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Chapter 1 

Introduction 
Material behavior at all scales spanning from atomistic to continuum involves 

such processes as elastic deformation, dislocation generation and multiplication, 

cleavage, void/microcrack formation and their growth into macrocracks, and final failure. 

In recent times, multiscale modeling has received increasing attention due to its potential 

linkage between structure-property relationships from nano- to macro-levels (King et al.,

1995; Shenoy et al., 1999; Ogata et al., 2001; Smith et al., 2001; Shilkrot et al., 2002). 

The essence of multiscale modeling of the properties of materials is the ability to develop 

a description of material behavior on a macroscopic scale from models based on atomic 

scale or vice versa (Hartley, 2003). Fig. 1-1 is a schematic of the various computer 

simulation methods used in the development of scaling laws as a function of spatial and 

temporal variables. At the subatomic level, quantum mechanics or ab initio calculations 

are made to develop the potential-energy functions. With increase in length (or time) 

scale, material behavior is modeled using molecular dynamics (MD) and Monte Carlo 

(MC) simulations, then to micro or mesoplastic, and finally to continuum mechanics, 

such as finite element method (FEM). Mesoplasticity serves as an appropriate formalism 

that bridges atomistic mechanisms of deformation and fracture to macroscopic behavior. 

This reinforces the importance of studying the material behavior under mesoscale, which 

is the subject of this investigation. 
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This work is primarily focused on developing and applying scaling laws at the 

mesoscale, including the mesoplasticity formulation and the discrete dislocation 

technique, as well as applying these methodologies to the framework of multiscale 

simulations.  

Fig. 1-1: Schematic of simulations at various levels (Lu, et al., 2006)

The thesis is divided into the following seven chapters. Chapter 2 is the problem 

statement. Chapter 3 describes the combined numerical simulation and nanoindentation 

method for determining mechanical properties of single-crystal copper at the mesoscale. 

A mesoplasticity constitutive model for FCC crystals is presented (Yoshino et al., 2001) 

and validated by comparing nanoindentation simulation results with experimental ones. 

Chapter 4 presents experimental and numerical results of nanoindentation for different 

orientations on single crystal copper. The surface patterns after unloading as well as the 

load-displacement curves from both simulation and experiments are studied. Chapter 5 

presents the discrete dislocation method for material simulations at the mesoscale. A 

multiscale simulation framework coupling the generalized interpolation material point 

(GIMP) method, discrete dislocations (DD), and molecular dynamics (MD) is described. 
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Multiscale simulation of nanoindentation in 2D using a wedge indenter is performed and 

the results are analyzed. Chapter 6 presents the atomic scale friction. Parametric studies 

on the simulation parameters, including the shearing velocity and break radius are 

conducted through MD simulations to investigate the frictional behavior at the interface 

of the two plates. Chapter 7 discusses the general conclusions and future work. Each 

chapter has an introductory remarks specific to the topic and conclusions of the findings.  
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Chapter 2 

Problem Statement 
Scaling laws governing the mechanical behavior of materials from atomistic 

(nano) to continuum (macro) via mesoplastic (micro), are very important to numerous 

applications, such as the development of a new class of aircraft engine material, or the 

manufacturing of numerous components for microelectro-mechanical systems (MEMS), 

mainly because the information on the mechanical behavior of materials at nanolevel is 

not presently available as inputs to nanotechnology. Also, for applications where two 

length scales of different orders of magnitude are involved, it may be possible to extend 

the knowledge accumulated over time on material behavior at the macro level to the 

atomistic level, via mesoplastic level.  

In this investigation, multiscale modeling and simulations of material properties 

are addressed considering nanoindentation as an example. This application is chosen 

because of the extensive use of this technique for determining a wide range of material 

properties, including modulus, yield strength, and hardness. It may be noted that the 

scaling laws to be developed would be generic in nature and can be applied to other 

material processing techniques. 

It is well known that many macroscopic phenomena have their origins in the 

microscopic or even atomistic phenomena. For example, the coalescence of microcracks 

leading to gross fracture has microscopic origin. Similarly, the tip of a microcrack has its 
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origin at the atomistic level. The main objective of this investigation is to develop a 

fundamental understanding of indentation at various scales and develop a computer 

simulation code that would bridge the gap from atomistic to continuum, via mesoplastic 

or microscopic behavior. The mesoplasticity model will be implemented in a user-defined 

subroutine in 3D ABAQUS/Explicit, and a combined FEM/nanoindentation approach 

will be used to determine the material properties of single-crystal copper in different 

crystallographic orientations. The anisotropy of single crystal copper will be considered 

through modeling nanoindentation of single-crystal copper in three orientations, namely, 

(100), (011) and (111) orientation. Nanoindentation experiments will be conducted and 

the experimental results will be compared to the numerical results.   

Connecting atomistic mechanisms of deformation and fracture to macroscopic 

behavior requires appropriate formalism that bridges the length scales of these processes 

over several orders of magnitude. According to Hartley (2003), the essence of multiscale 

modeling of the properties of a material is the ability to develop a description of material 

behavior on a macroscopic scale from models based on atomic scale mechanisms or vice 

versa. Applied to deformation of crystalline materials, this takes the form of translating 

the behavior of individual dislocations or finite groups into a description of the global 

response of a mass of material to externally applied loads and displacements. Any such 

model is subjected to restrictions imposed by the geometry of the crystal lattice, active 

slip systems, the orientations, and the shapes of grains within the material.   

In the case of deformation processes involving discrete number of dislocations 

that are too small to be described adequately by mesoplasticity models, the question 

arises as to how one links the atomistic behavior to the macroscopic behavior taking into 
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account the defect structure. This will be accomplished by including discrete dislocation 

formulation in which inhomogeneous deformation are treated explicitly by drawing the 

constitutive input directly from the atomic scale rather than from continuum. Discrete 

dislocation modeling will be conducted and coupled to continuum scale modeling. When 

it comes to the interactions of the dislocations, the long-range forces will be modeled by 

linear elastic fields outside a dislocation core radius of about five Burgers vectors from a 

dislocation. Within a distance of several Burgers vectors from the core, the short-range 

interactions of dislocations include the nucleation, immobilization and annihilation and 

they will be modeled by a set of constitutive rules. 

Chapter 3 presents a combined FEM/nanoindentation approach to determine the 

material parameters of single crystal copper incorporating mesoplastic constitutive 

model. The 3D FEM model developed in this study is used to simulate nanoindentation 

on a (100)-oriented single crystal copper with a spherical indenter. Concurrently, 

nanoindentation tests were conducted on a single crystal copper. Through fitting 

numerical solution with the experimental load-displacement data, the parameters in the 

mesoscale constitutive model are determined. Using these parameters, the stress-strain 

relationship is determined in the uniaxial stress-state at the sub-micrometer scale. The 

plausible size effect involved in nanoindentation with indenter radii (3.4 µm to 1000 µm) 

on material hardness is investigated.  

Chapter 4 presents experimental and numerical results on nanoindentation of 

single-crystal copper in three crystallographic orientations, namely, (100), (011) and 

(111) using a spherical indenter (3.4 µm radius) and a Berkovich indenter. The simulation 
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results are compared with the experimental results for the load-displacement relationship, 

the pile-up profiles, and the surface topographies.  

Chapter 5 presents the discrete dislocation method, which can effectively model 

the dislocations and their interactions at the mesoscale. In coupling with continuum 

mechanics (GIMP), discrete dislocations are assumed to be in the infinite elastic medium. 

Principle of superposition is used to solve the problem in the domain of interest (van der 

Giessen and Needleman, 1995). The GIMP and DD coupling will be tested for the case of 

simple tension and bending problems and then be coupled with MD to formulate a full 

multi-scale simulation framework. Dislocations from MD simulation can be detected and 

passed onto the continuum. The coupling algorithm will be used to simulate indentation 

on Cu (111) plane with a wedge indenter. Dislocation nucleation and subsequent 

propagation of dislocations will be observed from the indentation simulation.  

Chapter 6 presents the modeling of atomic friction between two plates of the same 

material (model material) at a temperature of 0°K using MD simulations by the pairwise 

Lennard-Jones (L-J) interaction potential. The interface will be assumed to be atomically 

smooth and the friction/interaction governed by a break radius that is significantly less 

than the cut-off radius. Parametric studies on the simulation parameters, including the 

shearing velocity (Vx0) and break radius (r) will be conducted numerically to investigate 

the frictional behavior at the interface of the two plates.  

Chapter 7 presents conclusions and future work. Generic conclusions based on the 

investigation of nanoindentation at various length scales encompassing atomistic to 

continuum via mesoplasticity are presented. Two topics are suggested for future work. 

One is modeling of orthogonal metal cutting using the multiscale simulation model 
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encompassing MD, DD, and GIMP, which is introduced in Chapter 5. The other one is to 

extend 2D multiscale simulation algorithm into 3D. 
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Chapter 3 

Combined Numerical Simulation and Nanoindentation for Determining 

Mechanical Properties of Single-Crystal Copper at Mesoscale 

3.1 Introduction 

Ductile, single crystal materials are of considerable interest in many applications 

including micro-electro-mechanical systems (MEMS), optical, and telecommunication 

systems. Single crystals possess anisotropic material properties that depend on the crystal 

orientation. The conventional tensile tests are difficult to conduct at nano- and micro-

scales to determine orientation dependent behavior. Indentation can be an alternative 

approach to tension/compression to investigate the mechanical behavior of single 

crystals. Flom and Komanduri (2002) conducted indentation and scratching experiments 

on single crystal and polycrystalline materials. They showed marked anisotropies in the 

slip systems surrounding the indentations depending on the crystal orientation and 

direction of scratching. Recently, the nanoindentation technique (Oliver and Pharr, 1992) 

has become a useful tool to determine the mechanical properties of very small volume of 

material under consideration.  

Lim et al. (1998) and Lim and Chaudhri (1999) conducted nanoindentation tests 

to investigate the effect of indenter load (1-100 mN) and radius of the spherical indenter 

(7 µm, 30 µm, 200 µm, and 500 µm) on the nano and microhardness of polycrystalline 

work-hardened and annealed oxygen-free copper (OFC) specimens. For the annealed 

OFC, they reported a gradual increase in normal pressure or Meyer hardness, Pm with 
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a/R, where a and R are the radii of the indent and the indenter, respectively. A similar 

variation was observed in the present investigation. Lim et al. (1998) also reported that 

Pm versus a/R data points for indenters of radii 60 µm, 200 µm, and 500 µm all fall on the 

same curve. The equation for the best fit is given by Pm = 0.623 (a/R)0.498. However, for 

indenters of smaller radii used (7 µm and 30 µm), the Pm values were higher than for the 

larger indenters (60 µm, 200 µm, and 500 µm). Also, among the two smaller indenters, 

for a given a/R value, the indenter with the smaller radius gave higher values of normal 

pressure than for the indenter with the larger radius. From this, the authors concluded that 

the higher Meyer hardness, Pm indicates a scaling effect for the two smaller radii 

indenters. For the work-hardened OFC, they reported an initial increase in Pm with a/R, 

reaching a steady state value beyond a/R of 0.15. They also reported the value of normal 

pressure, Pm, for a given value a/R to be the same for indenters of radii 200 µm and 500 

µm but for 7 µm it was only slightly higher than from 200 and 500 µm. From this, the 

authors concluded that for nanoindentation and microindentation of work-hardened 

copper, no scaling effects were found as far as Pm versus a/R relationship is concerned. It 

will be shown in the present investigation that size effect is not present for a range of 

indenter radii used for the work-hardened single crystal copper through measurement and 

simulation. It may also be noted that Lim and Chaudhri (1999) and Lim et al. (1998) 

conducted nanoindentation studies on polycrystalline copper specimens (OFC), both 

annealed and work-hardened, using a Berkovich diamond indenter as well as spherical 

indenters of different radii, namely, 7, 30, 60, 200, and 500 µm. In situations where 

indenter radius was much smaller than the grain size and indentation was made in the 
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middle of a grain, their results might represent the behavior of a single crystal copper, but 

each grain is constrained by the adjacent grains. The grain size of OFC was reported to be 

in the range of 30 to 100 µm. While the 100 µm grains may be adequate for the smaller 

radii, for example, 7 and 30 µm indenters to justify that indentation was made on a single 

crystal, for radii larger than this, the boundaries would influence the flow of material so 

that indentation can no longer be considered to be on a single crystal unless the depth of 

indent is kept small. Also, as the sample used by Lim and Chaudhri (1999) and Lim et al. 

(1998) is a polycrystalline material, the orientations of grains change from one grain to 

another and it is not known what the orientation of the sample is for any grain. 

Since nanoindentation tests can now be carried out with ease while maintaining 

accuracy as high as a few µN in load and 0.1 nm in displacement, material 

characterization at sub-micrometer scale is possible. However, the three-dimensional 

nanoindentation problem spanning from a sub-micrometer scale to a millimeter scale 

needs to be solved to determine how the microstructure (crystal orientation, active slip 

systems, etc.) is linked to the load-displacement relationships.  

Mesoplastic constitutive relationships have been investigated by many 

researchers, including the pioneering works of Hill and Rice (1972) and Asaro and 

Needleman (1985). Using mesoplastic theory, Peirce et al. (1982) analyzed numerically 

the non-uniform and localized deformation in ductile single crystals subjected to tensile 

loading. Huang (1991) developed a material user subroutine incorporating mesoplasticity 

in the ABAQUS implicit program. The theoretical framework of Hill and Rice (1972) has 

been implemented in the two-dimensional subroutine. Kalidindi et al. (1992) developed 

an implicit time-integration procedure mainly based on the constitutive model of Asaro 
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and Needleman (1985). Kalidindi et al. (1992) simulated the load-displacement curve in 

plane-strain forging of copper that captures major features of the experimental data. They 

reported jumps in the calculated curve although no jumps were observed in the 

experimental data. Yoshino et al. (2001) applied mesoplasticity theory in 2D FEM to 

simulate the dislocation generation and propagation during indentation of single crystal 

silicon. Kysar (2001) studied the crack growth along a copper/sapphire bi-crystal 

interface.  

With increasing computational power at reducing costs, mesoplastic constitutive 

relation can be implemented in some FEM codes to solve complex three-dimensional 

problems. For example, Fivel et al. (1998) developed a 3D model to combine discrete 

dislocations with FEM for nanoindentation simulation on single crystal copper. They, 

however, did not include the unloading portion of the load-displacement curve and did 

not compare simulation results with nanoindentation data. Wang et al. (2004) studied the 

dependence of nanoindentation pile-up patterns and micro-textures on the 

crystallographic orientation on single crystal copper using a conical indenter. They, 

however, reported an order of magnitude deviation of the numerical load-displacement 

results from the experimental data. Most of these studies used the material properties of 

single crystal data obtained from tensile testing at macro-scale. However, it is essential to 

address these parameters at the submicrometer scale when micro- or meso-scale behavior 

is of concern. To date, quantitative agreement between the results of mesoplastic/elastic 

coupling simulation and nanoindentation/micro-tension results does not exist. It is the 

objective of this investigation to provide this information.  
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In this chapter, a combined FEM/nanoindentation approach is presented to 

determine the material properties of single crystal copper incorporating mesoplastic 

constitutive model. This model is implemented in a user-defined subroutine in 3D 

ABAQUS/Explicit. The anisotropy of single crystal copper is considered using a linear 

elasticity model with cubic symmetry at the continuum scale. The 3D multiscale FEM 

model developed in this study involves both mesoplasticity and elasticity and is used to 

simulate nanoindentation with a spherical indenter. Concurrently, nanoindentation tests 

were conducted on a single crystal copper. Through fitting numerical solution with the 

experimental load-displacement data, the parameters in the mesoscale constitutive model 

are determined. Using these parameters, the stress-strain relationship can be determined 

in the uniaxial stress-state at the sub-micrometer scale, or to solve other mesoplastic 

problems. Using this relationship, we have investigated the effect of indenter radius (3.4 

µm to 1000 µm) on material hardness in nanoindentation by FEM simulations.   

3.2 Mesoplasticity model 

3.2.1 Fundamentals of mesoplasticity 

Based on the experimental observations, Taylor and Elam (1923) concluded that 

the plastic deformation in a face-centered cubic (FCC) crystal is confined into well-

defined slip systems. Fig. 3-1 shows the slip systems of an FCC lattice, where the 4 

triangles indicate the {111} family of slip planes and the 3 arrows on each slip plane 

indicate 〈110〉 family of slip directions. They form the 12 slip systems that govern the 

macroscopic distortion of a crystal. 
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Fig. 3-1: Various slip systems of an FCC lattice (Yoshino, 2003) 

The mesoplasticity constitutive theory used in this investigation is a rate-

dependent plastic crystallographic theory developed by Peirce et al. (1983). The 

hardening moduli used in this thesis is proposed by Yoshino et al. (1997). Standard 

tensor notation is used throughout the following description. The deformation gradient, 

F , can be written in the form,  

peFFF = (3-1) 

Considering three stages of deformation of a crystalline lattice as shown in Fig. 

3-2, the left lattice represents the initial stage when the lattice is not deformed, and the 

upper lattice shows the final stage of deformation after the lattice is distorted and rotated 

by plastic and elastic deformation. The lower right lattice indicates an intermediate stage 

where the lattice is distorted only by plastic shear deformation. The plastic deformation 

from the first stage to the intermediate stage is associated with pF , and elastic 

deformation and rotation from the intermediate stage to the final stage is associated with 
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eF . In Fig. 3-2, )(kn denotes normal vectors of slip plane, and )(kb denotes those of slip 

direction, which are the unit Burgers vectors.  k is the index of slip system and it varies 

from 1 to 12.  For an FCC crystal, )(kn and )(kb are: 
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Fig. 3-2: Decomposition of the deformation gradient F (Yoshino, 2003) 
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The velocity gradient takes the form: 

1111 ---- FFFFFFFFL eppeee
•••

+== (3-4) 

L can also be expressed as 

ΩDL += , (3-5) 

where D is the symmetric rate of stretching and Ω is the skew symmetric spin tensor. D

and Ω both can be decomposed into elastic parts ( eD and eΩ ) and plastic parts ( pD and 

pΩ ):  

pe DDD += (3-6) 

pe ΩΩΩ += (3-7) 

The elastic parts correspond to elastic deformations and lattice rotations whereas the 

plastic parts represent the plastic shear slips of the lattice. In the context of the 

deformation of FCC crystals, pD and pΩ are related to the plastic shear strain rate on 

each slip system given by   

∑
=

=
12

1

)()(

k

kkp γ&PD
(3-8)  

)(
2
1 )()()()()( kkkkk bnnbP ⊗+⊗= (3-9) 

∑
=

=
12

1

)()(

k

kkp γ&WΩ
(3-10) 

)(
2
1 )()()()()( kkkkk bnnbW ⊗−⊗= (3-11) 

where ⊗ indicates the dyadic product of two tensors or vectors, and )(kγ& is the shear 

strain rate.  
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When stress σ is applied, the resolved shear stress )(kτ on each slip system can be 

computed by   

σP )()( kk =τ (3-12) 

According to Schmid’s law (Schmid, 1931), a slip system will not be activated until )(kτ

overcomes the current shear strength of the system.  

