in a multipoint constraint form is

Π =
1

2
C

(
nx
du

dt
+ ny

du

dt

)2

Π =
1

2
C

(
nx
∑

φi
dau
dt

+ ny
∑

φi
dav
dt

)2

The residual is

Raui = −C
(
nx
∑

φi
daui
dt

+ ny
∑

φi
davi
dt

)
nxφi

Riemann/Roe Solver

The boundary terms are where the far �eld (freestream) boundary condition is introduced. This

method is idential to the far �eld boundary condition in Euler3d. A formal discussion of the Riemann-

Roe solver for use in CFD solvers in given in Toro[73]. The fundamental concept is to correct the

boundary �ux with �ow characteristics. The concepts are quickly introduced here.

For the 1D compressible Euler equation, closed form solutions are available from the method of

characteristic lines[41]. For a linear advection equation du/dt = cdu/dx, the c term is recognized as

the advection velocity. All �ow states, including discontinuous states, advect at velocity c. Likewise,

for arbitrary governing equations

du

dt
+
dF

dx
= 0

applying the chain rule gives

du

dt
+
dF

du

du

dx
= 0

Next, de�ne A as the derivative of �ux with respect to states

A =
dF

du

The eigenvalues of A give the state velocities. The eigenvectors of A give the proportion of each

state corresponding to each state velocity.
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In 1D, the method of characteristic lines exactly solves the Euler equations of �uid �ow for

continuous and discontinuous initial conditions. For the Euler governig equation[41],

A =
dF

du
=


0 1 0

1
2 (γ − 3)u2 (3− γ)u (γ − 1)

1
2 (γ − 1)u3 − u (E+p)

ρ
(E+p)
ρ − (γ − 1)u2 γu


The three eigenvalues of A for the 1D Euler equation are: λ = u− c, u, u + c. That is, velocity u

of the contact discontinuity and two waves at u plus and minus sonic velocity c.

For numerical simulations, Roe[66] developed an approximate characteristic lines/Riemann solver.

Roe's contribution involved �nding a representative average state at a discontinuity. This average

for a state s with right sR and left sL values is

sroe =
sL
√
ρL + sR

√
ρR√

ρL +
√
ρR

This state is substituted into the A matrix to obtain a representative �ux at the boundary. The

current project uses a Roe averaged Riemann solver[73] for resolving �uxes at the element far-�eld

boundaries.

The boundary �ux is augmented as an average of the internal and the desired far �eld �ux.

Additionally, changes in state across the boundary models the compressible �ow characteristics with

a linearized Euler �ow model.

F =
1

2
(FL + FR)− 1

2
|A| (UR − UL)

This allows the model to only pick �ow characteristics physically contributing to the actual solution.

Outgoing characteristics are ignored.

Constraints

We also recognize that using Green's theorem in the Galerkin equation requires special continuity

constraints. The inviscid �uxes are functions of state values, so states must be C0 continuous. The

viscous �uxes are functions of state derivatives, so the states must also be C1 continuous.

Maintaining state continuity is simple with the B-Spline basis function; state coe�cients along

inter-element boundaries must be identical. Traditionally, identical coe�cients are speci�ed by con-

densing edge coe�cients together with the element and node connectivity. Alternatively, a routine

could be generated to ensure values match on either side of an inter-elemental boundary. Thus, a

more generic code is available at the expense of extra dependent values requiring numerical con-

straints.
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Maintaining equal state gradients is more complex. Although a geometrical constraint exists for

gradient continuity of the B-Spline basis, the constrain must eventually be expressed numerically

and without the bene�t of simple condensation of dependent coe�cients as used for state continuity.

Multipoint Constraint Theory From before, the Galerkin energy equation is

L = T −Π

=
1

2
Q̇TMQ̇− 1

2
QTKQ−QTF

Multipoint constraints modify the potential energy equation with a Lyaponov-stable energy modi�cation[38].

For a constraint function f(s) = 0, the additional potential energy is[13]

Πc =
1

2
C (f(s))

2

Following through with the Galerkin approach gives a constraint residual addition of

Rc = −C df(s)

ds
f(s)

The constraint is especially e�cient to implement when f(s) is a linear function of state q.

Residual Boundary Constraints In practice, the most e�ecitve boundary constraint method is

to simply specify the value and then disallow modi�cation. When computing updates, a residual is

formed from the governing equations

RSD = B −As

This residual is then used to compute a state vector update

snew = sold + f(RSD)

The residual boundary constraint simply applies zero change to the particular boundary coe�cients.

This method is used extensively in Euler2d with a more di�cult slip condition. For no-slip bound-

aries, the residual boundary constrain is even more simpli�ed.

Curved Elements and Boundaries This section attempts to evaluate the qualitative and quan-

titative e�ects of modeling the boundary element and boundary representation with a curved rep-

resentation.

In one dimension, or along a 2D edge, the edge is parametrically de�ned as

x(ζ) = φixi

y(ζ) = φiyi
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The Jacobian would be

|J | =
√(

dx

dζ

)2

+

(
dy

dζ

)2

or

|J | =
√(

xi
dφi
dζ

)2

+

(
yi
dφi
dζ

)2

For a simple linear element where 0 ≤ ζ ≤ 1, shape function derivatives are constants.

dφi
dζ

= ±1

This would be

|J | =

√(
xi

∆φi
∆ζ

)2

+

(
yi

∆φi
∆ζ

)2

=

√
(−x0 + x1)

2
+ (−y0 + y1)

2

=

√
(∆x)

2
+ (∆y)

2

The Jacobian for a linear element segment is constant.

For a quadratic element where 0 ≤ ζ ≤ 1, shape function are

φ =

{ (
2ζ2 − 3ζ + 1

) (
2ζ2 − ζ

) (
4ζ − 4ζ2

) }
Thus, the derivatives are

dφi
dζ

=

{
(4ζ − 3) (4ζ − 1) (4− 8ζ)

}
This would be

|J | =

√(
xi

∆φi
∆ζ

)2

+

(
yi

∆φi
∆ζ

)2

=

√
(x0 (4ζ − 3) + x1 (4ζ − 1) + x2 (4− 8ζ))

2
+ (y0 (4ζ − 3) + y1 (4ζ − 1) + y2 (4− 8ζ))

2

The Jacobian is not constant. This increases the computational work required per element.

3.6 Decoupled States

The mass term is formed from the terms containing time derivatives. In the traditional Galerkin

method, the mass terms are in the form of a mass matrix.

M trad
ij =

ˆ
φiφjdV

Beyond this point, mass matrix refers to the following derivation and not the traditional form given

above.

62



For the derivation in this dissertation, the traditional mass matrix is extended to obtain useful

computational advantages. This section discusses decoupling states in the temporal terms and

forming an e�cient numerical routine with the extended mass matrix.

3.6.1 Decoupled Temporal Derivative

The temporal derivative given in the compressible Navier-Stokes equations contains coupled conservative-

form thermodynamic properties (e.g., d(ρu)/dt). Because decoupled properties are advantageous

numerically, this section seeks to decouple the temporal derivatives. There are two major advan-

tages to decoupled raw properties, both of which concern calculating �uxes. One, raw properties

avoid rational polynomial calculations in calculating inviscid �uxes; non-rational polynomials have

signi�cant numerical advantages in integration and avoiding �oating point division-by-zero. Numer-

ical routines are bounded in the zero density limit. Two, calculating derivatives for the viscous �ux

is considerably simpli�ed with raw properties (e.g., u) rather than the compressible-conservation

properties (e.g., ρu). Applying the chain rule to derivatives of rational polynomials quickly becomes

error prone, denominator sensitive, and computationally expensive.

Rather, the chain rule is used to decompose the conservative state derivatives into primative

state derivatives.

dU

dt
=



dρ
dt

dρu
dt

dρv
dt

dρe
dt


=



0

ρdudt

ρdvdt

ρdedt


+



dρ
dt

udρdt

v dρdt

edρdt


This form is further reduced with the observation that states are described by basis functions and

coe�cients. This gives the following form

dU

dt
=



1

u ρ

v ρ

e ρ





dρ
dt

du
dt

dv
dt

de
dt


=



φ

uφ ρφ

vφ ρφ

eφ ρφ





daρ
dt

dau
dt

dav
dt

dae
dt



=



φ

φauφ φaρφ

φavφ φaρφ

φaeφ φaρφ





daρ
dt

dau
dt

dav
dt

dae
dt


While this form is implementable, decoupling the basis function from the basis coe�cients simpli�es

the expression to
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DU

dt
= φ



{1}

au aρ

av aρ

ae aρ


φ



daρ
dt

dau
dt

dav
dt

dae
dt


Notice that the matrix's top-left (1, 1) location contains a vector of ones that e�ectively eliminates

the �extra� φ for the �rst row since the basis is by design normalized (i.e
∑
φ = 1).

It is important to notice that although the expression is decoupled, the expression is still the

compressible-conservative form. Keeping the compressible conservative form is necessary to keep the

�ux terms in a conservative form to keep the weak solution consistent with the governing equation.

Failure to do so would result in incorrect wave characteristic speeds[41].

3.6.2 Galerkin Mass Term

The Mass matrix is de�ned as

Mij(a) =

ˆ
A

φiφj



{1}

au aρ

av aρ

ae aρ


φj |J (η1, η2)| dΩ

Notice that the mass matrix is now a function of property coe�cients a but is otherwise decoupled

from the time derivatives.

As derived above, the mass term is conceptually expensive to calculate. So a modi�cation is

made where a generalized mass tensor is de�ned as

M̂ijk =

ˆ
φiφjφkdV

Now, the intermediate mass terms are computed as

M1
ij = M̂ijk1

Mρ
ij = M̂ijkaρ(k)

Mu
ij = M̂ijkau(k)

Mv
ij = M̂ijkav(k)

Me
ij = M̂ijkae(k)
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where the free indicies imply summation: vi = mijaj =
∑
jmijaj . The full mass matrix is now

Mij =



M1

Mu Mρ

Mv Mρ

Me Mρ


When implemented in software, the actual mass matrix is rarely used. Rather, the typical require-

ment is for the matrix multiplication by a vector.

Q = [M ]V

With the expensive integrations cached in M̂ijk, the decoupled mass terms is now numerically feasible

to implement.

3.6.3 Time Updates

A critical routine is the time advancement and update. Most iteration methods use a form concep-

tually like

xt+1 = xt + λq

Now there are many methods available, but interestingly enough, the governing equations as given

above have a nasty pitfall. A typical temporal derivative expansion is the �nite di�erence.

da

dt
≈ a(t+ ∆t)− a(t)

∆t

Multiplication by the mass term gives q as a linear function of a

q = M
da

dt
= M

a(t+ ∆t)

∆t
−M a(t)

∆t

The Jacobi iteration is stable for direct computations of a.

However, when the mass terms are a function of states, the mass terms of the Galerkin equation

become nonlinear when using a �nite di�erence expansion for time. Thus q is

q = M(a)
a(t+ ∆t)

∆t
−M(a)

a(t)

∆t

This non-linearity e�ectively destroys any Jacobi iteration techniques and initially indicated an

expensive and non-robust nonlinear iterative solver.

We can use Jacobi iteration provided the Galerkin mass matrix does not change between itera-

tions. One possibility is to solve for the time derivatives inside the Jacobi iteration for a �xed mass

state.

M(a)
da

dt
⇒ a
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This requires a continuous time integration scheme such as Runga-Kutta.

3.6.4 Operations Count

The decoupled state method scales poorly. Timing an actual computer code shows this method to

be about an order of magnitude slower than the traditional conservative states method. Assembling

and iterating the e�ective mass matrix does not tradeo� favorably with the simpli�ed state variables.

In short, decoupled state methods are interesting but not compelling.

3.7 Discontinuous Galerkin

Discontinuous Galerkin methods trade left-hand-side mass matrix connectivity complexity for com-

plexity in right-hand-side �ux connectivity. Derivation is identical to the regular Galerkin method

except that nodes (i.e., coe�cients) are not shared along interior element edges. Thus, inter-element

boundary integrals do not cancel, rather, a connective �ux is calculated from the discontinuous �ow

states. The form appears as

Mele
daele
dt

= Fele +B(ele, neighbors)

Inter-element boundary �uxes are typically computed with a linearized characteristics corrections

given by the Roe or Riemann invariant forms. Details are available in Li[42]. As part of this project,

a �nite element discontinuous Galerkin solver was prototyped. Observations are noted below.

3.7.1 Advantages

The discontinuous Galerkin (DG) scheme naturally has several competitive advantages over the

regular Galerkin scheme.

The primary advantage is that assembly operations are local element based with the exception of

boundary �uxes∗. The inverse mass matrix operations only rely on an inverse mass matrix computed

once upfront.

The presence of local indexes strongly assists with both computer memory bandwidth and paral-

lelization. From the hardware performance aspect, memory bandwidth is improved when requested

values are contiguous and lumped in large blocks; the DG scheme exactly �ts this requirement. A

similar analysis applies to parallelization since the left-hand-side terms are exactly block diagonal.

A trial parallelization of the Fortran code required adding exactly one line (!$OMP PARALLEL

DO) and resulted in a 1.8 speed-up on 2 processors.

∗Boundary calculations require the neighboring value.
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!$OMP PARALLEL DO

do i e l =1,NumberElements

ca l l ApplyBoundaryConditions ( Ele ( i e l ) , Time0 )

ca l l ComputeDaDtGalerkin ( Ele ( i e l ) , Time0 )

enddo

In essence, the �ow complexities are decoupled into the boundary terms rather than the mass matrix

connectivity.

The literature claims that the DG with Riemann boundary �uxes can often dispense with a

formal dissipation model (the dissipation is supposed to be inherent in the �ux connectivity). This

project was not able to substantiate that claim. Details are contained in the disadvantages section

below.

DG methods for linear advection are theoretically optimal. The governing equation for linear

advection has the form

du

dt
+ c

du

dx
= 0

This optimality does not extend to non-linear advection inherent in the Navier-Stokes equations of

motion.

For unsteady boundaries and remeshing re�ned grids, the DG method conceptually contains

signi�cant advantages. Because the element connectivity is no longer tied to nodes shared between

connected elements, so-called non-conformal grids are possible. Non-conformal means that edge

nodes for a particular element are not necessarily coincident with the neighboring element's nodes.

This is particularly valuable for remeshing and variable order elements since a original conformal

elements can easily be subdivided without being constrained by element connectivity. Again, Li[42]

and Karnadaikis[35] provide examples of non-conformal DG solvers. This project originally consid-

ered the DG method to provide signi�cant advantages for moving mesh and unsteady wake problems

for similar reasons.

3.7.2 Disadvantages

The DG method also exhibits disadvantages causing this project to abandon further work on the

topic. The decoupled nature of DG �elds also created signi�cant challenges.

A critically important component, visualization, becomes considerably more di�cult for discon-

tinuous elements. Traditional visualization packages were not designed for discontinuous elements;

grid data structures and �eld operators were not applicable. In particular, the multi-valued but
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coincident nodes of neighboring elements became a signi�cant issue. Additionally, the higher-order

aspect of the DG solutions required in-visualization remeshing that slowed the visualization refresh

rate.

Explicit time advancement of a DG formulation is essentially not feasible. The lack of mass

matrix coupling requires iteration of current and past states for boundary conditions and inter-

element coupling. Additionally, updating all coe�cients simultaneously is numerically superior to

element by element updates. Element-by-element update methods make iteration between elements

slow and possibly unstable. Discontinuous methods appear to have a reduced iterative radius of

convergence when compared to traditional Galerkin methods.

Discontinuous elements dictate a more complicated �ux connection scheme because of the jump

condition on interfaces. To develop a more consistent �ux connection we turn to the physics of

�uid �ow. The only connectivity is through the boundary �ux terms. These �uxes require some

averaging scheme, usually Riemann invariant based. Unfortunately, the lack of formal connectivity

complicates the solid wall boundary conditions. Elements with a face on a particular boundary

are easily speci�ed, but elements with only a node on the boundary are not. Worse, the nodal

mass has a small in�uence within the governing equations. Thus, DG methods could be described as

elastic plates connected by small springs with smaller spring constants at the vertices. This behavior

is commonly seen as solution �elds diverging at the element corners. It is not realistic to expect

coincident nodes in a DG method to naturally converge to the same value.

As an simple and small example, Figure 3.3 shows the characteristics of DG di�culties. First, the

multivalued �eld issue is apparent at the back step's corner. Pressures and velocities in the element

#2 are clearly not constrained to the slip condition boundary condition. Constraining the �ux is

neither su�cient nor e�ective; constraining the �ow state is required. In this example, the solution

blow-up is located at a boundary; however, the situation could occur at any element connection in

the domain. DG is a feasible method but requires more attention to �uxes and boundary conditions.

3.8 Derivatives

Use of the Navier-Stokes equations of motion requires gradients of the �ow �eld properties and

functions of properties. In particular, the Newtonian stress terms and the heat �ux are functions

of velocity and internal energy derivatives. The numerical formulation required the use of Green's

theorem which assumes continuous �ux functions in space. A method is needed to convert the
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Figure 3.3: Discontinuous Galerkin Back-Step Density and Velocity Field

discontinuous derivatives to continuous �elds.

3.8.1 Basis Derivatives

The trivial method for computing derivatives is to take the raw derivative of the basis function

and correct with the element Jacobian. This method has a signi�cant disadvantage as it results in

discontinuous derivatives across neighboring elements. For linear basis functions, the derivative is

constant.

3.8.2 Auxiliary State Galerkin

The approach used for this section is to de�ne auxiliary states that represent a continuous derivative

�eld.

sux =
du

dx

These auxiliary states are computed by applying the traditional Galerkin approach

ˆ
φi

(
sux −

du

dx

)
= 0

This reduces to

MGasux =

ˆ
φi
du

dx

Unfortunately, the velocity derivatives are not continuous. Applying Green's theorem reforms the

equations into

MGasux = −
ˆ
dφi
dx

u dΩ +

ˆ
φiu · nx dΓ

This has the advantage of not needing to explicitly calculate the derivatives. The disadvantage is

that the integrated velocities should be continuous for the boundary integral to extend to the domain

boundary. Another disadvantage is that the inverse global mass matrix is needed via iteration.
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3.8.3 Per-Element Galerkin (Local Operations)

Global mass matrix operations are expensive, so the use of per-element operations is considered (c.f.

Li[42]). Retaining the per-element boundary integral gives

MLasux = −
ˆ
dφi
dx

û dA+

ˆ
φiû dL

Now, we need a continuous velocity applied to both integrals. Li[42] suggests an average velocity

û = avg(uele1 , uele2)

This form does not result in the desired output; the results are equivalent to the inputs. No smoothing

is possible unless the underlying derivatives are already pre-smoothed.

