
NEW TECHNIQUES FOR CLUSTERING, SELECTION OF

NUMBER OF HISTOGRAM BINS, AND ESTIMATION OF

QUANTILES OF PAIRWISE DISTANCES

By

SAI VENU GOPAL LOLLA

Bachelor of Technology in Mechanical Engineering
Jawaharlal Nehru Technological University

Hyderabad, AP, INDIA
May, 2002

Master of Science in Mechanical Engineering
Oklahoma State University

Stillwater, OK, USA
May, 2005

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

December, 2011

NEW TECHNIQUES FOR CLUSTERING, SELECTION OF

NUMBER OF HISTOGRAM BINS, AND ESTIMATION OF

QUANTILES OF PAIRWISE DISTANCES

Dissertation Approved:

Dr.Lawrence L. Hoberock

Dissertation Advisor

Dr.Prabhakar R. Pagilla

Dr.Jay C. Hanan

Dr.Guoliang Fan

Dr.Douglas R. Heisterkamp

Dr.Sheryl A. Tucker

Dean of the Graduate College

ii

TABLE OF CONTENTS

Chapter Page

1 Introduction 1

2 Improved Unsupervised Clustering Over Watershed–Based Cluster-

ing 5

2.1 Introduction . 5

2.2 Datasets . 6

2.3 The Existing Method . 8

2.4 A New Proposed Method . 14

2.4.1 Construction of Matrix Form for a dataset 15

2.4.2 Gaussian Kernels for smoothing 15

2.4.3 Generating Landscapes for a dataset 16

2.4.4 Selection of Optimal Scale Index 18

2.4.5 Detection of Clusters – Count & Location 24

2.5 Experiments & Results . 28

2.6 Conclusions . 31

3 On Estimation Of Quantiles For Pairwise Distances 37

3.1 Introduction . 37

3.2 Currently Existing Methods . 39

3.3 A New Proposed Method . 40

3.3.1 Average Values & Counts for Intra–Bin Pairwise Distances . . 41

3.3.2 Average Values & Counts for Inter–Bin Pairwise Distances . . 41

iii

3.3.3 Construction and Interpolation of an Approximate Cumulative

Histogram . 43

3.4 Experiments & Results . 44

3.5 Conclusions . 47

4 On Selecting The Number Of Bins For A Histogram 49

4.1 Introduction . 49

4.2 Existing Methods . 54

4.3 A New Proposed Method . 55

4.4 Experiments & Results . 58

4.5 Conclusions . 71

5 Improved Unsupervised Clustering – An Alternate Implementation 75

5.1 Introduction . 75

5.2 An Alternate Implementation . 78

5.3 Results & Comparison With Previous Implementation 83

5.4 Drawback Discovered . 87

5.5 Conclusions . 95

6 Conclusions and Ideas for Future Work 98

BIBLIOGRAPHY 100

iv

LIST OF TABLES

Table Page

2.1 “Correct” number of clusters for each dataset 8

2.2 Results of Clustering – Regional Maxima with Median Filtering . . . 34

2.3 Results of Clustering – Traditional Watershed Approach 35

3.1 A naive algorithm for computing quantiles of pairwise distances. . . . 37

3.2 Data files, Datasets & Data count . 38

3.3 Datasets & Data Distributions . 38

3.4 Results for DF–1 (100 points) . 45

3.5 Results for DF–2 (500 points) . 45

3.6 Results for DF–3 (1000 points) . 46

3.7 Results for DF–4 (5000 points) . 46

4.1 Datafiles used for testing . 52

4.2 Datafiles used for testing . 52

4.3 Results for DF–1 using various methods 62

4.4 Results for DF–2 using various methods 63

4.5 Results for DF–3 using various methods 64

4.6 Results for DF–4 using various methods 65

5.1 Results of Clustering – Original & Alternate Implementations 84

5.2 Computation Times for Original Implementation 86

5.3 Computation Times for Alternate Implementation 86

5.4 Internally computed values during Scale Selection – PGDS–1 90

v

5.5 Internally computed values during Scale Selection – PGDS–4 91

5.6 Results of running the diagnostic procedure on various datasets . . . 95

vi

LIST OF FIGURES

Figure Page

2.1 Datasets used for testing . 9

2.2 Density Landscapes for S1 & A1 using the existing method 13

2.3 Density Landscapes for S1 . 19

2.4 Watershed on Density Landscapes for S1 20

2.5 Histogram on Density Landscapes for S1 22

2.6 Standard Deviation & Range for various SI – Dataset S1. 24

2.7 MODVR, RANVR, AVDEV, MNDIF, VARNC, STDEV, & HREL for

various SI – Dataset S1. 25

2.8 IQR & MAD for various SI – Dataset S1. 25

2.9 Standard Deviation after Filtering for various SI – Dataset S1. 26

2.10 Optimal Landscape for Dataset S1. 27

2.11 Original & Resampled: Datasets S1, V1, Z2 & Z1 30

2.12 Clustering results using SF = 0.5 (Red points indicate cluster centers.) 32

2.13 Clustering results – continued (Red points indicate cluster centers.) . 33

3.1 Datasets used for testing . 38

3.2 Intra–Bin (a) & Inter–Bin Pairwise Distance Distributions (b)–(d) . . 43

3.3 Approximate Cumulative Histograms constructed for DS–1 & DS–9

using m = 3, 10, 20&50 . 44

4.1 Original distribution and several histograms for a dataset (≈ 2000 points) 52

4.2 Datasets used for testing . 53

vii

4.3 Empirical CDF: Data approximations using m = 2, 5, 10, 25 bins for

DS–9 . 59

4.4 Error Metrics for DS–7 & DS–8 . 59

4.5 Roughness Measures for DS–7 & DS–8 60

4.6 Histograms generated for DS–1 (from DF–3) using various methods. . 61

4.7 Histograms generated for DS–2 (from DF–3) using various methods. . 66

4.8 Histograms generated for DS–3 (from DF–3) using various methods. . 66

4.9 Histograms generated for DS–4 (from DF–3) using various methods. . 67

4.10 Histograms generated for DS–5 (from DF–3) using various methods. . 67

4.11 Histograms generated for DS–6 (from DF–3) using various methods. . 68

4.12 Histograms generated for DS–7 (from DF–3) using various methods. . 68

4.13 Histograms generated for DS–8 (from DF–3) using various methods. . 69

4.14 Histograms generated for DS–9 (from DF–3) using various methods. . 69

4.15 Histograms generated for DS–10 (from DF–3) using various methods. 70

4.16 Histograms generated for DS–11 (from DF–3) using various methods. 71

4.17 Histograms generated for DS–12 (from DF–3) using various methods. 72

4.18 Less Satisfying Result (LHM): Undesirable spike on left mode (DS–2,

DF–1). 72

4.19 Less Satisfying Result (LHM): Histogram could be “smoother” (DS–5,

DF–2). 73

4.20 Less Satisfying Result (LHM): Shape not captured “well” (DS–9, DF–1). 73

4.21 Less Satisfying Result (LHM): Number of modes do not match original

shape (DS–11, DF–1). 74

4.22 Less Satisfying Result (LHM): Shape not captured “well” (DS–12, DF–1). 74

5.1 Sample images of slices of three fly-ash particles 76

5.2 Original & Segmented slice images – Particle–1 77

5.3 ROI Histograms for “Particle–1”, Particle–2” & “Particle–3” 77

viii

5.4 Histograms constructed using various values of SI 80

5.5 Variation Indices for Histograms using various SI - Dataset S1 82

5.6 Optimal landscape – Dataset S1 (Histogram–based implementation) . 82

5.7 Clustering results using alternate implementation 85

5.8 Datasets PGDS–1 to PGDS–6 . 89

5.9 Variation Index graphs for Datasets PGDS–1 & PGDS–4 90

5.10 Clustering results for Datasets PGDS–1 to PGDS–6 (Red points indi-

cate cluster centers.) . 96

ix

CHAPTER 1

Introduction

In an earlier report [1], the development of a framework for a knowledge–based

inference–driven vision system was proposed. The proposed framework was meant

to: facilitate an approach towards integration of various vision techniques; serve as a

means of communication between higher and lower–level algorithms to support feed-

back; and help towards the development of vision systems that can be ported to a

variety of fields relatively easily.

The proposal for such a framework was motivated by: (1) The abundance and di-

versity of applications for vision systems; (2) The efficacy of the human visual system;

(3) The fact that vision systems from almost all fields share several common needs [2];

and (4) The existence of generic systems/frameworks in areas such as microprocessors,

high–level programming languages, and CAD Design Software where basic primitive

operations are combined several times in several ways defining a hierarchical structure

resulting in tools/devices whose efficacy increases rapidly.

The scope of vision systems developed from the framework was to be governed

by: (1) Similarity in the type of images acquired - for low level image processing

techniques; (2) Similarity or equivalence in the methods used to acquire the images

- for any calibration procedures involved; and (3) Similarity in the content/structure

expected in the image - for middle level and higher level processing. Four major

functional requirements were identified: (1) A set of image analysis techniques that

can identify graphic primitives such as points, lines, curves, ellipses, vertices etc.; (2) A

notation/language that can describe the various properties (or metrics) of the graphic

1

primitives (or image segments) detected in the image. (3) A notation/language that

permits representation of rules, which describe objects in terms of graphic primitives.

(4) An Inference Engine that can produce logically correct conclusions to questions

based on rules/knowledge provided to the system and the descriptions of the graphic

primitives generated by the image analysis techniques.

It was noted that the proposed framework would operate by feeding the output

of one layer of processing to another, and that any errors in processing would have

a cascading effect. It was thus reasoned that the first layer of processing – that

translates a given image into its analog equivalents of primitives found in the image –

would be very crucial to the success of the framework. It was also noted that the first

layer of processing is expected to be relatively domain–independent and context–free.

The process of converting a given image into its analog equivalents of primitives

is referred to as “Segmentation”, and marks the boundary at which pixel–level pro-

cessing ends and object–level processing begins. Pixels are grouped into meaningful

entities/segments. Segments might be considered as compact representations for cer-

tain data based on some metric of similarity. Meaningfulness of the segments is

well–defined when the grouping is based on specific assumptions/rules, usually when

segmentation is guided by domain-specific knowledge. In the absence of any explicit

information relating to any particular domain (domain–independence), it was discov-

ered that the human vision system exhibited certain preferences in grouping image

points. These preferences are directed by what are known as Gestalt Laws or Gestalt

Principles [3], [4]. Hence, it was also noted that the first layer of processing would

be expected to display performance characteristics similar to “Gestalt Laws” [3] to

mimic human visual processing.

Based on these observations, efforts were initiated toward emulating the “Proxim-

ity Law” of the “Gestalt Laws”. The “Proximity Law” suggests grouping of all data

points that are “nearby”. This relates closely to the problem of “Clustering”. Quickly

2

the efforts resulted in a search for a clustering technique that worked: (1) without

the need for any input parameters that would govern the number of clusters; and

(2) without any preference for a given segment/cluster shape. The time and resources

required for this study indicated that the challenges involved in the development of

the proposed framework in [1] were grossly underestimated.

A circuitous search coursing through various clustering techniques – most of which

required either the number of clusters to be detected or some parameter that would

govern the number of clusters detected – led to the finding of work done by Bicego et

al. [5]. While their method did not need any pre–set parameters and had no specific

preference for any cluster shape/structure, it was evident from the details that certain

experimentally set values used in their method would result in degraded clustering

performance. We developed a much improved approach, given in Chapter 2, over

that given by Bicego et al. The improved clustering method employs the concept of

scale to attain better clustering performance.

The development of the improved clustering method in Chapter 2 lead to the need

for an appropriate metric to detect the right “scale” at which to detect clusters. In

this process, two metrics we explored in great detail, Entropy [6] and Qn [7] presented

unexpected difficulties, computational and analytical. For the problem addressed in

Chapter 2: (1) computation of entropy required computation of probability mass

function values, which in turn required a sound technique to perform “data binning”

(construct a histogram); and (2) computation of Qn required an efficient technique

for computation of quantiles of pairwise distances. While methods existed for both,

opportunities for improvement were quite evident. Accordingly, following a review of

other methods available for computing/estimating quantiles of pairwise distances, we

developed in Chapter 3, a novel method to estimate quantiles of pairwise distances

and present performance comparisons of this new method with existing methods.

Following this, in Chapter 4 we present a brief review of existing methods available

3

for constructing histograms and development of a new and more accurate method

for constructing histograms, together with performance comparisons with existing

methods.

Computational difficulties encountered while attempting to apply the clustering

method described in Chapter 2 to segment some images of fly-ash particles led to the

development of an alternate implementation of the clustering method. The alternate

implementation of the clustering method is described in Chapter 5. Performance

comparisons between the two implementations of the clustering method are presented.

A drawback with the clustering method that was discovered is also described in

Chapter 5.

In Chapter 6, some conclusions are presented, and directions for future work are

suggested.

4

CHAPTER 2

Improved Unsupervised Clustering Over Watershed–Based Clustering

2.1 Introduction

Clustering or Cluster Analysis refers to the process of classifying data into meaningful

homogeneous groups, and is a type of unsupervised classification. Discriminant Anal-

ysis, which is a type of supervised classification, refers to a related problem where

known groupings of observations govern the classification of other data, followed by

evaluation of structure of the entire data. Clustering is a particularly difficult prob-

lem since the interpretation of the resulting clusters and their number depends upon

domain–specific knowledge, practical experience, possible assumptions involved and

human intuition [8]. It is known that no single currently existing clustering method

is capable of handling all sorts of cluster structures due to variations of cluster shape,

size, and density. An effective clustering method is often a well–balanced combination

of data pre–processing methods, distance metrics, criterion functions, searching and

sorting algorithms, and strategies to handle outliers and missing values [9]. Several

articles in the literature provide an introduction to the vast amount of work done in

this field [9–11].

Clustering algorithms are categorized into partitioning, hierarchical, density–based,

grid–based, and model–based methods. Each method has its own set of advantages

and disadvantages. Some work has also been devoted to combining several clustering

methods into one algorithm [9]. There are two central issues that almost all clustering

algorithms should address [12]:

5

• Into how many clusters should the data be classified?

• How should data be classified, once the number of clusters have been decided?

The former is considered to be a more difficult problem than the latter. Several clus-

tering methods have been proposed that try to determine the “natural” / “optimum”

number of clusters [8,13–17]. To work properly, most algorithms require a parameter

to be provided by the user – either the number of clusters present in the dataset, or a

parameter that in turn governs the number of clusters that can be detected. Selecting

the “right” value for such parameters might be trivial in some cases, but it can often

become impractical and infeasible due to the size and dimensionality of the data or

other constraints.

The clustering algorithm proposed in this chapter, and its predecessor [5], share

some features with grid–based methods and density–based methods. A major advan-

tage of both these methods is that they do not require the user to provide parameters.

The remaining sections of the chapter are organized as follows. In Section 2.2,

the datasets used for evaluation of the proposed method are introduced. In Section

2.3, the currently existing Watershed–based method [5] is introduced and its major

drawback is discussed. In Section 2.4, the proposed method is introduced. Section 2.5

presents the results of evaluation of the proposed method over the datasets. In Section

2.6, conclusions and scope for future work are presented. The work presented in this

chapter was published in the Proceedings of the Ninth International Conference on

Machine Learning and Applications (ICLMA’10) [18].

2.2 Datasets

A total of 12 synthetic datasets were used for the testing of the method proposed in

this chapter. While 7 of the datasets (S1–S4, A1–A3) were imported [19], the other

5 datasets (V1–V3, Z1–Z2) were created by the authors to test particular aspects

6

of the proposed algorithm. Datasets S1–S4 have 15 clusters and 5000 points, each

with various degrees of overlap. Datasets A1–A3 have varying number of data points

and clusters [19]. Datasets V1–V3 have various degrees of overlap, and perhaps even

multiple interpretations. Datasets Z1 and Z2 have interpretations that are scale–

dependent. Visualizations of the datasets are provided in Figures 2.1a through 2.1l.

Table 2.1 displays the “correct” number of clusters for each dataset.

While the aforementioned 12 datasets might not constitute a large enough test

suite to measure the general performance of a clustering algorithm, it should be noted

that the development of the clustering technique being presented here is motivated

by an attempt to deliver a parameter-less mechanism to emulate the “Proximity”

gestalt law. While there are several datasets available [20], many of those datasets

have domain-dependent interpretations, and sometimes, the “correct” clustering con-

figuration for these datasets does not agree with the configurations suggested by the

human visual system. Thus for this work, it is preferable that the datasets used

for testing purposes be relatively domain-independent and have “correct” clustering

configurations that are compatible with those suggested by the human visual system.

Clusters in datasets S1–S4, A1–A3 could be termed as well–defined, since most

human interpreters would draw the same conclusion about the number of clusters

(and the cluster centers) without much doubt or difficulty. Since these datasets have

“correct” clustering configurations that are compatible with those suggested by the

human visual system, and were used by Zhao et.al. [17] to test a mechanism to detect

number of clusters present in a dataset, they were included in the test suite. While

these datasets have different number of datapoints, clusters, degrees of overlap etc.,

they do not present any ambiguity to the human visual system. Datasets V1–V3,

Z1, and Z2 were created specifically to present some scale-related ambiguity to the

human visual system while remaining domain-independent.

While Table–2.1 indicates 12 clusters for dataset V1, most human interpreters

7

Table 2.1: “Correct” number of clusters for each dataset

Dataset Cluster Count Dataset Cluster Count
S1 15 A3 50
S2 15 V1 12
S3 15 V2 9
S4 15 V3 13
A1 20 Z1 1
A2 35 Z2 49

would perhaps perceive 11, 8, or 6 clusters, based upon apparently equally valid,

but different interpretations. However, the dataset was created using 12 Gaussian

distributions, hence the number 12 for dataset V1 in Table–2.1. Datasets V2 and V3

are also likely to draw differing human interpretations, but a majority would agree

with the corresponding numbers in Table 2.1. Dataset Z1 has data points uniformly

distributed over the feature space, such that most human interpreters would perceive

0 or 1 cluster. Dataset Z2 can be perceived as having 49, 7, or 1 clusters based upon

the scale at which the interpreter chooses to group the data points.

2.3 The Existing Method

The Watershed algorithm was developed from the fields of Image Processing and

Mathematical Morphology, and is a region–based image segmentation method. The

Watershed algorithm borrows its intuitive idea from geography – when a landscape

or a topographic relief is flooded by water, water collects in catchment regions, and

the catchment regions are divided by watershed lines [21].

The existing method [5] proposes that a grid be constructed over the feature space

and then a density function be defined over the grid. The density of each cell of the

grid is treated as a height. Thus the density function takes on an interpretation

of a landscape (3–D landscape for 2–D dataset). This landscape is then inverted

and subjected to the Watershed algorithm. As a result of the Watershed algorithm,

8

S1

(a) Dataset - S1

S2

(b) Dataset - S2

S3

(c) Dataset - S3

S4

(d) Dataset - S4

A1

(e) Dataset - A1

A2

(f) Dataset - A2

A3

(g) Dataset - A3

V1

(h) Dataset - V1

V2

(i) Dataset - V2

V3

(j) Dataset - V3

Z1

(k) Dataset - Z1

Z2

(l) Dataset - Z2

Figure 2.1: Datasets used for testing

9

the minima in the inverted landscape, corresponding to the high density regions

in the grid, are detected. Thus clusters are implicitly defined as regions of high

density in the feature space, and are marked by corresponding catchment regions

in the inverted landscape. The number of catchment regions found is taken to be

the number of clusters present, and the catchment region itself represents the region

spanned by the corresponding cluster. The formal representation is reproduced as

follows. Let Y = y1,y2, . . . ,yN represent the dataset where each observation is

yi = yi,1, yi,2, . . . , yi,D. A grid with cells as D–dimensioned hypercubes of fixed size

lR is defined over the feature space with an origin O:

O = [min
n

yn,1,min
n

yn,2, ...,min
n

yn,D] (2.1)

A cell in the position i = (i1, i2, ..., iD) is denoted as R(i) = R(i1, i2, ..., iD). Once lR

is chosen (a choice which is critical and discussed later), a grid with
(

k
lR

)D
cells spans

the feature space, where k represents the maximum dimension width of the feature

space, and is defined as follows:

k = max
d

(

max
n

yn,d −min
n

yn,d

)

(2.2)

The height function for the grid for the Watershed algorithm to operate upon, is then

defined: the value of the function I(R(i)) in a cell is the number of points that belong

to that cell. The function I(R(i)) is defined as:

I(R(i)) =
∑

yn∈Y
χR(i)(yn) (2.3)

10

where χ is the characteristic function of the set R(i), and is defined as:

χR(i)(yn) =















1 if yn ∈ R(i);

0 otherwise;
(2.4)

The function I(R(i)) (landscape) is an approximation of the density properties of the

feature space, with an underlying assumption that similar points (points that are to

be grouped into the same cluster) are near in the feature space (Assumption–1). The

function values are inverted so that the local maxima mark the minima and vice–

versa. The Watershed algorithm then marks the catchment regions present in the

inverted landscape and thus the number of clusters is obtained.

