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Chapter 1: Introduction 

 

A convection model is an approximate description of the convection coefficient based on available surface 

and flow parameters. An internal convection model for building simulations describes the convection heat 

transfer occurring on the inside surfaces of buildings. Building simulations have been developed in detail in 

order to meet the needs of new energy standards and energy conscious design methods, which require more 

accurate cooling/heating load calculations. Recently, nodal and zonal air models, which lie between the 

simplicity of the well mixed zone model and the complexity of a CFD model, have been developed and 

implemented in building simulation packages. However, the convection heat transfer models that were 

developed based on the well mixed air assumption are still used with the new air models.  Although 

multiple air nodes are used to model air distribution in the space, a single reference air node must be used 

to model surface convection.  The single node convection models compromise the increased accuracy 

obtained from the room air simulation. A new convection model that will select the appropriate reference 

node for the air models is needed to correctly evaluate convective heat transfer for nodal and zonal air 

models. 

 

All convection models are approximate, and the amount of detail involved depends on the purpose of the 

model. The details of available convection models range from single values to complex correlations. The 

simplest convection model is found in the BLAST (Building Load Analysis and System Thermodynamics) 

program, a building simulation package released in 1977. The convection coefficient is a specified constant 

based only on the surface position. A BLAST surface is considered horizontal if its tilt is within 22.5° of 

the horizontal direction, or vertical if its tilt is within 22.5° of the vertical direction. All other surfaces are 

considered to be tilted surfaces. Convection heat transfer on internal surfaces is assumed to be purely 

natural convection. For horizontal and tilted surfaces, the convection coefficient is reduced or enhanced 

depending on heat flow direction. If the heat flow is upward, the air tends to circulate and enhance the 
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convection. On the contrary, if the heat flow is downward, the air tends to stratify and reduce the 

convection. Altogether, the BLAST model has five constant convection coefficients. The EnergyPlus 

building simulation package, a DOE sponsored energy calculation program, has a number of convection 

models, including the simple BLAST model. A detailed natural convection model includes three 

correlations that relate the convection coefficient to surface orientation and the surface-zone air temperature 

difference. Of these three correlations, one is used for vertical surfaces or for cases which there is no 

temperature difference, one is used for enhanced convection on tilted surfaces, and one for reduced 

convection on tilted surfaces. Horizontal surfaces are modeled as tilted surfaces with a tilt angle of zero. 

The correlations were originally developed for flat plate convection heat transfer and referenced in the 

ASHRAE Handbook of Fundamentals (1993). The forced convection model, which was based on room 

outlet temperature, was developed for the ceiling diffuser room configuration (Fisher 1997). It was 

reformulated from the published correlations to use the outlet temperature instead of the inlet temperature 

as the reference temperature. Three equations, correlating the convection coefficient to room ventilative 

flow rate (in Air Change per Hour, ACH), are included for ceiling, floor and walls. 

 

Among currently available building simulation packages, the research version of the Environmental System 

Performance simulation program, ESP-r (Clarke 1974) has the most complete selection of convection 

models. Three natural convection models, two forced convection models, and one mixed convection model 

are included. The three natural convection models are: the Alamdari and Hammond (1983) model for 

isolated surfaces, the Khalifa (1990) model and Awbi and Hatton (1999) model for surfaces in confined 

spaces. The Alamdari and Hammond model includes correlations for vertical surfaces and for horizontal 

surfaces with both enhanced and reduced convection heat transfer. The Khalifa model has ten correlations 

for cold walls, windows, and ceilings under different heating configurations. The Awbi and Hatton model 

includes two correlations for heated walls and floors developed in a test room. The two forced convection 

models are the Fisher (1997) model for the radial ceiling jet and Fisher and Pedersen (1995) model for the 

free horizontal jet. Both models have correlations for walls, ceilings and floors in isothermal rooms. The 

mixed convection model was introduced by Beausoleil-Morrison (2000) applying Churchill and Usagi’s 

“blending” approach (1972) to Alamdari and Hammond’s natural convection model and Fisher’s forced 
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convection model. The mixed convection model has correlations for walls with both assisting and opposing 

buoyancy effect on mechanically driven flows and correlations for ceiling and floor with both enhanced 

and reduced convection heat transfer.   

 

When applying these convection models, well-stirred zone air is assumed for all building simulations. The 

zone air is treated as a single node, representing the mean air temperature of zone, zone outlet air 

temperature, and the zone thermostat set point temperature. In addition, a single convection flow regime is 

assumed in both BLAST and EnergyPlus. Interior convection is assumed to be pure natural convection in 

BLAST irrespective of the ventilative flow rate. EnergyPlus assumes that forced convection occurs on all 

interior surfaces for ventilative flow rates greater than 3 ACH, otherwise, natural convection is assumed. 

ESP-r compares the magnitude of the convection coefficient predicted by forced and natural convection 

correlations for each surface. If the natural convection coefficient is much greater than the forced 

convection coefficient, buoyancy driven flow is assumed to be dominant. Mechanically driven flow is 

assumed to be dominant if the forced convection coefficient is larger. If natural and forced convection 

coefficients are of the same order of magnitude, the mixed convection flow regime is assumed. 

 

For modern air distribution systems, the well-stirred zone assumption is increasingly invalid. One of the 

newest systems, the Under Floor Air Distribution (UFAD) system, tends to provide a comfort environment 

only in the occupied region and saves energy by not conditioning the unoccupied region. The well-stirred 

assumption is not applicable to this system. Cold Air Distribution (CAD) systems may also result in non-

uniform space temperatures, and displacement ventilation systems are designed specifically to thermally 

stratify the zone air. 

 

The single regime assumption is also invalid for many air distribution systems. For CAD systems, strong 

forced convection occurs on the surfaces where cold air jet attaches, while mixed or natural convection may 

occur on other surfaces. Even for conventional air distribution systems, multiple convection flow regimes 

may occur in a single room or on a single surface depending on how the airflow is organized. Although 
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ESP-r considers multiple flow regimes in a room, the zone air temperature from the well-stirred assumption 

is still used to evaluate the convection coefficient.  

 

In summary, modern room air management systems require detailed airflow solutions in building 

simulations. Convection models should consider near wall airflow characteristics and determine convection 

flow regimes on individual surfaces. Room airflow characteristics are now considered in both ESP-r with a 

coupled CFD simulation and in the ASHRAE Air Toolkit with different types of room air models. However, 

the detailed airflow information is currently condensed into one parameter--zone air temperature--for all 

convection models. This compromise is a result of the limitations of current convection models, which 

correlate the convection coefficient to global zone air parameters rather than near wall local air parameters.  

 

This thesis develops a new convection model for building simulations with multi-node zone air models. 

The new convection model addresses both the well stirred assumption and the single flow regime 

assumption. Chapter two gives detailed information on the heat balance model, the air model, and the 

convection model and how they are connected. Chapter three defines the new convection model and 

discusses the objectives of this research. Chapter four reviews previously developed convection models. 

Natural, forced, and mixed convection models are reviewed. Chapter five describes the experimental 

methods and the facility for developing the proposed convection model. Chapter six introduces a general 

method to find nondimensional parameters for room convection models. Room airflow is characterized 

with this research goal, i.e. to find new convection correlations and convection flow regime definitions. 

Chapter seven develops convection correlations based on parameters obtained from the analysis of Chapter 

six and experimental data from this and previous research. Chapter eight presents experimental results to 

validate and extend convection models developed in Chapter seven. Chapter nine summarizes results and 

conclusions obtained up to this point and gives future plans for this research. 
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Chapter 2: Convection Models in Building Energy/Load Calculations 

 

All modern building simulation programs are based on the so-called heat balance model.  The heat balance 

(HB) model for building simulations include: the outside heat balance, the wall conduction process, the 

inside heat balance, and the air heat balance. Figure 2.1 shows the detailed heat transfer processes of HB 

method for the opaque surfaces in one zone. A zone is an individual calculation unit in a building 

simulation. It may include one or more rooms.  

Outside Surface
Heat Balance

Through the Wall
Conduction

Inside Surface
Heat Balance

Absorbed
Incident

Solar

Long Wave
Radiation

Convective
to Outside

Air

Convection
To Zone Air

Short Wave
Radiation

From Lights

Long Wave
Radiation

From Internal
Sources

Long Wave
Radiation

Exchange with
Other Surfaces

Transmitted
Solar

Air Heat
Balance Convection

From Internal
Sources

HVAC
System Air

Infiltration
Ventilation
Exhaust Air

Duplicated For Each Surface

 

 

Figure 2.1 Schematic of Heat Balance Processes in a Zone (Pedersen, 2001) 
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The inside surface convection heat transfer connects the inside surface heat balance and the air heat balance. 

This chapter will describe in detail heat transfer processes in building simulations. The introduction of 

nodal and zonal air models in room air simulation and the corresponding requirement for convection 

models will be discussed. With the ASHRAE Air Toolkit as an example, the relationship between the 

convection model and of the various types of air models will be demonstrated.  

 

2.1 Heat Balances  

2.1.1 Outside Heat Balance 

The outside surface heat balance is comprised of four heat transfer processes: short wave radiation, 

including direct, reflected, and diffuser sunlight, long wave radiation from the environment, convection 

heat transfer from outside air, and conduction heat transfer into the wall.  These heat transfer components 

are shown schematically in Figure 2.2. soT  is the outside surface temperature. The rate of heat transfer per 

unit area perpendicular to the direction of transfer is defined as heat flux and denoted as q ′′ . The subscripts 

on q ′′  correspond to the heat transfer modes. 

 

Wall InsideOutside

Short wave radiation
including direct, reflected,

and diffuse sunlight

Long wave radiation
from the environment

Conduction
into wall

Tso

Convective
heat transfer

koq ′′

 

Figure 2.2 Outside Surface Heat Transfer Components 

 

The outside heat balance is expressed by the following equation: 

0qqqq koconvLWRsol =′′−′′+′′+′′α         (2.1) 

where: 

solqα′′  = absorbed direct and diffuse solar (short wavelength) radiant heat flux, W/m2 
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LWRq ′′  = net thermal (long wavelength) radiant flux from the air and the surroundings, W/m2 

koq ′′  = conductive heat flux into the wall, W/m2  

convq ′′  = convective heat transfer to the outside air, W/m2  

 

The heat transfer processes are modeled individually in the ASHRAE Air Toolkit with an iterative solution 

procedure to ensure convergence of the de-coupled models. The short wave radiation model, solqα′′ , uses the 

procedures given in the ASHRAE Handbook of Fundamentals to calculate the direct, diffuse, and ground 

reflected solar radiation. The long wave radiation model, LWRq ′′ , calculates the net long wave radiant heat 

transfer from the sky and the ground to the surface.  Model inputs include the surface absorptance and 

temperature, sky and ground temperature, and sky and ground view factors. The outside surface convection, 

convq ′′ , is calculated using convection coefficients predicted from several optional models along with the 

outside surface-air temperature difference. The conduction heat flux into the wall, koq ′′ , is generally 

calculated using the Conduction Transfer Function (CTF) method, which considers both surface 

temperature and heat flux histories as discussed in the following section.  

 

2.1.2 Wall Conduction Process 

The wall conduction process is shown schematically in Figure 2.3. siT  and soT  are the surface temperatures 

on the inside and outside of the wall, and koq ′′  and kiq ′′  are the conduction heat fluxes at the inside and 

outside surface. These four terms are all functions of time and are incorporated with the heat balances on 

both sides of the wall element. A simultaneous solution technique is required for this process. The CTF 

formulation is generally selected for building simulation programs because of its computational efficiency. 
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Wall InsideOutside

Tso
Tsi

Conduction at
outside surface

Conduction at
inside surfacekoq ′′ kiq ′′

 

Figure 2.3 Wall Conduction Process 

 

The CTF formulation relates the conductive heat flux to the current and past surface temperatures and the 

past heat fluxes. For the outside surface heat flux: 

∑∑∑
=

−
=

−
=

− ′′Φ+++−−=′′
nq

j
jtkoj

nz

j
jtojto

nz

j
jtijtiko qTXTXTYTYtq

1
,

1
,,0

1
,,0)( δδδ     (2.2) 

and for the inside surface heat flux: 

∑∑∑
=

−
=

−
=

− ′′Φ+++−−=′′
nq

1j
jtkij

nz

1j
jtojto0

nz

1j
jtijti0ki qTYTYTZTZtq δδδ ,,,,,)(     (2.3) 

where: 

jX  = outside CTF, nzj ,...1,0=  

jY  = cross CTF, nzj ,...1,0=  

jZ  = inside CTF, nzj ,...1,0=  

jΦ  = flux CTF, nqj ,...1,0=   

iT  = inside surface temperature 

oT  = outside surface temperature 

koq ′′  = conduction heat flux on outside surface, W/m2 

kiq ′′  = conduction heat flux on inside surface, W/m2 
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The subscript “ t ” indicates the current time and “ δjt − ” the time that occurred j  time steps previously 

with a time step size of δ . The summation limits, nz  and nq , depend on the wall construction and the 

scheme used for calculating the CTFs. The values of nz  and nq are generally set to minimize the amount 

of computation. 

 

2.1.3 Inside Heat Balance 

The inside heat balance also includes four heat transfer components: conduction from the wall element, 

convection from the zone air, short wave radiation, and long wave radiation. Figure 2.4 schematically 

shows these four components. Here again, siT  is the inside surface temperature and kiq ′′  is the conduction at 

the inside surface. 

 

Wall InsideOutside

Short wave radiation
from solar and

internal sources

Convective
heat transfer

Conduction
from outside

Tsi

Long wave radiation
exchange with other

surfaces in zone
kiq ′′

 

Figure 2.4 Inside Surface Heat Transfer Components 

 

The inside surface heat balance for each element can be written as: 

0qqqqqq convsolkiLWSSWLWX =′′+′′+′′+′′+′′+′′        (2.4) 

where: 

LWXq ′′  = net long wave radiation from zone surfaces, W/m2 

SWq ′′  = net shortwave radiation from lights, W/m2 

LWSq ′′  = long wave radiation from equipment in zone, W/m2 

kiq ′′  = conduction through the wall, W/m2 
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solq ′′  = transmitted solar radiation absorbed at the surface, W/m2 

convq ′′  = convection to the zone air, W/m2 

 

The internal convection heat transfer from surface to zone air is the interest of this research. Two natural 

convection models and one forced (also used for mixed) convection model are included in the ASHRAE 

Air Toolkit and are summarized in Table 2.1. 

 

Table 2.1 Internal Convection Models Included in ASHRAE Air Toolkit 

Model type Model Applied surfaces 
25.1=ch  Horizontal surface, downward facing 
68.4=ch  Vertical surface Simple Natural 

37.4=ch  Horizontal surface, upward facing 

3
1

31.1 Thc ∆=
* Vertical surface 

 

Σ−

∆
=

cos283.7
482.9 3

1

T
hc

** Horizontal or tilted surface, enhanced 
convection Detailed Natural 

Σ+

∆
=

cos382.1
810.1 3

1

T
hc

** Horizontal or tilted surface, reduced 
convection 

8.013.0 ACHhc =  Floors (ceiling diffuser) 
8.049.0 ACHhc =  Ceilings (ceiling diffuser) Forced and Mixed 
8.019.0 ACHhc =  Walls (ceiling diffuser) 

* T∆ = temperature difference between the surface and zone air 
** Σ = the surface tilt angle  
 

 

The internal convection heat transfer is calculated using Newton’s law of cooling as follows: 

)( ascconv TThq −=′′          (2.5) 

The reference temperature aT  is the zone air temperature following the well-stirred assumption. The forced 

and mixed convection model is based on the room outlet temperature. 
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2.1.4 Air Heat Balance 

The zone air heat balance includes: convection from zone surfaces, transport of outside air directly into 

zone by infiltration and ventilation, and transport of the HVAC system air into the zone. The air heat 

balance is expressed as: 

0qqqq sysIVCEconv =+++          (2.6) 

where: 

convq  = convective heat transfer rate from zone surfaces, W 

CEq  = convective heat transfer rate from internal sources, W 

IVq  = sensible heat transfer rate due to infiltration and direct zone ventilation, W 

sysq  = heat transfer rate due to mechanical, HVAC system ventilation, W 

 

The convective heat transfer rate from zone surfaces convq  is the sum of all convective heat transfer terms 

from the inside surface heat balance: 

∑
=

−=
nsurfaces

1i
aisiicconv TTAhq )( ,,         (2.7) 

Convection coefficients on surfaces ich ,  are selected from the available internal convection models listed in 

Table 2.1. 

 

The convective heat transfer rate from internal sources, CEq , is the companion part of the radiant 

contribution from internal sources, LWSq ′′ . It is added to the air heat balance to support the simple equipment 

model. The air that enters through infiltration and ventilation and through the HVAC system is assumed to 

mix with the zone air immediately. The air capacitance is neglected in calculating the heat transfer rate into 

the zone.  

 

2.2 Air Models  

The complexity of the air heat balance is determined by the air model that is used to describe the flow field 

in the zone.  A number of air models supporting new systems as well as conventional systems have been 
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developed in the last three decades. According to Chen and Griffith (2002), air models can be classified 

into four types based on their structure and complexity: mixing models, nodal models, zonal models, and 

CFD models. Figure 2.5 shows the four types of air models.  

 

Mixing Model Nodal Model

Zonal Model CFD Model  

Figure 2.5 Room Air Model Classification (Chen and Griffith, 2002) 

 

The mixing model is the traditional well-stirred zone model. A single air node represents the entire zone. 

Most building simulation programs still used a mixing model at this time.  

 

Nodal models treat the zone air as an idealized network of nodes connected with flow paths. Nodal air 

models have been subcategorized into convective heating, displacement ventilation and natural ventilation 

models depending on the application. Subcategories can also be formed depending on the number of nodes 

(2-node, 5-node, etc) and the flow configurations (prescribed or modeled). For nodal models, the thermal 

zone is divided into several nodes and separate heat balances are formulated for each. Compared to CFD 

models, nodal air models have a smaller number of control volumes that do not have specific geometric 

boundaries.  
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Zonal models define the air grid geometrically, and each control volume has a well-defined boundary. 

Zonal models are distinguished from CFD models because they have much coarser grids and do not attempt 

to predict the flow field accurately but only attempt to solve for specific variables. Subcategories of zonal 

models are formed according to the variables that are solved for and include: temperature zonal models 

(Togari et al, 1993), pressure zonal models (Inard, 1996), POMA -Pressurized zOnal Model with Air 

diffuser (Lin, 1999), and momentum zonal model (Chen and Griffith, 2002). The mass transfer in the mass 

and energy conservation equations for temperature and pressure zonal models is calculated with 

temperature differences and pressure differences respectively. The momentum zonal model solves the 

steady state Euler equation for inviscid flow as well as the mass and energy conservation equations.  

 

CFD models predict detailed airflow information in the whole flow field. Temperature and velocity 

distributions as well as surface heat flux and shear stresses can be obtained through CFD models. 

 

2.3 Coupled Heat Balance and Air Models  

Coupling the HB model with the air model introduces detailed air flow information into the building 

simulation so that new air management systems can be modeled more accurately. This strategy is especially 

useful for stratified room air. The ASHRAE Air Toolkit is a framework to incorporate available air models 

in the ASHRAE load toolkit. In this framework, each zone surface can be subdivided into at most four parts 

and each part is considered as an individual surface. The zone air details from the air model calculations are 

aggregated to conform to the surface resolution. Figure 2.6 schematically shows the HB model and the 

coupled HB and air model. 
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Wall Zone Air Wall Zone Air

Ta
Tsi

Ta1

Ta2

Ta3

Ta4

Tsi,1

Tsi,2

Tsi,3

Tsi,4

HB Model Coupled HB and air Model  

 

Figure 2.6 HB Coupled with Mixing Model (left) and Zonal Model (right) 

 

The coupled HB and air model that is applied to the subdivided zone surfaces is identical to the HB model, 

which is applied to the entire surface. All the heat flux modeling procedures remain the same except the 

convection heat transfer from inside surfaces. Rather than a single value, the zone air temperature is 

represented by an array of values generated from the air model. The equations for generating the zone air 

temperature array are part of the air model and depend on which model is applied. The air temperature is 

also known as the reference temperature for convection heat transfer calculations. The reference 

temperature for classical heat transfer configurations is the ‘far field’ temperature, which is the temperature 

of the uniform flow field far from the boundary. In a room, especially a room that is not well mixed, 

uniform ‘far field’ conditions do not exist. The convection heat transfer calculation requires that the 

reference temperature should be outside the thermal boundary layer but not too far away. Although the 

distance from the air node, where the reference temperature is specified, to the surface is uniformly 0.1m in 

the ASHRAE Air Toolkit, determining the location of the air node is an important topic that will be 

discussed at length in Chapter 7. 