3.8.4 Stencil Derivatives

The approach used for this section is to de�ne auxiliary states that represent a continuous derivative

�eld.

sfx =
df

dx

These auxiliary state errors are minimized with the traditional Galerkin approach
ˆ
φi

(
sfx −

df

dx

)
= 0

This reduces to

MSasfx =

ˆ
φi
df

dx

Applying Green's theorem transforms the equation into

MSasfx = −
ˆ
dφi
dx

f dΩ +

ˆ
φif · nx dΓ

Rather than the entire grid, only a subset (the nearest elements) are used. Figure 3.4 shows the

stencil and element orientations.

The basis functions are given in Figure 3.5. This scheme has a signi�cant advantage in that

operations are local to the element and its immediate neighbors.

The complete 6 point, 4 element mass matrix is

M =



2A1 + 2A3 + 2A4 A1 +A4 A1 +A3 A3 A4

A1 +A4 2A1 + 2A2 + 2A4 A1 +A2 A2 A4

A1 +A3 A1 +A2 2A1 + 2A2 + 2A3 A2 A3

A2 A2 2A2

A3 A3 2A3

A4 A4 2A4


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Figure 3.4: Stencil Triangle Basis Functions

Figure 3.5: Stencil Triangle Basis Functions
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The stencil's force vector is composed of the following boundary terms

I1 =
1

6
Le3,3 (2u1 + u5) (ne3,3 · nD) +

1

6
Le4,2 (2u1 + u6) (ne4,2 · nD)

I2 =
1

6
Le4,3 (2u2 + u6) (ne4,3 · nD) +

1

6
Le2,2 (2u2 + u4) (ne2,2 · nD)

I3 =
1

6
Le3,2 (2u3 + u5) (ne3,2 · nD) +

1

6
Le2,3 (2u3 + u4) (ne2,3 · nD)

I4 =
1

6
Le2,2 (2u4 + u2) (ne2,2 · nD) +

1

6
Le2,3 (2u4 + u3) (ne2,3 · nD)

I5 =
1

6
Le3,2 (2u5 + u3) (ne3,2 · nD) +

1

6
Le3,3 (2u5 + u1) (ne3,3 · nD)

I6 =
1

6
Le4,2 (2u6 + u1) (ne4,2 · nD) +

1

6
Le4,3 (2u6 + u2) (ne4,3 · nD)

where Lei,j and nei,j are the length and normal respectively of element i on face j.

The internal force terms are

I1 =
BD1|e1

6
(u1 + u2 + u3) +

BD1|e3
6

(u1 + u3 + u5) +
BD2|e4

6
(u1 + u2 + u6)

I2 =
BD2|e1

6
(u1 + u2 + u3) +

BD2|e2
6

(u2 + u3 + u4) +
BD1|e4

6
(u1 + u2 + u6)

I3 =
(−BD1 −BD2)|e1

6
(u1 + u2 + u3) +

BD1|e2
6

(u2 + u3 + u4) +
BD2|e3

6
(u1 + u3 + u5)

I4 =
(−BD1 −BD2)|e2

6
(u2 + u3 + u4)

I5 =
(−BD1 −BD2)|e3

6
(u1 + u3 + u5)

I6 =
(−BD1 −BD2)|e4

6
(u1 + u2 + u6)

The stencil requires boundary conditions and partial stencil conditions. The previously derived

6pt stencil element is not tile-able to boundaries. Fitting the stencil to boundaries requires funda-

mental shapes. Interior points use nodes of neighboring elements. Freestream points are collapsed

by removing the exiting triangle. Solid wall boundaries also remove the exiting triangle.
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Conceptually, the stencil is reduced by removing triangles. This is equivalent to reducing the

area and redirecting the boundary. The mass matrix is

M =



2A1 + 2A3 + 2A4 A1 +A4 A1 +A3 A3 A4

A1 +A4 2A1 + 2A2 + 2A4 A1 +A2 A2 A4

A1 +A3 A1 +A2 2A1 + 2A2 + 2A3 A2 A3

A2 A2 2A2

A3 A3 2A3

A4 A4 2A4


When one element is collapsed, that element's area becomes zero, causing a rank de�cient mass

matrix. As this node is no longer relevant, adding any non-zero diagonal term for that node in the

mass matrix is su�cient to establish determinacy.

The stencil scheme is local, fast, and accurate inside the center element. Disadvantages are that

the derivatives are not smooth across di�erent stencils. Also, the derivative quality is poor on outside

triangles near the edges. Finally, as derived, the stencil derivative is only applicable to linear basis

functions.

In short, the �nite element based stencil derivative is akin to a 6 point �nite di�erence derivative.

3.8.5 Taylor Series Galerkin

Analysis of the Galerkin auxiliary state method for determining derivatives indicated that the force

vector integrals with linear basis interpolation was the dominate error contributor. Given that the

scheme contains derivatives in the solution vector, adding curvature information to the interpolation

seemed prudent and possible.

The 2D Taylor series is

f(X) = f(a) + (X − a)T

 df
dx

df
dy

+
1

2
(X − a)T

 d2f
dx2

d2f
dxdy

d2f
dxdy

d2f
dy2

 (X − a)

Yet, we prefer to work in the local coordinate system ζ. After some mathematics, the Taylor series

in a local frame is

T (ζ) = T (z) + (ζ − z)T [J ]

 φbx

φby

+
1

2
(ζ − z)T

 dφ
dζ1
bx

dφ
dζ1
by

dφ
dζ2
bx

dφ
dζ2
by

 JT (ζ − z)

where J is the familiar elemental Jacobian.

Looking ahead, the maximum order required is 2nd order. Thus, the 6 point triangle with points

along the edges is su�cient. The location of point A is ζT = (1, 0, 0). The location of point B is
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ζT = (0, 1, 0). The location of point C is ζT = (0, 1, 0). These are the segment endpoints. The

halfway points are AB as ζT =
(

1
2 ,

1
2 , 0
)
, BC as ζT =

(
0, 1

2 ,
1
2

)
and CA as ζT =

(
1
2 , 0,

1
2

)
.

Each midpoint is interpolated from both directions, so each nodal point needs two increments in

coordinates (AB −A for the segment from A to the midpoint of A and B). For node A,

(ζ − z)TAB−A =

(
1

2
,

1

2
, 0

)
− (1, 0, 0) =

(
−1

2
,

1

2
, 0

)
(ζ − z)TCA−A =

(
1

2
, 0,

1

2

)
− (1, 0, 0) =

(
−1

2
, 0,

1

2

)
For node B,

(ζ − z)TAB−B =

(
1

2
,

1

2
, 0

)
− (0, 1, 0) =

(
1

2
,−1

2
, 0

)
(ζ − z)TBC−B =

(
0,

1

2
,

1

2

)
− (0, 1, 0) =

(
0,−1

2
,

1

2

)
For node C,

(ζ − z)TBC−C =

(
0,

1

2
,

1

2

)
− (0, 0, 1) =

(
0,

1

2
,−1

2

)
(ζ − z)TCA−C =

(
1

2
, 0,

1

2

)
− (0, 0, 1) =

(
1

2
, 0,−1

2

)
The third ζ term is dependent via ζ1 + ζ1 + ζ1 = 1 and can be ignored. Notice that the third term

must not be ignored when using basis expansion coe�cients.

Linear Basis

For the linear basis

φ =

(
ζ1 ζ2 ζ3

)
=

(
ζ1 ζ2 1− ζ1 − ζ2

)
At AB,

φ =

(
1
2

1
2 0

)
At BC,

φ =

(
0 1

2
1
2

)
At CA,

φ =

(
1
2 0 1

2

)
The derivatives in the local frame are

dφj=1,2,3

dζi=1,2
=

 1 0 −1

0 1 −1


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or

dφ

dζ1
=

(
1 0 −1

)

dφ

dζ2
=

(
0 1 −1

)
Simplify the basis derivatives to

T (ζ) = T (z) + (ζ − z)T
 x13 y13

x23 y23


 φbx

φby



+
1

2
(ζ − z)T


(

1 0 −1

)
bx

(
1 0 −1

)
by(

0 1 −1

)
bx

(
0 1 −1

)
by


 x13 x23

y13 y23

 (ζ − z)

After more mathematics and reduction, the elemental contribution is

|J |Mbx = −


y23

−y13

−y23 + y13


1,2,3

1

6
S

+ nxL


1
6T (A) + 1

3T (AB)

1
3T (AB) + 1

6T (B)


edge1

+ nxL


1
6T (B) + 1

3T (BC)

1
3T (BC) + 1

6T (C)


edge2

+ nxL


1
6T (C) + 1

3T (CA)

1
3T (CA) + 1

6T (A)


edge3

and

|J |Mby = −


−x23

x13

x23 − x13


1,2,3

1

6
S

+ nyL


1
6T (A) + 1

3T (AB)

1
3T (AB) + 1

6T (B)


edge1

+ nyL


1
6T (B) + 1

3T (BC)

1
3T (BC) + 1

6T (C)


edge2

+ nyL


1
6T (C) + 1

3T (CA)

1
3T (CA) + 1

6T (A)


edge3
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with

S = T (A) + T (B) + T (C)

+
1

8
(x13) (−2bx1

+ bx2
+ bx3

)

+
1

8
(x23) (bx1

− 2bx2
+ bx3

)

+
1

8
(y13) (−2by1 + by2 + by3)

+
1

8
(y23) (by1 − 2by2 + by3)

and

T (AB) =
1

2
T (AB)A +

1

2
T (AB)B

=
1

2
(T (A) + T (B))

+
1

8
(x23 − x13) (bx1

− bx2
)

+
1

8
(y23 − y13) (by1 − by2)

Likewise

T (BC) =
1

2
(T (B) + T (C))

+
1

8
(x23) (bx3

− bx2
)

+
1

8
(y23) (by3 − by2)

And

T (CA) =
1

2
(T (C) + T (A))

+
1

8
(x13) (bx3 − bx1)

+
1

8
(y13) (by3 − by1)

This appears to be a beautiful and elegant result. Unfortunately, it also does not work. The method

converges slowly and has variable accuracy depending on the derivative direction and location. It

also explains why traditional hybrid Galerkin methods for calculating derivatives often give noisy

results along the domain edges.
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A Singular Experiment in 1D

Reducing the dimensionality to 1D provides some enlightenment to the issue. Given a linear basis

function and three elements of unit length, the above methodology reduces to

1

6



2 1

1 4 1

1 4 1

1 2


b = −dφ

dζ
T

where b is the derivative state vector and T is the �eld state vector. When substituting for the

Taylor series expansion, this form further reduces



4 2

2 8 2

2 8 2

2 4


b+



−1 1

1 −2 1

1 −2 1

1 −1


b =



0 6

−6 0 6

−6 0 6

−6 0


T

Now, consolidating the derivative state vector and the �eld state vector gives

3 3

3 6 3

3 6 3

3 3


b =



0 6

−6 0 6

−6 0 6

−6 0


T

The mass matrix is singular. Further, any consistent trial function or any consistent integration

scheme still gives a singular mass matrix.

The traditional hybrid Galerkin method does not use the Taylor series for interpolation, so its

convergence is better than the current method. Yet, the same near singular behavior still exists. The

approximate method solves better than the perfect method. This also explains the poor convergence

around the domain edges for the hybrid method.

Sti�ness

The solution to the singular mass matrix is to add a physical constrain to the governing equations.

From physics, the nearest analog is the strain energy of a thin plate

I =

ˆ ˆ (
f2
xx + 2f2

xy + f2
yy

)
dxdy
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We know that the �nite element Galerkin method has an equivalent T and U energy form. Thus,

strain energy is added to the Galerkin equations. The augmented residual is expected to be dI/db.

R = −C ∂

∂b
I

For 1D

I =

ˆ ˆ (
dqx
dx

)2

dxdy

=

ˆ ˆ (
dφ

dx
bx

)2

dxdy

=

ˆ ˆ ((
−1 1

)
bx

)2

dxdy

− d

db

ˆ ((
−1 1

)
b

)2

dx = −C

 2 −2

−2 2

 b
Add this onto the original equations. 3 3

3 3

 b =

 −6 6

−6 6

T − C
 2 −2

−2 2

 b
 3 + 2C 3− 2C

3− 2C 3 + 2C

 b =

 −6 6

−6 6

T
The mass matrix is no longer singular.

In 2D after some mathematics, the additional residual due to strain energy is

R = −C [A]




bx1

bx2

bx3

+


by1

by2

by3




where

A =


(
y2

23 + x2
23

)
(−y13y23 − x23x13)

(
−y2

23 + y13y23 − x2
23 + x13x23

)
(−y13y23 − x13x23)

(
y2

13 + x2
13

) (
y13y23 − y2

13 + x13x23 − x2
13

)
(
−y2

23 + y13y23

)
+
(
−x2

23 + x13x23

) (
y13y23 − y2

13

)
+
(
x13x23 − x2

13

)
(−y23 + y13)

2
+ (x23 − x13)

2


This form was implemented and gave smooth derivatives. One disadvantage is that this method is

a global method poorly parallizable. Another disadvantage is that the sti�ness must be speci�ed; if

the sti�ness is too large, the solution is excessively smooth.
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3.9 Numerical Methods

Now that the govering equations are in a numerical form, there are two major numerical methods

required: time integration and matrix inversion.

3.9.1 Time Integration

Time integration involves integrating a temporal di�erential equation forward in time. The general

governing equation is

dy

dt
= f(y)

with initial conditions

y(0) = y0

Order Analysis

We have two types of governing equations: convection and di�usion. Given an arbitrary solution in

Fourier space

y = aeikx

The convection equation expands to

d
(

(ρu)2

ρ

)
dx

=
d

dx

(
abe2ikx/ceikx

)
= ikeikx

This gives an eigenratio of

λ = k

The dissipation equation expands to

1

Re

d2 (ρe)

dx2
=

d

dx

(
aeikx

)
= − k

2

Re
eikx

for an eigenratio of

λ =
k2

Re

This indicates that when the Reynolds number is greater than k, then the limiting timestep is

convection. Boyd[10] states that �There is little advantage to treating the nonlinear terms implicitly

because a timestep longer than the explicit advective stability limit would be too inaccurate to be

acceptable.�
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Literature

Time integration advances a solution when temporal derivatives are known. In general, we are

interested in 1st order ordinary di�erential equations of the form

dy

dt
= f (t, y)

with

y(t0) = y0

We must evaluate accuracy and e�ciency of various integration schemes for our particular CFD

method. The �eld of di�erential equation integration has evolved tremendously in the last few

decades, so the well-known methods commonly seen in engineering textbooks[63] must not be pre-

maturely selected. The state of the art in the late 20th century is represented by the Solving Ordinary

Di�erential Equations books in two volumes [28, 27]. For reasons to be discussed, volume two[27] is

a primary reference for this paper.

The Galerkin formulation of the Navier-Stokes equations are �very sti�� according to Boyd[10].

This implies either an implicit solver or an explicit solver with small timesteps. Increasing the spatial

solution order increases the solution sti�ness. We should seriously consider an implicit scheme of

approximately the same temporal order as spatial order.

Implicit solvers have advantages for boundary conditions and solution assurance. First, the

implicit solvers have known residuals. These residuals are easy to watch. Explicit solvers usually

do not have as simple of a visual quality indicator. However, too small of a timestep reduces higher

order implicit schemes to an equivalent backwards Euler scheme (with all of the disadvantages of

such).

For implicit iteration, Hairer and Wanner[27] say:

For a general nonlinear di�erential equation the system... has to be solved iteratively.

In the stone-age of sti� computation (i.e., before 1967) people were usually thinking of

�xed-point iteration. But this transforms the algorithm into an explicit method and

destroys the good stability properties.

Traditional numerical method for implicit ode solution is based on Newton's method which requires

a Jacobian matrix. Our FE equations are not easily decomposed into an explicit Jacobian, nor is

a numerical approximation of the Jacobian appropriate with array sizes in the millions. The most

di�cult part of an implicit FE solver is not the time advancement scheme but solving the linear

equation resulting from the scheme. State of the art for implicit ODE solutions does not yet match
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the complexity of FE solvers. The issue is that while the mass matrix is linear, the force vector is

not.

M
da

dt
= F

F is neither trivial to calculate nor trivial to decompose into linear components necessary for the

Jacobian dF/da. Of course, Newton's method is preferred over an iterative Krylov or Jacobi method

simply for the convergence rate. Press[63] states

Even when Newton-Raphson is rejected for the early stages of convergence..., it is very

common to �polish up� a root with one or two steps of Newton-Raphson, which can

multiply by two or four its number of signi�cant �gures!

Predictor Corrector

Predictor corrector (PC) methods are a traditional[63] integration method with the form

yj = hbif (ti, yi)

Expanded for order p+ 1, this is

yn+1 = yn + hβ0f (tn+1, yn+1) + hβ1f (tn, yn) + · · ·+ hβpf (tn−p+1, yn−p+1)

Predictor methods omit the implicit β0 term to get started; corrector methods include the β0 term

for higher accuracy. Increasing order is obtained by adding more past derivatives. Thus, changing

step size h either requires restarting with a lower order approximation or deriving a series of special

β terms for the step size propagation.

Press[63] states �We suspect that predictor-corrector integrators have had their day, and that

they are no longer the method of choice for most problems in ODEs.... There is one exceptional

case: high-precision solutions of very smooth equations with very complicated right-hand sides....�

Even worse, the predictor corrector's stability domain shrinks as the integration order increases[27].

Since the time integrator should roughly match the domain expansion order, a decreasing stability

domain is certainly not wanted. Innately, the predictor corrector requires that the mapping f(t, y)

does not change. In a CFD code, a constant mapping indicates a �xed computational grid.

Runge Kutta

Runge Kutta methods refer to both implicit and explicit multi-stage time integration. Iserles's[32]

book provides a valuabe reference for Runge Kutta schemes.
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The general form of a Runge-Kutta type integrator is

yn+1 = yn + hbiki

ki = f (tn + hci, yn + haijkj)

ti = to + hci

Increasing order is obtained by adding more k terms. Changing step size h is possible at each step.

This form is often displayed as a tableau

c1 a11 · · · a1p

...
...

. . .
...

cp ap1 · · · app

� b1 · · · bp

Explicit methods consist of a lower triangular a where all aij = 0 when j ≥ i; implicit methods

have at least one non-zero aij term where j ≥ i. Implicit RK requires iteration. RK properties

include: ci =
∑
j aij and

∑
j bj = 1. For the typical application, these properties are usually

con�ned to transcription error identi�cation.

