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Chapter 1  

Introduction 

Multiscale simulation is a very important tool to reveal material behavior at different 

length and temporal scales through numerical simulations. Despite significant 

developments in materials simulation techniques, the goal of predicting reliably the 

properties and behaviors of new materials has not yet been achieved. This situation exists 

for several reasons that include a lack of full understanding of material behavior at 

different scales, absence of scaling laws, computational limitations, and difficulties 

associated with experimental measurements of material properties at micro and nano 

scales. For example, the information on the mechanical behavior of materials at nano 

level is not presently available as input to nanotechnology for the manufacturing of 

nanocomponents or microelectro-mechanical systems (MEMS). 

Scaling laws governing the mechanical behavior of materials from atomistic (nano), via 

mesoplastic (micro), to continuum (macro) scales are very important to numerous 

applications, such as the development of a new class of aircraft engine materials, or new 

steels for naval battle ships, or new tank armor materials for the army, or numerous 

microelectromechanical components for a myriad of applications. Scaling laws are also 

important for applications where two length scales of different orders of magnitude are 

involved. For example, one is atomistic (nano) and the other mesoplastic (micro) as in 

nanoindentation, or, one is mesoplastic (micro) and the other continuum (macro) as in 
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conventional indentation. Appropriate scaling laws may extend the extensive knowledge 

accumulated over time on material behavior at the macro (or continuum) level to the 

atomistic (or nano) level, via mesoplastic (micro) level. 

This work is focused primarily on developing coupling methodologies for continuum and 

atomistic simulations. At the continuum level, a new simulation method, the generalized 

interpolation material point (GIMP) method (Bardenhagen and Kober (2004)) is used. 

GIMP is developed based on the conventional material point method (MPM) (Sulsky et 

al. (1995)) with improved simulation stability. In order for GIMP to cover several length 

scales, and to couple MD simulations, refinement techniques must be developed.  

The thesis is divided into several chapters. Each chapter includes an introduction specific 

to that topic and a conclusion of findings. Chapter 2 describes the general theory of 

GIMP and multilevel refinement technique at the continuum level based on the 

Structured Adaptive Mesh Refinement Application Infrastructure (SAMRAI) (Hornung 

and Kohn (2002)). Parallel processing is implemented for GIMP based on SAMRAI and 

a contact algorithm is developed for the simulation of nanoindentation problems. 

Chapter 3 presents a structured mesh refinement algorithm for GIMP that is smoother 

than the method in Chapter 2. The new refinement technique is based on structured mesh 

and the refined mesh remains structured. The displacement boundary condition is 

explicitly introduced into the discretization of equation of motion in GIMP. 

Chapter 4 describes an application of the GIMP method for 3D simulations of bulk 

metallic glass (BMG) foams prepared by thermo-plastic expansion. The material points 

are created based on the voxels in X-ray tomography so that the microstructure of the 

foam is reconstructed exactly in GIMP. The simulation results of uniaxial compression 
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are compared with experimental ones. The densification of foam during compression is 

analyzed. 

Chapter 5 presents a coupling algorithm for GIMP and MD simulations. A new method 

to compute the atomic strain from MD simulation was introduced and validated. The 

coupling algorithm enables force, velocity, displacement, and energy compatibility at the 

hand-shaking region of the continuum and atomistic domains. Numerical simulations are 

performed to validate the coupling algorithm. 

The coupling algorithm Chapter 5 is extended to include discrete dislocations in Chapter 

6. The discrete dislocation field is coupled with the continuum field using superposition 

of boundary conditions. The dislocations in the MD simulation can be detected and 

passed into the continuum region and vice versa. 

The summary and future works are presented in Chapter 7. The preliminary results of 

using GIMP to simulate metal cutting is presented in Chapter 7. This problem involves 

issues such as contact, large deformation, material failure, and adaptive mesh refinement. 
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Chapter 2  

Multiscale Simulations Using Generalized Interpolation Material Point (GIMP) 

 Method and SAMRAI Parallel Processing 

In the simulation of a wide range of mechanics problems including 

impact/contact/penetration and fracture, the material point method (MPM) (Sulsky, Zhou 

and Shreyer, (1995)) demonstrated its computational capabilities. To resolve alternating 

stress sign and instability problems associated with conventional MPM, Bardenhagen and 

Kober (2004) introduced recently the generalized interpolation material point (GIMP) 

method and implemented for one-dimensional simulations. In this chapter GIMP has 

been extended to 2D and applied to simulate simple tension and indentation problems. 

For simulations spanning multiple length scales, based on the continuum mechanics 

approach, a parallel GIMP computational method is presented using the Structured 

Adaptive Mesh Refinement Application Infrastructure (SAMRAI). SAMRAI is used for 

multi-processor distributed memory computations, as a platform for domain 

decomposition, and for multi-level refinement of the computational domain. Nested 

computational grid levels (with successive spatial and temporal refinements) are used in 

GIMP simulations to improve the computational accuracy and to reduce the overall 

computational time. The domain of each grid level is divided into multiple rectangular 

patches for parallel processing. This domain decomposition embedded in SAMRAI is 

very flexible when applied to GIMP. As an example to validate the parallel GIMP 
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computing scheme under SAMRAI parallel computing environment, numerical 

simulations with multiple length scales from nanometer to millimeter were conducted on 

a 2D nanoindentation problem. A contact algorithm in GIMP has also been developed for 

the treatment of contact pair between a rigid indenter and a deformable workpiece.  

GIMP results are compared with finite element results on indentation for validation. A 

GIMP nanoindentation problem with five levels of refinement was modeled using multi-

processors to demonstrate the potential capability of the parallel GIMP computation. 

2.1 Introduction 

The material point method (MPM) has demonstrated its capabilities in addressing such 

problems as impact, upsetting, penetration, and contact (e.g. Sulsky, Zhou and Schreyer 

(1995); Sulsky and Schreyer (1996)). In MPM, two descriptions are used - one based on a 

collection of material points (Lagrangian) and the other based on a computational 

background grid (Eulerian), as proposed by Sulsky, Zhou and Schreyer (1995). A fixed 

structured mesh is generally used in the background throughout the MPM simulations. 

The material points are followed throughout the deformation of a solid to provide a 

Lagrangian description and the governing field equations are solved at the background 

grid nodes so that MPM is not subject to mesh entanglement. Compared to the finite 

element method (FEM), MPM takes advantage of both Eulerian and Lagrangian 

descriptions and possesses the capability of handling large deformations in a more natural 

manner so that mesh lock-up problems present in FEM are avoided. Additionally, for 

problems involving contact, MPM provides a naturally non-slip contact algorithm to 

avoid the penetration between two bodies based on a common background mesh (Sulsky, 

Zhou and Schreyer (1995); Sulsky and Schreyer (1996)). One drawback of the 
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conventional MPM is that when the material points move across the cell boundaries 

during deformation, some numerical noise/errors can be generated, Bardenhagen and 

Kober (2004). To solve the instability problems associated with the conventional MPM 

simulations, Bardenhagen and Kober recently proposed the generalized interpolation 

material point method (GIMP) and implemented for one-dimensional simulations.  

The present investigation extends the GIMP presented by Bardenhagen-Kober to two-

dimensional simulations and applies it to simple tension and indentation problems. 

Furthermore, a refinement technique and a parallel processing scheme are developed so 

that the serial GIMP algorithm and code can be extended for parallel computation of 

large scale computations based on the continuum mechanics approach. 

Parallel processing has been used successfully in numerical analysis using different 

methods, such as FEM and boundary element method (BEM) (Mackerle (2003)) and 

molecular dynamics (MD) (Kalia and Nakano (1993)). The computational time on 

parallel processors can be reduced to a small fraction of the time consumed by a single 

processor at the same speed. Parallel processing generally involves issues, such as 

domain decomposition/partitioning, load balancing, parallel solver/algorithms, parallel 

mesh generation, and multi-grid (Mackerle (2003)). Domain decomposition has been 

widely applied in parallel processing in FEM (Hsien (1997)). With partitioning of the 

overall computational domain, sequential FEM algorithm usually cannot be used directly 

in parallel processing without some modification, primarily due to the coupling of a large 

number of simultaneous linear equations. Remeshing is sometimes needed in each sub-

domain. The interfaces of neighboring sub-domains must be meshed identically for 

subsequent communications (Mackerle (2003)). These problems are intrinsic to certain 
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numerical methods, such as FEM; however, they can be totally or partially avoided if 

other appropriate computational methods are used. For example, the domain 

decomposition is more straightforward for structured meshes, and large systems of 

coupled equations can be avoided, if explicit time integration is used.  

Recently a platform for parallel computation, namely, the structured adaptive mesh 

refinement application infrastructure (SAMRAI) (Hornung and Kohn (2002)), has been 

developed by the Center for Applied Scientific Computing at the Lawrence Livermore 

National Laboratory. SAMRAI has provided interfaces for user-defined data types so that 

material points carrying physical variables (mass, displacement, velocity, acceleration, 

stress, strain, etc.) can be readily defined. As a result, SAMRAI is very suitable for 

handling material points and their physical variables in MPM or its variant, GIMP. In this 

investigation SAMRAI is used for parallelizing GIMP. SAMRAI has also provided a 

foundation for parallel adaptive mesh refinement (AMR) with the use of either dynamic 

or static load balancing (Wissink, Hysom and Hornung (2003)). This function allows 

SAMRAI to process both spatial and temporal refinements in areas of interest, typically 

with high gradients in some physical variables (e.g., strains), and to use coarse mesh in 

the remaining areas. With the appropriate use of fine and coarse meshes in different 

regions, multiscale simulations using MPM can provide desired computational accuracy 

with reduced costs associated with computer memory and computational time.  

Material multiscale simulations span from electronic structure, atomistic scale, crystal 

scale, to macro/continuum scale (Horstemeyer, Baskes, Prantil, Philliber and 

Vonderheide (2003); Komanduri, Lu, Roy, Wang and Raff (2004)). Appropriate 

simulation algorithms can be used at various scales, e.g., ab initio computation for 
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electronic structure, molecular dynamics at the atomistic scale, crystal plasticity or 

mesoplasticity at the crystal scale, and continuum mechanics at the macro scale 

(Horstemeyer, Baskes, Prantil, Philliber and Vonderheide (2003)). At the continuum 

scale, FEM is generally used. Recently, the meshless local Petrov-Galerkin (MLPG) 

method (Shen and Atluri (2004a, 2005)) and the continuum/lattice Green function 

method (Tewary and Read (2004)) have been used to couple with molecular dynamics 

seamlessly. The MLPG method is a simple, less-costly alternative approach to FEM 

(Atluri and Shen (2002)). For the purposes of providing the insights into the discrete 

atomistic system and coupling with continuum, an equivalent continuum was defined in 

the MD region to compute the atomic stress based on the Smoothed Particle 

Hydrodynamics (SPH) method (Shen and Atluri (2004b)). The atomic stress tensor 

computed using the SPH method is more natural than other atomic stress formulations 

because it is in the nonvolume-averaged form and rigorously satisfies the conservation of 

linear momentum. Hence, it is applicable to both homogeneous and inhomogeneous 

deformations. A tangent stiffness formulation was developed for both MLPG and MD 

regions and the displacements of the nodes and atoms are solved in one coupled set of 

linear equations. The MLPG/MD coupling has been demonstrated to be capable of 

enforcing the local balance equations in the handshaking region between continuum 

mechanics and molecular dynamics (Shen and Atluri (2005)).  

The simulation using parallel GIMP computing scheme in this investigation will focus on 

multiscales, e.g., from nanometer to millimeter, based on the continuum mechanics 

approach, namely, 2D GIMP. An example used for validating the simulation at several 

length scales at the continuum level is nanoindentation. It involves the contact issue 



 9

between a rigid indenter and a deformable workpiece. A contact algorithm, which allows 

the contact interface to be located in a few computational domains, is introduced in this 

study. The contact pressure is determined from solving a set of equations from multiple 

processors. Parallel GIMP results on nanoindentation are compared with FEM results 

using the ABAQUS/Explicit code. A nanoindentation model with five levels will be used; 

this model allows simulation from nanometer to millimeter scales.  

2.2 Generalized Interpolation Material Point (GIMP) Method  

The governing equations in both conventional material point method (MPM) (Sulsky, 

Zhou and Sheryer (1995); Hu and Chen (2003); Bardenhagen (2002)) and generalized 

interpolation material point (GIMP) method (Bardenhagen and Kober (2004)) are briefly 

summarized in this section. The weak form of the momentum conservation equation in 

the conventional MPM is given by 

Ω⋅+⋅+Ω∇−=Ω⋅ ∫∫∫∫ ΩΩ∂ΩΩ
ddSdd sbwwcwsaw ss ρρρρ : ,   (2-1) 

where w is the test function, a is the acceleration, and ss, cs and b are the specific stress, 

specific traction, and specific body force, respectively. Ω is the current configuration and 

∂Ω is the surface with applied traction. The material density, ρ, can be approximated as 

the sum of material point masses using a Dirac delta function ∑
=

−=
pN

p

t
pMt

1
)(),( xxx δρ , 

where Np is the total number of material points and Mp is the mass of the material point. 

Upon discretization of Eq. (2-1) using the shape functions )( t
piN x , the governing 

equations at the background grid nodes become (see Sulsky, Zhou and Schreyer (1995)) 
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where the lumped mass matrix is given by 

∑
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where h is the thickness of a boundary layer. At each time step, all variables for each 

material point, such as mass, velocity, and force are extrapolated to the grid nodes of the 

cell in which the material point resides. New nodal momenta are computed and used to 

update the physical variables carried by the material points. Thus, material points move 

relative to each other to represent deformation in a solid. A spatially fixed background 

grid is used throughout the MPM computation. MPM has already demonstrated its 

capabilities in solving a number of problems involving impact/contact/penetration. In 

case of large deformation, however, numerical noise, or errors have been observed, 

especially when material points have just crossed cell boundaries resulting in instability 

problems in the MPM simulations (see, e.g., Sulsky, Zhou and Schreyer (1995); Hu and 

Chen (2003); Bardenhagen and Kober (2004)). The primary cause for the problem has 

been attributed to the discontinuity of the gradient of the shape functions across the cell 

boundaries (see, e.g., Hu and Chen (2003); Bardenhagen and Kober (2004)). To resolve 

this problem, Bardenhagen and Kober (2004) proposed a generalized interpolation 

material point (GIMP) method. In GIMP, the interpolation between node i and material 
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point p is given by the volume averaged weighting function 

∫
Ω∩Ω

=
p

dS
V

S ip
p

ip xxx )()(1 χ ,       (2-6) 

where Vp is the current volume of the material point, )(xpχ  is the characteristic function 

of the material point, and Si(x) is the node shape function. The role of the weighting 

function is the same as the shape function in conventional MPM. The modified equation 

of momentum conservation (Bardenhagen and Kober (2004)) can be written as  
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where vδ  is an admissible velocity field, pp&  is the rate of change of the material point 

momentum. Eq. (2-7) can be further discretized and solved at the grid nodes, 

Bardenhagen and Kober (2004). Herein, the weighting function ipS  is C1 continuous 

under the spatially fixed background grid. Consequently the noises associated with 

material point crossing cell boundaries in the conventional MPM can be minimized.  

In this chapter, the GIMP presented by Bardenhagen-Kober is implemented for two-

dimensional simulations. a refinement technique and a parallel processing scheme to 

extend the serial GIMP algorithm to code large scale parallel computing have been 

developed. The capability of parallel GIMP computing has been demonstrated by 

modeling nanoindentation problem. A contact algorithm has been developed to address 

the contact problem between the rigid indenter and the deformable workpiece. Next, the 

contact algorithm developed in this investigation is described. 
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2.2.1 Contact algorithm in GIMP  

Nanoindentation involves a contact pair of a rigid indenter and a deformable workpiece. 

The contact interaction between these two surfaces is governed by the Newton’s third law 

and Coulomb’s friction law as well as the boundary compatibility condition at the contact 

interface (Oden and Pires (1983); Zhong (1993)). While MPM can prevent the 

penetration at the interface automatically, it uses a single mesh for the two bodies. At the 

contact surface, all components of the variables are interpolated to the nodes from both 

bodies using Eqs. (2-3)-(2-5). As a result, MPM using a single mesh tends to induce early 

contact in approaching and late separation when two parts move away from each other. 

So, MPM cannot model the contact behavior between two parts correctly. Hu and Chen 

(2003) proposed a multi-mesh MPM algorithm to release the no-slip constraint inherent 

in the MPM using a single mesh. In the multi-mesh MPM, in addition to a common mesh 

for all objects, there is an individual mesh for each of the objects under consideration. All 

meshes are identical, i.e. nodal locations are the same. The multi-mesh can be generated 

by creating multiple nodal fields for each node. Each nodal field corresponds to an object. 

In multi-mesh MPM scheme, the nodal masses and forces are mapped from the material 

points of each object to its own mesh. The nodal values are transferred to the 

corresponding nodes in the common mesh. When the values at a node of the common 

background mesh involve contributions from two parts, the contact between two parts 

occurs so that this node is defined as an overlapped node. Otherwise, two parts move 

independently. This multi-mesh algorithm can handle sliding and separation for the 

contact pair. However, in using the multi-mesh for contact problem in GIMP, the 

interaction at the overlapped nodes is still activated too early before the actual contact of 
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the material points occurs.  

Fig. 2-1 is an example illustrating early contact when Part 1 is moving toward Part 2. The 

four bottom particles of Part 1, labeled in hollow circles, have come into the cells of Part 

2, the nodes of which cells are labeled in three dashed circles. Physical variables (e.g., 

normal force, and velocity component normal to the contact surface) in Part 1 will be 

interpolated onto these three overlapped nodes. The physical variables in the three 

overlapped nodes will be further interpolated into material points within the top layer of 

cells in Part 2, and contribute to the stress and deformation in the entire Part 2. With this 

treatment in the previous multi-mesh algorithm, even though Parts 1 and 2 are not in 

physical contact, the particles in Part 2 will contribute to the physical variables of 

particles in Part 1, leading to numerical early contact, and vice versa, through the 

overlapped nodes. Similar situation occurs when Part 1 is retracting from Part 2, resulting 

in late separation of two parts. Unless other measures are taken to prevent these 

physically incorrect early contact and late separation problems, they could cause large 

errors in GIMP and must be corrected in contact problems. 

 

Fig. 2-1: Illustration of early contact in multi-mesh 

In this chapter, a new contact algorithm is developed for GIMP simulations. Fig. 2-2 

illustrates the contact algorithm for the contact pair between a rigid indenter and a 

Part 1

Part 2 

Overlapped 
nodes 
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deformable workpiece. Although circular points are used in this schematic diagram, it 

should be noted that the points are representations of areas occupied by these points, 

based on the GIMP algorithm. A frictionless contact is assumed in this investigation.  At 

the beginning of a time step, a material point is located at point A. At the end of this time 

step, the material point moves to B, if there is no contact interaction.  

 

Fig. 2-2: Schematic of contact algorithm between the rigid indenter  
and the deformable workpiece 

To satisfy the displacement compatibility condition, the material point has to be brought 

to the indenter surface and kept in contact with the indenter. The contact velocity 

correction  c
pV  can be determined based on the rigid surface orientation indicated by its 

unit outward normal vector n. The final location of the material point is set to C by a 

contact pressure. Hence, the velocity of a material point p under contact can be 

determined by  
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where N is the number of nodes contributing to material point p, c
iF  is the contact force 

on node i, 0
ip  and 0

iF  are the nodal momentum and force without consideration of the 
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contact, respectively. The velocity 0
pV  of the material point without the consideration of 

contact is given by 

∑ Δ+
=

N

i
ip

i

ii
p S

m
t00

0 FpV
.         (2-9) 

The contact force c
iF  on node i is the resultant of the contact pressures on the neighboring 

particles, and can be computed in terms of contact pressures using the approach given by 

Bardenhagen and Kober (2004), i.e., 

∑ ∫
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)( PxF ,         (2-10) 

where Q is the total number of material points in contact with the indenter. If the contact 

pressure c
qP  is assumed to be constant in the contact area occupied by material point q, 

then, ∑
=
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Eq. (2-11) can be established for each material point in contact. At each material point 

there is an unknown contact pressure c
qP . Therefore, the number of unknown pressures, 

c
qP , is equal to the number of points in contact. In parallel computing, points in contact 

might be located in different domains processed by different processors. Consequently, a 

parallel solver is needed to solve Eq. (2-11) in this investigation. Since contact can only 

occur on the outer surface of an object, Eq. (2-11) is solved analytically under the 

physical contact condition 0<⋅nPc
q  to find the contact pressure at all material points in 
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contact with the indenter. The contact pressure is then extrapolated to the nodes from the 

contact material points to update the total nodal forces.  

2.2.2 Numerical implementation 

 

Fig. 2-3: Material points in cells and the weighting function in 2D GIMP 

Considering the case where initially there are four material points in a cell, the 2D 

weighting function is depicted in Fig. 2-3. To compute the weighting function, )(p xχ  is 

one in the current region occupied by the material point p and zero elsewhere. In this 

figure, one node is at the origin and the horizontal axes give material point positions 

normalized by the cell size. Fig. 2-3 is based on the same material point characteristic 

function and node shape function as in Bardenhagen and Kober (2004). It is noted that 

the computation of the weighting function in the deformed state involves some practical 

difficulties because the integration boundaries in Eq. (2-7) can be difficult to obtain. To 

circumvent this problem, it is assumed that the shape of the region occupied by the four 

material points remains rectangular without rotation, so that Eq. (2-6) can be evaluated 

analytically. This assumption leads to significant saving in the computational time while 

introducing only small errors. Using this assumption, GIMP is extended to 2D 

simulations and the results are presented in Section 4.  
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2.3 Parallel Computing Scheme Using GIMP with SAMRAI 

2.3.1 SAMRAI 

The Structured Adaptive Mesh Refinement Application Infrastructure (SAMRAI), a 

scientific computational package for structured adaptive mesh refinement and parallel 

computation, is used with the GIMP for parallel computation of large-scale simulations. 

SAMRAI is chosen because of its similarity in grid structure with GIMP. In GIMP, the 

computation is usually independent of the background grid mesh so that a structured 

spatially-fixed mesh can be used throughout the entire simulation process. This advantage 

makes GIMP highly suitable for parallel computation, as the domain decomposition for 

structured mesh can be easily performed and no remeshing is required. Thus the 

complexity and inefficiency associated with parallel processing can be avoided. 

In SAMRAI, the computational domain is defined as a hierarchy of nested grid levels of 

mesh refinement (Berger and Oliger (1984)) as shown in Fig. 2-4. Each grid level is 

divided into non-overlapping, logically-rectangular patches, each of which is a cluster of 

computational cells. Indices are used extensively in SAMRAI to manage grid levels and 

patches. For example, patch connectivity is managed by the cell indices. The organization 

of the computational mesh into a hierarchy of levels of patches allows data 

communication and computation to be expressed in geometrically-intuitive box calculus 

operations. Communication patterns for data dependencies among patches can be 

computed in parallel without inter-processor communications, since the mesh 

configuration is replicated readily across processor memories. Inter-processor 

communications, i.e., data communications between patches on the same as well as 

neighboring levels, are pre-defined by SAMRAI communication schedules. Problem-
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specific communication interfaces are also provided by SAMRAI. 