Choosing the right value for lR is critical for the aforementioned method to work

meaningfully. Choosing too large a value results in coarse–segmentation, and too

small a value will result in over–segmentation. Either case will result in a clustering

result that will not have much meaning. Consider the following: If lR = k then there

will be only one cell, and only one cluster; If lR is so small such that each cell contains

only one point, then there could be as many clusters as the number of data points.

Neither result is likely useful, but these extremes mark the limits within which values

for lR might lie that can result in meaningful clustering results.

Bicego et al. [5] suggest that the value of lR should be estimated for the data that

is to be clustered. It is stated that a “good” value for lR can be obtained by using the

median of pairwise distances between all points. All distances d(yi,yj)[∀i, j ∈ 1...n]

are computed and then the median of all those distances is computed. From the data,

the value for lR is calculated by:

lR =
median(d(yi,yj))

m
(2.5)

In Eq(2.5), m is a constant and is experimentally fixed at 4 for all the datasets

11

evaluated by Bicego et al. [5]. It is suspected that this experimentally fixed value

of m = 4 may not work well for all datasets. This is demonstrated with some of

the datasets introduced in Section 2.2. Figures 2.2a – 2.2d display the landscape

for dataset S1 using m = 1,m = 4,m = 10 & m = 16 respectively. It can be

seen from Figure 2.2a that m = 1 produces too coarse a grid for dataset S1, and

hence information about the number of clusters is lost during the construction of the

landscape. The value m = 4 produces a landscape, as seen from Figure 2.2b, which

does not clearly show 15 peaks corresponding to the clusters. Figures 2.2c (m = 10)

and 2.2d (m = 16) produce landscapes that clearly show peaks corresponding to

the clusters. These landscapes are much more likely to report the correct cluster

count when subject to the Watershed algorithm after inversion. Figures 2.2e – 2.2h

display the landscape for dataset A1 using m = 1,m = 4,m = 10 & m = 16

respectively. Figure 2.2e reveals that m = 1 produces too coarse a grid for dataset

A1, and hence information about the number of clusters is lost during the construction

of the landscape. Figure 2.2f shows that m = 4 produces a landscape that does not

show 20 peaks corresponding to the clusters. Figure 2.2g shows that m = 10 produces

a landscape that displays 20 peaks corresponding to the clusters. Figure 2.2h shows

that m = 16 produces a landscape displaying many more than 20 peaks. Landscapes

were constructed for the remaining datasets and the results were similar, confirming

the earlier suspicion that m = 4 does not work for all datasets. From Figures 2.2e

– 2.2h it can be also seen that the landscape has a rather “abrupt” and “angular”

nature as opposed to a “continuous” and “smooth” one, even for the cases where the

number of peaks may be correctly perceived. The Watershed algorithm may be able

to perform better, by detecting the peaks of the landscape more reliably, for smoother

versions of the landscape. The following is surmised based on observations made from

landscapes displayed in Figures 2.2e – 2.2h and landscapes generated for the other

datasets:

12

(a) m = 1 (b) m = 4 (c) m = 10 (d) m = 16

(e) m = 1 (f) m = 4 (g) m = 10 (h) m = 16

Figure 2.2: Density Landscapes for S1 & A1 using the existing method

• The method should work better on a landscape in which the peaks are more

clearly defined than on a landscape in which they are not clearly defined.

• If there are two landscapes for a given dataset, both displaying clearly perceiv-

able peaks, the landscape that has a greater degree of smoothness and continuity

should produce better results.

Since m influences the size of the cell on the grid and thus the construction of the

landscape, fixing the value of m as a constant for all datasets is a major drawback of

the existing method. While the aforementioned method presents a good attempt at

rendering the whole process unsupervised, effort invested into finding methods that

will choose cell sizes that are more appropriate might prove fruitful. More appropriate

selection of cell sizes will result in construction of “better” grids, which in turn will

result in construction of “better” landscapes, which will allow detection of clusters in

a more accurate and reliable manner. Bicego et al. [5] duly acknowledge that future

investigations should target construction of the grid to improve the existing method.

13

2.4 A New Proposed Method

In the method proposed here, the major emphasis is on selecting the most appropriate

cell size, which will be shown to produce the most significant contribution. The

method proposed here closely follows the central theme of the method described in

Section 2.3, and can be viewed as an improved version.

It is known that data can display different structures at different scales [22]. The

term “scale” as applied to a given dataset can be loosely interpreted as the size of

the smallest spatial structure that can be perceived from the dataset. Any structure

smaller than a given “scale” will have been suppressed in the rendering of the data

at that scale. Since clustering can be interpreted as a method for detecting structure

present in the data, different cluster configurations may be detected at different scales.

For example: at very large scales all the data will be treated as one cluster, and at

very small scales each data point can be treated as a cluster. Meaningful structures,

and thus meaningful clusters will be perceived when operating at the “right” scale(s)

for the data. Thus, clustering methods should consider scale to accurately detect the

number of clusters while operating on a given dataset [15].

In the existing method described in Section 2.3 and the method proposed here,

scale relates to the size of the cell, based upon which the grid is constructed. From

here on, use of the term “scale” will loosely refer to the cell size used to construct the

grid.

In order to handle scale, some sort of smoothing operations might need to be

performed. It is also known that smoothing operations need to abide by certain scale–

space axioms. The Gaussian kernel satisfies these axioms and hence is the kernel of

choice for the work that follows. Use of other kernels for smoothing is possible [22].

14

2.4.1 Construction of Matrix Form for a dataset

To implement the smoothing operation using the Gaussian kernel, both the dataset

as well as the Gaussian kernel should be transformed to matrix forms so that the

convolution operation may be performed easily. To construct a matrix form for a

given dataset, a grid is constructed over the feature space, in a fashion similar to that

in Section 2.3. Let Y = y1,y2, . . . ,yN represent the dataset where each observation

is yi = yi,1, yi,2, . . . , yi,D. Then define dcw as the cell size, given by:

dcw =
min

∀i,j∈1...n
(d(yi,yj))

(2 + ǫ)
(2.6)

where d(yi,yj) represents the distance between yi & yj, and ǫ is any positive real

number. This is inspired from the Nyquist–Shannon sampling theorem [23], and ǫ→ 0

marks the limiting condition specified by the theorem for no loss of information. This

should result in a grid Mw1,w2,...,wD
with a size of wi in the ith dimension. M is a

matrix representation of the dataset without any loss of information.

2.4.2 Gaussian Kernels for smoothing

Let Kt represent the sampled version of the Gaussian kernel Gt given by:

Gt(x) =
1

√

(2π)D|Σ|
e(

1
2
(−x′Σ−1x)) (2.7)

15

where Σ is the covariance matrix for the Gaussian kernel given as:

Σ =

































t1 0 . . 0

0 t2 0 . .

. 0 . 0 .

. . 0 tD−1 0

0 . . 0 tD

































(2.8)

When employing Kt for smoothingM, any spatial structural detail whose size is less

than ti will be suppressed in the ith dimension. Also when operating upon M, ti

(standard deviation of the ith dimension) has two meaningful limits:

• The smallest meaningful value ti can assume is 1, since the matrix would not

contain any information about structures whose size is less than a single cell.

• The largest meaningful value t can assume is wi, since the matrix would not

contain complete information about structures whose size is larger than the

matrix itself.

Samples from a span of 3ti on either side of the mean of the Gaussian are used

to generate the ith dimension of Kt, which lie within 3 standard deviations, 3σ.

Spans larger than 3ti (on either side) may be used, but use of smaller spans is not

recommended.

2.4.3 Generating Landscapes for a dataset

Define scale index (SI), related to ti, by:

ti =
wi

2(SI−1)

1≤SI≤[1 + log2(min(w1, w2, ..., wD))]
(2.9)

16

where wi is the width of M in the ith dimension, and ti is the scale for the ith

dimension. SI is used to ensure that all dimensions in the feature space (and hence

all dimensions ofM) are given equal weight.

A landscape LSI relating to scale index SI may be generated for a dataset by

convolving the matrix representation of the datasetM with the sampled version of the

D–dimensional Gaussian kernel. Since the Gaussian kernel is separable, implementing

the convolution along each dimension with an appropriate 1–dimensional Gaussian

kernel is usually much faster than convolution with the sampled version of a D–

dimensional Gaussian kernel.

Li =















M∗Kti if i=1;

Li−1 ∗Kti otherwise;
(2.10)

where the convolution operation “∗” is performed along the ith dimension with Kti

(the sampled version of the 1–dimensional Gaussian kernel with standard deviation

ti). The final result (LSI) is the matrix resulting after the convolution is performed

along the Dth dimension (LD).

The landscape LSI will have a structure that does not contain details smaller

than ti in the corresponding ith dimension. The landscape also can be interpreted as

a weighted density function. The weights are dictated by the values of the elements

of the Gaussian kernel used in the process of convolution. So the landscapes will have

flat regions where there are no data points and bumps/mounds where there are data

points. The height of the mound at a particular point in the landscape is determined

by the density ofM at that point and the value of SI used to generate the Gaussian

kernel, and in turn the landscape. Figures 2.3a – 2.3h display the landscapes for

dataset S1 generated for SI = 1, 2, . . . , 10 (Figure 2.3a displays the landscape for

SI = 1, but the landscapes for SI = 2, 3 are very similar). Figures 2.3a – 2.3b

show only one large mound, indicating that at those scales, the data points can all

17

be grouped into one cluster. Figures 2.3c (SI = 5) and 2.3d (SI = 6) clearly show

15 smooth mounds indicating that at these scales, the data can be grouped into 15

clusters. Figures 2.3e – 2.3h have 15 dominating peaks, but also contain several other

“noisy” spikes. Construction of landscapes for other datasets using for a range of

values of SI resulted in similar observations. So, based upon the two conjectures

made in Section 2.3, the landscapes portrayed in Figures 2.3c & 2.3d should work

best with the Watershed algorithm. Subjecting these landscapes to the Watershed

algorithm loosely verifies the conjectures. Figures 2.4a – 2.4h display the results of

subjecting the landscapes (Figures 2.3a – 2.3h) to the Watershed algorithm. It can

be seen from Figures 2.4a – 2.4b that the corresponding landscapes resulted in too

coarse a clustering (coarse–segmentation). Figures 2.4c (SI = 5) and 2.4d (SI = 6)

show that the corresponding landscapes resulted in the “correct” number of clusters.

Figures 2.4e – 2.4h show that the corresponding landscapes resulted in too fine a

clustering (over–segmentation). The problem now lies in selecting the “optimal”

value of SI to construct the “right” landscape on which to execute the Watershed

algorithm.

2.4.4 Selection of Optimal Scale Index

The selection of the optimal scale index SIopt is critical as it governs the scale at which

the landscape is generated for the given dataset. If the scale is selected appropriately,

it will result in a landscape that reflects the underlying cluster structure “well”.

Observation of the landscapes for several datasets at several scale indices revealed the

following qualitative aspects of landscapes that seemed to indicate which landscape

would work most effectively with the Watershed algorithm to accurately reveal the

number of clusters “present” in the dataset. In effect, these are heuristics:

• Landscapes that resulted in the Watershed algorithm detecting too few clusters

(coarse–segmentation) had mounds whose “bases” were very “wide” and the

18

(a) SI = 1, 2, 3 (b) SI = 4

(c) SI = 5 (d) SI = 6

(e) SI = 7 (f) SI = 8

(g) SI = 9 (h) SI = 10

Figure 2.3: Density Landscapes for S1

19

(a) SI = 1, 2, 3 (b) SI = 4

(c) SI = 5 (d) SI = 6

(e) SI = 7 (f) SI = 8

(g) SI = 9 (h) SI = 10

Figure 2.4: Watershed on Density Landscapes for S1

20

mounds did not look “tall”.

• Landscapes that resulted in the Watershed algorithm detecting too many clus-

ters (over–segmentation) had mounds whose “bases” were very “narrow” and

the mounds were very “tall” resembling spikes.

• Landscapes that resulted in the Watershed algorithm detecting the “correct”

number of clusters had mounds whose “base size” was roughly equivalent to

the “mound height”. The mounds could be described as “balanced” or “well–

rounded”.

The rather excessive use of the quotations marks around several terms is to convey

that these are qualitative perceptions that human interpreters would agree upon, but

are difficult to quantify.

A heuristic from the observations made above is: Select the scale index which

generates the landscape in which the base–width appears to be roughly proportional to

mound–height for the majority of the mounds perceived in the landscape. A quanti-

tative version (or an approximation) of this heuristic would assist in automating the

selection of the optimal scale index (SIopt), and this is given in what follows.

Observation of histograms of “height” data in the landscapes for several values

of SI (Figures 2.5a – 2.5j) reveal that (1) histograms of the “height” data in the

landscapes tend toward “well–spread” distributions for landscapes that result in the

correct number of clusters being reported (2) histograms of the “height” data in

the landscapes tend toward “spiked” distributions for landscapes that result in the

incorrect number of clusters being reported. This observation hints that metrics of

statistical dispersion should reach maxima for landscapes generated using the optimal

scale index.

Due to its interpretation as being a “natural” measure of dispersion, Standard

Deviation was the first variation index of choice. Standard Deviation and Range

21

(a) SI = 1 (b) SI = 2 (c) SI = 3

(d) SI = 4 (e) SI = 5 (f) SI = 6

(g) SI = 7 (h) SI = 8 (i) SI = 9

(j) SI = 10

Figure 2.5: Histogram on Density Landscapes for S1

22

for the height data (Z) increased monotonously with SI (Figure 2.6), and this did

not produce the peak desired above. Several indices of qualitative variation due to

Wilcox [24], MODVR, RANVR, AVDEV, MNDIF, VARNC, STDEV, and HREL

were then computed for Z for various SI. These indices do not depend on the range

of the data or the cardinal number of data, and they take on values in a standard range

[0, 1]. However, the metrics did not result in any clearly defined peaks either (Figure

2.7). Inter–Quartile Range (IQR) [25] and Median Absolute Deviation (MAD) [25]

computed for Z for various SI did reveal some clearly defined peaks (Figure 2.8).

Since both IQR and MAD are robust measures of statistical dispersion, they are

outlier–resistant [26]. The clearly defined peaks produced with IQR and MAD hinted

that some sort of a filter should be applied to the height data Z before the variation

indices are evaluated to make the variation indices less vulnerable to outliers in the

height data. A technique developed by Tukey [25] is applied to the height data Z.

All values in Z in the range [Zll, Zul] are accepted, and any values outside that range

are filtered out during the evaluation of the variation index. Zll and Zul are defined

as follows:

Zll = Z25 − 1.5·IQR

Zul = Z75 + 1.5·IQR
(2.11)

where Z25 and Z75 are the 25 and 75 percentile values of Z respectively, and IQR is

the Inter–Quartile Range of Z.

When Standard Deviation was computed for filtered Z for several values of SI,

well defined peaks were observed. This variation variation index V IZ , is defined by:

V IZ = SD(TF(Z)) (2.12)

where SD represents the Standard Deviation function, and TF represents the Tukey

Outlier Filter function. The scale index SI for which the variation index V IZ is

23

maximized, is selected as the optimal scale index SIopt.

An iterative search procedure is used to find the value of SIopt. The procedure

starts the search in range of values that SI can take on meaningfully and progressively

narrows the search range. The procedure is terminated when further narrowing of the

scale index search range does not cause a change in the size of the sampled version of

the Gaussian kernels used for generating the landscapes. Figure 2.9 shows how the

variation index changes with respect to the scale index, and this demonstrates the

peaking we seek.

Figure 2.6: Standard Deviation & Range for various SI – Dataset S1.

2.4.5 Detection of Clusters – Count & Location

Once the optimal scale index SIopt has been found, the related optimal landscape

(LSopt) is generated. Figure 2.10 shows the optimal landscape for dataset S1. This

landscape is then inverted as described by:

LS inv = max(LSopt)− LSopt (2.13)

24

Figure 2.7: MODVR, RANVR, AVDEV, MNDIF, VARNC, STDEV, & HREL for
various SI – Dataset S1.

Figure 2.8: IQR & MAD for various SI – Dataset S1.

25

Figure 2.9: Standard Deviation after Filtering for various SI – Dataset S1.

The inverted landscape LS inv can then be subject to the Watershed algorithm to

detect the catchment regions. The number of catchment regions yields the number

of clusters, and the cluster centers may be evaluated using the data points present

in each catchment region. Based on Assumption–1 from Section 2.3, we assert that

cluster centers must be regional maxima in LSopt. SIopt indicates the minimum size

of the structure that can be detected in the optimal landscape LSopt. Using this

observation, if a peak on LSopt has the maximum height in its neighborhood of size

X, given by:

X = 2[t1, t2, t3, ..., tD] (2.14)

centered at the peak, then that peak represents a cluster center. Eq(2.14) is con-

structed from a geometric interpretation for the condition to prevent overlapping

clusters. The aforementioned might result in spurious clusters being identified due

to isolated data points in the dataset, far removed from all the “real” clusters. The

isolated point will cause a very small mound in the landscape, and if the point is

26

Figure 2.10: Optimal Landscape for Dataset S1.

sufficiently isolated, this mound can be a regional maximum. To avoid such spurious

detections, only those maxima whose height is greater than the median of the height

data Z are chosen for further processing. In other words, regional maxima whose

height is less than the median of the height data Z will not be considered as clusters.

We designate this as median filtering.

Accordingly, we can replace the Watershed algorithm with a computationally

simpler regional maxima finding algorithm – we designate this as Regional Maxima

Finding approach. For regional maxima that have a plateau structure, the centroid

of the plateau is marked as the cluster center. It should be noted that the centroid

for a plateau structure will make sense only for convex clusters. For non–convex or

arbitrary shaped clusters it is recommended to revert to the Watershed algorithm to

obtain a better description of the cluster.

Thus the number of regional maxima in LSopt is the number of clusters “present”

in the dataset, and the cluster centers are given by projecting the maxima locations

from LSopt to M and in turn to the feature space spanned by the dataset Y. This

27

information (cluster count and cluster center locations) can then be used by any

partitioning algorithm such as the k–means algorithm to determine cluster labels for

all the data points.

2.5 Experiments & Results

The method developed in Section 2.4 was to be tested on the datasets introduced

in Section 2.2. The algorithm was coded in MATLAB, and experiments quickly

encountered computational difficulties.

The experiments were stalled by memory limitations while trying to computeM

as described in Section 2.4.1. While the data could have been scaled down so as

to overcome the memory limitations, what follows is an additional mechanism that

may be used in conjunction with the proposed method to achieve a workable bypass,

should similar limitations be encountered while applying the proposed method to

other datasets.

A modified matrix representationM′ is constructed instead ofM and the rest of

the algorithm proceeds as described earlier. M′ is computed in a fashion similar to

M, but instead of using dcw as described in Eq(2.6), d′cw is used, given by:

d′cw = SF
Pcp(d(yi,yj))

2
(2.15)

where Pcp(d(yi,yj)) is the cp percentile value for the pairwise distances d(yi,yj)(∀i, j ∈

1...n), and SF is an arbitrary shrinkage factor between [0, 1]. This definition will cre-

ateM′ with a much smaller memory requirement thanM. However, total preserva-

tion of structural information cannot be guaranteed. Structural details smaller than

d′cw will not be preserved. For all the tests conducted herein, cp was set at 1. It is con-

tended that structural details with size less than 1 percentile of the pairwise distances

in the dataset should not significantly affect the cluster structure. This contention

28

can be easily verified visually. The contention is further verified if the modified def-

initions produce the correct result with the chosen value of cp and several values of

SF .

Figures 2.11a – 2.11f demonstrate cases where no perceivable differences are intro-

duced between the original data and the modified matrix form of the data. However,

there could be cases where some structural differences are perceived between the

original data and the modified matrix form of the data – Figures 2.11g and 2.11h

demonstrate one such case.

We note that this modification is proposed only for cases where a computational

limitation restricts the original method altogether. Should a computational system

be available such that a given dataset can be processed without running into storage

limitations, this modification is not needed.

Table 2.2 displays the results obtained using the method proposed in Section

2.4 in conjunction with the Regional Maxima Finding approach for detecting cluster

count and cluster centers. Table 2.3 displays the results obtained using the method

proposed in Section 2.4 in conjunction with the Watershed algorithm approach for

detecting cluster count and cluster centers. Entries displayed in bold red in Table 2.2

and Table 2.3 indicate cases where there is disagreement between the actual cluster

count (Table 2.1) and the cluster count reported by the respective algorithms. Figures

2.12a through 2.12l display results of cluster detection (count & location) using the

proposed method overlaid on the original datasets (SF = 0.5). (A standard MATLAB

implementation of the k–means algorithm was used to determine the cluster labels

for the data points.) Results for other values of SF are similar.