Each RK step is completely independent of previous steps. More importantly, the mapping

f(t, y) can change space. For CFD applications, RK allows for a completely di�erent computational

grid at each timestep.

We will describe some of the common RK integrators below.

Forward and Backward Euler The forward Euler, a 1st order method, is a simple integrator.

yn+1 = yn + hf (tn, yn)

The tableau is

0 0

1

By comparison, the backward Euler is an implicit 1st order method

yn+1 = yn + hk

k = f (tn + h, yn + hk)

Notice that yn does not form a closure; iterations and stopping criteria are required. Its tableau is

1 1

1
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Crank Nicholson Crank Nicholson (C-N) is an implicit second order method often seen in �nite

di�erence codes. The tableau is

0 0 0

1 1
2

1
2

1
2

1
2

IRK2 One possible second order implicit RK2 method is

0 1
4 − 1

4

2
3

1
4

5
12

1
4

3
4

Expanded, this is

t1 = to

t2 = to +
2

3
∆t

z1 = yn + ∆t

(
1

4
F (z1, t1)− 1

4
F (z2, t2)

)
z2 = yn + ∆t

(
1

4
F (z1, t1) +

5

12
F (z2, t2)

)
yn+1 = yn + ∆t

(
1

4
F (z1, t1) +

3

4
F (z2, t2)

)
This looks ripe for iteration; however, this is exactly the situation Haier warns about using �xed

point iteration rather than fully implicit inversion.

Hammer-Hollingsworth This is another implicit RK2 method.

3−
√

3
6

1
4

1
4 −

√
3

6

3+
√

3
6

1
4 +

√
3

6
1
4

1
2

1
2

RK4 The canonical Runge-Kutta integrator is the explicit RK4. The tableau is

0 0 0 0 0

1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0

1
6

1
3

1
3

1
6
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Adaptive RK Adaptive RK typically indicates two RK methods where one lower-order method is

a subset of the higher-order method. Adaptive methods allow for fast error estimates for calculating

step sizes. Famous methods are Cash-Karp, RKF, etc[63].

E�cient Implicit Formation

Directly implementing one of the above RK routines is not especially e�cient. For the implicit RK

routines, there are stability and major e�ciency issues with stagewise iteration. The conceptual

issue is that the mass matrix only contains the temporal information about the governing equations.

From theory, this restricts both the rate of convergence and the timestep, since the product of

timestep and right-hand-side eigenvalues must be small. We need Jacobian information.

A generic form of a RK stage is

zi = yo + ∆t aij

(
dz

dt

)
j

This implies a matrix inverse operation

zi = yo + ∆t aij
(
M−1B

)
j

where

M
dz

dt
= B

contains the �uid governing equations. However, this form is not especially e�cient.

Instead, the equation is premultiplied by the conceptual mass matrix to form

Mzi = Myo + ∆t aijBj

Even further simpli�cation occurs when expanding zi

z = yo + ∆z

Also, B is expanded into a 1st order Taylor series as

B (zi) = B (y0) +
dB (y0)

dz
(zi − y0) = B (y0) +

dB (y0)

dz
∆z

Combining gives

M∆zi = ∆t aij

(
B (y0) +

dB (y0)

dz
∆z

)
Now, forcing function information is available for stage iterations(

M − dB

dz

)
∆zi = ∆t aijBo
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This appears to be a distinct disadvantage since dB/dz, the Jacobian term, is complicated. This

is where a non-direct matrix inversion method allows a simpli�cation for an already multiplied

Jacobian and vector term. Following Gear and Saad[22], a numerical Jacobian approximation is

typically su�cient

Jv ≈ 1

ε
(B (z + εv)−B (z))

The time integration equations are now in a canonical form for numerical inversion.

As expected, the multi-stage RK routines are now coupled where previously they were block

independent. A two stage RK routine ready for numerical inversion has the form [M −∆t a11J1] [−∆t a12J2]

[−∆t a21J1] [M −∆t a22J2]


 ∆z1

∆z2

 = ∆t

 a11B(y0) + a12B(y0)

a21B(y0) + a22B(y0)


whereas the non-Jacobian form was [M ]

[M ]


 ∆z1

∆z2

 = ∆t

 a11B(z1) + a12B(z2)

a21B(z1) + a22B(z2)


This re�ects the change to a true implicit iterative scheme that satis�es the Hairer and Wanner[27]

�xed-point iteration stability comment. The disadvantage is a tremendous increase in the compu-

tational requirement (i.e., computing J∆z at each stage and step).

Expansion Point Expanding around a di�erent point is instructive.

z = z̄ + ∆z

so that

∆z = z − z̄

The 1st order Taylor series is

B (zi) = B (z̄i) +
dB (z̄i)

dz
(zi − z̄) = B (z̄i) +

dB (z̄i)

dz
∆zi

Combining as before gives

M (zi − y0) = ∆t aij

(
B (z̄i) +

dB (z̄i)

dz
∆zi

)
This needs one more step

(zi − y0) = (zi − y0 + z̄ − z̄) = ∆zi + (z̄ − y0)

Combining gives

M∆zi = ∆t aij

(
B (z̄i) +

dB (z̄i)

dz
∆zi

)
−M (z̄ − y0)
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Nicely, the initial iteration residual is

R = ∆t aijB (zi)

and the linear term is

Ax = M∆zi

This form should be more robust when the Jacobian dB/dz is not exact. The objective would be to

reduce the converged ∆z to zero. Otherwise, this form reduces to the previous form.

Time Integration Experiment The concepts introduced above are tested for a known solution.

The di�erential equation is

dy

dt
= −1− Cy

with the initial condition

y(0) = 1

The solution is

y(t) = − 1

C
+

(
1 +

1

C

)
e−Ct

The objective is to compare simple one-stage time integration methods for explicit (Forward

Euler), �xed-point implicit (Backwards Euler), and Jacobian-coupled implicit (Backwards Euler)

routines. Figure 3.6 plots the one-step prediction for an increasing timestep and increasing time

constant C. Repeated, this experiment only considers one step with a varying timestep ∆t from 0

to 2. Forward Euler behaves as expected with a linear prediction based on the solution derivative

at y(0). Fixed point iteration of the backwards Euler method converges for small timesteps and

diverges for larger timesteps; this situation is what Hairer and Wanner mean by �xed-point iteration

stability. The �xed point scheme becomes unstable for timesteps larger than approximately 1/C.

This is consistent with the previous assertion that timestep multiplied by eigenvalues must be small.

The Backwards Euler method with Jacobian information converges for all timesteps.

The point to take away is that just because a scheme is iterative does not mean that it is

guaranteed to converge. Nor does an arbitrary iterative scheme always allow larger timesteps than

an explicit scheme. Fixed point iteration does indeed destroy the stability advantages of an implicit

scheme. As Boyd illustrates[10], implicit methods track the slow manifold.
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Figure 3.6: Time Integration Experiment

3.9.2 Numerical Matrix Inversion

Matrix inversion is a critical operation for e�ective Galerkin solver design. The canonical form for

matrix inversion is

Ax = b

In residual form for iteration, the canonical form is

r = b−Ax

The objective is to reduce the residual r to zero.

The numerical matrix inversion literature is large and continuously evolving. The Templates

book[4], Boyd's book[10], and [67] are useful starting points for investigating iterative methods.

Preconditioning and other advanced routines[15] are known to improve convergence rates.

Generic Jacobi and Krylov Iteration

Jacobi iteration updates the state vector with the residual scaled for stability.

xi+1 = xi + αiri

where α is chosen based on an approximation to A's eigenvalues[71].
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Richardson Residual Minimization

The Richardson Residual Minimization method[10] uses Jacobi iteration with

αi =

∑
riqi∑
qiqi

=

∑
riri∑
riqi

where qi is calculated as

qi = Ari

This method is a linear equation residual minimization along the steepest descent direction. A

should be positive semi de�nite but not necessarily symmetric[71].

Conjugate Gradient

The conjugate gradient (CG) method is popular with nice convergence properties at the expense of

more storage. CG methods also require a positive semi-de�nite symmetric A. Shewchuk[68] provides

an excellent foundation to the various CG methods. Press[63] shows Polak-Ribiere correction for β

as

βi =
(ri+1 − ri) · (ri+1)

ri · ri
This correction gracefully adapts the CG to a soft restart. Computing the correction is not quite as

graceful.

Preconditioning

Preconditioning the inversion improves the iterative process. The general idea is that the inverse

of A is di�cult, but an approximation to A is easy to invert. So premultiply by the approximation

P−1

P−1Ax = P−1B

Naturally, if P−1A = I, then there is no need to iteratively invert A. Yet, when P contains some

fundamental portions of A's eigenvectors, then P−1A becomes more diagonal. The tradeo� is �nding

a su�ciently complex but invertible approximation to A.
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3.10 Initial Conditions

Initial conditions are required. The 2D Eulerian �ow states are

U =



ρ

ρu

ρv

ρe


The objective is to determine the initial non-dimensionalized states needed as freestream initial

conditions. Initial velocity conditions are set to the reference of 1. With a speci�ed Mach number

and sonic velocity, the energy is constrained. Freestream values are used as the dimensional reference

values. Density is simple.

ρ? =
ρ

ρo

Momentum is also unity

ρV ? =
ρV

ρoVo

Energy initial conditions requires recognition that it is dependent on Mach number and sonic velocity

a =
√
γRT =

√
γp

ρ

so that

ρe =
p

γ − 1
+

1

2
ρV 2

substitute to give

ρe =
ρa2

γ (γ − 1)
+

1

2
ρV 2

When using non-dimensional reference values

ρe? =
ρe

ρU2
o

=
a2

γ (γ − 1) a2M2
+

1

2

ρV 2

ρa2M2

simpli�es to

ρe? =
1

γ (γ − 1)M2
+

1

2

Thus, the non-dimensional reference pressure is

p? =
p

ρoU2
o

= (γ − 1)

(
ρe− 1

2
ρV 2

)
1

ρoU2
o

= (γ − 1)

(
ρe? − 1

2

)
or

p? =
1

γM2
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Boundary conditions on velocity are also required. For no-slip conditions, the boundary velocity

is zero and is trivial to set.

V = 0

For the slip condition, the boundary velocity V should have no component in the wall normal

direction n.

V · n = 0

So an initial condition for a slip boundary condition should adjust the boundary velocity by removing

the normal component

VIC = V − (V · n)n

Expanded, this is  uIC

vIC

 =

 u

v

− (unx + vny)

 nx

ny


This form does not conserve the kinetic energy of the non-consistent initial condition. Conservation

is a primary issue for constraining the boundary conditions in the mass matrix time derivatives

rather than directly through multiple applications of a velocity adjustment routine.

There is a fundamental question of how to implement the above adjustment equation with the

expansion of basis functions. Remember that u = φau so that for the u velocity

φau = φau − φaun2
x + φavnxny

Expanding for all locations xi gives

[φj(xi)]

 (au)j

 = [φj(xi)]

 (au)j



−


(
n2
x

)
1

. . . (
n2
x

)
L

 [φj(xi)]

 (au)j



+


(nxny)1

. . .

(nxny)L

 [φj(xi)]

 (av)j


Now the critical question concerns the invertability of the matrix φj (xi). Rephrased, the basis set is

uniquely determined, so that operations are possible on the raw coe�cients only when the normals
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are constant.

au = au − aun2
x + avnxny

This form is ready for implementation.
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Chapter 4

Higher Order Analysis and Results

This chapter discusses implementation, analysis, and results of a higher order Navier-Stokes CFD

solver.

4.1 Implementation

Implementing a higher order solver is complicated. This section explains the fundamental routines

and choices. An in-depth analysis would require signi�cant amounts of code and is not performed.

The governing equations are the ALE Navier-Stokes equations discretized with a Galerkin ap-

proach. Almost all code is written in the Fortran 2003 format. With one exception (g2d grid

geometry input and output from Tim Cowan), all code was written by the author. There are two

parts to this analysis: numerical operations and data structures.

Numerical operations are primarily composed of B-Spline operations, Galerkin operations, and

time-advancement operations. The B-Spline operations in Math2DOps.f90 and Math1DOps.f90,

being especially large and complex as basis order increases, are generated into Fortran automatically

with a Python computer code. As order increases, the number of characters per line-of-operation

increases. Thus, the Python code was programmed to both generate the code and properly format

the code (i.e., splitting a line of code requires both mathematical and Fortran consistency). As much

as possible, these generated codes use parameters and precalculated values to assist the compiler

with optimization. For example, the code that generates values from coe�cients is

de f genFortranValues (n ,m, p ) :

l i s tA =[ ]

v =PyValues (n∗p ,m∗p)
name = "ValP%iP%i " % (n ,m)

s t r i n g ="""

! Ca lcu la te Values f o r g r id s i z e Pn and Co e f f i c i e n t s Pm

pure func t i on %s ( a )

r e a l (WP) : : %s (p%i )

r e a l (WP) , i n t en t ( in ) : : a (p%i ) """ % (name,name, n ,m)

f o r j in BsplineRange (n∗p ) :
l i s tA =[ ]

index = 1
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f o r i in v [ j −1] :
l i s tA . append ( s t r ( round ( i ,14))+"_wp∗a(% i ) " % index )

index += 1

s t r i n g += """

%s(% i )= """ %(name, j )

s t r i n g += ' + ' . j o i n ( l i s tA )

s t r i n g += """

end func t i on %s \n""" %(name)

return s t r i n g

The upfront cost to generate the Python code became negligible compared to the avoided cost

of generating and then debugging these operations by hand. Galerkin operations are primarily

composed of determining values and then integrating. The mass matrix exempli�es the structure of

all Galerkin operations.

! Mass

write (∗ ,∗ ) "Generating Mass Matrix"

MassRaw = 0

do i =1,p1

! Set bas i s i

ca l l setOrtho ( I c o e f f s , i , p1 )

! Values of bas i s i

I v a l s = ValP2P1 ( I c o e f f s )

do j =1,p1

! Set bas i s j

ca l l setOrtho ( J co e f f s , j , p1 )

! Values of bas i s j

Jva l s = ValP2P1 ( J c o e f f s )

! Mul t ip ly Values of bas i s i and j

T = Iva l s ∗ Jva l s
! In tegra te and s tore in mass matrix

MassRaw( j , i ) = Integrate2dValuesP2 (T)

enddo

enddo

The Galerkin force calculations are considerably more complicated and lengthy. Time operations

are composed of determining the solution residuals and then correcting the solution vector. For a

backwards Euler time advancement method, the code necessary is given below

do r k i t e r =1, Iterat ionMax

! Der iva t i ves

ca l l ComputeDerivatives ( Snapshot )

! Galerkin Force Residual

ca l l FluxResidual ( Snapshot%Coef fs1 , rhs1 )

! Mass Temporal Residual

ca l l Aprod (n , Snapshot%Coef fs1 , rhs3 )
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ca l l Aprod (n , Snapshot%Coef fs0 , rhs2 )

! Total Residual

rhs1 = DeltaT∗ rhs1 + rhs2 − rhs3

! Constrain Residual

ca l l BoundaryConstraint ( rhs1 )

! Create Scalar Representation of Residual

DeltaNew = sqr t (sum( rhs1 ∗ rhs1 ) )

! Update Sta tes

Snapshot%Coe f f s1 = Snapshot%Coe f f s1 + ml∗ rhs1

! Inform user

ca l l wr i t e I t e r a t i o n ( "+" )

! Exit i f Residual are smal l enough

i f (DeltaNew < Res idua lTolerance ) exit

end do

These are the major components of the CFD solver.

The second major component of the CFD solver is the data structure. The data structures are

based on the Euler3d data structures. In particular, the most used data structure is the element

nodal map, a vector describing the global indices for a given element. A signi�cant task of the data

structures is implementing the higher order grid from a generated linear grid. This pre-processing

task was a challenge and was moved to a separate routine, makea2d. Ironically, one justi�cation

for attempting higher order was to simplify the grid. The major di�culty is that each element now

has an order-dependent number of coe�cients. For the continuous Galerkin method to work, values

along the element edges must be equal; this requires shared coe�cients. Shared coe�cients must be

identi�ed and placed as a pre-processing step.

A �nal implementation requirement was visualization. The existing VTK library was used by

creating a Paraview plugin that reads and converts the Ale2d output data �le and geometry to the

VTK data structure. The interpolation order for visualization is only 1st order; the higher order

solutions are sub-sampled to the element vertices.

4.2 ALE Results

As this project progressed, the emphasis turned from a strict development and veri�cation task

to a more general e�ciency analysis task. Additionally, a poorly functioning dissipation routine
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restricts solutions to low Reynolds numbers. This section therefore presents Ale2D solutions in a

more qualitative manner than the typical formal veri�cation and validation process.

A cross-�ow cylinder provides an excellent viscous validation test case. Figure 4.1 gives the

streaklines and Mach number distribution for the transient buildup of trailing vortices at a Reynolds

number of 500. There are several issues that need to be discussed. First, the grid when compared

Figure 4.1: Unsteady Cylinder: Viscous Re = 500 with ALE P=2

to a linear solution is signi�cantly coarser. Secondary vortices are resolved within only 5 elements.

Second, solution instabilities eventually occur at the 90 degree upper and lower regions where the

velocity is largest; these instabilities eventually corrupt and end the simulation. The simulation

never progressed far enough to measure the Strouhal number of shed vortices.

A Sod shock tube test case demonstrates compressible �ow simulations. The �ow solution is

expected to show three waves moving at u+ a, u, and u− a. Figure 4.2 shows densities, velocities,

and pressures along a cutline. The wave speeds and values match theory. However, the strong com-

pression wave generates noise (especially between locations of 0.6 and 0.85). In general, compression

waves for all testcases are generating unphysical noisy solutions. Computing entropy indicates that

the 2nd law is being locally violated; the weak nature of the Galerkin method is allowing incorrect

solutions.

An NACA 0008 airfoil was simulated at a Reynolds number of 2000 and Mach 0.3. The �ow

velocity �eld and streaklines are plotted in Figure 4.7. Timesteps are on the order of 0.0001 to
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Figure 4.2: Sod Shock Tube P=2

0.00001 with a minimum element size of about 0.01. Experimental data for this ultra low Reynolds

number is not prevalent. Rather, the XFOIL[17] prediction program is used for comparison. A sweep

of angle of attack is shown in Figure 4.3 for CL, Figure 4.4 for CD, and Figure 4.5 for the polar

plot. Lift coe�cients for angles of attack at and below 4 degrees match XFOIL's predictions within

a few percentage points. As the angle increases, XFOIL's accuracy degrades as the trailing edge

separation begins. Ale2d poorly captures the separation and thus overpredicts the lift coe�cient.

