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CHAPTER I. 

INTRODUCTION 
 
 

Nanoindentation technique for measurements of mechanical properties has been 

developed since early 1980’s. The areas of its applications have been growing in the past 

15 years due to the commercial availability nanoindentation instrumentation and the ease 

of applying the technique to measure mechanical properties of very small amounts of 

materials, such as thin solid films, wires, components in MEMS and NEMS, for which it 

is a challenge to determine properties using conventional testing methods, such as tensile 

or tortional tests. 

 Nanoindentation is an extension of conventional indentation technique to micron and 

submicron scales. The conventional indentation tests have been established as a standard 

method to measure mechanical properties of materials for more than one century (Dieter, 

1986). Fig. 1-1 shows a schematic setup for nanoindentation. In a typical nanoindentation 

test, or depth sensing test, a nanoidenter tip of certain geometry (usually, Berkovich, 

spherical, conical, or flat punch) indents into the workpiece, while the load applied and 

induced depth are recorded. The early understanding of indentation problem was 

attributed to Hertz (1896), hunter (1960), Boussinesq (1885) and Sneddon (1965). Hertz 

(1896) solved the problem of elastic contact between two spheres. The Hertzian problem 

was investigated by Hunter (1960) for viscoelastic materials. Boussineq (1885) derived 
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the solution for stress and strain distribution of concentrated force on half space of elastic 

materials. Sneddon (1965) generalized the relationship between load and depth of 

indentation for elastic axisymmetric indentation problems. These solutions laid the 

foundation for extracting mechanical properties (including viscoelastic properties) from 

nanoindentation data. 

 

Fig. 1-1 A schematic for the mechanism of nanoindentation 

 

Fig. 1-2 A schematic indentation using conical indenter (Oliver and Pharr, 1992) 
 

αααα 
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A contact profile from nanoindentation using a conical indenter is depicted in Fig. 1-2. In 

this figure, h is the indentation depth (the tip displacement) that is composed of hs, the 

depth at perimeter of the free surface, and hc, the contact depth, hf is the depth of 

impression after load is fully removed and a is the contact radius. Fig. 1-3 shows a typical 

form of nanoindentation load- displacement data. Conventional indentation tests deal 

primarily with relatively large deformation. The hardness of a material is obtained by the 

maximum indentation force divided by the projected area of final impression measured 

optically after the load is removed (Pethica, Hutchings, Oliver 1983). 

 

Fig.1-3  

Fig. 1-3 A typical load-displacement curve of nanoindentation 
 

With the increasing applications of very small structures, such as MEMES (Mirco-

Electronic-Mechanical System), and very small amounts of material, such as thin film 

deposited on substrates, indentation technique was developed to provide an approach for 
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measuring properties at micron and sub-micron scales. Oliver, Hucthings and Pethica 

(1986) proposed a method to determine the hardness by calculating the contact area with 

the depth of impression obtained after indentation load is removed. Doerner and Nix 

(1991), Oliver and Pharr (1991, 1992) later refined the method to determine the contact 

area through indenter shape calibration. Using the contact area at maximum load and by 

considering Sneddon’s solution for an elastic indentation problem, they developed 

methods to measure elastic modulus and hardness. In their improved methods, the contact 

area is measured at submicron resolution without the necessity to image optically the 

indent impression, as conventional indention tests did. Thus their improved methods have 

simplified nanoindentation testing procedures significantly on elastic-plastic materials. 

While nanoindentation technique has been widely applied for elastic materials, it has 

attracted increasing attention for measuring mechanical properties of viscoelastic 

materials, such as polymers. Since the invention of synthetic polymers last century, they 

have been increasingly used in mechanical and chemical engineering. Due to their high 

specific strength, ease of fabrication and high corrosion resistance, they are anticipated to 

play an important role in some engineering areas, such as medical, automotive and 

aerospace industry. In these applications, how to measure reliably and effectively 

mechanical properties of polymers is critical to understand the deformation and failure of 

polymers and their components. In a variety of applications involving use of small 

amounts of polymers, such as filaments and fibers used in medical implants, polymer 

films deposited on substrates, the conventional methods are not suitable to measure some 

mechanical properties, such as Young’s modulus in the through-thickness direction. 

Consequently, nanoindentation becomes an important technique in these situations. 
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Despite the fact that nanoindentation technique for measurements of some properties, 

such as Young’s modulus and hardness for elastic-plastic materials, has been well 

established and used widely, nanoindentation on viscoelastic materials is not fully 

understood even in the regime of linear viscoelasticity. For nanoindentation on 

viscoelastic materials in the regime of linear viscoelasticity, the viscoelastic properties in 

both time domain and frequency domain are often of interest. In this dissertation, 

methods are presented to measure viscoelastic functions in both time and frequency 

domains for time-dependent materials using nanoindentation.  

Solutions to linearly viscoelastic contact mechanics problems have been derived in 

the past. Radok (1960) found analytical solution to the viscoelastic contact problem 

involving a spherical indenter; some results have been reported on indentation on 

viscoelastic materials. Shimizu, Yanagimoto and Sakai (1999), Sakai and Shimizu (2001) 

investigated the viscoelastic response of soda lime silica glass through pyramidal 

indentation at glass transition temperature. Cheng et al. (2000) measured the relaxation 

modulus using a flat-ended cylindrical punch for a polymer that can be described by a 

three-element model. Vanlandingham et al. (2005) measured relaxation modulus under a 

near-step displacement and creep compliance using a near-step loading and investigated 

the applicability of linear viscoelasticity in nanoindentation on polymers. Cheng and 

Cheng (2005) derived an expression of unloading stiffness for a linearly viscoelastic solid 

under nanoindentation. These investigations are useful under their respective situations 

but are far from complete. 

For measurement of viscoelastic properties in frequency domain using 

nanoindentation, Loubet et al. (1995) proposed a method based on analogy between 
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indention under cyclic loading and uniaxial counterpart, but there was no rigorous theory 

to support it. To use nanoindentation to find the viscoelastic properties of a general 

viscoelastic material in linear regime, consensus methods need to be developed, which is 

the objective of this work. In this dissertation (Chapter 4), from the original definition, an 

analytical method is derived to compute the complex creep compliance. And with the 

data provided by dynamic indentation experiments, the creep compliance for some solid 

polymer materials is obtained. They are compared with conventional counterparts to 

validate the method. The details will be presented later in this study. 

Poisson’s ratio, as one of two independent mechanical properties for isotropic linearly 

elastic (or viscoelastic) materials, plays a very important role in the deformation of 

materials, and is often assumed as constant in the measurement of some material 

properties, such as creep compliance in nanoindentation. While it is adequate to assume 

the Poisson’s ratio as a known constant value for viscoelastic materials, such as 

polymers, well below the glass transition temperature, analysis based on assumption of a 

constant Poisson’s ratio above glass transition temperature can induce considerable 

errors, since the Poisson’s ratio of the viscoelastic material under this situation varies 

with time. In this dissertation, a method is developed to measure two independent 

viscoelastic functions using nanoindentation without recourse to the assumption of a 

constant Poisson’s ratio. 

This dissertation consists of nine chapters. In the first three chapters, background on 

the measurements of viscoelastic properties using nanoindentation is reviewed and 

methods for measuring linearly viscoelastic functions are developed and validated. In 
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the two chapters that follow, the developed methods are applied to two different films to 

determine the relaxation modulus. The dissertation is organized as follows. 

 In Chapter 2, previous methods from literature for measurements of elastic properties 

are reviewed; some theories on elastic and contact mechanics problems are summarized. 

In Chapter 3, methods are developed for measuring creep compliance in time domain 

using nanoindentation under two quasi-static loading histories, namely, a constant rate 

loading and a step loading. Equations for determining creep compliance are derived and 

validated using two solid polymers, polymethyl methacrylate (PMMA) and 

polycarbonate (PC). 

In chapter 4, a method is developed for measuring creep compliance in frequency 

domain using nanoindentation under dynamic loading histories which are achieved by 

superimposing a small oscillation upon a constant rate loading or step loading. Equations 

for determining complex creep compliance are derived and validated using PMMA and 

PC through comparing the nanoindentation data to data from Dynamic Mechanical 

Analysis. 

In Chapter 5, a method is developed to measure two shear relaxation modulus and 

shear bulk modulus using nanoindentation assuming Poisson’s ratio as functions of time. 

The method is validated on two bulk polymers, namely, poly(vinyl acetate) (PVAc) and 

PMMA above and below the glass transition temperatures, respectively. 

In Chapter 6, methods for measuring in-plane and out-of-plane relaxation moduli are 

applied to single-wall carbon nanotube composite films made by layer by layer assembly. 
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In Chapter 7, the out-of-plane relaxation modulus of Tympanic Membrane is 

determined using the methods developed for measuring viscoelastic functions in time 

domain; the in-plane relaxation modulus is determined by a method based on the 

correlation between load-displacement results from finite element analysis and those 

from nanoindentation, and through the analytical analysis of the load-displacement data 

for a clamped circular film subjected to a central concentrated force. 

In Chapter 8, methods are presented to measure uniaxial/shear relaxation modulus for 

linearly viscoelastic materials using nanoindentation. A constant rate displacement 

loading history is applied in nanoindentation tests. Based on viscoelastic contact 

analysis, uniaxial/shear relaxation modulus is extracted from nanoindentation load-

displacement data from nanoindentation experiments. The methods for direct 

measurement of shear relaxation modulus can avoid the solution of an ill-posed problem 

in conversion from creep functions determined using load control in nanoindentation.  

Chapter 9 gives a thorough summary for the dissertation. 

In measurements of mechanical properties of viscoelastic materials, one of interesting 

and hardly-understood phenomena in nanoindentation is the appearance of negative 

slope in the unloading load-displacement curve for some polymers. To date, in literature 

there has been no quantitative explanation for this phenomenon. A rigorous approach to 

address the negative phenomenon is suggested for implementation in future work. 

Another work is to determine the master curves of viscoelastic properties for polymers 

using nanoindentation. Determination of the master curve for polymers is very important 

to predict the long-term behavior. In contrast from the measurements of viscoelastic 

properties at room temperature at which Poisson’s ratio can normally be assumed as a 
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constant for polymers with much higher Tg than room temperature, the Poisson’ ratio 

can no longer be assumed to be constant since in the development of master curves 

nanoindentation has to be conducted at a series of elevated temperatures at which 

Poisson’s ratio changes with time. To analyze data at elevated temperatures the methods 

introduced in Chapter 5 for the measurements two independent viscoelastic functions 

can be applied, and shear relaxation modulus (or bulk modulus) functions can be 

measured at different temperatures to form master curves using the time-temperature 

superposition principle. 
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CHAPTER II.  

FUNDAMENTAL THEORIES ON NANOINDENTATION 

 
Some theories on elasticity, linear viscoelasticity, that form the foundation for 

nanoindentation technique, are summarized in this chapter. Linear elastic contact 

mechanics will be introduced, followed by linear viscoelastic analysis. 

 

2.1 Elastic indentation problem 
 

 
For an elastic problem of contact between a spherical indenter and a half-space, 

Hertz (1896) derived the pressure (the normal stress) in the contact region 

22

0
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where µ is shear modulus, v the Poisson’s ratio, R the radius of the spherical indenter, 

and r0 contact radius. 

Integrating over the contact area yields the force applied by the indenter. 
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According to Hunter (1960), for a rigid spherical indenter, if h«R 

Rhr =2

0 ,               (2-4) 

where h is the displacement of tip of indenter. 

From Eqs. (2-3) and (2-4), the relationship between loading and displacement for 

spherical indentation is: 

2

3

)1(3

8
h

v

R
P

−
=

µ
.              (2-5) 

Sneddon (1965) derived the general expressions for depth and loading in terms of 

indenter shape function. He also obtained relationship between loading and depth for 

several indenter tips. His equations for flat and conical indenters are widely used. For 

indentation by a flat-end circular indenter tip, the Sneddon’s equation for load-

displacement is:  

h
v

R
P

−
=
1

4µ
,              (2-6) 

where R is the radius of flat indenter. 

For conical indenter, the equation is 

 2

)1(

cot4
h

v
P

−
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π
αµ

                  (2-7) 

where α is denoted as shown in Fig. 1-2.  

It is noted that above equations are limited to rigid indenter, with an elastic modulus 

assumed to be infinity. For the problem of a deformable indenter indenting into a half-

space, the reduced modulus was introduced (Ficher-Cripps, 1999). For conical indention, 

the loading-depth equation is then 
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where Er
 is reduced modulus, which is expressed as 
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where v and vi are the Poisson’s ratios of the sample material and the indenter, 

respectively, and E, Ei  are the Young’s modulus data of the sample material and the 

indenter, respectively. 

A detailed derivation for solutions to indentation problem of elastic half space by 

rigid cylindrical, conical and spherical indenters, as well by elastic indenters was given 

by Ling, Lai and Lucca (2002). They also gave solutions to indentations of rigid indenters 

into an elastic layer supported by a rigid plane. For example, for indentation by a 

cylindrical indenter into a elastic layer with a height of h supported by a rigid substrate 

(Fig.2-1), Eq. (2-6) is changed into 

ξξω
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This result is very conducive for the investigation of the mechanical behavior of solid 

thin film using nanoindentation.  
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      Fig. 2-1 Indentation of elastic layer by cylindrical indenter (Ling, Lai and Lucca, 
2002) 
 

Usually the indenters used are made of diamond so that they can be considered as 

rigid materials, especially for indentation on polymers as the difference in modulus data 

is two orders of magnitude. Consequently, in this dissertation, the equations for elastic 

indentation can be applied readily without considering deformation of the indenter. 

In indentation on elastic-plastic materials, the contact area between indenter and 

sample material is needed to extract properties, such as elastic modulus and some other 

properties. Doerner and Nix (1986) found a linear relationship between contact stiffness 

and square root of projected contact area. King (1987) also found the same relationship 

through finite element simulation. Take spherical indentation as an example, 

differentiating Eq. (2-5) with respect to h leads to   

h
v

R

dh

dp
S

−
==

1

4µ
,               (2-13) 

where S is the contact stiffness. Considering Rhr =2

0 , we have 

)1(

2
2v

EA

dh

dp
S

−
==

π
.              (2-14) 

Pharr, Oliver and Brotzen (1992) demonstrated that above equation is the general 

relationship between contact stiffness, contact area and modulus for all kinds of 
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axisymmetric rigid indenters. Based on the above equation, Oliver and Pharr (1992) 

proposed an improved method to measure Young’s modulus and hardness. In their 

method, the load-displacement curve at initial unloading is fitted with a power law 

equation. The power law equation is used to calculate the stiffness S. The contact areas 

which is function of the contact radius is determined by relating contact radius hc to the 

indentation displacement h, based on Sneddon’s solution to axisymmetric indentation 

problem. The contact area, taken as function of contact depth after indenter shape 

calibration, has such form as follows 

 L
8/1

4

4/1

3

2/1

21

2

0 ccccc hahahahahaA ++++=           (2-15) 

The Young’s modulus is then calculated through Eq. (2-14) after the contact area and 

contact stiffness are known. The method documented by Oliver and Pharr is regarded as a 

standard technique to measure elastic properties, and has been frequently quoted in 

nanoindentation. In this dissertation, some part of this method will also be applied and 

compared for indentation on polymers. 

 

2.2 Local stress-strain analysis of indentation problem 

 

Sneddon (1965) found the relation of indentation load and depth, and he also gave the 

pressure distribution in indentation direction.  In this section, equations for the local 

surface stress of sample are derived based on displacement field proposed by Sneddon on 

elastic indentation problem. 
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r

hc

Z

O

hα

a

  

Fig. 2-2 Elastic indentation problem 

Boundary condition: 

0)0,( =r
rz

σ , 

)/()0,( arfhru
z

−= ,     0≤ r≤ a          (2-16) 

0)0,( =r
zz

σ ,        r> a 

where f(r/a) is the shape function, expressed as the depth of the tip to the cross section of 

radius of r. 

Sneddon showed that displacement components fields could be specified as “dual integral 

equations” as follows 

])()21[(
)1(2

),( 1

1

z

r
eazv

v

a
zru ξξψξξ −−−−

−
−= h ,        

])())1(2[(
)1(2

),( 1

0

z

z
eazv

v

a
zru ξξψξξ −−+−

−
= h ,        (2-17) 

( 0=θu ) 

where ξξξξξ ηη drJzfzf )(),()],([
0
∫
∞

=h , is Hankel transform of order of η  (η =0,1 in 

this case). 

And among these equations, )(ξψ  can be represented as 
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 ∫=
1

0

)cos()()( dttt ζχξψ .           (2-18) 

Sneddon (1965) obtained the function )(tχ  for different kinds of indenter. For conical 

indenter,  

)1(
2

)( t
h

t −=
π

χ .             (2-19) 

Substituting (2-19) into (2-18), one has 

)cos1(
12

)(
2

ζ
ζπ

ζψ −=
h

.                        (2-20) 

Substituting (2-20) into (30-16), one has 

])()21[(
)1(2

)0,( 1

1

z

r
eazv

v

a
ru ξξψξξ −−−−

−
−= h  

  ∫∫
∞

−
−

−=
1

00
1

cos)()(
)1(2

)21(
atdttdrJ

v

va
ξχξξ  

  ∫∫
∞

−
−=

1

00
1

cos)()(
)1(2

tdttdxJ
v

a
ζχξζ               ( ,

a

r
x =  and x≥ t) 

  dtt
h

xv

v
)1(

21

)1(2

21 1

0

−
−

−
−= ∫

π
  

  
πr
ah

v

v

)1(2

12

−
−

=  ,                      (2-21) 

αtan)/()0,( rharfhru
z

−=−= ,           (2-22) 

0=θu .              (2-23) 

Next, strain is determined from Eqs. (2-17) and (2-21). Because of axisymmetric 

characteristic for nanoindentation problems, the strain field can be computed as 

following: 
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z

u
z

z ∂

∂
=ε ; 

r

u
r

r ∂

∂
=ε ; 

r

u
r=θε .               (2-24) 

Then 

( ) ξξξψξε ξ dezv
z

arJ
v

va

z

u zz

z
}]12{[)()(

)1(2

)21(
0

0

−
∞

+−
∂
∂

−
−

−=
∂
∂

= ∫ ,         (2-25) 

ξξξψξε darJ
v

va
z

)()(
)1(2

)12(
0

00 ∫
∞

= −
−

=  

        )]([
)1(2

12
0

ζψh
av

v

−
−

= .             (2-26) 

From  Sneddon’s solution for )0,(r
z

σ , 

)]([
)1(

)0,(
0

ζψ
µ

σ h
va

r
z −

−=  

  )/(cosh
)1(

2 1 ra
va

h −

−
−=

π
µ

,               (2-27) 

we can derive 

)/(cosh
)1(

)12( 1 ra
av

hv
z

−

−
−

=
π

ε ,   (z=0)         (2-28) 

π
ε

2)1(2

21

r

ah

v

v

r

u
r

r −
−

=
∂
∂

= ,        (z=0)         (2-29) 

π
εθ 2)1(2

21

r

ah

v

v

r

u
r

−
−

−== .         (z=0)           (2-30) 

Substituting Eqs. (2-28), (2-29) and (2-30) into Stress- Strain relationship, one can obtain 

stresses at the surface (z = 0), 

)
21

(
1 r

u

v

v

v

E r
kkr ∂

∂
+

−+
= εσ  

      ]
2

1
)(cosh

21
[

1

)12(
2

1

2 r

ah

r

a

a

h

v

v

v

vE
−

−−
−

= −

π
,           (2-31) 
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)
21

(
1 r

u

v

v

v

E r
kk +

−+
= εσ θ  

      ]
2

1
)(cosh

21
[

1

)12(
2

1

2 r

ah

r

a

a

h

v

v

v

vE
+

−−
−

= −

π
,         (2-32) 

)/(cosh
)1(

2 1 ra
va

h
z

−

−
−=

π
µ

σ ;  =rzσ  =θσ r 0=
zθσ .         (2-33) 

According to Sneddon, for conical indenter, there are α
πµ

tan
1

2

v

a
P

−
= , απ tan

2

1
ah = . 

Using these relationships, we can rewrite Eqs. (2-31) and (2-32) in another form, 

P
r

v

r

a
v

v
r 2

1

2

)21(
)(coshtan

1 π
α

µ
σ

−
+⋅

−
−= − ,        (2-34)  

P
r

v

r

a
v

v 2

1

2

)21(
)(coshtan

1 π
α

µ
σ θ

−
−⋅

−
−= − .        (2-35) 

These and Sneddon’s result for zσ , 

)/(cosh
)1(

2 1 ra
va

h
z

−

−
−=

π
µ

σ ,           (2-36) 

give all the stress components in elastic contact problem at the interface of the contact 

surface and free surface, ar = . These stress components are 

P
a

v
rrr 22

)21(
'

−
==

π
σσ ,            (2-37) 

P
a

v
22

)21(
'

−
−==

π
σσ θθθ ,            (2-38) 

0' == zz σσ .               (2-39) 

 

2.3 Linear viscoelasticity 
 

The stress-strain relation can be described by convolution integral based on Boltzman 
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superposition principle, which takes stress (strain) prehistory into consideration. The 

linearly viscoelastic constitutive law is 

 ζ
ζ
ζσ

ζε d
d

d
tDt

t

kl
ijklij ∫

∞−

−=
)(

)()( .        (2-40) 

where ijklD  are components of creep tensor, ijε and klσ  are shear strains and shear 

stresses, respectively. For isotropic materials, the deviatoric stress- strain relations are 

ζ
ζ

ζ
ζ d

d

dS
tJte

t
ij

ij ∫
∞−

−=
)(

)(
2

1
)( ,                (2-41) 

and ζ
ζ

ζ
ζµ d

d

de
ttS

t
ij

ij ∫
∞−

−=
)(

)(2)( ,                 (2-42) 

where J and µ are creep compliance and relaxation modulus, respectively. 