SAMRAI supports several data types defined in a patch, such as cell-centered data, node-

centered data, and face-centered data. These data are stored as arrays to allow numerical 

subroutines to be separated easily from the implementation of mesh data structures. User-

defined data structures over a patch, which can be accessed through cell index, are 

supported by SAMRAI. These characteristics make SAMRAI a very flexible parallel 

computing environment for numerous physics applications (Wissink, Hysom, and 

Hornung (2003)). 

 

Fig. 2-4: Illustration of a hierarchy of three nested grid levels of mesh refinement 

2.3.2 Spatial and temporal refinements 

In the application of SAMRAI to large-scale GIMP simulations, the techniques for 

refinement, both spatial and temporal, have to be developed to achieve high accuracy in 

areas of high stress/strain gradients while reducing the overall computational time by 

using coarse mesh in regions of low stress/strain gradients. Since a structured mesh is 

used in GIMP, the refinement can be implemented by imposing fine levels of sub-grids at 

locations of interest, using the approach adopted by Berger and Oliger (1984) in 

SAMRAI. The scheme for the structured grid refinement is illustrated in Fig. 2-4. The 
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cell size ratio, also called the refinement ratio, of two neighboring levels is always an 

integer for convenience. The advantage of this refinement technique is that nesting 

relationships between different levels can be handled. A material point in GIMP can be 

split into several small material points. Tan and Nairn (2004) proposed a criterion to split 

material points based on local deformation gradient. If the refinement ratio is two in each 

direction, one coarse material point can be split into four material points in the next fine 

level in 2D case. However, this splitting technique can become complicated when 

conservation of energy and momentum have to be enforced. In this chapter, a more 

natural refinement approach is developed to avoid direct splitting and merging processes 

by using material points of the same size and mass in overlapped region (called ghost 

region) between two neighboring levels.  

Fig. 2-5 shows two neighboring coarse and fine grid levels in 2D GIMP computations 

with a refinement ratio of two. The thick line represents the physical boundary of the fine 

level with four layers of ghost cells. Initially, four material points are assigned to each 

cell at the fine level. At the coarse level, the portion overlapped by the fine level is 

assigned with 16 material points per cell. Hence, these material points have the same size 

and initial positions as those at the fine level. The rest of the coarse level is assigned with 

four material points per cell. GIMP provides a natural coupling of the material points 

with different sizes at the same grid level. This is because the weighting function depends 

on the characteristic size of the material points and cell length and the interpolation 

between the nodes and material points is weighed by the mass of the material point. In 

GIMP computation, each level is computed independently with the physical variables 

communicated through the ghost regions between neighboring levels. Two data exchange 
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processes, namely, refinement and coarsening are used in the communication. 

Refinement process passes information from the coarse level to the immediate fine level, 

while coarsening process will pass information from fine level to the next coarse level. In 

the refinement process, physical variables at the fine material points inside the thick lines 

in Fig. 2-5 are copied directly to replace the material points at the coarse level. In the 

coarsening process, the physical variables at coarse material points are copied to the 

ghost cells of the immediate fine level.   

In the refinement, the material points located in the ghost cells at the fine level are 

eliminated first, and the material points in the corresponding region of the coarse level 

(with the same size as points in the immediate fine level) are copied to ghost cells at the 

fine level. In the copying process, if some (small) material points in the coarse level fall 

into the interior (inside the square on the right of Fig. 2-5) of the immediate fine level, 

these points will not be copied to this fine level, as points in the fine level will be able to 

carry over all computations in the interior of the fine level already. In coarsening, the 

material points of the coarse level located in the region overlapped by the fine level 

(inside the square on the left of Fig. 2-5) are eliminated first, and the material points in 

the fine level are then copied to the immediate coarse level. With these 

refinement/coarsening operations, the material points can move around freely, including 

moving outside the original level in large deformations. To ensure that this coarsening 

process can still be performed reliably during deformation, sufficiently wide region of 

cells should be assigned with refined material points at the coarse level so that the ghost 

cells of the fine level always stay within the region with fine material points on the coarse 

level. At the coarse level, the interior cells covered by the fine level do not participate in 
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the computation and there are no material points inside (see Fig. 2-5). 

 

Fig. 2-5: Two neighboring coarse and fine grid levels in 2D GIMP computations 

  

Fig. 2-6: Nested multi-level refinement and reduction in the number of cells  
with number of levels 

The refinement techniques can be applied for multiple times at the regions of interest, 

such as the stress concentration regions. A fixed refinement ratio of two between two 

neighboring levels is very effective in reducing the total number of computational cells. 

Fig. 5 shows nested multi-level refinement and its corresponding relation between the 

total number of cells and the number of grid levels. The cell percentage represents the 

ratio of the total number of cells with multi-level refinement mesh to the total number of 

cells with one-level finest mesh. If each fine level occupies one quarter of the 

neighboring coarser level, as shown in Fig. 2-6 (a), the cell percentage as a function of 
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the number of grid levels can be calculated, as shown in Fig. 2-6 (b). For example, when 

totally four levels of successive refinements are used the total number of cells is about 

8% of that of one uniform fine mesh. A reduction in the number of computational cells 

leads to a reduction in the number of material points. Hence, the total amount of 

computational time can be reduced significantly. However, refinement and coarsening 

communications will cost additional computational time, as will be discussed in Section 4.  

Another advantage of the multi-level refinement is that it allows for temporal refinement. 

Since the computation at each grid level is conducted independently, different time step 

increments can be used for computation at different levels. For example, a smaller time 

step increment can be used for the fine level to improve computational accuracy, while a 

larger time step increment can be used for the coarse level. Since the refinement ratio is 

an integer, the time step increment ratio should also be an integer for convenience in the 

computation and data communication/synchronization. For example, in Fig. 2-5, when 

the refinement ratios in both directions are fixed at two, the time step increment ratio 

should be set to two as well. As a result, two time step computations are performed at the 

fine level, and results are passed over to the immediate coarse level to couple with the 

results at the coarse level.  

2.3.3 Domain decomposition 

GIMP uses structured mesh, consistent with SAMRAI, so that domain decomposition is 

straightforward and no remeshing, in general, is necessary. Fig. 2-7 (a) shows a two-

dimensional computational domain decomposed into two patches separated by a 

horizontal dash line. The elliptical solid object with different boundary conditions applied 

at different regions is inside this domain/grid. After discretization, there are a certain 
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number of material points and part of the boundary in a patch, which will be computed 

individually. It may be noted that patch boundary does not have to coincide with the 

boundary of the material continuum. The patch boundary is always chosen to be larger 

than the region occupied by the material continuum so that there is extra space for the 

material to deform. This will not cause any additional computational burden as the GIMP 

computation is only carried out on material points inside the patch. Each patch can be 

processed by a single processor and the convenience in creating patches will provide 

great flexibility in parallel processing. 

 

Fig. 2-7: A computational domain of two patches in one grid level 

Communication between two neighboring patches is realized through information sharing 

in the region overlapped by the two patches. The overlapped regions are also called 

“ghost” regions, as shown in Fig. 2-7  (b). The ghost cells are denoted by dash lines. For 

ease of visualization, only the ghost cells overlapped by the other patch are shown and 

the ghost cells along the other three sides of a patch are not shown. On one grid level, 

patches can communicate with each other by simply copying data from one patch to 

another at the same computation time (Fig. 2-7 (b)). Using the material point information 

from the previous time step, and the physical boundary conditions, each patch is ready to 

advance one more time step. At this time, the material point information in the outermost 
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layer of the ghost cells becomes inaccurate. For instance, one outermost grid node in 

patch one, marked by the circle, obtains information from eight material points before 

advancing to the next step. After advancing, it extrapolates to eight material points. 

However, in patch two, the grid node at the same location obtains information from 

sixteen surrounding material points. It extrapolates to these sixteen material points after 

advancing. Typically, after each step, the material points in the next inner layer in the 

ghost region become inaccurate as well. 

Ghost cells and material points are attached to each patch to ensure accuracy of the 

interior. Each patch can be computed independently for one GIMP step since the 

momentum conservation equation is solved at each node and there are no coupled 

equations to solve. No data exchange is necessary during the GIMP step. Therefore, 

different patches can be assigned to different processors for parallel processing. After one 

GIMP step, the data in the ghost cells will be updated.  

 

Fig. 2-8: Flowchart showing advancement of grid levels recursively starting from the 
coarsest to the finest level in GIMP 
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Copying material points to ghost cells involves data exchange between processors, which 

costs additional time. The more the number layers of ghost cells, the longer the time 

needed for communication, but communication can be performed less frequently. A 

minimum of two layers of ghost cells are necessary to ensure that computation at the 

material points inside a patch is always correct. If three levels of ghost cells are chosen, 

the communication can be performed after every two increments of each patch. 

With these refinements and domain decomposition schemes for GIMP, it is possible to 

implement GIMP into the SAMRAI platform. In this study, the refinement ratio is chosen 

as two. Four layers of ghost cells are augmented to a patch such that data 

communications, including both data exchange on the same level and between 

neighboring levels, are performed every two time-steps for each fine grid level. This is 

critical because data exchange between levels has to be performed when the two levels 

are synchronized. Fig. 2-8 shows the flowchart advancing all grid levels recursively 

starting from the coarsest level for one coarsest time step. It may be noted that the 

sequential GIMP algorithm can be used to advance each patch without modification. 

2.4 Numerical Examples and Results 

A Beowulf Linux cluster of 8 identical PCs were used in the simulations. Each PC has a 

Pentium 4 processor with a 2.4 GHz CPU, 512 MB RAM except that the master node has 

a memory of 1 GB. A gigabit switch is used to connect the network. 

Two examples are used for validation of the 2D parallel GIMP computing under 

SAMRAI platform. The first example is simple tension of polycrystalline silicon under 

plane strain conditions. The material is assumed to be homogeneous, isotropic, and linear 

elastic. The Young’s modulus is 170 GPa and the Poisson’s ratio is 0.18. One end is 
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constrained along the X- direction while a normal traction is ramped up on the other end. 

The size of the tensile model is 0.06 mm × 0.04 mm. The length of a square grid cell is 

0.002 mm and the time step is 5×104 ps. For verification, the same problem was 

simulated using both conventional MPM and FEM (ABAQUS/Explicit).  Fig. 2-9 shows 

GIMP, MPM and FEM simulation results of normal stresses in the X-direction at 

different increments from a simple tension problem. The simulation using the 

conventional MPM in Fig. 2-9 (a) shows material separation close to the free end with 

severe numerical instability after 275 increments. Fig. 2-9 (b) and (c) show the normal 

stress distribution in the tensile direction and deformation after 500 increments from 

FEM and GIMP. It may be noted that FEM results show a stress contour plot on the 

deformed mesh while the GIMP results show a discrete scattered plot of material points. 

These two results are in good agreement with the difference in the maximum value being 

less than 10%. 

 

Fig. 2-9: Simulation results of tensile stress contours for a simple tension problem 

(c) FEM 

(a) Conventional MPM (b) GIMP 
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Fig. 2-10: Loading conditions for a simple indentation problem 
In the second example, indentation on the same silicon material is simulated. The 

workpiece is subjected to a pressure applied in the middle of the top surface (Fig. 2-10 (a)) 

under plain strain conditions with a thickness of 0.001 mm for computing the mass and 

forces. The magnitude of the pressure increases linearly with time for the first 1500 

increments, and is then kept constant (see Fig. 2-10 (b)). The cell size is 0.001 mm in 

both directions and the time step is 20 ps for both FEM and GIMP simulations. Due to 

symmetry, only one half of the workpiece is modeled. This simulation is performed with 

two patches in one uniform grid level. Two processors are used and one patch is assigned 

to each processor.  

Fig. 2-11 shows GIMP and FEM results of normal stresses in the Y-direction at different 

increments. The dashed line in Fig. 2-11 (a) is the boundary between the two patches. Fig. 

2-11  (a) and (b) are plots of normal stresses in Y-direction at 500 time increments for 

GIMP and FEM simulations. The difference in stress values in Fig. 2-11 (a) and (b) is 

less than 5%. It should be noted that the FEM simulation aborted at 1348 increments due 

to excessive element distortion. The GIMP simulation did not encounter this problem. Fig. 

2-11 (c) shows the GIMP stress result after 2000 increments. This demonstrates the 

capability of GIMP in handling excessive distortions. 
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 Fig. 2-11: GIMP and FEM results of normal stress variation in the Y-direction at 

different increments 

In order to validate the multi-level refinement algorithm and parallel communication, as 

well as the proposed contact algorithm, a simulation of nanoindentation with a wedge 

indenter was conducted under 2D plane strain conditions. The workpiece is aluminum 

and the indenter is assumed to be rigid. Fig. 11 shows the indentation model. The area 

below the indenter where high stress gradients are expected is refined, as shown in Fig. 

2-12 (a). A prescribed velocity was applied on the indenter, as shown in Fig. 2-12 (b). 

(c) GIMP at 2000 increments

(a) GIMP at 500 increments (b) FEM at 500 increments 
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The work piece dimensions are 60 µm × 40 µm. It is fixed in the Y-direction at the 

bottom. Only half of the model is simulated because of symmetry. The cell sizes are 500 

nm, 250 nm and 125 nm for levels 1, 2 and 3, respectively. Each level is divided into four 

patches with approximately the same size. The maximum indentation depth in the 

simulation is about 450 nm.  The dotted lines in Fig. 2-12 (a) illustrate the four patches in 

level 1. For comparison, an explicit FEM simulation (using ABAQUS/Explicit) was 

carried out under the same conditions. The FEM element size is uniform and is the same 

size as the finest GIMP background grid size. In this example, the maximum indentation 

depth (450 nm) is relatively small compared to the finest cell size, so that FEM 

simulation has not encountered excessive mesh distortion.  

 

Fig. 2-12: Schematic of 2D indentation showing (a) three levels of refinement and (b) the 
indenter velocity history 

Fig. 2-13 shows a comparison of contours of normal stresses in the Y-direction at the 

maximum depth for both FEM and parallel GIMP simulations. The axis of symmetry of 

the workpiece is located at X = 0.03 mm. For FEM, the plot is the contour of nodal 

stresses with deformed positions, and for GIMP, it is a discrete scattered plot of stress at 

deformed material points. The area below the indenter with high stress gradients is 

refined as shown in Fig. 2-12 (a) for parallel GIMP computation. The borders of grid 

levels 2 and 3 can barely be seen in Fig. 2-13 (b) due to the use of high material point 
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density.  Fig. 2-14 is a close-up view of shear stresses in which the three grid levels are 

shown. Results show that the normal and shear stresses from both parallel GIMP and 

FEM simulations agree very well. The difference of the normal stresses in the Y-direction 

for the material point in contact with the indenter tip and the stress of the FEM node at 

the same location is 4.4%. It may be noted that some non-smoothness in the GIMP 

stresses around the level boarders can be seen. This non-smoothness is caused by the 

refinement and coarsening and the error associated with this is negligible for these 

simulations.  

 

Fig. 2-13: Comparison of normal stresses in Y-direction from FEM and GIMP 

GIMP simulations using a uniform cell size of 500 nm and 125 nm were performed under 

the same conditions as in Fig. 2-12 to further verify the refinement/coarsening algorithm. 

Fig. 2-15 shows normal stresses in the Y-direction and shear stresses in GIMP 

simulations using 500 nm uniform cells. In this case the material points in contact with 

the indenter are 16 times (4 times in each direction) larger than those with two levels of 

refinements. In general, the stress magnitudes agree with those in Fig. 2-13 and Fig. 2-14.  

Fig. 2-16 (a) shows indentation load versus depth curves from FEM and GIMP with 

(b) GIMP (a) FEM
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different grid sizes. From GIMP computations, the load versus depth curves with three 

levels of refinement agree very well with the results from a uniform finest mesh. The load 

versus depth curve from the FEM simulation with a uniform cell size of 125 nm under the 

same boundary conditions is plotted for comparison. It can be seen from Fig. 2-16 (a) that 

the trend of the load versus depth plots from FEM and GIMP simulations are similar.   

The difference in indentation load at the end of loading, which corresponds to 450 nm of 

indentation depth, is 5.9% between FEM and GIMP with 3 grid levels. When the depth is 

less than 100 nm, there is only one material point in contact with the rigid indenter. The 

assumption of constant pressure causes large differences under this circumstance. 

However, if the GIMP cell size is further refined to 62.5 nm and the size of the material 

point is 31.25 nm, the difference between GIMP and FEM becomes smaller, as can be 

seen in Fig. 2-16 (b).  

 

Fig. 2-14: Comparison of shear stresses from FEM and GIMP 

Other simulations were conducted for the same problem with three levels of refinement 

using different number of processors to test the efficiency of parallel computing. The 

number of patches at each level is the same as the number of processors and the size of 

(b) GIMP (a) FEM 
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each patch is approximately the same. The resultant stress distribution and indentation 

load versus depth plots are the same as the previous results. The average time per 

computational step is 7.14 s when one processor is used and is reduced to 4.26, 3.40, 2.18 

s, respectively when two, three, and four processors are used. When four processors are 

used, the CPU time per step is only 30.5% of that of one processor. This gives a speed-up 

by a factor of 3.28. In the ideal case without communication overhead, the speed-up 

would be 4. The reduction in speed-up from the ideal number is because of the time 

involved in data communication between processors. It has been observed that the 

refinement and coarsening algorithm consume most of the communication time. 

Moreover, in refinement and coarsening, most of the time is taken to search for the 

corresponding material point in another grid level. This portion of the computational time 

can be reduced, if improved searching algorithm or more optimized algorithm for the 

storage of material points can be implemented. 

 

Fig. 2-15: Normal and shear stresses of GIMP simulations 
 with a uniform cell size of 500 nm 

The manual refinement for the indentation problem is adequate since the region of high 

(b) Shear Stress (a) Normal Stress
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stress gradient is known to occur below the indenter. The finest level covers the indenter 

and part of the specimen. With the same initial condition, the results at the finest level is 

identical to the results in the same area if a uniform fine mesh is used for the entire 

domain that requires much longer computational time. The computational load of each 

processor is balanced statically by assigning approximately the same number of material 

points to each processor. Dynamic load balance is supported by SAMRAI and can 

potentially improve the efficiency of the simulation. 

 

Fig. 2-16: Indentation load versus depth curves from FEM and GIMP  
with different grid sizes 

To demonstrate the capability of the algorithm developed in this investigation for 

multiscale simulation, an indentation model with multiple length scales is simulated with 

eight processors. The dimensions of the workpiece are 0.25 mm × 0.125 mm. Initially, 

the velocity of the indenter increases from 0 to 150 m/s linearly with time and is then 

kept constant. Five successive levels of refinement are used in this simulation. The 

smallest material point represents an area of 64 nm × 64 nm, and the largest material 

point covers an area of 1 μm × 1 μm. Each level is divided into 8 equal-sized patches for 

best load balance. Since the contact surface can evolve into several patches, a parallel 
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solver is implemented to solve Eq. (2-11) to find the contact pressure based on the 

Portable, Extensible Toolkit for Scientific Computation (PETSc).  An   aluminum   

workpiece   is   chosen   with   the Young’s modulus and Poisson’s ratio of 70 GPa and 

0.33, respectively. The maximum indentation depth was 9.8 μm in this simulation (i.e., 

153 times the size of the finest material point). It took nine hours to simulate this problem 

with eight processors. Fig. 2-17 (a) gives the normal stress distributions and Fig. 2-17 (b) 

shows normal stress distribution for the finest two levels. The relative large deformation 

in this multiscale nanoindentation problem could not be handled by FEM due to 

excessive distortion in the FEM mesh. However, the parallel GIMP code was able to 

complete the entire loading/unloading processes without any difficulty. This example 

shows clearly the advantage of GIMP for multiscale simulations over FEM. 

 

Fig. 2-17: Multiscale simulation of nanoindentation with five levels of refinement 

2.5 Conclusions 

The following are specific conclusions based on the results of this investigation: 

A 2D generalized interpolation material point (GIMP) method has been implemented to 

address problems, such as particle flying-off and alternating stress sign associated with 

(a) (b) 
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conventional MPM in case of relatively large deformation.  

To conduct multiple length scale simulations, a parallel computing scheme has been 

presented using GIMP under SAMRAI parallel computing environment in which multi-

level grids are used for spatial and temporal refinements.  

A refinement/coarsening algorithm, based on material points of GIMP in two grid levels, 

has been developed for communication between neighboring grid levels of different 

refinements. With increase in the refinement levels, as well as decrease in the time step 

increments, the computational accuracy is greatly improved in the region of interest while 

the overall computational time is reduced. The computation at each grid level is 

performed recursively to ensure that the refinement and coarsening are performed when 

the two neighboring levels are synchronized.  

2D MPM and GIMP were applied to simple tension and indentation problems to validate 

the GIMP algorithm. GIMP results agree very well with FEM results for these two 

examples provided that the deformations are small. The noise and instability problems 

present in conventional MPM are not observed in the GIMP simulations.  

As the deformation is increased, GIMP continued to execute while FEM aborted due to 

element distortion. Also GIMP results are stable. Thus GIMP is able to handle relatively 

large deformation problems.  

For the nanoindentation problem, a GIMP algorithm for the contact between a rigid 

indenter and a deformable workpiece was developed. A reasonably good agreement 

between GIMP and FEM results was reached, validating the contact algorithm presented 

in this investigation.  

Another nanoindentation example with multiple length scales from a few nanometers to 
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sub-millimeters was simulated and numerical results validated the parallel GIMP 

computing with the use of SAMRAI.  
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Chapter 3  

Structured Mesh Refinement in GIMP Method for Simulation of Dynamic Problems 

The generalized interpolation material point (GIMP) method, recently developed using a 

C1 continuous weighting function, has solved the numerical noise problem associated 

with material points just crossing the cell borders, so that it is suitable for simulation of 

relatively large deformation problems. However, this method typically uses a uniform 

mesh in computation when one level of material points is used, thus limiting its 

effectiveness in dealing with structures involving areas of high stress gradients. In this 

chapter, a spatial refinement scheme of the structured grid for GIMP is presented for 

simulations with highly localized stress gradients. A uniform structured background grid 

is used in each refinement zone for interpolation in GIMP for ease of generating and 

duplicating structured grid in parallel processing.  

The concept of influence zone for the background node and transitional node is 

introduced for the mesh size transition. The grid shape function for the transitional node 

is modified accordingly, whereas the computation of the weighting function in GIMP 

remains the same. Two other issues are also addressed to improve the GIMP method. The 

displacement boundary conditions are introduced into the discretization of the momentum 

conservation equation in GIMP, and a method is implemented to track the deformation of 

the material particles by tracking the position of the particle corners to resolve the 

problem of artificial separation of material particles in GIMP simulations. Numerical 
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simulations of several problems, such as tension, indentation, stress concentration and 

stress distribution near a crack (mode I crack problem) are presented to validate this 

refinement scheme. 