Drag is overpredicted by at least 10% to 20% across the entire angle of attack range.

At 8 degrees angle of attack, the airfoil should show trailing edge separation. This is not occuring.

Figure 4.6 shows the velocity �eld at 8 degrees. Unfortunately, the Ale2d solver is sensitive to

separation. Simulations consistently failed to iteratively converge as soon as any separation started.

In fact, the most stalled simulation produced by Ale2d is shown in Figure 4.7 for an NACA

0012. The Ale2d simulation failed to converge as the separation began. It is unclear how the Ale2d

boundary layer would form when given more simulation time. However, the overly restricted short

simulations times are a signi�cant failure. It is likely that the lack of dissipation is allowing this

particular failure.
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Figure 4.3: NACA 0008 CL vs α
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Figure 4.4: NACA 0008 CD vs α

The following observations were made when comparing low order and higher order simulations.

These observations are frustrating when encountered and make lower order solvers (such as euler2d

or ns2d) appear more robust regardless of e�ciency.

Using a residual based iteration is more robust than computing d/dt of coe�cients and the

applying these temporal derivatives to an RK routine. Not only does the RK routine spend time

iterating for an intermediate sub-step, but the stability also appears to be signi�cantly worse. It

is strongly suggested that residual iterations be performed on coe�cent values and not temporal

derivatives.

Solution divergence (i.e., blowup time) is shorter with higher order. There are fewer warning

signs when compared to the linear solvers. These higher order methods also are signi�cantly more

timestep sensitive. Small increases (say +10%) in timestep often causes an immediate failure with

diverging iterations.
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Figure 4.5: NACA 0008 Drag Polar Plot

Figure 4.6: NACA 0008 Unsteady Velocity: Re = 2000 (P=3)

Another solution failure mode is under-resolution. This failure tends to appear as either upstream

moving waves generated in high velocity areas or noise in pressure in the local �ow direction with a

wavelength equal to twice the grid spacing. When these regions are identi�ed, remeshing is essentially

required.

Galerkin computed derivatives (Section 3.8) are expensive. Directly computing derivatives on

every iteration requires signi�cantly more time than the actual iteration. Faster approximations

with poorer quality appear more e�cient.

4.3 Model Based Solution Timing

This experiment investigates total solution time with respect to basis order. From earlier, the

solution e�ciency tradeo� is accuracy versus CPU work. The solution accuracy depends on the

solution properties (e.g., smooth or discontinuous �eld). The concept of work depends on the

solution type (e.g., steady versus moving boundaries). For this experiment, these combinations of

the solution �eld and solution type are tested. For the numerical code, a simulation to a given

98



Figure 4.7: NACA 0012 Unsteady Velocity: Re = 2000

real time requires a solution time containing grid generation, integration of the Galerkin forces, the

solution vector iteration, and time integration.

The objective is to create timing models of the CFD components with respect to accuracy

and basis order. This approach should give insight into the work and accuracy contribution from

individual components.

4.3.1 Grid Timing

Generating the �nite element grid requires work. For this experiment, the grid is one of three 2D

geometries but with varying triangle element sizes: a rectangular box, �ow past a cylinder, and a

1:1 cavity. As element size h decreases, the number of elements increases as h2; the experimental

results for the rectangular box with varying spacing match this theoretical exponent (Fig. 4.8). The

2.2 coe�cient occurs because the grid generator prefers equilateral triangles. Thus, the per-element

average area is only
√

3
4 h

2 rather than 1
2h

2 as might be expected. Figure 4.9 plots the grid generation

time versus number of elements. A model of time for a given number of elements is

Tgrid = 3.7× 10−10 ·N2.32

The log-log plot indicates a start-up overhead time of about 0.01 seconds.

4.3.2 Solution Accuracy

Solution accuracy primarily depends on the solution �eld characteristics and the element spacing.

Frequency and polynomial content re�ect in the p convergence rate. The element spacing re�ects in

the h convergence rate. The objective is to estimate the global accuracy across order and spacing.

As we will see, convergence theory given in the �nite element literature contains a subtle assumption

and is not applicable to the speci�c task of comparing accuracy for variable order.

99



0.01 0.03 0.1

Spacing ∆x

1000

10000

105

N
u
m

b
er

o
f
E

le
m

en
ts

Data
Fit: 2.2 · ∆x−1.9989

Figure 4.8: Number of Elements vs. Spacing

0 50000 105

Number of Elements

0

50

100

150

G
ri

d
T

im
e

[s
]

Timing Data

Fit: 3.7 × 10−10 · x2.32

(a) Lin-Lin

1000 10000 105

Number of Elements

10−4

0.01

1

100

G
ri

d
T

im
e

[s
]

Timing Data

Fit: 3.7 × 10−10 · x2.32

(b) Log-Log

Figure 4.9: Grid Timing

From theory for smooth �elds, one form of the solution accuracy depends on the element spacing

to the power of the basis order[34]

e ≈ C∆xP

For non-smooth �elds such as a shock, the solution accuracy depends on element spacing to the �rst

power

e ≈ C∆x

Theory[34, 35] suggests that the L2 error scales with

e = Chp+1 ‖u‖2

For an actual �eld, the solution error is between these two curves. It should be noted that this

behavior is not merely theoretical; a conference paper[51] discussing grid spacing and accuracy for
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supersonic �ows implied requiring tens to hundreds of coe�cients per shock depending on the Mach

number and shock angle.

Unfortunately, the constant C is not independent of the basis order and is thus only valid for

that particular order. This model is meant for comparing same-order convergence curves versus

element spacing. It is not meant for comparing di�erent order solutions. For more information on

the derivation's assumptions, refer to Johnson[34]. At this point, pure theory must be rejected for

forming an accuracy versus spacing and order model.

Rather, actual experimental accuracy data is used. Forming an accuracy model from experimen-

tal results requires a careful setup and attention to sensitivities. First, the de�nition of accuracy

must be precisely de�ned and must correspond to the useable in the actual CFD solution. Second,

the experimental �eld must continuously excite the basis (e.g., a quadratic �eld poorly excites higher

than 2nd order polynomial terms). Finally, we must be diligent to avoid computing accuracy with

the same numerical routines being measured.

The traditional measure of accuracy for CFD codes is the L2 norm of a residual r(x, y) =

f(x, y)− φ(x, y)a de�ned as

L2 =

√ˆ
r(x, y) dA

where f(x, y) is the desired �eld and φa is the �nite element approximation. This allows for a

comparison of not just the nodal values but the entire solution �eld. Again, for further details

regarding the mathematics of L2 norms in CFD formulation, refer to Johnson[34].

The �rst task is to calculate the solution coe�cients for a given �eld. Perhaps the easiest method

is to apply the Galerkin method to the desired solution �eld.

Ma =

ˆ
φif(x, y) dA

This is iterated to �oating point accuracy (approximately 15 digits of accuracy). Fundamentally, this

process is identical to an actual CFD solver with the exception of a drastically simpli�ed governing

equation.

It is not appropriate to use the CFD solver's integration routines to compute the L2 error.

Those integration routines were already used to compute the nodal coe�cients and �eld values.

Additionally, this integral needs an error bound that the solver's routines are just not capable of

providing.

Monte-Carlo integration was selected as a completely independent numerical integration routine.

This integration method[63] uses randomly selection locations for valuation divided by the total

101



number of sampled locations N ˆ
f dA ≈ A

N

∑
f

For this application, the number of samples is increased until the integral converges within a speci�ed

tolerance. The tradeo� is that the standard deviation of errors only drops as
√
N .

After some experimentation, an exponential function �eld was selected for the smooth �eld.

u = e−x
2−y2

From a Taylor series view, this �eld exercises all polynomial terms; this was a particular problem

with using a sine or cosine �elds. For the non-smooth (shock) �eld, a unit step circle was selected.

For each basis order from 1 to 9, the L2 accuracy was computed for a range of grid spacings.

Figure 4.10 shows the L2 data. As theory suggests, the curves are linear in a log-log plot. The
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Figure 4.10: Grid L2 Accuracy: Smooth

minimum odd basis order accuracy is 10−12. Even order basis functions are exactly represented in

the numerical operations and minimums extend to lower error values. Interestingly, the basis order

lines converge at a point when the grid spacing is 2
√

2 ≈ 2.5. This is the diagonal grid distance.

For the shock �eld, Figure 4.11 plots the accuracy versus grid spacing for order 1 through 9. The

curves are essentially identical. This is expected from convergence theory.

L2 errors along speci�c basis orders are converted into a model using theory. The error is expected

to be proportional to a power of grid spacing.

L2 = a (∆x)
b

A line �t routine was used to compute the best �t coe�cients with the previous power law. Table

4.1 gives the best �t equations. This con�rms the suggestion by theory that the power coe�cient
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Figure 4.11: Grid L2 Accuracy: Shock

is approximately the basis order plus 1. Figure 4.12 plots these curves for a visual representation

of the model. It should be noted that the model does not automatically contain any convergence
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Figure 4.12: Grid L2 Accuracy Model: Smooth

round-o� plateau. For the shock �eld, the model is

L2 = 0.62 (∆x)
0.47
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Order Best Fit

1 L2 = 3.7 · 10−1 (∆x)
1.9

2 L2 = 1.7 · 10−1 (∆x)
3.1

3 L2 = 3.4 · 10−2 (∆x)
3.9

4 L2 = 1.9 · 10−2 (∆x)
5.1

5 L2 = 5.6 · 10−3 (∆x)
6.1

6 L2 = 2.2 · 10−3 (∆x)
7.1

7 L2 = 7.6 · 10−4 (∆x)
8.1

8 L2 = 1.9 · 10−4 (∆x)
8.9

9 L2 = 7.3 · 10−5 (∆x)
9.8

Table 4.1: Grid L2 Model: Smooth

4.3.3 Galerkin Integration

Galerkin methods require integration of the force (i.e., non-temporal terms). The force vector results

from integration of the basis derivative and the governing equation's �ux term and a boundary term.

Rij = −
ˆ
dφj
dxi

Fi |J | dA+

ˆ
φF dL

For the purpose of this experiment, the lower dimension boundary terms are not considered; the

interior term dominates the calculation time by at least a factor of P, basis order. From the governing

equations, Navier-Stokes �uxes require 1 multiple of basis order for the density F = ρu to 3 multiples

of basis order for the energy F = ρue. Worse still, these multiples of basis order are non-rational. For

instance, calculating pressure from the states and the ideal gas approximation requires the following

conversion of states

Pig = (γ − 1)

(
ρe− 1

2
ρu2 − 1

2
ρv2

)
= (γ − 1)

(
ρe− 1

2

(ρu)
2

ρ
− 1

2

(ρv)
2

ρ

)
Realistically, the convergence of numerical integration is no longer independent of the density values.

Boyd[10] covers this issue with his �Witch-of-Agnesi� rule of thumb. Mitigation naturally occurs

with increased grid resolution in high-gradient �ow regions imposing only small changes in density

across an individual element. As the stated goal of higher order basis functions is to reduce the

number of elements, this directly con�icts with the reduced accuracy of numerical integration during

large density changes. Thus, we expect the numerical over-integration requirement to increase as
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order increases during the same time as increasing the order also increases the number of numerical

integration points required. A lack of availability of very high order Gauss numerical integration

weights and points relegated this project to the non-optimal scheme described in the methodology

chapter. The mathematical operations required a large code base. For a comparison of lines of code

and compilation time refer to Figure 4.13. Compiling the tenth order operations �le required nearly

an hour. This was an unexpected complication that earlier prevented use of basis orders greater than

about 6 or 7. In short, the integration method for an N coe�cient triangle requires N integration
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Figure 4.13: Mathematical Operations Size and Compile Time

points.

From counting the required order for e�ective integration, a single analytical model of integration

complexity versus basis order is constructed. The energy equation requires at least 3 multiples of

basis order P. Forming the Galerkin forces requires another P − 1 orders; the derivative of order P

gives order P − 1. This is approximately a total order of 4P . In two dimensions, each triangle of

order P has (P + 1) (P + 2) /2 points. So the number of integration points for the energy equation

is

N =
((4P ) + 1) ((4P ) + 2)

2

= 8P 2 + 6P + 1

When performing this estimate over all 4 governing equations, the implementer must choose to

either vastly over-integrate the density and momentum equations with the points from energy or

recalculate values of state for each governing equation. Regardless, obtaining the values at these N

points also contributes to the total work. For the �rst choice, using the same values, an estimate of

required operations to calculate the values is 8N × P . The constant is 4 for calculating values and

105



Time [s] for Order P

Grid Ele 2 3 4 5 6 7 8 9 10

Tiny Box 32 0.056 0.136 0.276 0.608 1.304 3.092 7.54 14.445 28.76

Cavity 2693 2.72 7.32 38.5 62.8 124 269.6 631.6 1194.9 2355.2

Cylinder 56314 167 405 738 1360.5 2501.4 5561.5 12930.8 24894 49397

Huge Cavity 82984 268 461 1098 1869 3704 8203 19156 36163 MEMORY

Table 4.2: Galerkin Force Integration Timing Raw Values

4 for the integration. This would indicate a work complexity of

Wpts ≈ 64P 3 + 48P 2 + 8P

Additionally, there is a force contribution from each basis function represented by the j index in the

Galerkin equation given above. Remembering that there are N basis functions gives another

Nφ =
(P + 1) (P + 2)

2

=
1

2
P 2 +

3

2
P + 1

operations across the entire number of integration points. So the work complexity is now

Wtotal = WptsNφ

≈ 32P 5

There are strategies for reducing the dominating powers of order. This will be discussed elsewhere.

The task is to experimentally obtain a work complexity via timing the actual CFD code. Four

cases are considered: a rectangular box, a 1:1 cavity, a cross-�ow cylinder, and a huge over-resolved

1:1 cavity. Table 4.2 shows the raw timings in seconds over a range of P . The tiny box case timing

ranges from 0.056 seconds for second order to 28 seconds for tenth order. The larger cases required

tens of thousands of seconds for the orders above 8. The huge cavity case failed for P = 10 by

exceeding the computer's 2GB of memory. Analysis is complicated by the reality that the number

of elements for a given grid is �xed while the resolved accuracy increases as order increases. We

truly want the integration time expressed per element. Luckily, the time on a per-element basis is

somewhat consistent across di�erent cases, so dividing the time by the number of elements gives

Table 4.3 and Figures 4.14 and 4.15 for a log-lin and log-log plot. A function model for Tinteg is not

used; rather, the average per-element data will be used directly.
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Time [s] for Order P

Grid Ele 2 3 4 5 6 7 8 9 10

Tiny Box 32 1.7 × 10−3 4.2 × 10−3 8.6 × 10−3 1.9 × 10−2 4.1 × 10−2 9.7 × 10−2 2.4 × 10−1 4.5 × 10−1 9.0 × 10−1

Cavity 2693 1.0 × 10−3 2.7 × 10−3 1.4 × 10−2 2.3 × 10−2 4.6 × 10−2 1.0 × 10−1 2.4 × 10−1 4.4 × 10−1 8.8 × 10−1

Cylinder 56314 3.0 × 10−3 7.2 × 10−3 1.3 × 10−2 2.4 × 10−2 4.4 × 10−2 9.8 × 10−2 2.3 × 10−1 4.4 × 10−1 8.8 × 10−1

Huge Cavity 82984 2.4 × 10−3 5.5 × 10−3 1.3 × 10−2 2.3 × 10−2 4.5 × 10−2 9.9 × 10−2 2.3 × 10−1 4.4 × 10−1

Average 2.2 × 10−3 4.9 × 10−3 1.2 × 10−2 2.2 × 10−2 4.4 × 10−2 9.8 × 10−2 2.3 × 10−1 4.4 × 10−1 8.8 × 10−1

Table 4.3: Galerkin Force Integration Timing Per Element
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Figure 4.14: Galerkin Force Timing per Element (Semilog)
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Figure 4.15: Galerkin Force Timing per Element (Log-Log)
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Unfortunately, the average per-element time appears to approximately double for each increment

in order which implies an unforeseen and undesirable exponential process. So what explains this

result and the poor estimate? The basis order range is fairly small, so that the observed exponential

process is likely a polynomial process with decreasing overhead costs. The overhead likely results

from the non-contiguous memory access inherent in �nite element nodal numbering; a higher order

element contains relatively more contiguous or near contiguous memory locations especially for

interior nodes. This overhead principle is conceptually an important advantage altogether dominated

by the P 6 asymptotic behavior. Regardless, the integration time result re�ects reality.

This timing order is perhaps the most signi�cant issue hindering the implementation of higher

order CFD. Techniques[47, 35, 10] are available that reduce the work from P 6 to P 4 with a modi�-

cation of the basis function. The e�ect is investigated in Section 4.3.7.

4.3.4 Mass Matrix Iteration

The Galerkin method creates the Galerkin mass matrix M from the temporal terms

M
da

dt
=

ˆ
φφ |J | dAda

dt

such that

M
da

dt
= F

Previously, the Galerkin force matrix timing was considered. Now, determining the temporal coef-

�cient vector da/dt is considered.

As previously discussed in the methodology section, direct inversion of M is not feasible for even

simple cases. The primary concern is how much work or time is required to determine the left hand

side vector. Three grids were used for computing the iteration time versus basis order curves: a

39670 element rectangular box, a 56314 element cross �ow cylinder, and a 82984 element cavity. The

iterative solve used is a Jacobi lumped mass iterative scheme.

xi+1 = xi + αiri

Several iterative methods were compared; the Jacobi was selected based on performance and timing.

Refer to 3.9.2 for more information on iterative methods. Additionally, the Jacobi iterative scheme is

used in the laboratory's current Euler2d and Euler3d CFD solvers. The L2 error is computed as the

root mean square of the Jacobi residual vector r. Figures 4.16, 4.17, and 4.18 plot the iteration time

versus basis order with lines of constant L2 inversion error. The iterative convergence is characterized

by three regions: an initial convergence with T ≈ P 2.5 , a slow middle convergence region of an order
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Figure 4.16: Galerkin Mass Timing (Box)

of magnitude of time with T ≈ P 0, and an upper convergence region with T ≈ P 4.5. The middle

region of slow convergence increases in size as the order increases.

Forming a model of iteration time for a given basis order requires selecting a convergence criterion.