If time is defined as positive, one has 

ζ
ζ

ζ
ζ d

d

dS
tJStJte

t
ij

ijijij ∫ −+= +

0

)(
)(

2

1
)0()(

2

1
)(              (2-43) 

and ζ
ζ

ζ
ζµµ d

d

de
tettS

t
ij

ijij ∫
∞−

+ −+=
)(

)(2)0()(2)( .            (2-44) 

 

2.4 Linearly viscoelastic indentation problem  
 

Indentation into half space of a workpiece is a three dimensional problem. Because 

the contact stresses and strains are highly localized close to the contact area, and their 

magnitude decreased rapidly with distance from the point of contact, the deformation 

field is inhomogeneous. Therefore, with complexity of stress and strain distribution under 

the indenter, it is not practical to solve a viscoelastic indentation problem directly based 
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on the constitutive equations, such as Eqs. (2-40) and (2-41). It is noted that load and 

displacement are the only data output from nanoindentation. Thus, it is convenient to 

characterize the linearly viscoelastic behavior by examining load-displacement 

relationship. 

 For viscoelastic contact problems, Lee (1955) found his solution by applying inverse 

Laplace transformation of the corresponding elastic problem. However, such a method is 

valid only when the boundary conditions can be prescribed. For nanoindentation of 

viscoelastic materials, both the traction boundary and displacement boundary are 

changing with time as the contact between the indenter and the workpiece changes with 

time. It is not possible to predict explicitly the history of both traction boundary and 

displacement boundary. Therefore direct application of the correspondence principle is 

not appropriate for solving viscoelastic indention problem. Lee and Radok (1960) later 

proposed an approach applicable for viscoelastic contact problems with moving boundary 

conditions. They showed that the Hertzian contact problem in viscoelasticity could be 

solved by replacing the elastic constants in elastic problem with integral operators under 

condition of non-decreasing contact area, such that the corresponding viscoelastic 

problem could be expressed in hereditary form. Using the Hertzian solution to elastic 

indentation problem and assuming that the viscoelastic material is incompressible (Eq.2-

5), the load-displacement relation follows for a spherical indenter, 

)(
3

8
)(

2

1 2/3

0
thRd

d

dP
tJ

t

=−∫ τ
τ

τ .        (2-45) 

In this dissertation, Lee and Radok’s hereditary operator based on elastic indentation 

solution will be applied to develop a consensus method to measure viscoelastic properties 

of polymers. 



 21 

CHAPTER III.  

MEASUREMENTS OF CREEP COMPLIANCE (TIME-DOMAIN)  

USING NANOINDENTATION 

 
 
3.1 Analytical prerequisites 
 
 

In this section a method to measure local surface creep compliance for linearly 

viscoelastic materials is proposed and validated.  

As introduced before, the load-displacement relationship for spherical indentation 

problem, i.e., Hertz problem is: 

2

3

)1(3

8
h

R
P

ν
µ
−

= ,                      (3-1) 

where µ is shear modulus, v Poisson’s ratio, R the radius of the spherical indenter, and r0 

contact radius. Applying Lee and Radok’s method, one has 

ξ
ξ
ξ

ξ
ν

d
d

dP
tJ

R
th

t

∫
∞−









−

−
=

)(
)(

8

)1(3
)(2/3 ,                     (3-2)  

Under a constant rate loading history, )()( 0 ttHvtP = , with 0v being loading rate, Eq. (3-

2) becomes 

        ξξ
ν

dJ
R

v
th

t

∫
−

=
0

02/3 )(
8

)1(3
)( ,              (3-3) 
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where 0v is loading rate. Differentiation of Eq.(3-3) with respect to time yields 

       
dt

dh

v

thR
tJ

0)1(

)(4
)(

ν−
= .                (3-4) 

Sneddon’s solution for elastic conical indentation problem, in terms of load-displacement 

relationship is 

       2

)1(

cot4
h

v
P

−
=

π
αµ

                    (3-5) 

where α is the angle between the cone generator and the substrate plane. Again applying 

Lee and Radok’s method to Eq.(3-5) leads to: 

      ξ
ξ
ξ

ξ
α
νπ

d
d

dP
tJth

t

∫
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−

−
=

)(
)(

cot4

)1(
)(2             (3-6) 

Under a constant rate loading, )()( 0 ttHvtP = , with )(tH being Heaviside function,  

finally Eq.(3-6) becomes 

      
dt

tdh

v

th
tJ

)(

tan)1(

)(8
)(

0 ανπ −
=          (3-7) 

Eq.(3-3) and Eq.(3-7) will be used for the computation of creep compliance in terms of 

derivative of displacement with respect to time under constant rate loading. Due to the 

fact that data from for displacement nanoindentation experiments are usually scattered, 

the derivative of displacement with respect to time based on experimental data can induce 

some error, even if the related curve is fitted. An alternative approach is proposed next. 

The general representation of the creep function based on the generalized Kelvin model is 

        )1()(
1

0 ∑
=

−

−+=
N

i

τ

t

i
ieJJtJ ,                     (3-8)                                                                                                  



 23 

where NJJJ ,,, 10 ⋅⋅⋅  are compliance numbers, and Nτττ ,,, 21 ⋅⋅⋅  are retardation times.  

For the Berkovich indenter, substituting Eq.(3-8) into Eq. (3-6) one has 
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ii
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Considering tvtP 0)( = , Eq.(3-9) can be rewritten as 
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If we fit Eq. (3-10) into the experimentally measured load-displacement curve using the 

least square correlation, we can find a set of best-fit parameters NJJJ ,,, 10 ⋅⋅⋅  and 

Nτττ ,,, 21 ⋅⋅⋅ . We may then substitute these constants to Eq. (3-8) to determine the creep 

function when the Berkovich indenter is used in nanoindentation. 

The same method for data reduction to determine J(t) can be applied to a spherical 

indenter. For a spherical indenter, substitution of Eq. (3-5) into Eq. (3-3) leads to 
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Since tvtP 0)( = , Eq.(3-11) can be rewritten as 
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Similar to the approach for a conical indenter, we can fit Eq. (3-12) into the 

experimentally measured load-displacement curve to find a set of the best-fit parameters 

NJJJ ,,, 10 ⋅⋅⋅  and Nτττ ,,, 21 ⋅⋅⋅ , we then substitute these parameters into Eq. (3-8) to 

determine the creep function when a spherical indenter is used in nanoindentation. 
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It is noted that applicability of the hereditary integral operator provided by Lee and 

Radok (1960) as shown in Eqs. (3-3) and (3-6) is based on the condition that contact area 

between indenter and workpiece is non-decreasing with time. It should be pointed out 

that in Eqs. (3-3) and (3-6) the Poisson’s ratio is assumed to be constant. 

 

3.2 A corrected method to obtain creep function under a step loading 
 
 

Section 3.1 details the determination of creep function from indentation under ramp 

loading.  Alternatively, under step loading the creep function could be also obtained. For 

a step loading suddenly applied in indentation, it could be expressed in terms of 

Heaviside function: 

      )()( 0 tHPtP = .            (3-13) 

Substituting it into Eq.(3-6) , one can derive the creep function for Berkovich indenter: 

     .
tan)1(

)(4
)(

0

2

αPνπ

th
tJ

−
=            (3-14) 

Also substituting it into Eq.(3-2) , one has for spherical indentation: 

     .
)1(3

)(8
)(

0

2/3

Pν

thR
tJ

−
=                (3-15) 

Eqs. (3-14) and (3-15) are derived for theoretical step loading, however, such ideal step 

loading could never be realized in practice. On one hand, the sudden increase of loading 

will take some certain time, even though it is very short. On the other hand, even 

seemingly infinitesimal time of increase of sudden load will cause unfavorable impact on 

the instrument, which could induce error for experimental data. Thus, instead the creep 

test is implemented by applying ramp loading with short rise time (usually 1s in this 
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study) followed by constant loading hold for comparatively long time. According to 

conventional creep test, the beginning data for 10 times of the rising time are not reliable 

for computation, which means in creep indentation experiment, the initial data of 11 s 

cannot be taken for determination of creep function of linearly viscoelastic materials, i.e., 

the creep function for 11 s in the beginning is lost.  Nonetheless, such a period of time is 

a considerable portion, if the whole time scale for experiment is not large. Lee and 

Knauss (2000) proposed a method to compute shear modulus for that period time of 

interest. They used Boltzman superposition principle to reformulate the relationship 

between stress and strain. To avoid the loss of the accurate data, this study took a method 

similar to that used by Lee and Knauss. 

 

 

 

 

 

Fig. 3-1 A ramp loading history 

 

The work presented by Lee and Knauss is on the data correction for uniaxial stress 

state, while indentation problem as discussed herein is a three dimensional stress state. 

Formulas need to be derived for data correction to determine the creep function using 

load-displacement relation in a viscoelastic indentation problem.  As shown in Fig.(3-1), 

based on Boltzman superposition principle, a realistic loading, can be considered as the 

superposition of two different loading histories  

t0 

P0 

t0 t t t t 

P P P 
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       )()()()()()( 000021 ttHttvttHvtPtPtP −−−=−= ,       (3-16) 

where 0v is the ramp loading rate. 

For a conical indenter, substituting )()()()( 0000 ttHttvttHvtP −−−= into Eq.(3-6) , 

one has: When t< 0t , 
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Differentiation of Eqs.(3-17) and (3-18) with respect to time t yields 
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Similarly, for a spherical indenter, the following results are obtained: 
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Therefore, the procedure of data correction could be considered as reversed computation 

started at some point, for example, ten times of rise time. For a conical indenter, using 
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Eqs. (3-19) and (3-20), the data of the creep function determined by Eq. (3-14) can be 

corrected through the following steps: 

(i) For 00 )1( tktkt +≤≤ , compute )( 0ttJ −  at 00 tλmktt += by Eq. (3-20) and 

result of J(t) calculated with Eq. (3-14), whereλ  is some sufficiently small 

number, λ/10 ≤< m  , and k is a positive integer, usually 10≥k . 

(ii) For  00)1( ktttk ≤≤− , compute )( 0ttJ − at 00)1( tλmtkt +−= by Eq. (3-20) 

and result from (i). 

(iii) Repeat the same step as (ii) for 00)1( ntttn ≤≤− , where 3,,2,1 L−−= kkn . 

(iv)  For ,0 0tt <≤ compute J(t) by Eq. (3-19). 

For a spherical indenter, the same method can be used to correct the initial part of creep 

function. Simply replace Eqs. (3-14), (3-19) and (3-20) in (i)-(iv) for a conical indenter 

by Eqs. (3-15), (3-21) and (3-22), respectively.   

 

3.3 Experiments 
 
 

An MTS Nano Indenter XP system was employed in nanoindentation, where both 

Berkovich and spherical indenters were used. All the experiments were started after the 

indenter drift rate due to environment noise reached within 0.05nm/s. The room 

temperature and humidity were carefully monitored and maintained to be 22.5 oC and 

50% respectively.  

Two bulk polymers, Polycarbonate (PC) and Polymethyl Methacrylate (PMMA) were 

chosen as test materials. The glass transition temperature for PC and PMMA are 145 oC 

and 105 oC respectively. They were annealed for two hours at the temperature 5  oC above 
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their glass transition temperatures, and cooled down to room temperature at rate of 5 

oC/hr. After annealing, the sample materials were stored at bell jar for 72 hours before the 

experiments were carried out.  

 

3.4 Result and discussion 

 
 

As shown in Fig.3-2, a ramp loading history and a step loading history were applied 

in the experiments. The resulted load-displacement curves at ramp loading for both 

Berkovich indenter and spherical indenter are shown in Fig.3-3.  

 

 

 

 

 

 

        (a) Constant rate loading           (b) Realistic step loading 

Fig. 3-2 Constant loading rate history and step loading history 
 

Because the measurement of creep function is based on linear viscoelasticity, it’s 

critical that overall deformation in the course of indentation is within the limit of 

linearity. It is assumed that when the indentation depth is small enough, the displacement 

will be fully recovered some time after complete unloading, and it could be inferred that 
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the test materials should deform within the limit of viscoelastic linearity.  One 

straightforward way to determine the linearity is to observe the impression after removal 

of the loading. After experiments, the material sample surface was observed with help of 

SEM (Scanning Electron Microscopy). It was found that for PMMA, when the depth was 

below 780 nm, no impression was observed. And also it was observed that for PC no 

impression left when the depth below 1123 nm. Thus approximately, the depth limit of 

linearity for PMMA and PC could be considered as 780 nm and 1123 nm respectively.  

For experiment at ramp loading, the method in terms of derivative of displacement 

with respective to time and exponential fitting of load-displacement curve, i.e. Eqs.(3-4) 

and (3-7), were applied to retrieve the creep function for PMMA and PC. For curve 

fitting method, the load-displacement curve was fitted at displacement less than limit of 

linearity.  Fig 3-4 shows the fitted curves for PMMA and PC.  
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(a) Berkovich indenter   (b) Spherical indenter  

Fig. 3-3 Load-displacement curves for Berkovich indenter and spherical indenter 
 

For experiment at step loading, the method introduced in Sec. 3.1.3 is used to correct 

data of creep function. Because of “fading effect” of viscoelastic materials, the creep 
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function after enough long time (here 20s) was computed using Eqs. (3-14) and (3-15), 

while the initial 20s of creep compliance data were computed from a reversed procedure 

described in Sec.3.2.  

The final results for creep function from ramp loading experiment and step loading 

experiments are shown in Fig.3-5, where they were compared with conventional data. 
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(a) PC using Berkovich indenter              (b) PMMA using Berkovich indenter 
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          (c) PC using spherical indenter          (d) PMMA using spherical indenter 

Fig. 3-4 Experiment curve and fitting curve for load-displacement 
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Fig.3-5 shows that the measured creep compliance of represented solid polymers agree 

with well with the conventional data. Thus, within linear viscoelasticity, the introduced 

methods to compute creep function are validated to be appropriate for viscoelastic 

materials. 

Time (s)

C
re
e
p
C
o
m
p
li
a
n
c
e
(1
/G

P
a
)

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

Conventional J

Ramp Load-dh/dp

Ramp Load-Fit

Step Load

Time (s)

C
re
e
p
C
o
m
p
li
a
n
c
e
(1
/G
P
a
)

0 10 20 30 40 50 60 70
0

0.3

0.6

0.9

1.2

1.5

1.8

Conventional J

Ramp Load-dh/dp

Ramp Load-Fit

Step Load

 

     (a) PMMA using Berkovich indenter          (b) PC using Berkovich indenter 
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(c)PMMA using spherical indenter                     (d) PC using spherical indenter 

 
Fig. 3-5 Creep compliance measured from nanoindentation 
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CHAPTER IV 

 
MEASUREMENTS OF COMPLEX CREEP COMPLIANCE (FREQUENCY 

DOMAIN) USING NANOINDENTATION 

 

4.1 Introduction 
 
 

Methods for measuring the Young's modulus have been very well established for 

time-independent materials. Based on the assumption that unloading in the load-

displacement curve induces only elastic recovery, Oliver and Pharr (1992) pioneered a 

method to determine basic material properties such as the Young’s modulus. The method 

is based on Sneddon's solution (1965) for the relationship between the load and 

displacement for an axisymmetric indenter indenting into a half-space composed of a 

linearly elastic, isotropic and homogeneous material. While the methods work well for 

time-independent materials (metals, etc.), applying the methods directly to viscoelastic 

materials has experienced problems. For example, the unloading curve in viscoelastic 

materials sometimes has a negative slope (Oyen-Tiesma et al., 2001), under situations in 

which a small unloading rate and a relatively high load were used for a material with 

pronounced viscoelastic effects. Some work has been done in recent years to improve the 

methods proposed by Oliver and Pharr (1992) to determine the Young's modulus, or the 

Young's relaxation modulus. Cheng et al. (2000) derived the analytical solutions for 
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linear viscoelastic deformation, and provided a method to measure viscoelastic properties 

using a flat-punch indenter. Lu, et al. (2003) proposed methods to measure the creep 

compliance of solid polymers using either Berkovich or spherical indenter. Hutcheson 

and Mckenna (2005) analyzed the interaction between nanosphere particles and polymer 

surfaces using viscoelastic contact analysis by considering a time-dependent Poisson’s 

function.  

For a viscoelastic material, in addition to the representation of viscoelastic properties 

in the time-domain, the material properties can also be represented by complex material 

functions in the frequency-domain. A method was proposed by Loubet et al. (1995) for 

the computation of the complex modulus of viscoelastic materials. The method uses data 

acquired from an MTS Nano Indenter XP System installed with a Continuous Stiffness 

Module (CSM). The CSM allows cyclic excitation in load or displacement and the 

recording of the resulting displacement or load (Lucas, Oliver, and Swindeman, 1998). 

The indentation displacement response and the out-of-phase angle between the applied 

harmonic force and the corresponding harmonic displacement are measured continuously 

at a given excitation frequency. Loubet et al. presented the following equations to 

compute the complex modulus )(* ωE : 

"')(* iEEE +=ω , with 
A

S
E

2
'

π
=  and 

A

C
E

2
"

ωπ
= ,                    (4-1)  

where 'E  and "E  are the uniaxial storage modulus and the loss modulus, respectively, 

S  the contact stiffness, C the damping coefficient, and A the contact area between the 

indenter and the workpiece. This method was used to measure the complex modulus of 

polyisoprene. In an effort to examine the formulas in Eq. (4-1), we conducted 
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experiments using an MTS Nano Indenter XP system with CSM, and used the formulas 

in Eq. (4-1) to compute the complex modulus of polycarbonate (PC) and polymethyl 

methacrylate (PMMA) at 75Hz. Data are computed at all times at this frequency, and 

plotted in Fig. 4-1, but only steady state values represent the complex viscoelastic 

function. Also shown in Fig. 4-1 are the conventional data measured from Dynamic 

Mechanical Analysis (DMA) (for details, please see Sections 4.3 & 4.4) for the same 

batch of PC and PMMA. The uniaxial storage modulus of PC measured by DMA at 75 

Hz is 2.29 GPa. However, the storage modulus computed using Eq. (4-1) is much higher 

than this value, indicating the difficulty associated with the method described in Eq. (4-1) 

for measurement of storage modulus for PC. Similar problem is evident for PMMA. Also 

shown in these figures are storage modulus data measured by the proposed method that 

will be discussed in Section 4.4.  
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   (a)             (b) 

Fig. 4-1 Comparison of storage compliance at 75 Hz computed by two methods (a) PC. 
(b) PMMA. 
 



 35 

This study is intended to develop a method to measure the complex viscoelastic 

functions of time-dependent materials in the frequency-domain using nanoindentation 

with a spherical indenter. Based on solutions for the indentation of an axisymmetric 

indenter into a linearly elastic material, viscoelastic indentation under a time-harmonic 

loading condition is analyzed using a hereditary integral operator as proposed by Lee and 

Radok (1960). Formulas are derived to process the amplitudes of load and displacement 

as well as the out-of-phase angle between load and displacement to determine the storage 

and loss parts of the complex compliance (or modulus) function using a spherical 

indenter. The Lee-Radok approach is applicable to situations where the contact area 

between the nanoindenter and the workpiece does not decrease. When the condition of 

non-decreasing contact area is not satisfied, Ting’s approach (1966) is used to estimate 

the difference between the approximation from Lee-Radok approach and the solution 

obtained from the Ting approach. Dynamic nanoindentation tests were conducted on PC 

and PMMA to determine the complex compliance, and results are compared with data 

obtained from DMA on the identical materials to validate the method presented. 

 

4.2 Theoretical background 
 

In this section, we present derivation of the formulas for the computation of complex 

compliance for a linearly viscoelastic material. The formula for the complex modulus is 

also presented, as it is simply the reciprocal of the complex compliance. Formulations 

will be given for a spherical indenter that will be used in experimental verification in this 

study. 



 36 

 

 

 

R

h
Z= 0 a

Z

 

(a)       (b) 

Fig. 4- 2 Geometry of the spherical indenter. (a) Schematic diagram of the indenter. (b) A 
TEM image of the spherical indenter tip. 
 

Fig. 4-2 shows the geometry of a spherical indenter. We first consider the problem of a 

spherical indenter indenting into a half space composed of a homogenous, linearly elastic, 

isotropic material. The diamond indenter is assumed to be a rigid because of the huge 

difference in the Young’s modulus between the indenter and polymer samples; and the 

material occupies the half space (z ≥ 0). The spherical indenter has a tip radius R. Based 

on the Hertzian solution, under the condition that the ratio of indentation depth to radius 

of indenter is not higher than 0.16 (Giannakopoulos, 2000), the relation between the 

applied indentation load and the indentation displacement can be expressed by (Hertz, 

1881, Ling, 2002) 

2/3

)1(3

8
Gh

R
P

ν−
= ,             (4-2) 

R 3.4 µm 
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where G is the shear modulus, ν  the Poisson’s ratio, P the applied indentation load, and 

h the indentation displacement.  

For the nanoindentation of a spherical indenter into a viscoelastic material, we 

assume a constant Poisson’s ratio. During nanoindentation experiments in which a 

relatively short time (such as ~250 s used in this study) is involved, the Poisson's ratio 

(Lu et al., 1997) does not change significantly for some polymers in the glassy state, such 

as PMMA. Thus it is assumed that a constant Poisson's ratio will not cause much error in 

the complex compliance data. 