An overall comparison of Table 2.2 and Table 2.3 indicates that the proposed

method variant using regional maxima finding approach with median filtering per-

forms better than the proposed method variant using the Watershed algorithm. This

is due to the intrinsic tendency of the Watershed algorithm to over–segment [5].

29

(a) S1 - Original (b) S1 - cp = 1 & SF = 0.5

(c) V1 - Original (d) V1 - cp = 1 & SF = 0.5

(e) Z2 - Original (f) Z2 - cp = 1 & SF = 0.5

(g) Z1 - Original (h) Z1 - cp = 1 & SF = 0.8

Figure 2.11: Original & Resampled: Datasets S1, V1, Z2 & Z1

30

Table 2.2 indicates that the method works well with S1–S4,A1–A3 & V2. The

method consistently picks only 10 clusters for dataset V1 instead of the perceivable

11, which is likely due to the “low density” of the undetected cluster as compared

to the other clusters in the dataset (See Figure 2.12h). Some experimental runs

indicate an incorrect cluster count for dataset V3, and these are cases where median

filtering fails to suppress the detection of spurious clusters. Figures 2.13a and 2.13b

display two such cases. Dataset Z1 has a perfect square number of clusters in most

cases. Figures 2.13c – 2.13f display such clustering results. It can be seen from these

figures that these different perfect square counts are reported due to slight structural

differences introduced during the construction of the modified matrix representation

M′ using different values for SF . The proposed method detects 49 clusters in dataset

Z2 in most cases, but sometimes a cluster count of 50 is reported (See Figure 2.13g).

It is suspected that this is also due to structural differences introduced during the

construction of the modified matrix representationM′ using different values for SF .

2.6 Conclusions

In this chapter, an improved approach toward Watershed–based clustering is pre-

sented. The improvements made are as follows:

• An automatic method is given for selecting cell size, based entirely on the data

to be clustered itself, and eliminates the need for experimentally determined

parameters.

• The computationally intensive Watershed algorithm is replaced with a much

simpler regional maxima finding process.

• An approach toward incorporating the concept of scale while generating land-

scapes is introduced.

31

(a) S1 (b) S2 (c) S3

(d) S4 (e) A1 (f) A2

(g) A3 (h) V1 (i) V2

(j) V3 (k) Z1 (l) Z2

Figure 2.12: Clustering results using SF = 0.5 (Red points indicate cluster centers.)

32

(a) V3 : SF = 0.525 (b) V3 : SF = 0.800

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

Z1 : 441 (1) Clusters

(c) Z1 : SF = 0.400 (d) Z1 : SF = 0.750 (e) Z1 : SF = 0.825

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
Z1 : 1 (1) Clusters

(f) Z1 : SF = 0.900

50 100 150 200 250 300 350

50

100

150

200

250

300

Z2 : 50 (49) Clusters

(g) Z2 : SF = 1.000

Figure 2.13: Clustering results – continued (Red points indicate cluster centers.)

33

Table 2.2: Results of Clustering – Regional Maxima with Median Filtering
P
P
P
P

P
P
P

PP
SF

Dataset
S1 S2 S3 S4 A1 A2 A3 V1 V2 V3 Z1 Z2

0.400 15 15 15 15 20 35 50 10 9 13 441 49
0.425 15 15 15 15 20 35 50 10 9 13 441 49
0.450 15 15 15 15 20 35 50 10 9 13 441 49
0.475 15 15 15 15 20 35 50 10 9 13 441 49
0.500 15 15 15 15 20 35 50 10 9 13 441 49
0.525 15 15 15 15 20 35 50 10 9 14 441 49
0.550 15 15 15 15 20 35 50 10 9 13 1 49
0.575 15 15 15 15 20 35 50 10 9 13 1 49
0.600 15 15 15 15 20 35 50 10 9 13 1 49
0.625 15 15 15 15 20 35 50 10 9 13 1 50

0.650 15 15 15 15 20 35 50 10 9 14 1 49
0.675 15 15 15 15 20 35 50 10 9 13 1 50

0.700 15 15 15 15 20 35 50 10 9 13 1 49
0.725 15 15 15 15 20 35 50 10 9 15 1 50

0.750 15 15 15 15 20 35 50 10 9 13 49 49
0.775 15 15 15 15 20 35 50 10 9 13 36 49
0.800 15 15 15 15 20 35 50 10 9 19 16 49
0.825 15 15 15 15 20 35 50 10 9 13 9 50

0.850 15 15 15 15 20 35 50 10 9 13 1 49
0.875 15 15 15 15 20 35 50 10 9 13 1 50

0.900 15 15 15 15 20 35 50 10 9 13 1 49
0.925 15 15 15 15 20 35 50 10 9 13 1 49
0.950 15 15 15 15 20 35 50 10 9 13 1 50

0.975 15 15 15 15 20 35 50 10 9 14 1 49
1.000 15 15 15 15 20 35 50 10 9 13 30 50

← Number of Clusters →
Bold red entries indicate disagreement between actual cluster

count and cluster count reported by the algorithm.

34

Table 2.3: Results of Clustering – Traditional Watershed Approach
P
P
P
P

P
P
P

PP
SF

Dataset
S1 S2 S3 S4 A1 A2 A3 V1 V2 V3 Z1 Z2

0.400 15 15 16 18 20 35 50 10 10 15 441 52

0.425 15 15 15 18 20 35 50 10 10 16 441 53

0.450 15 15 15 16 20 35 50 10 10 20 441 50

0.475 15 15 15 20 20 35 50 11 9 14 441 51

0.500 15 15 15 17 20 35 50 10 10 15 441 50

0.525 15 15 16 16 20 35 50 10 11 15 441 49
0.550 15 15 15 16 20 35 50 10 10 14 1 51

0.575 15 15 15 15 20 35 50 10 9 16 1 51

0.600 15 15 15 15 20 35 50 10 10 14 1 50

0.625 15 15 15 16 20 35 50 10 9 15 1 50

0.650 15 15 15 15 20 35 50 10 9 19 1 50

0.675 15 15 15 15 20 35 50 10 9 13 1 50

0.700 15 15 15 15 20 35 50 10 10 14 1 50

0.725 15 15 15 15 20 35 50 10 9 20 1 50

0.750 15 15 15 15 20 35 50 10 9 18 49 51

0.775 15 15 15 15 20 35 50 10 9 14 40 50

0.800 15 15 15 15 20 35 50 10 9 24 16 50

0.825 15 15 15 15 20 35 50 10 9 13 9 50

0.850 15 15 15 15 20 35 50 10 9 18 1 50

0.875 15 15 15 15 20 35 50 10 9 14 1 50

0.900 15 15 15 15 20 35 50 10 9 14 1 50

0.925 15 15 15 15 20 35 50 10 9 14 1 50

0.950 15 15 15 15 20 35 50 10 9 13 9 50

0.975 15 15 15 15 20 35 50 10 9 15 1 50

1.000 15 15 15 15 20 35 50 10 9 14 25 51

← Number of Clusters →
Bold red entries indicate disagreement between actual cluster

count and cluster count reported by the algorithm.

35

The main advantage of the proposed method is its unsupervised and automatic nature

requiring no parameters to be tuned or to be determined experimentally.

Future investigations should explore issues such as: (1) optimal selection of SF

and cp (where the modified matrix representationM′ needs to be constructed) to min-

imize loss of structural information; (2) construction of statistical dispersion metrics

that could be used to locate optimal scale indices with improved fidelity; (3) method-

ologies to handle spurious clusters in cases where median filtering fails; (4) use of

non–Gaussian kernels; and (5) reduction of computational complexity.

36

CHAPTER 3

On Estimation Of Quantiles For Pairwise Distances

3.1 Introduction

Quantiles of pairwise distances for datasets are used to compute robust estimators

of scale such as Sn and Qn [7]. A naive implementation for computing quantiles for

pairwise distances for a given dataset with n data points is given in Table 3.1. While

this algorithm is relatively simple, the algorithm’s time and memory requirements

are order n2 – O(n2). In fact Step–1 of the algorithm itself has time and memory

requirements that are of order n2. Thus the use of this algorithm to compute quantiles

for pairwise distances becomes infeasible for large datasets. This chapter presents a

novel approach to estimate quantiles for pairwise distances. The performance of the

proposed method is compared against the performance of existing methods on four

datafiles (described in Table 3.2, Table 3.3, and Figure 3.1). The work presented in

this chapter was published in the Proceedings of the Ninth International Conference

on Machine Learning and Applications (ICLMA’10) [27].

Table 3.1: A naive algorithm for computing quantiles of pairwise distances.
Input Dataset X
Step 1 Compute pairwise distances for array X and store in array Y .
Step 2 Sort pairwise distances stored in array Y .
Step 3 Compute index for pth quantile and select corresponding element.
Output pth quantile of pairwise distances of X

37

Table 3.2: Data files, Datasets & Data count
Datafile # of Datasets # of Data points
DF–1 12 ≈100
DF–2 12 ≈500
DF–3 12 ≈1000
DF–4 12 ≈5000

Table 3.3: Datasets & Data Distributions
Dataset Distribution Dataset Distribution
DS–1 Uniform DS–7 Gamma
DS–2 Sine DS–8 Triangular
DS–3 Normal DS–9 Custom–1
DS–4 Laplace DS–10 Custom–2
DS–5 Semi–Circular DS–11 Custom–3
DS–6 Exponential DS–12 Custom–4

(a) Uniform (b) Sine (c) Normal (d) Laplace

(e) Semi-Circular (f) Exponential (g) Gamma (h) Triangular

(i) Custom-1 (j) Custom-2 (k) Custom-3 (l) Custom-4

Figure 3.1: Datasets used for testing

38

3.2 Currently Existing Methods

Several approaches have been outlined in the literature ([28], [29], [30], [31], [32],

[33], [34], [35]) that present methods to estimate quantiles of datasets while requiring

reduced memory. Most methods seem to be variants of the method proposed by

Weide [28]. Most of the above referenced methods also place bounds on the error

between the estimated and actual values of quantiles of pairwise distances. However,

it should be noted that these methods target finding quantiles for a given dataset

while using reduced memory and not finding quantiles of pairwise distances for a given

dataset. Thus while most of the methods mentioned above do away with infeasible

memory requirements, they still require that all the pairwise distances be computed,

and hence are likely to have computational time requirements that are infeasible.

Johnson and Mizoguchi [36] proposed a method to select tuples based on their

ranking, the kth element in X + Y , defined as {xi + yi | xi ∈ X, yi ∈ Y } where

X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn). Here the rank of the tuple is defined

as the value of the sum of all its elements. This method is later extended to
∑m

i=2 Xi

for m > 2. This method does not require that all the tuples be evaluated and

sorted for selecting the kth tuple. For the case of m = 2, the rank of the tuple is

just the sum of two elements. The euclidean distance between two scalars is simply

the difference in their magnitudes. Taking advantage of this, Croux and Rousseeuw

[37] adapt the algorithm given by Johnson and Mizoguchi [36] such that it selects

the kth pairwise distance. This is done by redefining Y in the above algorithm as

Y = (−yn, yn−1, . . . , y1).

Since the modified algorithm by Croux and Rousseeuw [37] does not require that

all the pairwise distances be calculated, its time requirements are less than require-

ments in other previously stated methods. It should also be noted that since the kth

pairwise distance is selected, rather than estimated, this method has practically no

error in its output. Due to the nature of this algorithm, the memory requirements

39

for this method might exceed the requirements of other previously stated methods.

Moreover, this method works only for scalar data and cannot be extended to data of

higher dimensions, while the previously stated methods can, in theory, be extended

to accommodate data of higher dimensions.

Most of the existing methods suffer from at least one of the following drawbacks:

(1) infeasible computational time requirements, since all the pairwise distances must

be computed; (2) infeasible memory requirements, since all or most of the data must

be loaded into memory; and (3) in–extensibility of method to data of higher dimen-

sions.

3.3 A New Proposed Method

The new method proposed here is an attempt to achieve a good trade–off between

computation time and memory requirements in estimating quantiles of pairwise dis-

tances for a given dataset. The method proposed closely follows the theme of the

method described by Schmeiser and Deutsch [30].

Let X = (x1, x2, . . . , xn) be the given dataset (a collection of n scalars) for which

the quantiles for pairwise distances are to be computed. Let the data be mapped into

an “appropriate” histogram of m non–overlapping bins (not necessarily of uniform

width) such that B = (b1, b2, . . . , bm) represents the locations of the bin centers and

C = (c1, c2, . . . , cm) represents the bin counts, or the number of data points in each

bin. The appropriateness of the histogram for the given dataset depends upon value

of m. Choosing m = 1 results in all the data points being mapped into a single bin,

resulting in a loss of distribution information. Choosingm = n can result in each data

point being mapped into a bin, yet again resulting in a loss of distribution information.

Thus the value of m should lie in [1, n] for the histogram to meaningfully capture the

underlying distribution information present in the dataset. Literature that discusses

selection of the number of bins can be found in [38], [39], [40], [41]. Our new proposed

40

method assumes that: an “appropriate” histogram that reveals the salient features in

the underlying data distribution can be (and will be) constructed for a given dataset

(Assumption–I). Assumption–I implies a Uniform Distribution of data within each

bin.

The central idea of our proposed method is as follows: Given B and C, (1) Com-

pute number and average values of inter–bin and intra–bin pairwise distances for all

bins; (2) Construct an approximate cumulative histogram based on those numbers;

and (3) Interpolate the approximate cumulative histogram to estimate quantiles for

pairwise distances.

3.3.1 Average Values & Counts for Intra–Bin Pairwise Distances

Given a bin with bin count ci, and bin width wi, the intra–bin pairwise distances will

follow a triangular distribution, as shown in Figure 3.2a. The number (V ai) and the

average value (Pai) for intra–bin pairwise distances for the ith bin given as:

V ai =
ci(ci−1)

2

Pai =
wi

3

i = [1, 2, . . . ,m]

(3.1)

are computed for each of the bins. The value combinations (V ai,Pai) are stored for

later use in the construction of the approximate cumulative histogram for the pairwise

distances of the dataset.

3.3.2 Average Values & Counts for Inter–Bin Pairwise Distances

Given two bins with bin counts ci, cj (ci ≤ cj without loss of generality), and bin

width is wi, wj, the inter–bin pairwise distances will follow a trapezoidal distribution.

Figure 3.2b shows the distribution for bins that are well separated, Figure 3.2c shows

the distribution for bins that are adjacent, and Figure 3.2d shows the distribution for

41

bins that are overlapping. Following Assumption–I the overlapping case is ruled out.

The number (V bk) and the average value (Pbk) for inter–bin pairwise distances for

the pair of the ith and jth bins are computed by treating the trapezoidal distribution

as a summation of a triangle on the left side, a rectangle in middle, and a triangle on

the right side. Let x1i,x2i mark the bin edges for the ith bin. Similarly, let x1j,x2j

mark the bin edges for the jth bin. We define D as the sorted array containing the

pairwise distances between the bin edges:

D = sort([|x1i − x1j| |x2i − x1j| |x1i − x2j| |x2i − x2j|]) (3.2)

The first element of D marks the beginning point of the left triangle, the second

element marks the beginning of the rectangle, the third element marks the beginning

of the right triangle, and the fourth element marks the end of the right triangle. V bk

and Pbk are given as:

V lk = ci(ci−1)
2

Plk = 2
3
D(2) + 1

3
D(1)

V mk = ci(cj − ci + 1)

Pmk = 1
2
D(2) + 1

2
D(3)

V rk = ci(ci−1)
2

Prk = 2
3
D(3) + 1

3
D(4)

V bk = V lk + V mk + V rk

Pbk = V lkP lk+V mkPmk+V rkPrk
V lk+V mk+V rk

k = [1, 2, . . . , m(m−1)
2

]

(3.3)

are computed for each pair of bins. Using the combinations (V lk,Plk), (V mk,Pmk),

and (V rk,Prk) instead of the aggregate combination (V bk,Pbk) for the construction

42

(a) Intra–Bin (b) Inter–Bin : Sepa-
rated Bins

(c) Inter–Bin : Adja-
cent Bins

(d) Inter–Bin : Over-
lapping Bins

Figure 3.2: Intra–Bin (a) & Inter–Bin Pairwise Distance Distributions (b)–(d)

of the approximate cumulative histogram will result in slightly better approximation.

The value combinations (V lk,Plk), (V mk,Pmk), and (V rk,Prk) are stored for later

use in the construction of the approximate cumulative histogram for the pairwise

distances of the dataset.

3.3.3 Construction and Interpolation of an Approximate Cumulative His-

togram

Once the number and average values for intra–bin and inter–bin pairwise distances

are computed, the stored combinations are sorted on the basis of increasing average

pairwise distance p (in Pai,Plk,Pmk, and Prk). A table is constructed with the first

column as the average pairwise distance p, the second column as the cumulative count

of v (in V ai,V lk,V mk, and V rk). Once this table is constructed, to estimate a partic-

ular quantile, a lookup or interpolation operation is performed over the table. Figure

3.3a – 3.3h show graphical representations of the approximate cumulative histograms

constructed for datasets DS–1 and DS–9 from data file DF–2, with 500 data points in

each dataset. Various numbers of histogram bins (m = 3, 10, 20, 50) are shown. The

blue lines (with circular markers) in these figures are actual cumulative histograms

for pairwise distances, and the red lines (with square markers) are approximate cu-

mulative histograms constructed using our method. It can be seen that increasing the

number of bins to construct the approximate histogram results in increasingly better

approximations of the actual cumulative histogram for pairwise distances, and hence,

43

(a) DS–1 : m = 3 (b) DS–1 : m = 10 (c) DS–1 : m = 20 (d) DS–1 : m = 50

(e) DS–9 : m = 3 (f) DS–9 : m = 10 (g) DS–9 : m = 20 (h) DS–9 : m = 50

Figure 3.3: Approximate Cumulative Histograms constructed for DS–1 & DS–9 using
m = 3, 10, 20&50

will result in increasingly accurate estimates of the quantiles for pairwise distances.

The least accurate and least time and memory consuming case occurs when all the

data is grouped into one bin (m = 1). The most accurate and most time and memory

consuming case occurs when each data point is mapped into a unique bin (m = n),

and the algorithm is reduced to the naive implementation. Hence it can be seen that

a good selection of the number of histogram bins (m) will result in a trade–off be-

tween the algorithm’s accuracy and the algorithm’s computation time and memory

requirements.

3.4 Experiments & Results

The method developed in Section 3.3 was coded in MATLAB to be tested on the

datasets introduced earlier. A naive implementation for computing the quantiles of

pairwise distances, the method proposed byWeide [28], and the Croux and Rousseeuw’s

adaption [37] of Johnson and Mizoguchi’s method [36] were also coded in MATLAB to

compare against the performance of the proposed method. The number of histogram

bins (m) was manually set at 50, since that was deemed to be an appropriate value

44

Table 3.4: Results for DF–1 (100 points)
NM WM CRM LoHoM

Dataset Time Time MSE SMAPE Time MSE SMAPE Time MSE SMAPE
DS-1 0.003 0.037 129.6406 0.0892 0.145 0.0001 0.0001 0.092 0.0141 0.0023
DS-2 0.007 0.054 113.5292 0.0836 0.336 0.0000 0.0000 0.102 0.0161 0.0029
DS-3 0.005 0.047 14.9214 0.0869 0.111 0.0000 0.0001 0.072 0.0074 0.0036
DS-4 0.010 0.065 80.8357 0.1004 0.258 0.0000 0.0000 0.112 0.0393 0.0028
DS-5 0.007 0.057 101.0443 0.0881 0.263 0.0000 0.0001 0.114 0.0238 0.0037
DS-6 0.009 0.068 108.4192 0.0585 0.580 0.0000 0.0000 0.107 0.0496 0.0034
DS-7 0.007 0.061 79.2869 0.0795 0.286 0.0000 0.0000 0.109 0.0175 0.0035
DS-8 0.007 0.062 130.7961 0.0968 0.245 0.0000 0.0001 0.111 0.0239 0.0033
DS-9 0.006 0.054 57.1713 0.1122 0.171 0.0000 0.0001 0.089 0.0287 0.0038
DS-10 0.007 0.058 163.8101 0.0891 0.524 0.0000 0.0001 0.115 0.0589 0.0060
DS-11 0.006 0.055 322.3978 0.1799 0.189 0.0001 0.0001 0.088 0.0200 0.0022
DS-12 0.006 0.054 182.4313 0.1141 0.185 0.0000 0.0001 0.095 0.0159 0.0038

NM - Naive Method; WM - Weide Method; CRM - Croux Rosseeuw
Method; LoHoM - Proposed Method
Smaller MSE & SMAPE values indicate better performance.
Smaller Time value indicates better performance.