3.1 Introduction 

The material point method (MPM) uses a collection of material points, mathematically 

represented by Dirac delta functions to represent a material continuum (Sulsky, Zhou, 

and Schreyer (1995); Hu and Chen (2003); Guilkey and Weiss (2003)). A spatially fixed 

background grid, and interpolation between grid nodes and material points are introduced 

to track physical variables carried by the material points in the Lagrangian description. 

Field equations are solved on the background grid in the Eulerian description. Physical 

variables are interpolated from the solutions on the background grids to material points 

back and forth for solution and convection of physical variables. In general, the 

isoparametric shape functions, same as those used in the finite element method (FEM), 

are used. As the MPM simulation is independent of the background grid, a structured grid 

is usually employed for purposes of simplicity. The movement of the material points 

represents the deformation of the continuum. MPM has been demonstrated to be capable 

of handling large deformations in a natural way (Sulsky, Zhou, and Schreyer (1995)). 

However, primarily due to the discontinuity of the gradient of the interpolation function 

at the borders of the neighboring cells, artificial noise can be introduced when the 

material points move just across the grid cell boundaries, leading to simulation instability 

for MPM. The generalized interpolation material point (GIMP) method, introduced by 

Bardenhagen and Kober (2004) can resolve this problem. In GIMP a C1 continuous 

interpolation function is used and each material point/particle occupies a region. GIMP 
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has been demonstrated to be stable and capable of handling relatively large deformations 

(Ma, Lu, Wang, Roy, Hornung, Wissink, and Komanduri (2005)). 

The current MPM typically uses a uniform background mesh for solving the field 

equations. However, this is not efficient when stress gradients are high such as stress 

concentrations in a plate with a hole, or the stress field of a workpiece under indentation. 

In contrast, transitional mesh is effective in solving problems involving rapidly varying 

stress in an area. Wang, Karuppiah, Lu, Roy, and Komanduri (2005) have presented a 

method using an irregular background mesh to deal with problems involving rapidly 

varying stress, such as stress field near a crack. However, this approach does not use 

regular structured background mesh so that mesh generation encounters the same 

difficulty as FEM, and leads to the loss of some advantage of MPM on the ease of 

generating mesh for a complex problem. 

The use of structured grid in GIMP has facilitated the implementation of GIMP in 

parallel processing. A refinement scheme based on splitting and merging material 

particles was proposed by Tan and Nairn (2002). Recently, a multilevel refinement 

algorithm has been developed for parallel processing using the structured adaptive mesh 

refinement application infrastructure (SAMRAI) (Hornung and Kohn (2002); Ma, Lu, 

Wang, Roy, Hornung, Wissink and Komanduri (2005)). The computational domain is 

divided into multiple nested levels of refinement. Each grid level is uniform but has a 

different cell size. Smaller material particles and smaller cell sizes are used in each finer 

level. Two neighboring levels are connected by overlapped material particles of the same 

size and data communication between levels is performed at predefined intervals. 

However, the refinement through material particles requires extra communication and 
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simulation time. In this chapter, a refinement for GIMP based on the transitional grid 

nodes is developed. This refinement is natural and does not involve extra simulation time. 

Moreover, the refined grid remains uniformly structured in each refinement region. 

While the problem associated with artificial noise has been resolved with the use of 

GIMP method, it has been observed recently that material separation could occur if the 

deformation of the material particles was not tracked (Guilkey (2005)). Tracking the 

deformation of material particles properly in GIMP is necessary especially when the 

material particles are stretched. In this chapter, an approach is developed for tracking the 

particle deformation to resolve material point separation problem. This chapter focuses 

on the refinement scheme for structured grid. Several numerical problems, such as 

tension, indentation, stress concentration and stress distribution near a crack (mode I 

crack problem) were simulated to verify this refinement algorithm, as well as to 

demonstrate the effectiveness of tracking particle deformations.  

3.2 GIMP 

For the purpose of completeness, the basic equations in GIMP (Bardenhagen and Kober 

(2004)) are summarized here. In dynamic simulations, the mass and momentum 

conservation equations are given by 

0=⋅∇+ vρρ
dt
d

, and      (3-1) 

bσa +⋅∇=ρ  in Ω ,      (3-2) 

where ρ is the material density, a is the acceleration, σ  and b are the Cauchy stress and 

body force density, respectively. The displacement and traction boundary conditions are 

given as 
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uu =  on uΩ∂ ,       (3-3) 

ττ =  on τΩ∂ ,        (3-4) 

where ,Ω∂⊂Ω∂ u Ω∂⊂Ω∂ τ
and .0=Ω∂∩Ω∂ τu In variational form, the momentum 

conservation equation can be written as 

∫∫∫∫
Ω∂ΩΩΩ

⋅−−⋅+⋅∇=⋅
u

dddd xvuuxvbxvσxva δαδδδρ )( ,   (3-5) 

where vδ  is an admissible velocity field, α  is a penalty parameter introduced herein to 

impose the essential boundary conditions and 1>>α  (Atluri and Zhu (1998); Atluri and 

Zhu (2000)). Applying the chain rule, vσvσvσ δδδ ∇−⋅∇=⋅⋅∇ :)()( , and the 

divergence theorem, Eq. (3-5) can be written as 

∫∫

∫∫∫∫

Ω∂Ω∂

Ω∂ΩΩΩ

⋅−−⋅+

⋅+⋅=∇+⋅

uu

dSdS

dSddd

u vuuvτ

vτxvbxvσxva

δαδ

δδδδρ
τ

)(

:

,  (3-6) 

where uτ  is the resultant traction due to the displacement boundary condition on uΩ∂ . In 

GIMP, the domain Ω  is discretized into a collection of material particles, with 
pΩ  as the 

domain of particle p. The physical quantities, such as the mass, stress and momentum can 

be defined for each particle. For example, the momentum for particle p can be expressed 

as ∫
Ω

=
p

dpp xxxvxp )()()( χρ , where )( xv  is the velocity and )(p xχ  is the particle 

characteristic function. The momentum conservation equation can be discretized as 

∑ ∫∑ ∫∑ ∫

∑ ∫∑ ∫∑ ∫

Ω∩Ω∂Ω∩Ω∂Ω∩Ω∂

Ω∩ΩΩ∩ΩΩ∩Ω

⋅−⋅+⋅+

⋅=∇+⋅
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p p
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p p
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V
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V
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&

 . (3-7) 
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where ∫
Ω∩Ω

=
p

dV pp xx)(χ  is the particle volume. Introducing a background grid and the 

grid shape function )(xiS  that satisfies partition of unity 1)( =∑
i

iS x , the admissible 

velocity field can be represented by the grid nodal data as ∑=
i

ii S )(xvv δδ . Without the 

loss of generality, take u  in Eq. (3-7) to be the displacement of the boundary particles at 

the current time step and upu nστ =  where un  is the unit outward normal to uΩ∂ . The 

momentum conservation, Eq. (3-7), can eventually be written for each node i as 

u
ii

b
iii ffffp +++= τint& ,       (3-8) 

where the time rate change of nodal momentum ,/∑ Δ=
p

pipi tS pp&  the nodal internal 

force vector ,int ∑ ∇⋅−=
p

pippi VSσf  the nodal body force vector ∑=
p

ipp
b
i Sm bf  and the 

nodal traction  force vector ∑ ∫
Ω∩Ω∂

=
p

ii

p

dSS
τ

τ )(xτf . u
if  is the force vector induced by the 

essential boundary condition given by 

∑ ∫∑ ∫
Ω∩Ω∂Ω∩Ω∂

−=
p

ip
p

iup
u
i

pupu

dSSdSS )()()( xu-uxnσf α .    (3-9) 

ipS  is weighting function between particle p and node i given as  

∫
Ω∩Ω

=
p

dS
V

S ip
p

ip xxx )()(1 χ .      (3-10) 

The weighting function in GIMP is C1 continuous and satisfies partition of unity. The 

momentum conservation, Eq. (3-8), can be solved at each node to update the nodal 

momentum, acceleration, and velocity. These updated nodal quantities can be 
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interpolated to the material particles to update the particles, as given by Bardenhagen and 

Kober (2004). It may be noted that the mass of each material particle does not change, so 

that the mass conservation equation is satisfied automatically. 

In the discretization of the weak form of the momentum conservation equation, a 

background grid is used. However, the computation is independent of the grid from one 

increment to another. Hence a spatially fixed structured grid can be used for convenience. 

In the background grid, no nodal connectivity is required and the integration is never 

performed on the element domain. Similar characteristics have been reported for other 

meshless methods, such as the meshless local Petrov-Galerkin (MLPG) method (Atluri 

and Shen (2002)).  

For a uniform structured grid, the grid shape function in 3D is defined as the product of 

three nodal tent functions (Bardenhagen and Kober (2004)) 

)()()()( zSySxSS z
i

y
i

x
ii =x ,       (3-11) 

in which the nodal tent functions are in the same form, e.g., 

⎪
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0/)(1
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)(  .    (3-12)  

Fig. 3-1 shows one 2D grid cell with four nodes. In this chapter, the particle characteristic 

function of the material particle located at (xp, yp) is taken as 

)()()( yx y
p

x
pp χχχ =x ,       (3-13) 

where )]lx(x[H)]lx(x[H)x( xpxp
x
p +−−−−=χ  and H denotes the step function. 
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Fig. 3-1: 2D representation of a particle and a grid cell  

3.3 Structured Mesh Refinement 

In this section, a refinement scheme for a structured mesh in GIMP is described. Since 

GIMP shares some characteristics with meshless methods, the GIMP method is expected 

to have h convergence in simulation (Atluri and Shen (2002)). The momentum 

conservation equation is essentially solved at each node (see Eq. (3-8)). Therefore, the 

number of equations to be solved is the same as the number of nodes. Finer grid and 

smaller material particles will lead to more accurate results. In some simulations, high 

stress gradients exist in small regions. For instance, in indentation with a sharp tip, the 

stress gradient is high in the workpiece beneath the indenter tip. In simulation of fracture 

problems, the stress gradient at the crack tip is high and of particular interest. 

Consequently, finer grid is needed for these regions; but away from these regions, a 

coarser grid can be used to reduce the computational cost. In conclusion, a uniform grid 

can be either too computationally expensive if it is too fine, or inaccurate, if it is coarse. 

A non-uniform grid with refinement can provide accurate results while minimizing the 

overall computational time.  

Grid refinement should maintain the same characteristics of the structured grid as much 

as possible, in order to replicate the grid generation in parallel processing. The proposed 
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refinement scheme is illustrated in Fig. 3-2 with one particle per cell assigned. The 

material particles that fill each cell are square in nature but denoted as circles for clarity. 

To understand this grid, one can consider that there are two overlapped structured grids. 

The coarse grid covers a rectangular region from (0, 0) to (8, 6) and the fine grid covers a 

region from (2, 2) to (6, 6).  For each grid, the shape function can be evaluated from Eq. 

(3-12). To be consistent with any other general refinement, it is required that the region 

of the fine grid to be smaller than the coarse grid.  

 

Fig. 3-2: Refinement of structured grid with a refinement ratio of two 

When these two grids are merged into one, the shape function and the weighting function 

for the nodes at the boundary of the finer grid, for example, the nodes at (2, 2) and (2, 3) 

should be changed. These nodes are called transition nodes. To facilitate the computation 

of the interpolation function, define an influence zone for each node, denoted as 

],,,[ +−+−
yyxx LLLL  in 2D or ],,,,,[ +−+−+−

zzyyxx LLLLLL  in 3D. The symbols in the square bracket 

define the size of the influence zone, whereas the subscript denotes the coordinate axis 

and the superscript denotes the direction of the axis. For example,  −
xL  and +

xL  represent 

the sizes in the negative and positive X direction, respectively. The influence zone for 

each node in 2D is rectangular and it extends to the next immediate grid line to the left, 
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right, bottom and top of the node. If no more grid lines exist in any direction, such as the 

boundary nodes, the size is zero in that direction. For example, in the refined grid in Fig. 

3-2, the influence zones for the nodes at (2, 3) and (2, 4) are both [2, 1, 1, 1]. The 

influence zone for the node at (2, 2) is [2, 1, 2, 1]. Based on this definition, the influence 

zone for this node in the coarse grid is [2, 2, 2, 2], and in the uniformly fine grid is [0, 1, 

0, 1]. 

Based on the influence zone, the nodal tent function in each direction can be modified as, 

for example, in the X direction, 
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Eq. (3-14) can be substituted into the grid shape function (Eq. (3-11)), and the weighting 

function between the particle p and the node i can be evaluated as 
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where pi lxxA −−= , pi lxxB +−= , =a max ),( −− xLA  and =b min ),( +
xLB . When +− = xx LL , 

Eqs. (3-14) and (15) are degraded to the cases for uniform grid. Without detailed proof, 

the grid shape function and the weighting function still satisfy partition of unity. 

Similarly, the gradient of the modified weighting function can be computed. 
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It may be noted that in Fig. 3-2 the refinement ratio is two, i.e., the length of a side of a 

coarse cell is twice that of the fine cell. To maintain the convenience of the structured 

grid, only integer refinement ratio should be used. All nodal positions can be computed 

from the domain of each grid and the cell sizes. The proposed refinement scheme can be 

applied to any integer refinement ratio and for multiple times for successive refinements. 

As an example, the weighting function between a particle of size 0.5×0.5 and a node at (0, 

0) with an influence zone of [1, 1, 1, 1] is shown in Fig. 3-3 (a). The particle is on the X-

Y plane and the weighting function is computed at each particle position. For comparison, 

the influence zone is changed to [1, 0.5, 1, 1], representing a transitional node, while 

other conditions are the same. The weighting function for this case is plotted in Fig. 3-3 

(b). It can be seen that the weighting function for the transitional node is still C1 

continuous. 

 

Fig. 3-3: Effect of influence zone on the weighting functions  

3.4 Numerical Simulations  

3.4.1 Tracking particle deformation 

Prior to presenting the results of structured mesh refinement, tracking particle 

deformation is addressed first since this is necessary in later simulations to achieve 

accuracy. The material particles are initialized into regular shapes, normally square and 

(a) Influence zone: [1, 1, 1, 1] (b) Influence zone: [1, 0.5, 1, 1] 
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cube for 2D and 3D simulations, respectively. All the physical quantities in a particle 

domain are considered to be uniform. The shape of the particle changes during 

deformation. So, it is important to track the deformation of each particle. Fig. 3-4 

illustrates the deformation of the particles in 2D when the particles are stretched in the X-

direction. If the particle deformation is not tracked, gaps will form between neighboring 

particles in the X-direction, as shown in Fig. 3-4 (a). Due to the Poisson’s effect, there 

will be overlapping between particles in the Y-direction, if the particles do not follow the 

deformation of the materials properly. When the stretch and gaps are large enough, the 

particles would be separated. Fig. 3-4 (b) shows the correct deformation in which 

contiguous particles remain contiguous after deformation.  

 

Fig. 3-4: Schematics showing overlaps and gaps that may occur when particle 
deformation is not tracked  

To track the particle deformation, a convenient approach is to calculate the deformed 

particle shape based on strain history. Since the linear strain increment is computed in 

GIMP, the effectiveness and validity of tracking particle deformation based on strain 

would be limited to relatively small deformations. As an example, Fig. 3-5 (a) shows the 

simulation of a uniaxial tension problem under plane strain conditions. The material is 

silicon. Its mass density is 2.71 g/cm3, Young’s modulus 175.8 GPa, and the Poisson’s 
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ratio 0.28. The background grid size is 0.002 × 0.002 mm2. One particle per cell is 

assigned initially and the time step is 0.02 ns (1 ns = 10-9 s). The applied pressure 

increases linearly with time from 0 to 10 ns and is then maintained constant, as shown in 

Fig. 3-5 (b). The elongation in the X-direction of the particle is computed as 0)1( xx lε+ , 

where 0
xl is the initial length of the particles. Separation of the particles occurred at ~25% 

strain at 6 ns before the full pressure was applied, as shown in Fig. 3-5 (c). Similar 

problems have been reported by Guilkey (2005). 

 

Fig. 3-5: Simulation showing separation when the particle deformation 
 is tracked by strain 

Tracking particle deformation by strain could be more effective if nonlinear strain is used 

in the GIMP method. However, recovery of the deformed shape based on nonlinear strain 

involves additional complications. Based on the GIMP algorithm, there is another 

convenient approach to track the particle deformation. Numerically, the displacement and 

velocity of each particle in GIMP are computed at the center of the particle to represent 
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the entire particle domain. However, in reality, the velocity and deformation at the 

corners of a particle can be different from the center. Fig. 3-6 shows four 2D contiguous 

particles sharing one common corner point at the middle. This corner point should have 

unique displacement and velocity. As a result, it is helpful to track the displacement and 

velocity of each corner to track the particle deformation. 

It is not difficult to compute the velocity of the particle corner given its location. It is 

computed from the interpolation from the background grid, similar to the center of the 

particle. For a 2D particle, in addition to updating the position of the center of the particle, 

the positions of the four corners are updated at each increment. To compute the weighting 

function for the corners, a fictitious size can be assigned to each corner. Numerical 

simulation shows that the result is not sensitive to this size in the range of 10% to 80% of 

the initial particle size. The new particle shape can be obtained by connecting the four 

corners with straight lines. In order to avoid numerical integration of the interpolation 

function, it is assumed that the deformed material particle shape is rectangular with edges 

parallel to the coordinate axes. The size of the rectangle is, therefore, determined from 

the extent of the corners. As will be demonstrated later in this section, this assumption 

does not introduce any significant error while it can greatly improve the efficiency of the 

GIMP algorithm. 

 

Fig. 3-6: Velocity field of a continuum region (the arrows represent  
both direction and magnitude) 
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Fig. 3-7: GIMP results with tracking deformation of corners  
and their comparison with FEM 

Using this approach to track the particle deformation, the problem in Fig. 3-5 (a) was 

simulated again with GIMP and the results at 20 ns are plotted in Fig. 3-7 (a). No 

separation of particles was seen during the entire simulation up to 50% strain. It is noted 

that each material particle is plotted as a square of the same size and the particle 

deformation is not shown due to software limitations on visualization. For comparison, 

the same problem is simulated using FEM (Abaqus/Explicit) and the FE result is shown 

in Fig. 3-7 (b). It can be seen that these two sets of results agree reasonably well with 

each other; the maximum difference in maximum tensile stress is ~8%. 

3.4.2 Indentation problem 

To verify the refinement algorithm, a 2D indentation problem was simulated. Pressure is 

applied at the top of the workpiece, as shown in Fig. 3-8. The dashed lines indicate the 
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borders of refinement levels. The work material is silicon with the properties the same as 

those given in the previous section. Due to symmetry with respect to the Y-axis, only half 

of the workpiece is modeled. The size of the model is 0.027 × 0.04 mm2. The pressure 

increases linearly with time from t = 0 - 30 ns and is then kept constant at 60 GPa.  

 

Fig. 3-8: Two-dimensional indentation simulation 

Several simulations were performed under different settings for the purpose of 

comparison. In the first simulation, a uniform grid with a cell size of 0.001 × 0.001 mm2 

is used and the time step is 20 ps (1 ps = 10–12 s). The stress distribution in the workpiece 

at t = 20 ns is shown in Fig. 3-9 (a). In this figure, the units of length and stress are mm 

and MPa, respectively. In the second simulation, as indicated in Fig. 3-9 (b), two levels of 

refinements are used with the refinement ratio to be 2. The cell lengths are 0.002 mm and 

0.001 mm for the first and second levels, respectively. The fine level covers a rectangular 

area of the workpiece from (0, 0.02) to (0.02, 0.04). The grid is fixed in space; the 

material particles initially in the fine region move to the coarse region during deformation. 

As shown in Fig. 3-9 (b), some fine material particles have moved below the line Y = 

0.02 mm. It may be noted that in Fig. 3-9 the material particles are plotted as squares 

corresponding to their initial sizes. Gaps between particles are intentionally shown to 

depict the particle sizes. 
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Fig. 3-9: Comparison of the stress distributions at different levels of refinements 
 in force indentation 

Three levels of refinements are used in the third simulation of the same problem. In this 

simulation, the time step is 10 ps and the results are shown in Fig. 3-9 (c). The stresses 

agree very well with the previous two simulations. Fig. 3-9 (d) shows the result when the 

particle deformation is not tracked. A severe material separation was observed at t = 36 

ns, as indicated by the arrow. Additionally, the displacement history of the particle in the 

middle of the top surface for the third simulations is shown in Fig. 3-10. The same result 

of the integration point of the element in the middle of the top surface in FE simulation 

using ABAQUS/Explicit is also shown in Fig. 3-10 for comparison. It can be seen that 

   Separation 
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the displacement compares well with FE up to t = ~20 ns. After this time, FE simulation 

aborted due to mesh distortion. This demonstrates the capability of GIMP using a grid 

with structured refinement in handling large deformations. 

Time (ns)

U
y
(μ

m
)

0 10 20 30 40
-8

-6

-4

-2

0

GIMP
FEM

FEM aborted

 

Fig. 3-10: Comparison of displacement history with FE 

It may be noted that if the exterior corners of the surface particles are tracked from the 

nodal interpolations in the same way as the interior corners, simulations tend to become 

unstable due to erroneous surface corner displacements. This problem was observed to be 

strictly and consistently associated with the particles with external tractions applied. It is 

caused by insufficient nodal interpolation. To eliminate this problem, the exterior corners 

of the surface particles were tracked by strain only, as used in these simulations.  

3.4.3 Verification of the displacement boundary condition 

Next, the results on the validation of the displacement boundary conditions are presented. 

For dynamic simulations, an artificial damping may be introduced. With damping, the 

nodal momentum can be updated as 

td i
u
ii

b
iii Δ−+++=Δ )( int pffffp τ ,       (3-16) 

where d is the artificial damping coefficient.  
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A rectangular slab is fixed on the left and a displacement boundary condition is applied 

on the right, as shown in Fig. 3-11. The material is silicon and its properties are given in 

the previous section. The cell size in this simulation is 0.5 × 0.5 mm2 and four particles 

are assigned to each cell initially. The time step is 5 ns. The prescribed displacement 

increases linearly with time to 0.5 mm at t = 10 μs, which corresponds to a velocity of 50 

m/s, and remains constant thereafter. This problem is simulated in FE using 

Abaqus/Explicit for comparison. The displacement in the X-direction, Ux, for a particle 

initially centered at (2.625, 1.625) as a function of time is plotted in Fig. 3-12 (a). It can 

be seen that without damping, the vibrations of displacement from both FEM and GIMP 

simulations are in phase before t = 14 μs, but out of phase afterwards. The dashed line 

represents the steady state displacement at this point. It can be seen that when an artificial 

damping of 106 s-1 is used, the GIMP solution converges quickly. The error of the 

converged displacement is 0.46%. Fig. 3-12 (b) shows the comparison of the normal 

stress in the X-direction. Good comparison between GIMP and FE has been obtained. 