For a half space composed of a linearly viscoelastic material, we consider first the 

case in which the contact area between the indenter tip and the work material is non-

decreasing. The condition for non-decreasing contact area will be established at the end 

of the section. Using the hereditary integral operator proposed by Lee and Radok (1960) 

in Eq. (4-2), the indentation load-displacement relation is represented by 

3/ 2 3(1 ) ( )
( ) ( )

8

t
dP

h t J t d
dR

ν θ
θ θ

θ−∞

−
= −∫ ,                                                                      (4-3) 

where )(tJ  is the creep compliance function in shear in the time-domain, 0)( =tP  for 

0<t .  

Consider a sinusoidal nanoindentation load superimposed on a step loading, 

represented by  

tPtHPtP m ωsin)()( 0∆+= ,                                                                                 (4-4) 

where H(t) is the Heaviside unit step function, Pm is the carrier load, or main load, ∆P0 is 

the amplitude of the harmonic load. Eq. (4-4) implies 0)( =tP  for 0<t .  

Inserting Eq. (4-4) into Eq. (4-3), we have 
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3/ 2
0

0

3(1 )
( ) [ ( ) ( ) cos ].

8

t

mh t P J t P J t d
R

ν
ω θ ωθ θ

−
= + ∆ −∫                                     (4-5) 

The contact radius is )()( tRhta = . Considering that the complex compliance is defined 

after the harmonic response has reached a steady state (or equivalently ∞→t ), we have 

]}cos)("sin)('[)({
8

)1(3
)( 0

2/3 tJtJPtJP
R

th m ωωωω
ν

−∆+
−

=                   (4-6) 

where 
0

'( ) ( ) sinJ J t tdtω ω ω
∞

= ∫  and 
0

"( ) ( )cosJ J t tdtω ω ω
∞

= − ∫  are storage compliance 

and loss compliance in shear, respectively. Note that the complex compliance in shear is 

)(")(')(* ωωω iJJJ −= . On the other hand, the total displacement as output from a 

nanoindenter is expressed as  

)sin()()( 0 δω∆ −+= ththth m ,            (4-7) 

where )(thm  is the carrier displacement, and δ  is the out-of-phase angle between the 

applied harmonic force and displacement. This representation is based on the fact that 

displacement is behind of load in phase in dynamic nanoindentation. 0h∆  is typically of 

the order of a few nm while hm(t) is of the order of a few hundreds nm under step loading 

so that 0h∆ << )(thm , Eq. (4-7) leads to 

),(cossin)(
2

3
sincos)(

2

3
)()( 00

2/1
0

2/12/32/3 hothththththth mmm ∆+∆−∆+= ωδωδ           (4-8) 

where )( 0ho ∆  represents high order terms of 0h∆ , and they are negligible under 

condition of 0h∆ << )(thm . Comparing Eq. (4-6) with Eq. (4-8), we find that 

)(
8

)1(3
)(2/3 tJP

R
th mm

ν−
=   ,                                                                                             (4-9) 
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Under the loading condition in which a small sinusoidal load is superimposed upon a 

constant rate loading, i.e.,   

tPtvtP ωsin)( 00 ∆+= ,          (4-11) 

where 0v  is the loading rate, following similar procedures as in deriving Eq. (4-10), the 

formulas to determine complex compliance can also be derived under the condition that 

the time t has evolved to a value such that )(thm >> 0h∆ . 

Substituting Eq. (4-11) into Eq. (4-3) for the spherical indenter, we have 

[ ]3/ 2
0 0

0

3(1 )
( ) ( ) '( ) sin "( )cos

8

t

h t v J t d P J t J t
R

ν
θ θ ω ω ω ω

 −  
= − + ∆ − 

  
∫ .    (4-12) 

Comparing Eq. (4-12) with Eq. (4-8), the same formulas as in Eq. (4-10) for the complex 

compliance can be derived for a small oscillatory load superimposed upon a constant rate 

loading. 

Eq. (4-10) is used to determine the complex compliance in shear from 

nanoindentation. The uniaxial complex compliance, )(ωD , can be computed from 

)](1[2

)(")('
)(")(')(

*

*

ων
ωω

ωωω
+

−
=−=

iJJ
iDDD ,        (4-13) 

where )(' ωD  and )(" ωD  are uniaxial storage modulus and loss modulus, respectively, 

)(* ων  the complex Poisson’s ratio.  Assuming that )(* ων  is a constant during short-time 

nanoindentation tests for glassy polymers, from Eqs. (4-10) and (13), )(' ωD  and 

)(" ωD can be computed by 
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Similarly, the complex modulus in shear can also be determined by )(/1)( ** ω=ω JG , 

and the uniaxial complex modulus can be computed by )(/1)( ** ωω DE = .  

It should be noted that Eq. (4-3) is valid only if the indentation contact area is non-

decreasing (Lee and Radok, 1960). Under the oscillatory loading condition, indentation 

can possibly induce decreasing contact area, in which case, the Lee-Radok integral 

operator will cause a residual surface traction at points not in contact at current time but 

formerly within the contact region, thus violating the boundary condition that the surface 

traction should vanish outside the contact region. In the case of arbitrary contact area 

history, Ting (1966) developed an analytical approach to solve the problem of 

axisymmetric viscoelastic indentation by a rigid indenter. The Ting approach leads to the 

same results as those derived from the Lee-Radok approach when the contact area is non-

decreasing. The Ting approach, however, is necessary in the case where decreasing 

contact area occurs in nanoindentation.  

We next provide a condition under which non-decreasing contact area is maintained 

so that the solution derived from the Lee-Radok approach is valid. In terms of Eq. (4-8) 

and )()( tRhta = , for a small harmonic loading superimposed on a constant rate 

loading, if ω00 Pv ∆≥ , as seen from Eq. (4-11) for a harmonic loading superimposed on a 

constant rate loading, the non-decreasing load leads to the non-decreasing contact area in 

the entire indentation history. For a harmonic loading superimposed on a step loading, 

when 0hhm ∆≤ &ω , from Eq. (4-7) the contact area will be non-decreasing during the 

whole process; as the frequency exceeds the critical value 0hhmc ∆= &ω , the contact area 
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increases and decreases with time as a result of the applied harmonic load so that the Ting 

approach should be adopted. Nevertheless, as will be discussed in Section 4.2, under 

certain condition when cωω > , the solutions derived from the methods by Lee & Radok 

and Ting are very close, even though the solution from the Lee-Radok approach is not 

justified. Since a closed-form solution derived from the Lee-Radok approach exists, 

while only numerical solution can be obtained using the Ting approach, the formulas 

derived for a harmonic superimposed on a step loading from the Lee-Radok approach 

could be used to estimate the complex viscoelastic functions in the regime of linear 

viscoelasticity.  

 

4.3 Experiments 
 

We conducted two independent tests, namely nanoindentation and DMA tests, to 

find the complex viscoelastic functions of the same materials. The results would be 

compared to examine the measurement technique by nanoindentation. We describe in 

this section first DMA experiments and then nanoindentation experiments.   

4.3.1 DMA experiments 

The conventional data of complex compliance were obtained by DMA tests. Dynamic 

Mechanical Analyzer, model RSA α (Rheometric Scientific), was employed in the 

measurements of complex compliance. In DMA three-point bending tests were conducted 

on both PC and PMMA, which have the dimensions of 50 × 13 × 1.7 mm and 50 × 13 × 

1.4 mm, respectively. The PC material was made by GE Plastics. The PMMA was made 

by Rhom and Haas, which is the same batch of materials as used by Lu et al. (1997). The 
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glass transition temperatures for PMMA and PC are 105 oC and 144 oC, respectively. 

Before testing, all samples were annealed for two hours. The annealing temperatures for 

PMMA and PC samples were 110 oC and 150 oC, respectively. They were then cooled 

down slowly, at a cooling rate of about 5 oC/hr, to room temperature. The annealed 

samples were further stored in a container with a constant relative humidity 50%, to 

allow the samples to be aged for about 72 hrs prior to DMA tests. These procedures are 

necessary to ensure property consistency as the behavior of polymers depends on a 

variety of conditions including previous stress history, aging time and moisture 

concentration. 

 

For the comparison with the complex compliance data from nanoindentation conducted at 

22 oC, the frequency range is 0 - 260 Hz. However, The DMA can only reach a frequency 

up to 16 Hz. In order to extend the frequency range for conventional data of complex 

compliance, temperature-frequency trade-off was applied (Ferry 1950). To implement 

this, DMA tests were performed at selected lower temperatures. The complex compliance 

data at these temperatures were shifted to obtain master curves that cover the frequency 

range of 0 - 260 Hz (see Section 4.1 for details). 

 

4.3.2  Nanoindentation experiments 

Nanoindentation tests were conducted using an MTS Nano Indenter XP system. The 

capacities of indentation depth and load with this system are 500 mµ  and 500 mN, 

respectively. The resolutions of displacement and load are 0.01 nm and 50 nN, 

respectively. A spherical indenter with a tip radius 3.4 mµ  was used on the XP module. 
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Fig. 4-2(b) shows a TEM micrograph of the spherical indenter tip. The tip is 

axisymmetric and has a spherical surface within the depth of indentation (up to ~500 nm) 

considered in this study. The same PC and PMMA in DMA tests (see Section 4.3.1) were 

used in nanoindentation experiments. The material preparation procedures were identical 

to those used in DMA experiments. All nanoindentation tests were performed at 22 oC. 

The surface roughness values as measured by an AFM (Digital Instruments Dimension 

3100) were 2.859 nm for PC and 2.286 nm for PMMA, respectively. These small surface 

roughness values justify the consideration of smooth and flat sample surfaces in 

nanoindentation involving indentation depths up to a few hundreds nm; nanoindentation 

results under the same conditions were found to be repeatable. In order to reduce the drift 

caused by noise and temperature gradient during nanoindentation tests, the indenter 

system was enclosed in a chamber. All nanoindentation tests did not start until a thermal 

equilibrium state was reached and the drifting of the indenter tip dropped below a set 

value, typically 0.05 nm/s. 

The CSM implemented in XP module was used to apply the dynamic excitation with 

a frequency range of 3 - 260 Hz. A prescribed harmonic displacement was set before each 

experiment. In experiments, the nanoindenter modulates the amplitude of harmonic force 

to produce the set target in harmonic displacement, typically with amplitude between a 

fraction of a nm and a few nm. After the indenter tip had made contact with the surface of 

test sample, the indentation load, depth, harmonic load amplitude, harmonic displacement 

amplitude, and out-of-phase angle between the harmonic load and the displacement were 

recorded simultaneously at a sampling rate of five data points per second. The loading 

history employed in the dynamic indentation test was small harmonic loading 
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superimposed on a quasi-static loading, i.e., either a step loading or a constant rate 

loading. The step loading was implemented by a constant rate load (at a short-rise time, 

e.g., 2 s) followed by a constant load. After the harmonic response had reached a steady 

state, data were used to determine the complex compliance of the material.  
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4.4 Results and discussions 
 
 

4.4.1 DMA results 

DMA tests were performed at temperatures 22 oC, 10 oC, 0 oC and -10 oC for PMMA, 

and 22 oC, 10 oC and 0 oC, for PC. Fig. 4-3 shows the storage compliance and loss 

compliance in shear for PMMA and PC at different temperatures. As shown in Fig. 4-3, 

the complex compliance of PC does not change much in this range of temperature and 

frequency, while the complex compliance of PMMA presents considerable change. Based 

Fig. 4-3 Complex compliance from DMA  
 tests at different temperatures. 

Fig. 4-4 Master curves of complex  

compliance in shear 
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on the curves of complex compliance at different temperatures, very smooth master 

curves are obtained using frequency-temperature superposition. The shift factors, in 

logarithmic scale referred to 22 oC, Log Ta , are 1.6 s and 3.2 s at 10 oC and 0 oC for PC, 

respectively; the Log Ta  for PMMA are 1.2 s, 2.0 s and 2.8 s at 10 oC, 0 oC and -10 oC, 

respectively. Fig. 4-4 shows the master curves of complex compliance of PMMA and PC, 

reaching up to 410  Hz. The range is wide enough for the comparison with 

nanoindentation data. It is observed from Fig. 4-4 that there is no β - transition within the 

frequency range for both PC (Sane and Knauss, 2001, Knauss and Zhu, 2002) and 

PMMA (Lu et al., 1997). 

 

4.4.2 Nanoindentation results 

Results on the complex compliance from nanoindentation measurements are 

presented and discussed in this section. Two types of loading histories were applied in the 

indentation tests; they were: (1) a small harmonic load superimposed on a constant rate 

loading; and (2) a small harmonic load superimposed on a step loading. We first present 

the input and output of nanoindentation tests under the two loading histories. 
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      (c)       (d) 

Fig. 4-5 Nanoindentation output from oscillation on a constant rate loading at 10 Hz. (a) 
Carrier load-depth curve. (b) History of amplitude of harmonic load. (c) Response of 
harmonic displacement amplitude. (d) Out-of-phase angle with correction 
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Fig. 4-6 Comparison of contact radius results at 75 Hz using the Lee-Radok approach and 
the Ting approach. (a) Contact radius computed for PMMA under a harmonic load 
superimposed on a step loading. (b) Contact radius computed for PC under a harmonic 
load superimposed on a step loading. 
 

Constant rate carrier loading was used in the first type of dynamic indentation. When 

the loading rate 0v  is greater than ω0P∆ , the contact area will be non-decreasing under 

dynamic loading so that the Lee-Radok approach is applicable.  

The loading rate used for both PC and PMMA is 0.04 mN/s. Fig. 4-5(a) shows the 

quasi-static component of load-depth curve. Fig. 4-5(b) shows the harmonic load 

amplitude as the input, and Fig. 4-5(c) shows the harmonic displacement in response to 

the harmonic load. The steady values of 0P∆  for PC and PMMA are 0.445 µN and 0.602 

µN, respectively. Therefore the condition, ω00 Pv ∆≥ , is satisfied, resulting in non-

decreasing contact area. It is noted that the condition for non-decreasing contact area can 

be satisfied at all frequencies, up to 135 Hz, in nanoindentation with the use of 

appropriate loading rate 0v  so that the formulas in Eq. (4-10) can be applied to find the 
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complex compliance in shear. In addition to the requirements in non-decreasing contact 

area, it is necessary to ensure that the harmonic displacement is much smaller than the 

carrier displacement. As the carrier displacement increases with time to larger values, for 

example, 200 nm for PMMA and PC, the contribution from higher order terms of 0h∆ / mh  

is well less than 1% so that the use of Eq. (4-10) is justified. The out-of-phase angle 

between harmonic load and harmonic displacement is shown in Fig. 4-5(d). 

The second dynamic loading condition is a harmonic load is superimposed on a step 

loading. As discussed in Section 4.2, if 0hhm ∆≤ &ω , the contact area will be non-

decreasing, indicating that when the creep rate is high and the amplitude of harmonic 

displacement is small, the non-decreasing contact area condition can be still satisfied at 

some frequencies, so that the solutions in Eq. 4-10 using the Lee-Radok hereditary 

operator are applicable. For example, with the indentation input shown in Figs. 4-7(a) and 

(b) (details of Fig. 4-7 will be discussed later), the frequency limits, cω , below which the 

condition of non-decreasing area holds, are 2.4 Hz for PC, and 6.5 Hz for PMMA, 

respectively. If 0hhm ∆> &ω , the contact area will decrease. In this case, Lee-Radok 

approach seems not applicable. However, considering the loading condition in this study, 

the resulting harmonic displacement for both PC and PMMA is very small compared to 

the carrier displacement, normally, mhh 006.00 <<∆ . Therefore, the variation in the 

contact area between the indenter and the sample surface is always less than ~1% after a 

steady state in oscillatory response has reached, so that the effect of change in the contact 

area is not significant. To demonstrate this, the viscoelastic indentation problem is solved 

numerically using the Ting approach. With a periodical displacement output in the form 

of Eq. (4-7), it suffices to consider only one cycle of the history in the steady state. We 
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present results on contact radius only; other results, such as the indentation displacement, 

can be obtained in the similar way. In the first half cycle starting from the valley (lowest 

point in a cycle) in the steady state, the contact area is increasing; the Ting approach 

gives the same results as those obtained from the Lee-Radok approach, that is 

3

0

3(1 )
( ) ( ) ( ( ))

8

t
R

a t J t d P
ν

τ τ
−

= −∫          (4-15) 

where P(t) is given by Eq. (4-4). For the second half of the cycle, in which the contact 

area is decreasing, the solution derived from the Ting approach is  

),()( 1tata =                        (4-16) 

where 1t  is obtained by 
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P t G t d aτ τ
ν

= −
− ∫ ,         (4-17) 

where G(t) is the shear relaxation modulus. Using the creep functions of PC and PMMA, 

the contact radius in one cycle can be determined after the sinusoidal response has 

reached the steady state. Fig. 4-6 shows the results of contact radius for PC and PMMA 

materials at 75 Hz, under a harmonic load superimposed on a step loading. At 75 Hz, the 

frequency limit for non-decreasing contact area condition has been exceeded. The results, 

however, indicate that the contact radius computed by the Lee-Radok approach correlates 

well with those obtained by the Ting approach. The correlation coefficients for PMMA 

and PC are 0.939 and 0.993, respectively. At frequencies higher than cω , Eq. (4-10) and 

its variants should be considered as an approximation for the viscoelastic functions in the 

frequency-domain.  
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   (c)      (d) 

Fig. 4-7 Nanoindentation output from oscillation on a step loading at 75 Hz. (a) Carrier 
load-depth curve. (b) The history of harmonic load amplitude. (c) Response of harmonic 
displacement amplitude. (d) Out-of-phase angle with correction. 
 
In the context of presentation of complex compliance in this work, Eq. (4-10) is used at 

all frequencies under a harmonic loading superimposed on a step loading, but results in 

nanoindentation at frequencies higher than cω  should be understood as a very good 
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approximation to the actual values due to the high correlation between approximate and 

accurate solutions. 

The nanoindentation results of input and output under the second dynamic loading at 

75 Hz are shown in Fig. 4-7. Fig. 4-7(a) records the corresponding quasi-static carrier 

load-depth curve (without the harmonic component) for both PC and PMMA. Figs. 4-7(b) 

and (c) illustrate the amplitudes of harmonic load and displacement at 75 Hz for PC and 

PMMA. As shown in Fig. 4-7(b), at initial stage of the contact between the indenter and 

sample surface, the amplitude of harmonic load generally increased until 50=t  s, and 

was maintained constant thereafter. Accordingly, as shown in Fig. 4-7(c), there was an 

increase in amplitude of harmonic displacement before 50=t  s. So the condition of Eq. 

(4-4) is precise after about 50 s. A steady state was reached at about 150=t  s. As shown 

in Fig. 4-7, after 150=t  s, mhh /0∆  is much less than 1%, thus the condition of using Eq. 

(4-10) is satisfied. Fig. 4-7(d) shows the out-of-phase angle between harmonic load and 

harmonic displacement for both PC and PMMA. 

In order to ensure that the deformation of the polymer samples is in the linearly 

viscoelastic regime, the indentation depth into the sample surface for PC and PMMA 

materials was controlled to within the limit of linearity. According to Lu, et al, (2003), the 

limits of linearity in indentation depth were determined as 1123 nm for PC, and 780 nm 

for PMMA, respectively, for a spherical indenter with a radius of 3.4 µm. It was found 

that in indentation within the limit of linearity, the deformation of PC and PMMA is 

linearly viscoelastic, indicated by the fact that complex compliance is independent of the 

magnitude of indentation carrier load.  
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For time-dependent materials under dynamic loading, the out-of-phase angle between 

the harmonic load and displacement plays an important role in the computation of 

complex compliance. Consequently, we discuss next the correction on out-of-phase angle.                            

As presented by Pethica and Oliver (1992), the out-of-phase angle between the force 

and displacement φ  can be computed by  

2

)(
tan

ω
ω

φ
mk

CC ci

−
+

= ,           (4-18) 

where k is system stiffness, cC  is the damping inside capacitor gauge measuring 

displacement of the indenter, and iC  is the damping resulting from the contact between 

indenter and sample. If the sample material is ideally elastic, there is no out-of-phase 

angle between harmonic indention load and harmonic indentation depth. For an elastic 

material, however, from Eq. (4-18), 0=iC , but ,0≠cC  so that 0≠φ , which is not 

physically reasonable. It should be noted that the air damping resulting from the gauge 

capacitor gives apparent out-of-phase angle that does not necessarily represent the 

damping behavior of the material. Therefore, φ  is not exactly the out-of-phase angle 

between harmonic indentation load and harmonic depth and must be corrected. If the 

contribution in φ  from the nanoindentation instrument is removed, we can determine the 

out-of-phase angle, δ , representing the damping of viscoelastic material by 

2
tan

ω
ω

δ
mk

Ci

−
= .          (4-19) 

As an example, the out-of-phase angles for PC and PMMA using spherical indenter are 

shown in Fig. 4-5(d) and Fig. 4-7(d).  

 



 53 

Log (Frequency) (Hz)

C
o
m
p
le
x
C
o
m
p
li
a
n
c
e
in
S
h
e
a
r
(1
/G

P
a
)

0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

DMA (PC)

DMA (PMMA)

Nanoindentation (PC)

Nanoindentation (PMMA)

Storage Compliance in Shear

Loss Compliance in Shear

 

Fig. 4-8 Complex compliance in shear from nanoindentation under a harmonic load 
superimposed on a constant rate loading.  
 