)(kγ& in Eq. (3-8) and Eq. (3-10) is expressed as a power-law proposed by 

Huchinson (1976) 

m

k

k
kk

1

)(
0

)(
)()( )sgn(
τ
ττγγ 0&& = (3-13) 

where m is the rate sensitivity exponent,  0γ& is shear strain rate at a reference condition 

and it is the same for all the slip systems. )(
0

kτ denotes the current strength of the slip 

system. Fig. 3-3 illustrates the relationship between )(kγ& and )(kτ . When m = 1, )(kτ varies 

linearly with )(kγ& . If )(kτ < )(
0

kτ , for a small m, )(kγ& → 0, as if its slip system is kept 

inactive. Therefore the equation satisfies the Schmid’s law.  
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γ
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•
−γ

1<m

1=m
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)(kγ

Fig. 3-3: The relationship between )(kγ& and )(kτ
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With the assumption that the crystal elasticity is unaffected by slip, the elastic 

constitutive equation is given by 

eeee DCDIσσ :):( =+
∇

(3-14) 

where 
∇

eσ is the Jaumann rate of the Cauchy stress σ and it is a co-rotational stress rate on 

the coordinate system that rotates with the lattice. I is the identity tensor. eC is the tensor 

of elastic moduli having the major and minor symmetries, and for cubic crystals it is 

defined by 
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To derive the constitutive law on the coordinate system that rotates with the material,  

ppe ΩσσΩσσ ⋅−⋅+=
∇∇

(3-16) 

where 
∇

σ is the co-rotational stress rate on the coordinate system that rotates with the 

material. In this simulation, since the code deals with the metallic materials, volume 

change by plastic deformation is small compared to the total strain. Hence, eDI : in Eq. 

(3-14) is negligible. Thus, by combining equations (3-6), (3-8), (3-10), (3-14) and (3-16), 

the following constitutive equation of mesoplasticity FEM is obtained 

)()()(
12

1

)( ]:)[(: kkek

k

ke γ&PCWσσWDCσ +⋅−⋅−= ∑
=

∇

(3-17) 
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3.2.2 Hardening models of slip systems 

In Eq. (3-13), )(
0

kτ is equivalent to the critical shear stress of the Schmid’s law, 

and represents variation of material strength due to work hardening. It evolves as the 

material strain hardens. Since work-hardening of slip systems depends on shear 

deformation, variation of )(
0

kτ is estimated by 

∑
=

∆=∆
12

1

)(
0

i

i
ki

k h γτ
(3-18) 

where kih contains the hardening moduli. The diagonal components of kih represent the 

self-hardening moduli, whereas the off diagonal ones represent the latent hardening 

moduli. The hardening moduli used in this thesis was proposed by Yoshino et al. (1997) 

and tested in this investigation. As the hardening rate of a slip system depends on the 

geometric relationship between the active slip systems, anisotropic hardening rule shown 

by Eq. (3-19) is used. 

kikiki Hh βαδ += (3-19) 

whereα and β are material parameters.  

kiH represents the strength of the obstacles created by dislocation interactions on 

separate slip systems and they are defined by Table 3-1. It has five independent 

parameters, taking into account, the interactions of dislocations in various slip systems. In 

this study, the hardening law has included both self-hardening and latent-hardening of 

each slip system as well as the interactions of dislocations among different slip systems. 
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Table 3-1. Hardening matrix of dislocation interaction (Bassani and Wu, 1991). 

 1 2 3 4 5 6 7 8 9 10 11 12 
1 - C C H S G N G G H G S
2 C - C S H G G H S G N G
3 C C - G G N G S H S G H
4 H S G - C C H G S N G G
5 S H G C - C G N G G H S
6 G G N C C - S G H G S H
7 N G G H G S - C C H S G
8 G H S G N G C - C S H G
9 G S H S G H C C - G G H
10 H G S N G G H S G - C C 
11 G N G G H S S H G C - C 
12 S G H G S H G G H C C - 

(N) no-junction, (H) Hirth lock, (C) coplanar junction, (G) glissile junction, (S) sessile 

junction. N = H = C = 8, G = 15, S = 20 

3.2.3 Numerical implementation  

Based on the theory presented in the previous two sections, the mesoplastic 

constitutive model is implemented in a commercial finite element code 

(ABAQUS/Explicit), using a user-defined subroutine VUMAT (ABAQUS Manual, 

2003). Details of the numerical implementation are described in the following. User-

defined mechanical material behavior is provided by means of an interface whereby any 

mechanical constitutive model can be added to the library and solution-dependent state 

variables are updated (ABAQUS Manual, 2003). In user subroutine VUMAT all strain 

measures are calculated with respect to the midstep configuration and all tensor quantities 

are defined in the co-rotational coordinate system that rotates with the material. When the 

subroutine is called for blocks of material calculation elements, it is provided with the 

state variables at the start of the increment (stress, solution-dependent state variables).  
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Fig. 3-4: Algorithm for the user material subroutine 
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Once the calculations within the increment are completed, the values for the new stresses 

and the new state variables are returned.  

The computational scheme used for this subroutine with the mesoplastic 

constitutive model is shown in Fig. 3-4. To account for arbitrary crystal orientations, two 

coordinate systems are introduced in the calculation  specimen (global) coordinate and  

crystalline (local) coordinate systems. The global coordinate system is fixed with the 

reference configuration. The local coordinate system is aligned with the crystal lattice 

and rotates in the same way as the lattice. The mesoplastic constitutive calculations are 

performed in the local coordinate system. In this coordinate system, the incremental 

stress is computed and transformed into the global system. At the end of each incremental 

step, the stress and state variables are updated for use in the main program in ABAQUS. 

Then, the next displacement increment is applied and a new strain increment is generated. 

This loop is repeated until the computation at all incremental time steps is completed. 

The detailed steps involved in the computation are given in the following:  

Step1: At the beginning of each increment at time t, the crystal orientation, 

represented by a rotation matrix R

[ ]















=

333231

232221

131211

RRR
RRR
RRR

R (3-20) 

is initialized in terms of the three Euler angles (φ, θ ,ψ), which may be used in order to 

describe any orientation of the crystal lattice according to Euler’s rotation theorem. The 

first rotation is by an angle φ about the z-axis, the second is by an angle θ about the y-

axis, and the third is by an angle ψ about the z-axis again. 



23

LMNR = (3-21) 

where L, M and N are defined by Eqs. (3-22), (3-23), and (3-24), respectively.  
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In the subsequent steps, R is used to construct the transformation matrices of the 

strain and stress between the specimen coordinate and the crystalline coordinate. The 

material properties of single crystal copper are defined in the ABAQUS input file. During 

the first step of running, purely elastic constitutive law must be applied for ABAQUS to 

perform the data checking on the user’s constitutive relation. After that, the user defined 

constitutive model is executed incrementally.  

 Step 2: The global strain increment ∆Ξt, the time increment ∆t, global stress Σt

and the solution-dependent state variables ( )(
0

kτ , )(kγ , Rij) are given to the subroutine 

from the main program in ABAQUS. The user-defined subroutine transforms ∆Ξt and Σt

to the strain increment ∆εt and the stress σt of the crystalline coordinate system in terms 

of the transformation matrix.  

tt ΨΣσ = (3-25) 
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where Ψ is coordinate system translation matrix defined as: 
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Ψ (3-26) 

Then, )(kτ is computed using Eq.(3-12) and  )(kγ& is computed by Eq. (3-13) by looping 

for all the 12 slip systems.  

Step 3: The current strength )(
0

kτ evolves as the slip on the active slip system 

accumulates and the inactive systems possibly burst out. With the hardening moduli in 

Eq. (3-19), the incremental strength is evaluated by Eq. (3-18). In Eq. (3-18), iγ∆ is 

computed by integrating the shear strain rate with respect to the time increment. Since 

crystal lattice rotates by plastic deformation at the rate of pΩ , the crystal orientation 

tensor after deformation is updated by 

RTR ⋅=' (3-27) 

where  

2T dtdt ΩΩΩIT
2
1

−−= . (3-28) 

Step 4: The Jacobian matrix, εσ ∆∂∆∂ / , is computed for the constitutive model by 

the tangent modulus method. The incremental stress is computed and transformed back to 

the specimen coordinate system. At the end of the incremental step, the stress (e.g. Σt+∆t)

and state variables are updated and returned to the main program in ABAQUS. Then, the 
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next displacement increment is applied and the new strain increment is generated. Steps 1 

through 4 are repeated until all incremental time steps are completed.   

3.3 Nanoindentation tests 

An MTS Nano Indenter (XP system) (shown in Fig. 3-5) was used for 

nanoindentation tests on single crystal copper specimen to obtain load-displacement 

relationships. The system can reach a maximum indentation depth of 500 µm and a 

maximum load of 500 mN. The load resolution is 50 nN and the displacement resolution 

is 0.2 nm. All nanoindentation tests were performed in air at room temperature (23° C). 

The tests do not start until a thermal equilibrium state is reached and the drift of the 

indenter tip drops below a set value, typically, 0.05 nm/s. After the indenter tip has made 

contact with the specimen surface, the indentation load is gradually applied to the surface 

of the specimen. The indentation load and displacement are recorded simultaneously at a 

sampling rate of five data points per second. Spherical diamond indenter with a radius of 

3.4 µm was used in the nanoindentation tests.  

 
Fig. 3-5: Nanoindentation system: MTS Nano XP 
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A specimen of single-crystal copper (10 × 10 × 1 mm) was cut from an ingot 

using electrical discharge machining (EDM). The surface was chemo-mechanically 

polished to a surface roughness, Ra of 9.08 nm. Each free surfaces in the specimen 

corresponds to the <100> direction, and the upper and lower surfaces are the (100) faces. 

Fig. 3-6 is a schematic of the nanoindentation setup.    

 

Fig. 3-6: Schematic of nanoindentation of a single crystal copper 

3.4 Combined FEM/nanoindentation approach 

This section describes the combined FEM/nanoindentation approach used to 

determine the material properties for single crystal copper incorporating the mesoplastic 

constitutive model. Various parameters in the mesoplastic model are determined through 

a fitting procedure that allows good correlation in the load-displacement relationship 

between the simulation results and the nanoindentation data. Nanoindentation provides 

the load-displacement curve as well as some basic material parameters, such as Young’s 

Modulus and surface hardness. On the other hand, for a single-crystal copper, the 

mesoplastic constitutive model and the elastic model are used in the finite element 

analysis to simulate the nanoindentation tests and to obtain numerical load-displacement 

relationships. If the load-displacement relationship determined from the numerical 
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[001]
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analysis and experiment agrees, the parameters in the mesoplastic model would be 

suitable for the single-crystal copper.  

We next turn to the description of FEM analysis of nanoindentation on a single 

crystal copper. The size of the workpiece in the FEM model is 15×15×10 µm. Although 

this is much smaller than the actual dimensions of the specimen used in nanoindentation, 

it is much larger than the maximum indentation depth (~300 nm). So, the condition of 

indentation into a half-space is justified. The 3D finite element mesh is shown in Fig. 3-7 

(a). There are 2,688 eight-node brick elements and 3,208 nodes in this model. The size of 

the smallest elements is 140 nm. Since the primary focus in the specimen is the material 

directly underneath the indenter, a very fine mesh is used near the indenter tip and a 

coarser mesh for the remaining region. Fig. 3-7 (b) shows the mesh in the vicinity of the 

indenter. The dimensions of the nanoindentation involve multiple length scales, which 

are reflected in the simulations. This is implemented in the simulations using constitutive 

equations at two length scales, namely, meso- and continuum-scales. Therefore, the 

workpiece is partitioned into two parts and the corresponding constitutive relationships 

are assigned. The dimensions of the region where mesoplastic constitutive model is 

applied are 6×6×10 µm. 

The nanoindentation, as shown in Fig. 3-6, is simulated on a single-crystal copper 

specimen oriented in the [100] direction. The indenter used is a rigid sphere with a radius, 

R of 3.4 µm. A frictionless contact pair, implemented by two contact surfaces with 

associated nodes between the indenter and the workpiece is defined. All nodes on the 

bottom surface of the workpiece are constrained along the [100] direction and a constant 

velocity is applied to simulate the indenter motion during both loading and unloading.  
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Since explicit dynamic finite element analysis is conducted, the time step increment is 

determined based on the smallest element dimension in the mesh and the dilatational 

wave speed. In this study, a fixed time step increment 60 ps (1 ps = 10-12 s) is chosen as a 

compromise between stability of the dynamic simulation and the overall computational 

time. A total time step increments of 66,967 in the simulation are used, including loading, 

intermediate transition, and unloading. The intermediate transition step entails ramping 

down the velocity to remove the numerical discontinuities in the resistance force caused 

by the sudden change in the direction of the indenter motion.  

 
Fig. 3-7: FEM mesh used for the nanoindentation simulations 

3.5 Results and discussion 

3.5.1 Nanoindentation  

The nanoindentation tests were conducted on a single crystal copper specimen. 

The maximum indentation displacement was 310 nm. For each indentation displacement, 

nanoindentation tests were conducted at four different locations to ensure repeatability of 

(b) Zoomed-in view of the 
localized indentation area (a) Overview on the mesh 
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the experimental data. The actual load-displacement results are shown in Fig. 3-8. These 

four curves are very close to each other and the maximum deviation in load at the 

maximum displacement is 0.07 mN. Loading involves nonlinearity induced by the 

nonlinear material behavior and increasing contact area (geometric nonlinearity). 

Unloading is purely elastic. However, as the contact area decreases with decrease in 

indentation displacement, geometric effects lead to a nonlinear unloading curve.  
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Fig. 3-8: Experimental load-displacement curves in nanoindentation 

3.5.2 Determination of mesoplastic parameters  

The finite element computational scheme, as described in section 3.2.3, is 

implemented in ABAQUS and used to model the nanoindentation problem. As stated in 

3.2.1, mesoplastic constitutive equations used herein depend on the plastic strain rate, as 

shown in Eq. (3-13). In the numerical algorithm, m is a numerical parameter that is 

adjusted to satisfy the Schmid’s law. When m = 0, Schmid’s law is satisfied accurately. 

However, this condition is difficult to implement in computations due to numerical 

instability. To resolve this problem, m should be slightly larger than zero, such as 0.02. 
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With such a small value of m, the shear stress that activates a slip system almost 

corresponds to the yield shear stress. The condition m = 1.0 implies that shear stress )(kτ

is proportional to sliding rate )(kγ& . Additionally, in Eq. (3-13), the initial value of the 

current strength )(
0

kτ is the same in all slip systems and is given as a user input parameter 

inτ . )(
0

kτ evolves as the material strain hardens. As inτ decreases, the slip system 

becomes easier to activate. As a result, higher plastic deformation incurs at a given 

indentation force. 
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Fig. 3-9: Effects of m on the load-displacement curves 

In order to study the effects of m and inτ on the simulated load-displacement 

curves, serial of simulations were conducted and the results shown in Fig. 3-9 and 3-10. 

In Fig. 3-9, inτ is kept constant at 34.8 MPa in order to observe the effect of m. For m =

1.0, the unloading portion of the load-displacement curve overlaps with the loading 

portion. As m decreases, the plastic strain rate increases due to lower resistant forces. As 
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a result, the plastic deformation becomes more pronounced.  In Fig. 3-10, m is kept 

constant of 0.02 in order to observe the dependence of the load-displacement curve on 

inτ . We use inτ = 34.8 MPa as a benchmark. inτ = 52.2 MPa is equal to one and half times 

the benchmark value, whereas inτ = 69.6 MPa is two times the benchmark value. Fig. 

3-10 shows that the load-displacement curve moves lower as inτ is smaller. This is 

because the slip system is easier to be activated and hence a larger plastic deformation 

occurs under a given indentation force. In both Fig. 3-9 and 3-10, the unloading curves 

are parallel to each other because the unloading is associated with purely elastic recovery. 

 
Fig. 3-10: Effects of inτ on the load-displacement curves 

Through multiple trial runs, using the parameters given in Table 3-2, a reasonably 

good agreement between the numerical and experimental load-displacement curves can 

be achieved as shown in Fig. 3-11. It can be seen that the numerical model has captured 

major features as well as the magnitude of the experimental data. The resisting force on 

the indenter increases as the indentation depth increases and drops drastically upon 
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withdrawal of the indenter. The simulated curve agrees reasonably well with the 

experimental curve at loading/unloading.  

Table 3-2. Material parameters of single crystal copper 

C11 
 (GPa) 

C12 
(GPa) 

C44 
(GPa) 

inτ
(MPa)

0γ& α
(MPa)

β
(MPa)

m

145 127.4 75.4 34.8 1.0 4.0 0.6 0.02
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Fig. 3-11: Comparison between numerical and experimental 

 load-displacement curves 

Although there is good overall agreement between the experimental and the 

simulation results, the loading portion of the simulation curve is not smooth, despite 

various attempts to obtain a smoother curve. While the dynamic characteristics of the 

simulation might explain partially the bumps in the curve, it cannot explain all, as most 

portions of the curve are still fairly smooth. It may be noted that similar non-smooth 

loading curves in indentation were also reported by others (Kalidindi et al., 1992; Smith 

et al., 2001). Smith et al. (2001) attributed this problem to the finite size of the elements. 

Kalidindi et al. (1992) postulated that these jumps can be minimized by using a finer 
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mesh on the surface of the sample. The jagged load-displacement curve presented here 

shows a trend similar to what others have observed at the meso-scale. However, further 

investigation is needed to determine if there is an underlying mechanism for the jagged 

load-displacement curve, or, if it is only due to computational limitations. 

To investigate the sensitivity of the mesh size on the convergence of the 

numerical solution, the mesh with the smallest element size of 140 nm was used as a 

benchmark. Three additional mesh sizes, namely, 10% smaller, 10% larger, and 50% 

larger were tested for the same model and the simulation results were compared. As can 

be seen from Fig. 3-12, for the case of 50% larger element size (curve 

Simulation_mesh4), increased oscillations with amplitude of ~0.5 mN were observed in 

the load-displacement curve and the maximum deviation from the benchmark curve 

(Simulation_mesh1) was 9.3%. For the cases of 10% large (curve Simulation_mesh3), it 

exhibited the same basic features as the 50% larger one. The 10% smaller curve 

(Simulation_mesh2) is close to the benchmark curve, and the maximum deviation 

between the two curves was 5.6%.  Based on the sensitivity analysis, it is concluded that 

the simulation results have converged with respect to the mesh spacing for the benchmark 

mesh size used. 