With damping, the GIMP solution converges to the analytical solution for static 

simulations. 

 

Fig. 3-11: A simple tension problem with displacement boundary conditions 
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Fig. 3-12: Comparisons of the displacement and stress 

3.4.4 Stress concentration problem 

Fig. 3-13 shows a copper plate (60 × 60 mm2) with a central hole (4 mm diameter) 

subjected to a distributed load. This problem is simulated using GIMP as a dynamic 

problem with a damping factor of 1000 s-1 and three levels of refinement. The cell sizes 

at these three levels are 1.0 mm, 0.5 mm, and 0.25 mm, respectively. One particle is 

assigned to each cell not adjacent to the hole initially. The cells close to the circular hole 

are assigned 25 particles each to model the circular edge more accurately with the use of 

square particles. It may be noted that all the particles occupy square areas initially. The 

time step is 10 ns and the applied distributed load intensity p = 10 MPa.  

 

Fig. 3-13: A plate with a circular hole subjected to tension 

The stress distribution after 4000 steps is shown in Fig. 3-14 (a) and the area close to the 

hole (bottom left corner in Fig. 3-14 (a)) is magnified in Fig. 3-14 (b). The normal stress 
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of the particle at the top of the hole is 30.7 MPa when the applied tension is 10 MPa. This 

gives a stress concentration factor of 3.07. The tangential stress of the particles along the 

hole circumference, normalized by the applied pressure, is plotted in Fig. 3-15 in 

comparison with the theoretical value (Pilkey (1997)). A good agreement between the 

numerical simulation and theoretical value is obtained. This demonstrates that the GIMP 

refinement algorithm is effective for problems involving significant stress gradients. 

Furthermore, with the use of small square particles, GIMP is capable of modeling curved 

surfaces 

.   

Fig. 3-14: Normal stress in the X-direction with p = 10 MPa 
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Fig. 3-15: Normalized tangential stress along the circumference of the hole 
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3.4.5 Static stress intensity factor 

Next, the GIMP refinement algorithm is implemented to determine the stress field and 

stress intensity factor for a mode I crack problem to determine the capability of the GIMP 

refinement algorithm in simulation of stress distribution near a crack. Guo and Nairn 

(2003) have successfully extended the MPM method to compute stress distribution in a 

plate with explicit cracks using multiple nodal fields along the crack surface. The 

physical quantities of material particles on each side of the crack were interpolated using 

variables in the field on that side of crack surface. In their simulation, a uniform mesh 

was used. Since the stress gradient at the crack tip is very high, a refined mesh near the 

crack tip and a coarse mesh in the far field should lead to savings in computational time 

while maintaining the same accuracy with the use of a uniform fine mesh. The fracture 

problem is thus an appropriate problem to evaluate the refined GIMP algorithm. For this 

purpose, the same fracture problem by Guo and Nairn (2003) using MPM is modeled, 

that is, a double cantilever beam (DCB) with a crack as shown in Fig. 3-16.  

 

Fig. 3-16: Geometry of a double cantilever beam with a crack 

In the area close to the crack tip, finer meshes are used, while in the area far away from 

the crack tip, coarse meshes are used. The thickness of the plate is 1 mm, thereby 

justifying a plane stress condition for this problem. The material of the DCB is 
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considered to be homogeneous, isotropic, and linearly elastic. Its density, Young’s 

modulus, and Poisson’s ratio are 1500 kg/m3, 2300 GPa, and 0.33, respectively. The 

applied force is 4104 −×=F  N and this results in a mode I crack problem. The static stress 

intensity factor for the DCB can be calculated using the following equation (Kanninen 

1973) 

2/3

)2/3(
32

H
HaF

K I
+

= .       (3-17) 

This problem has been simulated using MPM with uniform grids of three sizes, 4 mm, 2 

mm, and 1 mm (Guo and Nairn (2003)). They have computed the energy release rate and 

determined the stress intensity factor from J-integral. Their results indicate that the stress 

intensity factor determined from finer grid is more accurate and closer to the theoretical 

value. 

In the mesh refinement GIMP algorithm used in this study, the energy release rate was 

computed using the virtual crack closure technique (Rybicki and Kanninen (1977); Wang, 

Karuppiah, Lu, Roy, and Komanduri (2005)). The energy released during an infinitesimal 

crack growth of aΔ  is assumed to be the energy required to close the crack to its initial 

size. Hence, the energy release rate G is determined by 
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where n is the crack surface normal. For the 2D mode I crack in the X-direction,  
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In GIMP, the energy release rate can be computed as  
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Fig. 3-17: Material points and background grid around the crack tip 

where the superscripts 1 and 2 denote the two material particles immediately to the left of 

the crack tip as shown in Fig. 3-17, aΔ  is the X distance between particle 1 and the crack 

tip, t is the thickness of the beam. tipF  is the nodal force to hold the crack tip together 

(Rybicki and Kanninen (1977)) and is computed as the crack tip nodal force from one 

side of the crack in this simulation.  

The mode I stress intensity factor for the static crack is given by 

GEK I = .       (3-21) 

GIMP simulations were carried out using four material points per cell. The time step is 

0.1 μs, and a damping coefficient of 4000 s-1 is used to allow the results to converge to 

the static data. The computed stress intensity factors using uniform grids of 4 mm and 1 

mm, respectively, are plotted in Fig. 3-18 (a) and the theoretical value calculated from Eq. 

(3-17) is also shown for comparison. For simulation with refinement, two levels of 

refinement were used, i.e., 2 mm grid size for the coarse level and 1 mm grid size for the 

fine level, and the extent of the fine level is indicated by the dashed square in Fig. 3-16. 

The computed stress intensity factor using the refinement algorithm is also plotted in Fig. 

3-18 (a). It is seen that the results from two levels of refinement are identical to the 
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results from one uniform fine level with 1 mm cell size. Moreover, the simulation time 

using the refinement algorithm is 38% shorter than that of one uniform fine level. The 

computed stress intensity factor became even closer to the theoretical value when a third 

level of refinement was added for the crack tip as shown in Fig. 3-18 (b). For the case of 

using uniform grid of 2 mm, the computed stress intensity factor using GIMP and MPM 

(Guo and Nairn (2003)) are plotted in Fig. 3-19. The MPM results were computed using a 

damping factor of 1000 s-1, and therefore, more oscillations can be seen as expected.  

 

Fig. 3-18: Computed stress intensity factor as a function of time 

 

Fig. 3-19: Comparison of the stress intensity factor  
with MPM results 

(a) Overall (b) Magnified 
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Fig. 3-20: Stress distribution in the beam using three levels of refinements at t = 2.5 ms 

Fig. 3-20 shows the distribution of σy at t = 2.5 ms when the force applied on the beam 

was changed to 4=F  N, 10000 times of the previous value, with other parameters the 

same. In this simulation, three levels of refinements with cell sizes of 1 mm, 0.5 mm and 

0.25 mm, were used and the different density of material points in each level can be 

clearly seen in the figure. The computed stress intensity factor, scaled by 10000 times, 

still compares well with the theoretical value. It is noted that deformation near the crack 

surfaces has caused material points crossing cell boundaries, a situation where MPM 

would give numerical noise such as alternating stress signs. Despite the extent of the 

deformation, and material points crossing cell boundaries, GIMP method with the use of 

particle deformation tracking still gives correct results, further verifying the structured 

refinement methods developed herein. 

3.5 Conclusions 

1. A spatial refinement scheme for a structured grid was developed by adding transitional 

nodes and by changing the influence zone of the transition nodes in GIMP. The influence 

zone is square for uniform grid nodes and rectangular for transitional nodes. This 

influence zone affects the computation of the nodal shape function. The computation of 

the weighting function remains the same as for the uniform grid. The refinement scheme 
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can be applied successively and the refined grid remains structured in each refinement 

level, i.e., every node can be determined by the extent of the grid level and cell size. The 

refinement scheme was implemented and several problems such as tension, indentation, 

stress concentration, and stress distribution near a crack (mode I crack problem) were 

modeled to demonstrate its effectiveness and accuracy. A good agreement has been 

obtained between numerical and theoretical results, indicating the validity of the 

structured mesh refinement for GIMP scheme. 

2. The GIMP algorithm has also been extended to include the displacement boundary 

condition, based on the approach used in the meshless local Petrov-Galerkin (MLPG) 

method, Atluri and Zhu (2000). A penalty parameter is used to impose the displacement 

boundary condition and a nodal force vector because the displacement boundary 

condition is introduced to the nodal momentum governing equation. A uniaxial tension 

problem with constant pulling velocity was simulated to verify the displacement 

boundary condition. 

3. A method to track the material particle deformation was developed and verified in one 

example. When the particle deformation is not tracked, artificial separation was observed 

when the particle strain increases to a certain level. In tensile simulations, when the 

normal strain is ~25%, material particles tend to separate from the body. Our approach 

tracks the displacement of each corner of the material particles. Since neighboring 

particles share corners, no separation would occur during deformation using this 

approach. 
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Chapter 4  

Simulation of Deformation Mechanism and Failure of Bulk Metallic Glass 

 (BMG) Foam Using the GIMP Method 

A new bulk metallic glass (BMG) foam, processed by thermo-plastic expansion, has 

recently been discovered (Schroers et al. (2003); Brothers and Dunand (2004); Hanan et 

al. (2005)). In this investigation, the microstructure and mechanical properties of BMG 

foam were determined using microtomography combined with in-situ compression. 

Numerical simulation of the mechanisms of deformation and failure of the BMG foam, 

which has never been done before, is conducted in this investigation. The complex 

cellular geometry of the foam was modeled using the generalized interpolation material 

point (GIMP) method by creating material points based on grayscales at voxels 

determined from microtomography. Nanoindentation tests were conducted to determine 

the local elastic modulus of the foam matrix and the results are used as the input to the 

GIMP simulation. Several cubic volume elements (from 0.5763 mm3 to 1.7283 mm3) 

taken from the 3D tomographic image were used in the simulation. The size of the cube 

is increased until further increase in volume does not lead to a change in mechanical 

response; the cube with this size is determined as the representative volume element. The 

simulated compressive stress-strain curve using GIMP was compared with the 

experimental data and a good agreement on the initial slope (representative of the average 

Young’s modulus of the foam) was obtained.  The stress contour in the foam was 
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illustrated by analyzing different sections of the foam at different simulation times. The 

densification and hardening of the ductile metallic foam under compression was 

simulated to demonstrate the capabilities of GIMP and to study the failure mechanisms. 

4.1 Introduction 

Metallic glass foam has been used in various engineering applications due to such 

combination of unique properties as low density, high specific strength, high energy 

absorption, and superior thermal insulation. Foam materials are generally divided into 

open-cell and closed-cell foams. In general, open-cell foams have higher porosity and 

softer behavior than closed-cell foams. The uniaxial mechanical behavior of a foam is 

characterized by three regimes, namely, initial elastic response, the stress plateau that 

follows, and final stiffening due to densification (Gibson and Ashby (1997); Miller 

(2000); Katti et al. (2006)). Theoretical modeling of the foam mechanics has been carried 

out for both regular and irregular open-cell foams. The nonlinear stress-strain relation of 

the foams at high strains was modeled by the buckling of elastic cell edges (Zhu et al. 

(1997)) or by the implementation of nonlinear kinematics (Wang and Cuitino (2000)).  

Most numerical simulations of foam materials reported in the literature were either at the 

macroscopic scale or the mesomechanical (micromechanical) scale. At the macroscopic 

scale, the foam material is considered as a homogeneous material with homogenized 

properties determined from measurements such as uniaxial compressions (Gibson (1997)). 

The work using this approach is rather limited, due primarily to the well-known problem 

associated with simulating cells in contact. In this approach, large foam structures can be 

simulated at relatively low computational cost and the deformations under different 

loading conditions can be predicted reasonably well (Meguid et al. (2002); Meguid et al. 
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(2004)). However, such simulations require knowledge of loading conditions a priori and 

the associated material model may not be readily available in some situations (Wicklein 

et al. (2004)).   

In the mesomechanical simulations, the microstructure of the foam is modeled explicitly. 

X-ray tomography is used to determine the three-dimensional (3D) microstructure and 

the 3D geometry is used in a numerical model for simulation. In this approach, the 

discrete element/particle size is dictated by the resolution of the X-ray tomography. 

Kadar et al. (2004) investigated the mechanical behavior of closed-cell Al porous foam 

by indentation using the finite element method (FEM). Wicklein and Thoma (2005) 

conducted a series of FEM simulations and determined the elastic and plastic response of 

an open-cell aluminum foam. The mesomechanical approach provides microstructural 

evolution during deformation; however, the computational cost can be very high. 

For model generation using mesomechanical simulation approach, Wicklein et al. (2004) 

described three possible approaches to discretize a foam structure into FEM meshes. In 

the first approach, beam and plate elements are constructed based on the cell votices in 

the tomographic images. In the second approach, voxels are transformed into cubic 

elements in a predefined structured mesh. In the third approach, tetrahedral elements are 

used to mesh the entire foam structure. The second approach was used successfully for 

the simulation of aluminum foams (Wicklein et al. (2004); Wicklein and Thoma (2005)) 

under a few percent deformations. However, simulation of a fully densified foam is a 

challenge in FEM because of large distortions of the microstructure involved and the 

internal contact of cell walls upon closure of cells. Brown et al. (2000) used hexahedral 

elements to model the struts of an open-cell foam under impact loading. It was pointed 
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out that the drawbacks of this approach involve the use of a large number of elements and 

small time-steps. It is noted that the struts all have regular cross sections so that it was 

relatively easy to mesh all the struts. 

Recently, the generalized interpolation material point (GIMP) method was introduced for 

dynamic simulation of materials (Bardenhagen and Kober (2004); Ma et al. (2005)). 

GIMP has evolved from the material point method (MPM), originally developed by 

Sulsky, Zhou and Schreyer (1995) and subsequently refined by others (e.g., Tan and 

Nairn (2002); Wang et al. (2005)). In GIMP, the workpiece is discretized into a 

collection of material particles (points). The material points carry all the physical 

variables, including the mass, momentum and stress, in the simulation. A background 

grid, usually a structured grid fixed in space, is used to discretize the momentum 

conservation equation and solve it at the grid nodes using explicit time integration. In a 

regular GIMP computational step, the material point information is first interpolated to 

the grid nodes. Then, the momentum conservation equation is solved at the nodes to 

update the nodal information. Next, the updated nodal information is interpolated to 

update the position, velocity, strain, and stress at the material points. Finally, the 

background grid is redefined (usually reset the nodal quantities to zero but keep the nodal 

positions fixed). GIMP shares some similarities with other meshless methods, e.g., Atluri 

and Zhu (2000). Fig. 4-1 (a) illustrates an elliptical workpiece discretized into a 

collection of material points of different sizes with the background grid shown. When 

two bodies are close enough, as indicated by open and closed circles in Fig. 4-1 (b), the 

material point information will be interpolated to the same grid node in the middle when 

one background is used. In this case, these two workpieces are in non-slip contact. The 
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intrinsic features associated with GIMP, such as ease of discretization, no body-fixed 

meshes used so that mesh distortion is not an issue and natural capability of handling 

non-slip contact, made the simulation of some complex problems possible.  

 

Fig. 4-1: Illustrations of the discretization scheme and intrinsic contact in GIMP 

GIMP was used successfully to simulate densification of open-celled foam materials 

(Bardenhagen et al. (2005); Brydon et al. (2005)). In GIMP simulations, each voxel in 

the X-ray tomograph is converted into a material particle and an Eulerian structured grid 

is used for solving the field equations. A representative volume element (RVE) was used 

to simulate the bulk response of a foam. Their results have indicated that the apparent 

Poisson’s ratio is negative in the stress plateau and the dynamic response of the 

compression is dominated by a compression wave, which is an inertial effect absent in 

homogeneous material and its velocity is much slower than any characteristic wave 

speeds (Brydon et al. (2005)). 

In this work, we report the results of a simulation of a closed-cell foam made of bulk 

metallic glass. Most metal and its alloys in engineering applications are in the form of 

crystalline structures; their mechanical properties are dependent on the crystal structure, 

chemistry, microstructure, and processing conditions. Metallic glass is another form of a 

metal or an alloy. In a metallic glass, the material is amorphous and has no long-range 

atomic order. Fig. 4-2 (a) and (b) are TEM images of the microstructure of a crystalline 

(a) Discretization and background grid (b) Non-slip contact 
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zirconium alloy and the same alloy in the amorphous form (Hufnagel (2005)). Metallic 

glass can be formed by rapid cooling of a liquid metal; the cooling rate is so high that 

ordered crystalline structure cannot be developed in the metal, resulting in amorphous 

structures. 

 

Fig. 4-2: High resolution TEM images of (a) crystalline and (b) amorphous  
structures of a zirconium alloy (Hufnagel (2005)) 

Metallic glass foams recently have attracted great attention due to their unique properties. 

They exhibit high specific strength, high stiffness, high energy absorption (Ashby et al. 

(2000)), and more importantly they can be used under those conditions, including, high 

temperatures where other foams (e.g., polymer foams) cannot be used. BMG foams 

combine exceptional strength, elasticity, wear, and corrosion resistance with modest 

densities and low processing temperatures. They are being considered for structural and 

biocompatible implant applications (Hanan et al. (2005); Brother and Dunand (2005)). 

The thickness of BMG material is usually limited (on the order of a few millimeters to a 

centimeter or so) by the requirement that a high enough cooling rate in the center of the 

wall is necessary to form the amorphous structures. For a pore-free BMG 

(Pd42.5Cu30Ni7.5P20), Wada, Inoue and Greer (2005) reported a Young’s modulus of 102 

(a) Crystalline (b) Amorphous 
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GPa, failure stress of 1.63 GPa, zero plastic strain and the rupture energy density of 14 

MJ/m3. Their results show that with increase in porosity of the BMG rod, both Young’s 

modulus and failure stress decrease while plastic strain at failure and rupture energy 

increase. 

Research on BMG foams has been focused primarily on improving mechanical behavior 

and testing. BMG foam expansion tests are being carried out in outer-space and BMG 

foams are found to be suitable for some space-vehicle related applications. Numerical 

simulations of metallic glass foams are rather limited due to difficulties in modeling 

complex internal structures and handling large deformations as well as contacts. In this 

investigation, we utilize the unique features of GIMP to simulate the behavior of a BMG 

foam, which has never been done before. The metallic glass foam considered in this 

investigation is a closed-cell, amorphous BMG foam (Pd43Ni10Cu27P20) prepared by 

thermo-plastic expansion using B2O3-XH2O as a blowing agent (Hanan et al. (2005)). 

Compression of the metallic glass foam was simulated using the GIMP method with 

parallel processing. The simulated results are compared with the experimental data to 

verify the simulation technique. 

4.2 Nanoindentation Testing of BMG Foam 

The Young’s modulus of the BMG foam is an input used in the GIMP simulation. The 

data is determined from direct measurement of the Young’s modulus of the cell-wall of 

the BMG foam using nanoindentation. A BMG sample was wrapped in epoxy, then cut 

and polished carefully to expose its walls. Nanoindentation was made using a Berkovich 

indenter at an indentation depth of 510 nm. To satisfy the condition of indentation on a 

half-space, indentations were made only on relatively thick walls. Fig. 4-3 shows the 
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average load-depth curve with error bars for all the five nanoindentations. Table 4-1 lists 

the measured Young’s modulus and hardness for the BMG foam. The load-depth curve 

shows good consistency when the depth is < 300 nm; but the deviation becomes larger at 

higher depths. This can be due to the presence of a thin wall at one location which can 

deflect excessively or buckle locally with increase in the indentation load. For this reason, 

the modulus and hardness from each nanoindentation test were averaged over the depths 

from 100 nm to 350 nm. It is found that modulus of the foam material does not depend on 

the location in the BMG foam. To simplify the simulation, it is assumed that within the 

walls the material properties are homogeneous and isotropic with a Young’s modulus of 

108.1 GPa.  
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Fig. 4-3: Average nanoindentation load-displacement curve with error bars 
 for the BMG foam (Pd43Ni10Cu27P20)  

Table 4-1: Nanoindentation results for the BMG foam. 

Test 1 2 3 4 5 Mean 
Modulus (GPa) 107.36 98.96 108.23 108.09 117.86 108.1 
Hardness (GPa) 8.49 5.29 7.22 8.42 8.13 7.5 
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4.3 Reconstruction of the BMG Foam and Simulation Convergence 

4.3.1 Reconstruction of the BMG foam for GIMP 

 

Fig. 4-4: Schematic of X-ray tomography system 

The BMG foam used in this investigation has 70% porosity as measured by the 

Archimedes method and confirmed by the microtomographic image analysis (Hanan et 

al., 2005). X-ray microtomography was used to determine the internal foam structure, as 

illustrated in Fig. 4-4. The incident X-ray beam is partially absorbed and partially 

reflected by the sample. The transmitted X-ray beam that carries the material thickness 

information is transformed into visible light and captured by a CCD camera. A series of 

2D images were acquired as the sample rotates. Then, a 3D tomographic image of the 

sample was reconstructed with spatial resolution of 780×780×780 voxels. Each voxel has 

a size of 14.4×14.4×14.4 μm3. The voxel grayscale is indicative of the X-ray attenuation 

and represents a voxel volume averaged mass density. Fig. 4-5 shows a portion of the 

microtomographic image with a section revealed and a volume element highlighted.  

It may be noted that a tremendous amount of computational time is needed to simulate 

the entire foam used in 3D tomography, if a few processors are used. To circumvent this, 

while maintaining the accuracy of simulation, a representative volume element (RVE) 

was used in the simulation. A volume element of 100×100×100 voxels, representing a 

1.44×1.44×1.44 mm3 cube was used in the simulation initially. The effect of the size and 
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location of the volume element were investigated subsequently. The solid Pd-based BMG 

has a density of 9.44 g/cc. Material points are assigned to areas occupied by the BMG 

foam matrix. The use of a cut-off grayscale value of 100 gave a porosity of 70% for the 

BMG foam, same as the porosity determined by other methods. There are about 300,000 

material points in the volume element for this GIMP model. Fir the simulations 12 

processors (Pentium IV, 2.4 GHz; 512 MB memory) were used in the simulations and the 

computational domain was divided into approximately equal-sized blocks, e.g., 3, 2, 2 in 

the X-, Y-, and Z- directions, respectively. Details on the parallel processing in GIMP can 

be found in Ma et al. (2005). 

 

Fig. 4-5: 3D microtomographic image of a BMG foam 

Each voxel occupied by the material is assigned a material point. The mass density and 

Young’s modulus of each material point are dependent on the grayscale of the voxel. The 

mass density of the material point is assumed to be linearly dependent on the grayscale. 

