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1. INTRODUCTION

1.1. Background

Vapor compression cycle based heat pump systems are commonly used for both 

heating and cooling purposes in the United States.  These systems are typically charged 

with ozone-depleting refrigerants, such as R-22, that is being phased out in the near 

future.  There is a critical need in the industry to design the next-generation heat pump 

systems using ozone-safe refrigerants.  However, the ozone-safe refrigerants, such as R-

410A, have substantially different characteristics than R-22.  This presents a challenging 

problem for heat pump design engineers because of a lack of empirical data and product 

development experience with the new refrigerants.  To reduce the cost of designing the 

next-generation heat pump systems, computer simulation increasingly drives design 

procedures in the heat pump industry.

Although computer simulation programs vary both in terms of complexity and 

computational intensity, the unique requirements of the design procedure are often not 

considered in selecting a simulation tool.  Often these tools use simple heat exchanger 

models without due consideration of their impact on the design process.  The simple 

models may not be adequate for the following aspects of the heat pump design.

Heat exchanger circuiting: For plate-fin-tube heat exchangers, circuiting refers to the 

connections of coil tubes.  It is an important aspect in system design but is universally 
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ignored in simple models.  A number of studies have demonstrated that circuit design has 

a significant impact to coil capacity and pressure drop (Ellison et al. 1981; Domanski and 

Didion 1983; Liang et al. 1998; Jiang et al. 2002, 2006; Wang et al. 1999a).  Simple 

models rely on the experience of design engineers and some trial and error in the test 

room to optimize the heat exchanger circuit design.

Refrigerant mixtures: The use of refrigerant mixtures is increasingly popular in heat 

pump systems.  However unlike pure refrigerants, refrigerant mixtures experience 

temperature glide in the saturation region.  Simple models rely on average saturation 

temperature in the heat transfer calculation that cannot account for the temperature 

change in the saturation region.

Local air side heat transfer coefficient: For multi-row coils, Rich (1975) showed that 

the air side heat transfer coefficient varies from row to row.  For a four-row heat 

exchanger, the first row heat transfer coefficient can be 30% higher than the last row at a 

given air flow rate.  Simple models are based on global analysis that cannot account for 

the variation of air side heat transfer coefficient.

Detailed heat exchanger models divide the heat exchanger into small elements 

and calculate the elements one-by-one along the refrigerant flow direction.  Computer 

simulation with detailed heat exchanger models may require considerably more 

computation time, but has the ability to: 

● Analyze different circuiting schemes.

● Account for the temperature glide of refrigerant mixtures.

● Incorporate the local air side heat transfer coefficient in the heat transfer 
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calculations.

All of these features are closely related to each other and are governed by the element-by-

element analysis.  A circuiting algorithm that can analyze all kinds of circuitry can be 

used to determine the local boundary conditions for each heat exchanger element.  The 

temperature glide in the saturation region for refrigerant mixtures can be easily accounted 

for if the local refrigerant boundary conditions for each element are determined by the 

circuiting algorithm.  With the elemental analysis, the variation of air side heat transfer 

coefficients can be also easily accommodated in each element calculation.  As a result, 

the local heat transfer for each element can be more accurately calculated.

However, due to coil circuitry can be very complicated in real life and simple 

circuiting algorithms have limitations and cannot be used to analyze complex circuitries, 

an ideal circuiting algorithm that can analyze all kinds of circuiting is required in the 

elemental heat exchanger analysis.  It is necessary to relax the constraints in the simple 

circuitry models and develop a simulation strategy that is “generic” in nature and can 

simulate any kind of heat exchanger circuitry.

Local air side heat transfer correlations are rare in the literature but they are 

required for the detailed heat exchanger models for more accurate analysis.  The local 

heat transfer coefficients together with the circuiting algorithm can determine the local 

boundary conditions for each heat exchanger element.  As a result, the temperature glide 

in refrigerant mixtures can be accounted for.

1.2. Objectives

The main objective of this research is to develop a deterministic heat pump 
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simulation program.  It is capable of:

1. Simulating pure refrigerants and refrigerant mixtures.  The program allows users to 

select a variety of refrigerants to perform heat pump simulations.

2. Simulating complicated heat exchanger circuiting, including split and joined circuits. 

The program provides heat pump design engineers the flexibility to design their own 

heat exchanger circuits.

Each heat pump component is developed as a stand alone program.  The models are also 

integrated into a single program to simulate overall system operations.  The aim is then to 

eventually incorporate a refrigerant property library and a flexible heat exchanger circuit 

model in the simulation environment for the assessment of overall system performance.  

A local air side heat transfer correlation is experimentally developed and used in 

the heat pump program.  The heat pump program is experimentally validated under 

various boundary conditions and system configurations.  To access the individual 

performance of the component models and the integrated system performance, validation 

tests are conducted at two levels:

 Component level:  Component models are simulated one-by-one using experimental 

data for the model inputs.  

 System level:  All component models are linked together to simulate the heat pump 

operation.  The inputs of each component model are the simulated outputs from other 

components.  

The new heat pump program developed under the proposed research is intended to be a 

design and simulation tool for the industry.  Heat pump design engineers can specify the 
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boundary conditions and let the program calculate the component size.  If all components 

are defined, it can allow users to simulate the system under both design and off-design 

conditions.

1.3. Unique Contributions

A heat exchanger model with a unique circuiting algorithm is developed in this 

project.  The circuiting algorithm is used to determine the refrigerant distribution in the 

heat exchanger.  The circuiting algorithm is able to solve the heat exchanger circuit 

network and calculate the local refrigerant flow rate in each circuit branch according to 

the circuit pressure drop.  It is capable of modeling split, joined, and other complicated 

circuits.

The elemental method, which divides the heat exchanger coil into tube segments, 

is used to calculate the refrigerant pressure drop and heat transfer of the heat exchanger. 

The saturation refrigerant temperature in each segment is calculated locally according to 

the refrigerant condition.  Therefore, the temperature glide experienced by refrigerant 

mixtures in the saturation region can be automatically accounted for in the elemental heat 

exchanger models.

Previously developed row-by-row heat transfer correlations are for flat fins, e.g. 

Rich (1975), Ganguli and Breber (1988), and Yang (1999, 2002).  A new set of row-by-

row heat transfer correlations for louvered fins is experimentally developed in this 

research.  Currently, the overall heat transfer coefficient for the entire heat exchanger is 

used as the local coefficient (Ellison et al. 1981; Liang et al. 1998; Jiang et al. 2002, 

2006), however, it has been shown that the air side heat transfer coefficient varies from 
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row to row (Rich 1975).  Row effect to louvered fins is investigated in this research.  The 

row-by-row heat transfer analysis results for louvered fins support the elemental heat 

exchanger model and minimize the modeling uncertainties.  

1.4. Overview

Chapter 2 is a survey of the literature to identify what has been done, and what 

needs to be done for this research.  Mathematical models for the heat pump components 

and heat transfer correlations, etc. are selected in this chapter.  

Chapter 3 presents the mathematical models that are selected for this investigation 

from the published literature.  It also presents the new heat exchanger circuiting 

algorithm developed from this research.  

Chapter 4 evaluates the performance of the implemented models for a range of 

boundary conditions.  This is imperative because some of the models are developed on an 

empirical or semi-empirical basis, the evaluation is able to verify the models and identify 

possible problems before comparing the modeling results to experimental data.  

Chapter 5 presents the development of the row-by-row heat transfer coefficients 

for louvered fins.  The experimental method, data reduction and validation procedures, 

and an analysis of the row-by-row heat transfer coefficients for louvered fins are 

presented in this chapter.  A new row-by-row air side heat transfer correlation is 

presented based on the data from louvered fin coils.  In addition, a conversion method to 

convert the overall heat transfer correlation to the row-by-row form is presented.

Chapter 6 discusses the experimental validation of the models.  The experimental 

method used to collect the validation data is presented.  Both component and system level 
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validation results are presented.  Validation data are collected from the experiments 

conducted at Oklahoma State University and the York laboratory in Norman, Oklahoma. 

Overall 100 data points are used for the validation.

Chapter 7 summarizes the objectives and findings of the research.  A list of future 

work that extends the scope of this research is proposed.  The recommended topics intend 

to eliminate the input requirements and assumptions of the simulation program in this 

research.

The reference, bibliography, and appendix are shown in chapter 8, 9, and 10, 

respectively.  All of the cited publications in this report are shown in the reference 

chapter.  Additional publications related to this research are presented in the bibliography 

chapter.  The appendix shows complementary data and other information that has been 

omitted from the main body of this report.
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2. REVIEW OF LITERATURE

The development of a heat pump simulation program involves a variety of models 

that range from the refrigerant side heat transfer coefficient to compressor operations. 

The large body of literature that exists for each of these models is listed in the 

bibliography section.  This review only covers elements that are directly related to the 

research objectives.  The heat pump component models, the solution algorithm to 

integrate these models, refrigerant property calculations, circuiting algorithms, and local 

air side heat transfer correlations are discussed in this Chapter.  

2.1. Component Models

There are four major components in a typical heat pump system: compressor, 

condenser, expansion device, and evaporator.  The compressor is a pumping device 

which transports the refrigerant from the low pressure side to the high pressure side of the 

system.  The condenser transfers heat from the refrigerant to the environment while the 

evaporator transfers heat from the environment to the refrigerant.  The expansion device 

is a metering device that regulates the refrigerant flow rate in the system.  

2.1.1. Compressors

Most commonly used compressors in heat pump systems are either reciprocating 

or scroll types.  The most widely used reciprocating compressor model is the volumetric 
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efficiency model as documented by McQuiston et al. (2000).  This model shows the 

relationship among the important compressor variables, e.g. clearance factor, polytropic 

exponent, piston displacement, mass flow rate, and power consumption, etc.  It is used as 

the basis for a number of detailed compressor models (Fischer et al. 1998; Domanski and 

Didion 1983).  These models use the 1st principle approach that accounts for the energy 

balances inside and outside of reciprocating compressors.  However, these models require 

many input parameters that are only known to compressor manufacturers (such as the 

clearance factor).  In addition, experimental data are often required to determine the 

volumetric efficiency.  The volumetric efficiency model is also used as the basis for 

parameter-estimation compressor models (Popovic and Shapiro 1995; Kim and Bullard 

2001) that require experimental data to estimate the compressor parameters.  The 

requirement of detailed compressor inputs and experimental data are the downsides of the 

detailed compressor models.  It is not convenient for heat pump design and is not adopted 

in this research.

Detailed modeling of the scroll compressor is rather complex.  When two scrolls 

mate together, it forms several crescent shaped pockets.  Gas refrigerant is compressed 

simultaneously in several pockets as the scroll moves.  Schein and Radermacher (2001) 

presented a simulation model to study the internal leakage between scrolls.  The mass and 

energy balances are modeled in each compression pocket.  The model was not 

experimentally validated but intended to be an analytical tool to predict scroll compressor 

performance.  This model requires input of scroll geometry that is only known to 

manufacturer.  It is suitable for compressor analysis but is too complex to be used in a 

heat pump design programs.
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The scroll compressor model by Chen et al. (2002a) defines the scroll movement 

into suction, compression and discharge chambers.  It models the entire compression 

process according to the mass and energy balances in each chamber.  This compressor 

model is used with an overall energy balance model (Chen et al. 2002b) around the 

compressor to determine the compressor mass flow rate, power consumption, and 

discharge temperature.  Lee (2002) used the same approach to develop a similar scroll 

compressor model based on the heat balance.  This model was validated with 

experimental data and had satisfactory results.  However, both the Chen et al. and Lee's 

models require detailed input parameters such as the scroll geometry which are only 

known to the manufacturer.  These models are too complex to be used in heat pump 

design simulations and are more suitable for compressor design purposes.

Winandy et al. (2002a) presented a simple scroll compressor model that divides 

the compressor operation into four control volumes: heating-up, isentropic compression, 

compression at a fixed volume and cooling down.  Heat transfer equations are applied to 

each control volume.  Experimental data were used to estimate the heat transfer 

coefficients in the heat transfer equations of the model.  This model avoids the problem 

of requiring compressor geometry.  Winandy et al. (2002b) applied the same model to an 

open-type reciprocating compressor and showed promising results.  However, since this 

model is a parameter-estimation model, experimental data are required.  It is therefore not 

suitable for heat pump design purposes.

The ARI model (1999) is a simple, yet satisfactory compressor model.  It is an 

empirical model that generalizes the compressor performance in a 10-coefficient 

polynomial equation.  This model can apply to any type of compressor, e.g. scroll, 
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reciprocating.  The coefficients in the equation can be generated from the compressor 

performance data published by manufacturers.  Some compressor manufacturers such as 

Bristol and Copeland also publish the polynomial coefficients to be used with the ARI 

model.  The major disadvantage of the empirical model is that it lacks physical and 

thermodynamic details related to compressor operation.  Application of the model outside 

the rated operation range can be problematic.  However the coefficients are highly 

accessible and the compressor rating conditions cover a large range of saturation 

temperatures (ARI 1999) to make it suitable for heat pump design purposes.  In addition, 

a correction method (Dabiri and Rice 1981; Mullen et al. 1998) that extends this model to 

off-design conditions is available as described in Section 3.1.  The ARI model is adopted 

in this research.

2.1.2. Heat Exchangers

Common heat exchanger models differ in the level of discretization imposed on 

the heat transfer surface, as well as in the assumptions and procedures used in each 

calculation domain.  When considering the level of discretization, heat exchanger models 

can be classified into three categories, namely zone-by-zone, tube-by-tube and segment-

by-segment models.  Both the tube-by-tube and segment-by-segment models are 

sufficiently detailed to analyze heat exchanger circuit design, account for temperature 

glide of refrigerant mixtures, and accommodate the use of row-by-row air side heat 

transfer coefficients.  Zone-by-zone models do not have these capabilities but are more 

computationally efficient.  Figure 2.1 illustrates the three heat exchanger models, which 

are discussed in the following sections.
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Figure 2.1 Discretization of heat exchanger tubes.

2.1.2.1. Zone-by-Zone Model

This model (Fischer et al. 1998; Mullen et al. 1998) divides the heat exchanger 

into "zones", which are defined according to the state of the refrigerant, i.e. superheated, 

two-phase and/or subcooled.  Each zone is treated as an isolated heat exchanger where 

the inlet refrigerant condition is equal to the outlet refrigerant condition at the previous 

zone or the coil inlet.  The air side boundary condition at the front row of the heat 

exchanger is applied to all succeeding rows regardless of the heat exchange between the 

air and refrigerant in the preceding rows, as a result, the heat exchanger capacity is 

always over predicted.  This model assumes that the circuiting in all tube branches are the 

same and each circuit branch performs equivalently.  This “equivalent circuit” 

assumption is illustrated in Figure 2.2.  Figure 2.2a is an example that is close to the 

equivalent-circuit heat exchanger, because both circuits are identical in terms of the 

number of tubes and circuiting.  If the refrigerant flow rates are identical in each circuit 

and airside conditions at the coil face are uniform, both circuits perform similarly.  In 

practice, the circuit inlets are splits from the coil header, and the circuit outlets are joined 

to another junction at the coil outlet.  This should result in the same pressure drop in each 
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circuit.  For the circuit shown in Figure 2.2a, since both circuits are identical in length, 

the refrigerant mass flow rates are likely distributed equally to the circuits.  

The equivalent circuit assumption becomes problematic for the circuiting shown 

in Figure 2.2b.  Note that the circuits are not equivalent because there are more tubes in 

circuit 1 compared to circuit 2.  If the refrigerant flow rates are identical in each circuit, 

circuit 1 is expected to have a higher heat transfer capacity and refrigerant pressure drop. 

(A) Valid (B) Invalid

1 , 2  -Branch number1, 2, 3... -Tube number;
RefrigerantRefrigerant

2

1 1

2

Figure 2.2 Zone-by-zone method: Equivalent circuit assumption.

On the other hand, if the pressure drop in each circuit is the same, circuit 1 will have 

lower refrigerant flow rate.  The “equivalent circuit” assumption clearly proscribes the 

use of the zone-by-zone model for circuit design.  System designs based on this coil 

model must depend on experimental measurements to optimize the coil performance.  In 

addition, due to the lack of circuiting detail, the refrigerant conditions at the coil return 

bends are unknown, and the pressure drops in the return bends cannot be calculated 

precisely.  The zone-by-zone model is not suitable for this research because of its 

weakness in handling coil circuiting.

2.1.2.2. Tube-by-Tube Model

This model (Domanski and Didion 1983; Liang et al. 1998) defines each single 
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coil tube as a calculation domain.  The equivalent circuit assumption is not used in the 

tube-by-tube models.  Each tube is treated as an isolated heat exchanger and calculated 

one-by-one.  Constant refrigerant properties are assumed throughout each tube.  The 

calculation is performed sequentially along the refrigerant flow direction until it reaches 

the coil outlet.  The air side boundary condition for each tube is obtained from the 

calculation results of the upstream tubes.  However, due to the tube arrangement in the 

heat exchanger circuit, the upstream tube on the air side may not be always the upstream 

tube on the refrigerant side.  As a result, an iterative procedure is usually used in the tube-

by-tube model to determine the air side boundary condition for each tube.  This approach 

results in significantly longer computation time but is more accurate compared to the 

zone-by-zone models.  In addition, the tube-by-tube calculation may experience 

calculation error in the “transition tube”, where both single phase and two-phase 

refrigerants exist as shown in Figure 2.1b.  In this tube, calculation error may be 

introduced due to the application of a single heat transfer correlation to the entire tube.  

2.1.2.3. Segment-by-Segment Model

This model, also known as the elemental method, (Rossi and Braun 1995; Jiang et  

al. 2002, 2006; Ragazzi and Pedersen 1991; Vardhan and Dhar 1998) defines a small 

segment of a tube as the calculation domain.  The calculation procedure is the same as the 

tube-by-tube method in that each segment is calculated one-by-one along the refrigerant 

flow direction.  This model shares the advantages of the tube-by-tube model; moreover, 

the refined discretization can minimize the problems that may be encountered in 

transition tube of tube-by-tube models.  Figure 2.1c shows that the transition region can 

be reduced in the segmented discretization.  However, depending on the number of 
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segments defined in each tube, this method can be computationally expensive.

Despite the penalty in computation time, the segment-by-segment model is 

adopted in this research because it accommodates both the circuiting algorithm and local 

air side heat transfer coefficients in the heat exchanger calculations.  In addition, due to 

the local refrigerant side boundary conditions are known in each segment, the local 

saturation temperature for each segment can be determined.  As a result, the refrigerant 

temperature change in the saturation region can be accounted for in the segment-by-

segment calculations.  The segment-by-segment model can also be naturally extended to 

the tube-by-tube model by defining the entire tube as a segment.  In small tonnage 

system, tube-by-tube discretization is adequate for the calculation and can save 

computation time.

2.1.3. Expansion Devices

Capillary tubes, short tube orifices, and thermal expansion valves (TXV) are all 

used in heat pump systems.  Capillary tubes and short tube orifices are constant flow area 

expansion devices, while the TXV is a “variable open area orifice” that controls the 

superheat level at the evaporator outlet by adjusting the TXV opening.  A larger valve 

opening allows more refrigerant flow, which in turn yields higher superheat at the 

evaporator outlet.  Heat pumps that use TXV expansion devices are more energy efficient 

because the refrigerant flow rate of the system adjusts to the air side boundary conditions. 

Capillary tubes and short tube orifices do not have this capability but are relatively simple 

and cheap.  Since short tube orifices and TXV are more commonly used in heat pump 

systems, the following sections only cover the models for these two expansion devices. 

   15



2.1.3.1. Short Tube Orifice

Mei (1982) introduced a semi-empirical model based on the standard orifice 

relation as shown below (ASHRAE 2005):

ṁref=Corifice Aorifice 2⋅⋅P  (2.1)

where ∆P is the pressure drop across the short tube orifice; and Corifice is the orifice 

coefficient as determined by experimental data.  R-22 data were used to develop the 

model.  Mei correlated the orifice coefficient to both the pressure drop and subcooling at 

the orifice inlet.  This model has the restriction that it is only applicable to subcooled inlet 

conditions.  For two-phase or low subcooled inlet conditions, it is not sufficiently 

accurate for heat pump simulation. 

Aaron and Domanski (1990) developed another semi-empirical model based on 

the same standard orifice relation.  This model also takes all orifice geometries into 

account for the mass flow rate calculation.  In addition, Aaron and Domanski found that 

the orifice pressure drop should be correlated to the difference between the inlet pressure 

and the pressure before the refrigerant flushes across the orifice.  The flush pressure was 

correlated with subcooling, saturation and outlet pressures, and orifice geometry using 

the R-22 data obtained in their experiment.  However, this model is also only applicable 

to subcooled inlet conditions and is therefore not suitable for heat pump simulation.

Kim and O’Neal (1994) found that the Aaron and Domanski model 

underpredicted their experimental data for low subcooling conditions.  They extended the 

range of experimental data to include the two-phase inlet conditions.  Kim et al. (1994) 

introduced a two-phase correction factor for the Aaron and Domanski model to handle 

the two-phase inlet conditions.  This short tube orifice model is semi-empirical in that it 
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relies on experimental data to determine the unknown coefficients in the model 

equations.  Those coefficients are empirical and are refrigerant dependent.  O’Neal and 

co-workers conducted experiments to determine the coefficients for the most common 

refrigerants and refrigerant mixtures: R-22 (Kim and O’Neal 1994), R-12 and R-134a 

(Kim et al. 1994), R-407C (Payne and O’Neal 1998), R-410A (Payne and O’Neal 1999). 

This model can be used for this research but is not adopted.

Choi et al. (2004) and Payne and O'Neal (2004) applied the Buckingham Pi 

theorem (Buckingham 1914) to develop a dimensionless correlation for the short tube 

orifice.  They re-organized the parameters in the semi-empirical model (Kim and O'Neal 

1994) into dimensionless groups that have physical meanings.  These models are also 

semi-empirical and are dependent on experimental data to determine the empirical 

coefficients in the models.  Choi et al. (2004) and Payne and O'Neal (2004) determined a 

set of universal empirical coefficients that can be used for most common refrigerants. 

This model is adopted for this research.

2.1.3.2. Thermal Expansion Valve

Modeling of the TXV is also based on the standard orifice relation (Fischer et al. 

1998).  The orifice coefficient is related to the TXV bleed factor and the rated superheat. 

Bleed factor is analogous to the orifice diameter in the orifice model.  The variable open 

area characteristic of the TXV results in dynamic behavior.  For steady-state heat pump 

operation, the TXV operates just like a short tube orifice and the orifice model can be 

used to model the TXV with “pseudo” orifice geometry parameters.  Tandon (1999) 

showed an example that used experimental data and an orifice model to estimate the 

pseudo orifice parameters.  The requirement of experimental data to simulate the TXV 
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steady state operation is inconvenient for heat pump design purpose, this modeling 

approach is not used in the research.

Sporlan (1998) presented a TXV sizing procedure for selecting the TXV size 

according to the pressure drop across the TXV.  The pressure drop across the TXV can be 

determined by other components in a heat pump system.  It is relatively convenient to use 

because it does not require experimental data.  This method is used to determine the 

appropriate TXV size for the system.  For TXV steady state simulation, the desired 

system superheat is specified by design engineers.  The TXV controls the system 

superheat by varying the valve opening.  The change of valve opening also affects the 

system subcooling.  A bigger valve opening allows more refrigerant flow through the 

TXV and the system subcooling increases (Kim and O'Neal 1994).  This method does not 

require too many TXV parameters and can be easily used in TXV system simulation. 

This method is adopted in this research. 

2.2. System Simulation Algorithms

System performance changes according to the boundary conditions.  For heat 

pump applications, since the fluid flow and heat transfer dynamics are much faster than 

the load dynamics, steady-state system simulation is appropriate for heat pump design 

and simulation (Rossi and Braun 1995).  This section discusses the steady-state 

simulation algorithms presented in the literature.

The system simulation algorithm integrates the system component models and 

calculates system performance at specified boundary conditions.  For air-to-air heat 

pumps, the boundary conditions are air side temperatures, flow rates, and the refrigerant 
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charge of the system.  The simulation must satisfy the boundary conditions and establish 

momentum, energy and mass balances in the system.  Constraints for each balance 

equation are shown below.

Momentum Balance: The refrigerant pressure rise across the compressor must be equal 

to the pressure drop across the rest of the system.  The refrigerant mass flow rate is 

always the same in all components.

Energy Balance: The energy input to the system through the evaporator, low pressure 

refrigerant lines, and compressor must be equal to the energy rejected by the system 

through the condenser, compressor shell, and high pressure refrigerant lines.

Mass Balance: Assuming there is no refrigerant leakage, the refrigerant charge remains 

the same regardless of the change in air side boundary conditions.

2.2.1. Successive Substitution Method

The successive substitution method simulates the system components one-by-one 

along the refrigerant flow direction.  Initial values of three parameters are required to 

start the system simulation. These parameters are adjusted during the simulation to 

establish the steady-state momentum, energy, and mass balances in the system.  The 

successive substitution method in the ORNL heat pump model (Fischer et al. 1998) 

requires an initial value for condensing temperature, evaporating temperature, and system 

superheat as shown in Figure 2.3.  The solution logic is divided into high pressure, low 

pressure and system mass calculations.  These calculations are three nested iteration 

loops in the algorithm that correspond to the momentum, energy and mass balance 

equations.
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Figure 2.3 Successive substitution: System simulation algorithm.

High Pressure Calculation: The momentum balance is established in the high pressure 

calculation that includes the compressor, condenser and expansion device models.  While 

keeping other estimated variables unchanged, the condensing temperature is adjusted in 

the high pressure iteration.  The condensing temperature is proportional to the expansion 

device mass flow rate, but is inversely proportional to the compressor mass flow rate. 

Therefore, these two flow rates can be matched by adjusting the condensing temperature. 

The resulting refrigerant mass flow rate is used for the rest of the component calculations.

Low Pressure Calculation: The energy balance is established in the low pressure 

calculation which includes only the evaporator of the system.  Only the evaporating 

temperature is adjusted to match the calculated and guessed superheats.  A higher 

evaporating temperature results in a lower superheat, and vice versa.  A match in 

superheat implies that the energy rejected from the system is equal to the energy supplied 

to the system, i.e. an energy balance is established.  Note that once the evaporating 

temperature is changed, the mass flow rate calculation in the high pressure calculation is 
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affected and the momentum balance is violated.  As a result, for each change of 

evaporating temperature, the simulation returns to the high pressure calculation to re-

establish the momentum balance, then re-starts the low pressure calculation until both 

momentum and energy are balanced in the system.

System Charge Calculation: The mass balance is established in the charge calculation 

where the calculated system charge is compared to the specified charge.  The superheat is 

adjusted to find the desired refrigerant inventory in the system.  The higher superheat 

implies more refrigerant vapor and less refrigerant by weight in the system.  Therefore, 

by adjusting the system superheat, the mass balance can be achieved.  However, once the 

initial value of superheat is changed, the momentum and energy balances must both be 

re-established.  The high and low pressure, and the system charge calculations are 

therefore three nested loops for the system simulation.  The overall simulation finishes 

when the mass balance is established.

Domanski and Didion (1983) found that the refrigerant charge tends to be 

underpredicted due to the uncertainty in system internal volume in the charge calculation. 

To avoid the uncertainty, they introduced the relative charge simulation where the 

calculated charge is used as a boundary condition instead of the actual charge.  The 

relative charge is calculated based on the actual system superheat.  The relative charge 

calculation is similar to the system simulation as shown in Figure 2.3 but without the 

outer mass balance loop.  Note that the relative charge must be calculated before starting 

the system simulation.  Shen et al. (2006) introduced a two-point tuning method to 

account for the uncertainties in refrigerant charge calculation.  The method calculates a 

relative charge based on the charges calculated at two different boundary conditions. 
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They showed that the two-point tuning method performs better then the single point 

tuning method that Domanski and Didion (1983) used.

In addition to system simulation, the successive substitution method can be used 

for system design calculations.  The ORNL program has an option to perform design 

calculations where the desired system subcooling and superheat are specified boundary 

conditions.  In this simulation, the refrigerant charge and the size of the expansion device 

are calculated.  Figure 2.4 shows the design calculation logic.  

Note that only condensing and evaporating temperatures are initial guesses to start 

the calculation.  In addition, there are also other changes in the algorithm for design 

calculation:

1. In the high pressure calculation, since the system subcooling is specified instead of 

the expansion device, the momentum balance matches the calculated and desired 

subcooling instead of mass flow rate.  The condensing temperature is still the only 

variable being adjusted to find the momentum balance.

2. In the low pressure calculation, since superheat is no longer a guessed variable, the 

energy balance matches the calculated and specified superheats.  The interaction 

between the high and low pressure calculations remains unchanged, i.e. once the 

evaporating temperature is changed in the low pressure calculation, the high pressure 

calculation is re-visited with updated evaporating temperature.  When both 

momentum and energy are balanced in the calculation, the size of the expansion 

device and the system charge are calculated according to the calculated refrigerant 

conditions.

The successive substitution method is also used in many other system simulation 
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programs such as HPSIM (Domanski and Didion 1983), ACMODEL (Rossi and Braun 

1995), and Tandon (1999), etc.  Their simulation logic is essentially the same as the 

ORNL heat pump program but with a few variations.  For example, HPSIM uses 

compressor suction and discharge pressures as initial guesses instead of evaporating and 

condensing temperatures.  The ACMODEL updates all guessed variables simultaneously 

after the algorithm executes all component models.  The algorithm becomes a multi-

dimensional search method.  

Start
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Figure 2.4 Successive substitution: System design calculation.

The ORNL method is adopted in this research because of its known robustness. 

In addition, the use of evaporating and condensing temperatures as initial guesses is 

advantageous.  While refrigerant operating pressures can be dramatically different 

depending on the refrigerant in the system, the saturation temperatures are always similar 

and are bounded by the air side boundary condition.  As a result, evaporating and 

condensing temperatures are easier to guess to start the simulation.
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2.2.2. Newton Raphson Method

Besides the successive substitution method, the Newton-Raphson method is also 

used for system simulations.  Mullen et al. (1998) developed the ACRC solver that uses 

the Newton-Raphson method to simulate room air conditioning units.  Special care must 

be exercised with the Newton-Raphson method in the situation where the solution 

alternates between the single phase and two-phase regions in each iteration.  The ACRC 

solver uses a different set of residual equations to handle the single and two-phase 

alternating problems.  The solver checks the refrigerant condition after every iteration to 

decide which set of residual equations to use.  If the refrigerant properties are out of 

range, the solver repeats the previous iteration with half step length.  The implementation 

of these two features improves the robustness of Newton-Raphson method and makes it 

more applicable for system simulations.

The Newton-Raphson method has the flexibility in both system simulation and 

design calculation.  Mullen et al. (1998) introduced a “swapping parameters and 

variables” feature in the ACRC solver to perform different calculations.  Unlike the 

successive substitution method that only calculates certain outputs according to the 

program logic, the ACRC solver allows users to choose their own output parameters. 

Outputs such as required heat exchanger length that cannot be easily calculated in the 

successive substitution method can be easily produced by the Newton Raphson solver. 

The residual equations in the Newton-Raphson method are solved simultaneously, the 

parameters and variables in the residual equations can be freely swapped as long as the 

number of residual equations is equal to the number of unknown variables.  The 

computation time is another advantage of the Newton-Raphson method.  All residual 

   24



equations are solved simultaneously without the nested loop iteration required by the 

successive substitution method.  As a result, the Newton-Raphson method is less 

computationally intensive.