Additionally, since the current model size is large enough with respect to the 

nanoindentation depth of 310 nm, only the dimensions of the part with mesoplasticity 

were changed to test the numerical results. Two different cases, namely, 6×6×10 µm and 

12×12×10 µm were simulated and a maximum error in the load-displacement curves was 

6.2%. Based on the sensitivity analysis, it can be concluded that the simulation results 
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have converged with respect to the mesh spacing for the benchmark mesh size and the 

model size used. 
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Fig. 3-12: Comparison on the load-displacement curves from nanoindentation 
 test and simulations with various mesh size 
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Fig. 3-13: Stress-strain curve for single-crystal copper at microscale 

Various parameters obtained using the combined FEM/nanoindentation approach 

are then employed to determine the stress-strain relationship of single-crystal copper at 
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the microscale. Fig. 3-13 shows the stress-strain curve of single crystal copper at 

microscale. 

3.5.3 Mechanical behavior of single crystal copper at mesoscale 

The nanoindentation simulations were carried out along the [ 001 ] direction using 

a spherical indenter. The parameters in Table 3-2 were used for the mesoplastic 

constitutive model. Fig. 3-14 (a) and (b) show the distribution of out-of-plane 

displacement profiles at various stages of indentation. They show the deformation on the 

(100) orientated surface with a four-fold symmetry. Flom and Komanduri (2002) 

observed the same deformation patterns in indentation experiments and Wang et al. 

(2004) also reported similar results using conical indenters from FEM simulations and 

experiments. 
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Fig. 3-14: Distributions of out-of-plane displacements at two stages of indentation 

Both positive and negative values of displacement can be seen from Fig. 3-14 (a). 

The positive values occur symmetrically around the indent impression and represent the 

pile-up patterns of the material. With increase in indentation depth, the pile-ups become 

more and more pronounced [see Fig. 3-14 (b)]. Fig. 3-15 (a) and (b) show a comparison 

of the numerical out-of-plane displacement plot and the AFM image after unloading the 
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[001]



36

indenter. Even though, it is somewhat difficult to precisely capture in the simulations all 

phenomena observed in experiments both figures show some similar features, for 

example, a four-fold symmetry. Since self-hardening and latent-hardening for each slip 

system have already been taken into account in the hardening law, the effect of other 

active slip systems on the dislocation activities in a lattice have also been included in the 

simulations. It is also possible that the geometry of the styli may not be exactly spherical, 

especially with the smaller diameter ones. 

 
Fig. 3-15: Comparison of FEM and AFM images of the out-of-plane 

displacement at an indentation depth of 310 nm  
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Fig. 3-16: Shear  stress  σxz distributions in the (100) plane at two stages of indentation 
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Fig. 3-16 (a) and (b) show the shear stress σxz distribution at various stages of 

indentation. Using a spherical indenter in nanoindentation, the stress waves propagate 

towards the four vertices in the (100) plane and the stress magnitudes increase with the 

indentation displacement. Fig. 3-17 (a) and (b) show the distribution of normal stress σyy 

(y-axis coincides with the [100] direction) in the mid-section (the normal direction is 

along [001]) of the single crystal at various stages of indentation. The stress distribution 

is symmetric with respect to the [100] direction. These figures also indicate that 

maximum compressive stress occurs right underneath the indenter with its magnitude 

increasing with indentation depth, and the domain of the compressive stress increases 

with the indentation displacement. Tensile stress zones become larger and larger with 

increasing indentation displacement, causing more significant pile-ups.  
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 Fig. 3-17: σyy distributions in the (001) section at two stages of indentation 

Fig. 3-18 shows a zoomed-in view of the pile-up on a displacement plot in the 

same section as that in Fig. 3-17, after unloading the indenter. Fig. 3-19 (a) and (b) show 

the distributions of the shear strain in the mid section. The total shear strain is calculated 

using the following equation: 

∑ ∆=
k

)k(γγ . (3-29)  

[010]

[100]



38

It may be noted that γ is the shear strain based on the slip systems and it is an indication 

of the dislocation density. Hence, it should be differentiated from the general shear strain 

tensor in continuum mechanics. γ is related to the status of each slip system by the 

Schmid’s law, and is associated with the dislocation density as well. As Fig. 3-19 (a) and 

(b) show, the shear strain distribution is symmetric with respect to the [100] direction.  
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Fig. 3-18: Pile-up of the indentation region in the (001) section after unloading 
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Fig. 3-19: Distributions of shear strain (total shear strain on all the slip 

systems) in the (001) section at two stages of indentation 

3.5.4 Effect of friction on nanoindentation behavior 

We now compare the pile-up profiles of the indent between the numerical and 

experimental data. The dashed line in Fig. 3-20 shows the surface profile scanned 

through the center of the indentation impression along a line in the [110] direction [as 

Pile-up
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[100]
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determined from the AFM image in Fig. 3-15 (b)]. Also shown is the surface profile 

determined from the numerical analysis for a frictionless contact condition (i.e., 

coefficient of friction, COF = 0) with the highest material pile-up. It can be seen that the 

depth of indentation is reasonably in a good agreement with the depth as determined from 

the AFM image. The material pile-up from the numerical analysis for a COF of zero is 

125 nm while the value from the experiment is 60 nm. Even though, the material pile-up 

is within the same order of magnitudes for both cases, the values differ by a factor of 

about two. This difference can be attributed partially to friction.  
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Fig. 3-20: Comparisons of the pile-up profiles for different COF 
 at 285 nm indentation depth  

The analysis conducted thus far has focused on a frictionless contact between the 

nanoindenter and the workpiece. It may, however, be noted that friction does play a role 

at the contact surface and can affect the surface profile. To investigate this, we introduced 

Coulomb frictional contact in the FEM simulation of nanoindentation. Because the COF 

is unknown, we used several values of COFs between µ = 0 and µ = 0.8 in the 



40

simulations, attempting to find a COF that would give us the same surface profile as 

measured by the AFM. A constant COF is used in each simulation.  Fig. 3-20 shows the 

simulated surface profile in the [110] direction scanned through the center of the 

impression for COFs between 0 and 0.4. The results indicate that pile-up decreases as 

COF increases. We also find that as the COF reaches 0.4, further increase in the COF 

does not cause any additional reduction in the material pile-up. This is most likely 

because non-slip contact condition has been reached at a COF equals to or near 0.4, so 

that increasing COF simply maintains the same non-slip contact condition and does not 

contribute to further reduction in the material pile-up. At COF of 0.4, the simulated 

material pile-up is 75 nm, close to 60 nm which is the material pile-up measured from 

AFM.  To the best of knowledge of the authors, this difference is small among the 

published literature at this scale lending further confirmation on the appropriateness of 

the mesoplastic parameters determined from the combined FEM/nanoindentation 

approach.  

We next address the depth of indentation as shown in Fig. 3-20. It can be seen the 

indentation depth is constant (~285 nm) and independent of the COF. Because the 

indentation depth is not affected by COF, the load-displacement curve should not be 

affected by the COF as well. It is seen that the load-displacement curves are almost 

identical within the range of limited numerical noise (see Fig. 3-21 for COFs between 0 

and 0.4). As a result, this combined FEM/nanoindentation approach directed towards 

finding the mesoscale parameters in single crystal copper through correlating numerical 

load-displacement curve with the nanoindentation counterpart is not influenced by the 

COF at the contact surface.  
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Fig. 3-21: Load-displacement curves for different COFs 

3.5.5 Effect of spherical indenter radius on the mechanical properties of single 

crystal copper 

Material parameters determined from nanoindentation tests can be size-

dependent, namely, indentation depth and indenter radius. It may be noted that theoretical 

framework for mesoplasticity used in this investigation does not encompass the size 

effect. Ideally, it can be applied to any scale of indentation provided the material has the 

same crystalline characteristics. In reality, however, the nanoindentation size effect may 

result in changes in the yield stress and the hardening law.  

Material hardness, as one of the important mechanical properties, can be 

measured using the nanoindentation technique with spherical indenters of different radii. 

To address this problem, numerical simulations were conducted using spherical indenters 

with different radii (3.4, 7, 10, 25, 50, 100, 200, 500, and 1000 µm) at corresponding 

indentation depths (310, 638, 912, 2280, 4560, 9120, 18240, 45600, and 91200 nm). 
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FEM results indicate that pile-up on the indent surface using a spherical indenter with a 

smaller radius is more evident than with a larger radius. This is because for a given depth 

of indentation, smaller radii indenters are less blunt than larger radii indenters.  

Fig. 3-22 (a) shows the variation of mean pressure, Pm with indent radius, a for 

different indenter radii, R on a log-log scale. It shows that normal pressure increases with 

increase in the indent radius. It also shows that this increase is higher for spherical 

indenters of smaller radii than with larger radii, especially for lower values of the indent 

radii.  Fig. 3-22 (b) shows the variation of mean pressure, Pm with the ratio of the indent 

radius to the indenter radius, (a/R) for different indenter radii, R.  It is seen that a single 

curve can be fitted for Pm versus (a/R) for different indenter radii, when the indenter 

depth is normalized with respect to the indenter radius. The best fit equation is given by 

Pm = 0.9583 (a/R)0.2984 . The small differences in this case are attributed to the work-

hardening behavior of the sample as well as minor numerical instabilities due to mesh 

distortions. Lim and Chaudhri (1999) found significant differences in the variation of 

mean normal pressure Pm with (a/R) between the work-hardened and annealed OFC 

samples. For the work-hardened sample, the Pm value for a given (a/R) is only slightly 

greater for the indenter of 7 µm radius than for the other two indenters (200 and 500 µm) 

for which it is the same. The simulation results in this chapter show a similar trend. To 

confirm the work-hardened behavior of the workmaterial, the indents were scanned under 

AFM. In general, scanning along a line in a typical AFM image of an indent impression 

shows pile-up in a work-hardened material and sink-in in the case of an annealed 

specimen (McElhaney et al., 1998; Lim and Chaudhri, 1999). In the case of single crystal 

copper in our case, we scanned the surface along a line on an indent, and plotted the  
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Fig. 3-22: (a) Results of simulation showing the variation of mean pressure, 
Pm with indent radius, a for different indenter radii, R; (b) Results 
of simulation showing the variation of the mean pressure, Pm with 
a/R for different indenter radii 
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height profile in Fig. 3-20. A pile-up is observed around 2.5 µm. Additionally, a pile-up 

is observed around 4 µm along a line on an indent formed by impression of a Berkovich 

indenter (Fig. 3-23). The pile-ups in indents formed by both spherical and Berkovich 

indenter impressions indicate that the single crystal copper used in this investigation is 

close to work-hardened conditions.  

 
Fig. 3-23: AFM image of the indent impressions made 

 with a Berkovich indenter  

In Fig. 3-22 (a) and (b), the variable, indent radius, is involved in both axes. To 

eliminate this effect, the variation of normal force with indent diameter is plotted on a 

log-log scale [Fig. 3-24 (a)]. It shows that most of the data points fall on a single line and 

independent of the indenter radius used (in this case from 3.4 to 1000 µm). A straight line 

can be fitted between the indenter force and the indent radius. The equation for the best 

fit is given by F = 0.4101 (2a)2.0359, where F is the indenter force and 2a is the indent 

diameter.  It is interesting to note that this equation is very similar to the equation 

normally used at the macrolevel for spherical indenters, namely, P = A (2a)n, where the 

exponent, n is called the Meyer index (1908). The value of n is reported to vary from 2 

for fully strain-hardened metals to 2.5 for annealed metals (Shaw and DeSalvo, 1972). 

1 µm
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The value of the exponent, n obtained in the present investigation is 2.0359, indicating 

the work-hardening behavior of the single crystal copper specimen. Fig. 3-24 (a) shows 

very little dependence of the indenter radius on the normal force at the microscale, 

similar to the ones observed at the macroscale. This equation was shown (Krupkowski, 

1931) to hold for indenters of diameters in the range of 1-30 mm. 

In order to compare the mean normal pressure values obtained from simulations, 

nanoindentation and microindentation experiments were conducted for several available 

spherical indenters (3.4, 10, and 500 µm). The nanoindentation tests of spherical diamond 

indenters (radii 3.4 and 10 µm) were performed on the MTS Nano Indenter XP system, 

whereas the microindentation tests of spherical tungsten carbide indenter (radius 500 µm) 

were conducted on a Clark Microhardness Testers (Model CM-700AT). The 

experimental data are presented in Fig. 3-24 (b). The best fit equation is F = 0.3867 

(2a)2.0352. The exponent as obtained from the experiment 2.0352 is very close to the 

simulation, which is 2.0359. From these results, it can be seen that the approach of using 

combined nanoindentation/FEM simulation for determining mesoplasitc model 

parameters works reasonably well from the microlevel to the macrolevel. 

The mesoplastic constitutive law used in this investigation is a mechanism based 

plasticity model derived from rate-dependent crystallographic theory. It is capable of 

capturing the effects of crystal orientations. The approach of combining numerical 

simulation with nanoindentation allowed the determination of the stress-strain relation at 

mesoscale. Numerical simulations of nanoindentation using appropriate parameters for 

material behavior at these scales have a reasonably good agreement with the 

nanoindentation results on indentation mean pressure and surface pileup. It may be noted,  
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Fig. 3-24: (a) Results of FEM simulation showing the variation of the 
indentation force, F with indent diameter, 2a for different indenter 
radii, R; (b) Results of indentation experiments showing the 
variation of the indentation force, F with indent diameter, 2a for 
different indenter radii, R 

however, that the material length scale is not explicitly included in the current 

mesoplastic constitutive law. Therefore, it is applicable only to problems where size 

effects do not dominate the material behavior. It is currently, however, not capable of 
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modeling the size effects, such as the indenter size-dependent mean pressure as reported 

for annealed polycrystalline copper by Lim and Chaudhri (1999). Within the framework 

of numerical simulations, the length scale issues can be potentially incorporated. At the 

continuum level, there are usually three formulations to take into consideration of the size 

effects (Needleman, 2000): discrete dislocation plasticity, nonlocal plasticity, and 

coupling of matter diffusion and deformation. In discrete dislocation plasticity (Amodeo 

and Ghoniem, 1990; Gulluoglu and Hartley, 1993; van der Giessen and Needleman, 

1995), the dislocations are modeled as line singularities in an elastic medium. The plastic 

flow is represented by the collective motion of a number of discrete dislocations. 

Dislocation based plasticity has a characteristic length, the Burgurs vector, and is capable 

of capturing the size-dependent phenomena. In the nonlocal plasticity theory (Fleck et al., 

1994; Nix and Gao, 1998; Shu and Fleck, 1998, Saha and Nix, 2002), the stress tensor or 

higher order stress tensor depends on both strains and strain gradients. Different 

formulations for nonlocal plasticity have been presented (see Needleman, 2000 for a 

review). However, there is no unified formulation in nonlocal plasticity applicable to both 

single crystals and polycrystalline materials at all length scales. Whether a nonlocal 

plasticity theory is suitable or not depends ultimately on comparison with experimental 

data. Consideration of the size-dependence through the coupling of matter diffusion and 

deformation is usually important at high temperatures, such as the temperatures 

encountered in the manufacturing process of semiconductor devices. In this case, surface 

diffusion drives the formation of islands due to the deformation of thin films. Zhang and 

Bower (1999) found that islands will form if the initial roughness on the surface of the 

film exceeds certain critical wavelength.  



48

The work presented herein indicates that there is no size-dependence in stress-

strain relation, as well as hardness on work-hardened single crystal copper. In situations 

where size-effects are present, as in the case of annealed copper, size effects need to be 

introduced in the formulation of numerical simulation. 

3.6 Conclusions 

1. A multiscale finite element model involving meso-plasticity and elasticity was 

used for nanoindentation of single crystal copper. A combined FEM simulation and 

nanoindentation experimental approach was used to determine the parameters for the 

mesoplastic constitutive model. Nanoindentation tests were conducted to obtain the load-

displacement characteristics. The parameters for mesoplastic constitutive model were 

determined by fitting the numerical load-displacement curves to the experimental data. 

Numerical results indicate that hardening parameters α and β and initial critical shear 

stress, inτ have a strong effect on the nanoindentation load-displacement relationship. A 

reasonably good agreement between numerical and experimental results on the load-

displacement relationship was obtained.  

2. Meso-mechanical behavior of single-crystal copper was investigated. The 

distribution of displacements, stresses, shear strains, and shear stresses were analyzed at 

various stages of indentation. Numerical results show the deformation on the (100) 

orientated surface in nanoindentation has a four-fold symmetry similar to the AFM image 

of nanoindentation. This is consistent with the results reported by Flom and Komanduri 

(2002) and Wang et al. (2004). 

3. With increase in indentation depth, material pile-up around the indenter also 

increases. The pile-up was more pronounced with smaller indenter radius. FEM 



49

simulation results also indicate that pile-up decreases as the coefficient of friction (COF) 

increases from 0 to 0.4, while the nanoindentation load-displacement relationship is 

found to be independent of the coefficient of friction. Simulated material pile-up at COF 

of 0.4 compared reasonably well with the measured pile-up. The maximum shear strain 

associated with the dislocation density occurs underneath the top surface leading to 

macrocrack formation. Various parameters determined from the combined 

FEM/nanoindentation are then used to determine uniaxial stress-strain relationships at 

microscale.  

4. The variation of hardness, Pm with a/R shows an increasing trend in hardness 

with increase in (a/R) and independent of indent diameter. The equation for the best fit is 

given by Pm = 0.9583 (a/R)0.2984. It is interesting to note that this equation is very similar 

to the equation at the macrolevel for spherical indenters, namely, P = A (2a)n, where the 

exponent, n is the Meyer index (1908). This equation was shown to hold for indenters of 

diameters in the range of 1-30 mm by Krupkowski (1931). It is shown in the present 

investigation that this effect can be attributed to the work-hardening behavior of the 

material in simulations using spherical indenters of radii varying from 3.4 µm to 1000 

µm. Similar results were reported by Lim et al. (1998) and Lim and Chaudhri (1999) for 

polycrystalline work-hardened copper for indenters of radii from 7 to 500 µm.  

5. The variation of normal force was found to increase linearly with indent 

diameter, on a log-log plot, and independent of the indenter radius. The equation for the 

best fit is given by F = 0.4101 (2a)2.0359, where F is the normal force and 2a is the indent 

diameter. The value of n is 2.0359. The range of values of n reported to vary from 2 for 

fully strain-hardened metals to 2.5 for annealed metals (Shaw and DeSalvo, 1972). The 
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value of the exponent n obtained in the present investigation is 2.0359, indicating the 

work-hardening behavior of the single crystal copper specimen. The exponent as 

determined from experiments is 2.0352 which is also very close to the simulation results. 