The Young’s modulus of each material point is assumed to obey a power law relation 

with the grayscale, i.e.,  

~10 mm 
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where s is the grayscale of a voxel and 255 ( maxI ) is the maximum grayscale 

corresponding to the density of the bulk solid material. When the exponent n = 1, the 

modulus is linearly dependent on the grayscale. This is consistent with the rule of 

mixtures (Jones (1999)) where each voxel is occupied by the material and air. For a 

closed-cell foam, the modulus for a volume element containing a pore can be 

proportional to the square of the volume fraction (Gibson and Ashby (1997); Wicklein 

and Thoma (2005)). Hence, in this study, the exponent n = 2 is also simulated for 

comparison. The Young’s modulus E used for the BMG foam is 108.1 GPa as determined 

from nanoindentation. 

4.3.2 Effect of grid cell size on simulation convergence 

In GIMP simulation, the accuracy improves with finer background grid since momentum 

conservation equation is solved at each grid node. In the GIMP computation, 

interpolation of physical variables is made between material points and their neighboring 

nodes. The computational time is dependent directly upon the number of background grid 

nodes and the grid size. When the grid size is small, physical variables of material points, 

such as the stresses and stains are interpolated on a large number of grid nodes resulting 

in more computations. Numerical simulations were first conducted to determine the effect 

of grid size on accuracy. A normal traction of 50 MPa was applied at one end of the 

sample in the Z-direction to pull the sample. The time step was 0.5 ns and the numerical 

damping factor used was 1000 s-1.  
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Fig. 4-6: Stress distribution on a section simulated with the grid size of 3 and 4 times of 
the voxel size, respectively 

The normal stress zσ  on a given cross section after 1000 increments is plotted in Fig. 4-6 

using grid sizes of 3 and 4 times the voxel size (14.4 μm), respectively, in each direction. 

In Fig. 4-6 (a) and (b), stress variations, as indicated by the dashed circles, can be seen. 

These stress variations are unphysical due to incorrect interactions of the material points 

near the pores. These results indicate that the grid size is too large. It may be noted that 

the surface of a pore is traction free; but if the grid is too coarse, the material points on 

both sides of a pore can interact with each other through the grid node, resulting in non-

zero traction on the surface of a pore and violating the traction-free conditions on the 

surface. To circumvent this problem, smaller grid sizes were investigated. Fig. 4-7 (a) 

and (b) show the normal stress distribution on the same section as used in Fig. 4-6, but 

simulated with the grid size of 1 and 2 voxels, respectively, in each coordinate direction. 

The results show that the transition is smooth. Comparing Fig. 4-7 (a) and (b), it can be 

seen that zσ  stress is almost zero on the pore top/bottom surfaces when the grid size is 1 

voxel, which means that the traction free boundary condition on the surface of each pore 

(a) Grid size is 3 voxels (b) Grid size is 4 voxels 
X

Z 
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is nearly satisfied. 

 

 Fig. 4-7: Stress distribution on a section simulated with the grid size to  
be 1 and 2 times of the voxel size. 

The average computational times per time step were 8.8, 9.2, 10.5, and 13 s for grid sizes 

of 4, 3, 2 and 1 voxel, respectively, all other conditions remaining the same. It is seen that 

the computational time increases with decrease in grid size. Brydon et al. (2005) showed 

that if the grid size is two thirds of the voxel size, then there is no appreciable 

improvement in accuracy. For a balance between accuracy and computational time, the 

grid size was chosen to be one voxel size in later simulations. 

4.4 Simulation of the BMG Foam in Compression 

In this section, we describe simulation of the BMG foam in compression. A velocity 

boundary condition was applied at the top of the volume element using the penalty 

method introduced by Ma et al. (2006). For the purpose of improving numerical stability, 

12 uniform layers of extra materials were added at the top of the volume element and the 

velocity boundary condition was applied on the top surface. The velocity in the quasi 

static experiment was ~1 mm/s. A cylindrical sample was used with the load applied in 

the Z-direction as shown in Fig. 4-8 (a). Fig. 4-8 (b) shows the nominal compressive 

(a) Grid size is 1 voxel (b) Grid size is 2 voxels 
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stress-strain relationship of the BMG foam under uniaxial compression. There is no 

plateau region in the curve and at a compressive strain of ~3.5%, a sudden drop in stress 

is seen, corresponding to slip failure at the macroscopic level on a plane foaming a ~45 

degree angle with the axis of the cylindrical sample. The unloading curve is nearly 

parallel to the loading curve. The residual strain is ~2% when the sample is fully 

unloaded, indicating the existence of a global plastic deformation in the foam. It may be 

noted that the foam can be loaded continuously after the slippage. It will reach the plateau 

region with multiple slippages, and eventually stiffen as the walls of the internal pores are 

all compressed together. 

 

Fig. 4-8: Experimental setup and nominal stress-strain curve. 

The time step, dt used in the simulation was 0.5 ns, which was determined from the 

longitudinal wave speed, lC  and the grid size, gL , through lg CLkdt /⋅= , where k is a 

constant factor (≤ 1) and the longitudinal wave speed of bulk BMG is 3926 m/s. If the 

actual velocity used in the experiment was taken in the simulation, the computational 

time would be very long to reach a compressive strain of 10% because a very large 

number of time increments would be required due to the small time step used. To reduce 

the computational time, the maximum velocity applied was set at 20 m/s, which is ~0.5% 
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of the longitudinal wave speed of the bulk BMG. The applied velocity increased linearly 

from 0 to 20 m/s in 10 μs to reduce the initial impact. From the simulation, the total force 

F was computed as 

∑=
i

iiA nσF ,          (4-2) 

where Ai is the area of the top surface of each material point i, n = (0,0,1) is the unit 

outward normal vector, and the summation is performed over all the material points on 

the top surface. The summation is performed over all the material points on the actual top 

cellular layer of the volume element. The average stress is the total force F divided by the 

gross cross sectional area. The average compressive strain was computed as the average 

relative displacement of both cellular end surfaces divided by the initial height of the 

cellular volume element.  

4.4.1 Material failure 

The bulk metallic glass (BMG) alloy is highly elastic and the plastic strain at failure is 

nearly zero in compression (Wada and Inoue (2005)). The ductility of BMG can be 

improved by introducing micro pores. Wada and Inoue (2005) reported that the plastic 

strain at failure increases to more than 18% with increase in porosity from 0% to 3.7%. 

The porosity of BMG foams can reach as high as 80%. The ductility of the BMG foams 

under uniaxial compression is significantly higher than under tension. Wada and Inoue 

(2003) reported 90% nominal compressive strain without macroscopic failure and 

Brothers and Dunand (2005) reported 50% nominal compressive strain for several BMG 

foams. 

The ductility and failure strain of the BMG used in this study have been reported to 
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depend on the wall thickness (Conner et al., (2003)). In the simulation, the yield strength 

of the material is assumed to be 1.63 GPa. Isotropic bilinear hardening is used and the 

hardening modulus is assumed to be 5% of the Young’s modulus based on the 

measurements on similar materials (Wada and Inoue (2005)).  

4.4.2 Stress flow in the foam 

Two locations in the foam were chosen in the simulations. The first location encompasses 

the slip plane as observed in in-situ tomography of the foam in compression, and the 

second location is far away from the slip plane. In this simulation, material failure is not 

introduced, i.e., the foam is assumed purely elastic. Fig. 4-9 shows the stress distribution 

in the overall 3D GIMP model at t = 2.5 μs in location 1. 

 

Fig. 4-9: Stress distribution in the overall GIMP model at t = 2.5 μs at location 1. 

The stress and deformation distributions in the BMG foam were determined for each 

cross section. For the purpose of simplicity in discussion, each section is identified by its 

normal direction and a number. The number between 0 and 100 indicates the percentage 

location of the section along the specified direction. For example, section X-20 represents 
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the cross section perpendicular to the X-axis and located at 20% of the depth of the 

sample size in the X-direction. Fig. 4-10 shows the zσ  stress distribution of two sections 

at t = 2.5 μs when the average compressive strain is 0.625%.  zσ  stress tends to align 

with the available vertical paths.  About 50% of the foam carries load, while the rest does 

not play much role in carrying the load at this time. Along the path where the stress is 

higher, the foam wall is generally thinner. 

 

Fig. 4-10: Stress distribution on different sections at t = 2.5 μs. 

 

Fig. 4-11: Stress distribution on different sections at 8% strain. 

At t = 12 μs, the average compressive strain was 8%. The normal stress zσ  distributions 

(a) Section X-20 (b) Section X-40 

(a) Section X-20 (b) Section X-40 
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at two sections are shown in Fig. 4-11. The maximum compressive stress in the volume 

element was over 10 GPa which is much larger than the failure stress of 1.6 GPa as 

reported by Wada et al. (2005). This is primarily due to the fact that material failure was 

not introduced in the simulation. It was observed in this simulation that high stresses 

appeared only at a few isolated spots in the sections.  

4.4.3 The minimum size of a representative volume element (RVE) 

Several simulations were conduced using volume element of different sizes in an effort to 

determine the minimum size of a representative volume element (RVE). At two locations, 

five different RVE sizes, namely, 40, 60, 80, 100 and 120 voxels in each coordinate 

direction were used in simulations. The computed porosity for each size at both locations 

is shown in Table 4-2. It may be noted that porosity for different sizes at each location 

deviates from the nominal value due to random internal structure of the BMG foam; but 

as the size increases to 120 voxels, the porosity at these two locations converge to values 

very close to 70%, the nominal porosity of the foam. It may be noted that pore size and 

shape vary significantly. The maximum dimension of the pores was found to be ~1.15 

mm, equivalent to 80 voxel lengths. The aspect ratio, defined by the maximum dimension 

divided by the minimum dimension, can be as large as 6 to 10. The medium pore 

dimension was observed to be ~0.23 mm, equivalent to 16 voxel lengths. 

Table 4-2: Porosity of different volume elements at each location.  

Size 40 60 80 100 120 
Location 1 78.7% 73.0% 73.2% 73.4% 71.4% 
Location 2 72.8% 69.8% 69.3% 70.2% 70.4% 
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Fig. 4-12: Stress-strain curves of the BMG foam from experiments and simulations  
using second order interpolation 

Fig. 4-12 shows the stress-strain curves from simulations using second order interpolation 

of the modulus, i.e., n = 2 in Eq. (4-1). It is seen that the slopes from simulations are all 

smaller than the slope of the initial loading portion of the experimental curve. It is seen 

that the simulation curves from volume elements of sizes 60, 80, and 100 are almost the 

same at location 2. The slope obtained from a volume element of 40 voxels is much 

smaller at this location. From Table 4-2, the RVE porosity at location 2 does not vary 

much when the RVE size is between 60 and 120. The macroscopic yield strength 
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determined from a volume element of 100 voxels is close to the stress at the onset of 

macroscopic collapse in experiment. At location 1, where the slip plane was observed, the 

slopes increase with the sizes of the volume element. The 120-voxel element, at location 

1, gives the converged stress-strain curve, comparable to that at location 2.  

  

Fig. 4-13: Stress-strain curves of the BMG foam from experiments, model prediction and 
simulations using linear interpolation 

Fig. 4-13 shows the simulation results using linear interpolation for the modulus of each 

material point. It is seen that the stress is higher at the same strain when the volume 

element is bigger at location 1. For the size of 120, the compressive stress-strain curve is 

Compressive Strain

C
om

pr
es

si
ve

St
re

ss
(M

Pa
)

0 0.01 0.02 0.03 0.04 0.05
0

20

40

60

80

100

120

140
Experiment
P2-Size60
P2-Size80
P2-Size100
P2-Size120

(b) Location 2 

Compressive Strain

C
om

pr
es

si
ve

St
re

ss
(M

Pa
)

0 0.01 0.02 0.03 0.04 0.05
0

20

40

60

80

100

120

140
Experiment
P1-Size60
P1-Size80
P1-Size100
P1-Size120

(a) Location 1 



 84

very close to that of location 2. In general, the simulated curves for sizes 100 and 120 at 

location 2 compare well with the experimental curve. 

From these comparisons, it is concluded that linear interpolation of the modulus is 

appropriate for the simulation. The grayscale of a voxel is linearly related to the volume 

occupied by material and the voxel volume. It is also linearly related to the mass of the 

voxel. Using linear interpolation for the modulus is equivalent to applying the rule of 

mixture to compute the modulus ( )/()( 212211 VVEVEVE ++= ). Second order 

interpolation of the modulus for each material point (voxel) gives smaller modulus than 

the linear interpolation when the grayscale is less than 255. Hence, the stress-strain 

curves using second order interpolation are softer than the ones using linear interpolation. 

Second order interpolation is more suitable for the volume element with a complete pore 

inside. In this investigation, there is no pore inside a voxel. Hence, it is not appropriate to 

use the second order interpolation for the modulus. The stress-strain curves from a 

volume element of size 120 converge at both locations no matter which interpolation of 

the modulus is used. The 120-voxel element can be used as a representative volume 

element. However, it is noted that the stress-strain curve from simulation also depends on 

the location and porosity of an RVE. For the location without a macroscopic slip plane, 

the RVE size can be smaller. The RVE porosity can be used as an additional condition 

for determining the minimum RVE size. For example, at location 2, the minimum RVE 

size can be 60 voxels to obtain correct stress-strain curve in the simulations. 

4.4.4 Simulation of densification  

Densification by compression in structural foams can absorb energy. Numerical 

simulations of the densification process can facilitate in the determination of the energy 
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absorbed by a foam. Simulation of densifications involves large deformations and 

internal contacts due to closure of the pores. GIMP can overcome these two challenges 

because of its inherent capabilities of handling the internal contact using the natural 

nonslip contact. It may be noted that due to the lack of modeling of the incipient slip 

failure in the foam, the densification simulation in this study may not represent the actual 

behavior of the bulk metallic glass foam under compressive strain. Due to computational 

time limitations, an RVE of size 70 voxels at location 2 was used in the simulations using 

12 processors. The stress-strain curve from the densification simulation is shown in Fig. 

4-14, where three stages, i.e., elastic, plateau, and densification can be seen clearly. 
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Fig. 4-14: Stress-strain curve from the densification simulation 

Fig. 4-15 shows the RVE before and after densification. In the densification process, the 

foam walls were bent and distorted significantly, leading to closure of the internal pores. 

Consequently, the walls come into contact with each other and the stiffness of the RVE 

increases, resulting in stiffening in the stress-strain curve. In Fig. 4-14, the densification 

process commences at ~35% compressive strain and completes at ~70% compressive 

strain when the slope of the stress-strain curve does not increase any more. By integrating 
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the stress-strain curve in Fig. 4-14 up to 80% compressive strain, the absorbed energy 

density of this foam is found to be 198.8 MJ/m3.  

 

Fig. 4-15: Comparison of initial and final shapes of the RVE 

Fig. 4-16 shows the progression of the deformation for section Y-50. It may be noted that 

due to out-of-plane displacement, some material points move in and out of this section 

during deformation. The colors represent the magnitude of the maximum shear stress 

maxτ  at any given location. At 4% compressive strain, most of the material points on this 

section are not carrying much load and the path of the stress can be clearly seen. The wall 

of one pore, which is indicated by the arrow, is the only ligament on this section 

connecting the top and bottom parts. At 12% compressive strain, a localized band of high 

stress (red color) is developed on this ligament.  At 21% compressive strain, this ligament 

has been bent and walls to the left have made contact. The shear stress continues to 

develop in this area at 31% compressive strain. The closure process of the marked pore 

can also be seen in these plots from 12% to 49% compressive strain. The analysis of the 

maximum shear stress can be used to predict the incipient shear failure or shear banding 

of the matrix as observed in experiments (Brother and Dunand (2005)). The high stress 

areas (indicated by the red spots) are the candidates for failure analysis in the future. It is 

(a) Initial (b) Final 
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well known that the walls can buckle in compression. The last four plots show buckling 

of one wall on the side of the volume element, as indicated by the solid circles. 

 

Fig. 4-16: Maximum shear stress on section Y-50 at different compressive strains 

The zσ  stress distribution on section Y-50 is shown in Fig. 4-17. The nominal stress-

strain curve from 12% to 31% compressive strain is in the plateau region, i.e., the stress is 

almost constant. From Fig. 4-17, it is seen that both negative and positive zσ  stresses 

increases in magnitude. This makes the overall stress unchanged. From 49% to 66% 

strain, the pores are being closed and the foam is being densified. The negative zσ  stress 

continues to increases in magnitude; but the number of material points carrying positive 
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zσ  stress is decreasing. The overall response of the volume element becomes stiffer. At 

74% compressive strain, which is near the completion of densification, most of the 

material points are carrying compressive zσ  stress with higher magnitudes. At this strain, 

the stiffness of the volume element has nearly reached its maximum. 

 

Fig. 4-17: Distribution of zσ  stress on section Y-50 at different compressive strains 

Fig. 4-18 shows the histograms of the strain component zε  at different nominal strains 

with an interval of ±2% compressive strain. The vertical axis indicates the percentage of 

material particles falls into each interval. When the nominal strain increases from 5% to 

15%, the number of material particles in the interval of 0 and -4% decreases and the 

number of material particles in the interval of 0 and 4% increases. This also supports the 

fact that the nominal stress remains unchanged (plateau region). As the nominal 

compressive strain increases, more and more material points are under compression 

(negative zε ) in general. When the nominal compressive strain reaches 75%, there is only 

about 5% material particles with positive zε .  

It may be noted that the Pd-based metallic glass foam used in this investigation is rather 

12% 49% 

66% 74% 

31% 
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brittle than the ductile Zr-based foams. The stress-strain curve in Fig. 4-14 represents the 

response for more ductile metallic foams such Zr-based foams (Brother and Dunand 

(2006)). 

 

Fig. 4-18: Histograms of zε  at three compressive strains 
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The GIMP method is used to simulate the response of BMG foam (Pd43Ni10Cu27P20) 

under compression. The complex internal structure of the foam is modeled using material 

points generated from the 3-D tomographic images. Different background grid sizes were 

evaluated and it was found that when the grid size is the same as the voxel size, high 

simulation accuracy is achieved. A volume element of the full sample was taken for 

compression simulation to compare with experiments. Numerical tests showed that linear 

interpolation of the Young’s modulus for each material point is appropriate for the 

simulation. The size of the volume element as well as the porosity of the corresponding 

volume element can affect the simulated stress-strain curve of the foam. The minimum 

size of the representative volume element (RVE) was determined by matching the 

simulated stress-strain curve with the experimental data. Simulation of the full 

compression of an RVE was conducted to investigate the densification process. Results 

indicate that densification of the foam starts at ~35% compressive strain, which is 

indicated by the gradual increase of stress and is completed at ~70% compressive strain. 

The maximum shear stress on the pore walls is consistent with the experimental 

observations of incipient shear band. The simulation approach presented in this paper can 

be used to effectively simulate a variety of foam materials under different loading 

conditions, such as tension, shear, and impact to predict the material behavior under 

complex loading conditions. 
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Chapter 5  

Multiscale Simulation Using GIMP Method and Molecular Dynamics 

A new method for multiscale simulation bridging two scales, namely the continuum scale 

using the generalized interpolation material point (GIMP) method and the atomistic scale 

using the molecular dynamics (MD), is presented and validated in 2D. The atomistic 

strain from the molecular dynamics simulation is determined through interpolation of the 

displacement field into an Eulerian background grid using the same generalized 

interpolation functions in GIMP method. The atomistic strain is consistent with that 

determined from the virial theorem for interior points, but provides more reasonably 

stable values at the boundary of MD region and in the handshaking region between MD-

GIMP. Thus physical quantities, such as the displacements, internal forces, and energy 

density are compatible in the handshaking region. A material point in the continuum is 

split into smaller material points using multi-level refinement until it has nearly reached 

the atom size to couple with atoms in the MD region. Consequently, coupling between 

GIMP and MD is achieved by using compatible deformation and force fields in the 

transition region between GIMP and MD. The coupling algorithm is implemented in the 

Structured Adaptive Mesh Refinement Application Infrastructure (SAMRAI) for parallel 

processing. Both mode I and mode II crack propagation problems are simulated using the 

coupling algorithm. The stress field near the crack tip was validated by comparing the 

results from coupled simulations with purely GIMP simulations of the same model. 



 92

Coupled simulation results were also compared with pure MD simulation results. In both 

cases, a very good agreement was obtained. 

5.1 Introduction 

Simulations at the continuum and atomistic levels are often used to determine the 

material deformation and failure at their respective length scales. The atomistic 

simulations are usually performed at very small length scales (from nanometer to 

micrometer scales) and time scales (microsecond or less) whereas continuum simulations 

are performed at larger temporal and spatial scales. While an atomistic scale simulation 

can reveal the fundamental aspects of deformation and failure behavior, it cannot be 

scaled up for larger length scales due to limitation in computing power. However, for 

nanoindentation and crack propagation problems, a combined atomistic and continuum 

simulation may provide as much information as a purely atomistic simulation would 

provide. This is especially so when MD simulations are used for regions encompassing 

high stress gradient zones, such as the crack propagation zone (Kohlhoff, Gumbsch and 

Fischmeister (1991)) and the workpiece just underneath the indenter as in 

nanoindentation (Shilkrot, Miller and Curtin (2002)) and a continuum region is used for 

the rest of material.  

Several techniques have been proposed for simulations bridging two or more scales 

(Kohlhoff, Gumbsch and Fischmeister (1991); Shilkrot, Miller and Curtin (2002); Curtin 

and Miller (2003); Shiari, Miller and Curtin (2005); Raffi-Tabar, Hua and Cross (1998)). 

A transition region, or handshake region, overlapped by the outer boundary of the 

atomistic region and the inner boundary of the continuum region, is usually used to 

transfer the physical quantities (Kohlhoff, Gumbsch and Fischmeister (1991); Shilkrot, 
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Miller and Curtin (2002); Curtin and Miller (2003)).In multiscale simulation, the finite 

element method (FEM) is often used at the continuum level. However, waves with the 

wavelength larger than the element size can be transmitted from the MD region into the 

continuum region, and waves with wavelength smaller than the element size get reflected 

artificially (Raffi-Tabbar, Hua and Cross (1998)). Efforts were made to minimize the 

wave reflection while enforcing the displacement and force continuity, as well as energy 

conservation in the handshake region. An intermediate scale, namely, the mesoscale 

simulation, was also used in bridging the continuum and atomistic simulations (Raffi-

Tabar, Hua and Cross (1998)). Recently, nonlinear deformation has been considered in 

coupling to capture more physical phenomenon. The coupled atomistic/continuum 

discrete dislocation (CADD) method has demonstrated superior capability in detecting 

dislocations from MD simulation and passing them to the continuum region, as well as 

handling explicit material defects and inclusions (Shiari, Miller and Curtin (2005)). For 

2D simulations, the dislocations generated in the atomistic region can propagate into the 

continuum region by defining continuum elements with slip planes in front of the 

transition region to detect dislocations (Shilkrot, Miller and Curtin (2002); Curtin and 

Miller (2003)).  