The downside of the Newton-Raphson method is that more initial values are 

required to start the simulation (Mullen et al. 1998).  For the basic vapor compression 

cycle with four major components: compressor, condenser, expansion device, and 

evaporator, there are at least nine initial conditions required.  The initial guesses are 

refrigerant pressure and enthalpy at the each component inlet, as well as the refrigerant 

mass flow rate in the system.  Depending on the refrigerant and air side boundary 

conditions, reasonable initial guesses are not always easy to specify.  All the initial 

guesses must be reasonably close to the final values or the simulation may not converge. 

As a result the Newton-Raphson method is less robust than the successive substitution 

method for heat pump simulation, and is not adopted in this research.

2.3. Refrigerant Properties

The refrigerant property database, REFPROP (McLinden et al. 1998) is 

commonly used for refrigerant property calculations (Domanski 1999; Liaw et al. 2002; 

Jiang et al. 2002, 2006; Wang et al. 1999a).  The REFPROP package comes with a 

graphic user interface, and FORTRAN routines that can be used for program 

development such as heat pump system simulations.  REFPROP is able to calculate the 

thermodynamic and transport properties for common refrigerants and refrigerant 

mixtures.  In addition, it also allows users to define their own refrigerant mixtures.  A 

sample driver program that comes with the package demonstrates the property 
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calculations for pure refrigerant and refrigerant mixtures.  

Since refrigerant property calculations are used everywhere in system simulations, 

the accumulated time for the property calculations can be prohibitively long if the 

property calculation is inefficient.  Domanski (1999) found that the FORTRAN routines 

in REFPROP are too time consuming for his tube-by-tube heat exchanger program, 

EVSIM, because of too many property calls in the program and the calculation 

algorithms of the REFPROP routines.  Every time the REFPROP routines are called, they 

generate the refrigerant saturation curve first before doing other calculations.  Instead of 

using the REFPROP routines, EVSIM uses a table look-up method for the refrigerant 

property calculations.  Refrigerant properties at discrete states are pre-calculated and 

stored in look-up tables.  When the property calculation is called, the refrigerant property 

is retrieved from the tables.  If the refrigerant property is between the pre-calculated 

discrete states, linear interpolation is used to approximate the refrigerant property.  The 

table look-up method is more efficient than the calculation procedures in REFPROP 

because it does not need to generate the saturation curve.  It is also used in the 

EnergyPlus program (Crawley et al. 1998) for system simulations.

 Another advantage of the table look-up method is that it can be easily updated 

with other refrigerant property databases.  As long as the format of the look-up tables is 

compatible with the table look-up routines, the method can be used with the most updated 

refrigerant properties including databases for new refrigerant mixtures.  The table look-up 

method is used for this research to save the computation time from refrigerant property 

calculations. 
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2.4. Refrigerant Oil Mixture

The use of oil in heat pump systems is to lessen the surface to surface wear on the 

moving parts in the compressor.  However, a certain amount of oil is always discharged 

from the compressor and circulated in the heat pump systems (Cremaschi 2004).  The 

addition of oil in the refrigerant affects the refrigerant heat transfer and pressure drop in 

the condenser and evaporator.  

Eckels et al. (1994a, 1994b, 1998a) developed heat transfer and pressure drop 

correction correlations to account for the oil.  They found that the existence of oil in the 

heat pump systems decreases the refrigerant heat transfer and increases the pressure drop. 

Their correlations were derived from experimental data at limited test conditions and may 

not be generally applicable. 

Shen and Groll (2005) conducted an extensive review of the effect of the 

refrigerant-oil mixture on heat transfer and pressure drop.  Their findings agreed with the 

Eckels et al. results, i.e. the oil in the refrigerant decreases the heat transfer and increases 

the pressure drop.  However, they concluded that the most reliable way to model the oil 

effect is to take the oil properties into account in the refrigerant property calculations. 

This modeling approach is used in this research.  

2.5. Circuiting Algorithms

Circuiting, which is used to address refrigerant maldistribution in heat exchangers 

can be simulated with an appropriate algorithm in the elemental heat exchanger models, 

i.e. tube-by-tube and segment-by-segment models, to determine local air and refrigerant 

side boundary conditions for each heat exchanger element.  Desirable circuiting 
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algorithms should be able to solve for refrigerant maldistribution in complicated coil 

circuitries, such as splitting and joining circuits.  For the development of circuiting 

algorithm, there are two crucial parts that need to be considered:

1. The refrigerant flow path for each circuit and all split and joined locations must be 

kept track of.

2. The refrigerant flow rate at each circuit branch must be calculated and the refrigerant 

flow maldistribution in the coil must be determined.

Ellison et al. (1981) used 3-dimensional arrays to keep track of the tube 

connections.  Table 2.1 shows the array values for the circuit shown in Figure 2.5.  Each 

tube is assigned eight 3-dimensional arrays to keep track of the tube location, and the 

joined and split locations.  Four of the arrays are used for the inlet connections, and the 

other four are used for the outlet connections.  The first two array indices of all eight 

arrays are the same; they store the horizontal and vertical locations of the current tube. 

The last array index is either 1 or 2 to represent the 1st or 2nd connection.  This limits the 

method to no more than 2 split or joined connections.  The arrays store the horizontal or 

vertical location of the connecting tubes.  For example, at the tube (1,1) outlet, it splits to 

tubes (2,1) and (1,2), the outlet arrays are:

OUTX(1,1,1) = 2; OUTY(1,1,1) = 1

OUTX(1,1,2) =1; OUTY(1,1,2) = 2

The values -1 and 99 in the table represent the tubes connecting to the coil inlet and 

outlet, respectively.  If the array value is zero, it means there is no 2nd tube connection, 

such as tube (2,1).  
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Refrigerant  in

Refrigerant  out

(1,1)

(1,2)

(2,2)

(2,1)

(3,2)

(3,1)

(1,1), (1,2), ….

Hidden side connection

Visible side connection

Tube locations

Figure 2.5 Sample circuit (Ellison et al. 1981)

Table 2.1 Connection arrays for the sample circuit of Ellison et al. (1981).

Tube 
Locations Connection Arrays

I J INX
(I, J, 1)

INY
(I, J, 1)

INX
(I, J, 2)

INY
(I, J, 2)

OUTX
(I, J, 1)

OUTY
(I, J, 1)

OUTX
(I, J, 2)

OUTY
(I, J, 2)

1 1 -1 -1 0 0 2 1 1 2
2 1 1 1 0 0 3 1 0 0
3 1 2 1 0 0 3 2 0 0
1 2 1 1 0 0 2 2 0 0
2 2 1 2 0 0 3 2 0 0
3 2 3 1 2 2 99 99 0 0

Refrigerant mass flow rate in each circuit branch is solved according to the 

circuiting connections.  It is only possible to calculate the refrigerant mass flow rate for 

each circuit if the split and joined locations are known.  For joined circuits, the mass flow 

rate is the sum of the incoming circuits.  For split circuits, the mass flow rate is a fraction 

of the upstream flow rate that is determined by the pressure drop of the current circuit 

branch.  However, due to the enormous number of circuiting possibilities, a generic 

circuiting algorithm that is able to solve the mass flow rate distribution for all possible 

circuits is not straight forward.  Ellison et al. (1981) used an iterative method to solve the 

refrigerant maldistribution problem.  It is a circuit-by-circuit calculation that starts from 

the coil inlet along the refrigerant flow direction.  If the circuit outlet is joined with other 
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circuits, the calculation starts from the inlet of the joining circuit until all joining circuits 

are calculated.  If the circuit inlet is a split, the mass flow rate is apportioned by the down 

stream pressure drop that is calculated from the previous iteration.  The iteration 

continues until the calculated mass flow rates converge.

The circuiting algorithm by Ellison et al. is a fundamental approach to analyze 

heat exchanger circuits.  However, they assumed that a tube cannot have more than two 

joined tubes at the inlet, and in turn cannot have more than two split tubes at the outlet. 

This assumption limits the flexibility of algorithm for analyzing multi-junction circuiting. 

Therefore, it is not used in this research.

Liang et al. (1998) used the two-dimensional adjacency matrix in graph theory 

(Chartrand 1985) to store the coil circuitry information.  For the sample circuit shown in 

Figure 2.5, since there are six tubes, the adjacency matrix is a 6×6 matrix.  Table 2.2 

shows the corresponding adjacency matrix.  The element in the adjacency matrix is either 

one or zero.  The ones represent connections with adjacent tube, while zeros represent no 

split or joined connection.  Note that the diagonal of the adjacency matrix represents the 

tube connecting to itself; it is therefore always zero.

Similar to Ellison et al., Liang et al. assumed that there is no more than two-way 

split and joined circuits.  The refrigerant mass flow rate in each circuit branch is solved 

using an iterative method.  The calculation sequence is from circuit-to-circuit according 

to the adjacency matrix.  In each circuit branch, the tube-by-tube or segment-by-segment 

method can be performed in the direction of refrigerant flow.

Although the Liang et al. model has the same limitation as the Ellison et al. 

model, the use of the adjacency matrix is an easier and more flexible way to store the 
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circuiting connections.  The adjacency matrix method can be used as part of the circuiting 

model development but is not adopted in this research.

Table 2.2 Adjacency matrix for the sample circuit of Ellison et al. (1981).

Tube (1, 1) Tube (2, 1) Tube (3, 1) Tube (1, 2) Tube (2, 2) Tube (3, 2)
Tube (1, 1) 0 1 0 1 0 0
Tube (2, 1) 1 0 1 0 0 0
Tube (3, 1) 0 1 0 0 0 1
Tube (1, 2) 1 0 0 0 1 0
Tube (2, 2) 0 0 0 1 0 1
Tube (3, 2) 0 0 1 0 1 0

Domanski (1999) also used an iterative method in his heat exchanger program, 

EVSIM.  Refrigerant flow rate in each circuit branch is apportioned according to its 

respective pressure drop in the previous iteration.  The calculation is considered 

converged when the refrigerant pressures are the same at all outlet circuits.  Compared to 

the Ellison et al. model, this program is able to analyze multi-junction circuiting. 

However, it assumes that there is either split or joined circuitry in the coil.  A circuit that 

splits from an upstream circuit and joins to another downstream circuits cannot be 

analyzed.  This assumption limits the flexibility of the circuiting analysis and therefore is 

not used in this research.

Liaw et al. (2002) used the same 3-D array method as Ellison et al. (1981) in their 

air-conditioning system model to compare the system performance for different 

circuitries.  No split or joined circuiting was considered.  The mass flow rate in each 

circuit branch is solved using the Newton-Raphson method.  The residual equations are 

set up according to the refrigerant mass and momentum balances, i.e.:

ṁ1ṁ2⋯ṁn=ṁtot  (2.2)
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P1=P2=⋯=Pn  (2.3)

where n is the number of circuit branches.  Note that equation (2.3) is only valid for non-

splitting and non-joining circuitry.  It is suitable for modeling coils with different circuit 

branch lengths such as the coil in Figure 2.2b but is not suitable for this research.

Jiang et al. (2002, 2006) adopted the analogy of electric circuit to heat exchanger 

circuit.  The refrigerant pressure drops and mass flow rates are treated as electric voltages 

and currents, respectively.  The equivalent electrical circuit for Figure 2.5 is shown in 

Figure 2.6.  Note that each tube is represented as a resistor in the circuit.  The junction 

numbers in the circuit are used to construct the junction-tube connectivity matrix which 

stores the circuiting information in the model.  Table 2.3 shows the junction-tube 

connectivity matrix for this circuit.  The numbers “1” and “-1” represent the junction 

before and after the tube, respectively, and “0” means the junction is not directly 

connected to the tube.       

The Jiang et al. model is able to model split and joined circuiting because of the 

electrical circuit analogy approach.  The Newton-Raphson method is used to solve for the 

mass flow rate in each circuit branch.  This model relaxes the circuiting limitations of 

previous models but has the requirement that both inlet and outlet refrigerant pressures 
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are inputs to the mass flow rate calculations.  The pressure inputs are not necessarily 

required for an ideal circuiting algorithm because the refrigerant pressure drop across the 

coil can be calculated with only the inlet pressure as an input.  Therefore, this model is 

not adopted for this research.  Since all available circuiting models have significant 

limitations, a new model has been developed as part of this research.  The new model is 

presented in Section 3.4.6.

Table 2.3 Junction-tube connectivity matrix for the sample circuit.

Tube

Junction (1,1) (2,1) (3,1) (1,2) (2,2) (3,2)

1 -1 1 0 0 0 0

2 0 -1 1 1 0 0

3 0 0 0 -1 1 0

4 0 0 -1 0 -1 1

2.6. Local Air Side Heat Transfer Coefficients

In elemental heat exchanger models, a local air side heat transfer coefficient is 

required for each element calculation.  For each element, the air side heat transfer 

coefficient should be calculated according to the local air temperature and air velocity.  If 

uniform air temperature and velocity is assumed, the local heat transfer coefficient is the 

same for all elements at a given coil row.  Figure 2.7 shows the typical heat exchanger 

geometry for heat pump systems.  Plate fins and staggered tubes are used for this kind of 

heat exchangers.  Air travels outside the tubes and is in the parallel direction with the 

fins, while refrigerant travels inside the tubes.  

Rich (1975) showed that air side heat transfer coefficients vary from row-to-row 

for this kind of heat exchangers.  He presented a row-by-row heat transfer correlation 
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based on a four-row coil experiment as shown in Figure 2.8.  The correlation is presented 

in terms of the j-factor, which is a dimensionless number representing the air side heat 

transfer coefficient.  At low Reynolds numbers, Rich suggested that there could be stable 

vortices behind the tubes that affect the air temperature distribution of the downstream 

rows.  Therefore, row 1 has the highest heat transfer coefficient.  But as the Reynolds 

number increases, the vortices start to break up, and the result in better air mixing in the 

downstream rows.  The heat transfer coefficients in the downstream rows are higher.

Bell (2006) postulated that Rich's low Reynolds number data are still in the 

laminar regime.  He suggested using different characteristic length to present the data. 

Halici et al. (2001) studied the tube row effect on heat transfer coefficients.  Their air 

velocity range was about half of Rich's range.  Their experimental data also showed that 
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Figure 2.7 Heat exchanger geometry.

 



row 1 had the highest j-factor in their 1 to 4 row coil tests.
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Figure 2.8 Row-by-row j-factor (Rich 1975).

However, their data were presented in terms of Reynolds number with the coil hydraulic 

diameter as the characteristic length and the Reynolds number ranges from 400 to 1800. 

Webb (1994) and Wang (2006) believed that the variation of j-factor in the low Reynolds 

number range is due to the entrance length effect, i.e. the air flow is not fully developed 

in the flow channels of the front rows and the heat transfer coefficients are higher.  The 

entrance length effect is a characteristic of laminar flow.  All of the above analyses 

confirm that the variation of j-factor for low Reynolds numbers is due to laminar flow. 

Ganguli and Breber (1988) and Yang (1999, 2002) studied the row effect to heat 

transfer coefficient for high Reynolds number.  They developed row correction 

correlations to account for the variation of heat transfer coefficients from row-to-row. 

The correlations project higher correction factors and higher heat transfer coefficients for 
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the deeper rows.  Their findings agree with Rich's data for high Reynolds number.

All of the research results agree that the heat transfer coefficient varies row by 

row and is related to Reynolds number.  Rich's correlation is suitable for elemental heat 

exchanger models because it can account for the row-by-row effect on the air side heat 

transfer coefficient.  However, Rich's correlation was developed for smooth flat fins, 

which are rarely used nowadays.  Enhanced fins, such as louvered and lanced fins, are 

currently favored by the industry.  Rich's correlation is therefore not suitable for heat 

pump design. 

Aside from Rich's correlation, row-by-row heat transfer correlations are rarely 

available in the literature.  Air side heat transfer correlations are often presented for the 

overall coil (McQuiston et al. 2000; Gray and Webb 1986; Wang et al. 1999b). 

Domanski (1991) assumed that each row equally affected the overall correlation.  He 

adjusted the overall correlation according to the number of rows to obtain row-by-row 

heat transfer coefficients.  However, Rich (1975) showed that the row-by-row heat 

transfer coefficient varies according to the entering air velocity.  Therefore, Domanski's 

assumption is not used for this research. 

Pirompugd et al. (2005) proposed a tube-by-tube data reduction procedure to 

derive a representative heat transfer coefficient for all row numbers.  The row effect on 

the heat transfer coefficient is accounted for in the data reduction result by using a 

representative value.  However, j-factor correlations from this data reduction procedure 

are rare in the literature, and the true row effect is hidden in the data reduction result. 

Therefore, this method is not used in this research.

Overall heat transfer coefficients are often used in elemental heat exchanger 
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models (Ellison et al. 1981; Liang et al. 1998; Liaw et al. 2002).  They assumed that the 

local heat transfer coefficient is equal to the overall coefficient and is applied to all coil 

elements.  Since this is a relatively rough assumption and row-by-row correlations for 

louvered fins are not available in the literature, a limited set of experiments is performed 

to experimentally determine row-by-row correlations for louvered fins.
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3. MATHEMATICAL MODELS

Since the system simulation model is intended to be a design tool for heat pump 

manufacturers, the model should only require user accessible input data and minimize the 

need for experimental data.  In addition, it should be capable of modeling complex heat 

exchanger circuit designs.  The simulation program includes the models of four major 

components (compressor, condenser, expansion device, and evaporator), and minor 

components (interconnecting pipes, accumulator and filter drier).  Each component model 

is implemented as a stand-alone module that can be used to analyze the individual 

component performance, and can be integrated to simulate the overall system operation. 

The following sections describe the component models that are used for the system 

simulation.

3.1. Compressor

The compressor is modeled with the ARI 10-coefficient polynomial model (ARI 

1999).  This model calculates the refrigerant mass flow rate and the power consumption 

based on the compressor suction and discharge saturation temperatures as shown below:

Mass Flow Rate:

ṁcmp , rated=a1a2T sat ,suca3T sat , disa4 T 2
sat , suca5 T sat , sucT sat , dis (3.1)

a6T 2
sat , disa7T 3

sat , suca8T sat , dis T 2
sat , suca9 T sat , sucT

2
sat ,disa10T 3

sat , dis
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Power Consumption:

Ẇ cmp ,rated=b1b2 T sat , sucb3T sat , disb4 T 2
sat , sucb5T sat , suc T sat , dis (3.2)

b6T 2
sat ,disb7T 3

sat , sucb8T sat , dis T 2
sat , sucb9T sat , suc T 2

sat , disb10T 3
sat , dis

The coefficients, a1, a2, ..., a10, and b1, b2, ..., b10 are published by compressor 

manufacturers according to the ARI standard 540 (1999).  They are derived from the 

compressor performance data under specific rating conditions.  If the compressor is 

operating at other conditions, the use of the ARI model becomes questionable.  Dabiri 

and Rice (1981), and Mullen et al. (1998) found that the mass flow rate and power 

consumption for off rating conditions can be corrected using the density and isentropic 

power ratios, respectively:

ṁcmp , act= ref

ref , rated  ṁcmp, rated  (3.3)

Ẇ cmp ,act=
ṁcmp ,act

ṁcmp, rated


 i ref ,isen

 iref ,isen , rated
Ẇ cmp ,rated  (3.4)

The major function of the compressor model is to calculate refrigerant mass flow 

rate, power consumption, and the refrigerant state at the compressor outlet.  Since the 

outlet pressure (which can be approximated by the discharge saturation temperature) is an 

input to the ARI model, if the temperature or enthalpy at the compressor outlet is known, 

the outlet refrigerant state can be determined.  According to the heat balance across the 

compressor, the outlet enthalpy is calculated by:

iref ,out=
Ẇ cmp , act−Q̇ net

ṁcmp, act
i ref , in  (3.5)

where Q̇net is net energy loss across the compressor, which includes shell heat loss and 
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mechanical friction loss.  The amount of net energy loss differs for each type of 

compressor (e.g. scroll, reciprocating), and the surrounding air and refrigerant conditions. 

It is usually less than 25% of the compressor power consumption (Weber 2005).  The 

energy loss can be determined from Equation (3.5) if the refrigerant mass flow rate, 

compressor power consumption, suction and discharge refrigerant states are available 

from measurements.

3.2. Expansion Device

For the expansion devices, both the short tube orifice and the thermal expansion 

valve (TXV) are modeled because they are commonly used in heat pump systems.  The 

function of the expansion device models is to calculate the amount of refrigerant allowed 

to travel through the expansion valve, i.e. refrigerant mass flow rate.

In the short tube orifice model, the refrigerant mass flow rate is calculated using 

the dimensionless equation given by Payne and O'Neal (2004).  For subcooled inlet 

conditions, the mass flow rate is defined as:

1=
c1c22c34c43c5ln5

1c62c74
2  (3.6)

where the c1, c2, ... are empirical coefficients, and the dimensionless groups are:

1=
G

liq Pcrit⋅1000  (3.7)

2=
P in−P sat

P crit
 (3.8)
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3=
vap

liq
 (3.9)

4=
T sub

T crit273.15  (3.10)

5=
Lorifice

Dorifice
 (3.11)

For two-phase inlet conditions, a two-phase correction factor is introduced to correct the 

model as shown below:

1,TP=CTP1, sat  (3.12)

where π1,sat is the dimensionless mass flow rate at saturated condition.  The two-phase 

correction factor is defined as:

CTP=
d 16d 26

2d 3ln6
2d 4 ln10

2d 5 ln8
2d 6ln5

2

1d 76d 89d 97
3  (3.13)

where d1, d2, ... are empirical coefficients, and the dimensionless groups are:

6=
avg ,in

liq
 (3.14)

7=
P in

Pcrit
 (3.15)

8=
P crit−P in

P crit
 (3.16)

9=
x in

1−x in  liq

vap


1/2

 (3.17)

10=
Pcrit−P sat

P crit
 (3.18)

The average density is defined as:
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avg ,in=[ xin

vap

1−x in
liq ]

−1

 (3.19)

The coefficients c1, c2, c3, ... and d1, d2, d3, ....  are derived from experimental data for 

different refrigerants and a variety of boundary conditions.  Table 3.1 shows the 

empirical coefficients presented by Payne and O'Neal (2004).

Table 3.1 Empirical coefficients for the short tube model Payne and O'Neal (2004).

c1 3.8811E-01 d1 1.1831E+00

c2 1.1427E+01 d2 -1.4680E+00

c3 -1.4194E+01 d3 -1.5285E-01

c4 1.0703E+00 d4 -1.4639E+01

c5 -9.1928E-02 d5 9.8401E+00

c6 2.1425E+01 d6 -1.9798E-02

c7 -5.8195E+02 d7 -1.5348E+00

d8 -2.0533E+00

d9 -1.7195E+01

Thermal expansion valve (TXV) controls the system superheat by adjusting the 

TXV opening.  Once the superheat is maintained and the system is operating at steady 

state conditions, the TXV performs like a short tube orifice.  If a TXV is used in the 

system simulation, it keeps the system superheat unchanged but varies the subcooling. 

The refrigerant mass flow rate from the TXV model is not necessary for steady state 

simulation.  However, for design calculations, it is desirable to size the expansion device 

based on the system operating conditions.  The TXV sizing calculation is described in the 

Sporlan literature (1998) as follows.  For a specific evaporating temperature, the TXV 

capacity is calculated as:

Q̇TXV , rated=g1⋅Q̇nomg2  (3.20)

where Q̇nom is the nominal capacity of the system, which is equal to the rated capacity 
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of the compressor.  The TXV capacity is usually presented for some typical evaporating 

temperatures in the catalog.  Interpolation or extrapolation is used when the operating 

condition is not listed in the catalog.

The TXV capacity is rated at a specific refrigerant liquid temperature and pressure 

drop.  When selecting the appropriate TXV size, correction factors should be applied to 

account for deviations from the specified liquid temperature and pressure drop.  The 

actual TXV size is calculated as: 

Q̇TXV , act=CT liq
⋅CP⋅Q̇TXV ,rated  (3.21)

where the correction factors for liquid temperature and pressure drop are:

CT liq
=g 3⋅T liqg4  (3.22)

CP=g5⋅P g6  (3.23)

A pressure drop correction factor is also presented at discrete evaporating temperatures. 

Interpolation or extrapolation is used to approximate the correction factor for other 

temperatures.

The above four equations describe the TXV sizing algorithm.  Note that all the 

boundary conditions in the equations are calculated at the end of the system design 

calculation.  The coefficients g1, g2, ..., g6 are curve-fit coefficients that are derived from 

the catalog data.

3.3. Distributor

Expansion devices such as the short tube orifice and TXV are usually used with a 

distributor for multi-circuit coils.  A distributor consists of a nozzle and multiple 

   43



distributor tubes. The function of the nozzle is to uniformly distribute the refrigerant to 

all heat exchanger circuits through the distributor tubes (Sporlan 1999).  The use of a 

distributor introduces an extra pressure drop between the expansion device and the heat 

exchanger.  This pressure drop is calculated using the equation fit method presented in 

the ORNL heat pump model (Fischer et al. 1998).

The nozzle pressure drop is:

Pnoz=k1⋅noz
k2  (3.24)

where noz is called the “nozzle loading” (Sporlan 1999).  It is defined as the ratio of 

the actual nozzle capacity to the rated nozzle capacity:

noz=
Q̇noz ,act

Q̇ noz , rated
 (3.25)

where the actual capacity is the evaporator capacity, and the rated capacity is obtained 

from catalog data and is given by:

Q̇noz ,rated=k5 Cnoz expT sat , evp

k 6   (3.26)

where Cnoz is a correction factor that is equal to unity when applying the rated evaporating 

temperatures listed in the catalog.  For other evaporating temperatures, Cnoz is calculated 

using the following equation:

Cnoz=10
T liq , rated−T liq ,act

k9   (3.27)

Similar to the distributor nozzle, the pressure drop across the distributor tube is calculated 

by: 
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P=k3 tube
k 4  (3.28)

where  tube is the “tube loading” of the distributor (Sporlan 1999), it is defined as:

 tube=
Q̇ tube , act

Q̇tube ,rated
 (3.29)

The actual tube capacity is a fraction of the actual nozzle capacity as shown below:

Q̇tube ,act=
Q̇noz , act

N ckt
 (3.30)

and the rated tube capacity is obtained from the catalog data using the following 

correlation:

Q̇tube ,rated=k7 Cnoz C tubeexp T sat , evp

k8   (3.31)

where the tube correction factor, Ctube is defined as:

C tube= Ltube ,rated

Ltube , act 
k10

 (3.32)

Note that if the rated tube length is the same as the actual tube length, the tube correction 

factor is unity.  The coefficients k1, k2, ..., k10 in the distributor model are curve fit 

coefficients that can be derived from manufacturer's catalog data.

3.4. Heat Exchangers

Both condenser and evaporator heat exchangers are modeled using the discrete 

segment method.  The heat exchangers are discretized into small elements (Ragazzi and 

Pedersen 1991).  This method is capable of modeling the effects of coil circuiting.  Each 

elemental length can be as long as a single tube, i.e. a tube-by-tube discretization, or a 
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small segment of a tube, i.e. a segment-by-segment discretization.  Figure 3.1 depicts the 

segment-by-segment discretization for a heat exchanger coil.  The dashed lines represent 

the discretization boundaries.  Note that the U-bend is not part of the discretization, since 

the U-bend is not exposed to the air stream, the heat transfer at the U-bends is negligible 

(Ragazzi and Pedersen 1991; Domanski 1999).  However, the U-bends do introduce a 

significant refrigerant pressure drop in the heat exchanger, so the U-bend pressure drop is 

taken into account in the heat exchanger calculation.  Each discretized element is treated 

as a single-tube cross-flow heat exchanger as shown in Figure 3.2.

For each element, the heat transfer capacity is calculated using the ε-NTU 

method.  It is defined as:

Q̇=Ċmin T ref ,in−T air ,in  (3.33)

where:

Ċmin=MIN Ċair , Ċ ref   (3.34)

Ċair=ṁair c p , air  (3.35)

Ċ ref=ṁref c p ,ref  (3.36)

ṁair is the air mass flow rate across each element.  It is weighted by the 

element length and the coil frontal tube length:

ṁair=ṁcoil

L seg

L front
⋅  (3.37)

τ is the velocity deviation from the mean face velocity.  It is a user input that 

accounts for the air maldistribution at the coil surface. 
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Figure 3.1 Heat exchanger segment-by-segment discretization.

 
 

Figure 3.2 Heat exchanger element

The coil effectiveness is calculated differently depending on the operating conditions.

For a single-phase refrigerant:

If Ċmin=Ċ ref :

= 1
C r
1−exp {−C r [1−exp−NTU ]}  (3.38)

If Ċmin=Ċair :

=1−exp {− 1
C r
[1−exp−C r⋅NTU ]}  (3.39)
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For a two-phase refrigerant:

=1−exp −NTU   (3.40)

where:

NTU= UA
C min

 (3.41)

C r=
Ċ min

Ċmax
 (3.42)

Assuming negligible inside and outside fouling resistances, the overall heat transfer 

coefficient is the total of the refrigerant side, tube wall, and air side resistances as shown 

below:

1
UA

= 1
href Ain


ln 

Dout ,tube

Din , tube


2k tube Ltube
 1
surf hair Aout

 (3.43)

where the surface efficiency is:

surf=1−
A fin

Aout
1− fin  (3.44)

The fin efficiency is calculated using Schmidt's method (1949), which is defined as:

 fin=
tanhm⋅r collar⋅

m⋅rcollar⋅
 (3.45)

where rcollar is the tube outside radius including the fin collar, and:

m= 2⋅hair

k fin fin

 (3.46)

=r r−1 [10.35 ln  rr  ]  (3.47)

For staggered tubes, the radius ratio is defined as:
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r r=1.27
X M

r collar [ X L

X M
−0.3]

1 /2

 (3.48)

where XL and XM are geometric parameters that are correlated to the tube pitch (Pt) and 

row pitch (Pr) as follows:

X M=
Pt

2
 if X M≤P r

X M=P r if X MP r

(3.49)

X L=
1
2  P t

2 
2

P r
2  (3.50)

Each heat exchanger element is calculated one-by-one along the refrigerant flow path 

from the coil inlet to outlet.  The inlet condition of each element is equal to the outlet 

condition of the previous element.  For the elements located at the coil inlet, the inlet 

condition is equal to the coil inlet condition.

On the air side, the inlet condition varies depending on the element location.  If 

the element is in the front row of the heat exchanger, the inlet condition is the same as the 

coil inlet condition.  If the element is not at the front row, the inlet condition is the 

average of the outlet conditions of two nearest upstream elements.  For the staggered tube 

arrangement shown in Figure 3.3, if tube-by-tube discretization is used, the inlet 

condition for tube number 3 is:

T 3, air ,in=
T 1,air ,outT 2,air , out 

2
 (3.51)

Note that since the calculation sequence is along the refrigerant flow direction, the 

upstream air outlet conditions may not be immediately available depending on the coil 
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circuiting.  It is assumed that the air outlet condition for each element is equal to the coil 

entering condition at the beginning of the calculation.  Iteration is performed to update 

the air outlet conditions until the calculated coil capacity converges.

 
 

Figure 3.3 Side view of heat exchanger showing staggered tube pattern.

3.4.1. Dehumidification

The dehumidification process only occurs on the evaporator coil, where cold 

refrigerant circulates inside the coil tubes and hot air flows outside the coil.  When the 

coil surface temperature is less the entering air dew point temperature, the heat exchanger 

dehumidifies the moisture content of the entering air and the coil surface becomes “wet”. 

For wet surface heat exchanger elements, the dehumidification model from Harms et al. 

(2003) is used.  This model is analogous to the traditional ε-NTU method as shown 

below:

Q̇=wet ṁair iair , in−iref , in , sat  (3.52)

where iref ,in , sat is the saturation enthalpy at refrigerant inlet temperature. wet is the 

wet surface effectiveness which is calculated using the traditional ε-NTU equations but 

with the following terms in place:
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Ċair=ṁair c p , sat  for the heat capacity rate of air (3.53)

hair , wet=
hair c p, sat

c p , air
 for the air side heat transfer coefficient (3.54)

The saturation specific heat is defined as:

c p , sat=
i ref , sat

T ref
 (3.55)

Also note that the driving potential in this model is the enthalpy to account for both 

sensible and latent heats.