To determine the complex compliance from nanoindentation tests using the spherical 

indenter, Eq. (4-10) is used. The complex compliance curves of PC and PMMA materials 

are shown in Figs. 4-8 and 4-9. Error bars are shown for storage compliance. Error bars 

for loss compliance are about 1/3 size of the symbols. The complex compliance shown in 

Fig. 4-8 was measured from nanoindentation under a constant rate loading superimposed 

by a harmonic load. Fig. 4-9 shows the complex compliance measured from 

nanoindentation under a step loading superimposed by a harmonic load. The complex 

compliance measured from both types of nanoindentation tests were compared with 

DMA results. These two sets of results are in good agreement. The average percent error 

for the storage compliance of PC and PMMA at these discrete experimental data is less 

than 6%, indicating a very good agreement. The maximum errors for the storage 

compliance of PC and PMMA are 9.1% and 5.1%, respectively. Figs. 4-8 and 4-9 show 

that the loss compliances for both PC and PMMA are much smaller than the storage 

compliances, which implies that the material damping of the two polymers is very small. 
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For PC, both storage and loss compliances remain almost constant within 3 - 200 Hz. The 

reductions in storage and loss compliance for PC are only 0.8% and 3.8%, respectively, 

while for PMMA, the storage compliance decreases by 16.6%, and loss compliance 

decreases by 35.4% between 3 Hz and 260 Hz. 
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Fig. 4-9 Complex compliance in shear from nanoindentation under a harmonic load 
superimposed on a step loading. 
 

In the computation of both storage compliance and loss compliance, Poisson’s ratio is 

usually time-dependent for polymeric materials. In these experiments, the time-scale is 

not large; the maximum time duration is less than 300 seconds. Within this time period, it 

has been demonstrated that the Poisson’s ratio does not change significantly (Lu, et al, 

1997).  Therefore, we assumed a constant Poisson’s ratio ( 3.0=ν ) in the computation of 

the complex compliance for both PC and PMMA materials. The natural frequency of the 

indentation system is 180 Hz, thus we avoided testing near the resonant frequency.  

We turn next to the comparison in results from Loubet et al. and the new method 

proposed in this study. The method by Loubet et al. (1995) on measurement of the 
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uniaxial complex modulus is based on the analogy between dynamic indentation and 

uniaxial dynamic analysis. Nanoindentation on viscoelastic materials, however, is a 

complex viscoelastic problem involving moving contact interface, and needs to be 

analyzed to derive formulas for the computation of viscoelastic functions in the 

frequency-domain. Based on their method, the uniaxial storage modulus at 75 Hz for both 

PC and PMMA were computed using the data of stiffness, damping and contact area 

from nanoindentation experiments, as shown in Fig. 4-1. During the tests, a constant rate 

loading superimposed by a small harmonic loading was applied. Since tests were under a 

single frequency (75 Hz) within a time frame less than 250 s, the storage modulus 

computed using Eq. (4-1) was plotted with respect to time. Also plotted in Fig. 4-1 are 

the DMA data of uniaxial storage modulus at 75Hz, which is a horizontal line since it is a 

single value representing material behavior. The uniaxial storage modulus measured from 

this method is generally much higher than DMA data. As shown in Fig. 4-1, the 

minimum errors in storage modulus are 40% for PC and 46% for PMMA, respectively, 

indicating that the approach based on the analogy between uniaxial dynamic tension test 

and dynamic nanoindentation is not appropriate for measuring viscoelastic functions for 

polymers. Also plotted in Fig. 4-1 are the storage modulus data using the new method 

presented. Eq. (4-13) was used to convert shear data to uniaxial data. For PC in steady 

state, the average storage modulus obtained from the new method is consistent with the 

DMA data, which is 2.29 GPa, and the error is 6.1%. For the average storage modulus of 

PMMA in steady state, the error, compared with the conventional data from DMA, is 

2.5%. The indentation results using the new method for time-dependent materials, such 

as polymers, can recover complex viscoelastic functions determined from conventional 
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tests with good accuracy. The complex compliance in shear measured using the proposed 

method at all frequencies shows a good agreement with those obtained from conventional 

tests. This study has thus provided a method to measure viscoelastic functions in the 

frequency-domain for time-dependent materials. 

 

4.5 Conclusions 
 

A method to measure the complex compliance has been presented using 

nanoindentation with a spherical indenter for linearly viscoelastic materials. Following 

the Hertzian solutions for indentation in linear elasticity and the consideration of the Lee-

Radok approach for a moving boundary problem in linear viscoelasticity, formulas for 

the components of the complex compliance function in the frequency-domain have been 

derived based on the load-displacement relation for linearly viscoelastic materials under 

harmonic loading. The formulas should be used under the conditions that h/R < 0.16 and 

the nanoindentation depth is below the limit of linearity. When a constant rate loading is 

used as the carrier load, the formulas are exact under the condition that the loading rate is 

high enough so that the condition of non-decreasing contact area is satisfied. While a step 

loading is used as the carrier load, the formulas are considered to be approximate when 

the frequency is higher than a critical value such that decreasing contact area occurs; in 

the case of decreasing contact area, the Ting approach was used to find the solution in the 

steady state at a selected frequency to estimate the difference between solutions obtained 

using the Lee-Radok approach and the Ting approach. Very close correlation was found 

for the test conditions used in this study. Dynamic nanoindentation tests on PC and 

PMMA materials were performed, using a spherical indenter, to determine the amplitudes 
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of oscillating load and displacement, as well as the out-of-phase angle of displacement 

with respect to the harmonic force output. The complex compliance functions in the 

frequency-domain were determined using the proposed method and results were 

compared with conventional data obtained from DMA tests for PC and PMMA materials. 

The condition for non-decreasing contact area, ω00 Pv ∆≥ , is satisfied under a constant 

rate carrier load so that the complex compliance formulas derived from the Lee-Radok 

approach are appropriate. Under a step carrier load, the condition of non-decreasing 

contact is satisfied up to the frequency limit, 0hhm ∆& ; at frequencies higher than the 

frequency limit, complex compliance data could be considered to be an approximation. In 

both constant rate and step carrier loading conditions, a good agreement between 

nanoindentation results and conventional data has been reached, indicating the validity of 

the proposed method for measuring the complex compliance function in the frequency 

domain using dynamic nanoindentation. 
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CHAPTER V 

MEASUREMENTS OF TWO INDEPENDENT VISCOELASTIC 

FUNCTIONS BY NANOINDENTATION 

 
 

5.1  Introduction 

  

 In measurements of elastic properties, Poisson’s ratio is often of interest; however 

it is hardly thoroughly studied. Lucas, Hay and Oliver (2004) applied a lateral load to 

determine the Poisson’s ratio through the measurements and analysis of both normal 

contact stiffness and tangential contact stiffness. Various methods have been developed 

to measure the Poisson’s ratio for a linearly viscoelastic material at the macroscale. 

Vlassak and Nix (1992) used bulge tests on both square and rectangular membranes, and 

measured both Young’s modulus and Poisson’s ratio for silicon nitride; Ma and Ravi-

Chandar (2000) used a cylinder polymer sample under confined compression to measure 

both bulk and shear relaxation functions. These techniques are successful in their 

respective areas of application. 

To date, methods are not available to measure two independent viscoelastic functions, 

such as bulk and shear relaxation functions at micro/nano scale using nanoindentation. In 

all the current nanoindentation techniques for measurements of viscoelastic functions, a 

constant Poisson’s ratio is often assumed, and nanoindentation measures only one 

viscoelastic function(Cheng et al., 2000; Lu et al., 2003; Huang et al., 2004; Odegard et 
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al., 2005; VanLandingham et al.; 2005, Cheng and Cheng, 2005), such as the creep 

compliance in shear. However, for very small amounts of materials with viscoelastic 

behavior different from a bulk material, all viscoelastic functions are unknown. In 

addition, for a material with pronounced viscoelastic effects, such as a polymer near its 

glass transition temperature, any pair of independent viscoelastic functions (e.g., bulk and 

shear relaxation functions) would change with time. Assuming a constant Poisson’s ratio 

could potentially cause significant error. Consequently, a method is needed to measure 

two independent viscoelastic functions using nanoindentation for very small amounts of 

viscoelastic materials. 

In this chapter, a method is presented to measure two independent viscoelastic 

functions, namely bulk and shear relaxation functions for an isotropic, linearly 

viscoelastic material using nanoindentation. Equations are derived for the viscoelastic 

contact mechanics problems for both Berkovich and spherical indenters. The bulk and 

shear relaxation functions are determined through minimizing the difference between 

nanoindentation data and analytical results. The results from nanoindentation will be 

compared with viscoelastic property data determined from conventional tests for the 

same batch of materials to examine the method. 

 

5.2 Analytical background 

 
In this section we present formulas for the indentation load-displacement relation 

from linearly elastic contact mechanics analysis, and then use the approach developed by 

Lee-Radok (1960) to write down the indentation load-displacement relation for a linearly 

viscoelastic material.  



 60 

 

5.2.1 Indentation by rigid axisymmetric indenters of arbitrary shape 

For the Boussinesq problem of a rigid axisymmetric indenter tip indenting into a half-

space composed of a homogeneous, linearly elastic and isotropic material, Sneddon 

(1965) derived solution for the indentation load P given as 

∫
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,                  (5-1) 

where µ  is the shear modulus, ν  is the Poisson’s ratio, a  is the contact radius and 

)(xfz =  is the shape function of the indenter with arx /=  as defined in Fig. 5-1. 

Sneddon’s solution for the indentation displacement h is  
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Since arx /= , Eq. (5-2) gives the relationship between displacement of the axisymmetric 

indenter tip, h, and the contact radius, a. The relationship between h and a is uniquely 

determined by the geometry of the indenter. Combining Eqs. (5-1) and (5-2), and 

expressing ν  in terms of bulk modulus, K and shear modulus, µ , one has 
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= ,                                (5-3) 

where F(h) is a function determined by Eqs. (5-1) and (5-2), and depends on the 

geometry of the axisymmetric indenter. For example, for a conical indenter, 

)tan/(8)( 2 απhhF = , where α  is the angle between the cone generator and the surface 

of the half space. 
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Fig. 5-1 A schematic of indentation on a half space by an axisymmetric indenter 

When a rigid axisymmetric indenter indents into a half space composed of a 

homogeneous, isotropic and linearly viscoelastic material, following the approach by 

Lee-Radok (1960), under the condition of non-decreasing contact area between the 

indenter and the workpiece, the load-displacement relation in the Laplace domain can be 

written in the form  

)(

))((

)]()(3)[(

)(4)(3

sP

shF

ssKss

ssK
=
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+

µµ
µ

,                    (5-4) 

where s is the complex variable in Laplace domain, the notation )(sQ  represents the 

Laplace transform of function Q(t), for example, K , µ , are the Laplace transform of 

bulk relaxation function K(t) and shear relation function µ(t), respectively. It is noted that 

)(sK  and )(sµ  can only be determined to the extent as shown on the left hand side of Eq. 

(5-4) when an axisymmetric nanoindenter is used, the two functions cannot be separated 

further. In other words, both K  and µ  can only be determined in terms of their ratio in 

Laplace domain when any combinations of axisymmetric indenters are used. For example, 

Indenter 

Sample 

2a 

)(xfZ =arx /=
2r 
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for a conical indenter that has the shape function, αtan)( axxf = , the following relation 

in the Laplace domain holds  

απµµ
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.                       (5-5) 

For a circular flat punch indenter, the following relation holds, 
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and for a spherical indenter, the shape function is )2/()( 22 Rxaxf =  under condition 

ax<<R, the following relation in the Laplace domain holds 
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It is seen on the left hand sides of Eqs. (5-5) - (5-7) that, with the use of one or more 

equations in Eqs. (5-5) - (5-7), one can only determine  
)]()(3)[(

)(4)(3

ssKss

ssK

µµ
µ
+

+
, and cannot 

separate )s(K from )s(µ . Consequently, using any two different axisymmetric indenters 

cannot determine two independent viscoelastic functions. To separate and determine the 

two independent functions, we need another independent asymmetric nanoindentation 

problem.  
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(a) Berkovich and conical indenters 
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(b) Spherical indenter 

Fig. 5-2 Berkovich, conical and spherical indenters 

 

5.2.2 Berkovich indenter 

Berkovich indenter is usually used in nanoindentation due to primarily its self-

similarity in geometry. Berkovich indenter is often modeled as a conical indenter based 

on approximately the same height-area relationship of the two indenter tips. However, the 

Berkovich indenter has a flipped three-face pyramidal shape, as shown in Fig. 5-2, and is 
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not axisymmetric. Consequently Berkovich indenter is not a rigorously axisymmetric 

indenter, and represents some difference from an axisymmetric conical indenter.  

Since the nanoindentation by Berkovich indenter is not an axisymmetric problem, it is 

necessary to determine the load-displacement relation for indentation by Berkovich 

indenter to establish a second equation independent of Eq. (5-4) (with special cases given 

in Eqs. (5-5) - (5-7)). However, an analytical solution for the viscoelastic contact problem 

using an asymmetric Berkovich indenter is not available. Consequently, a semi-empirical 

approach is taken to determine the load-displacement relation when the material is 

considered linearly viscoelastic. To this end, the nanoindentation by a Berkovich indenter 

on a linearly elastic material is modeled first, and then the linearly elastic solution is 

extended to linearly viscoelastic solution. To determine a semi-empirical linearly elastic 

solution, the indentation by Berkovich indenter tip was simulated using 

ABAQUS/Standard (2004) on different elastic materials with a series of Poisson’s ratios 

and fixed Young’s modulus. The simulations were also conducted on elastic materials 

with different Young’s moduli and fixed Poisson’s ratio, and it was found that the load P 

is proportional to Young’s modulus or shear modulus at the same indentation 

displacement. Therefore it is possible to fit the numerical results on the relation between 

P and h into an analytic representation. The load-displacement curves at some Poisson’s 

ratios with a fixed Young’s modulus are shown in Fig. 5-3(a), and the curves were fitted 

numerically, to the following equation  

2

1

)2202.01(
0837.2 h

v
P

−
−

=
µν

.          (5-8) 



 65 

Displacement (nm)

L
o
a
d

(m
N

)

0 200 400 600 800 1000
0

1

2

3

4 0.4

0.37

0.3

0.25

0.2

0.1ν =

ν =

ν =

ν =

ν =

ν =

 

(a) FEM results of load-displacement curves at different Poisson’s ratios 
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(b)  Curve fitting of load-displacement data from FEM 

Fig. 5-3 FEM modeling 
As an example, both finite element results and fitted curves, indicated by Eq. (5-8), are 

plotted in Fig. 5-3(b). The two sets of results are very close to each other, with the 

minimum value of cross-correlation coefficient being 0.99992 for all Poisson’s ratios. It 
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is noted that in the parenthesis of Eq. (5-8), only linear term of Poisson’s ratio is used for 

purpose of simplifying the viscoelastic analysis in the sequel. Nonlinear terms in the 

parenthesis of Eq. (5-8) can provide slightly higher accuracy, but will lead to higher level 

of complexity in viscoelastic analysis, and are not used in this analysis. 

 

5.2.3 Viscoelastic solutions 

Eq. (5-8) shows that Berkovich indenter has a load-displacement relationship 

different from a conical indenter which is  

2

1tan

4
hP

ν
µ

απ −
= .          (5-9) 

The representations in terms of elastic parameters are different in equations for 

indentations by Berkovich and spherical indenters. The situation is similar in the 

solutions to viscoelastic indentations by two indenters using hereditary integral operators 

(Lee and Radok, 1960). Consequently, using both Berkovich indenter and an 

axisymmetric indenter would potentially lead to the measurements of two independent 

viscoelastic functions. In this study, a spherical indenter is used, however, the similar 

approach can be used for a conical indenter or a circular flat punch indenter.  

The Hertzian solution (Hertz, 1881) for indentation load-displacement relation by a 

spherical indenter indenting into a homogeneous, isotropic and linearly elastic material is  

2/3
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8
h
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R
P µ

−
= .                       (5-10) 
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Eq. (5-8) can be re-written in terms of bulk modulus K and shear modulus µ  for the 

Berkovich indenter as 

2

1
2

1 )2202.16694.2(3348.8)43( hKPK µµµ +=+ ,                  (5-11) 

where P1 and h1 are the indentation load and displacement, respectively, under 

indentation by a Berkovich indenter. For indentation by a spherical indenter, Eq. (5-12) 

can be re-written as 

2/3

2
2

2 )26(
3

8
)43( hK

R
PK µµµ +=+ ,                   (5-12) 

where P2 and h2 are the indentation load and displacement, respectively, under 

indentation by a spherical indenter. It is noted that viscoelastic indentations using either a 

Berkovich indenter or a spherical indenter involves varying contact area between an 

indenter and the work material. Consequently, the correspondence principle, requiring a 

fixed (i.e., time-independent) displacement boundary, cannot be applied directly.  For the 

time-varying displacement boundary problem as in nanoindentation of a linearly 

viscoelastic material, Lee and Rodok (1960) developed an approach to use the hereditary 

integral operators to determine the relation between indentation load and displacement. 

Using the Lee-Radok approach for indentations by Berkovich and spherical indenters the 

load-displacement relations are 

,
)(

)()(1718.10

)(
)()(2489.22

)(
)(4

)(
)(3

0

2

1

0

0

2

1

00

1

0

1

ξθ
θ
θ

θξµ
ξ

ξµ

ξθ
θ
θ

θξ
ξ

ξµξ
ξ
ξ

ξµξ
ξ
ξ

ξ

ξ

ξ

dd
d

dh

d

d
t

dd
d

dh
K

d

d
td

d

dP
td

d

dP
tK

t

ttt

∫∫

∫∫∫∫

−−+

−−=−+−

      

                                   (5-13) 



 68 

.
)(

)()(
3

16

)(
)()(16

)(
)(4

)(
)(3

0

2/3

2

0

0

2/3

2

00

2

0

2

ξθ
θ

θ
θξµ

ξ
ξµ

ξθ
θ

θ
θξ

ξ
ξµξ

ξ
ξ

ξµξ
ξ
ξ

ξ

ξ

ξ

dd
d

dh

d

d
t

R

dd
d

dh
K

d

d
tRd

d

dP
td

d

dP
tK

t

ttt

∫∫

∫∫∫∫

−−+

−−=−+−
       

                 (5-14) 

It is noted that a non-decreasing contact area between the indenter and the workpiece 

should be maintained for Eqs. (5-13) and (5-14) to be valid. 

Under constant rate loading histories, tVP 11 =  and tVP 22 = , with 1V  and 2V  being 

constant loading rates, Eqs. (5-13) and (5-14) are simplified to 
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where J(t) is creep compliance in shear.  

 Under a constant rate loading history, both h1(t) and h2(t) can be measured from 

nanoindentation. Solving Eqs. (5-15) and (5-16) should lead to the determination of two 

independent viscoelastic functions )(tK  and )(tµ . However, Eqs. (5-15) and (5-16) are 

difficult to solve directly. To circumvent this difficulty, a least squares correlation 

approach between experimentally measured displacements h1(t) and h2(t) and the 

corresponding analytical values is taken and described as follows.  

 The bulk and shear relaxation functions can be represented by the generalized 

Maxwell model: 
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where iµ  and iK  are relaxation numbers, iτ  the relaxation times and N  the number of 

exponential terms in the Prony series. 

Define a least squares correlation coefficient, C, 
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where exp
,1 ih and exp

,2 ih  are the measured displacement data at time it  for Berkovich 

indentation and spherical indentation, respectively; th

ih ,1  and th

ih ,2  are analytical results of 

displacements computed from Eqs. (5-15) and (5-16), respectively, and can be 

represented in terms of the parameters in Eq. (5-17) after equations in Eq. (5-17) are 

substituted into Eqs. (5-15) and (5-16). When the measured displacements can be fully 

described by displacements computed by Eqs. (5-15) and (5-16) using appropriate 

parameters in Eq. (5-17), ideally C would be zero. In reality, however, C will not reach 

zero; instead, it must be minimized with the use of appropriate parameters in Eq. (5-17). 

During the minimization process, the best-fit parameters in Eq. (5-17) are iteratively 

searched until the coefficient C is minimized. The minimization of C will converge when 

two minimizations, one for the Berkovich indentation and the other for the spherical 

indentation, as shown in Eq. (5-18) are simultaneously achieved, indicated by the best 

correlations between nanoindentation load-displacement curves determined from both 

nanoindentation data and analytical results for each indenter. Thus, minimizing C leads to 
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a set of appropriate parameters in Eq. (5-17) for determining two independent 

viscoelastic functions, )(tK  and )(tµ .  

 

5.3 Nanoindentation measurements 
 

An MTS Nano Indenter XP system was used in nanoindentation tests to acquire load-

displacement data. The nanoindenter can reach a maximum indentation depth of 500 µm 

and a maximum load of 500 mN. The displacement resolution is 0.2 nm and the load 

resolution is 50 nN. Both the Berkovich and spherical indenters are made of diamond; 

their schematic geometries are as shown in Fig. 5-2. The Berkovich indenter has a three-

faced pyramidal tip, and the spherical indenter has a tip radius of 10 µm. In all 

nanoindentation with the spherical indenter, the maximum indentation depth was below 

620 nm. 

The materials used in these tests were poly(vinyl acetate) (PVAc) and poly(methyl 

methacrylate) PMMA. The PVAc resin was the same as used in the work by Knauss and 

Kenner (1980), and by Deng and Knauss (1997); the resin was stored in an air-tight 

container, and was molded using the same procedures as in their work. The PMMA 

samples were made from the same PMMA plate as used in the work by Lu, et al. (1997) 

and by Sane and Knauss (2001). The PVAc specimen has a glass transition temperature 

of 29 ºC and the PMMA specimen has a glass transition temperature of 105 ºC. The 

dimensions of PVAc and PMMA specimens were 20mm×20mm×6mm and 

20mm×10mm×5mm, respectively. The PVAc specimen was annealed at 34 ºC and 

PMMA specimen was annealed at 110 ºC for two hours, and they were cooled down 
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slowly to room temperature at a cooling rate of approximately 5 ºC /hr. Samples were 

then stored in an enclosed desiccator with approximately 50% relative humidity produced 

by placing a saturated salt solution in this enclosed environment. The specimens were 

then carefully mounted on aluminum holders. All specimens had ageing time of nearly 75 

hours. The humidity in the room was maintained at ~ 50% relative humidity. 