Table 3.5: Results for DF–2 (500 points)
NM WM CRM LoHoM

Dataset Time Time MSE SMAPE Time MSE SMAPE Time MSE SMAPE
DS-1 0.068 0.220 133.6670 0.0925 1.536 0.0000 0.0000 0.130 0.0112 0.0019
DS-2 0.083 0.233 117.5170 0.0870 1.595 0.0000 0.0000 0.130 0.0119 0.0039
DS-3 0.078 0.219 9.4230 0.0859 0.432 0.0000 0.0000 0.100 0.0134 0.0094
DS-4 0.086 0.234 26.7054 0.1004 0.450 0.0000 0.0000 0.118 0.0492 0.0112
DS-5 0.087 0.233 118.3215 0.0904 1.385 0.0000 0.0000 0.123 0.0090 0.0035
DS-6 0.093 0.238 5.3208 0.0328 4.529 0.0000 0.0000 0.132 0.0788 0.0100
DS-7 0.085 0.228 51.4099 0.0793 1.490 0.0000 0.0000 0.123 0.0263 0.0033
DS-8 0.126 0.261 97.0951 0.0972 0.890 0.0000 0.0000 0.122 0.0196 0.0031
DS-9 0.083 0.229 33.0433 0.1273 0.753 0.0000 0.0000 0.132 0.0324 0.0048
DS-10 0.085 0.233 192.9634 0.1130 2.323 0.0000 0.0000 0.123 0.0358 0.0061
DS-11 0.079 0.225 301.1255 0.2247 0.437 0.0000 0.0000 0.116 0.0561 0.0079
DS-12 0.081 0.224 184.0531 0.1228 1.079 0.0000 0.0000 0.123 0.0191 0.0043

NM - Naive Method; WM - Weide Method; CRM - Croux Rosseeuw
Method; LoHoM - Proposed Method
Smaller MSE & SMAPE values indicate better performance.
Smaller Time value indicates better performance.

(satisfying Assumption–I). Computation times were measured using the computer’s

internal clock and are reported in seconds. The testing was done on a computer

running Windows XP SP3, with an Intel Pentium 4 CPU (3.20 GHz) processor, and

having 2.00 GB RAM. The accuracy of each method is measured by computing

the metrics MSE (Mean Squared Error) and SMAPE (Symmetric Mean Absolute

45

Table 3.6: Results for DF–3 (1000 points)
NM WM CRM LoHoM

Dataset Time Time MSE SMAPE Time MSE SMAPE Time MSE SMAPE
DS-1 0.284 0.753 132.8294 0.0928 5.023 0.0000 0.0000 0.137 0.0265 0.0040
DS-2 0.309 0.506 117.1777 0.0863 5.185 0.0000 0.0000 0.140 0.0184 0.0044
DS-3 0.300 0.499 9.0518 0.0856 0.993 0.0000 0.0000 0.126 0.0126 0.0096
DS-4 0.324 0.529 21.8617 0.0969 0.761 0.0000 0.0000 0.135 0.1005 0.0164
DS-5 0.317 0.511 119.9340 0.0910 3.633 0.0000 0.0000 0.193 0.0180 0.0045
DS-6 0.321 0.512 0.7568 0.0185 9.295 0.0000 0.0000 0.129 0.1474 0.0180
DS-7 0.324 0.513 48.2129 0.0797 3.638 0.0000 0.0000 0.131 0.0472 0.0055
DS-8 0.317 0.510 92.4086 0.0973 2.030 0.0000 0.0000 0.132 0.0113 0.0020
DS-9 0.315 0.519 31.1328 0.1293 1.907 0.0000 0.0000 0.135 0.0684 0.0095
DS-10 0.317 0.519 195.7374 0.1186 7.306 0.0000 0.0000 0.136 0.0497 0.0065
DS-11 0.310 0.519 295.8134 0.2289 1.498 0.0000 0.0000 0.124 0.0339 0.0080
DS-12 0.310 0.500 185.1643 0.1267 2.678 0.0000 0.0000 0.131 0.0261 0.0075

NM - Naive Method; WM - Weide Method; CRM - Croux Rosseeuw
Method; LoHoM - Proposed Method
Smaller MSE & SMAPE values indicate better performance.
Smaller Time value indicates better performance.

Table 3.7: Results for DF–4 (5000 points)
NM WM CRM LoHoM

Dataset Time Time MSE SMAPE Time MSE SMAPE Time MSE SMAPE
DS-1 8.839 8.299 133.5150 0.0931 104.834 0.0000 0.0000 0.468 0.0490 0.0061
DS-2 8.352 6.501 116.2811 0.0860 108.797 0.0000 0.0000 0.231 0.0201 0.0054
DS-3 8.576 6.426 8.8878 0.0862 25.639 0.0000 0.0000 0.223 0.0121 0.0102
DS-4 8.468 6.670 19.0011 0.0949 12.857 0.0000 0.0000 0.224 0.1326 0.0169
DS-5 8.321 6.505 118.6491 0.0913 76.683 0.0000 0.0000 0.225 0.0636 0.0073
DS-6 8.401 6.568 0.2518 0.0036 230.427 0.0000 0.0000 0.218 0.1954 0.0245
DS-7 8.550 6.372 45.4599 0.0798 71.489 0.0000 0.0000 0.220 0.0500 0.0036
DS-8 8.476 6.701 88.7781 0.0978 44.321 0.0000 0.0000 0.227 0.0857 0.0108
DS-9 8.397 6.657 29.3556 0.1304 40.085 0.0000 0.0000 0.224 0.0665 0.0149
DS-10 8.289 6.559 197.4254 0.1236 147.778 0.0000 0.0000 0.218 0.0335 0.0061
DS-11 8.573 6.467 288.9834 0.2319 20.876 0.0000 0.0000 0.223 0.1028 0.0091
DS-12 8.311 6.586 185.9443 0.1278 65.934 0.0000 0.0000 0.224 0.0375 0.0098

NM - Naive Method; WM - Weide Method; CRM - Croux Rosseeuw
Method; LoHoM - Proposed Method
Smaller MSE & SMAPE values indicate better performance.
Smaller Time value indicates better performance.

46

Percentage Error) for each method. The metrics are defined as:

Q̂ = [Q̂5, Q̂10, Q̂15, . . . , Q̂95]

Q = [Q5, Q10, Q15, . . . , Q95]

MSE = 1
Nq

Nq
∑

i=1

(Q̂(i)−Q(i))2

SMAPE = 1
Nq

Nq
∑

i=1

|Q̂(i)−Q(i)|
Q̂(i) +Q(i)

(3.4)

where Q̂k is the kth percentile of the pairwise distances of the given dataset (actual

value from the naive implementation), Qk is the estimation of the kth percentile

(estimation from any of the estimation methods mentioned earlier), and Nq is the

number of elements in the Q̂ (and Q) vector. Increasing Nq increases the fidelity of

the metrics. It can be seen from Tables 3.4 – 3.7 (through MSE & SMAPE columns)

that the proposed method (LoHoM in the Tables) performs better than the Weide

Method (WM in the Tables) in terms of accuracy. Since the Croux and Rousseeuw

Method (CRM in the Tables) is a selection method, and not an estimation method, it

is expected to perform better in terms of accuracy. While the Croux and Rousseeuw

Method performs better in terms of accuracy, it can be seen that the proposed method

performs much better in terms of time (see the Time column) than all the other three

methods, including the Naive Method (NM in the Tables), especially as the number

of data points in each dataset increases.

3.5 Conclusions

In this chapter a novel method to estimate quantiles for pairwise distances is intro-

duced. The method is shown to perform better in terms of time and accuracy for

large datasets as compared to the method proposed by Weide [28]. The method is

also shown to have a significant advantage in computational time requirements as

47

compared to the method proposed by Croux and Rousseeuw [37]. Unlike the method

proposed by Croux and Rousseeuw [37], the new method proposed can be generalized

to accommodate data of higher dimensions.

Future investigations should explore issues such as: (1) Optimal selection of the

number of histogram bins (m); (2) Generalization of the algorithm to accommodate

data of higher dimensions; (3) Optimizing the proposed method to reduce time and

memory requirements; (4) Performing a formal analysis of the proposed method to

obtain bounds on time and memory requirements; (5) Performing a formal analysis to

obtain theoretical bounds on the error in estimating quantiles for pairwise distances;

48

CHAPTER 4

On Selecting The Number Of Bins For A Histogram

4.1 Introduction

A histogram is a graphical representation of the frequency distribution of a dataset.

Widely employed in exploratory data analysis, a histogram can be treated as a sim-

ple non–parametric density estimator. For a given dataset, a histogram can visually

convey the information relating to shape, spread, location, modality and symmetry

of the distribution of the underlying population, and are well suited for summarizing

large datasets [42]. While more sophisticated kernel–based density estimators are

available, histograms are widely employed due to the ease and simplicity of construc-

tion and interpretation [43], [44]. While histograms are used mainly for visualizing

data and obtaining summary quantities such as entropy, the values of such quantities

depend upon the number of bins used (or the bin width used) and the location of the

bins [45].

Let X = {x1, x2, . . . , xn} be a univariate dataset with probability density function

f(x). We follow Martinez et al. [42]: To construct a histogram, an origin for the bins

t0 (also referred to as the anchor) and a bin width h are selected. Selection of these

two parameters defines a mesh (position of all the bins) over which the histogram

will be constructed. Each bin is represented by a pair of bin edges as Bk = [tk, tk+1),

where tk+1− tk = h for all k. Histograms using varying bin widths are not addressed

in this chapter. Let ck represent the number of observations in Bk (bin count for Bk)

49

given by:

ck =
n
∑

i=1

IBk
(xi) (4.1)

where IBk
is defined as:

IBk
(xi) =















1 xi in Bk

0 xi not in Bk

(4.2)

While the density estimate for the underlying population (ck for all k) satisfies the

non–negativity condition necessary for it to be a bona fide probability density func-

tion, the summation of all the probabilities do not necessarily add to unity. To satisfy

that condition, the probability density function estimate, f̂(x), as obtained from a

histogram, is defined as:

f̂(x) =
ck
nh

for x in Bk (4.3)

This assures that
∫

f̂(x)dx = 1 is satisfied, and f̂(x) represents a valid estimate for

the probability density function of the population underlying the dataset.

The information relating to shape, modality, symmetry and summary quantities

estimated using a histogram will depend on the values that ck (and f̂(x)) assume,

which in turn depend upon the parameters t0 and h.

While histograms are commonly constructed using t0 = min (X), it is known that

modifying this parameter can sometimes cause a rather drastic change in the values

assumed by ck [46]. Simonoff et al. [44] provide a method to quantify the effects of

changing the parameter t0 during the construction of a histogram. However, in the

work herein, we use t0 = min (X).

A common method to determine bin width h is:

h =
max(X)−min(X)

m
(4.4)

50

From (4.1), (4.2), (4.3) and (4.4) it can be seen that the number of bins used to

construct a histogram will influence ck (and f̂(x)) and any further information derived

from them. Consider the following two extreme cases: (1) Using only one bin (m = 1)

will cause all the data points in X to map to that bin, and information relating

to shape, modality, and symmetry will be lost (unless the underlying population

distribution is Uniform); (2) Using n or more bins (m ≥ n) will spread the data

points over all the bins more or less uniformly, such that any information relating to

shape, modality, and symmetry will again be lost. These two extreme cases suggest

that an “optimal” number of bins should be used to construct a histogram that

can effectively capture information relating to shape, modality, and symmetry and

provide meaningful values for summary quantities. Using very few bins (small value

for m) results in a large bin width, producing a histogram that captures the shape

of the underlying distribution “coarsely”. Using excessive bins (large value for m)

results in a small bin width, producing a “noisy” histogram that captures the shape of

the underlying distribution “finely” and typically “noisily”. Figure 4.1 illustrates that

arbitrarily increasing the number of bins to construct a histogram does not necessarily

result in “better” histograms.

Thus, the problem of selecting an “optimal” number of bins refers to selecting

an appropriate number of bins for constructing a histogram that achieves a “good”

balance between “degree of detail” and “noisiness” for a given dataset. In other

words, the number of bins should be large enough to capture all the major shape

features present in the distribution, but small enough so as to suppress finer details

produced due to random sampling noise [45].

Tables 4.1 and 4.2 and Figure 4.2 describe the datafiles and datasets used for

testing our proposed method. The work presented in this chapter was published in the

Proceedings of the Seventh International Conference on Data Mining (DMIN’11) [47].

51

0 20 40 60 80 100
0

0.5

1

1.5

2

Sine Distribution - Shape

(a) Original

0 20 40 60 80 100
0

100

200

300

400

500

600

5 Bins

(b) 5 bins

0 20 40 60 80 100
0

50

100

150

200

250

300

10 Bins

(c) 10 bins

0 20 40 60 80 100
0

20

40

60

80

100

33 Bins

(d) 33 bins

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

100 Bins

(e) 100 bins

0 20 40 60 80 100
0

5

10

15

20

200 Bins

(f) 200 bins

Figure 4.1: Original distribution and several histograms for a dataset (≈ 2000 points)

Table 4.1: Datafiles used for testing
Datafile # of Datasets # of Data points
DF-1 12 ≈ 500
DF-2 12 ≈ 1000
DF-3 12 ≈ 2000
DF-4 12 ≈ 5000

Table 4.2: Datafiles used for testing
Dataset Distribution Dataset Distribution
DS-1 Uniform DS-7 Gamma
DS-2 Sine DS-8 Triangular
DS-3 Normal DS-9 Custom-1
DS-4 Laplace DS-10 Custom-2
DS-5 Semi-Circular DS-11 Custom-3
DS-6 Exponential DS-12 Custom-4

52

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Uniform Distribution - Shape

(a) Uniform

0 20 40 60 80 100
0

0.5

1

1.5

2

Sine Distribution - Shape

(b) Sine

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Normal Distribution - Shape

(c) Normal

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Laplace Distribution - Shape

(d) Laplace

0 20 40 60 80 100 120
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Semi-Circular Distribution - Shape

(e) Semi-Circular

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Exponential Distribution - Shape

(f) Exponential

0 20 40 60 80 100 120
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Gamma Distribution - Shape

(g) Gamma

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

Triangular Distribution - Shape

(h) Triangular

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Custom-1 Distribution - Shape

(i) Custom-1

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Custom-2 Distribution - Shape

(j) Custom-2

0 20 40 60 80 100
0

10

20

30

40

50

60
Custom-3 Distribution - Shape

(k) Custom-3

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

Custom-4 Distribution - Shape

(l) Custom-4

Figure 4.2: Datasets used for testing

53

4.2 Existing Methods

Perhaps the earliest reported method for constructing histograms is due to Sturges

[48]. It is based on the assumption that a good distribution will have binomial

coefficients
(

m−1
i

)

, i = 0, 1, 2, . . . ,m − 1 as its bin counts. It suggests the number of

bins to be used as:

m = 1 + log2 n (4.5)

Hyndman [49] suggests that the argument used by Sturges [48] is incorrect and should

not be used. Scott [50] uses IMSE (Integrated Mean Square Error – which is equal

to Mean Integrated Square Error MISE [51]) as the measure of error between the

estimated probability density (f̂(x)) represented by the histogram, and the actual

(and unknown) probability density (f(x)) of the underlying population. IMSE is

defined as:

IMSE =
∫

MSE(x) dx

=
∫

E(f̂(x)− f(x))2 dx

= E
∫

(f̂(x)− f(x))2 dx

= MISE

(4.6)

Using this error metric with Gaussian density as the reference for the actual proba-

bility density, Scott suggests the bin width to be used as:

h =
3.49s

n1/3
(4.7)

where s is the estimated standard deviation. Freedman et al. [52] suggests a similar

formula with a slight modification:

h =
2(IQR(X))

n1/3
(4.8)

where IQR(X) is the Inter–Quartile Range for the dataset X.

54

Methods proposed by Stone [53], Rudemo [54], and Wand [43] are also frequently

encountered in the related literature. Stone [53] proposes a method based on min-

imization of a loss function defined on the basis of bin probabilities and number of

bins. Rudemo [54] proposes a method based on Kullback–Leibler risk function and

cross–validation techniques. Wand [43] extends Scott’s method [50] to have good large

sample consistency properties. Hall [55] investigates the use of Akaike’s Information

Criterion (AIC) and Kullback Liebler Cross Validation methods for constructing his-

tograms.

More recently, Birge et al. [56] have proposed a method using a risk function

based on penalized maximum likelihood. Knuth [45] has proposed a method based

on maximizing the posterior probability for number of bins. Shimazaki et al. [38]

have proposed a method based on minimizing an estimated cost function obtained by

using a modified MISE. The method evaluates the estimated cost function using the

implications of an assumption that the data are sampled independently of each other

(assumption of a Poisson point process).

4.3 A New Proposed Method

Popular methods such as given by Scott [50], and Freedman et al. [52] try to asymptot-

ically minimize MISE. These methods make certain assumptions to allow estimating

the value of MISE, since the actual density function of the underlying population itself

is unknown. Knuth [45] suggests that it is not reasonable to extend these assumptions

for all datasets. It is also known that MISE does not necessarily conform with the hu-

man perception of closeness of a density function to its target [46]. Marron et al. [57]

provide a good introduction to the disconnect between classical mathematical theory

and the practice of non–parametric density estimation due to the non–conformance

of human perception of closeness with metrics such as MISE and MIAE. Methods

employing risk functions based on penalized likelihood functions need not make as-

55

sumptions about the underlying function, but their performance will depend upon

the form of the risk function selected.

In the new method proposed here, error metrics are defined on quantities observ-

able or computable from the dataset. An balance between the error and the cost of

computing the histogram is used to select the number of bins.

Motivation: A histogram for a given dataset can be interpreted as a compact

representation of the dataset itself, obtained by a lossy compression process. A good

histogram will provide enough information to recreate data whose Cumulative Distri-

bution Function (CDF) approximately matches the Cumulative Distribution Function

of the actual dataset itself (Statement–I). Also, a good histogram will have no signif-

icant shape information inside any bin (Statement–II).

Statements I & II are axiomatic. They also indicate that data can be reconstructed

from a given histogram. There are two simple ways to approximately reconstruct data

from a histogram. For each bin Bk with bin count ck: (1) recreate ck data points

equal to the bin center ((tk + tk+1)/2) – equivalent to nearest neighbor interpolation;

(2) recreate ck data points spread uniformly over (tk, tk+1) – equivalent to linear

interpolation.

Let X̂NN = {x̂1NN
, x̂2NN

, . . . , x̂nNN
} represent data reconstructed using the nearest

neighbor equivalent described above, and let X̂L = {x̂1L , x̂2L , . . . , x̂nL
} represent data

reconstructed using the linear interpolation equivalent. Figure 4.3 illustrates that for

a histogram constructed using a given number of bins for a dataset, the CDF of the

data recreated using linear interpolation matches the actual CDF more closely than

the data recreated using the nearest neighbor approximation. Due to the Glivenko-

Cantelli theorem [58], [59] both approximations will converge to the actual CDF itself

as m increases.

Define the error metrics ENN and EL for the nearest neighbor and linear interpo-

56

lation reconstructions , respectively, by:

ENN =
n
∑

i=1

|xi − x̂iNN
|

EL =
n
∑

i=1

|xi − x̂iL |
(4.9)

Due to the aforementioned theorem, ENN and EL will converge to zero as the num-

ber of bins used to construct the histogram are increased (m → ∞). In fact the

convergence of the error metrics to zero is very likely once m ≥ n. The CDF of

data reconstructed using linear interpolation, which matches the actual data CDF

more closely than the data reconstructed using the nearest neighbor approximation,

indicates that EL will converge faster than ENN . Figure 4.4 shows plots of ENN and

EL for various values of m. In Figure 4.4, the vertical axis represents the value of

the error metrics and the horizontal axis represents the value of the computational

cost. The computational cost involved in constructing a histogram using m bins for

n points will at the most be of order O(mn). Since we are trying to select m for

the same n points, the computational costs will be proportional to m and hence m is

used as the computational cost.

Figure 4.4 uses square markers to indicate “elbow points” for both error metric

curves. An elbow point marks the region where incurrence of further “costs” does

not result in any further significant “gains”. Hence elbow points represent a trade–off

between two conflicting quantities. The method is often traced to Thorndike [60] and

has been used for similar purposes [17], [61]. The method described in [17] is used to

compute the elbow points for the work done in this paper.

Let mNN and mL correspond, respectively, to the number of bins indicated by the

elbow points on the ENN and EL metric curves. Using any m in [mL,mNN] will result

in a histogram that offers a reasonably good trade–off between the error metrics and

the cost involved. In all the histograms constructed using an m in [mL,mNN], the

57

histogram having the lowest roughness R̂ is likely to be the most visually appealing.