6. The results of the present investigation [Fig. 3-24 (a) and (b)] indicate that use 

of combined nanoindentation/FEM simulation approach for determining mesoplasitc 

model parameters works reasonably well from microlevel to the macrolevel. 

7. The method presented in this study has provided an approach to determine the 

microstructural parameters through nanoindentation tests and numerical simulations that 

can be used for quantitative analysis for a wide range of problems involving mesoplastic 

behavior.  
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Chapter 4 

Orientation Effects in Nanoindentation of Single Crystal Copper 

4.1 Introduction 

Nanoindentation technique has become an extremely useful tool for determining 

the mechanical properties of very small volume (small size) of materials, such as the 

structural elements used in MEMS applications (e.g. microgears, microshafts, 

microconnectors) and thin films/coatings on various substrate materials (Oliver and 

Pharr, 1992). It can provide such valuable information as nanohardness, yield stress, and 

elastic modulus of materials comprising of extremely small volumes. Nanoscratching can 

provide additional information on friction, which is of importance in tribology. 

Nanoindentation can also provide load-displacement behavior as well as the onset of 

plastic flow, which plays a significant role in microscale deformation processes involved 

in adhesion, friction, and inelastic deformation.  

A major deformation feature in nanoindentation is the material’s strain hardening 

characteristics, which translates into pile-up or sink-in of the material around the indent 

(Gouldstone et al., 2000; Wang et al., 2004).  As nanomechanics continues to be in the 

center of focus, the determination of the mechanical properties of materials at the 

nanometric level assumes significance. Nanoindentation technique is one method for 

addressing this issue.  
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4.2 Literature review 

Nanoindentation has been extensively studied (analytical, numerical, and 

experimental) in view of its ability to determine mechanical properties of materials in 

small volumes. The experimental studies include, determination of plastic strain and 

strain gradients at very small indentation depths (Tymiak et al., 2001), nonlinear 

deformation mechanisms during nanoindentation (Bahr et al., 1998), discrete and 

continuous deformation during nanoindentation of thin films (Gouldstone et al., 2000), 

nano- and micro-indentation studies on polycrystalline OFHC copper (both annealed and 

workhardened) using spherical indenters of different radii to investigate the scaling effect 

(Lim et al., 1998; Lim and Chaudhri, 1999), dislocation structure involved in 

nanoindentation (Gaillard et al., 2003), identification of slip systems around indentation 

(Nibur and Bahr, 2003). The simulation studies include, nanoindentation and incipient 

plasticity using large-scale atomic simulations using the quasi-continuum method 

(Shenoy et al., 1999), computational mechanics at the mesoscale (Needleman, 2000), 

theoretical investigation of plasticity at the micrometer scale (Hutchinson, 2000), MD 

simulations of anisotropy in nanoindentation (Christopher et al., 2003), size-dependent 

hardness or indentation size effect (ISE) due to the presence of geometrically necessary 

dislocations or strain gradient effects in polycrystalline aluminum using nanoindentation 

(Xu and Rowcliffe, 2002; Elmustafa and Stone, 2003a, b), strain bursts and creep in 

aluminum during nanoindentation (Feng and Ngan, 2001), and length scale effects on the 

mechanical behavior due to strain gradient plasticity (Duan et al., 2001).  

Conventional plasticity theories do not include material length scale in their 

formulation (Hutchinson, 2000). Hence, they cannot handle any size effect. A natural 
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way of including size effect in the constitutive equations is to postulate that yield stress 

depends not only on strain (as in conventional plasticity) but also on the strain gradient.  

Fleck and Hutchinson (1993) developed a phenomenological theory to take into account, 

the strain gradient effects in plasticity, using a single, constant, material length scale 

within the general framework of couple stress theory. To explain for the plausible size 

effect, especially in the submicrometer depth regime, Fleck et al. (1994) showed that 

large strain gradients inherent in small indentations can lead to geometrically necessary 

dislocations that can cause enhanced hardening. Begley and Hutchingson (1998) applied 

the deformation version of the strain gradient plasticity theory to model materials 

undergoing nano/micro-indentation to assess its applicability by comparing the analytical 

results with the experimental.  

Poole et al. (1996) explained the size dependence of hardness in micro/nano 

indentation using a dislocation model that incorporates geometrically necessary 

dislocations due to the presence of strain gradients in the deformation zone around the 

indent. Nix and Gao (1998) modeled the indentation size effect for crystalline materials 

through the consideration of geometrically necessary dislocations. They used this model 

to derive a mathematical relationship for strain gradient plasticity and compared it with 

the nanoindentation results published in the literature showing reasonably good 

agreement. 

Some studies have recently been reported on the anisotropy associated with 

nanoindentation of single crystal materials of different crystallographic orientations 

(Groenou et al., 1989; Khan et al., 1992; Stelmashenko et al., 1993; Lim and Chaudhri, 

2002; Flom and Kmanduri, 2002; Komanduri et al., 2000; Christopher et al., 2003; Nibur 
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and Bahr, 2003; Wang et al., 2004; Peralta et al., 2004).  In view of their relevance to the 

present investigation, they will be reviewed briefly. 

Groenou et al. (1989) investigated slip patterns on a single crystal MnZn ferrite 

workpiece by spherical indentation on three crystallographic planes [(100), (011), and 

(111)]. They reported that on all planes investigated, the deformation consists of slip 

lines, when the shear stress is higher than a threshold value. At higher loads, they report 

formation of new lines that appeared to couple with the initially generated slip lines. At 

even higher loads, the formation of cracks was reported. They discussed the slip patterns 

for {100}, {111}, and {110} slip systems in terms of the Burgers vector along <110>. 

The experimental results were compared with the analytical results on the basis of 

elasticity equations for a half-space loaded by a sphere. Analysis in the plastic regime 

was not provided in their work.   

Khan et al. (1992) investigated the formation behavior and hardness in 

indentation of a single crystal MgO on (100), (011), and (111) using a Vickers diamond 

pyramidal indenter and a spherical cemented tungsten carbide indenter (0.4 mm 

diameter). They investigated the plastically deformed zone around the indents using 

cathodoluminescence (CL) and showed that crystal orientation has a marked influence on 

the indentation crack patterns. They also found that hardness depends on the geometry of 

the indenter and the crystallographic plane in which the indentation was made. They 

made an attempt to explain for the difference in terms of material flow and dislocation 

interactions of various slip systems. 

Stelmashenko et al. (1993) conducted microindentations on (100), (011), (111) 

surfaces of single crystals of W and Mo using a scanning tunneling microscope (STM). 
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They found that formation of pile-up in W and Mo single crystals is determined by the 

geometry of the BCC crystal slip systems. They also found that the spatial distribution of 

the deformation depends on the crystallographic orientation of the surface. Their results 

indicate that STM enables the amount of plastic deformation to be quantified accurately 

even for small indents. 

Lim and Chaudhri (2002) investigated microindentation hardness of individual 

grains of [(110) and (111) orientations] on a polycrystalline copper using a cemented 

tungsten carbide spherical indenter of radius 200 µm. They determined that the 

indentation hardness values of (individual grains in polycrystalline) of copper of different 

orientations are very similar and any differences in the orientation of contiguous grains 

would not affect the hardness values of polycrystals significantly. 

Recently, Flom and Komanduri (2002) reported results of indentation and sliding 

experiments on a wide range of single crystal and polycrystalline materials (FCC, BCC, 

and HCP) at microscale using a modified microhardness tester. Optical microscopy was 

used to characterize the specimens after indentations. On a copper specimen, an FCC 

metal, plastic deformation takes place predominantly along {111} slip planes and along 

the 〈110〉 slip directions. Thus, a 4-fold symmetry is expected when an FCC crystal was 

indented on a (100) plane. Similarly, when the copper crystal was indented in (011) and 

(111) planes, 2-fold and 3-fold symmetries are expected. Experimental results of 

indentation on these faces have confirmed these features. Both the size and shape of the 

indentations gave rise to slip lines surrounding the indentations, revealing marked 

anisotropies on different crystallographic orientations. These results were also found to 
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be in agreement with the molecular dynamics simulation results of Komanduri et al. 

(2000). The present investigation is an extension of that work at the meso scales. 

Christopher et al. (2003) investigated the anisotropy of nanoindentation in a 

single crystal copper {110}. They showed that pile-up patterns in nanoindentation are 

indicative of the sample symmetry. They conducted both experimental and MD 

simulations to determine the atomistic mechanisms underlying the anisotropy. Their 

simulations showed that dislocation loops start from the nanoindenter tip and end on the 

crystal surface, propagating outwards along the four in-plane 〈111〉 directions. These 

loops carry material away from the indenter and form lumps on the surface along these 

directions separated by the pile-up of material around the indent. Atoms also move in the 

two out-of-pane 〈111〉 directions, causing propagation of subsurface defects and pile-up 

around the indent.  

Nibur and Bahr (2003) conducted indentation testing, followed by AFM and 

orientation imaging microscopy (OIM) observations to identify slip planes on which 

dislocations emerge at the free surface around indentations. They found that the patterns 

of slip steps around the indentations are predictable and repeatable. They reported that for 

the FCC materials tested these patterns depend mostly on the crystal orientation, and that 

the stacking fault energy and slip mode affect the planarity of any given step.  

Wang et al. (2004) reported results of a study similar to the work presented in the 

current investigation. They conducted nanoindentation studies using a conical indenter on 

single crystal copper specimens of three different orientations, namely, on (011), (100), 

and (111) faces. They investigated the orientation dependence of nanoindentation pile-up 

patterns and reported a two-fold, four-fold, and six-fold symmetry on (011), (100), and 
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(111) faces, respectively. They also conducted simulations using a 3D elastic-viscoplastic 

crystal plasticity FEM, which takes into account the crystallographic slip and orientation 

changes during indentation. They reported an order of magnitude difference between the 

experimental and simulation results of the load-displacement relationships. They offered 

several plausible reasons for this discrepancy, including: 1. simulations were conducted 

with much larger indenters than experiments, 2. differences in the real tip radius, 3. 

geometry difference between actual and simulated indenters, 4. nanoindentation 

experiments were conducted using the force control mode while simulations were 

conducted in the displacement control mode, 5. mesh effects in FEM and associated 

problems, 6. influence of the constitutive law used, and finally, 7. unknown frictional 

conditions.  

Wang et al. (2004) also found that most of the patterns around the indents are 

pile-up rather than sink-in. They attributed this to the highly crystallographic and 

localized flow of material only along small volumes. They concluded that in these 

confined zones only little microscopic strain hardening occurs due to parallel slip 

promoting pile-up instead of sink-in behavior.  The present investigation (both numerical 

and experimental) confirms the findings of Wang et al. (2004) on the pile-up (instead of 

sink-in) and some other issues, such as pile-up patterns. 

Peralta et al. (2004) investigated the deformation surrounding Vickers indents in 

copper for two orientations of the indenter diagonals using optical, electron-beam, and 

scanning probe microscopes. They reported that both sink-in and pile-up behavior depend 

on in-plane crystallographic orientations rather than the orientation of the indenter. 
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Regions with multiple slips show larger lattice rotations and sink-in whereas regions with 

lower slip density have smaller lattice rotations and show pile-ups.  

Considerable attention has been devoted recently to simulations of 

nanoindentation on single crystals (Kalidindi et al., 1992; Fivel et al., 1998; Smith et al., 

2001; Zimmerman et al., 2001; Zhu et al., 2004; Saraev and Miller, 2006). However, 

investigations on the effects of crystallographic orientations on the nano-mechanical 

behavior, including load-displacement relationship and deformation topography, are 

limited. Molecular dynamics (MD) simulations have been used to investigate the 

anisotropic features in nanomechanical properties on the surfaces of nickel single crystals 

as a function of indenter size and velocity for three crystallographic orientations: 〈100〉,

〈110〉 and 〈111〉 (Kum, 2005). The results showed the dependency of anisotropic elastic-

plastic deformation on the indenter size, velocity, and crystal orientation. MD simulations 

(Liang et al., 2004; Tsuru and Shibutani, 2007) were used to study the crystal plasticity in 

nanoindentation by comparing the elastic-plastic response of three copper substrates with 

(001), (011) and (111) crystallographic surfaces. However, direct comparison between 

the MD simulations and experimental data is not feasible because the indentation depth in 

MD simulations is small (on the order of angstroms) and the indentation velocity is 

extremely high (nine orders of magnitude higher), preventing nanoindentation experiment 

to be conducted under the same conditions. To date, there is no good comparison between 

experimental and numerical results on all crystallographic orientations of single crystals 

materials, necessary to interpret nanoindentation data to extract the mechanical behavior 

through nanoindentation.  
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Several researchers have investigated mesoplastic constitutive relationships, 

including the pioneering work of Hill and Rice (1972), and Asaro and Needleman (1985). 

Peirce et al. (1982) analyzed the non-uniform and localized deformation in ductile single 

crystals in tension using mesoplasticy theory. Huang (1991) developed a material user 

subroutine incorporating mesoplasticity in the ABAQUS implicit program. The 

theoretical framework of Hill and Rice (1972) has been implemented in the 2D 

subroutine. Kalidindi et al. (1992) developed an implicit time-integration procedure 

based on Asaro and Needleman’s constitutive model (1985). 

Gambin and Barlat (1997) predicted the texture development in plastically 

deformed FCC metals using crystal plasticity based on the concept of yield surfaces with 

rounded corners. They suggested a relation between stacking fault energy (SFE) of 

crystalline materials and the parameters describing the roundness of yield surface 

vertices. Therefore, the model allows predictions of reorientation paths and texture 

development for FCC metals of low, medium, and high SFE.  

Nakamachi et al. (2002) studied the influence of crystallographic texture on the 

formability of FCC aluminum sheet metal using elastic/crystalline viscoplastic finite 

element (FE) analysis. Numerical simulations of the forming processes showed evidence 

of texture effects on strain localization and failure. They concluded that texture of 

annealed sheets leads to postponement of strain localization and improvement of the 

formability of aluminum alloy sheet.  

Yoshino et al. (2002) developed a two-dimensional finite element model and 

calculated the dislocation density distributions of single crystal copper under 

nanoindentation using a cylindrical indenter. Wang et al. (2004) simulated 3D 
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nanoindentation but the load-displacement curves are not in good agreement with the 

experimental data. Thus, a lack of good comparison between experimental and numerical 

results leads to the difficulty of investigating the mechanical behavior of nanoindentation 

on single crystal materials.  

In Chapter 3, a mesoplastic constitutive model was implemented in a commercial 

finite element code (ABAQUS/Explicit) and investigated the material behavior of 

nanoindentation on single crystal copper along the [100] direction (Liu et al., 2005). 

Experimental and numerical results are in good agreement, validating the approach. In 

this chapter, the deformation behavior of single crystal copper of three different 

orientations [(100), (011) and (111)] by nanoindentation is explored at the microscale. 

Large deformation theory is incorporated into the mesoplastic constitutive model to take 

into account large element rotation. Nanoindentation on single crystal copper along 

different orientations is simulated using the finite element method. Numerical results 

including load-displacement curves, deformation patterns around the indenter and the 

pile-up profiles are compared with the experimental results from indentation tests.   

4.3 Numerical simulations 

 The mesoplastic constitutive model has been implemented using a user-defined 

subroutine VUMAT (ABAQUS Manual, 2003) in a commercial finite element code 

(ABAQUS/Explicit) in Section 3.2.3. The underlining assumption of the stress update 

scheme is that the element rotation is small. Under large deformations, where the element 

rotation is relatively large, the incrementally objective integration for stress update should 

be used. It is given by (Belytschko et al., 2000) 

∇

+++ ∆+⋅⋅= σQσQσ tT
nnnn 111 (4-1) 
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where t
n e ∆

+ = ω
1Q is the incremental rotation tensor associated with effective spin ω and 

it can be linearized as tn ∆+=+ ωIQ 1 for small incremental spin. Comparing the stress 

update in the large deformation with the small deformation, the T
nQQσ term is added to 

account for the proper rotation of the stress. The effective deformation rate D in Eq. (3-6) 

can be computed from the deformation gradient F and the push-forward of the 

incremental Green strain E∆ , which is defined as 
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nF∆ is the incremental deformation gradient given by uIF ∆∇+=∆ nn , where u∆ is the 

displacement increment. A strain measure should vanish for any rigid body rotation. If a 

strain measure fails to meet this requirement, it will predict nonzero strains, and in turn 

nonzero stresses, in rigid body rotation. It can be seen that the effective deformation rate 

D is zero in a rigid rotation because IFF =∆⋅∆ −− 1)( n
T

n in a rigid rotation. Therefore, 

incremental objectivity is achieved.  

The effective spin is defined through 
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In this investigation, we propose and implement the large deformation 

formulation of mesoplasticity. To account for arbitrary crystal orientations, two 

coordinate systems are introduced in the calculation  specimen (global) coordinate and 

crystalline (local) coordinate systems. The global coordinate system is fixed and defined 
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on the specimen. The local coordinate system is aligned with the crystal lattice and all the 

material calculations are conducted in it. At each time step, transformation is performed 

to bring the stress formulation from one system to the other. The crystal orientation is 

represented in terms of the three Euler angles. The mesoplastic constitutive model is used 

in the finite element analysis to simulate nanoindentation on single crystal copper and 

obtain numerical load-displacement relationships. In the constitutive model, m is chosen 

as a small value such that the constitutive formulation is nearly rate independent. Thus,  

)(
0

kτ , α , β are the material parameters to be determined. Appropriate parameters were 

determined by fitting the simulated load-displacement curves to the experimental data. If 

the load-displacement relations, as determined from the numerical analysis agree with the 

experimental data on all three orientations, the parameters in the mesoplastic model 

would be suitable for the single crystal copper. The material parameters used in the 

simulation on different orientations of single crystal copper are shown in Table 3-2.  

The FEM simulations on single crystal copper were conducted to investigate the 

microscale behavior of the material under nanoindentation. It maybe noted that ABAQUS 

already takes into account the large deformation theory in strain increment and stress 

update. The dimensions of the workpiece in FEM model are 15 × 15 × 10 µm, which are 

smaller than the actual dimensions of the specimen [(100): 10 × 10 × 1 mm, (011): 10 ×

10.4 × 2.3 mm, and (111): 12.5 × 8.3 × 2.1 mm] used in nanoindentation, yet much larger 

than the maximum indentation displacement (~310 nm) so that the condition of 

indentation into a half-space is justified. The workpiece consists of 2,688 eight-node 

brick elements and 3,208 nodes. Size of the mesh in the FEM is generally a compromise 
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between computational cost and solution accuracy. Since stress gradient reaches its 

highest value in the region directly underneath the indenter, very fine mesh is used near 

the indenter tip and coarser mesh for other regions. The mesh sensitivity analysis has 

been presented in Section 3.5.2. In order to ensure convergence of the simulation results 

with respect to the mesh size, different mesh sizes were employed. The mesh size used in 

this study is chosen based on the convergence and the computational efficiency.  