 

The contribution of convection heat transfer rate from surfaces then becomes: 

∑
=

−=
nsurfaces

i
aiisiiicconv TTAhq

1
,, )(         (2.8) 
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Two coupling strategies are used: the T-Couple strategy and the DT-Couple strategy. The T-Couple method 

uses the air model results directly to calculate the inside surface convection heat transfer rate: 

)(
,, iiii asiicconv TTAhq −=          (2.9) 

The DT-Couple method is based on the equation:  

)(

)()(

,

,,

ii

iii

aRoomAirsiic

RoomAiraiicRoomAirsiicconv

TTTAh

TTAhTTAhq

∆−−=

−−−=
                   (2.10) 

where: 

RoomAirT  = a reference air temperature (averaged, set point) 

iaT∆  = RoomAira TT
i
−  

Subscript “ i ” denotes individual surfaces. 

 

In the DT-Couple method, the air model results are not used directly, but are shifted by substituting the set 

point temperature setT  for room air temperature RoomAirT . If the air model result for RoomAirT  does not agree 

with the controlled condition, this deviation is applied to the distribution. After iteration, the actual shift is 

expected to be small. This DT-couple method is more stable and is a very important method if the air 

model has relative poor accuracy in terms of absolute temperature but still produces good information on 

the air temperature distribution. 

 

The equations for the coupled HB and air model are solved by successive substitution. Figure 2.7 diagrams 

the implementation in a building simulation program. The heat balances are rearranged in terms of outside 

surface temperature, inside surface temperature, and system load. The innermost loop (i.e. the iteration loop) 

iterates at a single time step until a solution that satisfies all the relationships is reached. The toolkit calls 

the air models at the same frequency as the HB model.  
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Calculate Solar

Simulation
Input

Calculate Outside Surface
Temperature

Calculate Inside Surface Temperature
with Well-stirred Convection Model

)( , aiisiciconvi TThQ −=

Calculate System Load

Predict System Flow Rate

Call Air Models

Calculate Water Balance

Input:
Inside Surface Temperature

Air System Flow Rate
Internal Source Convection Loads

Solution for Air Model
Applying Well-stirred

Convection Model

Output:
Bulk Air temperature and Velocity

Return Air Temperature
Air Temperature at Control Point

Loop Through Days

Loop Through Time Steps

Iteration Loop

 

Figure 2.7 Coupled HB and Air Model (Left: HB Model, Right: Air Model) 

 

The figure illustrates the current state of the art, with the well-stirred convection model implemented in 

both the heat balance and in the air model.  For the non-uniform flow field, however, this implementation 

incorrectly predicts the surface convection.  Basically, the problem is that the convection coefficient is 

predicted with “global variables” while the air models need convection coefficients predicted with “local 

variables”. Global variables refer to those measured in terms of the room entity, such as room inlet 

temperature, inlet velocity, and the ventilative flow rate.  Local variables refer to near wall parameters such 

as air temperatures and velocities. 
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Chapter 3: Problem Definitions and Research Scope 

 

3.1 Convection Model Classification 

Convection models that are related to global or room scale variables are here defined as “global variable 

based convection models”. Comparatively, Convection models that are related to local variables are here 

defined as “local variable based convection models”.  Published convection models include both global and 

local models. Natural convection correlations of Alamdari and Hammond (1993), Awbi (1998), and 

Khalifa (1990) correlate convection coefficients to the near wall air temperature and surface dimensions 

such as hydraulic diameter or height. These correlations are typical local variable based convection models. 

The forced convection correlations of Fisher (1997), Fisher-Pedersen (1994), and Spitler (1990) correlate 

the convection coefficient to inlet/outlet temperature, ventilative flow rate, inlet air velocity, and room 

volume. These correlations are typical global variable based convection models. 

 

There are some models that involve both global and local variables. For example, Awbi’s (2000) mixed 

convection correlation includes global variables such as inlet nozzle velocity and width and local variables 

such as near wall air temperature. Beausoleil-Morrison’s (2000) mixed convection model considers both 

ventilative flow rate and near wall air temperatures. Both are mixed convection models obtained from 

“blending” natural and forced convection correlations. These two models are categorized as global 

convection models since the forced convection part does not consider local conditions. 

 

3.2 Prospective Convection Models 

Local variable based convection models are required to correctly couple the HB and air models. However, 

a complete local convection model with natural, mixed, and forced convection correlations is not available 

at the present time and needs to be developed for this specific purpose. To develop this model, the 

following conditions are required:  



 

18 

 

1. The model should be developed for use in enclosures, not on free surfaces. 

2. The model should clearly define a convection correlation for each flow regime.  

3. The reference temperature and correlation parameters should be clearly defined and generally 

available in building simulation programs.  

 

The first two requirements address the problem of the misapplication of convection models. Dascalaki et al. 

(1994) reviewed natural convection correlations and assessed their applicability to enclosure surfaces. Two 

groups of correlations were reviewed. The first group of correlations was developed for enclosure surfaces 

and the second group was developed for isolated horizontal and vertical surfaces. Dascalaki estimated that 

the free surface correlations could over-predict the heat transfer rate by 30-50% when applied to enclosures. 

This work demonstrated the importance of room scale configurations to obtain convection models that are 

applicable to building heat transfer processes.  

 

Calay et al. (1998) experimentally examined the applicability of available natural convection correlations to 

a rectangular enclosure. The experimental results were compared with correlations from literature. The 

study concluded that convection correlations developed in enclosed spaces are much more suitable for 

building applications than the flat plate models recommended by ASHRAE and CIBSE (The Chartered 

Institution of Building Services Engineers). Calay pointed out that even though there were a large number 

of correlations available for energy/load calculations, many of them were not suitable for building 

applications. 

 

Besides the configuration, the flow regime should be determined properly. An extreme example is the 

simple assumption in the BLAST simulation program that natural convection dominates under any 

circumstance. Spitler (1991) developed forced convection correlations for rooms with the ventilative flow 

rate ranging from 15ACH (Air Change per Hour) to 100ACH. Implementing the correlations into BLAST, 

Spitler found that the default BLAST model under predicted convection heat flux by up to 5 times at high 

ventilative flow rates.  
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Flow regime definition is required in dynamic building simulations in order to switch convection models 

according to instantaneous conditions. Beausoleil-Morrison (1999) analyzed the sensitivity of dynamic, 

whole-building simulation programs to internal surface convection models. One of the IEA (International 

Energy Agency) Annex 21 (Environmental Performance) Task 12 double-glazed test rooms was simulated. 

The internal surface convection coefficient was calculated with the Alamdari and Hammond model when 

the radiator was off and with the Khalifa and Marshall model when the radiator was on. Compared to the 

energy consumption predicted by the Alamdari and Hammond model alone, switching between models 

based on flow regime predicted 8% more energy consumption. This sensitivity is significant compared to 

the impact of other parameters, such as fabric characteristics (3.3%), room air leakage (2.7%), and sky 

models (4.7%).  

 

The third of the three requirements listed above addresses the problem of developing room convection 

models using experimental data. A properly defined reference temperature and length scale is needed for a 

valid and widely applicable room convection model. However, no agreement has been reached on how to 

select these two parameters from the literature. In natural convection model development, Awbi and Hatton 

(1999) measured local air temperature at 100mm and 50mm from the surfaces of a room sized chamber and 

a small box respectively, and Khalifa and Marshall (1990) measured local air temperature 100mm from 

surfaces. In his forced convection model development, Fisher (1997) selected the room inlet air 

temperature and Spitler (1990) selected the room outlet temperature. Both Fisher and Spitler’s selection 

were based on uncertainty analysis and convenience for engineering applications. 

 

Length scale is another parameter that is not obvious for room airflow, and available studies are not in 

agreement on how to define it. Awbi and Hatton’s natural convection model used the surface hydraulic 

diameter defined by the surface area and the perimeter as the length scale. Khalifa’s natural convection 

model is dimensional and doesn’t include a length scale. Kapoor and Jaluria (1991)’s mixed convection 

model used nozzle width (D) as the length scale for nondimensional numbers, GrD, ReD, and NuD. The ratio 

of ceiling length to nozzle width (L/D) was also considered to have an effect on the surface convection heat 

transfer and was included in the correlations. Surface height was used in Alamdari and Hammond’s (1983) 
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natural convection model; overall length of the heated wall was used in Neiswanger’s (1987) forced 

convection model, and nozzle width was used in Awbi’s (2000) forced convection model. All of these 

length scales were used without theoretical analysis. 

 

Clearly, the effect of length scale and reference temperature on model applicability and accuracy requires 

further investigation. A general method with a more solid theoretical background is desired to define 

reference temperature and length scale. The accessibility of the defined reference temperature and length 

scale in building simulation programs should also be considered.  

 

3.3 Research Scope 

The local convection model presented in the following chapters includes correlations in three flow regimes 

for the radial ceiling diffuser airflow configuration and smooth surface characteristics. A general method 

for local convection model development is presented, and the problems of flow regime, length scale, and 

reference temperature are specifically addressed.  

 

Experiments with the radial ceiling diffuser room configuration are presented in Chapter 5. The purpose of 

these experiments is to characterize the room flow field for scaling parameters and to develop a set of local 

convection correlations. The airflow characterization and scale analysis is given in Chapter 6 and 

correlation development is discussed in Chapter 7. 

 

The experimental data, which were obtained from the UIUC (University of Illinois - Urbana Champaign) 

test room (Spitler, 1990 and Fisher, 1995), are available for further analysis. The data sets have the detailed 

air temperature and velocity information that is needed for the local convection model. The data was used 

to validate the new local convection model as discussed in Chapter 7.  

 

The new local convection model was implemented in ASHRAE Air Toolkit. Test cases simulated with both 

current and new convection models were compared with experimental data. The simulation work is 

presented in Chapter 8. 
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Chapter 4: Literature on Convection Model Development 

 

Strictly speaking, whenever a temperature difference exists, buoyancy driven flow also exists. In practice, 

however, the buoyancy force is neglected when it is small compared to the momentum force. At the point 

where the buoyancy effect cannot be neglected, the upper bound of the mixed convection regime is defined. 

On the other side, where the buoyancy effect is significant but momentum forces are not small enough to be 

neglected, the lower bound of the mixed convection regime is defined. Various criteria defining the 

boundaries of the mixed convection regime have been suggested (Sparrow (1979) and Neiswanger (1987)). 

The flow driving forces not only determine the flow regime but also determine the correlation forms. This 

chapter will review how convection correlations have been developed and present convection correlations 

for different flow regimes. 

 

4.1 Natural Convection Model 

Natural convection models that are used in building simulation programs include correlations developed 

from both flat plate and enclosures. Most of the correlations were developed from experimental 

measurements.  

 

Alamdari and Hammond (1983) 

Alamdari and Hammond derived a two-part (laminar and turbulent) natural convection heat transfer 

correlation for building applications using Churchill and Usagi’s (1972) mathematical model, 

{ }m
1

mqmp BxAxy )()( += . In this application, pAx and qBx  refer to correlations for buoyancy driven flow in 

laminar and turbulent regimes, “ x ” refers to Rayleigh number and “ y ” refers to the Nusselt number. So 

the blended form is: 

{ } mmqmp BRaARaNu /1)()( +=         (4.1) 
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where: 

Ra  = Rayleigh number, 
µ
βρ

k
TLgC p

32 ∆  

L  = the characteristic length of heat transfer surface 

A , B , p , q , m  = empirical coefficients for buoyancy driven flow over vertical and horizontal surfaces 

 

Correlations were developed for vertical surfaces and horizontal surfaces with both enhanced and reduced 

convection heat transfer. Experimental data from the literature for isolated surfaces were used to develop 

these correlations. In room applications where air properties can be assumed constant, the Rayleigh number 

is only related to the surface – air temperature difference. To make the correlations usable in building 

simulations, the dimensional form of the correlations were derived as shown in Table 4.1. The limitation of 

these correlations is that they were based on free surface data. 

 

Khalifa and Marshall (1990) 

Khalifa and Marshall (1990) investigated natural convection heat transfer on interior surfaces using a room 

sized test cell. A total of 142 experiments were performed to cover eight of the most widely used heating 

configurations including radiant floor, radiant wall, and radiator in windowless rooms and windowed rooms. 

The east wall of the test chamber was the test surface, which was maintained at a low temperature through 

a controlled cold space on the other side of the surface.   

 

Convection heat transfer on the inside surface was balanced by radiation heat exchange with other surfaces 

and conduction heat transfer through the wall. The radiation was neglected in the calculation since the 

inside surfaces were coated with aluminum foil, which has a very low emissivity. The convection heat flux 

was balanced only with wall conduction: 

kconv qq =  

kq  was calculated from the measured inside-outside surface temperature difference, wall conductivity and 

thickness. Convection heat transfer coefficient ch was calculated from convq and the temperature difference 

between the surface and air.  
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Khalifa and Marshall correlated the convection coefficient ch to the surface-air temperature difference. A 

total of 10 correlations were finally obtained. The correlations for heated whole surfaces are given in Table 

4.1. Khalifa and Marshall’s correlations have been implemented in building simulation programs such as 

ESP-r. 

 

Awbi and Hatton (1998) 

Awbi and Hatton (1998) studied natural convection heat transfer in two-dimensional rooms using CFD 

technique. The room configurations included heated wall, heated floor and heated ceiling. Two kinds of 

CFD models were applied: a standard ε−k  model with “wall functions” and the low Reynolds number 

ε−k   model of Lam and Bremhorst (1981). For the standard ε−k  model, the first calculation grid was in 

the turbulent inner region, while for the low Reynolds number model, calculations were made in the 

viscous sublayer. The convection coefficients for the standard ε−k  model with the wall function and the 

low Reynolds number model were calculated by their respective equations as follows:   

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
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kh           (4.3) 

where: 

+T  = a dimensionless temperature 

wT  = surface temperature  

pT  = air temperature at the first grid 

refT  = reference temperature, such as bulk air temperature  

py  = distance of the first grid from the wall 

 

The predicted convection coefficients were compared with experimental measurements from a room sized 

test chamber. The comparison showed that the low Reynolds number ε−k  model predicts the convection 
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coefficient more accurately than the standard ε−k  model with the wall function. In addition, the 

convection coefficients predicted by the standard ε−k  model are extremely sensitive to the distance from 

the first grid to the surface. This distance is case sensitive, so the recommended distance to the first grid is 

not applicable to other configurations. For the low Reynolds number models, the first grid is required to be 

less than 1mm from the surface. Therefore, a very fine grid and more computer resources were needed to 

get accurate results. Awbi and Hatton concluded that it was more plausible to use experimentally 

determined convection correlations for room surface convection calculations. 

 

Awbi and Hatton (1999) 

Together with their numerical work, Awbi and Hatton experimentally investigated natural convection heat 

transfer from room surfaces. A room sized test chamber with interior dimensions of 2.78m x 2.78m x 2.3m 

and a small test chamber with internal dimensions of 1.05m x 1.01m x 1.05m located inside the bigger 

chamber against the cold wall as shown in Figure 4.1 were used in this research. The cold wall was 

maintained at a low temperature with the cold air in the adjacent compartment. To reduce radiation heat 

transfer, the heating plate was covered with polished aluminum plate. The heating plate was constructed 

from an electric heating element sandwiched between the aluminum plate and a 6mm plywood board.  

1.05m

1.05m

2.78m

2.30m

Large Test
Chamber

Small Test
Chamber

Cold
Cell C
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d 

W
al

l

 

 

Figure 4.1 Test Chambers of Awbi’s Experiment 
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Experimental configurations included a heated wall opposite to a cold wall, a heated wall adjacent to a cold 

wall, heated ceiling, heated floor, and heated plates mounted at different locations opposite to the cold wall 

and on the ceiling and the floor. 

 

To calculate the rate of heat transfer to the chamber, the conduction heat loss from the heated wall was 

subtracted from the power input to the heating plate: 

)( outinin TT
L
kAPQ −−=          (4.4) 

where: 

P  = heating plate power input, W 

inQ  = heat flux from heat panels to the inside room, W 

inT  = inside surface temperature, ˚C 

outT  = outside surface temperature, ˚C 

A  = surface area, m2 

L  = surface thickness, m 

k  = surface conductivity, W/m-˚C 

 

In calculating the convection coefficient, Awbi and Hatton subtracted the radiation heat flux from the total 

energy input:  

radinconv QQQ −=          (4.5) 

ε
σε
−

−
=

1
][ 4

jin
rad

qTA
Q          (4.6) 

where: 

radQ  = radiation heat flux, W 

ε  = surface emissivity 

σ  = Stefan-Boltzmann constant, W/m2K4 

jq  = surface radiosity, W/m2 

The convection coefficient was obtained from: 
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)( ain

conv
c TTA

Qh
−

=           (4.7) 

where: 

aT  = air temperature, ˚C 

 

The air temperature was measured 100 mm from the walls of the large chamber and 50 mm from the walls 

of small chamber. The air temperature was considered nearly uniform beyond this distance with the 

exception of the heated ceiling configuration. For this configuration, the air temperature was measured at 

the chamber center due to air temperature stratification in the room. 

 

The experiments, performed with small heated plates, whole heated surfaces and large and small test 

chambers, introduced surface scale effects into the convection heat transfer coefficient. Starting from 

Bejan’s (1995) laminar and turbulent natural convection correlations, and using Churchill and Usagi’s 

(1972) “blending” approach, the following generalized form of the natural convection correlation was 

obtained:  

3

2
)(1 c

cc T
D
ch ∆=           (4.8) 

where: 

D  = surface hydraulic diameter 

T∆  = surface and air temperature difference  

1c , 2c , 3c  = correlation constants  

 

Table 4.1 summarizes the natural convection correlations obtained by different researchers. The common 

term in these correlations is the surface-air temperature difference, which reflects the buoyancy force that 

drives the natural convection flow.  
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Table 4.1 Natural Convection Correlations 

Developer Correlation Nomenclature 

Alamdari- 
Hammond ( ){ }

m
mq

mp

c Tb
L
Tah

1

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
∆+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ∆=

T∆ : Surface – air temperature difference  
L  : Vertical surface height, H; horizontal surface 

hydraulic diameter, ss PAL /4= , ( sA : surface 

area, sP :perimeter) 

Khalifa 2)(1
CTCh ∆=  T∆ : Surface-air (50mm from surface) temperature 

difference  

Awbi 3

2
)(1 c

cc T
D
ch ∆=  

D : Hydraulic diameter 
T∆ : Surface – air temperature difference 

 

4.2 Forced Convection Model 

In Spitler’s (1990) summary of room convection literature, no forced convection heat transfer in rooms had 

been studied in terms of finding convection models for building simulation programs. Since 1990, only 

three studies have been completed and three convection models have been developed.  

 

Spitler (1990) 

Spitler investigated forced convection heat transfer in an office-sized test chamber of 15' x 9' x 9' with high 

ventilative flow rates ranging from 15ACH (Air Changes per Hour) to 100ACH. The test room was located 

inside a larger structure, which acted as a guard space to maintain a small temperature difference between 

the inside and outside of the test chamber. Fisher (1989) gave a detailed description of the experimental 

room. The test chamber consisted of 53 heated panels, which were individually controlled to maintain the 

panel surface temperature at the set point. Each of the 53 heated panels was instrumented with two 

thermocouples to measure the surface temperature. Experiments were conducted with a radial ceiling jet 

and a free horizontal jet.  

The convection coefficient was calculated as follows:  

)( refs

conv

TT
qh
−
′′

=           (4.9) 

where: 

convq ′′  = convective heat flux, W/m2 

sT  = surface temperature, ˚C 

refT  = reference temperature, ˚C 
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The convective heat flux was calculated as the measured total power input to the panel corrected for the 

radiation exchange. The room outlet temperature was selected as the reference temperature after 

investigating four options: outlet temperature, bulk air temperature, near wall air temperature, and air 

temperature as a function of height.  

 

The convection coefficient was correlated to the jet momentum number in the form of: 

50
21 JCCh .+=           (4.10) 

where: 

J  = jet momentum number defined as 
room

0

gV
VUJ =   

V  = volumetric flow rate, m/s3 

0U  = air velocity at diffuser, m/s 

roomV  = volume of the room, m3 

1C  , 2C  = empirically derived constants, holding different values for different surfaces and for different 

diffuser configurations.  

 

Fisher (1995) 

Fisher (1995) studied convection heat transfer in rooms in the same office-sized test cell that was used by 

Spitler. The experimental room configurations included both radial ceiling jets and horizontal free jets. The 

ventilative flow rate of these experiments ranged from 3 ACH to 12 ACH. Fisher selected the inlet 

temperature as the reference temperature. The “enclosure Nusselt number” and “enclosure Reynolds 

number” were defined by the following equations: 

3
roome V

k
hNu =           (4.11) 

3

1Re
room

e V
m
ρν
&

=          (4.12) 

where: 
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roomV  = room volume 

ρ   = air density 

ν  = air kinematic viscosity 

m&  = ventilative mass flow rate 

k  = air conductivity 

 

The convection correlations were derived with these two nondimensional numbers. For walls, floors and 

ceilings with both the radial ceiling jet and the horizontal free jet, the convection correlation form is:  

80
e21e ccNu .Re+=           (4.13) 

For ceilings with the horizontal free jet, the convection correlations are in the following form:  

Ar
ccNu

80
e

21e

.Re
+=           (4.14) 

These correlations have also been implemented in ESP-r.  