     The nanoindentation tests on PVAc were performed in air at 30 ºC. An infrared bulb 

placed close to the floor inside the nanoindenter chamber was used to heat the enclosed 

nanoindentation system to the desired temperature. The temperature was monitored and 

controlled by a temperature controller (Chromalox Instruments and Controls, Model 1604) 

with a resolution of ±0.1 ºC. Proper thermal insulation was used on the MTS Nano 

Indenter XP system to maintain the temperature stability during nanoindentation. The 

nanoindenter was calibrated with the use of a fused silica sample to ensure that load-

displacement outputs were accurate at 30 ºC. The nanoindentation tests on PMMA were 

conducted at room temperature (23 ºC). Each test did not start until the drift rate of the 

indenter tip had dropped below a set value (typically 0.05 nm/s) to ensure that a thermal 

equilibrium condition for the specimen and nanoindenter system had been reached. This 

procedure is necessary as the precision of the nanoindenter depends on the temperature 

gradient of the instrumentation. After the indenter tip had made contact with the 

specimen surface, a constant rate indentation load was applied, and both the indentation 

load and indentation depth were recorded simultaneously at a sampling rate of five data 

points per second. 
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5.4 Results and discussions 
 
 

Results on bulk and shear relaxation moduli are reported and discussed in this section 

from nanoindentation measurements using both Berkovich and spherical indenter tips. 

Constant rate loading histories were used in all nanoindentation tests. 

For PVAc, nanoindentation tests were carried out at 30 ºC, right in the glass transition 

region (Tg = 29 ºC). A constant rate loading at a loading rate of 19.8 µN/s was applied for 

both Berkovich and spherical indenters. The entire nanoindentation duration was less 

than 120 s in order to ensure thermal stability during each test. The load-displacement 

curves for PVAc from nanoindentation using both Berkovich and spherical tips are 

shown in Fig. 5-4. Data scattering from different tests are indicated by the error bars. As 

shown in Fig. 5-4, the repeatability of load-displacement data was high.  
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Fig. 5-4 Nanoindentation load-displacement curves for PVAc 
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The load-displacement data obtained from nanoindentation were analyzed using Eqs. (5-

15) - (5-18) to determine both bulk and shear relaxation functions. An iterative algorithm 

was applied to extract two independent relaxation functions from minimization of the 

least squares coefficient C in Eq. (5-18). The bulk and shear relaxation functions were 

determined when the best correlation between load-displacement curves from 

nanoindentation and analysis was achieved. Both the measured and analytical load-

displacement curves are plotted in Fig. 5-5(a) and Fig. 5-5(b) for indentations by 

Berkovich indenter and spherical indenter, respectively. The cross- correlation 

coefficients between the two load-displacement curves for Berkovich indenter and 

spherical indenter are 0.9998 and 0.9999, respectively. The good correlations were 

reached simultaneously in the two sets of P-h curves for both indenters, indicating the 

convergence of the overall minimization of C. The minimum C as computed from Eq. (5-

18) is 0.000992. 
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Fig. 5-5 Minimization results of load-displacement curves for PVAc 

Minimizing C leads to the following bulk and shear relaxation functions for PVAc 

tt eetK 1.005.0 252.0448.0801.2)( −− ++= GPa,          (5-19) 

tt eet 1.005.0 165.0331.0102.1)( −− ++=µ GPa.          (5-20) 
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Fig. 5-6 Results of )(tK  and )(tµ  for PVAc from nanoindentation 
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The bulk and shear relaxation functions given by Eqs. (5-19) and (5-20) are shown in Fig. 

5-6. Also plotted in Fig. 5-6 are the conventional data. The conventional bulk relaxation 

modulus for PVAc are converted from complex bulk compliance data obtained by Deng 

and Knauss (1997), and the shear relaxation modulus data were measured by Knauss and 

Kenner (1980) on PVAc samples made of the same PVAc resin following the same 

molding procedures. An approximation method for data conversion as described by Emri 

et al. (2005) was used to convert complex bulk modulus (reciprocal of complex bulk 

compliance) in the frequency domain to bulk relaxation modulus in the time domain. As 

shown in Fig. 5-6, the bulk and shear relaxation functions are in a reasonably good 

agreement with data obtained from conventional tests. The average errors for bulk and 

shear relaxation moduli are 9.54% and 2.64%, respectively. The following sources could 

contribute to the discrepancy in the data from nanoindentation in this work and from 

conventional tests: (1) the conventional bulk relaxation modulus was not measured 

directly in the time domain, and was converted from complex bulk modulus in the 

frequency domain. Using an approximate method to convert data in the frequency 

domain to the time domain could cause error; and (2) nonlinear deformation in a small 

area in the workpiece close to indenter was not considered in the model. 
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Fig. 5-7 Nanoindentation load-displacement curves for PMMA 
 
Nanoindentation on PMMA was conducted at 23 ºC. A constant rate loading at a loading 

rate 33.0 µN/s was used for nanoindentation using both Berkovich and spherical 

indenters. The load-displacement curves from nanoindentation measurements are shown 

in Fig. 5-7; the results were very reproducible for each indenter, indicated by the error 

bars showing data scattering. The load-displacement data were analyzed using Eqs. (5-

15) - (5-18) to minimize the least squares correlation coefficient defined in Eq. (5-18) so 

that a best set of parameters in the Prony series in Eq. (5-17) can be determined to allow 

the analytical load-displacement data to correlate with data from nanoindentation 

measurements. The best set of parameters in the Prony series are then used in Eq. (5-17) 

to determine the two independent viscoelastic functions, bulk and shear relaxation 

functions. The results on nanoindentation load-displacement data for the use of 

Berkovich and spherical indenters are shown in Fig. 5-8(a) and Fig. 5-8(b), respectively. 

The cross correlation coefficient between analytical results and the data from 
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nanoindentation measurements is 0.9991 for indentation by a Berkovich indenter, and is 

0.9997 for indentation by a spherical indenter. The good correlation for both indenters, as 

shown in Fig. 5-8, leads to the minimization of C, which is 0.000699, as computed from 

Eq. (5-18). 
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Fig. 5-8 Minimization results of load-displacement curves for PMMA 
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Results of the bulk and shear relaxation functions for PMMA as determined from this 

approach are 

tt eetK 1.001.0 288.0336.0800.4)( −− ++=  GPa ,                     (5-21) 

tt eet 1.005.0 060.0075.0001.1)( −− ++=µ  GPa.                    (5-22) 

The bulk and shear relaxation functions are shown in Fig. 5-9, and are compared with 

conventional data. The conventional data of bulk relaxation modulus were converted 

from the complex bulk compliance measured by Sane and Knauss (2001), and the 

conventional shear relaxation data were measured by Lu, Zhang and Knauss (1997). As 

shown in Fig. 5-9, the data measured using the nanoindentation agree reasonably well 

with conventional data. The average errors for the measured bulk and shear relaxation 

moduli are 4.8% and 5.9%, respectively. 

Since the temperature for nanoindentation on PVAc was 30 ºC, slightly higher than 

its glass transition temperature (Tg = 29 ºC), the PVAc was in the glass transition region, 

so that relaxation was significant. For example, as shown in Fig. 5-6 the measured shear 

relaxation modulus decreased by 30.9% for PVAc within 100 s from the beginning of 

tests, representing a very pronounced viscoelastic behavior. For PMMA, nanoindentation 

was conducted at 23 ºC, much lower than its glass transition temperature (Tg = 105 ºC). 

The shear relaxation modulus decreased by 11.9% within 100 s, as shown in Fig. 5-9, 

indicating that the relaxation behavior of PMMA in the glassy state is present, but not as 

significant as that of PVAc in the glass transition region. 
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Fig. 5-9 Results of )(tK  and )(tµ  for PMMA from nanoindentation 

 

It is noted that for nanoindentation using spherical indenter, the Hertzian solution 

holds only when the ratio of indentation depth to the radius of spherical indenter is small, 

for example, less than ~ 0.16 (Giannakopoulos, 2000). For all spherical indentations in 

this study, the maximum indentation depth used was less than 350 nm, so that Rh 05.0< , 

thus the use of Herzian solution was justified.  

      In order to ensure that the deformation of the polymer samples is in the linearly 

viscoelastic regime, the maximum indentation depth into the sample surface for PMMA 

and PVAc materials was controlled to within the limit of linearity. According to Lu, et al. 

(2003), the limit of linearity in indentation depth under constant rate loading condition 

was determined as 780 nm for PMMA for Berkovich indentation. It was found that in 

indentation within the limit of linearity, the deformation of PMMA is (nearly) linearly 

viscoelastic. For PVAc, since the specimen was in the rubbery state (above glass 

transition temperature) in nanoindentation, the limit of linearity was considered to be 
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higher than that of glassy state (below glass transition temperature). Consequently, by the 

use of a maximum indentation displacement of ~ 800 nm for PVAc, the PVAc would stay 

within limit of linearity.  

 Measurements of two independent viscoelastic functions are a well-known 

challenging problem, even at macroscale, due to excessive accuracy needed to acquire 

two independent sets of time-dependent data (Lu et al., 1997; Tschoegl et al., 2002) The 

method presented here has potential for measurements of two independent viscoelastic 

functions at submicron scale. Recently the commercially available nanoindenter can 

reach a temperature range between -10 ºC and 200 ºC. The method presented here can be 

applied to this range of temperatures so that both bulk and shear relaxation functions can 

be determined over a wide range of temperatures to form master curves as necessary 

information for the prediction of long-term viscoelastic behavior necessary for the 

investigation of long-term durability of very small amounts of time-dependent materials 

such as coatings in medical devices, MEMS and NEMS. 

 

5.5 Conclusions 

 

A method has been developed to extract two independent viscoelastic functions from 

nanoindentation data. Based on the difference of representations of two independent 

viscoelastic functions in the load-displacement relations between the Berkovich (non-

axisymmetric) and spherical indenter (axisymmetric, or any other axisymmetric 

indenter), two independent viscoelastic functions can be separated and determined from 

load-displacement data from nanoindentation measurements. To determine the 
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viscoelastic load-displacement relation for an asymmetric Berkovich nanoindenter, finite 

element simulations were conducted for a linearly elastic material, and the results were 

fitted into a unified equation for all Poisson’s ratios. The fitted elastic relation for a 

Berkovich indenter was then extended to a viscoelastic load-displacement relation using 

hereditary integral operator developed by Lee and Radok (1960). The viscoelastic load-

displacement relations for both Berkovich and spherical indenters provide two 

independent equations for solving two independent viscoelastic solutions. Under constant 

rate loading conditions, the nanoindentation load-displacement relationships can be fitted 

into analytical equations with the use of appropriate parameters in the Prony series for the 

two material functions through minimizing a least squares correlation coefficient between 

measurement and numerical data. The best set of parameters are then used to determine 

the two independent viscoelastic functions. Two bulk polymers (PVAc and PMMA) were 

used in the validation. The methods, however, are expected to be applicable to very small 

amounts of material and heterogeneous materials where homogeneity is assumed locally. 

Both bulk and shear relaxation functions determined for PVAc and PMMA have a 

reasonably good agreement with the data measured from conventional tests on bulk 

materials, providing validation for the method presented.  
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CHAPTER VI 

 APPLICATION OF NANOINDENTATION TO MEASURING VISCOELASTIC 

FUNCTION FOR THIN FILMS I: SINGLE WALL CARBON NANOTUBE (SWNT) 

 

6.1 Introduction 
 

With the discovery of the excellent mechanical properties of single-wall carbon 

nanotube (SWNT), fabrication of SWNT/polymer composites has received increasing 

attention. SWNT/polymer composites prepared by typical hybrid process, such as 

blending, polymerization, extrusion, and surface modification, have such problems as 

poor matrix-SWNT connectivity and phase segregation, leading to the premature 

mechanical failure. Recently Mamedov et al. (2002) used the layer-by-layer assembly 

(LBL) technique to fabricate SWNT/polymer composites, and successfully mitigated the 

problems of connectivity and phase segregation. In this study, layer-by-layer assembly is 

used to prepare SWNT/polyelectrolyte nanocomposite films.  

In the material development phase, the amounts of materials obtained from LBL 

technique are small, leading to difficulty in measuring the in-plane and the through-

thickness mechanical properties of SWNT/polymer composite films using the 

conventional testing techniques, such as tensile tests and compression of stacking films. 

The nanoindentation technique (Oliver and Pharr, 1992) should provide an alternative 

approach to measure the properties of small amounts of materials such as SWNT/polymer 
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nanocomposite films. Methods for measuring the Young's modulus have been very well 

established for time-independent materials. Oliver and Pharr (1992) proposed a method 

todetermine the basic material properties such as Young’s modulus. The method is based 

on Sneddon's solution (Sneddon, 1960) for the relationship between the load and 

displacement for an axisymmetric indenter indenting into a half-space composed of a 

linearly elastic, isotropic and homogeneous material. While the method works well for 

time-independent materials, such as metals well below their melting points, applying the 

methods directly to viscoelastic materials has experienced problems. For example, the 

unloading curve in viscoelastic materials sometimes has a negative slope, under situations 

where a small unloading rate and a relatively high load were used for a material with 

pronounced viscoelastic effects. Some work in recent years has improved the methods 

proposed by Oliver and Pharr (1992) for the determination of Young's modulus, or 

Young's relaxation modulus. Cheng et al. (2000) derived the analytical solutions for 

linearly viscoelastic deformation under flat-punch indentation, and provided a method to 

measure viscoelastic as well as instantaneous elastic properties using a flat-punch 

indenter. Lu et al. (2003) proposed methods to measure the creep compliance of solid 

polymers using either the Berkovich indenter or the spherical indenter and they also 

proposed a new method to measure the viscoelastic functions in frequency domain using 

a spherical indenter (2004). The methods are applicable to arbitrary linearly viscoelastic 

materials characterized by the generalized Kelvin’s model. 

This chapter presents methods for measuring the viscoelastic properties of 

polyelectrolyte films with and without SWNTs through the consideration of the 

viscoelastic indentation solution. In each nanoindentation test, a loading history was 
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prescribed to a film and the resulting response was recorded, subsequently the 

experimental load-displacement curve was analyzed to determine the viscoelastic 

properties as a function of time. Both in-plane and through-thickness properties of the 

nanocomposite films were investigated using nanoindentation. 

 

6.2 Analytical prerequisites 

 

In this section we provide formulas used for extracting the linearly viscoelastic 

properties from nanoindentation data in the time domain. The Berkovich indenter is 

considered herein, and is modeled as a rigid conical indenter. For the indentation problem 

in which a rigid conical indenter is indenting into an elastic half-space, Sneddon (1965) 

derived relationship between load and displacement, 

P
G

h
4

tan)1(2 ανπ −
= ,             (6-1) 

where P, h are load and displacement, respectively; α the angle between the cone 

generator and the substrate plane,ν  the Poisson’s ratio, and G the shear modulus. 

If the half-space is composed of a linearly viscoelastic material, the indentation 

involves a time-dependent contact area between the indenter and the workpiece. For this 

moving boundary problem, Lee and Radok (1960) proposed a hereditary integral operator 

to determine the time-dependent stresses and deformations in the case where the contact 

area between the indenter and the workmaterial does not decrease with time. Applying 

this technique to Eq. (6-1) leads to the following time-dependent indentation depth under 

a prescribed arbitrary indentation loading history P(t) in a linearly viscoelastic material 
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where )(tJ  is the creep compliance in shear at time t. Under a constant rate loading, 

tvtP 0)( = , differentiation of Eq. (6-2) leads to 
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where 0v  is the loading rate. Eq. (6-3) provides a direct differentiation method to 

determine the creep compliance in shear.  

We next provide another method to determine the creep compliance. The creep 

compliance of a linearly viscoelastic material can be expressed by the generalized Kelvin 

model  
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where 0J , iJ  are compliance numbers, iτ  retardation times. 

Under tvtP 0)( = , substituting Eq. (6-4) into Eq. (6-2) leads to 
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After fitting Eq. (6-5) to the load-displacement curve from nanoindentation, all 

parameters, 0J , iJ  (i=1, …, N) and iτ  can be obtained. The creep compliance can be 

subsequently determined using Eq. (6-4). Once J(t) is obtained, other viscoelastic 

functions, such as the uniaxial relaxation modulus E(t), can be determined. For example, 

the creep function in shear, J(t), can be converted to E(t) through the following relation 
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6.3 Experimental details 

 

6.3.1 SWNT/ polyelectrolyte films preparation 

Poly(dimethyldiallylammonium chloride) (PDDA) and Poly(acrylic acid) (PAA) 

were used as organic components of LBL assembly. Single wall carbon nanotubes in the 

form of 15mg/g aqueous gel with lengths between 600-700 nm have been oxidized 

according to procedures described elsewhere (Mamedov et al., 2002; Hammond,2004; 

Lui et al, 1998). The nutshell procedures are as follows: 0.7 g of gel material was 

refluxed in 10 ml of 2.6 M HNO3 solution at 850C for 45 hours; then, the solution was 

centrifuged at 900 rpm and the black precipitate was washed by de-ionized water (DI-

water) and centrifuged again. 
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Fig. 6-1 SEM and AFM images of SWNT/polyelectrolyte films. (a) SEM image of the 
cross section of a 100-layer SWNT/polyelectrolyte film; (b) AFM image of top surface of 
a monolayer SWNT/polyelectrolyte film. 
 
This procedure was repeated 2 or 3 times. After titration of supernatant to pH=8.0 with 

1M NaOH, it was shaken with the precipitate and centrifuged again. The resulted 

precipitate was separated and re-dispersed in 100 ml of DI-water by bath-sonication for 

50 min. The resulted solution was centrifuged at 5,000 rpm for 4 hours to remove un-

dispersed SWNT bundles and impurities. Supernatant solution, containing ca. 0.1% 

oxidized SWNTs was used for layer-by-layer deposition. A typical deposition cycle 

consisted of: (1) deposition of PDDA for 10 minutes; (2) rinsing; (3) deposition of 

PAA/SWNT mixture for 30 minutes; and (4) final rinsing. Both rinsing steps consisted of 

several flushes of deposition chamber for a total of 3 minutes. The concentrations of 
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deposited species were 0.5% for both polymers and ca. 0.1% for oxidized SWNTs. When 

the desired film thickness was obtained (usually 80-100 deposition cycles), 

nanocomposites were air-dried. Images of SWNT/Polyelectrolyte films were acquired by 

a scanning electronic microscope (SEM) and an atomic force microscope (AFM). A 

JOEL JXM 6400 SEM was used to observe the cross-section of a 100-layer 

SWNT/Polyelectrolyte film; the accelerate voltage and working distance used in imaging 

were 25 kv and 45 mm, respectively. An SEM image of the cross section of a 100-layer 

film is shown in Fig. 6-1 (a). The top surface of a monolayer SWNT/polyelectrolyte film 

was observed using an AFM (Digital Instruments, Multimode Scanning Probe 

Microscope with controller Nanoscope III a) under tapping model. The cantilever used 

has a spring constant of 40 N/m and tip radius of 5 nm. Fig. 6-1 (b) shows an AFM top 

surface image of monolayer SWNT/polyelectrolyte film. The SWNT loading in the 

nanocomposite in this investigation is 4.75%. 

 

6.3.2 Measurements 

Nanoindentation measurements 

 

An MTS Nano Indenter XP system with a Berkovich indenter tip was used for 

nanoindentation measurements. The resolutions for load and displacement are 50 nN and 

0.01 nm, respectively. The Berkovich indenter was molded as a conical indenter with a 

half-cone angle of 70.3° based on the relation between the cross sectional area and depth. 

Nanoindentation was conducted at 23°C under a relative humidity around 50%. In all 

indentation experiments conducted in this work, the measured indenter tip drift rate was 
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within 02.0± nm/s. Indentation tests were performed on both the free surface of the films 

and the cross sections of films to measure both in-plane and through-thickness properties. 

For measurements of the through-thickness properties, each film was glued to an 

aluminum substrate using an epoxy (Loctite, Quick Set). In applying the adhesive, the top 

surface of the film was pressed slightly by a glass slide to flatten the entire film surface 

for nanoindentation. The smooth film surface facing the glass substrate in LBL process 

was used for nanoindentation; for measurements of in-plane properties, a film was 

embedded into polybed matrix and then sectioned by ultramicrotome to reveal the cross 

section. Film samples were annealed at 80°C to reduce the effects from prior 

thermal/mechanical history. Several locations in each film were chosen; and the results 

were found to be very reproducible.  