The roughness measure for a histogram is defined as [62]:

R̂ =
∑

(∆2f̂(x))h (4.10)

where ∆2 represents the second order finite difference for f̂(x). Figure 4.5 shows

Roughness measures for histograms constructed withm in the corresponding [mL,mNN]

for DS–7 & DS–8.

In summary, to construct a histogram using our new method: (1) Define M1 =

{1, 2, . . . ,√n, n√
n
, . . . , n

2
, n
1
}; (2) Construct a histogram for X with m bins for all m

in M1; (3) Construct ENN and EL for each histogram; (4) Compute mNN and mL for

the ENN and EL metric curves; (5) Define M2 = {mL,mL + 1, . . . ,mNN − 1,mNN};

(6) For eachm inM2 construct a histogram forX withm bins; (7) Compute roughness

metric R̂ for each histogram; (8) Select as the optimal number of bins mopt, the value

of m that has the lowest R̂.

4.4 Experiments & Results

The method explained in Section 4.3 was coded in MATLAB for testing on the

datafiles/datasets introduced in Section 4.1. Shimazaki et al. [38] and Knuth [45]

provide MATLAB implementations of their methods. Methods due to Sturges [48],

Scott [50], and Freedman et al. [52] were also coded in MATLAB. The testing was

done on a computer running Windows XP SP3, with an Intel Pentium 4 CPU (3.20

GHz) processor, and having 2.00 GB RAM. All the methods were tested on datafiles

DF–1, DF–2, DF–3, and DF–4.

The following abbreviations are used in the tables and figures displaying results:

StM – Sturges Method; ScM – Scott Method; FDM – Freedman Diaconis Method;

SM – Shimazaki et al. Method; KM – Knuth Method; LHM – Lolla Hoberock Method

58

-20 0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Data Value ->

E
m

pi
ric

al
 C

D
F

 -
>

DS-9 : 2 bins

Actual
NN Approx
L Approx

(a) m = 2

-20 0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Data Value ->

E
m

pi
ric

al
 C

D
F

 -
>

DS-9 : 5 bins

Actual
NN Approx
L Approx

(b) m = 5

-20 0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Data Value ->

E
m

pi
ric

al
 C

D
F

 -
>

DS-9 : 10 bins

Actual
NN Approx
L Approx

(c) m = 10

-20 0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Data Value ->

E
m

pi
ric

al
 C

D
F

 -
>

DS-9 : 25 bins

Actual
NN Approx
L Approx

(d) m = 25

Figure 4.3: Empirical CDF: Data approximations using m = 2, 5, 10, 25 bins for
DS–9

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

of Bins ->

L1
 D

is
ta

nc
e

->

DS-7 - L1 Distance

NN-Approx

L-Approx

(a) DS-7

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

4000

4500

of Bins ->

L1
 D

is
ta

nc
e

->

DS-8 - L1 Distance

NN-Approx

L-Approx

(b) DS-8

Figure 4.4: Error Metrics for DS–7 & DS–8

59

10 15 20 25 30 35 40 45
0

1

2

x 10
-4

of Bins ->

R
ou

gh
ne

ss
 -

>
DS-7 - Histogram Roughness

(a) DS-7

10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-4

of Bins ->

R
ou

gh
ne

ss
 -

>

DS-8 - Histogram Roughness

(b) DS-8

Figure 4.5: Roughness Measures for DS–7 & DS–8

(proposed in this chapter).

In order to measure the performance of the various methods mentioned above, the

values of ENN , EL, and R̂ are computed for the histograms generated by each method.

It is desirable to have values as low as possible for all three metrics simultaneously.

However, low values of R̂ tend to result in relatively higher values of ENN and EL, and

vice versa. ENN and EL indicate a given histogram’s fidelity in representing the data,

and R̂ indicates the degree of over–fitting (or under–fitting) in the representation.

Tables 4.3 and 4.6 document values of mopt, ENN , EL, and R̂ for histograms

generated by various methods for each dataset. The maximum values for mopt, and

the minimum values for ENN , EL, and R̂ across all the methods are highlighted in blue

boldface for easy reading. It can be seen from the tables that the method proposed

herein (LHM) produces the lowest values of ENN , EL, and R̂ simultaneously for a

vast majority of the cases. This indicates that the proposed method does a better job

of capturing shape-related information to a good degree of detail without admitting

excessive noise as compared to the other methods.

Figure 4.6 to 4.17 display histograms constructed using various methods for the

datasets in datafile DF–3. Visual examination of these plots and comparison to data

distribution shapes in Figure 4.2 supports the aforementioned inference. Results for

60

0 20 40 60 80 100
0

50

100

150

200

Uniform : 12 Bins (Sturges Method)

(a) StM

0 20 40 60 80 100
0

50

100

150

200

250

300

Uniform : 8 Bins (Scott Method)

(b) ScM

0 20 40 60 80 100
0

50

100

150

200

250

300

Uniform : 8 Bins (FD Method)

(c) FD

0 20 40 60 80 100
0

500

1000

1500

2000

Uniform : 1 Bins (Shimazaki Method)

(d) SM

0 20 40 60 80 100
0

500

1000

1500

2000

Uniform : 1 Bins (Knuth Method)

(e) KM

0 20 40 60 80 100
0

500

1000

1500

2000

DS-1 : 1 Bins (LHM : L1)

(f) LHM

Figure 4.6: Histograms generated for DS–1 (from DF–3) using various methods.

datasets in other datafiles were found to be similar.

The method proposed in this chapter also produces some results that the authors

find less satisfying, in which case the shapes of the distributions underlying the pop-

ulation are not as well captured. However, as shown in Figure 4.18 to 4.22, results

from the other methods are also less satisfying.

61

Table 4.3: Results for DF–1 using various methods

DS StM ScM FDM SM KM LHM

DS-1 mopt 10 13 13 1 1 1
ENN (x 102) 12.75 9.86 9.86 127.46 127.46 127.46
EL (x 102) 1.84 1.75 1.75 1.90 1.90 1.90

R̂ (x 10−5) 2.19 16.95 16.95 0.00 0.00 0.00

DS-2 mopt 11 12 12 4 4 22

ENN (x 102) 12.68 11.62 11.62 34.81 34.81 6.43

EL (x 102) 2.12 2.18 2.18 2.59 2.59 1.87

R̂ (x 10−4) 6.13 4.92 4.92 37.06 37.06 2.20

DS-3 mopt 11 5 3 8 8 20

ENN (x 102) 7.39 15.91 26.28 10.04 10.04 4.04

EL (x 102) 1.97 4.81 9.00 2.30 2.30 1.73

R̂ (x 10−4) 18.00 142.05 499.85 43.61 43.61 2.25

DS-4 mopt 11 8 5 15 11 28

ENN (x 102) 15.18 21.87 32.05 11.44 15.18 6.17

EL (x 102) 3.46 7.71 9.43 2.50 3.46 2.03

R̂ (x 10−3) 9.22 9.80 33.42 5.26 9.22 1.05

DS-5 mopt 11 13 12 6 3 15

ENN (x 103) 1.53 1.27 1.40 2.77 5.43 1.12

EL (x 102) 2.36 2.07 2.05 3.14 9.08 2.10

R̂ (x 10−5) 14.59 12.91 19.88 19.04 166.64 8.16

DS-6 mopt 11 11 7 14 7 18

ENN (x 102) 15.79 15.79 25.09 12.51 25.09 9.87

EL (x 102) 3.26 3.26 6.20 2.46 6.20 2.33

R̂ (x 10−4) 7.08 7.08 23.04 3.57 23.04 2.03

DS-7 mopt 11 12 10 7 7 12

ENN (x 103) 1.56 1.39 1.67 2.41 2.41 1.39

EL (x 102) 2.77 2.51 2.62 3.65 3.65 2.51

R̂ (x 10−4) 1.67 1.19 2.69 8.47 8.47 1.19

DS-8 mopt 11 11 9 9 6 19

ENN (x 102) 15.41 15.41 18.65 18.65 27.79 8.92

EL (x 102) 2.49 2.49 2.95 2.95 5.12 2.13

R̂ (x 10−4) 2.38 2.38 4.70 4.70 13.78 1.17

DS-9 mopt 11 9 4 19 5 27

ENN (x 102) 12.61 15.43 40.00 7.30 25.34 5.43

EL (x 102) 4.47 5.05 20.38 2.35 5.54 2.15

R̂ (x 10−3) 12.56 27.60 6.77 5.83 51.06 2.32

DS-10 mopt 11 15 17 24 16 23
ENN (x 102) 15.84 11.48 10.18 7.29 11.03 7.54
EL (x 102) 4.37 3.24 2.67 2.25 2.82 2.17

R̂ (x 10−4) 52.63 30.38 22.56 11.38 24.56 8.65

DS-11 mopt 11 11 8 8 7 20

ENN (x 102) 12.57 12.57 17.50 17.50 20.02 6.93

EL (x 102) 2.75 2.75 3.76 3.76 4.20 2.12

R̂ (x 10−4) 15.65 15.65 19.44 19.44 36.89 4.33

DS-12 mopt 11 12 11 4 4 4
ENN (x 103) 1.26 1.16 1.26 3.46 3.46 3.46
EL (x 102) 2.25 2.32 2.25 3.06 3.06 3.06

R̂ (x 10−6) 2036.87 1678.39 2036.87 9.75 9.75 9.75

62

Table 4.4: Results for DF–2 using various methods

DS StM ScM FDM SM KM LHM

DS-1 mopt 11 10 10 1 1 1
ENN (x 103) 2.34 2.57 2.57 25.50 25.50 25.50
EL (x 102) 3.41 3.48 3.48 3.41 3.41 3.41

R̂ (x 10−5) 2.58 5.25 5.25 0.00 0.00 0.00

DS-2 mopt 12 10 10 4 4 28

ENN (x 102) 22.23 26.39 26.39 66.19 66.19 9.76

EL (x 102) 3.97 4.60 4.60 5.72 5.72 3.54

R̂ (x 10−4) 6.59 10.03 10.03 41.49 41.49 1.13

DS-3 mopt 12 4 3 14 10 18

ENN (x 102) 13.41 38.86 51.60 11.44 15.80 9.13

EL (x 102) 4.06 16.06 19.13 3.70 4.27 3.62

R̂ (x 10−4) 14.10 169.16 514.27 6.76 19.19 2.94

DS-4 mopt 12 6 4 21 11 37

ENN (x 102) 27.22 56.19 88.13 15.52 28.77 9.06

EL (x 102) 7.22 25.40 55.74 3.97 6.59 3.75

R̂ (x 10−4) 55.57 156.80 103.28 25.63 99.27 5.61

DS-5 mopt 12 10 10 6 6 18

ENN (x 103) 2.65 3.11 3.11 5.16 5.16 1.75

EL (x 102) 4.03 4.65 4.65 6.33 6.33 3.68

R̂ (x 10−5) 5.02 5.56 5.56 22.77 22.77 4.07

DS-6 mopt 12 8 5 18 9 28

ENN (x 103) 2.69 4.09 6.66 1.81 3.61 1.17

EL (x 102) 5.36 10.56 24.50 3.75 7.59 3.83

R̂ (x 10−4) 6.01 16.52 50.55 3.25 12.33 1.00

DS-7 mopt 12 9 8 13 9 19

ENN (x 103) 2.66 3.54 3.96 2.47 3.54 1.69

EL (x 102) 4.78 5.60 6.53 4.31 5.60 3.82

R̂ (x 10−5) 12.98 36.91 59.32 12.62 36.91 4.39

DS-8 mopt 12 9 7 10 10 19

ENN (x 103) 2.63 3.49 4.46 3.15 3.15 1.67

EL (x 102) 4.21 5.68 8.19 4.96 4.96 3.62

R̂ (x 10−5) 20.62 42.13 81.31 28.39 28.39 4.80

DS-9 mopt 12 7 3 30 18 36

ENN (x 102) 22.30 41.00 69.76 9.32 14.99 7.76

EL (x 102) 6.92 8.41 29.66 3.84 4.67 3.77

R̂ (x 10−3) 17.98 42.55 30.02 2.04 7.68 1.27

DS-10 mopt 12 12 14 47 17 30
ENN (x 102) 27.27 27.27 23.49 7.26 19.30 11.01
EL (x 102) 7.98 7.98 6.30 3.59 5.05 3.80

R̂ (x 10−4) 53.64 53.64 40.98 6.88 24.53 5.71

DS-11 mopt 12 9 6 16 13 25

ENN (x 103) 2.23 3.00 4.46 1.66 2.08 1.10

EL (x 102) 4.85 6.83 13.73 4.19 4.43 3.66

R̂ (x 10−4) 14.30 14.98 16.36 7.15 12.02 3.77

DS-12 mopt 12 9 9 8 4 24

ENN (x 103) 2.22 2.95 2.95 3.32 6.61 1.15

EL (x 102) 4.52 5.59 5.59 4.31 6.68 3.77

R̂ (x 10−6) 1949.62 1609.92 1609.92 4123.74 4.91 413.81

63

Table 4.5: Results for DF–3 using various methods

DS StM ScM FDM SM KM LHM

DS-1 mopt 12 8 8 1 1 1
ENN (x 103) 4.29 6.40 6.40 51.00 51.00 51.00
EL (x 102) 6.65 6.74 6.74 6.60 6.60 6.60

R̂ (x 10−6) 12.62 5.58 5.58 0.00 0.00 0.00

DS-2 mopt 12 8 8 14 4 33

ENN (x 103) 4.33 6.48 6.48 3.72 12.94 1.68

EL (x 102) 7.69 10.57 10.57 7.41 10.68 6.95

R̂ (x 10−5) 72.26 209.96 209.96 42.42 514.19 6.35

DS-3 mopt 12 3 2 17 12 31

ENN (x 103) 2.65 10.19 16.79 1.91 2.65 1.20

EL (x 102) 7.64 37.73 144.58 7.14 7.64 6.99

R̂ (x 10−4) 12.04 552.52 0.00 4.65 12.04 1.77

DS-4 mopt 13 5 3 25 17 48

ENN (x 103) 4.74 11.53 17.14 2.54 3.65 1.40

EL (x 102) 10.98 39.56 78.06 7.40 8.57 7.07

R̂ (x 10−4) 73.21 410.54 470.35 18.01 39.07 2.82

DS-5 mopt 13 8 8 11 7 17

ENN (x 103) 4.75 7.64 7.64 5.60 8.66 3.60

EL (x 102) 8.02 10.86 10.86 8.31 11.48 7.24

R̂ (x 10−5) 6.38 12.81 12.81 7.21 16.79 2.34

DS-6 mopt 13 6 4 23 17 30

ENN (x 103) 4.78 10.48 16.10 2.77 3.68 2.05

EL (x 102) 9.44 34.01 72.55 7.24 7.61 7.01

R̂ (x 10−5) 46.38 354.75 737.01 12.10 27.92 3.48

DS-7 mopt 13 7 6 14 12 20

ENN (x 103) 4.78 8.80 10.22 4.41 5.12 3.11

EL (x 102) 8.16 13.66 18.73 7.56 8.34 7.35

R̂ (x 10−5) 11.14 99.50 155.56 11.34 15.44 4.04

DS-8 mopt 13 7 6 13 13 19

ENN (x 103) 4.75 8.69 10.18 4.75 4.75 3.28

EL (x 102) 8.41 16.53 21.76 8.41 8.41 7.55

R̂ (x 10−5) 16.78 90.27 141.93 16.78 16.78 4.30

DS-9 mopt 12 5 2 38 18 47

ENN (x 103) 4.37 9.32 33.70 1.50 2.93 1.23

EL (x 102) 13.95 20.20 236.71 7.05 8.96 6.96

R̂ (x 10−4) 190.43 626.38 0.00 13.42 82.32 6.93

DS-10 mopt 13 10 11 45 23 37
ENN (x 103) 4.88 6.41 5.79 1.52 2.78 1.77
EL (x 102) 14.06 20.45 17.42 7.00 7.90 7.06

R̂ (x 10−4) 49.83 73.80 64.99 4.19 14.59 3.25

DS-11 mopt 13 7 5 13 13 34

ENN (x 103) 4.04 7.55 10.44 4.04 4.04 1.61

EL (x 102) 8.51 14.55 27.88 8.51 8.51 7.17

R̂ (x 10−4) 12.27 37.72 35.01 12.27 12.27 2.17

DS-12 mopt 13 7 7 8 4 31

ENN (x 103) 4.01 7.40 7.40 6.49 12.88 1.76

EL (x 102) 8.35 14.10 14.10 8.38 12.50 6.93

R̂ (x 10−6) 1710.36 775.42 775.42 3847.28 2.82 208.35

64

Table 4.6: Results for DF–4 using various methods

DS StM ScM FDM SM KM LHM

DS-1 mopt 14 6 6 1 1 1
ENN (x 103) 9.24 21.29 21.29 127.53 127.53 127.53
EL (x 103) 1.72 1.72 1.72 1.72 1.72 1.72

R̂ (x 10−6) 9.75 5.31 5.31 0.00 0.00 0.00

DS-2 mopt 14 6 6 18 4 30

ENN (x 103) 9.24 21.28 21.28 7.22 31.89 4.50

EL (x 103) 1.84 3.76 3.76 1.73 2.70 1.69

R̂ (x 10−5) 39.66 256.35 256.35 18.99 503.03 5.20

DS-3 mopt 14 2 2 22 19 61

ENN (x 103) 5.68 41.89 41.89 3.74 4.29 1.35

EL (x 103) 1.82 36.47 36.47 1.69 1.70 1.66

R̂ (x 10−5) 67.85 0.00 0.00 15.97 22.60 5.60

DS-4 mopt 14 3 2 54 21 63

ENN (x 103) 11.13 42.14 99.51 3.20 7.40 2.88

EL (x 103) 2.84 19.42 90.85 1.70 1.90 1.70

R̂ (x 10−4) 49.05 490.78 0.00 2.59 25.14 1.84

DS-5 mopt 14 6 6 15 12 25

ENN (x 103) 10.82 24.93 24.93 10.12 12.59 6.17

EL (x 103) 1.86 3.31 3.31 1.80 1.91 1.70

R̂ (x 10−5) 4.52 23.42 23.42 3.94 4.85 1.66

DS-6 mopt 14 4 3 28 17 40

ENN (x 103) 11.01 39.73 54.54 5.64 9.03 3.88

EL (x 103) 2.21 18.23 31.41 1.74 1.91 1.72

R̂ (x 10−5) 35.02 750.14 1023.42 9.27 20.94 2.58

DS-7 mopt 14 5 5 21 16 28

ENN (x 103) 10.89 29.98 29.98 7.34 9.54 5.57

EL (x 103) 1.94 6.85 6.85 1.72 1.84 1.72

R̂ (x 10−5) 8.72 240.39 240.39 2.63 5.40 2.43

DS-8 mopt 14 5 4 15 15 33

ENN (x 103) 10.79 29.97 36.79 10.12 10.12 4.78

EL (x 103) 1.95 7.89 10.33 1.90 1.90 1.72

R̂ (x 10−5) 11.66 235.58 509.14 10.42 10.42 2.70

DS-9 mopt 14 4 2 51 30 67

ENN (x 103) 9.12 37.21 83.41 3.05 4.53 2.48

EL (x 103) 3.26 20.41 59.32 1.70 1.80 1.69

R̂ (x 10−4) 124.90 79.24 0.00 7.60 21.94 2.89

DS-10 mopt 14 7 8 50 30 59

ENN (x 103) 11.14 22.96 19.91 3.42 5.32 2.94

EL (x 103) 3.13 9.23 7.15 1.73 1.83 1.73

R̂ (x 10−4) 44.75 90.91 92.32 2.16 6.00 1.74

DS-11 mopt 14 5 3 26 17 44

ENN (x 103) 9.27 25.71 45.70 5.09 7.66 3.27

EL (x 103) 2.27 7.01 14.85 1.76 1.95 1.71

R̂ (x 10−5) 84.47 372.90 636.10 31.79 70.25 8.79

DS-12 mopt 14 6 5 20 8 43

ENN (x 103) 9.20 21.31 25.56 6.54 15.97 3.35

EL (x 103) 2.01 3.99 4.98 1.75 2.08 1.69

R̂ (x 10−5) 145.12 30.04 3.40 69.38 396.55 8.77

65

0 20 40 60 80 100
0

50

100

150

200

250

Sine : 12 Bins (Sturges Method)

(a) StM

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Sine : 8 Bins (Scott Method)

(b) ScM

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Sine : 8 Bins (FD Method)

(c) FD

0 20 40 60 80 100
0

50

100

150

200

Sine : 14 Bins (Shimazaki Method)

(d) SM

0 20 40 60 80 100
0

100

200

300

400

500

600

700

Sine : 4 Bins (Knuth Method)

(e) KM

0 20 40 60 80 100
0

20

40

60

80

100

DS-2 : 33 Bins (LHM : L1)

(f) LHM

Figure 4.7: Histograms generated for DS–2 (from DF–3) using various methods.