For each heat exchanger element, if the surface temperature from the dry surface 

calculation is less then the entering air dew point temperature, the wet surface heat 

transfer is calculated.  Due to the fact that the coil tube material is usually highly 

conductive, the inlet refrigerant temperature is used instead of the surface temperature to 

determine if dehumidification occurs.  This approach is also used in the HVAC2 Toolkit 

(Brandemuehl 1993) and can avoid the calculation of surface temperature that is an 

unknown at the beginning of the calculation.

3.4.2. Air Side Heat Transfer Coefficient

According to Rich's experimental results (1975), the air side heat transfer 

coefficient varies from row to row of the heat exchanger.  It is desirable to use the local 

heat transfer coefficient for the calculation of each heat exchanger element.  However, 

row-by-row heat transfer correlations are rare.  Most air side heat transfer correlations 

published in the literature are for the entire coil.  The following shows some updated 

overall coil correlations for different fin types.  The development and analysis of row-by-

row coefficients for the louvered fin are presented in Chapter 5.  
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Published air side heat transfer correlations for the entire coil are usually 

presented in terms of the j-factor, as given by:

hair= j⋅c p , air⋅Gair⋅Pr air
−2 /3  (3.56)

where Gair is the mass flux of the air based on the minimum free flow area of the heat 

exchanger.  The j-factor is an empirical correlation that is derived from experimental 

data.  Each fin pattern has it own j-factor correlation.  Plain fin, wavy fin, and louvered 

fin correlations are included below.

Plain fin (Wang et al. 2000a):

If Nr = 1:

j=0.108 ReD collar

−0.29 Pt

P r 
j1

 1
P fin D collar 

−1.084

 1
P fin Dh 

−0.786

 1
P fin P t 

j2

 (3.57)

where:

j 1=1.9−0.23ln ReD colloar
  (3.58)

j 2=−0.2360.126ln ReD collar
  (3.59)

The hydraulic diameter is:

Dh=
4 Amin N r P r

Aout
 (3.60)

If Nr > 1:

j=0.086 ReD collar

j3 N r
j4 1

P fin D collar 
j5 1

P fin Dh 
j 6 1

P fin P t 
−0.93

 (3.61)

where:

   52



j 3=−0.361−0.042
N r

ln Re Dcollar

0.1581⋅ln[N r 1

P fin Dcollar 
0.41]  (3.62)

j 4=−1.224− 0.076
ln ReD collar

 P r

Dh 
1.42

 (3.63)

j 5=−0.0830.058
N r

ln ReDcollar

 (3.64)

j 6=−5.7351.211 ln ReDcollar

N r   (3.65)

The Reynolds number is based on fin collar diameter and is calculated as:

ReD collar
=

Gair⋅D collar

air
 (3.66)

This correlation is valid for the following ranges:

200≤ReD collar
≤20000

1≤N r≤6

6.35 mm≤Dcollar≤12.7mm

1.19 mm≤P fin≤8.7 mm

17.7 mm≤P t≤31.75 mm

12.4 mm≤P r≤27.5 mm

Wavy fin (Wang et. al  2002):

If ReD collar
1000 :
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j=0.882 ReD collar

j1D collar

Dh 
j2 S fin

P t 
j3 S fin

D collar 
−1.58

tan−0.2  (3.67)

where:

j 1=0.0045−0.491 Re Dcollar

−0.0316−0.0171ln N r tan P r

P t 
−0.109ln N r tan

D collar

Dh 
0.5420.0471Nr S fin

Dcollar
0.984

 S fin

P t 
−0.349  (3.68)

j 2=−2.726.84 tan  (3.69)

j 3=2.66 tan  (3.70)

If ReD collar
≥1000 :

j=0.0646 ReD collar

j1 Dcollar

Dh 
j2 S fin

P t 
−1.03

 P r

Dcollar 
0.432

tan−0.692 N r
−0.737  (3.71)

where:

j 1=−0.0545−0.0538 tan−0.302 N r
−0.24

 S fin

P r 
−1.3

 P r

Pt 
0.379

 P r

D h
−1.35

tan−0.256  (3.72)

j 2=−1.29 P r

P t 
1.77−9.43 tan

 Dcollar

D h 
0.229−1.43 tan

N r
−0.166−1.08 tan S fin

P t 
−0.174ln 0.5N r  (3.73)

This correlation is valid for the following ranges:

500≤ReDcollar
≤10000

1≤N r≤6

7.66mm≤D collar≤16.85 mm
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1.1mm≤S fin≤6.2mm

21 mm≤P t≤38.1 mm

19.05mm≤P r≤33mm

5.3o≤≤34.7o

Louvered fin (Wang et al. 1999b):

If ReD collar
1000 :

j=14.3117 ReDcollar

j1 1
P fin Dcollar 

j2 Lh

L p 
j3

 1
P fin P r 

j 4 P r

Pt 
−1.724

 (3.74)

where:

j 1=−0.991−0.1055 P r

P t 
3.1

ln Lh

L p   (3.75)

j 2=−0.73442.1059[ N r
0.55

ln ReDcollar
−3.2 ]  (3.76)

j 3=0.08485 P r

P t 
−4.4

N r
−0.68  (3.77)

j 4=−0.1741 ln N r  (3.78)

If ReD collar
≥1000 :

j=1.1373 ReDcollar

j5 1
P fin P r 

j6 Lh

Lp 
j7 P r

P t 
j8

N r
0.3545  (3.79)

where:
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j 5=−0.60270.02593 P r

Dh 
0.52

N r
−0.5 ln Lh

L p  (3.80)

j 6=−0.47760.40774[ N r
0.7

ln  ReDcollar
−4.4 ]  (3.81)

j 7=−0.58655 1
P fin Dh 

2.3 P r

P t 
−1.6

N r
−0.65  (3.82)

j 8=0.0814 [ ln ReDcollar
−3]  (3.83)

This correlation is valid for the following ranges:

250≤ReD collar
≤8000

1≤N r≤6

6.93 mm≤Dcollar≤10.42 mm

1.22 mm≤P fin≤2.49 mm

17.7 mm≤P t≤25.4 mm

12.7mm≤P r≤19.05mm

0.79 mm≤Lh≤1.4 mm

1.7mm≤L p≤3.75mm

3.4.3. Refrigerant Side Heat Transfer Coefficient

The refrigerant side heat transfer coefficient is defined according to the refrigerant 

condition (single-phase or two-phase), and the heat transfer process (condensation or 

evaporation).  It is calculated using the following correlations:
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For single-phase condensation and evaporation (Gnielinski 1976):

href=
Re Din

−1000Pr ref  f /2
112.7 f /2Pr ref

0.67−1
k ref

Din
 (3.84)

where:

f =[1.58 ln ReDin
−3.28]−2  (3.85)

For two-phase condensation (Dobson 1994):

href=2.61
hliq

X tt
0.8  (3.86)

where hliq is the Dittus-Boelter (1930) single-phase correlation for condensation:

h liq=0.023 Re Din

0.8 Pr liq
0.3 k liq

Din
 (3.87)

Xtt is the Lockhart-Martinelli parameter, which is defined as:

 X tt= vap

liq


0.5

 liq

vap


0.125

 1−xref

xref 
0.875

(3.88)

This correlation is valid for xref ≥ 0.17.  Interpolation between single and two-phase 

correlations is used for xref < 0.17.

For two-phase evaporation (Wattelet 1990):

href=hnb
2.5hcb

2.5
1

2.5  (3.89)

The nucleate boiling term is related to the refrigerant molecular weight (W) and 

circumferential heat flux ( q̇ ), which is given by:

hnb=55 W−0.5 q̇0.67 Prref
0.12−log Prref 

−0.55  (3.90)
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and the convective boiling term is given by:

hcb=F 1 hliq F 2  (3.91)

where:

F 1=11.925 X tt
−0.83  (3.92)

h liq=0.023 Re Din

0.8 Pr liq
0.4 k liq

Din
 (3.93)

F 2=1  if  Fr liq≥0.25

F 2=1.32 Fr liq
0.2 if Fr liq0.25

(3.94)

The liquid phase Froude number is defined as:

Fr liq=
Gref

2

liq
2 g Din

 (3.95)

This correlation is valid for xref < 0.8.  For xref ≥ 0.8, interpolation is used between the 

single phase and two-phase correlations.

The correlations presented in this section are for smooth tubes.  An enhancement 

factor can be used to scale the smooth tube coefficients to predict enhanced tube 

performance.  Eckels et al. (1994a; 1994b; 1998a) presented some enhancement factor 

correlations for enhanced tubes.  However, due to the fact that different tube 

manufacturers have different tube types, enhancement factor correlations must generally 

be obtained from the manufacturer.

3.4.4. Air Side Pressure Drop

The air side pressure drop correlation is usually presented in terms of the friction 
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factor as follows:

Pair=
Gair

2

2in [ K i1−22 in

out
−1 f  Aout

Amin  in

out −1−2−K e 
in

out ] (3.96)

where:

=
Amin

A front
 (3.97)

The entrance and exit loss coefficients are obtained from McQuiston et al. (2000):

K i=−0.4040.494  (3.98)

K e=−1.2720.8726  (3.99)

Wang et al. (1999b, 2000a, and 2002) also presented fiction factor correlations for 

different fin types.  The fiction factor correlations are presented below.  Note that the 

application ranges for these friction factor correlations are the same as the corresponding 

j-factor correlations.

Plain fin (Wang et al. 2000a):

f =0.0267 ReD collar

f 1 P t

P r 
f 2

 1
P fin Dcollar 

f 3

 (3.100)

where:

f 1=−0.7640.739
P t

P r
 0.177

P fin D collar
−0.00758

N r
 (3.101)

f 2=−15.689 64.021
ln ReDcollar

  (3.102)

f 3=1.696− 15.695
ln ReDcollar

  (3.103)

Wavy fin (Wang et al. 2002):
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If ReD collar
1000 :

f =4.37 ReDcollar

f 1 S fin

Dh 
f 2 P r

P t 
f 3 Dcollar

Dh 
0.2054

N r
f 4  (3.104)

where:

f 1=−0.574−0.137 ln Re Dcollar
−5.260.245 P t

Dcollar 
−0.765

 D collar

Dh 
−0.243

 S fin

Dh 
−0.474

 tan−0.217 N r
0.035

 (3.105)

f 2=−3.05 tan  (3.106)

f 3=−0.192 N r  (3.107)

f 4=−0.646 tan  (3.108)

If ReD collar
≥1000 :

f =0.228 ReD collar

f 1tan f 2 S fin

P r 
f 3 P r

Dcollar 
f 4 Dcollar

Dh 
0.383

 P r

P t 
−0.247

 (3.109)

where:

f 1=−0.141 S fin

P r 
0.0512

tan−0.472 P r

P t 
0.35

 P t

Dh 
0.449 tan

N r
−0.0490.237 tan  (3.110)

f 2=−0.562 ln ReDcollar
−0.0923 N r

0.013  (3.111)

f 3=0.302 ReD collar

0.03 P t

Dcollar 
0.026

 (3.112)

f 4=−0.3063.63 tan  (3.113)
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Louvered fin (Wang et al. 1999b):

If N r=1 :

f =0.00317 ReD collar

f 1 P fin

P r 
f 2 Dh

Dcollar
f 3 Lh

Lp 
f 4ln  Aout

Abare

−6.0483

 (3.114)

where:

f 1=0.16914.4118 P fin

P r 
−0.3

 Lh

Lp 
−2.0

ln P r

P t  P fin

P t 
3.0

 (3.115)

f 2=−2.6642−14.3809[ 1
ln ReDcollar

 ]  (3.116)

f 3=−0.6816 ln P fin

P r   (3.117)

f 4=6.4668 P fin

P t 
1.7

ln Aout

Abare   (3.118)

If N r≥1 :

f =0.06393 ReD collar

f 5 P fin

D collar 
f 6 Dh

D collar 
f 7 Lh

L p 
f 8

N r
f 9 [ lnRe Dcollar

−4.0 ]−1.093

(3.119)

where:

f 5=0.1395−0.0101 P fin

P r 
0.58

 Lh

L p 
−2

ln Aout

Abare  P r

P t 
1.9

 (3.120)

f 6=−6.4367[ 1
ln  ReDcollar

 ]  (3.121)

f 7=0.07191⋅ln ReD collar
  (3.122)
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f 8=−2.0585 P fin

P t 
1.67

ln Re Dcollar
  (3.123)

f 9=0.1036 ln P r

Pt   (3.124)

3.4.5. Refrigerant Side Pressure Drop

The refrigerant side pressure drop is also calculated in the heat exchanger models, 

although it is relatively insignificant compared to the pressure drop across the expansion 

device.  The refrigerant pressure drop in each heat exchanger tube segment is due to 

friction, acceleration, and gravitation forces (Ragazzi and Pedersen 1991):

P ref=P fricPaccelPgrav  (3.125)

3.4.5.1. Frictional Pressure Drop

The frictional pressure drop is the dominant component.  For single-phase flow, it 

is calculated in terms of the friction factor:

P fric=
2 f G ref

2

ref Din
Lseg  (3.126)

where:

f = 16
ReDin

for ReD in
≤2300

(3.127)

f = 0.046
Re Din

0.2 for 1E5≥ReD in
2300 vapor refrigerant (3.128)
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f = 0.079
Re Din

0.25 for 1E5≥ReD in
2300 liquid refrigerant (3.129)

f =
0.00320.221ReDin

−0.237

4
for ReD in

1E5
(3.130)

For two-phase flow, following Souza et al. (1993), the frictional pressure drop is given 

by: 

P fric=P liq⋅liq
2  (3.131)

where ∆Pliq is the frictional pressure drop in liquid phase, and the φliq is a two-phase 

correction factor.  It is defined as:

liq
2 =1.376

C1

X tt
C2

 (3.132)

Xtt is the Lockhart-Martinelli parameter as defined in section Equation (3.88), and C1 and 

C2 are related to the liquid Froude number:

C1=7.242  if Fr liq≥0.7

C2=1.655
(3.133)

C1=4.1725.48 Fr liq−1.564 Fr liq
2  if Fr liq0.7

C2=1.773−0.169 Fr liq

(3.134)

where the liquid Froude number is defined in Equation (3.95).

3.4.5.2. Accelerational Pressure Drop

Accelerational pressure drop is also calculated differently according to the phase 

of the refrigerant.  For single-phase refrigerant, the acceleration pressure drop is 
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calculated as:

Paccel=G ref
2 1
ref , in

− 1
ref ,out   (3.135)

For two-phase refrigerant, it is calculated as:

Paccel=G ref
2  xref

2

vap

1− xref 

2

1−liq  (3.136)

where the void fraction is calculated using Zivi's correlation (1964):

= 1

1
1−xref

xref

vap

liq


2/3  (3.137)

3.4.5.3. Gravitational Pressure Drop

The gravitational pressure drop is the least significant component.  It is often 

neglected in heat exchanger calculations.  In this heat exchanger model, it is assumed that 

all heat exchanger elements share an equal amount of gravitation pressure drop 

throughout the entire coil (Ragazzi and Pedersen 1991).  The pressure drop is calculated 

as:

Pgrav=ref g Lseg

H coil

Lcoil
 (3.138)

3.4.5.4. U-Bend Pressure Drop

The above pressure drop calculations are for straight tubes.  For U-bends, the 

pressure drop is calculated using the Paliwoda (1992) model:
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For single-phase refrigerant:

PUbend=
1
2

K P
Gref

2

ref
 (3.139)

where K∆P is the curve fit correction factor:

K P=
1

3.426⋅ln 
P t

2 Din
3.8289  (3.140)

For two-phase refrigerant:

PUbend=PUbend ,vap1  (3.141)

where ∆PUbend,vap is the U-bend pressure drop for vapor refrigerant. ξ1 is a correction factor 

which is defined as:

1=23 1−2 xref 1−xref 
0.333xref

2.276  (3.142)

2=
vap

liq
 liq

vap


0.25

 (3.143)

All of the above correlations are for smooth tubes.  The refrigerant side pressure 

for enhanced tube is scaled by the “penalty factor”,  so called because the tube 

enhancement increases the refrigerant pressure drop and it is not desirable.  The penalty 

factor correlations from Eckels et al. (1994a; 1994b; 1998a) can be used to adjust the 

refrigerant pressure drop for enhanced tubes, but for this research, penalty factor 

correlations are acquired from the tube manufacturer.

3.4.6. Circuiting Algorithm

Heat exchanger circuiting determines the refrigerant flow distribution in the coil. 
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It is important to know the local refrigerant mass flow rate at each heat exchanger 

element in order to determine the heat transfer and pressure drop accurately.  The 

proposed circuiting algorithm consists of two parts: the circuit table and the solution 

algorithm.  

A unique circuit table is proposed to store the circuiting information.  This circuit 

table not only shares the flexibility of the adjacency matrix that is used by Liang et al. 

(1998), but it is also more intuitively interpreted.  The sample circuit shown in Figure 2.5 

can be used to demonstrate the use of circuit table.  In order to use the circuit table, the 

tubes in the circuit are numbered as shown in Figure 3.4.  

Refrigerant  in

Refrigerant  out

1

4

5

2

6

3

1, 2, 3, ….

Hidden side connection

Visible side connection

Tube numbers

Figure 3.4 Sample circuit with re-assigned tube numbers.

Table 3.2 shows the circuit table for this circuit.  From the circuit table, it is easy to 

determine that there are two circuit branches in the coil.  Each circuit branch has a 

different flow path as shown under the “Tube Sequence” in the table.  The tube numbers 

for the first and last tubes are the split and joined connection indicators, respectively. 

Note that both circuit branches start from tube 1 and end at tube 6, which means that they 

both start from the same inlet (tube 1) and join together at the same outlet (tube 6).  The 

construction of the circuit table is simple and straightforward.  It can be expanded to store 
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any kind of complex circuiting without limitations.

Table 3.2 Circuit table for the sample circuit.

Branch No.
Tube Sequence

1st 2nd 3rd 4th 

1 1 2 3 6

2 1 4 5 6

The proposed circuiting algorithm determines the mass flow rate distribution in 

the circuit branches.  The following conservation equations are used in the algorithm:  

For the joining circuit shown in Figure 3.5a:

ṁ4=ṁ1ṁ2ṁ3  (3.144)

P4, in=P1,out=P2,out=P3,out  (3.145)

i4,in=
∑
i=1

3

ṁi ii ,out

∑
i=1

3

ṁi

 (3.146)

where i is the refrigerant enthalpy.  For the splitting circuit shown in Figure 3.5b:

1

4

3

2

3

2 14

(a) Joined tube inlet (b) Split tube inlet  
Figure 3.5 Joining and splitting circuits.

ṁ1=ṁ2ṁ3ṁ4  (3.147)

P1,out=P2, in=P3, in=P4, in  (3.148)
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i1,out=i2, in=i3, in= i4, in  (3.149)

The mass flow rate in each circuit branch is calculated according to the refrigerant 

pressure drop and flow admittance (J) as follows:

ṁckt= J ckt⋅ Pin ,ckt−Pout ,ckt   (3.150)

The nodal admittance formulation (Vlach and Singhal 1993) is proposed to determine the 

mass flow rate in each circuit.  This method was initially designed for electrical circuits 

and has never been used for heat exchanger circuits.  It is derived from the Kirchhoff 

current law (KCL) that states that the algebraic sum of all currents leaving any junction is 

zero.  Considering the analogy of electrical voltage and current to refrigerant pressure and 

mass flow rate, the nodal admittance formulation can be conveniently applied to heat 

exchanger circuits.

The circuiting in a heat exchanger coil is described by the following matrix 

equation:

M=J·P (3.151)

where J is the admittance (conductance) matrix.  It is a square matrix and its order is 

equal to the number of circuit junctions (split and joined).  The coil outlet is also 

considered as a junction in heat exchanger circuits.  The diagonal entries of J are positive 

and are equal to the sum of the circuit admittances connected to the same junction:

j i , i=∑
m

J q
 for i = 1, 2, ..., n (3.152)

where i is the current junction number, q is the branch number, m is the number of circuit 

branches connected to junction i, and n is total number of junctions in the circuit, 

including the coil outlet.  The off-diagonal entries of the J matrix are non-positive and are 
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equal to the sum of admittances between the neighboring junctions.  It is given by:

j i , k=−∑
n

J q
 for i, k = 1, 2, ..., n; and i ≠ k (3.153)

Note that if junctions i and k are not neighbors, the value of ji,k is zero.  Therefore, for 

each junction i, Equations (3.152) and (3.153) calculate the entries for each row of the J 

matrix.  Equation (3.153) also implies that J is an n×n symmetric matrix, so only half of 

the off-diagonal entries must be calculated.

M is an n-dimension column vector.  The number of entries is equal to the 

number of junctions.  Its entries have the same unit as mass flow rate but they are not the 

mass flow rate at the junctions.  They are calculated differently according to the junction 

location:

For the coil outlet junction: 

mi=Pin ,coil∑
m '

J q−ṁtot
 for i = 1, 2, ..., n (3.154)

For other junctions in the coil:

mi=Pin ,coil∑
m '

J q
 for i = 1, 2, ..., n (3.155)

where m' is the number of circuit branches connected to the coil inlet.  

P is simply a column vector for refrigerant pressure.  Its entries are the refrigerant 

pressure at each circuit junction, and its dimension is the same as the vector M.  

Since the circuit admittances and junction pressures are unknown at the beginning 

of the calculation, the nodal admittance method requires an iterative procedure.  The 

procedure is summarized as follows:
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1. Initialize the circuit mass flow rates to start the iteration.

2. Calculate the junction pressures using the refrigerant pressure drop correlations in 

section 3.4.5.

3. Calculate the circuit admittances using Equation (3.150).

4. Calculate the vector M using Equations (3.154) and (3.155).  

5. Calculate the admittance matrix J using Equations (3.152) and  (3.153).

6. Calculate the junction pressure vector P using Equation (3.151).  If the calculated 

junction pressures are similar to the results obtained in step 2 within a small value, the 

iteration terminates.  The circuit mass flow rates are found.  Otherwise, go to next 

step.

7. Update the circuit mass flow rates using Equation (3.150).  Go to step 2.

The following example illustrates how the J, M, and P matrices are calculated. 

Consider the complex circuitry shown in Figure 3.6, it is a rather uncommon circuitry but 

can demonstrate the capability of the circuiting algorithm.  There are 10 circuit branches 

with arbitrarily assigned branch numbers as shown in the figure.  The branches are 

connected by 5 different junctions, i.e. tubes 2, 6, 7, 9, and the coil outlet.  For example, 

branches 1, 2, 4 and 5 are connected to tube 2.  Let's arbitrarily number the junctions as 

shown in Table 3.3 to calculate the matrices.  

Since there are 5 junctions, J is a 5×5 matrix.  The first row of the J matrix is with 

respect to the first junction, i.e. tube 2.  Therefore the diagonal entry  j1,1 is the sum of 

circuit admittances connected to tube 2, which is:

j 1,1=J 1J 2 J 4J 5

   70



Table 3.3 Junction numbering for the sample circuit in Figure 3.6.

Junction Number Location

1 Tube 2

2 Tube 6

3 Tube 7

4 Tube 9

5 Coil Outlet

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Air

Refrigerant

1

2

3
4

5

6
7

8
9

10

1, 2, 3, … Tube number

1 2 3

Visible side connection
Hidden side connection

Figure 3.6 Illustrative example for the nodal admittance formulation method.

Note that the subscript for J is the branch number.  The off-diagonal entries j1,2, j1,3, ..., 

and j1,5 are the negative sum of the circuit admittances between neighboring junctions, 

which are:

j 1,2=−J 5 ; j 1,3=0 ; j 1,4=− J 2J 4 ; j 1,5=0

Since junction 1 (tube 2) and junction 3 (tube 7) are separated by junction 2 (tube 6), they 

are not neighboring junctions and the value of j1,3 is zero.  Similarly, junction 1 (tube 2) 

and junction 5 (coil outlet) are separated by other junctions, the value of j1,5 is also zero.

The rest of the matrix entries are determined similarly.  The resulting J matrix for 

this circuit is shown below: 
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J=[
J 1J 2 J 4J 5 −J 5 0 −J 2J 4 0

−J 5 J 5J 6J 7 −J 7 0 −J 6

0 −J 7 J 7J 8J 9 0 0
−J 2J 4 0 0 J 2 J 3 J 4 −J 3

0 −J 6 0 −J 3 J 3J 6J 10

]
As expected, the matrix is symmetric and only half of the off-diagonal entries must be 

calculated.  

For the vector M, since junction 1 (tube 2) is directly connected to the coil inlet 

through branch 1, according to Equation (3.155), the value of this entry is:

m1=P in , coil⋅J 1

Note that the subscript for J is the branch number and the subscript for m is the junction 

number.  For junctions 2 and 4 (tubes 6 and 9) that are not directly connected to coil inlet 

because of the separation by other junctions, the number of inlet branches are zero and 

the values of these entries are also zero:

m2=m4=0

Junction 3 (tube 7) has two circuit branches (8 and 9) directly connected to the coil inlet, 

therefore the value of this entry is:

m3=P in , coil⋅J 8J 9

Junction 5 is the coil outlet, it has one branch (i.e. branch 10) directly connected to the 

coil inlet.  According to Equation (3.154), this entry is:

m5=P in , coil⋅J 10−ṁtot

Since there are only 5 five junctions, the resulting M vector is:
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M=[ P in , coil⋅J 1

0
P in , coil⋅J 8J 9

0
P in ,coil⋅J 10−ṁtot

]
The pressure vector P is the easiest one to determine.  It stores the refrigerant 

pressure at each junction, i.e. tubes 2, 6, 7, 9, and the coil outlet, as shown below:

P=[
p1

p2

p3

p4

p5

]=[
P2

P6

P7

P9

Pout ,coil

]
where the subscript for p is the junction number, and the subscript for P is the junction 

location.

3.4.7. Transition Element

In the elemental heat exchanger model, it is possible to have an element that 

consists of both single and two-phase refrigerants.  For this “transition element”, if either 

the single-phase or two-phase equations are used, error will be introduced.  The error can 

be significant if the element is long.  More segments can be used to minimize the 

problem but this will increase the computational time.  Moreover, the fundamental 

“transition element” problem still exists.  Therefore, a transition element algorithm was 

developed to eliminate the transition element problem.

The heat exchanger model divides the transition element into single and two-

phase portions, and applies the corresponding heat transfer equations to each portion. 

The calculation procedures for the transition element are summarized as follows:
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1. Assume constant refrigerant properties in the entire element and apply either single-

phase or two-phase heat transfer equations to calculate the capacity.

2. Compare the refrigerant properties at the element inlet and outlet to determine if there 

is a phase change between the single-phase and two-phase regions.  If there is a phase 

change, determine the location of the transition.  It is either near the condenser inlet, 

the condenser outlet, or the evaporator outlet.

3. Calculate the capacity for the 1st portion of the element according to the element 

location.

Q̇1st=ṁref iref ,in−i sat , vap  for condenser inlet (3.156)

Q̇1st=ṁref iref ,in−i sat , liq  for condenser outlet (3.157)

Q̇1st=−ṁref  iref ,in−i sat ,vap for evaporator outlet (3.158)

4. Guess the length of the 1st portion.  It should be between zero and the total element 

length.

5. Compute the 1st portion capacity using the ε-NTU method.  If the element is near the 

condenser inlet, use the single-phase heat transfer equations.  Otherwise use the two-

phase equations.

6. Compare the capacities calculated in steps (3) and (5).  If they do not match, adjust the 

guessed length and repeat step (5).  Note that the length is proportional to the capacity 

and is bounded.  Therefore, it is well-suited for any one-dimensional search method. 

7. Subtract the length of the 1st portion from the total element length to obtain the length 

of the 2nd portion.
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8. Compute the capacity for the 2nd portion.  If the element is near the condenser inlet, 

use the two-phase equations.  Otherwise, use the single-phase equations.

9. Add the capacities of the 1st and 2nd portions from steps (5) and (8), respectively.  The 

result is the total capacity of the transition element.

3.4.8. Heat Exchanger Solution Algorithm

The heat exchanger solution algorithm involves several iterative procedures as 

shown in Figure 3.7.  The calculation starts by breaking the heat exchanger into elements. 

For each element, the average refrigerant property of the inlet and outlet conditions is 

used in the heat transfer and pressure drop calculations.  It usually takes 2 to 3 iterations 

to converge.  After each element calculation, the inlet and outlet refrigerant qualities are 

compared to determine if a transition element calculation is needed.  The element-by-

element calculation is performed along the refrigerant flow direction for all tubes and all 

circuits of the heat exchanger.

At the beginning of the heat exchanger calculation, it is assumed that the inlet air 

conditions for all heat exchanger elements are the same as the inlet air conditions to the 

coil.  The inlet air conditions are updated once all elements have been calculated.  This 

iteration process is considered converged when the total coil capacity remains unchanged 

within ±1%.

The calculation of the refrigerant flow rate distribution is another iterative 

procedure of the heat exchanger calculation.  Uniform refrigerant distribution is assumed 

at the beginning of the calculation.  The refrigerant flow rate in each circuit is updated 

using the proposed circuiting algorithm once the air side has converged.  The flow rate 
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iteration is considered converged when the coil outlet pressure remains unchanged within 

±0.07 kPa (±0.01 psi).

Repeat for each circuit
Repeat for each tube

Start

Calculate element

Calculate
transition element

Refrigerant phase
change?

Air side boundary
conditions converged?

Coil outlet pressure
converged?

Refrigerant property
converged?

Update average
refrigerant
property

Update air side
boundary
conditions

Update refrigerant
mass flow rates

yes

yes

yes

yes

no

no

no

no

End

Figure 3.7 Algorithm for heat exchanger model.

3.5. System Charge

System charge is one of the boundary conditions in the system simulation.  It is 

the total of the refrigerant inventories in all heat pump components.  For single-phase 

refrigerant, the refrigerant inventory is calculated by: 

M=ref⋅V  (3.159)

For two-phase refrigerant, it is related to the void fraction as given by:
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M=[vap1−liq ]V  (3.160)

where the void fraction is the volume fraction that is occupied by vapor refrigerant. 

Using the Graham et al. (1998) correlation, the void fraction is:

=1−exp[−1−0.3⋅ln Ft−0.0328⋅ ln Ft 2] if Ft0.01031

=0 if Ft≤0.01031
(3.161)

where Ft is the Froude rate and is defined as:

Ft=[ xref
3 G ref

2

vap
2 ⋅g Din 1− xref  ]

1 /2

 (3.162)

3.6. Interconnecting Pipes

The system components are connected to each other by interconnecting pipes. 

Both heat transfer and pressure drop across the piping are taken into account in the 

system simulation.  The piping calculations are treated as part of the heat exchanger 

calculation, however heat transfer or temperature change across the pipes is a user input. 

Pressure drop across the pipes is calculated in the same way as the heat exchanger 

element, where pressure drop due to friction, acceleration, and gravitation changes are 

calculated.

3.7. Filter Drier

The filter drier collects and holds excess water in the refrigeration system (ARI 

2004).  The use of a filter drier introduces an extra refrigerant pressure drop.  This 

pressure drop is assumed proportional to the refrigerant mass flow rate and is correlated 
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to the catalog data as shown below:

P filter=
P rated

Q̇ flow , rated flow
ṁref  (3.163)

where the rated pressure drop Prated , and flow capacity Q̇ flow , rated are published in 

the manufacturer's catalog, and the “flow rate per ton”  flow is constant according to the 

ARI standard 710 (2004).  Table 3.4 shows the  flow values for typical refrigerants.