Other simulation techniques, such as the meshless local Petrov-Galerkin (MLPG) method 

(Shen and Atluri (2005)), Green’s function method (Cai, Koning, Bulatov and Yip 

(2000)), and coarse-grained molecular dynamics (Rudd and Broughton (1998)) are also 

used at the continuum level. These techniques show advantages in heat transfer, stress 

compatibility, and minimizing wave reflection for the coupling between atomistic and 

continuum levels. Mesh distortion associated with FEM is an issue for large nonlinear 
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deformations and dislocations. Recently, the material point method (MPM) (Sulsky, 

Zhou and Schreyer (1995); Sulsky and Schreyer (1996)) was introduced for dynamic 

simulations and the general interpolation material point (GIMP) method (Bardenhagen 

and Kober (2004)) was presented with improved simulation stability. The MPM and 

GIMP use material points to represent a material continuum and utilizes both the 

Lagrangian description for material points carrying physical variables and the Eulerian 

description for convection of physical variables and solution of field equations. Since the 

GIMP/MPM methods do not use a fixed body mesh so that mesh entanglement associated 

with highly nonlinear deformations can be prevented. GIMP and MPM have been used in 

the computation of stresses and strains in metal forming, dynamic fracture (Guo and 

Nairn (2004)), and impact problems (Sulsky and Shreyer (1996)). Recently, GIMP has 

been successfully implemented for 2D simulations covering length scales from 

nanometers to millimeters (Ma, Wang, Lu, Roy, Hornung, Wissink and Komanduri 

(2005)) using multi-level mesh refinement with parallel computing in the Structured 

Adaptive Mesh Refinement Infrastructure (SAMRAI) (Hornung and Kohn (2002)) 

framework. The GIMP refinement technique proposed here has made it possible for 

coupling with MD so that the advantages of GIMP/MPM methods can be fully carried 

over to multiscale simulations. This chapter will describe the GIMP/MD coupling 

techniques, and demonstrate it in the Mode I and Mode II crack propagation problems.  

One aspect of the problems associated with coupling is the conversion of physical 

quantities computed from MD region to continuum region, and vice versa. MD 

simulation gives atom positions, velocities, etc.. The stresses and strains defined in a 

material continuum can be computed from MD simulation using various approaches (Gao, 
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Huang and Abraham (2001); Buehler, Abraham and Gao (2003); Zimmermann (1999); 

Horstemeyer and Baskes (2000)). The most effective standard approach is based on the 

virial theorem (Marc and McMillan (1985); Zimmermann, Webb, Hoyt, Jones, Klein, 

Bammann (2004)). However, it is unable to compute stress/strain at the boundary of the 

MD region. Some new approaches have been developed to calculate the atomic stress 

more accurately. For example, Zhou and McDowell (2004) defined an equivalent 

continuum for the atomistic system with conserved momenta, work rates, and mass. The 

atomic stresses are then calculated from the internal forces and lattice constants. Hardly 

computed the atomic stresses from the contribution of nearby atoms with spatial 

averaging using a localization function: see Zimmermann et al. (2004) for a summary of 

Hardly’s approach.  

The atomistic strain measures the deformation of the atomic lattice. It is also used in 

combined atomistic and continuum studies of material behavior. Buehler, Gao and Huang 

(2004) investigated the stress and strain fields near the crack tip in MD simulations and 

revealed that continuum mechanics can be used at nanoscale. In another study, Bueher, 

Abraham and Gao (2003) showed that in a harmonic solid, the local hyperelastic wave 

speed governs the crack speed of a mode-I crack without branching when the hyperelastic 

zone approaches the energy length scale near the crack tip.  

This chapter presents a method for coupling MD with GIMP simulations in 2D. A new 

formulation to compute the atomistic strain rate and strain increment is developed by 

computing the velocity gradient based on the interpolation of the velocity field on a 

background grid. Based on the atomic strain computation, an equivalent continuum 

system can be defined for the atomic region for the purpose of coupling MD with 
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continuum computations using the GIMP method. The coupled GIMP and MD 

simulations use the same background mesh. The coupling scheme is based on the 

atomistic strain, stress, and deformation, but neglects the heat transfer. Both mode I and 

mode II crack propagation problems are simulated to demonstrate the coupling 

approaches. The coupled simulation results are compared with purely GIMP simulations, 

and pure MD simulation for verification. 

5.2 GIMP and Refinement 

In the generalized interpolation material point (GIMP) method (Bardenhagen and Kober 

(2004)), a continuum is discretized into a collection of material points. Each material 

point carries all the physical variables for a fully defined problem in solid mechanics, 

such as the position, mass, velocity, stress and strain, etc. Each material point deforms to 

represent the motion of the continuum while the mass at each material point remains 

constant. For a dynamic problem, using the variational principle, the momentum 

conservation equation is given by 

∫∫∫∫
Ω∂ΩΩΩ

⋅+⋅=∇+⋅ xvcxvbxvσxva dddd δδδδρ : ,     (5-1) 

where ρ is the mass density, a  is the acceleration field, b  is the body force density, σ  is 

the Cauchy stress tensor, vδ  is an arbitrary admissible velocity field and Ω  is the current 

configuration (Bardenhagena and Kober (2004)). To solve this equation, a background 

grid is introduced for interpolation between the material points and the nodes on the 

background grid using a weighting function that will be described later. Hence, Eq. (5-1) 

can be discretized and the equation of motion is eventually solved at each node, 

ext
i

b
iii fffp ++= int& ,          (5-2) 
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where the nodal momentum, internal force and body force are obtained by summing the 

contributions from each material points p to this node i as ∑=
p

pipi S pp && , 

∑ ∇⋅−=
p

pippi VSσf int  and ∑=
p

ipp
b
i Sm bf , respectively. pm  and pV  are the particle mass 

and volume. The external force is given by ∫
Ω∂

=
c

xcf dSSi
ext
i )( , where c  is the surface 

traction. Finally, the position, strain and stress of the material points can be updated using 

the interpolation from surrounding nodes. 

where the nodal momentum, internal force and body force are obtained by summing the 

contributions from nearby material points p to node i as ∑=
p

pipi S pp && , 

∑ ∇⋅−=
p

pippi VSσf int  and ∑=
p

ipp
b
i Sm bf , respectively. pm  and pV  are the particle mass 

and volume, respectively. The external force is given by ∫
Ω∂

=
c

xcf dSSi
ext
i )( , where c  is 

the surface traction. )(xiS  and ipS  are the grid interpolation function and the weight 

respectively and their definitions will be given later. Finally, the position, strain, and 

stress of the material points can be updated using the interpolation from surrounding 

nodes. 

For GIMP simulations, finer computational mesh and smaller time step should be used to 

improve accuracy in areas with high stress gradient. Both spatial and temporal 

refinements have been introduced in a multilevel refinement algorithm (Ma, Wang, Lu, 

Roy, Hornung, Wissink, and Komanduri (2005)) in which the computational domain 

consists of a hierarchy of nested grid levels with increasing refinement. Each finer level 

covers part of the next coarse level and each level is computed separately with its own 
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time increment. Smaller time increments are used for finer levels and the communication 

between two grid levels are performed when these two levels are synchronized. Fig. 5-1 

shows two neighboring coarse and fine grid levels in 2D GIMP computations with a 

refinement ratio of two. The thick line represents the physical boundary of the fine level 

with four layers of ghost cells. Initially, four material points are assigned to each cell at 

the fine level. At the coarse level, the portion overlapped by the fine level is assigned 16 

material points per cell. Hence, these material points have the same size and initial 

positions as those at the fine level. The rest of the coarse level is assigned four material 

points per cell. Two data exchange processes, i.e., refinement and coarsening are used in 

the communication. The refinement process passes information from a coarser level to its 

next finer level, while the coarsening process passes information from a finer level to its 

next coarse level. In the refinement process, physical variables at the fine material points 

inside the thick lines are copied directly to replace the material points in the coarser level. 

In the coarsening process, the physical variables at coarse material points are copied to 

the ghost cells of the next finer level. 

 

Fig. 5-1: Two neighboring coarse and fine grid levels in 2D GIMP computations 

Using SAMRAI, each grid level can be divided into multiple patches for parallel 

Coarse          Fine

Ghost particles of fine level 
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processing. Each patch is rectangular and is assigned to a processor. The patches are 

overlapped by ghost cells for communication. The parallel processing scheme will be 

discussed in more detail in later sections. 

5.3 MD Simulation and Atomistic Strain 

Molecular dynamics (MD) simulations computes the motion of the atoms by integrating 

the equations of motion given by Newton’s second law af m= . In general, short range 

interaction among atoms within the cutoff radius is governed by an atomic potential 

function. With the rapid increase of computing power, MD simulation is becoming a 

powerful tool in simulation of material behavior. The MD code used in this chapter is the 

LAMMPS code (Plimpton (1995)) developed at the Sandia National Laboratories.  

To couple MD with a continuum simulation using the GIMP method, it is necessary to 

pass MD results to the continuum simulation. For this purpose, variables used in MD 

must be consistent with those in the GIMP simulation. The most critical issue is passing 

the atom velocities and positions to the continuum region. This involves the computation 

of continuum strain fields based on the discrete atom deformation information.  

There are many publications in recent years on the computation of strain from MD results. 

One successful approach developed by Zimmermann, Webb, Hoyt, Jones, Klein, and 

Bammann (2004) calculates the atomic virial strain. In this approach, the left Cauchy-

Green deformation tensor for atom a at coordinates ),,( 321
aaa xxx  is written as 

∑
≠

ΔΔ
=

N

ab ab

ab
j
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ij R
xx
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1
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,         (5-3) 

where b
i

a
i

ab
i xxx −=Δ , b

j
a
j

ab
j xxx −=Δ , abR  is the undeformed distance between atoms a 
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and b, and N is usually limited to the nearest neighbors. λ  is a factor dependent on the 

lattice. 3=λ  for the 2D triangular lattice if the six nearest neighboring atoms are only 

considered (Zimmermann (1999)). Therefore, the Eulerian strain tensor for atom a is 

found as 

)][(
2
1 1−−= a

ijij
a
ij Bδε ,          (5-4) 

where ijδ  is the Kronecker delta. The virial strain calculated above is meaningful 

instantaneously in time and space. However, at locations where the nearest neighbor list 

does not exist or cannot be determined, such as at the external boundary, crack surfaces 

and interfaces, Eq. (5-3) is invalid. To circumvent this drawback, an alternative approach 

described in the next section is proposed to calculate the atomistic strain based on the 

strain rate.  

5.3.1 Incremental atomic strain 

In continuum mechanics, the strain is defined as the gradient of the deformation field. To 

construct the deformation field from the MD simulation, the GIMP Eulerian background 

grid is utilized. All the quantities defined at atoms, such as the mass, velocity, and forces 

can be projected to the background nodes through interpolation. While the nodal 

positions are fixed in space, the nodal quantities can vary with time. The velocity of atom 

a inside the grid is written as  

∑
=

=
n

i
iaiaa tSt

1

)()(),( Vxxv
,        (5-5) 

where n is the number of nodes and )(xiaS  is the interpolation function between node i 

and atom a. By definition, the strain of atom a is then 
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})],([),({
2
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aaa ttt xuxuxε ∇+∇= ,      (5-6) 

where ),( taxu  is the deformation field. The strain rate is given by 

})],([),({
2
1),( T

aaa ttt xvxvxε ∇+∇=& .      (5-7) 

The velocity gradient at atom a can be expressed as ∑
=

∇=∇
n

a
iaiaa tSt

1

)()(),( Vxxv . Using 

the backward Euler time integration scheme, the strain at atom a for the next time step  is 

calculated through  

ttt
a

t
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The nodal mass, force, and momentum are computed from neighboring atoms 

as ∑
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5.3.2 Interpolation function 

To ensure conservation of mass, momentum, and energy between the nodes and the 

atoms, the interpolation function should satisfy partition of unity. The interpolation 

function )(xiaS  can be chosen to be the isoparametric shape functions used in finite 

element analysis. However, the generalized interpolation functions with C1 continuity in 

GIMP has shown better simulation stability when an Eulerian grid is used (Bardenhagen 

and Kober (2004); Ma, Wang, Lu, Roy, Hornung, Wissink and Komanduri (2005)) and it 



 102

is used to compute the atomic strain in this investigation.  

The generalized interpolation function introduced by Bardenhagen and Kober (2004) 

consists of two functions, the nodal shape function and the particle characteristic function. 

Both the nodal shape function and the material point characteristic function can be 

extended to 3D. In three dimensional situations, the nodal shape function for node i is 

given by 

)()()()( zSySxSS z
i

y
i

x
ii =x ,        (5-9) 

and the particle characteristic function, for a brick shaped particle p, is given by 
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and  

)]([)]([)( xpxp
x
p lxxHlxxHx +−−−−=χ ,     (5-12) 

where H(x) denotes the step function. Fig. 5-2 shows a rectangular grid cell with a 

particle in it. The particle position is taken at the center of the particle. It is noted that the 

grid associated with the generalized interpolation function is a structured grid, which is 

convenient to construct and process. 

Both the nodal shape function and the particle characteristic function are a partition of 

unity, i.e., 1)( =∑
p

p xχ  and 1)( =∑
i

iS x . The generalized interpolation function is a 
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volume averaged weighting function between node i and material points p given by 

∫
Ω∩Ω

=
p

dS
V

S ip
p

ip xxx )()(1 χ ,       (5-13) 

where Ω  is the entire computational configuration, pΩ  is the spaces occupied by particle 

p, and pV  is the current particle volume.  

 

Fig. 5-2: 2D representation of a particle and a grid cell  

The atoms are generally regarded as spherical in shape. The characteristic function of a 

sphere can also be found. However, to simplify the computation of the interpolation 

function and its gradient, it is assumed that the atoms are cubic in shape with the same 

volume of a spherical atom. It is also assumed that the shape and orientation of the atoms 

do not change in the simulation. Consequently, Eq. (5-13) is simplified as 

∫∫∫
+

−

+

−

+

−

=
zp

zp

yp

yp

xp

xp

lz

lz

z
i

ly

ly

y
i

lx

lx

x
i

zyx

ip dzzSdyySdxxS
lll

S )()()(
8

1 .    (5-14) 

The final expression of the interpolation function and its gradient can be found in 

Bardenhagena and Kober (2004). The interpolation function is plotted in Fig. 2-3. The 

vertical axis is the interpolation function and horizontal plane is the particle position. The 

node is at (0, 0).  The cell size is 1×1 and the particle size is 0.5×0.5. The interpolation 
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function is continuous and smooth. It may be noted that the volume bounded by the 

surface of the interpolation weight and the horizontal plane is one. 
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Fig. 5-3: The generalized interpolation function in 2D 

5.3.3 Numerical validation 

Several MD simulations are performed to calculate the atomistic strain in 2D. In these 

simulations, the atomic potential chosen is the Lennard-Jones potential given by 

)(4)( 6

6

12

12

0 rr
rU σσε −=          (5-15) 

with 0.10 =ε eV  and 1=σ Å. The mass of each atom is assumed to be 1 amu. The unit 

time is τ = 10 fs. The potential in Eq. (5-15) gives the elastic wave speeds as follows: 

longitudinal wave speed 99.8=lc  Å/τ, shear wave speed 19.5=sc  Å/τ, and the 

Rayleigh wave speed 80.4=Rc  Å/τ. A 2D triangular lattice is used in the simulations. 

The model has 40 lattices in the X direction and 20 lattices in the Y direction. The size of 

the model is 44×39 Å2. The atom is assumed to be cubic with a volume of unity. 

The first simulation is simple tension as shown in Fig. 5-4 (a). The model is constrained 

in the X direction on the left while a constant velocity is applied on two layers of lattices 

on the right. The strain histories of the atom initially at (24.5, 11.2) Å calculated using the 
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virial formula and the new incremental approach are plotted in Fig. 5-5 (a). It can be seen 

that in general the strains calculated from different methods agree reasonably well. The 

virial strain shows more oscillations than the incremental strain. The interpolation 

between the nodes and the atoms is also a spatial averaging process. Two cell sizes, 2 Å 

and 2.5 Å are used in the background grid to investigate the effect of cell size. It can be 

seen that oscillation of the strain are smaller when the cell size is bigger and vice versa 

because the nodal quantities are interpolated from a bigger number of atoms. A large 

content of noise, as a result of random thermal vibration of the atoms, has been 

suppressed due to averaging over a number of atoms. For comparison, the strain from 

continuum simulation, assuming the model material to be homogeneous, isotropic, and 

linearly elastic using the finite element method, is also plotted. It is seen that all 

simulations show that the strain first increases at time between t = 2.5 τ and 3 τ. The 

calculated time is t = 2.8 τ based on the longitudinal stress wave speed. 

 

Fig. 5-4: Two examples to calculate the atomistic strain: (a) Tension (b) Shear  

The second simulation is a shearing problem as shown in Fig. 5-4 (b). Constant upward 

velocity is applied on the two lattices on the right. The resultant shear strain at (24.5, 11.2) 

Å is plotted in Fig. 5-5 (b) from these simulations. The virial strain again shows largest 

variation, while the strain defined herein shows much less vibration. 

(a) (b)

X 

Y 
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Fig. 5-5: Strain histories from different simulations 
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Fig. 5-6: Comparison of the normal strain of a surface atom in tension 

It is noted that computation of the incremental atomic strain does not depend on the 

atomic potential function and the lattice structure. The deformation field is recovered at 

the grid nodes using interpolation. Interpolation also allows averaging on the 

displacement field so that the computed atomic strain shows less oscillation. It is known 

that the virial formula is not applicable to atoms on the surface, see Zimmermann (1999). 

The incremental formulation developed in this investigation, however, does not have this 

restriction. The strains of the atom at the top surface (in the middle of the model) from 

three computations are plotted in Fig. 5-6. It can be seen that prediction of incremental 
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formulation is in reasonably good agreement with the finite element analysis. 

The ability to compute the strains for the boundary and surface atoms is essential for 

coupling simulations. For example, the strain at the crack surface is required in coupling. 

It may be noted that the virial formulation computes a transient strain so that it does not 

depend on the strain history. The incremental strain proposed herein is computed from 

the strain rate so that it must be computed at every time increment during the entire strain 

history of interest. 

5.4 Coupling of GIMP and MD Simulations 

5.4.1 Coupling scheme 

To enable coupling between GIMP and MD, the information must be exchanged between 

the atomistic simulation on one side and the continuum simulation on the other. A 

successful coupling is indicated by the seamless transfer of the deformation, internal 

forces, heat, etc. at the interface of two different simulation regions.  

In the coupling scheme presented in this chapter, heat transfer between the continuum 

and atomistic regions is neglected. Moreover, the transition region is assumed to remain 

in the linear elastic regime at this stage. Fig. 5-7 (a) shows the overall coupling model 

and Fig. 5-7 (b) shows details of the transition zone. The MD region covers a small 

portion of the overall model and the continuum region covers the rest. The transition 

region, where the communication between GIMP and MD simulations take place, is 

divided into three zones, the inner zone, the “incommunicado” zone, and the outer zone, 

as shown in Fig. 5-7 (b). 

In the inner zone, the information is passed from MD to GIMP. The atomic strain is 
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computed using the incremental scheme presented in Sections 3.1 and 3.3. The velocity 

and strain rate at the material points overlapped within the atomistic region are computed 

using Eqs. (5-5) and (5-7) by replacing the atom positions with the positions of the 

material points. Hence, the stresses of these points are computed based on continuum 

theories. Consequently, the material points inside the atomistic region can be updated by 

the atomistic information. These material points can participate in the overall continuum 

computation to provide information for the rest of the continuum region. The innermost 

rectangle in Fig. 5-7 (a) represents the region in which all material points are updated 

based on the atomistic information. These material points are shown in Fig. 5-7 (b) as 

filled squares. The unfilled squares are the material points that are updated in regular 

continuum computations. 

 

Fig. 5-7: Illustration of coupled GIMP and MD simulations. The circles represent atoms 
and squares (smaller than physical size) material points. The material points  

connect to each other without a gap to represent continuum 

The boundary atoms in the outer zone, shown as filled circles in Fig. 5-7, update their 

velocities based on the interpolation with the background grid node using Eq. (5-5). The 

nodal velocities of the background grid are computed from the velocities of the material 
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points weighted by the masses of the material points, as 
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Once the velocities of the boundary atoms are known, their displacements can be found 

from the time integration of the velocities. At this point, the interactions with interior 

atoms are fully defined by the inter-atomic potentials as in regular molecular dynamics 

simulations. 

In the proposed coupling scheme, two different zones are used for communication in 

different directions, i.e. from GIMP to MD or from MD to GIMP. The “incommunicado” 

zone is the gap that separates the inner and outer zones. This zone serves as a buffer for 

the communication between the material points and the atoms. The width of this zone is 3 

to 4 layers of material points. In this coupling scheme, iteration to obtain the converged 

solution in the transition zone is not necessary, as the source of information is guaranteed 

to be correct and the communication in each zone is unidirectional. This approach not 

only simplifies the coupling algorithm but also improves the stability and reduces the 

computational cost. 

The time step for MD simulation is usually smaller than the time step for GIMP, and can 

be used as the time step in the coupled simulation to reach stability in coupled simulation. 

However, with the use of the smaller MD time step as the overall time step in a coupled 

simulation, the amount of computation is enormous. In this coupling algorithm, a 

temporal coupling scheme is developed. A temporal factor N is defined as the ratio of the 

GIMP time step to the MD time step; that is, 
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MD

GIMP

dt
dt

N = ,          (5-17) 

where ρ// EcLdtGIMP =  is the GIMP time step, L is the cell size, and c is a constant 

factor (0.1 in this chapter). In the coupling, MD simulation advances N time steps for 

each GIMP time step. In the computation, the GIMP time step is computed first from the 

cell size and stress wave speed. Next, the temporal factor N is rounded to an integer 

based on Eq. (5-17). Finally, the GIMP time step is determined from MDGIMP dtNdt ⋅= . 

The reduction in computation time as a result of the temporal coupling scheme is 

significant, as indicated by numerical examples that will follow. 

 

Fig. 5-8: Flow chart of the coupling algorithm for one increment 

Next the coupling scheme is summarized with the aid of the flowchart in Fig. 5-8. The 

material points inside the atomistic domain are updated based on the nodal information 

One regular GIMP step, but 
do not update the material 
particles inside MD region  

Update the velocity of the 
boundary atoms  

One regular MD step, but do 
not update the velocity of the 
boundary atoms  

Update the material particles 
inside MD region  

N times? No 

Yes, next increment 
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interpolated from the atoms. These material points join the GIMP calculation to provide 

boundary conditions, but are not updated again. The velocity and position of the 

boundary atoms are updated based on the nodal information interpolated from the 

material points. These boundary atoms join the MD calculation to provide boundary 

conditions as well, but the velocities are not updated. The concept of temporal coupling is 

introduced by advancing the MD simulation N steps for every GIMP step, in order to 

save computational time. It may be noted that the material points further inside the MD 

region can be ignored to reduce the amount of computation since only a few layers of 

material points are needed to provide boundary conditions to the exterior material points. 