A time-per-element model based on the convergence bounding the initial and middle convergence

regions appears to collapse the time-order curves for the three cases. The convergence criterion is

L2 = 10−4. Figure 4.19 plots the selected time-order curves for the selected convergence. A �t of

the averages is

Titer = 1.4× 10−7 · P 3.1

Again, we notice a slight overhead component for the lower orders and an approximate polynomial

increase in time with order.

4.3.5 Temporal Integration

Unsteady solutions require temporal integration (i.e., solving a di�erential equation forward in time).

From the methodology section, the are many competing methods for performing a step in time

at+∆t = at + ∆t
da

dt

Regardless of the scheme, the CFL condition applies

CFL ≡ u∆t

∆x
< 1
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Figure 4.17: Galerkin Mass Timing (Cylinder)
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Figure 4.18: Galerkin Mass Timing (Huge Cavity)
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Figure 4.19: Galerkin Mass Timing Convergence

The CFL condition ensures that advected information is properly propagated. In general, the

constant c depends on the numerical scheme, the governing equations and for the Galerkin method,

properties of the mass matrix. Karniadakis[35] indicates that the maximum timestep for higher

order advection equations is proportional to order squared

P 2u∆t

∆x
< 1

This restricts the timestep to

∆t <
∆x

uP 2

The number of steps to advance to a speci�ed time increases with a decrease in timestep

Ndt =
Tsim
∆t

=
TsimuP

2

∆x

4.3.6 Residual Minimization

A critical operation is minimizing the Galerkin residual. This is mathematically minimizing

R = B −Ax

where B contains the Galerkin forces and Ax contains the temporal terms. Computing both of these

terms requires all of the operations timed so far.

Ideally, we want each iteration to reduce the residual of the �nal result and not a �xed point

of the converging solution vector. Changing the iteration controller is critical to the �nal timings.

Even better, there is no need to precisely compute the solution to intermediate convergence of right

hand side. Bonhaus[9] states
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An unexpected observation of particular importance can be seen in the convergence

histories presented in �gure 22. Note that contrary to conventional wisdom, the nonlinear

system converges more quickly as the accuracy of the scheme is increased. Not re�ected

in the �gure, however, is the fact that the linear system does become more di�cult to

solve.

4.3.7 Total Timing

The total simulation time is composed of grid, Galerkin force, mass matrix inversion, and temporal

integration. The above sections composed experimental and theoretical models for time versus basis

order. Now, the data is combined for a total simulation cost.

The input variable is basis order. The output variable is time. Two free variables exist: solution

error and solution �eld continuity (i.e., presence of shocks). The total time is the summation of grid

time, integration time, and iteration time for a number of timesteps.

T = Ndt (Tgrid + Titer + Tinteg)

For a steady or a non-moving boundary unsteady simulation, the total time is

T = Tgrid +Ndt (Titer + Tinteg)

The solution error free variable is �xed to �ve values: 10−2, 10−3, 10−4, 10−5 and 10−6. We will soon

see that this range is su�cient to describe the quality of all simulations performed in the Caselab.

The second free variable, solution continuity, is described as either smooth or fully discontinuous

(i.e., shock).

Unsteady Smooth

Unsteady smooth simulations refer to constantly regridding domains with a shock-free solution �eld.

Figure 4.20 plots total time versus basis order for an unsteady simulation. For a linear solver (i.e.,

P = 1), the solution times are approximately 200 seconds for L2 = 10−2, 3 days for L2 = 10−4, and

a million years for L2 = 10−6. In these terms, the Caselab currently performs most of our linear

unsteady simulations in the days to weeks timeframe. The curves are also labeled in terms of current

solution quality: qualitative, research, paper, benchmark, and galactic.
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Figure 4.20: Total Time versus Order: Unsteady Smooth
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Figure 4.21: Total Time versus Order: Unsteady Shock

Unsteady Shock

Unsteady shock refers to moving boundary and transient simulations with the presence of shocks.

Figure 4.21 plots total time versus basis order for the same set of L2 errors given above. The

behavior is primarily characterized by an increase in time as basis order increases. As solution

accuracy improves (i.e., smaller L2 error), the linear solver's marginal e�ciency decreases.

Steady Smooth

Steady smooth refers to CFD solutions of time-averaged and smooth �elds. Figure 4.22 plots total

time versus basis order. The behavior is dominated by a decrease in time when basis order increases.
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Figure 4.22: Total Time versus Order: Steady Smooth
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Figure 4.23: Total Time versus Order: Steady Shock

Steady Shock

The steady shock concerns a time-averaged solution with the presence of shocks. Figure 4.23 plots

time versus order. The behavior is again characterized by an increase in time with an increase in

order.

Advanced Techniques

The literature suggests applying advanced techniques for improved higher order e�ciency. Sum-

factorization[10, 35] and similar techniques[47] are suggested. From theory and experience these

techniques reduce the integration costs by P 2 in 2D. Figure 4.25 compares time versus order for the

original technique and this advanced technique. As expected, the marginal change becomes larger

as order increases. However, the optimal order for our typical research quality L2 = 10−4 solutions
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Figure 4.24: Total Time versus Order: Unsteady Smooth Advanced
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Figure 4.25: Total Time versus Order: Steady Smooth Advanced

is not signi�cantly improved.

For the steady smooth case, the sum-factorization methods reduce the integration cost by sup-

posedly 2 basis orders. Figure 4.25 shows the time versus order when assuming these advanced

methods are used. In reality, these methods are not likely to provide as much bene�t as expected

since the elemental Jacobian is no longer constant. Non-constant Jacobians require at least an extra

order for the integration cost.

4.4 Experimental Solution Timing

The previous experiment using a build-up approach is convenient for conceptual understanding, but

it begs a critical question. That question is considered in this section. Wall clock timing of the full
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Figure 4.26: Experimental Timing: Velocity Initial Condition

CFD solver running an unsteady problem for various basis orders is performed.

Immediately, there is a snag. Most unsteady problems have no analytical solution. Furthermore,

the test case must not require months, as there is a tremendous number of simulations required.

Another constraint is that the test case must allow a wide range of grid spacings (i.e., integer number

of elements; non-integer spacings do not exist.) while �tting within the surface grid generator's

restrictions. The chosen case is a square domain with a velocity �pu�� in the center. The four walls

have the no-slip velocity condition applied. Figure 4.26 shows the initial conditions for velocity

magnitude. After ∆t? = 0.1, the velocity vectors are shown in Figure 4.27. Two vortices are

generated o� to either side of the pu�. Most importantly, a right-traveling velocity front is generated

via advection.

The Ale2d code was used exclusively for this test. The grid generation time is not considered.

The �rst task is to generate grid spacings corresponding to desired levels of accuracy. Recalling

the previous experiment, error of 10−2, 10−4 and 10−6 are suggested. Testing revealed that 10−2

poorly �t the grid constraints previously discussed; rather, 10−3 was substituted as the qualitative

accuracy level. For each basis, a timestep study tested total solution time and convergence stability.

Only stable timesteps are plotted. Total times and timesteps are mapped to a log-log plot.
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Figure 4.27: Experimental Timing: Velocity Vectors at t? = 0.1

Figure 4.28 gives the 10−3 accuracy curves. The linear basis (P=1) has a maximum timestep of

0.008 for a total time of 0.588 seconds. The minimum time for the solution occurs at the largest

stable timestep. Second order (P=2) has a minimum timestep of 0.01 with a total time of 0.06

seconds. The minimum time occurs at a timestep smaller than the stability boundary. Interestingly,

the trend continues; higher order solutions have a minimum total time within the stable timestep

range. The global minimum solution time occurs for 3rd order solutions. Increasing the order higher

than 3rd order requires more time for the same accuracy.

Figure 4.29 gives the 10−4 accuracy curves (i.e., research to paper quality). These exhibit a

similar behavior as seen in lower accuracy experiment. Again, the global minimum time is for the

3rd order solution.

Finally, Figure 4.29 gives the 10−6 accuracy curves (i.e., paper to galactic quality). This exhibits

behavior not seen in the lower accuracy solutions. The 1st order solution failed from a lack of

su�cient memory (i.e., required more than 6GB of virtual memory with a 7 million element grid).

Again, 3rd order is fastest. The behavior di�ers because of the poor convergence of the Jacobi

iteration routine (cf. Fig. 4.16). For high accuracy solutions, this convergence issue must be

investigated and eliminated.
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Figure 4.28: Experimental Timing: Total Time versus Order 10−3
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Figure 4.29: Experimental Timing: Total Time versus Order 10−4
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Figure 4.30: Experimental Timing: Total Time versus Order 10−6
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Figure 4.31: Experimental Timing: Optimal Timestep versus Order

e = 10−3

e = 10−4

e = 10−6

1 2 3 4 5 6 7 8

Order

0.1

1

10

100

O
p
ti
m

al
T
ot

al
T

im
e

[s
]

Figure 4.32: Experimental Timing: Total Time versus Order

Optimal solutions exist at the minimum time for a given accuracy. Figure 4.31 shows the optimal

timestep for the tested basis orders. Unlike the previous experiment's model, the actual timestep

appears to have a maximum value somewhat independent (for the tested range) of the basis order at

0.01; the previously expected power law of basis order appears not capture the relevant dynamics.

More instructive is the optimal total time versus order (Fig. 4.32). This �gure strongly resembles

the model based �gure (Fig. 4.20) given in the previous experiment. For the two lowest accuracy

levels, the marginal utility of moving from a 1st order to 2nd order solver is at least an order of

magnitude in time. The marginal utility of moving from a 2nd order to 3rd order solver is still

signi�cant but less than one order of magnitude. Finally, successively moving to orders higher than

3rd each results in a negative marginal utility.

From these experiments, the 3rd order solver appears best for unsteady smooth solutions. That

said, several caveats should be discussed. First, solutions with shocks are expected to reduce the
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local accuracy to 1st order regardless of the solver's accuracy. In �elds with a signi�cant number of

shocks, both linear and higher order solutions approach the actual solution at the same convergence

rate. Second, the above experiments illustrate the spectacular convergence rate of higher order

methods. There is a downside; the solution sensitivity to grid size become more pronounced as

order increases. The relatively wide range of grid sizes allowed in the 1st order solver is not allowed

in the 8th order solver. E�ectively this causes solution failure when the grid size is vastly too

large (i.e., under-resolved �eld causing unstable convergence) or vastly too small (i.e., tiny timesteps

trying human patience). The present experiment assumed a perfect grid for the solution �eld at the

desired accuracy level. The experiment used an unsteady �eld with a decreasing maximum velocity.

Aerodynamics of vehicles usually involves a pressure di�erential that requires a velocity increase.

E�ectively, expect grid remeshing for all but the most simple testcases.

Timing experiments presented above found a previously unknown behavior of higher order un-

steady CFD solvers. The marginal utility of increasing order found in these experiments is only

positive at and below 3rd order. Increasing order beyond 3rd order is not productive. The objective

of this part is to brie�y explain these results from a conceptual standpoint.

Figure 4.33 presents timing curves for the various components of an unsteady CFD simulation.

For low orders, the grid and element operational cost dominate the time. For high orders, the

Galerkin integration costs dominate the time. Larger elements allow a larger CFL based timestep.

Not being time accurate, steady simulations move information according to the element size. In a

way, the steady higher order solver behaves similar to a multigrid solver. Also, for low orders, the

grid time is a larger percentage of the time in steady.
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Figure 4.33: Conceptual Time vs. Order
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Chapter 5

Higher Order Challenges

This chapter lists challenges that must be solved for development of a successful higher order CFD.

These challenges are based on experiences from this project and are ordered from most critical to

least critical.

5.1 Solution Stabilization

The most critical challenge to higher order solvers is solution stabilization. Of particular concern is

the synthesis of a stabilization scheme that preserves the high order solver's inherent accuracy. A

poor stabilization scheme renders the solver unstable and unusable.

Traditionally, stabilization in a linear solver is achieved with arti�cial dissipation. Many stabi-

lization schemes are available from the CFD literature. Most are ad-hoc formulations[35, 39, 10]

based on smoothing and variation minimization rather than physical governing equations.

For this project, dissipation was generated with an entropy measuring scheme. Unfortunately,

the dissipation was introduced through the Reynolds number and stresses and was not su�cient for

solution stabilization. Additionally, it had di�culties because of low quality derivative calculations.

Further work would use a physically consistent transfer from mechanical energy to internal energy.

The stabilization challenge for higher order solvers is signi�cant and necessary. Qualitatively,

more degrees of freedom in higher order solvers will appear to only give more modes of divergence.

In short, no dissipation means entropy violation. Entropy violation means diverging and unphysical

solutions.∗ This challenge must be solved �rst.

5.2 Numerical E�ciency

The second critical challenge concerns numerical e�ciency and timing. The challenge is to select a

scheme that minimizes the time required to achieve a desired accuracy. As might be expected, this

∗The magnitude and general behavior of the unphysical results are not quanti�able in a strict sense. The numer-

ical method and non-linear functions of states will determine the solution. �How much� is determined through the

magnitude of entropy destruction.
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challenge is composed of a multitude of partial challenges. Regardless, the �nal tally involves only

maximizing accuracy per time.

The limiting rate for a Galerkin CFD solver is calculating the force vector. The analysis section

showed that this calculation depends on order to the 6th power. This is expensive. Previous

challengers conditionally reduced this complexity to order to the 4th power or unconditionally to

the 5th power. The challenge is to incorporate and show these savings in an actual code.

Maintaining numerical accuracy is a challenge. This project used double precision �oating point

numbers for all computations (i.e., about 15 digits of accuracy), yet the resulting actual precision

is diminished for several reasons. First, �oating point operations tend to accumulate errors from

purely numerical reasons[31]. Second, the generation of numerical constants was performed in double

precision. Generating double precision operations and constants will require more than double

precision pre-processing. Although the double precision number stores about 15 digits of accuracy,

this project saw an e�ective convergence limit of 12 digits of accuracy.

It should be noted that linear basis functions have a signi�cant numerical e�ciency advantage

in that a human can usually reduce mathematical derivations further than a computer's compiler

can �nd the equivalent optimization. As an example, consider the global derivatives computed on a

particular element. For the linear basis, the global derivative is

dφ

dx
=

1

2A


B11

B12

−B11 −B12


The equivalent higher order derivative depends on basis functions, locations, local derivatives in

both directions, and the element Jacobian. In general, the global derivative is reduced at most to

dφ

dx
=
dζ1
dx

dφ

dζ1
+
dζ2
dx

dφ

dζ2
+
dζ3
dx

dφ

dζ3

This project's ALE solver was written completely generically for an arbitrary basis order. That

arbitrary nature strongly contributed to the long compile times and large generated code base. It is

likely that 2nd or 3rd order is the maximum complexity a normal human can mathematically reduce

a CFD derivation. This is a challenge where computerized symbolic mathematical derivations could

assist.

It is interesting that complex CFD solvers spend most of their time solving what becomes a

linear algebra equation. Traditional Galerkin methods involve a mass matrix, a solutions vector and

a force vector. The form is

M
da

dt
= F (a)
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Admittedly, the force vector is neither constant nor linear with respect to the state vector. This

fact enormously complicates the solution of the governing equations. In particular, the expensive

force vector must be recomputed at each iteration. Additionally, as order increases, the mass matrix

can become nearly indeterminate. Furthermore, adding strict constraints can destroy the symmetric

mass matrix. Thus, the use of a Jacobi, Richardson, or CG iterative method is either not strictly

residual minimizing or completely unsuitable.

For unsteady simulations, determining a stable yet useful timestep is a signi�cant challenge. A

constant timestep works su�ciently for the Euler3d code. Yet, for bursts of unsteady �ow, a variable

timestep would be a considerable advantage. Worse, higher order solvers appear more sensitive to

timestep than the existing linear solver. The disadvantage is that a variable timestep requires a

timestep controller. Several methods were tried for this project. None were robust. Time control is

a persistent challenge.

5.3 Complexity

A signi�cant challenge to the implementation of higher order solvers is the complexity in numerical

routines and especially the boundary conditions.

The higher order solver developed in this project, Ale2D, required generating a signi�cant number

of core mathematical operations. The Fortran mathematical operations were vastly too complex

and tedious to generate and verify by hand. Additionally, these operations depend and scale on

order. The solution was to generate these Fortran source �les with a separate Python program.

A related complexity involved the di�culty of generating or obtaining Gauss integration points for

high accuracy high orders. This challenge is mitigated somewhat by �xing the basis order.

5.4 Finite Element Grid

Another set of challenges involves the generation and convergence of the �nite element grid. This

�nite element grid gives the method incredible computational advantages and disadvantages.

Increasing the basis order by design increases the grid convergence rate. The good news is that

fewer grid elements are required, which reduces the grid generation time. The bad news is that

the solution is now more sensitive to small changes in grid spacing. In e�ect, the convergence rate

in space also works as the divergence rate in space. To be e�ective, the gridder would need to

automatically regrid even for steady solutions.

As dynamic simulations become more prevalent, these signi�cant grid generation and modi�ca-

124



tion challenges will continue to arise. Furthermore with ALE, the grid velocity must be speci�ed.

There must be a variation from Lagrangian boundary velocity as a grid velocity to zero grid velocity

in the freestream.

The challenge to future grid generation is contained in four parts: Robust and Autonomous, Small

De�ection with same topology, Boundary Curvature, and Remeshing in the loop. Also interpolation

from one grid to another will be critical. Visually, these are shown in Figure 5.1.

Grid Software Needs

Boundary Curvature

Small Deflection Motion
(Same Topology)

Robust & Autonomous

? ??

Remeshing

Figure 5.1: Grid Needs

Boundary curvature brings up another point with higher order CFD solvers and grid spacing.

The grid must not only be su�ciently re�ned for the relevant �ow �eld but also be re�ned for the

relevant local geometry. The grid spacing for a linear grid should be at least 5% of the local radius

of curvature[11]. For a higher order solver with linear elements, the limitation on grid spacing is in

the geometry convergence, not the �ow convergence.

5.4.1 Corner Vertex

For the Euler and Navier-Stokes equations, density changes depend on the gradient of momentum.

dρ

dt
+
dρu

dx
= 0
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Figure 5.2: Corner Vertex

At a no-slip corner, all edge velocities are zero. The non-zero velocity component decays to zero at

the corner vertex. More importantly, the derivative of the velocity also decays to zero at CV. Thus,

there is no change in density at the corner vertex for all time. This is fundamentally incorrect and

numerically generates spurious solution �elds.

There are two remedies. First, ensure every element has only one face with an applied no-slip

boundary condition. This allows for gradients at the corner. The second remedy is to apply a basis

order greater than 2. This again allows for gradients at the corner.