Table 3.4 Flow rate per ton for different refrigerants (ARI 2004).

Refrigerant Ψflow  (kg.s-1.kW-1)

R-22 0.0064

R-134A 0.0067

R-407C 0.0064

R-410A 0.0060

3.8. Accumulator

The function of the accumulator is to trap the liquid refrigerant such that only 

vapor refrigerant can flow into the compressor.  A typical accumulator geometry is 

shown in Figure 3.8.  If there is two-phase refrigerant coming into the accumulator, the 

vapor refrigerant will travel out of the accumulator through the J-tube.  While the liquid 

refrigerant will be trapped at the bottom of the accumulator due to its heavier weight. 

The two tiny holes on the J-tube are used to drain the liquid phase refrigerant out of the J-

tube in case the liquid refrigerant is carried over into to the J-tube by the incoming 

pressure.  This mechanism allows the accumulator to avoid liquid refrigerant going into 

the compressor.  The upper hole on the J-tube is a “backup” hole.  It provides a secondary 

outlet for the liquid refrigerant when the liquid level in the accumulator is higher than the 
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J-tube outlet.  Note that some accumulators only have the lower hole in the J-tube, but the 

length of the J-tube is longer and its outlet is closer to the top of the accumulator.  

H
accum

Daccum
∆H

hole
Lower hole

Upper Hole

H
liq

Refrigerant
out

Refrigerant
in

Figure 3.8 Geometry definitions for the accumulator model.

The function of the accumulator is especially important when a heat pump system 

switches from cooling to heating mode.  The sudden change in operation results in 

refrigerant not fully vaporized through the evaporator.  Liquid refrigerant is trapped in the 

accumulator during the operation change.  However, if the system is properly charged, 

the liquid refrigerant in the accumulator will be eventually evaporated when the system 

operation becomes steady.  The evaporated refrigerant migrates to the condenser outlet 

and becomes subcooled refrigerant because of conservation of mass (Knight 2005).  

However, if the system is over charged, it is possible that there is two-phase 

refrigerant in the accumulator even at steady state conditions.  This is not desirable 

because it can damage the compressor in the long term.  The amount of refrigerant in the 

accumulator is also taken into account in the system charge calculation.  It is calculated 

according to the liquid level in the accumulator (Domanski and Didion 1983).  This 

model is based on the accumulator geometry as shown in Figure 3.8.  If the accumulator 
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outlet is superheated vapor, there is only vapor in the accumulator, and the refrigerant 

mass is:

M accum=V accumvap  (3.164)

If there is liquid refrigerant in the accumulator, the liquid height in the accumulator is 

used to calculate the refrigerant inventory.  It is calculated by:

M accum=Aaccum [H liqliqH accum−H liqvap ]  (3.165)

On the right hand side of the equation, the first part is the mass of liquid refrigerant, and 

the second part is the mass of vapor refrigerant.  The liquid height is determined 

according to the pressure balance in the accumulator.  If the accumulator only has the 

lower hole, the liquid height is:

H liq=
Phole−P tube

liq g
 (3.166)

where:

Phole=
1

2 liq ṁliq

Ahole 
2

 (3.167)

P tube=
1

2vap  xref ṁref

Atube 
2

 (3.168)

ṁliq=1−xref  ṁref  (3.169)

It is assumed the lower hole is very close to the bottom of the accumulator, so the liquid 

height in the accumulator is the same as the liquid height above the lower hole, i.e.

H liq=H liq ,low .  Note that if the accumulator has the upper hole but the calculated 

liquid height is less than the hole distance, H hole , these equations are still valid. 
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However, if the calculated liquid height is higher than the upper hole, a mass balance 

across both holes and the tube is used to determine the actual liquid height in the 

accumulator:

ṁliq=ṁhole ,lowṁhole ,up  (3.170)

where:

ṁhole ,low=Ahole ,low 2 liq Phole ,low  (3.171)

ṁhole ,up=Ahole , up 2liq Phole , up  (3.172)

The hole pressures are calculated from pressure balance:

Phole , low=liq g H liq ,lowP tube  (3.173)

Phole , up= liq g H liq , upP tube  (3.174)

where the liquid height above the upper hole is:

H liq ,up=H liq , low−H hole  (3.175)

In addition to trapping liquid refrigerant, the accumulator also introduces a 

refrigerant pressure drop.  The pressure drop is calculated based on the manufacturer's 

catalog data.  Assuming the pressure drop is proportional to the mass flow rate, which is 

in turn proportional to the system capacity, it is calculated by:

Paccum=
Q̇ rated

Q̇max

P rated  (3.176)

where Q̇rated is the compressor rated capacity. Q̇max is the maximum rated capacity of 

the accumulator which is correlated to the catalog data as follows:

Q̇max=h1T sat , evph2  (3.177)
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Note that some manufacturers publish accumulator data based on the change in saturation 

temperature instead of pressure.  This is converted to a pressure change in the pressure 

drop calculation.

3.9. Refrigerant Properties

The REFPROP Fortran routines (McLinden et al. 1998) were initially considered 

for the refrigerant property calculations.  However, as discussed in the section 2.3 these 

Fortran routines are impractical when a large number of refrigerant property calculations 

are required.  The EnergyPlus (Crawley et al. 1998) table look-up method is used in this 

heat pump simulation program because it is more computationally efficient.  Its table 

format is divided into three sections according to the refrigerant state: superheated, 

saturated, and subcooled.  In the single phase sections (superheated and subcooled), since 

the refrigerant properties do not change dramatically, a 4 K (7.2 R) temperature 

increment is used to generate the table entries, while a more refined 2 K (3.6 R) 

increment is used for the saturation properties.

The refrigerant database REFPROP 6.0 (McLinden et al. 1998) is used to 

generate the refrigerant property tables.  REFPROP, which is maintained by the National 

Institute of Standards and Technology (NIST), includes properties for both natural and 

pure refrigerants.  It also includes some common refrigerant mixtures and allows users to 

define their own refrigerant mixtures.  The refrigerant tables currently available in this 

heat pump simulation program are propane, R-22, R-134A, R410A, and R407C.  

Due to the temperature glide characteristic of refrigerant mixtures, at a given 

saturation temperature, the liquid and vapor saturation pressures are different.  The 
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format of the refrigerant tables are designed to accommodate both pure refrigerant and 

refrigerant mixtures.  Both the liquid and vapor saturation pressures are stored in the 

tables.  For pure refrigerants, both saturation pressures are the same at a given saturation 

temperature.  The utility program from Tang (2005) can be used to generate new 

refrigerant tables from the REFPROP database.

3.10. Refrigerant-Oil Mixture

The amount of oil circulating in the heat pump systems alters the refrigerant 

properties.  These refrigerant-oil mixture properties are calculated using the models 

recommended by Shen and Groll (2005).  The absolute oil mass fraction circulating in the 

system can be best defined at the liquid line (Cremaschi 2004):

absolute=
ṁoil

ṁrefṁoil
 (3.178)

It is usually less than 1% for heat pump applications (Copeland 2006, Bristol 2006, 

Cremaschi 2006).  The local oil mass fraction in the heat exchangers are defined as:

local=
absolute

1−xmix
 (3.179)

where xmix is the quality of the refrigerant-oil mixture.  The local oil mass fraction is the 

key parameter to determine the refrigerant-oil properties as shown in the following 

equations.

Specific heat: Jensen and Jackman (1984) present the following weighting method to 

calculate the specific heat based on the local oil mass fraction: 

c p , mix=local c p , oil1−local c p , liq  (3.180)
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where the oil specific heat is calculated as:

c p ,oil=
4.186⋅[0.3880.000451.8T ref32]

oil /w
 (3.181)

The density of water in the above equation is evaluated at a reference temperature of 15.6 

°C. 

Density: From Baustian et al. (1986), the refrigerant-oil mixture density is calculated by: 

mix=[ wlocal

oil


1−wlocal

liq ]
−1

 (3.182)

Dynamic viscosity: From Yokozeki (1992), the dynamic viscosity is:

mix=exp F liq⋅lnliqF oil⋅lnoil   (3.183)

where the weighting factor is defined as:

F oil=
W oil

0.58oil

W oil
0.58oilW liq

0.58liq
 (3.184)

F liq=1−Foil  (3.185)

The mole fractions are calculated as:

oil=
local 

W ref

W oil


1−locallocal 
W ref

W oil


 (3.186)

ref=1−oil  (3.187)

Surface tension: From Jensen and Jackman (1984), the surface tension is calculated by:

mix=liq oil−liq local  (3.188)

Thermal conductivity: Also from Jensen and Jackman (1984), the conductivity is:
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k mix=k liq 1−localk oillocal−0.72k oil−k liq1−locallocal  (3.189)

The oil properties in the above equations can be obtained from the ASHRAE handbook-

Refrigeration (2006), compressor manufacturers, or oil suppliers.

3.11. System Simulation Algorithms

The simulation algorithms are designed to meet the needs of heat pump design 

engineers.  Three simulation algorithms have been implemented: “Orifice and TXV 

Design”, “Fixed Orifice Simulation”, and “TXV Simulation”.  All of these algorithms 

converge on the mass, momentum, and energy conservation equations under specified 

boundary conditions.

3.11.1. Orifice and TXV Design

This algorithm is used for system design.  For given air side boundary conditions, 

system subcooling, and superheat, it calculates the size of the expansion device (orifice 

diameter and TXV rated capacity), and system charge.  The compressor model 

coefficients, and the indoor and outdoor coil geometries are required to start the 

calculation.  Figure 3.9 shows the simulation algorithm for the “Orifice and TXV 

Design” calculation.

Initial guesses for this calculation are the saturation temperatures at the 

compressor suction and discharge.  The algorithm iterates on the saturated discharge 

temperature on the high pressure side to converge on the specified subcooling.  It is 

considered converged when the subcooling difference is within ±0.006 K (±0.01 R), or 

the saturated temperature varies within ±0.006 °C (±0.01 °F), whichever comes first in 
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the iteration.  For the low pressure side iteration, the saturated suction temperature is 

adjusted to converge on the specified superheat.  The convergence criterion is similar to 

the high pressure side iteration.  If the superheat difference is within ±0.006 K (±0.01 R) 

or the change of saturated temperature is within ±0.006 °C (±0.01 °F), the calculation is 

converged.  Once both iterations are converged, the size of the expansion device and 

system charge are calculated based on the simulated system performance and the overall 

design calculation is complete.

Start

End

Specify:
1. Air side boundary conditions
2. Compressor, indoor and outdoor Coils
3. Subcooling and superheat

Guess:
1. Saturated suction temperature
2. Saturated discharge temperature

Simulate:
Compressor

Simulate:
Condenser

Calculate:
Expansion device
(Orifice and TXV)

Calculated
subcooling =

Specified
subcooling?

Adjust:
Saturated discharge temperature

Adjust:
Saturated suction temperature

Calculate:
System charge

Yes

No

No

Simulate:
Evaporator

Calculated
superheat  =

Specified
superheat?

Yes

Figure 3.9 Simulation algorithm for Orifice and TXV Design.
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3.11.2. Fixed Orifice Simulation

This algorithm is used for simulating a system with a short tube orifice expansion 

device.  The air side conditions and system charge are specified boundary conditions. 

Compressor, indoor and outdoor coils, and orifice size are required inputs.  Figure 3.10 

shows the simulation algorithm for the fixed orifice simulation.

In addition to the compressor suction and discharge saturation temperatures, the 

system superheat is also an initial guess for this calculation.  Since the orifice size is 

specified, the high pressure side iteration matches the refrigerant mass flow rates that are 

calculated from the compressor and orifice models.  The saturated discharge temperature 

is adjusted in the inner loop.  When the saturated temperature varies within ±0.006 °C 

(±0.01 °F) or the mass flow rate difference is within ±0.005 kg.hr-1 (±0.01 lbm.hr-1), the 

iteration is considered converged.

The low pressure side iteration is the same as the “Orifice and TXV Design” 

calculation, where the saturated suction temperature is adjusted to converge on the 

superheat.  The same convergence criterion applies.  However, the superheat is a guessed 

value in this algorithm.  Another iteration loop needed to find the actual superheat based 

on the specified system charge.  The guessed superheat is adjusted until the calculated 

charge matches the specified charge.  The iteration is considered converged when the 

charge difference is within ±0.005 kg (±0.01 lbm) or the guessed superheat varies within 

±0.006 K (±0.01 R).  Once the system charge converges, the overall system simulation is 

finished.  This simulation algorithm can be used to study the impact of system charge, 

and air side conditions on the system performance.
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Start

End

Specify:
1. Air side boundary conditions
2. Compressor, indoor and outdoor coils, orifice
3. Charge

Guess:
1. Saturated discharge temperature
2. Saturated suction temperature
3. Superheat

Simulate:
Compressor

Simulate:
Condenser

Simulate:
Orifice

Compressor mass
flow rate = Orifice
mass flow rate?

Adjust:
Saturated discharge temperature

Calculated
superheat  =

Guessed
superheat?

Adjust:
Saturated suction temperature

Calculate:
System charge

Yes

No

Yes

No

Calculated charge
= Specified charge?

Adjust:
Superheat

No

Yes

Simulate:
Evaporator

Figure 3.10 Simulation algorithm for fixed orifice simulation.

3.11.3. TXV Simulation

This algorithm is used for simulating a system with a TXV as expansion device. 

Air side conditions, system charge and TXV superheat setting are specified.  Figure 3.11 

shows the TXV simulation algorithm.  It requires the specification of the compressor, 

indoor and outdoor coils to start the simulation.  

The initial guesses for this simulation are compressor suction and discharge 

saturation temperatures, and system subcooling.  The high and low pressure side 

iterations are essentially the same as the “Orifice and TXV Design” calculation with the 
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same convergence criteria.  

Start

End

Specify:
1. Air side boundary conditions
2. Compressor, indoor and outdoor coils
3. System charge and TXV superheat

Guess:
1. Saturated discharge temperature
2. Saturated suction temperature
3. Subcooling

Simulate:
Compressor

Simulate:
Condenser

Calculate:
System charge

Calculated
subcooling =

Guessed
subcooling?

Adjust:
Saturated discharge temperature

Simulate:
Evaporator

Adjust:
Saturated suction temperature
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No

Yes

Calculated
superheat  =

Specified
superheat?

No

Calculated charge
= Specified charge?

Adjust:
Subcooling

No

Yes

Figure 3.11 Simulation algorithm for TXV simulation.

However, the high pressure side iteration converges by adjusting the guessed 

subcooling instead of the specified subcooling.  Another iteration loop is used to find the 

actual subcooling based on the specified system charge.  The simulation is converged 

when the calculated charge matches the specified charge within ±0.005 kg (±0.01 lbm) or 

the subcooling varies within ±0.006 K (±0.01 R).  Like the “Fixed Orifice Simulation”, 

this algorithm can be used to study the impact of charge and air side conditions on the 

system performance.
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4. MODEL EVALUATION

The component models and simulation algorithms are implemented in FORTRAN 

code.  It is expected that the code should predict the trend of actual component 

performance and simulate reasonable system operations.  For example, the orifice model 

should predict a higher refrigerant mass flow rate for a higher upstream refrigerant 

pressure.  The system simulation should predict a lower system capacity for a higher 

condenser entering air temperature.  This section evaluates the implemented component 

models and simulation algorithms with illustrative examples.  The evaluations merely 

show that the predicted results are consistent with expected trends.  Accuracy of the 

simulation, which requires validation with experimental data, is addressed in Chapter 6.

4.1. Compressor

A Copeland compressor ZP54K3E-PFV is used for the compressor model 

evaluation.  It is a 5-ton (17.5 kW), scroll type compressor and operates with R-410A. 

During the system simulation, the compressor suction and discharge temperatures are 

adjusted to find the system performance.  The compressor model should react to the 

changes of the saturation temperatures and predict reasonable compressor performance.  

Figure 4.14 shows the predicted mass flow rate for a typical range of saturation 

temperatures.  Note that the entire test was performed for a constant superheat of 11.1 K. 

The model predicts that the mass flow rate is proportional to the suction saturation 
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temperature but is inversely proportional to the discharge saturation temperature.  For a 

given discharge saturation temperature, if the suction saturation temperature increases, 

the refrigerant density becomes higher.  As a result, the mass flow rate through the 

compressor should increase.  On the other hand, for a given suction saturation, since the 

suction refrigerant density is constant, the mass flow rate is affected by the discharge to 

suction pressure ratio only.  The increase of discharge saturation temperature increases 

the pressure ratio, and thus decreases the mass flow rate.  The model is able to predict the 

mass flow rate consistently with the change of saturation temperatures.  In addition, 

Figure 4.14 shows that the mass flow rate is more sensitive to the change of suction 

saturation temperature.  This characteristic is confirmed with the experimental data 

presented by Chen et al. (2002b).

The predicted power consumption for the same range of saturation temperatures is 

shown in Figure 4.2.  The predicted power consumption increases with the discharge 

saturation temperature, but decreases with suction saturation temperature.  For an 

increasing discharge to suction pressure ratio, more power input is required.  Figure 4.2 

shows that the model is able to predict this characteristic.  When the difference between 

the suction and discharge saturation temperatures increases, the pressure ratio increases, 

and so does the power consumption.  Note that the power consumption is more sensitive 

to the change of  discharge saturation temperature.  Chen et al. (2002b) also showed this 

trend in their experimental data.  If the mass flow rate is relatively constant for the range 

of discharge saturation temperature, more power input is required to compress the 

refrigerant to higher pressure.
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Figure 4.1 Compressor evaluation: Mass flow Rate (Tested at 11.1 K superheat)
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Figure 4.2 Compressor evaluation: Power consumption (Tested at 11.1 K superheat).

4.2. Short Tube Orifice

A short tube orifice with a length of 12.7 mm, and a diameter of 1.9 mm is used to 

verify the short tube orifice model.  Figure 4.3 shows the predicted mass flow rate for a 
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range of typical refrigerants (R22, R134A, R410A, and R407C).  The test is performed at 

constant entering enthalpy of 255 kJ.kg-1, and 12.8 °C outlet saturation temperature.  Note 

that the slope change in the curves is due to the inlet refrigerant condition changes from 

two-phase to subcooled condition, a two-phase correction factor is applied to the orifice 

model for the two-phase inlet conditions.  The transition saturation temperature is 

different for different refrigerants.  It is about 44 °C for R22, and 34 °C for R407A, etc. 

as shown in the figure.  For increasing inlet pressure, it is expected that more mass flow 

is pressed through the orifice.  The model is able to predict this trend accordingly for all 

tested refrigerants. 
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Figure 4.3 Orifice model evaluation: Change of inlet saturation temperature.

Since refrigerant flow through the orifice is nearly choked, the mass flow rate 

should be relatively independent of the outlet pressure. Payne and O'Neal (2004) did not 

include the outlet pressure as a correlating parameters in their model.  As a result,  this 
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model is totally independent of the outlet pressure.

In the “Orifice and TXV Design” calculation, the orifice diameter is calculated at 

the end of the algorithm.  A larger orifice diameter allows more refrigerant flow through 

the orifice.  This calculation is verified by the example shown in Figure 4.4.  Note that 

the model predicts the trend of mass flow rate consistently for all tested refrigerants.  The 

predicted mass flow rate increases with larger orifice diameter.
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Figure 4.4 Orifice model evaluation: Change of orifice diameter.

Figure 4.4 also shows that the model is able to predict the mass flow rate 

difference for different refrigerants.  For the same orifice diameter, the mass flow rates 

for the tested refrigerants are different.  It is due to the difference in operation pressure. 

At the same inlet saturation temperature of 48.9 °C, R410A operates at the highest 

pressure of 2977 kPa, while R134A operates at the lowest pressure of 1282 kPa.  As a 

result, the higher pressure produces more mass flow rate for R410A compared to R134A. 
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4.3. Condenser

A single-circuit coil shown in Figure 4.5 is used to verify the condenser model 

performance.  The coil tubes are in staggered arrangement and circuited in counter-cross 

flow pattern.  Table 4.1 lists the dimensions of this test coil.  The condenser model is 

tested for a range of saturation temperatures with tube-by-tube discretization.  

Refrigerant

Air

1 2 3 4 5 6

7 8 9

10 11 12

Figure 4.5 Test Coil for heat exchanger model evaluations.

Table 4.1 Test coil geometry.

Coil Width 0.8 m

Coil Height 0.2 m

No. of rows 2

No. of tubes per row 6

Tube OD 10 mm

Tube ID 9.4 mm

Tube Spacing 25.4 mm

Row Spacing 22 mm

Tube Type Microfin

Fin thickness 0.099 mm

Fin Density 591 fins.m-1

Fin Type Louver

Figure 4.6 shows the predicted condenser capacity for different refrigerants.  Inlet 

air and refrigerant conditions are fixed as shown in the figure.  The predicted capacities 

are proportional to the saturation temperature because there is more heat transfer in the 
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two-phase region.  As the saturation temperature increases and the refrigerant reaches the 

subcooled region at the condenser outlet, the change in capacity becomes relatively 

constant.  Figure 4.6 shows that the capacity curves change slope at about 48 °C 

saturation temperature, where the refrigerant at the condenser outlet is subcooled liquid.

For a specific saturation temperature, Figure 4.6 shows that the capacity varies for 

different refrigerants.  This is due to the difference in saturation region as shown in 

Figure 4.7.  The R410A capacity is higher than other refrigerants at low saturation 

temperatures because R410A has the widest saturation region, and thus has more two-

phase refrigerant in the condenser.  
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Figure 4.6 Condenser model evaluation: Capacity.

As the saturation temperature increases, the refrigerant in the condenser covers more of 

the saturation region and results in more heat transfer.  But once the saturation 

temperature reaches the subcooled outlet temperature, the capacity does not change 
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significantly.  The saturation region of R134A is the smallest, therefore its capacity 

increases the most rapidly with increasing saturation temperature.
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Figure 4.7 Pressure-Enthalpy diagram for different refrigerants.

In system simulation, i.e. the “Fixed Orifice Simulation” and the “TXV 

Simulation”, the system charge is a boundary condition.  Since most of the refrigerant 

resides in the heat exchangers, the charge calculation is important and is evaluated with 

the same test coil and test conditions.  Figure 4.8 shows the change of refrigerant 

inventory in the condenser due to a change of saturation temperature.  Since the 

condenser capacity increases with saturation temperature, more refrigerant is condensed 

into the liquid phase and more refrigerant is in the condenser.  Note that when there is a 

subcooled liquid in the condenser, the mass inventory increases more rapidly because of 

higher refrigerant density.

The compressor, condenser, and short tube orifice evaluations have shown that 
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the models are able to reflect the change of boundary conditions consistently and 

conform to the theoretical trends.  Higher saturation temperature decreases the 

compressor mass flow rate, but increases the orifice mass flow rate, condenser capacity, 

and outlet subcooling.  These relationships are useful for adjusting the saturation 

temperature at the high pressure side iteration of system simulation.
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Figure 4.8 Condenser model evaluation: Mass inventory.

4.4. Evaporator

The evaporator model is the major component at the low pressure side iteration. 

It is tested with the same coil as shown in Figure 4.5.  However, boundary conditions are 

changed to typical evaporator operating conditions in this test.  The same tube-by-tube 

discretization is used to run the evaporator model.  Figure 4.9 shows the predicted 

evaporator capacity for a range of saturation temperatures.  The inlet conditions for this 
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test are fixed as shown in the figure.  As the saturation temperature increases, there is less 

vaporized refrigerant in the evaporator, and the capacity decreases.  Figure 4.9 shows 

when there is no superheated refrigerant in the evaporator (at about 11 °C), the capacity 

begins to fall more noticeably because the two-phase heat transfer is higher than the 

single phase heat transfer.
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Figure 4.9 Evaporator model evaluation: Capacity.

The capacity for different refrigerants is also compared in Figure 4.9.  R410A has 

the highest capacity for low saturation temperatures because it has the widest saturation 

region as shown in the pressure-enthalpy diagram (Figure 4.7).  As the saturation 

temperature increases, the R134A capacity becomes the highest because it has the 

smallest saturation region where more refrigerant can take the advantage of two-phase 

heat transfer.

The evaporator refrigerant inventory, shown in Figure 4.10, increases with 
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saturation temperature.  Since higher saturation temperature results in less capacity, more 

liquid refrigerant is in the evaporator, and the mass of refrigerant increases.  
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Figure 4.10 Evaporator model evaluation: Mass Inventory.

In the low pressure side calculation, the saturation temperature is adjusted to find 

the desired superheat.  Since the saturation temperature is inversely proportional to the 

capacity, and higher evaporator capacity means more superheat at the evaporator outlet; 

these relationships are useful for adjusting the saturation temperature in the low pressure 

side iteration of system simulation.  Once both high and low pressure sides are 

converged, it is also easy to find the desired superheat because the mass inventory is 

inversely proportional to the superheat.

4.5. Circuiting

The circuiting algorithm is evaluated for the sample coils shown in Figure 4.11. 
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All coils have the same geometry but different circuitries.  The coil dimensions are 

shown in Table 4.2.  Circuit 1 is a simple circuit with only one branch.  Circuit 2 is a split 

circuit where the refrigerant comes in from branch 1 and splits to branches 2 and 3 at tube 

4.  Circuit 3 is a joined circuit where the refrigerant comes in from branches 1 and 2 and 

joins to branch 3 at tube 10.  The last circuit is a rather complicated circuit where the 

refrigerant comes in from branch 1, splits to branches 2, 3, and 4 at tube 8.  The portion 

of refrigerant in branch 4 goes to the coil outlet directly.  Another portion goes to 

branches 2 and 3 and joins to branch 5 at tube 18.  It should be noted that existing 

circuiting algorithms are unable to model this split-joined circuitry.

Figure 4.11 Sample circuits for circuiting model evaluations.

The circuits are tested for condenser coils with R22 as the refrigerant.  Figure 4.12 

shows the predicted coil capacity subject to a change of refrigerant mass flow rate.  Other 

boundary conditions are fixed for the test as shown in the figure.  Note that the capacity 

increases for low refrigerant mass flow rate.  As the mass flow rate increases, some of the 

capacities starts to fall.  For example, the simple circuit capacity starts to fall at about 

0.04 kg.s-1 mass flow rate.  This is because the high mass flow rate drives the refrigerant 

temperature to the air temperature before the refrigerant reaches the coil outlet, the rest of 
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the coil does not have heat transfer potential but the refrigerant pressure continues to drop 

which results in a capacity drop. 

Table 4.2 Test coil geometry for circuiting algorithm evaluations.

Coil Width 0.8 m

Coil Height 0.2 m

No. of rows 3

No. of tubes per row 6

Tube OD 10 mm

Tube ID 9.4 mm

Tube Spacing 25.4 mm

Row Spacing 22 mm

Tube Type Microfin

Fin thickness 0.099 mm

Fin Density 591 fins.m-1

Fin Type Louver
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Figure 4.12 Circuiting model evaluation: Capacity.

 Figure 4.13 shows the coil pressure drop for each circuit for the same range of 
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refrigerant mass flow rate.  Note that the earlier the coil loses the heat exchange potential, 

the more liquid refrigerant is in coil and pressure drop starts to rise dramatically. 

Maximizing capacity and minimizing pressure drop is always a challenge in circuit 

design.  Although for the range of mass flow rate shown, the Split circuit stands out 

because it has decent capacity but relatively low pressure drop, this conclusion draws 

from the specific boundary conditions and coil dimensions, and cannot be generalized.
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Figure 4.13 Circuiting model evaluation: Pressure drop.

The advantage and major ability of the circuiting model are to analyze the refrigerant 

distribution in the circuit branches.  Knowing the local refrigerant mass flow rate in each 

branch is beneficial in calculating local heat transfer and pressure drop.  Figure 4.14 

shows the refrigerant distribution for the test coils when the refrigerant mass flow rate is 

0.032 kg.s-1.  For the simple circuit, 100% of the refrigerant flows through the branch. 

The Split circuit distributes almost the same amount of refrigerant to branches 2 and 3. 

   103



Note that since branches 2 and 3 are connected to the same header at the coil outlet, their 

pressure drops are the same.  The slight difference in refrigerant distribution is due to the 

difference in heat transfer.  Branch 2 is longer; it has more heat transfer potential and 

results in more liquid refrigerant.  Refrigerant prefers going to branch 3 because it has 

less flow resistance.  The Joined circuit has an equal amount of refrigerant coming from 

branches 1 and 2.  Both branches have the same pressure drop because they are connected 

to the same junctions, i.e. the coil inlet and tube 10.  

Figure 4.14 Circuiting model evaluation: Refrigerant distribution (mass flow rate = 0.032 kg.s-1).

Although there is a difference in heat transfer, it does not constitute more than 1% of the 

mass flow rate.  The Split-Joined circuit has the most complicated flow distribution. 

Since the refrigerant always prefers the low resistance path, most of refrigerant stays in 

branch 1 because there is no liquid refrigerant in it.  The refrigerant flow is relatively 

“choked”, which is harmful to the capacity.  As shown in Figure 4.12, the Split-Joined 

circuit has the lowest capacity compared to other circuits.  Branches 2 and 3 are both 
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connected to the same junctions (i.e. tubes 8 and 18).  Since branch 2 is a longer path 

with a higher flow resistance, more refrigerant goes to branch 3.  Only a small portion of 

refrigerant goes to branch 2.  The refrigerant leaves the coil from branches 4 and 5.  Since 

branch 4 has a lower resistance, it has higher flow rate.

This example shows that the circuiting algorithm is able to model different kinds 

of circuitry and predict reasonable results.  Because the coil circuiting has a significant 

effect on coil capacity and pressure drop, the circuiting algorithm supports an important 

aspect of the system design, which might otherwise be ignored.

4.6. System Simulation

In this section, the system simulation is evaluated for a 4-ton (14.1 kW) air 

conditioner with a scroll compressor and a short tube orifice.  R22 is the refrigerant in 

this system.  The heat exchangers are a 2-row evaporator and a 1-row condenser.  They 

are circuited as shown in Figure 4.15.  Detailed configurations and dimensions of this 

system are shown in Table 4.3.  In order to evaluate the system performance for a range 

of air side boundary conditions, the “Fixed Orifice Simulation” option is used to simulate 

the system.  Tube-by-tube discretization is used in both heat exchanger models.  Four air 

side parameters (i.e. indoor dry bulb temperature, wet bulb temperature, flow rate, and 

outdoor dry bulb temperature) are changed one at a time from the baseline boundary 

conditions shown below:

• Indoor air flow rate = 0.6 m3.s-1

• Indoor dry bulb temperature = 27 °C

• Indoor wet bulb temperature = 19 °C
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• Outdoor air flow rate = 1.2 m3.s-1

• Outdoor dry bulb temperature = 35 °C

Figure 4.15 Coil circuitry for the sample system.

Table 4.3 Sample system for the evaluations of system simulation.

Compressor Expansion Device Condenser Evaporator

Type Scroll Type Short tube 
orifice

Coil Width 1.2 m 0.6 m

Coil Height 0.95 m 0.95 m

No. of rows 1 2

Part no. ZR48K3-
PFV

Short tube 
length 12.7 mm

No. of tubes 
per row 30 30

Tube OD 13.2 mm

Tube ID 13.2 mm

Refrigerant R22 Short tube 
chamfer depth zero

Tube Spacing 31.6 mm

Row Spacing 27.5 mm

Tube Type Smooth

Charge 3.2 kg Orifice 
diameter 2.2 mm

Fin thickness 0.15 mm

Fin Density 571 fins.m-1

Fin Type Smooth

The simulated system capacity for this condition is 12.5 kW.  Figure 4.16 shows the 

   106

Condenser

Evaporator

Refrigerant

Refrigerant

Air



system capacity subject to different air side parameters.  The intersection of the curves 

represent the baseline condition.  Note that the figure shows the fractional change of 

capacity versus fractional change of air side parameters.  The range of air side parameters 

is selected from the manufacturer's catalog data.  The purpose of the fractional 

presentation is two-fold.  It not only shows the relationship between the system capacity 

and air side parameters, but it also shows the sensitivity of each air side parameters to the 

system capacity.