 

Fisher and Pedersen (1997) 

Fisher and Pedersen (1997) combined Spitler’s data (15ACH - 100ACH) and Fisher’s data (3ACH - 

12ACH) for the radial ceiling diffuser to develop forced convection correlations that could be easily used in 

simulation programs in the form of 80ACHCh .)(= .  

 

The Fisher and Pedersen correlations show that the pure forced convection coefficient is only related to the 

ventilative flow rate for building air conditioning systems. The results are very close to the pure forced 

convection correlations for other simplified configurations, in which the convection coefficient is only 

related to the fluid velocity or its non-dimensional form the Reynolds number, for example, 

3154
xx 02960Nu // PrRe.=  for turbulent boundary layer flow over a flat plate. 

 

The forced convection correlations are summarized in Table 4.2. 
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Table 4.2 Forced Convection Correlations 

Developer Correlation Nomenclature 
Spitler 
(Sidewall and ceiling inlet) 

5.0
21 JCCh +=  J : Momentum number 

Fisher and Pedersen 
(Ceiling inlet) 

8.0)(ACHCh =  ACH: air change per hour 

Fisher 
(Sidewall and ceiling inlet) 

8.0
21 Reee ccNu +=  

Ar
ccNu e

e

8.0

21
Re

+=  

eRe : Enclosure Reynolds number 

eNu : Enclosure Nusselt number 

 

4.3 Mixed Convection Model 

Mixed convection models for building simulations have been developed from flat plate experiments and 

from model sized and office sized chambers. Both water and air have been used as experimental fluids.   

 

Neiswanger (1987) 

Neiswanger investigated mixed convection heat transfer in enclosures using a rectangular test section with 

inlet and outlet “doorways” and water as the test fluid. Two sets of preliminary tests were carried out before 

conducting the mixed convection experiments. The first is a series of natural convection experiments with 

heated sidewalls, and the second is, forced flow visualization to determine the flow characteristics. 

 

Mixed convection experiments were conducted with both heated sidewalls and forced flow through the test 

section. Convection coefficients were obtained from the measured heat flux and temperature differentials. It 

was assumed that the convection coefficient was equal to the pure forced convection coefficient at low heat 

fluxes and high flow rates and was equal to the pure natural convection coefficient at high heat fluxes and 

low flow rates. Analysis of the forced convection data resulted in a forced convection correlation: 

60
zm

60
mfc zk50h .. RePr)/(.=  as shown in Table 4.3. To determine the mixed convection coefficient in terms 

of the natural and forced convection coefficients, a series of experiments covering three convection regimes 

were performed. The natural part of the convection coefficient was based on the correlation given by Fujii 

and Fujii (1976). The forced part of the convection coefficient was calculated from Neiswanger’s own 

forced convection correlation. Based on a postulated form for the mixed convection coefficient: 
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a1a
cf

a
nc hhh /)( +=  and the experimental data, the optimal value of “a” was found to be 3.2. The two 

boundaries of the mixed convection regime were determined by 051hh nc ./ >  and 051hh fc ./ > .  

 

The averaged fluid temperature measured at two different elevations in the entrance of the test section was 

used as a reference temperature. This is not applicable for convection heat transfer in buildings since the 

ceiling jet or wall jet core mixes quickly with the bulk flow. In addition, the correlations are only applicable 

to fluids with Prandtl numbers in the range of (6.11-6.45) and can’t be used directly for air (Pr = 0.7).  

However, Neiswanger’s procedure for studying all regimes of a convection heat transfer configuration has 

been generally accepted. 

 

Kamlesh Kapoor and Yogesh Jaluria (1991) 

Kamlesh Kapoor and Yogesh Jaluria studied mixed convection heat transfer for a heated horizontal ceiling 

jet. The ceiling jet turned downward at a corner and became a wall jet with opposing thermal buoyancy. 

The heated air jet was discharged as shown in Figure 4.2. The diffuser could be moved to adjust the 

horizontal distance ( L ) between the ceiling diffuser and the corner. The width of the slot diffuser ( D ) 

could also be adjusted. The jet flow separated from the ceiling before the corner and reattached itself to the 

wall at some distance below the corner. A recirculation zone was formed because of the separation and 

reattachment. The flow characteristics determined the local heat transfer rate. The local Nusselt number 

decreased downstream of the diffuser on the ceiling and reached a valley near the corner but then increased 

and reached another peak on the upper part of the vertical surface and then decreased again. Average 

Nusselt number ( DNu ) correlations were obtained for ceilings, walls and the combined ceiling and walls in 

the following form. 

 

011502
ceilingD DLGr47250Nu .. )/()Re/(.)( −−=                   (4.15) 

802502
wallD DLGr7782Nu .. )/()Re/(.)( −−=                   (4.16) 

500902
wallceilingD DLGr3561Nu .. )/()Re/(.)( −−

+ =                  (4.17) 

where: 
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ν
DU0=Re  

2

3
0 DTTgGr
ν

β )( ∞−
= ,  

L  = horizontal distance between ceiling diffuser and the corner 

D  = width of the slot for jet discharge 

0U  = velocity at the discharge of the jet 

0T  = temperature at the discharge of the jet 

∞T  = surrounding temperature 
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Figure 4.2 Experimental Configurations (Kamlesh Kapoor and Yogesh Jaluria) 

 

These correlations have not been used in building simulations since the experimental configuration is 

significantly different from the building applications. However, the airflow and heat transfer characteristics 

provide a preview on how to scale the parameters for the proposed local convection model.  

 

Awbi (2000) 

Awbi (2000) extended his natural convection heat transfer research to mixed convection. Experiments for 

six configurations labeled with numbers in Figure 4.3 were carried out in the same test chamber. 
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Convection correlations were developed for each configuration in the form of 23123
cf

23
cnc hhh ./.. )( += , 

which is presented in Table 4.3. In this correlation, cnh  is the natural convection coefficient and cfh  is the 

forced convection coefficient. 

Cold
Compartment

W
all

 1 Ceiling 4

2 1

3 (or 5 when
wall-2 is
heated)

6

W
all

 2

Fan

1, 2, 3, 4, 5, 6:
Configuration label

Wall 6

Wall 5
(C

old
 w

all
)

 

 

Figure 4.3 Experimental Chamber (Awbi) 

 

Awbi pointed out that when the mixed convection coefficient was equal to the pure forced convection 

coefficient, the natural convection heat transfer could be neglected, and vice versa. However, he did not 

present the mixed convection upper and lower limits. The mixed convection configuration of a fan driven 

flow opposing a buoyancy driven flow was also not considered. 

 

Awbi directly used Neiswanger’s results for his mixed convection relation: 23123
cnc 1hh ./. )(/ Γ+=  where 

cncf hh /=Γ . The Γ  values were obtained from the experimentally determined forced and natural 

convection coefficients. He developed a relation between Γ  and jet parameters including nozzle width, jet 

velocity at nozzle opening, and surface-air temperature difference from experimental data. The mixed 

convection correlations were derived from the Γ  relation and the natural convection correlation.  
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Beausoleil-Morrison (2000)  

Beausoleil-Morrison established a method to obtain mixed convection correlations from available natural 

and forced convection correlations. The Alamdari and Hammond and the Fisher correlations were selected 

as natural and forced correlations respectively. Using Churchill and Usagi’s (1972) “blending” approach, 

mixed convection correlations were derived in the form shown in Table 4.3. Comparing the magnitude of 

the convection coefficients predicted by the natural and forced convection correlations, the mixed 

convection regime could be identified. If the convection coefficients from both correlations are of the same 

order of magnitude, the mixed convection regime is identified. Beausoleil-Morrison considered mixed 

convection with both assisting and opposing interaction of buoyant and inertial forces.  

 

Table 4.3 summarizes the mixed convection correlations. 

 

Table 4.3 Mixed Convection Correlations 

Developer Correlation Nomenclature 

Neiswanger (Model 
sized chamber with 
water) 
 

23
cf

23
cn

23 hhh ... +=  

60
zm

60
mfc zk50h .. RePr)/(.=  

51
x

51

21nc Ra
1094x

kh /*
/

/ )(
PrPr

Pr
⎥⎦
⎤

⎢⎣
⎡

++
=  

*
xRa : Local Rayleigh number 

mz : Overall length of heated wall 

 k:  Fluid thermal conductivity 

zmRe : Reynolds number based on mean 

horizontal velocity in test section and 
m

z  

Awbi 
(Office sized chamber) 

23
cf

23
cn

23 hhh ... +=  

( ) 32 cc
1fc UWch )(=  

3

2

c
c
1

cn T
D
c

h )(∆=  

D: Hydraulic diameter of room surface 
U: Velocity at nozzle opening 

T∆ : Surface to air temperature difference 
W: Width of nozzle opening 

Kapoor and 
Jaluria (Unconfined 
surfaces) 

32 CC2
1D DLGrCNu )/()Re/()( =  

L: Horizontal distance between ceiling diffuser and 
the corner 

D: Width of the slot for jet discharge 

Beausoleil-Morrison 
(Combined free and 
confined surface) 

a
1

a
buoyantc

a
forcedcassistingmixedc hhh )()( ,,,, +=  

a
1

a
buoyantc

a
forcedcgopposmixedc hhh )()( ,,sin,, −=  

forcedch , : Fisher’s forced convection correlations 

under conventional ceiling jet 

buoyantch , : Alamdari-Hammond natural convection 

correlations 
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4.4 Summary  

All but one of the papers reviewed in the previous sections on developing natural convection correlation are 

based on experiments performed in confined spaces, such as room sized or model sized chambers. The flat 

plate natural convection correlation of Alamdari and Hammond is reviewed because of its demonstrated 

accuracy (Arnold et al. 1998). The temperature difference between the surface and the adjacent air was 

considered in all correlations. The length scales used in the Alamdari and Hammond correlations are the 

surface height for vertical surfaces and the hydraulic diameter for horizontal surfaces. Awbi used hydraulic 

diameter for both vertical and horizontal surfaces. Khalifa didn’t consider the length scale. For forced 

convection correlations, ventilative flow rate and room volume are considered by both Spitler and Fisher. 

Spitler also considered jet flow characteristics and room inlet area. For mixed convection correlations, all 

researchers except Kapoor – Jaluria applied Churchill’s “blending” approach combining natural and forced 

correlations. Neiswanger used a model-sized chamber with water as the experimental fluid. As a result, 

Neiswanger’s correlation is difficult to implement in building simulations. Beausoleil-Morrison’s mixed 

convection model was implemented in ESP-r. These correlations were blended from Alamdari and 

Hammond’s free surface natural convection model and Fisher’s forced convection model. Kapoor – 

Jaluria’s correlations have not been used in any energy/load calculations. It is reviewed here because these 

correlations were developed without using Churchill’s “blending” approach and the parameters involved 

are more suitable for the proposed local convection model. Local air velocity and a local length scale were 

considered in these correlations.  

 

All the above correlations were developed for the whole surface convection heat transfer and are not 

suitable for the coupled HB and air model as discussed in Chapter 2. However, these studies provide a 

starting point for developing the proposed local variable based convection model.  
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Chapter 5: Experimental Measurements 

 

Detailed room surface and air flow information are needed to develop the proposed local variable based 

convection model. The required experimental data include surface convection heat flux, surface 

temperatures, local air temperatures and velocities, room inlet and outlet conditions, etc. This chapter 

provides a detailed description of the Oklahoma State University (OSU) experimental room.  

 

5.1 Facilities and Instrumentation 

5.1.1 Experimental enclosure 

An office-sized experimental room was built at OSU for studying convection heat transfer in buildings. The 

enclosure has inside dimensions of 12' x 16' x 10' high and is elevated 5' from the laboratory floor to 

provide a guard space for each surface. The walls are constructed of 2' x 4' “honeycomb” cells with 

removable panels mounted inside and outside of the room. Each cell is filled with a rockwool pillow to 

reduce conduction heat transfer across the wall. This honey comb structure provides flexibility in 

experimental configurations. Detailed room construction information is given by Sanders (1995) and 

Ferguson (1997).  

 

A cold wall and a hot wall were constructed and instrumented as described in the following sections. The 

cold and hot walls as well as all passive walls are covered with low-E paint to reduce the radiation 

exchange among room surfaces. Figure 5.1 shows the side view of the OSU experimental system.  
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Figure 5.1 Side View of the OSU Experimental System 

 

Hot wall 

The hot wall consists of twenty 2' x 4' individually controlled panels as shown in Figure 5.2. The panel 

numbers correspond to the data logging channels and the surface numbers used in the radiation calculation. 

Each heated panel was constructed on a 5/8-inch gypsum board base by attaching Nickel-Chromium wire 

to the board and covering the wire with a ½" thick layer of gypsum plaster. Sanders (1995) provides 

additional information on the panel design. These heated panels replaced the original removable panels on 

the west wall. 
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Figure 5.2 Plan View of the OSU Experimental Room 

 

Two thermocouples are embedded in each panel and are positioned as shown in Figure 5.3. Two 

thermocouple readings are averaged to obtain the panel surface temperature measurement. Panel surface 

temperatures are computer controlled through a digital I/O board (PIO-96 board) and twenty solid-state 

relays. The I/O board sends 5VDC (ON) or 0VDC (OFF) to each solid-state relay and triggers on/off the 

controlled heated panels. The detailed control panel wiring is given in Fisher (1989). For this research, 

these heated panels only have on and off modes, rather than high heating, low heating, and off modes as 

used in Fisher’s room. 
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Figure 5.3 Thermocouple Layouts on Heat Panels 

 

Simply controlling the heated panels based on instantaneous surface temperature readings leads to 

temperature fluctuations in the range of 2-2.5˚F with a 0.5˚F temperature differential. Fisher’s (1989) 

pattern control strategy, which is also used in this research, reduces the temperature fluctuation range to 1˚F.  

 

The hot wall surface convection heat flux is calculated from the electric power input to each heated panel 

corrected for the radiation heat exchange and panel back heat loss. Detailed heat flux calculations and error 

analysis will be presented in Section 5.2. 

 

Cold wall 

Twenty 2' x 4' chilled water panels form a complete cold wall as shown in Figure 5.2. The cold panels are 

constructed of 14-gauge aluminum sheet with five passes of ½ inch diameter copper tubing, as shown in 

Figure 5.4. The tubes are attached to the cold panel with PEX plate and heat transfer epoxy. Two layers of 

insulation are used to reduce the panel back heat transfer. Rock wool pillows mounted in the wall behind 

the panels provide additional insulation.  
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Figure 5.4 Cold Panel Structure 

 

Cold panel surface temperatures are obtained from two thermocouples attached to the surface of the panel. 

The thermocouple layouts are shown in Figure 5.3. The cold panels are adjusted individually to specific 

surface temperatures by manually changing the water flow rates. The water temperature is maintained at a 

constant temperature by heat pump control of the water tank. 

 

Accurate surface heat flux measurements on the cold wall panels are a critical part of experimentally 

determining surface convection coefficients.  There are two options for determining the surface heat 

transfer rates on hydronic panels. 1). Measure the water mass flow rate and the water inlet and outlet 

temperatures and calculate the surface heat flux.  2). Directly measure the surface heat flux with a heat flux 

sensor. In general, the highest accuracy can be achieved through water flow rate and temperature 

measurements and the most uniform surface temperatures through direct flux measurements.  Since this 

research requires both accurate measurement of the heat transfer rate and uniform surface temperatures and 

heat fluxes, the measurement methods are combined. A heat flux sensor (“Hukseflux” HFP01) is installed 

on each cold panel and calibrated with water flow rate and temperature measurements so that the sensor 

reading reflects the average heat flux over the entire panel rather than the small area covered by the heat 

flux transducer. The water inlet and outlet temperature difference is controlled to be as small as possible so 

that the uncertainty of the temperature difference is satisfactory. A calibration curve is obtained for each 

heat flux sensor. Once installed in the room, a uniform surface temperature is maintained by a high water 

flow rate and the heat flux sensor readings are corrected with the calibration curve to give the average panel 

flux. Calibration of the heat flux sensors is described in Section 5.3.3.  
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5.1.2 Air System 

The air system includes a radial ceiling diffuser, a rectangular room outlet, an airflow measurement 

chamber, and a centrifugal fan as shown in Figure 5.1. Two sizes of Titus TMR-AA round ceiling diffusers 

were installed interchangeably for different test cases. The room outlet is a 2.0' x 2.0' square opening 

located on the bottom of the north wall on the east side. The airflow measurement chamber is constructed 

according to the ANSI/ASHRAE 51-1985 standard and is installed upstream of the room inlet diffuser. 

Three sizes of flow nozzles, 1.6-inch, 3-inch and 7-inch, are mounted in the chamber for airflow rate 

control and measurement. Combinations of the uncapped nozzles give various airflow rates. Four pairs of 

pressure taps are installed across the nozzle bank. The pressure taps are connected to manifolds using ¼" 

plastic tubing. The pressure drop through the nozzles is measured with a Setra (0-1 in. WC) differential 

pressure transducer. The airflow rate is then calculated from the pressure drop with equations provided in 

the ASHRAE standard. The airflow rate can also be adjusted by changing the fan pulleys.  

 

5.1.3 Bulk Air Measurement System 

A bulk air measurement system (Figure 5.5) was built to measure air temperatures and velocities 

throughout the entire room with a limited number of sensors. Driven by a computer program through a 

motor control board, a 10 foot rotating pole can move in both north-south and east-west directions. Two 

independent rails, mounted with DualVee tracks on aluminum base plates are fastened to the room floor. 

Sliding perpendicular to these rails is a 12-foot sheet of aluminum channel, also fitted with the steel tracks.  

A square trolley plate, mounted with the rotating pole, is then attached to this 12-foot section to allow for 

the second axis of linear motion.  Detailed construction information is given in the capstone design project 

report of Lucas et al. (2002). 

 

TSI 8470 (8475 for the new model) omni-directional velocity transducers and Type-T thermocouples are 

mounted on the rotating pole in pairs to measure local air velocities and temperatures. The air velocity 

transducer can only measure the velocity magnitude not vectors. Even though velocity vectors can improve 

the airflow analysis, the velocity scalars are considered satisfactory for this research, which focuses on 
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convection heat transfer. The air data are downloaded to a computer through a wireless data logger 

mounted at the base of the rotating pole.  

 

In this investigation, each cold or hot panel is considered as one surface node in the local convection model. 

For the purpose of getting local convection coefficients, one surface node is related to one air node, which 

is one set of air data including temperature and velocity. There are five rows of hot and cold panels in the 

experimental room and at least five pairs of thermocouples and air velocity transducers are needed on the 

rotating pole. To increase the air measurement accuracy, two pairs of air velocity transducers and 

thermocouples are laid out for each panel. The two sets of readings are averaged to correspond to the 

surface resolution.  
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Figure 5.5 Linear Bulk Air Measurement System 

 

5.1.4 Hydronic System 

Two hydronic systems are required to run the experiments. One supplies water to the cold panels and the 

other supplies water to the cooling coil.  The cooling coil water supply system consists of a three-ton 

ClimateMaster water-to-water heat pump, a 225-gallon water tank, and a heat exchanger. The cold panel 
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hydronic system consists of a three-ton FHP water-to-water heat pump, a 225-gallon water tank and the 

cold panels. Both heat pumps are computer controlled using the same control hardware and software as the 

heated panels. A simple on/off control strategy is used throughout the experiments.  

 

5.1.5 Data Acquisition System 

The data acquisition system includes four data loggers: a Fluke Helios data logger, a Fluke Hydra data 

logger, a Fluke wireless Hydra data logger and a Supco (Sealed Unit Parts Co) AC Voltage (DLAV) Data 

Logger. The thermocouple outputs for surface temperature, room inlet and outlet temperatures, heat 

exchanger outlet temperatures, panel back surface temperatures, passive wall surface temperatures, water 

tank temperature and flow nozzle pressure differential output are multiplexed by the Fluke Helios data 

logger and downloaded to a computer at a user defined time interval. Table 5.1 shows the channel 

allocation of the Helios data logger.  