It is well-known that the deformation and defect propagation in single crystal 

materials depend on the crystallographic orientation. The anisotropy of the deformation 

on single crystal copper is investigated by the surface topography of the indents on (100), 

(011), and (111) oriented surfaces using different indenters as well as by comparing the 

load-displacement relations. Two indenters used in this study are diamond spherical and 

Berkovich indenters. The spherical indenter has a radius, R = 3.4 µm. In the simulation, 

the indenter is modeled as a rigid body. This is justified as the diamond indenter has a 

modulus of 1000 GPa, which is more than an order of magnitude higher than that of Cu, 

which has a modulus on the order of 120 GPa. In simulations, the indenter moves 

towards the workpiece at a constant velocity. A frictionless contact pair, implemented by 

two contact surfaces with associated nodes between the indenter and the workpiece is 

defined. The effect of friction coefficient on the nanoindentation behavior of a single 

crystal copper have been investigated in Section 3.5.4 and it was found that the 

introduction of friction does not change the nanoindentation load-displacement relation 

but changes the indent surface profile. The top surface of the workpiece is traction free 

and nodes on the bottom are constrained along the indentation direction. To compromise 

the stability of the dynamic simulation and the overall computational time, the time step 
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increment is fixed at 60 ps (1 ps = 10-12 s) in the simulations. This leads to a total time 

step increments of 67,000 in the simulation, including loading, intermediate transition, 

and unloading. The intermediate transition step entails ramping down the velocity to 

remove the numerical discontinuities in the resistant force caused by the abrupt change in 

the velocity direction of the indenter.   

4.4 Experimental setup and test conditions 

To obtain experimental results for comparison with numerical simulation results, 

nanoindentation tests were conducted on the (100), (011) and (111) oriented single-

crystal copper surfaces. An MTS NanoIndenter (XP) system was used on single crystal 

copper samples to obtain nanoindentation load-displacement relationships. The system 

can reach a maximum indentation displacement of 500 µm and a maximum load of 500 

mN. The displacement resolution is 0.2 nm and the load resolution is 50 nN. All 

nanoindentation tests were conducted in air at room temperature (23°C). The tests did not 

start until a thermal equilibrium state had been reached and the drift of the indenter tip 

dropped below a set value, typically 0.05 nm/s. After the indenter tip had made contact 

with the specimen surface, the indenter penetrated gradually to the surface of the 

specimen, and the indentation load and displacement were recorded simultaneously at a 

sampling rate of five data points per second.  

Three single crystal copper samples with (100), (011) and (111) oriented surface 

planes were prepared for nanoindentation tests with dimensions of 10 × 10 × 1 mm, 10 ×

10.4 × 2.3 mm and 12.5 × 8.3 × 2.1 mm, respectively. All samples were cut from an ingot 

using electrical discharge machining (EDM) and the surface was chemo-mechanically 

polished. The surface roughness was measured by AFM, and the Ra value is 9.08 nm for 
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(100) surface. Each sample was mounted separately on a flat end aluminum cylinder 

before the test. Indentations were made using two different indenters on the specimens. 

One was a Berkovich diamond indenter; the other was a spherical diamond indenter with 

a radius of 3.4 µm. In selected tests, a nanoindenter with a tip radius of 10 µm was also 

used to determine the hardness, and a microindenter with a tip radius of 500 µm was used 

on a Clark Micro Hardness Tester (Model CM-700AT) to determine the microhardness 

and its dependence on the indenter tip radius. For each indentation displacement, 

nanoindentation tests were conducted at four different locations to ensure repeatability of 

data. It was ensured that all the indents were away from the edge of the sample and the 

distance between any two neighboring indents was at least 10 times the impression 

diameter to avoid interference in nanoindentations at different locations. After the 

nanoindentation tests, the copper samples were immediately scanned under an AFM to 

obtain the surface topographies and the pile-up profiles. The experimental data are then 

compared with the numerical results. 

4.5 Results and discussion 

Finite element simulations of nanoindentation were conducted at various 

indentation depths on single crystal copper specimen in three crystallographic 

orientations [(100), (011), and (111)] with indenters of two different geometries, namely, 

a spherical indenter (3.4 µm radius), and a Berkovich indenter. In nanoindentation, at the 

microscale, plastic deformation occurs primarily by slip on certain preferred slip systems, 

causing either pile-up or sink-in in the vicinity of the indent. In this section, the 

nanoindentation simulation results on single crystal copper on different crystallographic 

planes will be presented.  
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4.5.1 Nanoindentation using a Spherical Indenter 

Using a commercial software (ABAQUS) with a user-defined material 

subroutine), the simulation setup of nanoindentation on (100) single crystal copper were 

fully descried in Section 3.4. Through multiple trial runs, using the parameters given in 

Table 3-2, a reasonably good agreement between the numerical and experimental load-

displacement curves has been achieved for indentations on surfaces with various 

crystallographic orientations using a spherical indenter (radius 3.4 µm), as shown in Fig. 

4-1. The load increases monotonically as the indentation proceeds, and the load follows 

the displacement when the indenter retracts from the surface of the copper. Fig. 4-1 (a) 

and (b) show a comparison of experimental and simulation results in reasonably good 

agreement. In Fig. 4-1 (c), there are two simulation curves, simulation_1 and 

simulation_2, corresponding to the results obtained using the 8-node brick element and 

10-node tetrahedron element, respectively. The purpose of using two types of elements is 

to investigate the dependency of the load-displacement curve on the element type. It can 

be seen that the two simulation curves reach the same load at the maximum displacement 

although the curve with the 10-node tetrahedron element is smoother than its counterpart. 

In order to maintain comparability of the simulation results among three orientations, the 

same mesh with 8-node brick element is used for all the simulations hereafter.  

In Fig. 4-1 (a)-(c), the nanoindentation experimental data using a spherical 

indenter with 3.4 µm radius shows that at the same displacement, the reaction force on 

the (111) surface is the lowest while that on the (100) surface is the highest. For example, 

at 250 nm displacement, the test force on the (111) surface is 3.00 mN, in comparison to 

3.55 mN on the (011) surface and 3.82 mN on the (100) surface. This phenomenon will 
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be further investigated by employing spherical indenters of other sizes to investigate the 

size effect. It can be seen from Fig. 4-1 (a) to (c) that the slope of the three unloading 

curves is very close to each other because the unloading behavior is solely determined by 

the elastic properties of the material. The steep unloading curves indicate that the amount 

of elastic recovery is small under unloading for single crystal copper.  
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Fig. 4-1: Comparisons between numerical and experimental load-
displacement curves on copper samples of different crystallographic 
orientations made with a spherical indenter (tip radius 3.4 µm) 
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To the best of knowledge of the author, no satisfactory agreement between 

numerical and experimental load-displacement curves on single crystal copper on all the 

three orientations have been reported previously. Fivel et al. (1998) compared the 

experimental results with the simulation load-displacement curve at a displacement of 50 

nm on a [001] oriented single crystal copper using a combination of 3D discrete 

dislocation simulation and FEM. The unloading part of the load-displacement curve was 

not included and the orientation effects were not studied. Wang et al. (2004) presented a 

study of the dependence of nanoindentation pile-up patterns and microtextures on the 

crystallographic orientation using copper single crystals. The comparison of the load-

displacement curves between experiments and simulations indicated deviation that was 

about an order of magnitude although the correspondence on pile-up patterns was 

satisfactory. Liang et al. (2004) used MD simulations to study crystal plasticity during 

nanoindentation by comparing the elastic-plastic response of three copper substrates with 

(001), (011) and (111) crystallographic planes. However, comparison of the load-

displacement relationships between MD simulations and experimental data were not 

available.  

Fig. 4-2 shows distributions of out-of-plane displacements at three 

crystallographic orientations, (100), (011), and (111). There are both positive and 

negative values in the displacement [see Fig. 4-2 (a)-(c)]. The positive values occur 

symmetrically around the indent impression in all three figures and they represent the 

pile-up patterns of the material. The pile-up regions correspond to high dislocation 

densities. Copper is an FCC metal with the predominant slip planes and slip directions 

being {111} and 〈110〉, respectively. As the crystal is indented in the (100) surface, 
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plastic deformation takes place along the {111} planes and in the 〈110〉 directions. In Fig. 

4-2 (a), the surface is elevated in the four 〈110〉 directions (pile-up) as expected when 

viewed along the direction of application of the load.  Therefore, slip extends away from 

the indents along the 〈110〉 directions, leading to slip and material flow along these 

directions. This is so because the {111} family of slip planes intersect with the (100) 

surface at the 〈110〉 directions. For example, the (111) slip plane intersects with the (100) 

surface along the [ 101 ] direction. Thus, a 4-fold symmetry is expected, as can be seen in 

Fig. 4-2 (a). Even though the indenter is spherical, metal pile-up does not occur all round 

the indent but occurs at four corners forming a four-fold, square symmetry. 

 (a) (100) surface       (b) (011) surface        (c) (111) surface 
Fig. 4-2: Distributions of out-of-plane displacements at different orientations 

 on a copper sample using a spherical indenter (tip radius 3.4 µm). 

In the (011) plane, one can see only two-fold, rectangular symmetry [Fig. 4-2 (b)]. 

The predominant slip planes and the (011) surface have intersection vectors as 〈211〉. The 

angle between the directions [ 001 ] and [ 121 ] is 35° 16′, which is approximately the 

case in Fig. 4-2 (b). In contrast, in the (111) plane, a three-fold symmetry can be seen 

with the build-up occupying a third of the indent circumference [Fig. 4-2 (c)].  The 

intersection vectors are 〈110〉. The [ 211 ] direction meets the 〈110〉 vectors at an angle of 
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30°, as observed in Fig. 4-2 (c). In summary, for all the surfaces studied, the symmetry of 

the pile-up distributions correlates with the orientation of slip systems {111}〈110〉. These 

observations are consistent with the experimental results shown in Fig. 4-3 (a)-(c). 

 
(a) (100) surface    (b) (011) surface    (c) (111) surface 

Fig. 4-3: AFM images of the indent impressions made on copper workpiece 
with a spherical indenter (tip radius 3.4 µm) at different 
crystallographic orientations 

Fig. 4-3 (a)-(c) show AFM images of the indents with a spherical indenter (3.4 

µm radius) on various crystallographic surfaces. After the nanoindentation tests, the 

copper samples were imaged using an AFM to acquire the surface topography. On the 

images, the bright color corresponds to the pile-ups. It can be shown from Fig. 4-3 that 

pile-up patterns from experiments agree well with the simulation results, i.e., the patterns 

on the (100) surface presents four-fold symmetry, (011) surface two-fold, and (111) 

surface a three-fold symmetry. Moreover, the exhibited symmetry characteristics of the 

surfaces coincide with the experimental observations reported in the literature for single 

crystal copper (Lee et al., 2000; Flom and Komanduri, 2002; Peralta et al., 2004; Wang 

et al., 2004). The size of the plastic deformation zone around the indents is observed to 

be from 1 to 7 µm on the horizontal axis for the (100) surface indent [Fig. 4-3 (a)], from 2 

to 6 µm for (011) surface indent [Fig. 4-3 (b)], and from 0 to 7 µm for the (111) surface 
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indent [Fig. 4-3 (c)]. The experimental data suggests that the deformation zone is the 

largest on the (111) surface. The size of the plastic zone is an important parameter in 

determining the yield stresses of single crystal and polycrystalline material (Bahr et al.,

1998).  It can be seen from the experimental and simulation results [Fig. 4-2 (a)-(c) and 

Fig. 4-3 (a)-(c)] that the symmetry characteristics and the size of the plastic zone depend 

strongly on the crystal orientation.  

 
(a) (100) surface   (b) (011) surface        (c) (111) surface 

Fig. 4-4: Shear stress σxz distributions on the indented planes of  
different orientations in the indentation of copper 

We turn next to the study of the shear stress σxz distribution with the y-axis as the 

indentation direction in the global coordinate system. Even though the spherical indenter 

is symmetric, the distribution and magnitude of the shear stresses is not the same [Fig. 

4-4 (a)-(c)]. The shear stresses on two opposite sides of the indent have the same sign 

while the shear stresses in the direction orthogonal to them have the opposite sign. The 

distribution of shear stresses on both (100) and (011) appears to be similar although (100) 

has a larger magnitude. The shear stress reaches a maximum on (100), followed by shear 

stress on (011), and on (111) with the spherical indenter (3.4 µm radius). However, for 

the (111) orientation, the distribution of shear stresses is asymmetric indicating a strong 

crystal anisotropy [Fig. 4-4 (c)].  
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Fig. 4-5: Distributions of shear strain (total shear strain on all the slip systems)  

on the mid-section of the copper workpiece 

Fig. 4-5 shows the distributions of the total shear stain in the adjacent region of 

the indenter tip, as observed from a section cut through the middle of the workpiece with 

the orientations marked. The total shear strain is defined as the summation of the absolute 

value of the individual shear strain over the 12 slip systems. As for the magnitude of total 

shear strain, it is the largest for the (111) indentation case, namely, 1.1 and smallest for 

the (100) indentation case, namely, 0.86. This is attributed to the easiest slip on the (111) 

plane, i.e., most packed plane for single crystal copper.  

As presented in Section 3.5.4, friction plays a significant role in affecting the 

magnitude of pile-ups in the nanoindentation modeling. In nanoindentation, the frictional 

condition on the contact pair, namely, the indenter tip and workpiece surface is so 

complex that the exact friction mechanism is unknown. In this investigation, Coulomb 

frictional contact was introduced in the FEM simulation on nanoindentation and it was 
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determined a coefficient of friction (COF) of 0.4 is appropriate for nanoindentation 

simulation based on the comparison between experimental and simulation results. Using 

a COF of 0.4, the pile-up profiles on the three indented surfaces are shown in Fig. 4-6. 

The lines on the images on the lower right corner of Fig. 4-6 (a)-(c) show the scan 

direction of which the pile-up profile was obtained. It can be seen that the scans 

approximately cut through the maximum pile-up locations. It may be noted that all the 

profiles show the pile-up behavior, instead of sink-in due to the work-hardened condition 

of the samples. As shown in Fig. 4-6 (a) and (b), the simulation profiles agree with the 

experimental profiles on the indented well of the profiles although the simulation profiles 

show a slightly larger pile-up magnitude than the experiment.  

The previous discussion was for indentation results with a spherical indenter of 

radius 3.4 µm. To determine the mechanical behavior of single crystal copper with three 

orientations under spherical indentations with different indenter tip radii, two other 

spherical indenters with tip radii of 10 µm and 500 µm were also used. Nanoindentations 

were conducted using the MTS NanoIndenter (XP) system with the diamond spherical 

indenter of 10 µm and microindentations were conducted on a Clark Micro Hardness 

Tester (Model CM-700AT) using the spherical cemented tungsten carbide indenter with a 

radius of 500 µm. 

Fig. 4-7 (a)-(c) show the variation of mean pressure (i.e., hardness), Pm versus the 

ratio of the indent radius to the indenter radius, (a/R) for different indenter radii, R. In 

Fig. 4-7 (a), Pm is different for the three orientations investigated; it is largest on (100) 

plane and smallest on (111) plane. However, this tendency is not seen in Fig. 4-7 (b) and 
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(c). In Fig. 4-7 (b) and (c), Pm of (011) and (111) plane is very similar, while of (100) 

plane varies. 

 
(a) (100) surface           (b) (011) surface 

 
(c) (111) surface 

Fig. 4-6: Comparisons of the pile-up profiles of indents made on copper 
samples with a spherical indenter (tip radius 3.4 µm) 

Lim and Chaudhri (2002) studied the microindentation hardness on single grains 

of a polycrystal of copper [(110) and (111) orientations] using a cemented tungsten 

carbide spherical indenter of radius 200 µm. They found the indentation hardness values 

of single crystal copper of different orientations to be very similar. They attributed that 

prior dislocation density of the specimens to be the most likely parameter to causes this. 

Tsuru and Shibutani (2007) conducted atomistic simulations of nanoindentation (using 
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spherical indenters of radius 5 nm, 15 nm and 30 nm) of Al and Cu [(001), (110), and 

(111) planes] to investigate anisotropic effects in elastic and incipient plastic behavior 

under nanoindentation. They found that (001) and (111) planes exhibit inherent critical 

mean pressure for dislocation nucleation, while (110) shows values that vary according to 

the indenter radius caused by variations in the location of the dislocation emission. The 

experimental results in Fig. 4-7 show that variation of Pm on the three orientations 

depends strongly on the indenter radius used. 
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on copper samples of different orientations for three spherical 
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From all comparisons between the numerical results and experimental 

measurements for nanoindentations on the three surfaces of single crystal copper using a 

spherical indenter, it is conclusive that the material parameters and the nanoindentation 

model are appropriate in predicting the mechanical behavior of single-crystal copper 

under various crystalline orientations. Therefore, the numerical model can be used to 

estimate the crystal orientation for a given single crystal copper sample or the orientation 

of a particular grain of a polycrystalline copper sample. Through nanoindentation 

experiments and AFM imaging, the load-displacement curve and the pile-up patterns of a 

sample can be obtained. In the simulation, the three Euler angles, which represent the 

crystal orientation, can be adjusted such that both load-displacement curve and the pile-

up patterns match the corresponding experimental results. Thus, the orientation of the 

crystal can be obtained provide the Euler angles are determined.  

4.5.2 Nanoindentation using a Berkovich Indenter 

The measurement of mechanical properties by nanoindentation methods is most 

often conducted using indenters with a triangular pyramid or with a sphere because they 

provide a wealth of information (Pharr et al., 1996). In order to explore the behavior of 

single crystal copper under geometrically different indenters, the pyramidal, three-sided 

Berkovich indenter is also used in the simulations. The main geometrical distinction 

between a spherical indenter and a Berkovich indenter is that the former is axisymmetric 

while the later is three-fold symmetric. In the FE model, the Berkovich indenter was 

constructed exactly following the specifications of the indenter given by the 

manufacturer. The angles between the normal and the three faces of the indenter are 
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65.2°. In the simulations, all the numerical parameters are the same as in the spherical 

indenter simulations except the indenter was changed to Berkovich shape. As for the in-

plane orientation of the indenter, it makes no difference for the spherical indenter since it 

is axisymmetric. For the Berkovich indenter, it appears that the mechanical behavior of 

single crystal materials depend on the in-plane crystallographic orientations of the 

material rather than the in-plane orientation of the three fold symmetric Berkovich  
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indenter (Vlassak and Nix, 1994; Grillo et al., 2003; Peralta et al., 2004). In all 

simulations, the orientation of the Berkovich indenter is kept the same in the global 

coordinate system as can be seen in Fig. 4-10 [(a)-(c)].  