Figure 4.16 shows that the system capacity is proportional to the indoor dry bulb 

and wet bulb temperatures, and the air flow rate, but decreases with increasing outdoor 

dry bulb temperature.  Increasing the indoor dry bulb and wet bulb temperatures increases 

the heat transfer potential of the evaporator; on the other hand, increasing the indoor air 

flow rate increases the heat transfer rate at the evaporator.  All of these changes enhance 

the system capacity.  When the outdoor dry bulb temperature increases, the heat transfer 

potential at the condenser is reduced because the air temperature is closer to the 

refrigerant temperature.  The decrease in condenser capacity results in higher entering 

refrigerant temperatures on the low pressure side, which in turn reduces the heat transfer 

potential at the evaporator.  As a result, the system capacity decreases.  The simulation is 

able to predict all of these air side effects rationally.

On the other hand, the simulation predicts that the system capacity is most 

sensitive to the indoor wet bulb and outdoor dry bulb temperatures.  The indoor air flow 

rate has a moderate impact.  The sensitivity is verified by the catalog data for a York 4-

ton heat pump, BHH048 that has the same rating capacity as the simulated system. 

Figure 4.17 shows the system performance from catalog data that are presented in the 
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same fashion as shown in Figure 4.16.  Note that the catalog data indicates that the 

system capacity does not change with indoor dry bulb temperature and therefore it is not 

plotted in the figure.  This may be because the system capacity is relatively constant for 

the range of indoor dry bulb temperatures in this data set.  
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Figure 4.16 Evaluation of system simulation: Capacity.

The catalog data (Figure 4.17) show that the system capacity is sensitive to the 

change of indoor wet bulb and outdoor dry bulb temperatures.  These trends agree with 

the predicted simulation results shown in Figure 4.16.  The catalog system capacity 

becomes insensitive to the indoor wet bulb temperature when the temperature decreases 

to about 85% of the baseline value.  This is due to the coil surface becomes dry when 

there is less moisture content in the entering air.  The simulation results (Figure 4.16) 

predict a similar trend but do not have the same abrupt change as the catalog data (Figure

4.17).  Since heat pump manufacturers do not run all the test points in the catalog, 

interpolation and extrapolation are usually used to generate the entire table based on 
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some rating test points (Knight 2005), the nearly dry coil test point may be a result of 

approximation.  
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Figure 4.17 Catalog data for the York heat pump BHH048.

4.7. System Simulation with Row-by-Row Heat Transfer 

Coefficient

It is known that the air side heat transfer coefficient varies from row to row in 

heat exchangers.  Published heat transfer coefficients are usually for the entire coil.  The 

overall heat transfer coefficient was used to obtain the simulation results shown in the 

above sections.  However, Rich (1975) previously published the row-by-row heat transfer 

coefficients that are applicable to the coil geometry shown in Table 4.3.  To estimate the 

impact of row-by-row coefficients, the system capacity using the row-by-row coefficient 

is compared to the capacity using the overall coefficient.  Since the row-by-row heat 

transfer coefficient is a strong function of air flow rate, the comparison is shown for a 
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typical range of air flow rates, which is equivalent to:

1300 < RePr < 3000

Figure 4.18 compares the simulated system capacities.  Note that the overall coefficient 

predicts lower system capacity compared to the row-by-row coefficient.  
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Figure 4.18 Comparison of row-by-row and overall flat fin heat transfer coefficients.

The row effect is more significant at low Reynolds number.  As the air flow rate 

increases, the difference in capacity decreases because the row-by-row coefficients 

becomes similar as shown in Rich's data (Figure 2.8).  The capacity difference changes 

from 13% to 7% from the lowest flow rate to the highest.  
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5. DEVELOPMENT OF ROW-BY-ROW HEAT TRANSFER 

COEFFICIENT

5.1. Experimental Method

Row-by-row heat transfer data are obtained following the experimental 

procedures described by Rich (1975).  The coil calorimeter (Figure 5.1) at the York 

laboratory in Norman, Oklahoma is used to collect the experimental data.  
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Figure 5.1 Test rig for coil performance measurement.

Different coils are tested in a closed-loop wind tunnel with air blowing across the fins 

and water circulating inside the coil tubes.  Entering air temperature is controlled by an 

upstream reheat coil, whereas entering water temperature is controlled by a water chiller. 
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Chilled water is stored in an insulated water reservoir to be drawn into the coil.  Air 

moisture entering the coil is controlled by a steam generator with a desiccant 

dehumidifier bypass as shown in Figure 5.1.

Coil entering and leaving air temperatures are measured with thermocouple grids 

at the inlet and outlet of the coil, respectively.  Air volumetric flow rate is derived from 

the differential pressure measurement across a nozzle according to the ANSI/ASHRAE 

standard 51 (2000).  Temperature at the nozzles outlet is measured to calculate the air 

mass flow rate.  The air mass flow rate and temperature measurements are used to 

calculate the overall coil capacity according to the following heat transfer equation:

Q̇=ṁ⋅c p⋅T  (5.1)

The coil capacity is also calculated from the water side measurements. 

Thermocouple probes are located at the inlet and outlet coil headers to measure the 

overall temperature difference.  A turbine flow meter is used to measure the water flow 

rate.  These measurements provide enough information to calculate the water side coil 

capacity using Equation (5.1).  Table 5.1 shows the list of measurements and 

uncertainties.  With the measuring instrument shown in the table, the uncertainties for the 

air side and water side capacities are about ±2% and ±3.5%, respectively.  A detailed 

uncertainty analysis on this experiment is addressed in a later section.  For a perfect heat 

balance, both air side and water side capacities should be the same.  However, a ±5% 

difference in heat balance is generally acceptable (Wang et al. 2000b).

Multi-row coils are used for the row-by-row heat transfer experiments.  The coils 

are circuited such that each coil row is a separate circuit, and the circuits are only 

connected at the inlet and outlet headers.  Figure 5.2 shows the instrumentation of a four-
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row coil.  Thermocouples are glued and insulated on the tube surface at each circuit outlet 

to measure the leaving water temperatures.  It is assumed that the entering water 

temperatures are the same for all circuits, and the pressure drop for each circuit is 

measured to derive the water mass flow rate in each circuit.  Therefore the water capacity 

for each individual row can be calculated using Equation (5.1).  

Table 5.1 Measuring instruments and uncertainties for the coil tests.

Measurement Sensor Type Uncertainty

Air temperature Thermocouple ±0.1 °C

Nozzle pressure drop Pressure transducer ±0.25 %

Water temperature RTD probe ±0.2 °C

Water flow rate Turbine flow meter ±1 %

The air temperatures between rows are necessary in the data reduction procedures 

to derive the row-by-row heat transfer coefficient.  However, due to the compactness of 

coil geometry, the air temperatures between rows are difficult to measure.  Rich (1975) 

assumed a perfect heat balance between air and water sides for each row and used the 

water side capacity at each row to calculate the air temperature between rows.  Since the 

entering air temperature for the first row (entering coil) and the leaving air temperature 

for the last row (leaving coil) are measured in the experiment, the air temperature 

calculation can start from the coil inlet along the air flow direction to the coil outlet.  The 

calculated coil outlet temperature should be equal to the measured leaving air 

temperature.  Similarly, the temperature calculation can also start from the coil outlet into 

the air flow direction to the coil inlet.  The calculated inlet temperature should be equal to 

the measured entering air temperature instead.

However, if a perfect heat balance is assumed in the air temperature calculation, 
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all of the air to water heat imbalance is either distributed to the first or the last row only 

depending on the calculation direction.  The heat imbalance is contributed by each coil 

row and should be distributed to all rows in the air temperature calculation.  Therefore, it 

is assumed that the heat imbalance is distributed to each row weighted by the individual 

row capacity as shown in Equation (5.2).  The air temperature between rows is therefore 

calculated based on the corrected row capacities. 

Q̇cor , i=Q̇mea ,i Q̇ coil
Q̇mea ,i

Q̇ coil , w
 (5.2)

where the subscripts i is the row number. Q̇mea, i is the measured capacity for each row 

and  Q̇coil  is the coil capacity imbalance between air and water:

 Q̇coil=Q̇coil ,air−Q̇coil ,w  (5.3)

where the water side capacity is calculated from the overall water flow rate and water 

temperatures measured at the coil headers.  

Header

m

T

T

m

T

Water

Water

Water

Header

Header

Measurements:

m

T

Mass Flow Rate

Temperature

Air Air
Air

Water

Water

Air

T X 4
T X 4

Top View Side View Circuiting

Figure 5.2 Coil instrumentation.
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5.2. Test Conditions

Experimental data are collected over a range of coil face velocities to develop the 

air side heat transfer correlations.  Since the heat transfer coefficient is a strong function 

of the air flow rate, other air side and water side boundary conditions are kept constant in 

this experiment.  The test conditions are:

• Entering air dry bulb temperature: 38 °C

• Entering coil face velocity: 0.8 to 4.1 m.s-1

• Entering water temperature: 16 °C

• Entering water flow rate: 1.6 m3.hr-1

The above test conditions are for a dry surface.  Wet coils are not measured in these 

experiments.  At least five test points are taken within the face velocity range.  For each 

test point, the difference between the overall air side and water side capacities should be 

within ±5% (Wang et al. 2000b).    

Fin density is the easiest parameter to change in the coil manufacturing process. 

Heat pump design engineers can use different fin densities in the heat exchanger coil to 

meet the system rating requirement.  A number of coils with different fin densities are 

used to conduct this row-by-row heat transfer experiment.  Table 5.2 shows the coil test 

matrix.  The fin densities cover the typical application range for heat pump coils. 

Louvered fins are used in all coils except coil 7, which is a flat fin coil that has the same 

specifications as Rich's coil (1975).  This coil is run first to verify the test facility and 

instrumentation.  All of the coils have the same face area that is 508 mm high and 762 

mm long.  The coil tubes are smooth to eliminate the uncertainty of enhanced surfaces 
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during data reduction.  All coils have 4 rows which are enough to derive the row-by-row 

coefficients from 1 to 4 rows.  It was also found that if a coil has more than 4 rows, its 

heat transfer performance is not enhanced significantly compared to a 4-row coil 

(McQuiston et al. 2000; Incropora and DeWitt 1996; Wang et al. 2000b).  Therefore, 

coils with more than 4 rows are not considered in this experiment.  

Table 5.2 Coil test matrix.

Coil Fin type Fin Thickness Fin Density No. of Rows Tube OD Tube x Row spacing
1 Louvered 0.11 mm 512 fins.m-1 4 9.5 mm 25.4 x 22 mm
2 Louvered 0.11  mm 551 fins.m-1 4 9.5 mm 25.4 x 22 mm
3 Louvered 0.11  mm 591 fins.m-1 4 9.5 mm 25.4 x 22 mm
4 Louvered 0.11  mm 669 fins.m-1 4 9.5 mm 25.4 x 22 mm
5 Louvered 0.11  mm 709 fins.m-1 4 9.5 mm 25.4 x 22 mm
6 Louvered 0.11  mm 787 fins.m-1 4 9.5 mm 25.4 x 22 mm
7* Flat 0.15  mm 551 fins.m-1 4 13.2 mm 31.8 x 27.5 mm

* - Rich's coil specifications (1975)

5.3. Derivation of the Heat Transfer Coefficient

The row-by-row measurements are used to derive the row-by-row heat transfer 

coefficients for the test coils.  For each data point, the following information is required:

 Coil geometry:  Total outside heat transfer area, total inside heat transfer area, 

number of circuits, tube wall thickness, tube thermal conductivity, fin thickness, and 

fin thermal conductivity.

 Air side: Volumetric flow rate, inlet and outlet temperatures for each coil row.

 Water side: Volumetric flow rate, inlet and outlet temperatures for each circuit.

There are different ways to derive the heat transfer coefficient, but the end result should 

be similar.  Rich (1975) used the Wilson plot technique (Wilson 1915) to derive the heat 

transfer coefficient.  In this study the Wang et al. (2000b) method is used.  Coil capacity 
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is calculated from both air and water side measurements by Equation (5.1).  Average 

capacity between the air side and water side is used in the data reduction procedures as 

described below:

Using the effectiveness-NTU method, the capacity is calculated by:

Q̇=Q̇max  (5.4)

where:

Q̇max=Ċ min⋅T air , in−T w , in  (5.5)

 Ċmin=MIN Ċair , Ċw (5.6)

Ċw=ṁw⋅c p , w  (5.7)

Ċ air=ṁair⋅c p , air  (5.8)

Note that the capacity is for one row only.  The air temperature between rows is 

calculated from the row-by-row capacity that is measured on the water side.  For mixed 

air and unmixed water sides, the effectiveness is (Incropera and DeWitt 1996):

 =1−exp[−1−e−NTU⋅Ċr 
Ċ r ] for Ċmin=Ċair (5.9)

= 1
Ċ r
[1−exp −Ċ r1−e−NTU  ]  for Ċmin=Ċw (5.10)

where:

 Ċ r=
MIN Ċair ,Ċ w
MAX Ċ air , Ċw  (5.11)

NTU= UA
Ċmin

 (5.12)

Neglecting the contact resistance, and the fouling resistances, the overall heat transfer 
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coefficient, UA is:

 1
UA

= 1
surf hair Aout


ln 

Dout

Din


2 k tube Ltube
 1

hw Ain

(5.13)

where the surface efficiency is calculated using Schmidt's method (1949) as described in 

section 3.4.  The water side heat transfer coefficient is calculated by Gnielinski’s 

correlation (1976):

 hw=
ReDin

−1000 Prw
f
2

112.7 f
2
Prw

2
3−1

k w

Din (5.14)

where:

 f =[1.58 ln ReDin
−32.8]−2 

(5.15)

Note that there is no explicit expression for hair, therefore the following iterative 

procedures are used to calculate hair:

1. Make an initial guess for hair.

2. Compute the overall heat transfer coefficient using Equation (5.13); the coil 

effectiveness using Equation (5.9) or (5.10); and the coil capacity using Equation 

(5.4).

3. Compare the calculated capacity to measured capacity.  If they are only different by a 

small number, the iteration terminates and the value for hair is found. Otherwise go to 

next step.

4. Adjust the value of hair and go to step 2 again.  Note that the coil capacity is 

proportional to the air side heat transfer coefficient and the coil effectiveness must be 
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between zero and unity.   

5.4. Uncertainty Analysis

In Section 5.1, the uncertainties of the direct measurements have been presented. 

These uncertainties are propagated to other parameters, such as capacity and heat transfer 

coefficients.  This section presents an uncertainty analysis (Kline and McClintock 1953) 

that translates the uncertainties from direct measurements to derived measurements.  A 

derived measurement can consist of several independent direct measurements, and its 

uncertainty is defined as:

e R=± ∂R
∂1

e1
2

 ∂ R
∂2

e2
2

... ∂R
∂n

en
2

 (5.16)

where e is the measurement uncertainty, R is the derived result, and ν1, ν2, ..., νn are the 

independent variables.  

5.4.1. Air Side Capacity

From the air side measurements, the air side capacity is calculated as: 

Q̇air=air V̇ air c p , airT air  (5.17)

The direct uncertainties are the air flow rate and temperature measurements.  If the 

uncertainty in air properties are negligible because they are evaluated at measured 

temperature, the uncertainty for the air capacity is:

eQ̇air
=±air c p , air T air eV̇ air

2V̇ air e Tair
2  (5.18)

Another common way to present the uncertainties is in terms of fractional values. 

Dividing Equation (5.18) by Equation (5.17), the fractional uncertainty of the air capacity 
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is:

e ' Q̇ air
=±e ' V̇ air

2 e T air

T air 
2

 (5.19)

where e' is the fractional uncertainty.  The uncertainty for ∆Tair is:

eT air
=±eT air , in

2eT air ,out
2=±0.120.12=±0.14 °C (5.20)

The fractional uncertainty for the air flow rate is calculated using the uncertainty analysis 

in the ASHRAE standard 51 (2000).  It is defined as:

e ' V̇ air
=± e ' noz 

2e ' A
2e ' fs

2e 'P 
2e ' SP

2  (5.21)

where:

e'noz = Fractional error in nozzle discharge coefficient

e'A = Fractional error in area of nozzle

e'fs = Fractional variation in fan speed

e'∆P = Fractional error in pressure change across nozzle

e'SP = Fractional error in static pressure

According to the Standard, the fractional errors in nozzle discharge coefficient and area 

are given by:

e ' noz=±0.012  (5.22)

e ' A=±0.005  (5.23)

The variation in fan speed is within ±1%, and the error in pressure measurements are 

±0.25%.  Therefore, the fractional uncertainty for the air flow rate measurement is:
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e ' V̇ air
=± 0.01220.00520.0120.002520.00252=±0.017  (5.24)

Substituting Equations (5.20) and (5.24) into Equation (5.19), the calculation of 

fractional uncertainty for the air capacity is simplified to:

e ' Q̇ air
=± 0.0172 0.14

T air 
2

 (5.25)

Note that the uncertainty varies depending on the air temperature change.  It is higher for 

smaller temperature changes.

5.4.2. Water Side Capacity

From the water side measurements, the capacity is calculated as:

Q̇w=w V̇ w c p ,wT w  (5.26)

A similar uncertainty analysis to the air side capacity can be applied here, and the 

resulting fractional uncertainty in water side capacity is:

e ' Q̇ w
=± e ' V̇ w

2 eT w

T w
2

 (5.27)

where the fractional uncertainty for water flow rate is:

e ' V̇ w
=±0.01  (5.28)

The temperature change uncertainty from the RTD measurements is:  

eT w
=± eTw ,in

2eT w ,out
2=±0.220.22=±0.28  °C (5.29)

The RTD measurements are used to calculate the overall water side capacity.  Therefore, 

the uncertainty for overall water side capacity is calculated by:
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e ' Q̇w
=± 0.012 0.28

T w 
2

 (5.30)

Individual row capacity is also calculated by Equation (5.26) but the water mass 

flow and temperature change are for a single coil row instead.  Before the coil test is run 

in the York coil calorimeter, the pressure drop for each circuit is measured by running a 

constant water flow rate through each circuit to check the circuit flow resistance.  Table

5.3 shows the pressure drop for each circuit at 0.91 m3.hr-1 water flow rate.  These 

pressure drop measurements are used to scale the water flow rate distribution to each 

circuit in the row capacity calculation.

Table 5.3 Circuit pressure drop at 0.91 m3.hr-1 water flow rate.

Circuit no. 1 2 3 4

Pressure drop (kPa) 176.85 175.89 179.26 179.26

The coil row temperature change is calculated by the entering water temperature 

measured by the RTD and the leaving water temperature measured by the thermocouple 

(TC) on the tube surface.  The average leaving TC temperature, which is weighted by the 

mass flow rate of each circuit, should match the leaving water temperature measured by 

the RTD probe at the coil outlet.  Since the RTD probe is directly inserted into the water 

stream, it is more accurate than the average outlet temperature measured by the 

thermocouples.  The RTD measurements are used to calibrate the TC measurements for 

the row capacity calculation.  Figure 5.3 shows the calibration curve for the TC 

measurements.  Note that the TC measurements predict lower temperature changes 

because it is approximated by the tube surface temperatures.
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With the calibration, the uncertainty in leaving water temperature for individual 

row includes both the RTD and TC measurements.  It is calculated by:

eT w ,out
=±eT w ,RTD

2eT w ,TC
2=±0.220.12=±0.22  °C (5.31)

and the uncertainty for the row temperature change is:

eT w
=± eT w ,in

2eT w ,out
2=±0.220.222=±0.3  °C (5.32)

Therefore, the uncertainty for the row capacity is:

e ' Q̇ w
=± 0.012 0.3

T w 
2

 (5.33)

5.4.3. j-factor

The j-factor is calculated by the following equation:
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j=
hair

c p ,air⋅Gair⋅Prair
−2 /3  (5.34)

where cp,air and Prair  are air properties that are depending on temperature measurement. 

Gair is the maximum air mass flux and is related to the uncertainty of air flow rate. 

Therefore, the fractional uncertainty for the j-factor can be calculated by:

e ' j=±e ' hair
2e ' V̇ air

2
eT air

T air


2

 (5.35)

Note that the unit for the air temperature in Equation (5.36) is Kelvin (Holman 1971). 

Substituting the uncertainties for air flow rate and temperature, Equation (5.35) becomes:

e ' j=±e ' hair
20.0172 0.1

T air 
2

 (5.36)

The uncertainty for the air side heat transfer coefficient is related to the data 

reduction procedures in section 5.3.  From Equation (5.13), the fractional uncertainty for 

the heat transfer coefficient is:

e ' hair
=±e ' hw

2e ' UA
2  (5.37)

From Equation (5.14), hw is a function of water flow rate and temperature.  Hence, the 

fractional uncertainty is:

e ' hw
=± e ' V̇ w

2 eT w

T w


2

=±0.012 0.2
T w 

2

 (5.38)

where Tw is in Kelvin.  UA is related to Equations (5.9) to (5.12).  Its fractional 

uncertainty is calculated by:

e 'UA=± e ' 
2e ' Ċr

2e ' Ċmin
2  (5.39)
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From Equations (5.6) and (5.11) the minimum heat rate and heat capacity ratio are 

functions of flow rates and temperatures at both air and water sides.  Their uncertainties 

are identical as shown below:

e ' Ċ r
=e ' Ċ min

=±e ' V̇ air
2e ' V̇ w

2 eT air

T air


2

 eT w

T w


2

 

or e ' Ċr
=e ' Ċmin

=±0.01720.012 0.1
T air 

2

 0.2
T w 

2

(5.40)

where both the air and water temperatures are in Kelvin.

The heat exchanger effectiveness can be calculated by Equations (5.4) to (5.6). 

Its uncertainty is given by:

e ' =± e ' Q̇ avg
2e ' Ċ min

2 eT air ,w

T air ,w 
2

 (5.41)

where Q̇avg is the average capacity of the air and water capacities.  Tair,w is the 

temperature difference between air and water.  The uncertainties for these two terms are:

e ' Q̇ avg
=±e ' Q̇air

2e ' Q̇ w
2  (5.42)

eT air ,w
=±eT air

2eT w
2=±0.120.22=±0.22  °C (5.43)

Note that the fractional uncertainties for air and water capacities are calculated by 

Equations (5.25), and (5.30) or (5.33), respectively.  Equations (5.36) to (5.43) 

summarize the calculation procedures for the j-factor uncertainty.

5.5. Verification of Experimental Method

Before proceeding to the experiment for louvered fins, a flat fin coil with the 
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same specifications as Rich's test coil (1975) is run to verify Rich's row-by-row 

correlation in the York test facility.  This coil is geometrically the same as Rich's coil but 

with a larger face area to accommodate the York laboratory air loop.  The larger face area 

is not expected to affect the derived heat transfer coefficient because it should be unique 

for a specific combination of fin type, fin thickness, fin density, tube dimension, and tube 

pitch.  Due to the limitation of the test facility, the test range of Reynolds number is 

limited to about:

5000 < RePr < 15000

However, it is a typical application range for heat pump systems, and covers most of 

Rich's test range.  This test range provides enough data to verify the test facility and 

check Rich's results.  The same test is repeated 5 times on different dates to check the 

repeatability of the measurements.  For each test, the coil instrumentation is changed 

slightly.  The instrumentation changes include installing additional thermocouples at the 

circuit outlets, running the experiment with the coil flipped over so that the first circuit 

becomes the last circuit, and replacing the rubber tubing connections between the circuit 

inlets and coil header.  All of these test results are expected to be well within the 

estimated uncertainty range.

5.5.1. Overall Flat Fin Data

Besides the row-by-row data, Rich also presented an overall j-factor correlation 

for the entire coil.  In this test, there are also enough measurements to derive the overall j-

factor, therefore the overall j-factor data are also verified against Rich's data.

Before deriving the overall j-factor, the heat balance between the air side and the 
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water side is verified.  It should be within ±5% to be suitable for data reduction.  The heat 

balance is calculated by:

HB=
Q̇air−Q̇w

Q̇avg
× 100% (5.44)

where Q̇avg is the average capacity of the air and water sides.  Figure 5.4 shows the heat 

balance for all the measured data collected for the five Rich coil experiments.  The data 

show that the heat balance is relatively independent of the Reynolds number and are well 

within the ±5% heat balance criterion typically required for j-factor correlations.

The derived overall j-factor data are presented in Figure 5.5 along with Rich's 

data (1975).  Figure 10.1 in the Appendix shows the same comparison in terms of heat 

transfer coefficient.  Uncertainty bars have been added to the figures to show the 

accuracy of the derived data.  All of the derived data compare well with Rich's data. 

Rich's data lie within the uncertainty intervals of the current test data.  In addition, the 

figure also shows that the current data are repeatable even though they are collected over 
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a period of time for different instrument and coil configurations.  Although Rich used a 

different test facility and his data were derived using a different procedure, the result 

shows that the current test facility and data reduction procedure are valid and are able to 

replicate the overall coil j-factor presented by Rich.

5.5.2. Row-by-Row Flat Fin Data

The row-by-row j-factors can be calculated either starting from the 1st row along 

the air flow direction or starting from the last row into the air flow direction.  In this data 

reduction, the calculation starts from the coil outlet.  The air to water heat imbalance is 

distributed to each row according to the method presented in Section 5.1.  Since the 

calculation is into the air flow direction, it should calculate an entering air temperature at 

the first row that matches the measured air temperature entering the coil.  Figure 5.6 

shows the temperature difference between the calculated and measured values.  Both 

temperatures agree well with each other.  All temperature differences are less then ±0.5 

K.  The temperature difference seems independent of the Reynolds number.  Rather, it is 
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related to the air to water heat balance.  Figure 5.4 and Figure 5.6 show that a better air to 

water heat balance gives a smaller temperature difference.

The derived row-by-row j-factors for all five tests are shown in Figures 5.7 to 

5.10 for row 1 to row 4, respectively.  The estimated uncertainties of the derived j-factors 

and Rich's data are also presented in the figures.  Figures 10.2 to 10.5 in the Appendix 

show the same comparison with respect to heat transfer coefficient.  Note that the 

uncertainty interval increases from row 1 to row 4 because the temperature change from 

row 1 to row 4 becomes smaller.  Most heat transfer takes place in the front rows.  When 

the air reaches the back rows, there is not much heat transfer capacity left, therefore the 

temperature change is small.  A smaller temperature change results in a larger uncertainty 

interval according to the uncertainty analysis in Section 5.4.  The smallest temperature 

change in this experiment is about ±2 K.  

The figures show that the derived data are repeatable despite the fact that they are 

obtained from different test facilities.  Most of Rich's data lie within the uncertainty 
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Figure 5.6 Calculated and measured air temperature difference at the first row inlet. 



interval of the current j-factor results.  The current results tend to predict a lower j-factor 

at row 1 for low Reynolds numbers as shown in Figure 5.7.  
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The Test 1 data are the closest to Rich's data but its air to water heat balance is the 

highest as shown in Figure 5.4.  It is believed that the row-by-row j-factor is more 
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sensitive to the air to water heat balance than the overall j-factor because the heat balance 

error is propagated to each row.  The difference between the current data and Rich's data 

could be due to the fact that Rich did not report or account for the air to water heat 

balance in experimental data.

5.6. Louvered Fin Heat Transfer Coefficients

Row-by-row heat transfer data are collected for the louvered fin coils shown in 

Table 5.2.  The same experimental method and data reduction procedures are applied to 

derive overall and row-by-row heat transfer coefficients for each test point.  All of the 

measured data are within ±5% air to water side heat balance.  Due to the fact that the heat 

transfer coefficient is proprietary, the heat transfer coefficients presented in this section 

are either normalized or scaled.  The use of normalization or scaling only hides the actual 

values of the heat transfer coefficients, all of the characteristics of the heat transfer 

coefficients preserve.  Figure 5.11 shows an example of the normalized row-by-row j-

factors for Rich's data (1975).  The j-factor for each row is normalized by the overall j-

factor of the coil.  Note that all the characteristics of the j-factor are preserved.  The first 

row has the highest heat transfer coefficient at low Reynolds numbers but the last row has 

the highest heat transfer coefficient at high Reynolds numbers.  The same approach is 

used to present the row-by-row j-factors for the louvered fins in this section.
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5.6.1. Overall Louvered Fin Data

Figure 5.12 shows the overall j-factors for all six louvered fin coils.  The figure 

shows that the j-factors tend to “level off” in the low Reynolds number range.  This 

louvered fin characteristic is due to the transition from “duct flow” to “boundary layer 

flow” as reported in the literature (Davenport 1983; Achaichia and Cowell 1988; Webb 

1994; and Chang et al. 1995).  For louvered fin coils, the “duct flow” and “boundary 

layer flow” are defined by Webb (1994) as:

● Duct flow: Axial flow through the fin array bypassing the louvers.

● Boundary layer flow: Parallel flow through the louvers.

At low Reynolds numbers, the hydraulic resistance for “duct flow” is smaller than that 

for the “boundary layer flow” through the louvers.  For “duct flow”, the air bypasses the 

louvers and results in a lower heat transfer coefficient.  As the Reynolds number 
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increases, the hydraulic resistance for “duct flow” is increased and the air travels through 

the louvers.  As a result, air mixing between air passages increases and the heat transfer 

coefficient also increases.  

The fin density effect is also shown in Figure 5.12.  Note that the j-factor 

decreases with increasing fin density (Coils 1 to 6) at low Reynolds number.  As the 

Reynolds number increases, the j-factor becomes independent of the fin density.  The 

effect of fin density is also due to the “duct flow” effect, since the air bypasses more 

louvers for the high fin density coil (Wang et al. 1998).  For high Reynolds numbers, the 

“boundary layer flow” takes over and the j-factor is independent of the fin density.  The 

fin density effect agrees with the experimental results from Wang et al. (1998). 

The overall j-factor correlations are also compared to the best available louvered 

fin correlation (Wang et al. 1999b).  The Wang et al. correlation is a general louvered fin 

correlation that was developed based on the heat transfer data from five different 

louvered fin types.  However, the louvered fin tested in this research was not included in 
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their correlation development.  Therefore the current correlation is not expected to match 

the Wang et al. correlation exactly, but they should be similar.  Figure 5.13 shows the 

comparison between the current data and the Wang et al. correlation data.  The 

comparison is presented in terms of the ratio of the current j-factor to the Wang et al. j-

factor.   For clarity, only the j-factor ratios for the minimum, intermediate, and maximum 

fin densities (Coils 1, 4, and 6) are shown.  

The comparison shows that the current correlation tends to predict higher j-factors 

than the Wang et al. correlation for the high Reynolds number range.  This is likely due 

to the fact that the current fin type has more louvered area than the fin types used by 

Wang et al..  Since there are two flow regimes (duct flow and boundary layer flow), it is 

possible that increasing the number of louvers would reduce the j-factor for duct flow and 

increase the j-factor for boundary layer flow.  In addition, Wang et al. showed that their j-

factor data are significantly scattered at low Reynolds numbers compared to the high 

Reynolds number data.  
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5.6.2. Row-by-Row Louvered Fin Data

The overall louvered fin j-factors are used to normalize the row-by-row louvered 

fin j-factors.  Figure 5.14 shows the normalized row-by-row j-factors for Coil 1.  The j-

factors for other coils are similar and are shown in the appendix.  Note that the louvered 

fin row-by-row j-factors have similar characteristics compared to Rich's flat fin data 

(Figure 5.11).  Note that the y-axis scales for Figures 5.11 and 5.14 are different because 

not only the fin densities of both coils are different, the fin thickness, tube diameter and 

tube spacings are also different.  If all of these parameters are the same, the flat fins are 

expected to have more row-by-row effect compared to the louvered fins.  