Unfortunately, this issue was shown to occur with the existing ns2d code. Solving this issue most

e�ectively requires a change in the grid software to prevent corner elements. In 2D, a work-around

is to pre-process the grid and split these corner elements. This issue was not found in the literature,

but should be a widespread issue with viscous triangle and tetrahedron CFD solvers.

5.4.2 Boundary Conditions

Boundary conditions for a higher order solver are certainly signi�cant challenges. For the best

use of a higher order CFD solver, surface elements should contain surface curvature information.

Viscous solutions are possible without surface curvature; however, inviscid �ow with faceted surface

curvature does not work because of the dual tangent constraints given at a single node.

Another non-intuitive challenge is correctly applying boundary conditions for sharp edges and

for elements straddling on changing boundary conditions. Galerkin Navier-Stokes solutions tend to

have di�culties when incompatible boundary conditions are speci�ed at the same points. This could

occur when an in/out �ow boundary meets a no-slip boundary condition.

Additionally, tracking the boundary conditions is not strictly a per-element issue. Unfortunately,
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moving to higher order CFD tends to concentrate operations to element based rather than nodal

based. This causes a small challenge with storing which nodes are considered boundary conditions.

5.5 Derivatives

There is a constant challenge to balance accuracy with speed when computing derivatives. In

general, higher order basis functions have discontinuous derivatives at element edges. The challenge

is to form smooth enough derivatives without requiring a rate limiting computation time. This is

especially true when solving the Navier-Stokes equations for computing surface stresses for drag

predictions[20].

5.6 Visualization

Precise visualization of higher order �elds is a challenge. After spending a signi�cant portion of time

learning and then adapting a visualization tool, VTK, to higher-order elements, the visualization tool

performed poorly. The tradeo� is visualization speed and accuracy. In the end, this project �nally

resorted to interpolating all �elds to a simple linear visualization at the element nodes. Additionally,

unsteady visualization of higher order �elds with varying grids is currently (2011) state of the art.
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Chapter 6

Lagrangian Methodology

This chapter discusses the development of a Lagrangian frame CFD solver for dynamic simulations.

The Lagrangian frame di�ers from the previous Euler frame by tracking �eld states at particles rather

than �xed locations. As this is quite di�erent and not widely used for CFD, this chapter starts with

a rationale and literature review before deriving the governing equations and then presenting results.

6.1 Preliminary Rationale

As previously mentioned, the Lagrangian frame is not commonly used for CFD solvers. This sec-

tion discusses the preliminary discussion and rationale for this switch as resulting from concerns

encountered in the previous higher-order Navier-Stokes project.

The primary reason for considering a Lagrangian frame is the need to simulate boundary motion.

A study of the Euler frame indicated that any relative grid motion involved non-physical operations.

Of particular concern was the maintenance of boundary layers with large normal velocities. Reducing

the timestep to a fraction of the boundary layer height divided by the normal velocity seemed

unnecessarily restrictive and unphysical. At this point, the Arbitrary Lagrangian Euler (ALE) form

discussed in a previous chapter was introduced. The ALE form requires a smooth transition between

the fully Eulerian frame and the fully Lagrangian frame. In essence, this requires two CFD solvers

formed into one and requires a grid modi�cation routine to generate that smooth transition. Rather

than this route, reducing the solver to only the Lagrangian form shows the fundamental concept

with fewer complexities.

A secondary reason concerns the numerical form of the Navier Stokes equations for two reasons.

Both result from the Galerkin method applied to the governing equations. First, the Galerkin

method requires expensive numerical integration of composed functions as discussed in Section 4.3.3.

Although the Galerkin method forms numerical ODEs from previous PDEs and assures a global error

bound on conserved variable, as the method degrades, it allows for un-physical valuation of these �ow

properties. For example, a numerically necessary section of euler3d modi�es the Galerkin suggested

density to prevent negative values of density. The Lagrangian governing equations appear to create
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a loss of accuracy before a loss of stability. Second, the Galerkin numerical operations become global

operations as discussed in Section 1.3.1. Given that the creation of any new CFD solver should give

considerable thought into parallelization, a scheme formed from local operations should be preferred

for performance reasons. Since the Lagrangian governing equations track particles, applying the

Galerkin method is not necessary since these equations are already in an ODE form coupled with

velocity and pressure deriviatives.

A third reason concerns the work required for a given solution as order increases. Lagrangian

work is composed of interpolation, computing derivatives, and time advancement. These depend on

the total number of coe�cients. It is expected that the Lagrangian framework is a P 2 process rather

than the P 6 process for the Galerkin method.

A �nal reason is the simpli�ed nature of the governing equations. The frame tracks the concep-

tual particle and thus hides advective terms within a separate motion di�erential equation. This

eliminates the traditional CFL stability restriction on timestep seen in the Euler frame. The Eule-

rian maximum timestep is restricted by velocity and grid spacing. Rather, the Lagrangian timestep

is restricted by the maximum velocity divergence. From a preliminary point of view, the Lagrangian

frame appears to be dependent on the �ow properties and not on grid properties.

For these reasons, further study of the Lagrangian frame was started. Several concerns were found

during this preliminary investigation. Two primary concerns are tracking particles and deriving the

compressible governing equations.

6.2 Literature Review

Using the Lagrangian frame for CFD is not new. Many of the oldest CFD solvers were Lagrangian

based. However, the Euler frame methods are considerably more numerous. However, its cousin,

Lattice Boltzman, is a popular method for viscous low Mach �ows. Lagrangian methods are however

common[10, 40] in meteorology �where the use of a large time-step is essential for e�ciency� as

Karniadakis[35] states. Meteorology in particular is concerned with advection∗ of multi-species with

complex boundary conditions; Aerodynamics is primarily concerned with single-species compressible

�ow of more simpli�ed boundary conditions. Pironneau's 1982 paper[61] is seen as a reintroduction to

the properties of Lagrangian solvers. A useful reference is Bennett's Lagrangian Fluid Dynamics[7].

This project uses a semi-Lagrangian form that resets the particle labels at every timestep. Boyd

provides a discussion of the mathematical reasoning for using a semi-Lagrangian form rather than

∗Compressible meteorology occurs primarily in altitude; sonic fronts are traditionally ignored.
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Figure 6.1: Lagrangian Space-Time Intersection

a Lagrangian form. Boyd[10] states the following:

However, exclusive use of a Lagrangian coordinate system is usually a disaster-wrapped-

in-a-catastrophe for numerical schemes because the particle trajectories become chaotic

and wildly mixed in a short period of time.... Semi-Lagrangian (SL) algorithms avoid

this problem (and earn the modi�er �semi�) by reinitializing the Lagrangian coordinate

system after each time step.

The Lagrangian equations have the following timestep limitation

∆t

∣∣∣∣dudx
∣∣∣∣ < 1

This is visually veri�ed by plotting a space time diagram of two �ow particles intersecting when

di�ering by a given velocity and spacing. Flow particles must not intersect. Figure 6.1 shows two

intersecting paths with velocity u1and u2. The time of intersection ∆t is when

u1 − u2 =
∆x

∆t

The spacial velocity divergence is ∣∣∣∣dudx
∣∣∣∣ =

u2 − u1

∆x

�Hence in semi-Lagrangian models the time step can be chosen for accuracy and not for stability

�[40]. The Lagrangian frame timestep depends on the �ow �eld, (i.e., proportional to the �ow �eld's

velocity divergence); the Eulerian frame timestep limitation depends on the grid (i.e., proportional

to the grid spacing and velocity). For semi-Lagrangian methods, Karniadakis[35] states

semi-Lagrangian methods require more computational cost than the Eulerian counterpart

on a per-time-step consideration.... However, with much larger allowable CFL numbers,

130



the total CPU time required for the SLSE method to reach a certain time-level is signif-

icantly less than that of the Eulerian method.

Bartello found that an atmospheric Lagrangian turbulent Navier Stokes CFD solver required 5 to

10 times more work than the equivalent Euler solver[5].

6.3 Terminology

We need to distinguish between the Eulerian and Lagrangian frames in a systematic manner as

described in Bennett[7]. States in the Eulerian frame are given as

u[x, t]

Lagrangian states are given as

u(x, t)

When derivatives are involved, the Eulerian derivative is

∂q

∂t

and the Lagrangian derivative is

dq

dt

These are related by

dq

dt
=
∂q

∂t
+ u

∂q

∂x

For clarity, the di�erence between the Eulerian and Lagrangian frames must be shown. The

substantial derivative or particle derivative is

D ()

Dt
=
∂ ()

∂t
+ v · ∇ ()

The Euler frame has

∂ρ

∂t
+∇ · (ρui) = 0

The Lagrangian frame has

Dρ

Dt
+ ρ

dui
dxi

= 0

Substituting the Lagrangian frame equation into the substantial derivative equation gives

∂ ()

∂t
+ v · ∇ () + ρ

dui
dxi

= 0

We notice that there two terms that combine to form

∂ ()

∂t
+∇ · (ρui) = 0

This is identically equal to the Euler frame.
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6.4 Governing Equations

Lagrangian governing equations operate in a particle tracking frame, so the temporal and advec-

tive terms are di�erent, yet the other terms should appear relatively unchanged. One signi�cant

di�erence is that the Lagrangian equations require an extra particle tracking equation of motion.

The fundamental concept is visually described in Figure 6.2. Conceptually, the governing equations

Figure 6.2: Lagrangian Frame Conceptual Particle

track a single control volume being stretched and morphed by velocity gradients. The following

derivations are inspired by Bennett[7].

6.4.1 Labeling and Location

A primary concept for any derivation in the Lagrangian frame is the labeling transformation Js.

This term is identical to the term previously seen in the ALE derivation. It relates the spacial

transformation for the particle from the initial labeling location and time. Bennett shows that

dJ

dt
= J divU

So conceptually, J tracks the volume for a set particle.

Lagrangian governing equations require tracking conceptual particles in time along the velocity

vector. The particle equation tracks the particle location with a known �ow velocity �eld.

dx

dt
= U
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This appears trivial, but we will later see the complications that arise from particle tracking with

known grid locations.

6.4.2 Mass Derivation

For the mass conservation equations, consider a moving particle W so that conservation of mass

gives

d

dt

ˆ
W

ρdV = 0

The volume changes with time but total mass within the volume does not.

d

dt

ˆ
W

ρJsdW = 0

As the temporal derivative is independent of the volume, the integration and derivative are inde-

pendent. ˆ
W

d

dt
(ρJs) dW = 0

With an arbitrary particle, the governing equation for mass conservation is

d

dt
(ρJs) = 0

We prefer that the governing equation not contain a transformation

ρ
d

dt
(Js) +

dρ

dt
Js = 0

With the previously derived identity, the mass equation becomes

ρJsdivU +
dρ

dt
Js = 0

Assuming that density is �nite and non-zero requires that Js is �nite and non-zero. This reduces

the previous equation to

dρ

dt
= −ρdivU

This is the implementable form of the mass conservation equation.

6.4.3 Momentum Derivation

As with mass conservation, consider a moving particle W so that conservation of momentum gives

d

dt

ˆ
W

ρuJsdW = −
ˆ
W

∂p

∂x
JsdW

or ˆ
W

d

dt
(ρuJs) dW = −

ˆ
W

∂p

∂x
JsdW
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Again, the particle is arbitrary, so one form of the momentum governing equation is

d

dt
(ρuJs) = −∂p

∂x
Js

Expanding and simplifying gives a �nal governing equation of

d

dt
(ρu) + ρu divU = −∂p

∂x

6.4.4 Momentum Derived From the Euler Frame

Alternatively, transforming the well known Euler frame equations of motion should result in an

identical governing equation with considerably less e�ort.

The Euler frame equation for momentum is

∂ (ρu)

∂t
+

∂

∂x

(
ρu2 + p− τxx

)
+

∂

∂y
(ρvu− τyx) = 0

The material derivative is

D (ρu)

Dt
=
∂ (ρu)

∂t
+ U · ∇ (ρu)

Substituting the above Navier-Stokes form into the above material derivative form gives

D (ρu)

Dt
= − ∂

∂x
(ρuu)− ∂

∂x
(p− τxx)

− ∂

∂y
(ρvu)− ∂

∂y
(−τyx)

+U · ∇ (ρu)

reducing to

D (ρu)

Dt
= −u ∂

∂x
(ρu)− ρu ∂

∂x
(u)− ∂

∂x
(p− τxx)

−v ∂
∂y

(ρu)− ρu ∂
∂y

(v)− ∂

∂y
(−τyx)

+U · ∇ (ρu)

which is

D (ρu)

Dt
= −ρu∂u

∂x
− ∂

∂x
(p− τxx)− ∂

∂y
(−τyx)

A similar governing equation results from expanding the temporal derivative and substituting con-

tinuity

D (u)

Dt
= ρu∂u∂x −ρu∂u

∂x
− ∂

∂x
(p− τxx)− ∂

∂y
(−τyx)

which is

D (u)

Dt
= − ∂

∂x
(p− τxx)− ∂

∂y
(−τyx)
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6.4.5 Energy From the Euler Frame

The Euler frame equation for energy is

∂ (ρe)

∂t
+
∂

∂x

(
ρu

(
e+

p

ρ

))
+
∂

∂y

(
ρv

(
e+

p

ρ

))
− ∂

∂x
(uτxx + vτxy − qx)− ∂

∂y
(uτyx + vτyy − qy) = 0

with the substantial derivative

D (ρe)

Dt
= u

∂

∂x
(ρe) + v

∂

∂y
(ρe)

−u ∂

∂x
(ρe)− ρe ∂

∂x
(u)− ∂

∂x
(up)

−v ∂
∂y

(ρe)− ρe ∂
∂y

(v)− ∂

∂y
(vp)

∂

∂x
(uτxx + vτxy − qx)

∂

∂y
(uτyx + vτyy − qy)

which is

D (ρe)

Dt
= −ρe divU

− ∂

∂x
(up)− ∂

∂y
(vp)

∂

∂x
(uτxx + vτxy − qx)

∂

∂y
(uτyx + vτyy − qy)

6.4.6 Entropy

The entropy equality is

D (ρs)

Dt
=

Φ

T
+

d

dx

(
k
dT

dx

)
− Tρs divU

6.4.7 Non-dimensionalization

This section derives a non-dimensional form of the governing equations. Location is

Lo
Uo
Lo

dr?

dt?
= u?Uo

dr?

dt?
= u?

This is self similar.

The density governing equation becomes

ρo
Uo
Lo

dρ?

dt?
+ ρoρ

?Uo
Lo

du?k
dx?k

= 0

135



dρ?

dt?
+ ρ?

du?k
dx?k

= 0

Again, it is self similar.

The velocity governing equation is

ρoUo
Uo
Lo

d (ρui)
?

dt?
+ ρoUo (ρui)

? Uo
Lo

du?

dx?
+ ρoU

2
o

1

Lo

dp?

dx?i
=

1

Lo

µoµ̂Uo
Lo

dτ?ji
dx?i

d (ρui)
?

dt?
+ (ρui)

? du
?

dx?
+
dp?

dx?i
=

µ̂

Re

dτ?ji
dx?i

The inviscid portion is self similar, while the viscous portion is scaled by Reynolds number.

The energy governing equation is

ρoU
2
o

Uo
Lo

dE?

dt?
+ ρoU

2
oE

?Uo
1

Lo

du?k
dx?k

+ ρoU
2
oUo

1

Lo

d (u?kp
?)

dx?k
= − 1

L2
o

k
γU2

o

cp

d2 (T ?)

dx?2j

+Uo
1

Lo

µoµ̂Uo
Lo

d (u?kτ
?)

dx?k

Dividing and gathering terms gives

dE?

dt?
+ E?

du?k
dx?k

+ = − 1

Re

γ

Pr

d2 (T ?)

dx?2j
+

µ̂

Re

d (u?kτ
?)

dx?k

6.5 Galerkin Method Applied to Lagrangian Equations

Applying Galerkin method and integration by parts does not eliminate the spacial derivative but

only shifts it from one state to another. For example,

dρ

dt
+ ρ

du

dx
= 0

Applying the Galerkin method gives

ˆ
φ
dρ

dt
+

ˆ
φρ
du

dx
= 0

The objective is to eliminate the velocity divergence term. Grouping φ and ρ together and applying

the Green's Theorem gives ˆ
φ
dρ

dt
−
ˆ
dφρ

dx
u+

ˆ
φρu · nx = 0

This form is not an improvement since the derivative is now on density.

Worse, applying Galerkin causes the governing equations to be strongly coupled. Also remember

that a major advantage of applying the Galerkin method for the Euler frame equations was that the

integrals became integrals of �uxes. The Galerkin method is rejected for the Lagrangian equations.
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6.6 Element Operations

Unlike the Eulerian frame CFD solver, the Lagrangian frame solver requires several element oper-

ations. Primarily these operations are needed for determining advected locations within a known

grid and known �ow �eld.

6.6.1 Linear Geometry Element

For a linear element, the local to global coordinate transform is[26]
1

x

y

 =


1 1 1

x1 x2 x3

y1 y2 y3




ζ1

ζ2

ζ3


where x and y are nodal locations. Substituting the top row reduces the transform to two indepen-

dent coordinates[14] x

y

 =

 x3

y3

+

 (x1 − x3) (x2 − x3)

(y1 − y3) (y1 − y3)


 ζ1

ζ2


=

 x3

y3

+

 x13 x23

y13 y23


 ζ1

ζ2


=

 x3

y3

+B

 ζ1

ζ2


The Jacobian is

J =

 x13 y13

x23 y23

 = BT

Notice that the Jacobian matrix is the transpose of the local to global transform matrix. The Inverse

Jacobian is

J−1 =
1

det J

 y23 −y13

−x23 x13

 =
1

2A

 y23 −y13

−x23 x13


6.6.2 Within

A primary operation is to test if a coordinate is within a particular element. Given the global

location X = (x, y) with barycentric coordinate Ξ = (ζ1, ζ2, ζ3), the location is within element E

when each individual coordinate ranges from zero to one

0 ≤ ζi ≤ 1
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and the sum is exactly one

ζi = 1

The global to local transformation is ζ1

ζ2

 = J−T

 x− x3

y − y3

 =

[
(x− x3) (y − y3)

]
J−1

=
1

2A

 y23 −x23

−y13 x13


 x− x3

y − y3


=

1

2A

[
(x− x3) (y − y3)

] y23 −y13

−x23 x13


Since the third coordinate is calculated as

ζ3 = 1− ζ1 − ζ2

this implies that the summation is implicitly satis�ed. Thus, only using the range test is su�cient.