Small scale tension measurements 

 
The in-plane properties of the SWNT/polyelectrolyte multilayer nanocomposite film 

were also characterized in tension using small scale tensile measurements (SSTM). A 

film sample complying with the American Standard Test Methods (ASTM) D1708 

standard was used. The dumb-bell shaped tensile specimens, with a gage length 21.75 

mm, a width 4.75 mm and a thickness 0.056 mm, were die-cut from the multilayer 

nanocomposite films. All samples were prepared in identical procedures as the samples 

used in nanoindentation. All tensile tests were performed in a lab with a temperature of 

23 ºC and a relative humidity of around 50%. 
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Fig. 6-2 Stress-strain curves of SWNT/polyelectrolyte and resin 

 

6.4 Results and Discussions 

 
The stress-strain curves for SWNT/polyelectrolyte multilayer composites and the 

resin material (PAA+PDDA) are shown in Fig. 6-2 from small scale tensile testing. From 

Fig. 6-2, the Young’s moduli of the multilayer polyelectrolyte and the 

SWNT/polyelectrolyte multilayer nanocomposite are determined as 300 MPa and 770 

MPa, respectively. The tensile strengths for the neat LBL polyelectrolyte and the 

SWNT/polyelectrolyte films are 6.6 MPa and 18.6 MPa, respectively. With the use of 

4.75% of SWNT in polyelectrolyte, the Young’s modulus and tensile strength have been 

enhanced by 2.57 times and 2.82 times over the near polyelectrolyte film, respectively. 
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Fig. 6-3 Experimental and fitted nanoindentation load-displacement curves. (a) In-pane 
nanoindentation load-displacement curves for SWNT/polyelectrolyte films from 
nanoindentation measurements and the fitting method; (b) Through-thickness 
nanoindentation load-displacement curves for SWNT/polyelectrolyte films from 
experiments and fitting method; (c) Nanoindentation load-displacement curves of 
polyelectrolyte from experiments and fitting method. 
 

We next present results from nanoindentation tests. In all nanoindentation tests on the 

SWNT composite films and polymer films, a constant rate loading history was applied. 

The load-displacement curves of polyelectrolyte film (PAA+PDDA) and 

SWNT/polyelectrolyte films (SWNT+PAA+PDDA) are shown in Fig. 6-3. It can be seen 

that nanoindentation load-displacement curve in the through-thickness direction is very 

close to the in-plane curve, indicating that the multilayer films have very similar linearly 

viscoelastic behavior in these two directions. The experimental load-displacement data 

were fitted into Eq. (6-5), and the fitted curves are also plotted in Fig. 6-3. It is seen that 

Eq. (6-5) can describe the nanoindentation data very well. In the computation, the 

Poisson’s ratio for both films is assumed to be 0.3. With the compliance numbers and 
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retardation times determined from correlating Eq. (6-5) to nanoindentation data, the creep 

function is computed using Eq. (6-4), and the uniaxial relaxation modulus E(t) is 

determined from Eq. (6-6). The in-plane relaxation modulus of SWNT/polyelectrolyte 

film is 

ttt eeetE 001.001.01.0 208.0254.0325.0787.0)( −−− +++=  GPa;        (6-7) 

the through-thickness uniaxial relaxation modulus of SWNT/polyelectrolyte film is 

ttt eeetE 001.001.01.0 197.02984.03053.0725.0)( −−− +++=  GPa;           (6-8) 

and the relaxation modulus of the neat polyelectrolyte film is 

tt eetE 01.01.0 390.045016.0357.0)( −− ++=  GPa.         (6-9) 

From Eqs. (6-7) and (6-8) the in-plane and through-thickness moduli of 

SWNT/polyelectrolyte approach 0.787 GPa and 0.725 GPa, respectively, as time t 

increases to 33 s. The maximum difference in linearly viscoelastic properties in the two 

directions is 8.6%. The Young’s modulus data in these two directions agree with the 

modulus of 0.77 GPa as determined from SSTM. Similarly, from Eq. (6-9), the Young’s 

modulus of polyelectrolyte determined from nanoindentation is 0.357 GPa, close to the 

Young’s modulus of 0.3 GPa as determined from small scale tensile measurement. 
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Fig. 6-4 Uniaxial relaxation modulus of SWNT/polyelectrolyte film and polyelectrolyte 
film measured by nanoindentation. (a) In-plane modulus measured by both fitting and 
differentiation methods for SWNT/polyelectrolyte films; (b) Out-of plane modulus 
measured by both fitting and differentiation methods for SWNT/polyelectrolyte films; (c) 
Modulus measured by both fitting and differentiation methods for polyelectrolyte films.  
 

The uniaxial relaxation moduli for both SWNT/polyelectrolyte and polyelectrolyte 

films are shown in Fig. 6-4. It is seen that the in-plane modulus of SWNT composite film 

is 2.46 times of that for PAA+PDDA film at t= 33 s, indicating significant reinforcement 

effects of SWNTs. The relaxation curves for the in-plane modulus and through-thickness 

modulus are very close to each other, implying that the linearly viscoelastic properties are 

very close to each other, and the film can be modeled as isotropic in the regime of linear 

viscoelasticity. The modulus depends primarily on the composition of the films when the 

SWNTs are relatively straight. In this case, the SWNTs are in general oriented within the 

film plane, and the orientation of SWNTs within the plane is random. The volume 

fraction as determined from any in-plane direction and through-thickness direction is 
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approximately the same, leading to very close linearly viscoelastic properties. If should 

be noted, though, the material strength is expected to be much higher in the in-plane 

direction than in the through-thickness direction due to the such effects as high strength 

and interlocking of the SWNTs oriented within the film plane.  

Table 6-1 Comparison of modulus data for the SWNT/polyelectrolyte and polyelectrolyte 
films determined from different approaches 

 

 

In-plane modulus of 
SWNT/polyelectrolyte  
(GPa) 

Through-thickness 
Modulus of 
SWNT/polyelectrolyte  
(GPa) 

Modulus of 
polyelectrolyte  
(GPa) 

Tensile test 
 
0.770 

 
N/A 

 
0.300 

Nanoindentation 
(this study) 

 
0.787  

 
0.725 

 
0.357 

Default output 
value from 
Nano XP (MTS) 

 
4.258 3.471 

 
0.894 

 

The MTS Nano Indenter XP system also gave Young’s modulus based on analysis in 

software TestWorks 4.06 for time-independent materials. These data for the 

SWNT/polyelectrolyte film and the polyelectrolyte film, together with the 

nanoindentation data obtained from linearly viscoelastic analysis described here are 

summarized in Table 1. The default values provided by TestWorks 4.06 software on 

MTS Nano Indenter XP system is based on elastic/plastic analysis of unloading curves, 

which did not take into account of the time-dependent behavior of polymers and can 

cause significant error in the measurements of properties of polymers using 

nanoindentation (Lu et al., 2003). The direct output modulus from the nanoindenter is 

based on the elastic-plastic analysis on indentation using the approach developed by 

Oliver and Pharr (Ref. 2 in the References list). The modulus is determined from 
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unloading portion of the nanoindentation load-displacement curve and the contact area 

measured at the maximum nanoindentation load. While the method has been very 

effective and robust for elastic-plastic materials (without time-dependency), 

measurements of viscoelastic properties using this method have experienced problems 

(Lu, et al., 2003). The method tends to overestimate  significantly the Young’s modulus 

for a viscoelastic material such as polymers. The major reason is that during unloading, 

the displacement does not follow closely with the decreased load (as in the case for an 

elastic-plastic materials) in unloading due to prior increasing of the applied 

nanoindentation load and the memory effect of the time-dependent materials. As a result 

even when the load decreases during initial unloading, the displacement does not 

decrease at the same pace as the force, and sometimes could even increase during the 

initial stage of unloading, causing some high unloading slope, or negative slope in the 

initial unloading load-displacement curve, and leading the output of higher modulus than 

the actual value. Consequently a method appropriate for a viscoelastic material needs to 

be used for nanoindentation measurements of properties of time-dependent materials such 

as polymers.  Since 95.25% (by weight) of the SWNT/polyelectrolyte in this study is 

polymer, consequently it is necessary to use viscoelastic analysis to measure its 

properties. As shown in Table 1, the values of modulus provided by default output from 

the nanoindentation system are much larger than those determined using both approaches 

presented in this study, indicating that the direct output from the nanoindenter on a 

viscoelastic film is not appropriate.  

For nanoindentation of a film deposited on a substrate, the effect of substrate on the 

measurement of properties of the film is an issue of concern. An empirical estimation is 
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that the substrate is nearly negligible when the indentation depth is less than 10% of the 

thickness of the film, and the nanoindentation can be considered to be made on a half-

space. However, it was found the critical value at which the substrate will affect varies 

with different combinations of film/substrate. Finite element analysis (Cai and Bangert, 

1995) showed that for a hard film on a soft substrate, the critical penetration is about 7% 

of the thickness of the film; while for soft film on a hard substrate, the critical value is 

about 20% (Bhattacharya and Nix, 1988). In this study, the SWNT composite film was 

placed on a glass slide. The film thickness is around 35 µm while the maximum 

indentation depth is less than 1000 nm, thus the penetration is less than 3% of the 

thickness of the film. On the other hand, the nanoindentation hardness test shows that the 

hardness of the SWNT/substrate is 1 GPa and that of substrate is 10 GPa, thus the 

film/substrate combination can be treated as a soft film on a hard substrate. Therefore it is 

reasonable to assume that the effect of substrate on the measurement of properties of 

SWNT composite films is negligible, and the previous analysis assuming that the 

workmaterial is a linearly viscoelastic half space is justified. 

 

6.5 Conclusions 
 

Nanoindentation tests were performed on SWNT/ polyelectrolyte films prepared from 

layer-by-layer assembly. Using linearly viscoelastic analysis of nanoindentation, 

relaxation functions in the time domain were determined for in-plane and through-

thickness directions, and found to be within 10%, so that the film can be modeled as an 

isotropic material in the regime of linear viscoelasticity. It was found that the modulus of 
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the SWNT/ polyelectrolyte film with 4.75% of SWNTs is nearly 2.46 times of the 

modulus of the neat polyelectrolyte film. Small scale tensile tests were also conducted, 

and determined the stress-strain relations of the two films. The modulus determined from 

SSTM for each of the two films is very close to the modulus of the corresponding film 

from nanoindentation data, indicating the validity of the methods used for linearly 

viscoelastic materials. 
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CHAPTER VII 

APPLICATION OF NANOINDENTATION TO MEASURING VISCOELASTIC 

FUNCTION FOR THIN FILMS II: TYMPANIC MEMBRANE 

 

7.1 Introduction 
 

The human middle ear, including tympanic membrane (or eardrum), three ossicular 

bones (i.e., malleus, incus and stapes), and suspensory ligaments (or muscle tendons), 

transfers the sound from the external ear canal to cochlea (or inner ear). The tympanic 

membrane (TM) initiates this acoustic-mechanical transmission by converting the 

acoustic wave (pressure wave) into vibrations of the middle ear ossicular bones (Gan et 

al., 2004). The changes of structure and mechanical properties of the TM in middle ear 

diseases, such as the TM retraction, middle ear infection, otitis media with effusion, and 

perforation of the TM, can affect directly sound transmission and lead to conductive 

hearing loss (Gan et al., 2006).  

 The human TM is a membrane soft tissue composed of a series of collagen fiber 

layers. Understanding the mechanical behavior of the TM is of considerable importance 

in the research of ear biomechanics for sound transmission. Efforts have been made to 

measure the elastic properties of the TM. von Békésy (1960) conducted bending tests on 

human cadaver TM sample and reported the Young’s modulus of 20 MPa. At almost the  
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same time, Kirikae (1960) measured the elastic modulus by performing longitudinal 

dynamic tension tests on human TM sample and obtained the Young’s modulus of 40 

MPa. The data from these tests are often quoted in literature and used in modeling sound 

transmission in human ears. Recently, Ladak et al. (2004) investigated the response of a 

cat eardrum to cyclical static pressures, and measured the displacement of eardrums.  Fay 

et al. (2005) presented methods to estimate the elastic modulus of both human TM and 

cat TM based on composite laminate theory and dynamic measurements. Despite the 

viscoelastic behavior in TM, to date, the study on viscoelastic properties is very sparse in 

open literature. Since the human TM is viscoelastic, measurements of elastic properties 

should be considered as the first-order approximation of the time-dependent behavior of 

such a membrane material. Need exists to measure directly the viscoelastic properties of 

the TM. It has been observed that TM collagen fibers are oriented in multiple layers in 

both radial and circumferential directions (Lim, 1995). Consequently the viscoelastic 

properties in the through-thickness direction can be different from those in the in-plane 

direction; and it is also necessary to characterize material properties of TM in at least two 

different directions. 

 The human TM is a soft tissue with small dimensions (approximately 60 µm in 

thickness and 8 mm in diameter), as a result, it is a challenge to use conventional 

techniques such as tensile tests to determine the viscoelastic properties. With the 

successful development of nanoindentation techniques for measurements of viscoelastic 

functions, it becomes possible to measure the viscoelastic properties of human ear tissue 

using nanoindentation. In this study, measurements were conducted on fresh human 

cadaver TM samples in both through-thickness (or out-of-plane) and in-plane directions. 
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The nanoindentation data were analyzed to extract the relaxation moduli of human TM in 

both directions. The relaxation modulus in the through-thickness direction was 

determined using the method developed by Lu et al., (2003); the in-plane relaxation 

modulus was determined by solving an inverse problem in nanoindentation using finite 

element method (FEM) through correlating the numerical load-displacement data with 

the nanoindentation data, and by solving an in-plane viscoelastic nanoindentation 

problem analytically.  

 

7.2 Analytical prerequisites  

7.2.1 Measurements of the through-thickness properties using nanoindentation 

The schematic of through-thickness nanoindentation using conical and spherical 

indenters are shown in Fig. 5-1. Methods for measuring through-thickness are presented 

in Chapter 3 (Section 3.1). Eq. (6-6) will be used for the conversion from creep 

compliance to relaxation modulus. 

 

7.2.2  Analytical solution for the measurement of in-plane viscoelastic properties of 

TM under a central concentrated load 

When a TM sample is suspended on a circular hole and is subjected to a concentrated 

load at the center of the hole, its deformation is primarily induced by in-plane bending 

and membrane stresses, both of which are the results of the in-plane properties of the TM 

and the applied loads. Solving this viscoelastic problem, in connection to experimental 

data as obtained for such a situation, can provide an approach to measure the in-plane 
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viscoelastic function. To this end, the elastic solution is extended to the linearly 

viscoelastic solution in this section.  

 

 

 

 

 

Fig. 7-1 A schematic of a thin plate cconstant rateed at the perimeter and loaded with 
concentrated force at the center. 

 

 

Consider a homogeneous, isotropic and linearly elastic film clamped at a circular 

hole; The film is subjected to a concentrated force at its center, as shown in Fig. 7-1, and 

the film is thin compared with its diameter, so that it can be modeled as a thin plate. The 

plate (or film) has thickness b, radius a; its center is subjected to a force P perpendicular 

to the initial plate plane. For this problem, Timoshenko (1940) derived the following 

representation for the deflection, W, of the plate: 
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Rewriting Eq. (7-2) leads to  
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Eq. (7-3) can be used to determine E for an elastic material.  

We next extend the Timoshenko solution for the elastic problem to find the solution 

for a viscoelastic problem. Consider a circular plate composed of a homogeneous, 

linearly viscoelastic, and isotropic material. The plate is subjected to a concentrated force 

at its center. This problem has fixed displacement boundary condition so that the 

correspondence principle between a linearly elastic solution and its corresponding 

linearly viscoelastic solution applies. Applying the correspondence principle, with the 

consideration of a constant Poisson’s ratio, ν , leads to  
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where )(tJ D  is the uniaxial creep compliance. 

When a constant rate loading history, tVtP 0)( =  (
0

V  is a constant), is applied. 

Differentiation of Eq. (7-4) with respect to time t gives 
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This equation can potentially be used to determine the uniaxial creep compliance of the 

circular plate. However, since the load-displacement data from experiment are discrete 

data and scattered, differentiation of 
dP

dW
 can lead to undesirable errors in the 
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measurement of )(tJ D . To circumvent this difficulty, a curve fitting approach, similar to 

the method described in Section 3.1 is introduced.  

Consider now to represent the uniaxial creep compliance by the generalized Kelvin 

model, 
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where  
0D

J  and  
Di

J  are creep numbers for uniaxial creep compliance. Substituting Eq. 

(7-6) into Eq. (7-4), one has 
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Fitting Eq. (7-7) into the load-displacement curve obtained from experiments, the best-fit 

parameters, 0DJ , DiJ  and τi can be determined, which will then be substituted into Eq. (7-

6) to determine the uniaxial creep compliance. Consequently, the Young’s relaxation 

modulus E(t) can be computed by solving the integral equation 

tdtJE

t

D =−∫ τττ )()(
0

.               (7-8) 

 

7.3 Nanoindentation experiments 
 

An MTS Nano Indenter XP was employed for nanoindentation on human TMs. Both 

Berkovich and spherical indenters were used in nanoindentation tests. The nanoindenter 

has a resolution of 0.2 nm in displacement and 50 nN in nanoindentation load. The full 

capacities in nanoindentation load and displacement are 500 mN and 500 µm, 

respectively. The Berkovich indenter is modeled as a conical indenter with a half-cone 
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angle 70.3º that has approximately the same relation between the cross-sectional area and 

height of the apex as measured from the cross-section, as illustrated in Fig. 5-2.  

 

 

 

 

 

 

 

 

 

 

Fig. 7-2 Image of the right TM (medial view). 
 

The specimens of the TM were harvested from fresh or fresh frozen human temporal 

bones (cadaver ears) through the Willed Body Program at the University of Oklahoma 

Health Science Center. All the experiments were performed within 6 days after obtaining 

the bones. Proper informed consent was obtained prior to experiments on TM specimens. 

The tympanic annulus of the TM was first separated from the bony ear canal, and then 

taken out with malleus attached and placed in normal saline solution (Fig. 7-2). 

Before experiments the TM samples were stored in a freezer at –40 ºC. The TM was 

defrosted for approximately 20 minutes prior to sectioning using a scalpel. Fig. 7-2 shows 

a right TM which was cut into two parts, the posterior and anterior parts. A TM sample 

was mounted on top of a flat aluminum substrate. The mount was designed to allow 
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nanoindentation tests of TM in both dry and wet conditions. The medial side of the TM is 

rougher than the lateral side. Nanoindentation was made on the lateral side in all 

nanoindentation measurements. In physiological condition, the medial side is saturated 

with fluid so that it remains in wet condition. To emulate this condition, we allowed the 

medial side of the TM sample in contact with the aluminum substrate. The medial surface 

of TM sample was in contact with normal saline at its perimeter to remain wet in 

nanoindentation. Fig. 7-3(a) shows a schematic diagram for sample mounting method for 

nanoindentation in the through-thickness direction; the bottom of the TM sample was in 

full contact with the substrate. Fig. 7-3(b) shows a schematic of the method for sample 

mounting in nanoindentation to determine the in-plane viscoelastic properties. A sample 

was mounted on an orifice with diameter of around 1.4 mm, and was clamped at the 

perimeter of the orifice using an Epoxy glue. Care was taken to prevent the epoxy from 

flowing to the free sample surface to affect the measurements. For testing under low 

moisture condition, referred to as dry condition later, an initially wet sample was first 

mounted on the substrate, but no saline was added to the groove located at the perimeter. 

Consequently, the sample became dry during the preparation process for nanoindentation. 

For nanoindentation tests under wet condition, saline solution was placed in a circular 

groove located in contact with the sample to allow the moisture to diffuse to the sample 

to emulate the normal physiological environment of the TM. 
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(a) 

 

 

 

 

 

(b)  

Fig. 7-3 Schematic of through-thickness and in-plane nanoindentation tests setup (a) 
through-thickness test; (b) In-plane test. 

 

All nanoindentation tests were conducted at room temperatures (23 ºC) in a thermally 

insulated chamber. Before each test, a waiting time was used to allow the thermal 

equilibrium to be reached between the sample and the instrument to reduce the effect of 

temperature gradient on the properties measurement of the sample. In nanoindentation, 

the tip drift rate was controlled to be smaller than a limiting value, typically 0.2 nm/s for 

soft tissues, before nanoindentation was conducted. After the indenter had made contact 

Substrate 

TM 

Nanoindenter 
Saline solution 
(for wet TM samples) 

Nanoindenter Fixture 
 (half is shown) 

Sample  
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with the sample surface, the displacement and load were recorded simultaneously at a 

sampling rate of five data points per second. 

 

7.4 Results and discussions 
 

7.4.1 Relaxation modulus measured from through-thickness nanoindentation tests 

Nanoindentation tests for the measurements of through-thickness properties were 

conducted on two posterior samples and two anterior samples. Both dry samples and wet 

samples were tested. The samples in dry condition were harvested from a left ear (male, 

age 81). The samples in wet condition were from both right and left ears (female, age 50) 

and a left ear (female, age 63). In all nanoindentation tests, a constant rate loading history 

was used for loading phase. After the load had reached a peak value, the load was 

reduced at the same constant rate until it reached zero. For dry samples, a Berkovich 

indenter was used, and for wet samples a spherical indenter of radius 10 µm was 

employed, so that the indenter was in good contact with the TM sample. The 

nanoindentation load-displacement curves for the dry samples are shown in Fig. 7-4 (a). 

Each curve for two samples is the average from at least three measurements at three 

locations on the same sample. Fig. 7-5 shows the nanoindentation load-displacement 

curves for wet samples; three individual results for each of the posterior (Fig. 7-5 (a) ) 

and anterior TM samples (Fig. 7-5 (b)) are included. 
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(b) 

Fig. 7-4 Through-thickness tests results for dry samples. (a) Load-displacement curves; 
(b) relaxation modulus E(t). 
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(c)  

 

Fig. 7-5 Through-thickness tests results for wet samples. (a) Load-displacement curves 
for the Posterior side of TM ; (b) Load-displacement curves for the Anterior side of TM; 
(c) The measured E(t). 
 

For purpose of measuring the relaxation modulus, Eq. (3-10) is used to fit the load-

displacement curves as shown Fig. 7-4 (a) for either a dry posterior or anterior sample.  