At low Reynolds number, Webb (1994) shows that because of the “duct flow” 

effect, the air bypasses the louvers and there is an entrance length effect at the front rows. 

This pseudo entrance length effect is a little different from the classical thermal entrance 

length effect because the air flow is interfered by the louvered fin geometry.  However, 

the flow characteristic is analogous in this “duct flow” region.  As a result, the heat 
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transfer coefficients at the front rows are higher than its fully developed value.  But as the 

Reynolds number increases, the air travels through the louvers.  There is more air mixing 

between flow passages but no more entrance length effect.  The row-by-row heat transfer 

coefficients merge together.

The entrance length effect can be verified by plotting the row-by-row j-factors in 

terms of Nusselt number and entrance length:  

Nu= j⋅ReDh
Pr1 /3  (5.45)

x=
n⋅P r /Dh

Re Dh
Pr  (5.46)

where n is the row number.  Figure 5.15 shows the row-by-row Nusselt numbers plotted 

against the entrance length for Coil 1.  

The same plots for other coils are shown in the appendix.  Note that the entrance length 

effect is clearly shown.  Most of the data are still in the developing region.  The data at 
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row 4 are closest to fully developed where the heat transfer coefficient is relatively low. 

5.7. Correlation Development

5.7.1. Row-by-Row Correlations

Although the row-by-row heat transfer curves (e.g. Figure 5.15) can be directly 

used in heat exchanger calculations, they are for a specific fin density only.  Since the 

collected row-by-row heat transfer data sets cover a range of fin densities, they can be 

used to develop correlations that account for fin density effects.  Although these 

correlations are not necessarily applicable to other louvered fin designs, the development 

of these correlations is useful in identifying likely correlation parameters and forms. 

General heat transfer correlations presented in the literature usually have the following 

formulation (Briggs and Young 1963; Gray and Webb 1986; Kayansayan 1993; Chang 

and Wang 1996; Wang et al. 2000; Kim and Bullard 2002):

h '=n1 v ' n2∏
i=1

N X '

X i '
ni2  (5.47)

where h' is a dimensionless heat transfer coefficient; v' is a dimensionless velocity; X' is 

dimensionless heat exchanger parameters, Nx' is the number of heat exchanger 

parameters, and n1, n2, ... are empirical coefficients.  The previous section illustrates the 

influence of the entrance length effect on the row-by-row coefficients.  The pseudo 

entrance length was therefore selected as the dimensionless velocity for the proposed 

correlation.  Since fin density is the only heat exchanger parameter being changed in the 

experiment, a correlation of the following form is proposed:
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Nu=n1 xn2 P f

P f , reference
n3

 (5.48)

where n1, n2 and n3 are empirical coefficients to be determined by the parameter 

estimation method (Jin and Spitler 2002).  Pf,reference is an arbitrary reference fin density to 

make the second parenthesis on the right hand side dimensionless.  It is equal to 591 

fins.m-1 for this correlation.  Since Nu and x+ are also dimensionless, the resulting 

empirical coefficients n1, n2 and n3 are unit independent.  Note that Equation (5.48) is a 

simplified version of Equation (5.47) because the fin density is the only heat exchanger 

parameter being changed.  If heat transfer data for other coil parameters are available, the 

coil parameters can be introduced to the correlation according to the form of Equation 

(5.47).

Figure 5.16 shows the reproduction of Figure 5.12 in terms of Nusselt number and 

pseudo entrance length, where the pseudo entrance lengths for these 4-row coils are 

defined as:

x=
4⋅P r /Dh

Re Dh
Pr  (5.49)

Note that the fin density effect is relatively insignificant on the Nu-x+ plot because the fin 

density is accounted for by the hydraulic diameter in the pseudo entrance length equation. 

For instance, at RePr = 2000, x+ = 0.24 and Nu = 7.98 for a fin density of 512 fins.m-1, but 

x+ = 0.55 and Nu = 3.08 for a fin density of 787 fins.m-1.  The Nu-x+ plot stretches out the 

data on a single curve which favors correlation development.  Figure 5.16 also shows the 

estimation curves predicted by Equation (5.48).  The curves predict the data very well 

and show a consistent trend with the measured data.  The empirical coefficients for these 

curves are determined by minimizing the sum of the squared error between the measured 
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and estimated Nusselt numbers (Jin and Spitler 2002), i.e.:

min SSE =min∑
i=1

N  Nuest−Numea

Numea 
2

 (5.50)

where N is the number of data points.  Table 5.4 shows the resulting empirical 

coefficients.  The same procedures are used to develop the Nusselt number correlation for 

each row.  Each row shares the same formulation, i.e. Equation (5.48), but has different 

empirical coefficients as shown in Table 5.4.  Since the Nusselt number correlations are 

based on empirical data, they are suitable for the coil geometry shown in Table 5.2 and 

the application ranges shown with Table 5.4.  

To minimize the error due to the number of significant digits in the coefficients, 

three significant digits are used so that no more than 0.1% error is introduced to the 

resulting Nusselt.  The value of n1 is directly proportional to the Nusselt number.  Row 1 

is expected to have the highest heat transfer coefficient in the current application range, 
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therefore n1 is the largest for row 1.  n2 accounts for the entrance length effect.  It has 

negative value because the entrance length is inverse proportional to the Reynolds 

number.  Row 1 has the largest n2 because the front row has the strongest entrance length 

effect.  n3 accounts for the fin density effect and it is the largest for row 4.  It is due to the 

fact that the entrance length effect at row 4 is small and the fin effect dominates.  The 

overall coefficient is lower than the first row but higher than the last row, therefore n1, n2 

and n3 of the overall coefficient are bounded by the row 1 and row 4 values.

Table 5.4 Empirical coefficients for the Nusselt number correlation, Equation (5.48).

Applications n1 n2 n3

Overall 0.843 -0.833 0.216

Row 1 3.678 -0.531 0.007

Row 2 2.613 -0.742 0.321

Row 3 1.293 -1.024 0.809

Row 4 0.707 -1.258 1.151
Application ranges: 0.012 < x+ < 0.555

512 fins.m-1≤ Pf ≤ 787 fins.m-1

1≤ Nr ≤ 4

Figures 5.17 and 5.18 show the correlation curves compared to the measured data 

for row 1 and row 4, respectively.  Similar figures for row 2 and row 3 are shown in 

Figures 10.16 and 10.17, respectively in the Appendix.  At row 1 (Figure 5.17), the 

estimation curves for the lowest and highest fin densities are almost identical.  The fin 

density effect is not significant.  However, the entrance length effect dominates at the 

front rows where the heat transfer data are still in the developing region, therefore each 

x+ predicts a unique Nusselt number. 

Note that the data are more scattered for the back rows.  The difference between 

the lowest and highest fin density curves becomes more apparent as the row number 
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increases.  At row 4 (Figure 5.18), for a given x+, different Nusselt numbers are predicted 

by different fin density curves.  This is because the flow at row 4 is close to being fully 

developed (e.g. Figure 5.15).  The entrance length effect is not as dominant as it is at row 

1.  As a result, the fin density effect becomes apparent.

Figure 5.19 compares experimentally determined Nusselt numbers with calculated 

Nusselt number by Equation (5.48).  Both row-by-row and the overall heat transfer data 

are compared and 150 data points are used for this validation.  About 87% of the data are 

within the ±10% error band and 94% of the data are within the ±15% error band.  The 

error appears higher at low Nusselt numbers where the measurement uncertainties are 

also high.  Overall, the validation result is satisfactory.  

Since there is an entrance length effect in heat exchanger coils, the air side heat 

transfer coefficient varies row-by-row.  This section shows that a Nusselt number 

correlation in the form of Equation (5.47) can be used to model the entrance length effect 

and predict the row-by-row heat transfer coefficients.  A row-by-row correlation, i.e. 
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Equation (5.48) based on a range of fin density is developed.  

However, the application range of this correlation is limited.  In order to extend the 

application range, more heat transfer data from different coil geometries are needed.  The 
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data can be applied to the correlation development method in this section to develop more 

generalized row-by-row correlations.

5.7.2. Correlation Conversion

Since louvered fin coils are commonly used in the industry, but only the overall 

heat transfer correlations have been published in the literature, it is useful to break down 

the overall louvered fin correlations into the row-by-row forms for more accurate heat 

exchanger calculations.  A conversion method is developed based on the available 

experimental data.  This method is intended to provide a “framework” and demonstrates 

the feasibility of the conversion.  The empirical coefficients in this section may not 

necessarily be applicable to other fin types.

In order to use the conversion method to predict the row-by-row coefficients, the 

conversion correlation should be similar to the form of the row-by-row correlation. 

Equation (5.51) shows the formulation of the conversion method.  Note that it is very 

similar to the row-by-row correlation, Equation (5.48).  The overall Nusselt number Nu, 

the pseudo entrance length, and the fin density are the correlating parameters for the row 

Nusselt number Nur conversion.    

Nu r=n4 Nu⋅xn5 P f

P f ,reference 
n6

 (5.51)

The row number is accounted for by the pseudo entrance length as defined in Equation 

(5.46).  Since this conversion method is generalized for a range of fin densities, the fin 

density term is also included in this formulation.  Similar to Equation (5.48), the 

reference fin density is used to make last parenthesis dimensionless.  The same reference 
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value of 591 fins.m-1 is used in this formulation.  The empirical coefficients n4, n5 and n6 

are determined by minimizing the sum of squared errors between the two Nusselt 

numbers calculated by conversion estimation and measurement as show in Equation 

(5.50).  The same measured Nusselt numbers used in the previous section are used to 

perform the parameter estimation.  Table 5.5 shows the results from the parameter 

estimation.  The coefficients are used with Equation (5.51) to convert overall Nusselt 

numbers to row-by-row Nusselt numbers.  Three significant digits are used because they 

do not introduced more than 0.1% error to the resulting Nusselt number.  Note that since 

the same measured data are used to derive the empirical coefficients, the application 

ranges for Equation (5.51) are the same as Equation (5.48).  Since both equations are 

similar, n4, n5, and n6 are analogous to the n1, n2, and n3 of Table 5.4, respectively. 

However, since n4, n5, and n6 are used for converting overall to row-by-row coefficients 

and the overall coefficient is bounded by the front and back row coefficients, they have 

different signs at different row numbers.

Figure 5.20 compares the estimated and measured row-by-row Nusselt numbers. 

Similar to the row-by-row correlation, i.e. Equation (5.48), most of the estimation data 

are within the ±10% error band.  This is expected because both Equations (5.48) and 

(5.51) have similar formulation and the same measured data are used in the parameter 

estimations.    

The conversion result shows that the conversion from overall to row-by-row heat 

transfer correlations is feasible.  If both correlations have the same formulation, the 

conversion estimation can be as accurate as the original row-by-row correlation. 

However, the empirical coefficients presented in this section are used for specific fin type 
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and coil geometry.  The original correlation, Equation (5.48) is still preferred at the 

moment.  

Table 5.5 Empirical coefficients for the Nusselt number conversion, Equation (5.51).

Applications n4 n5 n6

Row 1 15.700 0.339 -0.239

Row 2 5.883 0.112 0.075

Row 3 1.923 -0.197 0.583

Row 4 0.781 -0.456 0.952
Application ranges: 0.012 < x+ < 0.555

512 fins.m-1≤ Pf ≤ 787 fins.m-1

1≤ Nr ≤ 4

This chapter shows the experimental facility for developing overall and row-by-

row heat transfer correlations are very similar.  If the coil tubes are circuited row-by-row, 

more row-by-row heat transfer data can be collected.  The entire conversion framework 

presented in this section should be able to apply to other fin types and coil geometries. 

To make the conversion method more usable, it is recommended that more experimental 

data for a wider range of coil geometries be used to derive the conversion correlation.
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5.8. Evaluation of Row-by-Row Louvered Fin Heat Transfer 

Coefficients for System Simulation 

In Section 4.7, the system simulation results with flat fin overall and row-by-row 

correlations are compared.  The comparison shows that for the tested range of air flow 

rates, the overall correlation underpredicts the system capacity by 7% to 13% compared 

to the row-by-row correlation.  Since the row-by-row and overall louvered fin 

coefficients have been developed in this chapter, the same system simulation comparison 

with louvered fins is presented in this section to evaluate the louvered fin effect.  Besides 

the coil geometry, the same system configuration shown in Table 4.3 and the same range 

of boundary conditions are used to run this simulation.  Table 5.6 shows the coil 

specifications for this test.  Note that the coil specifications are changed to the louvered 

fin coils that have been tested in this experiment.   

Table 5.6 Coil specifications for the evaluation of row-by-row louvered fin coefficients.

Parameters Condenser Evaporator

Coil width (m) 1.4 0.5

Coil height (m) 1 1

No. of rows 1 2 to 4

No. of tubes per row 39 39

No. of circuits 3 3

Tube OD (mm) 10 10

Tube ID (mm) 9.4 9.4

Tube spacing (mm) 25.4 25.4

Row spacing (mm) 22 22

Tube type Smooth Smooth

Fin thickness (mm) 0.099 0.099

Fin density (fins.m-1) 551 551 to 591

Fin type Louver Louver
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A range of row numbers and fin densities are used in the simulation to include the coil 

geometry effects in the comparison.  Three circuits are used in each coil because of the 

smaller tube diameter to prevent excessive refrigerant pressure drop.  The same coil 

circuitry shown in Figure 4.15 are used for these coils. 

Figures 5.21 and 5.22 compare the simulated system capacities using overall and 

row-by-row coefficients for different number of rows and fin densities, respectively.  As 

shown in the previous section, the uncertainty of the air side heat transfer correlation is 

±10%, which only contributes to about ±0.07% variation in the simulated capacities.  The 

capacity difference in the figures is calculated by:

Q̇diff=
∣Q̇rbr−Q̇overall∣

Q̇ overall

×100%  (5.52)

Figure 5.21 shows that the capacity difference can be as high as 6% for a 2-row 

coil.  It tends to increase even higher at lower air flow rates.  As a result, the error due to 

the use of overall heat transfer correlation in system simulation can be significant. The 

figure also shows that as the coil row number increases, the capacity difference 

decreases.  This is due to the fact that most heat transfer takes place at the front rows (the 

pseudo entrance length effect); the amount of heat transfer in the back rows is not as 

significant and the heat transfer error due to the use of overall correlation is smaller.

Figure 5.22 shows the effect of fin density for the same simulation.  Note that the 

capacity difference can be as high as 6.5% for the lowest fin density coil.  The difference 

will be higher for lower fin densities or air flow rates.  When the fin density increases or 

the air flow rate increases, the difference becomes smaller.  This agrees with the louvered 

fin analysis in section 5.6.  At low fin densities and air flow rates, “duct flow” dominates 
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and the row-by-row effect is significant, and “boundary layer flow” dominates at high fin 

densities and air flow rates, the difference between the overall and row-by-row 

correlations are smaller.

The evaluation results show that strong entrance length and duct flow effects are 

likely to cause significant error when overall heat transfer correlations are used instead of 

row-by-row correlations.  Flat fin coils exhibit duct flow throughout because there are no 

cuts on the flat fin surface.  As a result, the duct flow effect is even stronger than for the 

louvered fin coils.  Section 4.7 shows that the capacity difference between the overall and 

row-by-row correlations are higher for flat fin coils.  The higher capacity difference 

shown in the flat fin simulation is also due to the difference in Reynolds numbers. 

Although the test air flow rates are the same for both flat and louvered fin simulations, 

the coil dimensions are different.  For the coil dimensions of the louvered fin test, the 

Reynolds number range is:

2400 < RePr < 5500

which is higher than that in the flat fin test (1300 < RePr < 3000).  Figure 5.14 shows that 

as the Reynolds number increases, all of the heat transfer coefficients tend to converge 

and the row-by-row effect becomes less significant. 

This section shows that the row effect for louvered fin coils is particularly 

important at low Reynolds numbers, low fin densities and few coil rows.  Although the 

row-by-row correlations are based on a narrow Reynolds number range, they do cover the 

typical range for heat pump coils.  The new louvered fin row-by-row correlations are 

used in the next chapter for model validation. 
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6. MODEL VALIDATIONS

6.1. Experiment for Model Validations

Heat pump performance data were collected under various boundary conditions as 

a part of the York-OCAST project (Weber 2003; Tang 2005).  Figure 6.1 shows the 

schematic for the test facility.  A 3-ton unitary heat pump system was used in this 

experiment.  
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Figure 6.1 Schematics of system experiment (cooling mode operation).

This unit is a single compressor R-22 system.  It has a 2-row outdoor and a 3-row indoor 

coils.  Both coils are made of copper tubing and aluminum louvered fins.  There are 5 
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circuits in each coil.  The circuits in the outdoor coil are identical in length and design as 

shown in Figure 6.2, while the circuits in the indoor coil are rather complicated with 

different circuiting in each branch as shown in Figure 6.3.  Table 6.1 lists the dimensions 

of both coils.  Two short tube orifices are used as expansion device in this heat pump 

system.  The one for cooling operation has a 2-mm inside diameter.  The other, for 

heating operation, has a 1.7-mm inside diameter.

Figure 6.2 Outdoor coil circuitry (Hidden lines indicate invisible side).

Figure 6.3 Indoor coil circuitry (Hidden lines indicate invisible side).

The air side, refrigerant side, and electrical side measurements were collected at 

various key locations around the heat pump system as shown in Figure 6.1.  Table 6.2 

lists all instruments used for the measurements.  All instruments were calibrated prior to 

their use; the uncertainties are also listed in the table.  Refrigerant temperatures were 

approximated by tube surface temperature with thermocouples glued on the tubing 

surface with highly conductive epoxy.  The surface thermocouples were also insulated to 

minimize the effect of surrounding air temperature.  Air temperatures were measured by 
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thermocouples that were radiation shielded to minimize the radiation exchange between 

the thermocouple beads and other nearby heat transfer surfaces.  Weber (2003) described 

a detailed uncertainty analysis for this test facility and instrumentation.  The uncertainty 

of measured capacity for the indoor coil and outdoor coil is within ±5% from this 

instrumentation.  The power measurement uncertainty is within ±0.4%.

Table 6.1 Coil geometry.

Geometry Indoor Coil Outdoor Coil

Tube outside diameter (after expansion) 10.2 mm 10.2 mm

Tube inside diameter  (after expansion) 10.0 mm 10.0 mm

Tube spacing (vertical) 25.4 mm 25.4 mm

Tube spacing (horizontal) 22 mm 22 mm

Coil width (finned length) 0.6 m 1.4 m

Coil height 0.7 m 0.8 m

Fin density 591 fins.m-1 787 fins.m-1

Fin thickness 0.099 mm 0.099 mm

Table 6.2 Instruments and uncertainties for the system tests.

Location Measurement Instrument Uncertainty

Refrigerant Side

Temperature T-type thermocouples ±0.1 °C

Pressure Pressure transducers ±0.13%

Mass flow rate Coriolis flow meter ±0.1%

Indoor Air Side

Dry bulb temperature T-type thermocouples ±0.1 °C

Relative humidity Solid state humidity sensor ±2% RH

Volumetric flow rate Nozzle and pressure transducers ±1%

Outdoor Air Side
Dry bulb temperature T-type thermocouples ±0.1 °C

Volumetric flow rate Hot wire velocity transducer ±0.5%

Electric
Current Current transducer ±0.25%

Voltage Voltage transducer ±0.25%

The air side boundary conditions for the heat pump can be changed using the 

following equipment.  A variable electric heater with capacity up to 15 kW was used to 

   153



adjust the indoor loop air temperature.  Different nozzles were used in the indoor loop to 

alter the air flow rate entering the indoor coil.  A humidifier with a maximum capacity up 

to 5.4 kg.hr-1 was used to control the air moisture in the indoor loop.  Electric heaters with 

a maximum capacity of 12 kW were used to obtain the desired outdoor side temperature.

6.2. Test Conditions

A range of experimental data is collected by Tang (2005) for model validations. 

The heat pump was tested in cooling mode operation where the indoor coil is an 

evaporator and the outdoor coil is a condenser.  The ARI Standard 210/240 (2003) and 

the manufacturer's catalog were used as guidelines to design the test conditions for this 

experiment.  The ARI steady state rating condition was the baseline case for the test 

matrix.  For this test condition, the outdoor coil entering air temperature is 35 °C dry 

bulb, the indoor coil entering air temperature is 26.7 °C dry bulb and 19.4 °C wet bulb or 

52% relative humidity at the local atmospheric pressure.  Since the indoor and outdoor air 

volumetric flow rates are not specified in the standard, 35 m3.min-1 and 50 m3.min-1 air 

volumetric flow rates were used for the indoor and outdoor coils, respectively.  The 35 

m3.min-1 indoor flow rate is the mid range value of the catalog data and the 50 m3.min-1 

outdoor flow rate is the rated flow rate that comes with the test system.  

Three parameters, the indoor entering dry bulb temperature, the indoor 

volumetric flow rate, and the outdoor entering dry bulb temperature were varied in the 

tests.  Table 6.3 shows the test conditions for this experiment.  For each test, only one of 

the parameters was changed from the baseline condition.  Due to the limitation of the test 

facility, the extreme conditions such as high indoor air flow rate, relative humidity, and 
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outdoor temperature were not included.   

Table 6.3 Matrix for model validation (52% indoor relative humidity, 50 m3.min-1 outdoor flow rate).

Parameter change Indoor entering dry 
bulb temperature

Indoor volumetric flow 
rate

Outdoor entering dry 
bulb temperature

Indoor temperature1 21 to 29 °C 35 m3.min-1 35 °C

Indoor flow rate1 27 °C 22 to 38 m3.min-1 35 °C

Outdoor temperature2 27 °C 35 m3.min-1 28 to 46 °C
1-Includes ARI steady state rating condition
2-Includes ARI steady state rating, dry coil, and maximum conditions.

Measured data were taken every one minute until steady state was achieved.  The 

10-minute average values after reaching steady state condition were collected for model 

validation.  These measured data are used to validate the models at both component and 

system levels.  Since the error of individual models may have a cumulative effect on the 

overall system simulation (Domanski and Didion 1983), the system level validation can 

reveal the integrated performance of the component models.

Totally 15 data points are taken for different boundary conditions.  They are 

presented in terms of test numbers in the following sections.  The meanings of the test 

numbers are:

● Tests 1 to 5: Increasing of outdoor air temperature

● Tests 6 to 10: Increasing of indoor air temperature

● Tests 11 to 15: Increasing of indoor air flow rate

6.3. Component Level Validation

In the component level validation, both air side and refrigerant side boundary 

conditions to the component model are directly from measured data in order to validate 
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each component model individually.  The predicted outputs are compared to the 

measured data to assess the model accuracy.  The major component models: compressor, 

short tube orifice, condenser, and evaporator are validated one-by-one as discussed in the 

following sections.

6.3.1. Compressor

The compressor model calculates the refrigerant mass flow rate and power 

consumption.  It takes the suction and discharged saturation temperatures, and the suction 

superheat as the boundary condition inputs.  Figure 6.4 shows the boundary conditions 

for the compressor model validation.  The saturation temperatures are derived from the 

pressure measurements and local atmospheric pressure using REFPROP 6.01 (McLinden 

et al. 1998).  Their measurement uncertainties are about ±0.2 K.  The superheat is 

relatively constant for all of the test conditions.  It is calculated by the pressure and 

temperature measurements at the compressor suction and its uncertainty is about ±0.25 K 

as shown in the figure.  The heat pump system was run in cooling mode, therefore the 

outdoor coil is a condenser and the indoor coil is an evaporator.  As the outdoor air 

temperature increases (Tests 1 to 5), the heat pump operates at higher discharge 

saturation temperature.  The suction saturation temperature also increases slightly with 

the discharge saturation temperature.  A similar trend is shown for the variations of 

indoor temperature (Tests 6 to 10), where the suction saturation temperature increases 

with the indoor air temperature, and the discharge saturation temperature increases 

slightly with the suction saturation temperature.  The increase of indoor air flow (Tests 11 

to 15) has similar effect to the increase of indoor air flow rate, it increases the average 

temperature across the evaporator.  As a result, both the suction and discharge saturation 
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temperatures increase.  

In addition to the boundary conditions, the model also requires the mass flow rate 

and power coefficients provided by manufacturer to perform the calculations.  Each 

compressor has its unique coefficients.  The compressor used in this heat pump is the 

Copeland ZR34K3-PFV.  Table 6.4 lists the mass flow rate and compressor coefficients 

for this compressor.  The compressor manufacturer claims that the accuracy of the 

coefficients are within ±5%.  Note that if the mass flow rate and power are calculated 

from these coefficients, the units are lbm.hr-1 and W, respectively.  The calculated mass 

flow rate is converted to metric unit in this validation.  

With all the inputs specified, the compressor model is run to predict the mass flow 

rates and power consumptions.  Since the model prediction also depends on the 

uncertainties of the input data, an sensitivity analysis is conducted for the compressor 

model.  Figure 6.5 shows the sensitivity of the mass flow rate and power consumption 

with respect to the input data.  Each input parameter is perturbed by its measurement 

uncertainty as shown in the figure.  Test 14 is the ARI rating condition and is used as the 
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Figure 6.4 Boundary conditions for compressor model validation.



baseline case for the uncertainty analysis.  Note that the saturation temperatures are the 

most sensitive parameters to the compressor model but the uncertainties are relatively 

small.  On the other hand, the uncertainty of the superheat is relatively high but its 

sensitivity is small.  The propagated uncertainties to the predicted mass flow rate and 

power consumption are less than ±0.5% and ±0.25%, respectively, which are lower than 

the ±5% uncertainty of the compressor coefficients.  

Table 6.4 Coefficients for the Copeland compressor ZR34K3-PFV.

No. Mass flow rate Power
1 216.9967 15.04447
2 4.735195 -2.17454
3 0.277542 30.12571
4 0.034808 -0.005012
5 0.006066 0.032241
6 -0.004003 -0.210031
7 0.00027 0.000338
8 -7.69E-05 -0.000422
9 -1.18E-05 -0.000143
10 1.72E-06 0.001267
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Figure 6.6 shows the predicted mass flow rate along with the measured values. 

Note that the small bars in the figure represent the uncertainties due to measurements. 

The uncertainty of the measured data is ±0.1%.  The measured mass flow rates show an 

increasing trend for all test conditions because the increasing suction temperatures as 

shown in Figure 6.4.  The validation shows that the model is able to predict this trend 

consistently with the experimental data.  A majority of the data points are slightly 

underpredicted by the model, however all of the data points are within ±5%.  

The validation of the power consumption is shown in Figure 6.7.  The measured 

data show that the power consumption is relatively constant for Tests 6 to 15 because 

they have relatively constant discharge to suction pressure (or saturation temperature) 

ratios.  On the other hand, the pressure ratio increases more significantly for the Tests 1 

to 5 and hence the change in power consumption is more obvious.  All of the predicted 

data are in excellent agreement with the measured values.  The difference between the 

measured and predicted data is well within ±5%.  Considering the uncertainties of the 

measurements and compressor coefficients, the compressor model predictions are 
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Figure 6.6 Compressor model validation: Mass flow rate.



satisfactory.

6.3.2. Short Tube Orifice

The short tube orifice model calculates the refrigerant mass flow based on the 

short tube geometry and boundary conditions.  Figure 6.8 shows the boundary conditions 

for the model validation.  Only the inlet refrigerant pressure and subcooling are required 

for the model.  The uncertainties for the pressure and subcooling are about ±0.13% and 

±0.15 K, respectively.  Note that the inlet pressure changes in the same way as the 

discharge saturation temperature for the same reasons discussed above.  The measured 

data show that the subcooling decreases with increasing outdoor temperature (Tests 1 to 

5) because the temperature driving potential between the refrigerant and air sides are 

decreased, and result in less heat transfer capacity.  But when the indoor air temperature 

(Tests 6 to 10) or the air flow rate (Tests 11 to 15) increases, the indoor coil capacity 

increases, and therefore the subcooling also increases accordingly.  

Figure 6.9 shows the sensitivity of the inlet pressure and subcooling to the 

refrigerant mass flow rate.  The input parameters are perturbed by their measurement 
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uncertainties as shown in the figure.  Note that the model is slightly more sensitive to the 

inlet subcooling.  However, due to the measurement uncertainties are small, the 

propagated uncertainty in predicted mass flow rate is less than ±0.2%. 

Figure 6.10 shows the validation results for the short tube orifice model.  The 
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Figure 6.9 Sensitivity analysis for the short tube model.



same measured mass flow rate data used in the compressor validation are shown in this 

figure.  It shows that the orifice model is able to predict the measured data very well.  The 

model tends to overpredict the measured data slightly but all of the data are still well 

within ±5%, which is also less than the ±10% model accuracy (Payne and O'Neal 2004).

6.3.3. Condenser

The condenser model calculates the heat transfer capacity based on the air and 

refrigerant side inlet conditions.  The air side boundary conditions are the same as the 

outdoor test conditions in this experiment, while the refrigerant side boundary conditions 

are shown in Figure 6.11.  The measurement uncertainties are ±0.13% and ±0.1 K for the 

pressure and temperature, respectively.  Again, the figures show the trend of the inlet 

pressure follows the trend of discharge saturation temperature, and the increase in inlet 

refrigerant temperature is due to the increase in inlet pressure.  In addition to the inlet 

pressure and temperature, the condenser model also requires the refrigerant mass flow 
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Figure 6.10 Validation of short tube orifice model.



rate as an input.  The measured mass flow rates shown in Figure 6.6 or Figure 6.10 are 

used for this validation.

Figure 6.12 shows the sensitivity of the condenser capacity to the input 

parameters.  All of the input parameters are perturbed by their uncertainties as shown in 

the figure.  Note that the air side parameters dominates.  The air side dry bulb 

temperature is the most dominant term, followed by the air flow rate.  The uncertainties 

in input parameters contribute to about ±0.3% uncertainty in predicted capacity.

Figure 6.13 shows the comparison of the predicted capacities to the measured 

capacities.  The measured capacities shown in the figure are the average of the air and 

refrigerant side capacities.  The heat balance between the air and refrigerant sides is 

within the ±5% range for all measured data.  Note that the measured capacities follow the 

trend of the measured subcooling as in shown in Figure 6.8.  More subcooling indicates 

higher capacity.  The uncertainties for measured and predicted data from experiment are 

also shown in the figure.
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The validation results show that the condenser model is able to predict the 

capacity very well.  Although the model tends to overpredict the measured capacity, all 

the data points are within the ±5% uncertainty interval (Weber 2003).  The air side 

Reynolds number for this validation is only about 1700, which is considered low enough 

to have significant coil row effect according to the previous analysis.  However, since the 
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Figure 6.13 Validation of condenser model.

Figure 6.12 Sensitivity analysis for the condenser model.



use of row-by-row correlations has that accounted for in this validation, the results are 

satisfactory. 

6.3.4. Evaporator 

Similar to the condenser model, the evaporator model calculates the capacity from 

the inlet air and refrigerant side conditions.  The air side conditions are simple to apply 

because they are the same as indoor conditions of the test matrix.  However, the 

refrigerant side inlet conditions are not as straightforward.  Since the inlet conditions to 

the evaporator are two-phase, a state point cannot be determined by pressure and 

temperature measurements only.  In this validation and also in the later system level 

simulation, it is assumed that the refrigerant enthalpy does not change from the expansion 

device inlet to the evaporator inlet, therefore the enthalpy at the expansion device inlet is 

used for the evaporator model input.  However, the enthalpy alone is not enough to 

determine the inlet refrigerant state.  Either the refrigerant temperature or pressure is 

needed.  Neither of them is measured in this experiment because there is a distributor at 

the evaporator inlet.  Pressure and temperature changes across the distributor are not well 

defined and they would introduce other measurement uncertainties.  Therefore, in this 

validation, an iteration scheme is used to run the evaporator model.  Since the evaporator 

outlet pressure was measured, the evaporator model is run iteratively by adjusting its inlet 

pressure until its outlet pressure matches the measured value.  