Knowledge of the barycentric coordinates also allows for a search direction into the adjacent

element. When coordinate ζi violates the test, search the element adjacent to edge i. The range

test is

edge =



1 if ζ1 < 0

2 if ζ2 < 0

3 if ζ1 + ζ2 > 0

otherwise

The degenerate case of �nding an element on the other side of a bisected domain is not valid; �uid

particles must be continuously transportable within a domain.

6.6.3 Interpolation

Interpolation is a primary operation. Given the value coe�cients of an element, cs, and a local

location Ξ, an interpolation routine determines a function value

v = f(cs,Ξ)

With a basis function expansion the function value is

v = csφs (Ξ)
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6.7 Numerical Methods

A signi�cant requirement for Lagrangian methods is numerical time integration.

6.7.1 Time Integration

Lagrangian frame time integration is an interesting task for a single reason: the fundamental labeling

is particle based. A general rule is that for a particular particle, the path is tracked from the reference

node location to unknown locations. So, the routine solves the question �Where did the particle at

this node come from?� rather than the question �Where will the particle at this node go?�.

In 1D, the one element visual representation is shown in Figure 6.3. Grid points are known for

Figure 6.3: Lagrangian Time Integration

two di�erent grids. The velocity for a given particle is known from the velocity �eld.

For prototyping, backwards Euler time integration may seem ideal. The traditional BE form is

yn+1 = yn + h f(tn+1, yn+1)

For Lagrangian methods, backwards Euler methods are not su�cient; no-�ow regions tend to get

value-locked.

Explicit projection forward is essential. Yet, this forward projection is numerically complicated

since particles are not guaranteed to land on future grid nodes. This requires at least an initial

interpolation forward to the future timestep grid.
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6.8 Results and Analysis

A 1st order (P=1) Lagrangian solver, lagr2d, was implemented. A 1st order B-Spline (i.e., traditional

hat function) provides the interpolation. The numerical operations and data structures are from the

previously discussed Ale2d solver with one exception. A particle tracking routine was added based

on the derivation given above.

The time integration method is a 2nd order RK routine. Unexpectedly, the maximum timestep

did not follow the theoretical estimate. In fact, the timestep is of the same magnitude as the

corresponding Euler timestep. There is a conceptual reason for this discrepancy. Compressible �ows

have wave propagation velocities. The timestep must capture both the �ow velocity advection and

the sonic characteristic velocity. Thus, the traditional Lagrangian timestep limit is su�cient only

for incompressible �ows.

An unsteady viscous cylinder was simulated with the lagr2d code. Figure 6.4 shows the velocity

distribution. The cylinder test case was tested past 70 clearing times. Unlike the ale2d code, the

Figure 6.4: Cylinder: Velocity for viscous Re = 500 �ow with lagr2d (P=1)

lagr2d code appears to have fewer stability restrictions. The current lagr2d code also appears to

have a weakly unstable exiting far-�eld condition. The cylinder presented this issue as an increasing

backpressure.

For comparison, the cylinder's wake Strouhal number is computed. The Strouhal number is

de�ned as

St =
fD

U

For a circular cylinder, the Strouhal number depends on Reynolds number. From Fey[18], at a
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Reynolds number of 500, the Strouhal number is 0.21. From lagr with P = 1, the numerical

shedding frequency is

St = 0.218± 0.008

A comparison with ns2d slightly depends on dissipation. For dissipation of 0.2, the shedding fre-

quency is

St = 0.228± 0.004

Comparing solution clock-time with ns2d (an in-house Navier-Stokes linear Galerkin solver) is

interesting. The lagr2d code is approximately half as fast as ns2d. The lagr2d solver struggled

with small timesteps caused by large velocity gradients allowed by, yet again, a poor dissipation

scheme. Yet the local-operation lagr2d code is likely inherently easier to parallelize. This could be

a signi�cant advantage.

The Lagrangian frame appears to have merit for CFD solutions. Primary concerns are particle

tracking, timesteps, and boundary conditions.
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Chapter 7

Lagrangian Challenges

A successful Lagrangian frame CFD solver has several challenges that must be met.

7.1 Particle Tracking

Particle tracking in a Lagrangian solver is absolutely essential. Particle tracking appears simple:

given a location and a time, �nd state variables corresponding to that location and time. In practice,

there are complications. Also remember that this tracking must be performed for each particle at

every timestep.

A �rst complication is �nding an arbitrary point within a complex domain. Conceptually, a

nearest-point map between past and current grids is su�cient. Computer science routines are avail-

able for this situation; some require signi�cant setup costs.

A second complication arises at boundary conditions. As a particle attempts to leave the domain,

the boundary condition must be applied. One particular di�culty is encountered with the far-�eld

condition. At some level, the Lagrangian frame governing equations are similar to the far �eld �ux

boundary condition computed with the Roe/Riemann equations. Yet, simply applying the far-�eld

boundary condition speci�cation allows for unphysical phenomena including inlet velocity lock and

outlet density build-up.

Where a low quality routine in the Eulerian frame merely degrades the solution accuracy, a

low quality particle tracking routine will eventually fail to �nd an appropriate starting or ending

location. This immediately ends the simulation.

7.2 Time Integration

A second essential operation is time integration. Again, this seems to be a solved problem. Yet,

fully explicit solvers have a fundamental implementation issue. Explicit time advancement requires

expensive interpolation onto the future grid. A discussion of interpolation relevant to this issue is

discussed in Boyd[10]. Fully implicit solvers get stuck for zero velocities. The implicit point tracking

solver working backwards in time with zero velocity never changes the interpolation point at the
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previous timestep. Thus, velocity becomes stuck. Solving this requires forward projection (explicit)

time integration.

Lauritzen[40] states that �There is a need to incorporate trajectories in a more consistent manner

in semi-Lagrangian models instead of treating trajectory determination and the solution to the

remaining equations of motion as two separate tasks.�

The Lagrangian timestep limit is only valid for incompressible �ows. For compressible �ows,

only the density characteristic moves at the �ow velocity. The u + a and u − a characteristics

signi�cantly constrain the maximum timestep, especially for low Mach number �ows. This issue

potentially mitigates the Lagrangian timestep advantage. Bartello[5] states that �wave propagation

implies identical time scales in Eulerian and Lagrangian frames�.

7.3 Turbulence Model

The author is unclear about the rami�cations of the Lagrangian frame regarding turbulence models.

It seems likely that the regular Eulerian frame turbulence models could easily be reformed with a

frame transformation. Lagrangian turbulence modeling in the literature seems to be a primitive

�eld. This project does not address this issue.

7.4 Grid

Grid generation and remeshing will become a critical challenge for the Lagrangian solver. Two

particular concerns stand out: coupling the boundary motions with updated grid generation and

interpolating from di�erent grids. Overgridding and variable element sizes are not expected to be a

signi�cant contribution to the challenge.

A second grid related challenge is interpolation from one solution �eld to another solution �eld

with a di�erent element topology. This challenge becomes necessary when the domain is regridded.
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Chapter 8

Rigid Body Dynamics

Dynamic CFD is de�ned as computationally simulating �ow �elds with the boundary conditions

of a arbitrarily translating, rotating, and deforming vehicle. Rigid body dynamics simulates the

constantly moving case. This requires tracking body motion with position and orientation. This

section of the project was developed as an upgrade to the existing Euler3d CFD code, a linear

element 3D inviscid code with non-inertial based motion capability.

This section's objective is to develop a six degree of freedom rigid body solver and then to couple

the rigid body solver into a computational �uid dynamics (CFD) solver. Coupling into a CFD solver

requires determining boundary conditions from the previous aerodynamically and inertial generated

forces. This paper concentrates on the �ight dynamics applications of the rigid body dynamics in

an inviscid but compressible �ow.

Rigid body dynamics are governed by two sets of equations: attitude representation and body-

frame motion. Attitude representation uses an inertial �xed reference frame for translations and

directions. The body-frame kinematics uses translational and rotational forms of Newton's classical

law.

8.1 Literature Review

Simulating aerospace vehicle dynamics is common; CFD based �ight dynamics is rarer. Nelson[55]

derives a traditional approach to applying rigid body dynamics to aircraft. Phillips[60] reviews

Euler angles, direction cosines, and quaternions for aircraft motion speci�cation. Phillips suggests

using quaternions to avoid the computational expenses and singularities inherent in the Euler angle

representation. Stevens and Lewis[70] derive a quaternion approach to rigid body dynamics. Visu-

ally, Kato[36] discusses large amplitude maneuvers and their e�ect on motion descriptions. Store

separations with multiple body dynamic simulations is a related and active �eld[72, 12, 43]. Rizk[65]

implemented a 6 degree-of-freedom store separation dynamics simulation.

Primary references for this paper are Aircraft Control and Simulation[70], Flight Stability and Au-

tomatic Control [55], and Finite Element CFD Analysis of Super-Maneuvering and Spinning Struc-
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tures[14].

8.2 Attitude Representation

Attitude representation involves specifying the aircraft's position and orientation and converting

between inertial and non-inertial frames. For the scope of this paper, the inertial frame is Earth

�xed, and the non-inertial frame is aircraft body-�xed.

8.2.1 Inertial and Non-Inertial Frames

The crux of attitude representation is converting between body �xed and inertial reference frames.

Figure 8.1 shows a two-dimensional representation of an inertial frame (X,Y) and a non-inertial

frame (x,y) connected by vector R. A point at vector rb in the non-inertial frame transforms to a

vector qi in the inertial frame. The relationship is

qi = Ri +Brb

B is a transformation operator between the body b and inertial i frames. So, B−1 transforms from

the inertial frame to the body frame. Intuition suggests that B and B−1 must be similar. In fact,

transformation matrices are orthogonal so that B−1 = BT .

X

Y
y x

R

Figure 8.1: Coordinate Systems

8.2.2 Orientation

Orientation concerns the directionality of the body-�xed frame with respect to an inertial frame.

For the scope of this project, a �at Earth is a su�cient inertial frame. This paper uses quaternions

for orientation. The objective is to convert body frame rotations to inertial frame attitudes.

Euler angles were rejected for the well-known pitch singularity. Preliminary testing also showed

that while the Euler angle singularity is at θ = ±90◦, attitude errors become noticeable earlier. For

a generic motion simulations, Euler angles are unwelcome. Technically, Euler angles can be made

to work, but doing so requires repeated coordinate transforms and a switching algorithm to prevent

gimble lock. Quaternions are just less troublesome to implement.
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Quaternions have no such singularity, but this comes at the expense of an extra parameter.

The quaternion consists a scalar (q0), and a vector (q1, q2, q3). An extra constraint is required,

q2
0 + q2

1 + q2
2 + q2

3 = 1. For a quaternion based representation system, the transformation matrix B

is[70]

B =


q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3


Quaternion updates are via four 1st order di�erential equation. The quasi-linear quaternion

di�erential equation is[70] 

q̇0

q̇1

q̇2

q̇3


= −1

2



0 p q r

−p 0 −r q

−q r 0 −p

−r −q p 0





q0

q1

q2

q3


Solely for human visualization, traditional Euler angles are needed. The quaternion to Euler

angle conversion is[70]
φ

θ

ψ

 =


arctan

(
2(q0q1 + q2q3)/

(
q2
0 − q2

1 − q2
2 + q2

3

))
arcsin (2(q0q2 − q1q3))

arctan
(
2(q0q3 + q1q2)/

(
q2
0 + q2

1 − q2
2 − q2

3

))
 with the ranges

−π ≤ φ ≤ π

−π/2 ≤ θ ≤ π/2

−π ≤ ψ ≤ π

Inspection of the Quaternion to Euler angle conversion shows that unity magnitude quaternions are

needed to remain in the real valued arcsin() and arctan() domains. Re-normalizing the quaternion

appears necessary before converting to Euler angles.

8.2.3 Position

Inertial frame positions are calculated from body frame velocities and inertial orientation. Position

updates use the B transformation matrix developed above. The translational equation is
ẋ

ẏ

ż

 = B


u

v

w


The result is three 1st order di�erential equations for inertial position. Integration is simple when

no rotations occur.
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8.3 Body Frame Kinematics

Aircraft velocity kinematics are calculated in the non-inertial (body) frame. Nelson[55] derives a set

of aircraft equations of motion. Inertia are referenced to the body �xed frame. Except for certain

body forces such as gravity, the body �xed equations of motion are independent of attitude.

8.3.1 Translation

For the translational rigid body modes, the equations of motion are[55]

X −mgSθ = m(u̇+ qw − rv)

Y +mgCθSφ = m(v̇ + ru− pw)

Z +mgCθCφ = m(ẇ + pv − qu)

The translation equations become nonlinear when the rotation axis is not along the translation

velocity axis. Solving for the translational derivative terms yields
u̇

v̇

ẇ

 =


0 r −q

−r 0 p

q −p 0



u

v

w

+
1

m


X −mgSθ
Y +mgCθSφ

Y +mgCθCφ


The translational equation of motion consists of three 1st order nonlinear di�erential equations.

8.3.2 Rotation

The rotational equations of motion in the body frame for typical symmetrical aircraft are[55]:

L = Ixṗ− Ixz ṙ + (Iz − Iy)qr − Ixypq

M = Iy q̇ + (Ix − Iz)rp+ Ixz(p
2 − r2)

N = −Ixz ṗ+ Iz ṙ + (Iy − Ix)pq + Ixzqr

The equations are nonlinear when certain translations and rotations occur. In contrast to the single

translational mass, 6 rotational inertias are possible. Solving for the rotational equations or motion

for the rotational derivatives yields
ṗ

q̇

ṙ

 = I−1


L− (Iz − Iy)qr + Ixzpq

M − (Ix − Iz)rp− Ixz(p2 − r2)

N − (Iy − Ix)pq − Ixzqr



147



The general inertia matrix is

I =


Ix Ixy Ixz

Ixy Iy Iyz

Ixz Iyz Iz


The general inverse inertia is

I−1 =
1

Γ


(
IyIz − I2

yz

)
(IxzIyz − IxyIz) (IxyIyz − IxzIy)

(IyzIxz − IxyIz)
(
IxIz − I2

xz

)
(IxzIxy − IxIyz)

(IxyIyz − IyIxz) (IxyIxz − IxIyz)
(
IxIy − I2

xy

)


Γ = IxIyIz − IxIyzIyz − IxyIxyIz + IxyIyzIxz + IxzIxyIyz − IxzIyIxz

The rotational equation of motion consists of three 1st order nonlinear di�erential equations.

8.4 Coupled Rigid Body Equations of Motion

The objective of this section is to show the total 6 degree of freedom rigid body dynamics equations

of motion. The state vector is: S = [x y z u v w p q r q0 q1 q2 q3]T . Combining the above orientation

and kinematic equations yields thirteen 1st order nonlinear di�erential equations. From Stevens and

Lewis[70] the complete system with lumped coupling terms (ΩB , Ωq, I) is:

Ṡ =



0 B 0 0

0 −ΩB 0 0

0 0 −I−1ΩBI 0

0 0 0 − 1
2Ωq


S +



0

m−1FB

J−1TB

0


(8.1)

On �rst inspection, the system appears linear, but this is not the case since the state variable is

contained inside the gradient matrix.

8.4.1 Numerical Methods

Appropriate numerical methods are required for the quaternion governing equation since the quater-

nion magnitude must remain unity. Phillips[60] discusses this topic and suggests at least a 4th order

ODE numerical solution. This paper uses a 4th order Adams Moulton �nite di�erence ODE numer-

ical integration method. The update is discrete in time based on continuous derivatives (ẏ) at four

discrete timesteps.

y(t+ 1) = y(t) +
dt

24
(55ẏ(t)− 59ẏ(t− 1) + 37ẏ(t− 2)− 9ẏ(t− 3))
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8.5 Rigid Body Dynamics Results

A 6 degree of freedom rigid body dynamics solver was designed and implemented. This section

veri�es and validates the solver's behavior, representation, and integration.

8.5.1 Veri�cation

The objective of this section is to establish that the rigid body equations of motion are being solved

correctly.

Energy Conservation

This case tests for rigid body dynamics energy conservation. The concept is to give a body an initial

motion and then track the total energy. Conserved energy veri�es that the rigid body dynamics

solver is solving the correct equations. Additionally, this test case evaluates timestep sensitivities of

the rigid body dynamics solver.

The governing energy equation for translations and rotations is

E(t) =
∑

i=x,y,z

1

2
mivi(t)

2 +
∑

i=p,q,r

1

2
Iiωi(t)

2

For this particular test case, the masses and inertias are

M = 1, Ix = 1, Iy = 2, Iz = 3

For an initial body-�xed translation vector of (1,2,3) and a rotation vector of (4π, 2π, π) radians

per second, the theoretical kinetic energy is 140. A time history plot (Fig. 8.2) shows the non-

linear behavior. Figure 8.3 shows the kinetic energy content for timesteps varying from 0.01 to

0.0001, equivalent to 50 to 5000 points per highest frequency at roll rate of 720 degrees per second.

Above 100 points per cycle seems appropriate; fewer points per cycle tend to arti�cially dampen

the dynamics solution. Timestep sizes for accurate dynamics responses appear to be larger than the

corresponding CFD timestep sizes.

Translational and Rotational Forced

This case directly speci�ed the translational forces inside the CFD solver. The objective is to verify

the constant force displacement motion. The non-dimensional forces in each coordinate direction are

Fx = 0.25, Fy = 0.5, and Fz = 1.0. Since the forces are uncoupled when viewed in each orthogonal

coordinate system, the displacement motion's form in each coordinate direction is

di(t) =
1

2

Fi
M
t2

149



0 0.5 1 1.5 2
−4

−3

−2

−1

0

1

2

3

4
Rotation Displacement

φ

θ

ψ

Figure 8.2: Rotational Displacement Time History
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The CFD solver was hard-coded to represent the above forces. Figure 8.4 shows the translational

displacements from 0 to 5 seconds with a mass of 1/500.∗ The solution for z(t) is

z(t) = 250 t2

At time 5, the error between theory and the solver is 1.5 out of 6250 (approximately 0.02%). The

dynamics output matches theory.

Likewise, the rotational degree of freedom is tested. Figure 8.5 shows the dynamic solver Euler

angles versus theory for an accelerating roll. The roll Euler angle, Φ, maps between ±π regardless

of the total rolled angle. Thus, the solution for Φ is

Φ(t) = 2.5 t2 − 2nπ

The error at time 5 is 0.04 out of 62.5 total radians of rotation (0.06%). Again, the dynamic solver

matches theory.