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

400

450

Normal : 12 Bins (Sturges Method)

(a) StM

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

Normal : 3 Bins (Scott Method)

(b) ScM

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200
Normal : 2 Bins (FD Method)

(c) FD

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Normal : 17 Bins (Shimazaki Method)

(d) SM

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

400

450

Normal : 12 Bins (Knuth Method)

(e) KM

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

DS-3 : 31 Bins (LHM : L1)

(f) LHM

Figure 4.8: Histograms generated for DS–3 (from DF–3) using various methods.

66

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

Laplace : 13 Bins (Sturges Method)

(a) StM

0 20 40 60 80 100 120
0

500

1000

1500
Laplace : 5 Bins (Scott Method)

(b) ScM

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

Laplace : 3 Bins (FD Method)

(c) FD

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

Laplace : 25 Bins (Shimazaki Method)

(d) SM

0 20 40 60 80 100 120
0

100

200

300

400

500

Laplace : 17 Bins (Knuth Method)

(e) KM

0 20 40 60 80 100 120
0

50

100

150

200

DS-4 : 48 Bins (LHM : L1)

(f) LHM

Figure 4.9: Histograms generated for DS–4 (from DF–3) using various methods.

0 20 40 60 80 100 120
0

50

100

150

200

Semi-Circular : 13 Bins (Sturges Method)

(a) StM

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

Semi-Circular : 8 Bins (Scott Method)

(b) ScM

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

Semi-Circular : 8 Bins (FD Method)

(c) FD

0 20 40 60 80 100 120
0

50

100

150

200

250

Semi-Circular : 11 Bins (Shimazaki Method)

(d) SM

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

Semi-Circular : 7 Bins (Knuth Method)

(e) KM

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

DS-5 : 17 Bins (LHM : L1)

(f) LHM

Figure 4.10: Histograms generated for DS–5 (from DF–3) using various methods.

67

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

800

Exponential : 13 Bins (Sturges Method)

(a) StM

0 20 40 60 80 100 120
0

500

1000

1500

Exponential : 6 Bins (Scott Method)

(b) ScM

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

Exponential : 4 Bins (FD Method)

(c) FD

0 20 40 60 80 100 120
0

100

200

300

400

500

Exponential : 23 Bins (Shimazaki Method)

(d) SM

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

Exponential : 17 Bins (Knuth Method)

(e) KM

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

DS-6 : 30 Bins (LHM : L1)

(f) LHM

Figure 4.11: Histograms generated for DS–6 (from DF–3) using various methods.

0 20 40 60 80 100 120
0

50

100

150

200

250

300

Gamma : 13 Bins (Sturges Method)

(a) StM

0 20 40 60 80 100 120
0

100

200

300

400

500

Gamma : 7 Bins (Scott Method)

(b) ScM

0 20 40 60 80 100 120
0

100

200

300

400

500

600

Gamma : 6 Bins (FD Method)

(c) FD

0 20 40 60 80 100 120
0

50

100

150

200

250

Gamma : 14 Bins (Shimazaki Method)

(d) SM

0 20 40 60 80 100 120
0

50

100

150

200

250

300

Gamma : 12 Bins (Knuth Method)

(e) KM

0 20 40 60 80 100 120
0

50

100

150

200

DS-7 : 20 Bins (LHM : L1)

(f) LHM

Figure 4.12: Histograms generated for DS–7 (from DF–3) using various methods.

68

0 20 40 60 80 100 120
0

50

100

150

200

250

300

Triangular : 13 Bins (Sturges Method)

(a) StM

0 20 40 60 80 100 120
0

100

200

300

400

500

600

Triangular : 7 Bins (Scott Method)

(b) ScM

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

Triangular : 6 Bins (FD Method)

(c) FD

0 20 40 60 80 100 120
0

50

100

150

200

250

300

Triangular : 13 Bins (Shimazaki Method)

(d) SM

0 20 40 60 80 100 120
0

50

100

150

200

250

300

Triangular : 13 Bins (Knuth Method)

(e) KM

0 20 40 60 80 100 120
0

50

100

150

200

DS-8 : 19 Bins (LHM : L1)

(f) LHM

Figure 4.13: Histograms generated for DS–8 (from DF–3) using various methods.

0 20 40 60 80 100
0

100

200

300

400

500

600

Custom-1 : 12 Bins (Sturges Method)

(a) StM

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

Custom-1 : 5 Bins (Scott Method)

(b) ScM

0 20 40 60 80 100
0

200

400

600

800

1000

1200

Custom-1 : 2 Bins (FD Method)

(c) FD

0 20 40 60 80 100
0

50

100

150

200

250
Custom-1 : 38 Bins (Shimazaki Method)

(d) SM

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

Custom-1 : 18 Bins (Knuth Method)

(e) KM

0 20 40 60 80 100
0

50

100

150

200
DS-9 : 47 Bins (LHM : L1)

(f) LHM

Figure 4.14: Histograms generated for DS–9 (from DF–3) using various methods.

69

0 20 40 60 80 100 120
0

100

200

300

400

500

600

Custom-2 : 13 Bins (Sturges Method)

(a) StM

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

Custom-2 : 10 Bins (Scott Method)

(b) ScM

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700
Custom-2 : 11 Bins (FD Method)

(c) FD

0 20 40 60 80 100 120
0

50

100

150

200

250

300

Custom-2 : 45 Bins (Shimazaki Method)

(d) SM

0 20 40 60 80 100 120
0

100

200

300

400

500
Custom-2 : 23 Bins (Knuth Method)

(e) KM

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

DS-10 : 37 Bins (LHM : L1)

(f) LHM

Figure 4.15: Histograms generated for DS–10 (from DF–3) using various methods.

70

0 20 40 60 80 100
0

100

200

300

400

500

Custom-3 : 13 Bins (Sturges Method)

(a) StM

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

Custom-3 : 7 Bins (Scott Method)

(b) ScM

0 20 40 60 80 100
0

200

400

600

800

1000

1200

Custom-3 : 5 Bins (FD Method)

(c) FD

0 20 40 60 80 100
0

100

200

300

400

500

Custom-3 : 13 Bins (Shimazaki Method)

(d) SM

0 20 40 60 80 100
0

100

200

300

400

500

Custom-3 : 13 Bins (Knuth Method)

(e) KM

0 20 40 60 80 100
0

50

100

150

200

DS-11 : 34 Bins (LHM : L1)

(f) LHM

Figure 4.16: Histograms generated for DS–11 (from DF–3) using various methods.

4.5 Conclusions

This chapter introduces a new method for selecting the number of bins for construct-

ing a histogram for a given dataset. The performance of the proposed method is

compared with the performance of five other methods in the literature. Comparison

results show that the proposed method performs better than the other five methods,

with the proposed method producing visually appealing histograms that reveal shape

features of underlying distribution to a finer detail without admitting excessive noise.

We suggest that future investigations should explore the following issues: (1) De-

signing a metric to measure the performance of a histogram as evaluated by human

perception; (2) Extension of ideas proposed herein to higher dimensional data; and

(3) Optimizing the proposed method to reduce time and memory requirements.

71

0 20 40 60 80 100
0

50

100

150

200

250

300

Custom-4 : 13 Bins (Sturges Method)

(a) StM

0 20 40 60 80 100
0

100

200

300

400

500

Custom-4 : 7 Bins (Scott Method)

(b) ScM

0 20 40 60 80 100
0

100

200

300

400

500

Custom-4 : 7 Bins (FD Method)

(c) FD

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

Custom-4 : 8 Bins (Shimazaki Method)

(d) SM

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

Custom-4 : 4 Bins (Knuth Method)

(e) KM

0 20 40 60 80 100
0

20

40

60

80

100

120

DS-12 : 31 Bins (LHM : L1)

(f) LHM

Figure 4.17: Histograms generated for DS–12 (from DF–3) using various methods.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Sine : 11 Bins (Sturges Method)

(a) StM

0 20 40 60 80 100
0

10

20

30

40

50

60

Sine : 12 Bins (Scott Method)

(b) ScM

0 20 40 60 80 100
0

10

20

30

40

50

60

Sine : 12 Bins (FD Method)

(c) FD

0 20 40 60 80 100
0

50

100

150

200
Sine : 4 Bins (Shimazaki Method)

(d) SM

0 20 40 60 80 100
0

50

100

150

200
Sine : 4 Bins (Knuth Method)

(e) KM

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

DS-2 : 22 Bins (LHM : L1)

(f) LHM

Figure 4.18: Less Satisfying Result (LHM): Undesirable spike on left mode (DS–2,
DF–1).

72

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Semi-Circular : 12 Bins (Sturges Method)

(a) StM

0 20 40 60 80 100 120
0

50

100

150

Semi-Circular : 10 Bins (Scott Method)

(b) ScM

0 20 40 60 80 100 120
0

50

100

150

Semi-Circular : 10 Bins (FD Method)

(c) FD

0 20 40 60 80 100 120
0

50

100

150

200

250

Semi-Circular : 6 Bins (Shimazaki Method)

(d) SM

0 20 40 60 80 100 120
0

50

100

150

200

250

Semi-Circular : 6 Bins (Knuth Method)

(e) KM

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

DS-5 : 18 Bins (LHM : L1)

(f) LHM

Figure 4.19: Less Satisfying Result (LHM): Histogram could be “smoother” (DS–5,
DF–2).

0 20 40 60 80 100
0

50

100

150

200

Custom-1 : 11 Bins (Sturges Method)

(a) StM

0 20 40 60 80 100
0

50

100

150

200

250
Custom-1 : 9 Bins (Scott Method)

(b) ScM

0 20 40 60 80 100
0

50

100

150

200

250

Custom-1 : 4 Bins (FD Method)

(c) FD

0 20 40 60 80 100
0

20

40

60

80

100

120

Custom-1 : 19 Bins (Shimazaki Method)

(d) SM

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Custom-1 : 5 Bins (Knuth Method)

(e) KM

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

DS-9 : 27 Bins (LHM : L1)

(f) LHM

Figure 4.20: Less Satisfying Result (LHM): Shape not captured “well” (DS–9, DF–1).

73

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

Custom-3 : 11 Bins (Sturges Method)

(a) StM

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

Custom-3 : 11 Bins (Scott Method)

(b) ScM

0 20 40 60 80 100
0

50

100

150

200

Custom-3 : 8 Bins (FD Method)

(c) FD

0 20 40 60 80 100
0

50

100

150

200

Custom-3 : 8 Bins (Shimazaki Method)

(d) SM

0 20 40 60 80 100
0

50

100

150

200

Custom-3 : 7 Bins (Knuth Method)

(e) KM

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

DS-11 : 20 Bins (LHM : L1)

(f) LHM

Figure 4.21: Less Satisfying Result (LHM): Number of modes do not match original
shape (DS–11, DF–1).

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90
Custom-4 : 11 Bins (Sturges Method)

(a) StM

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Custom-4 : 12 Bins (Scott Method)

(b) ScM

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90
Custom-4 : 11 Bins (FD Method)

(c) FD

0 20 40 60 80 100
0

50

100

150

200

Custom-4 : 4 Bins (Shimazaki Method)

(d) SM

0 20 40 60 80 100
0

50

100

150

200

Custom-4 : 4 Bins (Knuth Method)

(e) KM

0 20 40 60 80 100
0

50

100

150

200

DS-12 : 4 Bins (LHM : L1)

(f) LHM

Figure 4.22: Less Satisfying Result (LHM): Shape not captured “well” (DS–12, DF–
1).

74

CHAPTER 5

Improved Unsupervised Clustering – An Alternate Implementation

5.1 Introduction

A new Clustering algorithm was described in Section 2.4. The performance of the

Clustering algorithm was described in Section 2.5. Encouraged by some of the pos-

itive results obtained, the task of applying the Clustering algorithm to a particular

application was taken up.

The selected application involved segmentation of images of fly-ash particles ac-

quired using a micro Computed Tomography (µCT) imaging device (images supplied

by Dr.Jay Hanan, Associate Professor, School of Mechanical & Aerospace Engineer-

ing, Oklahoma State University). Each particle produces a set of grayscale images,

each image representing a particular slice of the particle. The desired segmentation

operation should identify, group, and label regions of a given image based on “sim-

ilarity” as perceived by human observers. While a feature set that will facilitate

the measurement of such similarity is not readily available, it is most likely that a

feature set based on pixel intensity, position, and texture values might suffice. The

results of segmentation would then be used to estimate the chemical composition of

the fly-ash particle based on comparison – after registration – with an image gener-

ated by a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive

Spectrometer (EDS). Figure 5.1 displays sample slice images of three fly-ash particles

(Particle–1, Particle–2 & Particle–3). It can be seen that the µCT imaging process

produces images with regions of different grayscale and texture. These different re-

gions correspond to different chemical compositions (phases) present in the particle.

75

(a) Particle–1 (b) Particle–2 (c) Particle–3

Figure 5.1: Sample images of slices of three fly-ash particles

It was desired that: (1) the number of phases present in a given image be detected;

and (2) each pixel in the image be associated with a particular phase. The Clustering

algorithm described in Section 2.4 was employed on the images of Particle–1. The

grayscale values of the pixels in the image were supplied as input to the Cluster-

ing algorithm. For Particle–1, the results were encouraging (Figure 5.2). However,

for Particle–2 and Particle–3, the Clustering algorithm did not correctly detect the

number of phases present in the particle. This could be explained, upon examining

the histograms of the grayscale values of pixels in the Region-of-Interest (ROI) for

both those particles. It can be seen from Figure 5.3 that while the ROI histogram for

Particle–1 does clearly display several peaks corresponding to the various phases, such

correspondence cannot be seen in the ROI histograms for Particle–2 and Particle–3.

For these particles, the single–peak shape of the histogram is due to the particle hav-

ing predominantly large proportions of one phase as compared to other phases. In

other words, grayscale values of the pixels alone are not sufficient to determine the

phase associated with a particular pixel in Particle–2 and Particle–3.

Visual examination of the images suggested that a texture-based feature set might

probably separate the phases better. However, attempting to employ the Clustering

algorithm on Gabor filter derived texture data (FS–1) ran into computational diffi-

76

(a) Original Image (b) Segmented Image (3 Regions)

Figure 5.2: Original & Segmented slice images – Particle–1

0 50 100 150 200 250
0

2

4

6

8

10

12
x 10

5 ROI Histogram

(a) Particle–1

0 50 100 150 200 250
0

1

2

3

4

5
x 10

6 ROI Histogram

(b) Particle–2

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18
x 10

5 ROI Histogram

(c) Particle–3

Figure 5.3: ROI Histograms for “Particle–1”, Particle–2” & “Particle–3”

77

culties. Construction of the modified matrix representationM′ for the texture data

required impractical amounts of memory. Thus data with another feature set (FS–

2) consisting of intensity descriptors such as medial gray-level, minimum gray-level,

maximum gray-level, and first 4 moments of intensity histogram for each (32 x 32)

block in the images was chosen as input. However, this data also required very large

amounts of memory to construct a matrix representation. Intending to overcome this

problem, an alternate implementation of the Clustering algorithm was developed.

The alternate implementation is described in Section 5.2. A performance compari-

son of the two implementations for the datasets described in Section 2.2 is provided in

Section 5.3. A significant drawback of the Clustering algorithm presented in Section

2.4 was discovered during experimentation, and is described in Section 5.4.

5.2 An Alternate Implementation

The Clustering algorithm implementation described in Section 2.4 and Section 2.5

operates by constructing several weighted density landscapes (at several scales) and

then selecting an appropriate landscape (scale) based upon maximizing a particular

metric (Section 2.4.4). Once this landscape is created, further processing is required

to locate local maxima. This can be done using either a Regional Maxima Finding

algorithm or a Watershed algorithm. Both these variants were used and the results

were documented in Section 2.5.

This aforementioned implementation requires the construction ofM′ – a matrix

representation for the dataset – based on two factors, cp and SF . In order to over-

come the exorbitant memory requirement for the construction of M′, an alternate

implementation was developed. The alternate implementation addresses only the se-

lection of an appropriate landscape. Once the alternate implementation selects an

appropriate landscape, further processing required to locate local maxima – as in

the case of the previous implementation – can be performed using either a Regional

78

Maxima Finding algorithm or a Watershed algorithm. The alternate implementation

is described as follows.

Let Y = {y1,y2, . . . ,yN} represent the dataset where each observation is yi =

{yi,1, yi,2, . . . , yi,D}. The space spanned by the data can be represented by the hyper-

cuboid with diagonal points P1 and P2, defined as follows:

P1 = {min
n

yn,1,min
n

yn,2, . . . ,min
n

yn,D}

P2 = {max
n

yn,1,max
n

yn,2, . . . ,max
n

yn,D}
(5.1)

Since histograms can be treated as non–parametric density estimators [42], his-

tograms can be constructed for the data using various bin–widths and then be inter-

preted as density landscapes. A histogram could be constructed using D–dimensional

bins for the data using bin–widths h = {h1, h2, . . . , hD}. Instead of using bin-widths

h to describe the histogram construction, a vector m = {m1,m2, . . . ,mD} could be

used equivalently to describe the number of bins used in each dimension to construct

the histogram. In order to treat all dimensions equally (because there is no a priori

information to do otherwise), the dataset ranges can be normalized and then mi = m

where (i = 1, 2 . . . D) could be used instead. Let C{i1,i2,...,iD} represent the bin count

of the bin with index {i1, i2, . . . , iD}.

The choice of m governs the degree of details captured in the histogram as fol-

lows: (1) using a very small value for m will result in a coarse histogram and loss of

structural detail; (2) using a very large value for m will result in a noisy histogram

and capturing of excessive detail. Figure 5.4 displays several histograms created for

dataset S1 (introduced in Section 2.2) using various values for m. For this implemen-

tation, the scale index (SI) is related to m by:

m = 2SI (5.2)

79

(a) SI = 0, m = 1 (b) SI = 1, m = 2

(c) SI = 2, m = 4 (d) SI = 3, m = 8

(e) SI = 4, m = 16 (f) SI = 5, m = 32

(g) SI = 6, m = 64 (h) SI = 7, m = 128

Figure 5.4: Histograms constructed using various values of SI

80

In order to select the landscape to be used for detecting clusters, the variation index

V IZ described in Section 2.4.4 can be used. The variation index V IZ , is defined by:

V IZ = SD(TF(Z)) (5.3)

where SD represents the Standard Deviation function, and TF represents the Tukey

Outlier Filter function. Z represents a set of probability density function values

derived from the histogram bin–counts (C{i1,i2,...,iD}) for each histogram as follows:

Z = { C{...}
N · bv}

where bv =
tv

mD

and tv =
D
∏

i=1

(max
n

yn,i −min
n

yn,i)

(5.4)

This transformation ensures that the values of Z constitute a valid probability density

function (PDF), and facilitates a meaningful comparison of the variation indices of

various histograms.

The values of Z thus produced can be used to compute the variation index (V IZ)

in order to select the appropriate landscape. The variation index graph obtained

(Figure 5.5) has a peak similar to the one obtained in the previous implementation

(Figure 2.9). Let mopt be the number of bins used to construct the histogram (Hopt)

whose variation index (V IZ) is maximized. This value is determined through an

iterative search procedure.

The bin–width (hopt) used to construct Hopt is representative of the scale deter-

mined to be most appropriate by the Clustering algorithm. At this scale, any structure

smaller than hopt will be suppressed. The next step towards detecting the underlying

cluster structure is constructing an optimal landscape LSopt and then subjecting it

to further processing – Median Filtering followed by Regional Maxima Finding as

described in Section 2.4.5.

81

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

-12

V
ar

ia
tio

n
In

de
x

--
>

Scale Index -->

Dataset S1 : Variation Index Vs Scale Index

Figure 5.5: Variation Indices for Histograms using various SI - Dataset S1

Figure 5.6: Optimal landscape – Dataset S1 (Histogram–based implementation)

82

In order to construct LSopt, the data needs to be smoothed with a Gaussian Kernel

(D–dimensional) with a standard deviation equal to the hopt (in each dimension)

in order to suppress any smaller structural detail. To complete this operation, a

matrix representation of the dataset needs to be constructed for convolution with the

Gaussian kernel. Since the size of the smallest structure that will be retained in the

optimal landscape is hopt, sampling the feature space using cell sizes half that width

(0.5 · hopt) should suffice to construct the matrix representation of the dataset (M).

This matrix representation M is effectively a histogram constructed using 2 · mopt

bins (0.5 · hopt bin–width). The matrix representation M thus constructed can be

convolved with the aforementioned D–dimensional Gaussian Kernel to obtain LSopt.

Figure 5.6 shows the optimal landscape generated for dataset S1. Further processing

occurs as described in Section 2.4.5. This implementation eliminates the need for the

parameters cp and SF (and associated assumptions) described in Section 2.5 in the

construction of the matrix representation for a dataset.