 

Table 5.1 Channel Allocation of the Helios Data Logger  

Channel No. Measured Parameters 
0~39 Cold wall panels 
40~79 Hot wall panels 
80, 86,87,89 Room inlet 
81~84 Room outlet 
85 Fan coil unit outlet 
90 Nozzle pressure drop 
91 North wall 
92,93,95 Hot wall back 
94 South wall 
96 Ceiling 
97 Floor 
98 Cold air water tank 
99 Cold wall water tank 

 

The cold panel surface heat flux sensor outputs are downloaded by the Fluke Hydra data logger. The 

channel assigned to each heat flux sensor corresponds to the cold wall panel. The bulk air temperatures and 

velocities are downloaded through the Fluke wireless data logger mounted on the trolley. Channels 1-10 on 

the wireless data logger are allocated to air speed transducers while channels 11-20 are allocated to 



 44

thermocouples. The DLAV data logger is used to monitor AC line voltage for heat panel power input 

calculations. Table 5.2 summarizes all the recorded parameters. 

 

Table 5.2 Recorded Parameters  

Data Loggers Measured Parameters 
Room inlet air 
Room outlet air 
Panel back 
Panel surfaces 
Passive surfaces 

Temperature 

FCU outlet 

Helios Data Logger 

Air Volumetric Flow Rate 
Air Temperature Wireless Data Logger Air Speed 

Hydra Data Logger Cold Panel Heat Flux 
DLAV Data Logger Line Voltage 

 

The data acquisition system also includes two control programs; one turns on/off the hot wall panels and 

two heat pumps, the other runs the bulk air measurement trolley system. The heat panel on/off status is 

recorded at each time step in order to calculate total and average power input. Since the wireless data 

logger mounted on the trolley can’t be controlled by the trolley motion control program, the trolley’s 

current position and relative time variables (including start time and time interval) are recorded at each 

trolley stop in order to identify valid local air data measurements. Data acquisition system procedures are 

diagrammed in Figure 5.6, which is not a flow chart for one computer program but a flow chart for 

obtaining a complete set of experimental data.  

 

Steady state operation is determined by a balance between energy input and output. The energy calculation 

is made in a data processing program using the latest fifty time steps of data and the panel on/off status. 

Panel surface temperatures are monitored and graphed in the Helios data acquisition program interface. 

After the surface temperature reaches a constant, a set of data is collected and the heat balance is examined. 

If steady state has been reached, then the bulk air data acquisition is started and heated panel control is 

switched to pattern control as described in section 5.1.1. If steady state has not been reached, the system 

continues to run and check the heat balance until steady state is reached. 
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The trolley positions and time intervals are specified in an input file. The time intervals must be long 

enough to allow the trolley pole to stabilize at each measurement point. Data from different data loggers are 

matched with each other using time variables. Air data are assigned to specific positions in the room 

according to the positions and times recorded by the trolley system.  

 

Set Data Acquisition Parameters, Such as, Hot
Wall Set Point and Data Logging Interval

Start

Trigger Helios Data Logger

Log Data Including Surface Temperatures, Room Inlet
Outlet Temperatures, and Air Volumetric Flow Rate

Control Heat Panels and Heat Pumps On/Off

Steady Sate Reached?

Trigger Hydra, Wireless, and DLAC Data
Loggers, Keep Logging Other Data

Log Air Temperatures and Velocities and
Record Trolley Positions and Times

Move Trolley to Next Point

End Air Data Logging

End

Yes

No

Last Data Point?

Yes

No

 

 

Figure 5.6 Data Acquisition Procedures 
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5.2 Experimental Calculation and Uncertainty Analysis 

Uncertainty analysis is a critical procedure in that it quantifies the limitations of the experimental setup and 

determines whether the experimental procedure should be modified or not. Experimental uncertainties 

come from two types of errors: systematic error and random error. Random error can only be corrected by 

improving the precision of the measurement, but systematic error, which always affects the experimental 

result in the same direction, can often be corrected by calibration. This section will present the error in both 

directly measured values and calculated values.  

 

The raw data obtained from experiments are processed for the proposed local variable based convection 

model. To meet the objectives of this research, procedures are used to calculate the following final results 

and intermediate results:   

1. the hot panel power input 

2. radiation heat transfer between room surfaces 

3. heat loss from hot and cold surfaces to the guard space 

4. convection heat flux 

5. convection coefficient by location and reference temperature 

 

These calculations are made with the data obtained under steady state room conditions. According to 

Taylor (1982) for directly measured variables, the propagation of errors can be obtained using either direct 

or quadratic summation of all error sources. The direct summation may underestimate the error by 

canceling error sources. Therefore, quadratic summation is used in this research: 

22
2

2
1 nesesesev +++±= L         (5.1) 

where: 

ev  = variable total error 

nes  = error source 

The uncertainty for the calculated results using Holman’s (1989) non-linear relation is: 
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where: 

eR  = uncertainty interval in calculated result 

nev  = variable uncertainty interval 

nv  = variable number n  

nvo  = variable value  

 

5.2.1 Error Estimation of Individual Measurement 

Temperature 

Temperature measurements of room surfaces, room inlet and outlet, and flow nozzle inlet use the FLUKE 

Helios data acquisition system. The error sources include the thermocouple wire, rated as C50 °± .  

according to ANSI Standard MC96.1-1982, cold conjunction compensation, estimated as C10 °± .  (Spitler 

1990) and the voltage measurement, estimated as C10 °± .  (Spitler 1990). Using the quadratic summation 

for directly measured variables, the temperature error can be estimated as C50 °± . . 

 

This temperature error is too large for this research, which requires accurate measurement of small 

temperature differences between panel surface and near wall air. In order to reduce the uncertainty of the 

temperature measurement, each thermocouple was calibrated in-situ. Each calibration curve is both 

thermocouple and channel specific. The precision thermometer used in calibration is marked at C10 °.  

intervals and can be read to an accuracy of C°± 05.0 . After calibration, each thermocouple had a correction 

curve with an error estimated at C10 °± . . 

 

Air speed 

The local air velocities are predicted from the following equation, Equation 7.5, which is described in detail 

in Chapter 7.  
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The diffuser outlet velocity 0U  are measured with Dwyer 640 with the selected range of )30000( fpm− . 

The accuracy for this range is sm /3.0±  given by the manufacturer. The accuracy of the coefficient 12.0  is 

estimated to be 016.0±  based on the velocity measurement given in Table 7.1. The error due to the jet 

travel length )( YLceiling+ is neglected compared to other two error sources. Therefore, the uncertainty of the 

local air velocity is estimated as: 
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Air volumetric flow rate 

The air volumetric flow rate is measured using flow nozzles. According to ASHRAE standard 51-1985, the 

fractional uncertainty of the volumetric flow rate is given as: 
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where:  

Ce′  = fractional error in nozzle discharge coefficient  

Ae′  = fractional error in nozzle area 

fe′  = fractional uncertainty of static pressure measurement 

ρe′  = fractional uncertainty of the air density 

Ne′  = fractional uncertainty of the fan speed measurement 

 

The standard also gives the typical error for the nozzle discharge coefficient and the nozzle area: 

012.0±≈′Ce  

005.0±≈′Ae  

From the standard, the air density error is estimated as: 

005.0±≈′ρe  
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Static pressure error and fan speed error are estimated as: 

005.0±≈′Ne  

01.0±≈′fe  

In total, the fractional uncertainty of the volumetric flow rate is 0150.± . 

 

Temperature difference  

Temperature difference will be used in calculations such as the surface heat back loss and the convection 

heat transfer coefficient. The estimated error can be calculated as: 

22
baba eTeTTe +±=∆ −          (5.5) 

The temperature measurements of aT  and bT  have an error of C10 °± .  as estimated above, so the 

accumulated error for the temperature difference is estimated to be C140 °± . . 

 

Heat Flux 

The heat flux sensors used on cold panels have fractional errors of 070.±  after calibration. Section 5.4 

discusses the calibration procedure.  

 

5.2.2 Calculation Algorithms and Uncertainty Analysis  

Hot panel power input 

The heated panel energy input is a function of line voltage and panel resistance according to Equation 5.6.  

i

2

power RA
Vq =           (5.6) 

where: 

powerq  = heat flux to each panel, W/m2 

V  = line voltage, volts 

R  = resistance or the panel, Ω  

iA  = panel area, m2 
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The nominal line voltage for this experiment is 120 volts and the estimated error from the line voltage 

fluctuation can be as large as V4± . An AC data logger from Supco (Sealed Unit Parts Co.) Inc. is used to 

monitor the line voltage, the voltage measurement error is estimated as V50.± . Together with the voltage 

fluctuation error between two data samples, the voltage is estimated to have an error of V01.± . The 

nominal resistance of the heated panel is Ω80  and is measured individually with an error of Ω± 50. . 

Therefore, the estimated error for heat panel power input is: 

2V2
2

R
2

2
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power
power R

Ve2
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=     (5.7) 

 

Radiation heat transfer 

Twenty heated panels and twenty cold panels together with the passive walls give a total of 44 surfaces in 

the experimental room. The radiation heat transfer from the i th surface to the j th surface can be 

calculated using Hottel’s gray interchange area method (Spitler 1990): 

)()(
4
j

4
iji

i
jirad TTSS

A
1q −=− σ         (5.8) 

where: 

ji SS   = gray interchange area, which has the dimension of area and depends on surface emissivity jε  only 

σ  = Stefan – Boltzman constant 

iT  = temperature of the i th surface 

jT  = temperature of the j th surface 

iA  = surface area (m2) 

The uncertainty of the radiation heat transfer from the i th surface to the j th surface is: 

)(16)( 626222442
)( jjiijijijijirad TeTTeTSSTTSSeeq −+−±=− σ     (5.9) 

where jji eSSe ε=  

The total radiation heat transfer rate from the i th surface to all other surfaces can be calculated with: 
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And the uncertainty is estimated as: 
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Heat loss from experimental room to environment 

The surface heat transfer back loss is also recorded to using the equation: 

R
TTATTAkq oi

oiback
)()( −

=−=
δ

        (5.12) 

where: 

backq  = heat loss from room 

k  = thermal conductivity of the surface 

δ  = surface thickness 

iT  = inside surface temperature  

oT  = outside surface temperature  

R  = thermal resistance value 

The thermal resistance was estimated as R-67 (Ferguson, 1997), 11.80 m2·K/W in SI units. For all the 

passive surfaces in the experimental room, the heat loss can be neglected since the passive walls are also 

well insulated and the temperature difference between the inside surface and outside surface is small.  

The uncertainty of the back loss is calculated with the following equation: 

WATeAkTeeq oioiback 23.180.11 ±=∆±=∆±= −− δ
      (5.13) 

Compared to the error from other sources, this error can be neglected. 

 

Convection heat transfer flux 

The convection heat flux to cold panels is calculated with the equation: 

)( siradfluxconv qqq −−=          (5.14) 
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where: 

fluxq  = heat flux sensor measurement for the cold panel 

)( siradq −  = radiation from the i th surface to other surfaces 

The convection heat transfer rate from the heated panels is calculated as: 

backsiradpowerconv qqqq −−= − )(         (5.15) 

where: 

backq  = heat transfer back loss from heated panel  

Therefore, the uncertainty of convection heat transfer rate can be calculated as: 

2
sirad

2
fluxconv eqeqeq )( −+±=         (5.16) 

for cold panels, and  

2
back

2
sirad

2
pwrconv eqeqeqeq )()()( )( ++±= −       (5.17) 

for heated panels.  

 

Convection heat transfer coefficient 

The convection heat transfer coefficient is calculated as: 

)( refsurf

conv
c TT

qh
−

=          (5.18) 

where: 

ch  = convection heat transfer coefficient 

surfT  = surface temperature 

refT  = reference air temperature 

 

The uncertainty associated with the convection coefficient is given by: 
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Air heat transfer rate 

The ventilation air heat transfer rate is calculated by Equation 5.20. 

)( inoutairairairair TTCpvq −= ρ&    .024     (5.20) 

where: 

inT  = room inlet temperature 

outT  = room outlet temperature 

airv&  = air volumetric flow rate, m3/s 

Since the uncertainty associated with the air density, airρ , and the specific heat, airCp , are small compared 

to the uncertainty associated with the temperature difference and the air volumetric flow rate, both errors 

are neglected. The uncertainty of the air heat transfer rate is estimated as: 
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The fractional error in the volumetric flow rate is 020.±  as given above and the error in the temperature 

difference can be calculated from the error propagation formula given in equation 5.5. 

For this experiment, the uncertainty of air ventilation heat transfer rate will be: 
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5.2.3 Systematic Error Estimation 

A heat balance of the whole system is used to check the systematic error associated with hot wall, cold wall, 

and air system measurements. The experimental room energy input and output errors are accumulated 

separately to estimate the systematic error. For this experimental room, there was one source of energy, the 

heated panels. There were two energy sinks, the cold panels and the cold air system. Since the errors 

associated with the heated panel voltage and resistance measurements are small compared to the error 

associated with the heat flux measurement, the systematic errors are estimated as heat sink errors, 

associated with the cold wall and air system.  
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For a typical experimental case, with cold wall heat flux errors of +/-0.07, and of air system heat transfer 

rate errors of +/-0.05, the systematic error is roughly +/-10%.  

 

5.3 Calibration of Experimental Devices 

5.3.1 Thermocouples  

Thermocouples on both the Helios data logger and the wireless data logger were calibrated in-situ. An 

insulated water bath was used in the calibration to measure four temperature points as shown in Figure 5.9. 

A NIST standard thermometer with a minimum scale of 0.1ºC and an accuracy of  +/-0.05ºC was used to 

calibrate the thermocouples.  

 

Figure 5.7 and Figure 5.8 show typical calibration curves for thermocouples in the wireless and the Helios 

data loggers. The calibration curve for each thermocouple is shown in Appendix A. 
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Figure 5.7 Thermocouple Calibration Curve for Channel No.1 on Helios Data Logger 
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Figure 5.8 Thermocouple Calibration Curve for Channel No.11 on Wireless Data Logger 

 

The uncertainty of the thermocouple readings is estimated as +/-0.1ºC after calibration. Together with the 

thermometer uncertainty (+/-0.05ºC), the total error is estimated as +/-0.1ºC. 

 

5.3.2 TSI Air Velocity Transducers  

The TSI-8470 air velocity transducers were calibrated by Davis-Inotek Calibration Laboratory. Table 5.3 

shows the calibration curves correlated with the tabulated data provided by Davis-Inotek. Figure 5.9 shows 

one of the calibration curves. 

 

Table 5.3 TSI Calibration Curves  

Sensor serial No. Calibration Curve 
89030236 y = 0.97x + 11.20 

89010056 y = 1.00x - 14.77 

88070018 y = 1.01x + 3.70 

89010058 y = 1.05x - 15.75 

88070020 y = 0.99x + 13.55 

89030238 y = 1.00x + 4.13 
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Figure 5.9 A Typical TSI Air Velocity Transducer Calibration Curve 

 

The calibrated TSI air velocity transducers have a published uncertainty of +/-(3% + 10FPM).  

 

5.3.3 Heat Flux Sensor Calibration  

The heat flux sensor is used to measure the total cold panel surface heat flux. The heat flux sensor area 

together with the guard area is about 0.005m2. This is a small fraction of the total surface area of the cold 

panel. The sensor output was therefore calibrated to the total panel surface heat flux.  

 

The heat flux sensor itself has two main error sources; these are due to changes in the operating 

temperature and the surface conductivity. The accuracy ( %20± ) given by the manufacturer assumes that 

the operating temperature would change at most 40˚C from the factory calibration temperature and that 

conductivity would change from 0.2 to 4.0W/m-K. Under the experimental conditions in the test room, 

where temperature and surface conductivity changes are much smaller than the manufacturer’s assumption, 

the heat flux sensor accuracy should be significantly higher than the published accuracy. In addition, the 

published accuracy was determined for soil heat flux measurement, in which the heat flux sensor is 

embedded in the medium. In this research application, with the heat flux sensor mounted on the surface, the 

deflection error due to sensor conductivity should be estimated differently. The calibration procedure 

described below uses the measured heat transfer rate from the water to estimate the heat flux sensor 

accuracy. 
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5.3.3.1 Calculation Design and Error Analysis  

The total panel heat flux was experimentally determined by maintaining a measurable temperature 

difference between the water inlet and outlet. A calibrated T∆  thermocouple was used to measure the 

temperature difference. Using T∆  thermocouples has two advantages. First, it reduces two temperature 

measurement errors to one. And second, logging a voltage signal instead of temperature signal has a higher 

accuracy for the Fluke data loggers. Water mass flow rate is measured directly using a precision scale and a 

stop watch. The heat transfer rate is calculated as: 

ATcmqw /∆=           (5.23) 

where: 

wq  = heat transfer rate from cold water, W/m2 

c  = water specific heat, J/g-˚C 

m  = water mass flow rate, g/s 

T∆  = water inlet and outlet temperature difference, ˚C 

A  = cold panel surface area, m2 

 

The error from each component of this equation is accumulated using Holman’s non-linear relation: 
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The relative error of the heat flux is: 
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The systematic error described in Section 5.3.3 is determined by heat sink errors associated with the air 

system and cold wall. With an air system heat transfer rate error of +/-5%, the heat flux sensor 

measurement should be equal to or less than +/-5%. Considering the limitation of measurement devices, the 

heat flux sensor errors are aimed to within +/-10%.  Therefore, the uncertainty associated with each 

component in the above equation must be reduced to less than +/-10% so that the accumulated error could 

be within +/-10%.  
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5.3.3.2 Test Setup  

Figure 5.10 shows the calibration setup. Water mass flow rate is measured using a precision scale and a 

stopwatch. With a scale error of +/-0.1g, and a stopwatch error of +/-0.5s, the mass flow rate error can be 

easily controlled to within +/-0.0001 when the recording time is longer than 120 seconds. The error in 

measured panel surface area can be easily controlled at +/-0.001 with a medium accuracy length scale. The 

relative error in temperature difference is related to its magnitude. To get a specific relative error, a 

minimum temperature difference is required. For example, if the maximum acceptable error in the 

temperature difference is +/-0.05˚C, the temperature difference should be at least 1˚C. The uncertainty 

associated with the specific heat is assumed to be negligible compared to the measurement error.  
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Figure 5.10 Calibration Test Setup 

 

The temperature difference between panel inlet and outlet is measured using two T∆  thermocouples. 

Figure 5.13 shows the T∆  thermocouple wiring. The coefficients for these two thermocouples are 

calibrated using a NIST certificated thermometer with an accuracy of +/-0.05ºC. The coefficients are found 

to be 24764.06ºC/V and 24755.62ºC/V respectively. Two temperature readings accumulated the error to +/-

0.07ºC. 

 

Material A

Material B Material B
+ -

T1 T2

 

Figure 5.11 T∆  Thermocouple Wiring 
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The precision of a measurement is the random error around its real value. The precision of the temperature 

data-logging system was obtained by submerging the thermocouples into a constant temperature water bath 

for 10 minutes, and logging data at 20-second intervals. This procedure was repeated three times. Typical 

results are shown in Figure 5.12. The fluctuations of the thermocouple readings were found to be +/-0.07˚C, 

which is the data logger resolution. Therefore, the random error is estimated as +/-0.07˚C. In this 

calibration procedure, the random error was minimized by sampling for a long period of time and is 

neglected in the total error estimation.  

 

The temperature measurement system error that contributed to the systematic error has two sources, one is 

from the thermocouple and the other is from the data logger. Using a standard thermometer to calibrate the 

whole measurement system can reduce the systematic error to the accuracy of the standard thermometer. 

Since the accuracy of the NIST certified standard thermometer is +/-0.05˚C, the calibration curve also has 

an error of about +/-0.05˚C. As a result, the error of the temperature measurement system was estimated at 

+/-0.07˚C.  
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Figure 5.12 Data Logger Readings for Temperature Differential of 1.7ºc 

 

To calibrate each panel flux transducer, the panel surface temperature, near wall air temperatures and 

velocities were monitored with thermocouples and air velocity transducers (TSI8470) as shown in Figure 
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5.13. The air speed transducers and the thermocouples were mounted on a stand for stability. The heat flux 

back loss are estimated and considered in the calibration. A wind tunnel as shown in Figure 5.14 was 

constructed to provide uniform airflow. The cold panel was flush-mounted on one side of the wind tunnel. 

A variable speed fan was mounted at one end of the wind tunnel and three separate settling means were 

positioned upstream of the test panel. A damper was installed at the fan outlet to control the volumetric 

flow rate. Two heaters were located upstream of the test panel to control the air temperature. The 

calibration tests covered all conditions expected in the experimental room. 
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Figure 5.13 Monitored Surface and Air Parameters 
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Figure 5.14 Calibration Wind Tunnel 
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5.3.3.3 Test Parameter Setup  

Considering the measurement error and the surface temperature and heat flux uniformity requirement, the 

temperature difference between panel inlet and outlet was controlled at C02dTC41 °≤≤° ..  by adjusting 

the water flow rate.  