5.4.2 Parallel processing of the coupled model 

The parallel processing for the GIMP with multilevel refinement using SAMRAI has 

been discussed in detail in (Ma, Wang, Lu, Roy, Hornung, Wissink and Komanduri 

(2005)). The coupling between GIMP and MD is performed at the finest level only. So 

the finest level is always larger than the MD domain. The finest level is divided into 

rectangular regions using SAMRAI “patches”. Each patch is assigned to one processor 

and the communication between patches is performed after each patch is computed. To 

eliminate data transferring between processors in the coupling process, the MD region is 

decomposed into rectangular regions that are the same size as the patches. Each processor 

thus handles the same spatial region for both GIMP and MD. Fig. 5-9 shows three levels 

of refinement for GIMP with MD coupled in the finest level. The dashed lines divide the 

finest level as well as the MD domain into six rectangular regions. Each region is 

computed by a processor and the communication between the material points and the 

atoms for coupling is performed within the processor. No data transfer between the 
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processors is necessary. The disadvantage of this approach is that the load balancing of 

the processors is more difficult due to the changing number of atoms and material points 

during computation. 

 

Fig. 5-9: Illustration of three GIMP grid refinements and the domain  
decomposition for coupling 

5.5 Numerical Results 

5.5.1 Multiscale simulation of mode I crack 

 

Fig. 5-10: Coupled GIMP/MD simulation of a 2D mode-I edge crack. The dashed lines 
are the boundaries of the atomistic domain 

The coupling scheme is implemented into a multiscale simulation of a mode I crack 

problem as shown in Fig. 5-10. The overall model size is 1968×1808 Å2 and the size of 

the MD domain is 890×600 Å2. Three levels of refinement in GIMP are applied. The 
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finest level has a grid size of 4 Å and the two coarser grid sizes are 8 Å and 16 Å, 

respectively. The finest level is coupled with MD and is divided into six patches as 

shown in Fig. 5-9. It may be noted that the sizes of the material points and the grid cells 

determine the wavelength that can be transmitted from the MD simulation to the 

continuum. In this simulation, the high frequency waves are not desirable in the 

continuum region. Hence, to save computational time, the minimum grid size is chosen as 

4. The total number of atoms is 497,111 and the initial crack length is a = 498 Å at the 

height Y = 301 Å. The applied pressure is 0.3 eV/Å3 and the time step of the MD 

simulation is 0.002 τ. The temporal factor N is chosen as 40, and therefore, the GIMP 

time step for the coupling level is 0.08 τ. For comparison purposes, the same problem is 

simulated using GIMP alone without coupling. Fig. 5-11 shows the stress distribution in 

the model at simulation time t = 64 τ when the stress wave just traveled to the transition 

region. Fig. 5-11 (a1) corresponds to pure GIMP simulation, and Fig. 5-11 (b1) uses with 

coupling. Due to thermal vibrations of the atoms, the stress in the MD region varies 

randomly between ±0.15~0.2 eV/Å3 at stress free state. The material points further inside 

the MD region can be ignored and hence dumped to reduce the amount of computation. 

Fig. 5-11 (c1) shows the result of this case in which only 3 layers of material points 

immediately inside transition region are kept. It is seen that the stress distribution is not 

affected by dumping the material points inside the MD region. The computational time 

was reduced by about 50% in this case. Close to the crack tip, the stress distribution is 

affected by dislocations and crack propagation. In later discussions, only the results with 

material points dumped are presented. 
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Fig. 5-11: Stress distribution for P = 0.3 eV/Å3 

Fig. 5-11 also shows the same model at time t = 112 τ. At this moment the stress 

concentration at the crack tip has developed. The crack just started to open. The stress 

t = 64 τ t = 112 τ 

(a1) Pure GIMP  (a2) Pure GIMP  

(b1) Coupled (b2) Coupled 

(c2) Coupled with dumping (c1) Coupled with dumping 
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fields from pure GIMP simulation and coupled simulation are shown in Fig. 5-11 (a2) 

and (b2), respectively. The difference of the maximum normal stress in the Y direction is 

8%. The coupling region is zoomed in and shown in Fig. 5-12, corresponding to the 

region indicated by the dashed rectangle in Fig. 5-11 (c2). The material points taking 

information from the atoms are overlapped inside the MD region. These material points 

cannot be seen in Fig. 5-12 due to the high density of the atoms. 

 

Fig. 5-12: Simulation model with an edge crack with P = 0.3 eV/Å3 at t = 208 τ 

It is noted that the reduction of computational time due to the temporal coupling with N = 

40 is about 75%, compared to the same simulation with N = 1 (no temporal coupling). 

The GIMP step involves regular GIMP calculation and communication between patches 

and levels (refinement and coarsening). The GIMP computation time is significantly 

larger than that of an MD step in this example. Temporal coupling has reduced the 

computational time significantly while maintaining the accuracy of coupling, as shown in 

Fig. 5-11.  
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Fig. 5-13: Energies in the model with P = 0.15 eV/Å3 
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Fig. 5-14: Energy release rate P = 0.15 eV/Å3 

To study the energy release rate of a mode I crack using the coupling algorithm, a tensile 

pressure of 0.15 eV/Å3 is applied from t = 0 to t = 210 τ. The crack started to propagate at 

t = 225 τ and stopped at t = 334 τ. The external input energy, total potential energy and 

total energy from the simulation are plotted in Fig. 5-13. Due to the numerical damping, 

the total energy decreases as time increases. The energy loss at t = 360 τ is 20%. 

Numerical simulation was conducted for this same model without damping and the 

difference between the input energy and the system energy gain is less than 8%. The 

potential energy is the sum of the potential energy of the atoms and the strain energy of 
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the material points. It increases at first when the model is stretched. After the crack starts 

to propagate the potential energy drops. The energy release rate for this simulation is 

plotted in Fig. 5-14, as well as the crack resistance. The energy release rate fluctuates as 

the crack propagates and its magnitude is larger than the crack resistance. After t = 330 τ 

the energy release rate drops below the crack resistance, leading the crack to arrest. 

5.5.2 Multiscale simulation of mode II crack 

 

Fig. 5-15: Boundary conditions of the mode II crack problem 

The same model in Fig. 5-10 was simulated under a mode II condition by applying 

velocities on the left side of the model as shown in Fig. 5-15. The applied shearing 

velocities in the X direction, are -0.1 Å/τ and 0.1 Å/τ for the top half and bottom half, 

respectively. Moreover, to avoid the contact of the initial crack surfaces, a velocity in the 

Y direction is applied on the left boundary, 0.003 Å/τ for the top half and -0.003 Å/τ for 

the bottom half. The relatively small velocity in the Y direction was applied to open crack 

slightly to avoid the interaction of the crack surfaces. The initial crack is horizontal with 

the tip located at (67, 301) Å. This problem was simulated with both the coupled model 

and full MD model at zero temperature. 

The velocities of the atoms in the X direction from the pure MD simulation are shown in 
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Fig. 5-16 (a). In this simulation, a crack was introduced to the left of the crack tip by 

eliminating the interaction of the atoms on both sides of the crack. As the velocities were 

applied on the boundary, the predominant deformation in the model is shearing. The path 

of the shearing front was observed to be straight, as an extension to the initial crack. The 

relative shearing motion between the two layers of atoms, which generate dislocations, 

occurred in the stick/slip mode, as indicated by Fig. 5-16 (a). The blue spots indicate 

atoms moving to the left at a velocity of ~0.7 Å/τ and relative velocity between the atoms 

on the top and bottom is ~0.8 Å/τ. Between the blue spots, the relative velocity is very 

small, in the range of 0 and 0.2 Å/τ. Most of the shear surfaces stick together and slip 

occurs at isolated spots. 

 

Fig. 5-16: Comparison of results from pure MD and coupled simulations at t = 11.2 τ 

The results from the coupled simulation are plotted in Fig. 5-16 (b) for comparison. It can 

be seen that the velocity contours agree well with pure MD simulations. The stick/slip 

pattern also matches. This further verifies the accuracy of the coupling algorithm. It may 

be noted that for this size of model, there are 3.3 million atoms in the pure MD 

simulation, and only 0.5 million atoms and three levels of material points in the coupled 

simulation. The computation time and memory for coupled simulation are 8% and 30% 

(a) Pure MD (b) Coupled 
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less than the pure MD simulation, respectively. As the model grows bigger, the reduction 

in both computation time and memory size will be more significant. 

 

Fig. 5-17: Dislocation path at different simulation time 

To track the dislocations in the atoms, the relative displacement of each atom with 

respect to each neighboring atom was computed and the maximum relative displacement 

was recorded for the atom. Fig. 5-17 plots the maximum relative displacement of the 

atoms at different simulation times when the cut-off value of the maximum relative 

displacement is set to 0.15 Å; i.e., atoms with maximum relative displacement of less 

than or equal to 0.15 Å are not shown. With this cut off value, all the visible atoms are 

those immediately on two sides of the crack extension and those with the stick/slip 

pattern. The left end of each plot is the crack tip and right end is the slip front. The 

average propagation speed of the slip frontier is ~3.5 Å/τ during t = 64 τ and t = 160 τ. 

5.6 Conclusions 

A coupled atomistic/continuum simulation method is presented by coupling MD 

simulations with GIMP simulations. To enable coupling, a method for the computation of 

atomistic strain, based on the computation of strain rate, is developed. The atomic strain 

rate is computed by first interpolating the velocities of the atoms to a background 
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Eulerian grid, then computing the gradient of grid velocities. The computed atomic strain 

shows less vibration than that computed by the virial theorem due to noise reduction in 

the interpolation process. The generalized interpolation function is chosen as the 

interpolation function for GIMP and a structured grid is used for the background grid. 

The atomic stress is then computed based on strain using the isotropic and homogeneous 

constitutive law. 

The coupling algorithm uses a common background grid for MD and GIMP. The 

velocities of the boundary atoms are computed from the grid velocities, which are 

interpolated from the material points. The material points inside the MD region are 

updated based on the atomic information and these points join the rest of the material 

points in the GIMP computation. This approach ensures the compatibility of deformation 

and internal forces at the MD/GIMP interface region. 

A multi-level refinement scheme for GIMP is used to refine the material points close to 

the atomistic size. The coupling algorithm is implemented using the SAMRAI 

(Structured Adaptive Mesh Refinement Application Infrastructure) for parallel processing. 

The finest GIMP level is coupled with the MD simulation. The MD region is 

decomposed into domains with the same geometry as the GIMP patches. Each patch is 

assigned to a processor and the coupling between the atoms and material points is 

performed inside each processor without extra inter-processor communication. 

The coupling algorithm was verified by comparing the coupling results with the pure 

GIMP and with the pure MD simulations. A mode I crack propagation problem was 

simulated using the proposed the coupling technique. The stress field of the coupled 

model is verified by comparison with pure GIMP simulations in the elastic stage. The 
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energy release rate is computed and it is found that the crack arrests after the energy 

release rate is less than the crack resistance. In mode II loading, stick/slip was observed 

in the crack front and the results compared well with pure MD simulation. While the 

current implementation is in 2D, the coupling algorithm can be applied to 3D. 

The coupling algorithm presented here can be extended to include discrete dynamics 

outlined in the CADD method (Curtin and Miller (2003); Shiari, Miller and Curtin 

(2005)). A dislocation detection band can be placed inside the inner zone in Fig. 5-7 

which in turn can be fed into the continuum region, and vice versa. 
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Chapter 6  

Multiscale Simulation of Nanoindentation using GIMP, Dislocations Dynamics and 

Molecular Dynamics 

A multiscale simulation technique coupling three scales, i.e., the molecular dynamics 

(MD) at the atomistic scale, the discrete dislocations at the meso scale and the 

generalized interpolation material point (GIMP) method at the continuum scale, is 

presented. Discrete dislocations are first coupled with GIMP using the principle of 

superposition (van der Giessen and Needleman (1995)). A detection band seeded in the 

MD region is used to pass the dislocations to and from the MD simulations (Shilkrot, 

Miller and Curtin (2002)). A common domain decomposition scheme for each of the 

three scales was implemented for parallel processing. Simulations of indentation were 

performed on the (111) plane of Cu at 0 °K indented by a cylindrical indenter. The effects 

of indenter radius, indentation speed on the indentation load-depth curve and dislocations 

were studied. For simulations at finite temperatures, temperature rescaling technique was 

used to rescale the atom velocities in the MD region to maintain a constant temperature. 

Simulations were also performed at different temperatures to determine the effect of 

temperature. 

6.1 Introduction 

Multiscale modeling has received increasing attention in modeling material behaviors in 

recent years due to its capability to simulate and link physical events occurring at various 
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length and temporal scales. At the atomic scale, simulation techniques based on atom 

motion, such as molecular dynamics and Monte Carlo simulations can reveal the 

fundamental aspects on material deformation provided that the amount of computation is 

accommodated by the current computing power. At larger scales where atomistic 

simulation cannot be readily applied due to excessive computing cost, techniques such as 

discrete dislocation dynamics at the mesoscopic level and finite element analysis at the 

macroscopic level have been employed. With appropriate coupling techniques, 

simulation at different scales can be bridged to obtain the most accurate information in 

areas where atomistic revolution is desired while allowing the dislocation and continuum 

descriptions to model the material behaviors in areas farther away without the significant 

loss of accuracy.  

Several techniques have been proposed for simulations bridging two or more scales 

(Kohlhoff, Gumbsch and Fischmeister (1991); Shilkrot, Miller and Curtin (2002); Curtin 

and Miller (2003); Shiari, Miller and Curtin (2005); Raffi-Tabar, Hua and Cross (1998)). 

At each individual scale, simulation techniques have been well established. However, the 

treatment on transition region, or handshake region, overlapped by the outer boundary of 

the atomistic region and the inner boundary of the continuum region, is where the 

difficulties arise (Kohlhoff, Gumbsch and Fischmeister (1991); Shilkrot, Miller and 

Curtin (2002); Curtin and Miller (2003)). For example, in multiscale simulation, the finite 

element method (FEM) is often used at the continuum level. However, spurious effects 

can occur when waves with the wavelength larger than the element size is transmitted 

from the MD region into the continuum region, and waves with wavelength smaller than 

the element size are reflected artificially (Raffi-Tabbar, Hua and Cross (1998)), causing 
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artificial overheating in the MD region. Efforts were made to minimize the wave 

reflection while enforcing the displacement and force continuity, as well as energy 

conservation in the handshake region. Cai et al. proposed the Green’s function method 

(Cai, de Koning, Bulatov and Yip (2000)) in dynamic coupling between the two regions 

and this technique shows advantages in minimizing wave reflection. A multi-scale 

framework merging two scales, the microscale and the continuum scale was developed to 

create a hybrid elasto-viscoplastic simulation model coupling discrete dislocation 

dynamics with finite element analysis based on the superposition principle (Zbib and 

Diaz de la Rubia (2002)). At intermediate scale, the dislocation modeling was used in 

bridging the continuum and atomistic simulations (Raffi-Tabar, Hua and Cross (1998)). 

The involvement of dislocation dynamics in connecting the atomistic and continuum 

scales enables the model to handle plastic deformation through the explicit motion of 

dislocation defects in the continuum region. With this feature, the multiscale model is 

completely structured for applications such as nanoindentation (Shiari, Miller and Curtin 

(2005)). 

Plastic deformation in crystalline metals is the result of motion of large numbers of 

dislocations. Various discrete dislocation (DD) models have been developed in the past 

two decades, and dislocations are usually described as line singularities in an elastic 

medium (Amodeo and Ghoniem (1990); Gulluoglu and Hartley (1993); Kubin and 

Canova (1992); Fang and Dahl (1993); Groma and Pawley (1993); van der Giessen and 

Needleman (1995); Zbib, Rhee and Hirth (1998)). On the interactions of the dislocations, 

the long-range forces are well-represented by the linear elastic fields outside a dislocation 

core radius of about five Burgers vectors from a dislocation. Within a distance of several 
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Burgers vectors from the core, the displacement field around the dislocation is nonlinear 

and cannot be described accurately by linear elasticity (Amodeo and Ghoniem (1990)). 

Instead, a set of constitutive rules were used to represent the short range interactions 

between dislocations. Recently, nonlinear deformation has been considered in coupling to 

represent the physical phenomenon. The coupled atomistic/continuum discrete 

dislocation (CADD) method has demonstrated its capability in detecting dislocations in 

the atomistic region and converting the atomistic dislocations into discrete dislocations in 

the continuum region (Shilkrot, Miller and Curtin (2004)). A dynamic version of the 

CADD method has been used to study the nanoindentation process as a function of 

temperature and rate of indentation (Shiari, Miller and Curtin (2005)).  

While FEM has been developed as an appealing simulation technique at the continuum 

scale, it is subjected to some difficulties, including the complexity in mesh generation for 

computational bodies with complex geometries and severe mesh distortion under large 

nonlinear deformations. To overcome some of the limitations of FEM, the material point 

method (MPM) (Sulsky, Zhou and Schreyer (1995); Sulsky and Schreyer (1996)) was 

introduced for dynamic simulations and the general interpolation material point (GIMP) 

method (Bardenhagen and Kober (2004)) was presented with improved simulation 

stability. In these methods, material points that can conform to the geometry complexity 

with ease are used to discretize the computational body. Further, these methods can avoid 

the mesh entanglement problem because of the use of Lagrangian description for material 

points carrying physical quantities and the use of Eulerian description for convection of 

physical variables and solution of field equations. A new method for multiscale 

simulation bridging two scales, namely, the continuum scale using the GIMP method and 
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the atomistic scale using MD was proposed and verified in 2D, using the multilevel 

refinement technique in a parallel computing environment (Ma, Wang, Lu, Roy, Hornung, 

Wissink and Komanduri (2005); Ma, Lu, Wang, Hornung, Wissink and Komanduri 

(2005)). Coupling between GIMP and MD is achieved by using compatible deformation, 

force, and energy fields in the transition region between GIMP and MD. This coupling 

framework can overcome some inherent limitations of FEM, while maintaining the 

advantages of the multiscale modeling with a scheme for time-saving in parallel 

computing.  

In this chapter, we present a multiscale simulation scheme, encompassing GIMP at the 

continuum scale, MD at the atomistic scale and DD at the mesoscale to link GIMP and 

MD. The technique has expanded the previous GIMP and MD coupling method (Ma, Lu, 

Wang, Hornung, Wissink and Komanduri (2005)), to introduce discrete dislocations in 

the framework of coupling. Dislocation accommodation and propogation mechanisms are 

introduced by detecting dislocations through the MD simulation in real time and then 

passing them through the boundary. This helps to alleviate the artificial wave propagation 

problem in direct GIMP and MD coupling. The new method can handle larger numerical 

model without drastically increase the computational expense, as the introduction of DD 

allows some regions previously modeled by MD to be simulated by DD. DD can 

substitute MD in simulating some of the critical areas without significant loss of accuracy 

and the computation is more economical for the same model.  

6.2 Coupling Scheme between GIMP, DD and MD 

6.2.1 Coupling of GIMP and MD 

In this section, we review briefly an algorithm that couples the continuum and atomistic 
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scales directly. At the continuum scale, the generalized interpolation material point 

(GIMP) method is used. Fig. 6-1 illustrates the coupling scheme in which the atomistic 

region is embedded in the continuum region as shown in Fig. 6-1 (a). A transition region, 

where the communication between the two regions takes place, is constructed by 

overlapping the material points and the atoms by certain width, as shown in Fig. 6-1 (b). 

A common background grid is used to carry out the communication by interpolating the 

physical quantities, such as the velocity and forces, back and forth between the 

continuum region and the atomistic region. The material points in the inner zone, shown 

in Fig. 6-1 (b), are updated from atomistic simulation, and then join the rest of the 

material points in the GIMP simulation. The velocities of the atoms in the outer zone are 

updated by the continuum region, and then provide boundary conditions for the MD 

simulation. 

 

Fig. 6-1: Illustration of coupled GIMP and MD simulations. The circles represent atoms 
and squares (smaller than physical size) material points. The material points connect to 

each other without a gap to represent continuum  

Refinement algorithms in GIMP have been developed to split the material points to the 

size of atoms at the transition region to achieve seamless coupling. However, if 
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dislocations cannot be modeled explicitly in the continuum region, the atomistic region 

has to be large enough so that the dislocations do not propagate to the transition region, 

i.e., the continuum region remains elastic. 

6.2.2 Bridging the continuum and atomistic scales with DD 

In order to detect dislocations when they are generated in the MD region and then pass 

them into the continuum region, the method for dislocation detection and passing 

algorithm proposed by Shilkrot, Miller and Curtin (2004) was implemented into the 

GIMP and MD coupling. Several layers of atoms at the border of the MD region and the 

continuum region form detection band elements, which are triangular in shape. During 

deformation, the Lagrangian strain tensor of an element in the detection band is  

][
2
1 IFFE −= T          (6-1) 

where F is the deformation gradient tensor and it is decomposed into 

peFFF = .         (6-2) 

In Eq. (6-2),  eF  is related to the lattice stretching while pF corresponds to the plastic 

shearing of the slip systems of the crystal. For the case of ideal slip deformation, IF =e . 

And pF can be represented by: 
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where R is the lattice rotation and d is the interplanar distance, b  and m  are the 

Burger’s vector and the normal of the slip plane, respectively. Substituting Eq. (6-3) into 

Eq.( 6-1) , we get the plastic slip strain tensor as 
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For each of the detection band elements, both the actual strain E and the plastic slip strain 

pE are computed after the positions of the atoms are updated at each computational step. 

The norm 2L represents the difference between the actual strain and the plastic slip strain. 

)(:)(2
p
i

p
iL EEEE −−=        (6-5) 

 If the zero Burger’s vector ( 0=b ) minimizes 2L , no dislocations are detected. 

Otherwise, the core of the detected dislocation is assigned to the centroid of the detection 

band element. For 2D triangular lattices, E can be computed from constant strain 

triangles as in finite element method. 

Once dislocations reside in the continuum region, the field variables of the body with the 

instantaneous dislocation distribution can be solved by the discrete dislocation technique 

(Kubin and Canova (1992); van der Giessen and Needleman (1995)). Each dislocation i is 

characterized by its Burgers vector ib and the unit normal vector in of its slip plane. The 

current state of the body in terms of the displacement, strain and stress fields is computed 

as the superposition of two fields,  

uuu ˆ~ += , εεε ˆ~ += , σσσ ˆ~ +=       (6-6) 

where the (~) fields are the fields associated with n dislocations in their current 

configuration but in an infinite homogeneous medium. The complimentary (∧) fields are 

used to enforce the correct boundary conditions. The solution for σ~ , ε~ and u~ is the 

superposition of the fields of individual dislocations:  
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where the analytical solutions iσ~ , iε~ and iu~ of the individual field are available for 
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straight dislocations in 2D stress state in an infinitely large isotropic material (Hirth and 

Lothe (1982)).  