Figure 6.14 shows the refrigerant side input data for the evaporator model. 

Uncertainty bars are also shown in the figure.  The measurement uncertainties for the 

outlet pressure and inlet enthalpy are ±0.13% and ±6.3 kJ.kg-1, respectively.  The trends 

of the outlet pressure and inlet enthalpy are due to the same reasons for the changes in 
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suction saturation temperature and subcooling, as discussed before.  Refrigerant mass 

flow rate is also an input to the evaporator model.  The measured mass flow rates shown 

in Figure 6.6 or Figure 6.10 are used to run the model.  

Figure 6.15 shows the sensitivity of the evaporator capacity with respect to the 

input parameters.  All of the input parameters are perturbed by their measurement 

uncertainties.  The figure shows that the relative humidity is the most sensitive parameter 

because of the wet surface heat transfer at the evaporator and its relatively high 

measurement uncertainty.  Refrigerant inlet enthalpy is the second most sensitive 

parameter because of its high uncertainty.  On the contrary to the condenser model, the 

air dry bulb temperature is the least sensitive parameter because the wet surface heat 

transfer dominates and the measurement uncertainty for dry bulb temperature is relatively 

small.  Due to the high sensitivity and uncertainty in relative humidity, the propagated 

uncertainty in predicted capacity also increases.  It is about ±3% in this validation.
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Figure 6.14 Boundary conditions for evaporator model validation.



Figure 6.16 shows the measured and predicted capacities for all test conditions. 

The measured capacities are also the average values from the air and refrigerant side 

measurements.  Only the data with less than ±5% heat balances are shown.  Note that the 

lowest indoor flow rate point (Test 11) is discarded because its heat balance is more than 

±6% (ARI 2003).  The high heat balance is likely due to air leakage from the indoor air 

loop where the small air flow nozzle causes high duct pressure for this test.  All the 

measured capacities follow the same trend as the condenser capacities.

With all the uncertainties taken into account, the validation results are satisfactory 

and are able to follow the same trend as the measured data.  Although the air side 

Reynolds number is quite low and only ranges from 2400 to 3400 in this validation, the 

use of row-by-row correlations has the row effect accounted for in this validation.  All of 

the data are within the uncertainty interval. 
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6.4. System Level Validation

In the component level validation, all of the component models predicted 

satisfactory results against the experimental data.  However, they are all based on the 

measured inputs and there are still some deviations between the predicted and measured 

data.  In the system level validation, all of the components are linked together.  The 

outputs of one model are the inputs to other models.  As a result, the deviations in the 

components level validation may be accumulated or canceled out.  This effect can only 

be validated in terms of system level simulation.  The following system parameters, 

which are of interest to heat pump designers, are used for this validation.

● Saturation temperatures

● System capacity

● Sensible heat ratio (SHR)

● Coefficient Of Performance (COP)
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Due to the uncertainties in the system charge calculation, Shen et al. (2006) 

suggested that the best way to validate a system level simulation is to specify subcooling 

and superheat as the boundary conditions.  The “Orifice and TXV Design” calculation is 

used in this validation.  Besides the subcooling and superheat, this simulation requires air 

side inputs that are the same as the test matrix in this experiment.  In order to eliminate 

the modeling uncertainties, the interconnecting pipe temperature changes and compressor 

heat loss are also inputs to the simulation.  The piping temperature changes are measured 

in this experiment and the compressor heat loss is calculated as follows:

Q̇net=Ẇ cmp ,act−ṁcmp, act i ref , out−i ref ,in  (6.1)

where the compressor power, mass flow rate, inlet and outlet enthalpies are all measured 

in this experiment.  Table 6.5 summarizes all refrigerant side inputs for this validation. 

Notice that there are negative values for the compressor heat loss.  The negative sign 

means a heat gain to the compressor.   It is due to the fact the compressor loads are much 

less for these conditions, and consequently the power consumption of the compressor is 

less.  In addition, since the compressor is located at the condenser coil outlet, the hot air 

leaving the coil is higher than the compressor case temperature at these test conditions.  

Figure 6.17 shows the sensitivity analysis for the system simulation in terms of 

the input parameters.  The uncertainties of the input parameters are also shown in the 

figure and are used for perturbations in the sensitivity calculations.  Note that the most 

sensitive parameters are the evaporator relative humidity and suction line temperature 

change respectively for the air side and refrigerant side.  Since this analysis is based on a 

cooling mode simulation, the impact of the evaporator relative humidity is high, as 

discussed in the evaporator validation.  In consequence, the sensitivity of relative 
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humidity also propagates to other system parameters like sensible heat ratio and COP. 

On the refrigerant side, since the suction temperature change has direct impact to the 

suction saturation temperature, it is the most sensitive parameter.  The impact to the 

suction saturation temperature also propagates to the refrigerant mass flow as shown in 

the compressor validation, which in turn affects the system capacity, sensible heat ratio 

and COP.  

Table 6.5 Refrigerant side boundary conditions for system level validation.

Test No. ∆Tsub (K) ∆Tsup (K) ∆Tsucln (K) ∆Tdisln (K) ∆Tliqln (K) Q̇net (%)
1 5.5 4.1 2.8 -5.8 -2.1 -8.7%
2 4.9 2.7 1.4 -5.9 -2.5 -3.4%
3 4.0 2.0 0.7 -5.6 -3.1 8.2%
4 2.8 2.1 0.6 -5.9 -3.7 15.1%
5 1.4 2.3 0.8 -6.4 -4.2 18.6%
6 1.0 2.0 0.7 -5.4 -3.7 21.4%
7 1.9 2.1 0.7 -5.3 -3.5 20.9%
8 2.9 1.9 0.5 -5.1 -3.2 20.2%
9 4.0 2.0 0.7 -5.6 -3.1 8.2%
10 4.8 2.3 0.9 -6.2 -2.8 -3.8%
12 3.7 1.7 0.5 -5.1 -2.8 15.6%
13 4.1 1.8 0.5 -5.3 -3.4 11.6%
14 4.3 1.8 0.3 -5.5 -3.1 9.2%
15 4.6 1.9 0.4 -5.7 -3.5 6.3%

The measurement uncertainties in input parameters propagate to the simulation 

results.  For the simulation outputs presented in this section, the uncertainties for 

capacity, sensible heat ratio, COP, suction and discharge saturation temperatures are 

±0.4%, ±0.46%, ±0.36%, ±1.3 K and ±0.5 K, respectively.

With all the refrigerant side parameters specified, only the saturation temperatures 

are needed to determine the vapor compression cycle on the pressure-enthalpy diagram, 

given that the pressure drops across the coils and interconnecting pipes are relatively 

small. The saturation temperatures also determine the refrigerant mass flow rate and 
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compressor power consumption from the compressor model.  Therefore, the saturation 

temperatures are the most important parameters in the system level simulation.   

 

   171

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Test No.

S
at

ur
at

io
n 

Te
m

pe
ra

tu
re

 (C
)

Measured Suction

Measured Discharge

Predicted Suction

Predicted Discharge

Figure 6.18 System level validation: Saturation temperatures.

Figure 6.17 Sensitivity analysis for the system simulation.



Figure 6.18 shows the validation results for the saturation temperatures, where both 

discharge and suction saturation temperatures are compared.  The Test 11 data are 

discarded in this system level validation as previously discussed.  Note that measurement 

uncertainties do not introduce significant error in the simulation results.  The simulation 

is able to predict the saturation temperatures very well.  All of the predicted data are able 

to follow the trends of the experimental data.  The saturation temperature validation 

results are satisfactory.  All of the predicted results show less than ±5% error.

Figure 6.19 shows the system capacity validation.  Note that the capacities shown 

in the figure do not include the heat generated from the indoor fan motor.  The heat 

generated from the fan motor is input to the simulation and therefore it is not included. 

Since the system was run in cooling mode, the measured data shown in the figure are 

identical to the measured capacities in the evaporator model validation.  Note that 

uncertainty bars for measurement and simulation are also presented in the figure.  The 

figure shows that the simulation is able to predict the measured data very well.  All of the 

predicted data are able to follow the trend of the measured data and are within the 

uncertainty interval of the measurements.  

The component integration effect can be also seen from Figure 6.19.  Compared 

to the evaporator model validation (Figure 6.16), the simulated capacities in the system 

level are slightly different.   It is due to the difference in refrigerant side boundary 

conditions, the system level simulation predicted different saturation temperatures, this 

difference propagates to the system capacities.  But since the predicted saturation 

temperatures agree very well with the measured values, the change in system capacity is 

small.
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Figure 6.20 compares the measured and predicted sensible heat ratio.  The 

sensible heat ratio is defined as the ratio of sensible to total system capacities.  Similar to 

the system capacity validation, the data shown in the figure do not include any fan motor 

heat.  Since the high sensitivity and uncertainty of the relative humidity, the uncertainty 

in the simulation results is also high.  The figure shows that the sensible heat ratio 

increases with outdoor air temperature (Tests 1 to 5) because the refrigerant temperature 

increases at the indoor coil and results in higher coil surface temperature.  

Dehumidification only occurs when the coil surface temperature is lower then the 

incoming dew point temperature.  The increase in coil surface temperature lessens the 

dehumidification and results in higher sensible heat ratio.  For Tests 6 to 10, since only 

the indoor dry bulb temperature increases and the relative humidity is constant, the 

increase in dry bulb temperature increases the entering dew point temperature.  As a 

result, the dehumidification increases and the sensible heat ratio decreases.  Increasing 

the indoor air flow rate (Tests 12 to 15) increases the refrigerant temperature at the indoor 

coil, increases the coil surface temperature, and decreases the sensible heat ratio.  The 
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simulations are able to predict all of these trends consistently.  

The sensible heat ratio validation also shows that the Harms et al. (2003) 

dehumidification model is able to predict accurate results.  Although the dry surface air 

side correlations are used for these validations, the predicted results are satisfactory.  All 

of the predicted sensible heat ratios are within the uncertainty level compared to the 

measured data.  

The final system parameter validated in the system level validation is the system 

COP.  It is defined as the ratio of energy supply to energy input.  However, the COP 

defined in this validation is the ratio of system capacity to compressor power 

consumption.  The power consumptions by the indoor and outdoor fans are not included 

because they are inputs to this simulation.  Figure 6.21 shows the validation results for 

the system COP.  Note that the COP decreases with increasing outdoor temperature 

(Tests 1 to 5) because the system capacity decreases but the power consumption increases 

as discussed before.  On the other hand, the COP increases for Tests 6 to 15 because both 

the system capacity and power consumption increase in these conditions.  The increase in 
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system capacity is slightly more significant than power consumption and therefore the 

COP increases.  With all the measurement uncertainties, the validation results show that 

the simulations are able to predict the measured data reasonably well.  All predicted data 

are able to follow the trend of the measured data and their differences are less then ±0.5 

COP.  Overall, the COP validation is satisfactory.

The component and system level validations show that the developed models are 

able to predict the system performance accurately.  Although the earlier evaluation 

sections showed that the coil row effect is significant at low Reynolds numbers, the use 

of row-by-row correlations in the simulation have that accounted for.  The validation 

results show that the row-by-row louvered fin correlations developed in this research can 

be used in the system simulation to predict satisfactory results.  

6.5. Validation with Additional Data

Although the validation results in the previous sections are promising, they are 

based on a single system configuration.  In order to generalize the validation results, 
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additional data were collected at the York laboratory in Norman, Oklahoma.  Thirty one 

different systems are used to extend the validation as shown Table 6.6.  A range of 

system configurations are included, i.e. package systems, split systems, heat pumps (HP), 

and air conditioners (A/C).  These systems are charged with either R22 and R410A.  The 

system size ranges from 2 to 20 tons of capacity.  The systems with less than 6½ ton 

capacity have only one compressor.  Others are dual compressor systems with two 

compressors operate simultaneously.  The heat exchangers in these systems include 1 to 

4-row coils and have fin density from 512 to 787 fins.m-1.  

Test data were collected according to the ARI standard 210/240 (2003).  The test 

data included 26 different boundary conditions as shown in Table 6.7.  Both cooling and 

heating data were included for this validation.  These conditions were applied to different 

systems as shown in Table 6.8.  Note that the air volumetric flow rates for these 

conditions are also shown in the table.  The complete set of systems and boundary 

conditions yields 112 additional data sets that can be used for model validation.  The 

same component and system level validations are performed with these additional data 

sets as shown in the previous sections. 

Table 6.6 York data system configuration.

No. Type Ton Ref. Compressor Indoor Coil Outdoor Coil

1 Package 
A/C 2 R22 Bristol 

H29B20UABCA

No. of rows 3 No. of rows 2
Face area 0.34 Face area 0.85

Fin density 512 Fin density 591

2 Package 
A/C 3 R22 Bristol 

H29B30VABCA

No. of rows 3 No. of rows 2
Face area 0.34 Face area 0.85

Fin density 512 Fin density 591

3 Package 
A/C 3.5 R22 Bristol 

H20J353ABCA

No. of rows 3 No. of rows 2
Face area 0.43 Face area 1.05

Fin density 512 Fin density 591

4 Package 
A/C 4 R22 Bristol 

H20J403ABCA

No. of rows 3 No. of rows 2
Face area 0.51 Face area 1.49

Fin density 512 Fin density 591
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No. Type Ton Ref. Compressor Indoor Coil Outdoor Coil

5 Package 
A/C 5 R22 Bristol 

H23R513ABCA

No. of rows 3 No. of rows 2
Face area 0.51 Face area 1.49

Fin density 512 Fin density 591

6 Package 
HP 3 R22 Bristol 

H21J32BABCA

No. of rows 4 No. of rows 2
Face area 0.43 Face area 1.05

Fin density 512 Fin density 591

7 Package 
HP 3.5 R22 Bristol 

H21J38BABCA

No. of rows 4 No. of rows 2
Face area 0.51 Face area 1.49

Fin density 512 Fin density 591

8 Package 
HP 4 R22 Bristol 

H23C453ABCA

No. of rows 4 No. of rows 2
Face area 0.51 Face area 1.49

Fin density 512 Fin density 591

9 Package 
HP 5 R22 Bristol 

H23R513ABCA

No. of rows 4 No. of rows 2
Face area 0.51 Face area 1.49

Fin density 512 Fin density 591

10 Split 
A/C 15 R22 Bristol 

H20R943DBL

No. of rows 3 No. of rows 2
Face area 0.85 Face area 1.15

Fin density 512 Fin density 630

11 Split 
A/C 20 R22 Copeland 

ZR125KC-TF5

No. of rows 3 No. of rows 2
Face area 1.05 Face area 1.52

Fin density 630 Fin density 630

12 Package 
A/C 7.5 R410A Bristol 

H83C383DBDA

No. of rows 3 No. of rows 2
Face area 0.49 Face area 1.10

Fin density 591 Fin density 787

13 Package 
A/C 8.5 R410A Bristol 

H83R413DBDA

No. of rows 4 No. of rows 2
Face area 0.61 Face area 1.35

Fin density 591 Fin density 787

14 Package 
A/C 10 R410A Bristol 

H83R513DBDA

No. of rows 4 No. of rows 2
Face area 0.61 Face area 1.35

Fin density 591 Fin density 787

15 Package 
A/C 12.5 R410A Copeland 

ZP67KCE-TF5

No. of rows 4 No. of rows 2
Face area 0.61 Face area 2.21

Fin density 591 Fin density 591

16 Package 
A/C 3 R22 Bristol 

H20J293ABCA

No. of rows 3 No. of rows 2
Face area 0.47 Face area 1.57

Fin density 512 Fin density 709

17 Package 
A/C 4 R22 Bristol 

H20J383ABCA

No. of rows 4 No. of rows 2
Face area 0.47 Face area 1.57

Fin density 512 Fin density 709

18 Package 
A/C 5 R22 Bristol 

H23R543ABCA

No. of rows 4 No. of rows 2
Face area 0.47 Face area 1.57

Fin density 512 Fin density 709

19 Package 
HP 6.5 R22 Bristol 

H20R753DBYA

No. of rows 3 No. of rows 1
Face area 1.23 Face area 2.70

Fin density 512 Fin density 787

20 Package 
HP 12.5 R22 Bristol 

H20R753DBYA

No. of rows 4 No. of rows 2
Face area 0.61 Face area 1.35

Fin density 591 Fin density 787

21 Package 
A/C 7.5 R22 Bristol 

H28A383DBLA
No. of rows 3 No. of rows 1
Face area 0.49 Face area 1.35
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No. Type Ton Ref. Compressor Indoor Coil Outdoor Coil
Fin density 591 Fin density 787

22 Package 
A/C 10 R22 Bristol 

H29A503DBLA

No. of rows 3 No. of rows 2
Face area 0.61 Face area 1.35

Fin density 591 Fin density 787

23 Package 
HP 6.5 R410A Bristol 

H83C363DBDA

No. of rows 3 No. of rows 2
Face area 0.49 Face area 1.10

Fin density 591 Fin density 787

24 Package 
HP 7.5 R410A Copeland 

ZP42K5E-TF6

No. of rows 3 No. of rows 2
Face area 0.49 Face area 1.10

Fin density 591 Fin density 787

25 Package 
HP 8.5 R410A Bristol 

H83R443DBDA

No. of rows 4 No. of rows 2
Face area 0.61 Face area 1.35

Fin density 591 Fin density 787

26 Package 
HP 10 R410A Bristol 

H83R513DBDA

No. of rows 4 No. of rows 2
Face area 0.61 Face area 1.35

Fin density 591 Fin density 787

27 Package 
HP 12.5 R410A Bristol 

H83R686DBDA

No. of rows 4 No. of rows 2
Face area 0.61 Face area 2.21

Fin density 591 Fin density 787

28 Package 
A/C 2.5 R410A Copeland 

ZPS26K4E-PFV

No. of rows 3 No. of rows 2
Face area 0.41 Face area 1.19

Fin density 591 Fin density 787

29 Package 
A/C 2 R410A Copeland 

ZPS26K4E-PFV

No. of rows 3 No. of rows 2
Face area 0.41 Face area 1.19

Fin density 591 Fin density 787

30 Package 
A/C 3 R22 Bristol 

H20J323DBL

No. of rows 2 No. of rows 2
Face area 0.47 Face area 1.57

Fin density 512 Fin density 709

31 Package 
A/C 5 R22 Bristol 

H23R583DBE

No. of rows 4 No. of rows 2
Face area 0.47 Face area 1.57

Fin density 512 Fin density 709
Face are is in m2; Fin density is in fins.m-1; A/C – Air conditioner; HP – Heat pump 
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Table 6.7 York data boundary conditions.

No. Mode
Indoor dry bulb 

temp. (ºC)
Indoor wet bulb 

temp. (ºC)
Outdoor dry 

bulb temp. (ºC)
Outdoor wet 

bulb temp. (ºC)
1 Cooling 26.7 12.2 27.8 -
2 Cooling 26.7 12.8 18.3 -
3 Cooling 26.7 12.8 27.8 -
4 Cooling 26.7 13.3 18.3 -
5 Cooling 26.7 13.9 23.9 -
6 Cooling 26.7 13.9 29.4 -
7 Cooling 26.7 13.9 35.0 -
8 Cooling 26.7 13.9 46.1 -
9 Cooling 26.7 16.7 29.4 -
10 Cooling 26.7 16.7 46.1 -
11 Cooling 26.7 19.4 12.8 -
12 Cooling 26.7 19.4 18.3 -
13 Cooling 26.7 19.4 19.4 -
14 Cooling 26.7 19.4 27.8 -
15 Cooling 26.7 19.4 29.4 -
16 Cooling 26.7 19.4 35.0 -
17 Cooling 26.7 19.4 46.1 -
18 Cooling 26.7 22.2 18.3 -
19 Cooling 26.7 22.2 23.9 -
20 Cooling 26.7 22.2 29.4 -
21 Cooling 26.7 22.2 35.0 -
22 Cooling 26.7 22.2 46.1 -
23 Heating 12.8 - 8.3 6.1
24 Heating 21.1 - 8.3 6.1
25 Heating 26.7 - 8.3 6.1
26 Heating 21.1 - 15.6 12.8

Table 6.8 Test conditions for the York systems.

Data set 
no.

System 
No.

Indoor flow rate 
(m3.min-1)

Outdoor flow rate 
(m3.min-1) Condition no.

1 1 22.65 62.30 14
2 1 22.65 62.30 16
3 2 33.98 79.29 14
4 3 33.98 79.29 16
5 3 33.98 79.29 14
6 4 38.23 101.94 16
7 4 38.23 101.94 14
8 5 46.72 101.94 16
9 5 46.72 101.94 14
10 6 33.98 80.70 14
11 6 33.98 80.70 24
12 7 39.64 101.94 16
13 7 39.64 101.94 14
14 8 42.48 101.94 16
15 8 42.48 101.94 14
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Data set 
no.

System 
No.

Indoor flow rate 
(m3.min-1)

Outdoor flow rate 
(m3.min-1) Condition no.

16 9 48.14 101.94 16
17 9 48.14 101.94 14
18 10 84.95 164.24 16
19 10 106.19 164.24 17
20 10 106.19 164.24 8
21 11 113.27 218.04 16
22 11 113.27 218.04 6
23 11 113.27 218.04 7
24 11 113.27 218.04 8
25 11 113.27 218.04 20
26 11 113.27 218.04 9
27 11 113.27 218.04 21
28 11 113.27 218.04 22
29 11 113.27 218.04 17
30 11 113.27 218.04 10
31 11 84.95 218.04 17
32 11 84.95 218.04 15
33 12 31.86 96.28 15
34 13 48.14 124.59 16
35 13 48.14 124.59 11
36 14 48.14 124.59 15
37 15 70.79 198.22 16
38 15 70.79 198.22 17
39 16 33.98 117.51 16
40 16 33.98 117.51 14
41 16 33.98 117.51 1
42 17 45.31 117.51 16
43 17 45.31 117.51 14
44 17 45.31 117.51 1
45 18 50.97 117.51 14
46 18 50.97 117.51 3
47 19 36.81 192.55 16
48 19 36.81 192.55 15
49 19 36.81 192.55 24
50 19 73.20 192.55 26
51 20 87.78 124.59 15
52 20 87.78 124.59 24
53 20 65.10 124.59 24
54 20 70.77 124.59 25
55 20 70.79 124.59 24
56 20 53.01 124.59 24
57 20 70.65 124.59 23
58 20 70.82 124.59 26
59 21 53.80 96.28 15
60 22 56.63 124.59 16
61 22 70.79 124.59 15
62 23 45.31 96.28 15
63 23 45.31 96.28 24
64 23 46.17 96.28 24
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Data set 
no.

System 
No.

Indoor flow rate 
(m3.min-1)

Outdoor flow rate 
(m3.min-1) Condition no.

65 23 36.78 96.28 24
66 23 36.81 96.28 23
67 23 27.61 96.28 24
68 23 36.81 96.28 24
69 23 36.78 96.28 25
70 24 53.80 96.28 15
71 24 53.80 96.28 24
72 24 53.15 96.28 24
73 24 42.40 96.28 23
74 25 46.72 96.28 16
75 25 59.47 96.28 15
76 25 60.19 96.28 24
77 25 48.34 96.28 26
78 26 52.39 96.28 16
79 26 52.39 96.28 24
80 26 70.79 96.28 17
81 27 56.63 198.22 16
82 27 87.78 198.22 15
83 27 87.78 198.22 24
84 27 70.54 198.22 23
85 27 70.40 198.22 25
86 27 52.80 198.22 24
87 27 86.89 198.22 24
88 28 28.32 67.96 21
89 28 28.32 67.96 18
90 28 28.32 67.96 4
91 28 28.32 67.96 13
92 29 19.82 67.96 12
93 29 19.82 67.96 18
94 29 19.82 67.96 20
95 30 33.98 117.51 16
96 30 33.98 117.51 3
97 30 33.98 117.51 14
98 30 28.32 117.51 14
99 31 48.14 117.51 16
100 31 56.63 117.51 2
101 31 56.63 117.51 16
102 31 56.63 117.51 5
103 31 56.63 117.51 9
104 31 56.63 117.51 15
105 31 56.63 117.51 20
106 31 56.63 117.51 19
107 31 56.63 117.51 18
108 31 56.63 117.51 21
109 31 70.79 117.51 15
110 31 42.48 117.51 16
111 31 42.48 117.51 15
112 31 48.14 117.51 16
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6.5.1. Component Level Validation

The York data sets did not include all the measurements shown in Table 6.2.  For 

example, refrigerant mass flow rate is one of the key inputs for the component level 

validation but most of the York data do not include this measurement.  When refrigerant 

mass flow rate is not available, compressor coefficients are used to estimate the 

refrigerant mass flow rate.  Other differences between the data presented in section 6.3 

and the York data is discussed in the following sections. 

6.5.1.1. Compressor

Compressor coefficients for mass flow rate and power consumption are obtained 

from the manufacturers' websites according to the model numbers shown in Table 6.6. 

Only the data for systems 28 to 31 have mass flow rate measurements, and there are 

totally 25 data points in this validation set.  The input data for this validation set are 

shown in Table 10.1 in the Appendix.  Figure 6.22 compares the predicted mass flow 

rates versus the measured values.  Note that the mass flow rate amongst the systems are 

different because of varying system sizes and boundary conditions.   System 29 has the 

lowest capacity and the lowest mass flow rates, and System 31 has the highest flow rates 

and the highest capacity.  All of the data agrees well with the predicted values.  The 

differences are within ±5% which is the uncertainty of the compressor coefficients. 

Figure 6.23 shows the validation results for compressor power consumption.  All 

112 data points are included in this validation set.  The power consumption ranges from 1 

kW to 13 kW for all systems and boundary conditions.  The compressor model is able to 

predict the measured data within ±5%.
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6.5.1.2. Short Tube Orifice

In order to validate the short tube orifice model, the measured refrigerant mass 

flow rate is needed.  However, amongst the data with mass flow rate measurements, only 

System 31 uses the short tube orifice as expansion device.  As a result, only 4 points are 
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validated with the York data.  Table 10.2 in the Appendix shows the input data for this 

validation set.  The validation results are presented in tabular format in Table 6.9.  Note 

that the boundary condition numbers correspond to the numbers in Table 6.7.  The 

measured data are relatively constant for all 4 conditions.  All of the predicted data match 

the measured data within ±5%.   

Table 6.9 Short tube model validation with the York data System 30.

Boundary
condition no.

Indoor air flow 
rate (m3.min-1)

Measured ref. flow 
rate (kg.s-1)

Predicted ref. flow 
rate (kg.s-1) % difference

3 33.98 0.065 0.068 4.6%

14 33.98 0.066 0.069 4.5%

14 28.32 0.065 0.068 4.6%

16 33.98 0.067 0.068 1.5%

6.5.1.3. Condenser

The York data do not include the outdoor coil leaving air temperature.  If the 

system is an air conditioner, the outdoor coil is a condenser.  Since the leaving air 

temperature is unknown, the refrigerant side capacity is used for this validation. 

However, if the system is a heat pump and operates in heating mode, the indoor coil is a 

condenser.  Both air and refrigerant capacities are measured.  The average capacity with 

±6% air to refrigerant heat balance (ARI 2003) is used for these heating conditions.  Air 

side boundary conditions for this validation set are shown in Table 6.8.  Refrigerant side 

boundary conditions are shown in Table 10.3 in the Appendix.  Figure 6.24 compares the 

predicted and measured capacities.  All 112 data points are included.  The capacity ranges 

from 9 to 50 kW.  A few data points are outside the ±5% range.  This could be due to the 

uncertainty in the refrigerant flow rate, which is calculated based on compressor 
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coefficients, propagated to the capacity calculation.  Overall, the validation result is 

satisfactory and a majority of the data are within the ±5% range.  

6.5.1.4. Evaporator

Since the outdoor coil leaving air temperature is not measured for the York data, 

the refrigerant side capacity is used for this validation when the system operates at 

heating mode.  For cooling conditions, the average capacity between the air and 

refrigerant is used.  Only the data with less then ±6% heat balance are used according to 

ARI standard 210/240 (2003).  Air side boundary conditions for this validation set are 

shown in Table 6.8 and refrigerant side boundary conditions are shown in Table 10.4 in 

the Appendix.  Figure 6.25 shows the evaporator model validation result.  The capacity 

ranges from 8 to 41 kW for these systems and boundary conditions.  Note that only a few 

data points are outside the ±5% difference which could be the result of uncertainty in the 

refrigerant flow rate.  Most of the predicted data agree with the measured data within 

±5%.
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6.5.2. System Level Validation

The system level validation follows the procedure presented in section 6.4.  For 

duo systems, with two compressors operating on two separate refrigerant loops, only one 

of the systems is simulated.  The measured capacity used for this validation is the average 

of air and refrigerant side capacities.  Air side capacity is half of the total system capacity 

from the measurement.  Refrigerant side capacity is derived from refrigerant side 

measurements from one of the systems.

The same “Orifice and TXV Design” calculation is used for this validation.  Table

6.8 shows the air side input data and Table 10.5 in the Appendix shows the refrigerant 

side input data for this validation.  The validation results are presented in terms of 

saturation temperatures, system capacity, sensible heat ratio, and coefficient of 

performance as shown in Figures 6.26 to 6.29, respectively.  The suction saturation 

temperature ranges from -6 ºC for the heating condition to 12 ºC for the high ambient 

outdoor temperature cooling condition.  A high percentage error would be misleading for 

the small saturation temperatures even though the absolute temperature difference is less 
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then ±2 K.  Therefore, the validation results for the saturation temperatures are presented 

in terms of temperature difference as shown Figure 6.26.  The temperature difference is 

plotted against the test numbers in Table 6.8.  Both saturation and discharge saturation 

temperatures are shown in the figure.  The difference between the predicted and 

measured data points are bounded by the ±2 K lines.  

Figure 6.27 shows the validation results for the system capacity.  Since the data 

include both cooling and heating conditions, the system capacities shown in the figure 

include both cooling and heating capacities.  As a result, the data are different from the 

evaporator validation (Figure 6.25) where only cooling capacities are shown.  Figure 6.27 

shows that the capacity ranges from 8 to 41 kW which are the lowest and highest 

capacities in cooling mode.  Besides the difference due to the heating capacities, the 

cooling capacity results are slightly different from the evaporator validation.  It is because 

different saturation temperatures are used for these validations, the system level 

simulation predicted slightly different saturation temperatures and the resulting capacities 

are different.  However, the difference in saturation temperatures do not contribute 
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significant error and the system capacity validation result is satisfactory.  Almost all of 

the data points are within ±5%.  

Figure 6.28 shows the validation result for the sensible heat ratio.  The data points 

include test conditions that range from humid to dry conditions (SHR from 0.5 to 1). 

The dry conditions include data points from dry cooling conditions and heating 

conditions.  Most of the data points for this validation are around 0.62 to 0.81 SHR, 

which include the 0.7 SHR that is the typical value at the ARI rating condition.    The 

figure shows that the simulation slightly over predicted the sensible capacity for a few 

high humidity points.  This error may also be due to experimental uncertainty.  Overall, 

the simulation predicted satisfactory result.  Almost all of the data points are well within 

the ±5% lines.

Figure 6.29 compares the predicted coefficient of performance to the measured 

data.  The data points range from 2.5 to 9 COP.  The low COP points represent high 

outdoor ambient temperatures at cooling mode, and the high COP points are the low 

outdoor ambient temperatures.  All of the heating points have about 4 to 4.5 COP.  The 
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figure shows that predicted data match the measured data very well.  Since the saturation 

temperatures and system capacity validations are satisfactory, the error in the compressor 

power consumption calculated by the saturation temperatures is small and the predicted 

data are able to match measured data within ±0.5 COP.
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7. SUMMARY AND RECOMMENDATIONS

7.1. Summary of Results

A computer program has been developed to help heat pump manufacturers 

simulate design and off-design operating conditions of their equipment.  Use of the 

program is expected to reduce the cost to obtain system performance data from the test 

room.  The program integrates the best available component models in a successive 

substitution solver and includes a novel heat exchanger circuit design algorithm and 

experimentally measured row-by-row air side heat transfer coefficients.  In addition, the 

program includes a method to easily update pure refrigerant and refrigerant mixture 

properties using the NIST database.