 

For each panel, a set of calibration tests was performed as shown in Table 5.4. This set of tests was 

designed to cover natural, mixed, and forced convection conditions in the experimental room. Since one of 

the characteristics of the thermopile embedded in the heat flux sensor is temperature dependence, the 

calibration tests also cover the expected temperature range of experiments. More than 7 points were tested 

for most panels to improve the accuracy. A calibration curve was calculated for each panel in the form of:  

B
sensorwater qAq )(=          (5.26) 

where: 

sensorq  = heat flux sensor reading, W/m2 

A , B  = coefficients  

 

Table 5.4 Test Parameter Setup 

Test Number Chiller Temp. Heater Fan Speed MFR_Control 
1 0ºC On Full C02dTC41 °≤≤° ..  
2 0ºC On ¾ C02dTC41 °≤≤° ..  
3 0ºC On ½ C02dTC41 °≤≤° ..  
4 0ºC Off Full C02dTC41 °≤≤° ..  
5 0ºC Off ½ C02dTC41 °≤≤° ..  
6 0ºC Off 0 C02dTC41 °≤≤° ..  
7 5ºC Off 0 C02dTC41 °≤≤° ..  

 

The system required about 1 hour to reach steady state for the first point of each panel. Adjusting the mass 

flow rate to reach steady state at the next point required about 20 minutes. On average, each panel required 

about 6 hours of testing.  
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5.3.3.4 Calibration Results  

Table 5.5 shows typical test results using panel number 2 as an example, and Figure 5.15 shows the 

measured and correlated data for panel 2 and panel 6. The total error in predicted water heat flux is within 

+/-7% for this calibration test. The differences between the calibrated sensor readings and the average heat 

transfer rates are also within +/-7%. Therefore, the uncertainty on panel surface heat flux measurement is 

estimated as +/-10%. Table 5.6 shows the heat flux correlations for all panels.  
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Figure 5.15 Heat Flux Sensor Calibration Results for Panel No.2 and No.6 

 

Table 5.5 Calibration Results for Panel No.2 

Test Number Delta T QheatFluxsensor Qwater QCorrelated Error 

1 1.47 104.1 124.2 125.1 0.0070 

2 2.10 165.5 177.4 187.4 0.0560 

3 1.47 165 188.2 186.9 -0.0069 

4 1.52 233.7 251.7 253.1 0.0056 

5 1.50 289. 7 296.7 305.2 0.0288 

6 1.60 296.9 310.7 311.8 0.0037 

7 1.75 237.5 260.6 256.7 -0.0149 

8 1.47 188.9 218.8 210.3 -0.0389 

9 1.80 106.2 137.0 127.3 -0.0708 

10 1.59 55 69.2 71.7 0.0358 
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Table 5.6 Calibration Correlations for All Panels 

Panel Number Calibration Curve Max Error 

1 y = 1.799 x 0.882 -0.06 

2 y = 2.179 x 0.872 -0.07 

3 y = 2.644 x 0.804 0.04 

4 y = 2.259 x 0.840 -0.07 

5 y = 2.633 x 0.817 0.05 

6 y = 1.758 x 0.893 0.04 

7 y = 2.771 x 0.820 -0.05 

8 y = 2.536 x 0.844 0.06 

9 y = 2.536 x 0.821 -0.02 

10 y = 1.803 x 0.887 -0.04 

11 y = 1.613 x 0.916 0.03 

12 y = 2.3159 x 0.856 0.05 

13 y = 2.2119 x 0.845 0.01 

14 y = 2.2074 x 0.850 -0.04 

15 y = 3.0139 x 0.792 -0.07 

16 y = 2.9555 x 0.792 -0.06 

17 y = 2.2468 x 0.844 -0.02 

18 y = 2.2773 x 0.859 -0.05 

19 y = 2.1319 x 0.827 0.02 

20 y = 1.9984 x 0.857 -0.01 
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Chapter 6: Obtaining Nondimensional Numbers for Local Variable Based 

Convection Model 

 

A valid convection model must have a properly defined reference temperature. To be generally applicable, 

a convection model also needs a properly defined length scale so that it can be applied in cases that are 

dynamically similar but with different dimensions. Currently, no agreement has been reached on how to 

select either the reference temperature or the length scale for room convection models. This chapter 

discusses the selection of length scales for the radial ceiling diffuser room configuration.  Chapter 7 

discusses the selection of the reference temperature. 

 

6.1 Nondimensionalization Method  

Selection of length scales is difficult for room airflow, and previous investigations have not reached an 

agreement on how to define it. Length scales define the nondimensional numbers that allow experimental 

results to be applied to dynamically similar configurations. Awbi and Hatton’s natural convection model 

used surface hydraulic diameter defined by the surface area and the perimeter as a length scale. Khalifa’s 

natural convection model is dimensional and doesn’t include a length scale. Kapoor and Jaluria’s (1991) 

mixed convection model used nozzle width (D) as length scale for nondimensional numbers, GrD, ReD, and 

NuD. The ratio of ceiling length to nozzle width (L/D) was also considered to have an effect on surface 

convection heat transfer and was included in the correlations. Other length scales, such as surface height 

(used in Alamdari and Hammond’s (1983) natural convection model), overall length of heated wall (used in 

Neiswanger’s (1987) forced convection model), and nozzle width (used in Awbi’s (2000) forced 

convection model), were all used without theoretical analysis. 

 

In order to reduce the randomness associated with selecting length scales for room convection models, a 

general method is desired. Since length scale is used to define nondimensional numbers, seeking a proper 
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length scale can be considered in the context of dimensional analysis for a particular flow. Therefore, the 

objective of rationally determining the length scales is achieved in the nondimensional number definitions.  

 

Bejan (1995) used scale analysis to determine nondimensional numbers for natural convection flow in 

enclosures. Scale analysis is a technique for simplifying equations by estimating the order of magnitude of 

each term and then eliminating the “small” ones. Bejan’s (1995) scale analysis non-dimensionalized the 

mass, momentum, and energy conservation equations to determine the form of the Nusselt and Rayleigh 

numbers and their relationship to each other for natural convection in enclosures. However, scale analysis 

can’t be applied to forced convection heat transfer in room enclosures because of the flow complexity and 

the unavailability of simplifying assumptions typically used in natural convection flows. Therefore, a new 

method is required to properly define nondimensional numbers for forced convection models of room 

enclosures. 

 

The form of the proposed forced convection correlation relies on the fact that nondimensional numbers are 

basically ratios of two comparable parameters. Grashof number is defined as the ratio of buoyancy and 

viscous forces, Reynolds number is defined as the ratio of inertia and viscous forces, and Nusselt number is 

defined as the ratio of convection and conduction heat transfer rate. These ratios apply to any infinitesimal 

control volume in the flow field. The parameters that are used to describe the flow in the control volume 

can be scaled with macro-parameters that are characteristics of the flow field under consideration. This 

method of finding length scales relies on the basic definition of the non-dimensional numbers and is used in 

this research. The proposed non-dimensionalization method is a semi-empirical method that relies on a-

priori knowledge of the basic flow field characteristics.  

 

6.2 Description of the Room Flow Field 

Airflow characteristics of most ventilated rooms depend primarily on the diffuser location and design. For a 

typical ventilated room, the buoyancy effect is negligible and forced convection dominates the entire flow 

field. A centered radial ceiling diffuser configuration was selected for this research due both to its 

widespread use in buildings and the accessibility of existing experimental ceiling diffuser data sets.  
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In the experimental room described in Chapter 5, the flow is discharged from a radial ceiling diffuser 

located in the center of the ceiling.  The ventilative flow rate and surface buoyancy effect are controlled to 

ensure forced convection flow on the enclosure walls. The near-wall airflow characteristics for this 

configuration are dominated by the jet attached at the ceiling and walls. The near-wall flow field can be 

described by six distinct regions as shown in Figure 6.1.  These regions are the ‘recirculation’ region, 

located adjacent to the diffuser, the ‘reattachment’ region, the ‘wall jet’ region, the ‘detachment’ region, the 

‘reattachment’ region, and the ‘reattached wall jet’ region. 
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Figure 6.1 Jet Flow of the Interested Field 

 

In order to apply the non-dimensionalization method to this flow field, the characteristic length of each 

region was experimentally determined. This was accomplished by measuring air speeds on a grid near the 

ceiling and walls. Due to the wide range of air velocities in the near wall regions of interest, two different 
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types of air velocity transducers with different measurement ranges were used. The Dwyer Model 640-0 air 

velocity transmitter has four field selectable ranges, 0-200, 0-1000, 0-3000, and 0-12,000 FPM. The 

sensing tip is enclosed in an open window on the probe, and the measurement is actually one-dimensional. 

The TSI Model 8470 omni-directional sensor with a measurable range of 0-1000FPM was also used. The 

TSI sensors have higher accuracy but cannot be used to resolve the flow direction. The measurement grid 

under the ceiling is 1" x 0.5" while it is 1" x 6" near the wall. Using VTK, the measured air speed was 

plotted as shown in Figure 6.2a. Additional flow field details are shown in Figure 6.2b and 6.2c.  
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Figure 6.2 Airflow of the Measurement Field 



 68

 

The flow field shows that the jet flow from the diffuser behaves as an “offset jet”, which leaves the diffuser 

as a free jet some distance from the surface, then attaches to the ceiling and develops as a wall jet. Figure 

6.2c shows the reattachment and Figure 6.2b shows the ceiling jet and wall jet development. At the corner, 

the wall jet detaches from the ceiling and reattaches to the wall and again develops as a wall jet as shown in 

Figure 6.2b. 

 

The offset ratio, DL / , is defined as the ratio of the distance from the center of the jet to the surface, L , 

and the jet diameter, D , at the diffuser as shown in Figure 6.1. The radial ceiling diffuser produced an 

offset jet with a small offset ratio as shown in Figure 6.2c.  

 

As illustrated in Figure 6.1, the offset jet flow usually consists of three flow regions: the recirculation 

region, the reattachment region, and the wall jet region. The reattachment location, the center of 

recirculation, the jet width before and after reattachment, and the velocity and temperature distribution of 

the entire flow field have been previously studied. Bourque and Newman (1960) predicted the reattachment 

location rx  as a function of the offset ratio for the two-dimensional plane offset jet:  

32 )/(0169.0)/(07.0)/(332.0 DLDLDL
D
xr +−=       (6.1) 

Parameswaran and Alpay (1975) proved this relation with their own data, the data of Perry (1967), and the 

data of Bourque and Newman. Beyond reattachment, the offset jet can be considered as a plane wall jet 

because velocity similarity (Parameswaran and Alpay, Song, Yoon, and Lee (2000)) and temperature 

similarity (Holland and Liburdy (1999)) are both reached.  

 

Similar research results were obtained for a radial offset jet. Tanaka et al. (1978) presented a relation 

between reattachment location and offset ratio. A linear relation was observed for offset ratios greater than 

2. This offset ratio is out of range for standard room configurations and is not shown here. A polynomial 

relation was also developed for offset ratios less than 2, i.e., 2DL </ . This relationship, which is 

applicable to the offset jets considered in this investigation, was given as: 
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32r DL1120DL0611DL7574
D
x )/(.)/(.)/(. +−=       (6.2) 

Two wall jet regions, the inner layer, which is nearest the surface, and the outer layer, are separated by the 

maximum velocity line. The jet half width is defined as the outer layer thickness at which the magnitude of 

the velocity is one half of the maximum velocity. The half width velocity and the half width are usually 

used to define the jet’s velocity and boundary layer thickness due to the complexity and instability of the 

inner layer. For a two-dimensional plane wall jet, Launder and Rodi (1981) presented the maximum 

velocity decay and gave the growth of the jet half width as: 

00200730
dx

dy
2

1
.. ±=          (6.3) 

This represents a linear relationship. For a radial wall jet, a similar relation was presented by Govindan et al. 

(1974) and Bakke (1957): 

9150

2
1 xy .∝           (6.4) 

940

2
1 xy .∝           (6.5) 

 

The exponent value on x (0.94 and 0.915) was determined to be 1.02 by Glauert (1956) and 1.0 by Dawson 

and Trass (1966) through theoretical analysis. The exponents from experiments and theoretical analysis are 

very close to 1.0. For this research, the exponent is assumed to be 1.0 for simplicity. Therefore, the half 

width of the radial wall jet is: 

xy
2

1 ∝            (6.6)  

 

The half width of the wall jet can be scaled by ‘X’, the distance from the diffuser as shown in Figure 6.1, in 

formulating nondimensional numbers. 

 

The maximum velocity decay of the radial wall jet was given by Baake as:  

12.1−∝ xUm           (6.7) 
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6.3 Nondimensional Number Expressions 

Based on the offset jet characteristics described in the proceeding section, the non-dimensionalization 

method can be applied to room enclosures with a centered radial ceiling diffuser. The Reynolds number and 

Nusselt number for this flow configuration will be defined in this section. In addition, the Grashof number 

for natural convection in enclosures will be developed using the non-dimensionalization method.  

 

6.3.1 Reynolds Number  

For forced convection flow in rooms, the Reynolds number and Nusselt number form the basis of the 

convection model. The Reynolds number characterizes momentum driven flow and determines the 

magnitude of forced convection heat transfer. The non-dimensionalization method is applied by defining 

the Reynolds number as the ratio of the inertia force to the viscous force. For the ceiling flow, defining the 

Reynolds number in this way as shown in Figure 6.1 gives the following relationship for the Reynolds 

number: 

y
u
x
uyu

F
F

viscous

inertia

∂
∂
∂
∂

==
µ

ρ
Re          (6.8)  

where: 

x
uVu

t
x

x
uV

t
uVmaFinertia

∂
∂

=
∂
∂

∂
∂

=
∂
∂

== ρρρ   

y
uAFviscous
∂
∂

= µ      

A = surface shear area of the control volume  

V = volume of the control volume   

Applying the result of the offset jet analysis in section 6.2 to the radial ceiling jet, the flow unit thickness is 

scaled as: 

xy ~       

For the offset jet on the ceiling, the following scales are identified as shown in Figure 6.1:  

Xx ~ , mUu
2
1~  
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Where “ X ” is the local distance from the diffuser center and “ mU
2
1 ” is the local half width velocity. The 

local maximum mU  can be obtained using jet theory. Therefore, the Reynolds number for the ceiling jet 

flow is defined as follows: 

ν
XU m2/1~Re           (6.9) 

Airflow on the vertical surfaces is also characterized as a reattached wall jet. According to Kapoor and 

Jaluria (1991) and the experimental results presented in section 2.2, the ceiling jet flow separates from the 

horizontal surface before reaching the corner and then reattaches itself to the vertical surface. So, the 

airflow near the vertical surface is another reattached wall jet after the corner. Similarly, the Reynolds 

number on the vertical surfaces is defined as: 

ν
YVm2/1~Re           (6.10) 

Here, “Y” is the distance from local point to the ceiling and wall corner as shown in Figure 6-1. The wall 

jet maximum velocity continuously decays from the ceiling jet. Therefore, the overall distance from the 

diffuser is used to evaluate the local maximum jet velocity. 

 

6.3.2 Grashof Number  

The Grashof number may be defined as the ratio of buoyancy force to viscous force. In most air-

conditioned rooms, all surfaces are hot compared to the ventilation air. The buoyancy effect may result in 

warm plumes from the floor, a stagnant boundary layer under the ceiling, and upward buoyancy driven 

flow on walls.  

 

For an infinitesimal control volume in the airflow field near the vertical surface, the fluid temperature is 

assumed to be the same as surface temperature, sT , and the air density, sρ , is evaluated at sT . The Grashof 

number is then defined as: 

x
v

gx
F

F
Gr s

viscous

buoyancy

∂
∂

−
== ∞

µ

ρρ )(         (6.11) 

where:  
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VgF sbuoyancy )( ρρ −= ∞  

x
vAFviscous ∂
∂

= µ  

Similarly, the variable scales and the Boussinesq approximation are applied to the Grashof number 

definition:  

Yy ~  

)( ∞∞ −=− TTsss βρρρ  

Analysis of the energy conservation equation (Bejan, 1995) gives the scales of the buoyancy driven flow 

velocity:  

2Pr
~

T

Yv
δ
ν  

Here “Y ” is the relative distance from the buoyancy driven flow boundary layer starting point, which is the 

bottom edge of the surface for walls. The thermal boundary layer thickness, Tδ , scales x  for airflow. The 

boundary layer thickness increases as the buoyancy driven flow develops along the vertical surfaces, and 

the thickness of the control volume is scaled as: 

Yx ~  

The Grashof number for the walls then becomes: 

2

3
s gYTTGr

ν
β Pr)(~ ∞−          (6.12) 

 

According to Bejan (1995), the Grashof number for the ceiling and floor, which may be characterized by 

stagnant air layers and plumes, is given by: 

2

3
s pATTgGr

ν
β )/)((~ ∞−          (6.13)  

 

6.3.3 Nusselt Number  

By definition, the Nusselt number is: 
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A
y
Tk

ATThNu s

∂
∂
−

= ∞ )(          (6.14) 

For the attached wall jet, the following scales in the flow field are identified: 

∞−∂ TTT s~ , yy ~∂ , Xy ~  

Nusselt number for forced convection on ceilings and floors is:  

k
hXNu ~           (6.15) 

   

The Nusselt number for natural convection is defined as:  

k
hYNu ~  for walls         (6.16) 

k
pAhNu )/(~  for floors and ceilings       (6.17)  

 

6.3.4 Summary  

The non-dimensionalization method is used to find appropriate length scales for developing room 

convection models. The non-dimensionalization method uses the flow characteristics of the radial offset jet 

to find non-dimensional numbers and then the length scales are automatically obtained. The 

nondimensional numbers, with proper length scales are shown in Table 6.1. The detailed definition for the 

reference temperature will be discussed in Chapter 7. 

 

Table 6.1 Nondimensional Numbers for the Local Variable Based Room Convection Model 

Numbers Walls Ceilings and Floors 

Reynolds Number 
ν

YVm
w

2/1~Re
 ν

XUm
fc

2/1~Re ,
 

Grashof Number  
 2

3
s

w
gYTTGr

ν
β )(~ ∞−

 
2

3
s

fc
pATTgGr

ν
β )/)((~,

∞−  

Forced  
k

hYNuw ~  
k

hXNu fc ~,  
Nusselt 
Number 

Natural  
k

hYNuw ~  
k

pAhNu fc
)/(~,  
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Chapter 7: Developing Local Variable Based Convection Model 

 

Chapter 6 developed the nondimensional numbers required for local variable based convection models in 

ventilated rooms with radial ceiling diffusers. This Chapter will use these numbers and experimental data to 

develop convection correlations. Experimental data from literature will be used to validate the correlations 

and extend their application ranges. 

 

7.1 Validation of Experimental Data 

Experimental data were considered valid only when the system reached steady state and a room energy 

balance had been achieved. Energy balances were checked before actually running the experiments to 

assess the room performance and were also checked for each set of experimental data. The experimental 

room has only one source of energy input, i.e. power input to the hot wall. Energy is removed from the 

room through the air ventilation system and the cold wall system. The heat flux calculations for all three 

systems are given in section 5.2.  

 

Figure 7.1 and Figure 7.2 show the energy balance results with the hot wall, the cold wall, and the air 

system in operation. Ideally, the data points should fall on the diagonal heat balance curve. The error bars 

in Figure 7.1 represent measurement uncertainties associated with the cold wall heat flux and air system 

heat flux. The error bars in Figure 7.2 represent measurement uncertainties associated with the heated panel 

power. The figures show that the hot wall has a very small error compared to the cold wall and the air 

system. This is achieved with the AC line voltage data acquisition system and the measurement of the 

electric resistance for each heating panel. Heat balances well within the predicted range of experimental 

uncertainty validate both the uncertainty analysis and the calibration methodology.  
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Figure 7.1 Energy Balances with Cold Wall and Air System Uncertainties 
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Figure 7.2 Energy Balances with Hot Wall Uncertainties  

 

7.2 Natural Convection 

The natural convection experiments were performed with both the hot wall and the cold wall on. The 

experimental data sets and parameters are summarized in Appendix B.2. Cold and hot panel surface data 

were obtained considering the buoyancy effect in both upward and downward directions. 
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Based on the panel data sets and the derived Grashof number and Nusselt number from Chapter 6, the 

natural convection correlation was developed as:  

29.034.0 GrNu ⋅=          (7.1) 

The natural convection correlation was validated with experimental data from the following research: Awbi 

and Hatton (1999), Khalifa and Marshall (1990), Cheesewright and Ziai (1986), Bohn and Anderson (1986), 

and Ampofo and Karayiannis (2003). Awbi and Hatton’s experiments were performed with one cold wall 

and different heating configurations on other surfaces. Test data were obtained on the surfaces other than 

the cold wall. Both room sized and model sized chambers were tested. Khalifa and Marshall investigated 

natural convection heat transfer on interior surfaces using a room sized test chamber. A set of experiments 

were performed to cover eight of the most widely used heating configurations, including a uniformly 

heated vertical wall and a partially heated floor and a partially heated vertical wall. Bohn and Anderson 

investigated natural convection in a water filled cubic enclosure. Local natural convection data were 

presented for the experimental configuration with one heated and three cooled walls. Cheesewright and Ziai 

studied natural convection in a small scale vertical rectangular cavity. The cavity had one hot wall and one 

cold wall facing each other. Ampofo and Karayiannis’s experiments were performed with a typical 2-D 

natural convection configuration, i.e. one cold wall and one hot wall facing each other with all other walls 

adiabatic. Since the purpose of Ampofo and Karayiannis’s study was to provide data to validate CFD 

simulations, detailed surface and air parameters were measured with high accuracy.  