Fig. 4-8 (a)-(c) show the load-displacement comparisons between experiments 

and simulations for different orientation. The comparisons are, in general, reasonably 

good as shown in Fig. 4-8 (a) and (b), while the comparison on (111) surface indentation 

is not as good as the other two, especially after the displacement is larger than 200 nm. 

Although efforts have been focused on calibrating the material parameters, the 

satisfactory comparisons between the experimental and numerical load-displacement 

curves on all the three surfaces were not obtained in the meanwhile. 

 
(a) (100) surface     (b) (011) surface    (c) (111) surface 

Fig. 4-9: Distributions of out-of-plane displacements at different orientations  
on copper using a Berkovich diamond indenter 

Fig. 4-9 shows the out-of-plane displacement distributions from nanoindentation 

using a Berkovich indenter. In comparison to the four-fold and two-fold symmetries [Fig. 

4-2 (a) and (b)], Fig. 4-9 (a) and (b) do not appear to have the same symmetry 

characteristics with the same surface in nanoindentation under spherical indenter. In both 

Fig. 4-9 (a) and (b), it is observed that the pile-up extends away from the two upper sides 

of the triangular indent impression. Pile-up is also present below the horizontal side of 
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the triangle. The topography on the (111) surface reveals the three-fold symmetries, as in 

Fig. 4-2 (c), because the Berkovich indenter has the same symmetric characteristic. Fig. 

4-10 (a) to (c) shows the AFM images of the indent impressions made with the Berkovich 

indenter. 

 
(a) (100) surface            (b) (011) surface           (c) (111) surface 

Fig. 4-10: AFM images of the indent impressions made on copper 
 at different crystallographic orientations with a Berkovich diamond 
indenter 

Fig. 4-11 (a) to (c) shows the indentation profiles scanned through the same 

direction in the global coordinate system on all three indented surfaces. The scan 

direction is shown by the line on the lower right image in Fig. 4-11 (b). This scanning 

line passes the top vertex of the triangle, perpendicular to the base of the triangle. It can 

be seen that comparisons on the pile-up profiles between the nanoindentation testing and 

the simulation results on all three crystallographic orientations are in reasonably good 

agreement. However, the simulations tend to under predict the amount of pile-ups, 

resulting in smaller pile-up values than the measurement data.  
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Fig. 4-11: Comparisons of the pile-up profiles of indents made on copper  
at different crystallographic orientations with a Berkovich diamond 
indenter 

4.6 Conclusions 

Nanoindentations using both spherical and Berkovich indenters on single crystal 

copper of three crystallographic orientations, i.e. (100), (011) and (111) were simulated 

using a commercial software (ABAQUS) incorporating mesoplasticity constitutive law in 

the user subroutine VUMAT. Large deformation theory is incorporated into the model so 

that large element rotation can be considered appropriately. Nanoindentation 

measurements were made to determine the load-displacement relations and the AFM was 

µm

D
ep

th
(n

m
)

1 2 3 4 5-300

-250

-200

-150

-100

-50

0

50

100

(011) test
(011) simulation



81

used to obtain the surface topographies and pile-up profiles for comparison purpose. On a 

spherical nanoindentation, distribution of the out-of-plane displacements at three 

crystallographic orientations, (100), (011), and (111) show pile-ups with a topographical 

pattern of four-fold, two-fold and three-fold symmetry, respectively in both experiments 

and simulations. No sink-in was observed due to the work-hardened condition of the 

specimens. The magnitude of the pile-ups, the in-plane shear stresses and the total shear 

strains were compared on the three surfaces and correlated with the orientation effects.  

Under nanoindentation with a spherical indenter, the material behavior of single 

crystal copper strongly depends on the crystal orientation. Using a Berkovich indenter, 

the deformation patterns on the (111) surfaces showed a three-fold symmetry which is in 

good agreement with the finite element results. Further, the comparison between the 

nanoindentation and simulation on load-displacement relations and pile-up profiles were 

also in reasonably good agreement, lending further demonstration on the capability of the 

current model. To the best of the knowledge of the author, no satisfactory agreements 

between numerical and experimental load-displacement curves on single crystal copper 

on all the three orientations have been reported previously. Thus, material properties of 

single crystal copper can be determined based on their deformation behavior under 

indentation. It is concluded that the numerical model can be used to estimate the crystal 

orientation for a given single crystal copper sample or the orientation of a particular grain 

of a polycrystalline copper sample. 
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Chapter 5 

Discrete Dislocation Method at the Mesoscale 

5.1 Introduction 

There exist various techniques to model material behavior at the mesoscale. This 

chapter presents one such method, namely, discrete dislocation method. Mesoplasticity 

was used to model nanoindentation problems in Chapters 3 and 4. Mesoplasticity models 

material constitutive behavior based on slip systems of crystal lattice. Slip in crystalline 

metals is a consequence of the motion of large number of dislocations. In order to model 

the motion of relatively small number of dislocations, various discrete dislocation models 

have been presented in the past two decades. In general, dislocations are described as line 

singularities in an elastic medium (Amodeo and Ghoniem, 1990; Gulluoglu and Hartley,

1993; Kubin and Canova, 1992; Fang and Dahl, 1993; Groma and Pawley, 1993; van der 

Giessen and Needleman, 1995; Zbib et al., 1998; Shilkrot et al., 2004). When it comes to 

the interactions of the dislocations, the long-range forces are well-represented by the 

linear elastic fields outside a dislocation core radius of about five Burgers vectors from a 

dislocation. Within a distance of several Burgers vectors from the core, the displacement 

field around the dislocation is nonlinear and can not be accurately described by linear 

elasticity (Amodeo and Ghoniem, 1990). The short-range interactions of dislocations 

include the nucleation, immobilization and annihilation. The effects involved are 

represented by a set of constitutive rules.  
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At the present state-of-art, the discrete dislocation method can be divided into two 

categories: dislocation dynamics (Amodeo and Ghoniem, 1990; Gulluoglu and Hartley, 

1993) and static (quasi-static) equilibrium method (van der Giessen and Needleman, 

1995; Shilkrot et al., 2004). In dislocation dynamics, the Peach-Koehler force drives the 

evolvement of dislocations with time. In static equilibrium methods, dislocations are 

located by minimizing the total energy or, equivalently, finding the zero-force positions 

where the force on a dislocation is the derivative of the total energy with respect to the 

position of the dislocation (Cutin and Miller, 2003). Static equilibrium method does not 

take temperature into account. Therefore dislocation climb, which occurs at high 

temperature, is not considered.  

In the context of multiscale simulation, mesoscale dislocation modeling is used in 

bridging the continuum and atomistic simulations (Raffi-Tabar et al., 1998). A multi-

scale framework merging two scales, the mesoscale/microscale and the continuum scale, 

was developed to create a hybrid elasto-viscoplastic simulation model coupling discrete 

dislocation dynamics with finite element analysis based on the principle of superposition 

(Zbib and Diaz de la Rubia, 2002). The involvement of dislocation dynamics in 

connecting the atomistic and continuum scales enables the model to handle plastic 

deformation through the explicit motion of dislocation defects in the continuum region. 

With this feature, the multiscale model is completely structured for applications, such as 

nanoindentation (Shiari et al., 2005). Recently, nonlinear deformation has been 

considered in coupling to represent the physical phenomenon. The coupled 

atomistic/continuum discrete dislocation (CADD) method has demonstrated its capability 

in detecting dislocations in the atomistic region and converting the atomistic dislocations 
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into discrete dislocations in the continuum region (Shilkrot et al., 2004). A dynamic 

version of the CADD method has been used to study the nanoindentation process as a 

function of temperature and velocity of indentation (Shiari et al., 2005).  

While FEM has been developed as an appealing simulation technique at the 

continuum scale, it is subjected to some deficiencies, including the complexity in mesh 

generation for computational bodies with complex geometries and severe mesh distortion 

under large nonlinear deformations. To overcome some of the limitations of FEM, the 

material point method (MPM) (Sulsky et al., 1995; Sulsky and Schreyer, 1996) was 

introduced for dynamic simulations and the generalized interpolation material point 

(GIMP) method (Bardenhagen and Kober, 2004) was presented with improved 

simulation stability. MPM is a particle method for simulations in computational fluid and 

solid mechanics. The method uses a regular structured grid as a computational scratchpad 

for computing spatial gradients of field variables. The grid is convected with the particles 

during deformations that occur over a time step, eliminating the diffusion problems 

associated with advection on an Eulerian grid. MPM has also been successful in solving 

problems involving contact, having an advantage over traditional finite element (FE) 

methods in that the use of the regular grid eliminates the need for doing costly searches 

for contact surfaces. In MPM and GIMP, material points that can conform to the 

geometric complexity with ease are used to discretize the computational body. A 

multiscale simulation bridging the continuum scale using the GIMP method and the 

atomistic scale using MD was proposed and verified in 2D using the multilevel 

refinement technique in a parallel computing environment (Ma et al., 2005; Ma et al., 

2006). Coupling between GIMP and MD is achieved using compatible deformation, 
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force, and energy fields in the transition region between GIMP and MD. This coupling 

framework can overcome some inherent limitations of FEM while maintaining the 

advantages of the multiscale modeling.  

In this chapter, a multiscale simulation scheme, encompassing GIMP at the 

continuum scale and dislocation dynamics (DD) at the mesoscale is presented. The 

technique has expanded the previous GIMP and MD coupling method (Ma et al., 2006) 

by introducing discrete dislocations in the framework of coupling. Dislocation 

accommodation and propagation mechanisms are introduced by detecting dislocations 

from the MD simulation in real time and then passing them through the handshaking 

region of the continuum and atomistic zones. Discrete dislocations are the common 

description of plastic deformation for the continuum region and the atomistic region. 

Therefore, this method allows plastic deformation to occur at the handshaking region. 

Furthermore, the new method can handle larger numerical model without drastically 

increasing the computational costs, as the introduction of DD allows the regions modeled 

by MD to be smaller. DD can also substitute MD in the simulations of some of the 

critical areas without significant loss of accuracy and the computation is more 

economical for the same model. 

5.2 Coupling between the GIMP and DD  

5.2.1 Numerical formulation 

The current state of a deformable body in terms of the displacement, strain, and 

stress fields is computed as the superposition of two fields (van der Giessen and 

Needleman, 1995),  
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uuu ˆ~ += , εεε ˆ~ += , σσσ ˆ~ += (5-1) 

where the (~) fields are the fields associated with N dislocations in their current 

configuration but in an infinite homogeneous medium. The complimentary (∧) fields are 

used to enforce the correct boundary conditions. The solution for σ~ , ε~ , and u~ is the 

superposition of the fields of individual dislocations. Therefore, the computational region 

is discretized into Problems I and II as follows (van der Giessen and Needleman, 1995): 

Problem I: Discrete dislocations residing in an infinite homogeneous elastic 

material.  

The solution for the total stress σ~ , strain ε~ and displacement u~ is obtained by 

superposition on all the dislocations at position id in an infinitely large elastic 

continuum: 

∑=
N

i

iσσ ~~ , ∑=
N

i

iεε ~~ , ∑=
N

i

iuu ~~ . (5-2) 

Each dislocation i is characterized by its Burgers vector ib and the unit normal 

vector im of its slip plane. For plane-strain problems involving edge dislocations, each 

pair of dislocations in a limiting sense represent a cross-section of a dislocation loop (van 

der Giessen and Needleman, 1995). If the material is elastically isotropic with shear 

modulus µ and Poisson’s ratioυ , the components iuα ( 2,1=α ) of the infinite-body 

displacement field )( αxu i due to dislocation i positioned at ( iX 1 , iX 2 ) are given by the 

following equations for dislocations with positive Burgers vector (Hirth and Lothe, 

1982). For dislocations with negative Burgers vector, the sign for the equations are 

reversed. 
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where  

iXxx ααα −=∆ ( 2,1=α )

The corresponding in-plane stress field components i
αβσ are 
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On the update of the dislocations, the Peach-Koehler (P-K) force ip is the driving 

force for changes in the dislocation structure. Considering the motion of the dislocations 

on the slip planes, 

i
N

ij

Tiip bσσm ⋅+⋅= ∑
≠

)~ˆ()( (5-8) 

If ib is the unit Burgers vector, this equation also denotes the resolved shear stress, iτ ,

on the slip plane containing dislocation i. Using a linear drag relation, the magnitude of 

the velocity of dislocation iv is taken to be linearly related to the Peach-Koehler force 

ii Bvp = (5-9) 
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where B is the drag coefficient. In a given time step t∆ , the dislocations are moved by 

tvi∆ . In order to avoid big numerical oscillations, a velocity cap is used so that the 

dislocation motion within one time step can not be too large. Opposite signed dislocations 

should move along the opposite direction. The positions of the dislocations are then 

updated.  

Problem II: The image continuum field enforces the boundary conditions that 

resulted from the dislocation motions in an infinite homogeneous elastic material.  

The continuum field is a well posed boundary value problem and is solved by 

GIMP. The boundary conditions are:  

Surface traction:  TTT 0
~ˆ −= (5-10) 

Displacement:  uuu 0
~ˆ −= , (5-11) 

The constitutive equation for this field is linear elasticity, given by, 

εCσ ˆ:ˆ = (5-12) 

As for the dislocation interactions, the long range interactions between 

dislocations are accounted through the continuum elasticity fields as described in 

“Problem I”. The short range interactions are represented by a set of constitutive rules 

(van der Giessen and Needleman, 1995), including the following:  

Dislocation nucleation: The material is initially free of dislocations, but contains 

dislocation sources. Assume dislocation sources are point sources on the slip plane, 

which generate a dislocation dipole when the magnitude of the shear stress at the source 

iτ , computed by Eq. (5-8), has exceeded the critical stress nucτ during a period of time, 

nuct . As shown in Fig. 5-1, if the resolved shear stress 0>iτ , then a positive dislocation 
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0>ib is generated in the direction of ni; the dislocation signs change when  0<iτ . The 

distance nucL between the two dislocations is determined such that the total resolve shear 

stress nucτ balances the shear stress that the two dislocations exert on each other, i. e., by 

setting  nuc
i x τσ α =)(12 , nucLx =∆ 1 , 02 =∆x , we get  

nuc
nuc

bL
τνπ

µ
)1(2 −

= (5-13) 

If the shear strength of the dislocation source, nucτ , is the same for all the sources, a 

sudden burst of dislocations will occur, which is not very realistic. Therefore, the strength 

of the dislocation sources is randomly chosen from a Gaussian distribution with a mean 

strength of nucτ = 50 MPa and a standard deviation of 0.2 nucτ (van der Giessen and 

Needleman, 1995). Corresponding to a mean nucleation distance of nucL =125 b and b is 

specified to have the value 0.25nm for the Burgers vector for copper (Cleveringa et al., 

1999).  

 

Fig. 5-1: Illustration of a dislocation source and a pair of dislocation dipole 

Dislocation annihilation: Two edge dislocations with opposite Burgers vector will 

annihilate each other when they have approached within a material-dependent, critical 

annihilation distance Le. Le is specified as 6 b (Cleveringa et al., 1999).    
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Fig. 5-2: Flow chart of dislocation dynamics calculation 

Each time step involves three main computational stages: (i) calculation of the 

forces on the dislocations, i.e. the Peach-Koehler force; (ii) determination of the change 
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of the dislocation structure, which involves the nucleation of new dislocations, the motion 

of dislocations and their mutual annihilation; and (iii) updating of the stress and strain 

state for the new dislocation arrangement. The flow chart for the code is given in Fig. 

5-2. 

5.2.2 Model verification  

In order to validate the coupling algorithm between GIMP and DD, uniaxial 

tension and bending problems are modeled.  

5.2.2.1 Uniaxial tension simulation 

The dimensions of the copper workpiece for the uniaxial tension model are given 

in Fig. 5-3. A uniform pressure of 500 MPa is applied to both sides of the bar. The 

workpiece is initially seeded with dislocation sources at random locations, one source on 

each slip plane. The slip plane distance is 100 b, where b is the magnitude of the Burgers 

vector. To simplify calculations, only one direction (45°) of slip plane is used in this 

example although there are three slip plane directions in a 2D representation for FCC 

crystals in realistic situation. The simulation parameters (Cleveringa et al., 1999) are 

shown in Table 5-1.  

Table 5-1. Material parameters for the discrete dislocation calculations  
(Cleveringa et al., 1999) 

Drag 
coefficient, B 

Crit. Nucleation. 
shear stress, nucτ

Crit. Nucleation. 
Time , nuct

Crit. Annihilation. 
Distance, Lnuc 

Elastic 
properties 

1.5 × 10–4  

sPa ⋅
N( nucτ , 0.2 nucτ )

nucτ = 50 MPa 0.1 ns(∆t = 0.5ps) 6b (b = 0.25nm) E = 70 GPa
ν = 0.33 
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Fig. 5-3: Schematic of initial model setup for uniaxial tension 

Fig. 5-4 shows the distribution of the seeded dislocation sources at time t = 0. 

There are totally 29 sources and their locations do not change throughout the simulation. 

Fig. 5-5 shows the stress distributions at 50,000 steps (one time step is 0.5 ps). The total 

stress field xxσ [Fig. 5-5 (a)] is the sum of the continuum stress field [Fig. 5-5 (b)] and 

dislocation stress field [Fig. 5-5 (c)]. It can be seen from Fig. 5-5 (a) that at the left and 

right boundaries of the workpiece, the magnitude of the stress is approximately 500 MPa, 

which is the applied pressure. The continuum stress field is the stress at each material 

point from regular continuum mechanics calculation. The dislocation stress field is 

computed at each material point using Eq. (5-2).  
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Fig. 5-5: Distribution of the normal stress xxσ at step 50, 000 
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Fig. 5-6: Distribution of dislocations at step 50,000 
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Fig. 5-6 shows the distribution of the discrete dislocations at 50,000 time steps. 

Some of the dislocations have moved out of the physical boundary of the workpiece. This 

is permitted because the dislocation space is infinite. Fig. 5-7 shows the total stress field 

of yyσ . It can be seen that yyσ is zero on the top and bottom surfaces. This indicates that 

the traction free boundary condition is satisfied. 

5.2.2.2 Bending simulation 

The dimensions of the workpiece for bending model are given in Fig. 5-8. A 

bending moment M = 0.125 mN per unit thickness is applied to the bar. To validate 

multiple slip systems, three slip plane directions in a 2D representation for FCC crystals 

are employed. The workpiece is initially seeded with dislocation sources one on each slip 

plane at random locations. The slip plane distance is 100 b. The simulation parameters 

are given in Table 5-1. There are totally 280,000 steps. Fig. 5-9 shows the distribution of 

the dislocation sources at random locations on the slip planes.  

 
Fig. 5-8: Schematic of initial model setup for bending 
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Fig. 5-10: Distribution of dislocations at step 280, 000 

 

Fig. 5-11: Distribution of the normal stress, xxσ at step 280, 000 
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Fig. 5-10 shows the distributions of the dislocations at the end of the simulation. 