On the update of dislocations, the Peach-Koehler (P-K) force ip  is the driving force for 

evolvement in the dislocation topology and it is computed by 

i
N

ij

Tiip bσσn ⋅+⋅= ∑
≠

)~ˆ()( .        (6-8) 

Using the linear drag relation, the magnitude of the glide velocity of dislocation iv  is 

computed from the Peach-Koehler force through  

ii Bvp = ,         (6-9)  

where B is the drag coefficient. Then each dislocation i is displaced by tviΔ , followed by 

the determination of the stress and strain state for the updated dislocation structure.  

6.2.3 Parallel processing  

The parallel processing scheme for coupling GIMP with MD has been developed using 

domain decomposition for both MD and GIMP in Chapter 5. It is noted that only the 

finest level of GIMP is coupled with MD. For all the coarser levels, pure GIMP 

calculation is carried out. When the discrete dislocation is incorporated into the coupling 

algorithm, care must be taken in the multi processor distributed processing. The DD 

algorithm shows that the amount of DD related computation is proportional to 2
DN , 

where DN  is the number of dislocations. In this investigation, the computational cost of 

DD is much less than that of MD and GIMP. Hence, we still adopt the same physical 

domain decomposition as in GIMP for DD as describe in Chapter 5. Fig. 6-2 shows a 

schematic of an indentation problem in the coupling simulation. The area immediately 
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beneath the indenter is modeled by MD. Three levels of successive refinements in GIMP 

are shown with the finest level decomposed into six rectangular patches. Other levels are 

also divided into 6 patches and these patches are not shown. Even though using the same 

domain decomposition for MD and GIMP in the finest level does not produce the best 

load balance among the processors, this approach is simple to implement and effective in 

the communication between GIMP and MD in the transition region, because material 

points and atoms in exchange of information are stored and processed by the same 

processor, and hence, no inter-processor communication is necessary. 

 

Fig. 6-2: Illustration of the domain decomposition and refinement for the coupling 
simulation of 2D indentation using GIMP, DD and MD 

When discrete dislocations, shown as small squares in Fig. 6-2, are introduced into the 

model, we keep the domain decomposition intact. Fig. 6-3 shows the overall flowchart of 

the coupling algorithm incorporating GIMP, DD and MD. Each DD is updated within 

each patch where it resides because the local continuum stress is needed to compute the 

Peach-Koehler force applied on it. Because the long-range forces from all other DDs 

have to be computed, i.e., loop all the DDs, we store the updated information of all the 

DD’s in each processor. Hence, inter-processor communication can be avoided. The cost 
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is that after each step, i.e., after all patches in each level and the DDs are updated, the 

updated DD information has to be broadcasted to other processors. To achieve this, each 

processor sends first the local updated DD information, including newly created DDs, to 

one master node and the master node assembles all the updated dislocations. Next, the 

master node broadcasts all the dislocation information to all other processors. It may be 

noted that each dislocation carries a position and a Burger’s vector (4 double variables in 

2D) and the communication overhead is usually negligible comparing to the GIMP and 

MD computations.  

 
Fig. 6-3: Flow chart of the coupling algorithm for each increment 
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6.2.4 Contact solver for MD 

The contact algorithm to determine the contact force for each atom that penetrates into 

the rigid indenter is more straightforward than the contact algorithm at the continuum 

scale. A repulsive potential between the indenter and the atoms in contact can be defined 

as a function of the penetration depth in the form nK |||| d⋅=Φ , where d is the 

penetration depth, K is a constant that controls the strength of the repulsive potential. The 

exponent n was chosen as 3 in Klchner, Plimpton and Hamilton (1998) and it was 2 in 

Miller, Shilkrot and Curtin (2004). In this approach, the magnitude of K is usually 

determined numerically to achieve both simulation stability and contact compatibility. 

Eventually, a range of magnitudes can be used for K and convergence becomes the 

decisive issue. Extra numerical experiments have to be performed to narrow the range of 

K. 

In this research, we avoid using the above approach by explicitly solving for the contact 

force on each atom in contact by considering the penetration depth and the acceleration. 

The penetration depth d can be first determined from the atom location and velocity 

assuming no contact.  If there is penetration, it must be eliminated during the time 

increment tΔ . From 2

2
1 tΔ= ad , where a  is the acceleration, one can determine the 

contact force 22
t

mm aac Δ
=⋅=

daF , where am  is the mass of the atom. The contact force 

can then be decomposed into three components in the Cartesian coordinates based on the 

local outward normal of the indenter surface. 

6.3 Simulation of Nanoindentation 
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Fig. 6-4: 2D modeling of an indentation problem with a cylindrical indenter 

When a rigid long cylindrical indenter is indented into a workpiece, the middle section 

can be assumed to be in the plane-strain condition. In this investigation, as shown in Fig. 

6-4, the indentations are performed along the ]211[  direction on the FCC copper 

modeled by the EAM potential and this problem can be modeled as a 2D indentation on 

the (111) plane. The simulation temperature is 0 °K. 

 

Fig. 6-5: Dislocations and the load-depth curve 

Fig. 6-5 shows a typical load-depth curve from simulation. The initial loading curve is 

relatively smooth and no dislocation is observed in the atoms. The atom distribution 
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corresponding to point A is plotted in Fig. 6-5. At the first drop, point B, in the load-

depth curve, dislocation twinning below the indenter was observed. The first dislocation 

forms a 60o angle with the positive X direction. The other dislocation is nucleated 

immediately after the first one and it moves in the negative X direction. These two 

dislocations advanced in straight path as the indenter continue to indent into the 

workpiece. And the workpiece stiffened until the next dislocation was generated at points 

C and D. The next dislocation forms a 60o angle with the negative X direction. All 

subsequent dislocations are in these three directions and the workpiece softens when each 

dislocation is generated below the indenter. The initial portion of the unloading is related 

to the velocity of the indenter and this will be discussed later. In the constant loading 

portion, the load-depth curve is parallel to the elastic loading part. 

  

 Fig. 6-6: Comparison of load-depth curves using different contact algorithms 
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The next numerical example is to validate the force based contact algorithm by 

comparing with the results from the contact pressure based contact algorithm (Klchner, 

Plimpton and Hamilton (1998)). The velocity history of the rigid indenter is shown in Fig. 

6-6 (a). The load-depth curves from three simulations with different contact conditions 

are shown in Fig. 6-6 (b), (c) and (d), respectively. All three simulations give similar load 

magnitudes and dislocation patterns. When the repulsive contact potential is used, the 

loading curve appears to be smoother for K = 500 than for K = 1000. The initial portions 

of the unloading curves are quite different when K is different. For this reason, the 

contact force based algorithm is used in the next simulations. 

 

Fig. 6-7: Effect of the indentation velocity on the load-depth curve 

To investigate the effect of indentation velocity, simulations are performed with several 

indentation velocities with a fixed indenter radius. The overall workpiece size is also 

fixed at 86.8 nm ×57.8 nm. The size of the MD region is 28.9 nm ×21.7 nm. The MD 

time step is 2 fs (1 fs = 10-15 s) and the temporal refinement factor is 5, i.e., the GIMP 

time step is 10 fs. First, an indenter with a radius of 3.6 nm is used in the simulations of 

three indentation velocities, 7.2 m/s, 36 m/s and 72 m/s. Fig. 6-7 (a) shows the 
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indentation load-depth curves. It is seen that the indentation load is higher if the 

indentation velocity is higher at fixed depth of indentation. Another observation is that 

the indentation depth at the onset of the first slippage in the workpiece is larger if the 

indentation speed is lower. When the indentation speed is lower, the deformation can 

propagate further so that there is less strain gradient in the workpiece. The same 

phenomena are observed for these three indentation velocities when the indenter radius is 

changed to 7.2 nm. However, if the indentation speed is further reduced to 1.8 m/s, the 

load-depth curve is almost identical to the one with the indentation speed of 7.2 m/s, as 

shown in Fig. 6-7 (b). This indicates a quasi-static condition has been reached and the 

load-depth curve is converged. 
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Fig. 6-8: Effect of the indenter size on the load-depth curve 

Fig. 6-8 shows three load-depth curves for three different indenter radii when the 

indentation was fixed at 72 m/s. The size of the workpiece is the same as the one used in 

Fig. 6-7. In this case, there is a strong dependence on the indenter size. The slope of the 

load-depth curves in the elastic region increases with the increase of indenter radius.  

In the theory of elasticity, assuming that the workpiece is an infinite half space, the 
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relation between indentation load P, depth h and indenter radius R is given as (Gladwell 

(1980)) 

⎥
⎦

⎤
⎢
⎣

⎡
−=

R
hhCP

2

2
1 ,         (6-10) 

where C is a constant depending on the material properties only. It is seen that when the 

indentation depth h is much smaller than the indenter radius R, the indentation load P is 

linearly dependent on h. To investigate the effect of the workpiece boundaries on the 

simulation, the indenter radius and the workpiece size are changed simultaneously so that 

their ratio is a constant. Under this circumstance, each simulation would experience 

relatively the same amount of boundary effect. Fig. 6-9 shows the results for three 

indenter radii, 3.6 nm, 7.2 nm and 14.4 nm, when the indentation velocity is fixed at 72 

m/s. It is seen that the slopes for the three curves are the same before slippage occurs, 

which is consistent with the predictions in elasticity.  

Depth (Å)

Lo
ad

(e
V

/Å
)

0 10 20 30 40 50 60
0

30

60

90

120

150

180

R=3.6nm V=72m/s
R=7.2nm V=72m/s
R=14.4nm V=72m/s

 

Fig. 6-9: Load-depth curves when the ratio between the workpiece size and the indenter 
radius is constant 
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Fig. 6-10: Comparison of the load-depth curves between the coupling  
and purely MD simulations 

To further validate the coupling model, a pure MD simulation was performed with the 

indenter radius of 7.2 nm. A reasonably good agreement between the coupling and the 

purely MD simulation can be seen from the load-depth curves in Fig. 6-10. 

 

Fig. 6-11: Slip bands, discrete dislocations and stress distributions in the model 

As discussed in previous sections, the load-depth curves drop when the dislocation is 

generated below the indenter. Despite the different indenter radii and indentation 
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model in the simulation with three slip bands in the MD region. yσ  stress distribution in 

the GIMP model and the discrete dislocations are also shown. 

6.4 Conclusions 

Discrete dislocations are coupled with GIMP using the approach based on principle of 

superposition proposed by van der Giessen and Needleman (1995) in which the total 

displacement and traction boundary conditions due to both discrete dislocations and 

GIMP are the same as the external applied ones, respectively. A coupling algorithm 

incorporating GIMP, discrete dislocations and MD is developed with parallel processing 

using a common domain decomposition scheme. In parallel processing, each processor 

updates all the material points, discrete dislocations and atoms in its sub-domain. 

Temperature rescaling technique is used to scale the atom velocities to maintain a 

constant temperature in the MD region during the simulation. The region for temperature 

rescaling is smaller than the overall MD region to ensure displacement compatibility at 

the transition zone. The coupling algorithm is used to simulate the indentation on Cu (111) 

plane with a cylindrical indenter. The effects of indenter radius and indentation speed 

were investigated. The effect of the size of the workpiece on the load-depth curve was 

also studied. At zero Kelvin temperature, dislocation twinning occurred below the 

indenter can be related to the drops in the load-depth curve. Three slip bands are 

developed in the MD region due to indentation and they are independent of indenter 

radius and velocities. 
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Chapter 7  

Summary and Future Work 

7.1 Summary 

Multiscale simulation algorithms that allow refinements from macroscale to tens of 

nanometer scale at the continuum level, coupled with parallel processing have been 

developed. A 2D generalized interpolation material point (GIMP) method has been 

implemented to address problems, such as particle flying-off and alternating stress sign 

associated with conventional material point method (MPM) in case of relatively large 

deformation when material points just cross the borders of cells. For simulations at 

multiple length scales, a parallel computing scheme has been implemented using GIMP 

under SAMRAI parallel computing environment in which multi-level grids are used for 

both spatial and temporal refinements.  

Another approach for spatial refinement called structured mesh refinement using a 

structured grid was developed by adding transitional nodes and by changing the influence 

zone of the transition nodes in GIMP. The influence zone is square for uniform grid 

nodes and rectangular for transitional nodes. The influence zone affects the computation 

of the nodal shape functions. The way the weighting function is computed remains the 

same as with the use of a uniform grid. The refinement scheme can be readily applied 

successively and the refined grid remains structured in each refinement level, i.e., every 

node can be determined by the extent of the grid level and cell size.  
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The GIMP algorithm has been extended to account for displacement boundary conditions, 

based on the approach used in the meshless local Petrov-Galerkin (MLPG) method by 

Atluri and Zhu (2000). A method to track the material particle deformation was 

developed and validated. This method tracks the displacement of each corner of a 

material particle. Since neighboring particles share corners, no separation would occur 

during deformation using this approach. 

Based on the effective refinement algorithm at the continuum scale, a coupled 

atomistic/continuum simulation method has been developed through coupling MD 

simulations with GIMP simulations. To enable the coupling, a method for the 

computation of atomistic strains, based on the integration of strain rate, is developed. The 

coupling algorithm uses a common background grid for MD and GIMP. The velocities of 

the boundary atoms are computed from the grid velocities, which are interpolated from 

the material points. The material points inside the MD region are updated based on the 

atomic information and these points join the rest of the material points in the GIMP 

computation. This approach ensures the compatibility of both deformations and internal 

forces at the MD/GIMP handshake region. 

A multi-level refinement scheme for GIMP has been used to refine the material points 

multiple times until they are close to the atomistic size. The coupling algorithm is 

implemented in the Structured Adaptive Mesh Refinement Application Infrastructure 

(SAMRAI) for parallel processing. The finest GIMP level is then coupled with the MD 

simulations. The MD region is decomposed into domains with the same geometry as the 

GIMP patches. Each patch is assigned to a processor and the coupling between the atoms 

and material points is performed within each processor without extra inter-processor 
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communication. The coupling algorithm was validated by comparing results from 

coupled simulations with those from GIMP simulations, and also with those from pure 

MD simulations. While the current implementation is in 2D, the coupling algorithm can 

be applied to 3D. 

Discrete dislocations are coupled with GIMP using the principle of superposition as 

developed by van der Giessen and Needleman (1995) by equating the total displacement 

and traction boundary conditions due to discrete dislocations and GIMP to the external 

applied ones. Then a coupling algorithm incorporating GIMP, discrete dislocations and 

MD is developed with parallel processing using a common domain decomposition 

scheme. In parallel processing, each processor updates all the material points, discrete 

dislocations and atoms in its sub-domain. The coupling algorithm has been used to 

simulate the indentation on Cu (111) plane with a cylindrical indenter. The effects of 

indenter radius, indentation speed, workpiece size and temperature on the 

nanoindentation load-displacement curves and hardness were investigated. At zero 

Kelvin temperature, the slips below the indenter is associated with the drops in the load-

depth curve. Three slip bands are developed in the MD region due to nanoindentation and 

they are independent of indenter radius and velocities. 

7.2 Future Work 

7.2.1 Other multiscale problems  

Nanostructures and nanomechanics are of critical importance in understanding material 

behavior and material processing. Multiscale simulations allow simulations across 

different length and temporal scales. Simulations for other problems, such as frictional 

sliding and 3D indentation, using the multiscale simulation algorithm can be also 
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performed. Experimental investigations at micro/nanoscales would provide validations to 

the algorithms.  

Thermal coupling between the atomistic and continuum regions is necessary as most 

materials are used at a temperature higher than zero absolute temperature. For problems 

involving significant temperature changes, such as micro-machining, thermal coupling 

has to be addressed properly in order to obtain valid results. The multiscale simulation 

algorithms can be extended to include other scales, such as the tight binding (TB).   

7.2.2 Simulation of metal cutting using GIMP 

The other problem for which GIMP can simulate with ease is metal cutting. Metal cutting 

is a complicated process which generally involves large deformation, contact, friction, 

heat generation and material failure. It has been an active research area for FEM for many 

years. Commercial FEM software is available for certain types of metal cutting problems 

(Third Wave Systems, Inc., 2006). When GIMP is used to simulate metal cutting 

problems, difficulties in FEM associated with large deformation and adaptive refinement, 

material removal (element deletion) due to failure can be partially or fully eliminated. 

Simulation of metal cutting problem involves issues such as contact, large deformation, 

friction and heat generation, material failure, adaptive refinement, as well as material 

constitutive behavior. All these aspects have been investigated except that the contact is 

assumed to be frictionless.  

7.2.2.1 Material model 

The strain rate dependent Johnson-Cook hardening model (Johnson and Cook (1983); 

Johnson and Cook (1985)) is defined as 

)(0 plyy R εσσ &= ,          (7-1) 
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where 0yσ  is the static yield stress given by 

[ ] )ˆ1()(0
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ply BA θεσ −+= ,         (7-2) 

and )( plR ε&  is the ratio of the yield stress at nonzero strain rate to the static yield stress. 

plε  is the equivalent plastic strain and A, B, n and m are material parameters measured at 

or below the transition temperature, tθ . θ̂  is the nondimensional temperature defined as  
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where meltθ  is the melting temperature. The equivalent plastic strain rate plε&  is given by 

00 )1(1exp yypl ifR
C

σσεε ≥⎥⎦
⎤

⎢⎣
⎡ −= && ,       (7-4) 

where 0ε&  and C are material parameters measured at or below the transition temperature. 

Hence, )( plR ε&  can be found as 
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and 1)( 0 =ε&R . 

The Johnson-Cook shear failure model can be used in conjunction with the Johnson-Cook 

plasticity model to define shear failure of the material in metal cutting.  The Johnson-

Cook shear failure model is based on the value of the equivalent plastic strain at element 

integration points in finite element analysis. Failure is assumed to occur when the damage 

parameter exceeds one. In GIMP, it is natural to assume that the Johnson-Cook shear 
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failure model is evaluated at the material points. The damage parameter, ϖ , is defined as  

∑
Δ

=
f

pl

ε
ε

ϖ ,          (7-6) 

where plεΔ  is an increment of the equivalent plastic strain, fε  is the strain at failure, and 

the summation is performed over all increments in the analysis. 

7.2.2.2 Preliminary results 

In the preliminary simulation, the material of the workpiece is copper. The Johnson-Cook 

material parameters for copper are given in Table 7-1. Rate independent Johnson-Cook 

hardening was assumed in the simulation since C = 0. Other material properties for 

copper are given in Table 7-2. 

Table 7-1: Johnson-Cook material parameters for copper (ABAQUS (2005)) 

A (MPa) B (MPa) n m meltθ  (oC) tθ  (oC) C 0ε&  

90 292 0.31 1.09 1058 25 0 1 

Table 7-2: Material properties for copper 

Density 8900 kg/m3 

Melting point 1082 oC 

Elastic modulus 117 GPa 

Poisson’s ratio 0.34 

Tensile strength 172-220 MPa 

Yield strength 62-29 MPa 

Elongation 40-50% 

Hardness (HB) 43 MPa 

CTE 22×10-6 /K 

Conductivity 391 W/mK 

Specific heat 385 J/kgK 
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Fig. 7-1 shows some preliminary results from the GIMP simulation of 2D orthogonal 

cutting, color coded by the equivalent plastic strain. Johnson-Cook plasticity was adopted 

and material failure criterion was implemented by deleting material points if their 

equivalent plastic strain exceeded a preset value ( 5.0=fε ). The workpiece was copper 

and the cutting tool, moving from left to right, was assumed to be rigid. Four stages, i.e., 

initial engagement of the cutting tool and the workpiece, sever indentation and onset of 

material failure, lifting and bending of the chip, as well as continuous/steady cutting are 

observed.  

 

Fig. 7-1: Simulation snap shots of 2D orthogonal metal cutting using GIMP 

One problem with the simulation is with the plastic hinge generated in the process. 

(a) Initial engagement (b) Onset of material failure

(c) Chip lifted (d) Continuous cutting 
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Generally, the plastic hinge foams an angle with the cutting direction that is less than 30 

degrees. This indicates some problems related to the implementation of the constitutive 

law, or the material failure criterion, exist in the code. In the GIMP simulations, if the 

material particle deformations are not tracked properly, artificial separation problems will 

occur when large tensile deformation exists. Artificial separation of the material particles 

in metal cutting simulations, which is caused by the indentation of the cutting tool into 

the workpiece, may lead to artificial failure of the material. More calibration should be 

conducted in order to obtain better simulation results. 

Adaptive refinement should be implemented in the metal cutting simulation to improve 

the accuracy. Both material particle refinement, through splitting, and mesh refinement, 

through multilevel structured mesh refinement, can be implemented for the area close to 

the tip of the cutting tool. 

Fully tracking particle deformations in the GIMP simulation can further improve the 

simulation accuracy. The algorithm to track the corners of each material particle has been 

described in Chapter 3. Due to the large deformation and rotations in problems such as 

metal cutting, it is necessary to consider the exact deformed shape in computing the 

interpolation weight and its gradient. This is can also eliminate the artificial separation of 

the material particles. 
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Disclaimer on SAMRAI 

The SAMRAI code was prepared as an account of work sponsored by an agency of the 

United States Government. Neither the United States Government nor the University of 

California nor any of their employees, makes any warranty, express or implied, or 

assumes any legal liability or responsibility for the accuracy, completeness, or usefulness 

of any information, apparatus, product, or process disclosed, or represents that its use 

would not infringe privately owned rights. Reference herein to any specific commercial 

product, process, or service by trade name, trademark, manufacturer, or otherwise, does 

not necessarily constitute or imply its endorsement, recommendation, or favoring by the 

United States Government or the University of California. The views and opinions of 

authors expressed herein do not necessarily state or reflect those of the United States 

Government or the University of California, and shall not be used for advertising or 

product endorsement purposes. 
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simulations with highly localized stress gradients at the continuum scale. A method 
for multiscale simulation bridging different scales, namely the continuum scale 
using GIMP, the mesoscale using discrete dislocations and the atomistic scale using 
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Findings and Conclusions: Numerical simulations with multiple length scales from 

nanometer to millimeter were conducted and validated on a 2D nanoindentation 
problem. Numerical simulations of several problems, such as tension, indentation, 
stress concentration and stress distribution near a crack (mode I crack problem) are 
presented to validate the refinement schemes at the continuum scale as well as the 
parallel processing algorithm. The capability of handling large deformation in 
GIMP is also demonstrated. A mode I crack propagation problem is simulated using 
the coupling algorithm. The stress field near the crack tip was validated by 
comparing results from coupled simulations with purely GIMP simulations of the 
same model. Coupled simulation results were also compared with purely MD 
simulations. A very good agreement was obtained. Other problems, such as 
dynamic friction problem at atomistic scale and the nanoindentation problem, are 
also simulated using the multiscale simulation algorithm.  
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