 

Figure 7.3 shows both current and previous experimental data and the natural convection correlation 

developed with this research data. The Bohn and Anderson data don’t have the same curve as the new 

correlation and are not included in the plot. A possible reason is that Bohn and Anderson’s experiments 

were conducted in a water-filled model sized chamber and the experiments are not dynamically similar to 

the experiments of this research. Awbi’s data have the same curve but with a small systematic deviation. 

This is acceptable since Awbi’s local data were based on the whole surface instead of smaller sub-surfaces. 

Awbi’s data are considered to have a satisfactory match to the correlation. All other natural convection data 

match the correlation very well.  
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This research data together with the experimental data from literature give the application range of the local 

variable based natural convection correlation of: 

)10~10( 113=Gr  

The new local correlation also applies to the whole surface with the local parameters related to the surface. 

Figure 7.4 shows both detailed panel data and whole surface data. 
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Figure 7.3 Current and Previous Experimental Data and Natural Convection Correlation 
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Figure 7.4 Natural Convection Data for Individual Panels and for Whole Surfaces 

 

For natural convection, it is relatively easy to select an appropriate reference location for non-

dimensionalization by simply selecting a location outside the boundary layer. Yuan (1995) found that the 

boundary layer thickness for natural convection in rooms ranges from 3mm to 30mm. Since both Khalifa 

and Awbi selected reference locations greater than 30mm from the wall, their results were consistent with 

Yuan’s conclusion.  

 

For the coupled HB and air model simulation, the reference temperatures are easily obtained from the air 

model results. The application of the local variable based natural convection correlation increased 

simulation accuracy for stratified rooms since it predicts the convection coefficient over sub-surfaces. The 

benefits of the non-mixing air model simulation are fully revealed. 
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7.3 Forced Convection 

7.3.1 Determination of Correlation Parameters 

The selection of a reference temperature is relatively obvious for simple flow configurations such as flow 

over a flat plate. However, there is no obvious reference temperature for room airflow. Room airflow 

differs from flat plate flow in two respects: there are no well-defined free stream parameters, such as 

temperature and velocity, and no leading edge to define the boundary layer. In addition, air temperature and 

velocity outside the surface boundary layer change with location.  

 

Previously, researchers have uniformly selected the near wall air temperature as the reference temperature 

for room natural convection flow. This reference temperature not only determines the magnitude of the 

convection coefficient but also determines the surface buoyancy force. Awbi and Hatton (1999) measured 

local air temperatures at 100mm and 50mm from the enclosure surfaces for a room sized chamber and a 

small box respectively. Khalifa and Marshall (1990) measured local air temperature at 100mm away from 

surfaces. However, there is no agreement in defining the reference temperature for forced convection flow 

in rooms. Fisher (1997) selected room inlet air temperature and Spitler (1990) selected room outlet 

temperature. Both Fisher and Spitler’s selection were based on uncertainty analysis and convenience for 

engineering applications. 

 

In summary, there is no previous research to guide the selection of the reference temperature for forced 

convection correlations. The reference temperature for a surface grid is the adjacent air temperature at the 

grid center. However, the distance from the surface to the reference location is not available in the literature. 

In this research, local air temperatures were examined at a series of distances from the surface in order to 

experimentally determine the appropriate reference temperature location for forced convection correlations. 

Distances of 30mm, 79mm, 128mm, 177mm, and 226m from the wall were examined for all the hot wall 

panel surfaces. Figure 7.5 and Figure 7.6 present the local air velocities and temperatures evaluated at 

different locations for the first column of panels for a ventilative flow rate of 22.87 ACH. The velocity 

profile clearly shows the jet boundary, which is about 200mm from the surface. The temperature profile 

doesn’t show the jet boundary, but it shows that the change in the measured surface to air temperature 
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difference is small at all locations greater than 30mm from the surface. Even smaller  differences (0.2 -

0.5°C compared to 1-2.5°C for this case) are presented among the air temperatures measured at 128mm and 

farther away from the surface. This temperature difference is within 0.5°C for all the experimental cases. 

Therefore, the local air temperature can be evaluated at 128mm or farther from the wall surface.  
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Figure 7.5 Near Wall Air Velocity Distributions  
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Figure 7.6 Near Wall Air Temperature Distributions  

 

The local air velocity is defined as one half the maximum jet velocity at any point along the jet. Using the 

maximum jet velocity relationship given by Baake for the radial wall jet, 12.1−∝ xU m , the local air velocity 

is defined as: 

12.1
02/12/1 −∝ xUU m          (7.2) 

Where: 0U  = diffuser outlet velocity 

For the radial ceiling diffuser, the jet outlet velocity is determined by the room ventilative flow rate and the 

diffuser effective area. The diffuser effective area was not provided by the manufacturer, so it was 

determined experimentally. At ventilative flow rate of 13.33 ACH (0.2 m3/s), the characteristic velocity of 

the diffuser was averaged to be 8.18 m/s from four points of measurement at the diffuser. The effective area 

of the diffuser is then calculated to be 0.0246 m2.  

 

With equation 7.2, one half the local jet maximum velocity can be calculated for the attached wall jet under 

the ceiling. Since the wall jet velocity decays continuously from the ceiling to the vertical wall, the length 
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that is used to calculate the maximum jet velocity should be the total length from the ceiling diffuser to the 

vertical surface. In addition, the velocity decay due to detachment and reattachment of the offset jet must be 

accounted for at the diffuser and at the corner. Gu (1996) observed that the jet maximum velocity decayed 

about 47% from the jet opening to the reattachment point for a two-dimensional turbulent offset jet with an 

offset ratio of 3.98. Landreth (1990) observed 26% of jet maximum velocity decay for a radial 

impingement jet from jet opening to reattachment point. The velocity decays for a radial offset jet at the 

diffuser and at the corner are not reported in the literature. In this research, a set of experiments were 

performed to obtain the velocity decay coefficients from the radial ceiling diffuser opening to the 

reattached ceiling wall jet and the decay coefficient at the ceiling and wall corner.  

 

The velocity decay coefficient of the reattached offset jet is the ratio between the jet maximum velocity 

after reattachment and the velocity at the diffuser outlet.  

0U
U

F rcm
Offset

−=           (7.3) 

where:  

OffsetF  = velocity decay coefficient of the offset jet  

rcmU −  = jet maximum velocity when attached to the ceiling, m/s 

0U  = diffuser outlet velocity, m/s 

The velocity decay coefficient at the ceiling and wall corner is the ratio between the jet maximum velocities 

at the reattachment and detachment points.  

dcm

rwm
Corner U

U
F

−

−=           (7.4) 

Where:  

CornerF  = velocity decay coefficient at the ceiling and wall corner  

dcmU −  = jet maximum velocity when detached from the ceiling, m/s 

rwmU −  = jet maximum velocity when attached to the wall, m/s 
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These two ratios were obtained from jet velocity field measurements. Two regions were measured, one near 

the diffuser, and the other near the corner. Data sets were obtained for ventilative flow rates of 23.28 ACH, 

10.98 ACH, and 3.76 ACH.  

 

Figures 7.7 and 7.8 show the velocity profiles for a ventilative flow rate of 23.28 ACH. Figure 7.7 shows 

the velocity profiles near the diffuser. The figure clearly shows the offset jet, the recirculation between the 

offset jet and the ceiling, and the reattachment of the offset jet. Figure 7.7 shows that the jet attaches to the 

ceiling at a distance of 13" from the diffuser, as indicated by a maximum velocity very close to the ceiling. 

The maximum velocity is estimated as 4.4 m/s at this point. The diffuser outlet jet velocity is estimated 

from the ventilative flow rate and the diffuser effective area. Figure 7.8 shows the wall jet before 

detachment and after reattachment at the corner. The velocity profiles show that the wall jet detaches at 9" 

from the corner with a maximum velocity of 1.83 m/s and reattaches 7" from the corner with a maximum 

velocity of 1.33 m/s. The velocity decay coefficient is calculated using these values and includes both the 

corner effect and the velocity decay over this distance. 
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Figure 7.7 Near Ceiling Jet Velocity Profiles at Offset Jet and Reattachment Region  
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Figure 7.8 Near Wall Jet Velocity Profiles at Detachment and Reattachment Region 

 

Table 7.1 presents all the velocities and velocity decay coefficients for the tested cases. 

 

Table 7.1 Jet Velocity Decay Coefficients  

Exp. No. ACH 0U  (m/s) rcmU −  (m/s) dcmU −  (m/s) rwmU −  (m/s) OffsetF  CornerF  
1 23.28 14.29 4.4 1.83 1.33 0.31 0.73 
2 10.98 6.74  1.98 0.76 0.64 0.29 0.84 
3 3.76 2.31 0.76 0.22 0.18 0.33 0.82 
 

Over the range of ventilative flow rates (3.76 to 23.28 ACH), the velocity decay coefficients at the offset jet 

reattachment are almost the same and can be uniformly assumed to be 0.3. Likewise, the decay coefficients 

at the corner are assumed to be 0.8 for all cases. These two coefficients are considered in predicting local 

air velocities as demonstrated in equation 7.5.  

12.1
012.1

0 )(
12.0)(8.03.02/1

YL
UYLUu

ceiling
ceiling +

=+⋅⋅= −       (7.5) 

Where:  



 85

ceilingL  = jet travel distance on the ceiling from diffuser center to the wall 

Y  = the local distance from the ceiling and wall corner 

 

The velocity prediction equation, equation 7.5, was validated through experimentally measured maximum 

jet velocities. As shown in Figure 7.9, the measured velocities before the jet begins to degrade match the 

velocities predicted by jet theory over a range of ventilative flow rates from 10.6 to 22.9 ACH. 
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Figure 7.9-a Wall Jet Maximum Velocity Decay along the Vertical Surface Under 22.9 ACH 

 

 

 



 86

y = 2.44x-1.17

y = 70.2x-4.48

0.1

1

10

1 10
Distance from diffuser (m)

Je
t m

ax
im

um
 v

el
oc

ity
 n

ea
r 

w
al

l (
m

/s
) Measured velocity before jet degradation

Measured velocity at terminal zone
Jet theory predicted velocity

 

 

Figure 7.9-b Wall Jet Maximum Velocity Decay along the Vertical Surface Under 16.42 ACH 
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Figure 7.9-c Wall Jet Maximum Velocity Decay along the Vertical Surface Under 10.62 ACH 
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Figure 7.9 also shows that the jet velocity prediction equation, equation 7.5, has an application range. The 

jet maximum velocity decay discussed above assumes that the attached wall jet is within the fully 

established turbulent flow region. The ASHRAE Handbook of Fundamentals (2001) divides the jet region 

into four zones. For the radial ceiling diffuser configuration, the first three zones have the same correlation 

in terms of jet maximum velocity decay. At Zone IV, also known as the terminal zone, the velocity decays 

much more rapidly than for the first three zones. Therefore, the correlation that applies to the first three 

zones doesn’t apply to Zone IV. The experimental measurements shown in Figure 7.9 demonstrate the 

validity of the jet velocity decay theory and clearly show the transition to Zone IV. 

 

The limit of Zone III has not been quantitatively presented for the attached radial ceiling jet at this point. 

Zou (2000) found the transition point between Zone III and Zone IV using experimental measurement. The 

first velocity that deviates from the Zone III velocity decay trend is considered as the beginning point of the 

terminal zone. Linear relationships between the end velocity of Zone III and the outlet velocity were 

presented for both free jets and three – dimensional wall jets when smU /100 < . The end velocity of Zone 

III becomes constant, i.e. about sm /2.1 , when smU /100 ≥ . This conclusion was validated with data from 

both Nottage (1951) and Malmstrom (1992). However, Zou’s results can’t be applied to this research due to 

differences in jet configurations and room dimensions.  

 

The decay in the jet maximum velocity and the transition from Zone III to the terminal zone are examined 

in this research in order to define the end of Zone III. The Zone III end velocities can be obtained from 

figures like Figure 7.9. The Zone III end velocities for the four test cases are listed in Table 7.2.  

 

Table 7.2 Zone III end Velocity under Different Ventilative Flow Rate  

Ventilative flow rate (ACH) U0 (m/s) Ue (m/s) 
22.9 14.06 0.80 
16.42 10.08 0.67 
11.32 6.95 0.56 
10.62 6.52 0.53 
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Based on the data presented in Table 7.2, a preliminary correlation between the ventilative flow rate and the 

Zone III end velocity is found:  

5.017.0 VFRU e ⋅=          (7.6) 

Where:  

eU  = Zone III end velocity, m/s 

VFR  = Ventilative flow rate, ACH 

Figure 7.10 presents the correlation of the ventilative flow rate and the Zone III end velocity. 
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Figure 7.10 Correlations between Ventilative Flow Rate and Zone III End Velocity 

 

For ventilative flow rates smaller than 10 ACH, the attached wall jet Zone III and the transitions from Zone 

III to terminal zone on walls can’t be observed clearly. The limited data strongly suggests a correlation of 

Zone III end velocity and ventilative flow rate, equation 7.6, to define the limit of Zone III. Since the only 

parameter involved in equation 7.6 is ventilative flow rate, the application is very limited. A more detailed 

parametric study is recommended to define the limit of Zone III for future research.  

 

The flow characteristics of the terminal zone are not well understood at this point. Figure 7.9 shows 

different profiles in the terminal zone as a function of ventilative flow rate.   As shown, the correlation 

between maximum jet velocity and distance from the diffuser in the terminal zone increasingly breaks 



 89

down as the ventilative flow rate decreases.  For example, at 10.6 ACH (Figure 7.9-c) other forces, such as 

buoyantly driven plumes or recirculating flows, clearly dominate the near wall air velocity beyond 

approximately 3.75 m distance from the diffuser. As demonstrated in the following sections, buoyant forces 

can influence the flow field for ventilative flow rates as high as 16 ACH.  For forced convection, the 

velocity in the terminal zone is assumed to follow a relation that is similar to the one given in Figure 7.9-a. 

6.3
0 )( −+⋅= YLUu ceiling          (7.7) 

 

7.3.2 Forced Convection Flow Regime and Correlation 

The forced convection flow regime is not quantitatively defined in the literature. The proposed scaling of 

the Reynolds number, Grashof number, and Nusselt number makes it possible to identify both the natural 

and the forced convection flow regimes from the OSU experimental data. For laminar flat plate flow, three 

convection regimes can be identified by plotting 2
Gr
Re

 on one axis and 5.0Re
Nu  on the other as shown in 

Figure 7.11. If 5.0Re
Nu  doesn’t change with 2

Gr
Re

, the flow is in the forced convection regime. If 5.0Re
Nu  and 

2
Gr
Re

 have a pure power law relation, the flow is in the natural convection regime. The mixed convection 

regime, for buoyancy effects either assisting or opposing the momentum flow, is identified by a deviation 

from the natural convection and forced convection lines as shown in Figure 7.11. 
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Figure 7.11 Convection Flow Regime for Vertical Flat Plate Airflow (Kakac and Yener, 1995) 
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 The OSU experimental data for ventilative flow rates from 20 ACH to 32 ACH were used to develop a 

local variable based forced convection correlation for turbulent flow in enclosures. This range is selected to 

guarantee most of the data are in the forced convection flow regime. Over this range, a single parameter 

was required to fit the hot wall data as follows: 

Re01.0 ⋅=Nu           (7.8) 

The Reynolds number range for this correlation is 88500Re10000 <≤ . The correlation curve is presented 

in Figure 7.12-a, Figure 7.12-b with Nusselt number uncertainty intervals, and Figure 7.12-c with Reynolds 

number uncertainty intervals. The whole surface data matches the correlation as shown in these figures 

demonstrating that the correlation is applicable to different sizes of surfaces.  

 

Surprisingly, the cold panel data for the same experiments could not be fit to a forced convection 

correlation as shown in Figure 7.12-d. and Figure 7.12-e.  This suggests that the forced convection 

correlation developed from hot panel data is limited to a cold downward flowing jet attached to a hot wall.  

As shown in section 7.4, the cold panel data, which corresponds to a warm downward flowing jet attached 

to a cold wall, requires a mixed convection correlation. 
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Figure 7.12-a Hot Wall Forced Convection Correlation 
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Figure 7.12-b Hot Wall Forced Convection Correlation with Nu Uncertainty Intervals 
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Figure 7.12-c Hot Wall Forced Convection Correlation with Re Uncertainty Intervals 
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Figure 7.12-d Cold Panel Data with Nu Uncertainty Intervals 
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Figure 7.12-e Cold Panel Data with Re Uncertainty Intervals 
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In order to identify convection flow regimes, the comparison parameter of the buoyancy and momentum 

forces 2
Gr
Re

, which is also called the buoyancy parameter, is usually used. If forced convection flow 

dominates ( 1
Re2 <<
Gr ), the Nusselt number would follow the forced convection correlation, and if the 

natural convection flow dominates ( 1
Re2 >>
Gr ), the Nusselt number would follow the natural convection 

correlation. Figure 7.13-a gives the relationship between Nusselt number and the buoyancy parameter and 

shows that the convection flow regimes could not be clearly identified using the Nusselt number and the 

buoyancy parameter.  

 

The method of Kakac and Yener uses the buoyancy parameter on the x-axis and the forced convection 

coefficient, 5.0Re
Nu , on the y-axis to identify the flow regimes. The hot wall forced convection coefficient of 

this research is 
Re
Nu  since the local variable based forced convection correlation has a linear relationship.  

Accordingly, the two parameters that are used to identify convection flow regimes are 2
Gr
Re

 and 
Re
Nu . 

Processing the experimental panel data in terms of 2
Gr
Re

 and 
Re
Nu , the convection flow regimes can be 

clearly identified as shown in Figure 7.13-b. 

 

Figure 7.13-b presents the panel data for different ventilative flow rates. It shows that when the ventilative 

flow rate is 3.6 ACH, the wall convection falls entirely in the natural convection flow regime. When the 

ventilative flow rate is increased to 10.6 ACH, most of the panel data fall in the natural convection flow 

regime. A few points fall in the mixed convection with opposing flow regime and the rest fall in the forced 

convection flow regime. Figure 7.13-b clearly demonstrates the three convection flow regimes in terms of 

the Grashof number and the Reynolds number. Applying the experimental limitations 

( 107 106102 ×≤≤× Gr , 88500Re950 ≤≤ ), the flow regimes are defined as following:  
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1
Re

08.0 2 ≤≤
Gr , pure forced convection flow regime 

10
Re

1 2 <<
Gr , mixed convection with assisting or opposing flow regime 

40000
Re

10 2 ≤≤
Gr , pure natural convection flow regime      (7.9) 
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Figure 7.13-a Flow Regime Prediction Using Nusselt Number 
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Figure 7.13-b Flow Regime Prediction Using 
Re
Nu  

 

For a ventilative flow rate of 10.6 ACH, the convection heat transfer on all surfaces is treated as forced 

convection in building simulation packages like EnergyPlus and the ASHRAE Toolkit. According to the 

OSU experimental data however, most of the panel data at this ventilative flow rate fall in the natural 

convection flow regime. The 10.6 ACH data that are identified by the criteria as falling within the natural 

convection flow regime match well with the natural convection correlation shown in Figure 7.14. Those in 

the forced convection flow regime match well with the forced convection correlation shown in Figure 7.15. 

This demonstrates the ability of the criteria to differentiate between convection flow regimes.  
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Figure 7.14 Natural Convection Data under Ventilative Flow Rate of 10.6 ACH 
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Figure 7.15 Forced Convection Data under Ventilative Flow Rate of 10.6 ACH 
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The experimental data presented in Figure 7.13-a and Figure 7.13-b are for a hot wall with a cold 

downward flowing wall jet. Theoretically, the surface convection should be in pure forced, pure natural or 

mixed convection opposing flow regime, with the mixed convection opposing flow regime showing data 

below the forced convection curve. However, the data distribution, as presented in Figure 7.16, indicates 

that the bottom row of panels are in mixed convection with assisting flow regime rather than the mixed 

convection opposing flow regime. This would indicate that the higher momentum of the downward flowing 

jet from the opposing cold wall dominates the flow field in the lower region of the hot wall.  The upward 

flowing wall jet on the hot wall results in the mixed convection with assisting flow regime as observed by 

Fisher (1995). 