This procedure leads to the best-fit parameters in Eq. (3-10). These parameters are used 

to calculate the creep compliance using Eq. (3-8). The creep compliance data are then 

used in Eq. (6-6) to solve for the relaxation modulus as a function of time. The relaxation 

functions for two samples are averaged, and the average relaxation functions are 

represented by the generalized Maxwell model. The relaxation modulus for the dry 

posterior TM is determined as 

tt eetE 1.02.675.1537.176)( −− ++=  MPa,             (7-9) 

and the relaxation modulus for the dry anterior TM is 

tt eetE 1.02.751.1426.190)( −− ++=  MPa.            (7-10) 
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The relaxation functions for both dry anterior and posterior TM are shown in Fig. 7-4(b). 

The same data analysis procedure is applied to wet posterior and anterior TM samples. 

After fitting Eq. (3-12) to the nanoindentation load-displacement curves as shown in Fig. 

7-5, the best-fit parameters in Eq. (3-8) are determined to calculate creep compliance. 

The relaxation moduli are subsequently determined using Eq. (6-6). The average 

relaxation moduli for wet posterior and anterior TM samples are 

ttt eeetE 01.01.0 7.09.36.78.6)( −−− +++=  MPa,            (7-11) 

and 

ttt eeetE 01.01.0 6.34.33.622.6)( −−− +++=  MPa,       (7-12) 

respectively.  

 

From the results shown in Figs. 7-4 (b) and 7-5(c), it is seen that the relaxation modulus 

measured for dry TM sample is much higher than that for wet samples. Moreover, the 

relaxation modulus data in the steady state for dry posterior and wet posterior samples are 

176.7 MPa and 6.8 MPa, respectively. This indicates that the mechanical properties of 

TM depend highly on the moisture content. The wet eardrum used in nanoindentation had 

the medial side in wet condition and the lateral side in dry condition, to emulate the 

condition of a TM in normal physiological environment. The relaxation modulus 

functions for both posterior and anterior TM samples, as shown in Figs. 7-4 (b), 7-5 (c), 

are very close to each other, indicating that there is no significant difference of 

mechanical properties between the posterior and anterior sides of the TM in the through-

thickness direction. 
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The TM tissue is in the rubbery-like state (i.e., at a temperature much higher than 

its glass transition temperature) in normal physiological environment. Consequently the 

Poisson’s ratio is close to 0.5. In data analysis, the Poisson’s ratio used is 0.48 for the 

calculation of the relaxation modulus. It should be noted that, in order to justify the 

application of viscoelastic contact analysis of the nanoindentation data, the deformations 

of samples should stay within the linearly viscoelastic regime. Since the TM is a soft 

membrane tissue, and the maximum displacement in nanoindentation in the through-

thickness direction was around 4 µm, it is expected that the deformations in 

nanoindentation are well within linearly viscoelastic regime.  

 

7.4.2 Finite element analysis of in-plane nanoindentation tests on TM 

For measurements of in-plane viscoelastic properties of the TM, the configuration as 

shown in Fig. 7-3 (b) was used to mount a TM sample. A concentrated force was applied 

at the center of the thin TM sample. In actual service condition of the TM, both 

membrane stress and bending stress are present, as expected in the in-plane 

nanoindentation on the TM. Finite element method is used to simulate the in-plane 

nanoindentation process; An inverse problem to determine the best-fit parameters is 

solved in finite element analysis so that FEM results on the load-displacement data are in 

a good agreement with the nanoindentation load-displacement data; the best-fit 

parameters are then used to determine the relaxation function of the TM. The procedures 

for this approach are described herein. FEM analysis is first conducted to simulate the 

nanoindentation for a TM sample suspended on a circular orifice with the use of initial 

guessed values of material parameters in the model. Next, the load-displacement data 
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from simulation are compared with measurement data. If there is no agreement between 

two sets of the data, the material parameters are adjusted, and this procedure is repeated, 

until an agreement is reached. The best-fit parameters are then used to determine the 

relaxation modulus of the TM.   
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(c)  

Fig. 7-6 Results for dry TMs from in-plane nanoindentation tests. (a) Load-displacement 
curves; (b) Correlation of load-displacement curves between finite element analysis and              
experiments; (c) E(t) determined from the analytical solution and finite element method. 
 

In the finite element analysis of nanoindentation on a TM sample, the 

ABAQUS/Standard code (Hibbitt, Karlsson & Sorensen, Inc.) was used. The finite 

element model for a TM sample consists of 4275 shell elements. A constant rate loading 

history at a rate of 
0

V =0.0251 mN/s was applied in nanoindentation. The relaxation 

modulus used in the finite element modeling is represented by the generalized Maxwell 

model,  









−−= ∑

−N t

i
iet

0
0 )1(1)( τµµµ ,            (7-13) 

where 0µ  the instantaneous relaxation modulus, iµ  are relaxation numbers ( iµ <1), and 

iτ  are relaxation times.  
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The Poisson’s ratio of the TM sample is assumed as a constant value, 0.48. The bulk 

relaxation modulus function can be computed from shear relaxation modulus using  

)21)(1(6

)(
)(

νν
µ

−+
=

t
tK .                  (7-14) 

         Displacement (nm)

L
o
a
d

(m
N

)

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

1 Posterior Test 1

Posterior Test 2

Posterior Test 3

 

(a)  

Displacement (nm)

L
o
a
d

(m
N

)

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

1 Anterior Test 1

Anterior Test 2

Anterior Test 3

 

(b) 

 

Fig. 7-7 Load-displacement curves of wet TM from in-plane indentation tests. (a) Sample 
from posterior side of TM; (b) Sample form anterior side of TM. 
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(b) 

Fig. 7-8 Results for wet posterior and anterior samples from in-plane nanoindentation 
tests. (a) Correlation of load-displacement curves between finite element analysis and 
experiment; (b) E(t) determined from finite element method and the analytical solution. 

 

In-plane nanoindentation tests were conducted on both dry and wet samples. The source 

of samples has been described in Section 7.4.1. Fig. 7-6(a) shows two load-displacement 

curves of nanoindentation on dry TM samples. Figs. 7-7 (a) and 7-7 (b) show the load-
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displacement curves of nanoindentation on wet posterior and anterior samples, 

respectively. From the comparison between load-displacement curves of dry and wet 

samples, it is clear that a wet sample is much softer or more stretchable than a dry 

sample. It should be pointed that from Figs. 7-6 (a), 7-7 (a) and 7-8(b), all load-

displacement curves appear nearly linear during loading stage. However, a close 

observation shows that the slope changes with displacement; the divergence from linear 

load-displacement relation is caused by the viscoelastic behavior of the TM. 

Nanoindentation processes on wet and dry TM samples are simulated using finite 

element analysis. For viscoelastic properties as shown in Eq. (7-13), N=2 is used in the 

Prony series. The parameters, 0µ , iµ  are optimized after comparing the results of load-

displacement to the nanoindentation data from measurements; the procedure is iterated 

until the best correlation between two sets of load-displacement curves is reached. Fig. 7-

6 (b) and Fig. 7-8 (a) show the results of correlations between load-displacement curves 

from finite element analysis and those from nanoindentation tests for the dry TM, and 

wet TM, respectively. The cross-correlation coefficients for the dry TM, the posterior TM 

and anterior TM are 0.999817, 0.999414 and 0.9991, respectively, indicating a good 

agreement between load-displacement data from simulations and the results from 

measurements. The parameters of 0µ  and iµ  at the best correlation are used to calculate 

the relaxation modulus. The best-fit parameters of 0µ , 1µ  and 2µ  are 7.0 MPa, 1.4 MPa, 

0.7 MPa, respectively, for posterior TM, and are 7.4 MPa, 1.5 MPa, 0.6 MPa, 

respectively, for anterior TM, and are 290.5 MPa, 20.3 MPa, 8.7 MPa, respectively, for 

dry TM. Based on Eq. (7-13), uniaxial (Young’s) relaxation modulus, E(t), are 

determined as 
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tt eetE 01.01.0 1.21.45.14)( −− ++=   MPa,        (7-15) 

and  

tt eetE 01.01.0 8.14.48.15)( −− ++=  MPa,                  (7-16) 

for posterior TM and anterior TM, respectively. 

The in-plane Young’s relaxation modulus E(t) for dry TM is 

tt eetE 01.01.0 8.253.2.600.86)( −− ++=  MPa.                   (7-17) 

Eqs. (7-15) and (7-16) imply that the steady values of relaxation modulus are 14.5 MPa 

and 15.8 MPa for posterior and anterior TM, respectively. These values are on the same 

order of magnitude with the elastic modulus of 20 MPa measured by von Békésy (1960). 

The FEM results of relaxation moduli in the in-plane direction for both wet anterior and 

posterior TM are shown in Fig. 7-8 (b); the relaxation modulus as measured by 

nanoindentation for dry TM is shown in Fig. 7-6 (c). As delineated in Fig. 7-8 (b), the 

relaxation behavior of posterior TM and anterior TM is pronounced, especially at the 

beginning, while the relaxation behavior of dry TM is not noticeable. Results from finite 

element analysis show that the relaxation modulus for dry TM (Fig. 7-6 (c)) is much 

higher than that of wet TM (Fig. 7-8 (b)), indicating again that moisture in the TM plays 

an important role for the mechanical behavior of TM. 

 

7.4.2 Analytical results of the Young’s relaxation modulus from in-plane 

nanoindentation tests on TM 
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The analytical solution described in Section 7.2.2 is used to determine the relaxation 

modulus E(t) of the TM in the in-plane direction using the load-displacement data from 

nanoindentation. The results of E(t) are obtained for both dry and wet TMs. After fitting 

the load-displacement curves as shown in Figs. 7-6 (a), 7-7 (a), 7-7 (b) with Eq. (7-7), the 

parameters are extracted and used in Eq. (7-6) to determine the relaxation modulus E(t) 

for dry TM  using Eq. (7-8),  

tt eetE 1.09.10.29.80)( −− ++=  MPa.                      (7-18) 

The measured Young’s relaxation modulus E(t) for wet posterior TM is 

ttt eeetE 01.01.0 4.12.46.25.12)( −−− +++=  MPa;                (7-19) 

And E(t) for wet anterior TM is  

ttt eeetE 01.01.0 5.01.36.22.15)( −−− +++=   MPa.                  (7-20) 

The results of E(t) for dry and wet TM samples are depicted in Figs. 7-6 (c) and 7-8 (b) 

respectively. The analytical results are compared with those measured using finite 

element analysis. As shown in Figs. 7-6 (c) and 7-8 (b), the analytical results of E(t) are 

in a good agreement with E(t) determined from finite elements analysis. 

It is noted that in finite element analysis of in-plane nanoindentation, both bending 

stress and membrane stress in TM samples are considered, while in the linearly 

viscoelastic solution of a circular plate subjected to a concentrated force at its center, for 

the determination of E(t) as described in Section 7.2.2 it is assumed that the membrane 

stress is negligible and the bending stress is predominant. The good agreement between 

results from analytical solution and data determined from FEM analysis indicate that the 

bending stress induced primarily within the collagen fibers plays a more important role 

than the membrane stress for the sample dimensions used in this investigation. 
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It is also noted that, the nanoindentation results of relaxation modulus are obtained 

based on the analysis of a homogeneous, isotropic viscoelastic contact mechanics 

problem. The human TM, however, is made of a viscoelastic composite so that it is 

neither homogeneous nor isotropic. Nonetheless, it is noted that the through-thickness 

nanoindentation invokes primarily the behavior of the material in the thickness direction 

so that the relaxation modulus in the thickness direction is representative of the 

viscoelastic property in the thickness direction. For nanoindentation on the TM clamped 

at the edge of a circular hole, nanoindentation displacement in the TM is primarily 

induced by in-plane deformation of the TM so that the in-plane viscoelastic properties 

play a dominant role in the nanoindentation load-displacement relation. As a first order 

approximation, the TM could be considered as a transversely isotropic material with the 

material properties identical in all in-plane directions of a TM sample. Also considering 

the fact that the underneath a nanoindenter, the indent impression has a dimension on the 

order of 10 microns so that there are many collagen fibers within an indent. 

Consequently, the nanoindentation results are in general a representation of the average 

behavior of TM. Further study is needed to determine all viscoelastic functions when 

anisotropic characteristics are considered. 

 

 

 

 
 
 
 
 
 



 121 

 
Tale 7-1 Results of modulus (steady state) from nanoindentation measurements 

 

 
Table 7-1 summarizes the measured relaxation modulus of the TM at steady state 

using nanoindentation. The results show that the anterior and posterior sides of TM have 

about the same relaxation modulus in the through-thickness direction. The relaxation 

modulus in the in-plane direction for wet anterior TM is higher than that for wet anterior 

as determined from both analytical solution and finite element analysis.  

 

7.5 Conclusions 
 

Nanoindentation techniques were used to determine the load-displacement data 

representative of mechanical behavior of human TM in both the through-thickness and 

the in-plane directions. Theory of linear viscoelasticity has been applied to analyze the 

nanoindentation data. The relaxation modulus of the TM in the through-thickness 

direction was measured by placing a TM sample on a flat substrate while making 

nanoindentation into the surface of the TM sample. The relaxation modulus in the 
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12.5 15.2 80.9 80.9 
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through-thickness direction was extracted from the nanoindentation load-displacement 

data using an approach developed for viscoelastic materials. The relaxation modulus of 

TM in the in-plane direction was determined from the correlation between the finite 

element analysis of nanoindentation and the experiment results; the relaxation modulus 

in-plane direction was also measured using the analytical solution to the problem of in-

plane nanoindentation on TM. A reasonably good agreement has been reached between 

the Young’s relaxation modulus in the in-plane direction from analytical solution and that 

from finite element analysis. The modulus at the steady state is close to the value as 

determined by von Békésy (1960); The relaxation modulus of TM in wet condition is 

much lower than that in dry condition. The in-plane modulus at steady state is determined 

to be around 6 MPa for wet TM samples, and the through-thickness moduli at steady state 

are determined to be 177 MPa and 190 MPa for dry posterior and anterior sample, 

respectively. The results also show that the TM is much stiffer in the in-plane direction 

than in the through-thickness direction. The in-plane modulus at steady state is 14.5 MPa 

for the posterior TM, and is 15.8 MPa for the anterior TM sample in wet condition; the 

in-plane modulus at steady state is 86 MPa for dry TM sample. 
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CHAPTER VIII. 
 

MEASUREMENTS OF RELAXATION MODULUS USING NANOINDENTATION 
 
 
 

For nanoindentation, most commercial nanoindenters use force control, the applied 

force and the resulting displacement as a function of time are recorded for analysis to 

determine the material properties. With the use of force control, viscoelastic analysis will 

give primarily creep functions. In the analysis of stress and deformation, however, the 

Young’s relaxation modulus is often needed. While the relaxation modulus can be 

converted from creep compliance, using  

∫ +=−
t

ttJE
0

)1(2)()( νξξ              (8-1) 

with E(t), J(t) and ν being Young’s relaxation function, shear creep function and constant 

Poisson’s ratio, respectively. However, this equation is ill-posed (Nikonov et al., 2005). 

A small error in shear creep compliance could lead to large error in relaxation modulus. 

In addition solving this interconversion relation requires creep data at short times, which 

are often not available as nanoindentation at short times corresponds to small depths at 

which nanoindentation data are not accurate at all (Lu et al., 2003). Consequently solving 

relaxation function from the creep compliance data using the interconversion relation 

would compromise the accuracy of the relaxation function. To characterize  
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the creep and relaxation behaviors of a linear viscoelastic material, the creep compliance 

and relaxation modulus are best advised to measure from two separate nanoindentation 

tests. To date, work is sparse on the nanoindentation measurement of relaxation modulus 

described by a general viscoelastic model. In this chapter, we present methods to measure 

the Young’s relaxation modulus directly from nanoindentation using constant-rate 

displacement history. We derive equations to calculate the Young’s relaxation modulus 

for the use of Berkovich and spherical indenters. Nanoindentation results on the Young’s 

relation modulus will be compared with data determined from conventional 

measurements to examine the approach presented. 

 

8.1. Analytical Prerequisite 
 
 

In this section, equations are derived for the calculation of Young’s relaxation 

modulus under constant-rate displacement history using either the Berkovich or spherical 

indenter tip. The diamond Berkovich indenter tip is modeled as a rigid conical indenter 

tip with a half-cone angel of 70.3° based on the cross sectional area as a function of depth 

same as that of conical indenter (Fischer-Cripps, 2002). For a rigid conical indenter 

(shown in Fig. 8-1) indenting into a linearly elastic, isotropic and homogeneous half-

space, Sneddon (1965) provided the following load-displacement relation  

2

2 tan)1(

2
EhP

ανπ −
= .                                 (8-2) 

where P is the indentation force, h the indentation depth, ν  the Poisson’s ratio, and E the 

Young’s modulus; α  is the angle between the half-space and conical generator (Fig. 8-1), 

and =α 19.7° for the conical indenter as a model for the Berkovich indenter. 
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For a spherical indenter tip indenting into a linearly elastic, isotropic and homogeneous 

half-space, a well-known Hertzian contact problem (Hertz, 1881), the indentation load-

displacement relation is 

2/3

2 )1(3

4
Eh

R
P

ν−
= ,                                       (8-3) 

where R is the radius of the spherical indenter, as shown in Fig. 8-1. 
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Fig. 8-1 Schematic of conical indentation and the geometries of the Berkovich, conical 
and spherical indenters 
 

In general, the viscoelastic contact solution can be derived from the corresponding elastic 

contact problem using the corresponding principle provided that the displacement 

boundary does not vary with the time. However, in the case of viscoelastic contact 

problem using either a conical or spherical indenter, the contact area between the indenter 
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and the workpiece changes with time. Such varying boundary problems cannot be solved 

using the correspondence principle directly. To solve such varying boundary viscoelastic 

contact problems, Lee and Radok (1960) provided an effective approach by introducing 

an appropriate hereditary integral operator for situation where indentation contact area 

does not reduce with the increasing time. Ting (1966) gave a more general approach to 

solve viscoelastic contact problems, his approach can be applied to arbitrary history of 

contact area. The Ting approach is reduced to the Lee-Radok approach when the contact 

area does not increase with time. Using the Lee-Radok approach for a linearly 

viscoelastic, isotropic, and homogeneous material with a constant Poisson’s ratio ν, the 

load-displacement relation follows 

ξ
ξ
ξ

ξ
ανπ

d
d

dh
tEtP

t

∫ −
−

=
0

2

2

)(
)(

tan)1(

2
)( .                 (8-4) 

                       

It should be noted that the contact area between the indenter and the half-space does not 

reduce with time (Lee and Radok, 1960, Ting, 1966).  

For indentation at a constant-rate displacement history, namely, 

tVth 0)( = ,                         (8-5) 

with 0V  being a constant indentation velocity, Eq. (8-5) becomes 

ξξξ
ανπ

dtE
V

tP

t

∫ −
−
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4
)( .                (8-6) 

Eq. (8-6) is next re-written as 
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4
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))((

2
0

2

0
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dtE

t ανπ
ξξξ

−
=−∫ .                     (8-7) 
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Using the recorded nanoindentation load-displacement data, the relaxation modulus as a 

function of time can be solved from Eq. (8-7). However, since at the beginning of the 

contact (such as when the depth is less than 50 nm) the nanoindentation 

load/displacement data are not accurate, due to limitation in the system as well as the 

initial plowing effect, Eq. (8-4) cannot be readily used for small displacements. Also 

solving the integral equation requires iteration from the initial results at low depths or 

small times, it is not suitable to apply Eq. (8-7) to the nanoindentation data to determine 

relaxation function. We will provide next two other approaches in an attempt to 

circumvent the difficulties associated with small depths of nanoindentation.  

The first approach is a differentiation approach. We take the derivative of Eq. (8-7) 

with respect to time t,  

dt

tdP

V
dE

t )(

4

tan)1(
)(

0
2

0

2

∫
−

=
ανπ

ξξ .                        (8-8) 

We take next another time derivative on both sides of Eq. (8-8),  

2
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0

2 )(

4

tan)1(
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dt

tdP

V
tE

ανπ −
= .                              (8-9) 

Eq. (8-9) can also be rearranged into  

2

22 )(

4

tan)1(
)(

dh

tdP
tE

ανπ −
= .                             (8-10) 

It appears that Eq. (8-10) is simple to use. However, due to again the fact that the load-

displacement data from nanoindentation experiments are scattering, use of raw 

nanoindentation data to determine the derivative can induce errors. The errors can be 

reduced with the use of appropriate curve fitting technique to fit the nanoindentation data 

into smooth functions such as polynomial/exponential functions or neural network fitting.  
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Another approach is to consider the correlation between nanoindentation data and the 

load-displacement relation described by Eq. (8-6) with the use of appropriate viscoelastic 

model for the material. For the linearly viscoelastic material, we use the generalized 

Maxwell model for the Young’s relaxation modulus 

∑
=

−
∞ +=

N

i

t

i
ieEEtE

1

)( λ ,              (8-11) 

where ∞E , iE  are relaxation numbers, iλ  are the reciprocals of relaxation times. 

We substitute Eq. (8-11) into (8-6) and find  
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Since tVth 0)( = , we rewrite Eq. (8-12) into 
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After fitting Eq. (8-13) into the load-displacement curve from nanoindentation tests, the 

parameters such as relaxation numbers and the reciprocals of the relaxation times can be 

determined; these parameters can be used in Eq. (8-11) to determine the relaxation 

modulus. 