5.3 Results & Comparison With Previous Implementation

After developing a new implementation for the Clustering algorithm, it was tested

on the datasets described in Section 2.2 to study its performance. The alternate

implementation described was coded in MATLAB; an N-Dimensional sparse matrix

routines library [63] was used while coding the implementation.

Figures 5.7a through 5.7l display results of cluster detection (count & location)

using the alternate implementation overlaid on the original datasets. (A standard

MATLAB implementation of the k–means algorithm was used to determine the clus-

ter labels for the data points.) Table 5.1 displays the results obtained using the

alternate implementation (Regional Maxima Finding approach (A–RM) and Wa-

tershed algorithm approach (A–WS)) and compares them with some of the results

obtained using the previous implementation as described in Section 2.5 (cp = 1 &

83

Table 5.1: Results of Clustering – Original & Alternate Implementations
❍
❍

❍
❍
❍
❍

DS
S1 S2 S3 S4 A1 A2 A3 V1 V2 V3 Z1 Z2

CNC 15 15 15 15 20 35 50 12 9 13 1 49

P–0.400 15 15 15 15 20 35 50 10 9 13 441* 49
P–0.700 15 15 15 15 20 35 50 10 9 13 1 49
P–1.000 15 15 15 15 20 35 50 10 9 13 30 50

A–RM 15 15 15 15 20 35 50 11 9 14 441* 49
A–WS 15 15 15 15 20 35 50 11 9 14 441* 49

← Number of Clusters →
Bold red entries indicate disagreement between actual cluster count and cluster
count reported by the algorithm.
CNC : Correct number of clusters for each dataset
P–0.400 : Previous implementation with cp = 1 & SF = 0.400
P–0.700 : Previous implementation with cp = 1 & SF = 0.700
P–1.000 : Previous implementation with cp = 1 & SF = 1.000
A–RM : Alternate implementation with Regional Maxima Finding approach
A–WS : Alternate implementation with Watershed algorithm approach
* : In Section 2.5, we explained that either 1, 441, or any squared number would
be an acceptable interpretation.

SF = 0.400, 0.700, 1.000, Regional Maxima Finding approach).

It can be seen from be seen from Table 5.1 that both implementations give iden-

tical results for cluster counts for datasets S1–S4, A1–A3, and V2. Both variants

of the alternate implementation (A–RM & A–WS) detect 11 clusters in dataset V1

(Figure 5.7h). This is an improvement over the previous implementation; only 10

clusters are detected by the previous implementation (Figure 2.12h). The alternate

implementation’s performance deteriorates for dataset V3; 14 clusters are detected

(Figure 5.7j) instead of the correct 13 detected by the previous implementation (Fig-

ure 2.12j). The alternate implementation reports 441 clusters for dataset Z1 – it

marks each data point as a cluster. This is an acceptable interpretation since the

dataset is a uniform distribution of data points. It can be seen that one variant of

the previous implementation (P–0.400) also produces the same result. For dataset

Z2, the alternate implementation reports 49 clusters. The previous implementation

reports 49 or 50 clusters depending upon the SF value used.

84

2 4 6 8

x 10
5

1

2

3

4

5

6

7

8

9

x 10
5 S1 : 15 (15) Clusters

(a) S1

2 4 6 8

x 10
5

1

2

3

4

5

6

7

8

9

x 10
5 S2 : 15 (15) Clusters

(b) S2

2 4 6 8

x 10
5

1

2

3

4

5

6

7

8

9

x 10
5 S3 : 15 (15) Clusters

(c) S3

2 4 6 8

x 10
5

1

2

3

4

5

6

7

8

9

x 10
5 S4 : 15 (15) Clusters

(d) S4

0 1 2 3 4 5 6

x 10
4

3.5

4

4.5

5

5.5

6

x 10
4 A1 : 20 (20) Clusters

(e) A1

0 1 2 3 4 5 6

x 10
4

2.5

3

3.5

4

4.5

5

5.5

6

x 10
4 A2 : 35 (35) Clusters

(f) A2

0 1 2 3 4 5 6

x 10
4

1

2

3

4

5

6

x 10
4 A3 : 50 (50) Clusters

(g) A3

5 10 15 20 25 30 35

5

10

15

20

25

30

V1 : 11 (12) Clusters

(h) V1

10 15 20 25 30 35

5

10

15

20

25

30

35

V2 : 9 (9) Clusters

(i) V2

5 10 15 20 25 30 35

5

10

15

20

25

30

35

40

V3 : 14 (13) Clusters

(j) V3

0 20 40 60 80 100
0

20

40

60

80

100
Z1 : 441 (1) Clusters

(k) Z1

50 100 150 200

40

60

80

100

120

140

160

180

200

Z2 : 49 (49) Clusters

(l) Z2

Figure 5.7: Clustering results using alternate implementation

85

Table 5.2: Computation Times for Original Implementation
← RM Variant → ← WS Variant →

P
P
P
P

P
P
P
PP

Dataset

SF
0.400 0.700 1.000 0.400 0.700 1.000

S1 375.41 121.08 57.73 376.44 121.34 57.85
S2 388.31 132.61 67.19 389.33 132.87 67.31
S3 375.02 111.58 57.13 375.80 111.80 57.23
S4 446.95 146.57 69.83 447.96 146.87 69.96
A1 180.76 64.08 29.76 181.30 64.24 29.83
A2 327.48 117.82 50.85 328.19 118.01 50.93
A3 493.27 167.94 81.25 494.19 168.18 81.35
V1 170.93 61.31 26.87 171.79 61.52 26.97
V2 194.17 59.20 30.40 195.03 59.44 30.51
V3 114.89 41.41 19.31 115.56 41.63 19.38
Z1 1.71 0.52 0.29 1.34 0.52 0.28
Z2 297.79 96.46 47.40 298.96 96.78 47.52

cp = 1.0 for all cases
All times are measures in seconds
RM–Variant : Regional Maxima Finding approach
WS–Variant : Watershed algorithm approach

Table 5.3: Computation Times for Alternate Implementation
❳❳❳❳❳❳❳❳❳❳❳❳
Dataset

Variant ← RM Variant → ← WS Variant →
S1 0.97 0.47
S2 0.85 0.45
S3 1.07 0.47
S4 1.51 0.48
A1 1.66 0.50
A2 2.71 0.60
A3 3.05 0.63
V1 1.30 0.46
V2 1.18 0.43
V3 1.32 0.45
Z1 9.76 0.64
Z2 2.57 0.57

All times are measures in seconds
RM–Variant : Regional Maxima Finding approach
WS–Variant : Watershed algorithm approach

86

It can also be seen from Table 5.1 that both the variants, A–RM and A–WS, pro-

duce identical results for all the datasets. This is not true in the case of the previous

implementation. This could be due to the difference in the method used to construct

the matrix representation for the datasets. In the alternate implementation, the ma-

trix representation is only barely sufficient to capture the structural detail at the

optimal scale. However, in the previous implementation, the matrix representation is

sometimes constructed using a much more finely sampled grid than required to cap-

ture structural detail at the optimal scale. This could result in matrix representation

capturing finer detail, which could in turn trigger the Watershed algorithm’s intrinsic

tendency to over–segment.

Tables 5.2 and 5.3 display the computation times for variants of both imple-

mentations. It can be seen from these tables that the alternate implementation is

substantially faster than the previous implementation. The memory requirements of

the alternate implementation are also usually much lower than that of the previous

implementation.

It can be seen from Table 5.3 that the Watershed algorithm approach (A–WS)

is faster than the Regional Maxima Finding approach (A–RM). This is most proba-

bly due to the MATLAB built–in Watershed algorithm implementation being more

efficient than the custom–coded Regional Maxima Finding algorithm.

5.4 Drawback Discovered

The results described in Section 5.3 suggest the newly developed alternate implemen-

tation of the Clustering algorithm as being reasonably faithful. The dataset using

feature set FS–2 was input to the newer implementation. The Clustering algorithm

reported fewer clusters than present in the data.

In order to discover the reasons for the unsatisfactory behavior of the Cluster-

ing algorithm, it was necessary to track the algorithm’s steps in a detailed fashion

87

through its various stages. However, the texture data did not lend itself to an easy

visualization, such that we were unable to examine the algorithm’s steps using this

data. Some synthetic datasets were constructed to aid in the examination (Figure

5.8). PGDS–1, PGDS–2, and PGDS–3 are two–dimensional (2–D) datasets, (x, y –

position data) datasets with 6050, 6050, and 15400 data points respectively. PGDS–4,

PGDS–5, and PGDS–6 are 5–D (x, y, r, g, b – position and color data) datasets with

7590, 1080, and 2220 data points. While comparing the algorithm’s internal compu-

tations for two datasets PGDS–1 and PGDS–4, a problem was identified. While the

datasets are of different dimensionality, it can be seen that both datasets have 121

non–overlapping clusters. The Clustering algorithm detects 121 clusters in PGDS–1;

however, for PGDS–4 it reports only 4 clusters.

Investigation revealed that this behavior was due to the selection of an inappro-

priate scale for the detection of clusters in PGDS–4. The variation index (V IZ) used

for scale selection became ineffective with an increase in the dimensionality of the

data from 2 to 5 dimensions.

The variation index (V IZ) used to select scale (described in Section 2.4.4) uses

Tukey Outlier–Filtered height data (Z). All values in Z in the range [Zll, Zul] are

used for computing (V IZ), where Zll and Zul are defined in Eq(2.11) and repeated

here as:

Zll = Z25 − 1.5·IQR

Zul = Z75 + 1.5·IQR
(5.5)

where as before, Z25 and Z75 are the 25 and 75 percentile values of Z respectively,

and IQR is the Inter–Quartile Range of Z. Values outside this range ([Zll, Zul]) are

excluded from the calculation of V IZ . The scale that maximizes the variation index

(V IZ) is iteratively searched for and selected. Figure 5.9a displays the V IZ graph for

the first iteration in the search for optimal scale for PGDS–1; Figure 5.9b shows the

same for PGDS–4. It can be seen from Figure 5.9b that V IZ takes on a zero value

88

(a) PGDS–1 (b) PGDS–2

(c) PGDS–3 (d) PGDS–4

(e) PGDS–5 (f) PGDS–6

Figure 5.8: Datasets PGDS–1 to PGDS–6

89

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2
x 10

-6

V
I Z

 -
->

SI -->

PGDS-1 : Variation Index Vs Scale Index

(a) Variation Index Graph : PGDS–1

0 1 2 3 4 5
0

1

2

3

4

5

6
x 10

-7

V
I Z

 -
->

SI -->

PGDS-4 : Variation Index Vs Scale Index

(b) Variation Index Graph : PGDS–4

Figure 5.9: Variation Index graphs for Datasets PGDS–1 & PGDS–4

Table 5.4: Internally computed values during Scale Selection – PGDS–1
SI NB TNB ZBC NZBC PNZB IQ·(10−7) LL·(10−7) UL·(10−6) V IZ · (10−7)
0 1 1 0 1 100.00 0.00 8.94 0.89 0.00
1 2 4 0 4 100.00 0.11 8.68 0.91 .07
2 4 16 0 16 100.00 1.44 5.47 1.12 1.20
3 8 64 0 64 100.00 3.59 1.61 1.60 2.23
4 16 256 0 256 100.00 6.60 -5.11 2.13 4.94
5 32 1024 532 492 48.05 17.00 -25.50 4.25 10.5
6 64 4096 2698 1398 34.13 8.50 -12.70 2.12 5.03
7 128 16384 13237 3147 19.21 0.00 0.00 0.00 0.00

SI – Scale Index; NB – # bins per dimension; TNB – Total # bins
ZBC – # bins with zero data points in them; NZBC – # bins with some data points in
them;
PNZB – % of bins with some datapoints in them; IQ – Inter–Quartile Range of Z values;
LL – Lower Cutoff according to Tukey Filter; UL – Upper Cutoff according to Tukey Filter;
V IZ – Variation Index of Landscape at given Scale Index;

for scale indices 2 and higher.

Table 5.4 shows some values computed during the scale selection for PGDS–1.

Table 5.5 shows the same values during the scale selection for PGDS–4. In Table 5.4,

it can be seen from the last two rows (Scale Indices : 6, 7) that the Tukey Outlier

Filter excludes some Z data causing V IZ to be lower than the V IZ associated for

Scale Index 5. For Scale Index 7, the percentage of bins that contain at least one data

point is 19.21%. Due to this, both Z25 and Z75 are zero; hence IQR is zero; because

of that Zll and Zul also are zero; due to these limits, all non–zero values of Z are

excluded and V IZ goes to zero. This truncation is appropriate because the histogram

90

Table 5.5: Internally computed values during Scale Selection – PGDS–4
SI NB TNB ZBC NZBC PNZB IQ·(10−7) LL·(10−7) UL·(10−6) V IZ · (10−7)
0 1 1 0 1 100.00 0.00 3.93 0.393 0.00
1 2 32 20 12 37.50 7.55 -11.3 1.89 5.44
2 4 1024 976 48 4.69 0.00 0.00 0.00 0.00
3 8 32768 32654 114 0.35 0.00 0.00 0.00 0.00
4 16 1048576 1048312 264 0.03 0.00 0.00 0.00 0.00
5 32 33554432 33553934 498 0.00 0.00 0.00 0.00 0.00

SI – Scale Index; NB – # bins per dimension; TNB – Total # bins
ZBC – # bins with zero data points in them; NZBC – # bins with some data points in
them;
PNZB – % of bins with some datapoints in them; IQ – Inter–Quartile Range of Z values;
LL – Lower Cutoff according to Tukey Filter; UL – Upper Cutoff according to Tukey Filter;
V IZ – Variation Index of Landscape at given Scale Index;

at Scale Index 7 would look very noisy – approximately 4/5 of the histogram bars

have a height of zero, and the remaining are scattered over the data range. In the

case of PGDS–1, V IZ provides a mechanism to effectively identify the scale at which

to detect clusters.

However, in Table 5.5, it can be seen from the last four rows ((Scale Indices : 2,

3, 4, 5)) that the Tukey Outlier Filter excludes all non–zero Z data causing V IZ for

all those Scale Indices to be zero. Due to this, SI = 1 is chosen for cluster detection,

and that results in too few clusters being detected. It can be seen using Eq(5.2) in

Figure 5.9b that using 2 bins per dimension will not provide enough resolution to

detect all the clusters present in the dataset. The reason behind the Tukey Outlier

Filter excluding all non–zero Z data for the mentioned Scale Indices is the rather

large number of histogram bins (TNB) being created at those Scale Indices. Table

5.5 shows that TNB values grow at a power rate governed by the dimensionality of the

input dataset. This causes the number of bins with no data points (ZBC) to increase

much faster than the number of bins with at least one data point (NZBC). This

results in Z25 and Z75 (and thus Zll, Zul) being zero and the Tukey Filter excluding

all non–zero Z data.

It is clear that the Tukey Filter’s upper and lower limits should be adjusted

according to the dimensionality of the input data. Attempts at utilizing currently

91

existing modified Tukey Filter methods [64] based on MedCouple [65] did not yield

any improvements – these methods also employed IQR, which is still affected by the

aforementioned situation. Attempts to employ other outlier detection schemes [66]

also did not meet with success.

Inter–Quartile Range (IQR) and Median Absolute Deviation (MAD), the two

other metrics that displayed characteristics similar to the one employed – Variation

Index (V IZ) – also suffered from similar problems of ineffectiveness due to the rapidly

increasing number of histogram bins with dimensionality of input data.

No clear model was discovered to govern any adjustments to the Tukey Filter’s

limits with a justifiable logic that would produce meaningful results. Since an ap-

propriate improvement could not be made to the technique, a mechanism that would

indicate whether or not the technique could be expected to work on a given dataset

was deemed desirable. The following describes a mechanism that suggests whether

the aforementioned clustering technique could be reliably applied to a given dataset.

As mentioned before, the performance of the variation index V IZ is degraded

in situations where the value of ZBC increases faster than the value of NZBC. This

happens for datasets in which data points are sparsely distributed. The effect worsens

with increasing dimensionality of the input dataset.

For a dataset with a finite number of data points, using an arbitrarily large number

of bins to construct a histogram will drive the value of V IZ to zero. Assuming that

a given dataset has data points spread out more or less uniformly in all dimensions

(a non-sparse dataset), consider the following. Eq(5.6) represents a condition for the

minimum number of bins per dimension (mvi) to ensure a histogram whose V IZ will

be zero.

0.25(mvi)
D = N

⇒ mvi = (4 ·N)
1
D

(5.6)

where N is the number of data points in the dataset, and D is the dimensionality of

92

the dataset.

This implies that if the total number of bins in the histogram is four times the

number of data points, then it is assured that at least 75 percent of histogram bin

counts will be zero and this ensures that V IZ will be zero. Thus, the first step in our

diagnostic procedure is to compute mvi from Eq(5.6) for the given dataset.

For the second step in our diagnostic procedure we compute a new quantity mc

for the given dataset (beginning with Eq(5.7)). Let a one dimensional histogram

be constructed for each column of the dataset using m bins. For the ith dimension,

let nzci be the number of bins with non-zero bin counts, and let nzfi represent the

fraction of bins that have non-zero bin counts in the ith dimension. The terms nzfi

and tnzf are defined as:

nzfi =
nzci
m

tnzf =
D
∏

i=1

nzfi
(5.7)

where tnzf represents the maximum fraction of histogram bins that can take on a non-

zero bin count in the D–dimensional histogram created using m bins per dimension.

Let mc be the value of m for which tnzf is slightly less than 0.25; then the value of

V IZ goes to zero for a histogram created using mc bins per dimension.

mvi represents a threshold at which V IZ will take on a value of zero for a dataset,

irrespective of the distribution of its data. It is not affected by how sparsely or densely

one dimension is populated compared with other dimensions. mc represents another

threshold at which V IZ will take on a value of zero for a dataset; however, mc is

affected by the distribution of its data. For two datasets of equal cardinality and

dimensionality, mc will take on a larger value for the dataset in which data points are

more or less uniformly spread out in all dimensions than for another dataset in which

some dimensions are sparsely populated.

The third step in our diagnostic procedure is to compare mc with mvi. If mc is less

than mvi, then it is likely that the clustering algorithm will not deliver satisfactory

93

results due to improper scale selection.

It should be noted that mvi does not indicate any recommendations in the context

of scale selection. It merely marks the threshold at which the scale selection metric

(variation index V IZ) loses its efficacy. In other words, mvi marks a limit on the size

of the smallest cluster structure that can be detected using the clustering algorithm.

If a dataset has cluster structures whose sizes require a histogram that uses more

than mvi bins per dimension to be detected, then the clustering algorithm will not

succeed in detecting the cluster structures; the scale selection metric V IZ becomes

ineffective for histograms constructed using more than mvi bins per dimension.

Table 5.6 shows the results of running the diagnostic procedure on various datasets.

The column titled “DPR” in Table 5.6 recommends whether or not the results of the

clustering algorithm should be accepted as a valid clustering. A “reject” in the ta-

ble column indicates that it is likely that the clustering algorithm will not process

the dataset correctly due to relative sparsity of data in the dataset. An “accept” in

the table column indicates that the clustering algorithm will not have any difficulty

processing the dataset due to data sparsity issues.

Comparing the recommendations provided in Table 5.6 with the results of the

clustering algorithm shown in Figure 5.7 and Figure 5.10 indicate that out of the 18

recommendations made by our diagnostic procedure, 17 are correct and 1 is incorrect.

For datasets PGDS–4, PGDS–5, and PGDS–6, a rejection of clustering algorithm

output is recommended. The dimensions relating to the color data (r, g, b) for

these datasets, are very sparsely populated; the data in these dimensions takes on

values of either 0 or 1. This causes the variation index V IZ to become ineffective in

scale selection, leading to the clustering algorithm selecting inappropriate scales for

cluster detection. These failures suggest that an implementation, in which, the D–

dimensional histogram constructed with varying numbers of bins for each dimension

might fare better than the proposed implementation. Using fewer number of bins for

94

Table 5.6: Results of running the diagnostic procedure on various datasets
Dataset N D mvi mc DPR

S1 5000 2 141 5367 Accept
S2 5000 2 141 5953 Accept
S3 5000 2 141 6001 Accept
S4 5000 2 141 5304 Accept
A1 3000 2 110 3685 Accept
A2 5250 2 145 6961 Accept
A3 7500 2 173 9954 Accept
V1 1065 2 65 1236 Accept
V2 995 2 63 1200 Accept
V3 1025 2 64 1285 Accept
Z1 441 2 42 42 Accept
Z2 2450 2 99 3071 Accept

PGDS–1 6050 2 156 3957 Accept
PGDS–2 6050 2 156 3189 Accept
PGDS–3 15400 2 248 67 Reject
PGDS–4 7590 5 8 4 Reject
PGDS–5 1080 5 5 3 Reject
PGDS–6 2220 5 6 4 Reject
N – Number of data points in the dataset
D – Dimensionality of the dataset
DPR – Recommendation provided by diagnostic procedure
mvi – rounded to the closest integer

relatively sparse dimensions and a greater number of bins for relatively non–sparse

dimensions might mitigate the problem caused by rapidly increasing ZBC values. For

dataset PGDS–3, the diagnostic recommends rejecting the output of the clustering

algorithm. However, it can be seen in Figure 5.10 that the clustering algorithm

produces a valid result for PGDS–3. While this error is not as severe as accepting

an incorrect clustering configuration, it indicates that the aforementioned diagnostic

does not have 100% efficiency.