 

Figure 7.16 indicates that the mixed convection flow regime can be predicted with reasonable accuracy by 

the forced convection correlation. The errors in predicting surface convection coefficients by using the 

forced convection correlation for the mixed convection flow regime is acceptable ( 22.0/25.0 +− ) 

compared to the errors for the pure forced convection flow regime ( 06.0/20.0 +− ). Figure 7.17 shows the 

errors of the convection coefficient predicted by the forced convection correlation for both the forced and 

the mixed convection flow regimes. The error distributions show that within the range of the experiments, 

using a forced convection correlation for both the forced and mixed convection flow regimes doesn’t 

increase the error associated with the convection coefficient. Therefore, at this point, the forced convection 

correlation can be applied to both forced and mixed convection flow regimes. The room convection 

correlations and their application ranges become: 

 

Re01.0 ⋅=Nu , ( 10
Re

08.0 2 <≤
Gr , forced and mixed convection flow regime) 

29.034.0 GrNu ⋅= , ( 40000
Re

10 2 ≤<
Gr , natural convection)     (7.10) 
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Figure 7.16 Convection Flow Regime on Panels at Different Location 
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Figure 7.17 Convection Coefficient Error Distribution Using Forced Convection Correlation for both 

Forced and Mixed Flow Regime 
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7.3.3 Correlation Validation 

The experimental data from the UIUC room have all the required information to validate the local variable 

based forced convection correlation: surface temperature, near wall air temperature, convection heat flux, 

and inlet diffuser conditions. Six sets of data with different ventilative flow rate were selected for validation. 

Appendix B gives the parameters of the data sets. The UIUC data were also obtained under the radial 

ceiling diffuser room configuration, so the near wall air velocities can be predicted from Equation 7.5.  

 

The convection flow regimes are first identified using the criteria obtained in Section 7.3.2. Figure 7.18-a 

shows the UIUC experimental data together with the OSU data in the flow regime chart. The UIUC data 

distributed in all three flow regimes and the distribution is more scattered than the OSU data. The 

uncertainties of the UIUC data were analyzed and the errors are presented in Figure 7.18-b. The error bars 

show that all the forced convection data match the correlation, while there are data points in the mixed 

convection flow regime that don’t match the forced convection correlation as the OSU data would. So the 

forced convection correlation is only applicable to forced convection flow regime for the UIUC data. 

Figure 7.18-c gives the forced convection data in the flow regime chart. Figure 7.19 shows the UIUC 

forced convection data with Nusselt number uncertainties, OSU data, and the forced convection correlation. 

The UIUC data match the correlation but are more scattered. The data that are in mixed convection flow 

regime are also results of recirculation flow because the mixed convection assisting flow data were 

obtained while the opposing flow data were expected under the experimental configuration. So the mixed 

convection correlation couldn’t be obtained from the UIUC data either. 
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Figure 7.18-a Convection Flow Regimes of UIUC and OSU Data   
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Figure 7.18-b UIUC Data Uncertainties and Convection Flow Regimes 
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Figure 7.18-c UIUC Forced Convection Flow Regime Data  
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Figure 7.19 UIUC and OSU Data with the Forced Convection Correlation  
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7.3.4 Correlation Extension 

The local variable based forced convection correlation developed from wall panel data is expected to be 

applicable to ceilings as long as the airflow is characterized as attached wall jet. The local air velocities on 

the ceiling could be predicted from Equation 7.5 without the corner decay coefficient. The local velocity 

prediction equation for ceilings becomes: 

12.1
012.1

0 )(
15.0)(3.02/1

YL
UYLUu

ceiling
ceiling +

=+⋅⋅= −       (7.11) 

The UIUC experimental data sets include detailed ceiling panel data that could be used for this analysis. 

There were nine panels of the same size on the ceiling of the UIUC room. To minimize the uncertainty 

from corner effects and the jet offset, data from the center panel and four corner panels were not included 

in the analysis. By applying the ceiling velocity prediction equation with the length scale obtained from 

Chapter 6, local nondimensional numbers were obtained for the other four panels. 

 

Figure 7.20 shows the ceiling data and the convection flow regimes. All of the ceiling data are in the forced 

convection flow regime and the forced convection flow regime is extended to 10
Re

003.0 2 <≤
Gr . Figure 

7.21 gives the ceiling data and the forced convection correlation. Since most of the ceiling data is beyond 

the OSU wall data range, the following correlation is proposed based on all of the available data: 

8.0Re09.0 ⋅=Nu           (7.12) 

As shown in the figure, at high ventilative flow rates, both the wall and ceiling data deviate from the 

proposed correlation.  This is likely due to the fact that the local Reynolds number is based only on the 

characteristics of the jet and does not include a contribution from recirculating flow in the room.  As the 

ventilative flow rate increases, recirculating flow structures are expected to have a significant effect on the 

convective heat transfer rate.  This effect is not captured in the correlation.  Although in this respect the 

correlation is preliminary, it is significant that a single correlation based only on the characteristics of the 

offset jet captures the major features of room convection for both ceilings and walls over a wide range of 

ventilative flow rates ( 53 104Re106 ×≤≤× ).  
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Additional research is required to establish and quantify the contribution of recirculating flow.  In addition, 

the following factors also introduce uncertainty in the application of the UIUC data: 

1. Jet detachment occurs on every UIUC ceiling panel (except the center panel) since every panel has 

at least one edge adjacent to a wall. Further investigation is required to correct for this effect. 

2. The virtual origin of the attached wall jet on the ceiling is assumed to be at the diffuser center. 

This could lead to significant errors over the range of ventilative flow rates (3ACH to 100ACH) 

included in the data.    

3. The ceiling panel size is relatively large and the attached wall jet does not develop linearly. So 

evaluation of the local velocity at the panel center could lead to significant errors.  
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Figure 7.20 Convection Flow Regimes of UIUC Ceiling Data and OSU Wall Data   

 



 104

0

500

1000

1500

2000

2500

3000

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

Re

Nu

OSU Wall Panel Data
UIUC Wall Panel Data
UIUC Ceiling Panel Data
Forced Convection Correlation
Extended Forced Convection Correlation

 

Figure 7.21 All Available Panel Data with Forced Convection Correlation and Its Extension 

 

7.4 Mixed Convection Correlation 

The cold panel data shown in section 7.3.2 does not fit the forced convection correlation developed from 

the hot panel data. Most of the measured nondimensional convection coefficients – Nusselt numbers are 

greater than those predicted by the forced convection correlation. This data distribution suggests that the 

buoyancy driven flow assisted the momentum driven flow on the cold panel, which is also reflected in the 

flow regime chart as shown in Figure 7.22. Therefore, a mixed convection correlation for the buoyancy 

assisted flow regime was developed based on cold panel data as given in Equation 7.13. The mixed 

convection correlation for the assisted flow regime is blended from the natural and generalized forced 

convection correlation, as shown in Equation 7.14.  

29.08.0 34.0Re09.0 GrNu ⋅+⋅=         (7.13) 

naturalforced NuNuNu +=          (7.14) 
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Figure 7.22 Analyzing Convection Flow Regimes for Cold Panel Data  

 

Figure 7.23-a and Figure 7.23-b show the cold wall data and uncertainties in the flow regime chart with the 

mixed convection correlation, forced convection correlation, and natural convection data. The mixed 

convection correlation upper and lower limits are the natural and the forced convection correlations. Figure 

7.24 shows that the mixed convection correlation merges to the natural convection correlation when 

buoyancy force dominates and with additional data it appears that it could be extended and merged to the 

forced convection correlation when the buoyancy effect could be neglected. 
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Figure 7.23-a Mixed Convection Correlation for Buoyancy Assisting Flows 
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Figure 7.23-b Cold Wall Data Uncertainties  
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Figure 7.24 All Data and Correlations 

 

7.5 Summary 

A detailed scale analysis resulted in the following significant findings:   

• Developed local air velocity prediction correlations for the attached wall jet under the radial 

ceiling diffuser room configuration. The correlations and application conditions are summarized in 

Table 7.3. 

• Obtained local air parameters for local convection models as given in Table 7.3. 

• Developed natural convection correlation, which is applicable to natural convection flow regime. 

29.034.0 GrNu ⋅= , ( 40000
Re

10 2 ≤≤
Gr , natural convection flow regime) 

• Developed forced convection correlation, which is applicable to both forced and mixed convection 

flow regimes for hot walls with a cold, downward flowing wall jet:  

Re01.0 ⋅=Nu , ( 10
Re

08.0 2 <≤
Gr , forced and mixed convection flow regimes) 
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• A general forced convection correlation based on UIUC and OSU data is proposed: 

8.0Re09.0 ⋅=Nu    ( 10
Re

003.0 2 <≤
Gr , forced and mixed convection flow regimes for hot walls 

with a cold, downward flowing wall jet:).  

• A mixed convection correlation for assisted flow regime is developed based on OSU cold wall 

data.  This correlation is applicable to cold walls with a warm downward flowing wall jet. 

29.08.0 34.0Re09.0 GrNu ⋅+⋅= , ( 100
Re

1.0 2 <≤
Gr , forced and mixed convection flow regimes) 

 

Table 7.3 Scales for Local Variable Based Convection Model for Attached Wall Jet 

Parameters Scales Application Conditions 

12.1
0

)(
12.0

YL
U

ceiling +
 wall, forced, Before jet decay, i.e., 5.017.0 VFRU e ⋅≥  

 
Velocity 

6.3
0

)( YL
U

ceiling +
 wall, forced, after jet decay, i.e. , 5.017.0 VFRU e ⋅<  

pA /  ceiling, natural 
X ceiling forced Length 
Y wall forced 
T at 128mm from surfacewalls, ceilings and floors, forced Temperature T at 100mm from surfacewalls, ceilings and floors, natural 

  

Table 7.4 summarizes the developed and extended local convection correlations and application ranges. 

 

Table 7.4 Local Variable Based Convection Correlations for Attached Wall Jet  

Correlations Flow Regimes Application Ranges Uncertainties Applied 
Surfaces 

29.034.0 GrNu ⋅=  40000
Re

10 2 ≤≤
Gr 113 1010 ≤≤ Gr  %16±=′Gre  Walls 

Re01.0 ⋅=Nu  
10

Re
08.0 2 <≤

Gr
 

54 109Re10 ×≤≤  %25Re ±=′e  Hot walls 

8.0Re09.0 ⋅=Nu  10
Re

003.0 2 <≤
Gr 53 104Re106 ×≤≤× %25Re ±=′e  Hot walls 

Ceilings 
29.08.0 34.0Re09.0 GrNu ⋅+⋅=  100

Re
1.0 2 <≤

Gr  
43 105Re102 ×≤≤×

107 103102 ×≤≤× Gr

%25Re ±=′e
%16±=′Gre  

Cold walls 

 

The analysis of the UIUC data leads to possible future work:  
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• The local variable based mixed convection correlation needs to be developed under carefully 

designed experimental conditions that have no recirculation effect.   

• The offset jet on the ceiling needs to be characterized in terms of the offset jet length and the 

virtual origin. 

• The ceiling data needs to be obtained on a smaller grid in order to validate the application of the 

local variable based convection correlation on ceilings. 
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Chapter 8: Applications 

 

Chapter 7 defined room convection flow regimes and developed local variable based convection 

correlations for each flow regime. This chapter focuses on applying the new local convection model to 

building simulation programs and analyzing the differences of simulation results using the local convection 

model and other available convection models. The ASHRAE air toolkit was selected for model 

implementation due to the availability of non-mixing air models in the toolkit. Available convection models 

include the Fisher model, the ASHRAE model, and the Tarp model. 

 

8.1 Implementation of convection model in building simulation programs 

The local convection model was implemented as an individual subroutine in the toolkit's 

“InteriorConvectionMod” module. The specific convection model used in the simulation is specified by the 

inside heat balance, the air heat balance, and the system load calculation subroutines of the heat balance 

calculation module. The new parameters required by the local convection model, such as jet discharge 

location and outlet effective area, were included in the input file (in.idf) and input definition file 

(ToolkitTest.idd) and read by a subroutine in the “InteriorConvectionMod” module. Local surface 

coordinates were added to the input object “Surface” to calculate the local length scale.  

 

8.2 Verification of local convection model 

The first set of simulations was to verify the calculation accuracy and the application range of the local 

convection model by comparing the calculated building system load to the experimentally measured load. 

The experimental room was simulated under six different experimental setups. Each setup was first 

simulated with the experimentally measured convection coefficients. The measured convection coefficients 

are available for individual hot wall panels, so each heated panel is specified as a surface and assigned a 

convection coefficient in the simulation input file. The convection coefficient values are assigned in the 
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“Surface Settings” objects. To use these convection coefficients in the simulation, the convection 

coefficient type is selected as “prescribed hc” in the “select air model’ object. In the simulation program, 

the convection model specified in the inside heat balance, air heat balance, and system load calculation 

subroutines is “ReturnPrescribedHcIn”. 

  

Since the experimental room surfaces have different temperature settings while the outdoor condition is the 

same for all surfaces, the surfaces were constructed with different thermal resistances. The hot wall was 

constructed of thin metal, with almost no thermal resistance. Adiabatic walls were constructed with high 

thermal resistances and are assigned with very low inside surface convection coefficients so that there is 

negligible heat transfer through the adiabatic walls. The predicted hot wall inside surface temperature and 

the reference temperatures should match the experimentally measured near wall air temperatures. 

 

The only air model that will correctly simulate the radial ceiling diffuser room configuration is the 

momentum zonal model. However, the momentum zonal air model can’t simulate the airflow discharged 

from the radial ceiling diffuser horizontally. Therefore half of the experimental room is simulated with a 

side wall inlet opening. The coordinate system is defined so as to meet the requirement that the inlet 

velocity should be positive.  

 

Six experimental cases are simulated, “0708041”, “0716041”, “0717041”, “0919041”, “1008041”, and 

“1020041”. Appendix B gives the experimental parameters for all the experimental cases. All the input files 

with experimentally measured convection coefficients were tuned to match the experimental conditions. 

The boundary conditions from the experimental data include: ventilative flow rate, inlet temperature, 

surface convection coefficients, and diffuser effective area. The tuned parameters include: room set point 

temperature, outside temperature, and wall insulation structure. The parameters that are examined to match 

the experimental conditions are: hot wall inside surface temperatures, near wall air temperatures, and 

convective heat fluxes. For this investigation, which is primarily concerned with the sensitivity of the 

building system load calculation to different convection models, the only significant parameter predicted by 
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the air models is the reference temperature. Figure 8.1-a shows both the experimentally measured and 

simulated near wall air temperatures for a typical experimental case.  
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Figure 8.1-a Measured and Simulated Reference Temperatures near the Hot Panels (Case 0717041) 
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Figure 8.1-b Inside Surface Temperature (Case 0717041) 
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After tuning a “prescribed hc” simulation input file for each of the six experimental cases, simulations 

using the convection models (e.g. the local convection model, the Fisher model, the ASHRAE model, and 

the Tarp model) were performed for each case. The global variable based convection models (i.e. the Fisher 

model, ASHRAE model, and Tarp model) assume a uniform convection coefficient on the surface and are 

applied to individual panels. In order to make the simulation results comparable, the predicted panel surface 

temperatures should be the same for all convection models. Figure 8.1-b shows very good match among the 

inside surface temperatures from the simulation results with the “prescribed hc” and four convection 

models.  

 

Figure 8.2 shows the simulation results using different convection models. The ventilative flow rates of the 

six experimental cases range from 0 to 32.46 ACH, and the room loads range from 350 to 2200 W. The 

local convection model is the only one that matches the experimental data for the entire range. The average 

error of the local convection model is 8.7%, which is much smaller than the average error of the ASHRAE 

model (29.0%), the Fisher model (51.1%), and the Tarp model (45.9%).  Table 8.1 summarizes the cooling 

load prediction errors of each model for each experimental case. 
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Figure 8.2 Experimentally Measured and Simulated Building Load (OSU room) 
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Table 8.1 Cooling Load Prediction Errors of Each Model 

Exp. Case Local Fisher ASHRAE Tarp 
1020041 0.043 0.257 0.356 0.257 
717041 0.113 0.634 0.028 0.337 
708041 0.182 0.571 0.098 0.399 
916041 0.104 0.544 0.392 0.589 
919041 0.029 0.528 0.370 0.537 
1008041 0.049 0.535 0.493 0.638 
Averaged 0.087 0.511 0.290 0.459 

 

 

Three significant differences make the local convection model more accurate in load calculations: 

• The local convection model has a more detailed flow regime definition. The ASHRAE model and 

Tarp model don’t differentiate between flow regimes; they both assume that one correlation works 

for all. The Fisher model defines the flow regime according to the ventilative flow rate. If the 

ventilative flow rate is 3ACH or greater, the forced convection correlation is applied, and if the 

ventilative flow rate is smaller than 3ACH, the natural convection correlation (Tarp model) is 

applied. The local convection model compares the momentum and buoyancy forces near the 

surface and defines the convection flow regime by the balance of these two forces.  The parameter 

that is used to define flow regime is 
2Re

Gr . Equation 7.9 gives the flow regime definition. 

 

• The local convection model is nondimensional and could be applied to other room dimensions. 

This is validated through a set of simulations based on the UIUC experimental data. The UIUC 

experimental room is simulated following the same procedure as the OSU experimental room 

simulation. Six experimental cases are simulated “112933”, “624921”, “1015892”, “1016891”, 

“428895”, and “505891”. The experimental settings are given in Appendix B. The simulated 

surface temperatures, near wall air temperatures, and surface convection heat fluxes are tuned to 

match the experimental data. Figure 8.3 presents the simulation results. It shows that the local 

convection model works well for the UIUC room. The Fisher model also works well for the UIUC 
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room while the ASHRAE and Tarp models are not good, especially when the ventilative flow rate 

is high. 
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Figure 8.3 Experimentally Measured and Simulated Building Load (UIUC room) 

 

• The local convection model is applicable to both uniform and non-uniform room surface 

temperature configurations. The local convection model was developed from panel data, i.e., panel 

surface temperatures, convection heat flux, and local air temperatures and velocities. All of the 

parameters, except the air velocities, are independent. It can therefore be applied to all room 

configurations that have the same airflow characteristics. The Fisher model correlated the 

convection heat transfer coefficient to a single parameter, ACH. It has limited applicable room 

configurations. The ASHRAE and Tarp models are applicable to whole surfaces and require 

uniform temperatures on the entire surface.  
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The local convection model works for the whole convection flow regime with satisfactory errors. However, 

it doesn’t have a specific correlation for the mixed convection flow regime, which leads to higher errors 

when mixed convection occurs on a large portion of the surface. Figure 8.2 shows that the systematic error 

is the highest, 18%, at 10ACH where mixed convection is more likely to occur. For the UIUC experimental 

data, mixed convection occurs more in the 3ACH to 15 ACH range.  

 

The Fisher model works well for the UIUC experimental data but significantly under predicts the OSU data. 

Two factors contribute to the error. One is that the ceiling diffuser in the OSU room is slightly off centered. 

When the ACH is corrected to account for diffuser placement, the Fisher model predictions improve 

slightly as shown in Figure 8.4. The other factor, which has a more significant effect, is that the UIUC 

room has a heated ceiling while the OSU room has a passive ceiling. The Fisher model - a global variable 

based convection model with an inlet air reference temperature cannot differentiate between different 

surface temperature configurations. As a result it significantly under predicts wall heat transfer in the OSU 

room. 
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Figure 8.4 Simulated Building Cooling Load Using Fisher Model with Corrected ACH (OSU room) 
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The ASHRAE model has three constants for upward facing surfaces, vertical surfaces, and downward 

facing surfaces. The tarp model is for pure natural convection flow with correlations for upward facing 

surfaces, vertical surfaces, and downward facing surfaces. Both ASHRAE and Tarp models are unable to 

accurately predict the room cooling load when the momentum driven flow regime is dominant. 

 

In conclusion, the Fisher model is configuration dependent, and the Tarp and ASHRAE models are regime 

dependent. The new local convection model works well for both uniform and non-uniform surface 

temperatures and for both natural and forced convection flow regimes.  

 

8.3 Application 

 

The application of interest for this investigation is the accuracy in building energy calculations under 

different ventilative flow rates. A room the same size as the experimental room with a constant volume 

system was simulated with different flow rates. All the room surfaces except the floor were constructed as 

outside walls exposed to the outside temperature, wind, and solar radiation. The convection coefficients on 

the ceiling and floor are specified as same values for different convection model simulations. Lighting, 

equipment, and people were modeled with a typical office schedule. During working hours, the lighting 

load was 9.0 W/m2, the equipment load was 10 W/m2, and the number of people was 7. During non-

working hours, the lighting load was 0.5 W/m2, the equipment load was 2 W/m2, and the number of people 

was 0. Since there is no set point temperature for constant volume system, the extraction rate is reported as 

a simulation result. The zone exhaust temperature floated with the outside weather condition as shown in 

Figure 8.5. 