∗The 1/500 mass ratio occurs because the CFD forces are scaled by dynamic pressure.
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Simple Pressure Field Motion

The objective of this section is to verify that the CFD solver's pressure integration is input correctly

into the rigid body simulation. This case will test the CFD pressure to rigid body coupling. A

simple pressure �eld was speci�ed

p∗(x, y, z, t) =


1 if z > ε

−1 if z < ε

0 otherwise

Since the trailing edge does not exactly lie at z = 0, a deadband parameter ε is used to prevent

pressure wrap-over on the trailing edge node.

The pressure �eld is shown in Figure 8.6. Conceptually, the pressure above the zero waterline is

greater than below. For reference, the dimensional pressure is 1000 psf (47.9 kpa). With a rotation

point at the leading edge, the theoretical pitch moment is 20 ft-lb (27 N-m) or 0.04 (CFD non-

dimensional). The time and moment response is given in Figure 8.7. The integrated CFD moment

gives 0.0392; the error occurs in the �nite length of the trailing edge element. This test concludes

the veri�cation process.

Figure 8.6: Speci�ed Pressure Field

8.5.2 Validation

The objective of this section is to validate the dynamics solver with quasi-steady aerodynamics

solutions. Both the translational and rotational frames are tested.
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Translational Rate Damping

This test case veri�es the z-axis translational motion with airfoil rate damping. The concept

(Fig. 8.8) is to allow an airfoil to reach a steady state upward velocity �via the airfoil's lift� when

starting from an initial angle of attack, α0. Intuition indicates that the �nal upward translational

velocity will be such to provide an e�ective angle of attack of zero.

U

L

θ

Figure 8.8: Translation Rate: Geometry

Assuming quasi steady aerodynamics, the lift is a linear function of the instantaneous angle of

attack. For this problem, the e�ective angle of attack comes from an initial angle of attack, α0, and

a plunging velocity to freestream ratio, ẋ(t)/V . Thus, the governing equation is

mẍ(t) = qCLαS

(
− arctan

ẋ(t)

V
+ α0

)
When assuming small angles, arctan x

V is approximately x
V . A solution to the above di�erential

equation is

x(t) = α0 V t−
α0 V

2m

qCLα S
+
α0 V

2m

qCLαS
exp

(
−qCLα St

mV

)
The solver (dots) and theory (lines) predictions are shown in Figure 8.9. As expected, a steady

state velocity is reached. The dynamics solver matches theory, which appears to suggest that the

dynamic solver's translational displacement and velocity are properly passed to the CFD solver's

boundary conditions.

Rotational Rate Damping

This testcases's objective is to validate a rotational degree of freedom. An airfoil slit is rotated

axially about an inboard axis. A rotation rate, ω, creates an e�ective angle of attack at the airfoil
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Figure 8.9: Translation Rate: Lift
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Figure 8.10: Rotating Rate Damping Geometry

of α = arctan (ωL/U). Figure 8.10 shows the geometry. The governing equation of motion when

assuming quasi-steady aerodynamics is

φ̈(t) = −I−1LqcSCLα arctan
φ̇L

U

The case has an initial rotation velocity of 90 degrees per second, a velocity of 500, and an axis o�set

L of 16. The rotational rate damping response is shown in Figure 8.11 for theory (lines) and the

dynamic solver output (dots). The rotational degree of freedom validation matches the theoretical

response.

8.5.3 Flight Dynamics

Flight dynamics concerns the interaction between aerodynamics and a rigid body with respect to

aircraft motions. An aircraft undergoing common maneuvers and a rotating wedge are presented.

Simpli�ed General Aviation

A Navion general aviation aircraft was approximated with simpli�ed geometry. The aircraft is mod-

eled with a wing, a horizontal stabilizer, and a vertical stabilizer. Figure 8.12 shows the geometry.

Figure 8.13 shows the surface Mach distribution at α = 0 and β = 0 for 174 ft/s (53 m/s) at SSL.

Mass and sizing information comes from Nelson[55].
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Figure 8.11: Rotating Rate Damping Response
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Figure 8.13: Navion 174 ft/s Mach Distribution
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Figure 8.14: Navion Rudder/Dihedral Response Time History

Rudder/Dihedral Response The dihedral roll moment e�ect can be created with a rudder

input. This case considers the stick-�xed free response for an initial left rudder input of 20 degrees.

Again, the Navion's initial states are a velocity of 174 ft/s, stick-�xed controls, and zero bank, pitch,

and yaw angles. For easier visualization, gravity is removed. Intuition suggests that the nearly

constant yaw angle will cause a roll moment that over time creates a steady roll rate.

Figure 8.14 shows the translational and rotational motions. The de�ected rudder rolls the aircraft

in the expected barrel-roll maneuver in about 8 seconds. Figure 8.15 shows a visual representation

of the aircraft's trajectory. The yaw angle is visible.

Loop This case's objective is to loop the Navion with a constant elevator de�ection. To ensure

su�cient energy to complete the maneuver, the aircraft begins inverted at the top of the loop. Initial

conditions are 174 ft/s and a 20 degree elevator de�ection.

The trajectory for the �rst case with the CG at 30% MAC (Fig. 8.16) shows a successful loop

with the expected tightening at the top and an overall loss of altitude. Aircraft attitudes during the

loop are visually consistent with reality.
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Figure 8.16: Navion Loop

Case 2 considers the same Navion aircraft and initial conditions but with the CG at a vastly

tail-heavy and statically unstable 88% MAC. Figure 8.17 shows the trajectory with a stall/fall-out

coming through the loop's bottom. Visually, the aircraft is pitch unstable.

Spin Spinning aircraft exhibit non-linear behavior. This spin case considers the Navion with 20

degrees up-elevator and 20 degrees left-rudder. Initial conditions are a negative vertical velocity with

an initial yaw rate. Spin entry is not considered. Also, the inviscid Euler solution is likely to attenuate

the separation for this viscous dominated stalled airfoil �ow. Figure 8.18 shows the translational

and rotational motions. From the low, non-increasing forward velocity and the harmonic rotational

motion, the maneuver appears to be a spin and not a spiral motion. Altitude loss is approximately

500 feet per turn �interestingly consistent with reality when considering the inviscid Euler solution.

The spin trajectory (Fig. 8.19) also appears consistent with an actual spin's behavior.
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Figure 8.19: Navion Spin Trajectory
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Figure 8.21: Wedge Trajectory

Wedge Drop

This case simulates a 10% thick wedge, free to translate and rotate, being dropped in air. The

concept is to release the wedge �at from rest. A pair of vortices form o� the sharp wedge edges,

which eventually degenerate into a vortex street with an asymmetrical pressure distribution. The

translational and rotational motions are shown in Figure 8.20. The wedge's CG trajectory is shown

in Figure 8.21 with tick marks at each 1/2 second.

Initially, alternating vortices appear to form causing a tumbling leaf motion. Interestingly, the

wedge transitions to a lift generating Magnus motion with an apparent L/D of near 4. This experi-

ment qualitatively matches the tumbling behavior of thin, light strips.

8.6 Rigid Body Dynamics Summary

A quaternion-based rigid body dynamics solver was successfully applied to an inviscid CFD code.

This gave the laboratory the capability to simulate non-linear �ight dynamics.
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Chapter 9

Conclusions

This chapter discusses this project's conclusions. The objective was to investigate methods and their

e�ciency for simulating coupled �uid-structure interactions and large de�ection vehicle motions.

An arbitrary order Galerkin Navier Stokes CFD solver was constructed and tested. A 1st order

Lagrangian viscous CFD solver was constructed. A rigid body dynamics solver was constructed and

tested. The project's hypothesis as presented in Section 1.4 was

The prediction e�ciency of super maneuvering, deforming and constantly remeshing

three-dimensional unsteady Navier-Stokes computational �uid dynamics is improved by

moving from linear to higher-order simulation methods.

This hypothesis needs quali�cation regarding the subjective term higher-order. The hypothesis is

accepted as

The prediction e�ciency of super maneuvering, deforming and constantly remeshing

unsteady Navier-Stokes computational �uid dynamics is improved by moving from linear

to 2nd and 3rd order simulation methods.

9.1 Conclusions and Recommendations

This section gives speci�c conclusions and recommendations.

• The basic Euler frame equations of motion alone are not su�cient for simulating boundary

motions. A non-inertial frame is su�cient for the speci�c case of rigid body motion. The

Arbitrary Lagrangian Euler frame and the Lagrangian frame are both practical for arbitrary

moving and deforming boundary simulations.

• For rigid body dynamics simulations, quaternion tracked orientation is robust. This project

strongly suggests simulating rigid body dynamics using quaternions rather than Euler angles.

• The Galerkin method is expensive for �nite element based CFD. The rate limiting computation

is the Galerkin force integration. Furthermore, Galerkin methods require global operations,
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making parallelization more di�cult.

• Increasing order reduces the grid element count at the expense of grid sensitivity.

• For unsteady solutions, the total solution time appears to have a minimum at 3rd order.

• Higher order CFD increases the numerical and geometrical complexities. Stabilization and

boundary conditions are especially a�ected. This project recommends developing higher order

stabilization as a prerequisite to a higher order CFD solver.

• There is no maximum-timestep advantage for compressible Lagrangian CFD. The Lagrangian

frame's (and Euler frame's) maximum timestep is also restricted by wave propagation.

9.2 Addressing Cowan's Future Challenges

Previously, Tim Cowan developed the laboratory's current CFD solver, Euler3d[14]. His disserta-

tion's conclusions contained a Future Challenges section to discuss his concerns. Since the present

project is based on Euler3d, Cowan's discussion points must be addressed.

Parallel Processing Not directly addressed. The higher order analysis showed a potential for

order of magnitude e�ciency improvement equivalent to workstation level parallel processing.

The Lagrangian code was speci�cally designed for future parallelization.

Convergence Requirements The context that Cowan discusses convergence requirements is an

implicit solution of a global mass matrix. In general however, solution convergence remains an

open problem. The current solver provides a solution quality calculation to adjust the time

integration routines. A poorly speci�ed solution quality hinders temporal solution convergence.

Time Step Requirements Satis�ed. The current adaptive time step routine allows for changing

the timestep based on solution quality. Capturing variable timescales becomes easier with-

out requiring a priori knowledge. Runge Kutta allows full precision restarts with arbitrary

timesteps.

Grid Generation Partially satis�ed. Higher order elements allows for coarser grids. Fewer re-

quired elements opens the possibility (and honestly, the constraint) of frequent remeshing.

Improved Dissipation Model Unsuccessfully addressed. Cowan's discussion implies Galerkin

residual based dissipation. Yet, dissipation models for numerical solutions are an open topic.

Entropy based dissipation is theoretically optimal. This project had implementation issues

with an entropy governing equation dissipation model.
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Rigid-Body Dynamics Satis�ed. A fully 6 degree of freedom rigid n-body dynamics solver was

implemented[58] in both euler3d and the current solver.

Aerodynamic Modeling Not addressed here. Aerodynamic modeling refers to system identi�ca-

tion of aerodynamic motions and forces. This topic is addressed in O'Neill[57] and Babcock[1].

9.3 Future Work

9.3.1 Grid Generation

Our current grid generation capability absolutely must be improved. While the grid generation tools

are e�ective, they are not maintainable or extendable; the last known maintenance performed on

surface and volume was conversion to double precision in 2003. To the best knowledge of the author,

the technical methodology of surface and volume are excellent and should be revised rather than

rejected.

With the capability to simulate dynamic solutions, the grid generation constitutes a major con-

straint. For viscous boundary layers, triangular and tetrahedral element include too many lateral

degrees of freedom and not enough transverse degrees of freedom (i.e., boundary layers have steep

velocity gradients in only one direction). Future inclusion of di�erent element types could alleviate

this.

9.3.2 ALE grid motion

This project did not formally test the ALE boundary motion component of the governing equations.

Arbitrary boundary motion requires a term only provided by ALE and the Lagrangian frame. The

ALE governing equations requires a speci�ed grid motion. This in turn requires a grid motion

distribution algorithm. Poorly speci�ed algorithms create kinked, needled, or reversed elements. At

this point, the best approach might involve solving a Poisson type equation for grid velocity. The

key will be to smoothly describe surface motions without discontinuities.

9.3.3 Parallel Processing

Parallel processing is just not going away. As CPU frequency has stagnated for physical limitations,

adding multiple CPUs is now an established trend. For example, Fused Multiply Add (FMA) will

be available in consumer level CPUs in 2012. FMA is a fundamental operation for CFD with most

algorithms containing a y = ax + b term. This will allow current vector operations to be more
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e�ciently compiled. Additionally, this could make parallel processing even more critical. The key

likely lies with decoupled algorithms.

9.3.4 Structural Dynamics

As we trend away from static grids, non-linear structural dynamics becomes more critical. The

current elasticity models are typically linearized about a given state. At some point, it becomes easier

to simulate the whole structural system rather than to create a reduced order model, as typically

done through frequencies and mode shapes. This becomes especially noticeable in hypersonic and

thermal systems because the mean shape changes.

9.3.5 Visualization

Dynamic solution capabilities strain the present visualization tools. As our simulations become more

dynamic, we expect solution grids to become more time dependent.

Moving to a visualization library freed us from developing a copy of already existing functionality.

We have the capability now at zero price; the cost is that we develop the translator between our

CFD data formats and the library.

Currently limited to quadratic visualization, VTK plots higher order �elds with subdivision to

linear elements. Our brain has to do the actual curvature interpolation. Repeated half-subdivision

is possible, but it's not implemented in VTK. Even VTK's newest "generic" dataset tools use

subdivision to linear elements; it runs a grid generator to form the subdivided grid.

9.3.6 Iteration Techniques

Investigating the iteration algorithms might yield productive results. Theoretically, Jacobi iterative

solvers prefer preconditioned matrices. Trading iteration speed with preconditioning computations

likely produces a non-trivial optimum. Preconditioner integration with parallel processing presents

an additional constraint. Alternative algorithms might also contain unknown advantages.

9.3.7 Geometry Parametric Description

Surface geometry is currently limited to linear elements. Linear element restrict the use of an

Euler solver without accepting incorrect surface �uxes (See Cowan for more information on the

development of an Euler solver with linear elements). The current surface gridding software surface

already contains the necessary curvature descriptions for nonlinear geometry elements.
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Work on this topic will be simpli�ed because adding variable Jacobian elements will only re-

quire creating and using a function that creates the appropriate Jacobian as coe�cients and then

multiplying this set of coe�cients by the existing integral calculations.

9.3.8 PETSc

PETSc is a library parallelization library. Integrate PETSc into euler3d would allow for paralleliza-

tion. This would allow arbitrary non-shared memory calculations. Dropping the PETSc code into

certain locations could give parallel processing capability with a couple months of work. A paral-

lelization library such as PETSc[2] could provide a signi�cant non-SMP (shared memory) speedup.

It is suggested to use PETSc rather than continuing the OpenMP routine described and tested in

3.7.1. The future of computing is likely non-SMP and NUMA memory architectures. In general,

canned routines for parallelization should be preferred over an in-house attempt.

9.3.9 Time Integration in euler3d code

Implementing the time integration methods described could potentially improve the e�ciency and

performance of the Euler3d series of solvers. Of particular interest is that the euler3d code cur-

rently uses a backwards di�erence time integration routine with a constant timestep. This constant

timestep hinders timely solutions of variable unsteady simulations.
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Appendix A

Nomenclature and Abbreviations

The following is a list of general nomenclature and abbreviations used in this dissertation. Nomen-

clature associated with speci�c sections are de�ned in the appropriate section.

Abbreviations

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

AAW Active Aeroelastic Wing

ALE Arbitrary Lagrangian Eulerian

Ale2D 2D ALE code developed for this dissertation

ASE Aeroservoelastic

CASELab Computational Aeroservoelasticity Laboratory

CFD Computational Fluid Dynamics

CFL Courant�Friedrichs�Lewy

CG Conjugate Gradient

CG Center of Gravity

CPU Central Processing Unit

DG Discontinuous Galerkin

euler2d/euler3d Existing 2D and 3D Eulerian CFD Codes

FE Finite Element
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FMA Fused Multiply Add

GB Gigabytes

JDAM Joint Direct Attack Munition

Lagr2d Lagrangian Frame CFD code developed for this dissertation

L/D Lift to Drag ratio

MAC Mean Aerodynamic Chord

NACA National Advisory Committee for Aeronautics

NASA National Aeronautics and Space Administration

ns2d 2D Viscous Galerkin CFD solver

NUMA Non-Uniform Memory Architecture

ODE Ordinary Di�erential Equation

PDE Partial Di�erential Equation

PC Predictor Corrector

RAM Random Access Memory

RK Runge Kutta

RMS Root Mean Square

RSD Residual

SLSE Semi-Lagrangian Spectral Element

SMP Symmetric Multiprocessing

SSL Standard Sea Level

STARS Structural Analysis Routines

SU/PG Streamwise Upwind / Petrov Galerkin

VTK Visualization Toolkit
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Fluid Nomenclature

α Angle of Attack

β Sideslip Angle

ρ Density

γ Ideal Gas Speci�c Heat Ratio

µ Viscosity

λ Bulk Viscosity

τ Viscous Stress Tensor

Φ Viscous Dissipation Function

()
?
Non-dimensional Variable

()o Non-dimensional Reference

a Acoustic Speed

cp Ideal Gas Constant Pressure Speci�c Heat

cv Ideal Gas Constant Volume Speci�c Heat

CD Coe�cient of Drag

CL Coe�cient of Lift

CP Coe�cient of Pressure

div Divergence

e Total Speci�c Energy

E Total Energy

ê Internal Speci�c Energy

Ê Internal Energy

F Flux

h Speci�c Enthalpy
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H Total Enthalpy

M Mach Number

n Normal Vector

p Pressure

Pr Prandtl Number

q Dynamic Pressure

q Heat Flux Vector

R Ideal Gas Constant

Re Reynolds Number

s Speci�c Entropy

S Entropy

St Strouhal Number

t Time

T Temperature

u Velocity in x direction

v Velocity in y direction

U Velocity Vector

V Velocity Vector

CFD Nomenclature

ζ Barycentric Coordinate

Φ Structural Modeshapes

φ Basis Function

Π Potential Energy

Ω Element Area
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Ξ Local Location

a Solution State Vector

d 1D basis order

F Galerkin Force

h Step Size

K Galerkin Sti�ness

L2 Root Mean Square Error Norm

M Galerkin Mass Matrix

N Number of Elements

R Dimension

P Basis Order

O Order

C0 Continuous Values

C1 Continuous Values and 1st Derivative

J Jacobian Matrix

|J | Jacobian Determinate

b Floor Function
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