Fig. 5-11 (a) shows the distribution of the total stress field xxσ , which is the 

superposition of the continuum and discrete dislocation field. It may be noted that the 

continuum stress field [Fig. 5-11 (b)] is continuous while the dislocation stress field [Fig. 

5-11 (c)] is somewhat singular. It can be seen that the top of the specimen is subjected to 

tension while the bottom is subjected to compression. In the center region of the 

specimen, stress distribution is not continuous due to the presentation of dislocations.  

5.3 Coupling of GIMP, DD and MD 

Based on the validated coupling scheme between GIMP and DD, DD is coupled 

with the GIMP and MD coupling to formulate a full multiscale simulation framework. 

Ma et al. (2005, 2006) conducted a multiscale simulation bridging the continuum scale 

using GIMP method and the atomistic scale using MD in 2D using the multilevel 

refinement technique in a parallel computing environment. When it comes to dislocation 

modeling, dislocations are generated from dislocation sources in GIMP and DD coupling. 

In the realistic situation, they are nucleated in the MD region once the atom deformation 

is sufficiently large. Hence, one of the key issues in the coupling of GIMP, MD and DD 

is to detect dislocations in the MD region in real time and pass them onto the continuum 

region.  

5.3.1 Dislocation detection and passing from atomistic region to continuum region 

a) Dislocation detection 

In order to detect dislocations when they are nucleated in the MD region and then 

pass them onto the continuum region, the method proposed by Shilkrot et al. (2004) was 

used in this investigation of coupling GIMP and MD. Several layers of atoms at the 
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border of MD and continuum region form the detection band elements which are 

triangular in shape. During deformation, the Lagrangian strain tensor, E of an element in 

the detection band is given by (Shilkrot et al., 2004) 

][
2
1 IFFE −= T , (5-14) 

where I is the second order identity tensor, F is the deformation gradient tensor can be 

decomposed into 

peFFF = . (5-15) 

In Eq. (5-15),  eF is related to the lattice stretching while pF corresponds to the plastic 

shearing of the slip systems of the crystal. For the case of ideal slip deformation, IF =e .

pF can be represented by 







 ⊗

+=
d

p mbIRF , (5-16) 

where R is the lattice rotation and d is the interplanar distance. Substituting Eq. (5-16) 

into Eq. (5-14), we get the plastic slip strain tensor as 

=−= ])[(
2
1 IFFE pTpp

22
))(()(

dd
sym mbbmmb ⊗⊗

+
⊗

(5-17) 

For each of the detection band elements, both the actual strain E and the plastic 

slip strain pE are computed after the positions of the atoms are updated at each 

computational step. The norm 2L represents the difference between the actual strain and 

the plastic slip strain. 

)(:)(2
p
i

p
iL EEEE −−= (5-18) 
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If the zero Burgers vector ( 0b = ) minimizes 2L , no dislocations are detected. 

Otherwise, the core of the detected dislocation is assigned to the centroid of the detection 

band element. For 2D triangular lattices, E can be computed from constant strain 

triangles as in FEM. 

b) Dislocation passing 

Fig. 5-12: Passing of atomic dislocations to the continuum region (Shilkrot et al., 2004). 

If a dislocation is generated in the detection band element at xc, as shown in Fig. 

5-12, the location id , slip plane im and Burgers vector ib are recorded.  By passing the 

dislocations into the continuum region, the displacements on the atoms and particles are 

modified. As a result, the dislocation core at the atomistic region is annihilated and a 

continuum dislocation is generated at position xc+δ [see Fig. 5-12 (b)]. Generally, δ is a 

vector on the order of several lattice spacings to ensure the effect of the dislocation dipole 

is only short-ranged.   

5.3.2 Coupling algorithm 

At the continuum scale, the generalized interpolation material point (GIMP) 

method is used. Fig. 5-13 illustrates the coupling scheme in which the atomistic region is 
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embedded in the continuum region, as shown in Fig. 5-13 (a). A transition region, where 

the communication between the two regions takes place, is constructed by overlapping 

the material points and the atoms by certain width and is divided into three zones, 

namely, the inner zone, the “incommunicado” zone, and the outer zone, as shown in Fig. 

5-13 (b). A common background grid is used to carry out the communication by 

interpolating the physical quantities, such as the velocity and forces, back and forth 

between the continuum region and the atomistic region. The material points in the inner 

zone, shown in Fig. 5-13 (b), are updated from atomistic simulation, and then join the rest 

of the material points in the GIMP simulation. The velocities of the atoms in the outer 

zone are updated by the continuum region, and then boundary conditions are provided for 

the MD simulation. 

 
Fig. 5-13: Illustration of coupled GIMP and MD simulations. The circles 

represent atoms and the squares (smaller than physical size) 
represent material points. The material points connect to each other 
without a gap to represent the continuum (Ma et al., 2006) 

Refinement algorithms in GIMP have been developed to split the material points 

to the size of atoms at the transition region to achieve seamless coupling. However, if 

dislocations cannot be modeled explicitly in the continuum region, the atomistic region 
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has to be large enough so that the dislocations do not propagate to the transition region to 

allow the continuum region to remain elastic. 

 
Fig. 5-14: Illustration of the domain decomposition and refinement 

 for the coupling simulation of 2D indentation using GIMP, DD and 
MD 

Fig. 5-14 is a schematic of an indentation problem used in the coupling 

simulation. The area immediately beneath the indenter is modeled by MD. Three levels 

of successive refinements in GIMP are shown with the finest level decomposed into six 

rectangular patches. Other levels are also divided into six patches, however, these patches 

are not shown. To reduce data transfer among the processors in coupling, the MD region 

is decomposed into six rectangular regions. Each MD region in coupling is assigned to a 

patch residing in the same processor as used for the simulation of a GIMP region. Thus, 

each processor handles both MD and GIMP regions in coupling. Although using the same 

domain decomposition for MD and GIMP in the finest level does not produce the best 

load balance among the processors, this approach is simple to implement and effective in 

the communication between GIMP and MD in the transition region. This is because 

Level 2 

Level 3

MD

Level 1

DD
Indenter

GIMP



101

material points and atoms in exchange of information are stored and processed by the 

same processor. Hence, no inter-processor communication is necessary. 

 
Fig. 5-15: Flowchart of the coupling algorithm for each increment 

When discrete dislocations, shown as small squares in Fig. 5-14, are introduced 

into the model, we keep the domain decomposition intact. Fig. 5-15 shows the overall 

flowchart of the coupling algorithm incorporating GIMP, DD and MD. Each DD is 

updated within each patch where it resides because the local continuum stress is needed 

to compute the Peach-Koehler force applied on it. A parallel processing algorithm, based 

on SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure), which 

is  the code developing at the Lawrence Livermore National Laboratory for exploring 
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parallel computing, and software issues associated with structured adaptive mesh 

refinement, was implemented for discrete dislocation.  

 
Fig. 5-16: Flowchart for the parallel process of dislocation dynamics 

The flow chart for the coupling algorithm for each increment is shown in Fig. 

5-16. Because the long-range forces from all other DDs have to be computed, i.e., loop 

all the DDs, we store the updated information of all the DDs in each processor. Hence, 

inter-processor communication can be avoided. The cost is that after each step, i.e., after 

all patches in each level and the DDs are updated, the updated DD information has to be 

transmitted to other processors. To achieve this, initially, each processor sends the local 

updated DD information, including newly created DDs, to one master node and the 

master node assembles all the updated dislocations. Next, the master node broadcasts all 

the dislocation information to all other processors. It may be noted that each dislocation 
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carries a position and a Burgers vector and the communication overhead is usually 

negligible compared to GIMP and MD computations.  

5.4 Multiscale simulation of nanoindentation 

5.4.1 Simulations at 0° K temperature 

When a long rigid wedge indenter is indented into a workpiece, the middle section 

can be assumed to be in the plane-strain condition. In this investigation, as shown in Fig. 

5-17, the indentations were performed along the [ ]211 direction on the FCC copper uses 

the embedded atom method (EAM) potential (Daw and Baskes, 1984). This problem was 

modeled as a 2D indentation on the (111) plane. The drag coefficient B in Eq. (5-9) for 

copper is taken at 1.5 × 10–4 Pa⋅s (Fusenig and Nembach, 1975). The simulations were 

conducted at 0° K. 

 
Fig. 5-17: 2D modeling of an indentation problem with a wedge indenter 

A wedge indenter with an included tip angle of 120 degrees was used in the 

simulation. The first slippage was initiated at a depth of ~4 Å. More slippage was 

developed subsequently along the three possible slip directions. Significant amount of 

slip was developed on the contact surface, resulting in the pile-ups of the material. 
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Fig. 5-18: (a) Load-displacement curve using a wedge indenter; (b)-(f) 
Workpiece showing the indent and generation of dislocations at 
different stage of indentation 

Fig. 5-18 (a) shows a typical load-displacement curve from simulation. The initial 

loading curve is relatively smooth and no dislocations were observed in the atomistic 

region up to an indentation depth of ~4 Å. The atom distribution corresponding to point 

A is plotted in Fig. 5-18 (b). At the first drop, point B in the load-displacement curve, 

dislocation twinning below the indenter was observed, shown as in Fig. 5-18 (c).  The 

first dislocation moves along the [ ]110 direction. The other dislocations are nucleated 
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immediately after the first one and they move along [ ]101 direction. These two 

dislocations have advanced in a straight path as the indenter continues to indent into the 

workpiece. The workpiece stiffens until the next set are generated at points C and D with 

these states shown in Fig. 5-18 (d) and (e) in the [ ]011 and [ ]101 directions. All 

subsequent dislocations are in these four possible directions and the workpiece softens 

when each dislocation was generated below the indenter. 

5.4.2 Finite temperature 

In conducting multiscale simulations at finite temperatures, thermal vibrations of 

atoms can cause adverse effects in coupling because vibrations can generate 

instantaneous oscillations in the magnitude of strain and stress. Thermostat algorithms 

have been proposed in the literature (Bernstein et al., 2000; Plimpton, 2005) to control 

thermal vibrations by removing some kinetic energy in the MD system. For example, the 

atom velocities can be rescaled to keep the instantaneous temperature at a constant 

(Bernstein et al., 2000; Plimpton, 2005), or a damping factor can be used to dissipate 

extra kinetic energy (Jang and Voth, 1997; Shiari et al., 2005). Since the instantaneous 

temperature is proportional to the kinetic energy, and the MD region is relatively small in 

coupling, the temperature can increase quickly in the simulation of indentation when the 

indentation velocity is high. Fig. 5-19 shows the temperature change during simulation of 

2337 Cu atoms using a wedge indenter at three indentation velocities, namely, 36, 180, 

and 360 m/s. At the indentation velocity of 360 m/s, large portion of atoms has started to 

translate at the same simulation time, resulting in higher instantaneous temperatures. 
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Shiari et al. (2005) reported a similar phenomenon with a cylindrical indenter at an 

indentation speed of 3000 m/s. 
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Fig. 5-19: Instantaneous temperatures as a function of  
time at different indentation velocities 

The atom velocities are composed of two parts, one representing the thermal 

vibration and the other representing deformation and translation. Thermostat algorithms 

do not distinguish between these two. Ideally, the deformation part of the velocity should 

not be altered in the coupling simulation in order to maintain displacement compatibility 

with the continuum region. Filtering algorithms, such as moving time average and 

Fourier transform, can be used to separate the thermal vibration from 

deformation/translational motion in the frequency domain. However, these algorithms 

require storage of history data for each atom and they are very intensive computational 

for coupling simulations. 

In this investigation, in order to maintain displacement compatibility between the 

continuum and atomistic regions, thermostat algorithms are not used. To minimize the 

effect due to atomic vibrations in the transition region, a spatial average velocity of each 
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atom in the inner zone is used. The average velocity is computed with the first nearest 

neighboring atoms. For the 2D triangular lattice, each atom has six first nearest 

neighboring atoms. In addition, the process of interpolating atom velocities to the 

background grid can reduce the atom vibrations because each background node receives 

interpolation from multiple atoms. This technique does not allow heat exchange between 

MD and GIMP and it is only suitable for problems that do not involve much temperature 

change in nature, such as the indentation problem. 
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Fig. 5-20: Load-displacement curves at different  
temperatures using a wedge indenter 

Fig. 5-20 shows the load-displacement curves at different temperatures. The 

indentation velocity was chosen as 36 m/s because the instantaneous temperature does 

not vary much at this speed, as can be seen in Fig. 5-19. The load-displacement curves at 

the four initial temperatures overlap each other. The onset of dislocations appears to be 

independent of temperature when a wedge indenter is used. Shiari et al. (2005) reported 

strong dependence of the onset of dislocations on the temperature when a cylindrical 

indenter was used. The coupled simulations in this work show similar temperature 



108

dependence in slip patterns. Fig. 5-21 shows the slip patterns at a simulation time of 50 ps 

and an indentation depth of 18 Å at four temperatures, namely, 50, 100, 200 and 300 K. It 

can be seen that the slip patterns are different at different temperatures even when the 

applied indentation load is nearly identical. 

 
Fig. 5-21: Slip patterns at different temperatures when the  

indentation depth is 18 Å 

5.5 Conclusions 

In this chapter, the dislocation dynamics (DD) method is adopted for multiscale 

simulation. Dislocation dynamics can effectively model the dislocations and their 

interactions at the mesoscale. In coupling with continuum mechanics, discrete 

dislocations are assumed to be in the infinite elastic medium. Dislocation motions are 

governed by the continuum stress field and the interactions of all dislocations. Principle 
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of superposition is used to solve the problem in the domain of interest. In fact, the 

continuum mechanics computation is performed with the actual applied boundary 

conditions subtract the traction and displacement on the boundary generated by the 

dislocations. 

Dislocations from MD simulation can be detected and passed onto the continuum 

using the method proposed by Shilkrot et al., 2004. Hence, dislocation dynamics links the 

MD simulation and continuum simulation seamlessly. A multiscale simulation algorithm 

that couples MD, DD and GIMP was developed for material simulations with parallel 

processing based on domain decomposition. In parallel processing, each processor 

updates all the material points, discrete dislocations, and atoms in its sub-domain (Ma et 

al., 2006). The coupling algorithm is used to simulate the indentation on Cu (111) plane 

with a wedge indenter. Dislocation nucleation and subsequent propagation of dislocations 

are observed for the indentation simulation. Spatial averaging technique is used to 

maintain displacement compatibility at finite temperatures. In the transition region, the 

atom velocity is averaged with six nearest neighboring atoms in 2D for coupling to 

reduce the adverse effect of thermal vibrations on the continuum region. This technique is 

appropriate for simulation of problems under isothermal conditions, such as 

nanoindentation. 
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Chapter 6 

MD Simulations of Atomic Friction 

6.1 Introduction 

In previous chapters, material behavoir is modeled at the mesoscale. In this 

chapter, simulation approach is scaled down to the atomic level and molecular dynamics 

(MD) simulations are used to study the atomic-scale friction between two plates that are 

in contact and sliding against each other.  

Atomic-scale friction is of considerable importance to understand the frictional 

aspects in nanotribology. Many industrial processes require a detailed understanding of 

tribology at the nanometer scale. The development of lubricants in the automobile 

industry depends on the adhesion of nanometer layers to a material surface. Assembly of 

components can depend critically on the adhesion of materials at the nanometer length 

scale. In the information technology (IT) industries of semiconductor and data storage, 

nanotribological studies help optimize the design of the magnetic head and media 

surface.  

MD simulations were initiated in the late 1950’s by Alder and Wainwright (1959) 

using hard-core potentials in the field of statistical mechanics. Since then, the approach 

has been applied to a wide range of applications, including the study of phase transitions 

and dynamics of microscopic defects in solids. In MD simulations, the behavior of atoms 

is traced during a short timescale with short-range interaction, which is generally 

described by an atomic potential function. The motion of the atoms is computed by 



111

integrating the equations of motion given by Newton’s second law. With the growing 

availability of computing power, MD simulation is becoming a powerful tool in 

simulation of material behavior.  

Perry and Harrison (1995) used an empirical hydrocarbon potential, developed by 

Brenner et al. (1991), to examine friction that occurs when the (100)-(2 x 1) 

reconstructed surfaces of two diamond lattices that are placed in sliding contact. They 

performed a series of MD simulations to study the effects of applied load, 

crystallographic sliding direction, and sliding velocity. At high applied loads, the 

atomistic sliding mechanisms began to vary depending mainly on whether or not the 

stick-slip phenomena occurred. It was concluded that decreasing the sliding velocity by 

an order of magnitude did not significantly affect the coefficient of friction; however, the 

atomic-scale friction mechanism was altered for sliding.  

Holian et al. (1998) conducted non-equilibrium MD simulations on high-speed 

friction between dry metal interfaces. The results showed surprising similarities between 

shockwave loading and high-speed friction. Shimizu et al. (1998) modeled the atomic-

scale stick-slip phenomenon between the specimen and slider using Morse potential and 

concluded that MD simulation has an advantage in deciding the spring constant of 

cantilevers in AFM. Ohzono and Fujihira (2000) simulated the molecular stick-slip 

motion and the frictional anisotropy observed experimentally between an AFM tip and an 

ordered monolayer of n-alkane chains. Djuidje Kenmoe and Kofane (2007) studied the 

frictional stick-slip dynamics theoretically and numerically in a model of one oscillator 

interacting with a nonsinosoidal subtracted potential. Their study suggested the motion of 

the particle involves periodic stick-slip, erratic and intermittent motions, characterized by 
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force fluctuations, and sliding, depending on the model shape parameter. Ma et al. (2006) 

briefly presented atomic friction of two sliding plates using MD simulations and a 

multiscale simulation formulation bridging the continuum scale using the generalized 

interpolation material point (GIMP) method and the atomistic scale using MD. This work 

is a comprehensive study based on Ma et al. (2006) using MD simulations.  

Frictional sliding along an interface between two identical isotropic elastic plates 

under impact shear loading (Coker et al., 2005) was investigated experimentally and 

numerically at the continuum scale. The experiments exhibited both crack-like and pulse-

like modes of sliding. Plane stress finite element modeling of the experimental 

configuration was carried out and a variety of sliding modes are obtained depending on 

the impact velocity, initial compressive stress, and values of interface variables.  