For a spherical indenter indenting into a linearly viscoelastic, isotropic and 

homogeneous half-space, using the Lee-Radok (1960) method the nanoindentation load-

displacement relation is 
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Applying  displacement history given in Eq. (8-5) to Eq. (8-14) leads 
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15)We use, again, the relaxation modulus E(t) represented by the generalized Maxwell 

model in Eq. (8-11) in Eq. (8-15), and have 
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Considering tVth 0)( = , Eq. (8-16) becomes 
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Since the second term on the right-hand side of Eq. (8-17) cannot be integrated 

analytically, an explicit relation between load and displacement cannot be obtained. 

Nevertheless, the relaxation function can still be determined with recourse to numerical 

solution of Eq. (8-17). This is conducted using an algorithm that searches iteratively for 

the parameters in the generalized Maxwell model in Eq. (8-11) until the load-

displacement data from Eq. (8-17) correlates well with the data from nanoindentation 

measurements; the parameters that give the best correlation are then used in Eq. (8-11) to 

determine the Young’s relaxation modulus E(t). 

 

8.2. Nanoindentation Measurements 
 
 

An MTS Nano Indenter XP system was used in nanoindentation measurements. The 

nanoindenter can reach a maximum indentation depth of 500 µm and a maximum load of 

500 mN. The displacement resolution is 0.2 nm and the load resolution is 50 nN. Both 

Berkovich and spherical indenter tips made of diamond were used. The Berkovich 
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indenter is modeled as a conical indenter with half-cone angel of 70.3 º; the spherical 

indenter has a radius of 10 µm, with schematic diagram shown in Fig. 8-1.  

The materials used in these tests were polymethyl methycrylate (PMMA), 

polycarbonate (PC) and polyurethane (PU). The PMMA samples were made from the 

same PMMA plate as used in the work by Lu, et al. (1997) and by Sane and Knauss 

(2001). The PC specimen was the same as used in the work by Knauss and Zhu (2002). 

The specimens were stored in an air-tight container. Relaxation data for PMMA and PC 

were reported in their work. The relaxation function for PU under tensile relaxation was 

measured as part of this work. The glass transition temperatures are 145 ºC, 105 ºC and 

42 ºC for PC, PMMA and PU, respectively. The dimensions of PMMA and PC 

specimens were 20mm×10mm×5mm, 20mm×20mm×6mm and 12.7mm×10mm×3.2mm, 

respectively. The PMMA, PC, and PU specimens were annealed at temperatures 5 ºC 

above their respective glass transition temperatures, and they were cooled down slowly to 

room temperature at a cooling rate of approximately 5 ºC /hr. Samples were then stored 

in an enclosed desiccator with approximately 50% relative humidity produced by placing 

a saturated salt solution in this enclosed environment. The specimens were then mounted 

on aluminum holders. All specimens had ageing times of nearly 75 hours. The relative 

humidity in the room was maintained at ~ 50% by the use of both humidifier and 

dehumidifier. 

For the measurements of relaxation function for PU, we used dog-bone shaped 

specimens in compliance with ASTM standard D638 in uniaxial relaxation tests on an 

Instron 4202 screw-driven material test system. The specimens have a width of 12.7 mm, 

thickness of 3.2 mm, and a gauge length of 50 mm. Displacement control was used in 
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uniaxial relaxation tests. Images of the speckled specimen surface were acquired by a 

Nikon D70S 6-MP digital camera and were analyzed using the digital image correlation 

with the implementation of both first order and second order displacement gradients in 

the deformation mapping functions (Lu and Cary, 2000).  
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Fig. 8-2 Displacement history for nanoindentation tests of PMMA, PC and PU using 
Berkovich indenter tip 
 

Nanoindentation tests on all PMMA, PC and PU specimens were conducted in air at 

room temperature (23 ºC). Each test did not start until the drift rate of the indenter tip had 

dropped below a set value (typically 0.05 nm/s) to ensure that a thermal equilibrium 

condition for the specimen and nanoindenter system had been reached. This procedure is 

necessary as the precision of the nanoindenter depends on the temperature gradient of the 

instrumentation. After the indenter tip had made contact with the specimen surface, a 

constant-rate displacement loading history was applied; both the nanoindentation load 
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and displacement were recorded simultaneously at a sampling rate of five data points per 

second. 

 

8.3. Results and Discussions 
 

A constant-rate displacement history, realized by controlling the load to reach set 

displacement value through closed-loop control, was used in all nanoindentation tests. To 

allow displacement to form a linear function of time, the continuous stiffness module 

(CSM) has to be activated in nanoindentation. Fig. 8-2 shows the prescribed displacement 

history used in nanoindentation tests. The resulting load-displacement data using a 

Berkovich indenter tip are shown in Fig. 8-3 for PMMA, PC and PU.  
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Fig. 8-3 Nanoindentation load-displacement curves for PMMA, PC and PU using 
Berkovich indenter tip 

Since in using Eqs. (8-4) and (8-14) the contact area between indenter and workpiece 

cannot decrease with time, only the loading portion in the nanoindentation data was 
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analyzed to determine the relaxation function using the analytical approach described in 

Section 8.2. Fig. 8-3 shows the load-displacement curves from three tests at different 

locations for each specimen of PMMA, PC and PU; the consistency of data between 

different curves for three materials indicates that the repeatability in these 

nanoindentation tests was high. 

We use the curve-fitting approach to fit the nanondentation load-displacement curve 

with a theoretical curve with the use of a set of perimeters in the generalized Maxwell 

model as described by Eq. (8-11) when a Berkovich indenter tip was used. The 

displacement rate for nanoindentation on PMMA was 5 nm/s. Using Poisson’s ratio 0.3, 

Eq. (8-13) was used directly to fit into the nanoindentation load-displacement curve for 

PMMA as shown in Fig. 8-3. The fitted curve is plotted with the measurement data in Fig. 

8-4; the cross-correlation coefficient between the two curves is 0.999987, indicating a 

good correlation between the two curves. The curve fitting process renders the best-fit 

parameters in Eq. (8-13). These parameters are then used in Eq. (8-11) to calculate the 

Young’s relaxation function for PMMA as follows 

tt eetE 01.01.0 2574.00.16072.3343)( −− ++=  GPa.                    (8-18) 

The relaxation function measured from nanoindentation for PMMA as expressed by Eq. 

(8-18) is shown in Fig. 8-5. Also plotted in Fig. 8-5 is the relaxation curve determined by 

Lu et al. (1997) from conventional tests for PMMA from the same batch of specimens as 

used in this study. The comparison between the conventional data and nanoindentation 

results for PMMA indicates a reasonably good agreement. The maximum discrepancy 

between the two sets of data is around 9.7%. 
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Fig. 8-4 Fitted and measured curves for PMMA using Eq. (8-13) (Berkovich indenter tip) 
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Fig. 8-5 Results of )(tE  for PMMA measured from different methods  

Eq. (8-13) was also applied to fit into the load-displacement curve of PC as shown in Fig. 

8-3. The nanoindentation displacement rate was 5 nm/s. The fitted curve, described by Eq. 

(8-13) is shown in Fig. 8-6, indicating nearly perfect correlation between the fitting curve 
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and the curve from nanoindentation test; the cross-correlation coefficient is 0.999992. 

The parameters used in Eq. (8-13) to obtain the fitted curve as shown in Fig. 8-6 are used 

in Eq. (8-11) to determine the relaxation function given as 

tt eetE 001.001.0 1359.00681.04531.1)( −− ++=  GPa.          (8-19) 
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Fig. 8-6 Fitted and measured curves for PC using Eq. (8-13) (Berkovich indenter tip) 
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Fig. 8-7 Young’s relaxation function E(t) for PC measured from different methods  

In the analysis of nanoindentation data for PC, the Poisson’s ratio used was 0.3. The 

Young’s relaxation modulus of PC as measured from nanoindentation is shown in Fig. 8-

7. For comparison, the conventional relaxation data measured by Knauss and Zhu (2002) 

were also plotted in Fig. 8-7. The maximum difference between the Young’s modulus 

measured from nanoindentation and the conventional data is 10.5%, indicating a 

reasonable good agreement. 

The curve-fitting method was also applied to analyze the load-displacement data from 

Berkovich indenter to determine the Young’s relaxation modulus for PU. The 

displacement rate for nanoindentation tests on PU was 8.55 nm/s. Fig. 8-8 shows the 

fitted curve for the nanoindentation load-displacement data averaged from 3 

nanoindentation tests using Berkovich indenter. The cross-correlation coefficient is 

0.999977 between the experimental data and the data of fitting using Eq. (8-13).  The 
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best-fit parameters in Eq. (8-13) were substituted into Eq. (8-11) to calculate the Young’s 

relaxation modulus as follows 

tt eetE 01.01.0 2405.00008.05909.0)( −− ++=  GPa.          (8-20) 
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Fig. 8-8 Fitted and measured curves for PU using Eq. (8-13) (Berkovich indenter tip)  
 

The Young’s relaxation modulus curves measured by both nanoindentation (using curve-

fitting approach) and conventional tests are shown in Fig. 8-9. Fig. 8-9 indicates a good 

agreement is reached between the data from nanoindentation tests using Berkovich and 

the conventional data; the maximum error is 9.5%.  

Another method for measurements of Young’s relaxation function, namely the 

differentiation method as shown in Eq. (8-10) for Berkovich indenter, was also used to 

calculate the relaxation modulus for PMMA, PC and PU with the load-displacement data 

from nanoindentation tests. Due to the fact that raw data from nanoindentation tests are 

normally scattered even though the curves appear smooth, it is necessary to fit the load-
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displacement curves with a smooth function. Since the second-order derivative of the 

load is required, the computed results of relaxation modulus can depend highly on the 

function used for fitting the raw load-displacement data. Based on observation, the form 

of combined polynomial and exponential series was used for the function to fit into the 

load-displacement data. With the function determined from the curve-fitting process, the 

relaxation function can then be computed by the use of Eq. (8-10). Using the differential 

method, the relaxation moduli for PMMA, PC and PU were determined, and are shown in 

Figs. 8-5, 8-7 and 8-9, respectively. 
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Fig. 8-9 Young’s relaxation modulus )(tE  for PU measured from different methods 

It is noted that, for results of relaxation modulus measured from nanoindentation as 

shown in Figs. 8-5, 8-7 and 8-9, the relaxation functions measured using the differential 

method tend to approach the conventional data after passing an initial time, associated 

with small indentation depths where nanoindentation measurements were not accurate. 

When indentation depth is larger, the Young’s relaxation functions measured from the 
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differential method approach almost a constant, or simply start with almost a constant. 

These behaviors do not represent highly the tendency of relaxation behavior of PMMA, 

PC or PU. This is perhaps due to the error caused by the differentiation of the 

nanoindentation load data as shown in Eq. (8-10). In comparison the curve-fitting method 

tends to be more reliable and more accurate than the differentiation method.  

In next nanoindentation measurements, a diamond spherical indenter with a tip radius 

of 10 µm was also used to measure relaxation modulus of the three polymers. A constant-

rate displacement history was applied in all nanoindentation tests for PMMA, PC and PU. 

The displacement rates as measured by the nanoindenter were 4.9 nm/s, 9.7 nm/s, and 6.3 

nm/s for PMMA, PC, and PU, respectively. For each polymer, the load-displacement data 

used for the calculation of the Young’s relaxation modulus were the average of at least 

three nanoindentation tests at different locations. Fig. 8-10 shows the load-displacement 

curves for the three polymers from nanoindentation using the spherical indenter tip.  

Eqs. (8-15)-(8-17) were used to analyze the load-displacement data from spherical 

nanoindentation. Since relaxation modulus E(t) cannot be solved by differentiating Eq. 

(8-15), the differentiation method as used for Berkovich indenter is not applicable for 

spherical indenter. On the other hand, due to the difficulty involved with integration in Eq. 

(8-17), a closed-form relation between indentation load and displacement cannot be 

obtained. Consequently, a simplified equation for spherical indenter does not exist for 

fitting experimental load-displacement data directly to determine the Young’s relaxation 

modulus. However, numerical solution of Eq. (8-17) can still be used to extract the 

relaxation function by allowing numerical load-displacement data to match the 
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corresponding nanoindentation data. To this end, an initial guess for these parameters, 

such as Ei and λi, was assumed, and the nanoindentation load data were numerically 

computed from Eq. (8-17). Next, the numerical load-displacement data were compared to 

the experimental data; if the correlation is not good enough then the parameters were 

adjusted and the process would be repeated until a good correlation, indicated by the 

maximization of cross-correlation coefficient between load-displacement data from Eq. 

(8-17) and experimental data, was reached. The Young’s relaxation modulus for the three 

polymers determined from curve-fitting approach using spherical indenter are depicted in 

Fig. 8-10. The cross-correlation coefficients between numerical results of load-

displacement data and experimental data are 0.999655, 0.999606, and 0.999019 for 

PMMA, PC and PU, respectively. Poisson’s ratio of PU at room temperature is assumed 

to be 0.3. With the best-fit parameters used in Eq. (8-11) the Young’s relaxation modulus 

can be determined. 

The relaxation modulus data for the three polymers measured from spherical 

nanoindentation are shown in Figs. 8-5, 8-7 and 8-9, respectively. It is seen from these 

figures that the relaxation functions measured using Berkovich indenter are generally 

closer to conventional data than those measured using spherical indenter over relatively 

long time, especially for PU as shown in Fig. 8-9. The difference between the relaxation 

modulus measured from spherical indenter is considerably high at initial stage. However, 

at relatively long time, the relaxation data tend to approach the conventional values; as 

shown in Fig. 8-9, the error at =t  200 s is 4.2%. One possible cause for the large 

discrepancy in relaxation modulus at initial stage is that polyurethane has more 

pronounced viscoelastic effects at room temperature than both PMMA and PC, making it 
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difficult to control the displacement to reach constant-rate displacement history at initial 

stage, possibly causing pronounced hysteresis effect on the measurement though an initial 

constant displacement rate is nearly reached.  
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Fig. 8-10 Nanoindentation load-displacement curves for PMMA, PC and PU measured 
from nanoindentation tests using a spherical indenter tip, plotted with the fitted curve as 
described by Eq. (8-17). 

It is noted that in spherical indentation, in order to apply Eq. (8-14), it is necessary to 

ensure that indentation displacement is far less than the radius (Giannakopoulos, 2000). 

The maximum displacement used in this work was less than 700 nm in all spherical 

nanoindentation with a tip radius of 10 µm; this ensures that the condition of small depth 

relative to indenter radius is satisfied. The other issue is that the linearity should be 

maintained, at least approximately. The use of Eq. (8-3) requires that the deformation of 

viscoelastic materials is within the regime of linear viscoelasticity. Lu, et al. (2003) 

determined the linearity limits of PMMA and PC through the visualization of indentation 

impression after the removal of the indenters; the limits of linearity as determined for 

PMMA and PC are 780 nm and 1123 nm, respectively. In this study, we used 
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displacement data below those limits for determination of relaxation modulus, and also 

the good correlations for PMMA and PC between the load-displacement curves of fitting 

using Eq. (8-13) and the curves from nanoindentation tests satisfied linearity requirement. 

For polyurethane, since the glass transition temperature is lower than that of PMMA and 

PC, the specimen behaves more compliant at room temperature than PMMA and PC, it is 

assumed that within the maximum displacement (around 1000 nm) used for analysis, the 

deformation would stay within the regime of linearity. 

8.4. Conclusions 
 

Methods are presented to measure the Young’s relaxation modulus from 

nanoindentation under a constant-rate displacement history. Both the differentiation 

method and the curve-fitting method based on the generalized Maxwell model are 

developed to measure the relaxation functions by nanoindentation with the use of a rigid 

Berkovich indenter. For spherical nanoindentation, a curve-fitting approach was 

described to measure the relaxation function. Nanoindentation tests were conducted on 

three solid polymers, PC, PMMA and PU. The relaxation functions of the three polymers 

were measured using the presented methods, and were compared with the data measured 

from conventional tests. The comparisons show a reasonably good agreement between 

two sets of data for each of the three polymers, thus validating the presented methods in 

this chapter. The methods presented herein can avoid solving the ill-posed problem for 

obtaining the Young’s relaxation function from the interconversion of creep compliance 

as measured using load-controlled nanoindentation, and have potential for the application 

in the measurements of relaxation modulus for viscoelastic materials in small volumes, 
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such as thin solid films, MEMS, and also can be applied to characterize local viscoelastic 

behavior of materials in which properties vary with locations, such as bones and 

nanocomposites. 
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CHAPTER IX. 
 

 
SUMMARY 

 

 
In this dissertation, methods for measurements of Young’s modulus and hardness for 

elastic-plastic properties, viscoelastic functions of polymers using nanoindentation have 

been reviewed. The problems associated with the measurements of properties of time-

dependent materials using methods developed for materials without time dependence are 

discussed. To address these problems, methods have been developed to measure linearly 

viscoelastic functions using nanoindentation. These methods are summarized herein. 

(1) Methods have been proposed and validated to measure the local surface linearly 

viscoelastic properties in time domain from the load-displacement relation in 

nanoindentation, assuming the Poisson’s ratio is a constant. Two bulk polymers, 

namely PMMA and PC, are used in the validation experiments. Based on the 

solution for a linearly viscoelastic half space subjected to the indentation of an 

indenter, the linearly viscoelastic material response is analyzed to extract the 

creep compliance as a function of time using both the Berkovich and spherical 

indenters. From nanoindentation load and displacement data, the creep functions 

for PMMA and PC materials were determined from the proposed methods. The 

load and displacement data under prescribed loading histories that include a 

constant rate loading and a suddenly applied step load on the material samples 
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was recorded, results were analyzed using the proposed methods to compute the 

compliance, and the compliance data were compared with conventional data for 

validation. The limit of linearity for each of the two polymeric materials was also 

determined through the observation of the indentation impressions after unloading 

at different loading values. The creep compliance data measured from 

nanoindentation have a reasonably good agreement with the data measured from 

conventional tension and shear tests.  

(2) A method to measure the complex compliance (or modulus) in frequency domain 

for linearly viscoelastic materials is presented using nanoindentation with a 

spherical indenter. The Hertzian solution for an elastic indentation problem, in 

combination with a hereditary integral operator proposed by Lee & Radok (1960) 

for the situation of non-decreasing indentation contact area, was used to derive 

formulas for the complex viscoelastic functions in the frequency-domain, 

assuming Poisson’s ratio is a constant. The formulas are most suitable for 

frequencies lower than a frequency limit such that the condition of non-decreasing 

contact area holds; they are reasonably good approximation at higher frequencies 

under which decreasing contact area occurs and the Ting (1966) approach for 

arbitrary contact area history is needed. Nanoindentation tests were conducted on 

both polycarbonate and polymethyl methacrylate under a harmonic indentation 

load superimposed on either step or constant rate indentation load, while the 

resulting displacement under steady state was recorded. The load and 

displacement data at each frequency were processed using the derived formulas to 

determine the viscoelastic functions in the frequency-domain. The same materials 
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were also tested using a Dynamic Mechanical Analysis (DMA) apparatus to 

determine the complex viscoelastic functions. The DMA and nanoindentation 

results were compared and found in very good agreement, indicating the validity 

of the new method presented. 

(3) A method has been developed to measure both bulk and shear relaxation functions 

using nanoindentation. The method removed the assumption of a constant 

Poisson’s ratio, which is a prerequisite for studies in (1) and (2). Two different 

nanoindenter tips, namely Berkovich and spherical indenters, were used for 

nanoindentation on polymers. Any two independent viscoelastic functions, such 

as bulk relaxation modulus and shear relaxation modulus, have different 

representations in the load-displacement curves obtained with these two indenters 

so that the two independent viscoelastic functions can be separated and 

determined. Two polymers, poly(vinyl acetate) (PVAc) and poly(methyl 

methacrylate) (PMMA) were used in nanoindentation. Nanoindentation 

measurements were conducted on PVAc above glass transition temperature (Tg) 

and on PMMA below Tg. Both shear and bulk relaxation functions determined 

from nanoindentation were found in a reasonably good agreement with data 

obtained from conventional tests, providing validation of the method presented. 

The new method can be applied in measurements of two independent viscoelastic 

functions of very small amounts of materials such as polymeric films on a 

substrate, heterogeneous materials such as bones, tissues, and nanocomposites.  

(4) Nanoindentation used for measurements of viscoelastic properties has been 

applied to two different materials in small volumes: Single-Wall Carbon 
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Nanotube (SWNT) composite film and Tympanic Membrane (TM) film. Both in-

plane and out-of-plane (through-thickness) viscoelastic properties were measured. 

For SWNT composite film, uniaxial (Young’s) relaxation moduli in two 

directions were determined using the methods presented in Chapter 3 for 

measurement of viscoelastic properties in time domain. For TM film, aside from 

measuring out-of-plane modulus new methods for measuring in-plane modulus 

were presented which are accommodated to the film of biological tissue; the 

analytical solution to viscoelastic in-plane indentation problem was applied, and a 

method based on the correlation between results from finite element analysis (FE) 

and experimental data from nanoindentation tests was used to determine the in-

plane properties. Results showed that data of modulus from the analytical solution 

are close to those from FE. 

(5) Equations were derived to determine the relaxation modulus from 

nanoindentation tests under a displacement history with a constant rate. Both the 

differentiation method and the curve-fitting method based on the generalized 

Maxwell model are presented to measure the relaxation functions by 

nanoindentation with the rigid Berkovich and spherical indenters. 

Nanoindentation tests were conducted on three solid polymers, PC, PMMA and 

PU. The relaxation functions of both polymers were measured using the two 

presented methods, and were compared to the data measured from conventional 

shear tests. The comparisons show reasonably good agreement between two 

different series of data for PMMA, PC and PU, thus validating the presented 

methods in this paper. The presented methods can avoid solving the ill-posed 
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problem to obtain relaxation function from the conversion of creep compliance 

measured using load-control nanoindentation. 
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