5.5 Conclusions

This chapter presents a newer (alternate) implementation for the new Clustering

algorithm introduced in Section 2.4.

95

0 200 400 600 800 1000

0

200

400

600

800

1000

P1 : 121 (121) Clusters

(a) PGDS–1

0 100 200 300 400 500
0

500

1000

1500
P2 : 121 (121) Clusters

(b) PGDS–2

0 500 1000 1500
0

500

1000

1500

P3 : 121 (121) Clusters

(c) PGDS–3

0 500 1000 1500

0

500

1000

1500

P4 : 4 (121) Clusters

(d) PGDS–4

0 50 100 150

0

50

100

150

P5 : 1 (4) Clusters

(e) PGDS–5

0 50 100 150 200 250 300

0

50

100

150

200

250

300

P6 : 1 (9) Clusters

(f) PGDS–6

Figure 5.10: Clustering results for Datasets PGDS–1 to PGDS–6 (Red points indicate
cluster centers.)

Performance comparisons between the previous implementation and the alter-

nate implementation reveal that the alternate implementation is substantially faster

than the previous implementation. The alternate implementation also demands less

memory than the previous implementation. The Watershed algorithm variant of the

alternate implementation is better equipped to overcome intrinsic over–segmentation

tendencies. The alternate implementation also eliminates the need for parameters

used for constructing the matrix representation for a dataset (SF and cp).

A major drawback was also discovered for the Clustering algorithm. It was dis-

covered that the metric used for scale selection (V IZ) loses its effectiveness with an

increase in the dimensionality of the input data. No suitable adjustments or modi-

fications could be developed or discovered to overcome this deficiency. A diagnostic

mechanism is presented that recommends whether or not the output of the clustering

algorithm should be accepted.

Future investigations should primarily explore: (1) modifications to the current

96

scale selection metric in order to overcome problems described in Section 5.4; (2) de-

velopment of alternate dispersion metrics for use in scale selection; (3) development

of alternate non–parametric outlier filters for use in metric computation; (4) devel-

opment of another implementation which uses varying numbers of histogram bins for

each dimension – where the number of bins used for a given dimension is governed by

the sparsity of data in that dimension; and (5) development of a diagnostic procedure

which recommends the correct course of action for any dataset.

97

CHAPTER 6

Conclusions and Ideas for Future Work

In this report, the following original contributions have been developed:

• An improved watershed–based clustering technique whose main advantage is its

unsupervised and automatic nature, requiring no parameters to be tuned or to

be determined experimentally.

• A new method to estimate quantiles for pairwise distances.

• A new method for selecting the number of bins for constructing a histogram for

a given dataset.

• An alternate implementation for the aforementioned clustering technique that

works faster and uses lesser memory.

Areas for future investigation have been outlined for each method in the individual

chapters. Future effort should also be directed towards conducting formal analyses

of the various techniques to furnish mathematical bounds and guarantees for the

techniques’ performance. Bounds on errors in results produced by the techniques,

and bounds on time and memory requirements of the techniques will be significant

additions to the work.

In an earlier report [67], it was proposed that the clustering algorithm should be

adapted to tasks relating to “Proximity” and “Similarity” Gestalt Laws [3], [4], as

a first step towards a framework proposed in [1]. It was suggested that a recursive

application of the parameter–free clustering algorithm to datasets with appropriate

feature sets could result in an emulation of the “Proximity” and “Similarity” laws.

98

To emulate the “Proximity” and “Similarity” laws for 2–D images, the feature set

will need to include at least the following:

• 2 dimensions for position – (X, Y);

• 3 dimensions for color – (R, G, B) or an equivalent;

• at least 3 to 5 dimensions for shape – area, perimeter, area moments of inertia,

and other such shape descriptors.

However, the drawback of the clustering algorithm described in Section 5.4 poses a

significant obstacle to such an application. A dataset based on a feature set describing

attributes such as position, color, and shape, will have a dimensionality at which the

clustering algorithm is currently not effective at detecting the number of clusters

present in the dataset.

It is imperative that future work should first be directed toward overcoming the

clustering algorithm’s drawback so as to make it effective with data of relatively high

dimensionality. As mentioned in Section 5.5, there are several approaches that might

improve the clustering algorithm’s performance with higher dimensional datasets.

While most of the suggestions require an element of discovery, the approach that

suggests modifying the implementation to use varying number of bin numbers for

each dimension for constructing a histogram is probably the easier one to implement.

However, such an implementation will complicate the search procedure required to

locate the configuration that maximizes the variation index (V IZ).

Once the drawback is overcome, work can be directed back towards the emulation

of the “Proximity” and “Similarity” laws.

99

BIBLIOGRAPHY

[1] S. V. G. Lolla, “A proposed knowledge–based, inference–driven vision system.”

Preliminary Exam Report, August 2008.

[2] S. Wrede, C. Bauckhage, G. Sagerer, W. Ponweiser, and M. Vincze, “Integration

frameworks for large scale cognitive vision systems - an evaluative study,” in

ICPR ’04: Proceedings of the Pattern Recognition, 17th International Conference

on (ICPR’04) Volume 1, (Washington, DC, USA), pp. 761–764, IEEE Computer

Society, 2004.

[3] Forsyth, David A. and Ponce, Jean, Computer Vision: A Modern Approach.

Prentice Hall, August 2002.

[4] A. Desolneux, L. Moisan, and J.-M. Morel, From Gestalt Theory to Image Anal-

ysis: A Probabilistic Approach. Springer Publishing Company, Incorporated,

2007.

[5] M. Bicego, M. Cristani, A. Fusiello, and V. Murino, “Watershed-based unsuper-

vised clustering,” in Rangarajan et al. [68], pp. 83–94.

[6] Shannon, C. E., “A mathematical theory of communication,” Bell system tech-

nical journal, vol. 27, 1948.

[7] C. Croux and P. J. Rousseeuw, “Alternatives to the median absolute deviation,”

Journal of the American Statistical Association, vol. 88, pp. 1273–1283, Decem-

ber 1992.

100

[8] G. Hamerly and C. Elkan, “Learning the k in k-means,” in In Neural Information

Processing Systems, p. 2003, MIT Press, 2003.

[9] S. B. Kotsiantis and P. E. Pintelas, “Recent advances in clustering: A brief

survey,” WSEAS Transactions on Information Science and Applications, vol. 1,

pp. 73–81, 2004.

[10] C. Fraley and A. E. Raftery, “How many clusters? which clustering method? an-

swers via model-based cluster analysis,” The Computer Journal, vol. 41, pp. 578–

588, 1998.

[11] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,” ACM

Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.

[12] R. L. Thorndike, “Who belongs in the family?,” Psychometrika, vol. 18, no. 4,

pp. 267–276, 1953.

[13] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: Ordering

points to identify the clustering structure,” in Proceedings of the 1999 ACM

SIGMOD International Conference on Management of Data (SIGMOD ’99),

(New York, NY, USA), pp. 49–60, ACM, 1999.

[14] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for

discovering clusters in large spatial databases with noise,” in Proceedings of 2nd

International Conference on Knowledge Discovery and Data Mining (KDD-96),

pp. 226–231, 1996.

[15] R. Kothari and D. Pitts, “On finding the number of clusters,” Pattern Recogni-

tion Letters, vol. 20, no. 4, pp. 405–416, 1999.

101

[16] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of clusters in

a data set via the gap statistic,” Journal of the Royal Statistical Society: Series

B (Statistical Methodology), vol. 63, no. 2, pp. 411–423, 2001.

[17] Q. Zhao, M. Xu, and P. Fränti, “Knee point detection on bayesian information

criterion,” in ICTAI ’08: Proceedings of the 2008 20th IEEE International Con-

ference on Tools with Artificial Intelligence, (Washington, DC, USA), pp. 431–

438, IEEE Computer Society, 2008.

[18] S. Lolla and L. Hoberock, “Improved unsupervised clustering over watershed-

based clustering,” in In Proceedings of the Ninth International Conference on

Machine Learning and Applications (ICMLA’10), pp. 253 –259, Dec. 2010.

[19] P. Fränti, “Clustering datasets.” http://cs.joensuu.fi/sipu/datasets/,

2006 (accessed February 19, 2010).

[20] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/

datasets.html, 2007 (accessed October 19, 2010).

[21] J. B. T. M. Roerdink and A. Meijster, “The watershed transform: Definitions, al-

gorithms and parallelization strategies,” Fundamenta Infomaticae, vol. 41, no. 1-

2, pp. 187–228, 2000.

[22] T. Lindeberg, Scale-Space Theory in Computer Vision. Norwell, MA, USA:

Kluwer Academic Publishers, 1994.

[23] C. E. Shannon, “Communication in the Presence of Noise,” Proceedings of the

IRE, vol. 37, no. 1, pp. 10–21, 1949.

[24] A. R. Wilcox, “Indices of qualitative variation,” Tech. Rep. 3445605133753, Oak

Ridge National Laboratory, 1967.

102

[25] D. C. Hoaglin, F. Mosteller, and J. W. Tukey, eds., Understanding Robust and

Exploratory Data Analysis. Wiley Series in Probability and Mathematical Statis-

tics, Wiley-Interscience, 1983.

[26] P. J. Huber, Robust Statistics / Peter J. Huber. Wiley, New York, 1981.

[27] S. Lolla and L. Hoberock, “On estimation of quantiles for pairwise distances,” in

In Proceedings of the Ninth International Conference on Machine Learning and

Applications (ICMLA’10), pp. 808 –812, Dec. 2010.

[28] B. W. Weide, “Space-efficient on-line selection algorithms,” in Proceedings of

Computer Science and Statistics 11th Annual Symposium on the Interface,

pp. 308–311, March 1978.

[29] P. J. Rousseeuw and J. Gilbert W. Bassett, “The remedian: a robust averaging

method for large data sets,” Journal of the American Statistical Association,

vol. 85, no. 409, pp. 97–104, 1990.

[30] B. W. Schmeiser and S. J. Deutsch, “Quantile estimation from grouped data:

The cell midpoint,” Communications in Statistics: Simulation and Computation,

vol. B6(3), pp. 221–234, 1977.

[31] R. Jain and I. Chlamtac, “The p2 algorithm for dynamic calculation of quantiles

and histograms without storing observations,” Commun. ACM, vol. 28, no. 10,

pp. 1076–1085, 1985.

[32] R. Agrawal and A. Swami, “A one-pass space-efficient algorithm for finding quan-

tiles,” in In Proceedings of 7th International Conference on Management of Data

(COMAD-95), 1995.

[33] C. Hurle and R. Modarres, “Low-storage quantile estimation,” Computational

Statistics, vol. 10, pp. 311–325, 1995.

103

[34] S. Battiato, S. Battiato, D. Catalano, D. Cantone, D. Catalano, G. Cincotti, and

M. Hofri, “An efficient algorithm for the approximate median selection problem,”

in In Proceedings of the Fourth Italian Conference, CIAC 2000, pp. 226–238,

Springer-Verlag, 1999.

[35] G. S. Manku, S. Rajagopalan, and B. G. Lindsay, “Approximate medians and

other quantiles in one pass and with limited memory,” SIGMOD Rec., vol. 27,

no. 2, pp. 426–435, 1998.

[36] D. B. Johnson and T. Mizoguchi, “Selecting the kth element in x + y and x1 +

x2 + · · ·+ xm,” SIAM Journal on Computing, vol. 7, no. 2, pp. 147–153, 1978.

[37] C. Croux and P. J. Rousseeuw, “Time-efficient algorithms for two highly robust

estimators of scale,” Computational Statistics, vol. 1, pp. 411–428, 1992.

[38] H. Shimazaki and S. Shinomoto, “A method for selecting the bin size of a time

histogram,” Neural Comput., vol. 19, no. 6, pp. 1503–1527, 2007.

[39] D. W. Scott, “On optimal and data-based histograms,” Biometrika, vol. 66, no. 3,

pp. 605–610, 1979.

[40] D. Freedman and P. Diaconis, “On the histogram as a density estimator:l2 the-

ory,” Probability Theory and Related Fields, vol. 57, pp. 453–476, December 1981.

[41] H. A. Sturges, “The choice of a class interval,” Journal of the American Statistical

Association, vol. 21, no. 153, pp. 65–66, 1926.

[42] W. L. Martinez and A. R. Martinez, Computational Statistics Handbook with

MATLAB, Second Edition (Computer Science and Data Analysis). Chapman &

Hall/CRC, 2 ed., December 2007.

[43] M. P. Wand, “Data-based choice of histogram bin width,” The American Statis-

tician, vol. 51, pp. 59–64, 1996.

104

[44] J. S. Simonoff and F. Udina, “Measuring the stability of histogram appearance

when the anchor position is changed,” Comput. Stat. Data Anal., vol. 23, no. 3,

pp. 335–353, 1997.

[45] K. H. Knuth, “Optimal Data-Based Binning for Histograms,” ArXiv Physics

e-prints, May 2006.

[46] M. P. Wand and M. C. Jones, Kernel Smoothing (Chapman & Hall/CRC Mono-

graphs on Statistics & Applied Probability). Chapman and Hall/CRC, 1994.

[47] S. Lolla and L. Hoberock, “On selecting the number of bins for a histogram,” in In

Proceedings of the Seventh International Conference on Data Mining (DMIN’11),

pp. 344 –350, Jul. 2011.

[48] H. A. Sturges, “The choice of a class interval,” Journal of the American Statistical

Association, vol. 21, no. 153, pp. 65–66, 1926.

[49] R. J. Hyndman, “The problem with sturges rule for constructing histograms,”

Business, pp. 1–2, July 1995.

[50] D. W. Scott, “On optimal and data-based histograms,” Biometrika, vol. 66, no. 3,

pp. 605–610, 1979.

[51] C. R. Rao, E. J. Wegman, and J. L. Solka, Handbook of Statistics, Volume 24:

Data Mining and Data Visualization (Handbook of Statistics). North-Holland

Publishing Co., 2005.

[52] D. Freedman and P. Diaconis, “On the histogram as a density estimator:L2

theory,” Probability Theory and Related Fields, vol. 57, pp. 453–476, December

1981.

[53] C. J. Stone, “An asymptotically optimal histogram selection rule,” in Proceed-

ings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer,

105

Vol. II (Berkeley, Calif., 1983), Wadsworth Statist./Probab. Ser., pp. 513–520,

Wadsworth, 1985.

[54] M. Rudemo, “Empirical choice of histograms and kernel density estimators,”

Scandinavian Journal of Statistics, vol. 9, no. 2, pp. 65–78, 1982.

[55] P. Hall, “Akaike’s information criterion and kullback-leibler loss for histogram

density estimation,” Probability Theory and Related Fields, vol. 85, pp. 449–467,

1990.

[56] Lucien Birgé and Yves Rozenholc, “How many bins should be put in a regular

histogram,” ESAIM: P&S, vol. 10, pp. 24–45, 2006.

[57] J. S. Marron and A. B. Tsybakov, “Visual error criteria for qualitative smooth-

ing,” Journal of the American Statistical Association, vol. 90, no. 430, pp. 499–

507, 1995.

[58] V. I. Glivenko, “Sulla determinazione empirica delle leggi di probabilita,” Gior-

nale dell’Istituto Italiano degli Attuari, no. 4, pp. 92–99, 1933.

[59] F. P. Cantelli, “Sulla determinazione empirica delle leggi di probabilita,” Gior-

nale dell’Istituto Italiano degli Attuari, no. 4, pp. 221–424, 1933.

[60] R. L. Thorndike, “Who belongs in the family?,” Psychometrika, vol. 18, no. 4,

pp. 267–276, 1953.

[61] S. Salvador and P. Chan, “Determining the number of clusters/segments in hi-

erarchical clustering/segmentation algorithms,” in Tools with Artificial Intelli-

gence, 2004. ICTAI 2004. 16th IEEE International Conference on, pp. 576 –

584, nov. 2004.

[62] P. J. Green and B.W.Silverman, Nonparametric Regression and Generalized Lin-

ear Models: A Roughness Penalty Approach. Chapman and Hall/CRC, 1994.

106

[63] M. Jacobson and M. Vlker, “N–dimensional sparse arrays.”

http://www.mathworks.com/matlabcentral/fileexchange/

29832-n-dimensional-sparse-arrays, Dec 2010 (accessed July 2011).

[64] M. Hubert and E. Vandervieren, “An adjusted boxplot for skewed distributions,”

Comput. Stat. Data Anal., vol. 52, pp. 5186–5201, August 2008.

[65] G. Brys, M. Hubert, and A. Struyf, “A robust measure of skewness,” Journal of

Computational and Graphical Statistics, vol. 13, no. 4, pp. pp. 996–1017, 2004.

[66] C. C. Aggarwal and P. S. Yu, “Outlier detection for high dimensional data,”

SIGMOD Rec., vol. 30, pp. 37–46, May 2001.

[67] S. V. G. Lolla, “Some contributions to data analysis.” Qualifying Exam Report,

August 2010.

[68] A. Rangarajan, M. A. T. Figueiredo, and J. Zerubia, eds., Energy Minimization

Methods in Computer Vision and Pattern Recognition, 4th International Work-

shop, EMMCVPR 2003, Lisbon, Portugal, July 7-9, 2003, Proceedings, vol. 2683

of Lecture Notes in Computer Science, Springer, 2003.

107

VITA

Sai Venu Gopal Lolla

Candidate for the Degree of

Doctor of Philosophy

Dissertation: NEW TECHNIQUES FOR CLUSTERING, SELECTION OF NUM-
BER OF HISTOGRAM BINS, AND ESTIMATION OF QUANTILES
OF PAIRWISE DISTANCES

Major Field: Mechanical Engineering

Biographical:

Personal Data: Born in Rajahmundry, AP, India on April 29, 1980.

Education:

Completed the requirements for the Doctor of Philosophy degree in Me-
chanical Engineering at Oklahoma State University, Stillwater, OK, USA
in December, 2011.

Completed the requirements for the Master of Science degree in Mechanical
Engineering at Oklahoma State University, Stillwater, OK, USA in 2005.

Completed the requirements for the Bachelor of Technology degree in Me-
chanical Engineering at Jawaharlal Nehru Technological University, Hy-
derabad, AP, India in 2002.

Name: Sai Venu Gopal Lolla Date of Degree: December, 2011

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: NEW TECHNIQUES FOR CLUSTERING, SELECTION OF NUM-
BER OF HISTOGRAM BINS, AND ESTIMATION OF QUAN-
TILES OF PAIRWISE DISTANCES

Pages in Study: 107 Candidate for the Degree of Doctor of Philosophy

Major Field: Mechanical Engineering

The emulation of Gestalt Laws was required for a proposed knowledge-based inference-
driven vision system. Emulating the Proximity gestalt law required a clustering tech-
nique that worked without: (a) the need for any input parameters that would govern
the number of clusters detected; and (b) without any preference for a given clus-
ter shape. A watershed algorithm based clustering technique due to Bicego et. al.
satisfies the aforementioned requirements. However, their algorithm’s performance
is degraded due to experimentally tuned internal parameters. An improved cluster-
ing technique was developed without the need for any such internal parameters by
employing the concept of scale. Two implementations have been provided for the pro-
posed clustering algorithm. A drawback affecting the proposed clustering algorithm’s
performance was also discovered. A diagnostic procedure that recommends whether
or not the clustering algorithm’s output should be accepted has been provided as an
addendum.

While working on the problem of automatic scale detection for the clustering tech-
nique, certain analytical and computational difficulties were encountered while at-
tempting to: (a) compute quantiles of pairwise distances for use in the calculation
of Qn; and (b) construction of histograms for evaluating Entropy. A new method
to estimate quantiles of pairwise distances was developed. Performance comparisons
with other existing methods showed that the proposed method is: faster and more
accurate than other estimation methods; and faster than other selection methods. A
new method to select the number of bins for constructing a histogram was developed.
Performance comparisons with existing methods showed that the proposed method
produces visually appealing histograms that capture shape features of underlying
distribution to a finer detail without admitting excessive noise.

ADVISOR’S APPROVAL: Dr.Lawrence L. Hoberock