 

The comparison agrees with the experimental results of section 8.2.  The extraction rate predicted by Fisher 

model matches that obtained with the local convection model when the ventilative flow rate is greater than 

10 ACH as shown in Figure 8.6-a, Figure 8.6-b, Figure 8.6-c, and Figure 8.6-d. The ASHRAE model works 

well when the ventilative flow rate is smaller than 10 ACH as shown in Figure 8.6-f, Figure 8.6-g, and 

Figure 8.6-h. When the ventilative flow rate is about 10 ACH, the peak extraction rate predicted by the 
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ASHRAE model and the Fisher model are almost the same as shown in Figure 8.6-e. The Tarp model 

always under-predicts the peak extraction rate. Both the ASHRAE and Tarp results match the local 

convection model results under any ventilative flow rate during non-working hours, while the Fisher model 

over estimates the extraction rate during this time period. When the ventilative flow rate is decreased to 3 

ACH, the simulation program switches from the Fisher model to the Tarp model. Under pure natural 

convection conditions, the simulation results using the four different convection models agree relatively 

well with each other.  
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Figure 8.5 Exhaust Temperatures at Ventilative Flow Rate of 20ACH 
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Figure 8.6-a Predicted Zone Extraction Rate under 100 ACH Using Different Convection Models  
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Figure 8.6-b Predicted Zone Extraction Rate under 50 ACH Using Different Convection Models 
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Figure 8.6-c Predicted Zone Extraction Rate under 30 ACH Using Different Convection Models 
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Figure 8.6-d Predicted Zone Extraction Rate under 20 ACH Using Different Convection Models 
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Figure 8.6-e Predicted Zone Extraction Rate under 10 ACH Using Different Convection Models 
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Figure 8.6-f Predicted Zone Extraction Rate under 5 ACH Using Different Convection Models 
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Figure 8.6-g Predicted Zone Extraction Rate under 3 ACH Using Different Convection Models 
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Figure 8.6-h Predicted Zone Extraction Rate without Ventilation Using Different Convection Models 

 

Figure 8.7 shows the simulation results using the local convection model under different ventilative flow 

rates. The building extraction rate is similar before 8am, when the outside temperature is not high and the 

load due to the office lighting, equipment, and people has not been added. After 8am, the higher the 
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ventilative flow rate, the higher the building extraction rate. This is due to lower room average air 

temperature and outlet temperature for higher ventilative flow rates.  
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Figure 8.7 Predicted Zone Extraction Rate Using Local Convection Model for All CV Systems 

 

A VAV system can’t be simulated with the Fisher model and the local convection model because these two 

convection models are based on the ventilative flow rate, which changes during the iteration resulting in 

non-convergence of the ASHRAE Air Toolkit.  
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Chapter 9: Conclusions and Future Work Recommendations 

 

The significant contributions of this work may be summarized as follows: 

1. A local Reynolds number based explicitly on the characteristics of the offset wall jet has been 

defined.  Both the local velocity and the length scale are based on a previously reported offset wall 

jet correlation. The local Reynolds number can be calculated in the simulation environment for 

any location in the room with only room geometry and diffuser inlet conditions required as input.  

Detailed room air models are not required to support the calculation of the local Reynolds number. 

2. A forced convection model based on the local Reynolds number was developed.  The correlation 

was based on measured ceiling and wall data from the UIUC room over a range of 3 to 100 ACH 

and wall data from the OSU room over a range of 10 to 30 ACH.  A single correlation was 

developed for both walls and ceilings with uniform and variable surface temperatures over the 

entire range of flow rates. 

3. A metric to determine the type of local flow regime (natural or forced convection) was developed.  

The metric is suitable for implementation in a simulation program and will allow for the 

application of both forced and natural convection correlations in a single room.   

4. A natural convection model based on local Grashof and Nusselt numbers was developed.  

 

A local variable based convection model was defined for coupling building heat balance models and multi-

node air models. Currently available convection models can’t meet the needs of airflow simulations for low 

energy room air management systems. The low energy systems tend to reduce energy consumption by 

conditioning the occupied zone only. This strategy leads to thermal stratification, non-uniform surface 

temperatures and mixed, natural and forced flow regimes in rooms. In order to calculate the convective heat 

transfer of these rooms in a simulation environment, a local variable based convection model, which 
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represents convection coefficients with local air temperatures and velocities, has been defined in this 

research. 

 

A valid convection model has a properly defined reference temperature and a generally applicable length 

scale so that it can be used in cases that are dynamically similar but have different dimensions. The existing 

literature does not include a methodology that can be generally applied to define the reference temperature 

and length scale for room convection models with attached wall jets. This research introduces a non-

dimensionalization method, which can be applied to determine appropriate length scales and reference 

temperatures for rooms with various types of near-wall diffusers including floor and ceiling slot diffusers.  

 

The airflow characteristics of the radial ceiling diffuser in an office size room have been experimentally 

investigated. The jet discharging from ceiling radial diffuser can be identified as offset jet. A recirculation 

region, reattachment region, and jet development region have been observed and a good match with offset 

jet theory has been found. After reattachment, the offset jet develops as an attached wall jet and wall jet 

theory can be applied. By applying wall jet theory, the boundary layer thickness required to define the local 

Reynolds and Grashof numbers is scaled with the distance from the local surface element to the point 

where the jet is discharged from the diffuser. With the length scale and local air temperatures and velocities 

obtained from the non-dimensionalization method, a local Reynolds number and Nusselt number for forced 

convection driven by a radial ceiling diffuser were defined. For local natural convection, a Grashof number 

and Nusselt number based on Bejan’s scale analysis were also defined.  

 

A local convection model based on the local Reynolds, Grashof and Nusselt numbers was developed for the 

room with a radial ceiling diffuser. The model includes a single forced convection correlation applicable to 

both ceilings and walls which applies to both the forced and mixed convection flow regimes, and a natural 

convection correlation which applies to walls and floors. Additional research is required to develop a 

suitable mixed convection correlation. However, it was observed that the forced convection correlation can 

be used for a wide range of room airflow and temperature configurations within a reasonable margin of 

error.  
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The local convection correlations were implemented in the ASHRAE Air Toolkit. The experimental room 

conditions were modeled using measured local convection coefficients the new local convection model, the 

Fisher model, the Tarp model, and the ASHRAE model. Good agreement was obtained between results 

predicted by the local convection model and the experimental data. All models work well in the natural 

convection flow regime and at low ventilative flow rates. The ASHRAE model under estimated the 

building load for ventilative flow rates greater than 5 ACH, and the Tarp model always under estimated the 

building load in the forced convection regime. The Fisher model worked well for ventilative flow rates 

greater than 20 ACH, but under predicted the building load for ventilative flow rates less than 10 ACH. In 

summary, the The local variable based correlation improved the predicted cooling load by at least 20% over 

the entire range of ventilative flow rates. 

 

Recommendations for future work include the following: 

1. The mixed convection correlation consistent with the local variable based convection model 

should be developed.  The experimental data in the mixed convection flow regime of this research 

is the result of recirculation flow and it matches the forced convection correlation reasonably well. 

For room configurations that have small recirculation flow effect and the momentum force and the 

buoyancy force are comparable, a mixed convection correlation is needed. 

 

2. An improved model of the offset associated with various diffuser types should be developed. The 

local air velocity prediction equation has two decay coefficients; one of them reflects the velocity 

decay at the offset jet attachment point. For diffusers that have much different offsets, the decay 

coefficient needs to be re-evaluated.    

 

3. Data sets for common diffuser configurations including floor and ceiling slot diffusers should be 

collected.  The local convection model of this research is limited to offset jets and attached wall 

jets. Local convection models for other diffuser and jet configurations should be developed. 
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4. A state of the art airflow measurement technique, such as PIV measurement system, is preferred 

for future research so that the near wall airflow can be characterized in more details. This research 

used omni-directional air velocity transducers to measure local air velocities point by point and 

very limited number of data point was obtained.  

 

5. Limitations in existing room air models were uncovered during the course of the investigation.  

The zonal air model can’t properly simulate the airflow discharged from radial ceiling diffuser, so 

half of the experimental room was simulated with a side wall inlet diffuser. The predicted near 

wall reference temperature was examined to match the measured air temperature.  Room air 

models should be extended and enhanced to accurately model common room air flow 

configurations.  In addition, the ASHRAE Air Toolkit should be extended to include VAV 

systems. 

 

6. Both air models and local convection models should be implemented in commercial building 

simulation software to facilitate modeling of low energy systems. Well stirred room air simulation, 

which is used in most commercial software, is no longer valid to accurately simulate low energy 

systems.   
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Appendix A: Thermocouple Calibration Curves 
 

 

Table A.1 Thermocouple Calibration Curves of Wireless Data Logger  

Channel No. Calibration Curve 
11 y = 1.0003x - 0.0461 

12 y = 1.0009x - 0.0888 

13 y = 1.0004x - 0.0966 

14 y = 1.0005x - 0.1002 

15 y = 1.0001x - 0.1016 

16 y = 0.9997x - 0.1072 

17 y = 0.9999x - 0.1171 

18 y = 0.9993x - 0.1135 

19 y = 0.9998x - 0.1175 

20 y = 0.9992x - 0.0806 
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Table A.2 Thermocouple Calibration Curves of Helios Data Logger  

Channel No. Calibration Curve Channel No. Calibration Curve 
0 y = 0.9983x + 0.0951 50 y = 1.0004x + 0.0342 

1 y = 0.9985x + 0.0957 51 y = 1.0021x + 0.0192 

2 y = 0.9977x + 0.0978 52 y = 1.0028x + 0.0234 

3 y = 0.9977x + 0.0851 53 y = 1.0026x + 0.039 

4 y = 0.9971x + 0.0973 54 y = 0.9959x + 0.0995 

5 y = 0.9964x + 0.0917 55 y = 1.0031x + 0.0237 

6 y = 0.9965x + 0.0887 56 y = 1.005x - 0.0037 

7 y = 0.9966x + 0.0848 57 y = 1.0029x + 0.0641 

8 y = 0.9982x + 0.0512 58 y = 1.005x + 0.0301 

9 y = 0.9956x + 0.0888 59 y = 1.0022x + 0.0819 

10 y = 0.996x + 0.0809 60 y = 0.9985x + 0.03 

11 y = 0.9961x + 0.0932 61 y = 0.9971x + 0.059 

12 y = 0.9972x + 0.0909 62 y = 0.996x + 0.0795 

13 y = 0.9973x + 0.089 63 y = 0.9963x + 0.0652 

14 y = 0.9976x + 0.085 64 y = 0.9972x + 0.0565 

15 y = 0.9979x + 0.0806 65 y = 0.9977x + 0.0441 

16 y = 0.998x + 0.0882 66 y = 0.9983x + 0.0352 

17 y = 0.9983x + 0.1152 67 y = 0.998x + 0.0533 

18 y = 0.9987x + 0.1289 68 y = 0.9973x + 0.0649 

19 y = 0.9985x + 0.1173 69 y = 0.9964x + 0.0691 

20 y = 0.997x + 0.1134 70 y = 0.9994x + 0.0274 

21 y = 0.9968x + 0.1119 71 y = 1.0003x + 0.029 

22 y = 0.9965x + 0.1121 72 y = 1.0009x + 0.0418 

23 y = 0.9966x + 0.0928 73 y = 1.0025x + 0.021 

24 y = 0.9964x + 0.1009 74 y = 0.9995x + 0.0862 

25 y = 0.9958x + 0.1039 75 y = 1.0021x + 0.0213 

26 y = 0.9957x + 0.1018 76 y = 1.0022x + 0.0228 

27 y = 0.9953x + 0.108 77 y = x + 0.09 

28 y = 0.9959x + 0.0995 78 y = 1.0015x + 0.0708 

29 y = 0.9953x + 0.0958 79 y = 1.0018x + 0.0561 

30 y = 0.9957x + 0.102 80 y = 1.0018x + 0.0561 

31 y = 0.9963x + 0.0997 81 y = 1.0032x + 0.0451 

32 y = 0.9988x + 0.0692 82 y = 1.0035x + 0.0309 

33 y = 0.9992x + 0.0715 83 y = 1.0031x + 0.0322 

34 y = 0.9998x + 0.0644 84 y = 1.0036x + 0.0214 

35 y = 1.0005x + 0.0485 85 y = 1.0022x + 0.0423 

36 y = 1.0002x + 0.0574 86 y = 1.0089x - 0.0186 

37 y = 1.0011x + 0.0842 87 y = 1.0005x + 0.0711 

38 y = 0.9994x + 0.1324 88 y = 1.0018x + 0.0376 

39 y = 1.0009x + 0.0998 89 y = 1.0003x + 0.0233 

40 y = 0.9984x + 0.1243 90 y = 1.0014x + 0.0512 

41 y = x + 0.0713 91 y = x 

42 y = 0.9983x + 0.1055 92 y = 0.9992x + 0.0334 

43 y = 0.9985x + 0.09 93 y = 0.9989x + 0.0372 

44 y = 0.9997x + 0.065 94 y = 1.0023x - 0.0315 



 138

45 y = 0.9963x + 0.1342 95 y = 1.0025x - 0.0425 

46 y = 0.9988x + 0.0758 96 y = 1.0026x - 0.0212 

47 y = 0.9963x + 0.134 97 y = 1.0021x - 0.0017 

48 y = 0.9979x + 0.0903 98 y = 1.0011x - 0.0449 

49 y = 0.9979x + 0.0761 99 y = 1.0058x - 0.0848 
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Appendix B: OSU Experimental Parameters 
 
 

Table B.1 Forced Convection Data Sets on Hot Walls 

Exp. Code ACH T_hotwall (ºC) T_inlet (ºC) T_outlet (ºC) VFR (m3/s) Dis_air (mm) 

706041 9.5 37.73 15.12 24.89 0.143 128 

706042 9.55 37.78 15.09 24.92 0.144 55 

706043 9.68 37.76 15.15 24.93 0.146 79 

706044 9.68 43.28 15.58 26.81 0.146 107 

706045 9.61 43.29 15.66 26.92 0.145 30 

707041 9.65 40.56 15.37 25.91 0.146 107 

707042 9.63 40.55 15.51 26 0.145 55 

707043 9.36 32.36 15.17 23.63 0.141 107 

707044 9.31 32.28 15.28 23.45 0.141 152 

707045 9.43 32.3 15.25 23.42 0.142 226 

707046 9.6 32.28 15.35 23.42 0.145 55 

708041 9.46 37.77 15.4 24.9 0.143 107 

708042 9.51 37.8 15.46 24.97 0.144 55 

708043 9.42 37.77 15.43 24.99 0.142 152 

708044 9.24 43.34 15.75 26.94 0.14 107 

708045 9.33 43.28 15.79 27.03 0.141 55 

708046 9.27 43.36 15.73 27.05 0.14 152 

709041 9.38 32.34 15.07 23.4 0.142 55 

709042 9.41 32.31 15.09 23.41 0.142 107 

710041 10.25 32.31 14.69 22.67 0.155 107 

710042 10.26 32.33 14.71 22.73 0.155 152 

710043 10.19 46.04 15.3 26.95 0.154 107 

714041 4.94 37.83 17.84 27.94 0.075 128 

714042 4.96 37.8 17.9 28.22 0.075 79 

714043 4.93 37.81 17.89 28.23 0.075 177 

715041 4.92 32.27 17.47 25.76 0.074 128 

715042 4.95 32.15 17.45 25.88 0.075 177 

715043 4.95 32.2 17.46 25.92 0.075 55 

715044 4.96 32.21 17.56 25.94 0.075 30 

716041 9.13 46.12 15.39 27.9 0.138 128 

716042 9.06 46.12 15.53 28.06 0.137 177 

716043 9.17 46.09 15.53 28.06 0.138 79 

716044 9.09 46.05 15.57 28.17 0.137 30 

716045 9.18 46.02 15.58 28.2 0.139 107 

716046 9.07 45.96 15.62 28.26 0.137 55 

717041 4.94 40.5 17.33 29.13 0.075 107 

717042 4.96 40.52 17.36 29.28 0.075 128 



 

140 

 

718041 4.95 36.11 17 27.25 0.075 128 

718042 4.96 36.07 17.1 27.36 0.075 107 

718043 4.95 36.23 17.15 27.4 0.075 79 

719041 4.96 37.81 17.1 27.91 0.075 30 

719042 4.95 37.89 17.14 28.01 0.075 55 

719043 4.93 37.76 17.18 27.93 0.074 152 

826041 22.55 32.25 16.55 21.34 0.341 128 

916041 22.87 34.82 15.08 21.1 0.345 30 

916042 22.61 34.99 14.91 21.02 0.341 128 

917041 22.91 37.75 15.21 21.69 0.346 128 

917042 22.9 37.76 15.35 21.86 0.346 177 

917043 22.9 37.63 15.5 21.98 0.346 226 

918041 22.94 37.55 15.48 21.94 0.347 128 

918042 22.95 37.8 15.37 21.9 0.347 79 

919041 22.92 40.39 15.41 22.43 0.346 128 

919042 22.49 40.35 15.31 22.43 0.34 177 

919043 22.98 40.36 15.37 22.44 0.347 79 

920041 21.67 37.58 15.12 21.72 0.327 128 

920042 22.11 37.5 15.15 21.77 0.334 177 

921041 22.11 37.72 15.22 21.74 0.334 226 

923041 23.28 43.05 16 23.46 0.352 128 

923042 23.29 42.78 15.88 23.4 0.352 226 

1006041 32.66 37.74 20.39 24.5 0.493 128 

1006042 32.7 37.74 20.35 24.54 0.494 177 

1007041 32.42 37.73 20.39 24.48 0.49 226 

1007042 32.46 37.68 20.40 24.56 0.49 274 

1008041 32.46 43.26 20.83 25.84 0.49 128 

1008042 32.36 43.24 20.85 25.87 0.489 177 

1008043 32.43 43.06 20.99 25.97 0.49 226 
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Table B.2 Forced Convection Data Sets on Cold Walls 

Exp. Code ACH T_coldwall (ºC) T_inlet (ºC) T_outlet (ºC) VFR (m3/s) Dis_air (mm) 

317051 17.00 18.76 19.23 23.61 0.26 128 

318051 22.17 18.35 21.04 23.55 0.21 128 

322051 21.93 18.25 18.91 23.18 0.21 128 

419051 11.30 15.68 20.91 24.35 0.17 128 

422051 10.61 18.33 22.09 24.94 0.16 128 

 



 142

Table B.3 Natural Convection Data Sets 

Exp. Code T_hotwall (ºC) T_Coldwall (ºC) Dis_air (mm) Panel Data 

1014041 40.56 16.18 128 Hot 

1014042 40.56 16.18 79 Hot 

1018041 35.03 14.96 79 Hot 

1018042 35.03 14.96 55 Hot 

1019041 32.28 15.84 79 Hot 

1019042 32.28 15.84 55 Hot 

1019043 32.35 17.43 79 Hot 

1019044 32.35 17.43 55 Hot 

1020041 32.31 21.00 79 Hot 

1020042 32.31 21.00 55 Hot 

1021041 29.57 20.55 79 Hot 

1024041 29.50 20.45 79 Hot 

1024042 29.50 20.45 55 Hot 

1025041 29.54 20.61 79 Cold 

1026041 35.08 17.75 55 Cold 

1027041 35.08 18.43 55 Cold 

1028041 32.27 17.71 55 Cold 

1028042 32.27 17.71 128 Cold 

1029041 23.97 11.04 128 Cold 

1207041 37.8 13.55 79 Cold 

1207042 37.8 13.55 128 Cold 

1210041 43.3 13.16 79 Cold 

1211041 43.27 11.47 79 Cold 

1212041 32.29 15.64 79 Cold 

1213041 32.31 17.49 79 Cold 
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Appendix C: UIUC Experimental Parameters 

 

Table C.1 UIUC Experimental Data Sets 

Exp. Code ACH Tinlet (˚C) VFR (CFM) MFR (kg/s) Toutlet (˚C) Area (m2) 
112933 3.00 10.00 60.81 0.0348 25.00 0.022379 
624921 14.92 19.97 302.19 0.1693 27.91 0.022379 
428895 70.10 16.72 1419.58 0.7914 24.59 0.093 
505891 94.09 16.87 1905.37 1.0628 24.31 0.093 
1015892 30.27 20.95 612.90 0.3459 27.02 0.093 
1016891 50.21 20.99 1016.74 0.5736 26.63 0.093 
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