Specific results of this research are summarized as follows:

● A new heat pump simulation program has been developed.  It has an empirical 

compressor model (ARI 1999), a segment-by-segment heat exchanger model, and 

a semi-empirical short tube orifice model (Payne and O'Neal 2004).  The 

segment-by-segment heat exchanger model, which calculates the saturation 

temperature locally at each segment, is able to account for the temperature glide 

characteristic in refrigerant mixtures.  The component models are integrated in 

this simulation program to meet different calculation needs for system design and 

simulation.  Systems with either a short tube orifice or a TXV can be simulated by 
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this program.

● The nodal admittance formulation (Vlach and Singhal 1993) is proposed to handle 

the complex heat exchanger problem.  Previous circuit models either have 

limitations regarding circuit patterns or required boundary conditions.  The 

proposed circuiting algorithm relaxes these constraints and provides a more 

flexible simulation environment for circuit design.  A model evaluation shows 

that the proposed method is able to simulate different coil circuitries and 

differentiate between circuit performance.  

● A new table format is presented to accommodate both pure refrigerant and 

refrigerant mixtures.  The table look-up method is used in this simulation program 

because it is more efficient compared to the REFPROP calling routines 

(Domanski 1999).  But due to the temperature glide in refrigerant mixtures, there 

are two different saturation pressures at a given saturation temperature.  The new 

table format generalizes the difference between pure refrigerants and refrigerant 

mixtures without the need to change the calling syntax in the program.  As a 

result, new refrigerant can be easily added to the program as long as the table 

format is consistent.

● A new set of louvered fin row-by-row heat transfer correlations have been 

experimentally developed and analyzed.  Pseudo entrance length and Nusselt 

number are used in the correlations to account for the entrance length effect in the 

row-by-row heat transfer coefficients.  The correlations can be used for 1 to 4-row 

coils with fin density from 512 fin.m-1 to 787 fin.m-1, and are able to able to 

predict the measured data within ±10% difference.  
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The row-by-row correlations can be easily applied to the segment-by-segment 

heat exchanger model.  These new louvered fin row-by-row correlations are 

implemented in the heat exchange model to account for the coil row effect.  For 

louvered fin coils, the row effect is relatively insignificant compared to flat fins. 

However the difference in system capacity predicted by the row-by-row 

correlation can be as high as 6.5% compared to the capacity predicted by the 

overall correlation.  The row effect is particularly noticeable at low Reynolds 

numbers and low fin densities.    

● A conversion method to convert overall heat transfer correlation to row-by-row 

correlation is introduced.  The conversion correlations are also based on the 

pseudo entrance length and Nusselt number formulation to account for the 

entrance length effect.  

● The simulation program has been validated using the experimental data obtained 

in the York-OCAST project (Weber 2003; Tang 2005).   The validation was 

conducted in terms of component and systems levels.  At the component level, the 

heat pump components (compressor, condenser, short tube orifice, and 

evaporator) were validated individually with measured inputs.  The models are 

able to predict the refrigerant mass flow rate, power consumption, and coil 

capacities accurately.  All predicted data are able to follow the trend of 

experimental data, and the differences are within ±5%.

At the system level, all components are linked together to simulate the system 

performance.  The inputs to one component model are the outputs from other 

components.  Simulated saturation temperatures, system capacity, sensible heat 
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ratio, and COP are compared to the experimental data.  The validation results 

show that the integral effect of the component models is minimal.  The accurate 

prediction at the component level is propagated to the system level.  All of the 

predicted data are within ±5% compared to the experimental data.  The predicted 

COP's are within ±0.5 compared to the measured values.

● The simulation program has also been validated using additional data provided by 

the York International Unitary Product Group.  One hundred and twelve different 

data sets that include 26 different boundary conditions and 31 different system 

configurations were used.  Component and system level validation tests were 

conducted with satisfactory results.  The differences in refrigerant mass flow, 

compressor power consumption, condenser and evaporator capacities, and 

sensible heat ratio are all within ±5%.  The saturation temperature differences are 

within ±2 K and the COP differences are within ±0.5 for all data points.

7.2. Recommendations for Future Work

Although the validation results showed that the new simulation program is able to 

accurately predict heat pump performance over a wide range of operating conditions and 

configurations, there are still limitations in terms of input data and assumptions in this 

simulation program.  A list of recommendations with respect to the simulation 

capabilities are summarized as follows:

● Row-by-row heat transfer correlations:  Row-by-row heat transfer data are still 

rare in the literature.  The current row-by-row heat transfer correlations and 

conversion method are for a specific louvered fin type.  Only the fin density effect 
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was included in this study.  The louvered geometry effect, such as the louver 

angle, louver pitch, and number of louvers, etc. can be also brought into the 

picture to generalize the correlations and conversion method.

● Heat transfer from interconnecting pipes:  Currently, the heat transfer from 

interconnecting pipes are accounted for by inputting the temperature change 

across each interconnecting pipe to the simulation.  The heat transfer can directly 

alter the boundary conditions especially for the “Orifice Design Calculation” 

where the subcooling and superheat are specified.  If this heat transfer is not taken 

into account, the simulation solution will converge to different saturation 

temperatures and the resulting capacity will be off too.  It is particularly important 

for the suction line because it is the most sensitive refrigerant side input parameter 

to the system simulation.  For the experimental data in this research, the 

refrigerant was single-phase in the interconnecting pipes and the heat transfer 

could be estimated by the temperature measurement.  However, if the refrigerant 

is two-phase, the temperature measurement can not be used to estimate the heat 

transfer anymore.  It would be desirable to be able to calculate the heat transfer 

from the interconnecting pipes based on the ambient condition.  

● Compressor heat loss:  Similar to the heat transfer from interconnecting pipes , 

the compressor heat loss is also an input to the simulation.  It can affect the entire 

system simulation if it is not taken into account.  If refrigerant side measurements 

are available, the compressor heat loss can be estimated from the refrigerant side. 

However, refrigerant side measurements are not always available for general 

simulation.  An accurate compressor heat loss model from the air side is desirable. 
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The model can be based on the compressor operating condition, location of the 

compressor, and its surrounding temperature.

● Multi-system simulation:  For high tonnage systems, there are often more than one 

compressor.  The compressors may operate on different refrigerant loops or on the 

same loop.  The systems with multiple compressors on a single loop are 

advantageous from a control's point of view.  The simulation capacity could be 

extended to simulate such systems.  

● Refrigerant data:  The model validations only include two refrigerants, i.e. R22 

and R410A.  However, systems with other refrigerants (e.g. R407C) are also 

available in the industry.  The simulation program is capable of simulating 

different kinds of refrigerant because of the flexibility of the REFPROP table. 

Experimental data with other refrigerants are needed to extend the validation 

scope of this simulation program.

● Fan power consumptions:  The measured power consumption of the indoor and 

outdoor fans are inputs to the current simulation program.  However, they may 

not be immediately known to the system design engineers because they are related 

to the fan location, coil geometry, and the geometry of the system compartment. 

A CFD analysis can be used to determine the power consumptions for the heat 

pump simulation program.  This can be done separately from the simulation 

program because the indoor and outdoor fan power consumptions are kept 

constant during simulation.  
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10. APPENDIX

10.1. Verification of Flat Fin Heat Transfer Coefficients

Rich (1975) only presented j-factor data in his paper.  The local air temperature 

between rows are unknown.  Rich's heat transfer coefficients presented below are derived 

from Rich's j-factors and standard air properties for the closest approximation.
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Figure 10.1 Overall heat transfer coefficients.



   220

0

20

40

60

80

100

120

0 5000 10000 15000 20000 25000
RePr

H
ea

t t
ra

ns
fe

r c
oe

ffi
ci

en
t (

W
.m

-2
.K

-1
)

Test 1
Test 2
Test 3
Test 4
Test 5
Rich Data

Figure 10.2 Row 1 heat transfer coefficients.
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Figure 10.3 Row 2 heat transfer coefficients.
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Figure 10.4 Row 3 heat transfer coefficients.
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Figure 10.5 Row 4 heat transfer coefficients.



10.2. Louvered Fin Normalized Row-By-Row j-factors
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Figure 10.6 Coil 2 normalized row-by-row j-factor.
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Figure 10.7 Coil 3 normalized row-by-row j-factor.
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Figure 10.8 Coil 4 normalized row-by-row j-factor.
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Figure 10.9 Coil 5 normalized row-by-row j-factor.



10.3. Louvered Fin Scaled Row-By-Row Nusselt Number

   224

0

0.5

1

1.5

2

2.5

3

3.5

0 2000 4000 6000 8000 10000 12000

RePr

No
rm

al
iz

ed
 j-

fa
ct

or

Row1
Row2
Row3
Row4

Figure 10.10 Coil 6 normalized row-by-row j-factor.
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Figure 10.11 Coil 2 scaled row-by-row Nusselt number.
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Figure 10.12 Coil 3 scaled row-by-row Nusselt number.
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Figure 10.13 Coil 4 scaled row-by-row Nusselt number.
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Figure 10.14 Coil 5 scaled row-by-row Nusselt number.
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Figure 10.15 Coil 6 scaled row-by-row Nusselt number.



10.4. Nusselt Number Correlations
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Figure 10.16 Row 2 Nusselt number correlations.

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5

x+

Sc
al

ed
 N

u

Coil 1
Coil 2
Coil 3
Coil 4
Coil 5
Coil 6

Estimation curve for the lowest fin density

Estimation curve for the highest fin density

Figure 10.17 Row 3 Nusselt number correlations.



10.5. York Data Boundary Conditions

Table 10.1 Boundary conditions for compressor model validation.

Data set 
no.

Suction Saturation 
temp. (°C)

Discharge saturation 
temp. (°C)

Suction 
superheat (K)

1 10.7 45.9 3.2
2 8.6 39.0 13.8
3 9.2 39.3 18.8
4 10.8 48.8 12.1
5 8.7 42.0 17.3
6 9.5 47.2 12.1
7 7.6 40.4 15.8
8 10.1 50.6 5.5
9 8.3 43.6 11.3
10 9.5 42.0 15.0
11 -0.9 38.5 6.5
12 10.3 46.0 10.7
13 8.3 38.4 17.7
14 9.9 45.9 15.6
15 8.0 38.5 18.3
16 9.8 48.0 8.4
17 8.2 40.5 8.3
18 7.7 52.2 10.6
19 9.3 63.8 10.3
20 6.7 62.8 10.9
21 5.3 50.8 15.9
22 2.2 44.6 15.5
23 3.0 50.1 16.1
24 4.6 60.8 15.8
25 6.8 47.3 15.6
26 2.7 45.0 16.0
27 5.1 61.2 15.7
28 3.0 45.2 15.7
29 7.3 52.2 15.5
30 8.9 62.9 15.0
31 6.7 61.7 15.2
32 4.3 60.8 15.4
33 9.3 41.0 4.3
34 12.2 44.4 5.9
35 11.6 39.1 6.7
36 10.5 41.0 6.2
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Data set 
no.

Suction Saturation 
temp. (°C)

Discharge saturation 
temp. (°C)

Suction 
superheat (K)

37 10.5 45.4 5.4
38 11.7 55.3 3.7
39 10.7 42.2 7.4
40 8.6 34.6 14.6
41 6.8 34.2 7.1
42 11.2 43.8 8.4
43 9.3 36.5 16.6
44 7.7 35.9 10.3
45 8.3 38.5 6.3
46 5.5 37.5 5.9
47 9.2 54.1 5.8
48 8.3 49.3 9.4
49 -3.3 38.6 13.1
50 -1.7 40.0 19.0
51 8.7 46.6 9.6
52 -3.7 37.5 10.9
53 -3.3 41.0 10.3
54 -2.4 45.2 6.7
55 -3.6 39.9 10.6
56 -2.8 43.9 9.0
57 -6.6 30.9 12.1
58 -2.0 41.4 14.3
59 9.4 43.4 11.3
60 8.8 47.4 15.5
61 6.7 42.0 18.3
62 10.7 39.7 11.8
63 -0.4 40.0 6.0
64 0.1 36.9 4.5
65 6.8 42.8 4.5
66 -0.4 32.0 4.5
67 0.6 43.7 4.3
68 0.6 39.7 4.4
69 1.1 45.0 4.2
70 11.3 41.9 5.3
71 0.3 43.3 5.8
72 0.2 39.0 5.0
73 -0.4 34.2 5.2
74 11.8 48.1 6.1
75 12.0 43.6 10.4
76 -0.2 36.4 4.6
77 5.5 41.6 4.8
78 11.1 50.1 4.3
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Data set 
no.

Suction Saturation 
temp. (°C)

Discharge saturation 
temp. (°C)

Suction 
superheat (K)

79 12.5 59.0 14.2
80 -0.9 39.9 6.0
81 9.1 44.5 5.4
82 9.9 39.4 8.4
83 -2.0 38.1 6.9
84 -2.7 32.3 6.7
85 -1.3 45.9 6.8
86 -1.6 43.8 6.6
87 -2.1 38.2 6.9
88 7.6 41.3 11.2
89 4.3 33.7 4.1
90 6.3 34.1 13.9
91 5.8 34.1 13.6
92 7.0 46.3 8.5
93 3.3 28.7 8.5
94 8.0 46.8 8.1
95 2.8 34.2 8.5
96 5.2 40.0 8.1
97 7.5 41.0 7.7
98 9.7 41.8 11.7
99 8.6 36.2 13.7
100 7.5 30.6 15.6
101 10.0 47.7 11.6
102 8.3 41.5 8.0
103 6.4 46.4 8.4
104 5.9 40.6 8.0
105 7.0 46.4 8.5
106 12.1 46.4 9.5
107 9.8 30.1 10.6
108 5.8 28.9 7.9
109 9.5 38.6 8.8
110 8.8 26.7 9.2
111 10.3 27.3 10.8
112 11.8 38.3 10.2
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Table 10.2 Boundary conditions for short tube model validation.

Data set no. Inlet pressure (kPa) Inlet subcooling (K)
88 1521.0 2.2
89 1261.0 3.8
90 1274.5 4.7
91 1275.0 4.4

Table 10.3 Refrigerant side boundary conditions for condenser model validation.

Data set no. Ref. mass flow rate (kg.s-1) Inlet pressure (kPa) Inlet temperature (°C)
1 0.049 1767.5 74.3
2 0.045 1497.2 70.3
3 0.068 1508.2 72.6
4 0.078 1891.6 83.1
5 0.074 1611.0 79.2
6 0.087 1801.9 77.2
7 0.083 1532.4 72.3
8 0.108 1944.7 72.2
9 0.100 1646.8 69.2
10 0.069 1590.3 65.6
11 0.048 1473.1 45.8
12 0.087 1751.6 70.0
13 0.081 1451.7 67.8
14 0.091 1772.3 77.4
15 0.085 1484.8 70.2
16 0.106 1857.8 74.3
17 0.102 1553.0 64.2
18 0.179 2040.7 88.6
19 0.182 2633.5 106.4
20 0.166 2578.8 108.1
21 0.220 1977.5 93.5
22 0.203 1711.5 86.4
23 0.205 1946.8 94.3
24 0.210 2471.9 109.4
25 0.233 1823.7 86.3
26 0.205 1729.3 87.0
27 0.213 2489.3 109.5
28 0.207 1735.9 86.9
29 0.234 2044.5 92.9
30 0.240 2583.7 106.7
31 0.225 2516.3 107.7
32 0.208 2470.1 109.6
33 0.081 2459.0 61.0
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Data set no. Ref. mass flow rate (kg.s-1) Inlet pressure (kPa) Inlet temperature (°C)
34 0.095 2677.9 66.7
35 0.093 2358.4 60.5
36 0.113 2468.9 62.3
37 0.148 2744.9 69.8
38 0.153 3446.7 82.1
39 0.070 1608.9 67.2
40 0.066 1331.0 64.7
41 0.065 1318.6 58.1
42 0.088 1672.3 67.2
43 0.083 1397.9 65.8
44 0.082 1379.3 60.2
45 0.110 1478.6 63.8
46 0.101 1442.7 64.0
47 0.153 2125.2 82.8
48 0.147 1905.4 80.7
49 0.100 1508.3 78.2
50 0.103 1557.9 85.3
51 0.149 1780.6 73.5
52 0.099 1431.3 71.8
53 0.101 1566.3 76.7
54 0.105 1733.0 78.7
55 0.100 1523.3 75.7
56 0.103 1675.8 80.3
57 0.092 1203.7 64.9
58 0.104 1579.7 80.3
59 0.086 1668.3 77.0
60 0.103 1826.7 86.4
61 0.097 1605.3 82.3
62 0.078 2390.7 61.2
63 0.054 2405.9 66.6
64 0.057 2235.6 60.2
65 0.072 2574.1 64.4
66 0.056 1972.2 52.8
67 0.057 2635.5 71.1
68 0.057 2396.3 64.4
69 0.058 2716.9 72.7
70 0.095 2514.9 58.6
71 0.066 2607.2 71.2
72 0.067 2356.3 63.4
73 0.066 2089.4 56.3
74 0.101 2918.2 54.4
75 0.099 2620.3 61.2
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Data set no. Ref. mass flow rate (kg.s-1) Inlet pressure (kPa) Inlet temperature (°C)
76 0.069 2209.4 59.7
77 0.084 2503.1 64.4
78 0.115 3060.2 70.2
79 0.108 3749.7 92.9
80 0.077 2394.2 65.6
81 0.142 2675.5 65.7
82 0.145 2368.0 61.4
83 0.099 2305.3 64.3
84 0.098 1991.5 57.0
85 0.100 2782.4 76.0
86 0.100 2647.2 72.8
87 0.099 2313.5 64.4
88 0.067 1587.4 72.7
89 0.065 1316.9 58.2
90 0.066 1329.4 67.0
91 0.065 1331.4 66.4
92 0.112 1776.7 75.2
93 0.102 1130.5 52.9
94 0.115 1795.6 74.9
95 0.100 1315.5 60.2
96 0.107 1515.8 66.8
97 0.115 1551.8 66.3
98 0.121 1585.0 69.8
99 0.117 1381.3 64.8
100 0.113 1193.8 59.9
101 0.122 1835.2 77.8
102 0.119 1582.5 66.4
103 0.111 1781.8 75.0
104 0.110 1549.8 66.9
105 0.112 1779.9 75.1
106 0.058 2816.6 74.9
107 0.054 1887.8 55.4
108 0.047 1832.7 53.3
109 0.052 2340.8 64.8
110 0.039 1731.2 48.6
111 0.041 1755.1 49.6
112 0.042 2318.3 63.2
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Table 10.4 Refrigerant side boundary conditions for evaporator model validation.

Data set no. Ref. mass flow rate (kg.s-1) Outlet pressure (kPa) Inlet enthalpy (kJ.kg-1)
1 0.049 695.3 248.0
2 0.045 652.6 236.9
3 0.068 662.9 236.5
4 0.078 698.1 250.2
5 0.074 655.3 238.4
6 0.087 674.0 249.0
7 0.083 636.0 237.1
8 0.108 685.7 245.1
9 0.100 651.9 234.2
10 0.069 687.7 239.0
11 0.048 503.0 242.3
12 0.087 700.8 249.6
13 0.081 666.4 239.6
14 0.091 691.9 249.8
15 0.085 654.0 238.9
16 0.106 692.6 250.3
17 0.102 660.9 237.2
18 0.179 645.8 254.6
19 0.182 691.6 271.4
20 0.166 637.3 269.8
21 0.220 618.6 249.5
22 0.203 563.1 241.0
23 0.205 575.4 248.7
24 0.210 604.2 264.2
25 0.233 650.4 243.6
26 0.205 568.1 241.2
27 0.213 609.4 264.2
28 0.207 575.5 241.5
29 0.234 655.3 250.5
30 0.240 683.7 266.2
31 0.225 642.1 264.5
32 0.208 595.8 263.4
33 0.081 1062.1 257.8
34 0.095 1156.1 265.0
35 0.093 1138.4 255.4
36 0.113 1107.8 255.9
37 0.148 1100.1 267.4
38 0.153 1147.8 287.7
39 0.070 698.8 245.4
40 0.066 652.6 234.3
41 0.065 616.7 235.1
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Data set no. Ref. mass flow rate (kg.s-1) Outlet pressure (kPa) Inlet enthalpy (kJ.kg-1)
42 0.088 712.6 243.5
43 0.083 669.1 233.9
44 0.082 637.4 234.2
45 0.110 647.1 236.5
46 0.101 594.0 236.0
47 0.153 709.5 245.9
48 0.147 692.9 238.9
49 0.100 466.6 243.6
50 0.103 497.3 244.5
51 0.149 692.6 245.2
52 0.099 463.4 239.3
53 0.101 475.8 244.8
54 0.105 487.9 250.2
55 0.100 470.9 243.3
56 0.103 482.1 249.0
57 0.092 424.6 231.7
58 0.104 501.2 244.2
59 0.086 675.7 241.9
60 0.103 665.4 247.0
61 0.097 624.6 239.8
62 0.078 1118.7 263.7
63 0.054 799.4 259.1
64 0.057 817.4 255.4
65 0.072 1009.7 268.4
66 0.056 820.1 249.2
67 0.057 830.5 269.1
68 0.057 826.3 260.8
69 0.058 834.6 269.3
70 0.095 1133.1 259.3
71 0.066 821.5 261.6
72 0.067 824.9 254.9
73 0.066 822.9 248.1
74 0.101 1173.8 271.5
75 0.099 1173.1 261.3
76 0.069 804.3 252.7
77 0.084 967.0 261.8
78 0.115 1167.6 270.2
79 0.108 1227.6 299.1
80 0.077 781.5 250.6
81 0.142 1109.0 265.0
82 0.145 1134.5 255.0
83 0.099 794.6 252.1
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Data set no. Ref. mass flow rate (kg.s-1) Outlet pressure (kPa) Inlet enthalpy (kJ.kg-1)
84 0.098 776.7 243.8
85 0.100 813.2 265.7
86 0.100 806.3 263.4
87 0.099 795.3 252.4
88 0.067 647.8 246.2
89 0.065 584.8 234.3
90 0.066 616.9 233.8
91 0.065 609.8 234.1
92 0.112 643.2 243.4
93 0.102 572.8 221.6
94 0.115 662.8 243.7
95 0.100 563.7 228.4
96 0.107 605.8 235.3
97 0.115 649.9 236.2
98 0.121 699.5 236.4
99 0.117 675.7 229.3
100 0.113 648.8 222.3
101 0.122 711.4 244.1
102 0.119 669.5 236.7
103 0.111 630.8 243.5
104 0.110 621.3 236.1
105 0.112 645.1 243.4
106 0.058 1158.3 258.7
107 0.054 1089.5 228.7
108 0.047 961.3 229.3
109 0.052 1073.0 244.9
110 0.039 1055.2 228.1
111 0.041 1102.0 228.2
112 0.042 1150.9 247.6

Table 10.5 Refrigerant side boundary conditions for system level validation.

Data set no. ∆Tsuc (K) ∆Tsup (K) ∆Tsucln (K) ∆Tdisln (K) ∆Tliqln (K) Heat loss (%)
1 6.1 3.2 0.0 0.0 0.0 12.9%
2 7.7 13.8 0.0 0.0 0.0 30.2%
3 6.6 18.8 1.8 0.0 -0.2 27.8%
4 5.6 12.1 0.0 0.0 0.0 15.5%
5 7.2 17.3 0.0 0.0 0.0 17.8%
6 2.8 12.1 2.1 -4.8 -0.4 16.1%
7 4.3 15.8 1.4 -5.3 -0.5 16.1%
8 7.9 5.5 3.6 -2.9 -0.3 23.4%
9 8.7 11.3 4.5 -3.4 -0.3 23.3%
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Data set no. ∆Tsuc (K) ∆Tsup (K) ∆Tsucln (K) ∆Tdisln (K) ∆Tliqln (K) Heat loss (%)
10 8.7 15.0 0.0 0.0 0.0 44.4%
11 3.3 6.5 1.2 -13.3 0.0 42.1%
12 4.0 10.7 8.6 -6.6 1.0 17.6%
13 4.1 17.7 2.7 -7.2 1.5 17.2%
14 3.3 15.6 3.1 -6.4 0.2 11.0%
15 4.4 18.3 2.0 -6.6 0.4 12.9%
16 5.2 8.4 5.9 -7.4 -0.1 5.7%
17 7.8 8.3 5.8 -5.0 -0.1 12.1%
18 6.2 10.6 1.1 0.0 -1.5 12.1%
19 6.1 10.3 1.4 0.0 -0.4 13.8%
20 6.5 10.9 1.7 0.0 -0.4 14.0%
21 7.4 15.9 2.0 0.0 -0.1 17.6%
22 7.4 15.5 2.3 0.0 -0.4 16.3%
23 7.4 16.1 3.2 0.0 -0.3 17.0%
24 7.1 15.8 4.6 0.0 -0.2 18.2%
25 7.0 15.6 0.8 0.0 0.2 17.3%
26 7.6 16.0 1.6 0.0 -0.2 17.3%
27 7.5 15.7 4.1 0.0 -0.2 18.3%
28 7.5 15.7 1.7 0.0 -0.1 16.8%
29 7.2 15.5 1.6 0.0 0.1 18.3%
30 6.9 15.0 3.2 0.0 -0.3 20.0%
31 7.3 15.2 3.6 0.0 -0.5 18.8%
32 7.7 15.4 4.7 0.0 -0.5 18.1%
33 5.1 4.3 -0.1 -1.5 -0.3 14.7%
34 4.4 5.9 -1.2 0.0 0.0 18.6%
35 4.3 6.7 -1.2 0.0 0.0 18.2%
36 5.3 6.2 0.4 0.0 -0.1 17.4%
37 4.1 5.4 1.0 0.0 0.0 11.7%
38 3.5 3.7 0.7 0.0 0.0 11.4%
39 4.4 7.4 5.7 -1.3 -2.4 17.0%
40 5.1 14.6 1.7 -1.6 -1.6 18.8%
41 4.1 7.1 6.0 -1.3 -1.9 17.7%
42 7.0 8.4 7.2 0.0 -3.2 27.8%
43 7.0 16.6 2.2 0.0 -2.5 30.8%
44 6.1 10.3 3.8 0.0 -2.7 28.6%
45 6.3 6.3 2.2 0.0 -0.8 13.2%
46 6.0 5.9 3.1 0.0 -0.9 12.3%
47 14.9 5.8 2.1 -2.7 0.0 10.8%
48 15.6 9.4 2.9 -2.5 0.0 9.5%
49 2.3 13.1 1.3 -2.6 0.0 11.8%
50 2.9 19.0 1.3 -2.5 0.0 9.6%
51 5.6 9.6 1.6 -3.4 0.0 16.6%
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Data set no. ∆Tsuc (K) ∆Tsup (K) ∆Tsucln (K) ∆Tdisln (K) ∆Tliqln (K) Heat loss (%)
52 4.1 10.9 4.2 -4.1 0.0 15.5%
53 3.6 10.3 4.2 -4.0 0.0 14.1%
54 3.6 6.7 3.3 -4.1 0.0 15.2%
55 3.7 10.6 4.3 -3.8 0.0 14.6%
56 3.3 9.0 4.0 -3.8 0.0 13.8%
57 3.8 12.1 3.3 -3.8 0.0 17.4%
58 4.5 14.3 3.4 -3.7 0.0 14.7%
59 7.2 11.3 -0.7 -2.3 0.0 9.0%
60 6.3 15.5 -0.7 -3.2 0.0 5.2%
61 6.3 18.3 -0.7 -3.5 0.0 6.7%
62 1.0 11.8 0.8 -5.8 -0.2 17.0%
63 4.0 6.0 2.7 -2.6 -0.9 103.3%
64 3.1 4.5 2.4 -1.8 -1.2 20.8%
65 1.3 4.5 1.2 -1.4 -0.7 19.4%
66 1.5 4.5 1.4 -1.8 -0.7 21.8%
67 2.2 4.3 2.4 -2.2 -1.2 18.6%
68 2.8 4.4 2.4 -2.2 -1.2 18.9%
69 3.4 4.2 2.8 -2.6 -1.3 17.4%
70 3.9 5.3 1.2 -5.3 -0.8 9.7%
71 5.8 5.8 2.8 -3.0 0.0 11.6%
72 4.9 5.0 2.4 -2.3 -0.9 12.8%
73 3.9 5.2 1.8 -2.2 -0.8 14.2%
74 3.5 6.1 3.3 -18.5 -0.3 13.4%
75 5.4 10.4 1.1 -9.5 -0.3 13.6%
76 3.7 4.6 2.2 -2.8 -1.0 16.3%
77 3.5 4.8 1.3 -2.3 -0.8 13.0%
78 6.7 4.3 1.5 -3.1 -0.3 18.0%
79 1.9 14.2 1.8 -3.9 -0.7 18.7%
80 8.2 6.0 2.7 -4.9 -4.0 13.6%
81 1.3 5.4 0.4 -2.4 0.6 114.2%
82 1.3 8.4 -0.1 -2.6 0.5 16.3%
83 5.5 6.9 2.1 -3.6 -0.8 103.6%
84 4.4 6.7 1.4 -3.1 -0.7 15.1%
85 5.7 6.8 2.4 -3.6 -1.0 15.1%
86 4.8 6.6 2.1 -3.6 -0.9 14.8%
87 5.4 6.9 2.1 -3.6 -0.8 15.0%
88 2.2 11.2 3.2 -1.3 -2.2 16.1%
89 3.8 4.1 3.4 -1.1 -2.3 13.5%
90 4.7 13.9 1.3 -1.4 -2.0 14.6%
91 4.4 13.6 1.6 -1.6 -2.0 15.1%
92 7.6 8.5 3.6 -0.1 -2.5 19.2%
93 6.3 8.5 1.8 -0.2 -1.9 20.7%
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Data set no. ∆Tsuc (K) ∆Tsup (K) ∆Tsucln (K) ∆Tdisln (K) ∆Tliqln (K) Heat loss (%)
94 7.7 8.1 2.7 -0.2 -2.7 18.9%
95 7.0 8.5 2.6 -0.3 -2.3 19.7%
96 7.4 8.1 2.5 -0.2 -2.4 19.1%
97 7.2 7.7 1.4 -0.2 -2.3 19.2%
98 7.5 11.7 0.4 -0.2 -2.2 19.9%
99 7.3 13.7 -0.1 -0.3 -1.9 20.9%
100 7.0 15.6 -0.6 -0.4 -1.6 22.1%
101 8.0 11.6 0.4 -0.1 -2.6 19.7%
102 7.2 8.0 0.9 -0.2 -2.4 19.7%
103 7.7 8.4 3.7 -0.3 -2.6 19.6%
104 7.3 8.0 2.5 -0.3 -2.3 19.1%
105 7.7 8.5 3.6 -0.3 -2.6 18.8%
106 10.1 9.5 -0.5 -1.2 -1.0 10.9%
107 11.4 10.6 -0.3 -1.2 -0.9 12.8%
108 10.2 7.9 1.5 -1.2 -0.9 11.5%
109 10.4 8.8 -0.3 -0.8 -0.9 12.7%
110 9.1 9.2 -1.3 -1.2 -0.8 15.2%
111 9.5 10.8 -1.5 -1.2 -0.8 16.8%
112 8.8 10.2 -1.7 -1.2 -0.8 14.1%
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