6.2 MD simulation of friction 

MD code used in this investigation is the LAMMPS code developed by the 

Sandia National Laboratories (Plimpton, 2005). It can be used to model atomistic 

behavior or, more generically, as a parallel particle simulator at the meso and continuum 

levels. LAMMPS runs on both single-processor machines and in parallel using message-

passing techniques and a spatial-decomposition of the simulation domain. The atomic 

potential chosen is the Lennard-Jones potential given by 

















−






=

612

04
rr

)r(u σσε , (6-1)  

where 0ε is the depth of the potential well, σ is the finite distance at which the 

interparticle force is zero, and r is  distance between two atoms. In Eq. (6-1), the 
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term describes repulsion and the 

61








r
term describes attraction. In the 

simulations, 0.10 =ε , 1=σ and the mass of each atom ma is assumed to be 1. The cut off 

radius is 2.5. Dimensionless MD units are used in this study [see, Allen and Tildesley 

(1989)] and therefore, the units for time, velocity, and stress/pressure are  
0ε

σ am
,

am
0ε and 3

0

σ
ε

, respectively. The potential in Eq. (6-1) gives the longitudinal wave 

speed  99.8=lc , the shear wave speed 19.5=sc , and the Rayleigh wave speed 8.4=Rc .

The atomic friction between two plates of the same material (artificial material) at 

a temperature of 0° K was simulated by applying shearing velocities of opposite 

directions on top and bottom halves on the left side of the model as shown in Fig. 6-1. A 

2D triangular lattice is used in the simulations. The model has 600 lattices in the X-

direction and 400 lattices in the Y-direction. The size of the model is ~670×770 and there 

are totally 480,001 atoms in the model. The simulations are carried out on a Linux 

Boewulf cluster with six nodes. The interface was assumed to be atomically smooth and 

the friction/interaction was governed by the pairwise L-J interaction with a break radius 

that is significantly less than the cut-off radius. The break radius defines a distance within 

which the atoms have interaction. It only affects the atoms above and below the interface 

in a pair in this study. In other words, if both atoms are beyond the interface zone, normal 

cut-off radius applies. Therefore, the interface is a weak zone compared to the interior of 

each block. The setup models a shear crack growth along the weak plane and it is 

analogous to dynamic friction problem. To avoid contact and penetration of the free 
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interfaces, a small velocity Vy was applied on the left boundary, the magnitude of which 

is 0.3% of the Vx0 (see Fig. 6-1). At the right, both the top and bottom surfaces were 

constrained in the Y-direction to avoid possible rotation of the model in the simulation. 

The right side is constrained in the X-direction to eliminate the stress wave generated by 

the free surface in MD simulations. The time step is 0.002 and the total steps vary from 

50,000 to 100,000, depending on the applied shearing velocity. 

 
Fig. 6-1: Applied boundary conditions for the MD simulations of the atomic 

friction problem 

Parametric studies on the simulation parameters, including the shearing velocity 

(Vx0) and break radius (r) are conducted through numerical experiments to investigate the 

frictional behavior at the interface of the two plates. Five different shearing velocities, 

varying from 0.0005 and 0.01, and three break radii varying from 1.2 to 1.6 are used. The 

results and findings are reported in the next section.  

6.3 Numerical results  

Fig. 6-2 shows the contours of Vx in the computational domain at various times 

for V x0 = 0.006 and r =1.6. The evolvement of the stick-slip phenomenon is observed. At 

X

Y

Vx0 

Vy

Interface 
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t = 100 in Fig. 6-2 (a), the first slipping spot was seen and subsequent spots were seen in 

Fig. 6-2 (b)-(e). At t = 500 in Fig. 6-2 (e), five slipping spots were seen along the  

 
Fig. 6-2: Evolution of the slip pulses over time for V x0 = 0.006 and r = 1.6 

interface. It may be noted that the distance between the two neighboring spots decreases 

as more and more spots occur. For example, the distance between the two spots in Fig. 

(c) t = 300      (d) t = 400 

 ( a) t = 100                       (b) t = 200

(d) t = 500
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6-2 (b) is ~120, in comparison of ~80 between the first two spots on the left in Fig. 6-2 

(e). The atoms on different sides of the interface slip against each other at isolated spots 

along the interface. The atoms below the interface move to the right and the atoms above 

the interface move to the left. The slipping spots are generated on the left and travel to the 

right successively, as seen in Fig. 6-2. Between the slipping spots, the interfacial atoms 

appear to be healed. 

Fig. 6-3(a), (c) and (e) show the distributions of the Vx in the two blocks at three 

different break radii at a fixed shearing velocity, Vx0 = 0.01. Fig. 6-3 (b), (d) and (f) show 

Vx and kinetic and potential energy distributions along the weak zone for the simulation 

cases in Fig. 6-3(a), (c) and (e), respectively. Stick-slip phenomenon is seen in Fig. 

6-3(a), (c) and (e). As r decreases, the slipping spots tend to connect each other to form a 

sliding interface, indicating a transition from the stick-slip mode towards the full sliding 

mode, as observed by Perry and Harrison (1995). As for the energy, at each slipping spot, 

a spike in potential energy is observed, as seen in Fig. 6-3(b) and (d). The energy 

eventually transfers to the rest of the lattice and dissipates as heat. In contrast, for r = 1.2 

[Fig. 6-3(f)], gradual changes in the potential energy are seen as small hills and the width 

of the hills is about the same as the width of the stick-slip pattern. The smaller the break 

radius is, the weaker is the interaction between the neighboring atoms on the two sides of 

the weak zone. And hence, less energy will be generated in sliding contact of the two 

blocks. 

Figs 6-4 to 6-7 show similar results as Fig. 6-3 with decreasing Vx0, at 0.006, 

0.002 and 0.0005 respectively. At different shearing velocities, the stick-slip patterns 

show qualitative similarities as those in Fig. 6-3 for the same break radius. For example,  
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Fig. 6-3: Comparison of the velocity and energy distributions at Vx0 = 0.01 for 
three break radii, r, namely, 1.2, 1.4, and 1.6 
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Fig. 6-4: Comparison of the velocity and energy distributions at Vx0 = 0.006 
for three break radii, r, namely, 1.2, 1.4, and 1.6 
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Fig. 6-5: Comparison of the velocity and energy distributions at Vx0 = 0.004 
for three break radii, r, namely, 1.2, 1.4, and 1.6 
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Fig. 6-6: Comparison of the velocity and energy distributions at Vx0 = 0.002 
for three break radii, r, namely, 1.2, 1.4, and 1.6 
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Fig. 6-7: Comparison of the velocity and energy distributions at Vx0 = 0.0005 
for three break radii, r, namely, 1.2, 1.4, and 1.6 
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at r = 1.2 for all four Vx0, slipping spots are wider than those obtained at r = 1.6 and r = 

1.4. However, the slipping spots becomes more spaced out at smaller shearing velocity, i.  

e., with decrease in the shearing velocity, fewer slipping spots are generated. For 

example, there are five slipping spots in Fig. 6-3(c), three in Fig. 6-4(c), two in Fig. 

6-5(c) and Fig. 6-6(c), and only one in Fig. 6-7(c). It may be noted that the stick-slip 

patterns are not perfectly symmetric with respect to the interface. The asymmetry of the 

applied boundary conditions might contribute to this. Further investigations are needed to 

determine the reasons for this.  

It can be seen from Figs. 6-3 to 6-7 that at the same break radius, the qualitative 

shape of the velocity, potential, and kinetic energy curves as a function of sliding distance 

(x) remains virtually unchanged regardless of the shearing velocity, implying that the 

sliding mechanism is unchanged. In addition, it may be noted that the magnitude of the 

potential energy spikes does not significantly depend on the shearing velocity Vx0. For 

example, the height of the spikes in Fig. 6-3(d), Fig. 6-5(d), Fig. 6-6(d) and Fig. 6-7(d) is 

all ~0.6 and it is averaged at ~0.5 in Fig. 6-4(d). This indicates that there must be enough 

energy build-up to cause the interfacial atoms to slip in different directions. As the break 

radius decreases, the energy necessary to cause slip decreases and the relative velocity for 

the interfacial atoms is reduced. 

6.4 Conclusions 

In this chapter, the atomic friction between two plates of the same material (model 

material) at a temperature of 0° K was modeled using MD simulations. The interface was 

assumed to be atomically smooth and the friction/interaction was governed by the 

pairwise L-J interaction potential with a break radius that is significantly less than the 
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cut-off radius. Parametric studies on the simulation parameters, including the shearing 

velocity (Vx0) and break radius (r) are conducted numerically to investigate the frictional 

behavior at the interface of the two plates. Five different shearing velocities, varying 

from 0.0005 and 0.01, and three break radii varying from 1.2 to 1.6. As r decreases, the 

slipping spots tend to connect each other to form a sliding interface, probably indicating a 

transition from the stick-slip mode towards the full sliding mode. It was observed that at 

the same break radius, the qualitative shape of the velocity, potential and kinetic energy 

curves as a function of sliding distance (x) remains virtually unchanged regardless of the 

shearing velocity, implying that the sliding mechanism is unchanged. It may be noted that 

the magnitude of the potential energy spikes does not significantly depend on the 

shearing velocity Vx0.
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Chapter 7 

Conclusions and Future Work 
Scaling laws governing the mechanical behavior of materials from atomistic 

(nano) to continuum (macro) via mesoplastic (micro) are very important to numerous 

applications, such as the development of a new class of aircraft engine material, or the 

manufacturing of numerous components for microelectro-mechanical systems (MEMS), 

mainly because the information on the mechanical behavior of materials at nanolevel is 

not presently available as inputs to nanotechnology. In this investigation, multiscale 

modeling and simulations of material properties are addressed considering 

nanoindentation as an example. 

In the framework of multiscale modeling, two modeling techniques at the 

meso/micro scale are employed to study the mechanical behavior of single crystal 

materials under nanoindentation, namely, mesoplasticity and discrete dislocation. A 

combined finite element method (FEM)/nanoindentation approach has been developed to 

determine the material behavior of single-crystal copper incorporating the mesoplastic 

constitutive model. Nanoindentation on a single-crystal copper was modeled using 

mesoplasticity. Numerical and experimental investigations of nanoindentation on single 

crystal copper in three crystallographic orientations, i. e., (100), (011) and (111) using a 

spherical (3.4 µm radius) indenter and a Berkovich indenter were reported. Discrete 

dislocations are coupled with GIMP using the principle of superposition (van der Giessen 
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and Needleman, 1995). Simulations of indentation were performed on the (111) plane of 

copper using a wedge indenter. The effects of temperature on the indentation load-depth 

curves and nucleation of dislocations were investigated.  

Two topics are proposed for future work. One is modeling of orthogonal metal 

cutting using the multiscale simulation model encompassing MD, DD, and GIMP, which 

is introduced in Chapter 5. The other one is to extend 2D multiscale simulation algorithm 

into 3D, discussed in Chapter 5, since 3D algorithm at each scale is available. First, 

generic conclusions based on the investigation of nanoindentation at various length scales 

encompassing atomistic to continuum via mesoplasticity will be presented followed by 

suggestion for future work. 

7.1 Conclusions 

1. At the mesoscale, nanoindentation process was simulated on single crystal 

copper on (100), (011) and (111) surfaces, using FEA incorporating mesoplasticity 

constitutive model with a spherical indenter and a Berkovich indenter. Appropriate 

mesoplastic parameters were determined by combined nanoindentation/FEA approach. 

Comparison of the results of load-depth curves, deformation patterns, and pile up profiles 

between nanoindentation tests and FEA results showed reasonably good agreement. 

2. At the mesoscale, discrete dislocations were first coupled with GIMP using the 

principle of superposition (van der Giessen and Needleman, 1995). The scheme was 

tested with tension and bending. The algorithm was further coupled with MD to 

formulate a multiscale simulation model and it was used to simulate nanoindentation of 

(111) copper. Dislocation nucleation and subsequent propagation of dislocations were 

observed and the drops in the load-displacement curves were correlated to the slippage.  
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3. At the atomic scale, dynamic friction between two plates of identical material 

was simulated using the Lennard-Jones (L-J) potential. Parametric studies on the 

simulation parameters, including the shearing velocity and break radius are conducted 

through numerical simulations to investigate the frictional behavior at the interface of the 

two plates. Stick-slip patterns were observed and found to depend on the sliding velocity 

and state of the interface. 

7.2 Multiscale simulation of orthogonal machining 

Machining, as one of the primary manufacturing processes to remove materials to 

shape workpiece to desired geometry and surface finish, is a complex process involving 

thermal-mechanical interactions between cutting tool and the workpiece. With the 

emerging global trend toward miniaturization of manufacturing equipment and systems 

for microscale components and products, there is a global need for scientific 

understanding of the scaling laws for the design of manufacturing processes/equipment 

(Ehmann, 2005).  

The multiscale modeling scheme was developed and verified in 2D indentation 

simulations with a wedge indenter in Chapter 5. Other problems, such as metal 

machining, can be simulated using the multiscale simulation method with the intension of 

understanding the micromachining using scaling laws. Metal machining is a complex 

manufacturing process which generally involves large plastic deformation (strain γ ~ 2-5) 

as the material undergoing separation from the workpiece, and high temperatures (~ 

1000°C), as a result of friction at the interface of the tool and a workpiece, and plastic 

energy dissipation as heat. With the advent of effective numerical approaches such as 

FEM, coupled with emergence of modern computing capability, numerical analysis using 
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the FEM has been adopted to model metal cutting, as reviewed by van Luttervelt et 

al.(1998). However, FEM has limitations to model large deformations and high strain 

rates associated with the process, which will cause the background mesh to distort 

severely.  

 
Fig. 7-1: The sticking-sliding friction law 

Tool-chip interface friction is one of the most difficult aspects in modeling of the 

machining process. The sticking-sliding friction states that the tool-chip contact length is 

divided into two regions, namely, the sticking region ( stLx ≤<0 ) and the sliding region 

( fst LxL ≤< ) (Zorev, 1963), as shown in Fig. 7-1. The shear stress is a constant in the 

sticking region and the coefficient of friction, µ , is a constant inside the sliding region 

and it is computed by  

y

f

σ
τ

µ = (7-1) 

where fτ is the shear strength, yσ is the yield strength. Assuming a power law 

distribution along the contact surface the normal stress is given by,  
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a
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xx −= σσ (7-2) 

where maxσ is the maximum normal stress, x is the distance along the tool face from the 

point where the chip begins contact with the tool, fL is the chip-tool contact length, and 

a is a constant.  

fττ =max  (7-3) 

At x = stL ,
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We can get,  
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To find maxσ , first integrate Eq. (7-2) to find the normal force nF acting on the tool face 

gives 
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where w is the width of the cut. From Eq. (7-6), we get  
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Substituting this equation into Eq. (7-5), stL is computed. Then the friction law is given 

by: 




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(7-8) 
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Fig. 7-2: The temperature distribution at the steady state at  
α = 33°, v = 227 m/min, t = 0.1 mm 

 

Fig. 7-3: The total contact length and the sticking length at the steady state 
for α = 33°, v = 227 m/min, t = 0.1 mm 
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and sticking length were computed explicitly based on the theoretical derivation and 

intermediate contact conditions. The orthogonal cutting operation was simulated in air 

(under dry condition). The work material was AISI 1015 steel; the cutting speed 227 
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m/min, and depth of cut 0.1 mm and the rake angle α 33°. Temperature distribution is 

shown in Fig. 7-2, and the calculated sticking and sliding lengths are given in Fig. 7-3. 

With the understanding of the sliding-sticking friction law using FEM, the friction 

law can be implemented into GIMP. MD simulation can model the material behavior 

accurately, if the potential function is appropriate. However, the modeling size is 

generally limited to the order of a few nanometers based on the current computer 

capability. With the multiscale modeling technique, the area in the vicinity of the tool tip 

can be modeled using MD and the rest of area can be modeled using GIMP and DD, as 

shown schematically in Fig. 7-4. This way, the advantages of MD simulation are 

preserved and the simulation time is affordable. In addition, GIMP is especially suitable 

for coping with large deformations associated with metal cutting because of the use of 

Lagrangian description for material points carrying physical quantities and the use of 

Eulerian description for convection of physical variables and solution of field equations. 

With DD, the dislocation nucleation mechanism at the tool tip and its propagation into 

the workpiece can be better understood.  

 
Fig. 7-4: Schematic of the setup of the orthogonal metal cutting 

Workpiece

Tool

MD

GIMP+DD
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7.3 Extension of multiscale simulation to 3D 

The 2D multiscale simulation algorithm that couples molecular dynamics (MD), 

discrete dislocations (DD) and GIMP can be extended into 3D. 3D GIMP and MD are 

readily available with the literature and 3D discrete dislocation modeling can be 

conducted with ParaDiS (Parallel Dislocation Dynamics Simulator), which is a massively 

parallel dislocation dynamics simulation code developed at the Lawrence Livermore 

National Laboratory. ParaDiS is specifically designed for investigating the collective 

behavior of large number of dislocation lines as required for understanding and accurate 

prediction of plasticity and strength in crystals. Fig. 7-5 shows a numerical example from 

ParaDiS of experimental and simulated dislocation microstructure. 

(a)        (b) 
Fig. 7-5: Simulated dislocation microstructure (a) Dislocation microstructure 

developed in copper during plastic deformation, as observed in an 
electron microscope. Dark regions contain large number of dislocation 
lines, whereas light regions contain no dislocations. (b) Dislocation 
microstructure developed during plastic deformation in a dislocation 
dynamics simulation by ParaDiS (Bulatove, et al., 2004) 

It may however be noted that the computational cost for 3D simulations is 

significantly higher than for 2D. Parallel computing becomes very important and its 

effectiveness can sometimes determine the overall performance of the multiscale 



132

simulation algorithm. To enhance the multiscale simulation algorithm at 3D, the 

following two approaches can be taken: 

Dynamic multiscale refinement: Tthis refinement includes two aspects. The first one is to 

refine and coarsen the continuum region (GIMP) dynamically during the simulation. 

Strain gradient criterion can be used in this case. The second one is to refine between 

GIMP and the MD atoms. Since the MD part of the simulation takes a large portion of the 

time and resources, the region away from the area of interest can be dynamically merged, 

i.e., equivalent GIMP particles are created and the atoms are deleted. GIMP particles can 

also be replaced by equivalent atoms, if necessary.  

Dynamic load balancing: As the computational domain is dynamically refined and 

coarsened, each processor’s computational load will change significantly, if the load is 

not balanced dynamically. SAMRAI provides an excellent interface to dynamic load 

balancing at the continuum level. The atom storage can also be moved to SAMRAI so 

that load balancing can be done within the same framework. 
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topographical pattern of four-fold, two-fold, and three-fold symmetry, respectively 
in both experiments and simulations. No sink-in was observed due to the work 
hardened condition of the specimens. Furthermore, the comparisons between the 
nanoindentation and simulation on load-displacement relations and the pile-up 
profiles were found to be reasonably good, lending further credibility on the 
capability of the current model. It is concluded that the numerical model with the 
parameters determined is capable of predicting the single-crystal copper behavior of 
three orientations under nanoindentation. A multiscale simulation algorithm that 
couples MD, DD, and GIMP was developed and used to simulate the indentation on 
Cu (111) plane with a wedge indenter. Dislocation nucleation and subsequent 
propagation of dislocations are observed for the indentation simulation. 
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